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ABSTRACT

A general similarity theory of systems of partial differential
equations of any order in any number of independent variables is de-
veloped with the aid of the theory of continuous one-parameter groups
of transformations. The theory is illustrated by means of several
known examples of similarity equations, previously given without moti-
vation, in Hydrodynamics. With the aid of the theory two new examples
of similarity equations, one in Elasticity and one in Fluid Mechaniecs,

have been found; these are discussed in the text.
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NOTATION

The following list of symbols refers to the notation used in

Sections I - VII.

The notation used in Sections VIII and IX is ex=~

plicitly defined therein.

s

A

n)

C

( ,fP

The numerical parameter in a one-parameter continu-
ous group of transformations.
When used in functional notation denotes a simi-
larity equation.
Usually used when referring to the differentiebility
properties of a function; that is: +the function
posses partial derivatives up to the n'th order with
respect to all of its arguments and these are con-
tinuwous functions of the arguments.
The facts given in the structure of a Theorem.
A continuous one-parameter group of transformations.
Gy when expressed in terms of a canonical parameter
z.
The k'th (k = 1,2 ...) enlargement of a Glc.
The postulates for a group.
The hypothesis of a Theorem; that is: the antece-
dents of a logical statement.
The Jacobian of the fumctions 7"1(21, . ',ZP),

., #771...,2") with respect to the variables

z4...,z7,



R1, R2

(%)

Bar under
repeated index
Bar over vari-

able of group

The conclusions or results of a Theorem; that is:
the consequents of a logical statement.

A sub-group of transformations of Gy.

The canonical parameter of the group Gj.

Linear first order partial differential operators
called the symbols of the group Glc.

Symbol of the group GlEk (k = 1,2 ...).

The independent variables of a partial differential
equation ( m=2 ).

The dependent variables of a system of partial dif-

ferential equations ( 7=/ ).

aksy' -J‘=-{; R XD i
aXN""aXNk _w/’.”’dk='{/""m. |
akz B J.=.{,"',/7) —'
OXN - - . AXR [OG, Xy = Ay -, 177
By

The vectors of the group G ~.

When used in functional notation denotes an arbi-
trary partial differential form.

Contained in.

Implies.

Means or Identical to, as indieated by the context.
CONVENTIONS

The summation convention is inoperative for the

index.

The transform of the variable of the group.



I. INTRODUCTION

Many of the exact solutions of the partial differential equations
governing fluid flow phenomens, especially those of viscous flows, are
obtained by the use of similarity equations. That is, by‘finding 8
transformation of dependent and independent variables which will yield
a partial differential equation of the same order but in which the
number of independent variables is reduced by one. One instance of
this is given by the Blasius solution of the Prandtl boundary layer
equations.

A review of the literature reveals that there exist no general
methods for obtaining these so-called "similarity equations" from the
given partial differential equations. It was then thought that the
development of such a general method would be of importance to workers
in Aeronautics since it would enable them to discover new solutions of
the hydrodynamical equations by means of a rigorous procedure end in
addition provide a motivation for all the presently known "similarity
solutions" of fluid flow problems. |

This research was initiated by a remark due to Michal (Ref. 1),
that is: " ... one may suspect that continuous groups would be found
helpful in attacking some of the more difficult problems of elastic-
ity, hydrodynamics, aeronautics and meteorology." An attempt at fill-
ing this gap in the theory has been made by G. Birkhoff in his book
"Hydrodynamics, A Study in Logie, Fact and Similitude." In this book
it is noted, but not proved, that if a partial differential equation

is invariant under a continuous one-parameter group of transformations



then a similarity equation can be obteined from the given equation.
This idea is one whiéh reveals a basis for a theory of similarity
equations and its further development is presented in this thesis.

Once it is known that a system of partial differential equations
is invariant under a continuous one-parameter group of transforma-
tions the theory presented herein enables one to immediately predict
the trensformations of independent and dependent variables will give
the similarity equations corresponding to the given system. The
method is shown to hold for systems of partial differential equations
of any order in eny number of independent variables and it is imma-
terial whether these equations are linear or non-linear or of ellip-
tic, hyperbolic or parabolic btypes.

The general theory developed in this thesis is illustrated by
several known examples of similarity equations, previously given with-
out motivation, in Aeronautics. Two new examples of similarity equa-
tions, one in Elasticity and one in boundary layer theory, have been
obtained by use of the general theory and these are discussed herein.
In Appendix II a considerable relaxation on the class of functions
which can be considered in dimensional analysis is obtained by prov-
ing Buckingham's Pi-Theorem with the use of group-theoretic methods.

No attempt shéll be made to give a detailed exposition of group
theory in this thesis beyond that which is required to maintain the
continuity of the text. Whenever group-thecretic results are used,

we shall give reference to standard works on the subject.



II. PRELIMINARY REMARKS

2,10 Definition of Similarity Equations and Solutions

Before proceeding to review the available literature on the
subject of similarity equations it is convenient to define our ter-
ninology at the outset:

Definition 2.1: Similarity Equations Those partial differential

equations, A=O (say), in /7-{ independent vari-
ables which are obtained from a given partial differ-
ential equation, P=O (say), in m independent
variables.

Definition 2.2: Similarity Solutions of Partial Differential Equa-

tions  The solution (s) of the partial differen-
tial equation 55=C9 which is (are) obtained by means
of the solution (s) of the equation A=O .

The above definitions will also apply when we are dealing with
more than one dependent variable and hence with systems of simulten-
eous partial differential equations.

Definitions 2.1 and 2.2 are sufficiently general so that all
nown cases of similarity equations are subsumed under them. For the
case /77=2 the similarity equations are ordinary differential equa-
tions and this is the case which is usually thought of when the ter-

minology "similarity equation" is used.
2.20 Review of the Literature

The two attempts to provide a background for a theory of



similarity equations have been made by G. Birkhoff (Refs. 2 and 3).
Birkhoff recognized that some similarity equations could be obtained
from some given partial differential equations when they remained
unchanged in form (invariant) under the transformations of a continu-
ous one-parameter group of transformations. Birkhoff illustrated his
contention by giving many examples; but, he did not succeed in formu-
lating the problem from a general group-theoretic point of view or in
proving that his contention holds in general.

In Section 8.30, after we have been introduced to some of the
concepts of group theory and developed our results, we shall make a
comparison between the method given by Birkhoff and the one which re-
sults from the theory presented herein.

There are many excellent books on the theory of continuous
groups of transformations. An excellent introduction is contained
" in Cohen's book "An Introduction to the Lie Theory of One-Parameter
Groups” (Ref. 4). A much more detailed and general exposition of the
theory is given in Eisenhart's "Continuous Groups of Transformations"
(Ref. 5). In this thesis considerable use has been made of the group

theory contained in these two books.



III. CONTINUOUS ONE-PARAMETER GROUPS OF TRANSFORMATIONS
3.10 Definition of Continucus One-Parameter Groups of Transformations

In the succeeding work we shall be dealing exclusively with con-
tinuous one-parameter groups of transformations (also called Lie
Groups in the literature) which we shall here define. The definition
which we shall adopt is given in Ref. 5, p. 15, and is reproduced
here for completeness.

Suppose that:
—y L .
Z=FU2 - 285a); i=1,-, P, (3.1)

denotes a set of transformations among the P variables z‘ which in
addition depends on a parameter @ which can range over the real num-
bers and such that the functions 7“£ are in class C(l) with respect
to their arguments.

Definition 3.1: Continuous One-Parameter Group of Transformations

The set of transformations (3.1) will be called a continuous one-

parameter group of transformations if:

1. The functions # ‘ ere such that: 7F ‘e C (1), or greater, in the

Z's and the @ and, in particular:

/‘jy""{‘P
T](zf,. )aﬁo.

";ZP

2. The following group postulates are satisfied:

¢l: Existence of Identity: The class of transformations (3.1)

is such that there exists a value of the parameter <
(sey) for which

-Z—4-= ;l(zj,. . ,ijao)=Zé



Existence of Inverse: There exists a value of the parameter

a.; (say) such that:

2?z==;f£CEj,'";:2/?5Clj)-
Closure: There exists a value Q= @(%,%) of the para-
meter such that if:

£ o /-l (21’,,,"2/’; aj)

=
and

Z{= £z, 205 05)
then: . ;

= ,r‘(zj, ...,ZP;as) .

Associativity: The Associative Law holds for the set of

transformations (3.1); that is, if we denote the transfor-

mations with parameter g, by 7;1 , etc. we must have:

7‘;3(7;,37;1)=(7:Za 7;2)7‘_71 *

The transformations of (3.1) may be thought of as transforming a

point /7z) in a P -dimensional space T4 into & point P(7) in en-
other P-dimensional space _[/;;. . If .45(2) is the transform of a point
£(z) for a particular value of < then for small changes in the

value of @ we get points in the neighborhood of P

Before proceeding to consider partial differentiel equations in-

variant under continuous one-parameter groups of transformations we

shall need to develop some of the properties of such groups.

3.20 Some Properties of Continuous One-Paremeter Groups of Transfor-

mations of a Special Type

In the treatment of one or more (systems) partial differential



equations invariant under continuous one=-parameter groups of trans-
formations we shall need to know some of the properties of the groups
with which we shall be dealing. These properties are listed or in-
vestigated in this section.
The groups which we shall deal with are of the special type:
Xi= U, -, xTia); £=d,-00, m; m225
Y =Fly;a) (3.2)

when dealing with one partial differential equation and of the form:

. 4‘ .
‘=7[‘(X{.“’;Xm;a);é=_{,"',/77)‘ m22;

X

G : (3.3)

= flysals J=d, o ni nd,

NN

when dealing with systems of partial differential equations in /7 un-
knowns )f/ and /7 independent variables x%¢. The sub-group of trans-

formations of (3+3)

66}: Xé=Fud, -y x75a) ;i i=d, -, m; m22,

shall be denoted by 8¢, -

Clearly, (3.2) is the speciel case of (3.3) for 7=/ , hence in
our succeeding development we shall only be concerned with groups 6f
the type (3.3).

From elementary group theory (Ref. 5, p. 34, Theorem 10.1) we
have the following result.

Theorem 3,1

Any continuous one-parametef group of transformations is equi-
valent to a one-parameter group of translations.

There will then be no loss of generality if we consider the

group (3.3) to be given in terms of a canonical parameter ¢ such that



Z’/:’(‘ = FL(Xja SRR Xm) s i=d, ey my (344)
and

oy .

Loty i (5.5)

where /=0 ,-¢ , Z;+% , are the values of the parameter which
give the identity, inverse and the product of two transformations re-
spectively.

From (3.4) and (3.5) we conclude that the finite transformations

of the group, in terms of the canonical parameter Z , are given by

XK= LA x5 ) s i=d, e, My 225
oo o ' (3.6)
Y= <Yy ; J=4,m5 02

where the bar under the repeated indices indicates that the summation
convention is inoperative and the notation G1° denotes the fact that

the group Gy is expressed in terms of the canonical parameter Z.
3.30 The Enlargements of the Group

Assume that the y's of G;® are functions of sl oo X mp2 .

In enalogy with the group theory of ordinary differential eque-
tions we wish to consider groups which are .derived from G1° by adding
to it the transformations among the partial derivatives of the
Y (x4--,x”). 1In order to distinguish this way of adding transfor-
mations to the group Glc from that encountered in the theory of ordi-
nary differential equations we shall call the derived groups enlarge-
ments, rather than extensions, of the group.

We shall then speak of the first, second, ..., k'th enlargements

By

of the group 3 ®, denoting them by GlEl, eve, Gy © respectively,



according as the transformations of the first, second, ..., k'th par-
tial derivatives of the ) (x,---,x™) are added successively to those
of 1%, 351, .eu, GyTk-1,

The first partial derivatives of the )?ﬂX{--',x”v, by (3.6),

transform according to the relation:

— DEJY, _ Kt kit dxf A;'/é oFle .. X-2) *
I = Fxx = € FE== e o e =€ ——Xa)_('—;——f—‘_&,tg: (3.7)
thus:
V o= KT yP
Y= & A ):-,ﬁ , (3.8)
where 2
p_ oFff(xd, ..., xm;-2) _ OxF
and:

— £O(X, e, X7t

are the inverse transformastions of the group S8g;.
The second partial derivatives of the uy(xfn-,x”v transform ac-

cording to the relation

SJ; =3 éay_(:;i) = k/éa)a(ﬂ (Ay J:a’)

= e I:aA“ _}‘//,y /4 /4/5 ] (3010)

where the terms containing two repeated indices are summed over all
combinations of the numbers 1, ..., m in such a way that all the par-

tial derivatives of the Y 's are taken into account without repetition.

*Por the remaining portion of this section Greek and Latin indices will
range over the numbers 1, ..., mand 1, «se, 0 respectively.
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The first and second enlargements of Glc then consist of the

transformations:

£ _ kit
— kit 4
Y * A“)Q':X
and:
XX = £ (dy e x5 2)
- kit
E -)fi —_ e.‘_J X/. y
G °: )
/N (3.12)

kit 2¥
-X/.J‘Xz e A“ ‘)‘/_/ny

—  mt[oal ¥ W
Vg = X[y r ALAS ]

The procedure which must be followed for constructing further en-
largements of G1° is then clear from the above.
It remains to show that the transformations of GlEl, cen, GlEn

actually do form continuous one-parameter groups of transformations.

To this effect we state the following result.

Lemma 3.1
If, 1. The transformations of Rl., The transformations of
1% form a continuous = 3121, .o, GED also form
one-parameter group. continuous one-parameter
groups.
Proof

To prove the abové results it will be necessary to show that the
postulates Gl-G4 for a continuous one-parameter group are satisfied
by the transformations of GiEl, cany GlEn. The method of proof shall
be given for GlEl.

1. Il == that for the group G, the identity, the inverse and the
1



11

product of two transformations are given by values of the parameter
t=0 , -t end Z3=%¢;+%, respectively. We shall show that Z=0O ,
-¢ and Z3;=7%,+%, are also the values of the parameter ¢ which

give the identity, inverse and product transformations of G]_El

2. (a) Existence of a Unit. ¢=0O is the value of the parameter

which gives the identity transformation for G]_El for at %O

we have
X %= x%,
=Y
.y/,O( X/,o( ’

which shows that postulate Gl is satisfied.

(b) Existence of Inverse. -7 is the value of the parameter for

the inverse transformations of G]_El. This is because:

11 ==
e £ (T X )
-la ¢
y=e*),
then: v —
kit B kit 9RF
Y= € . Oxx e ERCS Yioe
_ kit ofBxt, x5 ) v
i 4 aX“’ ‘X[’P ?

which shows that the conditions of postulate G2 are satisfied.
(e) Closure.
Il = that if:

Y= L%, X5 Y ),

- k.éj
=<2

(3.13)

and
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X& = fnp(xd;""4xln3 220,

y_. _ ek_é. .é-a y‘ (3 014)
L A
then

;_X: f\“(X.{,...’Xm;Z‘jf-fa), (3 15)

= _kj(t+tz) .

| Yy = ey )Q .

From (3.13) we have that

o = € 3 ‘)'/_/:,3 (3.16)
and from (3.14)

rvaR k'i‘g aX")

Yo = ©%° 55E b (3.17)

Combining (3.16) and (3.17) gives us the relation

_ e@(fﬁfa) ax¥ axb
. axf oxx Urd

<l

b (t+ta) ax¥
<= a?« -)Q’d’

k'(f.z*fe)aﬂz'-l,---,?m-—é ¢
= e‘l (X a)=(°< 2 (1+ 2)) ‘—&:’d/o (3.18)

The relation (3.18) then verifies that postulate 6% is satis-

fied for the transformations of GlEl.

(d) Associativity. The elements of GiEl are defined by equations;

hence postulate G4 is satisfied since the process of substitu-

tion is associative.

3. The arguments of 2(a)-(d) show that the transformations of GlEl
satisfy the postulates Gt-c% for a group. Hence the transformations
of GlEl form & continuous one-parameter group of transformations. It

is easy to see that a repetition of the arguments of 2(a)-(d) will
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show that the transformations of G1E1, see, GlEn also form continuous
one-parameter groups of transformations. This proves Rl.
In accordance with the above result we shall refer to the trans-

formations of GlEl, cess GlEn as groups without further qualifications.
3.40 The Vectors of the Enlargements of the Canonical Group

The vectors of the group C—lc are defined to be the set of quan-

tities: (Ref. 5, p. 33)

E;o__ X
ot oo
and
o5
5= 27
adt Jp
The vectors of GlEl, oy GlEn are obtained by successively add-

ing to the vectors of G1° one each of the sets of quantities:

;5‘._ fiZQﬁ ,

J Tt =0
§°‘/ pn O’Z’ o - o(,,) s
4 ot o

where the indices o,...,«

,, ‘take values over their indicated range

in such a way that all of the partial derivatives of the _x are
taken into account without repetition.

The vectors }i‘ are then determined as follows:

- A
“ W) kit 42 AL J (3.19)
- D) = (4 T e Gy,
By definition:
AM _ a//“ﬁ(;.lj...,y’”;_t)___ ox¥

o S X ox



14

since X=X at 7Z=0 we must have:

;o
Al =&, (3.20)

&,
where 5;3? is the Kroneker delta.

Due to the continuity of the functions a g in the X 's and T

we have: _
A% _ i[.a__x‘”] -2 [_.QX’”]-
o7 At | ax> Ax*% | at
therefore,
& & m Srod... 57m 4
2A0) _ [a (- Lot ;z‘))]= a_f_ém__)]:_és.. (3.21)
ot b= X o X % x4 ¢

By (3.20) and (3.21) the expression (3.19) becomes:

¥
§o</= ['i/ 5&1 _ 9f ]le . (3.22)

J Y’ Ox*

The vectors for G]_El are, by (3.3), (3.4) and (3.22), then

Fo= gy xm),
=KX

&
o .c% __OF™ . .
?) _[’éfléu, axo(,:l):/;f;
The vectors 55";( %2 are given by:

6% I Weer] _ Rt aAg', . 5 p%
& - -—O"/Z‘—i___; {@e X%z Z/’J'—fA“l A"(e )_J/':a//a’a

o & &%
kit 34 : BAS ¢, Y : ]
r e [ata;“z Yott + oy A Gt T A op )Q:Wa]};
=0

By (3.20) and (3.21) the above expression becomes:
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e 4 | ¥l 623?6” ag' ”556’2
g‘j‘ "ﬁ/ [O+6°<:5°<e )Q}M;l_ «lax"‘e‘)J/’d’: ax"‘ra;e)J/:Ne 5% aﬂa)j}dﬂa

_ pegd iy eogh  n IFk
=t 4 35 - AT L o

Hence, the vectors of the second enlargement, GlEz, of G-1° are :

§,°(/ = _f‘e&/(X'ﬁ"‘JXm)’
N/
, Y
g= [ge -3 %
woe 0% Kot gt O£% b OFT
§J T Tox~ox? J’&’l [k 5/ 5”‘2—— % gx~e 6;(2 Ix™ -Y/';J’,Jg :

The procedure to be used in determining the vectors

fj’“g % . o g ™" ig evident from the above description.

3.50 The Symbols of the Canonical Group and Its Enlargements

Using the vectors of the groups SGI’ Glc, G]_El, coey G]_En we

define the following linear partial differential operators:

Uf= &i{(, ’ (3.24)
UL — fwi(/;/+@%.§§, (3.25)
- £ 4y g ‘2’; (3.26)
0'('?“—-—- £ 'jxi J)ga;,jvc:g“’aaf: y 5“’“25%2;2 ; (3.27)
T S L S
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which we call the symbols of SGl’ Glc, GlEl, csey GlEn respectively.

Elementary group theory provides us with the following result
(Ref. 5, p. 62, Theorem 17.1).
Theorem 3.2
If. 1. E*%s an absolute in- % Rl. JF=0.

varisnt of a group Gy

By successive applications of Theorem 3.2 we conclude that the

necessary and sufficient condition for any quantity to be an absolute
B

invariant of the groups SGl, G1°, Gy 1 e, GlEn respectively is

that it satisfy one of the equations:

J°F=0,
Uf =0,
Ur=0,

T =0.
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IV. PROPERTIES OF THE RELATIONS

Zé_(x-f...’xm) = 95(‘)-/{ (X{...’Xm),. ..7)/”{/\/{...’)(”7)’)({...’)(/77)

The quantities & (y,--:,Y , X{-,x7),6=4--.,n, are defined in
the statement of Lemma 4.l.
In succeeding sections it will be found necessary to consider

relations of the type
Za' (X'{: .,_)Xm)==y; (X{ (X*ﬁ“-;X”J,"':)Z (X}{'"7Xm)?X{""Xm)’5=j7""n) (4.1)

since they will be useful in the investigation of partial differential
equations which are invariant® under continuous one-parameter groups
of trensformations. Hence, in this section we determine some of

their properties, the first of which is:

*This statement shall be made precise in Section V.
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Given:
The set of equations
Zé.(x{---,x”")= 95(X(:""YH;X{"'7 Xm):

where o={,---,n and the J,,**"), are
considered as functions of
X'I, .o 5 xm .

The functions

*
95(){(”"’)’/7 JX Gy X)), S=4, o501,

when considered as functions of /m+7
independent variables Y/, -, Yoo

xZ, - -+, x™ , are functionally inde-
pendent absolute invariants of the
group

-/\7£= f‘l(x'{y"‘:xm’ra) yi=dym, mp2,

Gr: o .
‘X/.=75: ()9-50} 3 J=.l,-'-,/7, ﬂ)f,
where: <« is a numerical parameter
and a=d, (say) gives the
identity transformation.

I1f. 1. Under the transforma- h Rl. Under the transformations
tions of Glz of Glz

> .

‘Z()_('{,"'r—)?m)=){; (717"’)?’") ~= ZJ(Y{'--,Y’”)—'—'ZJ (X{ % Xm)'

where: 5=f,""", .

Proof | =)

1. Gl => +that under the transformations of the wvariables

*Ppat these absolute invariants exist and are independent can be
shown by elementary group theory. It is possible to choose them so
that the Jacobian r](j 290 4o

(&4

—es Yn
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XL, x™ of G, we have:

Zg (R, -+ X7) = G (Y, (FhensR), oy Yo (Ryoe0y Xm), ¥ o0y X7) (441)
2. G2 = that under the transformations of Gy
G (T (Rheres ) o,y (T4, X7), X, X ) = o (YK X 3 1 (ke X X, X).(442)
3. Il =, by (4.1) and (4.2), that:
Zg (Rfoee XM) = G (Y, (R, R), oy Yo (R X7), R ee, X7
- %(Z (XL e+, X7), = Yy (X4 -y %) | Ty oo, %)
=g (X{ (X{,-",X’"),"*,}{,(X-l,-",)(”’), X‘{,---,X”’)

= Za‘ (X'(, ..-,Xlﬂ) .

This completes the proof of the sufficiency.
Proof (~<=)

1. Rl, Gl =

s ()’, ()7{"'77,”)," 23/ {ij ey X7), 7{ 0 7”’)=Z' ()Il(x:j‘“;Xm);"')},’,{Xrl"'rx”?lx;l’",xm)- (4.3)

2., G2 = (4.2), hence on combining (4.2) and (4.3) we must have the
following relation

G (3, (Lo Ry Y (R Xy Ko X) = G (R O X X w5 Xm), (444)
For the purposes of the following argument it is important to note
that the notation of (4.4) indicates that the arguments on either side
of the equality are connected by the same functional relation. Since
there are /7 such relations (4.4) and the arguments in the (n + kl)“ch
to the (n + m)'th places of the relations are the same it is evident,
since ¢/ M);-‘O , that the only way in which the equality can be

Yir"s Yn

meintained is for:

T (R X7) = g (Bl X7).
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This proves the necessity.
Lemme. 4.2
Given:
Gl1,2 of Lemma 4,1
G3. Z(X'{-'":Xm),"',ﬂn—z(X‘f'";Xm} are func-
tionally independent absolute invari-
ants of the sub-group:*
SGl: X= fi(xl,"';X’"; a)ji=d,-m, m=2,
of the Group Gj.

If., 1. Under the transforma- Rl.
tions of Gls

J (XL, X) = ) (Reer, R = Zp (X, XY= (0 )
wheres 5=1,---, n.
Proof
1. Rl of Lemma 4.1 = that the functions Z (x{--,X”) are absolute
invariants of the sub-group SGl of G1.

By elementary group theory every absolute invariant of SG]. must

be a function of /LN 7,,7_, , hence:
Zg(X'{r"')Xm)= 5(71:"';%—1)0

This completes the proof of Lemma 4.2 .-

Definition 4.1: Invariant Solutions of Partial Differential Equations

That class of solutions of a partial differential
equation or systems of partial differential equations

which satisfy the relation:

*Mhat these /m—{ absolute invarients exist and are independent can
be shown by elementary group theory.
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V(L ... M) = XL .., X" me2,
)g_(x, ,Xm) )Q-(X,- ,X") [:1).--,/7, >4,

under the transformations of Gy; that is, the )g_ 's

are the same functions of the X7 .-, X7 that the

Z 's are of the corresponding x4, --+,X7.
Lemme 4,3
Given:
Gl. A continuous one-parameter group of
transformations of the form:
o s Xe= £ xTsc2) s i=dy ey m, mp2,
17 ; :
G=Flysa) s j=d,n, nxd.
m \ a 12" ") Im-1 \|= —q{ .
If. 1. 71(X,z...,xm),...,/m_{x;...,x), Rl. A [J(—'Z—j—x‘,:w, X,,,)] m—4
Gy s v sdns X540 +5X)
2. a 3
9n(.>?,"',)’n,xf-'-,x”’) >=’ﬁ - %
are m+r-{ function- (jyR=d," "> 7)
ally independent abso- for fixed / and all R .
lute invariants of Gl g g
in Class C(l)- 3. Also o (L ”)#O.
) L 10" Yn

Proof

Proof of Rl

1. First we note that elementary group theory (Ref. 5, p. 62) gives

us the following facts:

(a) Gl == that the absolute invariants of Il exist since they

are characterized by the solutions of a homogeneous first

order partisl differential equation whose independent vari-

ables are the variables of the group.

(b) The Z{(xf---,x'"),---,%”_/ (x{--,x™) are absolute invariants of
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the sub-group:

5%{: x¢= /"(x{---,x”’;a) j =Ly, m, m22 .

(¢) Any other absolute invariant of SGl is a function of the

7 's.
2. Since the 7 's are functionally independent we immediately have
the result (Ref. 6, p. 9) that

f [0 (L))

where: /E denotes the rank of the Jacobian matrix
This proves Rl,
Proof of R2
1. R2 can be proved by contradiction.

Suppose that:

o
Ve

then we conclude that the functions 9‘/ must be independent of the

=0 for any fixed ;j and all R;

Y 's and only functions of the X 's absolutely invariant under the
transformations of Gy. But, if such is the case the ¢'s must theﬁ
be absolute invariants of SGl and hence functions of the Tr>*"s 7,,,_,.
This contradicts the hypothesis Il and completes the proof of R2.
Proof of R3

This fact is evidént from elementary group theory as stated in

the footnote to Lemma 4.1,
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Lomma 4.4
Given:
Gl of Lemme 4.2
Ife Lo gl Xy f it x™), h (Rl. The relations

ﬂ(ﬂ;--,_){,,Xf,---,x’”),'” P)

Gl Ygs s X yXy ey xm) 5—(71” f”"'/):: % (.)f”"’y”’)(;l""xm)’

are m7+n-4{ function- where 5=i,---,n, which im-
ally independent abso- >=>>/W plicitly define the y's
lute invariants of Gy. as functions of the x 's,
cen be inverted for the

2e 50y s Pmi)s 354y 25 705 Y 's in some finite domain
is a set o{‘ %\mctions of the (x4, ..., X™)-space.
in Class Cl1J, ) L

Proof

To show that the above result is true we have to demonstrate
that the conditions of the implicit function theorem are satisfied
(see, for instance Ref. 7, p. 132, Theorem 23.1).

1. By elementary group theory the following facts are at our dis-
posal:

(&) The 9o (Yys -5 Xn s x1e-o x™), 5=4,...,n, are at least c(1).
continuous functions of %,--',x,,x{'--,x“ defined in some fi-
nite domain of the (),+,),X} ~X") =space.

(b) The A (x4 ..., x7") , @=1, -, md, are at least ¢(1)-
continuous functions of xf...x” defined in that part of the
(x%--+, x™) -space which is included in the domain of defi-
nition of the g's.

2, 61, I1,2 ==, by l(a,b), that the set of functions

é“(ﬁ:""%;)(j:"':xm)z %‘()Q:"'JYn7X3{"’:Xm)_/§—(Z’ T 7/77_/) =0 (405)
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are defined and continuous, at least in Class C(l), throughout the
whole of some finite domain A, of the (y,-),,xi x")-space.

By Lemma 4.3 we then know that:

J(ﬁ_’;;’_ﬁ_);zo
Yt 0 Yo

at any point ()Z,---,y%},xf,-n,xf) of the domain AV, .
3. The arguments of Steps 1, 2 and R2 of Lemma 4.3 show that the
conditions of the implicit function theorem are satisfied at every
point of the domain /V, . Hence, equations (4.5) define y ,---,y,
es single valued functions, at least in Class c(1), of x4 -, x”
over the whole of some finite domein in the (x4, ..., x") -space.

This then completes the proof of Lemma 4.4.
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V. CONFORMALLY INVARIANT DIFFERENTIAL FORMS

5.10 Definition of Conformelly, Constant Conformally and Absolutely

Invarisnt Differential Forms

Before considering the invariance of differential forms it is

necessary to define them, that is:

Definition 5.1: Differential Form of the n'th Order in /m Independent

Variables = A function, usually in Class ¢(1) or

grester, of the form:

L M & oy | .2%
ﬁ()(’ ..,X ,y(X, ,Xm)7axl7“‘)axm 7"‘?aX1” )""ax”)ﬂ (5.1)

whose argument contains the variables x4, x™

a function J(x{.--,x”) of them and the partial
derivatives of Yy with respect to the X's up to the
n'th order.

Suppose that each of the terms in the argument of (5.1) trans-
forms under the laws of transformation of a one-parsmeter continuous
group of transformations with a symbol V in the canonical parameter
Z . Each of the arguments of (5.1) can then be considered as an in-
dependent variable under the group of transformations with the symbol
V. 1If there are p~7+2 terms in the argument of (5.1) there will
be no loss in generality on calling them 21, ---,ZF .

With the above conventions we can then write:

Definition $.2: Conformally Invariant Differential Form 9-5 Under

the Group with Symbol ¥ = The function _@ of (5.1)

is such that under the transformations of the group
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with symbol V' the following relation holds:
Gz 52F) = Flzl-,252) B (24, 2F),  (5.2)

where f{z{n—,z"’) is exactly the same function of
the Z's that it is of the Z's and F (z¢---,2F;¢)
is a function of the Z's and the canonical para-

meter 7 which is different from the function é .

Constant Conformally Invariant Differential Form &

Definition H.4:

Under the Group with Symbol V' = The function é of

(541) is such that under the transformations of the
group with symbol / the relation (5.2) holds with
F{zf.-,2%¢) being a function of Z only.

Absolutely Invariant Differential Form f Under the

Group with Symbol ¥/ = The function of P of (5.1)

is such that under the transformations of the group
with symbol V the relation (5.2) holds with

Flzi-2F;#) bveing identically equal to one.

With the above definitions we can now proceed to determine some

of the properties of conformally invariant differential forms.

5.20 Properties of Conformally Invariant Differential Forms

With the aid of the definitions given in Section 5.10 we can

prove the following:
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Theorem 5.1
Given:

Gl. A one-parameter continuous group of
transformations with cenonical para-
meter #

Z[ — 7[“(2.{, ...’ZF';.Z-) 3 Z=/;"'>P5
with symbol /.
G2. The differential form é is such that:

d,
_{EfC() or greater.

7~

If. 1. The differential form ) Rl.

B(z4z") V@ = o(zhs27) Pk 12P)

# Ozl z2P).
is conformally invari- % <= or some D(zh---,2F)
ant under the trans-
formations of Gl. ) L

Proof (=)

1. I1 and Df. 5.2 =5 that & is such that:
ﬁ(zj, '”7—Z—P) =F(Z'/’"')Zpilt)é.(zly"':zp) . (503)
2., On taking the derivative of (5.3) with respect to the parameter

Z , and evaluating the result at the identity element =0 , by G2

we obtain:

Y] azi} aF) Bz e
£ = (& P(=4--,27) (544)

ozZ¢ at =0 ot )
But, by elementary group theory (Ref. 5, p. 33)

SZ* 3 :

_é_f_é=o §‘(Z’1,""ZP) 5 (=1, 50 ; (5'5’)
and

_@Q) _ 9B(zh-2F) | (5.6)
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3. Remembering that

3 .
V: ﬁéﬁ )é=_/’---,/D, (5.7)
and defining
IF
52—)é= = w(zj) "'7ZP) (508)

we obtain, on using (5.5) = (5.8) in (5.4), the result
VP = ozt ,zF) H(z4,---,2F). (5.9)
This proves the sufficiency.
Proof (<==)
1. Rl =:
VE = cwo(zd-,zP) $(z%-,2F);
hence :
Vg =-V(VE) =V(w$)
=FVew + 0V
=p(w? + V). (5.10)

Similarly, if:

V6 =o6(z4 -, 2P) B4, 27),

then
v"E =V(V'F)=FVe + oV
=@ (6w +TVo). (5.11)
2. In view of the relations (5.10) end (5.11) we can write:
V=2, 2P) (2L, ,27) (5.12)

where for each /7 the cJ(ﬂ)(Z/, ..-,7zFP) are determinable functions of
Z’{, “eey ZP .
3. Again, by elementary group theory (Ref. 5, p. 35) we can write

the following expansion for ¢ (Z4---ZF):



29

B 27) = Pleyz?) 12VE+ £V 2 HVE. (513)

Substituting (5.12) in (5.13) yields

B(zte3P) = Bzt 7P) [na)‘”z - w"?)—ef-2+--.] : (5.14)
4, Xow, we know that the right hand side of (5.13) converges to
H (24, ZF) for any Z . The same must hold true for (5.14), hence
the expression within the brackets in the right hand side of (5.14)
must donverge to a function A (Z{,"',Z;;f) for any Z . The equation

(5.14) can then be written as:

B(2L.,2P) = Flzh,2F58) $(24,27) . (5.15)

By (5.15) and Df. 5.2 the function P is then conformally invariant
under the group with the symbol V. This then proves the necessity.

From Theorem 5.1 we conclude that if f is to be conformally in-
variant under a group with symbol V then ﬁ must be a solution of
the first order par‘ci&l‘ differential equation (5.9). Conversely, any
solution of (5.9) must be conformally invarient under the group with
symbol V.

With the above interpretation of Theorem 5.1 we prove the
following:
Theorem 5.2

Given:
G1,2 of Theorem 5.1

-~

R
If. 1. The differential form Rl. _ ;-(zf,---,zp)
F=e &,

{ ... ZP
P(z,-,2F) where @ is a general ab-
is conformally invari- <= solute invariant of the
ant under the trans- group G} and 3 is a deter-
formations of Gl. L minable function of ZI,"',ZP.
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Proof (=)
1. Il and Theorem 5.1 =~ that ¢ is a solution of the first order

partial differential equation

Vg = wo=zt-,2°) §(z4---,zF). (5.9)
The general solution of (5.9) will evidently give the most gen-
erel conformally invariant f under the group with symbol V. Thus
the sufficiency will be proved if we caen show that the general solu-
tion of (5.9) is of the form given in Rl.
2. We proceed to determine the general solution of (5.9). Such a
general solution (Ref. 8, p. 252) is given by an arbitrary function
of the P independent solutions
Z- (Z‘{,'--,ZP)=Q=COﬂsZ". si=d,-, pA, (5.16)
and
P (z4 - ,2P & )=C=const. (5.17)
of the system of ordinary differential equations

—OI—Z.{—- —-O-ZZ_":...:O,ZP_: G/f .
T £ wg (5-18)

3. Suppose that the solutions (5.16) are known and we have to deter-

mine (5.17), then from the first and last terms of (5.18) we have:

I8 _ w@(zhzZP) i

(5.19
§ F!(z.l’...’zp) )
But, by the equations (5.16) it is possible to write:
. \/'
ZI= FU2NG %), =2, P, (5.20)

and upon substituting (5.20) in (5.19) we have:
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ISP _ D (AU, Got)y s FEER G ) gt
S EUE, FHzLC 5 G)s s FAES Qs Goud))

= 6(212 C:{:"')C'p—.,[) dzjy (5.21)

where the definition &(z{g, ", Gy) is evident from the above.

The solution of (5.21) is then:
% 55 —/éa’zf = C = const., (5.22)

and the left hand side of (5.22) is the function @ of (5.17).

4. The general solution of (5.9) is then:
Fps s o s tn = [fod24 )= 0O,

where / is an arbitrary function. Since / is an arbitrary function

there is no loss in generality on writing the solution of (5.9) ass

I § — fedzf =44, , (5.23)
where _?Z is an arbitrary function of ‘Z,--~,2;4 which is the solu-
tion of the equation V#=0 . With a little further manipulation
(5.23) becomes:

1
_95 _ C?JC9C£Z 5&;
or

Lo 2”
§=er(z, ’Z)fé(?p”"%-f)s (5.24)

where

5 (24, 27) -———f@(z-’,c},---,cp_j)dz‘,
since after the integration is performed the C's are replaced by the
left hand sides of equations (5.16). Equation (5.24) then establishes

the sufficiency of the condition.
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Proof (=¢=)
1. Rl == that @ is of the form

(z-{’ ...,Zp)
g = C?g. gé .

By the construction shown f satisfies the equation

V.é = GO(ZI;"':ZP) ﬁ(z'l:"'?zp);

but, by Theorem 5.1, 35 is then conformally invariant under the group
with symbol V. This proves the necessity.

Based upon the previous results it is possible to prove the
following:

Theorem 5.3

Given:

¢1,2 of Theorem 5.1

If., 1. ﬁ=0 is an equation Rl. The equation can be written
with & conformally —_ as:
invarient under a é}:@ ;

group with symbol V.

Proof

1. I1 and Theorem 5.2 =

L oo 2P
¢-= e;‘(Z; z )_é(z,"') 7/:_!);

hence, the equation

$=o0
can be written as:

| ZIJ "':ZP)
f;‘( é)(@;”’,fp_j)= O. (5.25)
F(Zii'“,zp)

2. But, < %O for arbitrary =4, ---,zF , hence (5.25)
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can be written ass
ﬁo (Z{y T ZD—I)—_‘“O-
This then proves the sufficiency.
Based on the above results it is then natural to construct the

following:

Definition 5.,5: Partial Differential Equation @=0 Invariant Under

a Continuous One-Parameter Group of Transformations

G1 = The partial differential form é is conform-

ally invariant under the transformations of Gy.
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VI. SYSTEMS OF SIMULTANEQUS FIRST ORDER PARTIAL DIFFERENTIAL
EQUATIONS INVARIANT UNDER CONTINUOUS ONE-PARAMETER

GROUPS OF TRANSFORMATIONS
6.10 Formulation of the Problem

Suppose that we have a set of simultaneous first order partial
differential equations in /77>2 independent variables X‘l,--- , X7

and /7>{ dependent variables }),,---,y, of the form:

Lo ym ... 8% ..., %% ..., 9% .. 9V |_
@{X, ,X ,)?, ,%,5;{7 )5)—(—,”) )5—;[) )axg ——O’

(6.1)

aYy, 3Y, 3, =3/
Lo, XM v, 0L S <" S . n
ﬁ” (X, X5 e ’x’,axl ’ ,8x’” ’ ’a ax'”) =9,

where each of the differential forms &, ,---, #, 1is conformelly in-
variant under the first enlargement G]_El (see Section III) of a con-
tinuous one-parameter group of transformations.

The question to be answered is: "Can the invariant solutions of
the system (6.1) be expressed in terms of the solutions of a system
of first order partial differential equations in m-{ independent

variables?" It will be shown that the answer is in the affirmetive.
6.20 Formal Investigation of the System (6.1)

Before we proceed to prove the main theorem of this section we

first prove the following result:
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Given:

Gl. A one-parameter continuous group of
transformations of the form:

)‘("i;_-—?p‘(x/’ ...’xm;a)j [=-{,“')”7; /77;2,

Glz

Gi= 650l oty mod,

wheres <«

is & numerical parameter

and «=qa, (say) gives the
identity transformation.

If. 1. Z{()(;{"‘,X,”),""7”7_/()(’1'";)(,”);w
G (Yor==sYs X% -5 X,

G (Yas7+s yﬂ.)xl’ ceey X™M)

are m+7~{ function=-
ally independent abso-
lute invariants of Gy.

2. The functions
Yoty X )oY (x{--e, x™)
are implicitly defined
by the relations:
,%‘(Z{J...’ 7”7_1):

\7; (){{,.. .’%7,)(1,...’ X’ﬂ)
where: S =4{,---,/7.

Se 5/7.{: "‘:7/}7—1)) ]
57(71) A ?m-_()
~are functions in Class
o)’

4. ZQ.“) 7/7—1’ Gty s n
are functiors in Class
c(2),

Proof

(R1. The quantities

ofs
67w
when expressed in terms of

the variables X4, X" Y, Yy,
Yo" of GlEl, are a set

of absolute invariants of
GlEl Y

§ 4,---,1,
y73] 1’ o oe g 17124

2. Any function

) «
a,a_f,...,a_f,..,,éfﬂ_,...,_a)fc
%" Shi U fmd
is also an absolute invari-
ant of G]_El.

1. Gl, Theorem 3.1 == G] can always be expressed as:

:\,‘L
)f’

I

f‘(X'{,"‘,Xm;Z'); (“‘.1) "')m,
ot ;
XY y J=1,5 7,
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without loss in generality. Hence, by Section III, the symbol of the

first enlargement, G]_ , of ;¢ can be immediately written as:

U = 62+ mp 3+ [0~ Ear 3 [ 5 e2)

2. I1 = that the quantities 7, >/, 9, are functionally in-
dependent solutions of the equation U#F=0O , hence we have the fol-

lowing identities at our disposal:

$ 9 _ =ty ]
f Ax< =4, 7. ’ (6.5)
and
L‘ agd' 89 é.—:_[ .« ooy 77
- + A —d = l: ’ 210, . .
Faarhpzz=0 | T, (6.4)

3. 12,3 =5 that on taking the partial derivatives of the expression
/-;.(Z/’.”’ Zﬂ-l) =G (.Y_l 3 Yoo X;{"')Xm)) §=A;"1, (6.5)

. o, -,
with respect to X ', ':-»X 77 , where the numbers °%, "")%pm-s are

all different but are /~7-{ numbers of the set {,-..,/m7 , we obtain

Fe
the following set of simultaneous equations for aa;‘; 2o 8_9__5_7 ,
m-4
that is:
5 3 4 ... 85 mis 69;)2“ agi b=y, 17,
S X Oy OX1 By T Ox%
(6.6)
sy ..., 9% OMnt _ % 9% .
8y Oxms 3 S xXm-4 3y, D%me 3 x%m-4

From (6.6) we can solve for as:

Ofs
o 7“7
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%_ ... %% i@;y.,.fif)f@...%
A% Ax Ay, b D) OxXH Ox4

Y . ..%%w« Nposy . . . fm

o OxNm4d " xS (6 Yo ,°(,,,_1 6x°‘m4> SxXmrd DxXm-1 (6.7)
= 7 (647
3o
7‘0 J(@:""fmﬂ' )
X“‘l’ sy xXo<m-1{

where .Lf(fﬁz.-:fZ;l) denotes the Jacobian of quantities /,
** > /py With respect to the X4, ..o, Xm-4 _ gince, by Il, the
Y ""2%1 are functionally independent it is evident that
(l?i___ziﬁlé_ %0 "} hence,the division indicated in (6.7) is justi-
s XL
fied. In the succeeding work free indices will always be indicated by
Greek lower case letters. To this effect we note that the ratio on
the right hend side of (6.7) is independent of the free indices
Xy, s Xy
4. On substituting the right hand side of (6.7) into (6.2), and us-
ing the identities (6.3) and (6.4), it cen be shown (Appendix I) that

the quantities

S=r. «..
8Fi -/7 ) /7, (6.8)
87‘4) w--{’ *e ’/77"1.

are a set of solutions of the first order partial differential equa-
)

tion ¢/ #=O . Therefore, by Theorem 3.2, the quantities (6.8)

must be a set of absolute invariants of GfEl. This proves Rl.

5. To prove R2 it is only necessary to note that

*That it is possible to choose the numbers o ,---,e, , in such a
way is evident from Rl, Lemma 4.3.
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’ 2 ) ’
871 67/”_ o U a7/7-1-/

_a aF w(az) 4 a(ié"i) y(1)(;;7—1) — 0,

U(:)C;,_,(a/r L 9H 9K . O )

aZ -4
o) a . s
_ since by Rl each of the expressions g (5?— "Zf ( is identi-
s
F
cally zero. Therefore, by Theorem 3.2, the expression d;/; ?--leﬂ—)
4 Jm-1

is also an absolute invariant of GfEl. This proves R2.

The above result is contained in the more general Lemma 7.l. The
proof has been given to jllustrate the difference between the above
method and that shown in Lemma 7.l.

We now proceed to consider systems of first order partial differ-
ential equations. The succeeding theorem formally states, for invari-

ant solutions of the system, one of their properties.
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Theorem 6.1
Given:

Gl. A one-parameter continuous group of
transformations.

X=Fxxsa); imdy s my 2
Gy ,
Ni=5y50); J=d,s 5 n2d;
where: <& is a numerical paraemeter
and <=, (say) gives the
identity transformation.

G2. m+n-{ functionally independent
invariants of Gy of the form:

7{(/\/.[,..-’)(177)’...’//77-/ (X"{...,X’ﬂ), }6C‘(é:)
91 (X{,"',%,,X{---,Xm),“', (= (\X{,...’%’X{...’Xﬂ?)
G3. The functions %(Xf;--', Xm);' Ty

Yo (X4, --sy X7) are implicitly defined
by the relations:

6—(71’.."7’"'-‘):%‘(”""’X?IX{"‘:X”’%
where: 5=_{) sy 7.

Statement of Theorem

If. 1o Flx™ ,)/ 2Y,..%% o)) (R1. The invariant solutions of
Fos5-x%roh o’ oxm/ =2 the system of equations

: gm0, -+, =0

L, v 23y can be expressed in terms
é(x’ X7 A ’y"’a)‘" ’ax/ﬂ) of the solutions of the
is o system of partial system

differential equations ok

of the first ogder in m L (7” RGTEES '5’67, ™ aym) o

independent variables = ﬂ

xi, oo, x7 and » A,,(n"‘ffm—n'ﬂ' ,5_F‘, 6)é?/-”) 0

unknowns Yy, - Yo o @ T4

- a system of first order

2. Bach of the differen- partial differential equa-

tial forms &,.---, & tions in m-{ independent

is conformally invari- ' variables /4, s Zm-

ant under the group and /7 unknowns 4,--, /% .

Gll
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Proof
1. Gl,2=> , on using Rl of Lemma 4.3, that % p-{ " of the x 's,

*¢! (say), can be expressed in terms of the " m-f "

absolute inveri-
ants £, ' , /4 ©nd the remaining X, *x™ (say). Therefore, we

can write:
= B s Pt 2 *X7) 5 =y (6.9)

2. G1,2,3 == , by Lemma 4.4, that the y's can be expressed as func-

tions of the £ 's and the X's which in turn, by (6.9),may be written

as
-}/6 F— QJ({’ -.-"ﬁ;’ Z’...’7m—j’*xlﬂ)’ 5‘:_{’ ceey ”. (6.10)
3. The equations (6.6) can also be solved for the Y , 's, since
Fs 3
J (2290 V20 (see R3, Lemma 4.3), in terms of the %‘; 's, —%'s
Jiy o ) 5 Teo Ix
and the _2% 's. But, by (6.9) and (6.10) the af‘;’ 's and the
3% A7

's may be expressed in terms of the Frs, 7's and *X7 ; hence,

9%
it is possible to write the Jj. 's a&s:

_ 7 . m) [b=1,~--,/7,
‘)2:“1,'_ .Qb'xt (8764) ’ 6 4 7‘. » X b= A, - ymL. ) (6’11)

where the notation indicates that the functions _Qb«[ depend on all

of the variables indicated above. This, of course, can also be seen
by taking first partial derivatives with respect to the X 's of the
equation (6.10).

4., On substituting (6.9), (6.10) and (6.11) into the first order par-

tial differential forms @ of Il we obtain:
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/ 3y, 3
5%;(* s Xy Yyr S ’aiﬁv):==

35
Ba—(x Tir et Kol 5 é—-”—-):
/ Im-1
which can be considered as an identity in all the independent vari-
ables *Xm, Z"",7”7__1 °
5. 12, Theorem 5.2 =p= that the _é. can always be expressed as:

a)g - 3y, )=
Ix™m

(X, e X ,y) )_Y,;
(6.13)

a Ay
& (xH Xy r o a4 5)

£ m 3, .....9%n
Oé‘ (X,--.)x’!,_._,yn,gp, oxm) ?

where the functions {Dr (X, s X7 Yy o ;x,,aJﬁ ceey :%);/1775) are absolute in-

variants of the group Gy Bl

6. Again, the substitution of (6.9), (6.10) and (6.,11) into the right

hand side of (6.13) yields:
' 3 3
B, (X X Yyroees o> S e yﬂ):

SIxm
(6.14)
Q;(':\";’fu‘“)?m—/ 75-";513%)"':35 )
P f’ ?’”" ¢ *X”’ ves /._ a};
o I3\ X0 Ign-/u: ’”’671 67_, ’
17
. SF aF .
where the functions og_ (X’Z’ ,f,,,,m‘} 978 Ry 67 . 37/77 /) , consid-
ered in terms of the variables of GlEl, are absolute invariants of

1E1 e.nd in particular,

ofé—( ces XT3 Yo ’)//n ax' - a),/’) afé('\"ﬁ’z; O/ ML :F;o,,z - :F ) (6.15)

m
"ox -1

7. G1,2,3, Lemma 4.2 and Definition 4.1 =% that for eny invariant

solutions of the system Il the functions aéi can be written as:

oé (X{""Xm’)f{:'"’)f} ’% ] ;fm)=,j5 (Xf,---,x’") (6.186)



42

and under the transformations of G]_El

-,  =m—. 7 X % \_ — ~
O-é (XJ"“,X”,")‘/{,”.’%’EE,‘..’WT;) ——ozg (X!) ceey, Xfﬂ) 3 (6.17)

where we have used the same functional notation og' in (6.17) as in
(6.16), since, for invarient solutions, the _Xa. 's are the same func-
tions of the X% --,x” that the ), 's are of the X%, X" .
But, the functions oé are absolute invariants of the group G]_El 3

therefore, from (6.16) and (6.17) we can write:

I (s xm) = (3 X7) (6.18)
Equations (6.18) tell us that the functions 0%5' are absolute inveri-
ants of the group Sg,; hence, they must be functions of the r7—14

functionally independent absolute invariants Z/ ,"',7,,7_1 of SGl; that

is:

L (e xm) = (7 foret) - (6.19)

8. Similarly, by (6.12) end (6.14), for any such invariant solutions
of Il we must have:

5 9k ) __ 4!
0%5‘ (*an, 1,,,,’5”_”,5"...,/.”-,&_711 ,...,7:74)_0% (*/‘\,11’72{, .“’Z’H)' (6.20)

On using (6.19) and (6.20) in (6.15) the following relation must hold:
/ *
T (G o) =, B X7 oy 2 rt)
/
but, this implies that the functions 0%5 must be independent of
*x7 ; since, otherwise, the functions o%; could not be absolute in-
variants of SG]_' On retracing our steps we must then have that the

functions og_ of (6.14) must be independent of *X77 .

9. The equations _ér——O can, on using (6.12), (6.14) and the result
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of Step 8, then be expressed as:
oF o

Og‘:AJ(Z,-.-,?m-j}/j‘_)--.)é‘)gZ)-..,57:7_—-{):: O, (6.21)
since the quantities <fﬂ§ of (6.14) are not identically zero for
arbitrary values of the indicated variables.

The invariant solutions of the system of equations Il can then
be obtained in terms of the solutions of the system of equations (6.21).
These two solutions are comnected, as is evident from the above proof,
by the relation G3. This completes the proof of Theorem 6.1.

The following are important specializations of Theorem 6.1.

Corcllary 6.1=1

If m=2 +the invarient solutions of the system of equations (6.1)
can be expressed in terms of the solutions of a system of first order
ordinary differential equations in /7 unknowns and one independent
variable.

Corollary 6.1-2

If m=2 and #/7={ +the system (6.1) will consist of only one
first order partial differential equation. 1Its invariant solutions
can then be expressed in terms of the solutions of a first order ordi-

nary differential equation.
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VII. SYSTEMS OF SIMULTANEOUS PARTIAL DIFFERENTIAL EQUATIONS

OF ANY ORDER IN ANY NUMBER OF INDEPENDENT VARIABLES
7.10 Formulaetion of the Problem

Suppose we are given a system of partial differential equations
of the k'th order in /7>2 independent variables ,¥{---,,x”7 and

#7>{ dependent variables J);,:**,), of the form:

# b ¥
3y, dYy )y i/
z m £ e .o —— b =
é[(x’.“’x’){{’“.’%’axl, ’(9)(’77, ’6x14” ’@ka O)
. o (7.1)
(o sy yyr 2o 2, O V) o
p\X5 X :.)fr'i)f”ax./’ oxm ’ax./k, ,<9X”’k ’

where the differential forms j@, ""Sﬁn are conformally invariant
under the k'th enlargement, GlEk (see Section 3.20), of a continuous
one-parameter group of transformations.

The question t§ be answered is: "Can the invariant solutions of
the system of equations (7.1) be expressed in terms of the solutions
of & system of k'th order partial differential equations in m-{ in-
deéendent variebles?® It will be shown that the enswer is in the

affirﬁative.
7.20 Methods of Proof

It is evident, upon examination of Appendix I, that the method

*T+ is not essential for the succeeding investigation to make the
restriction that all of the equations of the system be of the same
order or that they contain all of the dependent variables.



of proof used in Section VI cannot be used in this case.
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In fact, for

the degree of generality which we here wish to obtain, the use of the

above method would make the task considerable and, perhaps, prohibitive.

In this section we shall give an alternate method of proof.

7.30 TFormal Investigation of the System (7.1)

Lemma 7.1

N
Ifo 1. ZI(X‘,I'":X’"), "'}%_/(X{""Xm)’

2.

Given:

The following result will be of help in proving Theorem 7.l.

Gl. A one-parameter continuous group of
trensformations of the form:

where:

Xé= fl(X'{:"';X,'%a) 3 d=dy om0y 128,
G()sa) s o=ds5m5 124,

< is a numerical parameter

and a=«, (say) gives the
identity transformation.

% (Xt)...,')/,)’xl,...,xm)’

In (.}_’{: "':Y/;:Xj: ey XT)

are /m+n-{ function-~
ally independent abso-
lute invariants of Gj.

The functiouns
)‘/{ (X{-",X’”),“-,){,6\",1-",)(”’)

are implicitly defined
by the relations:

E O 519 =G5 (55 Y X5 X,
5:1, veey /7

The functions & (i, fn)
are in Class clk),

71,"‘) Gmf s Gus =2 In
are functions in Class
cfk).

o7

¥=>\

(R1. The quentities

o ..., 9%

7 AN/

when expressed in terms of
the variables of G1E1, ...,
G,Ek respectively, are a set
of absolute invariants of
GlEl, cees GlEk respectively.

*Jfrs s /e range over the
numbers 1, ..., m«l in such
a way that all possible k'th
order derivatives of the

are taken into account with-
out repetition.
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Proof

1. The method of proof which shall be given does not depend expli-
citly on the special form of the symbols Umf, ) (7(”)7( of
GlEl, esey G]_En respectively. Nevertheless it is important to note
that once the‘ group Gy is given the, by the comnstruction shown in

Section 3.20, the symbols of the enlargements of the group are fixed.

2. We shall restrict ourselves to illus’crating the method of proof

by proving that the quantities 2% are a set of absolute invari-

9
ants of GlEl.

3., Gl, Il == , by Lemma 4.3, that there exists a set of "/m-f "

Xts

o¢ e rrr-o
X%, , XX

where the indices o, -:,,, are /#m-{ of the numbers 1, ..., m,

such that

J(ﬁf,’“"%’ﬁ)#o . (7.2)

PR ,x°<rn-l
Let us fix our attention on this particular set and denote them as
follows:

*xlem X =ty e, med,

then by (7.2) and the implicit function theorem the *XZ cen be ex-
pressed as functions of the 7'3 and the remaining m'th variable, say
*x°7  in some particular neighborhood of the (*x%, -, *x7?)- gpace.

4, I2-4 = that

'%:(71’""7/77-1)=7§()9""JY/7:X{"‘;X'") (7.3)

and that the partial derivatives of (7.3) with respect to the *x¢

can be expressed as:
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(7.4)

35 S agé.)&.*_ 9Ys l:o(,g=_/,...,/7, :,
o7 o oy T T Snd ity <oy 4

By the results of Step 3 the equations (7.4) can be solved for the

gi so that:
7 .
%, ¢
a\)/cx , a*x‘ 8@’
In order to indicate the dependence of the a—? on the variables
7
of the group GlEl we write (7.5) as:
) = s 0Fs \ 9%x¢
7g-/ (‘)é(,[ :){‘ >X‘) = ( _)é(,l. Erw, ) aZ/ . (7.6)
5. 11,2 =3 that (7.3) can also be written as:
%—(/7’...7’7;”_1)_-—_%_(Z,...,y”}?f,...’)—(m)) (7.7)

where Z_—..ﬂ (x{---,X™) and (7.7) is to be considered as implicitly
defining the 7‘3 in terms of the X 's. Then on proceeding as in

Step 4 we can write:

8/%7 — a?; 7 + _a_g—i) 6*_)?" ’ (7.8)
Pxv2
c?Z. ay O*xt GZ-
where:
/%— F(f?;"‘:?/.n—j),
—9_ 96'()./1’ .’Z))‘('J’...’ym)’
-  _ X
x‘-" — *x¢
- I*x¢ _
and the *X* in 37—: are to be considered as functions of the 7 's
v

and the X
In analogy with (7.6) equation (7.8) can be written as:

ey 87, | 9¥x¢
% % )—— . (749)

G (Foer JorX)= (337 Yuut 55 )7

6. I2=9> that (7.3) cen also be written as:
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7}“ ?7/77-.{) = %‘(X[;'"JY/)}XJI"')X’");
8F5(q) _ 91 ,

hence, since 7=7 and =
37 °U
J J
d;;: (595 s 395_) a*x¢
£ 3 *x¢ aZ_/‘
and
5 /T v T 3 ags | %’
737 ()«fe,z ’)’ouX") = ( Is Yo i &*zi ) 3—7;(— . (7.10)

Therefore, on comparing (7.6) and (7.10) we cen write:

B (s Y r X) =15 (Yo s Yac sx%) . (7.11)
7. Since the g 's are absolute invariants of Gy, the relations (7.8)

can also be written as:

= p-) ) *ol
OFs ( 7 X+ 395 ) I*x¢ (7.12)

677- I*x¢ aZ
where the 95 are considered to be functions of the 5/;( and 7[ , SO

that by (7.9):

5"/ (.X"l‘ ’){"’X‘)——‘ (‘y"()t "Yo(’x); (7013)
. a*x¢ —{ ... 5m
since the —6_77-— are the same functions of all the X5, X" that the
_ 7 2=
a*Xl

are of all the XZ, <=+, x7 .,

%
From (7.11) and (7.13) we then have that:
é/. (Z,[}Z,}L)=]§:/ (‘X(,‘.’x{’xt)' (7014)
The result (7.14) implies, by the definition of the functions 73;/' ,

Ifs
that the quantities é?—": , when expressed in terms of the variables
“

of GlEl, are absolute invariants of G]_El.

82/5
G’Z,/ ag/e ’
in terms of the variables of G]_EZ, are absolutely invariant under the

8. We shall now show that the quantities when expressed

transformations of GlEz. On taking the partial derivatives of (7.5)
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with respect to another one of the variables, * x ‘e , considered in

Step 3 and using the notation of Step 4 we obtain:

=4 . ; N S

i ] ; *,1l, ‘I
87.// ag/z S*xe Iz U CrlosfysJo=4s

As in Step 4 the solutions of the equations (7.15) are:

95 __ T2 L
[a*xta é"l (%(,il,%(,X‘)j]gz—j_ ‘ (7016)
2

A
The right hand side of (7.16) can be expressed in terms of the vari-

ables of GlEz. That such is the case becomes evident on substituting

the right hand side of (7.6) into (7.16) and performing the indicated

differentiations. To explicitly denote this dependence define:

N 82/‘3 _ 3 . é
Bide (Kt Jhoys? Yoar X¢) = 397, [at\w’z %; (){t,‘-,,yx,xf)]__g;{f . (7.17)
Je

Using (7.8) and (7.9) it is also possible to write:
o o e 95 (8 F iy v 2%

) = = [ —_
B V17 Xoys, K2 X )—‘977,‘977;3 [a*)?fa Ay ( Xy 2JeoX°) 37, ’ (7.18)

where we have used the notational conventions defined in Step 5.
2K (7) 0%k (p)
since , ., and S = LT the relation
=l > L= lie 5, 9T 90,90,
(7.18) cen, by (7.17), be expressed as:

9.

But,

75‘://'./& (Z,z}ia » Ko, :)_:’x:/\_") - é,-,,-z (X«,i,tz’ ,z,:)o’uX‘) . (7.19)

Also, by (7.13), (7.18) becomes:

I*Xée

73?/-;«/2 (Z:i/ia ’X)i,’?y:( ’)7‘.)= I: a*Xla (X( ‘I ’_%( ,X )] 67/'2

= é«/‘a (Z‘:[/ia ’)_Zl;t', :5&7 )_(L) ’ (7.20)
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: o*x & . =
since the 37 are exactly the same functions of all the Xi---,X7
Uz
il ... o V.. V. v
that the 57 are of the X% -:--, X” and the St 75‘_/; (}’«,z,,\)&,X‘)
are exactly the same functions of the .2;4@;};4:5;,-;z that the
3 ; .
% G (Fois Yur X°)  are of the  KoirnsXess Yas X4
Combining (7.19) and (7.20) gives us:
é}Jé (%‘:4'/6'2 ’X,t} ’)_Q’)—(L) = éjJe ()‘{‘,t}lp){oi,’%c’xt)' (7.21)
The result (7.21) implies, by the definition of the functions @J-, Jo

32

that the quantities 3 aF (when expressed in terms of the variables
% e

of GlEZ) are absolute invariants of GlEz.

10. DNow, to complete the proof, we use an induction argument.
ak—/ﬁa-_
67./', . “aZ/;é-/

Suppose we have shown that the result is true for

that is, we know that:

r v 3¢ ;
7;':/;...‘/"#_, (X:,z/...l -t - :X“;_)ﬁ(: ) 6"/ oot ()4,4...;}_,7 :_X()[/;XUXL) (7022)

and

é‘/;“:/;-/ ()O/(,['méé"’. .’y  Jer X! ) ‘5:// Jkro"/‘m " ’xu 7%(:)() (7.23)
where:

b-f —
_ ks
- Jk'(x"‘"‘f'-' Vet Yar KY) = 72T, ’

' A
7%;__"/;_/ (.X(,[,...Zk_/,.-.,);)zl 1 X% X‘) = QZ/ aZ/k

and we have used the notational conventions defined in Step 5.
11. Using the seme method that was used to obtain (7.18) is is pos~-

sible to write:
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8%F5 [a ] 9%r
op % Gy (Yarirmina "2 Yo s s XE) 15— (7.24)
a%// aZk a*x R j/ Jk—l( oy ¢ (k_/ OCll ’.X(’ az/.k
and, as in the case of (7.17),
%k _ 9 ' — - 5 o I%x
37 67 o lia*)_(-‘:? 75[:}/"2/:%—/()‘{64”‘%-/’ ’X’;i/ ) s X ) (97—, o (7.25)

As oan be seen by inspection the right hand sides of (7.24) end (7.25)

contain the variables of the group GlEk. Denote this fact by writing:

. ak,c“
(s sy s Yoy XE) = LT
5"/,---‘/‘?'(-)‘{("/““/2’ ’x&,t,’)é(’x) (97‘// ...az/.k
and
_ _ o OFE
7[‘ . . ()/ A < ess , X‘) = —— g -
S ..:/ n{é"‘tk’ 2 Z "X¥’ 77, .- —.
/A 17 2 az./ aZk
2%75 o%

Since 7 = 7., (=1, y k) 8and Sz=——a= = the equations

%9,

rs
aZ/aZk
(7.24) and (7.25) yield the relation

v e V.V )= ]
ﬂf/;"‘./k (X(,g,...%’ ’)Q,g/:)Q;X) é/\;":/:Q(X(’Z/'"Zk’ » ,zl,.)ﬁuxl) . (7.26)
On substituting the right hand side of (7.23) into (7.25) we can write:
b

7 . > = wi=[_98 = - o o)oK
Gl Tt Vi1 Xer )= [a*;ik Bieses Gyt Bt T X ‘)] 7 (7.27)

2 __
3 ik

— — . o {
ﬂ,i,---ik""’xl,l, , %‘ , xX¢ that the a""X"E 75-:/1-_.:/:@_1 (;X‘;L',-"Zk--, s -.-,){,,)[, Jy«) X )

7%.“_&_/ ()4"',,,,1}_1,---;)%[,;)&,)?‘) are exactly the same functions of

are of M iuip st s Vit 1) x¢ . Hence, in accordance with our previous
(4

notational conventions, the following relation must hold:
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72,;.../} (x"'/"")e"":)fe,z,’)ﬁc ,X4) = @',‘--/}JX(,L','-J,Q""’x',é,’Z’Y‘) . (7.28)

The relations (7.26) and (7.28) imply that

é/}"‘fk <xﬁé}"-l‘k’m’)€$i, » Yo ,X‘) = é\/;"ijk ()f(,z,...ik;"':_x()[l’x( ,X‘) ’
but, by the definition of absolute invariants and our notational con-
%% .
az/.l e e aZ/k
absolute invariants of the group GlEk. This fact has been shown to

ventions the above relation also implies that the re
hold for (say) Z-14,2 and for =k , if it holds for 4=k-{ . 1In
particular, if we take /=2 it must hold for Z=3 , ete.

Hence, the quantities in each of the sets:

o5 ces ak/:;' [ §=d, ", 17, :I,
ayjl 82/; “'aZk S fo =Ly s m-A.

when expressed in terms of the variables of GlEl, cee G]_Ek, are ab-

solute invariants of the groups G]_El, oo, GlEk respectively. This

completes the proof of Lemma 7.l.
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Theorem 7.l
Given:

Gl. A one-parameter continuous group of
transformations:

=f£(X1J...’)(”7 ;a); [aj’--.’m’ m>2’

G(Yssal; =L,,n;n>4,

where: <« is a numerical parameter
and a=a, (say) gives the
identity transformation.

G2. m+n-{ functionally independent ab-
solute invariants of G1 of the form:

Z{(X-{,-‘-,x’"), ""7/77—1(/\"{;"'1)(’”)’ }eclk)
3{(}./[,...’}/”’ X{--',X”’),-", A ()({,...,X?’X{...,Xm)

G3., The functions Y, (x4, X™), - 3 Y (X405 x7)
are implicitly defined by the relations:

/Lé_(f!:'"? -1 )= Is (\Xt:"‘:_)/ﬂ;xjf""xm%

(k)

wheres fy £C g=1,-+,17.

Statement of Theorem:

If. 1. [R1. The invariant solutions of
i (X’ XY ’)47’ ’&1 ‘% =0, the system of equations

§5=O can be expressed in

terms of the solutions of

% V4
a
” oY the system:

Y},Q(, R e o
is a system of partial Aj(,,,---,im_l,f;---,ﬁ,, - ‘9': cens® F) o,
differential equations . 3, ‘97

of the k'th (~>f )
order in sm>2 indepen-
dent variables x4---,x7”7

and »>{ dependent

ok I\ _
- An(fr’""ﬁ»-/’/'—-’"""7_7""’%,‘;,‘7""{9'77&:”7)—0

varaibles ), - Yy - a system of k'th order
partial differential equa-
2. Bach of the differen- tions in s7-{ independent
tial forms &,---> Dy variables /IRy

is conformally invari-
ant under the k'th
enlargement,G Bk, of
the group Gy.
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Proof

1. G1,2 = , on using the notation of Step 3, Lemma 7.1; that

“ . "™ of the X 's can be expressed in terms of the " /7-f " abso-
lute invarients /,-'" 5 /4 2nd the remaining X, say *x7 . Hence,
it is possible to write

Aom By s Gy s *XTT) 5 imdy ee s oA (7.29)
2. G1,2,3 == that the Y's can be expressed as functions of the
F 's and the x's, that is:

Jo = 2 (F— ,Xf vy xm) , S={,--y 12, (7.30)
since, by Lemma 4.3, U )g;’, :;’7)?‘0 . The equations (7.30) may,
on using (7.29), also be written as:

Go= 05 (£, Z/:""f/ﬂ-h*xm)' (7.31)
3. On taking the first partial derivatives of (7.31) with respect to

the x's and using (7.29) it is possible to write:

o, =L, -7
%{,jl=_(2 F':f;,:*x’") [zlgj",..,m_’],jl s (7.32)

‘/;=_{’...,/77‘

s
%y a;z ’

where the notation indicates that the functions j?%ﬂ may depend on

all the variables and *x7. Similarly, the k'th

O
s s b
order partial derivatives of the )/'s with respect to the x 's may

also be expressed as:

Koj o= 12 9%, £, Z;,*x”’) . (7.33)

g
o i S (a%.l...az.k 37‘/
4, The substitution of (7.29), (7.31) and expressions of the form
(7.33) into each of the partial differential equations j% of I1

yields the following relations:
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ER 3%y,
@‘(X{""X”’}‘X{""’yﬂ’. a_(P” sy axm:):
(7.34)

° ORF,
Vo) C*)(’””... 49553 0y e 24, ..., k”)
S 7: ’7/)7 ‘45 27> b aZ,@ 6’7”7_,

which may be considered as identities in 2ll of the independent vari-

ables *Xm’ Z{)"" 7”7_1 .

5. 12, Theorem 5.2 = that the f% can always be expressed as:

&
y 3%, I
é_((,..-,x”;‘yl’...,%, ax.{,; cery axﬂ?k =
(7435)
3y, ak
géﬂ,{..-,X’”,_}_’p 3Yp ot )ax’g, ,;\;;,é Qk:),’, a%
€ .ﬁé‘( ,X ’.YJ, ).y”’ ax_{k’ ---’ax’”k) ’
k aP
where the functions o ( o X7 Yay s Yy x-f{ y oo "a'——ﬁxg’ ) are

absolute invariants of the group Gy k.
On using the relations (7.29), (7.31) and expressions of the

form (7.33) we obtain, by (7.34), that:

o 9%
(*X z; 7/71—1: >3l s 157@’ 3 )
/ ot
7.36
xSt G S o
X3y syl agR 2 ’8%”_, k %
8%k . 9%
- (X”;Z, :7/}7—-/;5 7/'—’ )37,?"}3?&

where the functions é’. of the 1nd1cated arguments, when considered
By
in terms of the variables Gl , are absolute invariants of the group

GlEk and, in particular,

Py ak% ak/c' (9 ﬁ?
oé,(’\’{"',qur"';x;; " axl,g ,o")(’”k o¢ x5 Y/ ,ym-/:l’ "f;_; 707/4. ’” ";ﬂﬂ-/ «(7.37)

6. G1,2,3, Lemma 4.2 and Definition 4.1 == that a repetition of the
arguments of Steps 7 and 8 of Theorem 6.1 will show that the functions
o%. of (7.37) ere independent of *X” in the case where we are con-

sidering the invariant solutions of the system Il. Hence, the
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equations §%=C) can, on using (7.34) and (7.36) be written as:

B = As(’Z!r""fm—f»ﬁ"','cf‘;,'”» :ZZ"”’S;Z )-—-o s (7.38)
since the functions e? or (7.36) are not identically zero for arbi-
trary velues of the indicated variables.

The invariant solutions of the system of partial differential
equations Il can then be obtained in terms of the solutions of the
system of equation (7.38). These two solutions are connected by the
relation

/3—(7{,'")7”7-1)= %‘(,}ﬁ,"'7Yﬂ:X!’ "')Xm)
as is evident from the above proof. This completes the proof of
Theorem 7.1.
The following important specializations of Theorem 7.1 are im-

mediately obtained.

Corollary 7.l-1

If m=2 and /71={ the invariant solutions of the equations
(7.1) can be expressed in terms of the solutions of a k'th order
ordinary differential equation with independent variable /7 and de-
pendent variable # (7).

Corallary 7.1-2

If /=2 the invariant solutions of the system of partial dif-
ferential equations (7.1) can be expressed in terms of the solutions
of a system of ordinary differential equations of the k'th order with
independent variable / and dependent variables f{Qﬁ,'",é?(?) .

The following theorem establishes the connection between a sys-
tem of partial differentiel equations in " 7-{ " independent vari-

ables and & system of the form (7.1).
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Theorem 7.2
Given:

Gl., A one-parameter continuous group
of transformations of the form:

X/‘=,€’i(x{,...’xﬂ7;a)5 i=dyoeeg m1y IM2E,
13 _

= ()a) 5 =1, >0, 134,
where: < is a numerical parameter

and Q= (say) gives the
identity transformation.

G2, m+n-{ functionally independent ab-
solute invariants of Gy of the form:

Z(X'{:""Xm)""’fm—/ (X-’,---,X”’) }ch/a)
G Yaye s Yo s X4 XM ), e, ()f""’)fn"{ ceey X7)
G3. The functions Y (¥4--,X7), s Y (x4 s x™)
are implicitly defined by the relations
5 (frs fora ) =G5 Vs Yos X5 005 X))

where /g é‘C‘(k), S=/1,-
Statement of Theorem
If. l. (7, iy ’aPF, ’8 ) k R1. To the system of partial

S;R /o differential equations of

I1 there corresponds a

a;e/;, a45 system of k'th order par-
A,,&; 2 Isshr s b ,674,: g afk )=O tial differential equations:
. ; %, ... IR%
is a system of partial dif- 3 (x{---,x, s Yy ,ax;:/ x ’dmg) 0,

ferential equations of the
k'th order in m—-{ inde~

&
pendent variables 4, fmy G(J - a% ., 0% )=O
and /7>f{ dependent vari- % é Y XN oy TR Sm R

> =

ables A, -, 5.
in /7>2 independent vari-
ables x¥,---, X7 and the
/~7>{ dependent variables

> "’X)-

2. Bach of the differential
forms .¢19 DR @r)
is absolutely invariant
under the transformations
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Proof

Proof of Rl

. 35 %%
1. G3 = that the expressions P - — ¢an be con-
@Z‘, <9Z/I ot asz’

structed in terms of the varisbles of GlEl, voa, GlEk respectively.
2. G2=>= that the 7 's are known functions of x4, -, X”7 , hence
their partial derivatives, up to any required order, are also known
functions of the X 's.

3. By Steps 1 and 2 the left hand sides of the equations Il can then
be expressed in terms of the X's, y's and the partial derivatives
of the Y's with respect to the x's up to the k'th order. The re-
sulting expressions can then be written as:

, * ©
y 2 A/ 2
éé(,...,x”:)@...,%,...,_____ax;)’/'é’.‘.,—éaxpf )——-O,

(7.39)

9%y, 3%y,
éé({...,xﬂ;)g’...’%’..., aX,k EEL ax,:k = 0

- a system of k'th order partial differential equations with 7»2
independent variables X‘g +++, X7 and />{ dependent variables

Yoo s Yy e

4, If the /-;—_(Z,“-,y,,,_,) , 0=14,+, 77 , are a set of solutions of the
systém of equations Il it is evident from the construction desecribed
in Steps 1-3 that the functions ) (x4 -++,X”) , implicitly defined by
the relations of G3, must satisfy the system of partial differential
equations (7.39).

Thus the system of equations Il is transformed into the system

of partisl differential equations (7.39) through the relations G3.

This proves Rl.
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Proof of R2
1. To see that each of the differential forms &, -:+, &, of (7.39)
is absolutely invariant under the transformations of GlEk we proceed

as follows:

. 5 W
By Lemma 7.1 each of the sets of quantities iﬁ geeey =19
Yy q 37, ? Sp 37&

forms a set of absolute invariants of GlEl, ceey Gy k respectively.
Hence, in view of G2, each of the differential forms Aj, '“,An
of the system Il is absolutely invariant under the transformations of

By . . . an .
Gy ¥. Since the partial dlfxerentlal forms é. of (7.39) were con-
structed from the forms Aa’ of I1 it is then evident that the 555

E

must also be absolutely invariant under the transformations of G k.‘

This proves R2.

Corollary 7.2-1

Under the conditions of Theorem 7.2 the correspondence Aa." é&
(§={, ---,n) 1is unique with respect to fixed invariants 7, > 7wy »

Q{’-.-’?ﬂ of G‘lo

Proof

1. We proceed by considering the manner in which the system of par-
tial differential equations (7.39) has been constructed. The follow-
ing facts are evident: |

(a) For any set of solutions Fs (Z,,'",ﬂ,,_l) of the equations

AgFo (5=f,+,7) and for the given /7's the quantities
.., s
67‘/,' aZ;.n-aZik

(b) By (a) the form of the _é. of (7.39) cen only depend on

are fixed functions of the X 's.

the form of the absolute invarisnts %()Q,---,y,,,xf, ceey XT)

of Gl. Hence, for given absolute invariants 96' , the



60

differential forms j% are fixed.
2. Combining the facts stated in 1(a) and (b) then shows that the
method of Theorem 7.2 establishes a unique correspondence fgs*—j%

once the absolute invariants 7,,“',7,,7__,,71,“', 9, are given. This

proves Corcllary 7.2-1.
740 The Effect of a Change in the Invariants

Suppose that the relations G3 of Theorem 7.l are replaced by:

Gé‘(g, ,?/”__{) %(X{, ,%,Xj,"',)(’”), (7040)
where
(Z{, )?”71 y) J .[, S /77"'1, (7.41)
575 2 3 Fm-o o
-C/(Z/,-.., 7m_1)?£ ’

and the functions G%. are in Class C<k)'with respect to their argu-
ments.

It is then natural to agk: "What is the effect of using the re-
lations (7.40) instead of the relations G3 of Theorem 7.l on the sys-
tem of partial differential equations obtained from (7.1)?" This
question is answered by the following theorem.

Theorem 7.3

If the relations G3 of Theorem 7.1 are replaced by (7.40) then
the system of partial differential equations corresponding to Il of
Theorem 7.1 is of the form:

*a, .. 9%

. 25

Also, the system (7.42) is related to the system
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*fn %%
A;(Z"":?m—i;ﬁ—;"’,/rn,' . 7% e, 97,:3 )= o (7.43)

of Theorem 7.1 by the change of independent variables (7.41).

Proof

1. The proof of the first part of the theorem follows immediately on
consideration of the method of proof used in Lemma 7.1l. Clearly, as
a consequence of our construction, the result of Lemma 7.1 will re-
mein uneltered on replacing the / 's by the G 's and the /7 's by the
& 's since the &'s are also absolute invariants of Gy; that is, they
also satisfy the equation 4 (o)/‘=0 . Consequently, the result of
Theorem 7.1 will also remain unaltered on replacing the A~ 's by the
G''s and the /'s by the z's. The system of partial differential

equations (7.1) can then be expressed as:

LG . 2% ),
? R ’ ~
°5" " 9%

where the functional relations (7.42) have been denoted by B5; in-

195 &y Ly 56}:'"! G;,,"

stead of AJ , &s in Theorem 7.1, since they are not necessarily the
same.

2. To profe the second part of the theorem we note that the equa-
tions (7.42) can, by (7.41), be expressed entirely in terms of the

7 's, that is, as:

R b=
G(Z:"'>7m—_{,@ Gyt 67} e 67,’74;_1 =0 > ( )

where the G'!'s are now considered as functions of the 7 ‘s, thet is:

@‘ (Z/""’ym-.l) = 6;'(’5(5’""7/”-1)’ s 75,__( (Za"':?m—f)) .
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The functional relations among the arguments of (7.44) are de-
noted by &s instead of Bs , as in (7.42), to emphasize their dif-
ference. It should be noted that the systems of equations (7.42)
and (7.44) are related by the change of independent variables (7.41).
3. Suppose now that the functions & denote different functional
relations among their arguments than those indicated by the functions
Ag . By Corollary 7.2-1 there corresponds to (7.44) s different sys-
tem of partial differential equations than that which corresponds to
(7.43). This contradicts the hypothesis that (7.42) and (7.43) were
obtained from the same system of partial differential egquations.
Therefore, the systéms of partial differential equations (7.42) and
(7.43) must, by Step 2, be related by the change of independent vari-
ables (7.41). This completes the proof of Theorem 7.3.

The above result assures us that, under the conditions of
Theorem 7.1, the invariant solutions 6f the system (7.1) can always
be expressed in terms of the solutions of a k'th order system of par-
tial differential equations in -/ independent variables irrespec-
tive of the choice of the m-{ absolute invariants of SGl. Fur-
thermore these equations are related by changes of the independent

variables.
7.50 Practical Application of the Previously Developed Theory

For purposes of discussion let us restrict ourselves to the con-
sideration of & single partial differential equation of any order in
two independent variebles x? , X2 and one dependent variable Y .

To determine the similarity equation which corresponds to the
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given partial differential equation we proceed as follows:
1. Determine a continuous one-parameter group of transformations
under which the partial differential equation is invariant.*
2. Determine two functionally independent absolute invariants of the
group obtained in Step 1 of the form:

/7(x—’, x2) and gy, x% x?)
and the solution

y=A(Flp, x4, x?) (7.45)
of the equation

(Y, x4Lx2) = F(y).
That such an inversion cen, in principle, be performed is assured by
Lemme 4.4.
3. Check the boundary conditions and see if they can be expressed
in terms of /TQH and its derivatives. If such is the case the prob-
len can be solved in terms of theisolutions of the similarity equa-
tion and we can proceed to Step 4.
4. The substitution of (7.45) into the partial differential equation
will, by Cordlary 7.1-1, give an ordinary differential equation - the
desired similarify equation. Such a procedure will, by Lemma 4,2 and
Defiﬁition 4.1, determine the invarient (under the group obtained in
Step 1) soiutions of the given partiel differential egquation.

It is then clear that the preceeding theory establishes a

*Depending on the boundary conditions which must be satisfied it is
advantageous in some cases to demand constent conformel, instead of
absolute, inveriance of the differential form ¢ in the equation

$=0 .
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prectical and rigorous method of determining similarity equations and

that such a method has marked advantages over any of the previously

known trisl and error methods. The procedure outlined above will be

illustrated 3._!1_ Section VIII.
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VIII. ILLUSTRATION OF THE GENERAL THEORY BY SOME KNOWN

EXAMPLES OF SIMILARITY SOLUTIONS IN HYDRODYNAMICS

In this section we shall give a few exaﬁples of some known simi-
larity solutions in hydrodynemics in order to illustrate the general
theory developed in the previous sections. The treatment will reveal
the very simple group theoretical motivetion which exists for the
choice of similarity parameters. The table at the end of Section

IX  supplements the succeeding examples.

8.10 The Boundary Layer Over a Flat Plate with Pressure Gradient

Produced by an External Velocity of the Form U=Ax9

This problem was first posed by Falkner and Skan (Ref. 9) and
the numerical solutions of the resulting ordinary differential equa-
tion have been exhaustively studied by Hartree (Ref. 10). A short
account of this work is given by Goldstein (Ref. 11, p. 140).

We wish to find a solution of the Prandtl boundary layer equa-

tions (Ref. 11, p. 118):

%Yy~ ¥y =032 10y, (8.1)
where:
Y(x,y) = Streem function.
7

]

Ax? (A,g real constants),

The velocity of the fluid in the

x-direction external to the boundary

layer,
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% = g—gf = X =velocity component
of fluid within the boundary layer,
v = —% = Y -velocity component

of fluid within the boundary layer,

7 = Kinematic coefficient of viscosity,
satisfying the boundary conditions:
V=0 ol y=0, x>0 , (8.2)
V=0 ot y=0, X>0 , (8.3)
§-/:-noo U= Ax?, (8.4)

For the particulaer case under consideration (8.1) can be written

ass:

WJ' ?”xy“ % %y - V%yy—gA2x29'j= o) (845)

The equation (8.5) is constant conformelly invariasnt under the

continuous one-parsmeter group of transformations

X=07x , y=a, %r—d”?]/‘, (8.6)
where:
& = the numericel parameter (<0),
/m,11,p = constants to be determined,
if
Z = £ (1-9) (847)
and
H=t(1+a) - (8.8)

Now, a set of absolute invariants of (8.6), corresponding to

7()(-(,)(2) and (), x{x?) of the general theory, is given by:

}% | - (8.9)

and
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Xi%_ . (8.10)

Hence, by Corcllary 7.1-1, (8.5) will be reduced to en ordinary dif-
ferential equation (which, by Lemma 4.2, defines the in%ariant solu~

tions of (8.5)) on using the change of variables:

J

7= PRIzl (8.11)

and
¥ =xFDL(g) 5 (8.12)
obtained by substituting (8.7) into (8.9) and (8.8) into (8.10).

The ordinary differential (similarity) equation corresponding to
(8.5) need not be derived at this stage. Of greater practiasal impor-
tance is the checking of the boundary conditions in order to see
whether the problem can be solved in terms of the solutions of the
similarity equation. This can easily be done, for on using (8.11)

and (8.12) the boundary conditions (8.2)-(8.4) can be expressed as:

=/ o,
7 /-
fo)y=0 ,
Lim _9_,7_(_‘ —A
7-»«:0 07

The above conditions are in terms of /77) and its derivatives;
therefore, the problem can be solved by means of the solutions of the

similarity equation

<At HF
Vd7 L(1+q) Ap 2% 472 (7) -g4° (8.13)

obtained from (8.5) on using (8.11) and (8.12). As a check we note

that for g=0 the equation (8.13) reduces to the Blasius similarity
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equation for a boundary layer with no pressure gradient.

8.20 The Spread of a Cylindrical Jet

This problem was originally formulated and solved by Schlichting

(Ref. 12) and an account of it is also given by Goldstein (Ref. 11,

pe 145) and Durand (Ref. 13, p. 175).

The situation is shown in Fig. 1.

FIG. 4.
.

2. K
Jot oF Flurd

(=

The equations applicable in this case are the Prandtl boundary

leyer equations expressed in cylindrical coordinates, namely:

18%6({6%‘ 18¢"a<18W)—7’apﬁ(i9%”u

r Or 3x\r or r ax ar\ry ar rFori| or\r ar
wheres
Y,r) = Stream function,
_ 19U . : )
7 = % g5 = the axial velocity com

ponent of the fluid ,

4 —74-%%{ = the radial velocity com-

ponent of the fluid,

4

P

The cylindrical symmetry of the problem has already been taken

]

Kinematic coefficient of viscosity,

it

Density of the fluid.

account in writing (8.14).

(8.14)

into
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The appropriate boundary conditions are:

V=0 ot r=0, x>0, (8.15)
:9‘970=0 a r=0;, x>0 ,— (8.16)
(8.17)

Lim U=0 ,

-0
and the rate, M , at which momentum flows across a section of the

Jet,
(8.18)

INf=2np f Rrdr ,

must be the same for all sections.
Equation (8.14) is constant conformally invariant under the one-

parameter continuous group of transformetions:

X=a%x , r=ar, J_—=ap'¢’ (a=o) (8.19)

if
/D

When the transformetions (8.19) are applied to (8.18) we obtain:
w ——
M= 2mpa® ¥ [ gerar — oM,
L .
but, M must be an absolute invariant of the group (8.19); therefore
P—-——- ﬂ L
Now, two absolute invarients of (8.19), corresponding %o

7(X{X"’) and F(y,X{X?) of the general theory, are:
Y
7 XV

and
v
XP//TI ¢

hence, by Corollary 7.1-1, the substitution of:
r

X

and
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V= x Fp)
will transform (8.14) into a similarity equation. The variables in-

troduced by Schlichting, without motivation, are:

L r

7:\/?,7 and Y =PxFy). (8.21)

It is eaéily verified that the boundary conditions (8.15)-(8.17)
can be expressed entirely in terms of /77) and its derivatives. The

problem can then be solved entirely in terms of the solution of the
similarity equation:

(1 o'f) (dé‘f' _ 1 df )

< I\ oy g Iy

obtained from (8.14) on using the substitutions (8.21). The invari-
ant solutions of (8.14) (see Lemma 4.2) are given by 1V==72¥fV77,

where fY?) is the general solution of the above ordinary differential

equation.
8.30 Spiral Viscous Flows

So far we have given examples in which the partial differential
equations are constant conformelly invariant under generalizations of
the group of uniform expensions (8.6 and 8,19). In this section we
shallvgive an example in which another type of group is considered.

On teking the "curl" of the Navier-Stokes equations for an incom-
pressible viscous flow we obtain a partial differential eguation for
the vorticity vector. If we now restrict ourselves to considering
two-dimensional viscous flows and satisfy the continuity equation by
using the stream function ;f’(f;é} , in polar coordinates /5 & , we

obtain the following equation:



71

2o — 4 [ 3 (VYY) _ ¥ B(vFY)
YY) = {ar EY 96  ar (8.22)
where:
2 _ 9 19,4 &
» = Kinematic coefficient of viscosity,
58 = Polar coordinates.

Equation (8.22) is constant conformally invariant under the

spiral group of transformations:

F=e%r , d=0+cx, Y=Y+Cx, (8.23)
where:
=4 = The numerical parameter,
C,c = Numerical constants.

Two absolute invariants of the group (8.23), corresponding to
7(/\’!,)(2) and G(Y,X{X2) of the general theory, are:

&— cbir

and

Y= Chir.

Hence, by Corollary 7.l-l, the substitution of
p=8-cdnr

and
= Chr +Fy) (8.24)

will give en ordinary differential (similarity) equation, it is

[(cé+1}d74+4c j;;-f4 ‘0/,772] Cd’g’; 25; Z,’;’Z ’ (8.25)

this is an ordinary differential equation obtained by Oseen (Ref. 14).

The equation (8.25) has also been derived by'Birkhoff (Ref. 3,
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p. 124) on using only the subgroup 7/ and &+& of (8.23) and
an extremely complex argument to determine the form (8.24) of the
dependent variable.

It should be remarked that (8.24), when %Y?) is replaced by the
general solution of (8.25), determines the invariant solutions (see

Lemme 4.2) of (8.22) under the group (8.23).
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IX. SOME NEW EXAMPLES OF PROBLEMS TC BE SOLVED

BY SIMILARITY CONSIDERATIONS
9,10 The Uniformly Loaded Semi-Infinite Wedge-Shaped Plate

The problem under consideration arises quite naturally as the
simplest case of a sweptback wing, it is that of one-half of a delta
wing attached to a semi-infinite fuselage. Although the problem,
when considered in this menner, bears no relation to practical ex-
perience it must be noted that such solutions are nevertheless useful
since the main region of interest is near the cormer of the wedge-
shaped plate. The problem we wish to solve is therefore related to
the extensive experimental and theoretical work which has been and
is being done at GALCIT (Refs. 15, 16 and 17) on the structural prob-
lem of sweptback wings.

We wish to determine the deflections of a uniformly loaded semi-
infinite wedge-shaped plate which is clamped at one edge and free at

the other as shown in Fig. 2.

J
Y Fla. 2.
In Fig. 2 the orientation of axes has been chosen to correspond

with the notation of Timoshenko (Ref. 18).

The small deflection theory of plates (Refs. 18, p. 88) predicts
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that the deflection W(xy) of the plate from its neutral X,y -plane

is given by the solution of the equation:

4 *w otw  Itw _ APy
— 7’- = 2 9.1
where:
£x,y) = Normal loading on the plate,
LD = £ late stiffness factor
=/20-vE) TP )

¢ = Thickness of plate,

£ = Young's modulus for the plate material,

9’ = Poisson's constant,

under appropriate boundary conditions.

Since the edges of the plate (Fig. 2) are invariant under the
group of uniform expansions one might suspect that, for the problem
at hand, there exist possible similarity solutions to (9.1) which

will satisfy the boundary conditions.
9,11 The Conditions for Invariance of the Plate Equation

Let us consider the conditions for invariance of (9.1) under a
group which is a generalization of the group of uniform expansions,
namely :

X=97x, y=a% , w=agw, (9.2)
where s |

a

The numerical parameter (¥0),
/m,m, P .= Real numbers to be determined.

We note that two invariants of the group (9.2) are:

Y o W .
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Under (9.2) the equation (9.1) transforms into

<mr W F*w £ 2mt2n-p s'w Ar-p 54W= L%y, (9.4)
Qo fa xéaye+a 574 S

For (9.1) %o be invariant under (9.2) the left hand side of

(9+4) must be independent of @ if A(Xy)=F(xY) - as must be the
case for uniform loading (/~ = constant). This condition is satis-
fied by setting each of the exponents of < in (9.4) equal to zero,
which gives:

m=1 ond L=g. (9.5)
If sm=n=f{ then (9.2) becomes the group of uniform expansions, which
substantiates our previous remark.

By (9.3) and (9.5) the absolute invariants of the special group

which leaves (9.1) invariant are:

7}1 (9.6)
and
2% (9.7)

The quantities %? and i%% correspond to the functions yax£-~,X”7
and 57(y3.¥§--gxﬁ)of Theorem 7.1 of the general theory. By Corollary
7.1-1 the substitution of

7oy)= (9.8)
and

w=x*£(p) (9.9)

into (9.1) will give us the ordinary differential equation

2 /1 £ . %
(72+4) 574 4?(72#)475*4(37*1)472 /d +24f=L - (2:10)

*As has been previously remarked, (9.9) determines the invariant
solutions (see Lemma 4.2) of (9.1) under the group (9.2).
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The appropriate boundary conditions for (9.10) are determined in the

next section.
9.12 Boundary Conditions

The edges of the plate shown in Fig. 2 correspond to the follow-
ing valugs of 7 :
p= k= tan (-8) for the clamped edge
and
7=k = tanf for the free edge.
The boundary conditions for the clamped edge of the plate are:

W= O ~ zero deflection (9.11)
[ng‘ np— ]Cosﬁ-o ~ zero slope (9.12)

where 77 is the outward pointing normal to the edge of the plate.
From Ref. 18 (p. 94) we have that, for our case, the boundary

conditions at the free edge can be expressed as:

% EaloY % -
27w # (1—1?){ 2 co.sﬁ+@§ J’”%—axay mz’ﬂ}—o (9.13)

and

1Y o500 #4205 - 20 )}_O) (9.14)

2
~ax 7éw s1mp *ay Viwcosp— (£ V) { 3yZ  ax?

oxdy
where:

PFw , *w

Tangential direction at free edge,

af( cosp- = 67/7f3

alo o g“
i

The boundary conditions (9.13) and (9.14) correspond, respec-

tively, to the requirements that the bending moment and shear force
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must vanish at free edge.
9.13 The Mathematical Problem to be Solved

In this section we summarize our previous results.

The solution of the ordinary differential equation

(72f1)2 0/;/‘—47(7‘?1) 73 +4(372ﬂ) 7 2475% +£’47"=% (9.10)

must be found such that it satisfies the boundary conditions:

Al-k)=0, (9.15)
If
= )/__k (9.16)
Pk Flk P (2- vE+2(0-P) R .
2P )f() ek {vki(2 ”)}(47)7 + {pk*2(27) +V}<d7 )7#/?0 (9.17)

+/1+/z?) (a, 3)7_*/?0. (9.18)

1+ R4

2okl 1+ L2\ fe)+ s(okPrev)Zr )7 6{1*,@?}( 7

The boundary conditions (9.15)-(9.18) were determined by substituting
(9.9) into the expressions (9.11)-(9.14) and noting that resulting

expressions must hold for arbitrary x .
9.14 Solution of the Ordinary Differential Equation

The complementary solution of (9.10) can be determined by ob-

teining the general solution of:

LGF) = (g2l 0’/ - 47@27«1)—?1' . 4@4‘1}0’ 7 -2 ?f" #24f=07 (9.19)

where Z(Ff) denotes the differential operator defined by the linear

differential equation (9.19).
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The general solution of (9.19) is obtained by noting that:

LipT) = zf(m)f”’"4+ 5(m)7’”'2+7§(m)7”’, (9.20)
where
A(m) = m(m-1)(tm-2)m-3) ,
4(m) = Em(m-A)(m-3)(m-4) , (9.21)
£im) =  (m-s)m-2)m-3)(m-4) .
From (9.21) we immediately note that / and 73 must be solutions
of (9.19). In the same mamer we see that the two linear combinations
074 HD?‘3 (9.22)
and
c72+ d (9.23)
must be solutions of (9.19) for appropriate ratios of E% and %% .

These ratios are determined by substitution of (9.22) and (9.23) into

(9.19). Since 4(72)=u9 we see that a particular solution of (9.10)

can also be obtained.
It is evident by inspection that the four complementary solutions

given above are linearly independent, hence the solution of (9.10) is:

— 2 { 3 45,2y, 4 L p2,
Flip)=Qp +G(px5) +Gpl+G=30°) 1 55 7 (9.24)
That such a solution satisfies the original partial differential equa-

tion can be checked by substituting (9.24) into (9.1).
9.15 Solution of the Problem

For purposes of illustration we shall consider a case which is

slightly simpler than that shown in Fig. 2. That is, the case where
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the clamped edge coincides with the X -axis as illustrated below.

LLLLLLL g

p<9&

F1G. 3.

The boundary conditions (9.17) and (9.18) remain unaltered but

(9.15) and (9.16) must now be written as:

Flo)= 0 (9.25)
and

o

;,;—F) =0 (9.26)

By (9.25) and (9.26) we see that (9.24) must then be expressed

as:

Flg) = Gyp® +Cy (7% 5?a)+6 5 7% (9.27)
and the deflection of the plate is given by w=x*4 /77) .
The substitution of (9.27) into (9.17) and (9.18) gives two

simultaneous equations for (3 and nemely:

<
2 # 2 A Ly 4
69k (kK*+1)C; + 2{k60)+2k21+9)-VIG=5 5 {k (-27)vKv}  (9.28)
and
6 4 2 2 __ P A2 3
(k%7K Ew) RS U711} G # 2R [ (530) 1P G 5 TR K5V kA7) (9.29)

From (9.28) and (9.29) the expressions for Cy and C; can be

written in determinant form, that is:

.y 2k2 (1-29)- VK- £ (6-v)+265(17)-7 (5.50)
r=3 ’ .30
FEa —{4k5+ L3 (5-P) +2k2(1-17)+/e(/—1?)} R2(5-3v) + k(1+7)
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and
1P 4 Gk (k241) 2kE(1-2v) PRV
C =355 . - 5 2 5(9.31)
SO TR D)3 UP) 4 —{2hRkI(E3NZK V) +R (7))
where:

YY) LHe-1)r 265 (1+V)-D

88 +7 K (2-) 32 (1-V) +4 ~3(5-39)+R(1+)

It is then seen from (9.30) and (9.31) that the effect of the
angle 8 ( A=fopf ) on the deflection pattern of the plate (Fig. 3)
is evidenced only through the constants ¢ and C‘;_ . It is evident
from thé above that the variation of the deflection pattern with the

angle @ obeys a very complex law.
9.16 The Stresses at the Corner

The stresses at the upper surface of the plate are given by
(Ref. 18, p. 40)

. Fw 3w
= -2 ( oxz*7 &y2
£t 3w 3w

( ay2 TV oxe ) ’

and

o £t 0w
XY " 4+v) Oxdy

which in terms of f(?) and its derivatives can be expressed as:

)

{/277/ (7)— 6Dy d7 +(1+Pp?) j?i }

£t
TG=- (_XZ){/zf‘(y) 6‘7

o = Fix?2
4 (1-»2)
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7l =/ A i 0l O
22Y ({+P) {3'07 7 072:}

Now, the above expressions show that on any line é7 = constant
the stresses will only depend on X . Hence as X*O (the cornmer)

we have Oy,0p,Zy,>O at the same rate that X%+0O for any wedge

*
angle less than 180°.
9,17 Conclusions

The defledtion patterns for uniformly loaded semi-infinite
wedge shaped plates satisfying different boundary conditions (clamped-
clamped, clamped-simply supported, simply supported-simply supported,
ete.) can also be determined by the method outlined above since all
the boundary conditions can be expressed in terms of A7) end its
derivatives.

The 90° plate cen be treated by applying the boundary conditions
as shown in Fig. 2 with B = 45°, thus avoiding the difficulty that
é7 is infinite for g = 90° when the plate is placed as shown in Fig.
3. This case, then, creates no essentially difficulty. The solution
obtained above may also be considered to give the stress distribu-
tioné in a finite triangular plate. Such will be the case when the
stresses at the edge crosswise to the two radial edges are distri-
buted in the manner given by the second set of equations of Section

9.16. For such & stress distribution the stresses at the corner are

*Plates with a wedge angle greater than 180° cannot be considered by
this method since there is no mathematicel distinction between the
right and left hand sides of the (x;y) -plane.
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zero for any wedge angle less than 180° (as shown in Section 9.16).
Williams (Ref. 19) claims that the stress can only be zero at the
corner, in the case of a finite plate with the same boundary condi-
tions on the radial edges, for wedge angles which are less than 90°
and arbitrary boundary conditions at the circumferential edge.

It should be noted that the method is also applicable when the
load is not uniform but is a function of / alone (that is, £(x,Y)
is invariant under the group (9.2)). BEspecially tractable will be
the case when..f”?) is a polynomial in 47 since in this case the par-

\

ticular solutions of (9.10) can be obtained with ease.

9,20 The Accelerated Boundary Layer with Pressure Gradient Over a

Semi~-Infinite Flat Plate

The problem of unsteady boundary layers is of interest since,
in some instances, it is necessary to know the time dependence of the
skin friction coefficient when determining the drag coefficient of
airborne vehicles which may undergo sudden changes of altitude or ve-
locity along their flight path. The problem, as posed above, is
frought with considerable geometrical complexities; consequently, to
gain an understanding of the underlying physical phenomena, it be-
hooves us to first study the simplest case - the accelerated boundary

layer over a semi-infinite plate.

9.21 Formulation of the Problem

Consider a semi-infinite flat plate to be placed in an incom-
pressible fluid of small viscosity with a free stream velocity which

is a function of distance along the plate and time. This situation
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is illustrated in Fig. 4.

'4
t ,/"'fZATF%ArE
— X

FI1G. 4.

In terms of the stream function ¥ (X.,¥,Z) the Prandtl boundary

layer equations may be written as:

3T 4 U
Ye t by~ By~ P Yy~ 52 ¥ 2 x 7 (9.32)

where the significance of the notation has been given in Section 8.10.

The appropriate boundary conditions are:

U= 0 ot y=0,x>0 foronyt , (9.33)
V=0 of y=0, x>0 foronyt, (9.34)

\ Lim U(x,y,t) = U(x,¢), (9.35)
Yo

and the initial conditions may be written as:

Uy, t) = vix,y,t)= o at t=0 for any x,Y. (9.36)
9.22 Similarity Solutions of (9.32)

Evidently equation (9.32) is strongly non-linear and there is
at present no method of determining its exact solution under the
boundéry conditions (9.30)-(9.36). A considerable simplification can
be achieved by considering the possible similarity solutions of (9.32).
Consider the continuous one-parameter group of trensformations:
X=o" , y=a'y, t=aFft , F=aYy, (9.37)

where:

Q
n

The numerical parameter (¥ O),

m,n,pP,q = Numerical constants to be determined.
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Almost by inspection, one set of functionally independent absolute
invariants of (9.37), corresponding to Z(X’,XE,X” . Z,(X{.X"',X-a)

and (), 4445 x3%) of the general theory, is:
Y

Z’== xm ?
_ Z
=7’
and "
S= X
It is therefore necessary to determine the ratios 7,)”— s % and
Z

5, subject to the conditions that (9.32) be invariant under (9.37)

and that
V= Fnc (G ) -

These conditions will be satisfied if

72 _ 4 L
moom 2 m {

and the free stream velocity is such that
Ui t) = U(%) (9.38)
which, it should be emphasized, is a definite restriction on the free
stream flow.,
By Theorem 7.l a similarity equation will then be obtained from
(9+32) on using the substitutions:
o=
= L ' (9.39)

Y=V FL)

and

For suitable 7“/71,@_,) (that is: given by the solutions of the
similarity equation (9.40)) the last of (9.39) gives the invariant

solutions of (9.32) (see Lemme 4.2) under the group (9.37).
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9.23 The Mathematical Problem to be Solved

The third order partial differential equation in two independent

variables:

O o 1/af y O 9% _oF a?f} L/ VY- U, (9.20)
ag° 349 72 af 2 19% azi’ a;, 37,97 572 2 2 L
obtained by substituting (9.38) and (9.39) in (9.32), must be solved

subject to the conditions:

a_f) = O for arbitrary [},

% Ipmo
£ ) = 72872) — ’
21700 5 =U%) >
397?)72.——: O for arbitrary g,

and

/9(%§,cv==<j For arbitrary V&
As a check we note that (9.40) reduces to the Blasius similarity
equation for the boundary layer when # is independent of g; and

U = constant.
0.24 Two Special Cases

Consider the physical significeance of the variable ?g » This

variable can be\written ass

- L
2= X
z
and we notice that << has the dimensions of velocity and hence may

Z
be looked upon as an average velocity within the boundary layer v

(say) = a measure of the velocity which a particle, placed at the
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leading edge of the plate, has to attain in order tb reach a point
X (say) within the boundary layer. Now, if the external velocity
is suddenly applied it is evident that the particles near the plate
will experience large changes in velocity, /7, will then be very
small (2;<<J Y« If the external velocity is applied very slowly
the situation is reversed and 7Z>{ .

Two extreme cases can then be investigated, nemely:

Case I, <<{ :

Here most of the non-linear terms in (9.40) cen be neglected so

that the equation becomes:

3% 9% 4 p9F _ U
7) - + = 7[‘ - - * (9.41)
%° 94k 2 9 9
It should be noted that the time dependency enters into (9.41) only
: 3%~ =4
through the linear terms sz-—=5- and .
£ 57,97 37

case II, 72> :

In this case (9.40) reduces to:

of I3 of 9 _ 1 2T ;

% azé’ —671 azagg T2 =2

since the terms not containing f@ as a factor can now be neglected.

(9.42)

9.,25. Conclusions

No attempt will be made at this time to obtain solutions to the
equations (9.40), (9.41) or (9.42) since such a task is properly part
of another complete investigation.

Besides the problem considered above equation (9.40) may be ap-
plicable to the investigation of boundary layers in two~dimensional

chennels with linearly varying area and in which the sides of the
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channel are approaching each other at a constant rate. Such a situa-
tion would occur in the flow within the reed valves of a pulse-jet
engine. Another case would be that in which the channel walls are
stationary but in which the fluid veloecity within the channel is

time dependent.

9.30 Further Known and New Examples of Similarity Equations in

Aeronautics

Further examples of the variety of similarity equations which
cen be obtained by use of the general theory are given in Table I.
Not all of the similarity equations listed in Table I necessarily
have physically significant solutions and so no attempt has been made
to carry the examples to completion.

The title of Column 3, Table I, has been couched in standard
seronautical terminology. To impose similarity conditions on differ-
ent physical quantities is, group-theoretically, equivalent to saying
that these quantities be absolutely invariant under a particular
group of transformetions.

It should be noted that only one group of transformations, a
generalization of the group of uniform expansions, has been used in
Table I. Other groups which may be used in the same manner are
listed in Table II. Some of the groups listed in this table are

given in Ref. 4 (p. 3).
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TABLE II

A PARTIAL LIST OF CONTINUOUS ONE-~PARAMETER GROUPS

OF TRANSFORMATIONS AND THEIR INVARIANTS

ABSQLUTE
GROUP INVARIANTS REMARKS
OF THE GROUP
I. Generalization of l. This is the generali=-
Group of Uniform zation of the groups
Expansions bif used in Table I.
. ¢
Z@ &2 | 2. The set of absolute
_ e (x<) 7 invariants listed is
xX‘=a " x¢, only one of the pos=-
§% sible sets.
Vo= CZE’. 95_ J_PE_ )
Jﬁ‘ )S‘ ’ 1) 7Y 3. The 7; and F5 are
( X ) fixed numerical cone
(=1 , stants.
H >
S=Ly oy R=1, -, ml

II. The Spiral Group
X{= e%x1,

Xi= x‘ + C‘a,

= x‘~

1.

This is the generali-
zation of the group
used in Section 9.20.

Ve = Yo+ Cea 95:)3_ C;"”ﬂ”XI 2. @ 1is the paramster
g S I and <¢ and & are
§=j’ ceey -4, constants.
=Ly, s .
I1I. The gﬁgﬁSIatl°n o 1. The set of absolute
; i P Zé= X=X, invariants listed is
X'= X0 A a, only one of the pos-
Xs‘“‘)é' +a, 576—-——_)%-—X‘{. sible sets.

=, > 777 té=.1,---,/77—./
S=1, y 17
Notes: 1. The notation used is that of the general theory.

2. Group I includes the one-parameter affine and projective
groups as special cases.
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X. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

It has been shown that the genmeral theory, developed in Sections
II-VII, provides a rigorous motivation for all previously known simi-
larity solutions in Aeronautics and a practical way of determining
new solutions of the same type.

As shown in Section 9.10 problems in classical Elasticity are
also susceptible to treatment by similarity considerations. It might,
therefore, be deemed worthwhile to examine the partial differential
equations of Elasticity from the point of view developed in this
thesis. Such a procedure, it is very likely, will reveal some new
physically significant solutions of the relevant problems in the
fields of elasticity. PFurther study of the equations developed in

>Section 9.20 will certainly provide additional insight into non-sta-
tionary boundary layer phenomena. The theory developed in Section
VII is sufficiently general so that a thorough study of the possible
invarient solutions of the Nevier-Stokes equations cen now be made.

The methods developed in the preceding sections are certainly
applicable to physics in general and it is hoped that some new solu-
tions to problems in physics will be found in this manner.

From the mathematical point of view there are certain interest-
ing possibilities. By Theorem 7.2 known existance theorems for cer-
tain types of partial differential equations under special types of
boundary conditions may be tremnslated into existance theorens for the
inveriant solutions of partiel differential equations with en addi-

tional independent varieble. The situation appears to be particularly
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attractive in the case of non-linear ordinary differential equations
since it then affords a study of the existence of invariant solutions
of non-linear partial differential equations in two independent veri-
ables. Conversely, by Theorem 7.1, the study of the invariant solu-
tions of non-linear partial differential equations in two independent
variables may be translated into the study of corresponding non-
linear ordinary differential equations about which more is relatively

known.
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APPENDIX I

Proof of R1 Lemme 6.1

1. Taking partial derivatives, as indicated below, of each of

the relations (6.3) and (6.4) we obtain the following identities.

B

3185 4y 3] 2809, i %% [ Joemtyeesm,| o
axqf/ e Oy, Oxx axy T8 e %o 9X°‘t2)é EX YRS » (1.1)
0 | /9% | ST, %, [ b ]

Sv R A =0 s (I.2)
a)g_glaxl #4, Xzay | faxbaxJ ZFM %Yo 2y 3y 253 C  labs=t, 0]

o[ i 9w _ O %0 |, pi O
A e

o
oxJ AxX IxV Ax=IxX!

hd I.3
ARy

2. Since, for the purposes of the group theory we can consider
each of the quantities X'{,---,X’", s Y, %,5:"".)’/7,5 as inde-

&
pendent variables, the derivatives of g}lri can be written as:
)

Sy . St 395‘), a.?.;) aﬂdfl . .. S n-y
x> I b’“/ X/ Qx4 x4

-
- - - -

o2 ... St (fif ,._‘9&)_‘9_@0_#. . Bl

NXom-1 -1 \QY, " o¥m1 Gx¥m+)  QxXemri AxXm-1
5 (35 )= 2 =% SxXm b X
A\ 37, ax/ Dis = s Ymd
7 tj( Xo(l’ ._"Xﬁ(m—j

*The derivative of an /77x/m7 determinant is obtained as a sum of
mxm  determinants in which each successive row (colum) is differ-
entiated while the slements in the rest of the rows (columns) remasin
the same as in the original determinent. This result is proved in
Ref. 20, p. 8.
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. (a{z; Yoo b % ) Lon . s
Sxd Ax% ENVENS SxJéy 5% T 3xIdxX%) OxIIA SN
37, ( + 99y Swu . . . lm
Ax™e 8x°<2 Ax2 Ix=e N
aZ . aZJ-/ aga’ y a%— afajﬂ . . afm-l
St Bxiem-] 3, bpn ) S Ot | 4
_(/' oo s fm—/
X, s X m-1
Rt/ Ot ( __£~y ~ 29 ) Sl Olws
XX ax 3 Eral X X
9% .. . ‘92«)-' oG5 Y o9 ) 2 Lan . m
Oxm-2 IxXm 9y, s x%m? | Bxm-2 AxXm-2
327/ . o1 ( 3% % ) & Zorl .. s
O/ Ox X axI X1\ Bxd By, 21 A ™Y Sx Xt A/ Bxm-1
f/ 3 e 7!77-/
XO(I, ciey Xﬁ’m—/
2
8. . . . s o0 _8fm
xS O™ IXS X 6)5% ) )(.°<l

oy . Sn-1 L X .

ax>e Ax™z * * oY% . -1
. : X -2 oIxm2
: . -

E - /2 -L/ 0
K= 5x€‘;m7 ) Txg% A/ OxXm= SSOx
% (Lo tm )

(j\ X"(', ey, X Xm-r
By using Theorem 1.5, Ref. 7, p. 647, (I.4) can be written as:
2 ( s\ -
, ox/ Y2
-1/ oy (S 4 0% ) Sum . -

S X X axia)z 5y Deddx Ax ™ x>

24, . Bl (s % Sl B

X2 X2 (axia)z X%“z'/'ax‘/a%) Ix~e2 x>z

2% . .%(aé’g),+a?g5)_a@_ . O

S xXm=t Axxm-1 \IxJ Y, by s IxIIX™ ) B3 m-t AxXm-i

(L )

(1.4)
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32Z .. aaﬂo-/ o '922(4)-#/ . . azfm—/
IxJ A BxIAX* SxJOx OxVY3 x4
62/ . e e Ot ( _‘ﬁ‘ y + agﬁ ) ‘97401-/ . ‘afm-/
O Axe By, “ore oxk A2 A2
Y, . .%o L SGs 2 m-s
S m-1 D> 3y 5%, O xNm- SIxm-1 Xt -
+ .
J ( 7/: et ?m—/ )
X°(’, <.y, X%t
Y, SRy ogr y, " oG5 > 2] Om-t
S Bx=I Sy o T ax= Ax A=
Y o1 aga'y +~ Oy =M . _Sm
Soim-2 Ixm2 By, Bz~ Qmz) Jxfmz O X¥m-2
_8n .. . Son .. 2lm-1
B xS m-1 Ox/SxEm-1 O SxXm-19x! Ox/ A
* (1.5)
J ( i 5 y 7”7-! )
X"(I, X°(m-l
ae 't . 827,;,./ (92, a?/ﬂ-/
EINEYS OX/AX* Ax= Dx
o/ Slm-i
[S) . . ‘ y
a)‘(xz <z |+ * EY) it
. SxXXm-2 Ox¥m-2
37 -1 az’g ) -
SFs ax“lm-/ ’ Y OxNm-l Ax/O. 7 - Ox A xXem-t ;
s Qise 5 Py
J ( X“,’ . .G. 5 X@(m_l )
o . . O ( e Yo a‘?;_) St . 3y
Ox Ox™t \O)pay "oy " Ay IXi  Ox B x=
. . . . Oew ( %5 Vo + %% ) Olos . . S
X Bx2 \Jy,dy, e " IyoxEl  Oxe ox*e
3 .. .Sl ( o%s Y.+ % ) ow .
. [ B e g
a)é 67‘0 J ( Z PRI 7”7_/ )
Xo(’, ey )(°(m—l
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o7 . o 2% sbst  Hew .
X ax dy w9V X 3 X%
= R (92‘0-/ 6_9{ é!’é?(m-l &Z‘Ot’ . . 02,,,.,
3 (65 _ OxXm- X1 a);’ oY% SxXXm-1 S XXm-1
%f 6%0 t] ( 7 s > QrD-/>
X% » Xm-1
St . . . Py S5 g%  On . . | Oma
x> Sx% g Y x4 x4
ol . . s 9 59('»-/ Slor . . . S
OxXm-1 OxXm-t 3y, ~J OxXm-1 OxXm-1

J(?f’ s vy R
X“,} PR .’de_,

'Y

(1.7)

s o
3. The quantity [ka‘)é)d'“' a_{‘é”:‘l gy—@ii) contained in (6.2) can, on
a,j

using (I.7), be written as:

oE” 3 ofs )\ _
=35 %] 5 (50) =
CZU 7&0
o7, . ,Ofw~ 995 5% 20 . Sl
A X% i x> Ox™
0 ., . et p9%y B, . 1.
3 ¢ %) SxXm-i Ay, Y ¥m+ Ox%m-i S xXm-1
_(j(?l’---: 7m-1>
XU, o v oy X Xt
8%, . az‘o./ ogr ﬁs_ Y Swsi . . 62/77—1
X v XMy, VAL Sx% 3x=
37 . . Q- OF" 99 Oleors . Om
Sxr Bxmrs St Oy o S Sxom-1
(j(’?u c ey Rt )
)(°</, <y, X Nmr-i

(1.8)
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and at the same time regrouping the terms, we obtain:

”(.{) (__%2;_) —

_‘?ﬁ. . o e 3[«)., ( -/ ‘9‘?%‘.,. 5)‘/, 3‘996‘ + R aya')yb“ ‘97404-/ . . afm-/
x4 Ix x4y, a%a% bay, ) Ax O
S . . _Plw "‘9 ) 3% S Fors =
x>t OxNm-t ( OxJay, ﬁ% %Y +Pa% ) )ZP(’”" Sxm- O xm-i
.(] ( Zis s o5 fommy )
X°(l’ e ey, Xm=-1
% . . .S (F’ s 4oy 2 2% L o8 893') Stors, . . Sm
X X% Axd A ‘50/ E 7 5x% I e X
a'?, s é.ﬂo-; J 6295 _ﬁ’ ﬂ{ aéa)ﬁ a[{-‘m—l
4 BxXm-) Oxm-i (gawax%: Q‘)éo" aﬁm XN xi)  OXNm Oxm-1
[ s == 5 Ll
t] \)(°</, )X“m—ll
7 & : s ' -
§Ja Tt 'Fa_w%% o F' acion ?&Tg”x#
3z . . . Ow oG 39s ot . . . -1
Sxe oxe (a.)’b ‘}g"fe’L ax"Z) dx%a ax*e
00 .. Ol (2ey . 2% Ofuu . s
~ A Xm- Bxm~ = ;"‘m-l OAxm-, Sxxm-1 B3 x¥m-i 3
J ( /®) © 2 /7m-l)
X %4 > x°<m—l
=2 .%o (69; % 99.;) ot , ., . Fm
Ixt 3 X 3y, f‘/ X o X% 3x%
S . Ol (39 y +9% ) Stwn , . . Slm
X mE Oxm-Z  \Jy, “Ofmz Oxme  Pxm-2 BxSm-T
7, P -y _ W eart i %m-s
+ 'F Jc9x-/t9 GXJa m-/ o gde Jax“’"" ;GXJGX -l
Gis + * 2 Hm~
J( X%y o o oy m=t )
P 9 . . .
Ox/ It OxJ Ix* DX axj‘/
39, 3m~ : .
Y .
Oxe a)g‘*a fooodf Py ey
< . 3xEm-2 S XHm-2
%% . W . Blm i &%, . i
o5 Ox =1 Sx~m-/ F axlax“m-/ * £ xS
= w 7/’ Y/ 7/)7—/
f J ( Xo(l, ey X°(m_/)

Substituting the expressions (I.5), (I.6) and (I.8) into (6.2)

(1.9)
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AxJ % x>

.

O -1 O Sx>m-+t 2Ye IxJ OxHrmr-t ’ OxS<m-i
C] ( s =c s )
XN', . ey X¥m-t

Bach of the terms in the «w 'th column of the first two determinants

in the above expression is identically zero by (I.1) and (I.2) hence

the said determinants are identically zero.

5. We now want to show that the rest of the expression (I.9) is

identically zero. To do this we use the fact that the expression

(8.,7) for fg?i- is independent of the indices o4, - --,%m-1 , hence
(73]

on using Theorem 1.5, Ref. 7, p. 647, again we obtain the following:
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Ax™
°7, . . .S5%Zw-
OX% 3
9% . . . %%
Ox>e Ox™e
%% . . ._%%wu
D m=t OX Xt
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Sx* Sx/ x4 dx/
Sz . . . Sl
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SxJ axJ
=Y/ . Ow BF5
Sxz e |5—=
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g/ (65{.,-), 4 29 ) SZor . . . fmy
ax \ Oy, “orj 7 oxJ X% x>
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Bxerm-i Oxm-1 (1.10)
O 8! Mon ... Lok
Ax* dx/ OxX™ Qx/
(395), + 99 Slworr , . S ar-
a)z %% ox°e Iaxe ox°e
(22 y,, + 2 Ofor . . . Ol
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It is evident from the above, that, on adding /7-{ relations

of the type (I.10) it is possible to write the following equation

r , .
oo, . . O ot . b
X% Ox/ A Axd x4 Ix>
4 . . . Slm . : O _
e aee [T %2 . . . o |3, =
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snd substituting the resulting expression into (I.9) we obtain:
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Solving (I.1l1) for the first determinant on the right hand side
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One row in each of the above determinants is identically zero by

(I.3) hence we immediately have the result that:

T=L, -, N,
[/m a/'E)EO [ ] . (1.12)

37‘0 60=_[,---,/77-—1

therefore,we have shown that the quantities % are absolute invar-
w

ants of the enlargement GlEl of the group Gl.
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APPENDIX II

GROUP-THEQRETIC PROOF OF THE BUCKINGHAM PI-THEOREM

II.1 Introduction

In the preceding sections it has been shown that the group-

theoretic reasoning provides a foundation for a similarity theory of

partial differential equations. In this Appendix we shall show that

gfoup-theoric methods will also yield a rigorous proof of the

Buckingham Pi-Theorem.

II.2 TNotation

In addition to the symbols listed at the beginning of this

thesis we shall need to define the following:

Ges """ D

&y, s Om
G,
G
G

'”6: (Q_[ a"';q)m)

/712;2’"':(2W)

Fundamental units (that is: mass, length, time).
Physicel quantities (density, viscosity, etc.).
Any continuous /° -parameter group of transformations.
The particular continuous /r -parameter group of
transformations obtained by changes in the funda-
mental units.
The particular continuous j~-parameter group of
transformations induced in the physical quantities
by changes in the fundamental units.
Dimensionless functions of the physical quantities,
o

that is: absolutely invariant under G, .

Any function of the physical quantities.
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C?Cﬂ;---,j7k) A dimensionless function of JQ;,'“,JGQ ; that is,
absolutely invariant under @ .

Bar under The summation convention is inoperative for the

repeated index index.

I1.3 TFormulation of the Problem

The Buckingham Pi-Theorem is the fundamental result which under-
lies all of dimensional analysis. It is usually stated loosely in
the following form:

"If o is the number of fundemental units and /TYEL,"',CLW)==CD
is an equation expressing a relation among /M physical quantities then
there exist /- dimensionless quantities JQZ"y jg;pr such that

/=0 , in dimensionless form, can be expressed as
4

G( E’.'.’ ﬂm—r‘)=0 .

The above statement is not precise since no conditions have been
imposed on F[Q,,---,Qm).

It is our purpose here to provide explicit conditions under which
Buckingham's Pi-Theorem will hold. The theorem which shall be given
has the nature of an existence theorem. It does not provide a means
of defermining the dimensionless quantities JC;,'",jccﬂq‘ but does as-
sure us that, under very general conditions, they exist.

The m physical gquentities G&,'",Gaﬂ when expressed in terms

of the /~ fundamental units take the form:

-
Q=M g s i=tyam. (11.1)
fom ¥4

Any change from one system of fundamental units to another introduces
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positive numerical factors (x;) such that the relation among dif-
ferent systems of fundamental units can be expressed as:

4

6,‘. : §= 0(_195 } [:—-._{’--.,,‘, O(L'>O . (II.Z)

Evidently (II.2) is a continuous /°-parameter group of trans-
formations. The inverse is given by :%— , the unit by o=/ and
the closure and associativity conditions hold. Since the o can
range over the positive real numbers it is evident that the group is
continuous.

Note, in addition, that (II.2) induces the following continuous

/r-parameter group of transformations in (I1.1):

r
6,‘.": @-:Q/[Zj]_ogcﬁ 3 =ty e, my m>r. (1I1.3)
Clearly, any theorem on / (Qy,*4y@,) must then depend on the
properties of Ciy and not those of GZ: « The group Ci: then
plays a subsidiary role in the proof of the Buckingham Pi-Theorem.
Requiring thet the equation F{Ql,'",é?m)=0 be dimensionless is
equivalent to saying that it be invariant under the group Cif . The

properties of such an equation will be investigated in Section II.5.
II1.4  Review of Previous Proofs of Buckingham's Pi-Theorem

Buckinghem (Ref. 21) in his original proof of the Pi-Theorem
effectively assumes that the function /:YC§;'3CEW) is analytic® in
@33, » This assumption is not explicitly given in his state-
ment of the theorem, but it is used in his proof of the theorem and

as such drastically restricts the class of functions which can be

*It can be expanded in a Taylor series about the origin.
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treated by dimensional analysis.

Birkhoff (Ref. 2) on using the notation of "sets of trensiti-
vity" relaxes the assumptions on / (&,--,@) by only requiring that
it and its first partial derivatives be continuous. He does not
succeed completely since he effectively proves Theorem II.1 of Section
II1.6. Thus, he can show that there exist "#7-5 (59" dimensionless
quantities Z,"',]],;,_s but does not prove that <S=/ as is required

by the statement of the Pi-Theorem.

I1.5 Conformally Invarignt Functions Under Continuous /" -Parameter

Groups of Transformations.

To prove Buckingham's Pi-Theorem we first need to consider the
conditions which must be satisfied by F(Q/,"',Qm) so that the equation

F@us s @ )= O (11.5)

is invariant under a continuous /° -parameter group of transformations.
This investigation will parallel that given in Section V. We
begin by considering the most general type of invariance - conformal
invariance - oi" the function /~ under the transformations of a Gr .
By the method of proof used in Theorem 5.1 it can be shown that

the nécessary and sufficient condition for the function F(QI,“-, @m)

to be conformally invariant (see Definition 5.2) under a G,- is that

CZ-*—.[, ttty r
{=f, -, mym>r

'XOFE JEa‘(QzS' %—=£(@,,Qm)F/@;;0m) \: }, (II'G)

where X,/ are the symbols of G (see Ref. 5, p. 72) and the
% (@y+&,) eare some functions of &,---,@, .

The general form of / can now be determined by obtaining the
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general solution of (II1.6). First, we note that the general solution
of the homogeneous system (II.6) defines the absolute invariants of
G, (Ref. 5, p. 72) = call this solution (R >@m) . Since
FIAQ, s @m) , for arbitrary &), **» @m , is not identically zero
(I1.6) can be written as:
X, tnF = £ (R s Om) (11.7)
- denote a particular integral of (II.7) by 3(&;->&n) « That such
a particular integral exists is assured by the theory of systems of
first order partisl differential equations.
By a theorem contained in Ref. 22 (p. 90) the general solution
of (I1.7) can then be expressed as:
by F = (@1 @) #H0 B@p 1 Om) 5
therefore,
j eT(@!,'-.,Qm)/é—/(?j’_._’@m) (II.B)
is the general form of a function F conformally invariant under a
G-
On using (I1.8) the equation (II.5) can be written as
A (Qyy =+, Qm)=0 (11.9)

> @rmr) , for arbitrary &,»&@m , is not

since the function e (%
identically Zero.

The above arguments show that if the equation (II.5) is invari-
ant under & (7. then its further properties can be obtained by in-

vestigating the functions A (Q{,'",@m) « This will be done in what

follows.
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I1.6 Results Leading to the Proof of the Pi-Theorem

The following theorem can be proved for any function which is
absolutely invariant under a continuous ¢ -parameter group of trans-
formations.

Theorem II,1

If the function E(Ql,'",Qm) is absolutely invariant under a
G then, for £(Q, @m)cC™ and m>r , there exist " /-5 ",
IS5/ , absolute invariant functions of the @'s
77, ( @y, @m ) 5 =1,y m-5,
such that
/_:(01;'"7 Qm) = G(]j}: ) -ij—s)
in some neighborhood of the &), &), space.
1. The proof is evident if we make use of the following two theorems:
Theorem A (Ref. 5, p. 62)
"A necessary and sufficient condition that the funetion
5(Rsy s Bm) eC? ve absolutely invariant under a (. is that it

satisfy the system of first order partial differential equations

: =1, 1y
Xofg = Jé;‘(@is)% =0 [a s } (1I.10)

ity -y m, M

where the }'q[( Q@ 's) are the vectors of the group G.."
and
Theorem B (Ref. 22, p. 72)
"If the set of first order partial differential equations
Xf=0 , a=4--,q9 ,is complete then it has " /m-g " function-

ally independent solutions and its general solution is an arbitrary
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function of these solutions.™
2. The theorem will be proved if we determine the number of equations
in (II1.,10) which form a complete system.

Evidently the rank (/ ) of the matrix
M=\&@s| 72000
35.0 3 Z=_{,---,/77, >

will be such that
L(M=s<r. (11.11)

3. The result (II.11) implies that S of the equations X,5=0O are
independent, say:

KXo lo=0, o=4,:,5. (11.12)
The system (II.12) then forms a complete system (Ref. 5, p. 69).
4. The proof of the theorem is then obtained on combining Theorems
A and B and using the result (II.12).

" "
r

It is also necessary to know under what conditions the
4
parameters of the group G,: are essential. To this end we state:

Theorem I1.2

A necessary and sufficient condition for the parameters
Xys 3o of the group G,.” be essential is that, for «>0,
imtyesrs Ry |=r
l. The preoof will consist of showing that there does not exist a set
of functions @FPle’s) (f=1,--,r) , other than the trivial
@P(«’5)=0 , such that the functions -Qj satisfy an equation of

the type (Ref. 5, p. 9):



110

,
6 9% ,
Plecs) 3o-=0 ; =L m, m>r. (11.13)
B={ P
But, from (II.3):
0% _ W = ,
aq"a °_(£ o ?

therefore, (II.13) can, for arbitrary 6—?/ ., be written as:

-
% & pfees) = o . (11.14)
=4 ?

2. By hypothesis /4 “C‘pj"=/' + Hence, by suitable renumbering, the
principal /°-rowed minor of the matrix of coefficients of (II.14) can

be written so that:

ok
s

-£ -1
= 0(1 ves °<r' |C‘6.kl;éo . (11-15)
Therefore, by (II.15) and since the o>0O , we have:

7 |2

3. The result (II.16) then tells us that the only solutions

_ (11.18)

of (1I1.14) are:
Plecs)=0 , p=t,-,r.

This completes the proof of Theorem II.2
11,7 vProof of the Buckingham Pi-Theorem

Buckingham's Pi-Theorem can now be precisely stated in the

following form:

Theorem Il.3

I
If the equation F[Q{,---,Qm)=0 is inveriant under G, and:

(a') /L—(@.I:'") Qm) fc(l)
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® Rlal-r (22005, )
then there exist " ,7-r " functionally independent absolute invari-
ants of Cif
TT (R @m) , =dy-oym-r
such that in some neighborhood of the 0?1,”‘76%J -space, exclusive
of the origin, it can be expressed as
G(I, > Mmr)=0 -
1. The combination of Theorems II.1, II.2 and the result (II.9) will
give the required result if we can show that:
R “ Eo(Q9)|=r. (11.17)
But, for G we have (Ref. 5, p. 20)
FQZ (Q's) = -Cu; Qi
therefore,
R & @) |=r]-cai- (11.18)
2. On repeating the argument used in the proof of Theorem II.2 we
find that if the @O then the hypothesis (b) implies that (II.17)
holds. The application of Theorems II.1, II.2 and the result of
Sectibn II1.5 then completes the proof of Theorem II.3.

We have shown that the Pi-Theorem holds for all functions of
class greater than or equal to C(l). Thus Buckingham's implicit as-
sumption of amalyticity of the function / (@ '»&@n) can be consid-
erably relaxed. Furthermore, the hypothesis (b) is one which is not
contained in Buckingham's statement of the Pi-Theorem. In practice

this assumption provides a convenient test for determining the
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correctness of the initial set-up of a problem in dimensional analy-

sis.



