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ABSTRACT

A general similarity theory of systems of partial differential
equations of any order in any number of independent variables is de-
veloped with the aid of the theory of continuous one-parameter groups
of transformations. The theory is illustrated by means of several
known examples of similarity equations, previously given without moti-
vation, in Hydrodynamics. With the aid of the theory two new examples
of similarity equations, one in Elasticity and one in Fluid Mechaniecs,

have been found; these are discussed in the text.
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NOTATION

The following list of symbols refers to the notation used in

Sections I - VII.

The notation used in Sections VIII and IX is ex=~

plicitly defined therein.

s

A

n)

C

( ,fP

The numerical parameter in a one-parameter continu-
ous group of transformations.
When used in functional notation denotes a simi-
larity equation.
Usually used when referring to the differentiebility
properties of a function; that is: +the function
posses partial derivatives up to the n'th order with
respect to all of its arguments and these are con-
tinuwous functions of the arguments.
The facts given in the structure of a Theorem.
A continuous one-parameter group of transformations.
Gy when expressed in terms of a canonical parameter
z.
The k'th (k = 1,2 ...) enlargement of a Glc.
The postulates for a group.
The hypothesis of a Theorem; that is: the antece-
dents of a logical statement.
The Jacobian of the fumctions 7"1(21, . ',ZP),

., #771...,2") with respect to the variables

z4...,z7,



R1, R2

(%)

Bar under
repeated index
Bar over vari-

able of group

The conclusions or results of a Theorem; that is:
the consequents of a logical statement.

A sub-group of transformations of Gy.

The canonical parameter of the group Gj.

Linear first order partial differential operators
called the symbols of the group Glc.

Symbol of the group GlEk (k = 1,2 ...).

The independent variables of a partial differential
equation ( m=2 ).

The dependent variables of a system of partial dif-

ferential equations ( 7=/ ).

aksy' -J‘=-{; R XD i
aXN""aXNk _w/’.”’dk='{/""m. |
akz B J.=.{,"',/7) —'
OXN - - . AXR [OG, Xy = Ay -, 177
By

The vectors of the group G ~.

When used in functional notation denotes an arbi-
trary partial differential form.

Contained in.

Implies.

Means or Identical to, as indieated by the context.
CONVENTIONS

The summation convention is inoperative for the

index.

The transform of the variable of the group.



I. INTRODUCTION

Many of the exact solutions of the partial differential equations
governing fluid flow phenomens, especially those of viscous flows, are
obtained by the use of similarity equations. That is, by‘finding 8
transformation of dependent and independent variables which will yield
a partial differential equation of the same order but in which the
number of independent variables is reduced by one. One instance of
this is given by the Blasius solution of the Prandtl boundary layer
equations.

A review of the literature reveals that there exist no general
methods for obtaining these so-called "similarity equations" from the
given partial differential equations. It was then thought that the
development of such a general method would be of importance to workers
in Aeronautics since it would enable them to discover new solutions of
the hydrodynamical equations by means of a rigorous procedure end in
addition provide a motivation for all the presently known "similarity
solutions" of fluid flow problems. |

This research was initiated by a remark due to Michal (Ref. 1),
that is: " ... one may suspect that continuous groups would be found
helpful in attacking some of the more difficult problems of elastic-
ity, hydrodynamics, aeronautics and meteorology." An attempt at fill-
ing this gap in the theory has been made by G. Birkhoff in his book
"Hydrodynamics, A Study in Logie, Fact and Similitude." In this book
it is noted, but not proved, that if a partial differential equation

is invariant under a continuous one-parameter group of transformations



then a similarity equation can be obteined from the given equation.
This idea is one whiéh reveals a basis for a theory of similarity
equations and its further development is presented in this thesis.

Once it is known that a system of partial differential equations
is invariant under a continuous one-parameter group of transforma-
tions the theory presented herein enables one to immediately predict
the trensformations of independent and dependent variables will give
the similarity equations corresponding to the given system. The
method is shown to hold for systems of partial differential equations
of any order in eny number of independent variables and it is imma-
terial whether these equations are linear or non-linear or of ellip-
tic, hyperbolic or parabolic btypes.

The general theory developed in this thesis is illustrated by
several known examples of similarity equations, previously given with-
out motivation, in Aeronautics. Two new examples of similarity equa-
tions, one in Elasticity and one in boundary layer theory, have been
obtained by use of the general theory and these are discussed herein.
In Appendix II a considerable relaxation on the class of functions
which can be considered in dimensional analysis is obtained by prov-
ing Buckingham's Pi-Theorem with the use of group-theoretic methods.

No attempt shéll be made to give a detailed exposition of group
theory in this thesis beyond that which is required to maintain the
continuity of the text. Whenever group-thecretic results are used,

we shall give reference to standard works on the subject.



II. PRELIMINARY REMARKS

2,10 Definition of Similarity Equations and Solutions

Before proceeding to review the available literature on the
subject of similarity equations it is convenient to define our ter-
ninology at the outset:

Definition 2.1: Similarity Equations Those partial differential

equations, A=O (say), in /7-{ independent vari-
ables which are obtained from a given partial differ-
ential equation, P=O (say), in m independent
variables.

Definition 2.2: Similarity Solutions of Partial Differential Equa-

tions  The solution (s) of the partial differen-
tial equation 55=C9 which is (are) obtained by means
of the solution (s) of the equation A=O .

The above definitions will also apply when we are dealing with
more than one dependent variable and hence with systems of simulten-
eous partial differential equations.

Definitions 2.1 and 2.2 are sufficiently general so that all
nown cases of similarity equations are subsumed under them. For the
case /77=2 the similarity equations are ordinary differential equa-
tions and this is the case which is usually thought of when the ter-

minology "similarity equation" is used.
2.20 Review of the Literature

The two attempts to provide a background for a theory of



similarity equations have been made by G. Birkhoff (Refs. 2 and 3).
Birkhoff recognized that some similarity equations could be obtained
from some given partial differential equations when they remained
unchanged in form (invariant) under the transformations of a continu-
ous one-parameter group of transformations. Birkhoff illustrated his
contention by giving many examples; but, he did not succeed in formu-
lating the problem from a general group-theoretic point of view or in
proving that his contention holds in general.

In Section 8.30, after we have been introduced to some of the
concepts of group theory and developed our results, we shall make a
comparison between the method given by Birkhoff and the one which re-
sults from the theory presented herein.

There are many excellent books on the theory of continuous
groups of transformations. An excellent introduction is contained
" in Cohen's book "An Introduction to the Lie Theory of One-Parameter
Groups” (Ref. 4). A much more detailed and general exposition of the
theory is given in Eisenhart's "Continuous Groups of Transformations"
(Ref. 5). In this thesis considerable use has been made of the group

theory contained in these two books.



III. CONTINUOUS ONE-PARAMETER GROUPS OF TRANSFORMATIONS
3.10 Definition of Continucus One-Parameter Groups of Transformations

In the succeeding work we shall be dealing exclusively with con-
tinuous one-parameter groups of transformations (also called Lie
Groups in the literature) which we shall here define. The definition
which we shall adopt is given in Ref. 5, p. 15, and is reproduced
here for completeness.

Suppose that:
—y L .
Z=FU2 - 285a); i=1,-, P, (3.1)

denotes a set of transformations among the P variables z‘ which in
addition depends on a parameter @ which can range over the real num-
bers and such that the functions 7“£ are in class C(l) with respect
to their arguments.

Definition 3.1: Continuous One-Parameter Group of Transformations

The set of transformations (3.1) will be called a continuous one-

parameter group of transformations if:

1. The functions # ‘ ere such that: 7F ‘e C (1), or greater, in the

Z's and the @ and, in particular:

/‘jy""{‘P
T](zf,. )aﬁo.

";ZP

2. The following group postulates are satisfied:

¢l: Existence of Identity: The class of transformations (3.1)

is such that there exists a value of the parameter <
(sey) for which

-Z—4-= ;l(zj,. . ,ijao)=Zé



Existence of Inverse: There exists a value of the parameter

a.; (say) such that:

2?z==;f£CEj,'";:2/?5Clj)-
Closure: There exists a value Q= @(%,%) of the para-
meter such that if:

£ o /-l (21’,,,"2/’; aj)

=
and

Z{= £z, 205 05)
then: . ;

= ,r‘(zj, ...,ZP;as) .

Associativity: The Associative Law holds for the set of

transformations (3.1); that is, if we denote the transfor-

mations with parameter g, by 7;1 , etc. we must have:

7‘;3(7;,37;1)=(7:Za 7;2)7‘_71 *

The transformations of (3.1) may be thought of as transforming a

point /7z) in a P -dimensional space T4 into & point P(7) in en-
other P-dimensional space _[/;;. . If .45(2) is the transform of a point
£(z) for a particular value of < then for small changes in the

value of @ we get points in the neighborhood of P

Before proceeding to consider partial differentiel equations in-

variant under continuous one-parameter groups of transformations we

shall need to develop some of the properties of such groups.

3.20 Some Properties of Continuous One-Paremeter Groups of Transfor-

mations of a Special Type

In the treatment of one or more (systems) partial differential



equations invariant under continuous one=-parameter groups of trans-
formations we shall need to know some of the properties of the groups
with which we shall be dealing. These properties are listed or in-
vestigated in this section.
The groups which we shall deal with are of the special type:
Xi= U, -, xTia); £=d,-00, m; m225
Y =Fly;a) (3.2)

when dealing with one partial differential equation and of the form:

. 4‘ .
‘=7[‘(X{.“’;Xm;a);é=_{,"',/77)‘ m22;

X

G : (3.3)

= flysals J=d, o ni nd,

NN

when dealing with systems of partial differential equations in /7 un-
knowns )f/ and /7 independent variables x%¢. The sub-group of trans-

formations of (3+3)

66}: Xé=Fud, -y x75a) ;i i=d, -, m; m22,

shall be denoted by 8¢, -

Clearly, (3.2) is the speciel case of (3.3) for 7=/ , hence in
our succeeding development we shall only be concerned with groups 6f
the type (3.3).

From elementary group theory (Ref. 5, p. 34, Theorem 10.1) we
have the following result.

Theorem 3,1

Any continuous one-parametef group of transformations is equi-
valent to a one-parameter group of translations.

There will then be no loss of generality if we consider the

group (3.3) to be given in terms of a canonical parameter ¢ such that



Z’/:’(‘ = FL(Xja SRR Xm) s i=d, ey my (344)
and

oy .

Loty i (5.5)

where /=0 ,-¢ , Z;+% , are the values of the parameter which
give the identity, inverse and the product of two transformations re-
spectively.

From (3.4) and (3.5) we conclude that the finite transformations

of the group, in terms of the canonical parameter Z , are given by

XK= LA x5 ) s i=d, e, My 225
oo o ' (3.6)
Y= <Yy ; J=4,m5 02

where the bar under the repeated indices indicates that the summation
convention is inoperative and the notation G1° denotes the fact that

the group Gy is expressed in terms of the canonical parameter Z.
3.30 The Enlargements of the Group

Assume that the y's of G;® are functions of sl oo X mp2 .

In enalogy with the group theory of ordinary differential eque-
tions we wish to consider groups which are .derived from G1° by adding
to it the transformations among the partial derivatives of the
Y (x4--,x”). 1In order to distinguish this way of adding transfor-
mations to the group Glc from that encountered in the theory of ordi-
nary differential equations we shall call the derived groups enlarge-
ments, rather than extensions, of the group.

We shall then speak of the first, second, ..., k'th enlargements

By

of the group 3 ®, denoting them by GlEl, eve, Gy © respectively,



according as the transformations of the first, second, ..., k'th par-
tial derivatives of the ) (x,---,x™) are added successively to those
of 1%, 351, .eu, GyTk-1,

The first partial derivatives of the )?ﬂX{--',x”v, by (3.6),

transform according to the relation:

— DEJY, _ Kt kit dxf A;'/é oFle .. X-2) *
I = Fxx = € FE== e o e =€ ——Xa)_('—;——f—‘_&,tg: (3.7)
thus:
V o= KT yP
Y= & A ):-,ﬁ , (3.8)
where 2
p_ oFff(xd, ..., xm;-2) _ OxF
and:

— £O(X, e, X7t

are the inverse transformastions of the group S8g;.
The second partial derivatives of the uy(xfn-,x”v transform ac-

cording to the relation

SJ; =3 éay_(:;i) = k/éa)a(ﬂ (Ay J:a’)

= e I:aA“ _}‘//,y /4 /4/5 ] (3010)

where the terms containing two repeated indices are summed over all
combinations of the numbers 1, ..., m in such a way that all the par-

tial derivatives of the Y 's are taken into account without repetition.

*Por the remaining portion of this section Greek and Latin indices will
range over the numbers 1, ..., mand 1, «se, 0 respectively.
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The first and second enlargements of Glc then consist of the

transformations:

£ _ kit
— kit 4
Y * A“)Q':X
and:
XX = £ (dy e x5 2)
- kit
E -)fi —_ e.‘_J X/. y
G °: )
/N (3.12)

kit 2¥
-X/.J‘Xz e A“ ‘)‘/_/ny

—  mt[oal ¥ W
Vg = X[y r ALAS ]

The procedure which must be followed for constructing further en-
largements of G1° is then clear from the above.
It remains to show that the transformations of GlEl, cen, GlEn

actually do form continuous one-parameter groups of transformations.

To this effect we state the following result.

Lemma 3.1
If, 1. The transformations of Rl., The transformations of
1% form a continuous = 3121, .o, GED also form
one-parameter group. continuous one-parameter
groups.
Proof

To prove the abové results it will be necessary to show that the
postulates Gl-G4 for a continuous one-parameter group are satisfied
by the transformations of GiEl, cany GlEn. The method of proof shall
be given for GlEl.

1. Il == that for the group G, the identity, the inverse and the
1



11

product of two transformations are given by values of the parameter
t=0 , -t end Z3=%¢;+%, respectively. We shall show that Z=0O ,
-¢ and Z3;=7%,+%, are also the values of the parameter ¢ which

give the identity, inverse and product transformations of G]_El

2. (a) Existence of a Unit. ¢=0O is the value of the parameter

which gives the identity transformation for G]_El for at %O

we have
X %= x%,
=Y
.y/,O( X/,o( ’

which shows that postulate Gl is satisfied.

(b) Existence of Inverse. -7 is the value of the parameter for

the inverse transformations of G]_El. This is because:

11 ==
e £ (T X )
-la ¢
y=e*),
then: v —
kit B kit 9RF
Y= € . Oxx e ERCS Yioe
_ kit ofBxt, x5 ) v
i 4 aX“’ ‘X[’P ?

which shows that the conditions of postulate G2 are satisfied.
(e) Closure.
Il = that if:

Y= L%, X5 Y ),

- k.éj
=<2

(3.13)

and
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X& = fnp(xd;""4xln3 220,

y_. _ ek_é. .é-a y‘ (3 014)
L A
then

;_X: f\“(X.{,...’Xm;Z‘jf-fa), (3 15)

= _kj(t+tz) .

| Yy = ey )Q .

From (3.13) we have that

o = € 3 ‘)'/_/:,3 (3.16)
and from (3.14)

rvaR k'i‘g aX")

Yo = ©%° 55E b (3.17)

Combining (3.16) and (3.17) gives us the relation

_ e@(fﬁfa) ax¥ axb
. axf oxx Urd

<l

b (t+ta) ax¥
<= a?« -)Q’d’

k'(f.z*fe)aﬂz'-l,---,?m-—é ¢
= e‘l (X a)=(°< 2 (1+ 2)) ‘—&:’d/o (3.18)

The relation (3.18) then verifies that postulate 6% is satis-

fied for the transformations of GlEl.

(d) Associativity. The elements of GiEl are defined by equations;

hence postulate G4 is satisfied since the process of substitu-

tion is associative.

3. The arguments of 2(a)-(d) show that the transformations of GlEl
satisfy the postulates Gt-c% for a group. Hence the transformations
of GlEl form & continuous one-parameter group of transformations. It

is easy to see that a repetition of the arguments of 2(a)-(d) will
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show that the transformations of G1E1, see, GlEn also form continuous
one-parameter groups of transformations. This proves Rl.
In accordance with the above result we shall refer to the trans-

formations of GlEl, cess GlEn as groups without further qualifications.
3.40 The Vectors of the Enlargements of the Canonical Group

The vectors of the group C—lc are defined to be the set of quan-

tities: (Ref. 5, p. 33)

E;o__ X
ot oo
and
o5
5= 27
adt Jp
The vectors of GlEl, oy GlEn are obtained by successively add-

ing to the vectors of G1° one each of the sets of quantities:

;5‘._ fiZQﬁ ,

J Tt =0
§°‘/ pn O’Z’ o - o(,,) s
4 ot o

where the indices o,...,«

,, ‘take values over their indicated range

in such a way that all of the partial derivatives of the _x are
taken into account without repetition.

The vectors }i‘ are then determined as follows:

- A
“ W) kit 42 AL J (3.19)
- D) = (4 T e Gy,
By definition:
AM _ a//“ﬁ(;.lj...,y’”;_t)___ ox¥

o S X ox
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since X=X at 7Z=0 we must have:

;o
Al =&, (3.20)

&,
where 5;3? is the Kroneker delta.

Due to the continuity of the functions a g in the X 's and T

we have: _
A% _ i[.a__x‘”] -2 [_.QX’”]-
o7 At | ax> Ax*% | at
therefore,
& & m Srod... 57m 4
2A0) _ [a (- Lot ;z‘))]= a_f_ém__)]:_és.. (3.21)
ot b= X o X % x4 ¢

By (3.20) and (3.21) the expression (3.19) becomes:

¥
§o</= ['i/ 5&1 _ 9f ]le . (3.22)

J Y’ Ox*

The vectors for G]_El are, by (3.3), (3.4) and (3.22), then

Fo= gy xm),
=KX

&
o .c% __OF™ . .
?) _[’éfléu, axo(,:l):/;f;
The vectors 55";( %2 are given by:

6% I Weer] _ Rt aAg', . 5 p%
& - -—O"/Z‘—i___; {@e X%z Z/’J'—fA“l A"(e )_J/':a//a’a

o & &%
kit 34 : BAS ¢, Y : ]
r e [ata;“z Yott + oy A Gt T A op )Q:Wa]};
=0

By (3.20) and (3.21) the above expression becomes:
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e 4 | ¥l 623?6” ag' ”556’2
g‘j‘ "ﬁ/ [O+6°<:5°<e )Q}M;l_ «lax"‘e‘)J/’d’: ax"‘ra;e)J/:Ne 5% aﬂa)j}dﬂa

_ pegd iy eogh  n IFk
=t 4 35 - AT L o

Hence, the vectors of the second enlargement, GlEz, of G-1° are :

§,°(/ = _f‘e&/(X'ﬁ"‘JXm)’
N/
, Y
g= [ge -3 %
woe 0% Kot gt O£% b OFT
§J T Tox~ox? J’&’l [k 5/ 5”‘2—— % gx~e 6;(2 Ix™ -Y/';J’,Jg :

The procedure to be used in determining the vectors

fj’“g % . o g ™" ig evident from the above description.

3.50 The Symbols of the Canonical Group and Its Enlargements

Using the vectors of the groups SGI’ Glc, G]_El, coey G]_En we

define the following linear partial differential operators:

Uf= &i{(, ’ (3.24)
UL — fwi(/;/+@%.§§, (3.25)
- £ 4y g ‘2’; (3.26)
0'('?“—-—- £ 'jxi J)ga;,jvc:g“’aaf: y 5“’“25%2;2 ; (3.27)
T S L S
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which we call the symbols of SGl’ Glc, GlEl, csey GlEn respectively.

Elementary group theory provides us with the following result
(Ref. 5, p. 62, Theorem 17.1).
Theorem 3.2
If. 1. E*%s an absolute in- % Rl. JF=0.

varisnt of a group Gy

By successive applications of Theorem 3.2 we conclude that the

necessary and sufficient condition for any quantity to be an absolute
B

invariant of the groups SGl, G1°, Gy 1 e, GlEn respectively is

that it satisfy one of the equations:

J°F=0,
Uf =0,
Ur=0,

T =0.
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IV. PROPERTIES OF THE RELATIONS

Zé_(x-f...’xm) = 95(‘)-/{ (X{...’Xm),. ..7)/”{/\/{...’)(”7)’)({...’)(/77)

The quantities & (y,--:,Y , X{-,x7),6=4--.,n, are defined in
the statement of Lemma 4.l.
In succeeding sections it will be found necessary to consider

relations of the type
Za' (X'{: .,_)Xm)==y; (X{ (X*ﬁ“-;X”J,"':)Z (X}{'"7Xm)?X{""Xm)’5=j7""n) (4.1)

since they will be useful in the investigation of partial differential
equations which are invariant® under continuous one-parameter groups
of trensformations. Hence, in this section we determine some of

their properties, the first of which is:

*This statement shall be made precise in Section V.
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Given:
The set of equations
Zé.(x{---,x”")= 95(X(:""YH;X{"'7 Xm):

where o={,---,n and the J,,**"), are
considered as functions of
X'I, .o 5 xm .

The functions

*
95(){(”"’)’/7 JX Gy X)), S=4, o501,

when considered as functions of /m+7
independent variables Y/, -, Yoo

xZ, - -+, x™ , are functionally inde-
pendent absolute invariants of the
group

-/\7£= f‘l(x'{y"‘:xm’ra) yi=dym, mp2,

Gr: o .
‘X/.=75: ()9-50} 3 J=.l,-'-,/7, ﬂ)f,
where: <« is a numerical parameter
and a=d, (say) gives the
identity transformation.

I1f. 1. Under the transforma- h Rl. Under the transformations
tions of Glz of Glz

> .

‘Z()_('{,"'r—)?m)=){; (717"’)?’") ~= ZJ(Y{'--,Y’”)—'—'ZJ (X{ % Xm)'

where: 5=f,""", .

Proof | =)

1. Gl => +that under the transformations of the wvariables

*Ppat these absolute invariants exist and are independent can be
shown by elementary group theory. It is possible to choose them so
that the Jacobian r](j 290 4o

(&4

—es Yn
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XL, x™ of G, we have:

Zg (R, -+ X7) = G (Y, (FhensR), oy Yo (Ryoe0y Xm), ¥ o0y X7) (441)
2. G2 = that under the transformations of Gy
G (T (Rheres ) o,y (T4, X7), X, X ) = o (YK X 3 1 (ke X X, X).(442)
3. Il =, by (4.1) and (4.2), that:
Zg (Rfoee XM) = G (Y, (R, R), oy Yo (R X7), R ee, X7
- %(Z (XL e+, X7), = Yy (X4 -y %) | Ty oo, %)
=g (X{ (X{,-",X’"),"*,}{,(X-l,-",)(”’), X‘{,---,X”’)

= Za‘ (X'(, ..-,Xlﬂ) .

This completes the proof of the sufficiency.
Proof (~<=)

1. Rl, Gl =

s ()’, ()7{"'77,”)," 23/ {ij ey X7), 7{ 0 7”’)=Z' ()Il(x:j‘“;Xm);"')},’,{Xrl"'rx”?lx;l’",xm)- (4.3)

2., G2 = (4.2), hence on combining (4.2) and (4.3) we must have the
following relation

G (3, (Lo Ry Y (R Xy Ko X) = G (R O X X w5 Xm), (444)
For the purposes of the following argument it is important to note
that the notation of (4.4) indicates that the arguments on either side
of the equality are connected by the same functional relation. Since
there are /7 such relations (4.4) and the arguments in the (n + kl)“ch
to the (n + m)'th places of the relations are the same it is evident,
since ¢/ M);-‘O , that the only way in which the equality can be

Yir"s Yn

meintained is for:

T (R X7) = g (Bl X7).



20

This proves the necessity.
Lemme. 4.2
Given:
Gl1,2 of Lemma 4,1
G3. Z(X'{-'":Xm),"',ﬂn—z(X‘f'";Xm} are func-
tionally independent absolute invari-
ants of the sub-group:*
SGl: X= fi(xl,"';X’"; a)ji=d,-m, m=2,
of the Group Gj.

If., 1. Under the transforma- Rl.
tions of Gls

J (XL, X) = ) (Reer, R = Zp (X, XY= (0 )
wheres 5=1,---, n.
Proof
1. Rl of Lemma 4.1 = that the functions Z (x{--,X”) are absolute
invariants of the sub-group SGl of G1.

By elementary group theory every absolute invariant of SG]. must

be a function of /LN 7,,7_, , hence:
Zg(X'{r"')Xm)= 5(71:"';%—1)0

This completes the proof of Lemma 4.2 .-

Definition 4.1: Invariant Solutions of Partial Differential Equations

That class of solutions of a partial differential
equation or systems of partial differential equations

which satisfy the relation:

*Mhat these /m—{ absolute invarients exist and are independent can
be shown by elementary group theory.
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V(L ... M) = XL .., X" me2,
)g_(x, ,Xm) )Q-(X,- ,X") [:1).--,/7, >4,

under the transformations of Gy; that is, the )g_ 's

are the same functions of the X7 .-, X7 that the

Z 's are of the corresponding x4, --+,X7.
Lemme 4,3
Given:
Gl. A continuous one-parameter group of
transformations of the form:
o s Xe= £ xTsc2) s i=dy ey m, mp2,
17 ; :
G=Flysa) s j=d,n, nxd.
m \ a 12" ") Im-1 \|= —q{ .
If. 1. 71(X,z...,xm),...,/m_{x;...,x), Rl. A [J(—'Z—j—x‘,:w, X,,,)] m—4
Gy s v sdns X540 +5X)
2. a 3
9n(.>?,"',)’n,xf-'-,x”’) >=’ﬁ - %
are m+r-{ function- (jyR=d," "> 7)
ally independent abso- for fixed / and all R .
lute invariants of Gl g g
in Class C(l)- 3. Also o (L ”)#O.
) L 10" Yn

Proof

Proof of Rl

1. First we note that elementary group theory (Ref. 5, p. 62) gives

us the following facts:

(a) Gl == that the absolute invariants of Il exist since they

are characterized by the solutions of a homogeneous first

order partisl differential equation whose independent vari-

ables are the variables of the group.

(b) The Z{(xf---,x'"),---,%”_/ (x{--,x™) are absolute invariants of
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the sub-group:

5%{: x¢= /"(x{---,x”’;a) j =Ly, m, m22 .

(¢) Any other absolute invariant of SGl is a function of the

7 's.
2. Since the 7 's are functionally independent we immediately have
the result (Ref. 6, p. 9) that

f [0 (L))

where: /E denotes the rank of the Jacobian matrix
This proves Rl,
Proof of R2
1. R2 can be proved by contradiction.

Suppose that:

o
Ve

then we conclude that the functions 9‘/ must be independent of the

=0 for any fixed ;j and all R;

Y 's and only functions of the X 's absolutely invariant under the
transformations of Gy. But, if such is the case the ¢'s must theﬁ
be absolute invariants of SGl and hence functions of the Tr>*"s 7,,,_,.
This contradicts the hypothesis Il and completes the proof of R2.
Proof of R3

This fact is evidént from elementary group theory as stated in

the footnote to Lemma 4.1,
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Lomma 4.4
Given:
Gl of Lemme 4.2
Ife Lo gl Xy f it x™), h (Rl. The relations

ﬂ(ﬂ;--,_){,,Xf,---,x’”),'” P)

Gl Ygs s X yXy ey xm) 5—(71” f”"'/):: % (.)f”"’y”’)(;l""xm)’

are m7+n-4{ function- where 5=i,---,n, which im-
ally independent abso- >=>>/W plicitly define the y's
lute invariants of Gy. as functions of the x 's,
cen be inverted for the

2e 50y s Pmi)s 354y 25 705 Y 's in some finite domain
is a set o{‘ %\mctions of the (x4, ..., X™)-space.
in Class Cl1J, ) L

Proof

To show that the above result is true we have to demonstrate
that the conditions of the implicit function theorem are satisfied
(see, for instance Ref. 7, p. 132, Theorem 23.1).

1. By elementary group theory the following facts are at our dis-
posal:

(&) The 9o (Yys -5 Xn s x1e-o x™), 5=4,...,n, are at least c(1).
continuous functions of %,--',x,,x{'--,x“ defined in some fi-
nite domain of the (),+,),X} ~X") =space.

(b) The A (x4 ..., x7") , @=1, -, md, are at least ¢(1)-
continuous functions of xf...x” defined in that part of the
(x%--+, x™) -space which is included in the domain of defi-
nition of the g's.

2, 61, I1,2 ==, by l(a,b), that the set of functions

é“(ﬁ:""%;)(j:"':xm)z %‘()Q:"'JYn7X3{"’:Xm)_/§—(Z’ T 7/77_/) =0 (405)
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are defined and continuous, at least in Class C(l), throughout the
whole of some finite domain A, of the (y,-),,xi x")-space.

By Lemma 4.3 we then know that:

J(ﬁ_’;;’_ﬁ_);zo
Yt 0 Yo

at any point ()Z,---,y%},xf,-n,xf) of the domain AV, .
3. The arguments of Steps 1, 2 and R2 of Lemma 4.3 show that the
conditions of the implicit function theorem are satisfied at every
point of the domain /V, . Hence, equations (4.5) define y ,---,y,
es single valued functions, at least in Class c(1), of x4 -, x”
over the whole of some finite domein in the (x4, ..., x") -space.

This then completes the proof of Lemma 4.4.
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V. CONFORMALLY INVARIANT DIFFERENTIAL FORMS

5.10 Definition of Conformelly, Constant Conformally and Absolutely

Invarisnt Differential Forms

Before considering the invariance of differential forms it is

necessary to define them, that is:

Definition 5.1: Differential Form of the n'th Order in /m Independent

Variables = A function, usually in Class ¢(1) or

grester, of the form:

L M & oy | .2%
ﬁ()(’ ..,X ,y(X, ,Xm)7axl7“‘)axm 7"‘?aX1” )""ax”)ﬂ (5.1)

whose argument contains the variables x4, x™

a function J(x{.--,x”) of them and the partial
derivatives of Yy with respect to the X's up to the
n'th order.

Suppose that each of the terms in the argument of (5.1) trans-
forms under the laws of transformation of a one-parsmeter continuous
group of transformations with a symbol V in the canonical parameter
Z . Each of the arguments of (5.1) can then be considered as an in-
dependent variable under the group of transformations with the symbol
V. 1If there are p~7+2 terms in the argument of (5.1) there will
be no loss in generality on calling them 21, ---,ZF .

With the above conventions we can then write:

Definition $.2: Conformally Invariant Differential Form 9-5 Under

the Group with Symbol ¥ = The function _@ of (5.1)

is such that under the transformations of the group
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with symbol V' the following relation holds:
Gz 52F) = Flzl-,252) B (24, 2F),  (5.2)

where f{z{n—,z"’) is exactly the same function of
the Z's that it is of the Z's and F (z¢---,2F;¢)
is a function of the Z's and the canonical para-

meter 7 which is different from the function é .

Constant Conformally Invariant Differential Form &

Definition H.4:

Under the Group with Symbol V' = The function é of

(541) is such that under the transformations of the
group with symbol / the relation (5.2) holds with
F{zf.-,2%¢) being a function of Z only.

Absolutely Invariant Differential Form f Under the

Group with Symbol ¥/ = The function of P of (5.1)

is such that under the transformations of the group
with symbol V the relation (5.2) holds with

Flzi-2F;#) bveing identically equal to one.

With the above definitions we can now proceed to determine some

of the properties of conformally invariant differential forms.

5.20 Properties of Conformally Invariant Differential Forms

With the aid of the definitions given in Section 5.10 we can

prove the following:
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Theorem 5.1
Given:

Gl. A one-parameter continuous group of
transformations with cenonical para-
meter #

Z[ — 7[“(2.{, ...’ZF';.Z-) 3 Z=/;"'>P5
with symbol /.
G2. The differential form é is such that:

d,
_{EfC() or greater.

7~

If. 1. The differential form ) Rl.

B(z4z") V@ = o(zhs27) Pk 12P)

# Ozl z2P).
is conformally invari- % <= or some D(zh---,2F)
ant under the trans-
formations of Gl. ) L

Proof (=)

1. I1 and Df. 5.2 =5 that & is such that:
ﬁ(zj, '”7—Z—P) =F(Z'/’"')Zpilt)é.(zly"':zp) . (503)
2., On taking the derivative of (5.3) with respect to the parameter

Z , and evaluating the result at the identity element =0 , by G2

we obtain:

Y] azi} aF) Bz e
£ = (& P(=4--,27) (544)

ozZ¢ at =0 ot )
But, by elementary group theory (Ref. 5, p. 33)

SZ* 3 :

_é_f_é=o §‘(Z’1,""ZP) 5 (=1, 50 ; (5'5’)
and

_@Q) _ 9B(zh-2F) | (5.6)
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3. Remembering that

3 .
V: ﬁéﬁ )é=_/’---,/D, (5.7)
and defining
IF
52—)é= = w(zj) "'7ZP) (508)

we obtain, on using (5.5) = (5.8) in (5.4), the result
VP = ozt ,zF) H(z4,---,2F). (5.9)
This proves the sufficiency.
Proof (<==)
1. Rl =:
VE = cwo(zd-,zP) $(z%-,2F);
hence :
Vg =-V(VE) =V(w$)
=FVew + 0V
=p(w? + V). (5.10)

Similarly, if:

V6 =o6(z4 -, 2P) B4, 27),

then
v"E =V(V'F)=FVe + oV
=@ (6w +TVo). (5.11)
2. In view of the relations (5.10) end (5.11) we can write:
V=2, 2P) (2L, ,27) (5.12)

where for each /7 the cJ(ﬂ)(Z/, ..-,7zFP) are determinable functions of
Z’{, “eey ZP .
3. Again, by elementary group theory (Ref. 5, p. 35) we can write

the following expansion for ¢ (Z4---ZF):
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B 27) = Pleyz?) 12VE+ £V 2 HVE. (513)

Substituting (5.12) in (5.13) yields

B(zte3P) = Bzt 7P) [na)‘”z - w"?)—ef-2+--.] : (5.14)
4, Xow, we know that the right hand side of (5.13) converges to
H (24, ZF) for any Z . The same must hold true for (5.14), hence
the expression within the brackets in the right hand side of (5.14)
must donverge to a function A (Z{,"',Z;;f) for any Z . The equation

(5.14) can then be written as:

B(2L.,2P) = Flzh,2F58) $(24,27) . (5.15)

By (5.15) and Df. 5.2 the function P is then conformally invariant
under the group with the symbol V. This then proves the necessity.

From Theorem 5.1 we conclude that if f is to be conformally in-
variant under a group with symbol V then ﬁ must be a solution of
the first order par‘ci&l‘ differential equation (5.9). Conversely, any
solution of (5.9) must be conformally invarient under the group with
symbol V.

With the above interpretation of Theorem 5.1 we prove the
following:
Theorem 5.2

Given:
G1,2 of Theorem 5.1

-~

R
If. 1. The differential form Rl. _ ;-(zf,---,zp)
F=e &,

{ ... ZP
P(z,-,2F) where @ is a general ab-
is conformally invari- <= solute invariant of the
ant under the trans- group G} and 3 is a deter-
formations of Gl. L minable function of ZI,"',ZP.
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Proof (=)
1. Il and Theorem 5.1 =~ that ¢ is a solution of the first order

partial differential equation

Vg = wo=zt-,2°) §(z4---,zF). (5.9)
The general solution of (5.9) will evidently give the most gen-
erel conformally invariant f under the group with symbol V. Thus
the sufficiency will be proved if we caen show that the general solu-
tion of (5.9) is of the form given in Rl.
2. We proceed to determine the general solution of (5.9). Such a
general solution (Ref. 8, p. 252) is given by an arbitrary function
of the P independent solutions
Z- (Z‘{,'--,ZP)=Q=COﬂsZ". si=d,-, pA, (5.16)
and
P (z4 - ,2P & )=C=const. (5.17)
of the system of ordinary differential equations

—OI—Z.{—- —-O-ZZ_":...:O,ZP_: G/f .
T £ wg (5-18)

3. Suppose that the solutions (5.16) are known and we have to deter-

mine (5.17), then from the first and last terms of (5.18) we have:

I8 _ w@(zhzZP) i

(5.19
§ F!(z.l’...’zp) )
But, by the equations (5.16) it is possible to write:
. \/'
ZI= FU2NG %), =2, P, (5.20)

and upon substituting (5.20) in (5.19) we have:
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ISP _ D (AU, Got)y s FEER G ) gt
S EUE, FHzLC 5 G)s s FAES Qs Goud))

= 6(212 C:{:"')C'p—.,[) dzjy (5.21)

where the definition &(z{g, ", Gy) is evident from the above.

The solution of (5.21) is then:
% 55 —/éa’zf = C = const., (5.22)

and the left hand side of (5.22) is the function @ of (5.17).

4. The general solution of (5.9) is then:
Fps s o s tn = [fod24 )= 0O,

where / is an arbitrary function. Since / is an arbitrary function

there is no loss in generality on writing the solution of (5.9) ass

I § — fedzf =44, , (5.23)
where _?Z is an arbitrary function of ‘Z,--~,2;4 which is the solu-
tion of the equation V#=0 . With a little further manipulation
(5.23) becomes:

1
_95 _ C?JC9C£Z 5&;
or

Lo 2”
§=er(z, ’Z)fé(?p”"%-f)s (5.24)

where

5 (24, 27) -———f@(z-’,c},---,cp_j)dz‘,
since after the integration is performed the C's are replaced by the
left hand sides of equations (5.16). Equation (5.24) then establishes

the sufficiency of the condition.
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Proof (=¢=)
1. Rl == that @ is of the form

(z-{’ ...,Zp)
g = C?g. gé .

By the construction shown f satisfies the equation

V.é = GO(ZI;"':ZP) ﬁ(z'l:"'?zp);

but, by Theorem 5.1, 35 is then conformally invariant under the group
with symbol V. T