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ABSTRACT

Isoprene, a volatile hydrocarbon emitted by plants, represents the single most abun-
dant source of non-methane organic carbon to the atmosphere. After its rapid
oxidation by OH radicals in the troposphere, isoprene may follow any of a number
of complex reaction mechanisms to form more highly functionalized products, de-
pending in large part on the relative abundance of reactive radicals such as HO2 and
NO; some of these products can be su�ciently water-soluble, non-volatile, and/or
reactive to partition into atmospheric particles and contribute to the creation of
secondary organic aerosol (SOA). In this work, I explore the gas-phase oxidation
mechanisms and SOA formation potential of second- and later-generation products
formed in the HO2-dominated reaction cascade, which predominates in remote re-
gions and is estimated to account for >40% of isoprene oxidation. Pure standards
of significant isoprene products, such as isoprene epoxydiols (IEPOX) and C4 di-
hydroxycarbonyl compounds, are synthesized, and the rates and product yields of
their gas-phase reactions with OH are measured by CF3O� chemical ionization
mass spectrometry in environmental chamber experiments. Results are compared
to field observations from the Southern Oxidant and Aerosol Study in the South-
eastern United States, where significant concentrations of these compounds were
detected, and are integrated into a global chemical transport model to investigate
their e�ects throughout the atmosphere. Further, the results from these and other
gas-phase kinetic and product studies are incorporated into an explicit isoprene oxi-
dation mechanism, designed to simulate the e�ects of isoprene chemistry on oxidant
concentrations and to produce accurate representations of products known to be in-
volved in condensed phase processes, including IEPOX. Finally, additional chamber
experiments with synthetic IEPOX and inorganic seed aerosol are performed to de-
rive particle uptake coe�cients and examine the e�ects of particle pH, liquid water
content, and chemical composition on IEPOX-SOA formation, using aerosol mass
spectrometry and di�erential mobility analysis. The gas- and particle-phase reac-
tion rates and product yields reported herein, along with the explicit model, provide
important constraints on the fate of isoprene-derived carbon in the atmosphere and
on the influence the HO2-dominated isoprene oxidation pathway exerts on SOA and
oxidant budgets.
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NOMENCLATURE AND ABBREVIATIONS

2MGA. 2-methylglyceric acid; an oxidation product of isoprene known to con-
tribute to isoprene-derived SOA mass, with chemical formula C4H8O4.

ABS. Ammonium bisulfate; (NH4)HSO4.

Aerosol. Fine solid or liquid particles suspended in a gas. The term aerosol can
refer either to the particles themselves or the colloid of particles and gas.

AMS. Aerosol mass spectrometer; an instrument that measures the size and chem-
ical composition of nonrefractory sub-micron particles in real time by cou-
pling a particle time-of-flight separator, a filament to thermally vaporize
particles and ionize their constituents via electron impact ionization, and a
mass analyzer to determine the mass-to-charge ratios of the fragment ions.

APN. Acylperoxy nitrate; a class of compounds (including PAN and MPAN) con-
taining the C(=O)OONO2 moiety formed in the reaction of acylperoxy rad-
icals with NO2, which are often respiratory and eye irritants and a key
component of photochemical smog. Also called peroxyacyl nitrate.

AS. Ammonium sulfate; (NH4)2SO4.

BBOA. Biomass burning organic aerosol; primary or secondary organic particulate
matter emitted from the combustion of living or dead vegetation.

BOAS. Biological and oceanic atmospheric study; an airborne atmospheric field
campaign based in Marina, CA, that took place in July and August of 2015.

CCN. Cloud condensation nuclei; atmospheric particles onto which water vapor
may condense to form cloud droplets.

CI*. Activated or excited Criegee intermediate; the energetic carbonyl oxide
formed following the decomposition via retro 1,3 cycloaddition of a pri-
mary ozonide (POZ) during an ozonolysis reaction, which may have enough
internal vibrational energy to rapidly isomerize or dissociate.

CIMS. Chemical ionization mass spectrometer; an instrument that ionizes analyte
gases by colliding them with charged reagent gas molecules (e.g H3O+ in
PTR-MS, or CF3O� in the Caltech CIMS) and then measures the mass-to-
charge ratios of analyte ions.

CPC. Condensation particle counter; an instrument that counts particles by first
growing them via supersaturated vapor condensation and then detecting them
by laser scattering.

CTM. Chemical transport model; a numerical computer model used to simulated
the stocks and fluxes of chemicals in the atmosphere.
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DMA. Di�erential mobility analyzer; an instrument that separates charged particles
based on their mobility in an electric field.

E-PEACE. Eastern Pacific Emitted Aerosol Cloud Experiment; an atmospheric
field campaign based in Marina, CA, that took place in July and August of
2011, with airborne and ship-based measurements.

ELVOC. Extra low volatility organic compound; generally defined as any organic
compound found in the atmosphere with a saturation vapor mass concentra-
tion C*  10�3.5 µg m�3.

ESI. Electrospray ionization; a soft ionization technique by which a solute is
ionized in its passage through a charged capillary tip, then aerosolized into a
spray of droplets that evaporate to form gaseous ions.

FIXCIT. Focused Isoprene eXperiment at the California Institute of Technology; an
atmospheric chamber campaign that consisted of 26 environmental chamber
experiments conducted over the course of January of 2014.

GC. Gas chromatography; an instrumental technique to separate gas-phase ana-
lytes by passing them through a column coated with a stationary phase with
which the analytes interact, and generally increasing the column temperature
to elute analytes.

GEOS-Chem. A 3-D chemical transport model that simulates atmospheric chemi-
cal composition using meteorological input from the Goddard Earth Observ-
ing System.

GLYC. Glycolaldehyde; a volatile organic compound with the chemical formula
C2H4O2, and a common oxidation product of larger VOCs, including iso-
prene.

GLYX. Glyoxal; a volatile organic compound with the chemical formula C2H2O2,
and a common oxidation product of larger VOCs, including isoprene.

GOAmazon. Green Ocean Amazon; an atmospheric field campaign based in vari-
ous locations near Manaus, Brazil, that took place between January of 2014
and November of 2015, with airborne and ground-based measurements.

H/C. Hydrogen-to-carbon ratio, usually in reference to bulk organic aerosol as
measured by aerosol mass spectrometry.

HAC. Hydroxyacetone; a volatile organic compound with the chemical formula
C2H4O2, and a common oxidation product of larger VOCs, including iso-
prene.

High-NO. Conditions under which organic peroxy radicals in the gas phase react
primarily with nitric oxide. The exact NO concentration at which this occurs
depends on a number of conditions, but is generally on the order of &1 ppb
in the troposphere.
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HMML. Hydroxymethyl-methyl-↵-lactone; a suspected product of MPAN pho-
tooxidation that may contribute to isoprene-derived SOA, with chemical
formula C4H6O3.

HO2-dominated. Conditions under which organic peroxy radicals in the gas phase
react primarily with the hydrogen dioxide radical.

HOx . The hydrogen oxide radical family, defined as the sum of the hydroxyl (OH)
and hydrogen dioxide (HO2) radicals.

HPALD. Isoprene hydroperoxy aldehyde; a first-generation stable atmospheric
product of isoprene photooxidation under low-NO conditions with chem-
ical formula C5H8O3. Two isomers of HPALD are known to form in the
atmosphere from the isomerization of Z-�-ISOPOO, while two others are
expected to form as second-generation isoprene oxidation products from the
reaction of ISOPOOH with OH.

HR. High resolution; in reference to mass spectrometry, refers to methods with
mass resolving power >104 m/�m.

ICN. Isoprene carbonylnitrate; a first-generation stable atmospheric product of
isoprene’s reaction with NO3, followed by O2 addition and reaction with NO
or RO2. Four isomers of ICN, with chemical formula C5H7O4N, are known
to form in the atmosphere.

IEPOX. Isoprene epoxydiol; a second-generation stable atmospheric product of
isoprene photooxidation under HO2-dominated conditions with chemical
formula C5H10O3, and a major SOA precursor in the low-NO isoprene reac-
tion pathway. Four isomers of IEPOX can form in the atmosphere from the
reaction of ISOPOOH or IHN with OH.

IHN. Isoprene hydroxynitrate; a first-generation stable atmospheric product of
isoprene photooxidation under high-NO conditions with chemical formula
C5H9O4N, and a major contributor to NOx transport and removal from
isoprene oxidation. Eight isomers of IHN can form in the atmosphere from
the reaction of ISOPOO with NO or the reaction of isoprene nitrooxy peroxy
radicals with RO2.

IHNE. Isoprene hydroxynitrooxyepoxide; a second-generation stable atmospheric
product of isoprene’s oxidation by NO3 with chemical formula C5H9O5N.
Six isomers of IHNE can form in the atmosphere from the reaction of IPN
with OH.

IPN. Isoprene hydroperoxynitrate; a first-generation stable atmospheric product
of isoprene’s reaction with NO3, followed by O2 addition and reaction with
HO2. Six isomers of IPN, with chemical formula C5H9O5N, are known to
form in the atmosphere.
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ISOPN. Isoprene hydroxynitrate; see IHN.

ISOPOO. Isoprene hydroxyperoxy radical; a radical species formed following the
addition of OH and O2 to isoprene. Eight isomers of ISOPOO can form in the
atmosphere, and their relative ambient abundance depends on the species’
lifetime against isomerization and reaction with NO, HO2, and RO2.

ISOPOOH. Isoprene hydroxyhydroperoxide; a first-generation stable atmospheric
product of isoprene photooxidation under HO2-dominated conditions with
chemical formula C5H10O3. Eight isomers of ISOPOOH can form in the
atmosphere from the reaction of ISOPOO with HO2.

Isoprene. A volatile unsaturated hydrocarbon with chemical formula C5H8, emitted
to the atmosphere primarily by deciduous trees in quantities exceeding 500
Tg y�1.

IVOC. Intermediate volatility organic compound; generally defined as any organic
compound found in the atmosphere with a saturation vapor mass concentra-
tion in the range of 102.5 µg m�3  C*  106.5 µg m�3.

KH . Henry’s law constant; a measure of a compound’s volatility, defined as the
ratio of that compound’s concentration in solution to its partial pressure in
a parcel of air in equilibrium with that solution (mol L�1 atm�1). Also
commonly denoted H or Hcp.

Lifetime. The amount of time a chemical species lasts before being lost via such
processes as reaction, deposition, or transport. The lifetime against a specific
process refers only to the loss rate due to that process. Generally defined
as the e-folding time, i.e., the tame it takes to deplete a species to 1/e of its
former amount.

LOD. Limit of detection; the analyte concentration below which a signal cannot be
distinguished from noise.

Low-NO. Conditions under which organic peroxy radicals in the gas phase react
primarily with compounds other than nitric oxide. The exact NO concentra-
tion at which this occurs depends on a number of conditions, but is generally
on the order of .1 ppb in the troposphere.

LVOC. Low volatility organic compound; generally defined as any organic com-
pound found in the atmosphere with a saturation vapor mass concentration
in the range of 10�3.5 µg m�3  C*  10�0.5 µg m�3.

m/z. mass-to-charge ratio; usually in reference to an analyte ion detected by mass
spectrometric methods.

MACR. Methacrolein; a volatile unsaturated aldehyde with chemical formula
C4H6O, produced in the oxidation of isoprene by OH and O3.
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MAE. Methacrylic acid epoxide; a suspected product of MPAN photooxidation that
may contribute to isoprene-derived SOA, with chemical formula C4H6O3.

MGLY. Methylglyoxal; a volatile organic compound with the chemical formula
C3H4O2, and a common oxidation product of larger VOCs, including iso-
prene.

MPAN. Methacryloyl peroxynitrate; an acylperoxy nitrate with chemical formula
C4H5O5N formed from the sequential reactions of methacrolein with OH,
O2, and NO2, and an important SOA precursor in the high-NO oxidation
pathway of isoprene.

MS. Mass spectrometry; an instrumental technique for measuring the mass-to-
charge ratios of analyte ions.

MVK. Methyl vinyl ketone; a volatile unsaturated ketone with chemical formula
C4H6O, produced in the oxidation of isoprene by OH and O3.

MW. Molecular weight (g mol�1).

NiCE. Nucleation in California Experiment; an airborne atmospheric field cam-
paign based in Marina, CA, that took place in July and August of 2013.

NMHC. Non-methane hydrocarbons; volatile organic compounds found in the at-
mosphere that contain only hydrogen and carbon, excluding methane.

NMR. Nuclear magnetic resonance spectroscopy; an instrumental technique to
determine the molecular structure and purity of a sample by measuring the
e�ects of a strong magnetic field on the spin of atomic nuclei.

NO3. Nitrate radical; the dominant oxidant in the troposphere at night, when NO3
is typically present in concentrations on the order of 1-10 pptv.

NOx . The nitrogen oxide radical family, defined as the sum of the nitric oxide (NO)
and nitrogen dioxide (NO2) radicals.

Nonrefractory. Used in conjunction with aerosol mass spectrometry to denote
species that vaporize in 1 s or less at 600 �C under high vacuum, and can
therefore be observed by AMS. This includes most secondary inorganic
salts (e.g ammonium sulfate) and organic compounds. Also written non-
refractory.

NSS. Non-sea-salt, referring to the portion of particle chemical constituents (e.g
sulfate or chloride) that are not derived from primary emissions of sea salts.

O3. Ozone; a major tropospheric oxidant, with typical concentrations on the order
of 10 ppb. As a component of photochemical smog, tropospheric ozone also
causes adverse health e�ects and contributes to greenhouse warming.



xxxv

O/C. Oxygen-to-carbon ratio, usually in reference to bulk organic aerosol as mea-
sured by aerosol mass spectrometry.

OA. Organic aerosol, referring to the portion of particulate mass composed of
organic compounds.

OC. Organic carbon, referring to the fraction of aerosol mass composed of carbon
contained in organic molecules.

OH. Hydroxyl radical; the dominant oxidant in the troposphere, with typical
daytime concentrations on the order of 1 ⇥ 106 molec cm�3.

OM. Organic mass, used in reference to aerosol as a synonym for OA.

OOA. Oxidized organic aerosol; used in conjunction with aerosol mass spectrom-
etry to refer to aerosol mass composed of oxygen-containing organic com-
pounds.

PAN. Peroxyacetyl nitrate; the most abundant gaseous acylperoxy nitrate, with a
chemical formula of C2H3O5N, formed in the reaction of the peroxyacetyl
radical with NO2. PAN is a lachrymator and serves as a reservoir and
transport mechamisn for NOx .

PCASP. Passive cavity aerosol spectrometer probe; an instrument used to measure
particle size distributions between 100 nm and 3 µm by light scattering.

PILS. Particle-into-liquid sampler; an aerosol sample acquisition method by which
particles are grown via supersaturated water vapor condensation and col-
lected by inertial impaction.

POA. Primary organic aerosol; particles emitted directly to the atmosphere.

POZ. Primary ozonide; the initial 5-member cyclic intermediate formed by the
cycloaddition of ozone to a double bond during an ozonolysis reaction. Also
called a molozonide or a 1,2,3-trioxolane.

PTR-MS. Proton transfer reaction mass spectrometry; a soft-ionization MS tech-
nique by which analyte gases are ionized by proton transfer from hydronium
ions (H3O+).

RH. Relative humidity; water vapor concentration as a percentage of the concen-
tration required for saturation at the same temperature.

RO2. Any organic peroxy radical, where R represents an unspecified stable organic
group.

SCI. Stabilized Criegee intermediate; the carbonyl oxide formed following the
stabilization of an activated Criegee intermediate (CI*) via collisional energy
transfer.
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SEAC4RS. Studies of Emissions and Atmospheric Composition, Clouds and Cli-
mate Coupling by Regional Surveys; an airborne atmospheric field campaign
based in Houston, TX, that took place in August and September of 2013.

SMPS. Scanning mobility particle sizer; an instrument consisting of a coupled
di�erential mobility analyzer and condensation particle counter, used to
measure particle size distributions.

SOA. Secondary organic aerosol; particle mass formed in the atmosphere from the
condensation and reaction of gaseous species.

SOAS. Southern Oxidant and Aerosol Study; an atmospheric field campaign based
in various locations throughout the Southeast United States that took place
in June and July of 2013, with aiborne and ground-based measurements.

SVOC. Semi-volatile organic compound; generally defined as any organic com-
pound found in the atmosphere with a saturation vapor mass concentration
in the range of 10�0.5 µg m�3  C*  102.5 µg m�3.

ToF. Time-of-flight; a mass analysis technique in which an analyte ion’s mass-to-
charge ratio is measured by the time it takes to reach a detector after passing
through an electric field.

UPLC. Ultra performance liquid chromatograph; a chemical separation technique
utilizing a column with smaller beads (>2 µm in diameter) and higher flow
rates and pressure to achieve greater resolution, speed, and sensitivity than
other chromatographic techniques.

VOC. Volatile organic compound; generally defined as any organic compound
found in the atmosphere with a saturation vapor mass concentration C* �
106.5 µg m�3.

WSOC. Water-soluble organic carbon; particulate organic matter that dissolves into
aqueous solution.



INDEX

Symbols
2-methyl glyceric acid (2MGA), 335–338, 345, 353–360
2-methyltetrols, 23, 30

A
Acetic acid, 24–27, 29, 47, 120, 129, 281, 285, 305, 315, 411, 415, 420, 433, 443
Aerosol, 2, 3, 6–8, 10–14, 34–36, 42, 67, 73, 96, 125, 134, 141, 162–164,

166–170, 172, 173, 178–180, 182, 185, 190, 194, 195, 273, 278, 280–282,
292, 303, 335, 336, 338, 339, 342, 349, 353, 354, 356, 358, 369–371, 388,
410, 414, 427, 451–456, 458–460, 462, 463, 465–467, 469, 474, 498,
514–520, 522, 524–527, 530–533

Aerosol mass spectrometer (AMS), 6, 168, 172, 173, 178, 179, 181–183, 190, 191,
193, 281, 283, 292, 293, 295, 342, 349, 414, 415, 452, 459–461, 466–469,
516, 520, 523–526

Ammonium, 11, 17, 282, 286, 339, 341, 342, 345, 346, 353, 354, 356, 410, 451,
454, 456, 465, 466, 469, 514, 517, 523, 533

Anthropogenic, 1–3, 7, 13, 67, 108, 112, 173, 273, 278, 336, 360, 451, 470, 471,
474, 499, 519, 520, 526

B
Biogenic, 1, 7, 35, 42, 65, 272, 273, 277, 279, 295, 300, 304, 336, 354, 427, 428,

451, 471, 519, 520, 524, 526, 527, 529, 530
Biological and Oceanic Atmospheric Study (BOAS), 8, 516, 517

C
CF3O�, 6, 18, 22, 26, 41, 42, 47, 53, 81, 93, 103, 121, 122, 124, 166, 167, 281,

305, 311–313, 330, 342, 364, 371, 373, 380, 383, 389, 411, 427, 433, 443,
466, 467, 490

Chamber experiments, 3, 5, 6, 8–11, 36–40, 84, 100, 121, 127, 164, 272, 277, 280,
285, 300, 335, 338, 339, 361, 451, 453, 462, 466, 469

Chemical ionization mass spectrometry (CIMS), 6, 10, 13, 17–24, 26, 28, 29, 37,
40–47, 49, 50, 53, 54, 58, 79–82, 87, 102, 103, 111, 121, 122, 124, 127,
165–168, 172, 173, 179, 187, 190, 279–281, 283–285, 289–296, 299,
305–307, 309, 312, 313, 318, 324, 330, 342–346, 354, 355, 361, 362, 364,
365, 371–373, 377, 380–382, 389, 409, 411–415, 417, 419, 427, 432, 433,
443, 446, 466, 467, 484, 491, 493

559



560

Chlorine (Cl), 1, 66, 68, 108–113
Condensation particle counter (CPC), 169, 454, 517, 519, 521, 523
Criegee, 98–101, 147, 276, 291, 361, 405–408, 413, 417–419, 421–423, 425, 426,

429, 430

D
Di�erential mobility analyzer (DMA), 169, 454, 458, 459, 464, 469
Dihydroxybutanone (DHBO), 10, 34, 37–40, 43–51, 53, 56, 58, 59

E
Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), 8, 516, 517
Electrospray ionization (ESI), 170, 346, 349, 356, 357, 465, 468
equations, 69, 71, 93, 398, 457, 458, 463, 477–479, 482, 483, 493, 494

F
figures, 2, 4, 14–17, 21, 23, 25, 27, 28, 31–33, 35, 37–39, 46, 48, 49, 51, 53, 54,

60–64, 70, 74, 82, 83, 86, 88, 94–96, 98, 100, 104, 107, 110, 116, 119,
124–126, 128, 130, 133, 135–138, 142, 144, 146, 151–161, 163, 171, 175,
176, 178, 182, 183, 185, 187–193, 274, 282, 290, 294, 298, 307, 312, 314,
316, 317, 319, 322, 326–329, 337, 343, 347, 348, 353–355, 357, 359,
363–368, 370, 375–379, 381–383, 387, 391, 392, 394, 399, 401, 402, 407,
408, 413, 418, 421, 427, 428, 431, 432, 441–446, 448–450, 459–461, 463,
464, 467, 468, 489, 492, 495, 497, 501–513, 518, 522, 525, 530, 532, 534

Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT),
272, 277–280, 285, 286, 288, 289, 291, 294, 295, 297, 298, 300, 301, 339,
342, 348, 350, 409–411, 449

Formaldehyde (CH2O, HCHO), 2, 29, 45, 47, 84, 88, 91, 94, 99, 100, 103, 114,
116, 118–120, 129, 133–135, 137, 146, 147, 276, 281, 286, 289, 291, 292,
295, 296, 303, 309, 318, 325, 334, 340, 365, 370, 403, 405–408, 410–417,
419–422, 424–426, 430, 432, 435, 436

Formic acid (HCOOH), 25, 26, 30, 99, 100, 147, 170, 285, 345, 405–408,
411–417, 421, 422, 426, 428–433, 436, 441–443, 450, 456, 527

G
Gas chromatography (GC), 6, 10, 13, 18–23, 37, 40, 41, 43, 45, 46, 50, 81, 102,

112, 121, 167, 280, 281, 284, 285, 289–291, 294, 295, 297–300, 305–307,
309, 311–313, 318, 329, 340, 341, 371, 373, 374, 380–382, 410, 413, 414,
417, 452, 472, 473, 493



561

GEOS-Chem, 9, 10, 34, 37, 41, 50–56, 59–62, 102, 303, 304, 321, 324, 331, 371,
385–387, 402–404, 481, 487, 499

Glycolaldehyde (GLYC), 24–29, 45–47, 59, 114, 115, 121–123, 130, 133–135,
137, 302–304, 306, 308, 311–313, 315, 325, 330, 331, 333, 376, 378, 380,
382, 389, 433, 443

Glyoxal (GLYX), 12, 28, 30, 45, 47, 59, 68, 86, 118, 128, 130, 147, 164, 176, 180,
281, 289

Green Ocean Amazon (GOAmazon) Experiment, 7, 470, 473, 474, 488, 496, 504

H
Henry’s Law coe�cient (KH), 171, 172, 180, 183
high-NO, 17, 26, 27, 29, 47, 115, 123, 274, 275, 282, 287–289, 293, 294, 298, 300,

311, 314, 336, 351, 362
high-NO2, 293, 336, 338, 340, 352, 361, 367
high-NOx , 300, 336, 356
HO2, 1–4, 9, 11, 13, 17, 27–29, 35, 40, 45, 47–51, 59, 66, 69, 71, 79, 84, 86–88,

91, 92, 103, 105, 111, 114–117, 119–122, 124, 125, 130, 133–138,
143–146, 158, 194, 195, 197, 273, 274, 277, 281, 288–290, 292, 295, 296,
300, 302–304, 307–312, 315–321, 323, 329, 331–333, 340, 343, 346, 348,
362, 365, 368–370, 372, 374–376, 385, 386, 388, 403, 410, 411, 420–422,
424, 428, 431, 432, 434, 446, 449, 470–473, 480, 481, 486, 488, 490, 494,
495, 498–500, 512

HOx , 1–3, 13, 17, 35, 65–67, 80, 92, 93, 115, 131, 159, 273, 284, 302–304, 308,
322, 323, 410, 417, 422, 424, 434

Hydromethyl hydroperoxide (HMHP), 276, 283, 295, 296, 405, 407, 408,
411–418, 421, 422, 426, 428, 432, 433, 436, 441, 443

Hydroxyacetone (HAC), 19, 24–30, 45–47, 51, 59, 68, 86, 117–119, 121–123, 128,
130, 134, 135, 137, 141, 142, 167, 274, 322, 331, 335, 338, 351–354, 362,
368, 375, 376, 378, 380, 382, 385, 389, 411, 443

Hydroxymethyl ↵-methyl lactone (HMML), 353, 357, 359
Hydroxymethyl ↵-methyl lactone (HMML), 141, 142, 335, 336, 338, 351, 352,

354–356, 358–360, 362

I
Isomerization, 1, 3, 29, 47, 73, 74, 79, 85, 92–94, 107, 108, 110, 113, 117, 119,

123–125, 128, 142, 148, 275, 278, 290, 299, 309, 318, 321, 328, 370,
417–420, 470, 472, 481, 494–496, 498



562

Isoprene, 3, 4, 6–14, 17, 21–23, 30, 34–37, 41, 42, 52–57, 59, 63, 65–69, 72–80,
82–90, 92–98, 100–104, 107–110, 112, 113, 115, 121–123, 125, 127,
131–137, 139, 140, 142, 145, 147–149, 159, 163, 165, 166, 194, 195, 197,
198, 272–281, 283, 286–294, 297–299, 302–304, 322, 330, 335–339, 348,
353, 354, 356, 359, 360, 369–371, 377, 378, 385–389, 398, 405–407, 409,
410, 412, 413, 415–419, 421, 423–431, 449, 451, 453, 454, 461, 465,
469–472, 474–476, 480–484, 486, 490, 494, 499, 500, 502, 503

Isoprene carbonylnitrates (ICN), 106, 107, 132, 136, 138–140, 154–156, 159
Isoprene dihydroxyepoxides (IEPOX), 4, 6, 9–42, 44–56, 58, 59, 61, 62, 87,

121–125, 127–131, 133–136, 156, 162–185, 187–196, 272, 275, 279, 281,
283, 286–289, 291, 293, 295–297, 299, 369–371, 373, 375, 376, 378,
380–389, 397–400, 403, 404, 428, 451, 454, 456, 465–469, 480, 490, 491

Isoprene hydroperoxyaldehyde (HPALD), 92–95, 142–146, 160, 161, 275, 290,
291, 299, 370, 374, 376, 383

Isoprene hydroperoxynitrates (IPN), 103, 105, 132, 135, 136, 139
Isoprene hydroxyhydroperoxides (ISOPOOH), 4, 9, 10, 13, 14, 22, 23, 35, 41, 42,

52–55, 59, 78, 82, 85–88, 121–126, 132, 145, 149, 166, 194, 195, 272,
275, 279, 281, 286–289, 295–297, 300, 369–403, 428, 470, 472–474,
476–485, 487–494, 496–500, 502, 503, 513

Isoprene hydroxynitrates (IHN, ISOPN), 80–82, 84, 85, 103, 106, 107, 131–139,
151, 156, 272, 274, 275, 279, 286, 287, 289, 293, 294, 296, 297, 330, 377,
386, 387

L
low-NO, 7, 12–14, 17, 20, 22, 23, 26, 27, 29, 30, 36, 39, 44, 47, 54–56, 59, 87, 90,

113, 123, 163, 275, 282, 287, 288, 293, 296, 297, 299, 300, 339, 340, 346,
348, 350, 351, 365, 368

low-NOx , 13, 23, 88, 165, 356

M
Master Chemical Mechanism (MCM), 8, 26, 27, 30, 44, 47, 50, 56, 60, 69, 75, 76,

87, 89, 102, 106, 147, 430, 481, 483, 485, 486, 495, 496, 498, 512, 513
Methacrolein (MACR), 71, 84, 85, 87, 88, 90, 91, 93, 94, 99, 105, 107, 112,

115–120, 134, 135, 137, 138, 140–142, 146, 147, 328, 341, 350, 352, 355,
356, 361, 362, 367, 410, 413–415, 417–419, 430, 470, 472–474, 477, 479,
481–485, 487–494, 496–498, 500, 502, 503, 511, 513



563

Methacrylic acid epoxide (MAE), 141, 142, 286, 293, 299, 338, 342, 343, 346,
347, 349, 350, 353, 358, 366

Methacryloyl peroxynitrate (MPAN), 118, 120, 140–142, 148, 275, 293, 335–341,
343–356, 358, 359, 362, 363, 365, 368

Methane, 1, 2, 273, 481
Methylglyoxal (MGLY), 12, 28, 30, 45, 47, 50, 59, 94, 95, 114, 115, 117, 119, 129,

130, 176, 303, 311, 313, 317, 318, 325, 331, 333
Methylvinylketone (MVK), 41, 47, 71, 84, 85, 87, 88, 90, 91, 93, 94, 99, 105, 107,

112–116, 119, 133, 135, 137, 138, 140, 146, 147, 275, 276, 281, 297–299,
302–304, 306–318, 322, 324, 326–330, 332, 406, 410, 413–415, 417–420,
423, 430, 470, 472–474, 476–485, 487–494, 496–500, 502, 503, 511, 513

N
Nitrate radical (NO3), 1, 66, 68, 101–104, 106, 113–117, 121, 125, 131, 132, 134,

136, 139–141, 149, 159, 273, 274, 276–279, 281, 284, 286, 289, 292, 298,
335, 338, 340, 341, 343, 346, 348, 349, 351, 361, 362, 365

NO, 1, 12, 17, 18, 20, 27, 29, 40, 44, 47, 49–51, 59, 66, 69, 75, 77, 79–81, 84, 85,
106, 111, 113–117, 119–121, 124, 125, 128, 131, 133–138, 140, 144, 146,
148, 149, 154, 155, 158, 273, 274, 279–281, 288–290, 292, 296, 297,
302–304, 308, 309, 311–314, 325, 331, 336, 339, 340, 346, 351, 362, 368,
370–374, 377–380, 382, 383, 385, 387–389, 410, 411, 470–473, 475,
480–482, 486–488, 494–500, 504, 512, 513

NO2, 1, 2, 51, 59, 66, 102, 103, 105, 106, 120, 130, 133, 134, 136, 140–142, 144,
273, 274, 281, 286, 287, 290, 292, 293, 295, 296, 303, 309, 336–338, 340,
343, 344, 346, 349, 356, 359, 361–363, 372, 406, 410, 487, 488

NOx , 1–3, 10, 13, 18, 23, 40, 51, 65–67, 69, 80, 88, 92, 112, 113, 131, 159, 165,
273, 274, 278, 281, 288, 295, 297, 300, 303, 336, 337, 339, 344, 346, 349,
351, 356, 475, 486, 487, 499, 500

NOy, 475, 481, 488–492, 498, 499, 502
Non-sea-salt (NSS) aerosol, 516, 524, 526, 528, 529, 533
Nuclear magnetic resonance (NMR), 14–17, 31–33, 37, 38, 165, 167, 294, 345,

364
Nucleation in California Experiment (NiCE), 8, 516, 517

O
OH radical, 1, 3, 4, 9, 10, 12–14, 17, 19–24, 27–30, 34–38, 40, 41, 43–51, 56, 59,

62, 66, 68, 71–80, 82, 85, 88, 89, 93, 96, 99, 101, 103, 105–107, 109, 111,



564

113–128, 131–149, 151–158, 180, 194–197, 273, 275–277, 279, 281,
284–292, 295, 296, 299, 302–304, 308, 309, 315–318, 320–322, 327–329,
335, 337, 339–341, 343–345, 348, 349, 351, 352, 356, 358, 361, 362, 367,
369–380, 382–393, 395–400, 402–407, 409–411, 413, 414, 419, 420,
423–426, 428–430, 434, 461, 472, 473, 482–484, 486, 489, 490, 493–495,
498, 502, 512

Oxidized volatile organic compounds (OVOCs), 9, 10, 66, 274, 275, 278, 279, 283,
284, 290, 294–300

Ozone (O3), 1–5, 10, 18, 40, 41, 62, 66, 68, 69, 96–98, 103, 113–117, 120, 121,
125, 132, 139–141, 195, 197, 273–276, 278, 281, 286, 291, 295, 296, 302,
303, 315, 316, 336, 341, 361, 370, 405, 406, 409, 410, 413, 415, 417, 418,
423–425, 429, 430, 449, 453, 461, 472, 485, 487–490, 500, 502

P
Particle-into-liquid sampler (PILS), 451, 453–465, 467–469
Passive cavity aerosol spectrometer probe (PCASP), 517, 521, 523, 533
Peroxy radical (RO2), 1–4, 10, 13, 17, 28, 29, 47, 48, 50, 51, 69–80, 82, 84–96,

100, 103–107, 109–111, 113–117, 119–122, 124, 125, 130, 131, 133–138,
140, 142, 144, 146, 148, 149, 151, 154–156, 158, 274, 275, 277–279, 281,
285, 288–290, 292, 295, 296, 299, 300, 302–304, 308–311, 313–320, 323,
325, 326, 329, 331, 332, 349, 352, 362, 368–370, 374, 377–380, 382, 383,
385, 386, 388, 400, 403, 406, 410, 411, 420, 424, 425, 430, 434, 470–472,
480–482, 486, 488, 494–496, 512

Peroxyacetyl nitrate (PAN), 344, 346, 363, 485
Proton transfer reaction (PTR) mass spectrometry, 81, 86, 103, 294, 297, 343, 417,

472–477, 479, 480, 488, 493, 506

S
Scanning mobility particle sizer (SMPS), 6, 169, 179, 191, 339, 342, 349, 454, 462
Secondary organic aerosol (SOA), 2–4, 7, 9, 10, 13, 23, 30, 35, 36, 56, 67, 96, 125,

176, 194, 195, 197, 273, 275, 276, 278, 279, 287, 293, 299, 335–339, 341,
343–347, 349–362, 367, 369–371, 451–454, 456, 459–462, 465, 469

Southern Oxidant and Aerosol Study (SOAS), 7, 42, 53–56, 63, 64, 278, 288–291,
293, 294, 300, 427–429, 449, 450

Stabilized Criegee Intermediate (SCI), 99, 100, 274, 276, 291, 406, 408, 413, 418,
419, 423, 425–427, 429–431, 436



565

Sulfate, 11, 35, 36, 278, 282, 286, 293, 335, 339, 341, 342, 345, 346, 349, 353,
354, 356–360, 406, 430, 451, 452, 454, 465–469, 514, 516, 517, 519,
523–526, 529, 533

T
tables, 19, 22, 26, 39, 40, 44, 45, 54, 55, 58–60, 76, 78, 80, 81, 85, 88, 90–92, 97,

102, 103, 105, 114, 115, 117, 118, 122, 123, 127, 129, 132, 141, 174, 196,
281, 286, 287, 304, 308, 311, 320, 322, 330–334, 341, 372, 373, 375, 376,
378, 384, 386, 393, 396, 398, 403, 414, 433, 455, 484, 496, 498, 499, 521,
524, 528, 535, 546, 557

Time-of-flight (ToF), 18, 20, 21, 40, 41, 168, 170, 172, 178–183, 191, 193, 281,
283, 292, 293, 295, 305, 371, 373, 389, 453, 474–477, 479, 480, 488, 506,
516, 520, 523–526

Troposphere, 1–4, 12, 13, 35–37, 52, 53, 56, 66, 84, 87, 108, 197, 277, 279, 288,
289, 292, 336, 358, 410, 429, 471, 483, 485, 520, 523, 527, 533

U
Ultra performance liquid chromatography (UPLC), 170, 180, 451, 453–455, 458,

462–465, 467–469

V
Volatile organic compounds (VOCs), 1–3, 9, 30, 56, 57, 65–67, 197, 276, 281, 283,

349, 449, 469

W
Wall loss, 19, 20, 134, 168–170, 188, 282, 283, 306, 317, 341, 349, 350, 366, 373,

412, 416, 421, 441, 467



566

ABOUT THE AUTHOR

Kelvin Hamilton Bates was born on January 9, 1990, in Seattle, Washington, to Tim
Bates, an oceanographer, and Susan Hamilton, a biochemist. His parents’ scientific
backgrounds did not lead them to name their son after a unit of temperature – Kelvin
was, instead, named after his grandfather – but did inspire them to invest heavily in
his education. Kelvin’s early schooling emphasized immersive cultural experiences,
including travels to Japan, Vietnam, and the Dominican Republic, and instilled in
him a profound love of learning. That passion helped him to thrive at Lakeside High
School, where he first discovered his interests in organic chemistry and theater. In
his eighteen years of childhood in the Pacific Northwest, Kelvin also gained an
abiding appreciation for the splendor of the natural world.

In 2008 Kelvin matriculated at Davidson College, where he enjoyed the diversity
of a liberal arts education and struggled to pick a major. He eventually settled on
economics and chemistry, but not before taking a semester to study international
politics in Geneva, Switzerland. While attending college, Kelvin spent two summers
conducting biochemical research at pharmaceutical companies before being awarded
a NOAA Hollings Scholarship, which led him to a summer research project with Dr.
Chuck Brock at NOAA’s facility in Boulder, CO, programming and calibrating an
SMPS. Hooked on atmospheric research, he spent the following summer as an intern
with NASA’s Student Airborne Research Program, where he got his first taste of
fieldwork under Prof. Don Blake at UC Irvine, investigating hydrocarbon emissions
from California oil and gas infrastructure.

After graduating Summa cum Laude from Davidson, Kelvin came to Caltech on a
Sharp Fellowship (and later an NSF Graduate Fellowship). As a graduate student in
chemistry, Kelvin worked in a uniquely interdisciplinary collaboration between the
labs of Profs. Brian Stoltz, Paul Wennberg, and John Seinfeld. While his main focus
was to synthesize isoprene oxidation products and study their atmospheric fate in
environmental chamber experiments, he also participated in a number of fieldwork
and modeling projects. Kelvin will continue his studies in atmospheric chemistry
at Harvard as a Harvard University Center for the Environment and NOAA Climate
and Global Change postdoctoral fellow, in another collaboration between Profs.
Daniel Jacob and Frank Keutsch.


