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ABSTRACT

This thesis is devoted to the problem of information collection from theoretical and
experimental perspectives.

In Chapter 2, I characterize the unique optimal learning strategy when there are
two information sources, three possible states of the world, and learning is modeled
as a search process. The optimal strategy consists of two phases. During the first
phase, only beliefs about the state and the quality of information sources matter for
the optimal choice between these sources. During the second phase, this choice
also depends on how much the agent values different types of information. The
information sources are substitutes when each individual source is likely to reveal
the state eventually, and they are complements otherwise.

In Chapter 3, co-authored with Li Song, we conducted an experiment which demon-
strates that even in a simple four person circle network people appear to fail to
account for possible repetition of information they receive. Moreover, we show that
this phenomenon can be partially attributed to rational considerations, which take
into account other people’s deviations from optimal behavior.

In Chapter 4, co-authoredwithMarceloA. Fernández, wemodel overconfidence as if
a decision maker perceives information as being more precise than it actually is. We
show that the effect of overconfidence on the quality of the final decision is shaped
by three forces, overestimating the precision of future information, overestimating
the precision of past information and overestimating the amount of information to
be collected in the future. The first force pushes an overconfident decision maker
to collect more information, while the second and the third forces work in the other
direction.
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C h a p t e r 1

INTRODUCTION

In this thesis, I address several questions related to dynamics and results of the
learning process. Chapter 2 gives an abstract framework for studying dynamically
optimal information collection from multiple information sources. Chapter 3 ex-
plores learning in a network setting using experimental economics tools. Chapter 4
provides a theoretical background for overconfidence in learning.

In Chapter 2, I consider the situation in which a decision maker has two sources of
information that she can choose to use. She is free to change the source as often
as she wants as she collects information about a payoff relevant state. Each source
is modeled as a search process for the proof that a certain state is realized. There
are three possible state realizations, with two that are possible to verify through
information sources. In the optimum, the decision maker starts with searching for
the most likely out of the two verifiable states (adjusted to how easy and how costly
it is to search for a given state), switching attention as she becomes more pessimistic
about the state. Then at some point she changes her learning behavior to focusing
on only one source until she either finds the true state or gives up the attempt to
learn completely.

Theoretical paper DeMarzo, Vayanos, and Zwiebel (2003) proposes a model of
information aggregation in networks when individuals are subject to persuasion
bias. The term “persuasion bias” refers to a particular form of boundedly rational
behavior when individuals connected into a network do not account for repetition
in the information they acquire. In Chapter 3, co-authored with Li Song, we argue
that under the assumption that agents form their beliefs as a weighted average of
all information available to them, the persuasion bias assumption is equivalent to a
generalized version of the famous DeGroot model (DeGroot (1974)). We test the
persuasion bias hypothesis against the (generalized) Bayesian updating model and
find support for the persuasion bias hypothesis. We also found a positive correla-
tion between how well a subject fits the generalized DeGroot model, compared to
the alternative generalized Bayesian updating model, and their performance in the
experiment. Data suggest that the generalized DeGroot model better accommodates
other subjects’ deviations from equilibrium, which explains the positive correlation.
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In Chapter 4, co-authored with Marcelo A. Fernández, we present a dynamic model
that illustrates three forces that shape the effect of overconfidence (overprecision
of consumed information) on the amount of collected information. The first force
comes from overestimating the precision of the next consumed piece of information.
The second force is related to overestimating the precision of already collected
information. The third force reflects the discrepancy between howmuch information
the decision maker expects to collect and how much information he actually collects
in expectation, given the objective properties of information flow. The first force
pushes an overconfident decision maker to collect more information, while the
second and the third forces work in the other direction. We show that in the absence
of the third force there is an optimal level of overconfidence that balances the first
and the second forces to maximize the amount of collected information. When all
three forces are active, overconfidence always has a negative effect on information
investment.
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C h a p t e r 2

DYNAMIC CHOICE OF INFORMATION SOURCES

2.1 Introduction
There are many situations where an individual has the opportunity to use different
sources to gather costly information before choosing among a set of alternatives.
When the individual can change information sources as often as he wants, finding
his optimal behavior is difficult both as a theoretical and a computational exercise. I
propose a tractable way tomodel this problem and derive its solution.1 I characterize
a unique optimal information collection strategy when there are two information
sources and three possible states of the world. The optimal strategy consists of two
phases. During the first phase, the optimal choice of an information source depends
only on the precision and cost of information and the agent’s current beliefs about
the state of the world. In this phase, the best source is the one that reveals the state
most quickly, which may guide the agent to alternate between sources. During the
second phase, the best choice also depends on the payoff the agent receives from
choosing among the set of alternatives after the learning process. However, during
this phase, the agent never alternates between sources.

This characterization of the optimal strategy can be used to deliver new insights into
the market of information providers by determining when the information sources
are substitutes andwhen they are complements. I show that sources act as substitutes
when ex ante it is very likely that, given all potential information from one source, the
other source cannot contribute anything new, and they are complements otherwise.

In my model, the agent must choose one of three alternatives. The payoff the agent
receives from each alternative depends on the true state of the world. There are three
possible states. Before making a choice, the agent can collect information about
the true state from two sources. The information collection process is modeled in

1Che and Mierendorff (2016) independently develop a very similar approach with two main
differences. First, I allow three possible states of the world, while Che and Mierendorff work with
a two state version. Consequently, they do not study when the information sources are substitutes
and when they are complements (for two states, I find that the sources are either independent or
substitutes). Second, Che and Mierendorff propose a generalization to their benchmark with two
sources by relaxing the assumption that a positive signal from a source fully reveals the state. In
particular, Che and Mierendorff allow for a continuum of news sources, varying by the degree they
reveal the state by a positive signal. I compare my paper with Che and Mierendorff in detail in
Section 2.2.1.
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continuous time to allow the agent maximal freedom in allocating his attention. At
every instant, the agent can either stop information collection by choosing an alter-
native that maximizes his current expected utility or wait and get more information.
If he wants more information, he must choose how to allocate a unit of his attention
between two sources (source 1 and source 2). If a source receives a positive amount
of attention, the agent observes a signal from this source and he has to pay a cost
proportional to the amount of attention he pays to this source.2,3 If the world is in
state i (i = 1, 2), then source i sends a positive signal with probability proportional
to the source intensity and attention paid to this source; otherwise the signal is 0. If
the world is not in state i, then source i sends signal 0 all the time.

My main result describes the unique optimal information collection strategy.4 Once
the agent observes a positive signal, the true state is revealed and therefore the agent
stops the information collection process. Conditional on receiving only 0 signals, the
agent chooses what source to use and when to stop seeking additional information
according to a rule defined by two thresholds. Until the agent’s beliefs about the state
reach the first threshold, he chooses the source that is informatively optimal (I call
it the informatively optimal phase of the information collection process). Between
the two thresholds, he chooses the payoff optimal source (the payoff optimal phase).
Once his beliefs reach the second threshold, he stops collecting information.

During the informatively optimal phase, the agent compares the quality of both
sources and chooses the one with the highest quality as measured by the ratio of the
probability of receiving a positive signal from this source to the cost of observing this
signal. Since new information changes the agent’s beliefs about the true state, it also
changes the probability of receiving a positive signal from each source. Thus, the
quality of the sources changes as the agent gets more signals. The more 0 signals the
agent gets from a given source, the lower the probability of receiving a positive signal
from this source and the higher the probability of receiving a positive signal from
the other source. Therefore, observing a signal of 0 lowers the quality of this source

2I assume the cost only depends on the type of source, so that it is independent of the true state
and the agent’s payoff from different alternatives. For example, it can be money a researcher pays to
subjects of experiments or it can be a constant fee to an expert.

3Moscarini and Smith (2001) introduce a discounting and time-dependent information cost for
the optimal experimentation model with one information source. My model serves as a benchmark
for such modifications when there are two information sources.

4Strictly speaking, the optimal strategy is unique in the following sense. The strategy is Marko-
vian, that is, what to do (optimal action) depends on the past only through current beliefs. For almost
all parameter values (except the set of measure zero) and almost all feasible current beliefs (except
the set of measure zero), the optimal action is unique.
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and raises the quality of the other source. At the beginning of the informatively
optimal phase, the agent starts with the source that has the highest quality. As phase
one progresses, the quality of that source decreases while the quality of the other
source increases. Given enough 0 signals, the qualities equalize, at which point the
agent starts using both sources simultaneously by splitting his attention between two
sources. Moreover, by paying more attention to the source with low intensity, the
agent guarantees that the qualities stay equal after new information is received.

At the payoff optimal phase, the agent uses a constant attention allocation plan that
places full attention to either source 1 or source 2. At the beginning of this phase,
the agent chooses the source that gives him the highest expected payoff and then he
stays with this source until the end of the information collection process. The payoff
optimal phase illustrates an “elimination search” behavior. The optimal information
source during this phase is sometimes that with the lowest probability of producing
a positive signal. Put simply, it is sometimes optimal to search in a place where you
do not think you are going to find something in order to eliminate this place.

Both thresholds that define the optimal strategy occur where the marginal cost of
information equals its marginal benefit. Consider the second threshold that indicates
where the payoff optimal phase ends and suppose that source 1 is used during this
phase. Here, the marginal cost of information is the cost of a signal from source
1 and the marginal benefit is the expected change in the payoff from the chosen
alternative. This change in payoff is positive only if the received signal is positive;
otherwise, this change would be zero. Thus, the marginal benefit is the probability
of receiving a positive signal from source 1 multiplied by the difference between
the payoffs in state 1 from the alternatives the agent would choose after receiving a
positive signal from source 1 and after receiving signal 0 from that source. I call
this benefit a direct benefit since it is directly related to the final payoff.

Consider the threshold that separates the informatively optimal phase and the payoff
optimal phase. Again, suppose that the source used during the payoff optimal phase
is source 1. When the agent moves from one phase to another, he changes the
attention allocation plan. Thus, he must use source 2 just before entering the payoff
optimal phase. The marginal cost of information is the cost of a signal from source
2. The marginal benefit consists of two parts, a direct and an indirect benefit. The
direct benefit is the probability of receiving a positive signal from source 2multiplied
by the difference in payoffs in state 2 from the alternatives the agent would choose
after receiving a positive signal from source 2 and after receiving signal 0 from
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that source. This part accounts for the benefit from a positive signal. The indirect
benefit comes from signal 0 and it reflects the increase in the direct benefit from all
future signals the agent is going to receive from source 1 during the payoff optimal
phase. Indeed, signal 0 from source 2 makes the agent more optimistic about state
1, therefore increasing the likelihood of getting a positive signal from source 1.

I use the characterization of the optimal learning strategy to find when the infor-
mation sources complement each other and when they substitute for each other. I
call two sources complements if raising the cost of a signal from one source leads
to a lower expected attention allocated to the other source during the information
collection process. I call two sources substitutes if raising the cost of a signal from
one source leads to a higher expected attention allocated to the other source. I show
that information sources act as substitutes when the probability of the third state
is small, and they are complements otherwise. Intuitively, when the third state is
unlikely, two sources provide essentially the same information since both sources
separate states 1 and 2. In that case, they are substitutes. However, when there is a
high likelihood that the true state is 3, the agent can only discover it when using both
sources. In that case, they are complements. Taking a step back from the model, I
interpret this result as follows: two ways of obtaining information substitute for each
other if all information that one source can provide would most likely be enough to
make a good choice of the alternative; if, having all information from one source,
the agent most likely still wants to use the other source, the information sources
complement each other.

The model provides a general framework for analyzing a number of economically
important situations. Consider the three examples below:

1. The information sources are different directions for R&D (different directions
of research, different experimental designs, or different empirical strategies).
The states represent mutually exclusive hypotheses (so that each research strat-
egy tests a different hypothesis) and the alternatives are different technological
designs whose value depends on which of the hypotheses is correct.

2. The states are different causes of an accident (like whether a plane crash
was caused by terrorists, mechanical failure, or pilot error). The information
sources are different experts (engineers and forensic scientists) and the alter-
natives are different measures to prevent or mitigate the damage from similar
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accidents in the future (tighten security measures or ground the whole fleet).5

3. The states are different causes of a disease (like infection, cancer, or some-
thing else) a doctor has in mind while choosing a treatment (chemotherapy,
antibiotic drugs, or no treatment) for his patient. The information sources
are different specialists (an oncologist or an infectious disease specialist) to
whom the doctor can send the patient to get tests.6

2.2 Literature Review
My model relates to the sequential optimal experimental design problem, search
problems, drift-diffusion models, rational inattention theory and multi-armed bandit
literature.

Starting fromWald (1947) and Blackwell (1953), the sequential optimal experimen-
tal design problem (Chaloner and Verdinelli (1995); Wang, Filiba, and Camerer
(2010)) is usually formulated as to construct the dynamically optimal sequence of
experiments to determine which out of a number of hypotheses is true. Experiments
serve as information sourceswhile hypotheses are possible states of theworld. When
the number of experiments is more than one, no analytical solution that I know of has
been found to this problem so far. There have only been attempts to provide numer-
ical algorithms to construct nearly optimal strategies (Chernoff (1959); Naghshvar
and Javidi (2013)). A very recent paper, Liang, Mu, and Syrgkanis (2017), is the
only exception. They consider learning from a finite set of Guassian signals. Besides
making different distribution assumptions, I do not limit the number of signals.

The search problem (Staroverov (1963); Black (1965); Ahlswede and Wegener
(1987); Stone (1976)) is to find an object hidden in one of multiple locations as
quickly as possible. The search in a given location acts as learning from a given
source, while the actual location of the object is the true state of the world. In

5In many cases, the agency that leads the investigation and takes responsibility for the final
decision (NTSB in U.S.) hires experts from outside to help. For example, for the crash of EgyptAir
on 19 May 2016 in the Mediterranean, Egypt’s Aircraft Accident Investigation Committee hired the
Forensic Medicine Authority to check for a possible explosion on board. Their experts are paid based
on the length of the study period (Kharoshah, Zaki, Galeb, Moulana, and Elsebaay (2011), p.11).

6In my model, I assume that the sources are homogeneous in terms of costs and precision.
Forcing all tests to be the same in terms of cost and precision might be too heroic if one takes the
example literally. However, the same cost and precision assumption is justified from the doctor’s
perspective. He is not the one who chooses a particular test within the group; he only identifies
the need for additional testing and the direction of inspection (which cause of a disease to test for).
So, for him these tests are ex ante the same. Moreover, the cost of the tests is not the cost of the
tests themselves but the constant fee the doctor pays either to the oncologist or the infectious disease
specialist.
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the search model, the agent minimizes the cost of learning subject to revealing the
state with certainty (it is assumed that the agent can search in every location). In
contrast, in my model, the agent maximizes the total expected payoff. Therefore, it
is sometimes optimal to stop learning before the state is revealed.7,8

A classical drift-diffusion model (Fehr and Rangel (2011); Ratcliff, Smith, Brown,
and McKoon (2016); Forstmann, Ratcliff, and Wagenmakers (2016)) formalizes a
learning process with several information sources, which, in contrast to my model,
describe benefits and disadvantages of choosing a particular alternative directly. For
example, I assume that the researcher tests different hypotheses, while the drift-
diffusion model implies that he compares different designs directly (see the R&D
example in the introduction).9 Moreover, drift-diffusion models assume gradual
learning modeled with Brownian motion. For example, Ke, Shen, and Villas-Boas
(2016) model information sources as Brownian motions that gradually reveal the
cardinal value of utility from purchasing the correspondent product.10 Finally,
many drift-diffusion models take an information acquisition strategy as an exoge-
nously given process, that is, the agent’s strategy is not derived from some utility
maximization problem (for example, Krajbich and Rangel (2011)).

Nikandrova and Pancs (2017) consider a similar learning environment as Ke, Shen,
and Villas-Boas (2016). However, they take an approach closer to my model by
assuming a Poisson type learning instead of using Brownian motion.

Another stream of literature related to this paper is on rational inattention theory,
proposed by Christopher Sims and surveyed in Sims (2010). In contrast to all other
topics I discuss here, rational inattention theory typically uses static models. On

7Even if I introduce the third information source that differentiates the third state to match
the assumption that the agent can search in every location, the statement that the optimal behavior
sometimes leaves the state unrevealed remains true.

8The modified definition of the optimal strategy makes the search problems more tractable than
the sequential optimal experimental design problems. I leverage this idea by splitting the solution of
my model into two steps. In the first step, I make the problem easier by fixing the default alternative
that the agent chooses if he stops learning before the state is revealed. One can think of this as an
analog of fixing the goal of finding the state no matter what, as it is done in the search model. In the
second step, the optimal strategy is found by simply comparing three strategies, each corresponding
to one of three possible alternatives.

9There are papers, like Fisher and Rangel (2014), where information sources signal about
attributes of alternatives. However, the notion of attributes is intimately connected with alternatives.
By introducing the notion of a state, I leave the connection between the state and each alternative
free of any assumptions.

10In a similar vein, Fudenberg, Strack, and Strzalecki (2015) propose an uncertainty-difference
drift-diffusionmodelwith the agent observing one streamof signals (one information source)modeled
as Brownian motion with the drift proportional to the unknown difference in payoffs.
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the other hand, it works with general information structures, not limited to Poisson
process or Brownian motion, allowing the decision maker to choose among all of
them. As an exception, a recent paper Zhong (2017) works in a dynamic setup. He
shows that a Poisson process that seeks most likely state is the optimal information
structure. Though working with Poisson processes, I do not have that flexibility
in information structure in my model, which sometimes leads to a qualitatively
different optimal strategy.

A classical multi-armed bandit problem (Robbins (1952); El Karoui and Karatzas
(1997)) assumes that each source not only provides information but also a payoff.
For example, instead of testing mutually exclusive hypotheses to decide on a tech-
nological design at the end, the researcher chooses which design (or project) to
develop at every moment of time (see the R&D example in the introduction).11 By
developing a project, the agent gets a stream of random payoffs. He has some prior
belief about the distribution of these payoffs at the beginning. He updates his belief
after observing the realization of the payoffs. Thus, each source (project) gives him
both the payoff and information about the payoff distribution. Moreover, as in the
drift-diffusion model, each source provides information on an alternative (a design)
directly, not through the state of the world.12,13

In this paper, I show that information sources are substitutes when the probability
of the third state is small and they are complements otherwise. This result opens the
transition from a one agent model to a multiple agents model, where information
providers can choose the price of information to maximize their profits.

In contrast tomy findings, Gul and Pesendorfer (2012) show that information sources
11This is the model of strategic experimentation in R&D (Bolton and Harris (1999); Keller, Rady,

and Cripps (2005); Keller and Rady (2010); Strulovici (2010); Keller and Rady (2015)).
12In some cases, one can reformulate a learning model as the bandit problem but with correlated

payoffs among alternatives (similar to p.70 in Gittins, Glazebrook, andWeber (2011)). Assuming the
payoff distributions are independent across different alternatives, the bandit problem can be solved
using the Gittins index (Jones and Gittins (1972)). This technique is generally not applicable for
correlated payoffs, as demonstrated in Francetich and Kreps (2014). Klein and Rady (2011) and
Francetich (2016a) depart from the standard multi-armed bandit by assuming a negative correlation
between the payoffs from two projects. Both papers derive the optimal strategy from “first principles,”
that is, without using the Gittins index.

13Another example of a bandit problem is related to the clinical trials application and can be
considered as a modification of the medical example from the introduction. Suppose that instead
of attempting to diagnose one patient through a series of tests, the doctor is working on finding a
cure to one particular disease. He has several treatments available and an infinite pool of patients.
Treating the patients sequentially, he has to choose one of the treatments each time. The question is
to find the optimal sequence of treatments, or clinical trials (Rosenberger and Lachin (2015)). In the
clinical trials problem, there is no uncertainty about the disease but there is a systematic uncertainty
about the effect each treatment has with respect to the disease.
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serve as complements when the probability of the third state is zero. Two assump-
tions explain the difference. First, Gul and Pesendorfer (2012) assume the agent
has a more passive role. Specifically, he cannot choose the information source and
he cannot choose when to stop gathering information. Second, the information cost
is paid by information providers who have preferences over the agent’s final choice
of alternative. Therefore, this is a game of persuasion. Thus, Gul and Pesendorfer
(2012) place the whole burden of strategic behavior on information providers. In
that case, lowering the cost for one provider incentivizes this provider to feed more
information to the agent, while the other provider gives less information (informa-
tion providers are strategic substitutes). Therefore, the information flow becomes
less balanced, which means it becomes less desirable for the agent. Thus, in equilib-
rium, from the information consumer perspective, lowering the cost for one provider
increases the marginal benefit of new information from the other provider. Hence,
information sources serve as complements. Gul and Pesendorfer (2012) is more
appropriate in political contests while my model describes a researcher’s activity.

Chen andWaggoner (2016) take a different approach in defining substitutability and
complementarity of information sources. They work with one information source
(one homogeneous stream of signals) and study the dynamics of the marginal value
of a new signal. In particular, they define substitutability of signals as diminishing
marginal value of information and complementarity as increasing marginal value.

There are many papers that study the question of whether different ways of obtaining
information complement each other or not from an empirical perspective. Taking
the idea from Allen (1991) of treating R&D projects as “information acquisition
activities,” my model answers the question of when R&D projects behave as sub-
stitutes and when they are complements. For example, there is mixed evidence
as to whether public subsidies crowd out private R&D investments (David, Hall,
and Toole (2000); Lach (2002); Almus and Czarnitzki (2003); González and Pazó
(2008); Aerts and Schmidt (2008)). The result from my model suggests that one
needs to take into account the type of R&D project. If each separate project po-
tentially can provide enough information, then the projects are substitutes. When
projects are substitutes, investing in one decreases themarginal return from investing
in another, which stimulates a crowding out effect.

De Waal, Schönbach, and Lauf (2005) found evidence supporting the substitute
nature of online and printed newspapers. Nguyen and Western (2006) concluded
that traditional media complement the Internet. My contribution to this discussion
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is that one needs to take into account the content of media sources. For example, if
a newspaper tells a story from a local perspective while the Internet covers a global
aspect of the event, then these media outlets may be complements because even
reading the whole newspaper from cover to cover does not provide the whole picture
of what happened.

2.2.1 Comparison with Che and Mierendorff “Optimal Sequential Decision
with Limited Attention” (2016)

In this section, I discuss the connection between my paper and Che and Mierendorff
(2016). Both papers were written independently.

Che and Mierendorff’s benchmark model is almost the same as the model in Section
2.4.1. Themain difference is that Che andMierendorffmodel the cost of information
acquisition through a discount factor instead of a per unit of time cost. The optimal
strategy is almost the same in both models. The only qualitative difference is
in the interpretation of source quality for the informatively optimal phase. In
Che and Mierendorff, source quality incorporates the agent’s possible payoffs from
alternatives. In other words, a different cost structure leads to different properties
of a point where the agent uses both sources simultaneously.

Che andMierendorff take a different approach in generalizing the benchmarkmodel.
They relax the assumption that a positive signal from a source fully reveals the state
by allowing a continuum of information sources. The sources vary by the degree
they reveal the state by a positive signal, while the rate of a positive signal arrival is
independent of the true state.

By extending the model to three states (Section 2.5), I achieve two goals. First, the
optimal strategy has qualitatively different characteristics in the general model. The
presence of the third state guarantees that there is always a non-zero probability that
the expected utility maximizing agent stops learning before he observes a positive
signal. Indeed, if the world is in state 3, both sources produce only zero signals.
Consider a strategy where the agent always chooses the source with the highest
quality until the state is revealed. This strategy is sometimes optimal when the
probability of the third state is zero (the benchmark model). However, it cannot be
optimal when the probability of the third state is positive. Second, the generalization
to the three state model allows me to make a connection between substitutability /
complementarity of information sources and the probability of the third state. In
particular, the sources can be complements only if the probability of the third state
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is positive. In other words, the sources are either substitutes or independent in the
benchmark model.

2.3 Setup
The problem at hand involves an agent who must choose among three alternatives,
a ∈ A ≡ {a1, a2, a3}.14 His payoff from these alternatives is uncertain; that is, it
depends on what the true state of the world is. There are only three possible states of
the world: 1, 2, and 3. Denote by u j[a] the payoff he gets if he chooses alternative
a and the true state is j. For j = 1, 2, I assume that alternative a j is the best choice
when the true state is j (I do not require a3 to be the best choice if the true state is
3):15

u j[a j] = max
i∈{1,2,3}

u j[ai], j = 1, 2. (2.1)

The agent has some prior beliefs about the true state.16 Denote by p1 his belief
that the state is 1 and by p2 his belief that the state is 2 (so that state 3 occurs with
probability 1 − p1 − p2).

Before making a choice, the agent can collect information. Time t ∈ [0,∞) is
continuous. At each instant of time [t, t + dt], the agent chooses either to stop the
information collection process by choosing an alternative or to wait and get more
information.

Suppose there are two information sources available to the agent.17 If he chooses to
wait, then he has to decide how to divide his one unit of perfectly divisible attention

14The generalization to more than three alternatives is straightforward, as long as the number of
alternatives is finite. Indeed, the statement “The optimal strategy is the best of the optimal a-type
strategies, where a ∈ A” remains true for any number of alternatives in the set A.

15This assumption does not restrict the generality of the model. Indeed, if the same alternative is
optimal for states 1 and 2, then I duplicate this alternative and solve the model with four alternatives
in A.

16I assume the agent’s prior beliefs are correct. Fudenberg, Romanyuk, and Strack (2016) study
optimal experimentation with misspecified beliefs. Studying the implications of misspecified beliefs
in my model is a subject of future research.

17Assuming two sources is a good starting point, given the complexity of the problem. For
example, for the multi-armed bandit setting with negatively correlated payoffs, Francetich (2016b)
demonstrates how difficult the problem can be once more than two sources are introduced. Moreover,
even with two sources, the model covers many situations. Indeed, it is not unusual to have only two
possible explanations, two hypotheses in mind, two candidates for the solution. However, I cannot
assume that two states are exhaustive. For example, there is always a chance that a patient has an
unknown or very rare disease, or an accident happened because of a very unlikely chain of events
that is almost impossible to investigate. To account for the chance that the state might never be
revealed, I assume that there are three states with the third containing “everything else” that cannot
be discovered by the information sources. This third state can be interpreted as “none of the above,”
or in other words, in the spirit of being aware of one’s unawareness, as in Karni and Vierø (2017).
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between two sources. Denote by Tt,i the total amount of attention the agent paid to
source i by time t. This definition implies that if the agent has not stopped collecting
information by time t, the total attention he paid to both sources is Tt,1 + Tt,2 = t.
This definition also implies that dTt,i

dt is the fraction of attention the agent allocates
to source i and dTt,1

dt +
dTt,2

dt = 1.

Using information sources is costly. If the agent chooses to wait and allocates dTt,i
dt

fraction of his attention to source i, he has to pay c1dTt,1 + c2dTt,2. Thus, if the
information collection is still in progress by time t, the total cost the agent paid is
c1Tt,1 + c2Tt,2.18

If the agent chooses to wait and allocates dTt,i
dt fraction of his attention to source i, he

observes a realization of an increment of a stochastic process dXt = (dX (1)Tt,1
, dX (2)Tt,2

),
where X (k) is a Poisson process with intensity λk if the state is k and X (k) ≡ 0 if
the state is not k (X (1) and X (2) are independent conditional on the state). In other
words, the agent observes a pair of signals, which can take one of three possible
values: (0,0), (1,0), (0,1). If the true state is 3, he always observes (0,0). If the true
state is 1, he receives (1,0) with probability λ1dTt,1 and (0,0) otherwise. If the agent
observes (1,0), I say that source 1 reveals the state. Similarly for state 2.

Let Ft be the information available to the agent by time t.

A strategy of the agent is a triple (aF,T, τ), where T = {Tt = (Tt,1,Tt,2)}
+∞
t=0 ,

dTt : Ft → {(dTt,1, dTt,2) : dTt,k ≥ 0, dTt,1 + dTt,2 = dt}, is the attention alloca-
tion plan, τ ≥ 0 is the stopping time, and aF : Fτ → A is the alternative chosen at
the end.

The optimal strategy is the strategy that maximizes the expected payoff.19 Formally,
the agent faces the following optimization problem:

sup
(aF,T,τ)

IE
[
u j[aF] − c1Tτ,1 − c2Tτ,2 | p1, p2

]
(2.2)

where j is the true state.
18There are different ways to make the collection of information costly. For example, one can

assume discounting so that the decision maker would be impatient to make the final decision sooner.
In this paper, I chose another, more direct way to impose information cost: the cost is a linear
function of time. This method is consistent with optimal experimental design literature, where
different information sources are different experiments.

19Without risk of confusion, I will sometimes mean by (aF,T, τ) a collection of strategies for all
possible initial beliefs.
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2.4 Benchmark Models
In this section, I present the solution to two special cases of my model. The solution
to the general model is based on ideas from these special cases.

In Section 2.4.1, I consider the case when the probability of the third state is 0.
This benchmark demonstrates how phase one (informatively optimal) and phase
two (payoff optimal) emerge in the optimal strategy. In this special case, for any
parameters, the optimal strategy consists of at most one phase, either informatively
optimal or payoff optimal. In the general model, the optimal strategy consists of
either no phase (make the decision immediately), only the payoff optimal phase, or
both phases (except for a set of parameters that has measure zero and includes this
special case).

In Section 2.4.2, I revisit the case when only one information source is available
(the optimal stopping problem well studied in the literature). The optimal strategy
in this case consists of at most one phase, and it is always the payoff optimal phase.
Since this benchmark puts no restriction on the initial beliefs, it serves as a stepping
stone from the benchmark with two states in Section 2.4.1 to the general model.

2.4.1 Two States, Two Sources
In this section, I solve the optimization problem (2.2) for the case in which p2 =

1 − p1, that is when the ex ante probability of the third state is zero:

sup
(aF,T,τ)

IE
[
u j[aF] − c1Tτ,1 − c2Tτ,2 | p1, p2 = 1 − p1

]
. (2.3)

It is convenient to split the solution to the problem (2.3) into two steps. In the first
step, I fix the function aF : Fτ → A to be

aF = a1
(
pτ,1 ∈ (0, 1)

)
+ a11

(
pτ,1 = 1

)
+ a21

(
pτ,1 = 0

)
(2.4)

for some alternative a ∈ A and optimize over the attention allocation plan T and
the stopping time:

V (a)[p1] ≡

sup
(T,τ)

IE

[
u j

[
a1

(
pτ,1 ∈ (0, 1)

)
+

∑
k=1,2

ak1
(
pτ,1 = 1 (k = 1)

) ]
−

∑
k=1,2

ckTτ,k | p1

]
.

(2.5)

The function aF defined in (2.4) says that
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• if the true state is revealed, the agent chooses the best alternative (according
to assumption (2.1)),

• if the state has not been revealed by the stopping time τ, the agent chooses the
alternative a.

I call a the default alternative, meaning that this is the choice the agent makes by
default when he is uncertain about the state. The strategy (aF,T, τ) is the optimal a-
type strategy if aF is defined by (2.4) and (T, τ)maximizes (2.5) (an a-type strategy
is a strategy (aF,T, τ), where aF is defined by (2.4)).

It is easy to see that the optimal aF always has the form (2.4). Indeed, for any
initial belief p1, the optimal strategy must prescribe to choose alternative ai once
the state is revealed to be i. Given that, a strategy is equivalent to a plan of what to
do conditional on not receiving a positive signal. This contingency plan is defined
by

• an attention plan T ,

• a “give up” time, that is, a stopping time conditional on not receiving a positive
signal,

• a default alternative, that is, the alternative the agent chooses if he has not
received a positive signal by a “give up” time.

Thus, for any initial belief p1, there exists a ∈ A such that the optimal aF has the
form (2.4).20

In the second step, I optimize over all possible default alternatives a ∈ A in (2.4). I
use the same trick for the general model (2.2).

The reason to split the solution into two steps is that both steps separately are much
easier to solve than the original optimization problem (2.3). In the first step, the
optimization problem (2.5) has fewer parameters than (2.3). Specifically, among all
payoff parameters {ui1[ai2]}i1=1,2,3

i2=1,2,3
, only u1[a1], u2[a2], u1[a], u2[a], and u3[a] are

included in the optimization problem (2.5). In the second step, the set over which
the optimization is performed is finite because A is finite. For any initial belief

20To be more precise, there exists an optimal strategy with aF in the form (2.4). Since the optimal
strategy is almost surely unique (that is, it is unique for all parameters’ values except for a set of
measure zero), the optimal aF is almost surely unique as well.
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p1, the optimal strategy is the optimal a-type strategy, where a ∈ A maximizes
V (a)[p1].

Step 1 Theorem 1 gives the full description of the optimal a-type strategy (see
Figures 2.1 and 2.2). It says that for any initial beliefs, the optimal a-type
strategy has one of the following forms:

• use source 1 until either the state 1 is revealed or the belief about state 1
drops below the threshold p1 = R(a)1 , where

R(a)1 =


c1

λ1(u1[a1]−u1[a])
, u1[a1] , u1[a],

+∞, u1[a1] = u1[a],
(2.6)

• use source 2 until either the state 2 is revealed or p2 = 1 − p1 = R(a)2 ,
where

R(a)2 =


c2

λ2(u2[a2]−u2[a])
, u2[a2] , u2[a],

+∞, u2[a2] = u2[a],
(2.7)

• use the source with the highest quality, until the state is revealed by a
positive signal; the quality is defined as the probability of revealing the
state to cost ratio:

λ1p1
c1

>
λ2p2

c2
≡

λ2(1−p1)
c2

⇒ use source 1,
λ1p1

c1
<

λ2p2
c2
⇒ use source 2,

λ1p1
c1
=

λ2p2
c2
⇒ use source 1 and 2 simultaneously,

(2.8)

• do not get any information and choose the default alternative a.

Denote the set of initial beliefs for which not getting any information is optimal
as Area 1.

Denote the set of initial beliefs for which “using source 1 until either the state
1 is revealed or the belief about state 1 drops below the threshold p1 = R(a)1 ”
is the optimal strategy as Area 2.1. Area 2.2 is defined in a similar way. Area
2.1 and Area 2.2 cover the set of initial beliefs for which the optimal a-type
strategy consists of only the payoff optimal phase.

Denote the set of initial beliefs for which (1) using the source with the highest
quality until the state is revealed is the optimal strategy and (2) λ1p1

c1
>

λ2p2
c2

as
Area 3.1. Area 3.2 is defined in a similar way. Area 3.1 and Area 3.2 cover
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the set of initial beliefs for which the optimal a-type strategy consists of only
the informatively optimal phase.

The payoff optimal phase of the optimal learning strategy is the phase when
the agent will never change the source he is using, no matter what information
he receives. In other words, he stays with one source (say, source k) until
either the state is revealed to be k or his belief about the state to be k drops
to the threshold R(a)k . R(a)k is interpreted as the ratio of cost over benefit
from information source k. Intuitively, the agent stops learning when the
marginal cost of learning (ck · dt) is equal to its marginal benefit, that is, the
probability that the state will be revealed in the next instant of time (pk ·λk ·dt)
multiplied by the payoff loss from the default alternative if the true state is
k (uk[ak] − uk[a]). I call this phase payoff optimal to emphasize that the
optimal choice of the information source depends on the payoff parameters
{ui1[ai2]}i1=1,2,3

i2=1,2,3
.

Choosing the source based on comparing λ1p1
c1

and λ2p2
c2

corresponds to the
informatively optimal phase of the information collection process. I call
this phase informatively optimal to emphasize that the optimal choice of
the information source does not depend on the payoff parameters. In this
benchmark case, when p1 + p2 = 1, the informatively optimal phase always
ends with the full revelation of the state. This explains the rule (2.8). Indeed,
conditional on the goal of knowing the statewith certainty, the agentminimizes
the total cost of learning:

C[p1; T] = IE
[
c1Tτ,1 + c2Tτ,2 | p1, p2 = 1 − p1

]
,

over the attention allocation plan T , where τ is the first time a positive signal
is observed. The objective function C[p1; T] does not depend on the payoff
parameters, and therefore the optimal T does not either. In the general case,
when the probability of the third state is positive, revealing the state with
certainty is not feasible when the true state is 3. However, the intuition for
the informatively optimal phase is similar. When the agent thinks it is highly
likely he is going to know the true state at the end of the information collection
process, he chooses the informatively optimal source, that is, the source with
the highest quality.

At point p1 =
c1λ2

c1λ2+c2λ1
, p2 =

c2λ1
c1λ2+c2λ1

both sources are used in proportion to
their intensity: dTt,1

dTt,2
=

λ2
λ1
. This rule guarantees that the belief p1 does not
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change until the state is revealed. Moreover, at this point the probability of
revealing the state at the next instant of time, λ × p × dt, over the cost, c × dt,
is the same for both sources: λ1p1

c1
=

λ2p2
c2

.21,22

Figures 2.1 and 2.2 illustrate the optimal a-type strategy by partitioning the
interval p1 ∈ (0, 1) into different areas (Area 1, Area 2.1, Area 2.2, Area 3.1,
and Area 3.2). Each point p1 corresponds to the agent’s initial belief, and the
area number determines what strategy the agent should use.

Another way to describe the optimal a-type strategy is by partitioning the
interval p1 ∈ (0, 1) into three regions: when to stop learning, when to use
source 1, and when to use source 2. This description is equivalent to the
one above by the Markovian property of the problem (2.2). At any point in
time t, for any initial belief p0,1, the agent’s optimal behavior depends on p0,1

and all information received so far only through the current belief pt,1. Thus,
partitioning the interval based on the source is equivalent to partitioning the
interval based on the whole strategy. Arrows on these figures show how the
belief p1 changes in the absence of a positive signal: 0 signals from source 1
decreases p1, while 0 signals from source 2 increases p1. By following the
arrows, we can infer the strategy the agent should use. For example, take any
p0,1 in the source 2 region. If this region is located to the left of the source 1
region, p0,1 belongs to Area 3.2. If this region is located to the left of the stop
region, p0,1 belongs to Area 2.2.

21Using both sources in proportion to their intensity leads to the following expected payoff at
point p1 =

c1λ2
c1λ2+c2λ1

, p2 =
c2λ1

c1λ2+c2λ1
: for k = 1, 2,

(p1u1[a1] + p2u2[a2]) −

(
c1
λ1
+

c2
λ2

)
.

This expression is intuitive. Since the agent is going to collect information until the state is revealed,
he always chooses the alternative that is the best in this revealed state. Thus, the benefit is his
expected utility from the best alternative: p1u1[a1]+ p2u2[a2]. The cost of learning from each source
is proportional to the expected time of using this source, which is the expected waiting time for the
state to be revealed, 1

λ .
22Rule (2.8) can be derived fromminimizingC[p1; T] overT . Below, I show a sketch of the proof.

Let C[p1] = min
T

C[p1; T]. If the agent pays x ∈ [0, 1] amount of attention to source 1 during the next
instant of time and then implements the optimal allocation rule, his expected cost is equal to c1xdt +
c2(1−x)dt+(1−λ1p1xdt−λ2(1−p1)(1−x)dt)C[p1−λ1p1(1−p1)xdt+λ2p1(1−p1)(1−x)dt] = C[p1]+(
c1x

(
1 − λ1p1

c1
(C[p1] + C ′[p1](1 − p1))

)
+ c2(1 − x)

(
1 − λ2(1−p1)

c2
(C[p1] − C ′[p1]p1)

))
dt ≡

C[p1] + δ[x, p1,C[p1]]dt. If p1 =
c1λ2

c1λ2+c2λ1
, x = λ2

λ1+λ2
and C

[
c1λ2

c1λ2+c2λ1

]
=

c1
λ1
+

c2
λ2
, then

δ[x, p1,C[p1]] = 0. Thus, at point p1 =
c1λ2

c1λ2+c2λ1
, the attention allocation rule x = λ2

λ1+λ2
is optimal

since following this rule does indeed give C
[

c1λ2
c1λ2+c2λ1

]
=

c1
λ1
+

c2
λ2
.
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Theorem 1 When the probability of the third state is zero, the optimal a-type
strategy is described as follows. The belief interval p1 ∈ (0, 1) is partitioned
into at most five areas (k = 1, 2):

Area 1 : for beliefs in this area, stop information collection.

Area 2.k : for beliefs in this area, use source k until pk = R(a)k (and then
stop).

Area 3.k : for beliefs in this area, use source k until pk =
ckλ3−k

c1λ2+c2λ1
(and

then use both sources in proportion to their intensity, dTt,1
dTt,2
=

λ2
λ1
, until

the state is revealed).

Case 1 If for k = 1, 2 the following condition holds:

R(a)k < 1,
λ3−k R(a)3−k

c3−k
≥
λk R(a)k

ck
⇒ ∆

(a)
k ≤ 0, (2.9)

then

• if 1 − R(a)2 < p1 < R(a)1 , then p1 belongs to Area 1,

• if p1 > R(a)1 , then p1 belongs to Area 2.1,

• if p1 < 1 − R(a)2 , then p1 belongs to Area 2.2.

Otherwise, let k ∈ {1, 2} be such that:

R(a)k < 1,
λ3−k R(a)3−k

c3−k
≥
λk R(a)k

ck
, ∆
(a)
k > 0. (2.10)

Case 2 If Condition Π does not hold, then

• if pk <
ckλ3−k

c1λ2+c2λ1
, then p1 belongs to Area 3.3-k,

• if pk >
ckλ3−k

c1λ2+c2λ1
, then p1 belongs to Area 3.k.

Case 3 If Condition Π holds, then

• if pk < 1 − R(a)3−k , then p1 belongs to Area 2.3-k,

• if 1 − R(a)3−k < pk < min
{
π̄
(a)
k , R(a)k

}
, then p1 belongs to Area 1,

• if R(a)k < pk < π̄
(a)
k , then p1 belongs to Area 2.k,

• if π̄(a)k < pk <
ckλ3−k

c1λ2+c2λ1
, then p1 belongs to Area 3.3-k,

• if pk >
ckλ3−k

c1λ2+c2λ1
, then p1 belongs to Area 3.k,
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Figure 2.1: Illustration for Theorem 1, Case 1 and Case 2. The arrow shows the
direction the belief vector is moving while the state is not revealed.

where

∆
(a)
k =

c3−kλk

ckλ3−k

(
1

R(a)3−k

− 1

)
+ log


ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

 − 1, (2.11)

and Condition Π and π̄(a)k are defined in the appendix.

Case 1 covers the set of parameters for which it is never optimal to use both
sources simultaneously.23 In Case 2, it is always optimal to learn the state
with certainty. Case 3 is a mixture of Case 1 and Case 2.

Condition (2.9) for k = 1, 2, guarantees that it is never optimal to implement
the rule (2.8).

Given expression (2.11), condition ∆(a)k ≤ 0 has the following interpretation.
For each source j, the cost of using the other source ( c3−j

λ3−j
) is sufficiently

large, as measured by the difference between the benefit of using that source

(u j[a j] − u j[a]) and its cost ( cj
λj
). In other words, both

c2
λ2

u1[a1]−u1[a]−
c1
λ1

and
c1
λ1

u2[a2]−u2[a]−
c2
λ2

are large enough to make sure that when the state is likely to be

23Condition (2.9) guarantees that 1 − R(a)2 ≤ R(a)1 in Case 1. See Remark 1 in the appendix.
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Figure 2.2: Illustration for Theorem 1, Case 3. The arrow shows the direction the
belief vector is moving while the state is not revealed.

j (i.e., when p j ≥ R(a)j ), to decide between a and a j it is optimal to use only
source j, which provides “direct” information about the state being j or not,
rather than rely on “indirect” information from source 3 − j.

Expression (2.11) can be rewritten as

∆
(a)
k =

V (a)[p1]

�����
Area 3.k

− V (a)[p1]

�����
Area 2.k

ck
λk
(1 − pk)

,

where V (a)[p1]

�����
Area X

is the expected payoff from the strategy described in

Area X (see appendix for the proof). Thus, ∆(a)k > 0 means that strategy
described in Area 3.k delivers a higher expected payoff than the one in Area
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2.k.24,25

At point π̄(a)k , the agent is indifferent between using at most one source in
his learning strategy and applying the Area 3.3-k strategy. Condition Π
guarantees that such a point exists.26

Generally speaking, the optimal a-type strategy is unique. It means for all
beliefs (except the set of measure zero) and for all other parameters’ values
(except the set of measure zero), the optimal action (what source to choose
and when to stop) is unique. Indeed, the expected payoff from different
strategies is almost never the same. The nonuniqueness can happen only at
the indifference points. For some parameters’ values, such indifference points
might form the whole interval. For example, when π̄(a)k = 1− R(a)3−k , the whole
interval pk ≥ 1− R(a)3−k is such that the agent is indifferent between Area 2.3-k
and Area 3.3-k strategies. However, the set of such parameters’ values has
measure zero.

Step 2 . Given initial belief p1, the optimal strategy is the optimal a-type strategy,
where a ∈ A maximizes V (a)[p1].

Though sufficient for computing the optimal strategy, this description is not
very illustrative. Another way to describe the optimal strategy is as follows.

Denote by Vk[p1], k = 1, 2, the expected payoff from the optimal strategy if
only source k is available. Denote this strategy as k-strategy. This strategy

24Comparing these two strategies, one must also take into account their feasibility: Strategy
in Area 2.k only makes sense if pk ≥ R(a)

k
, while strategy in Area 3.k is feasible if and only if

pk ≥
ckλ3−k

c1λ2+c2λ1
. However, condition ∆(a)

k
> 0 does not depend on beliefs. Thus, if ∆(a)

k
> 0, then

it is optimal to use strategy from Area 3.k for all pk ≥ max
{
R(a)
k
, 1 − R(a)3−k,

ckλ3−k
c1λ2+c2λ1

}
: pk ≥ R(a)

k

guarantees that Area 2.k strategy is feasible and is better than no learning, inequality pk ≥ 1 − R(a)3−k
excludes the Area 2.3-k strategy. By the Markovian property, it is optimal to use strategy from Area
3.k for all pk ≥

ckλ3−k
c1λ2+c2λ1

. This reflects in Case 2 and 3, where Area 3.k covers the whole interval

pk ∈
(
1, ckλ3−k

c1λ2+c2λ1

)
.

25Condition (2.9) is a more subtle than just ∆(a)
k
≤ 0. Condition R(a)

k
< 1 is necessary for Area

2.k strategy to be feasible. Moreover, for R(a)
k
≥ 1, ∆(a)

k
is undefined. Suppose R(a)

k
< 1. Condition

(2.9) per se does not rule out the case when λ3−kR
(a)
3−k

c3−k
<

λkR
(a)
k

ck
and ∆(a)

k
> 0. However, condition

(2.9) for k = 1, 2 together do imply ∆(a)i ≤ 0 whenever R(a)i < 1 for i = 1, 2 (see Remark 2 in the
appendix for the proof).

26Note that point π̄(a)
k

must always be above 1 − R(a)3−k . Indeed, by the Markovian property, for
pk ≤ 1− R(a)3−k , Area 2.3-k strategy is better than Area 3.3-k strategy if and only if it is better at point
pk = 1 − R(a)3−k .
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consists of the payoff optimal phase. 27

Denote by V3[p1] the expected payoff from the following strategy (denote this
strategy as∞-strategy):28

• if p1 >
c1λ2

c1λ2+c2λ1
, use source 1,

• if p1 <
c1λ2

c1λ2+c2λ1
, use source 2,

• at point p1 =
c1λ2

c1λ2+c2λ1
, use both sources in proportion to their intensity.

This strategy consists of the informatively optimal phase.

IfVk[p1] ≥ max{V3−k[p1],V3[p1]} for some k = 1, 2, then the optimal strategy
is the k-strategy; if V3[p1] ≥ max{V1[p1],V2[p1]}, then the optimal strategy
is the ∞-strategy. This description is more intuitive since it does not involve
maximization over a ∈ A but rather emphasizes the strategic tradeoff the
agent faces. He compares the costs and benefits of information to decide
whether it is optimal to learn the state with certainty (∞-strategy) or if he
should “give up” at some point if he does not observe a positive signal for a
sufficiently long time (1-strategy or 2-strategy).

Figure 2.3 shows two examples of the optimal strategy defined as a partition
of the belief interval into three regions (use source 1, use source 2, stop
the information collection process). These examples illustrate two general
features of the optimal strategy. First, if the agent is ever going to use both
sources, he does it at point p1 =

c1λ2
c1λ2+c2λ1

. Thus, if either 1-strategy or 2-
strategy is better than ∞-strategy at this point, there is no initial belief such

27See Section 2.4.2 for the explicit form of Vk[p1].
28If pk ≥

ckλ3−k
c1λ2+c2λ1

, this payoff is

V3[p1] = (p1u1[a1] + p2u2[a2]) −

(
p3−k +

ckλ3−k
c1λ2 + c2λ1

) (
c1
λ1
+

c2
λ2

)
−

ckp3−k
λk

log
[

pk
p3−k

c3−kλk
ckλ3−k

]
.

Part p1u1[a1] + p2u2[a2] accounts for the utility the agent gets from the chosen alternative at the
end of the information collection process. The rest is equal to the expected cost of collecting
information. When pk =

ckλ3−k
c1λ2+c2λ1

, this cost is equal to c1
λ1
+

c2
λ2
. When pk >

ckλ3−k
c1λ2+c2λ1

, the middle

term,
(
p3−k +

ckλ3−k
c1λ2+c2λ1

) (
c1
λ1
+

c2
λ2

)
, is less than c1

λ1
+

c2
λ2
, while the last term, ck p3−k

λk
log

[
pk
p3−k

c3−kλk
ckλ3−k

]
,

is positive. Moreover, when pk > ckλ3−k
c1λ2+c2λ1

, the expected cost decreases in pk , which means(
p3−k +

ckλ3−k
c1λ2+c2λ1

) (
c1
λ1
+

c2
λ2

)
+

ck p3−k
λk

log
[

pk
p3−k

c3−kλk
ckλ3−k

]
< c1

λ1
+

c2
λ2
.

Intuitively, this follows from the optimality of the strategy. The strategy to use both sources until the
state is revealed is always feasible, whichmeans the expected payoff (p1u1[a1] + p2u2[a2])−

(
c1
λ1
+

c2
λ2

)
is always achieved. By definition of optimality, the expected payoff from the optimal strategy must
be no less than this expression.
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Figure 2.3: Illustration of the optimal strategy when the probability of state 3 is
zero. The arrow shows the direction the belief vector is moving while the state is
not revealed.

that ∞-strategy is optimal.29 Second, if the agent chooses the k-strategy and
does not “give up” immediately, the default alternative is either a3−k or a3.
Indeed, the information benefit of using source k is proportional to the cost
of mistake, uk[ak] − uk[a]. If the default alternative a is ak , then this cost is

29Formally, when the probability of the third state is zero and

R(a2)
1 < 1, R(a1)

2 < 1, R(a3)
k

< 1, ∆(a2)
1 > 0, ∆(a1)

2 > 0, ∆(a3)
k

> 0, where k ∈

{
{1, 2} :

λkR(a3)
k

ck
≤
λ3−kR(a3)

3−k
c3−k

}
,

(2.12)
then there exist two thresholds, 0 < p

1
< c1λ2

c1λ2+c2λ1
< p̄1 < 1 such that it is optimal to implement the

∞-strategy for all p1 ∈
[
p

1
, p̄1

]
; for other beliefs, it is optimal to implement the k-strategy, where

k ∈ {1, 2} is such that Vk[p1] ≥ V3−k[p1]. If condition (2.12) does not hold and k ∈ {1, 2} is such
that Vk[p1] ≥ V3−k[p1], then the optimal strategy is the k-strategy.

Condition (2.12) can be rewritten as follows:

1
R(a2)

1

>
c2λ1
c1λ2

e1+ c2λ1
c1λ2 + 1,

1
R(a1)

2

>
c1λ2
c2λ1

e1+ c1λ2
c2λ1 + 1,

λkR(a3)
k

ck
≤
λ3−kR(a3)

3−k
c3−k

⇒
1

R(a3)
k

>
c3−kλk
ckλ3−k

e
1− c3−k λk

ck λ3−k

(
1

R
(a3)
3−k

−1

)
+ 1. (2.13)

(2.13) means the cost of mistake — that is, u1[a1] − u1[a2], u2[a2] − u2[a1], and uk[ak] − uk[a3] for
some k ∈ {1, 2} — is large enough to implement the ∞-strategy, which leads to the best choice of
the alternative.
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zero and therefore, source k offers no benefit. This feature explains why it is
sometimes optimal to use the source that has low ex ante probability to reveal
the state (see “use source 1” region near p1 = 0 and “use source 2” region
near p1 = 1).

2.4.2 Three States, One Source
In this section, I present the optimal strategy when there is only one information
source available to the agent (suppose it is source 1):

sup
(a,τ)

IE
[
u j[a] − c1τ | p1, p2

]
. (2.14)

This is a standard optimal stopping problem (Wald and Wolfowitz (1948), Dynkin
(1963), Dragalin, Tartakovsky, and Veeravalli (1999), Dragalin, Tartakovsky, and
Veeravalli (2000), Shiryaev (2007)). Usually, it is formulated with two states and
two alternatives. Technically, the generalization to three states and three alternatives
is straightforward. However, it provides new insight to the general model I present
in Section 2.5.

The Markovian property of the problem — at any point in time t, for any initial
beliefs (p0,1, p0,2), the agent’s optimal behavior depends on initial beliefs and all
information received so far only through the current beliefs (pt,1, pt,2)— allows for
representing the optimal strategy as a partition of the belief triangle

{(p1, p2) ∈ [0, 1]2 : p1 + p2 ≤ 1}

into two regions: “use source 1” and “stop.” The “use source 1” region is the set of
beliefs (p1, p2) such that if the agent’s current beliefs fall into this set, he pays his
full attention to source 1. The “stop” region corresponds to the set of current beliefs
where it is optimal to stop collecting information and choose an alternative.

By definition, the information source 1 separates state 1 from the other two states,
meaning the information from this source cannot affect the agent’s belief about the
relative probabilities of states 2 and 3. Formally, the ratio pt,2

1−pt,1
stays constant

throughout the learning process. Moreover, unless the state 1 is revealed, the belief
about state 1 decreases during the learning process. Graphically, source 1 moves the
belief vector along the line that holds the ratio p2

1−p1
constant, away from the corner

p1 = 1 (see Figure 2.4).

As in Section 2.4.1, a strategy is equivalent to a plan of what to do conditional on
not receiving a positive signal. This contingency plan is defined by a “give up” time
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and the default alternative. By the Markovian property, defining a “give up” time is
equivalent to defining the belief threshold p1 = p

1
. Once the agent’s belief reaches

this threshold, he stops the information collection.

Lemma 1 gives the explicit form of the expected payoff from the strategy with a
given threshold p1 = p

1
and the default alternative a ∈ A.

Lemma 1 Given the initial beliefs (p1, p2), any threshold p
1
∈ (0, p1] and any

default alternative a ∈ A, the expected payoff from using source 1 until either state
1 is revealed (and a1 is chosen) or the belief reaches the threshold p1 = p

1
(and a

is chosen), whichever happens first, is the following:30

V (a)1

[
p1, p2; p

1

]
=

1 − p1
1 − p

1

(
u1[a]p1

+

(
u2[a]

p2
1 − p1

+ u3[a]
(
1 −

p2
1 − p1

))
(1 − p

1
)

)
+

p1 − p
1

1 − p
1

u1[a1] −
c1
λ1

©­­«(1 − p1) log


p1

(
1 − p

1

)
p

1
(1 − p1)

 +
p1 − p

1
1 − p

1

ª®®¬ . (2.15)

Expression (2.15) has three terms. The first term,

1 − p1
1 − p

1

(
u1[a]p1

+

(
u2[a]

p2
1 − p1

+ u3[a]
(
1 −

p2
1 − p1

))
(1 − p

1
)

)
is the probability that state 1 is not revealed by the end of the information collection
process multiplied by the expected utility from choosing the default alternative. The
second term,

p1−p
1

1−p
1

u1[a1], is the probability that state 1 is revealed before the “give
up” time multiplied by the payoff from choosing alternative a1 at state 1. The last
term is the expected total cost of using source 1.

As with the two states, two sources setup in Section 2.4.1, I split the solution into
two steps. First, I find the optimal a-type strategy by maximizing (2.15) over p

1
.

Then, given the optimal threshold p
1
, I maximize (2.15) over all possible default

alternatives a ∈ A.
30The expected payoff from the symmetric contingency plan with source 2 instead of source 1 is

V (a)2

[
p1, p2; p

2

]
=

1 − p2
1 − p

2

(
u2[a]p2

+

(
u1[a]

p1
1 − p2

+ u3[a]
(
1 −

p1
1 − p2

))
(1 − p

2
)

)
+

p2 − p
2

1 − p
2

u2[a2] −
c2
λ2

©­­«(1 − p2) log


p2

(
1 − p

2

)
p

2
(1 − p2)

 +
p2 − p

2
1 − p

2

ª®®¬ .
I use the expression V (a)

k

[
p1, p2; p

k

]
, k = 1, 2, in Section 2.5 for the general model.
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Figure 2.4: Illustration for Theorem 2. The arrow shows the direction the belief
vector is moving while the state is not revealed.

Theorem 2 describes the optimal a-type strategy. It states that (2.15) achieves its
maximum at p

1
= min{p1, R(a)1 }, where R(a)1 is defined by (2.6):

Theorem 2 When only source 1 is available, for any initial beliefs, the optimal
a-type strategy, a ∈ A, is to use source 1 if and only if the agent is uncertain about
the state and the current belief about the probability that the true state is 1 is no less
than R(a)1 .

Theorem 2 shows that the threshold rule p1 = R(a)1 derived in Theorem 1 extends to
a general case when p1 + p2 ≤ 1.

Figure 2.5 shows how a very simple form of the optimal a-type strategymight lead to
a complex description of the optimal strategy on the belief triangle. This complexity
is the main reason to split the solution into two steps and derive the optimal a-type
strategy first. Figure 2.5 is derived by comparing the expected payoff from the
optimal a1-type, a2-type, and a3-type strategies, for each point in the belief triangle.
It illustrates the optimal strategy by partitioning the belief triangle into two regions:
where information collection is optimal and where it is not. For any beliefs (p1, p2)

where information collection is optimal, the default alternative is determined by
following the belief trajectory along the line with constant p2

1−p1
ratio away from

p1 = 1. For example, at point A the default alternative is a2. See Theorem 11 in the
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Figure 2.5: Illustration of the optimal strategy when only one source is available.
“Stop” regions show which alternative is the default one.

appendix for a formal description of the optimal strategy when only one information
source is available.

2.5 General Model: Three States, Two Sources
In this section, I present the solution for a general case, when all three states are
possible (that is, the belief vector lies inside the belief triangle) and both sources are
available.

2.5.1 a-Type Strategy
As in Section 2.4.1, I split the solution to (2.2) into two steps.

For any a ∈ A, an a-type strategy is a strategy (aF,T, τ), where

aF = a1
(
pτ,1 < 1, pτ,2 < 1

)
+ a11

(
pτ,1 = 1

)
+ a21

(
pτ,2 = 1

)
. (2.16)

The optimal a-type strategy is an a-type strategy (aF,T, τ) such that (T, τ)maximizes

V (a)[p1, p2] ≡

sup
(T,τ)

IE

[
u j

[
a1

(
pτ,1 < 1, pτ,2 < 1

)
+

∑
k=1,2

ak1
(
pτ,k = 1

) ]
−

∑
k=1,2

ckTτ,k | p1, p2

]
.
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The optimal strategy is a strategy (aF,T, τ) that maximizes

V[p1, p2] ≡ sup
(aF,T,τ)

IE
[
u j[aF] − c1Tτ,1 − c2Tτ,2 | p1, p2

]
.

Lemma 2 constructs the optimal strategy from the optimal a-type strategies, a ∈ A.

Lemma 2 The optimal strategy is the optimal a-type strategy where a ∈ A maxi-
mizes V (a)[p1, p2]:

V[p1, p2] = max
a∈A

V (a)[p1, p2].

Lemma 3 confirms the consistency of the strategy choice: if the agent chooses
some a-type strategy, it is optimal to follow this strategy throughout the learning
process. In other words, the agent will not change his mind about the optimal default
alternative:

Lemma 3 Let alternative a ∈ A and beliefs (p1, p2) be such that V[p1, p2] =

V (a)[p1, p2], let (aF,T∗, τ∗) be the optimal a-type strategy for the initial beliefs
(p1, p2), and let (pt,1, pt,2), t ≤ τ∗, be the belief trajectory under the attention
allocation plan T∗ and the initial beliefs (p1, p2). Then V[pt,1, pt,2] = V (a)[pt,1, pt,2]

for all t ≤ τ∗.

2.5.2 Optimal a-Type Strategy
Similar to the benchmark case with one information source, I describe the optimal
a-type strategy as a partition of the belief triangle. This partition consists of three
regions: “use source 1,” “use source 2,” and “stop.”

There are three different curves on the belief triangle along which the agent might—
but not necessarily will — switch sources according to the optimal a-type strategy:
a straight line λ1p1

c1
=

λ2p2
c2

, and two curves described by functions pk = p̄(a)k [p3−k],
k = 1, 2 (I define these functions later). On pk = p̄(a)k [p3−k], the agent switches
from source 3 − k to source k and never switches back (that is, the switching is
irreversible). In contrast, the agent “crawls” along the line λ1p1

c1
=

λ2p2
c2

by using both
sources simultaneously.31

31This “crawling” behavior is similar to the one described in Mandelbaum, Shepp, and Vanderbei
(1990) who consider optimal switching between a pair of Brownian motions within a unit square,
with stopping on the boundaries.
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For any initial beliefs, the optimal a-type strategy consists of at most two phases
(without risk of confusion, I omit mentioning every time that once the state is re-
vealed the agent stops information collection, so the strategy is described conditional
on not knowing the state with certainty). On the first, informatively optimal phase,
the agent chooses the source that has the highest quality, which is defined as the
probability of revealing the state to cost ratio. More precisely, if k ∈ {1, 2} is such
that λkpk

ck
>

λ3−kp3−k
c3−k

, where (p1, p2) is the vector of his current beliefs, then the agent
chooses source k. Note that by using source k, the agent decreases his belief about
state k, unless state k is revealed. Graphically, it means his beliefs are moving
towards the line λ1p1

c1
=

λ2p2
c2

. If the agent’s current beliefs are on the line λ1p1
c1
=

λ2p2
c2

,
then he uses both sources simultaneously in proportion to the sources’ intensity:
dTt,1
dTt,2
=

λ2
λ1
. This rule guarantees that the agent’s beliefs stay on the line λ1p1

c1
=

λ2p2
c2

.

On the second, payoff optimal phase, the agent’s optimal a-type strategy coincides
with the optimal a-type strategy in the restricted problem, when at the beginning
of the game the agent has to choose which source to permanently eliminate from
consideration. Thus, if the agent chooses to eliminate source 3−k, the optimal a-type
strategy on the payoff optimal phase coincides with the solution to the benchmark
model in Section 2.4.2, when only source k is available: the agent uses this source
until pk = R(a)k .

In sum, the two phases differ in two ways. First, during the first phase, the agent
might use two sources simultaneously, while during the second phase, he always
allocates his full attention to one source. Second, during the first phase, the agent’s
attention rule is based only on his current beliefs (p1 and p2) and the sources’
characteristics (cost and intensity), while during the second phase, his attention rule
also depends on the agent’s payoff (u1[a1], u2[a2], u1[a], u2[a]). Intuitively, this
happens because during the first phase, the agent takes into account only the local
(short-term) benefit, which includes only the probability of the state being revealed
but not the payoff from the chosen alternative. Indeed, the alternative is chosen
only once during the game, so the corresponding payoff must be a global feature
of the model. On the other hand, the beliefs are always changing throughout the
information collection process, thus they are included in the local benefit.

Depending on initial beliefs and other parameters of the model, the informatively
optimal phase might not include the simultaneous use of two sources. If the belief
vector reaches the threshold between two phases sooner than it reaches the line
λ1p1

c1
=

λ2p2
c2

, only one source is used during the first phase. In this case, the
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Figure 2.6: Example of the optimal a-type strategy. The paths A → B → C and
D → E → F → G show how the beliefs are moving in the absence of a positive
signal.

switching between phases happens on one of the curves pk = p̄(a)k [p3−k], k = 1, 2.
More precisely, it happens only on one part of each curve, namely pk = p̃(a)

k

[
p3−k
1−pk

]
.

If source k is used during the first phase, then the threshold is on the curve pk =

p̃(a)
k

[
p3−k
1−pk

]
and the agent uses source 3 − k at the second phase. See the path

A→ B→ C on Figure 2.6.

Suppose the informatively optimal phase includes the simultaneous use of both
sources, resulting in clawing along the line λ1p1

c1
=

λ2p2
c2

towards the (p1 = 0,
p2 = 0) point. At some point along this line, the agent enters the second phase.
This is the point where one of the curves, either p1 = p̄(a)1 [p2] or p2 = p̄(a)2 [p1],
crosses the line λ1p1

c1
=

λ2p2
c2

. For k = 1, 2, denote pk = p∗(a)k the point where
p3−k = p̄(a)3−k[pk] crosses λ1p1

c1
=

λ2p2
c2

. The informatively optimal phase ends when
p1 = p∗(a)1 if and only if u1[a1] − u1[a] ≤ u2[a2] − u2[a] (which is equivalent to
λ1R(a)1

c1
≥

λ2R(a)2
c2

).32 Moreover, when the agent leaves the informatively optimal phase
at point pk = p∗(a)k , he uses source 3− k during the payoff optimal phase. Intuitively,
when u1[a1] − u1[a] < u2[a2] − u2[a], source 2 has a utility advantage (the cost of

32 λ1p
∗(a)
1

c1
=

λ2p
∗(a)
2

c2
and p∗(a)1 = R(a)1 , p∗(a)2 = R(a)2 when u1[a1] − u1[a] = u2[a2] − u2[a]. Thus,

when u1[a1] − u1[a] = u2[a2] − u2[a], the informatively optimal phase ends at point p∗(a)1 = R(a)1 ,
p∗(a)2 = R(a)2 and the payoff optimal phase has zero length.
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a mistake from a wrong alternative is higher when the state is 2). Thus, the agent
should use this source at the last phase. See the path D → E → F → G on Figure
2.6.

Theorem 3 The optimal a-type strategy is described as follows. The belief triangle
{(p1, p2) ∈ [0, 1]2 : p1 + p2 ≤ 1} is partitioned into at most seven areas (k = 1, 2):

Area 1 : for beliefs in this area, stop information collection.

Area 2.k : for beliefs in this area, use source k until pk = R(a)k (and then stop).

Area 3.k.1 : for beliefs in this area, use source k until λ1p1
c1
=

λ2p2
c2

(and then use
both sources in proportion to their intensity: dTt,1

dTt,2
=

λ2
λ1

until pi = p∗(a)i , then
use source 3 − i until p3−k = R(a)3−i, where i ∈ arg min

l=1,2
{ul[al] − ul[a]}, then

stop).

Area 3.k.2 : for beliefs in this area, use source k until pk = p̃(a)
k

[
p3−k
1−pk

]
(then use

source 3 − k until p3−k = R(a)3−k , then stop).

Case 1 If for k = 1, 2 condition (2.9) holds, then (see Figure 2.7)

• if p1 < R(a)1 and p2 < R(a)2 , then (p1, p2) belongs to Area 1,

• if p j > R(a)j , then (p1, p2) belongs to Area 2.j, j = 1, 2.

Otherwise, let k ∈ {1, 2} be such that condition (2.10) holds. Then:

Case 2 If p∗∗(a)3−k ≥ R(a)3−k , then (see Figures 2.8 and 2.9)

• if λkpk
ck

>
λ3−kp3−k

c3−k
and p3−k

1−pk
>

p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] , then (p1, p2) belongs to Area

3.k.1,

• if λkpk
ck

<
λ3−kp3−k

c3−k
and pk

1−p3−k
>

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, then (p1, p2) belongs to Area
3.3-k.1,

• if p3−k > p̃(a)
3−k

[
pk

1−p3−k

]
and R(a)

k

1−R(a)3−k
<

pk
1−p3−k

<
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, then (p1, p2)

belongs to Area 3.3-k.2,

• otherwise:

– if p1 < R(a)1 and p2 < R(a)2 , then (p1, p2) belongs to Area 1,
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– if p j > R(a)j , then (p1, p2) belongs to Area 2.j, j = 1, 2.

Case 3 If p∗∗(a)3−k < R(a)3−k , then (see Figures 2.10 and 2.11)

• if λkpk
ck

>
λ3−kp3−k

c3−k
and p3−k

1−pk
>

p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] , then (p1, p2) belongs to Area

3.k.1,

• if λkpk
ck

<
λ3−kp3−k

c3−k
, p3−k < π̄

(a)
3−k

[
pk

1−p3−k

]
and pk

1−p3−k
>

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, then
(p1, p2) belongs to Area 3.3-k.1,

• if p̃(a)
3−k

[
pk

1−p3−k

]
< p3−k < π̄

(a)
3−k

[
pk

1−p3−k

]
and

p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

<
pk

1−p3−k
<

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, then (p1, p2) belongs to Area 3.3-k.2,

• otherwise:

– if p1 < R(a)1 and p2 < R(a)2 , then (p1, p2) belongs to Area 1,

– if p j > R(a)j , then (p1, p2) belongs to Area 2.j, j = 1, 2,

where
p̄(a)k [p3−k] =

1

1 +
(

1
R(a)
k

− 1
)

e
λk c3−k
ckλ3−k

(
1

R
(a)
3−k
− 1

p3−k

) , (2.17)

p∗(a)3−k ∈

(
0, R(a)3−k

]
:

λ3−k p∗(a)3−k

c3−k
=
λk p̄(a)k

[
p∗(a)3−k

]
ck

, (2.18)

p∗∗(a)3−k ∈

(
p∗(a)3−k, 1

)
:

ck

(
p∗∗(a)3−k

)2(
1 − p∗∗(a)3−k

)
λk

=
c3−k

(
1 − p̄(a)k

[
p∗∗(a)3−k

] )
λ3−k

, (2.19)

0 < p̃(a)
3−k
[qk] < p∗∗(a)3−k < ¯̃p(a)3−k[qk] < 1:

p̄(a)k

[
p̃(a)

3−k
[qk]

]
1 − p̃(a)

3−k
[qk]

=
p̄(a)k

[
¯̃p(a)3−k[qk]

]
1 − ¯̃p(a)3−k[qk]

= qk,

(2.20)
and π̄(a)3−k

[
pk

1−p3−k

]
is defined in the appendix.

Comparing Theorem 3 with Theorem 1, note that now there are four (instead of
two) areas where there is a possibility of using both sources during the information
collection process: Areas 3.1.1, 3.2.1, 3.1.2, and 3.2.2. The strategy in Area 3.k.1 is
a generalization of the strategy in Area 3.k. The Area 3.k.2 strategy is only optimal
if p1 + p2 < 1.
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Figure 2.7: Illustration for Theorem 3, Case 1.

When current beliefs are in Area 2.1 or in Area 2.2, the information collection pro-
cess is on the payoff optimal phase. Areas 3.1.1, 3.2.1, 3.1.2, and 3.2.2 correspond
to the informatively optimal phase.

Case 1 in Theorem 3 is a generalization of Case 1 in Theorem 1. It covers the set of
parameters’ values for which the information collection process never involves using
both sources, either simultaneously or sequentially. The conditions on parameters
are exactly the same. See Figure 2.7 for illustration of Case 1.

Cases 2 and 3 involve switching sources. They come together as a generalization of
Cases 2 and 3 in Theorem 1.33

The description of Cases 2 and 3 uses the indifference curve pk = p̄(a)k [p3−k]. This
curve is defined by (2.17) for all parameters’ values. Alternatively, when R(a)k < 1,
(2.17) can be rewritten as

c3−k = λ3−k p3−k
©­­«u3−k[a3−k] − u3−k[a] +

ck

λk
log


p̄(a)k [p3−k]

(
1 − R(a)k

)
R(a)k

(
1 − p̄(a)k [p3−k]

) 
ª®®¬ . (2.21)

33However, the way I partition the set of parameters’ values between Case 2 and Case 3 is not the
same as in Theorem 1, but the principle is the same: in Case 2, the description does not involve the
indifference curve p3−k = π̄

(a)
3−k

[
pk

1−p3−k

]
. The subset of parameters’ values in Case 3 in Theorem 3

when π̄(a)3−k [1] = 1 is included in Case 2 in Theorem 1.



35

Condition (2.21) says that at point (p1, p2) such that pk = p̄(a)k [p3−k], the cost of
using source 3− k is equal to the benefit of using that source. Recall that λ3−k p3−k dt

is the probability that source 3 − k reveals the state. The first part of the benefit,
λ3−k p3−k (u3−k[a3−k] − u3−k[a]), is a “direct” benefit from using source 3 − k: if
state 3 − k is revealed, the utility benefit from choosing the best alternative instead
of the default is u3−k[a3−k] − u3−k[a]. The second part is an “indirect” benefit that

accounts for changes in usefulness of source k. ck
λk

log

[
pk

(
1−R(a)

k

)
R(a)
k
(1−pk )

]
increases with

pk , the probability that the state is k. The higher that probability, the greater the
probability that source k reveals the state, and therefore, the more valuable source

k is. What is more, ck
λk

log

[
pk

(
1−R(a)

k

)
R(a)
k
(1−pk )

]
is equal to 0 when pk = R(a)k , which is a

threshold for using source k. To sum up, (2.21) says that at point (p1, p2) such that
pk = p̄(a)k [p3−k], the cost of using source 3− k is equal to the sum of the direct benefit
of using that source (choosing the best alternative if the state is 3−k) and the indirect
benefit (increasing the usefulness of source k through shifting the belief vector in
the direction of the point pk = 1). The direct benefit is the benefit of a positive
signal while the indirect benefit is the benefit of a zero signal, which increases the
direct benefit of all future signals.

Since p̄(a)k [p3−k] is a threshold between two phases, (2.21) has the meaning of the
first order condition for the optimal stopping problem for using source 3 − k under
the condition that upon stopping, source k will be used until point pk = R(a)k .

Condition (2.9) is equivalent to the requirement that when R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥

λkR(a)
k

ck
, the curve pk = p̄(a)k [p3−k] lies outside of the belief triangle (see appendix for

the proof). Figure 2.7 shows that both curves, p1 = p̄(a)1 [p2] and p2 = p̄(a)2 [p1], lie
outside the belief triangle for Case 1.34

When λ2R(a)2
c2

>
λ1R(a)1

c1
, Cases 2 and 3 are illustrated in Figures 2.8, 2.9, 2.10 and

2.11. Requirement λ2R(a)2
c2

>
λ1R(a)1

c1
guarantees that point (R(a)1 , R(a)2 ) lies above the

line λ1p1
c1
=

λ2p2
c2

, which means that at the point p∗2 the agent switches to source 1.

Recall that in Area 3.2.2, the belief trajectory moves along a straight line that
holds p1

1−p2
constant. This line intersects the curve p1 = p̄(a)1 [p2] at two points,

34This is not a coincidence. The following statement is true: conditions (2.9) for k = 1 and 2
together are equivalent to the requirement that both curves, p1 = p̄(a)1 [p2] and p2 = p̄(a)2 [p1], lie
outside the belief triangle.
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Figure 2.8: Illustration for Theorem 3, Case 2.

Figure 2.9: Illustration for Theorem 3, Case 2.

p2 = p̃(a)
2

[
p1

1−p2

]
and p2 = ¯̃p(a)2

[
p1

1−p2

]
(see Figure 2.8). Such points are well-defined

only for p1
1−p2
≥

p̄(a)1

[
p∗∗(a)2

]
1−p∗∗(a)2

.

Condition p∗∗(a)2 > R(a)2 means that the curve p2 = ¯̃p(a)2

[
p1

1−p2

]
lies above the line

p2 = R(a)2 and to the left of the line p1 = R(a)1 . This means that both strategies
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Figure 2.10: Illustration for Theorem 3, Case 3.

Figure 2.11: Illustration for Theorem 3, Case 3.

— the best a-type strategy conditional on using at most one source throughout
the information collection process and the Area 3.2.2 strategy — imply using only
source 2 for all points p2 ≥ ¯̃p(a)2

[
p1

1−p2

]
with a fixed ratio p1

1−p2
. Thus, there is no

point π̄(a)2

[
p1

1−p2

]
≥ ¯̃p(a)2

[
p1

1−p2

]
where the agent is indifferent between using source

2 and either source 1 or no learning.
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When p∗∗(a)2 < R(a)2 , the agent is indifferent along the curve p2 = π
(a)
2

[
p1

1−p2

]
between

using source 2 and either using source 1 or stopping. Note that the belief trajectory
never crosses this curve: for all initial beliefs at this curve, the belief vector either
never moves (no learning) or moves away from it. Thus, in contrast to the line
λ1p1

c1
=

λ2p2
c2

and two curves described by functions pk = p̄(a)k [p3−k], k = 1, 2, the

curves p3−k = π̄
(a)
3−k

[
pk

1−p3−k

]
, k = 1, 2, are not switching curves; that is, the agent

never switches sources at these curves since his beliefs never pass through them.
However, all five curves, together with pk = R(a)k , k = 1, 2, can be called the
indifference curves, since when the current beliefs are located on these curves, the
agent is indifferent between at least two out of three actions (use source 1, use source
2, and stop).

2.5.3 Optimal Strategy
Lemma 2 offers a way to construct the optimal strategy from the optimal a1-type,
a2-type, and a3-type strategies. For every point (p1, p2) in the belief triangle,
the optimal action (use source 1, use source 2, or stop) coincides with the optimal
action at this point according to the optimal a-type strategy, where a ∈ A is such that
V[p1, p2] = V (a)[p1, p2]. Thus, to compute the optimal strategy, I need to compare
three numbers — V (a1)[p1, p2], V (a2)[p1, p2] and V (a3)[p1, p2], — for every point
(p1, p2). While this algorithm is computationally easy, it is not very illustrative. The
purpose of this section is to provide some intuition about how that optimal strategy
looks.

Similar to Section 2.4.1, the optimal strategy can be represented as the best strategy
out of a finite number of simple strategies (by “simple,” I mean generally simpler
than the optimal a-type strategy). Specifically, there are only five strategies that
can potentially be optimal: 1-strategy, 2-strategy, 3.a1-strategy, 3.a2-strategy, and
3.a3-strategy.35

For k = 1, 2, denote by Vk[p1, p2] the expected payoff from the k-strategy, the
optimal strategy if only source k is available (see Section 2.4.2). Note that such a
strategy is feasible (well-defined) for any initial beliefs.

For k = 1, 2, let the 3.ak-strategy be the strategy with the default alternative ak and
the contingency learning plan described as follows:

35If one assumes gradual learning instead of “breakthrough” learning, that is, the Brownian
motion instead of the Poisson process, the two-step approach with a-type strategies no longer works.
However, I conjecture that this other description of the optimal strategy through a number of simple
strategies presented in Section 2.5.3 has an analog in the gradual learning case.
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• if
λk pk

ck
≤
λ3−k p3−k

c3−k
and

pk

1 − p3−k
>

p∗(ak )k

1 − p̄(ak )3−k

[
p∗(ak )k

] , (2.22)

then use source 3− k until λ1p1
c1
=

λ2p2
c2

, then use both sources in proportion to
their intensity until pk = p∗(ak )k , then use source 3 − k until p3−k = R(ak )3−k ;

• if

λk pk

ck
≥
λ3−k p3−k

c3−k
and

p3−k

1 − pk
>

p̄(ak )3−k

[
p∗(ak )k

]
1 − p∗(ak )k

, (2.23)

then use source k until λ1p1
c1
=

λ2p2
c2

, then use both sources in proportion to
their intensity until pk = p∗(ak )k , then use source 3 − k until p3−k = R(ak )3−k (see
the path D→ E → F → G on Figure 2.6);

• if

pk ≥ p̃(ak )
k

[
p3−k

1 − pk

]
and

p̄(a)3−k

[
p∗∗(ak )k

]
1 − p∗∗(ak )k

≤
p3−k

1 − pk
≤

p̄(ak )3−k

[
p∗(ak )k

]
1 − p∗(ak )k

,

(2.24)
then use source k until pk = p̃(ak )

k

[
p3−k
1−pk

]
, then permanently switch to source

3 − k and use it until p3−k = R(ak )3−k (see the path A→ B→ C on Figure 2.6).

Note that this strategy is well-defined if and only if R(ak )3−k < 1, ∆(ak )3−k > 0, and either
(2.22), or (2.23), or (2.24) holds.

Similarly, let the 3.a3-strategy be the strategy with the default alternative a3 and the
contingency learning plan described as follows: let k ∈ {1, 2} be such that

R(a3)
3−k < 1,

λ3−k R(a3)
3−k

c3−k
≤
λk R(a3)

k

ck
, ∆
(a3)
3−k > 0, (2.25)

then

• if
λk pk

ck
≤
λ3−k p3−k

c3−k
and

pk

1 − p3−k
>

p∗(a3)
k

1 − p̄(a3)
3−k

[
p∗(a3)

k

] , (2.26)

then use source 3− k until λ1p1
c1
=

λ2p2
c2

, then use both sources in proportion to
their intensity until pk = p∗(a3)

k , then use source 3 − k until p3−k = R(a3)
3−k ;
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• if

λk pk

ck
≥
λ3−k p3−k

c3−k
and

p3−k

1 − pk
>

p̄(a3)
3−k

[
p∗(a3)

k

]
1 − p∗(a3)

k

, (2.27)

then use source k until λ1p1
c1
=

λ2p2
c2

, then use both sources in proportion to
their intensity until pk = p∗(a3)

k , then use source 3 − k until p3−k = R(a3)
3−k ;

• if

pk ≥ p̃(a3)

k

[
p3−k

1 − pk

]
and

p̄(a3)
3−k [pk]

1 − pk

�����
pk=min

{
p
∗∗(a3)
k

,R
(a3)
k

} ≤ p3−k

1 − pk
≤

p̄(a3)
3−k

[
p∗(a3)

k

]
1 − p∗(a3)

k

,

(2.28)
then use source k until pk = p̃(a3)

k

[
p3−k
1−pk

]
, then permanently switch to source

3 − k and use it until p3−k = R(a3)
3−k .

Again, this strategy is well-defined if and only if condition (2.25) holds, and either
(2.26), or (2.27), or (2.28) holds.

Denote by V3.a[p1, p2] the expected payoff from the 3.a-strategy, a ∈ A.

Thus, the expected payoff from the optimal strategy is

V[p1, p2] = max
{
V1[p1, p2],V2[p1, p2],max

a∈A
V3.a[p1, p2]

}
.

The optimal strategy is the k-strategy if Vk[p1, p2] = V[p1, p2]; the optimal strategy
is the 3.a-strategy if V3.a[p1, p2] = V[p1, p2].

For k = 1, 2, the curve

Pk =

pk = p̃(ak )
k

[
p3−k

1 − pk

]
:

p̄(a)3−k

[
p∗∗(ak )k

]
1 − p∗∗(ak )k

≤
p3−k

1 − pk
≤

p̄(ak )3−k

[
p∗(ak )k

]
1 − p∗(ak )k


and the point p1 =

c1λ2
c1λ2+c2λ1

, p2 =
c2λ1

c1λ2+c2λ1
together serve as a generalization of the

point p1 =
c1λ2

c1λ2+c2λ1
, p2 =

c2λ1
c1λ2+c2λ1

in Section 2.4.1. Specifically, if there exist initial
beliefs (p1, p2) such that condition (2.24) holds for them and 3.ak-strategy is optimal,
this strategy must be optimal at point (p′1, p′2) such that p′k = p̃(ak )

k

[
p′3−k
1−p′

k

]
and p′3−k

1−p′
k
=

p3−k
1−pk

(see Lemma 3). Similarly, if there exist initial beliefs (p1, p2) such that either
(2.22) or (2.23) holds for them, p1 + p2 < 1, and the 3.ak-strategy is optimal, this

strategy must be optimal at point (p1, p2) such that pk = p̃(ak )
k

[
p̄
(ak )

3−k

[
p
∗(ak )

k

]
1−p

∗(ak )

k

]
= p∗(ak )k

and p3−k = p̄(ak )3−k

[
p∗(ak )k

]
=

c3−kλkp
∗(ak )

k

ckλ3−k
.
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The curve

P3 =

pk = p̃(a3)

k

[
p3−k

1 − pk

]
:

p̄(a3)
3−k [pk]

1 − pk

�����
pk=min

{
p
∗∗(a3)
k

,R
(a3)
k

} ≤ p3−k

1 − pk
≤

p̄(a3)
3−k

[
p∗(a3)

k

]
1 − p∗(a3)

k

 ,
where k ∈ {1, 2} is such that condition (2.25) holds, plays a similar role for the
3.a3-strategy.

Figure 2.12: The optimal strategy when u1[a1] = u3[a3] = 1, u2[a2] = 2, u3[a1] =
0.8, u3[a2] = 0.5, u1[a2] = u1[a3] = u2[a1] = u2[a3] = 0, c1

λ1
=

c2
λ2
= 0.1. On

the left, the arrows show the direction the belief vector is moving until the state is
revealed. The right figure shows what strategy is optimal given the initial beliefs:
3.a1-strategy, 3.a2-strategy, 3.a3-strategy, use source 1 only, use source 2 only, or
no learning.

Figure 2.12 shows the optimal strategy for certain parameters’ values.

Another way to look at the optimal strategy is to return to its description in Lemma
2,

V[p1, p2] = max
a∈A

V (a)[p1, p2],

and note that the optimal a1-type, a2-type, and a3-type strategies do not depend on
u3[a1], u3[a2], and u3[a3], while the expected payoffs V (a1)[p1, p2], V (a2)[p1, p2] ,
and V (a3)[p1, p2] do. Moreover, this dependence is very simple:

V (a)[p1, p2] =
u3[a] + f (a)[p1, p2]

1 − p1 − p2
,
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where function f (a)[p1, p2] does not depend on u3[a1], u3[a2], and u3[a3]. Thus,
the optimal strategy at beliefs (p1, p2), p1 + p2 < 1, is the optimal a-type strategy,
where a ∈ A maximizes u3[a] + f (a)[p1, p2]. It means that for any beliefs (p1, p2),
p1 + p2 < 1, and any other parameters’ values except u3[a1], u3[a2], and u3[a3], the
optimal default alternative is a if it gives a high enough payoff at state 3, that is,
u3[a] is high enough. For example, Figure 2.12 shows the optimal strategy when
u3[a3] > u3[a1] > u3[a2]. When the probability of the third state, 1 − p1 − p2, is
high, the optimal default alternative is a3.

2.6 Information Sources as Complements and Substitutes
In this section, I find the conditions under which the information sources are sub-
stitutes or complements. If we consider that the cost the agent pays to use an
information source is what the information provider gets, c1 and c2 serve as prices
for different types of information, and the total time the agent uses each source, Tτ,1
and Tτ,2, is the demand for information of a given type.

Denote byT1 = IE
[
Tτ,1

]
the expected total time the agent uses source 1 (the expected

total attention the agent pays to source 1) under the optimal strategy. Similarly,
T2 = IE

[
Tτ,2

]
. For the rest of this section, I treat T1 and T2 as functions of c1 and c2.

Definition 1 Two sources are substitutes (complements, independent) if the ex-
pected time of using one source increases (decreases, does not change) when the
cost of the other source increases. Formally:

dT1[c1, c2]

dc2
> 0,

dT2[c1, c2]

dc1
> 0 ⇒ substitutes,

dT1[c1, c2]

dc2
< 0,

dT2[c1, c2]

dc1
< 0 ⇒ complements,

dT1[c1, c2]

dc2
= 0,

dT2[c1, c2]

dc1
= 0 ⇒ independent.

Note that if source 1 is a substitute for source 2 ( dT1[c1,c2]
dc2

> 0), then source 2 is a
substitute for source 1 ( dT2[c1,c2]

dc1
> 0). Moreover,36

dT1[c1, c2]

dc2
=

dT2[c1, c2]

dc1
. (2.29)

36(2.29) is akin to the well-known fact that the Slutsky matrix is symmetric. One way to prove
(2.29) directly is by using the Envelope Theorem argument (see page 69 in Mas-Colell, Whinston,
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Figure 2.13: Illustration for Theorem 4. Partition of the triangle of initial beliefs
into three regions: where the sources are substitutes, where they are complements,
and where they are independent (all that is conditional on the agent using the optimal
a-type strategy).

If the agent uses either 1-strategy or 2-strategy, the sources are independent since
the agent uses at most one source throughout the information collection process and
therefore dT1[c1,c2]

dc2
=

dT2[c1,c2]
dc1

= 0.

Theorem 4 states that if the sources are not independent, they are substitutes when
the probability of the third state is low and they are complements otherwise.

Theorem 4 Suppose the agent uses the 3.a-strategy. Let k ∈ {1, 2} be such that

and Green (1995)):
V[p1, p2] = sup

(aF ,T,τ)

IE
[
u j[aF ] − c1Tτ,1 − c2Tτ,2

]
.

By the Envelope theorem,
∂V[p1, p2]

∂c1
= −T1[c1, c2],

and therefore
∂2V[p1, p2]

∂c1∂c2
= −

∂T1[c1, c2]

∂c2
.

Similarly,
∂2V[p1, p2]

∂c1∂c2
= −

∂T2[c1, c2]

∂c1
.

(2.29) follows.
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λkR(a)
k

ck
≥

λ3−kR(a)3−k
c3−k

. Then there exists a threshold q̂(a)3−k ∈


p̄(a)3−k [pk ]

1−pk

�����
pk=min

{
p∗∗(a)
k

,R(a)
k

}, 1ª®®¬
such that if 37

λk pk

ck
≤
λ3−k p3−k

c3−k
and

pk

1 − p3−k
> max


1

1 + c3−kλk
ckλ3−k

1−q̂(a)3−k

q̂(a)3−k

,
p∗(a)k

1 − p̄(a)3−k

[
p∗(a)k

]  ,
or

λk pk

ck
≥
λ3−k p3−k

c3−k
and

p3−k

1 − pk
> max

q̂(a)3−k,
p̄(a)3−k

[
p∗(a)k

]
1 − p∗(a)k

 ,
or

pk ≥ p̃(a)
k

[
p3−k

1 − pk

]
and q̂(a)3−k ≤

p3−k

1 − pk
≤

p̄(a)3−k

[
p∗(a)k

]
1 − p∗(a)k

,

then the sources are substitutes, and they are complements otherwise. Moreover,
q̂(a)3−k is a function of

c1
λ1
, c2
λ2
, u1[a1]−u1[a] and u2[a2]−u2[a] (and it does not depend

on anything else); it is nondecreasing in c1
λ1

and in c2
λ2
, and it is nonincreasing in

u1[a1] − u1[a] and in u2[a2] − u2[a].

Figure 2.13 illustrates Theorem 4 on the belief triangle. For a fixed default alterna-
tive, the belief triangle represents the optimal a-type strategy as partitioned into two
regions: where the agent uses 3.a-strategy and the rest, where he uses at most one
source. In the former region, the sources are substitutes on one side of the threshold
lines and they are complements on the other side. In the latter region, the sources
are independent.

Theorem 4 also gives the comparative statics of the threshold q̂(a)3−k . As cost of
information increases, the sources are more likely to become complements. The
reverse is true for the benefit from information. Intuitively, when information
becomes more costly, on average, the agent stops the learning process sooner. When
the planning horizon is short, but the agent finds it optimal to use both sources,
it means they give him sufficiently different information. In other words, they
complement each other.

37q̂(a)
k
= 1

1+ c3−k λk
ck λ3−k

1−q̂(a)3−k
q̂
(a)
3−k

solves the system of equations with respect to (q̂(a)
k
, pk, p3−k): p3−k

1−pk =

q̂(a)3−k ,
pk

1−p3−k
= q̂(a)

k
, λk pkck

=
λ3−k p3−k

c3−k
.
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2.7 Conclusion
I proposed a tractable model for dynamic information collection from multiple
sources. I fully characterized the unique optimal strategy for the agent who at each
instant in time can choose between two information sources modeled with Poisson
processes. This strategy consists of at most two phases. In the first phase, the agent
chooses the informatively superior source, while in the second phase, he always
pays attention to the same source until the end of the information collection process.
I demonstrated how this characterization of the optimal strategy helps to categorize
the information sources as substitutes and complements.

There are many potential applications of my model that suggest potential directions
for future research.

The inclusion of many decision makers in the model allows the study of the free-
riding problem in information collection. It is well-known that when there is only
one way to collect information (one information source), we observe free-riding on
the amount of information collected in equilibrium. Bolton and Harris (1999) and
Keller, Rady, and Cripps (2005) showed that this is the case in the bandit setting
when agents can observe each other’s actions. Mukhopadhaya (2003) demonstrated
the same phenomenon for information aggregation in the committee. My model
provides the basis to study the free-riding problem not only on the amount of
information but also on the type of information being collected.

This paper also contributes to the literature of optimal delegation in principal-
agent problems. Szalay (2005) considers only one information source and shows
that elimination of an intermediate alternative improves the agent’s incentives for
information collection. My model allows the study of not only the elimination of an
alternative, but also how the number of information sources changes the quality of
the final choice from the principal’s perspective. Guo (2016) considers a one-armed
bandit learning environment and allows the principal to control the learning process
dynamically. She shows that the optimal delegation rule is a cutoff rule: once
the principal’s current belief reaches the cutoff, the principal requires the agent to
stop the experimentation. My model potentially permits extension of the analysis
to a setting where the agent can choose between several information sources and
therefore the principal has another dimension of control besides the stopping time
— the control of the source.

The interpretation of the information sources as media firms relates my paper to the
media market literature (Gentzkow and Shapiro (2006); Mullainathan and Shleifer
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(2005); Anderson and Coate (2005); Godes, Ofek, and Sarvary (2009); Perego and
Yuksel (2015)). One important question this literature asks is how the competitive
structure of the media market affects social welfare.

Another interpretation of the information sources, as experts, relatesmymodel to the
literature on persuasion (Gentzkow and Kamenica (2011); Gentzkow and Kamenica
(2014); Li and Norman (2015)). This literature suggests studying incentives of
information providers who have preferences over the alternatives among which the
agent has to choose.
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C h a p t e r 3

ARE PEOPLE SUBJECT TO PERSUASION BIAS? TEST OF
DEGROOT MODEL

3.1 Introduction
Communication and learning are essential elements to opinion formation. Studying
communication leads to studying social networks through which communication
occurs. In this paper we perceive communication as transmission of opinion about
the state of the world from one person in a directed network to another along a
directed edge. The evolution of a person’s opinion over time constitutes learning.

The primary object of this paper is the learning process, namely how people change
their opinions over time as they are keeping sharing their opinions with each other.
We focus on two alternative models of opinion formation and test them against
each other in an experiment with a simple directed circle network. The first model
formalized a so called “persuasion bias” effect in the process of opinion formation.
The second model is a generalization of a classical Bayesian updating model that
describes people’s behavior that leads to the Bayesian Nash equilibrium. The
contribution of this paper is threefold. First, we introduce the persuasion bias model
and its alternative model. Second, we conduct the experiment and show that the
first model fits our data better. Finally, we use our data to get some insight about
why the first model is better. Specifically, we show that the persuasion bias effect
has underlying rational reasoning.

Section 3.3 presents a theoretical foundation for this paper. Communication is re-
stricted to occur according to a circle directed graphwhich represents social network.
An edge from one individual to another indicates the direction of information flow.
Each individual has exactly one neighbor to whom he listens. Thus, information
flows in the same direction along the circle. The nature and timing of information is
as follows. At the beginning, everybody receives some private information about the
true state of the world. This information comes in the form of a normally distributed
signal. Then in each stage, everybody reports their beliefs by guessing the true state.
The guess of individual i in a previous stage is visible to individual j if and only if
there is an edge from i to j. So, every agent forms his beliefs about the true state
based on his private signal and the history of his neighbor’ guesses.
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We consider two models of how people change their beliefs about some state of the
world as they communicate. The persuasion bias hypothesis (PBH) model says that
an agent’s new guess is a weighted sum of his own guess in the previous stage and
the guess of his neighbor in the previous stage. The Bayesian update hypothesis
(BUH) model says that each new guess of agent i must be a weighted sum of agent
i’s private signal and his neighbor’s guess from the previous stage. So, the PBH
model weights the agent’s previous stage guess, while the BUH model takes the
agent’s private signal. The BUH model generalizes the Bayesian Nash equilibrium
prediction for this game. The equilibrium prediction for stage t is to place weight
1/t to agent i’s private signal and weight (t − 1)/t to agent i’s neighbor’s guess. To
match the number of parameters in both models, we generalize the ration model
prediction by allowing non-zero weights to be estimated.

We assume that signals are distributed normally to exploit the following property
of the normal distribution. A normally distributed prior about the state, combined
with a normally distributed signal, drawn independently (conditional on the state)
from all previous information, leads to the optimal guess about the state equal to
the weighted sum of the mean of the prior and the signal value. However, if the
signal is correlated (conditional on the state) with the prior, this rule does not hold in
general. So, if the agent takes a weighted sum of two normally distributed signals,
we assume that he treats them as independent. All signals and therefore posteriors
after Bayesian updating are normally distributed in our setup. The BUH model
says that the agent treats his own private signal and his neighbor’s last guess as
independent, which is objectively true. The PBH model says that the agent treats
his own last guess and his neighbor’s last guess as independent, implying that he
ignores the correlation between the two.

The term “persuasion bias” was introduced by DeMarzo, Vayanos, and Zwiebel
(2003) defining it as a phenomenon according to which people “fail to account for
possible repetition in the information they receive.” For example, if a person talks
with the same individual two days in a row, today she “forgets” that she already
talked to him yesterday and therefore treats whatever she hears as new informa-
tion, independent of yesterday’s information. Therefore, anyone who is subject to
persuasion bias, can be “persuaded” by repetition of the same information. The
PBH model captures the persuasion bias phenomenon by modeling the neglection
of correlation among different pieces of incoming information.

Section 3.4 describes the experiment design. We consider a network with 4 people,
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making 5 subsequent guesses (5 stages of the game) about the true state. We ran 6
sessions, 20 games in each session, getting data from 24 subjects in total.

In Section 3.7, we test the models by pooling all subjects together and show that the
persuasion bias model describes a “representative agent” behavior better. Testing
the models for each subject separately in Section 3.8, we found that the persuasion
bias model describes the behavior of a larger number of subjects.

In Section 3.9 we make an attempt to understand why the boundedly rational model
performs better in a very simple learning environment. First, we study the correlation
between how well a subject fits the persuasion bias model and his performance in
the experiment. As a measure of how well a subject fits a model we take the log-
likelihood function evaluated at the estimated parameters’ values. We found that this
correlation is positive for those subjects who fits the persuasion bias model better
than the generalized rational one. This observation is surprising given that the game
has a unique equilibrium and this equilibrium is a special case of the generalized
rational model but not the persuasion bias model. To understand this phenomenon,
we study correlation between how well a subject actually fits the persuasion bias
model and how well a rational subject theoretically should fit that model, given the
behavior of all other subjects fixed. We find that for those subjects whose rational
alter-ego fits the persuasion bias model better, this correlation is positive. That
means that when the persuasion bias model gives a higher profit, people tend to
detect it and make their strategy closer to that model.

Summarizing, we come to the conclusion that the superior performance of the
persuasion bias model has a more deep explanation than just appealing to the
simplicity of that model due to its ad hoc nature. The persuasion bias behavior
might give a higher profit than the equilibrium strategy because it takes into account
other subjects’ deviations from the equilibrium. This makes the persuasion bias
model a competitive alternative to the quantal response equilibrium (McKelvey
and Palfrey (1995)) or the cognitive hierarchical model (Camerer, Ho, and Chong
(2004)) for network games.

3.2 Literature Review
The topic of opinion formation in networks receives a lot of attention in literature
(see Acemoglu and Ozdaglar (2011) and Jackson and Yariv (2011) for review).
Roughly speaking, there are two approaches to model opinion formation. The
first approach is to assume that agents use the rational updating rule predicted by
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Bayesian Nash equilibrium (see, for example, Gale and Kariv (2003) and Acemoglu,
Dahleh, Lobel, and Ozdaglar (2011)). The other approach is to assume that agents
use some ad hoc updating rule, which is computationally much simpler than the
rational updating rule (for example, DeGroot (1974)). Our paper belongs to the
literature that compares ad hoc updating rules with the rational one.

The persuasion bias phenomenon is a special case of correlation neglect, applied to
a network setting. Enke and Zimmermann (2013) experimentally study correlation
neglect in an abstract setting and found support for this phenomenon. In contrast to
our experimental design, there are no actual interactions among subjects, all signals
and guesses are generated by a computer with known algorithm. Thus, correlation
neglect is unambiguously suboptimal behavior. Our findings go in line with it, as the
success of the PBH model can only be partially explained by the rational reasoning.

DeMarzo, Vayanos, and Zwiebel (2003) were the first formally introducing the
persuasion bias phenomenon and they model this effect using the DeGroot model of
belief formation (DeGroot (1974)). In contrast to the PBH model we are proposing
in this paper, the DeGroot model restricts the weights the agent puts on his own
guess and his neighbor’s guess to be time-invariant, that is to be the same in each
stage.1 Therefore, the PBH model can be called the generalized DeGroot model.
This generalization gives more flexibility in fitting the model while keeping the
essence of the persuasion bias phenomenon. Indeed, the PBH model allows the
precision of incoming information to be different, while keeping the independence
assumption.

We are not the first to discover the good properties of the DeGroot model. Golub
and Jackson (2010) study theoretically the convergence of beliefs in the DeGroot
model. In particular, they show that in the setup we consider in this paper, the
DeGroot model predicts the convergence of guesses. In general, Golub and Jackson
(2010) provide an argument why it might be not a bad idea to use a naive updating
rule formalized by the DeGroot model by giving conditions when in the time limit
such rule leads to a consensus belief that is arbitrarily close to the true state for large
networks.

The closest papers to ours are Corazzini, Pavesi, Petrovich, and Stanca (2012),
1More precisely, they include time-variant distortion weight, but they restrict this weight to be

the same for all individuals in a network. For example, at stage t, agent i places weight (1 − λt )αi to
his own previous stage guess and λt βi to his neighbor’s guess, while agent j places weight (1−λt )αj

to her own previous stage guess and λt βj to her neighbor’s guess. Moreover, they restrict the
non-distorted weights to be positive and their sum to be 1 (for example, αi + βi = 1).
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Battiston and Stanca (2014) and Brandts, Giritligil, and Weber (2015). Corazzini,
Pavesi, Petrovich, and Stanca (2012) test the DeGroot model with uniform weights
against the equilibrium prediction by comparing the limiting beliefs between two
networks. The first network coincides with ours. The second network adds a couple
of directed links making it asymmetric across agents. All signals have the same
conditional distribution, so the equilibrium prediction for the consensus belief is the
average of all signals in either network. In contrast, the DeGroot model with uniform
weights predicts a non-uniformweighted sum of signals for the asymmetric network,
with higher weights given to the agents with most outgoing links. What they see
in experimental data speaks against both models’ predictions: the weights are not
uniform, with higher weights given to the agents with most incoming links. This
observation is supported by the DeGroot model with non-uniform weights, where
agent i weights agent j’s guess based on agent j’s indegree. This idea is studied
further in Battiston and Stanca (2014), who in particular also found experimental
evidence of an indegree effect. However, in contrast to these results, Brandts,
Giritligil, and Weber (2015)’s experimental data show that the higher weights are
given to the agents with most outgoing links, which supports the DeGroot model
with uniform weights.

In sum, all three papers, Corazzini, Pavesi, Petrovich, and Stanca (2012), Battiston
and Stanca (2014) and Brandts, Giritligil, and Weber (2015), test different versions
of the DeGroot model, and each version is characterized by its own weight matrix.
Note that equilibrium prediction for the asymmetric network can be generated by
some version of the DeGroot model, as shown in Battiston and Stanca (2014,
Theorem 1) (the weights would be network-dependent). In contrast, we compare
two classes of models. The persuasion bias model class incorporates all different
versions of the DeGroot model. The Bayesian update model class includes the
equilibrium model, but as we mentioned before, the consensus guess prediction of
the equilibrium model is the same as a certain version of the DeGroot model.

3.3 Model
3.3.1 Setup
Consider a finite set of agentsN = {1, . . . , n} that are connected in a directed circle
graph, so that agent 1 listens to agent n, agent 2 listens to agent 1, agent 3 listens to
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agent 2, etc. For each agent i ∈ N , call agent

N(i) =


i − 1, i > 1

n, i = 1

his or her neighbor.

Suppose all agents want to estimate an unknown parameter θ (which we call “state
of the world”). Suppose the prior distribution of θ is uniform over the real line (and
it is common knowledge among all agents). At the beginning of the game each
agent i receives a signal si about the state that is distributed according to a normal
distribution with state-dependent mean θ and state-independent variance σ2:

si |θ ∼ N
(
θ, σ2

)
.

All signals are independent conditional on the state. The game proceeds in several
stages. In the first stage, agents observe their own signals and make their guesses
about the state θ. In the second stage, agents observe the guesses of their neighbors
made in the first stage and make a second guess. In the third stage, agents can see
their neighbors’ guesses from the second stage and guess again, etc. There are T

stages in total.

Denote by xt
i the guess of agent i made in stage t. Then the information set of agent

i at stage t is It
i =

{
si, {xτN(i)}

t−1
τ=1

}
. To simplify notations, denote yt

i = xt
N(i) agent

i’s neighbor’s guess in stage t. Note that the network structure, agents’ identities,
and the precision of all signals are common knowledge.

The payoff agent i gets is

−

T∑
t=1

��xt
i − θ

�� .
This payoff is maximized at xt

i = θ. However, the parameter θ is generally unknown.
So, the question is, How do the agents choose their guesses?

3.3.2 Rational Benchmark
In this section we assume that all agents are rational, meaning they want to maximize
their expected payoff.2

First of all, note that a rational agent wants to maximize her expected payoff in
each stage. This means we can safely ignore any complex strategic considerations

2Results are robust to some specification of risk-aversion, for example, if the agents use CARA
utility.
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she might have.3 Indeed, agent i’s own guesses stay independent from incoming
information up until stage t = n. In stage t = n, agent i infers all signals (as we will
show below) and therefore she gets the maximum possible payoff from every stage
t ≥ n.

Formally, a rational agent i chooses xt
i that minimizes the expected value of

��xt
i − θ

��
given her current beliefs. This means a rational agent i must guess xt

i equal to the
median of the probability distribution of θ that corresponds to agent i’s beliefs in
stage t:

xt
i = Median

(
θ |It

i
)
.

In the first stage, the updated belief is a normal distributionwithmean si and variance
σ2. Thus, a rational agent must guess x1

i = si.

In the second stage, agent i knows the guess of her neighbor in the first stage.
Assuming her neighbor is rational, agent i infers her neighbor’s signal. So, in the
second stage the updated belief is a normal distribution with mean 1

2
(
si + y1

i

)
and

variance σ2

2 . Thus, agent i must guess x2
i =

1
2
(
si + y1

i

)
.

In the third stage, agent i knows the guess of her neighbor in the second stage.
Assuming the neighbor of her neighbor is rational and assuming her neighbor
believes that, agent i can infer her neighbor’s neighbor’s signal.4 So, in the third
stage the updated belief is a normal distribution with mean equal to the average of
all inferred signals.

In sum, if all agents are rational and this is common knowledge, then in every
stage every agent must guess an average of all signals available to him by that time.
Formally:

Theorem 5 Bayesian Nash equilibrium of this game is unique and leads to the
following prediction:

x1
i = si,

xt
i =

t − 1
t

yt−1
i +

1
t

si, t = 2, . . . , n

xt
i = xn

i , t = n + 1, . . .
3An example of a complex strategic consideration can be an attempt to sacrifice the current stage

benefit in order to influence others’ beliefs, which might lead to a higher payoff in the future stages.
4Note that this statement does not hold for any network. For example, if agent i listens to two

agents who listen to some common source, then agent i might not be able to infer a signal from that
common source, provided that both agents also have access to some private sources.
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This prediction holds for any number of stages T .

3.3.3 Generalized DeGroot Model
The DeGroot model postulates the existence of a matrix W ∈ Rn×n such that for all
t ≥ 1

xt+1 = W xt, Wi j = 0 if j , (N(i) ∪ {i}) ,

where xt is a vector of all agents’ guesses in stage t. Equivalently, for all t ≥ 1 and
all i ∈ N ,

xt+1
i = wii xt

i + wi,N(i)y
t
i .

We generalize this model by allowing weights to vary over time. The generalized
DeGroot model postulates the existence of a sequence of matrices {W t}T−1

t=1 , W t ∈

Rn×n, such that for all t ≥ 1

xt+1 = W t xt, W t
i j = 0 if j , (N(i) ∪ {i}) . (3.1)

Equivalently, for all t ≥ 1 and all i ∈ N ,

xt+1
i = wt

ii x
t
i + w

t
i,N(i)y

t
i .

3.3.4 Estimation Strategy
The goal of the experiment we conducted is to test the Persuasion Bias Hypothesis.
This hypothesis is formalized by the generalized DeGroot model.

An alternative hypothesis we chose satisfies three properties. First, it falls into the
same class of linear models by requiring xt+1

i be a linear function of si, y
1
i , . . . , y

t
i .

Second, it has the same number of parameters (weights). Finally, it embeds the
rational benchmark from Theorem 5.

We call this alternative hypothesis the Bayesian Update Hypothesis, or the general-
ized rational model. In contrast to Theorem 5, it allows the weights in front of yt−1

i

and si to be arbitrary.

We start our analysis by making two assumptions about the updating process.

Assumption 1 Agents’ guesses at first stage coincide with their signals:

x1
i = si . (3.2)
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The first assumption is that agents update rationally in the first stage by choosing
their best guesses equal to their signals. In experiments, any deviation from this
assumption tells us that subjects have trouble with processing information with
fixed properties. If a subject fails to update rationally in the first stage, we have
an identification problem. Specifically, we cannot distinguish whether deviations
from a prediction come from failed updating process or they come from wrong
perception of information properties. We assume that subjects update rationally,
that is, according to the Bayes rule. Thus, any deviations from rational behavior are
attributed to subjects’ perception of information properties. 5

Assumption 2 There exist {µτ,ti : i ∈ N, τ = 1, . . . , t − 1, t = 2, 3, . . . ,T} and
{λt

i : i ∈ N, t = 2, 3, . . . ,T} such that for every i ∈ N and every 2 ≤ t ≤ T:

xt
i = λ

t
i si +

t−1∑
τ=1

µτ,ti · y
τ
i . (3.3)

Compared to the general form of updating function

xt
i = f t

i (I
t
i ),

Assumption 2 requires linearity. In particular, it requires that each subject’s weights
placed on her neighbor’s guesses as well as her signal are independent of the
realization of her signal and her neighbor’s guesses. This assumption holds for both
hypotheses we test.

We estimate the model (3.2)-(3.3) and test two mutually exclusive hypotheses, the
Persuasion Bias Hypothesis and the Bayesian Update Hypothesis.

Persuasion Bias Hypothesis: For any i, t1 and t2, there exists a constant ct1,t2
i such

that
λt1

i = ct1,t2
i λt2

i , µτ,t1i = ct1,t2
i µτ,t2i , ∀τ < min{t1, t2}. (3.4)

Theorem 6 says that the Persuasion Bias Hypothesis is equivalent to the generalized
DeGroot model (3.1).

5We even include this question in a training test before an experiment (see Appendix B.4). This
makes it essentially common knowledge that the first guess is equal to a private signal and therefore
it gives an advantage to the rational model. The rejection of the rational model in this setting makes
our results more robust.
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Theorem 6 Under Assumptions 1 and 2, the Persuasion Bias Hypothesis is equiva-
lent to the existence of a sequence of matrices {W t}T−1

t=1 , W t ∈ Rn×n, such that (3.1)
holds for every t ≥ 1.

The Persuasion Bias Hypothesis reflects the original idea formulated by DeMarzo,
Vayanos, and Zwiebel (2003): agents “fail to adjust for possible repetitions of
information they receive, instead treating all information as new.” Indeed, if an
agent is subject to persuasion bias, she will treat her signal and other agents’ beliefs
available to her as a set of independent signals about the unknown parameter.
Therefore, as she moves from round t to round t + 1, she will not reconsider the
relative weights she placed on the signals available to her in round t. In other words,
in round t + 1, she will treat her belief in round t as a sufficient statistic for all
information available to her in round t and she will update her belief by taking a
weighted average of her old belief and new information. This gives us model (3.1).

More formally, note that if one faces a series of independent signals drawn from
(possibly different) distributions with mean θ, the expected value or the mode of θ
given these signals (the best guess of θ) is not necessarily a linear combination of
the signals. For example, the expression for condition mean:

E(θ |s1, ..., sn) =
∑
θ

θP(s1 |θ)...P(sn |θ)P(θ)

does not imply any linearity, unless additional assumptions are added. By property
(B.1) of normal distribution, we conclude that if the agent has normal prior about the
state, his signal is distributed normally and he treats all guesses of his neighbors as
independent normally distributed signals, his updating rule would follow DeGroot’s
model.

An equivalent way to write the Persuasion Bias Hypothesis is

λt
i

λt−1
i

=
µτ,ti

µτ,t−1
i

, 1 ≤ τ ≤ t − 2, 3 ≤ t ≤ T, i ∈ N . (3.5)

From (3.5), it is easy to see that the number of restrictions the Persuasion Bias

Hypothesis places on the general model (3.2)-(3.3) is n ·
T∑

t=3
(t − 2) = n(T−1)(T−2)

2 , or
(T−1)(T−2)

2 restrictions for each agent.

Bayesian Update Hypothesis:

µτ,ti = 0, 1 ≤ τ ≤ t − 2, 3 ≤ t ≤ T, i ∈ N . (3.6)
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Comparing (3.5) and (3.6), it is easy to see that the number of restrictions is the same
in both hypotheses. Moreover, comparing (3.6) with Theorem 5, we conclude that
the Bayesian Update Hypothesis embeds the Bayesian Nash equilibrium prediction.6

3.4 Experiment
Our experiment tests learning in a network of four people, connected in a circle (see
Figure 3.1). We ran 6 experimental sessions. Each session consists of 20 periods.

Figure 3.1: The network structure applied in the experiment

In each session, the number of participants is 4. At the beginning of each session,
all participants are assigned a position in the network (A, B, C, or D). Positions do
not change throughout the whole session.

There are 5 stages in each period of the game. At the beginning of each period, a
new state is drawn, signals are generated, and the subjects privately observe their
signals. In each stage, the subjects make their guesses about the state. Starting
from the second stage, they observe the guesses of their neighbors from previous
states. At the end of each period, each subject can see all four signals, the true state,
his payment for this period and his total payment for all periods so far. The exact
instructions are in Appendix B.3.

The state θ is drawn from a uniform distribution over the integers from 0 to 1000.
Each signal is drawn from the discretized approximation of the normal distribution
with mean θ. Specifically, each signal is an integer from 0 to 1000, drawn from

6Note that starting from stage n, all guesses are the same and equal to the average of all n signals.
This fact not only allows us to generalize the rational model with (3.6), but also raises the question
of identification of model (3.2)-(3.3). To address the identification concern, we limit the number
of periods to T = n + 1. In experiment, we rarely observe a convergence by the last period, which
allows us to estimate all parameters in model (3.2)-(3.3).
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discrete distribution with mean θ. This distribution has a bell-shape form with
variance 616

53 (see Appendix B.3).7

To make sure our subjects understand the experiment setup, we asked them to
answer some questions about the experiment before the experiment started and after
the instructions were read (see Appendix B.4). Before the experiment started, all
answers were checked and explanations were provided where needed.

One session was run in the EEPS Lab in California Institute of Technology (subjects
were undergraduate students of various majors). The other five sessions were run in
the Laboratory for Experimental and Behavioral Economics at the High School of
Economics inMoscow (subjects were people of different backgrounds, not students).

3.5 Data Statistic
The average payoff from the whole gamewas 794 points from all 20 periods, with the
minimal profit 713 points (subject D in session 1) and maximal profit was 834 points
(subject 2 in session 4). The maximal feasible profit was 1000. The average profit in
the first session was 773 points and the average profit in the other five sessions was
799 points. This means there is no significant difference in performance between
undergraduate students in CalTech and subjects from Moscow.

Figure 3.2 shows how performance changes over time. We use this figure to decide
how many periods we should devote to the learning process. Ideally, we would like
to use all 20 periods to increase statistical power. However, Figure 3.2 shows that
the per stage profit distribution becomes relatively stable only after period 5, which
implies a 5-period learning time.

Figure 3.3 shows how guesses converge over time. In agreement with previous
literature, we see a clear pattern suggesting a monotonic convergence. However, the
convergence is rarely full, and we see differences in guesses even in the last stage.
Moreover, we do not see much difference between stages 4 and 5. Since studying
convergence per se is not our goal, we cut the game after stage 5.

Figure 3.4 provides guess distributions separately for periods 1-5, 6-10, 11-15 and
16-20. Comparing periods 1-5 with 6-10, we see a learning pattern. For the first five

7We do not use normal distribution directly in the experiment because we want to avoid any
confusion subjects might have because of it. Our concern is that not all people are familiar with
normal distribution and they would unlikely be able to fully understand it during the experiment.
Discretization makes the setup easy to explain and understand. Moreover, the equilibrium in the
discrete setup is essentially the same as in Theorem 5: if everybody behaves optimally, then fitting
the linear model (3.3) gives the same weights as in Theorem 5 (see Appendix B.6).
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Figure 3.2: Profit distribution for each period (each distribution comes from 120
data points = 24 subjects × 5 stages). A solid line connects the means, a dashed line
connects the medians.

Figure 3.3: The distributions of guess deviations xt
i −

1
4

∑
i=A,B,C,D

xt
i for each stage

t = 1, 2, 3, 4, 5 (each distribution comes from 480 data points = 24 subjects × 20
periods). Dashed lines connect the 5% and 95% quantiles across distributions.

periods, the distributions have larger variance and the convergence is not as clean
as for the next five periods.

3.6 Test of Assumptions 1 and 2
In this section, we check whether:
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Figure 3.4: The distributions of guess deviations xt
i −

1
4

∑
i=A,B,C,D

xt
i for each stage

t = 1, 2, 3, 4, 5 (each distribution comes from 120 data points = 24 subjects × 5
periods). Dashed lines connect the 5% and 95% quantiles across distributions.

1. agents’ guesses at the first stage coincide with their signals (Assumption 1),

2. the weights in (3.3) are independent of signals realization (Assumption 2).

Only 4.6% of observations (22 out of 480=6 sessions × 20 periods × 4 subjects) do
not satisfy Assumption 1. Moreover, it is obvious that some of them are mistakes
(for example, the first guess is 136 when the signal was 459).

To test Assumption 2, we use various fluctuation tests, which are basically more
sophisticated versions of the Chow test for a structural change, with the null hypoth-
esis being that a subject does not change his or her behavior over time (for details,
see Zeileis, Leisch, Hornik, and Kleiber (2002)). Specifically, we use Rec-CUSUM,
OLS-CUSUM, Rec-MOSUM, and OLS-MOSUM tests for each subject separately
(24 subjects in total).8 We test linearity for each stage separately (stages 2,3,4 and 5)
and all together. So, for each subject we have 5 specifications, with 4 different tests
for each specification (20 tests in total for each subject). If we take all 20 periods,
then we get that 11 out 24 people do not satisfy Assumption 2 according to at least
one of these 20 tests, at significance level 5%. However, if we take only the last 15
periods allowing for a 5-period learning time, we get that only 8 people out of 24 do

8These tests form different processes, all based on the residuals. Under the null hypothesis, the
limiting processes for these empirical processes are the Wiener Process (Rec-CUSUM), the standard
Brownian bridge (OLS-CUSUM), the increments of the Wiener Process (Rec-MOSUM) and the
increments of the standard Brownian bridge (OLS-MOSUM).
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not satisfy Assumption 2 according to at least one of these 20 tests, at significance
level 5%. Moreover, if we lower the significance level to 1%, then at the last 15
periods only 4 people fail Assumption 2 according to at least one of these 20 tests.

In the remainder of the paper, we treat the first five periods as learning time and
exclude them from our analysis.

3.7 Persuasion Bias Hypothesis (PBH) vs Bayesian Update Hypothesis (BUH)
on Pooled Data

There are two ways to perform econometric analysis of our data. One approach is
to pool all data together and force all subjects to use the same updating rule. The
central question we address through this approach is what updating rule describes
a “representative subject” behavior better. Another approach is to analyze each
subject completely separately and therefore study individual updating rules. Then
the question is what updating rule describes the behavior of a larger number of
subjects. This section is devoted to the first approach, while the next section
implements the second one.

In both sections we focus on comparing twomodels, the Persuasion Bias Hypothesis
(3.5) and the Bayesian Update Hypothesis (3.6). Both models are special cases of a
more general model (3.2)-(3.3).

If we pool all 24 subjects for 15 last periods, we get Table 3.1. This table shows the
estimation result for three models:

the Persuasion Bias Hypothesis (PBH) model: (nonlinear)
x2

i = λ2si + µ1,2y1
i

x3
i = c3λ2si + c3µ1,2y1

i + µ2,3y2
i

x4
i = c4c3λ2si + c4c3µ1,2y1

i + c4µ2,3y2
i + µ3,4y3

i

x5
i = c5c4c3λ2si + c5c4c3µ1,2y1

i + c5c4µ2,3y2
i + c5µ3,4y3

i + µ4,5y4
i

(3.7)

the Bayesian Update Hypothesis (BUH) model:
x2

i = λ2si + µ1,2y1
i

x3
i = λ3si + µ2,3y2

i

x4
i = λ4si + µ3,4y3

i

x5
i = λ5si + µ4,5y4

i

(3.8)
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Model PBH BUH GM
xt

i xt
i xt

i

si · 1 (t = 2) (λ2) 0.609∗∗∗ 0.593∗∗∗ 0.593∗∗∗
(0.061) (0.044) (0.064)

y1
i · 1 (t = 2) (µ1,2) 0.389∗∗∗ 0.405∗∗∗ 0.405∗∗∗

(0.063) (0.046) (0.066)(
λ2si + µ

1,2y1
i

)
· 1 (t = 3) (c3) 0.740∗∗∗

(0.085)
si · 1 (t = 3) (λ3 = c3λ2) 0.451 0.491∗∗∗ 0.430∗∗∗

(0.066) (0.043)
y1

i · 1 (t = 3) (µ1,3 = c3µ1,2) 0.288 0.275∗∗∗
(0.074)

y2
i · 1 (t = 3) (µ2,3) 0.263∗∗∗ 0.510∗∗∗ 0.296∗∗∗

(0.083) (0.066) (0.086)(
λ3si +

∑
τ=1,2

µτ,3yτi

)
· 1 (t = 4) (c4) 0.462∗∗∗

(0.042)
si · 1 (t = 4) (λ4 = c4λ3) 0.208 0.240∗∗∗ 0.239∗∗∗

(0.014) (0.021)
y1

i · 1 (t = 4) (µ1,4 = c4µ1,3) 0.133 0.099∗∗∗
(0.035)

y2
i · 1 (t = 4) (µ2,4 = c4µ2,3) 0.122 0.058∗

(0.033)
y3

i · 1 (t = 4) (µ3,4) 0.537∗∗∗ 0.759∗∗∗ 0.604∗∗∗
(0.042) (0.015) (0.033)(

λ4si +
∑

τ=1,2,3
µτ,4yτi

)
· 1 (t = 5) (c5) 0.642∗∗∗

(0.080)
si · 1 (t = 5) (λ5 = c5λ4) 0.134 0.164∗∗∗ 0.186∗∗∗

(0.027) (0.025)
y1

i · 1 (t = 5) (µ1,5 = c5µ1,4) 0.085 0.057∗∗∗
(0.013)

y2
i · 1 (t = 5) (µ2,5 = c5µ2,4) 0.078 0.034

(0.022)
y3

i · 1 (t = 5) (µ3,5 = c5µ3,4) 0.345 0.410∗∗∗
(0.090)

y4
i · 1 (t = 5) (µ4,5) 0.356∗∗∗ 0.834∗∗∗ 0.311∗∗∗

(0.080) (0.028) (0.095)
AIC 12743.43 12936.21 12737.01
BIC 12790.88 12983.66 12816.1
ln(L) -6362.713 -6459.105 -6353.505
Signif. codes: *** 1%, ** 5%, * 10%

Table 3.1: All subjects are pooled, standard errors are clustered by subjects, periods
and stages. Only the last 15 periods are used. Italic entries are derived from the
estimated coefficients.
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the general model (GM):
x2

i = λ2si + µ1,2y1
i

x3
i = λ3si + µ1,3y1

i + µ2,3y2
i

x4
i = λ4si + µ1,4y1

i + µ2,4y2
i + µ3,4y3

i

x5
i = λ5si + µ1,5y1

i + µ2,5y2
i + µ3,5y3

i + µ4,5y4
i

(3.9)

First of all, note that the PBH model and the BUH model are not nested but they
have the same number of parameters. So, we can compare them using maximum
likelihood function. The last row in Table 3.1 shows that the PBHmodel has a larger
maximum likelihood function, which makes it a better model.

The advantage of the PBH model can be demonstrated in a less rigorous but more
intuitive way by just looking at the estimated coefficients. First, let’s look at stage
3. The vector of estimated weights (c3λ2, c3µ1,2, µ2,3) from the PBH model is much
closer to (λ3, µ1,3, µ2,3) from the GM model than (λ3, 0, µ2,3) from the BUH model:

PBH : x3
i = 0.451si + 0.288y1

i + 0.263y2
i ,

BUH : x3
i = 0.491si + 0.510y2

i ,

GM : x3
i = 0.430si + 0.275y1

i + 0.296y2
i .

In other words, in stage 3 the PBH restrictions distort the unrestricted estimated
model less than the BUH restrictions. Another way to see it is to compare x2

i =

λ2si + µ
1,2y1

i and x3
i = λ

3si + µ
1,3y1

i + µ
2,3y2

i from the GM model:

λ3

λ2 = 0.725,
µ1,3

µ1,2 = 0.680.

The PBH model requires λ3

λ2 =
µ1,3

µ1,2 . Since the difference between 0.725 and 0.680
is small, we can say that we have evidence in favor of the PBH model for stage 3.

Stage 4 shows a little more ambiguous picture. (λ4, µ1,4, µ2,4, µ3,4) from the GM
model is somewhere in between (c4c3λ2, c4c3µ1,2, c4µ2,3, µ3,4) from the PBH model
and (λ4, 0, 0, µ3,4) from the BUH model, with the PBH model being a little closer to
the GM model:

PBH : x4
i = 0.208si + 0.133y1

i + 0.122y2
i + 0.537y3

i ,

BUH : x4
i = 0.240si + 0.759y3

i ,

GM : x4
i = 0.239si + 0.099y1

i + 0.058y2
i + 0.604y3

i .



64

Stage 5 points out to a seemingly “weak” point of the BUH model, that is y3
i has a

large effect on x5
i :

PBH : x5
i = 0.134si + 0.085y1

i + 0.078y2
i + 0.345y3

i + 0.356y4
i ,

BUH : x5
i = 0.164si + 0.834y4

i ,

GM : x5
i = 0.186si + 0.057y1

i + 0.034y2
i + 0.410y3

i + 0.311y4
i .

However, a large correlation between the last two guesses, y3
i and y4

i , makes this
argument questionable.

Besides comparing the PBH and BUHmodels, we can make two additional observa-
tions from Table 3.1. First, we compare the GMmodel with the other two. The GM
model has more parameters, so we have to use either AIC or BIC. BIC penalizes the
number of parameters more severely, working against the GM model. According to
BIC, the PBH model is the best. However, according to AIC, the GM model is the
best one.

Second, we use the estimated coefficients to analyze how close they are to the
equilibrium prediction from Theorem 5. Nonlinear distortion of the PBH model
does not affect the coefficients for stage 2 too much (λ2 and µ1,2). All models show
that subjects slightly overweight their signals in stage 2 compared to the equilibrium
response, which is 0.5si + 0.5y1

i . This means that (1) subjects do not deviate too
far away from the equilibrium response, (2) they deviate in the direction of their
own private signal, so that they rely more on the information that comes to them
directly, not through their neighbor. In stage 3, the BUH model does not lead to
the equilibrium response (0.33si + 0.66y2

i ). Moreover, we see a significant weight
placed on y1

i , which also goes against the equilibrium prediction. However, in stage
4, the weights in the BUH model come pretty close to the equilibrium, which is
0.25si + 0.75y3

i . Moreover, although statistically significant, the effect from the
neighbor’s guesses in stage 1 and 2 is small in the general model, which also goes
along with Theorem 5. Since stage 5 has an identification issue (y4

i = x4
i = x5

i in
equilibrium), we do not analyze this stage here. In sum, equilibrium prediction is
good for stage 4 and probably for stage 2, but not for stage 3.

Models (3.7), (3.8) and (3.9) use all data, forcing subjects to behave according to a
particular model in all stages. Moreover, these models implicitly put the error term
at the end of each row, assuming these errors are independent of each other. This
error structure is not the only one that is consistent with theoretical analogs of these
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models. For example, stage 3 of the PBH model can look like this:

x3
i = c3x2

i + µ
2,3y2

i , (3.10)

implying a different error structure. We performed various robustness checks with
respect to the number of stages used in the analysis and the error structure (see
Appendix B.5). We conclude that the conclusion that the PBH model is better than
the BUH model holds, with one exception. If x2

i is used as a proxy for λ2si + µ
1,2y1

i

(like in (3.10)), then the PBH model is worse than the BUH model in stage 3.

3.8 PersuasionBiasHypothesis (PBH) vs BayesianUpdateHypothesis (BUH):
Subjects’ Classification

In this section we test the Persuasion Bias Hypothesis (3.5) against the Bayesian
Update Hypothesis (3.6) by looking at each subject separately, therefore allowing
for heterogeneous behavior.

For each subject, we compare the PBH model and the BUH model based on max-
imum likelihood across different specifications, varying the number of stages and
the error structure (see Appendix B.7). Table 3.2 summarizes this comparison by
classifying each subject into one of three groups, PBH, BUH or NA. Out of 24 sub-
jects, we get 12 subjects whose behavior is better described by the PBH model, 11
subjects left unclassified (NA), and only 1 subject fits BUH model unambiguously
better than the PBH model. If we limit the comparison to stage 3 only, out of 11
NA subjects, 3 subjects fit the PBH model, 7 subjects fit the BUH model and the
remaining subject is unclassified. If we limit the comparison to stage 4 only, out
of 11 NA subjects, 6 subjects fit the PBH model, 4 subjects fit the BUH model and
the remaining subject is unclassified. Finally, if we limit the comparison to stage 5
only, out of 11 NA subjects, 8 subjects fit the PBH model, 2 subjects fit the BUH
model and the remaining subject is unclassified. In sum,

1. more subjects fit the PBH model better than the BUH model,

2. relative to the BUH model, the PBH model is getting better with the stages.

3.9 Performance
In this section we ask whether the better fit of the PBH model means that the
persuasion bias has some rationale besides being just a convenient rule of thumb.
More precisely, we first look at the correlation between how well a subject fits the
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Session Subject Classification By Stage Classification
Stage 3 Stage 4 Stage 5

1 A PBH BUH PBH NA
1 B BUH BUH PBH NA
1 C PBH PBH PBH PBH
1 D PBH PBH PBH PBH
2 A PBH BUH PBH NA
2 B BUH PBH BUH NA
2 C PBH PBH PBH PBH
2 D BUH PBH PBH NA
3 A PBH PBH PBH PBH
3 B BUH PBH BUH NA
3 C PBH BUH PBH NA
3 D BUH BUH BUH BUH
4 A PBH PBH PBH PBH
4 B PBH PBH PBH PBH
4 C PBH PBH PBH PBH
4 D BUH PBH PBH NA
5 A PBH PBH PBH PBH
5 B NA NA NA NA
5 C BUH PBH PBH NA
5 D PBH PBH PBH PBH
6 A PBH PBH PBH PBH
6 B BUH PBH PBH NA
6 C PBH PBH PBH PBH
6 D PBH PBH PBH PBH

Table 3.2: Subject classification into groups based on the difference LLPBH-BUH
between the log-likelihood functions at the estimated parameters’ values for the
PBH model and the BUH model for all specifications (see Appendix B.7). Only the
last 15 periods are used.

PBH model and his performance in the experiment. We’ll show that under some
conditions this correlation is positive.

Next, we rationalize this positive correlation by demonstrating that a profit-maximizing
subject might sometimes be classified as PBH-subject, indicating that the PBH
model might sometimes be more effective in accomodating inefficiency in other
subjects’ behavior. This result relates to two fundamental assumptions that the
equilibrium notion is based on, that is, each subject maximizes his payoff and
correctly predicts other subjects’ behavior. We argue that the PBH model relaxes
both assumptions by introducing small mistakes in payoff maximization as well as
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understanding other subjects’ behavior.

3.9.1 Observation
In this section we focus on finding the sign of the correlation between how well
a subject fit the PBH model and his performance in the experiment, leaving all
explanations for this sign to the next section.

As a measure of how well a subject fits the PBH model, we use the difference be-
tween log-likelihood functions for PBH and BUHmodels in different specifications,
LLPBH-BUH. This measure is especially high for two subjects, subject D in session
5 and subject C in session 6 (see Appendix B.7). We dropped these two outliers.

To control for signal realizations, we include a term which we call IdealProfit. For
each subject, we calculate his Ideal Guess in each period and in each stage. This
guess is based on the theoretical analysis in Theorem 5 and is equal to the average
of all inferred signals:

x1
A = sA, x1

B = sB, x1
C = sC, x1

D = sD,

x2
A =

sA+sD
2 , x2

B =
sA+sB

2 , x2
C =

sB+sC
2 , x2

D =
sC+sD

2 ,

x3
A =

sA+sC+sD
3 , x3

B =
sA+sB+sD

3 , x3
C =

sA+sB+sC
3 , x3

D =
sB+sC+sD

3 ,

x4
i = x5

i =
sA + sB + sC + sD

4
, i = A, B,C,D.

Then we calculate the IdealProfit for each subject in each period:

−

5∑
t=1

��xt
i − θ

�� ,
where xt

i is subject i’s Ideal Guess in stage t. The actual Profit is calculated by the
same formula, with xt

i being the actual guesses.

Table 3.3 shows the regression of the profit each subject gets during the experiment
on howwell a subject fits the PBHmodel. This table uses the following specification:

the Persuasion Bias Hypothesis (PBH) model:
x2

i = λ2si + µ1,2y1
i ,

x3
i = c3λ2si + c3µ1,2y1

i + µ2,3y2
i ,

x4
i = c4c3λ2si + c4c3µ1,2y1

i + c4µ2,3y2
i + µ3,4y3

i ;
(3.11)

the Bayesian Update Hypothesis (BUH) model:
x2

i = λ2si + µ1,2y1
i ,

x3
i = λ3si + µ2,3y2

i ,

x4
i = λ4si + µ3,4y3

i

(3.12)
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Profit Profit Profit Profit
Intercept -444∗ -311

(251) (296)
LLPBH-BUH 4.99 3.24

(4.61) (4.31)
LLPBH-BUH · 1 (LLPBH-BUH > 0) 10.1∗∗ 13.4∗∗

(4.6) (4.7)
LLPBH-BUH · 1 (LLPBH-BUH < 0) -28.5∗∗ -29.5∗∗

(12.6) (12.0)
IdealProfit 1.24∗∗∗ 0.90∗∗∗ 0.93∗∗∗ 1.17∗∗∗

(0.04) (0.19) (0.23) (0.04)
Number of observations 22 22 22 22
Adjusted R2 0.986 0.643 0.489 0.982
Signif. codes: *** 1%, ** 5%, * 10%

Table 3.3: LLPBH-BUH is the difference in log-likelihood functions for (3.11) and
(3.12). Profit sums the actual profit from stages 1,2,3 and 4. IdealProfit sums the
profit based on Ideal Guesses from stages 1,2,3 and 4. Only the last 15 periods are
used. One data point corresponds to one subject. Two subjects are dropped: subject
D in session 5 and subject C in session 6.

to calculate LLPBH-BUH and therefore it ignores the behavior on the last stage. Table
3.3 demonstrates the main conclusion of this section:

1. when LLPBH-BUH > 0, the correlation between LLPBH-BUH and Profit is posi-
tive;

2. when LLPBH-BUH > 0, the correlation between LLPBH-BUH and Profit is neg-
ative.

Indeed, this is clear from the first two columns (the second column adds an intercept
to the regression). The other two columns forces a linear regression with respect to
LLPBH-BUH, which leads to a positive but insignificant coefficient for LLPBH-BUH.

Appendix B.8 lists similar regressions for other specifications of the PBH and the
BUH models (varying the number of stages and the error structure) as well as
other definitions of the performance measure (varying how many stages are used to
calculate the profit). In general, across all specifications,

1. term LLPBH-BUH · 1 (LLPBH-BUH > 0) has either significantly positive effect or
an insignificant effect (p-value > 10%) on the profit,
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2. term LLPBH-BUH · 1 (LLPBH-BUH < 0) has either significantly negative effect
or an insignificant effect (p-value > 10%) on the profit.

3.9.2 Explanation

Session Subject Classification
based on Ideal Guess
Stage 3 Stage 4

1 A PBH PBH
1 B BUH BUH
1 C BUH BUH
1 D NA NA
2 A NA NA
2 B PBH BUH
2 C PBH PBH
2 D BUH PBH
3 A BUH BUH
3 B NA NA
3 C BUH BUH
3 D BUH PBH
4 A BUH PBH
4 B BUH PBH
4 C BUH BUH
4 D NA NA
5 A BUH BUH
5 B BUH BUH
5 C BUH BUH
5 D BUH BUH
6 A PBH BUH
6 B BUH PBH
6 C BUH PBH
6 D BUH PBH

Table 3.4: Subject classification into groups based on the difference LLPBH-BUH
between the log-likelihood functions at the estimated parameters’ values for the
PBH model and the BUH model for all specifications (see Appendix B.9). Only the
last 15 periods are used.

In the previous section we gave some evidence that the superior performance of the
PBH model has a more deep explanation than just appealing to the simplicity of the
PBH rule. To investigate this idea, we perform the same analysis as in Sections 3.7
and 3.8 but now using subject i’s Ideal Guess in stage t instead of the actual guess
xt

i . That will show which model is better if each subject behaved optimally, given
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the other subjects’ behavior is fixed.

Estimating (3.7) and (3.8), we get a significantly better fit for the persuasion bias
model. Going through all robustness checks, we get that all specifications but one
rank the PBH model as a better model than the BUH model (see Appendix B.9).

Table 3.4 is the analog of Table 3.2, but now this classification is based on Ideal
Guesses, not the actual guesses. We omit stage 5 since the PBH model has an
automatic advantage in this stage: when working with Ideal Guesses, x5

i = x4
i by

construction. Table 3.4 shows that the BUH model is better, especially for stage
3. Specifically, 9 out of 24 subjects fit the BUH model better in both stages 3
and 4, while only 2 subjects fit the PBH model better. Out of the rest, 7 subjects
follow the BUH model in stage 3 and they follow the PBH model in stage 4. Other
subjects either follow the PBH model in stage 3 and the BUH model in stage 4 (2
subjects) or are left unclassified (4 subjects). This indicates that it is pooling that
gives an advantage to the PBH model. In light of that, we grouped subjects based
on their individual classifications and compared the models for each group. This
grouped-based pooling supports the individual classification (see Appendix B.9).

Thus, based on the ideal guesses,

1. most subjects fit the BUH model, especially in stage 3, but

2. some subjects demonstrate the advantage of the PBH model.

The first observation is not surprising, given that the BUHmodel serves as a rational
benchmark. What is interesting is that the PBH model is sometimes better than the
BUH model even when a subject behaves optimally. This indicates that the PBH
model superior performance phenomenon could be partly explained by some kind
of rational reasoning.

To explore this reasoning even further, we run the following two regressions:

LLreal
PBH-BUH = α0 + α1LLideal

PBH-BUH,

LLreal
PBH-BUH = β0 + β1LLideal

PBH-BUH · 1
(
LLideal

PBH-BUH > 0
)

+ β2LLideal
PBH-BUH · 1

(
LLideal

PBH-BUH < 0
)
,

where LLreal
PBH-BUH is the difference in log-likelihood functions for two models based

on the actual data, while LLideal
PBH-BUH is the difference in log-likelihood functions for
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two models based on the data where Ideal Guesses are used instead of the actual
guesses xt

i .

LLreal
PBH-BUH LLreal

PBH-BUH
Intercept 5.12∗∗ -0.35

(2.15) (2.86)
LLideal

PBH-BUH 0.16
(0.10)

LLideal
PBH-BUH · 1

(
LLideal

PBH-BUH > 0
)

0.54∗∗∗

(0.17)
LLideal

PBH-BUH · 1
(
LLideal

PBH-BUH < 0
)

-0.14
(0.15)

Number of observations 22 22
Adjusted R2 0.07 0.27
Signif. codes: *** 1%, ** 5%, * 10%

Table 3.5: LLPBH-BUH is the difference in log-likelihood functions for (3.11) and
(3.12). Only the last 15 periods are used. One data point corresponds to one subject.
Two subjects are dropped: subject D in session 5 and subject C in session 6.

Based on estimation of (3.11) and (3.12), we get positive but insignificantα1, positive
and significant β1, negative and insignificant β2 (see Table 3.5). Appendix B.10
verifies this result for all other specifications and shows that

1. α1 is usually positive across different specifications, but always insignificant;

2. β1 is positive and sometimes significant.

Positive α1 implies that there is a positive correlation between how well a subject
fits the PBH model and how well he should have fitted the PBH model if he had
been maximizing his profit. However, this effect is insignificant, so we cannot
say that such a correlation exists. Nevertheless, once we restrict the sample to the
subjects that should have fitted the PBH model better than the BUH model (i.e.,
LLideal

PBH-BUH > 0), this correlation becomes not only positive but also significant in
many specifications. That means that in the environment where the PBH model is
more efficient than the BUH model, subjects tend to detect this feature and take it
into account in their strategy.

Intuitively, subjects that use the PBH model correct their neighbors’ mistakes by
relying more on their own previous guesses. In other words, the optimal behavior
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must adapt to other players’ mistakes, and the PBH model captures this adaptation.
More precisely, each subject faces a tradeoff between relying on his neighbor’s last
guess efficiency as ideally the optimal thing to do and hedging with his own last
guess against his neighbor’s nonoptimal behavior. Depending on how rational the
neighbor is, this tradeoff can be optimally resolved in favor of one or the other
model.

Moreover, Table 3.4 shows that in the earlier stages, it is easier to be more rational:
for most subjects, the BUHmodel leads to a better performance in stage 3. However,
in the later stages, when calculating the optimal guess is harder, PBH-type behavior
has a higher profit.

3.10 Conclusion
We tested the persuasion bias hypothesis against a Bayesian updating model in a
5-stage game with a 4-person circle network. In the horse race of two models,
the persuasion bias hypothesis model gets stronger support. Moreover, the PBH
model might even be more optimal than the BUH model in practice. Intuitively,
the PBH model is more robust to non-optimality in others’ behavior. Ideally, a
subject wants to guess an average of t signals. The BUH model logic heavily relies
on the assumption that the neighbor can optimally form the best guess each time.
So, a BUH-subject ignores his own guess in the previous stage and adjusts his
neighbor’s guess by taking into account the private signal. In other words, he treats
his neighbor’s guess as a sufficient statistic for t − 1 signals, while his own private
information is a sufficient statistic for 1 signal. In contrast, a PBH-subject adjusts
his own guess every time he forms a new guess. Thus, he treats his neighbor’s guess
as a source for 1 new signal, while his own private information is a sufficient statistic
for t − 1 signal.

In this paper we chose a directed circle network and the normal distribution. Both
elements are essential for a rational model predicting that updated beliefs should
be a linear function of available information (Assumption 2). A more complicated
network and / or different distribution might lead to a non-linear prediction by
Bayesian Nash equilibrium. This might be a potential source for an identification
argument for testing the generalized DeGroot model. Our approach however has the
advantage of being more robust to model misspecifications, inheriting this feature
from linear econometric models.

In light of our conjecture about the rationality of some deviations from the Bayesian
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Nash equilibrium, we propose the following modification of our experiment. In
stage 3, each subject is asked to report what he thinks his neighbor’s neighbor signal
was. In stage 4 and 5, each subject should say what he thinks about all the subjects’
signals. This additional information would allow us to go beyond the two models
we consider in this paper and study the updating process more closely. We leave the
running of such an experiment for future research.
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C h a p t e r 4

IMPLICATIONS OF OVERCONFIDENCE ON INFORMATION
INVESTMENT

4.1 Introduction
Overconfidence is awell documented behavioral bias bywhich an individual believes
to have better information or perform at a task better than he actually does. On the
other hand, a large body of literature has focused on understanding the decision
to invest in information made by purely rational agents. This issue is relevant to
several applications, such as bench trials, where a judge decides how much effort he
is going to spend to collect information relevant to the case. Whether the results of
this last strand of literature remain valid when agents are overconfident is an open
question.

Moore and Healy (2008) classify overconfidence into three categories: overestima-
tion, overplacement and overprecision. Overestimation and overplacement refer to
cases where an individual thinks he has performed in a task better than he actually
did or better than others, respectively. Overprecision is the case when an individual
believes her information is more precise than it actually is. This paper deals with
overprecision, the most prevalent and the least reversed phenomenon of the three
(Ortoleva and Snowberg (2015), Benoît and Dubra (2011), and Moore and Healy
(2008)). In the reminder of the paper we refer to the overprecision-type bias as
overconfidence.

The leading example we are using in this paper is about a judge who must decide
whether to convict or acquit a defendant who can be either innocent or guilty. In
this example, what the judge decides affects not only the judge but a lot of people,
the defendant including. If we take the society as a whole, it cares about the quality
of the verdict, that is, it wants to acquit innocent and convict guilty defendant. The
question we address is how overconfidence in the judge’s perception of information
affects the probability that he reaches the correct verdict.

According to Moore and Healy (2008)’s informal definition, overconfidence is the
“excessive precision in one’s beliefs.” In general, there are two types of beliefs
— prior and posterior. Suppose the overconfidence occurs in the prior belief. For
example, the judge thinks he knows a lot about the case while he actually knows
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less. Then his incentive to acquire additional information is lower than it should be.
So, the overconfidence in the prior belief leads to the lower quality of the verdict.

Now suppose the overconfidence occurs in the posterior belief. By definition, the
posterior belief is the updated belief after acquiring information. So, the overcon-
fidence in posterior means the excessive precision of that information. If the judge
thinks he gets information of higher quality, his incentives to acquire that informa-
tion is higher. This means that the overconfidence in the information quality leads
to the higher quality of the verdict.

Note that the notion of prior and posterior is relative, since today’s posterior becomes
tomorrow’s prior. In this paper we assume that the judge starts with a uniform prior
and consider a dynamic model of information collection. We model overconfidence
as the distortion in the perceived precision of information flow.1 With this model,
we argue that the total effect that overconfidence has on the probability of the judge
reaching the correct decision depends on the nature of the information collection
process. More specifically, it depends on how much control the judge has over the
amount of information he collects.

First, suppose an unbiased judge chooses whether to collect information or not,
that is the information investment choice space is binary. For example, he decides
whether to hold the trial or announce the verdict right away. Then overestimating
the quality of information (or equivalently, the ability to perceive information) leads
to higher willingness to pay for that information. This means that overconfidence
has a positive effect on the probability of the correct verdict.

Now suppose the judge can decide how much information to collect. For example,
he decides on the length of the trial. Then the effect of overconfidence can be
either positive or negative, depending on how much a rational judge would invest
in information. If the rational judge invests very little (he holds a very short trial),
then overconfidence increases information investment. On the other hand, if the
rational judge invests a lot, overconfidence has the opposite effect. In general,
the effect is shaped by two forces. The first is the only active force in the binary
investment choice scenario. It comes from increasing the marginal benefit from
each hour of trial. The second force comes from increasing the total benefit from
a fixed investment. When the rational judge’s investment is high, the second force

1Perceiving information as beingmore precise than it actually is can be seen as a sign of excessive
gullibility of the judge. In a static model, this phenomenon is the opposite of the most common
formalization of overconfidence as overprecision of the prior. In a dynamic model, however, this is
no longer an issue due to prior and posterior being relative notions.
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prevails. Moreover, we show that there is an optimal level of belief distortion (either
to over-precision or to under-precision) that maximizes the probability of the correct
decision by balancing the two forces. This optimal level is higher when the judge
does not care too much about choosing the correct sentence.

Finally, suppose the judge can decide how much information to collect dynamically.
In contrast to the previous scenario, the judge does not have to decide upfront how
long the trial would be and can stop the trial at anymoment in time. In this setting we
find the effect of overconfidence to be detrimental to the quality of the judgment. The
dynamic nature of information collection in this scenario introduces a third force that
pushes investment down. This third force describes an excessive sensitivity to the
noise in information flow. By overestimating the quality of information, the judge
treats unexpected noise as a meaningful signal and therefore his belief about the
defendant’s innocence reaches his desired standard of proof threshold belief sooner
than he (ex ante) expects. It turns out that under the assumptions of a normally
distributed information flow and of a symmetric payoff, the net effect from all three
forces is negative, meaning that having an underconfident judge is always better for
the quality of the judgement. Intuitively, when the second force is weak, that is,
when the accumulated information is low, the judge is very sensitive to noise, which
makes the third force strong.

We can look at the forces from the prior-posterior perspective at a given moment
in time. The first force corresponds to having excessive precision in posterior, as it
comes from increasing the precision of information the decision maker is about to
collect. The other two forces come from excessive precision in prior, as they both
come from overestimating the quality of information already collected.

The rest of the paper is organized as follows. Section 4.3 gives a general setup, leav-
ing aside the question of how the judge collects information. Section 4.4 introduces
the dynamic information collection scenario and present all three forces. Section 4.5
elaborates on the nature of these forces by requiring the judge to commit in advance
to the amount of information he is going to collect. This requirement essentially
makes the model static. Under the commitment restriction, we generalize the model
presented in Section 4.4 by relaxing distributional assumptions and demonstrate the
first and the second forces in this general setup.
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4.2 Related Literature
The overconfidence phenomenon has been studied in many settings, including (but
not limited to) financial markets (Scheinkman and Xiong (2003)), medicine (Berner
and Graber (2008)), war (Johnson (2009)), political behavior (Ortoleva and Snow-
berg (2015)). Much evidence that people are prone to overconfidence has been
documented in literature. Barber and Odean (2001), Chuang and Lee (2006), and
Goetzmann and Huang (2015) found empirical support for overconfidence in fi-
nancial environments. One of the earliest studies, Oskamp (1965), experimentally
demonstrates overconfidence among actual judges when they are presented with
information about published cases. Klayman, Soll, González-Vallejo, and Barlas
(1999) and Soll and Klayman (2004) provide more recent experimental evidence
for judges’ overconfidence. Using actual data on bail decisions made by judges in
New York City between 2008 and 2013, Kleinberg, Lakkaraju, Leskovec, Ludwig,
and Mullainathan (2017) show that judges appear to “respond to ‘noise’ as if it
were signal.” From the perspective of Moore and Healy (2008)’s classification of
overconfidence, this observation can be interpreted as overprecision. By mixing the
actual signal with noise, judges are effectively boosting the perceived precision of
all incoming information as a whole.

An alternative way to model overconfidence as misperception of the quality of
information is through correlation neglect. Ortoleva and Snowberg (2015) find
theoretically and verify empirically that overconfidence (modeled as correlation ne-
glect) leads to ideological extremeness, increased voter turnout and stronger partisan
identification. Levy and Razin (2013) focus on information aggregation, as opposed
to information investment, and find conditions under which correlation neglect can
lead to increased information aggregation. In contrast Glaeser and Sunstein (2009)
study a “credulous Bayesian" that neglects correlation in a context where there is
no cost of information acquisition and find overconfidence to be detrimental to in-
formation aggregation. We depart from these studies in modeling overconfidence
as a misperception of the precision parameter.2 In contrast to correlation neglect,
misperception of the precision can potentially occur in any setting, even if there is
actually no correlation in the incoming information (conditional on the true state).
In fact, we mostly focus on that case in this paper, though Section 4.5 presents more
general results as well.

2Dubra (2004) defines overconfidence as an optimistic bias in prior beliefs. This interpretation
of overconfidence is orthogonal to a more popular definition of overconfidence as underestimating
the volatility (Alpert and Raiffa (1982)). We used the latter one.
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Our discussion about an overconfident judge can also be applied to a jury room,
where a juror misperceives the quality of her own information. This relates our
paper to the literature studying information acquisition or investment by committees.
Martinelli (2006) considers a setup when each committee member chooses how
much to invest in the precision of a binary signal when costs are convex. This setup
is very similar to our model in Section 4.5. Chan, Lizzeri, Suen, and Yariv (2017)
work with a dynamic setup that are close to our model in Section 4.4. All papers
assume that the jurors are rational.

Scheinkman and Xiong (2003) explain speculative bubbles using overconfidence.
Overconfidence as misperception of information quality generates disagreement
about fundamentals which results in a price bubble. They model overconfidence
in a way similar to our model in Section 4.4. However, they did not allow for the
agents to choose whether to observe information flow or not.

4.3 Setup
Consider a single decisionmaker who has to decide between two actions. The payoff
from these actions depends on the true state of the world. For example, suppose this
decision maker is a judge who decides whether to acquit (v = A) or convict (v = C)
a defendant. The defendant might be either innocent (z = I) or guilty (z = G). In
this case z plays the role of the true state of the world.

We assume the decision maker gets a payoff u(v, z) from action v ∈ {A,C} if the
true state is z ∈ {I,G}. At the beginning, the decision maker has some prior beliefs
about the true state, p0 = IP (z = I). Given belief p, his expected utility from action
v is U(v, p) = pu(v, I) + (1 − p)u(v,G).

Naturally, we assume that when the defendant is innocent, it is better to acquit her,
and when she is guilty, it is better to convict her. Moreover, for simplicity, we focus
on the symmetric case, where the judge gets utility R from the incorrect verdict and
utility Q + R, Q > 0, from the correct verdict. Formally,

Assumption 3
u(A, I) = u(C,G) > u(C, I) = u(A,G).

Denote

Q = u(A, I) − u(C, I) = u(C,G) − u(A,G) > 0, R = u(C, I) = u(A,G).
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Then

max
v∈{A,C}

U(v, p) =


pQ + R, p ≥ 1
2,

(1 − p)Q + R, p ≤ 1
2 .

Before deciding on the action, the decision maker can collect more information
about the true state. For simplicity, we restrict our analysis to a symmetric case
when the decision maker has no initial bias in his belief:

Assumption 4 (Uniform prior belief) p0 = 0.5.

4.4 Dynamic Model
The decision maker collects information by observing the change in a Brownian
motion process with state-dependent drift:

dXt = µzdt + σdWt, µz =


1, if z = I,

−1, if z = G.
(4.1)

where Wt is the standard Wiener process.

Information collection is costly. In a dynamic setting, we can differentiate two types
of costs, attention cost and time cost. The time cost is formalized through a discount
factor δ ≥ 0. For simplicity, we focus on the no-discounting case here (δ = 0).
Appendix C.5 shows that the case δ > 0 leads to the same conclusions.

The attention cost is proportional to the amount of time the decision maker spends
on the information collection. Formally, the decision maker chooses a stopping time
τ ≥ 0 (which is path-dependent, that is, whether or not the decision maker stops by
t depends on Xt) and, upon stopping, a verdict v ∈ {A,C} (which depends on Xτ).
The utility he eventually gets is equal to u(v, z) − κτ, where κ > 0 is a parameter of
the model.

The problem the decision maker faces is called an optimal stopping problem. It has
already been studied in the literature, so we can take the solution off-the-shelf:

Theorem 7 (Shiryaev (2007), Chapter 4, Theorem 5, p.185) The optimal strategy
exists and is given by

τ = inf {t ≥ 0: pt < (λ, 1 − λ)} , v =


A, pτ ≥ 1 − λ,

C, pτ ≤ λ.
(4.2)
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where pt is the belief that the true state is I at time t. Threshold λ ∈ (0, 0.5) is
uniquely defined by

1 − 2λ
2λ(1 − λ)

− log
(

λ

1 − λ

)
=

Q
κσ2 . (4.3)

For completeness, we include the proof in Appendix C.1.

When observing (4.1), the decision maker updates his belief about the state3

pt = IP [z = I | Xt] =
1

1 + e−
2Xt
σ2

, (4.4)

which is equivalent to

Xt =
σ2

2
log

(
pt

1 − pt

)
. (4.5)

So, another way to write the optimal strategy (4.2) is

τ = inf {t ≥ 0: Xt < (−χ, χ)} , v =


A, Xτ ≥ χ,

C, Xτ ≤ −χ.
(4.6)

where χ = σ2

2 log
(

1−λ
λ

)
> 0. The advantage of this representation is that it expresses

the strategy in terms of an external (observable) variable Xt and not in terms of a
mental quantity which is the decision maker’s belief. This distinction is important
to us since overconfidence introduces a distortion in the belief updating rule, so that
an overconfident person would form a different belief than a rational one, given the
same observed process Xt .

Definition 2 An η-type decision maker updates his belief according to

pt =
1

1 + e−
2Xtη
σ2

(4.7)

while observing
dXt = µzdt + σdWt . (4.8)

In other words, the η-type decision maker believes the variance is η times lower
than it actually is. Parameter η captures the level of overconfidence, with η = 1
corresponding to the rational case. Thus, the η-type decision maker is overcon-
fident when η > 1 and he is underconfident (he underestimates the precision of
information) when η < 1.

3We assume X0 = 0.
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Given the observed process (4.8) and the strategy (4.6) with a fixed χ > 0, the
probability of the correct decision (the probability of acquittal if the defendant is
innocent and of conviction if the defendant is guilty) is

IP ©­«v =


A, z = I

C, z = G

ª®¬ = IP [v = A | z = I] = IP [v = C | z = G] =
1

1 + e−
2χ
σ2

. (4.9)

Indeed, this probability is equal to the probability that the decision is correct at the
time when this decision is made.

Consider the η-type decision maker. His optimal strategy is (4.6) with threshold
χ = X

(
σ2

η

)
, where

X

(
σ2

)
=
σ2

2
log

(
1 − λ

(
σ2)

λ
(
σ2) )

, (4.10)

where λ
(
σ2) ∈ (0, 0.5) is the solution to (4.3).

Note that the probability of the correct decision (4.9) is increasing in the threshold χ.
Theorem 8 states that the higher the overconfidence level η, the lower the probability
of the correct decision.

Theorem 8 X
(
σ2) defined by (4.10) is increasing in σ2.

Intuitively, the expression χ = σ2

2 log
(

1−λ
λ

)
shows that increasingσ2 has two effects

on χ. The direct effect increases χ. This effect comes from the attempt to keep
the same standard of proof by collecting more information that is less precise. The
indirect effect decreases χ through λ (λ is increasing in σ2). This effect comes from
the attempt to keep the same total cost of information by lowering the standard of
proof 1 − λ. Theorem 8 states that the first effect always dominates the second.4

While being explicitly connected to the formula forX
(
σ2) , these two effects give an

ambiguous prediction for the expected stopping time. On the one hand, increasing
χ without changing the variance increases the expected stopping time. On the
other hand, increasing the variance without changing the threshold decreases the
expected stopping time. Thus, if the variance is actually changing, the first effect has
an unclear prediction for whether the expected stopping time increases or decreases.
If the variance is not actually changing, yet the decision maker thinks it increases,
the second effect decreases the stopping time by lowering the perceived standard

4This result is not robust to relaxing Assumption 3, see Appendix C.6.
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of proof and increases it by not updating aggressively enough. This distinction
is important for us because it illuminates a commitment aspect of the information
collection problem.

Suppose the decision maker has to decide ex ante when to stop information collec-
tion, that is, he has to commit on the stopping time τ at time t = 0. Then there
are two forces that shape the overall effect on τ from increasing σ2. The first force
comes from decreasing the benefit of the marginal information piece dXt and there-
fore it lowers τ. The second force comes from decreasing the benefit of information
already collected, Xt , and therefore it increases τ. Once we drop the commitment
restriction, another force arises. This third force captures the discrepancy between
what the decision maker expects to see (information flow with a high variance)
and what he actually observes (information flow with a low variance). Though not
changing his perception of the variance once observing Xt , the decision maker bases
his stopping decision on the low variance information flow. Thus, the third force
increases τ since the decision maker does not update enough thinking he observes
more noise than he actually does.

We elaborate on the commitment model and the first two forces in the next section.
We conclude this section by expanding the intuition for the third force.

Suppose that at time t = 0 the decisionmaker commits to stop collecting information
at a certain time τ. The commitment prevents the decision maker to collect more
information when |Xτ | is too small (which corresponds to low standard of proof).
It also prevents him from stopping the information collection process earlier when
|Xτ | is too large (high standard of proof). The optimal τ balances out these two
events based on distribution Xτ. An η-type decision maker expects to observe
µzτ +

σ√
η
Wτ distributed as N

(
µzτ,

σ2

η

)
, while he actually observes µzτ + σWτ

distributed asN
(
µzτ, σ

2) . Thus, the η-type decision maker, η > 1, underestimates
the probability |Xτ | being large. In other words, the η-type decision maker wants
to stop the information collection before the committed stopping time with higher
probability than he believes at t = 0. Thus, in the absence of commitment the η-type
decision maker stops sooner. This effect is captured by the third force.

4.5 General Static Model
The decision maker collects information by acquiring a signal S ∈ S that has state-
dependent distribution Fz(·). Upon observing S = s, the optimal verdict is v = A

if dFI(s) > dFG(s) and v = C otherwise. Denote set SA = {s : dFI(s) > dFG(s)}
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all realizations of S that leads to an acquittal decision. Similarly, denote SC =

{s : dFI(s) < dFG(s)} all realizations of S that leads to conviction. We assume that
the measure of S \ (SA ∪ SC) is zero under any state, so that the decision maker is
(almost) never indifferent between the two verdicts. Denote pz,v = IP [S ∈ Sv | z] the
probability of making the decision v ∈ {A,C}, given state z. Then the probability of
the correct decision is 1

2
(
pI,A + pG,C

)
and therefore the expected utility from signal

S is 1
2
(
pI,A + pG,C

)
Q + R. When the decision maker does not use the signal, his

expected utility is Q
2 + R. Thus, the quality of signal S can be summarized by

1
2

(
pI,A + pG,C

)
−

1
2
.

We assume that the decision maker can increase the quality by paying more for the
signal. Formally, the quality of the signal is an increasing function of cost, h(c).
Thus, the expected utility is (

1
2
+ h(c)

)
Q + R − c

and the decision maker chooses cost c > 0. The first order condition is

h′(c)Q = 1. (4.11)

To guarantee that the solution to (4.11) exists, is unique and maximizes the expected
utility, we assume

Assumption 5 h : (0,+∞) →
[
0, 1

2
]
is such that h(0) = 0, lim

c→0
h′(c) = +∞,

lim
c→+∞

h′(c) = 0, h′′(c) < 0.

Given that general model, we impose the following definition of overconfidence:

Definition 3 An η-type decision maker perceives the quality of the signal being
h(ηc) while paying c.

Consider the η-type decision maker. His expected utility from signal S is(
1
2
+ h (ηc)

)
Q + R − c. (4.12)

Example (Normal distribution) When S ≡ Xt ∼ N
(
µzt, σ2t

)
, its quality is equal

to f
(

t
σ2

)
, where

f (ρ) =
1
√
π

√
ρ
2∫

0

e−x2
dx. (4.13)



84

Figure 4.1: Function f (ρ) = 1√
π

√
ρ
2∫

0
e−x2

dx and its derivative.

Then a linear cost function c(t) = κ · t implies h(c) = f
(

c
κσ2

)
. Figure 4.1 shows

that h(c) satisfies Assumption 5. Moreover, it is easy to see that Definition 3 is the
analog of Definition 2 for the static case.

Optimizing (4.12) over c > 0, we get

c > 0: ηh′ (ηc)Q = 1. (4.14)

Treating the solution to (4.14) as a function of the overconfidence level η, we have

c′(η) = −
h′ (ηc) + ηch′′ (ηc)

η2h′′ (ηc)
. (4.15)

A higher c means higher probability of the correct decision, 1
2+h(c). As we increase

the level of overconfidence η, c increases if and only if h′ (ηc)+ηch′′ (ηc) is positive.
From Assumption 5, h′ (ηc) is always positive, while ηch′′ (ηc) is always negative.
The term h′ (ηc) corresponds to the first force: higher effective cost ηc increases the
quality of the signal because h is increasing. The term ηch′′ (ηc) corresponds to the
second force: higher effective cost ηc decreases the marginal benefit of information
because h′ is decreasing.

The total effect is captured by the behavior of function xh′(x), which derivative is
equal to h′(x) + xh′′(x). If it increases at point x = ηc(η), then increasing the level
of overconfidence makes the final decision better. If it decreases, the final decision
becomes worse with increased overconfidence.

Note the interpretation of xh′(x), x = ηc, as the marginal benefit of information.
The first x corresponds to the first force, which increases function xh′(x) as we
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increase x through the level of overconfidence η. The second x corresponds to the
second force, which decreases function xh′(x).

Withoutmaking any additional assumptions, it is hard to saymore about the behavior
of c(η). One interesting special case is when the following assumptions holds:

Assumption 6 There exists ĉ > 0 such that ch′(c) increases for c < ĉ and it
decreases for c > ĉ.

This assumption says that when the amount of collected information is below some
threshold, the second force is weaker than the first force, and vice versa. Recall that
the second force comes from changing the benefit of already collected information.
As we increase the amount of collected information is small, this force becomes
stronger. On the other hand, the first force comes from changing the benefit of
the marginal information piece and therefore it depends on the amount of collected
information only through the non-stationary properties of the information flow.
Assumption 6 says that the information flow is stationary enough to make sure that
there is a unique threshold such that the second force prevails if and only if the
amount of collected information is above that threshold.

Under Assumption 6, we can prove that there exists a unique optimal level of
overconfidence η∗ (which can be less than 1, which corresponds to underconfidence)
such that more overconfidence is good below that level and it is bad for all η above
η∗. Formally:

Theorem 9 The probability of choosing the correct action is increasing in η ∈
(0, η∗) and it is decreasing in η ∈ (η∗,+∞), where η∗ = 1

Qh′(ĉ) .

Example (Normal distribution) When S ≡ Xt ∼ N
(
µzt, σ2t

)
, function ch′(c) =

c
κσ2 f ′

(
c
κσ2

)
satisfies Assumption 6 (see Figure 4.2).

Here is an example where Assumption 6 is violated.

Example (Binarydistribution) Suppose S ∈ {I,G}, P [S = I | z = I] = P [S = G | z = G] ≥
1
2 . Then its quality h = P [S = z | z] − 1

2 . This means that the binary distribution
does not imply any specific form of function h(c).

1. Suppose the agent payment is some decreasing function of the variance of the
randomvariable1 (S = z), for example, c = − log (4P [S = z | z] (1 − P [S = z | z])),
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Figure 4.2: Function ρ f ′(ρ) = e−
ρ
2
√
ρ

2
√

2π
defines how the marginal benefit of informa-

tion changes with the level of overconfidence under normal distribution assumption.

κ > 0. Then h(c) = P [S = z | z] − 1
2 =

1
2
√

1 − e−c satisfies both Assumptions
5 and 6.

2. Function h(c) =
(
2c + 1

c sin(c)
) 1

4
−1 satisfiesAssumption 5 but not Assumption

6. See Figure 4.3.

Figure 4.3: Functions h′(c) and ch′(c), where h(c) =
(
2c + 1

c sin(c)
) 1

4
− 1.
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Note that the optimal level of overconfidence is decreasing in Q. This means that
overconfidence is bad when the benefit from choosing the correct action is high.
Intuitively, when the benefit from choosing the correct action is very low, the rational
agent collects very little information. A distortion in his incentives by increasing the
perceived quality of information always has a positive effect. Indeed, an increase
in the quality of already collected information (the second force) does not have a
large effect since the amount of this information is small. So, overconfidence is
good for low Q. On the other hand, when the benefit from choosing the correct
action is very high, the rational agent collects a lot of information. This means that
the second force has a lot of power as it works with a large amount of information.
Consequently, overconfidence is bad in this case.

At the end of this section we give an example of a model when only the first force
is active.

4.5.1 Binary Information Acquisition Decision
Suppose the decision maker can choose only between two values, c ∈ {0, c̄}. This
describes the situation when the agent simply has to decide whether to acquire
information or not. In this case the optimality condition (4.14) should be changed
to

c = c̄ ⇔ h(ηc̄)Q > c̄. (4.16)

Definition 4 The maximum cost the decision maker is ready to pay for the signal is
called the willingness to pay.

Given condition (4.16) and Assumption 5, the willingness to pay is equal to

c > 0: h(ηc)Q = c, ηh′(ηc)Q < 1. (4.17)

Treating the solution to (4.17) as a function of the overconfidence level η, we have
c′(η) > 0.

Theorem 10 The willingness to pay is increasing in η.

In this model, there is no “already collected information” since the choice is binary,
either buy the signal or not. Thus, the second force is absent here and Theorem 10
result is driven by the first force.
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4.6 Conclusion
We presented three forces that shape the effect that overconfidence has on the
quality of the final decision, or equivalently, on the amount of information collected
in equilibrium. Two aspects of the information collection process are crucial to
understand the effect that misperception of information quality has on information
investment in a particular scenario. First, whether the information investment choice
space is binary (collect or not) or continuous (how much to collect). In the latter
case, there is a trade-off between increased quality of already collected information,
which pushes the overconfident agent to collect less information, and increased
quality of the marginal piece of information, which pushes him to collect more
information. Second, if the information investment choice is continuous, whether
information has been collected all at once or not. In the latter case, misperception
of information quality creates a systematic bias between how much information the
decisionmaker expects to collect and howmuch information he actually collects. An
overconfident agent overestimates the expected amount of information he is going
to collect in the future.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

A.1 Proof of Theorem 1.
Lemma 4 gives sufficient conditions for a function to be equal toV (a)[p1]. Moreover,
it provides an algorithm to construct an optimal a-type strategy from V (a)[p1] for
any p1.

Lemma 4 If function V : [0, 1] → R is such that there exists a set of a finite number
of points S ⊂ [0, 1] such that

1. V[1] = u1[a1], V[0] = u2[a2],

2. V is continuous everywhere; moreover, it is continuously differentiable every-
where except at points S,

3. for all p1 ∈ (0, 1) \ S,

min
{
L1[p1],L2[p1],V[p1] −U(a)[p1]

}
= 0, (A.1)

where

U(a)[p1] =


u1[a]p1 + u2[a](1 − p1), 0 < p1 < 1,

u1[a1], p1 = 1,

u2[a2], p1 = 0,

(A.2)

L1[p1] =
c1
λ1p1

+ V ′[p1](1 − p1) − (u1[a1] − V[p1]) , (A.3)

L2[p1] =
c2

λ2(1 − p1)
− V ′[p1]p1 − (u2[a2] − V[p1]) , (A.4)

4. there exists an a-type strategy (aF,T∗, τ∗) such that1

a) it is Markovian,
1The optimal strategy is Markovian, that is, the optimal choice of the information source at

any given time depends only on the beliefs at this point in time. More precisely, it depends on the
initial beliefs and the signals observed so far only through the current beliefs. Abusing notations,
strategy (aF,T∗, τ∗) is defined as a plan of actions for every belief p1 ∈ [0, 1]. Strictly speaking, I
need to define a strategy for each p1 ∈ [0, 1] separately. Markovian property makes two definitions
equivalent.
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b) the stopping time τ∗ is almost surely finite and whenever the state is
revealed, the agent stops the information collection process,

c) any trajectory of beliefs (aF,T∗, τ∗) can generate (for any initial belief
and any realization of signals) does not spend any nontrivial time (that
is the time period of non-zero length) on set S,

d) the following conditions hold:

dT∗t,1 > 0, t < τ∗ ⇒ L1[pt,1] = 0, (A.5)

dT∗t,2 > 0, t < τ∗ ⇒ L2[pt,1] = 0, (A.6)

V[pτ∗,1] = U(a)[pτ∗,1], (A.7)

then for any initial belief p1,

1. V[p1] = V (a)[p1],

2. (aF,T∗, τ∗) is the optimal a-type strategy.

Lemma 4 is not constructive, it can only be used to check whether a given function
is indeed equal to V (a)[p1]. Boundary conditions V[1] = u1[a1] and V[0] = u2[a2]

follow immediately from the definition (2.5). For example, when p1 = 1, the
true state is 1 and therefore no additional information is needed to choose the best
alternative, which is a1. Equation (A.1) describes the first order condition for the
optimization problem (2.5).2 When the agent believes the state is 1 with probability
p1 and he pays attention to source 1, his expected payoff is changing according to the
differential equation L1[p1] = 0. This action is optimal if and only if L2[p2] ≥ 0
and V[p1] ≥ U(a)[p1]. Similarly for source 2. When the agent believes the state is
1 with probability p1 and he chooses to stop the information collection process, his
expected payoff is equal to the expected payoff from choosing aF defined by (2.4):

V[p1] = U(a)[p1] = IE
[
u j

[
a1

(
pτ,1 ∈ (0, 1)

)
+ a11

(
pτ,1 = 1

)
+ a21

(
pτ,1 = 0

) ]
| p1

]
.

Conditional on the restriction (2.4), this choice is optimal if and only if L1[p1] ≥ 0
and L2[p2] ≥ 0. Lemma 4 says that if a function V[p1] satisfies the boundary
conditions and the first order conditions, and there exists a strategy (aF,T∗, τ∗)

such that the expected payoff from this strategy is equal to V[p1], then the strategy
(aF,T∗, τ∗) is the optimal a-type strategy.

2Equation (A.1) is called the Hamilton-Jacobi-Bellman equation.
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Proof of Lemma 4 Using the Bayes formula, we have

dpt,1 = −λ1pt,1(1 − pt,1)dTt,1 + λ2pt,1(1 − pt,1)dTt,2 + (1 − pt,1)dX (1)Tt,1
− pt,1dX (2)Tt,2

.

Take any a-type strategy (aF,T, τ) and any initial belief p0,1 ∈ (0, 1). Let {pt,1}t≥0 be
the realization of the belief process, given that the agent follows strategy (aF,T, τ)

and has initial belief p0,1. Suppose that after observing a positive signal, the agent
stops the information collection process: if t < τ, then no positive signals have
been observed so far. Let τ′ ∈ [0, τ] be any time such that V ∈ C1 along the belief
trajectory so far (that is, pt,1 < S for all 0 < t < τ′). Then Ito’s formula gives

V[pτ′,1] = V[p0,1] +

τ′∫
0

pt,1(1 − pt,1)V ′[pt,1]
(
λ2dTt,2 − λ1dTt,1

)
+

τ′∫
0

(
u1[a1] − V[pt,1]

)
dX (1)Tt,1

+

τ′∫
0

(
u2[a2] − V[pt,1]

)
dX (2)Tt,2

. (A.8)

Let τ′ = sup{t ≤ τ : pt ′,1 < S, t′ ≤ t}. If the learning process always stops eventually
(that is, IP

[
τ < +∞ | p0,1

]
= 1), then τ′ is always finite and therefore V[pτ′,1] is

well-defined. Thus, if IP
[
τ < +∞ | p0,1

]
= 1, integration (A.8) over all possible

realizations of signals gives

IE
[
V[pτ′,1] | p0,1

]
= V[p0,1]+IE


τ′∫

0

pt,1(1 − pt,1)V ′[pt,1]
(
λ2dTt,2 − λ1dTt,1

)
| p0,1


+IE


τ′∫

0

pt,1
(
u1[a1] − V[pt,1]

)
λ1dTt,1 +

τ′∫
0

(1 − pt,1)
(
u2[a2] − V[pt,1]

)
λ2dTt,2 | p0,1


or equivalently,

V[p0,1] = IE
[
V[pτ′,1] | p0,1

]
+λ1IE


τ′∫

0

pt,1L1[pt,1]dTt,1 | p0,1

−IE

τ′∫

0

c1dTt,1 | p0,1


+ λ2IE


τ′∫

0

(1 − pt,1)L2[pt,1]dTt,2 | p0,1

 − IE

τ′∫

0

c2dTt,2 | p0,1

, (A.9)

where τ′ = sup{t ≤ τ : pt ′,1 < S, t′ ≤ t}.

Suppose τ′ < τ is the time when the belief trajectory goes past a point in S, that is
pτ′,1 ∈ S and there exists δ > 0 such that pτ′+t,1 < S for t ∈ (0, δ). Then (A.9) holds
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for pτ′,1 as the initial belief:

V[pτ′,1] = IE
[
V[pτ′′,1] | pτ′,1

]
+λ1IE


τ′′∫
τ′

pt,1L1[pt,1]dTt,1 | pτ′,1

−IE

τ′′∫
τ′

c1dTt,1 | pτ′,1


+ λ2IE


τ′′∫
τ′

(1 − pt,1)L2[pt,1]dTt,2 | pτ′,1

 − IE

τ′′∫
τ′

c2dTt,2 | pτ′,1

, (A.10)

where τ′′ = sup{t ∈ (τ′, τ] : pt ′,1 < S, t′ ∈ (τ′, t)}. Combining (A.9) and (A.10), I
get that (A.9) holds for τ′ = sup{t ≤ τ : the belief trajectory does not spend any
nontrivial time on set S on (0, t)}.

(A.1) and (A.9) give

V[p0,1] ≥ IE
V[pτ′,1] −

τ′∫
0

c1dTt,1 + c2dTt,2 | p0,1

, (A.11)

where τ′ = sup{t ≤ τ : the belief trajectory does not spend any nontrivial time on
set S on (0, t)}.

Claim 1 If IP
[
τ < +∞ | p0,1

]
= 1 and the information collection stops once a

positive signal is observed, then

V[p0,1] ≥ IE
V[pτ,1] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0,1

 . (A.12)

Proof: Suppose τ′ < τ is such that there exists δ > 0 so that pt,1 ∈ S for all
t ∈ [τ′,min{τ′ + δ, τ}]. It is sufficient to show that

V[pτ′,1] ≥ IE
V[pmin{τ′+δ,τ},1] −

min{τ′+δ,τ}∫
τ′

c1dTt,1 + c2dTt,2 | pτ′,1

 . (A.13)

Consider an infinite sequence of strategies (aF,T (m), τ(m)), m = 1, 2, 3, . . ., such that
strategy (aF,T (m), τ(m)) deviates from strategy (aF,T, τ) in a way that at the moment
τ′ it chooses only source 2 for ∆m > 0 amount of time:

• dT (m)
τ′+t,2 = dt for t ∈ [0,∆m] and dT (m)

τ′+∆m+t,k = dTτ′+t,k , k = 1, 2,

• τ(m) =


τ′ + ∆m, if source 2 produces a positive signal during t ∈ [τ′, τ′ + ∆m],

τ + ∆m, otherwise.
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The idea is to “move” the belief trajectory away from S. Since S is a finite set of
points, paying attention to only one of the sources shifts the belief pt,1 away from
S either to the right (if source 2 is used) or to the left (if source 1 is used). Using
(A.11) with strategy (aF,T (m), τ(m)):

V[pτ′,1] ≥ IP
[
τ(m) = τ′ + ∆m | pτ′

]
IE

[
V[p(m)

τ(m),1] − c2∆m | τ
(m) = τ′ + ∆m, pτ′

]
+ IP

[
τ(m) > τ′ + ∆m | pτ′

]
×

IE
V[p(m)min{τ′+δ,τ}+∆m,1

] − c2∆m −

min{τ′+δ,τ}∫
τ′

c1dTt,1 + c2dTt,2 | τ
(m) > τ′ + ∆m, pτ′

 .
(A.14)

As ∆m → 0 with m→ +∞, the right hand side of (A.14) converges to the right hand
side of (A.13). Thus, (A.13) is true. �

(A.1) and (A.12) together give

V[p0,1] ≥ IE
U(a)[pτ,1] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0,1

 . (A.15)

for any initial belief p1,0 and any strategy (aF,T, τ) such that IP
[
τ < +∞ | p1,0

]
= 1

and the information collection stops once a positive signal is observed.

By definition, the right hand side of (A.15) is the expected payoff from the strategy
(aF,T, τ):

IE
U(a)[pτ,1] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0,1

 = V (a)[p0,1; (T, τ)].

Thus, V[p0,1] ≥ V (a)[p0,1; (T, τ)].

Since any strategy with IP
[
τ < +∞ | p1,0

]
< 1 gives V (a)[p0,1; (T, τ)] = −∞ and

continuing information collection after the state is revealed only decreases the payoff,
we have V[p0,1] ≥ V (a)[p0,1; (T, τ)] for all strategies (aF,T, τ).

The proof concludes by the observation that V[p0,1] = V (a)[p0,1; (T∗, τ∗)] by defini-
tion of the strategy (aF,T∗, τ∗) and using (A.9). �

The next step is to guess the optimal a-type strategy (aF,T∗, τ∗) and check the guess
by showing that all conditions listed in Lemma 4 are satisfied by the function equal
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to the expected payoff from (aF,T∗, τ∗).3

Theorem 1 provides the optimal a-type strategy (aF,T∗, τ∗) in explicit form. Con-
dition Π is

π
#(a)
k

1 − π#(a)
k

≥
1 − R(a)3−k

R(a)3−k

,

where π#(a)
k ∈ (0, R(a)k ] solves

1 −
ckλ3−k(1 − R(a)k )

c3−kλk R(a)k

+ log

[
ckλ3−k(1 − π#(a)

k )

c3−kλkπ
#(a)
k

]
= 0.

When condition Π holds, π̄(a)k ∈

[
π

#(a)
k , 1

)
is defined as a unique solution to

H(a)k

[
π̄
(a)
k

]
=

1−R(a)3−k

R(a)3−k
, where

H(a)k [pk] =

(
pk

1 − pk
+

ckλ3−k

c3−kλk
1
(
pk > R(a)k

))
log


R(a)k (1 − pk)

pk

(
1 − R(a)k

) 
+max


ckλ3−k

(
pk − R(a)k

)
c3−kλk R(a)k (1 − pk)

, 0
−

pk

1 − pk

©­­«
ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

− log


ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

 − 2
ª®®¬

is strictly decreasing on pk ∈

(
π

#(a)
k , 1

)
from π

#(a)
k

1−π#(a)
k

to −∞.

Lemma 4 requires to define function V[p1]. Here it is:

Area 1 : V[p1] = U(a)[p1],

Area 2.k : V[p1] = V (a)k

[
pk ; R(a)k

]
(recall that p2 = 1 − p1),

Area 3.k : V[p1] = V (a)k

[
pk ; R(a)k

]
+

ck
λk
(1 − pk)∆

(a)
k ,

where

V (a)k

[
pk ; R(a)k

]
=

1 − pk

1 − R(a)k

(
uk[a]R

(a)
k + u3−k[a](1 − R(a)k )

)
+

pk − R(a)k

1 − R(a)k

(
uk[ak] −

ck

λk

)
+

ck

λk
(1 − pk) log


R(a)k (1 − pk)

pk

(
1 − R(a)k

)  .
3Similar lemma can be formulated for the optimal strategy directly. The only reason to split the

solution into two steps is that the optimal a-type strategy is easier to describe, and therefore easier to
guess.
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It is sufficient to check that function V[p1] satisfies all conditions listed in Lemma
4:

Step 1 Lk[p1] = 0 for Areas 2.k and 3.k, k = 1, 2,

Step 2 V[p1] ∈ C[0, 1],

Step 3 V[p1] ∈ C1 everywhere on (0, 1) except for point π̄(a)k in Case 3,

Step 4 Lk[p1] ≥ 0 everywhere on (0, 1), k = 1, 2,

Step 5 V[p1] ≥ U(a)[p1] everywhere on (0, 1).

I omit calculations for Steps 1-3 here since they are straightforward.

Step 4 L1[p1]

�����
Area 1

=
c1
λ1

(
1
p1
− 1

R(a)1

)
≥ 0 since p1 ≤ R(a)1 in Area 1.

L1[p1]

�����
Area 2.2

=
c2
λ2

log

[
p1R(a)2

(1 − p1)(1 − R(a)2 )

]
+

c1
λ1

(
1
p1
−

1
R(a)1

)
≡ g[p1].

g[1 − R(a)2 ] =
c1
λ1

(
1

1−R(a)2
− 1

R(a)1

)
≥ 0 since 1 − R(a)2 ≤ R(a)1 in Case 1 and

Case 3. Function g[p1] is decreasing for p1 < c1λ2
c2λ1+c1λ2

and is increasing

for p1 > c1λ2
c2λ1+c1λ2

; g
[

c1λ2
c2λ1+c1λ2

]
= −

c2
λ2
∆
(a)
2 . Thus, L1[p1]

�����
Area 2.2

≥ 0 in

Case 1. For Case 3 (k = 1), L1[p1]

�����
Area 2.2

≥ 0 follows immediately from

g[1 − R(a)2 ] ≥ 0 and g′[p1] < 0 for p1 < 1 − R(a)2 . For Case 3 (k = 2),

L1[p1]

�����
Area 2.2

≥ 0 follows from g[1 − π̄(a)2 ] ≥ 0 (I omit the proof of this fact

here).

L1[p1]

�����
Area 3.2

=
c2
λ2

(
c1λ2(1−p1)

c2λ1p1
− 1 − log

[
c1λ2(1−p1)

c2λ1p1

] )
≥ 0 since x−1−log[x] ≥

0 for all x ≥ 1 and c1λ2(1−p1)
c2λ1p1

≥ 1 for Area 3.2.

Similar logic applies to L2[p1].

Step 5 Checking V (a)k

[
pk ; R(a)k

]
≥ U(a)[p1] for Area 2.k is straightforward. Since

V[p1] ≥ V (a)k

[
pk ; R(a)k

]
in Area 3.k, V[p1] ≥ U(a)[p1] in Area 3.k as well.
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Remark 1 Expression (2.11) can be rewritten as

∆
(a)
k =

c3−kλk

ckλ3−k

1 − R(a)1 − R(a)2

R(a)3−k

(
1 − R(a)k

) + 1
x
+ log [x] − 1

�����
x=

ckλ3−k
(
1−R(a)

k

)
c3−kλk R

(a)
k

.

Since 1
x + log [x] − 1 ≥ 0 for all x ≥ 0, 1 − R(a)2 ≤ R(a)1 in Case 1. Moreover, when

1 − R(a)2 ≥ R(a)1 , both ∆(a)1 and ∆(a)2 are nonnegative.

Remark 2 Condition (2.9) for k = 1, 2 together imply ∆(a)i ≤ 0 whenever R(a)i < 1
for i = 1, 2. Indeed, (2.9) for k = 1, 2 imply 1 − R(a)1 − R(a)2 ≥ 0. Condition
λ2R(a)2

c2
<

λ1R(a)1
c1

is equivalent to c1λ2
c1λ2+c2λ1

<
R(a)1

R(a)1 +R(a)2
. Whenever 1 − R(a)1 − R(a)2 ≥ 0,

point R(a)1

R(a)1 +R(a)2
lies in between 1 − R(a)2 and R(a)1 . If 1 − R(a)2 ≤

c1λ2
c1λ2+c2λ1

≤ R(a)1 , then

∆
(a)
1 ≤ 0 and ∆(a)2 ≤ 0. Suppose c1λ2

c1λ2+c2λ1
≤ 1 − R(a)2 . Condition (2.9) for k = 2

implies ∆(a)2 ≤ 0. Thus, it is better to apply Area 2.2 strategy on p1 ≤ 1 − R(a)2 . In
particular, it means that at point p1 =

c1λ2
c1λ2+c2λ1

the agent should use source 2 and
not both sources together. Thus, by Markovian property, strategy of Area 3.1 cannot
be optimal for any feasible beliefs. Thus, ∆(a)1 ≤ 0.

A.2 Proof of Lemma 1.
Using the Bayes formula, we have pt,1 =

p0,1e−λ1t

p0,1e−λ1t+1−p0,1
1
(
X (1)t = 0

)
+ 1

(
X (1)t > 0

)
.

Thus

X (1)t = 0 ⇒ t =
1
λ1

log
[

p0,1
(
1 − pt,1

)(
1 − p0,1

)
pt,1

]
.

Let τ be the stopping time. It is equal to the “give up” time t̄ = 1
λ1

log

[
p0,1

(
1−p

1

)
(1−p0,1)p1

]
if no positive signal is observed. Otherwise, it is equal to the first time the process
X (1) becomes positive. The expected stopping time is

IE
[
τ | p0,1, p0,2

]
=

(
1 − p0,1

)
t̄ + p0,1

+∞∫
0

min{t, t̄}e−λ1tλ1dt

�����
t̄= 1

λ1
log

[
p0,1(1−p1)
(1−p0,1)p1

] =

1 − p0,1

λ1
log


p0,1

(
1 − p

1

)(
1 − p0,1

)
p

1

 +
p0,1 − p

1

λ1

(
1 − p

1

) .
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The probability that the state will not be revealed by the end of the learning process
is equal to

IP
[
X (1)τ = 0 | p0,1, p0,2

]
= p0,1e−λ1 t̄ + 1 − p0,1

�����
t̄= 1

λ1
log

[
p0,1(1−p1)
(1−p0,1)p1

] = 1 − p0,1

1 − p
1
.

Thus, the expected payoff is equal to IP
[
X (1)τ = 0 | p0,1, p0,2

]
times the utility from

the default alternative given the beliefs at time t̄, pt̄,1 = p
1
and pt̄,2 =

p0,2
1−p0,1

(
1 − p

1

)
,

plus IP
[
X (1)τ > 0 | p0,1, p0,2

]
times the utility from the best alternative given state 1,

u1[a1], minus c1IE
[
τ | p0,1, p0,2

]
. This gives (2.15).

A.3 Optimal Strategy When Only One Source is Available.

Theorem 11 When only source k, k = 1, 2, is available, for any initial beliefs
(p1, p2), the optimal strategy is:

• if for some i, j ∈ {3 − k, 3}, i , j, one of the following holds:

– R(ai)k < 1 ≤ R(aj )

k and R(ai)k ≤ pk ≤ min
{
π̄
(i,k)
k

[
p3−k
1−pk

]
, π̄
(i, j)
k

[
p3−k
1−pk

]}
,

– R(ai)k ≤ R(aj )

k < 1, π̄(i,k)k

[
p3−k
1−pk

]
≥ π̄

( j,k)
k

[
p3−k
1−pk

]
and R(ai)k ≤ pk ≤

π̄
(i,k)
k

[
p3−k
1−pk

]
,

– R(ai)k ≤ R(aj )

k < 1, π̄(i,k)k

[
p3−k
1−pk

]
< π̄

( j,k)
k

[
p3−k
1−pk

]
and R(ai)k ≤ pk ≤

min
{
π̄
(i,k)
k

[
p3−k
1−pk

]
, π̄
(i, j)
k

[
p3−k
1−pk

]}
,

– R(aj )

k < R(ai)k < 1, π̄(i,k)k

[
p3−k
1−pk

]
≥ π̄

( j,k)
k

[
p3−k
1−pk

]
and R(ai)k ≤ pk ≤

π̄
(i,k)
k

[
p3−k
1−pk

]
,

then use source k until pk = R(ai)k , with the default action ai

• otherwise no learning is optimal and the default action is the one that maxi-
mizes the expected payoff:

max
a∈A
{p1u1[a] + p2u2[a] + (1 − p1 − p2)u3[a]},
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where π̄(i, j)k [q3−k] ∈

(
0,min{1, R(aj )

k }

)
, i, j ∈ {1, 2, 3}, uniquely solves

1 − π̄
(i, j)
k
[q3−k ]

R
(aj )

k

1 − π̄(i, j)k [q3−k]
+ log

[
π̄
(i, j)
k [q3−k]

1 − π̄(i, j)k [q3−k]

]
=

λk
(
q3−k

(
u3−k[ai] − u3−k[a j]

)
+ (1 − q3−k)

(
u3[ai] − u3[a j]

) )
ck

+ log

[
R(ai)k

1 − R(ai)k

]
.

Along the curve pk = π̄
(i, j)
k

[
p3−k
1−pk

]
, the agent is indifferent between two strategies:

(1) no learning, with default alternative a j , and (2) using source k until pk = R(ai)k ,
with default alternative ai.

Theorem 11 comes from maximizing V (a)k

[
p1, p2; R(a)k

]
over a ∈ A.

A.4 Proof of Lemma 2.
Consider any strategy (aF,T, τ). Suppose it commands to stop the information
collection process if a positive signal is observed (otherwise it is definitely not
optimal). Then T is effectively deterministic (the switching strategy conditional
on not observing a positive signal). Denote τ̄ the stopping time conditional on
not receiving a positive signal. Denote (p

1
[p], p

2
[p]) the posterior belief at time τ̄

conditional on prior beliefs p and using strategy (aF,T, τ) with no positive signal
observed. Then the expected payoff from strategy (aF,T, τ) is

V[p1, p2; (aF,T, τ)] ≡ IE
u j[aF] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0 = p


= IP
[
pτ,1 < 1, pτ,2 < 1 | p0 = p

]
IE

[
u j[aF] | p1 = p

1
[p], p2 = p

1
[p]

]
+

∑
k=1,2

IP
[
pτ,k = 1 | p0 = p

]
IE

[
uk[aF] | pk = 1

]
−IE


τ∫

0

c1dTt,1 + c2dTt,2 | p0 = p
 .

Since IE
[
uk[aF] | pk = 1

]
≤ uk[ak] and

IE
[
u j[aF] | p1 = p

1
[p], p2 = p

1
[p]

]
≤ max

a∈A
IE

[
u j[a] | p1 = p

1
[p], p2 = p

1
[p]

]
,

for any (T, τ)

V[p1, p2; (aF,T, τ)] ≤ max
a∈A

{
V[p1, p2; (aF,T, τ)] : aF is defined by (2.16)

}
.
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Thus,

sup
aF

V[p1, p2; (aF,T, τ)] = max
a∈A

{
V[p1, p2; (aF,T, τ)] : aF is defined by (2.16)

}
.

Since A is finite, we have

V[p1, p2] = sup
(aF,T,τ)

V[p1, p2; (aF,T, τ)]

= max
a∈A

sup
(T,τ)

{
V[p1, p2; (aF,T, τ)] : aF is defined by (2.16)

}
= max

a∈A
V (a)[p1, p2].

A.5 Proof of Lemma 3.
Consider strategy (aF,T∗, τ∗). Let τ̄∗ be the maximum time the decision maker
spends on learning (“give-up” time). Fix any t′ ∈ [0, τ̄∗]. Let (aF,T∗

−t ′, τ
∗− t′) be the

strategy that describes the agent’s behavior starting from the moment t′, assuming
the agent follows (aF,T∗, τ∗) and he has not observed a positive signal by time t′.

By definition of the expected payoff from a given strategy, for any t′ ∈ [0, τ̄∗],

V[p1, p2; (aF,T∗, τ∗)]

= IP [τ∗ = τ̄∗ | p0 = p]
(
pτ̄∗,1u1[a] + pτ̄∗,2u2[a] +

(
1 − pτ̄∗,1 − pτ̄∗,2

)
u3[a]

)
+ IP

[
pτ∗,1 = 1 | p0 = p

]
u1[a1] + IP

[
pτ∗,2 = 1 | p0 = p

]
u2[a2]

− IE

τ∗∫

0

c1dT∗t,1 + c2dT∗t,2 | p0 = p


= IP [t′ ≤ τ∗ | p0 = p]IP [τ∗ = τ̄∗ | p0 = p, t′ ≤ τ∗]×(
pτ̄∗,1u1[a] + pτ̄∗,2u2[a] +

(
1 − pτ̄∗,1 − pτ̄∗,2

)
u3[a]

)
+ u1[a1]IP [t′ ≤ τ∗ | p0 = p]IP

[
pτ∗,1 = 1 | p0 = p, t′ ≤ τ∗

]
+ u1[a1]IP [t′ > τ∗ | p0 = p]IP

[
pτ∗,1 = 1 | p0 = p, t′ > τ∗

]
+ u2[a2]IP [t′ ≤ τ∗ | p0 = p]IP

[
pτ∗,2 = 1 | p0 = p, t′ ≤ τ∗

]
+ u2[a2]IP [t′ > τ∗ | p0 = p]IP

[
pτ∗,2 = 1 | p0 = p, t′ > τ∗

]
−IP [t′ ≤ τ∗ | p0 = p] ©­«

t ′∫
0

c1dT∗t,1 + c2dT∗t,2 + IE

τ∗∫

t ′

c1dT∗t,1 + c2dT∗t,2 | p0 = p, t′ ≤ τ∗
ª®¬

− IP [t′ > τ∗ | p0 = p]IE

τ∗∫

0

c1dT∗t,1 + c2dT∗t,2 | p0 = p, t′ > τ∗

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= IP [t′ > τ∗ | p0 = p]×(
u1[a1]IP

[
pτ∗,1 = 1 | p0 = p, t′ > τ∗

]
+ u2[a2]IP

[
pτ∗,2 = 1 | p0 = p, t′ > τ∗

] )
−IE


min{τ∗,t ′}∫

0

c1dT∗t,1 + c2dT∗t,2 | p0 = p
+IP [t′ ≤ τ∗ | p0 = p]V

[
pt ′,1, pt ′,2; (aF,T∗−t ′, τ

∗ − t′)
]
.

Thus, if (aF,T∗, τ∗) is optimal for the initial beliefs (p1, p2), then (aF,T∗
−t ′, τ

∗ − t′)

must be optimal for the initial beliefs (pt ′,1, pt ′,2).

A.6 Proof of Theorem 3.
Lemma 5 is a generalization of Lemma 4. Now, a finite set of points S transforms
into a curve R.4

Lemma 5 If function V : P ∪ {(1, 0)} ∪ {(0, 1)} → R, where P = {(p1, p2) ∈

[0, 1)2 : p1 + p2 ≤ 1}, is such that there exists a curve R = {(π1(r), π2(r)) ∈ P : 0 ≤
r ≤ r̄} for some r̄ ≥ 0 such that

1. V[1, 0] = u1[a1], V[0, 1] = u2[a2],

2. V is continuous everywhere on the belief triangle P; moreover, it is continu-
ously differentiable everywhere except on the curve R,

3. for all p ∈ P \ R,

min
{
L1[p1, p2],L2[p1, p2],V[p1, p2] −U(a)[p1, p2]

}
= 0, (A.16)

where

U(a)[p1, p2] =


u1[a]p1 + u2[a]p2 + u3[a](1 − p1 − p2), p1 < 1, p2 < 1,

u1[a1], p1 = 1,

u2[a2], p2 = 1,
(A.17)

L1[p1, p2] =
c1
λ1p1

+
∂V[p1, p2]

∂p1
(1−p1)−

∂V[p1, p2]

∂p2
p2−(u1[a1] − V[p1, p2]) ,

(A.18)
L2[p1, p2] =

c2
λ2p2

−
∂V[p1, p2]

∂p1
p1+

∂V[p1, p2]

∂p2
(1−p2)−(u2[a2] − V[p1, p2]) ,

(A.19)
4The proof is an adaptation of the ideas of Theorem 7.1, Chapter IV in Fleming and Rishel

(2012).
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4. there exists an a-type strategy (aF,T∗, τ∗) such that

a) it is Markovian,

b) the stopping time τ∗ is almost surely finite and whenever the state is
revealed (i.e. the belief process jumps to (1, 0) or (0, 1)), the agent stops
the information collection process,

c) any trajectory of beliefs (aF,T∗, τ∗) can generate (for any initial beliefs
and any realization of signals) does not go along the curve R at any
moment of time (that is, it does not spend any nontrivial time on R),
unless only one source is used,

d) the following conditions hold:

dT∗t,1 > 0, t < τ∗ ⇒ L1[pt,1, pt,2] = 0, (A.20)

dT∗t,2 > 0, t < τ∗ ⇒ L2[pt,1, pt,2] = 0, (A.21)

V[pτ∗,1, pτ∗,2] = U(a)[pτ∗,1, pτ∗,2], (A.22)

then for any initial beliefs (p1, p2),

1. V[p1, p2] = V (a)[p1, p2],

2. (aF,T∗, τ∗) is the optimal a-type strategy.

Proof of Lemma 5 Using the Bayes formula, we have

dpt,1 = −λ1pt,1(1 − pt,1)dTt,1 + λ2pt,1pt,2dTt,2 + (1 − pt,1)dX (1)Tt,1
− pt,1dX (2)Tt,2

,

dpt,2 = λ1pt,1pt,2dTt,1 − λ2pt,2(1 − pt,2)dTt,2 − pt,2dX (1)Tt,1
+ (1 − pt,2)dX (2)Tt,2

.

Take any a-type strategy (aF,T, τ) and any initial beliefs p0 ∈ P. Let {(pt,1, pt,2)}t≥0

be the realization of the belief process, given that the agent follows strategy (aF,T, τ)

and has initial beliefs p0. Suppose that after observing a positive signal, the agent
stops the information collection process: if t < τ, then no positive signals have
been observed so far. Let τ′ ∈ [0, τ] be any time such that V ∈ C1 along the belief
trajectory so far. The last assumption about the smoothness of V means that

• if only source k is used, V is continuously differentiable along the line p3−k
1−pk

,
that is, along the line the belief vector is moving,
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• if both sources are used, V is continuously differentiable along any direction,
that is, both partial derivatives, ∂V[p1,p2]

∂p1
and ∂V[p1,p2]

∂p2
, exist and are continuous.

Then Ito’s formula gives (García and Griego (1994)):

V[pτ′,1, pτ′,2] = V[p0,1, p0,2]+λ1

τ′∫
0

pt,1

(
∂V[pt,1, pt,2]

∂p2
pt,2 −

∂V[pt,1, pt,2]

∂p1
(1 − pt,1)

)
dTt,1

+ λ2

τ′∫
0

pt,2

(
∂V[pt,1, pt,2]

∂p1
pt,1 −

∂V[pt,1, pt,2]

∂p2
(1 − pt,2)

)
dTt,2

+

τ′∫
0

(
u1[a1] − V[pt,1, pt,2]

)
dX (1)Tt,1

+

τ′∫
0

(
u2[a2] − V[pt,1, pt,2]

)
dX (2)Tt,2

. (A.23)

Let τ′ = sup
{
t ≤ τ : V ∈ C1 along {pt ′}0≤t ′≤t

}
. If the information collection pro-

cess always stops eventually (that is, IP [τ <= ∞ | p0] = 1), then τ′ is always finite
and thereforeV[pτ′,1, pτ′,2] iswell-defined. Taking conditional expectation in (A.23),
we have: if IP [τ < +∞ | p0] = 1, then

V[p0,1, p0,2] = IE
[
V[pτ′,1, pτ′,2] | p0

]
− λ1IE


τ′∫

0

pt,1

(
∂V[pt,1, pt,2]

∂p2
pt,2 −

∂V[pt,1, pt,2]

∂p1
(1 − pt,1)

)
dTt,1 | p0


− λ2IE


τ′∫

0

pt,2

(
∂V[pt,1, pt,2]

∂p1
pt,1 −

∂V[pt,1, pt,2]

∂p2
(1 − pt,2)

)
dTt,2 | p0


− λ1IE


τ′∫

0

pt,1
(
u1[a1] − V[pt,1, pt,2]

)
dTt,1 | p0


− λ2IE


τ′∫

0

pt,2
(
u2[a2] − V[pt,1, pt,2]

)
dTt,2 | p0

,
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or equivalently,

V[p0,1, p0,2] = IE
[
V[pτ′,1, pτ′,2] | p0

]
+ λ1IE


τ′∫

0

pt,1L1[pt,1, pt,2]dTt,1 | p0

 − IE

τ′∫

0

c1dTt,1 | p0


+ λ2IE


τ′∫

0

pt,2L2[pt,1, pt,2]dTt,2 | p0

 − IE

τ′∫

0

c2dTt,2 | p0

, (A.24)

where τ′ = sup{t ≤ τ : V ∈ C1 along the belief trajectory before t}.

Suppose τ′ < τ is the time when the belief trajectory touches R, but then crosses it,
that is pτ′ ∈ R, ∃ δ > 0 such that pτ′+t < R for t ∈ (0, δ). Then (A.24) holds for pτ′

as the initial beliefs (recall that V is continuous). Thus,

V[pτ′,1, pτ′,2] = IE
[
V[pτ′′,1, pτ′′,2] | pτ′

]
+λ1IE


τ′′∫
τ′

pt,1L1[pt,1, pt,2]dTt,1 | pτ′
−IE


τ′′∫
τ′

c1dTt,1 | pτ′


+ λ2IE

τ′′∫
τ′

pt,2L2[pt,1, pt,2]dTt,2 | pτ′
 − IE


τ′′∫
τ′

c2dTt,2 | pτ′
, (A.25)

where τ′′ = sup{t ∈ (τ′, τ] : V ∈ C1 along the belief trajectory on (τ′, t)}. Com-
bining (A.24) and (A.25), I get that (A.24) holds for τ′ = sup{t ≤ τ : the belief
trajectory never goes along the curve R on (0, t), unless only one source is used}.

(A.16) and (A.24) give

V[p0,1, p0,2] ≥ IE
V[pτ′,1, pτ′,2] −

τ′∫
0

c1dTt,1 + c2dTt,2 | p0

, (A.26)

where τ′ = sup{t ≤ τ : the belief trajectory never goes along the curve R on (0,t),
unless only one source is used }.

Claim 2 If IP [τ < +∞ | p0] = 1 and the information collection stops once a positive
signal is observed, then

V[p0,1, p0,2] ≥ IE
V[pτ,1, pτ,2] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0

 . (A.27)
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Proof: Suppose τ′ < τ is the time when the belief trajectory touches R and goes
along it for some time: ∃ δ > 0 such that pτ′+t ∈ R for t ∈ [0,min{δ, τ − τ′}]. It is
sufficient to show that

V[pτ′,1, pτ′,2] ≥ IE
V[pmin{τ′+δ,τ},1, pmin{τ′+δ,τ},2] −

min{τ′+δ,τ}∫
τ′

c1dTt,1 + c2dTt,2 | pτ′
 .

(A.28)
Denote R[pτ′, δ] the belief trajectory pτ′+t , t ∈ [0,min{δ, τ− τ′}]. WLOG5, assume
that R[pτ′, δ] can be represented as a function in spheric coordinates: ρ(φ), 0 ≤
φ ≤ π

4 is an angle, ρ > 0 is a radius, so that π2
1 + (1 − π2)

2 = ρ2 and π1
1−π2
= tan[φ].

Consider an infinite sequence of strategies (aF,T (m), τ(m)), m = 1, 2, 3, . . ., such that
strategy (aF,T (m), τ(m)) deviates from strategy (aF,T, τ) in a way that at the moment
τ′ it chooses only source 2 for ∆m > 0 amount of time:

• dT (m)
τ′+t,2 = dt for t ∈ [0,∆m] and dT (m)

τ′+∆m+t,k = dTτ′+t,k , k = 1, 2,

• τ(m) =


τ′ + ∆m, if source 2 produces a positive signal during t ∈ [τ′, τ′ + ∆m] ,

τ + ∆m, otherwise.

Then it is easy to see that for ∆m small enough, the belief trajectory of strategy
(aF,T (m), τ(m)) will not go along R for t ∈ [τ′,min{τ, τ′ + δ} + ∆m]. Indeed,
conditional on no positive signals, we have: p(m)

τ′+∆m+t,1 =
pτ′+t,1

e−λ2∆m pτ′+t,2+1−pτ′+t,2
and

p(m)
τ′+∆m+t,2 =

e−λ2∆m pτ′+t,2
e−λ2∆m pτ′+t,2+1−pτ′+t,2

. Graphically, it means the belief trajectory shifts
along the rays p1

1−p2
= const, and the shift becomes smaller as we decrease ∆m.

Since R[pτ′, δ] can be represented as a function ρ(φ), π2
1 + (1 − π2)

2 = ρ2 and
π1

1−π2
= tan[φ], the new curve that the belief process of strategy (aF,T (m), τ(m)) forms

will not coincide with R[pτ′, δ] at any point.

Thus, we can use (A.26):

V[pτ′,1, pτ′,2] ≥ IP
[
τ(m) = τ′ + ∆m | pτ′

]
×

IE
[
V[p(m)

τ(m),1, p(k)
τ(m),2] − c2∆m | τ

(m) = τ′ + ∆m, pτ′
]
+ IP

[
τ(m) > τ′ + ∆m | pτ′

]
×

IE
V[p(m)min{τ′+δ,τ}+∆m,1

, p(m)min{τ′+δ,τ}+∆m,2
] − c2∆m −

min{τ′+δ,τ}∫
τ′

c1dTt,1 + c2dTt,2 | τ
(m) > τ′ + ∆m, pτ′

 .
(A.29)

5If not, we can always either choose it to be π2
2 + (1 − π1)

2 = ρ2 and π2
1−π1

= tan[φ] or take a
smaller δ.
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As ∆m → 0 with m→ +∞, the right hand side of (A.29) converges to the right hand
side of (A.28). Thus, (A.28) is true.

�

(A.16) and (A.27) together give

V[p0,1, p0,2] ≥ IE
U(a)[pτ,1, pτ,2] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0

 (A.30)

for any initial belief p0 ∈ P and any strategy (aF,T, τ) such that IP [τ < +∞ | p0] = 1
and the information collection stops once a positive signal is observed.

By definition, the right hand side of (A.30) is the expected payoff from the strategy
(aF,T, τ):

IE
U(a)[pτ,1, pτ,2] −

τ∫
0

c1dTt,1 + c2dTt,2 | p0

 = V (a)[p0,1, p0,2; (T, τ)].

Thus, V[p0,1, p0,2] ≥ V (a)[p0,1, p0,2; (T, τ)].

Since any strategy with IP [τ < +∞ | p0] < 1 has V (a)[p0,1, p0,2; (T, τ)] = −∞ and
continuing information collection after the state is revealed only decreases the payoff,
we have V[p0,1, p0,2] ≥ V (a)[p0,1, p0,2; (T, τ)] for all strategies (aF,T, τ).

The proof concludes by the observation that V[p0,1, p0,2] = V (a)[p0,1, p0,2; (T∗, τ∗)]
by definition of the strategy (aF,T∗, τ∗) and using (A.24).

�

The next step is to guess the optimal a-type strategy (aF,T∗, τ∗) and check the guess
by showing that all conditions listed in Lemma 5 are satisfied by the function equal
to the expected payoff from (aF,T∗, τ∗).

Theorem3provides the optimal a-type strategy (aF,T∗, τ∗) in explicit form. π̄(a)3−k

[
pk

1−p3−k

]
is defined as follows:

π̄
(a)
3−k[qk] =


1, if R(a)3−k < 1, B(a)k

[
R(a)3−k, 1

]
<

1−R(a)3−k

R(a)3−k
and qk ≥ q∗∗(a)k ,

∈

[
¯̃p(a)3−k[qk],min

{
1, R(a)3−k

}]
: B(a)k

[
π̄
(a)
3−k[qk], qk

]
=

1−R(a)3−k

R(a)3−k
, otherwise.
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q∗∗(a)k solves B(a)k

[
R(a)3−k, q

∗∗(a)
k

]
=

1−R(a)3−k

R(a)3−k
and

B(a)k [p3−k, qk] =

(
pk

1 − pk

1
qk
+

ckλ3−k

c3−kλk
1
(
pk > R(a)k

))
log


R(a)k (1 − pk)

pk

(
1 − R(a)k

) 
+

ckλ3−k

(
pk − R(a)k

) (
q3−k − 1

(
pk ≤ R(a)k

))
c3−kλk R(a)k (1 − pk)

+
pk

1 − pk

©­­«2 −
ckλ3−k

(
1 − R(a)k

)
q3−k

c3−kλk R(a)k

+
1
qk

log


ckλ3−k

(
1 − R(a)k

)
q3−k

c3−kλk R(a)k


ª®®¬

−
pk

1 − pk

©­­«1 −
ckλ3−k p̃(a)

3−k
[qk]

c3−kλk p̄(a)k

[
p̃(a)

3−k
[qk]

] + 1
qk

log


ckλ3−k p̃(a)

3−k
[qk]

c3−kλk p̄(a)k

[
p̃(a)

3−k
[qk]

] 
ª®®¬ 1

(
qk ≤ q∗k

)
+ (1 − q3−k)

(((
1 +

ckλ3−k

c3−kλk

)
log

[
(1 − q∗k)qk

(1 − qk)q∗k

]
+

1
p∗(a)3−k

)
1
(
qk > q∗k

)
+

1
p̃(a)

3−k
[qk]

1
(
qk ≤ q∗k

)) ����� pk=(1−p3−k )qk,
q3−k=

p3−k
1−(1−p3−k )qk

,

q∗
k
=

p̄
(a)
k

[
p
∗(a)
3−k

]
1−p∗(a)3−k

.

The expected payoff function that corresponds to the optimal a-type strategy is

Area 1 : V[p1, p2] = U(a)[p1, p2];

Area 2.k : V[p1, p2] = V (a)k

[
p1, p2; R(a)k

]
defined in Lemma 1;

Area 3.k.1 : V[p1, p2] = V (a)k

[
p1, p2; R(a)k

]
+

ck
λk
(1 − pk)∆

(a)
k

[
p3−k
1−pk

]
; for beliefs

in this area, it is always true that p3−k
1−pk

≥
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] 1 (
λkR(a)

k

ck
≤

λ3−kR(a)3−k
c3−k

)
+

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

1
(
λkR(a)

k

ck
>

λ3−kR(a)3−k
c3−k

)
; here, ∆(a)k [q3−k] is defined as
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∆
(a)
k [q3−k] =

c3−kλk

ckλ3−k

(
1

R(a)3−k

− 1

)
+ log


ckλ3−k

(
1 − R(a)k

)
q3−k

c3−kλk R(a)k

 − q3−k

−(1−q3−k)×

©­­­­­­­­«



(
1 + c3−kλk

ckλ3−k

)
log


1

p
∗(a)
3−k
−

ckλ3−k
c3−kλk

−1

1
q3−k
−1

 + c3−kλk

ckλ3−kp∗(a)3−k
,

λkR(a)
k

ck
≤

λ3−kR(a)3−k
c3−k

(
1 + c3−kλk

ckλ3−k

)
log


ckλ3−k
c3−kλk

(
1

p
∗(a)
k

−1

)
−1

1
q3−k
−1

 +
c3−kλk

ckλ3−kR(a)3−k
− 1

R(a)
k

+ 1
p∗(a)
k

,
λkR(a)

k

ck
≥

λ3−kR(a)3−k
c3−k

ª®®®®®®®®¬
;

Area 3.k.2 : V[p1, p2] = V (a)k

[
p1, p2; R(a)k

]
+

ck
λk
(1 − pk)∆

(a)
k

[
p3−k
1−pk

]
; this area can

only appear if λkR(a)
k

ck
≥

λ3−kR(a)3−k
c3−k

; for beliefs in this area, it is always true that

p3−k
1−pk
≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

; here, ∆(a)k [q3−k] is defined as

∆
(a)
k [q3−k] =

c3−kλk q3−k

ckλ3−k

©­­«
1

R(a)3−k

−
1

p̄(a)3−k

[
p̃

k
[q3−k]

] ª®®¬+(1−q3−k)

(
1

R(a)k

−
1

p̃
k
[q3−k]

)

+ log


(
1 − R(a)k

)
p̃

k
[q3−k]

R(a)k

(
1 − p̃

k
[q3−k]

)  .
Note that ∆(a)k [1] is equal to ∆

(a)
k in Theorem 1.

Although the description of the optimal a-type strategy in Theorem 3 is complete,
it is not very convenient for the purpose of the proof. I start the proof with more
detailed description of the optimal a-type strategy.

The way to present the optimal a-type strategy is on the belief triangle P∪{(1, 0)}∪
{(0, 1)}. Each point corresponds to the best action: use source 1, use source 2, or
stop. For illustration, black points correspond to source 1, gray points refer to source
2, and white points imply stopping. There are several cases possible, depending on
the parameters of the model.

Case 1: Information from both sources is too costly. The whole belief triangle
is white, that is, no matter what the beliefs are, the optimal a-type strategy is
always stop the information collection process and get utility U(a)[p1, p2].
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Figure A.1: Optimal a-type strategy for R(a)1 = 0.4, R(a)2 = 10, c1
λ1
= 0.1, c2

λ2
= 10.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2).
White region means it is optimal to stop. Black region means the first information
source should be used. Gray region means the second information source should be

used. Case 2: R(a)k < 1, R(a)3−k ≥ 1, λ3−kR(a)3−k
c3−k

<
λkR(a)

k

ck
, k = 1.

This is optimal when the marginal cost of getting information (of any type) is
too high compared to the marginal benefit from this information. Formally,
the condition is R(a)1 ≥ 1 and R(a)2 ≥ 1.

Case 2: Only one source might be used according to the optimal a-type strategy.
Suppose R(a)k < 1 and R(a)3−k ≥ 1 for some k = 1, 2. That means the cost of get-
ting information of type k is less than the benefit from this information, as long
as state k is likely enough (pk > R(a)k ). Suppose also that the benefit of getting
alternative a3−k correct is greater than getting alternative ak correct. Formally,
λ3−kR(a)3−k

c3−k
<

λkR(a)
k

ck
, which is equivalent to uk[ak]−uk[a] < u3−k[a3−k]−u3−k[a].

Then the optimal a-type strategy is to use source k if the current belief about
state k is greater than the cost-benefit ratio of source k, that is pk > R(a)k , and
to choose the default alternative a right away otherwise. See Figure A.1.

Denote Area 1 the area where it is optimal to stop right away. Denote Area
2.k the area where source k is used until pk = R(a)k (and then stop).

Case 3: Both sources might be used but only separately, that is, no switching can be optimal.
Suppose it is not Case 1 or Case 2. That means either R(a)k < 1, R(a)3−k ≥ 1 and
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λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
for some k, or R(a)1 < 1 and R(a)2 < 1. Equivalently, there

exists k such that R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
.

Case 3 corresponds to the optimal a-type strategy such that if p j > R(a)j , then
source j is used. Otherwise, it is optimal to stop. See Figure A.2.

Figure A.2: Optimal a-type strategy for R(a)1 = 0.5, R(a)2 = 0.6, c1
λ1
= 1.5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2).
White region means it is optimal to stop. Black region means the first information
source should be used. Gray region means the second information source should be

used. Case 3: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
≥ 1, k = 1.

It is easy to see that we need an additional condition here. Indeed, if R(a)1 +

R(a)2 < 1 (the case that has not been ruled out so far), then the above description
of the strategy has a contradiction: what source shall we use when both
beliefs are above its thresholds, that is p1 > R(a)1 and p2 > R(a)2 ? This
additional condition is ∆(a)k [1] ≤ 0. This conditional is actually even stronger
than R(a)1 + R(a)2 ≥ 1. To explain where this condition came from, I need to
introduce function p̄(a)k [p3−k] and point p∗(a)3−k .

Properties of p̄(a)k [p3−k] and p∗(a)3−k .

For k = 1, 2, define p̄(a)k [p3−k] by (2.17). As I explained in Section 2.5, the
curve pk = p̄(a)k [p3−k] is an indifference curve between two sources.
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For k = 1, 2, when R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, define p∗(a)3−k by (2.18). As

I explained in Section 2.5, point p3−k = p∗(a)3−k , pk = p̄(a)k

[
p∗(a)3−k

]
is such that

at this point the agent is indifferent between simultaneous use of two sources
and using source k from now on.

The solution to (2.18) always exists and is unique. Indeed, function p̄(a)k [p3−k]

is decreasing, p̄(a)k [0] = 1 and p̄(a)k

[
R(a)3−k

]
= R(a)k :

Lemma 6 For k = 1, 2, when R(a)k < 1, function p̄(a)k [p3−k] is strictly decreas-
ing for p3−k ∈ (0,+∞) from 1.

Proof:

p̄(a)
′

k [p3−k] = −
c3−kλk

ckλ3−k

R(a)k (1 − R(a)k )e
c3−kλk
ckλ3−k

(
1

R
(a)
3−k
− 1

p3−k

)

p2
3−k

©­­«R(a)k + (1 − R(a)k )e
c3−kλk
ckλ3−k

(
1

R
(a)
3−k
− 1

p3−k

)ª®®¬
2 < 0.

�

Intuitively, the higher p3−k , the more valuable source 3 − k is, the lower the
indirect benefit of using this source should be to satisfy condition (2.21) of
cost equal to the total benefit. Condition p̄(a)k

[
R(a)3−k

]
= R(a)k also has a natural

meaning: when p3−k = R(a)3−k , the direct benefit is equal to the cost, which
pushes the indirect benefit to zero.

Condition (2.9) is equivalent to the requirement that when R(a)k < 1 and
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, the curve pk = p̄(a)k [p3−k] lies outside of the belief triangle.

To see it, first note that

Lemma 7 For k = 1, 2, when R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, condition

p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
≥ 1 is equivalent to ∆(a)k [1] ≤ 0.

Proof:Using (2.21) and (2.18), we can rewrite condition p∗(a)3−k+p̄(a)k

[
p∗(a)3−k

]
≥ 1

as follows: p1 + p2 ≥ 1 where p1 ∈ (0, 1) and p2 ∈ (0, 1) uniquely solve
c3−k = λ3−k p3−k

(
u3−k[a3−k] − u3−k[a] +

ck
λk

log

[
pk

(
1−R(a)

k

)
R(a)
k
(1−pk )

])
,

λ3−kp3−k
c3−k

=
λkpk

ck
, p3−k ≤ R(a)3−k .
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Substituting p3−k from the last equation, we get: p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
≥ 1 is

equivalent to
pk +

c3−kλk pk

ckλ3−k
≥ 1,

where pk solves

ck = λk pk
©­­«u3−k[a3−k] − u3−k[a] +

ck

λk
log


pk

(
1 − R(a)k

)
R(a)k (1 − pk)


ª®®¬ ,

c3−kλk pk

ckλ3−k
≤ R(a)3−k .

Inequality pk +
c3−kλkpk

ckλ3−k
≥ 1 is equivalent to

c3−kλk

ckλ3−k
≥

1 − pk

pk
.

Equation ck = λk pk

(
u3−k[a3−k] − u3−k[a] +

ck
λk

log

[
pk

(
1−R(a)

k

)
R(a)
k
(1−pk )

])
is equivalent

to

1 − pk

pk
+ log

[
1 − pk

pk

]
=
λk (u3−k[a3−k] − u3−k[a])

ck
− 1 + log


(
1 − R(a)k

)
R(a)k

 .
Inequality c3−kλkpk

ckλ3−k
≤ R(a)3−k is equivalent to

λk (u3−k[a3−k] − u3−k[a])
ck

− 1 ≤
1 − pk

pk
.

Note that function x + log[x] is an increasing function of x. Thus, p∗(a)3−k +

p̄(a)k

[
p∗(a)3−k

]
≥ 1 is equivalent to

c3−kλk

ckλ3−k
+log

[
c3−kλk

ckλ3−k

]
≥
λk (u3−k[a3−k] − u3−k[a])

ck
−1+log


(
1 − R(a)k

)
R(a)k

 ≥
λk (u3−k[a3−k] − u3−k[a])

ck
− 1 + log

[
λk (u3−k[a3−k] − u3−k[a])

ck
− 1

]
⇔

λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+ log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
≤ 1,

λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck

⇔ ∆
(a)
k ≤ 0 and λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
. �

Moreover,
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Lemma 8 For k = 1, 2, if R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, then for all p3−k > 0

p3−k

1 − p̄(a)k [p3−k]
≥

p∗(a)3−k

1 − p̄(a)k

[
p∗(a)3−k

] .
Proof: Consider a function p3−k

1−p̄(a)
k
[p3−k ]

.

d
(

p3−k

1−p̄(a)
k
[p3−k ]

)
dp3−k

=

λ3−kp3−k
c3−k

−
λk p̄(a)

k
[p3−k ]

ck
λ3−kp3−k

c3−k

(
1 − p̄(a)k [p3−k]

) .
Thus, when R(a)k < 1 and λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, we have

• p3−k

1−p̄(a)
k
[p3−k ]

is increasing for p3−k ∈

(
p∗(a)3−k,+∞

)
,

• p3−k

1−p̄(a)
k
[p3−k ]

is decreasing for p3−k ∈

(
0, p∗(a)3−k

)
.

�

Thus, if p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
≥ 1, then p3−k + p̄(a)k [p3−k] ≥ 1 for all p3−k > 0. In

sum, when R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, requirement ∆(a)k [1] ≤ 0 guarantees

that the curve pk = p̄(a)k [p3−k] lies outside of the belief triangle.

Note that when condition (2.10) holds, the belief triangle does not contain
Area 3.k.2.6 Since the switching in Area 3.3-k.2 strategy can only occur at
the curve pk = p̄(a)k [p3−k], if the whole curve pk = p̄(a)k [p3−k] lies outside of
the belief triangle, such strategy is not feasible.

Finally, notice that

p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
≥ 1 ⇒ R(a)1 + R(a)2 ≥ 1. (A.31)

Indeed, by Lemma 8, R(a)3−k + p̄(a)k

[
R(a)3−k

]
≥ 1. Statement (A.31) follows from

p̄(a)k

[
R(a)3−k

]
= R(a)k .

In sum, the conditions for Case 3 are:

1. ck
λk
< uk[ak] − uk[a],

6 λ3−kR
(a)
3−k

c3−k
=

λkR
(a)
k

ck
, the belief triangle does not have either Area 3.1.2 or Area 3.2.2.
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2. uk[ak] − uk[a] ≥ u3−k[a3−k] − u3−k[a],

3. λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
≤ 1,

with the interpretation that, given that it is optimal to use at least one source
sometimes ( ck

λk
< uk[ak]−uk[a]), the cost of the sources are still large enough.

In some sense, here we have that high costs lead to “myopic” behavior being
dynamically optimal. Indeed, no switching means at most one source is used
until the final decision is made. So, the decision maker chooses the source
that is optimal if he would be restricted by having only a short period of time
for learning, that is, his behavior is “myopic”.

Case 4: Both sources might be used, switching is sometimes optimal; all indif-
ference curves between two sources are switching curves. Suppose it is not
Case 1, or Case 2, or Case 3. That means there exists k such that R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
and p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1.

Case 4 corresponds to the optimal a-type strategy such that

• when pk > p̄k[p3−k] and
λjpj

cj
>

λ3−jp3−j
c3−j

, then use source j,

• when pk < p̄k[p3−k] and p j > R(a)j , then use source j,

• otherwise it is optimal to stop.

See Figure A.3.

Recall that the curve pk = p̄k[p3−k] goes through the point (R(a)1 , R(a)2 ) which
means the above description has no contradictions. Moreover, the stopping
region can be described as the set of points (p1, p2) such that p1 < R(a)1 and
p2 < R(a)2 .

However, the described a-type strategy is not necessarily optimal unless we
add one more condition. To understand the nature of this condition, let’s
discuss how beliefs are moving according to this strategy. When pk > R(a)k

and p3−k
1−pk

<
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] , source k should be used until the belief about state

k becomes equal to the threshold R(a)k . This is Area 2.k. When R(a)k <

pk < min
{
p̄(a)k

[
p∗(a)3−k

]
, p̄(a)k [p3−k]

}
and p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] < p3−k
1−pk

<
R(a)3−k

1−R(a)
k

, source

k again should be used until pk = R(a)k . Thus, this is again Area 2.k. When
λkpk

ck
>

λ3−kp3−k
c3−k

and p3−k
1−pk

>
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] , source k is used until the belief
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Figure A.3: Optimal a-type strategy for R(a)1 = 0.2, R(a)2 = 0.4, c1
λ1
= 2, c2

λ2
= 1. Each

point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). White
region means it is optimal to stop. Black region means the first information source
should be used. Gray region means the second information source should be used.

Case 4: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k ≥ R(a)3−k , k = 1.

vector hits the line λ1p1
c1
=

λ2p2
c2

, along which beliefs start crawling until they

reach pk = p̄(a)k

[
p∗(a)3−k

]
, p3−k = p∗(a)3−k , then source k is used until pk = R(a)k .

Denote Area 3.k.1 the area where source k is used until λ1p1
c1
=

λ2p2
c2

. When

p3−k > R(a)3−k and
pk

1−p3−k
<

R(a)
k

1−R(a)3−k
, source 3-k is used until p3−k = R(a)3−k , which

means (p1, p2) belongs to Area 2.3-k.

Up until now, the partition of the belief triangle into areas went without
any contradictions, no additional conditions needed. However, to finish the
description of the partition, I need to impose a new condition, p∗∗(a)3−k ≥ R(a)3−k .
As it was announced in the heading of Case 4, whenever the agent is indifferent
between two sources, he must switch sources. While this is always true for
the line λ1p1

c1
=

λ2p2
c2

, it might not be the case with the curve pk = p̄k[p3−k].

Indeed, consider the set of points such that p3−k < R(a)3−k and pk
1−p3−k

<
R(a)
k

1−R(a)3−k
.

If, according to the described tactic, source 3-k might be used there, there

should exist a ray pk
1−p3−k

= const < R(a)
k

1−R(a)3−k
that crosses the curve pk = p̄k[p3−k]

twice on the interval p3−k ∈

(
p∗(a)3−k, R(a)3−k

)
. The crossing point that has higher
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p3−k would be an indifference point but not a switching point: at this point
the decision maker is indifferent between two sources but no belief trajectory
crosses this point unless it starts there. The additional condition p∗∗(a)3−k ≥ R(a)3−k

is needed precisely to exclude that kind of situation.

Before discussing this condition, let’s finish the description of the areas (as-

suming this condition holds). Suppose R(a)
k

1−R(a)3−k
<

pk
1−p3−k

<
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

. Then

whenever p3−k is greater than the smallest solution to pk
1−p3−k

=
p̄(a)
k
[p3−k ]

1−p3−k
,

namely p̃(a)
3−k

[
pk

1−p3−k

]
, source 3-k is used. Once leaving this area (that is,

hitting p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
), the agent permanently switches to source k,

which is used until pk = R(a)k . Denote Area 3.3-k.2 the area where source

3-k is used until p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
. Finally, when pk

1−p3−k
>

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

and
λkpk

ck
<

λ3−kp3−k
c3−k

, source 3-k is used and therefore (p1, p2) belongs to Area
3.3-k.1.

See Figure A.4.

Lemma 9 For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
and p∗(a)3−k +

p̄(a)k

[
p∗(a)3−k

]
< 1,

1. p∗∗(a)3−k is well-defined by (2.19);

2. function p̄(a)
k
[p3−k ]

1−p3−k
is decreasing for p3−k ∈

(
p∗(a)3−k, p∗∗(a)3−k

)
and it is increas-

ing for p3−k ∈

(
p∗∗(a)3−k , 1

)
;

3. p̄(a)
k
[p3−k ]

1−p3−k
is decreasing when p3−k < p∗(a)3−k and p3−k + p̄(a)k [p3−k] ≤ 1.

Proof: Consider the second derivative of p̄(a)k [p3−k]:

p̄(a)
′′

k [p3−k] =
c2

3−kλk

(
1 − p̄(a)k [p3−k]

)
p̄(a)k [p3−k]

ckλ
2
3−k p4

3−k

(
λk

ck
+ 2

(
p3−kλ3−k

c3−k
−
λk p̄(a)k [p3−k]

ck

))
.

Therefore, if R(a)k < 1 and λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, then p̄(a)k [p3−k] is convex for

p3−k > p∗(a)3−k . Hence, if p∗(a)3−k < 1, then the function p̄(a)
k
[p3−k ]

1−p3−k
has at most one
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Figure A.4: Optimal a-type strategy for R(a)1 = 0.2, R(a)2 = 0.4, c1
λ1
= 2, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 4: R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k ≥ R(a)3−k , k = 1.

local minimum on p3−k ∈

(
p∗(a)3−k, 1

)
.

d
(

p̄(a)
k
[p3−k ]

1−p3−k

)
dp3−k

=
λk p̄(a)k [p3−k]

ck(1 − p3−k)p2
3−k

©­­«
ck p2

3−k

(1 − p3−k) λk
−

c3−k

(
1 − p̄(a)k [p3−k]

)
λ3−k

ª®®¬ .
(A.32)

Note that lim
p3−k→1−0

d

(
p̄
(a)
k
[p3−k ]

1−p3−k

)
dp3−k

= +∞ and lim
p3−k→p∗(a)3−k

d

(
p̄
(a)
k
[p3−k ]

1−p3−k

)
dp3−k

= −
1−p∗(a)3−k−p̄(a)

k

[
p∗(a)3−k

]
p∗(a)3−k

(
1−p∗(a)3−k

)2 .

Moreover, from (A.32), we know that
d

(
p̄
(a)
k
[p3−k ]

1−p3−k

)
dp3−k

< 0 if and only if

ck p2
3−k

(1 − p3−k) λk
<

c3−k

(
1 − p̄(a)k [p3−k]

)
λ3−k

,



124

which is equivalent to

λ3−k p3−k

c3−k
−
λk p̄(a)k [p3−k]

ck
<
λk

(
1 − p3−k − p̄(a)k [p3−k]

)
ck p3−k

.

The left hand side is negative when p3−k < p∗(a)3−k , the right hand side is
nonnegative when p3−k + p̄(a)k [p3−k] ≤ 1. �

Lemma 10 When R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
and p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1,

condition p∗∗(a)3−k ≥ R(a)3−k is equivalent to R(a)3−k < 1 and

uk[ak] − uk[a]
u3−k[a3−k] − u3−k[a]

≤
λkλ3−k

c3−kck

(
u3−k[a3−k] − u3−k[a] −

c3−k

λ3−k

) (
uk[ak] − uk[a] −

ck

λk

)
.

(A.33)

Proof:Weknow that function ckp2
3−k

(1−p3−k )λk
−

c3−k

(
1−p̄(a)

k
[p3−k ]

)
λ3−k

is negative for p3−k ∈[
p∗(a)3−k, p∗∗(a)3−k

)
and is positive for p3−k ∈

(
p∗∗(a)3−k , 1

)
. Given p∗(a)3−k ≤ R(a)3−k , we

conclude that p∗∗(a)3−k ≥ R(a)3−k is equivalent to R(a)3−k < 1 and

ck

(
R(a)3−k

)2(
1 − R(a)3−k

)
λk

−

c3−k

(
1 − p̄(a)k

[
R(a)3−k

] )
λ3−k

≤ 0.

The last inequality is equivalent to (A.33) �

In sum, the conditions for Case 4 are:

1. ck
λk
< uk[ak] − uk[a], c3−k

λ3−k
< u3−k[a3−k] − u3−k[a],

2. uk[ak] − uk[a] ≥ u3−k[a3−k] − u3−k[a],

3. λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
> 1,

4. 1
u3−k [a3−k ]−u3−k [a]

≤
λkλ3−k
c3−kck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

) (
1 − ck

λk (uk [ak ]−uk [a])

)
.

It is easy to see that all these conditions (except c3−k
λ3−k

< u3−k[a3−k] − u3−k[a])
are in the form of uk[ak] − uk[a] greater than something. Thus, Case 4
describes the optimal a-type strategy when the benefit from the correct choice
of the alternative for one of the states is large enough (uk[ak] − uk[a] is large
enough), while such benefit for the other state (u3−k[a3−k] − u3−k[a]) is not
too low compared to the cost for the corresponding source ( c3−k

λ3−k
).
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Case 5: Both sources might be used, switching is sometimes optimal; if the
agent is indifferent between the informatively superior source and some-
thing else, this something else is always the other source. Suppose it
is not the first four cases. That means there exists k such that R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1 and p∗∗(a)3−k < R(a)3−k .

To describe the optimal a-type strategy in Case 5, I start by recalling the
description of the optimal a-type strategy in Case 4:

• when pk > p̄k[p3−k] and
λjpj

cj
>

λ3−jp3−j
c3−j

, then use source j,

• when pk < p̄k[p3−k] and p j > R(a)j , then use source j,

• otherwise it is optimal to stop.

This description has no contradiction if p∗∗(a)3−k < R(a)3−k instead of p∗∗(a)3−k ≥ R(a)3−k .
However, this would not be the optimal a-type strategy. Why? Recall that
the curve pk = p̄k[p3−k] is the set of points such that the cost of using
source 3 − k is equal to a sum of the direct benefit of using that source

(λ3−k p3−k (u3−k[a3−k] − u3−k[a])) and the indirect benefit (λ3−k p3−k

(
ck
λk

log

[
p̄(a)
k
[p3−k ]

(
1−R(a)

k

)
R(a)
k

(
1−p̄(a)

k
[p3−k ]

) ])).
Thus, these are points where the agent is indifferent between continuing using
source 3-k and switching to source k. So, all such points must be switching
points. If p∗∗(a)3−k < R(a)3−k , this is not always true. Thus, the part of the curve
pk = p̄k[p3−k] that does not correspond to the switching behavior must be
changed. How?

Figure A.5 shows the optimal a-type strategy for Case 5.

The part of the curve pk = p̄k[p3−k] that the belief trajectory never crosses
is changed to p3−k = p̃(a)3−k

[
pk

1−p3−k

]
. Where does it come from and how does

this curve look like in algebraic form? To answer these questions, I need to
partition the belief triangle into the areas as before. The set of beliefs such that

pk > R(a)k and p3−k
1−pk

<
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] belongs to Area 2.k. When λkpk
ck

>
λ3−kp3−k

c3−k

and p3−k
1−pk

>
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] , then we’re in Area 3.k.1. If p3−k > R(a)3−k , then (p1, p2)

belongs to Area 2.3-k (this part is void in Figure A.5 since R(a)3−k > 1 given the
values of the parameters the picture is drawn for). If p1 < R(a)1 and p2 < R(a)2 ,
then (p1, p2) belongs to Area 1. So far, nothing is new, we’ve already seen the
same in previous cases.
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Figure A.5: Optimal a-type strategy for R(a)1 = 0.1, R(a)2 = 10, c1
λ1
= 1.2, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2).
White region means it is optimal to stop. Black region means the first information
source should be used. Gray region means the second information source should

be used. Case 5: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k ,

G(a)Ik ≥ 0, k = 1.

Case 5 describes the situation when, if the agent is indifferent between using
source 3-k and then switching to source k, and something else, this something
else is always source k. Graphically, the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
always

divides black and gray regions, not touching the white one. Thus, this curve
divides Area 2.k and Areas 3.3-k.1 and 3.3-k.2 (see Figure A.6).

Lemma 11 For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+p̄(a)k

[
p∗(a)3−k

]
<

1, p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk < 1,

1. p̃(a)
3−k
[qk] and ¯̃p(a)3−k[qk] are well-defined by (2.20);

2. p̃(a)
′

3−k
[qk] < 0 and ¯̃p(a)

′

3−k[qk] > 0; intuitively, p̃(a)
3−k
[qk] decreases since the

higher the relative probability of state k (i.e., qk =
pk

1−p3−k
, which stays

constant while we use source 3-k), the more useful source k is, and the
quicker the switch will occur;
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Figure A.6: Optimal a-type strategy for R(a)1 = 0.1, R(a)2 = 10, c1
λ1
= 1.2, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 5: R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik ≥ 0, k = 1.

3. line λ1p1
c1
=

λ2p2
c2

lies entirely on one side of the curve p3−k = ¯̃p(a)3−k

[
pk

1−p3−k

]
:

λk p̄(a)k

[
¯̃p(a)3−k[qk]

]
ck

<
λ3−k ¯̃p(a)3−k[qk]

c3−k
; (A.34)

4. lim
qk→

p̄
(a)
k
[p
∗∗(a)
3−k ]

1−p∗∗(a)3−k

p̃(a)
3−k
[qk] = lim

qk→
p̄
(a)
k
[p
∗∗(a)
3−k ]

1−p∗∗(a)3−k

¯̃p(a)3−k[qk] = p∗∗(a)3−k ; p̃(a)
3−k

[
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

]
=

p∗(a)3−k .

Proof:

1. Recall that p̄(a)k [p3−k] is convex for p3−k > p∗(a)3−k . Moreover, function
p̄(a)
k
[p3−k ]

1−p3−k
is decreasing for p3−k ∈

(
p∗(a)3−k, p∗∗(a)3−k

)
and is increasing for

p3−k ∈

(
p∗∗(a)3−k , 1

)
; it is decreasing when p3−k < p∗(a)3−k and p̄(a)

k
[p3−k ]

1−p3−k
< 1.
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Thus, equation p̄(a)
k
[p3−k ]

1−p3−k
= qk has two solutions when qk >

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
.

These solutions are p̃(a)
3−k
[qk] and ¯̃p(a)3−k[qk].

2.

p̄(a)k [p3−k[qk]]

1 − p3−k[qk]
= qk ⇒ p′3−k[qk] =

ckλ3−k p2
3−k[qk]

qk

(
ckλ3−kp2

3−k [qk ]
1−p3−k [qk ]

− c3−kλk

(
1 − p̄(a)k [p3−k[qk]]

)) .
(A.35)

3. Since p̄(a)k [p3−k] is decreasing and ¯̃p(a)3−k[qk] > p∗(a)3−k .

�

It is easy to see that if p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
, then pk = p̄(a)k [p3−k]. Similarly,

if p3−k = ¯̃p(a)3−k

[
pk

1−p3−k

]
, then pk = p̄(a)k [p3−k]. Thus, when qk <

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the

curve p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
is the switching curve from source 3-k to source

k, permanently (when qk >
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the switching line is λ1p1

c1
=

λ2p2
c2

and

not pk = p̄(a)k [p3−k]). The curve p3−k = ¯̃p(a)3−k

[
pk

1−p3−k

]
is the part of the curve

pk = p̄(a)k [p3−k] that needs to be changed.

To define the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
formally, I first need to introduce

functions W (a)k [pk, q3−k] and F(a)k [x, q3−k].

Definition and properties of W (a)k [pk, q3−k].

For k = 1, 2, when R(a)3−k < 1, pk ∈ (0, 1), q3−k ∈ (0, 1), denote

W (a)k [pk, q3−k] =

(
1 −

c3−kλk

ckλ3−k
−

1
R(a)k

)
1

1 − pk
+ log

[
pk

1 − pk

]
+

c3−kλk

ckλ3−k

(
1

1 − pk
− q3−k

)
log


R(a)3−k

(
1

1−pk
− q3−k

)(
1 − R(a)3−k

)
q3−k

 . (A.36)

To understand the meaning of this function, note that

∂W3−k [p3−k, qk]

∂p3−k

�����
qk=

p3−k
1−pk

=

c3−k − λ3−k p3−k

(
u3−k[a3−k] − u3−k[a] +

ck
λk

log

[
pk

(
1−R(a)

k

)
R(a)
k
(1−pk )

])
c3−k p3−k(1 − p3−k)

2 .

(A.37)
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Thus, the marginal change of W3−k

[
p3−k,

p3−k
1−pk

]
as p3−k decreases while p3−k

1−pk
stays constant (this is the direction the belief vector would move if source 3-k
is used and no positive signal is observed) is the adjusted difference between
the marginal benefit of using source 3-k (direct and indirect) and its marginal
cost. Thus, this function has the meaning of the adjusted expected benefit of
using source 3-k before switching to source k.

Properties of W (a)3−k [p3−k, qk]:

1. lim
p3−k→1

W (a)3−k [p3−k, qk] = +∞. Intuitively, when the agent is almost

certain it is state 3-k, he should definitely use source 3-k to avoid the
default alternative a and choose a3−k after observing a positive signal
(which will eventually appear almost certainly).

2. W (a)3−k [p3−k, qk] is increasing in p3−k when p̄(a)
k
[p3−k ]

1−p3−k
> qk and is de-

creasing in p3−k when p̄(a)
k
[p3−k ]

1−p3−k
< qk . Essentially, it says that the curve

pk = p̄(a)k [p3−k] is the set of extremal points for W (a)3−k [p3−k, qk]. Recall
that these points are the points where marginal cost of using source 3-k
is equal to its marginal benefit. Given (A.37), these are the points when
∂W3−k [p3−k,qk ]

∂p3−k

�����
qk=

p3−k
1−pk

= 0. Proof:

∂W (a)3−k [p3−k, qk]

∂p3−k
=

ckλ3−k

c3−kλk (1 − p3−k)
2 log


1

(1−p3−k )qk
− 1

1
p̄(a)
k
[p3−k ]

− 1

 .
�

3. Assume R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1. Given the

previous point, the following are true.

a) When qk <
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
= inf

p3−k∈(0,1)

p̄(a)
k
[p3−k ]

1−p3−k
,W (a)3−k [p3−k, qk] is increas-

ing in p3−k for p3−k ∈ (0, 1).

b) When qk >
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
:

• W (a)3−k [p3−k, qk] is increasing in p3−k for p3−k ∈

(
0, p̃(a)

3−k
[qk]

)
and for p3−k ∈

(
¯̃p(a)3−k[qk], 1

)
,

• W (a)3−k [p3−k, qk] is decreasing in p3−k for p3−k ∈

(
p̃(a)

3−k
[qk], ¯̃p(a)3−k[qk]

)
.

Definition and properties of F(a)k [x, q3−k].
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For k = 1, 2, when x ∈
(
0, 1

c1
λ1
+

c2
λ2

)
, q3−k ∈ (0, 1), denote

F(a)k [x, q3−k] = −q3−k

(
1 +

1
R(a)k

)
−
λk

ck

(
c3−k

λ3−k
+

1 − q3−k

x

)
+log

[
ckλ3−k

c3−kλk
q3−k

]
− (1 − q3−k)

(
1 +

c3−kλk

ckλ3−k

)
log


λ3−k
c3−k

(
1
x −

c1
λ1
−

c2
λ2

)
1

q3−k
− 1

 .
Suppose that R(a)k < 1, λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1. Note that

from (2.18) we get λ3−kp∗(a)3−k
c3−k

< 1
c1
λ1
+

c2
λ2

. Thus, λ3−kp∗(a)3−k
c3−k

falls in the range of

admissible values for the argument x in function F(a)3−k[x, qk].

Suppose the current belief vector lies on the line λ1p1
c1
=

λ2p2
c2

so that p3−k >

p∗(a)3−k (this part of the line corresponds to using both sources simultane-
ously in such a way that the belief vector moves along this line). Function

W (a)3−k

[
p3−k,

pk
1−p3−k

]
− F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

pk
1−p3−k

]
has the meaning of the adjusted

expected benefit from using both sources until p3−k = p∗(a)3−k . This follows from

two observations. First, F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

]
= W (a)3−k

[
p∗(a)3−k,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

]
so

that once p3−k = p∗(a)3−k is reached, functionW (a)3−k

[
p3−k,

pk
1−p3−k

]
−F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

pk
1−p3−k

]
is equal to zero. Second, note that along the line λ1p1

c1
=

λ2p2
c2

we have
p3−k =

1
1+ ckλ3−k

c3−kλk
1−p3−k

pk

. The derivative of this function,

∂

(
W (a)3−k

[
1

1+ ckλ3−k
c3−kλk

1
qk

, qk

]
− F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

] )
∂qk

= −

(
1
ξ
−

1
qk
+ 2 log

[ 1
ξ − 1
1
qk
− 1

])

+

(
1 −

ckλ3−k

c3−kλk

) ©­­«
1
ξ
+

c3−kλk

ckλ3−k

(
R(a)3−k − 1

R(a)3−k

)
+ log


R(a)k

(
c3−kλk
ckλ3−k

+ 1
qk
− 1

) (
1
ξ − 1

)(
1 − R(a)k

) (
1
qk
− 1

) 
ª®®¬
�����
ξ=

p̄k

[
p
∗(a)
3−k

]
1−p∗(a)3−k

,

consists of two parts. The first part, −
(

1
ξ −

1
qk
+ 2 log

[
1
ξ −1
1
qk
−1

] )
, is the decreas-

ing function of qk , it is equal to 0 when p3−k = p∗(a)3−k , and therefore it has the
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interpretation of the total net marginal cost of using both sources along the line
λ1p1

c1
=

λ2p2
c2

until p3−k = p∗(a)3−k . The second part is the adjustment for the asym-
metry of the sources; it is equal to 0 when c1

λ1
=

c2
λ2
. Thus, as the belief vector

is moving down along the line λ1p1
c1
=

λ2p2
c2

, function W (a)3−k

[
p3−k,

pk
1−p3−k

]
−

F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

pk
1−p3−k

]
increases at the rate of the total net marginal benefit.

To sum up, function W (a)3−k

[
p3−k,

pk
1−p3−k

]
− F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

pk
1−p3−k

]
is the total

net benefit of using both sources along the line λ1p1
c1
=

λ2p2
c2

until p3−k = p∗(a)3−k .

Lemma 12 Suppose that R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1.

Then F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

]
> W (a)3−k

[
¯̃p(a)3−k[qk], qk

]
for qk ≥

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

.

Proof: From (2.18) we get

F(a)3−k

[
λ3−k p∗(a)3−k

c3−k
,

p̄(a)k [p
∗(a)
3−k]

1 − p∗(a)3−k

]
= W (a)3−k

[
p∗(a)3−k,

p̄(a)k [p
∗(a)
3−k]

1 − p∗(a)3−k

]
> W (a)3−k

[
¯̃p(a)3−k

[
p̄(a)k [p

∗(a)
3−k]

1 − p∗(a)3−k

]
,

p̄(a)k [p
∗(a)
3−k]

1 − p∗(a)3−k

]
,

d
(
F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

]
−W (a)3−k

[
¯̃p(a)3−k[qk], qk

] )
dqk

=

ckλ3−k ¯̃p(a)3−k[qk]

c3−kλk p̄(a)k

[
¯̃p(a)3−k[qk]

]− 1
¯̃p(a)3−k[qk]

−1+
1

p∗(a)3−k

+

(
1 +

ckλ3−k

c3−kλk

)
log


c3−kλk

(
1−p∗(a)3−k

)
ckλ3−kp∗(a)3−k

− 1

1
qk
− 1


> 0

for qk ≥
ckλ3−kp∗(a)3−k

c3−kλk

(
1−p∗(a)3−k

) = p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

(the last inequality holds because (A.34)

and ¯̃p(a)3−k[qk] > p∗(a)3−k). �

I’ll use this lemma when I define p̃(a)3−k[qk].

Definition and properties of p̃(a)3−k[qk] and q∗(a)k .

For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, denote

L(a)3−k[qk] =


W (a)3−k

[
p̃(a)

3−k
[qk], qk

]
,

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk ≤

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
,

F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

]
,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
< qk < 1,

(A.38)
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p̃(a)3−k[qk] ∈

(
¯̃p(a)3−k[qk], 1

)
: W (a)3−k

[
p̃(a)3−k[qk], qk

]
= L(a)3−k[qk] (A.39)

and

q̃(a)3−k[qk] =
p̃(a)3−k[qk]

1 − qk

(
1 − p̃(a)3−k[qk]

) . (A.40)

Properties:

1. Definition (A.39) has no contradiction, that is, the solution p3−k to
W (a)3−k [p3−k, qk] = L(a)3−k[qk] always exists and is unique on the interval(

¯̃p(a)3−k[qk], 1
)
.

Proof:When p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk ≤

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, this follows from the properties

1 and 3b of function W (a)3−k[p3−k, qk].

When p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
< qk < 1, this follows from Lemma 12 and properties 1

and 3c of function W (a)3−k[p3−k, qk].

So, since W (a)3−k [p3−k, qk] is increasing in p3−k for p3−k ∈

(
¯̃p(a)3−k[qk], 1

)
from W (a)3−k

[
¯̃p(a)3−k[qk], qk

]
< L(a)3−k [qk] to +∞, the solution to (A.39)

exists and is unique. �

2. L(a)3−k[qk] and p̃(a)3−k[qk] are continuous for qk ∈

(
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
, 1

)
.

Proof: Follows from F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

]
= W (a)3−k

[
p∗(a)3−k,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

]
.

�

3. p̃(a)3−k[qk] and q̃(a)3−k[qk] are strictly increasing. Intuitively, the higher the
relative probability of state k (qk), the more useful source k becomes,
the higher the threshold p3−k would be to make the decision maker
indifferent between the sources.

Proof: If p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk <

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, then

p̃(a)
′

3−k[qk] =
ckλ3−k

c3−kλk

1
qk

(
1

1−p̃(a)3−k [qk ]
− 1

1−p̃(a)3−k [qk ]

)
+ log

[ 1
qk

(
1−p̃(a)3−k [qk ]

) −1

1
qk

(
1−p̃(a)3−k [qk ]

) −1

]
∂W (a)3−k

[
p̃(a)3−k [qk ],qk

]
∂p3−k

.
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If p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
< qk < 1, then

p̃(a)
′

3−k[qk] =
ckλ3−k

c3−kλk

1
qk

(
1

1−p̃(a)3−k [qk ]
− 1

1− ¯̃p(a)3−k [qk ]

)
+ log

[ 1
qk

(
1−p̃(a)3−k [qk ]

) −1

1
qk

(
1− ¯̃p(a)3−k [qk ]

) −1

]
∂W (a)3−k

[
p̃(a)3−k [qk ],qk

]
∂p3−k

+

d

(
F(a)3−k

[
λ3−k p

∗(a)
3−k

c3−k
,qk

]
−W (a)3−k

[
¯̃p(a)3−k [qk ],qk

] )
dqk

∂W (a)3−k

[
p̃(a)3−k [qk ],qk

]
∂p3−k

.

In any case, p̃(a)
′

3−k[qk] > 0. Therefore,

q̃(a)
′

3−k[qk] =
p̃(a)3−k[qk]

(
1 − p̃(a)3−k[qk]

)
+ (1 − qk)p̃

(a)′

3−k[qk](
1 − qk

(
1 − p̃(a)3−k[qk]

))2 > 0.

�

The curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
is the indifference curve in Case 5. It consists

of two parts, the part that divides Area 2.k and Area 3.3-k.2 and the part that
divides Area 2.k and Area 3.3-k.1.

• When p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
<

pk
1−p3−k

≤
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
is

the set of points when the decision maker is indifferent between using
source k only and using source 3-k until p3−k = p̃(a)

3−k

[
pk

1−p3−k

]
and then

switching to source k permanently. In that case, condition (A.39) is
equivalent to

p̃(a)3−k

[
pk

1−p3−k

]∫
p̃(a)3−k

[
pk

1−p3−k

]
∂W3−k

[
p′3−k,

pk
1−p3−k

]
∂p′3−k

dp′3−k = 0,

where
∂W3−k

[
p′3−k,

pk
1−p3−k

]
∂p3−k

is defined by (A.37). Thus, p3−k = p̃(a)3−k

[
pk

1−p3−k

]
sets the net benefit of using source 3-k before permanently switching to
source k to zero.

• When pk
1−p3−k

>
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
is the set of

points when the decision maker is indifferent between using source
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k only and using source 3-k until the line λ1p1
c1
=

λ2p2
c2

(that is until
p3−k =

1
1+ ckλ3−k

c3−kλk
1−p3−k

pk

), then using both sources along this line until

p3−k = p∗(a)3−k and only then switching to source k permanently. In that
case, condition (A.39) is equivalent to

p̃(a)3−k

[
pk

1−p3−k

]∫
1

1+
ckλ3−k
c3−kλk

1−p3−k
pk

∂W3−k

[
p′3−k,

pk
1−p3−k

]
∂p′3−k

dp′3−k

+

pk
1−p3−k∫

p̄k

[
p
∗(a)
3−k

]
1−p∗(a)3−k

∂

(
W (a)3−k

[
1

1+ ckλ3−k
c3−kλk

1
qk

, qk

]
− F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

] )
∂qk

dqk = 0.

Thefirst part is equal toW3−k

[
p̃(a)3−k

[
pk

1−p3−k

]
,

pk
1−p3−k

]
−W3−k

[
1

1+ ckλ3−k
c3−kλk

1−p3−k
pk

,
pk

1−p3−k

]
and it is the net benefit of using source 3-k until the line λ1p1

c1
=

λ2p2
c2

. The

second part is equal toW3−k

[
1

1+ ckλ3−k
c3−kλk

1−p3−k
pk

,
pk

1−p3−k

]
−F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
,

pk
1−p3−k

]
and it is the net benefit of using both sources along the line λ1p1

c1
=

λ2p2
c2

until p3−k = p∗(a)3−k . Thus, p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
sets the net benefit of us-

ing source 3-k and then using both sources before permanently switching
to source k to zero.

In sum, p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
makes the net benefit of using source 3-k equal

to zero.

To understand what function q̃(a)3−k[qk] means, note that wherever p3−k =

p̃(a)3−k

[
pk

1−p3−k

]
, we have q̃(a)3−k

[
pk

1−p3−k

]
=

p3−k
1−pk

. This is just a useful notation for
a description of the optimal a-type strategy.

Recall that Case 5 requires the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
to be outside

the stopping region, that is, if p3−k = p̃(a)3−k

[
pk

1−p3−k

]
, then pk ≥ R(a)k . In

other words, this condition is equivalent to p̃(a)3−k [qk] ≤ 1 − R(a)
k

qk
for all qk ∈[

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
, 1

)
:

p̃(a)3−k

[
pk

1 − p3−k

]
≤ 1−

R(a)k
pk

1−p3−k

⇔
pk

1 − p3−k

(
1 − p̃(a)3−k

[
pk

1 − p3−k

] )
≥ R(a)k .
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Denote

G(a)Ik = 1−
ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

+log


ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

−
1

R(a)k

(
1 − R(a)k

R(a)3−k

− 1

)
.

For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, denote

q∗(a)k ∈

(
p̄(a)k [p

∗∗(a)
3−k ]

1 − p∗∗(a)3−k

, 1

)
: W (a)3−k

[
1 −

R(a)k

q∗(a)k

, q∗(a)k

]
= L(a)3−k

[
q∗(a)k

]
. (A.41)

q∗(a)k has the meaning of the threshold above which condition p̃(a)3−k [qk] ≤

1 − R(a)
k

qk
does not hold. When G(a)Ik ≥ 0, there is no such threshold and

condition p̃(a)3−k [qk] ≤ 1 − R(a)
k

qk
holds all the time. Formally:

Lemma 13 When R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k <

R(a)3−k , we have

• p∗∗(a)3−k < 1 − R(a)
k

qk
< 1 whenever p̄(a)

k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk < 1, so that 1 − R(a)

k

qk
is a

valid first argument for function W3−k[p3−k, qk];

• if G(a)Ik < 0, then the solution to (A.41) is unique,

– W (a)3−k

[
1 − R(a)

k

qk
, qk

]
> L(a)3−k [qk] for qk ∈

(
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
, q∗(a)k

)
, and

therefore p̃(a)3−k[qk] < 1 − R(a)
k

qk
,

– W (a)3−k

[
1 − R(a)

k

qk
, qk

]
< L(a)3−k [qk] for qk ∈

(
q∗(a)k , 1

)
, and therefore

p̃(a)3−k[qk] > 1 − R(a)
k

qk
;

• if G(a)Ik ≥ 0, then p̃(a)3−k[qk] < 1 − R(a)
k

qk
for qk ∈

(
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
, 1

)
.

Proof:When R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+ p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k ,

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk < 1, we have

p∗∗(a)3−k = 1 −
R(a)k

R(a)
k

1−p∗∗(a)3−k

< 1 −
R(a)k

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k

< 1 −
R(a)k

qk
< 1 − R(a)k < 1.
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When R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k ,

consider a function W (a)3−k

[
1 − R(a)

k

qk
, qk

]
− L(a)3−k[qk] for

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk < 1. It

is continuous, its derivative is continuous,

d
(
W (a)3−k

[
1 − R(a)

k

qk
, qk

]
−W (a)3−k

[
p̃(a)

3−k
[qk], qk

] )
dqk

�����
qk=

p̄
(a)
k
[p
∗(a)
3−k ]

1−p∗(a)3−k

=

d
(
W (a)3−k

[
1 − R(a)

k

qk
, qk

]
− F(a)3−k

[
λ3−kp∗(a)3−k

c3−k
, qk

] )
dqk

�����
qk=

p̄
(a)
k
[p
∗(a)
3−k ]

1−p∗(a)3−k

=

1

1−
c3−kλk R

(a)
k

(
1−p∗(a)3−k

)
ckλ3−k p

∗(a)
3−k

−
1−R(a)

k

R(a)3−k
−

ckλ3−k
c3−kλk

R(a)k

,

and it is concave:

d2
(
W (a)3−k

[
1 − R(a)

k

qk
, qk

]
− L(a)3−k [qk]

)
dq2

k

=
−

(
1(

qk−R(a)
k

)2 +
ckλ3−k

c3−kλkq2
k

(
1−p̃(a)3−k [qk ]

) (
1−p̄(a)

k

[
p̃(a)3−k [qk ]

] ) ) , p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk <

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k

−

(
1(

qk−R(a)
k

)2 +
1

(1−qk )qk

(
1 + ckλ3−k

c3−kλkqk

))
,

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
< qk < 1

< 0.

It is positive near qk =
p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
:

lim
qk→

p̄
(a)
k
[p
∗∗(a)
3−k ]

1−p∗∗(a)3−k

(
W (a)3−k

[
1 −

R(a)k

qk
, qk

]
−W (a)3−k

[
p̃(a)

3−k
[qk], qk

] )
> 0

sinceW (a)3−k

[
p3−k,

p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k

]
is increasing p3−k for p3−k > p∗(a)3−k , lim

qk→
p̄
(a)
k
[p
∗∗(a)
3−k ]

1−p∗∗(a)3−k

p̃(a)
3−k
[qk] =

p∗∗(a)3−k and 1 − R(a)
k

p̄
(a)
k
[p
∗∗(a)
3−k ]

1−p∗∗(a)3−k

∈

(
p∗∗3−k, 1

)
.
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The statement follows from

lim
qk→1

(
W (a)3−k

[
1 −

R(a)k

qk
, qk

]
− F(a)3−k

[
λ3−k p∗(a)3−k

c3−k
, qk

])
= G(a)Ik .

�

In sum, the conditions for Case 5 are R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k +

p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik ≥ 0, or equivalently

1. ck
λk
< uk[ak] − uk[a],

2. uk[ak] − uk[a] ≥ u3−k[a3−k] − u3−k[a],

3. λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
> 1,

4. uk [ak ]−uk [a]
uk [ak ]−uk [a]−

ck
λk

> λkλ3−k
c3−kck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
(u3−k[a3−k] − u3−k[a]),

5.
2+log

[
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

)]
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

) ≥
λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+ 1,

with the interpretation that, given it is sometimes optimal to use source 3-k
before switching to source k, the direct benefit from source 3-k is small enough
(conditions 2, 4 and 5 limit u3−k[a3−k] − u3−k[a] from above).

The following lemma is useful for assuring a non-contradicting description of
the optimal a-type strategy. Roughly speaking, it says that if point (R(a)1 , R(a)2 )

is inside the belief triangle, using source 3-k is never a bad idea at this point
(we saw it in Case 4 and we will see it in Case 7).

Lemma 14 When R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , we have:

• G(a)Ik ≥ 0 only if R(a)1 + R(a)2 ≥ 1. Thus, point (R(a)1 , R(a)2 ) always lies
outside the belief triangle.

• if G(a)Ik < 0, then q∗(a)k <
R(a)
k

1−R(a)3−k
.

Proof: When G(a)Ik ≥ 0 we have R(a)1 + R(a)2 ≥ 1 since 1 − x + log[x] ≤ 0 for

all x. If G(a)Ik < 0, we have R(a)
k

1−R(a)3−k
>

p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

, ¯̃p3−k

[
R(a)
k

1−R(a)3−k

]
= R(a)3−k and

therefore

W (a)3−k

[
1 −

R(a)k

qk
, qk

]
−L(a)3−k [qk]

�����
qk=

R
(a)
k

1−R(a)3−k

= W (a)3−k

[ ¯̃p3−k [qk] , qk
]
−L(a)3−k [qk]

�����
qk=

R
(a)
k

1−R(a)3−k

< 0.
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Case 6: The agent might be indifferent between the informatively superior
source and stopping when his belief about state 3 is close to zero. Suppose
it is not the first five cases. That means there exists k such that R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0. As we

know from Lemma 13, this is the case when p̃(a)3−k[qk] < 1− R(a)
k

qk
for qk < q∗(a)k

and p̃(a)3−k[qk] > 1 − R(a)
k

qk
for qk > q∗(a)k . Once the curve p3−k = p̃(a)3−k

[
pk

1−p3−k

]
enters the stopping region, it changes its supposed interpretation. Now, we
want the indifference curve to equalize the utility of stopping and the utility
of using source 3 − k before switching to source k. Thus, we need to change
the equation for the indifference curve when pk

1−p3−k
> q∗(a)k . Let’s denote this

new curve as p3−k = p̂(a)3−k

[
pk

1−p3−k

]
.

Case 6 covers the range of parameters when, in addition to what has been
mentioned just above, the indifference curve p3−k = p̂(a)3−k

[
pk

1−p3−k

]
goes all the

way to the line p1 + p2 = 1, not touching p3−k = R∗(a)3−k along the way.

Figures A.7, A.8 and A.9 show the optimal a-type strategy for Case 6.

Figures A.10, A.11 and A.12 show the partition of the belief triangle into
Areas according to the type of the a-type strategy optimal for given beliefs.

To define the curve p3−k = p̂(a)3−k

[
pk

1−p3−k

]
formally, I need to introduce function

J(a)k [pk, q3−k] first.

Definition and properties of J(a)k [pk, q3−k].

For k = 1, 2, when pk ∈ (0, 1), denote

J(a)k [pk, q3−k] = log
[

pk

1 − pk

]
+

1 − 1
R(a)
k

1 − pk
−

c3−kλk q3−k

ckλ3−k R(a)3−k

.

To understand the meaning of this function, note that

∂
(
W (a)3−k[p3−k, qk] − J(a)3−k[p3−k, qk]

)
∂p3−k

�����
qk=

pk
1−p3−k

=
ckλ3−k

c3−kλk

log
[

R(a)
k

1−R(a)
k

]
− log

[
pk

1−pk

]
(1 − p3−k)

2 ,

so that the function W (a)3−k

[
p3−k,

pk
1−p3−k

]
− J(a)3−k

[
p3−k,

pk
1−p3−k

]
is the total net

benefit of using source k until pk = R(a)k after switching from source 3-k.
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Figure A.7: Optimal a-type strategy for R(a)1 = 0.1, R(a)2 = 10, c1
λ1
= 5, c2

λ2
= 1. Each

point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). White
region means it is optimal to stop. Black region means the first information source
should be used. Gray region means the second information source should be used.

Case 6: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0,

R(a)3−k ≥ 1 or G(a)I I
k ≥ 0, k = 1.

Coupled with the interpretation of W (a)3−k

[
p3−k,

pk
1−p3−k

]
as the benefit of the a-

type strategy of using source 3-k and then switching to source k permanently,
we conclude that J(a)3−k

[
p3−k,

pk
1−p3−k

]
is the benefit of using of source 3-k,

conditional on switching to source k afterwards.

Properties:

1. J(a)3−k[p3−k, qk] is increasing in p3−k when p3−k < R(a)3−k and it is decreasing
in p3−k when p3−k > R(a)3−k . Intuitively, R(a)3−k is the threshold above which
using source 3-k until p3−k = R(a)3−k is preferred to stopping. Hence, once
we pass this threshold, the use of source 3-k, conditional on switching
to source k afterwards, becomes less desirable.

Proof: Follows from

∂J(a)3−k[p3−k, qk]

∂p3−k
=

R(a)3−k − p3−k

(1 − p3−k)
2p3−k R(a)3−k

.

�
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Figure A.8: Optimal a-type strategy for R(a)1 = 0.3, R(a)2 = 10, c1
λ1
= 4, c2

λ2
= 1. Each

point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). White
region means it is optimal to stop. Black region means the first information source
should be used. Gray region means the second information source should be used.

Case 6: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0,

R(a)3−k ≥ 1 or G(a)I I
k ≥ 0, k = 1.

2. lim
p3−k→0

J(a)3−k[p3−k, qk] = −∞. Indeed, when the probability of state 3-k is

zero, source 3-k is completely useless.

3. When R(a)3−k < 1, lim
p3−k→1

J(a)3−k[p3−k, qk] = −∞.

4. When R(a)3−k ≥ 1, lim
p3−k→1

J(a)3−k[p3−k, qk] = +∞.

5. For k = 1, 2, when R(a)k < 1, p3−k ∈ (0, 1), qk ∈ (0, 1), we have
J(a)3−k[p3−k, qk] ≤ W (a)3−k[p3−k, qk], with equality if and only if p3−k = 1 −
R(a)
k

qk
. This echoes the interpretation ofW (a)3−k

[
p3−k,

pk
1−p3−k

]
−J(a)3−k

[
p3−k,

pk
1−p3−k

]
as the benefit of using source k after switching. When p3−k = 1− R(a)

k
pk

1−p3−k

(equivalent to pk = R(a)k ), this benefit is zero since according to the opti-
mal a-type strategy the agent is indifferent between stopping and using

source k. When p3−k , 1 − R(a)
k
pk

1−p3−k

(equivalent to pk , R(a)k ), the farther

pk from the threshold, the higher the benefit from the opportunity to use
source k after switching from source 3-k in the course of applying the
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Figure A.9: Optimal a-type strategy for R(a)1 = 0.3, R(a)2 = 0.9, c1
λ1
= 1.5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2).
White region means it is optimal to stop. Black region means the first information
source should be used. Gray region means the second information source should

be used. Case 6: R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k ,

G(a)Ik < 0, R(a)3−k ≥ 1 or G(a)I I
k ≥ 0, k = 1.

optimal a-type strategy.

Proof:

J(a)3−k[p3−k, qk] −W (a)3−k[p3−k, qk] =

ckλ3−k

c3−kλk
qk

(
1

R(a)k

− 1

)
(x − 1 − x log[x])

�����
x=

1
qk (1−p3−k )

−1

1
R
(a)
k

−1

≤ 0.

�

Definition and properties of p̂(a)3−k[qk] and q∗∗(a)k .

Without specifying the details, I say that p̂(a)3−k[qk], qk ≥ q∗(a)k , is the solution
to J(a)3−k

[
p̂(a)3−k[qk], qk

]
= L(a)3−k[qk]. Before introducing the full definition, let’s

discuss the intuition behind it.

• When pk
1−p3−k

<
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the curve p3−k = p̂(a)3−k

[
pk

1−p3−k

]
is the set

of points when the agent is indifferent between stopping, and using
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Figure A.10: Optimal a-type strategy for R(a)1 = 0.1, R(a)2 = 10, c1
λ1
= 5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 6: R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, R(a)3−k ≥ 1 or

G(a)I I
k ≥ 0, k = 1.

source 3-k until p3−k = p̃(a)
3−k

[
pk

1−p3−k

]
and then switching to source k

permanently:

L(a)3−k

[
pk

1 − p3−k

]
− J(a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]
=(

W (a)3−k

[
p̃(a)

3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]
−W (a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

] )
+(

W (a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]
− J(a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

] )
= 0.

The first part reflects the benefit of using source 3-k until p3−k =

p̃(a)
3−k

[
pk

1−p3−k

]
. The second part shows the benefit of using source k

afterwards.

• When pk
1−p3−k

>
p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
, the curve p3−k = p̂(a)3−k

[
pk

1−p3−k

]
is the set of

points when the agent is indifferent between stopping, and using source
3-k until the line λ1p1

c1
=

λ2p2
c2

(that is, until p3−k =
1

1+ ckλ3−k
c3−kλk

1−p3−k
pk

), then
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Figure A.11: Optimal a-type strategy for R(a)1 = 0.3, R(a)2 = 10, c1
λ1
= 4, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 6: R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, R(a)3−k ≥ 1 or

G(a)I I
k ≥ 0, k = 1.

using both sources along this line until p3−k = p∗(a)3−k and only then
switching to source k permanently:

L(a)3−k

[
pk

1 − p3−k

]
− J(a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]
=

©­«W3−k


1

1 + ckλ3−k
c3−kλk

1−p3−k
pk

,
pk

1 − p3−k

 −W (a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]ª®¬+©­«F(a)3−k

[
λ3−k p∗(a)3−k

c3−k
,

pk

1 − p3−k

]
−W3−k


1

1 + ckλ3−k
c3−kλk

1−p3−k
pk

,
pk

1 − p3−k

ª®¬+(
W (a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

]
− J(a)3−k

[
p̂(a)3−k

[
pk

1 − p3−k

]
,

pk

1 − p3−k

] )
= 0.

The first part is equal to the benefit of using source 3-k until the line
λ1p1

c1
=

λ2p2
c2

. The second part is equal to the benefit of using both sources
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Figure A.12: Optimal a-type strategy for R(a)1 = 0.3, R(a)2 = 0.9, c1
λ1
= 1.5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 6: R(a)k < 1,
λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, R(a)3−k ≥ 1 or

G(a)I I
k ≥ 0, k = 1.

along the line λ1p1
c1
=

λ2p2
c2

until p3−k = p∗(a)3−k . The last part is equal to the
benefit of using source k afterwards.

So, now, in contrast to function p̃(a)k [qk], I need to add the benefit of the last
part of the trajectory, which corresponds to using source k until pk = R(a)k .

Now I proceed to the full definition. It consists of three scenarios: when
R(a)3−k ≥ 1, when R(a)3−k < 1 and the equation J(a)3−k

[
p̂(a)3−k[qk], qk

]
= L(a)3−k[qk]

has the solution for all q∗(a)k < qk < 1, and when R(a)3−k < 1 and I can define
p̂(a)k [qk] only up to some threshold q∗∗(a)k . The first two scenarios correspond
to Case 6, the last one is relevant for Case 7.

For k = 1, 2, when R(a)k < 1, R(a)3−k ≥ 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
<

1, denote

p̂(a)3−k[qk] ∈ (0, 1) : J(a)3−k

[
p̂(a)3−k[qk], qk

]
= L(a)3−k[qk]. (A.42)
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Note that since J(a)3−k[p3−k, qk] is increasing in p3−k from −∞ to +∞, the
solution to (A.42) always exists and is unique.

When R(a)3−k < 1, function J(a)3−k [p3−k, qk] is increasing when p3−k < R(a)3−k

and is decreasing to −∞ afterwards. So, it might be the case that equa-
tion J(a)3−k [p3−k, qk] = L(a)3−k[qk] has no solution (more precisely, it happens
when J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk] < 0). Moreover, when it does, it might

have two solutions. The following lemma describes the behavior of function
J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk] = sup

p3−k

J(a)3−k [p3−k, qk] − L(a)3−k[qk].

Denote

G(a)I I
k = 1 −

ckλ3−k

(
1 − R(a)k

)
c3−kλk R(a)k

+ log


ckλ3−k R(a)3−k

c3−kλk

(
1 − R(a)3−k

)  .
Lemma 15 For k = 1, 2, when R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k

c3−k
≥

λkR(a)
k

ck
,

p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , function J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk]

is decreasing for p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk < 1 to G(a)I I

k .

Proof:

• p̄(a)
k
[p∗∗(a)3−k ]

1−p∗∗(a)3−k
< qk <

p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
:

d
(
J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk]

)
dqk

=
ckλ3−k

c3−kλk

©­­«log


1

p̄(a)
k

[
p̃(a)3−k [qk ]

] − 1

1
R(a)
k

− 1

 +
1

p̄(a)k

[
p̃(a)

3−k
[qk]

] − 1
R(a)k

ª®®¬ < 0

since p̃(a)
3−k
[qk] < p∗∗(a)3−k < R(a)3−k ⇒ p̄(a)k

[
p̃(a)

3−k
[qk]

]
> p̄(a)k

[
R(a)3−k

]
= R(a)k .

•
d
(
J(a)3−k

[
R(a)3−k,qk

]
−L(a)3−k [qk ]

)
dqk

�����
qk=

p̄
(a)
k
[p
∗(a)
3−k ]

1−p∗(a)3−k
−0

=
d
(
J(a)3−k

[
R(a)3−k,qk

]
−L(a)3−k [qk ]

)
dqk

�����
qk=

p̄
(a)
k
[p
∗(a)
3−k ]

1−p∗(a)3−k
+0

=

1
R(a)3−k
−

ckλ3−k

c3−kλkR(a)
k

.
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• p̄(a)
k
[p∗(a)3−k ]

1−p∗(a)3−k
< qk < 1:

d2
(
J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk]

)
dq2

k

= −
qk +

ckλ3−k
c3−kλk

(1 − qk)q2
k

< 0.

• lim
qk→1

(
J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k[qk]

)
= G(a)I I

k .

�

Now, I can define p̂(a)k [qk] for the second and the third scenario.

For k = 1, 2, when R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+ p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, G(a)I I
k ≥ 0, qk ≥ q∗(a)k , denote

p̂(a)3−k[qk] ∈

(
0, R(a)3−k

)
: J(a)3−k

[
p̂(a)3−k[qk], qk

]
= L(a)3−k[qk]. (A.43)

Note that since J(a)3−k[p3−k, qk] is increasing in p3−k from−∞ to J(a)3−k[R3−k, qk] ≥

L(a)3−k[qk], the solution to (A.43) always exists and is unique.

For k = 1, 2, when R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+ p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, G(a)I I
k < 0, denote

q∗∗(a)k ∈

[
q∗(a)k , 1

)
: J(a)3−k

[
R(a)3−k, q

∗∗(a)
k

]
= L(a)3−k

[
q∗∗(a)k

]
. (A.44)

Note that since J(a)3−k

[
R(a)3−k, qk

]
− L(a)3−k [qk] is decreasing on qk ∈

(
q∗(a)k , 1

)
from J(a)3−k

[
R(a)3−k, q

∗(a)
k

]
− J(a)3−k

[
1 − R(a)

k

q∗(a)
k

, q∗(a)k

]
≥ 0 to G(a)I I

k < 0, the solution

to (A.44) always exists and is unique.

For k = 1, 2, when R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+ p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, G(a)I I
k < 0, q∗(a)k ≤ qk ≤ q∗∗(a)k , define p̂(a)3−k[qk] by

(A.43). Note that the solution to (A.43) always exists and is unique since q∗∗(a)k

is defined in such a way that J(a)3−k[R3−k, qk] ≥ L(a)3−k[qk] for q∗(a)k ≤ qk ≤ q∗∗(a)k .

Note that since J(a)3−k

[
R(a)3−k, qk

]
−L(a)3−k[qk] is decreasing and since J(a)3−k [pk, qk]−

J(a)3−k

[
R(a)3−k, qk

]
does not depend on qk , function p̂(a)k [qk] is increasing in qk .

The following lemma is the analog of Lemma 13 for function p̂(a)3−k[qk]. It
says that the indifference curve is continuous and crosses the line pk = R(a)k

only when pk
1−p3−k

= q∗(a)k .
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Lemma 16 When R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k <

R(a)3−k , G(a)Ik < 0, we have

• p̃(a)3−k[q
∗(a)
k ] = p̂(a)3−k[q

∗(a)
k ] = 1 − R(a)

k

q∗(a)
k

,

• when R(a)3−k ≥ 1, we have p̂(a)3−k[qk] > 1 − R(a)
k

qk
for qk ∈

(
q∗(a)k , 1

)
,

• when R(a)3−k < 1, G(a)I I
k ≥ 0, we have p̂(a)3−k[qk] > 1 − R(a)

k

qk
for qk ∈(

q∗(a)k ,min
{
1, R(a)

k

1−R(a)3−k

})
,

• when R(a)3−k < 1, G(a)I I
k < 0, we have p̂(a)3−k[qk] > 1 − R(a)

k

qk
for qk ∈(

q∗(a)k ,min
{
q∗∗(a)k ,

R(a)
k

1−R(a)3−k

})
.

Proof:Since J(a)3−k

[
1 − R(a)

k

qk
, qk

]
= W (a)3−k

[
1 − R(a)

k

qk
, qk

]
, we have J(a)3−k

[
1 − R(a)

k

qk
, qk

]
−

L(a)3−k[qk] = W (a)3−k

[
1 − R(a)

k

qk
, qk

]
−L(a)3−k[qk]. The properties of functionW (a)3−k

[
1 − R(a)

k

qk
, qk

]
−

L(a)3−k[qk] has been studied in Lemma 13. �

Case 6 corresponds to G(a)Ik ≥ 0. The analog of Lemma 14 holds here as well.

Lemma 17 When R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k+p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0 we have G(a)I I
k ≥ 0 only if R(a)1 + R(a)2 ≥ 1. Thus,

point (R(a)1 , R(a)2 ) always lies outside the belief triangle.

Proof: Since 1 − x + log[x] ≤ 0 for all x. �

In sum, the conditions for Case 6 are R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k +

p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, R(a)3−k ≥ 1 or G(a)I I

k ≥ 0, or
equivalently

1. ck
λk
< uk[ak] − uk[a],

2. uk[ak] − uk[a] ≥ u3−k[a3−k] − u3−k[a],

3. λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
> 1,

4. uk [ak ]−uk [a]
uk [ak ]−uk [a]−

ck
λk

> λkλ3−k
c3−kck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
(u3−k[a3−k] − u3−k[a]),

5.
2+log

[
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

)]
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

) < λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+ 1,
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Figure A.13: Optimal a-type strategy for R(a)1 = 0.2, R(a)2 = 0.8, c1
λ1
= 5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2).
White region means it is optimal to stop. Black region means the first information
source should be used. Gray region means the second information source should

be used. Case 7: R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1,

p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, G(a)I I
k < 0, k = 1.

6. if c3−k
λ3−k

< u3−k[a3−k] − u3−k[a], then
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)
+log

[
λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)]
≤ 1.

Case 7. This is the last case.

Figure A.13 shows the optimal a-type strategy for Case 7.

Figure A.14 shows the partition of the belief triangle into Areas according to
the type of the a-type strategy optimal for given beliefs.

Conditions for Case 7 are R(a)1 < 1, R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k +

p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0, G(a)I I

k < 0, or equivalently

1. ck
λk
< uk[ak] − uk[a], c3−k

λ3−k
< u3−k[a3−k] − u3−k[a],

2. uk[ak] − uk[a] ≥ u3−k[a3−k] − u3−k[a],

3. λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+log

[
λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)]
> 1,

4. uk [ak ]−uk [a]
uk [ak ]−uk [a]−

ck
λk

> λkλ3−k
c3−kck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
(u3−k[a3−k] − u3−k[a]),
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Figure A.14: Optimal a-type strategy for R(a)1 = 0.2, R(a)2 = 0.8, c1
λ1
= 5, c2

λ2
= 1.

Each point (p1, p2) corresponds to what to do if the current beliefs are (p1, p2). Area
1 means it is optimal to stop. Areas 2.1 and 3.1.1 mean the first information source
should be used. Areas 2.2, 3.2.1 and 3.2.2 mean the second information source
should be used. Areas 2.1 and 2.2 correspond to the payoff optimal phase. Areas
3.1.1, 3.2.1, 3.2.2 correspond to the informatively optimal phase. Case 7: R(a)1 < 1,

R(a)2 < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, p∗∗(a)3−k < R(a)3−k , G(a)Ik < 0,

G(a)I I
k < 0, k = 1.

5.
2+log

[
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

)]
λ3−k
c3−k

(
uk [ak ]−uk [a]−

ck
λk

) < λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)
+ 1,

6. λ3−k
c3−k

(
uk[ak] − uk[a] −

ck
λk

)
+log

[
λk
ck

(
u3−k[a3−k] − u3−k[a] −

c3−k
λ3−k

)]
> 1.

To understand how these cases partition the parameter space, see Figure A.15.

Theorem 3 has three cases in the optimal a-type strategy description. Case 1 there
corresponds to Cases 1-3 here, Case 2 there corresponds to Case 4 here, and Case
3 there corresponds to Cases 5-7 here. Notation π̄(a)3−k[qk] combines p̃(a)3−k[qk] and
p̂(a)3−k[qk]:

Case 5 : π̄(a)3−k[qk] = p̃(a)3−k[qk] for all qk ∈

(
p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

, 1

)
,
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Figure A.15: The partition of the space (R1, R2) into Cases 1-7 when c1λ2
c2λ1
= 2.

Case 6 :

π̄
(a)
3−k[qk] =


p̃(a)3−k[qk], qk ∈

(
p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

, q∗(a)k

]
,

p̂(a)3−k[qk], qk ∈

[
q∗(a)k , 1

)
,

Case 7 :

π̄
(a)
3−k[qk] =


p̃(a)3−k[qk], qk ∈

(
p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

, q∗(a)k

]
,

p̂(a)3−k[qk], qk ∈

[
q∗(a)k , q∗∗(a)k

]
,

1, qk ∈

[
q∗∗(a)k , 1

)
.
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Function B(a)k [p3−k, qk] solves

W (a)3−k[p3−k, qk]1
(
(1 − p3−k)qk > R(a)k

)
+J(a)3−k[p3−k, qk]1

(
(1 − p3−k)qk ≤ R(a)k

)
−L(a)3−k[qk]

=
1 − (1 − pk)qk

1 − p3−k

(
B(a)k [p3−k, qk] −

1 − R(a)3−k

R(a)3−k

)
.

Proof of Theorem 3

Given Lemma 5, it is sufficient to check that functionV[p1, p2] satisfies the following
five conditions:

Step 1 Lk[p1, p2] = 0 for Areas 2.k, 3.k.1 and 3.k.2, k = 1, 2,

Step 2 L3−k[p1, p2] ≥ 0 for Areas 1, 2.k, 3.k.1 and 3.k.2,

Step 3 V[p1, p2] ∈ C everywhere,

Step 4 V[p1, p2] ∈ C1 along the line λ1p1
c1
=

λ2p2
c2

that separates Area 3.1.1 and Area
3.2.1,

Step 5 U(a)[p1, p2] ≤ V[p1, p2] for Area 2.k, 3.k.1 and 3.k.2.

Step 1 Step 1 can be checked directly.

Step 2 For Step 2 we have:

L3−k[p1, p2]

�����
Area 1

=
c3−k

λ3−k

(
1

p3−k
−

1
R(a)3−k

)
.

ForArea 1, we always have p1 ≤ R(a)1 and p2 ≤ R(a)2 . Thus,L3−k[p1, p2]

�����
Area 1

≥

0.

L3−k[p1, p2]

�����
Area 2.k

=
ck

λk
log


(1 − pk)p̄

(a)
k [p3−k]

pk

(
1 − p̄(a)k [p3−k]

)  .
For Area 2.k, we always have pk ≤ p̄(a)k [p3−k]. Thus,L3−k[p1, p2]

�����
Area 2.k

≥ 0.

L3−k[p1, p2]

�����
Area 3.k.1

=
ck

λk

(
c3−kλk pk

ckλ3−k p3−k
− 1 − log

[
c3−kλk pk

ckλ3−k p3−k

] )
.
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For Area 3.k.1, we always have λkpk
ck
≥

λ3−kp3−k
c3−k

. Since x − 1 − log[x] ≥ 0 for

all x ≥ 1, we have L3−k[p1, p2]

�����
Area 3.k.1

≥ 0.

L3−k[p1, p2]

�����
Area 3.k.2

=
ck

λk

( (
c3−kλk pk

ckλ3−k p3−k
− log

[
c3−kλk pk

ckλ3−k p3−k

] )
−

©­­«
c3−kλk(1 − pk)p̃k

[
p3−k
1−pk

]
ckλ3−k p3−k

(
1 − p̃

k

[
p3−k
1−pk

] ) − log


c3−kλk(1 − pk)p̃k

[
p3−k
1−pk

]
ckλ3−k p3−k

(
1 − p̃

k

[
p3−k
1−pk

] ) 
ª®®¬
)
.

ForArea 3.k.2, we always have p̃
k

[
p3−k
1−pk

]
≤ pk and

λk p̃
k

[
p3−k
1−pk

]
ck

≥
λ3−k p̄(a)3−k

[
p̃
k

[
p3−k
1−pk

] ]
c3−k

,

which is equivalent to 1 ≤
c3−kλk (1−pk )p̃k

[
p3−k
1−pk

]
ckλ3−kp3−k

(
1−p̃

k

[
p3−k
1−pk

] ) ≤ c3−kλkpk
ckλ3−kp3−k

. Since x − log[x]

is increasing for all x ≥ 1, we have L3−k[p1, p2]

�����
Area 3.k.2

≥ 0.

Step 3 One can check directly that

V[p1, p2]

�����
LHS

= V[p1, p2]

�����
RHS

,

where LHS and RHS are defined in Table A.1.

Step 4 One can check directly that

∂V[p1, p2]

∂p j

�����
Area 3.1.1, λ1p1

c1
=
λ2p2
c2

=
∂V[p1, p2]

∂p j

�����
Area 3.2.1, λ1p1

c1
=
λ2p2
c2

, j = 1, 2.

Step 5 For Step 5, we differentiate along the line p3−k
1−pk
= const

∂
©­«V[p1,p2]−U(a)[p1,p2]

1−pk

�����
p3−k=q3−k (1−pk )

ª®¬
∂pk

�����
Area 2.k, Area 3.k.1, Area 3.k.2

=
ck(pk − R(a)k )

λk(1 − pk)
2pk R(a)k

.

Since for Area 2.k we always have pk ≥ R(a)k and V[p1, p2] = U(a)[p1, p2]

when pk = R(a)k , we have V[p1, p2] −U(a)[p1, p2]

�����
Area 2.k

≥ 0.
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LHS RHS
Area 2.k, pk = R(a)k Area 1, pk = R(a)k

Area 2.k, p3−k
1−pk
=

p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] Area 3.k.1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
,

p3−k
1−pk
=

p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

]
Area 3.1.1, λ1p1

c1
=

λ2p2
c2

Area 3.2.1, λ1p1
c1
=

λ2p2
c2

Area 3.k.1, λkR(a)
k

ck
>

λ3−kR(a)3−k
c3−k

,
p3−k
1−pk
=

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 3.k.2, p3−k
1−pk
=

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 2.k, p3−k
1−pk
=

R(a)3−k

1−R(a)
k

Area 3.k.2, p3−k
1−pk
=

R(a)3−k

1−R(a)
k

, p̃(a)
k

[
R(a)3−k

1−R(a)
k

]
= R(a)k

Area 2.k, p3−k
1−pk
= q∗∗(a)3−k Area 3.k.2, p3−k

1−pk
= q∗∗(a)3−k ≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 2.k, p3−k
1−pk
= q∗∗(a)3−k Area 3.k.1, λ3−kR(a)3−k

c3−k
≤

λkR(a)
k

ck
,

p3−k
1−pk
= q∗∗(a)3−k ≥

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 3.k.2, pk = p̃(a)
k

[
p3−k
1−pk

]
Area 2.3-k, pk = p̃(a)

k

[
p3−k
1−pk

]
Area 3.k.2, pk = p̃(a)k

[
p3−k
1−pk

]
,

p3−k
1−pk
≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 2.3-k, pk = p̃(a)k

[
p3−k
1−pk

]
,

p3−k
1−pk
≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 3.k.1,
λ3−k R

(a)
3−k

c3−k
≤
λk R
(a)
k

ck
,

pk=p̃(a)
k

[
p3−k
1−pk

]
,
p3−k
1−pk
≥

p̄
(a)
3−k

[
p
∗(a)
k

]
1−p∗(a)

k

Area 2.3-k,

pk=p̃(a)
k

[
p3−k
1−pk

]
,
p3−k
1−pk
≥

p̄
(a)
3−k

[
p
∗(a)
k

]
1−p∗(a)

k

Area 3.k.2, pk = p̂(a)k

[
p3−k
1−pk

]
,

p3−k
1−pk
≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 1, pk = p̂(a)k

[
p3−k
1−pk

]
,

p3−k
1−pk
≤

p̄(a)3−k

[
p∗(a)
k

]
1−p∗(a)

k

Area 3.k.1,
λ3−k R

(a)
3−k

c3−k
≤
λk R
(a)
k

ck
,

pk=p̂(a)
k

[
p3−k
1−pk

]
,
p3−k
1−pk
≥

p̄
(a)
3−k

[
p
∗(a)
k

]
1−p∗(a)

k

Area 1,

pk=p̂(a)
k

[
p3−k
1−pk

]
,
p3−k
1−pk
≥

p̄
(a)
3−k

[
p
∗(a)
k

]
1−p∗(a)

k

Table A.1: Proof of Theorem 3. Step 3.

For Area 3.k.2, we need to make sure that if pk = R(a)k lies inside this area, we
still have V[p1, p2] ≥ U(a)[p1, p2] (the rest follows from continuity of V).

∂
©­­­«

V[p1,p2]−U(a)[p1,p2]
1−pk

�����p3−k=q3−k (1−R(a)
k
),

pk=R(a)
k

ª®®®¬
∂q3−k

�����
Area 3.k.2

=

ck

λk

(
1

p̃(a)
k
[q3−k]

−
1

R(a)k

)
+

c3−k

λ3−k

©­­«
1

R(a)3−k

−
1

p̄(a)3−k

[
p̃(a)

k
[q3−k]

] ª®®¬ .
Area 3.k.2 is present only when λkR(a)

k

ck
>

λ3−kR(a)3−k
c3−k

. We also know that
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p̃(a)
k

[
p3−k
1−pk

]
< R(a)k and p̄(a)k

[
p̃(a)

k

[
p3−k
1−pk

] ]
> R(a)3−k . Thus,V[p1, p2]−U(a)[p1, p2]

�����
Area 3.k.2

≥

0 because V[p1, p2] is continuous and V[p1, p2] −U(a)[p1, p2]

�����
Area 2.k

≥ 0.

For Area 3.k.1, λkR(a)
k

ck
≤

λ3−kR(a)3−k
c3−k

, we have pk ≥ R(a)k . So, V[p1,p2]−U(a)[p1,p2]
1−pk

is
increasing in pk along the trajectory of beliefs movement. Thus, it is sufficient
to show that V[p1, p2] ≥ U(a)[p1, p2] for the switching line λ1p1

c1
=

λ2p2
c2

.
Consider function

g1[q3−k] =

©­­­­«
(ckλ3−k q3−k + c3−kλk)

(
V[p1, p2] −U(a)[p1, p2]

) �����
pk=

ckλ3−k
c3−kλk

q3−k

1+
ckλ3−k
c3−kλk

q3−k

ª®®®®¬
����� Area 3.k.1,
λk R
(a)
k

ck
≤
λ3−k R

(a)
3−k

c3−k

for q3−k ≥
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] . It is convex,
g′′1 [q3−k] =

c3−k(ckλ3−k + c3−kλk)

(1 − q3−k)q2
3−kλ3−k

> 0,

and it is non-decreasing at q3−k =
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] :

g′1


p∗(a)3−k

1 − p̄(a)k

[
p∗(a)3−k

]  =
c2

kλ3−k

(
p̄(a)k

[
p∗(a)3−k

]
− R(a)k

)
R(a)k λk p̄(a)k

[
p∗(a)3−k

] ≥ 0.

Given the continuity of V and the fact that we already showed V[p1, p2] ≥

U(a)[p1, p2] for Area 2.k, we have g1[q3−k] ≥ 0 for q3−k ≥
p∗(a)3−k

1−p̄(a)
k

[
p∗(a)3−k

] . Thus,
V[p1, p2] −U(a)[p1, p2]

�����
Area 3.k.1, λkR

(a)
k

ck
≤

λ3−kR
(a)
3−k

c3−k

≥ 0.

For Area 3.k.1, λkR(a)
k

ck
>

λ3−kR(a)3−k
c3−k

, we define

g2[q3−k] =

©­­­«
V[p1, p2] −U(a)[p1, p2]

1 − pk

�����p3−k=q3−k (1−R(a)
k
),

pk=R(a)
k

ª®®®¬
�����
Area 3.k.1,

λk R
(a)
k

ck
>
λ3−k R

(a)
3−k

c3−k

.

g′′2 [q3−k] =
ckλ3−k q3−k + c3−kλk

(1 − q3−k)q2
3−kλkλ3−k

> 0, g′2


p̄(a)3−k

[
p∗(a)k

]
1 − p∗(a)k

 =
c3−k

λ3−k R(a)3−k

−
ck

λk R(a)k

> 0.
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Thus, V[p1, p2] ≥ U(a)[p1, p2] for Area 3.k.1,
λkR(a)

k

ck
>

λ3−kR(a)3−k
c3−k

.

�

Remark 3 At the curve p3−k = π̄
(a)
3−k

[
pk

1−p3−k

]
, functionV[p1, p2] is non-differentiable.

This is the curve R in Lemma 5.

A.7 Proof of Theorem 4.
Lemma 18 gives explicit expressions for the expected time the agent spends using
each of the sources.

Lemma 18 Let (p1, p1) be the initial beliefs. Then the expected time Tj[p1, p2] of
using source j, j = 1, 2, can be expressed as follows:

1. If for some k = 1, 2, pk > R(a)k and the optimal strategy is to use source k until
pk = R(a)k , with the default alternative a, then T3−k[p1, p2] = 0 and

Tk[p1, p2] =
pk − R(a)k

1 − R(a)k

1
λk
+

1 − pk

λk
log

[
(1 − R(a)k )pk

R(a)k (1 − pk)

]
. (A.45)

2. If the optimal strategy is 3.a-strategy and

• if a = ak for some k ∈ {1, 2}, then (2.24) holds,

• if a = a3 and k ∈ {1, 2} is such that (2.25) holds, then (2.28) holds,

then

Tk[p1, p2] =
pk − p̃(a)

k

[
p3−k
1−pk

]
1 − p̃(a)

k

[
p3−k
1−pk

] 1
λk
+

1 − pk

λk
log


(
1 − p̃(a)

k

[
p3−k
1−pk

] )
pk

p̃(a)
k

[
p3−k
1−pk

]
(1 − pk)

 ,
(A.46)

T3−k[p1, p2] =
p3−k

λ3−k

©­­«
1 − R(a)3−k x

1 − R(a)3−k

+ (x − 1) log


1
R(a)3−k
− 1

x − 1


ª®®¬
�����
x= 1

p3−k
1−pk

(
1−p̃(a)

k

[
p3−k
1−pk

] ) .

(A.47)

3. If the optimal strategy is 3.a-strategy and

• if a = ak for some k ∈ {1, 2}, then either (2.22) or (2.23) holds,
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• if a = a3 and k ∈ {1, 2} is such that (2.25) holds, then either (2.26) or
(2.27) holds,

then

Tk[p1, p2] =

(1 − p1 − p2) log


1−p∗(a)

k

p̄
(a)
3−k

[
p
∗(a)
k

] −1

1−pk
p3−k
−1

 + (1 − pk) log

[
pk p̄(a)3−k

[
p∗(a)
k

]
p3−kp∗(a)

k

]
+ 1 − 1−p1−p2

1−p∗(a)
k
−p̄(a)3−k

[
p∗(a)
k

]
λk

,

(A.48)

T3−k[p1, p2] =

(1 − p1 − p2) log


1−p∗(a)

k

p̄
(a)
3−k

[
p
∗(a)
k

] −1

1−pk
p3−k
−1

 + p∗(a)k

(
p3−k

p̄(a)3−k

[
p∗(a)
k

] − pk
p∗(a)
k

)
λ3−k

+

1 − 1−p1−p2

1−p∗(a)
k
−p̄(a)3−k

[
p∗(a)
k

] (
1−p̄(a)3−k

[
p∗(a)
k

]
p̄(a)3−k

[
p∗(a)
k

] (
p∗(a)
k

R(a)
k

− 1
)
+

1−p̄(a)3−k

[
p∗(a)
k

]
1−R(a)3−k

)
λ3−k

. (A.49)

Proof of Lemma 18

Step 1 It is straightforward to show that

1. T1[p1, p2] andT2[p1, p2] are continuously differentiable along λ1p1
c1
=

λ2p2
c2

when both sources are used simultaneously for a non-zero period of time,
and

2. T1[p1, p2] and T2[p1, p2] are continuous along any trajectory of beliefs
(so that they are continuous at switching curves).

Step 2 Tj[p1, p2] = IE
[
Tτ, j | p0 = p

]
for j = 1, 2

Proof: Let (aF,T, τ) be the optimal strategy given the initial beliefs p1, p2.

By Step 1 of the proof, Tj[p1, p2] ∈ C1 along the belief trajectory (except
maybe one switching point). Thus, I can use Ito’s formula in a similar way to
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how I used it in Lemma 5 and get the analog of the expression (A.24):

Tj[p0,1, p0,2] = IE
[
Tj[pτ,1, pτ,2] | p0

]
+ λ1IE


τ∫

0

pt,1L
Tj

1 [pt,1, pt,2]dTt,1 | p0


−IE


τ∫

0

c1dTt,1 | p0

+λ2IE


τ∫
0

pt,2L
Tj

2 [pt,1, pt,2]dTt,2 | p0

−IE


τ∫
0

c2dTt,2 | p0

,
(A.50)

where

L
Tj

i [p1, p2] =
ci

λi pi
+
∂Tj[p1, p2]

∂pi
(1− pi) −

∂Tj[p1, p2]

∂p3−i
p3−i −

(
0 − Tj[p1, p2]

)
.

(A.51)
(A.50) is equivalent to

Tj[p0,1, p0,2] = IE
[
Tj[pτ,1, pτ,2] | p0

]
+λ1IE


τ∫

0

pt,1M1, j[pt,1, pt,2]dTt,1 | p0


+ IE

[
Tτ, j | p0

]
+ λ2IE


τ∫

0

pt,2M2, j[pt,1, pt,2]dTt,2 | p0

, (A.52)

where

Mi, j[p1, p2] = −
1 (i = j)
λ j p j

+
∂Tj[p1, p2]

∂pi
(1− pi) −

∂Tj[p1, p2]

∂p3−i
p3−i +Tj[p1, p2].

(A.53)
It is straightforward to show thatMi, j[p1, p2] = 0 whenever source i is used
andTj[p1, p2] = 0 for all stopping points. Thus,Tj[p1, p2] = IE

[
Tτ, j | p0 = p

]
.

�

�

Let a be the optimal default alternative.

For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1 and qk ∈(

p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

, 1

)
, denote

H(a)k [qk] =



1−p∗(a)3−k−p̄(a)
k

[
p∗(a)3−k

](
1−p̄(a)

k

[
p∗(a)3−k

] )
(1−qk )

(
1−p∗(a)3−k

p̄(a)
k

[
p∗(a)3−k

] qk − 1

)
− 1

1−R(a)
k

+ log

[ 1
R
(a)
k

−1

1
p̄
(a)
k

[
p
∗(a)
3−k

] −1

]
, qk >

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

,

− 1
1−R(a)

k

+ log

[ 1
R
(a)
k

−1

1
p̄
(a)
k

[
p̃
(a)
3−k [qk ]

] −1

]
, qk ≤

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

.

(A.54)
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Note that this function is continuous at point qk =
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

.

The reason to introduce this function is revealed when I calculate the derivatives
∂Tj [c1,c2]
∂c3−j

:

1. If initial beliefs are in Area 3.k.1 of the optimal a-type strategy and λkR(a)
k

ck
≤

λ3−kR(a)3−k
c3−k

, then

∂Tj [c1, c2]

∂c3− j
=

p∗(a)3−k(1 − p1 − p2)
(
1 − p̄(a)k

[
p∗(a)3−k

] )
H(a)k

[
1

1+ c3−kλk (1−p1−p2)
ckλ3−k p3−k

]
c3−kλk

(
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )2 , j = 1, 2.

(A.55)

2. If initial beliefs are in Area 3.k.1 of the optimal a-type strategy and λkR(a)
k

ck
>

λ3−kR(a)3−k
c3−k

, then

∂Tj [c1, c2]

∂c3− j
=

p∗(a)k (1 − p1 − p2)
(
1 − p̄(a)3−k

[
p∗(a)k

] )
H(a)3−k

[
p3−k
1−pk

]
ckλ3−k

(
1 − p∗(a)k − p̄(a)3−k

[
p∗(a)k

] )2 , j = 1, 2.

(A.56)

3. If initial beliefs are in Area 3.k.2 of the optimal a-type strategy, then λkR(a)
k

ck
>

λ3−kR(a)3−k
c3−k

and

∂Tj [c1, c2]

∂c3− j
=

p3−k

(
1 − p̄(a)3−k

[
p̃(a)

k

[
p3−k
1−pk

] ] ) (
−p̃(a)

′

k

[
p3−k
1−pk

] )
H(a)3−k

[
p3−k
1−pk

]
c3−kλk p̃(a)

k

[
p3−k
1−pk

] (
1 − p̃(a)

k

[
p3−k
1−pk

] )2 , j = 1, 2.

(A.57)

Thus, the sign of function H(a)k at a certain point coincides with the sign of ∂Tj [c1,c2]
∂c3−j

,

where k ∈ {1, 2} is such that λkR(a)
k

ck
≤

λ3−kR(a)3−k
c3−k

.

Properties ofH(a)k [qk]: lim
qk→1

H(a)k [qk] = +∞, lim
qk→

p̄
(a)
k

[
p
∗∗(a)
3−k

]
1−p∗∗(a)3−k

H(a)k [qk] =
c3−kλk
ckλ3−k

(
1

p∗∗(a)3−k
− 1

R(a)3−k

)
−

1
1−R(a)

k

, H(a)k [qk] is increasing in qk .
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For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1 and p∗∗(a)3−k >

R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
, denote

q̂(a)k ∈
©­­«

p̄(a)k

[
p∗∗(a)3−k

]
1 − p∗∗(a)3−k

, 1
ª®®¬ : H(a)k

[
q̂(a)k

]
= 0. (A.58)

Note that the condition p∗∗(a)3−k >
R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
is equivalent to lim

qk→
p̄
(a)
k

[
p
∗∗(a)
3−k

]
1−p∗∗(a)3−k

H(a)k [qk] <

0, so that the solution to (A.58) exists and is unique.

q̂(a)k serves as a threshold, so that when pk
1−p3−k

> q̂(a)k , the sources are substitutes and
when pk

1−p3−k
< q̂(a)k , they are complements.

Lemma 19 For k = 1, 2,

1. when R(a)1 + R(a)2 < 1 (which corresponds to Cases 4 and 7), we have q̂(a)k >
R(a)
k

1−R(a)3−k
;

2. q̂(a)k <
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

if and only if p∗(a)3−k <
R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
if and only if H(a)Ik ≡

e
− 1

1−R(a)
k

1−R(a)
k

R(a)
k

−
R(a)
k

1−R(a)
k

−
λkc3−k
ckλ3−k

1
R(a)3−k

> 0;

3. when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1, we have

p∗∗(a)3−k >
R(a)3−k

ckλ3−k
c3−kλk

R(a)3−k

1−R(a)
k

+ 1
⇔ if H(a)Ik > 0, then H(a)I I

k < 0,

where

H(a)I I
k ≡ e

1
1−R(a)

k

R(a)k

1 − R(a)k

+1−

(
1

R(a)3−k

+
ckλ3−k

c3−kλk

1
1 − R(a)k

) (
c3−kλk

ckλ3−k

1 − R(a)3−k

R(a)3−k

+
1

1 − R(a)k

)
.

Proof:
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1. It follows from
p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

≤
R(a)
k

1−R(a)3−k
≤

p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

and H(a)k

[
R(a)
k

1−R(a)3−k

]
= − 1

1−R(a)
k

<

0.

2. H(a)k

[
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

]
= − 1

1−R(a)
k

+ log

[ 1
R
(a)
k

−1

1
p̄
(a)
k

[
p
∗(a)
3−k

] −1

]
.

− 1
1−R(a)

k

+ log

[ 1
R
(a)
k

−1

1
p̄
(a)
k

[
p
∗(a)
3−k

] −1

]
> 0 is equivalent to p∗(a)3−k <

R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
, which

is equivalent to e
− 1

1−R(a)
k

1−R(a)
k

R(a)
k

−
R(a)
k

1−R(a)
k

> λkc3−k
ckλ3−k

1
R(a)3−k

.

Indeed, − 1
1−R(a)

k

+ log

[ 1
R
(a)
k

−1

1
p̄
(a)
k

[
p
∗(a)
3−k

] −1

]
> 0 is equivalent to 1 + e

− 1
1−R(a)

k
1−R(a)

k

R(a)
k

>

1
p̄(a)
k

[
p∗(a)3−k

] . Recall that by definitions (2.17) and (2.18), we have log

[
1

p̄(a)
k

[
p∗(a)3−k

] − 1

]
+

1
p̄(a)
k

[
p∗(a)3−k

] = λkc3−k
ckλ3−k

1
R(a)3−k
+ log

[
1−R(a)

k

R(a)
k

]
. Thus, 1 + e

− 1
1−R(a)

k
1−R(a)

k

R(a)
k

> 1
p̄(a)
k

[
p∗(a)3−k

] is

equivalent to

log

[(
1 + e

− 1
1−R(a)

k

1 − R(a)k

R(a)k

)
− 1

]
+

(
1 + e

− 1
1−R(a)

k

1 − R(a)k

R(a)k

)
>
λkc3−k

ckλ3−k

1
R(a)3−k

+log

[
1 − R(a)k

R(a)k

]
.

After some simplification, this becomes e
− 1

1−R(a)
k

1−R(a)
k

R(a)
k

−
R(a)
k

1−R(a)
k

> λkc3−k
ckλ3−k

1
R(a)3−k

.

On the other hand, 1 + e
− 1

1−R(a)
k

1−R(a)
k

R(a)
k

> 1
p̄(a)
k

[
p∗(a)3−k

] can be rewritten as p∗(a)3−k <

R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
.

3. Recall that function ckp2
3−k

(1−p3−k )λk
−

c3−k

(
1−p̄(a)

k
[p3−k ]

)
λ3−k

is negative for p3−k ∈

[
p∗(a)3−k, p∗∗(a)3−k

)
and is positive for p3−k ∈

(
p∗∗(a)3−k , 1

)
. Thus, p∗∗(a)3−k >

R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
⇔

if p∗(a)3−k <
R(a)3−k

ckλ3−k
c3−kλk

R(a)3−k

1−R(a)
k

+ 1
, then

ck p2
3−k

(1 − p3−k) λk
−

c3−k

(
1 − p̄(a)k [p3−k]

)
λ3−k

�����
p3−k=

R
(a)
3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1

< 0

⇔ if H(a)Ik > 0, then H(a)I I
k < 0.
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In sum,

• if H(a)Ik ≤ 0, then q̂(a)k ≥
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

;

• if H(a)Ik > 0 and H(a)I I
k < 0, then

p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

< q̂(a)k <
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

;

• if H(a)Ik > 0 and H(a)I I
k ≥ 0, then H(a)k [qk] > 0 for all qk >

p̄(a)
k

[
p∗∗(a)3−k

]
1−p∗∗(a)3−k

.

Cases 1-3 : The sources are independent for all possible beliefs.

Cases 4-7, H(a)Ik ≤ 0 : In Area 3.3-k.1, the sources are substitutes when pk
1−p3−k

>

q̂(a)k and they are complements when pk
1−p3−k

< q̂(a)k . In Area 3.k.1, the sources
are substitutes when p3−k

1−pk
> 1

1+ ckλ3−k
c3−kλk

1−q̂(a)
k

q̂
(a)
k

and they are complements when

p3−k
1−pk

< 1

1+ ckλ3−k
c3−kλk

1−q̂(a)
k

q̂
(a)
k

. The sources are complements in Area 3.3-k.2. Other-

wise, the sources are independent.

Cases 4 and 7, H(a)Ik > 0 : The sources are substitutes in Areas 3.1.1 and 3.2.1.
In Area 3.3-k.2, the sources are substitutes when pk

1−p3−k
> q̂(a)k and they are

complements when pk
1−p3−k

< q̂(a)k . Otherwise, the sources are independent.

Cases 5 and 6, H(a)Ik > 0 and H(a)I I
k < 0 : The sources are substitutes in Areas

3.1.1 and 3.2.1. In Area 3.3-k.2, the sources are substitutes when pk
1−p3−k

> q̂(a)k

and they are complements when pk
1−p3−k

< q̂(a)k . Otherwise, the sources are
independent.

Cases 5 and 6, H(a)Ik > 0 and H(a)I I
k ≥ 0 : The sources are substitutes in Areas

3.1.1, 3.2.1 and 3.3-k.2. Otherwise, the sources are independent.

The next lemma shows the comparative statics for the threshold q̂(a)k that separates
the regions of substitutes and complements. Under the condition that this threshold
exists (that is, Cases 4-7, H(a)Ik ≤ 0, or Cases 4 and 7, H(a)Ik > 0, or Cases 5 and 6,
H(a)Ik > 0 and H(a)I I

k < 0), it increases with the cost of information ( c1
λ1

and / or c2
λ2
)

and decreases with the benefit of information (u1[a1]−u1[a] and / or u2[a2]−u2[a]).
ForCases 4-7, H(a)Ik ≤ 0, complements and substitutes regions are separated by two
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lines, pk
1−p3−k

= q̂(a)k and p3−k
1−pk
= 1

1+ ckλ3−k
c3−kλk

1−q̂(a)
k

q̂
(a)
k

. Lemma 20 states that both lines move

towards (away from) p1 + p2 = 1 as the cost (benefit) of information increases.

Lemma 20 For k = 1, 2, when R(a)k < 1, λ3−kR(a)3−k
c3−k

≥
λkR(a)

k

ck
, p∗(a)3−k + p̄(a)k

[
p∗(a)3−k

]
< 1

and p∗∗(a)3−k >
R(a)3−k

ckλ3−k
c3−kλk

R
(a)
3−k

1−R(a)
k

+1
,

• q̂(a)k is a well-defined function of ck
λk
, c3−k
λ3−k

, uk[ak] − uk[a] and u3−k[a3−k] −

u3−k[a] and we have

∂q̂(a)k

∂ ci
λi

> 0,
∂q̂(a)k

∂ (ui[ai] − ui[a])
< 0, i = 1, 2;

• when in addition H(a)Ik < 0, then Q̂(a)3−k ≡
1

1+ ckλ3−k
c3−kλk

1−q̂(a)
k

q̂
(a)
k

is a well-defined

function of ck
λk
, c3−k
λ3−k

, uk[ak] − uk[a] and u3−k[a3−k] − u3−k[a] and we have

∂Q̂(a)3−k

∂ ci
λi

> 0,
∂Q̂(a)3−k

∂ (ui[ai] − ui[a])
< 0, i = 1, 2.

Proof: When q̂(a)k >
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, we have

ck

λk

∂q̂(a)k

∂ ck
λk

=

(
1 + p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] ) ((
1 − p∗(a)3−k

)
q̂(a)k − p̄(a)k

[
p∗(a)3−k

] )2(
1 − p̄(a)k

[
p∗(a)3−k

] ) (
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )
+

(
2 − R(a)k

)
R(a)k

(
1 − p̄(a)k

[
p∗(a)3−k

] )
p̄(a)k

[
p∗(a)3−k

] (
1 − q̂(a)k

)2(
1 − R(a)k

)2 (
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )2 +
(
1 − q̂(a)k

)
q̂(a)k > 0,

c3−k

λ3−k

∂q̂(a)k

∂ c3−k
λ3−k

=

p∗(a)3−k

(
1 − q̂(a)k

) (
p̄(a)k

[
p∗(a)3−k

] (
1−p∗(a)3−k

p̄(a)
k

[
p∗(a)3−k

] q̂(a)k − 1

)
+

(
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )
q̂(a)k

)
(
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )2 > 0,
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ck

λk

∂q̂(a)k

∂ (uk[ak] − uk[a])
= −

©­­«
p̄(a)k

[
p∗(a)3−k

]
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] ª®®¬
2

R(a)k

(
1 − q̂(a)k

)
(
1 − R(a)k

)2

×

{ (
1 − p̄(a)k

[
p∗(a)3−k

] )3

Q̂(a)3−k p̄(a)k

[
p∗(a)3−k

] ©­­­­«
Q̂(a)3−k −

©­­«
p∗(a)3−k

1 − p̄(a)k

[
p∗(a)3−k

] ª®®¬
2

+

((
p∗(a)3−k

)2
+ p̄(a)k

[
p∗(a)3−k

]
Q̂(a)3−k

) (
1 − q̂(a)k

)
(
1 − p̄(a)k

[
p∗(a)3−k

] )2

ª®®®®¬
+

(
p̄(a)k

[
p∗(a)3−k

]
− R(a)k

) (
1 + p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] ) ©­­«
1 − p∗(a)3−k

p̄(a)k

[
p∗(a)3−k

] q̂(a)k − 1
ª®®¬
}
< 0,

c3−k

λ3−k

∂q̂(a)k

∂ (u3−k[a3−k] − u3−k[a])

= −
p∗(a)3−k p̄(a)k

[
p∗(a)3−k

] (
1 + p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] ) (
1 − q̂(a)k

)
(
1 − p∗(a)3−k − p̄(a)k

[
p∗(a)3−k

] )2

©­­«
1 − p∗(a)3−k

p̄(a)k

[
p∗(a)3−k

] q̂(a)k − 1
ª®®¬ < 0,

ck

λk

∂Q̂(a)3−k

∂ ck
λk

=
ckλ3−k

c3−kλk

(
Q̂(a)3−k

q̂(a)k

)2 (
ck

λk

∂q̂(a)k

∂ ck
λk

−

(
1 − q̂(a)k

)
q̂(a)k

)
> 0,

c3−k

λ3−k

∂Q̂(a)3−k

∂ c3−k
λ3−k

=
ckλ3−k

c3−kλk

(
Q̂(a)3−k

q̂(a)k

)2 (
c3−k

λ3−k

∂q̂(a)k

∂ c3−k
λ3−k

+
(
1 − q̂(a)k

)
q̂(a)k

)
> 0,

∂Q̂(a)3−k

∂ (ui[ai] − ui[a])
=

ckλ3−k

c3−kλk

(
Q̂(a)3−k

q̂(a)k

)2
∂q̂(a)k

∂ (ui[ai] − ui[a])
< 0, i = 1, 2.

When q̂(a)k <
p̄(a)
k

[
p∗(a)3−k

]
1−p∗(a)3−k

, we have

c3−k

λ3−k

∂q̂(a)k

∂ ck
λk

=
−1

p̃(a)′
3−k

[
q̂(a)k

] ©­­«
p̃(a)

3−k

[
q̂(a)k

]
1 − R(a)k

ª®®¬
2

> 0,
c3−k

λ3−k

∂q̂(a)k

∂ c3−k
λ3−k

=
q̂(a)k p̃(a)

3−k

[
q̂(a)k

]
1 − p̃(a)

3−k

[
q̂(a)k

] > 0,

c3−k

λ3−k

∂q̂(a)k

∂ (uk[ak] − uk[a])
= −R(a)k

©­­«
p̃(a)

3−k

[
q̂(a)k

]
1 − R(a)k

ª®®¬
2 ©­­«

(
1 − R(a)k

)
q̂(a)k

1 − p̃(a)
3−k

[
q̂(a)k

] − 1

p̃(a)′
3−k

[
q̂(a)k

] ª®®¬ < 0,

c3−k

λ3−k

∂q̂(a)k

∂ (u3−k[a3−k] − u3−k[a])
= −

q̂(a)k

(
p̃(a)

3−k

[
q̂(a)k

] )2

1 − p̃(a)
3−k

[
q̂(a)k

] < 0.

�
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Proof for Theorem 5
The proof is based on a well-known property of normal distribution:

x |θ ∼ N(θ, σ2), θ ∼ N(θ0, σ
2
0 ) ⇒ θ |x ∼ N ©­«

σ2
0

σ2 + σ2
0

x +
σ2

σ2 + σ2
0
θ0,

(
1
σ2

0
+

1
σ2

)−1ª®¬ .
(B.1)

Obviously, x1
i = si since θ |si ∼ N

(
si, σ

2) . Given that, in the second stage agent
i knows not only their own private signal, but also their neighbor’s private signal:
y1

i |θ ∼ N
(
θ, σ2) .

θ |si ∼ N
(
si, σ

2)
y1

i |θ ∼ N
(
θ, σ2) (B.1)

⇒
θ |si, y

1
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(
si + y1

i

2
,
σ2

2

)
⇒ x2

i =
si + y1

i

2
.

In the third stage, y2
i gives another signal, as it is an average of y1

i and the neighbor’s
neighbor’s signal.

θ |si, y
1
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(
si+y1

i

2 , σ
2

2

)
2y2
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⇒
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)
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2
3
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By induction, for 3 ≤ t ≤ n,

θ |si, y
1
i , . . . , y

t−2
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(
t−2
t−1 y

t−2
i + 1

t−1 si,
σ2

t−1

)
(t − 1)yt−1
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(
θ, σ2) (B.1)

⇒
θ |si, y

1
i , . . . , y
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t − 1

t
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1
t

si,
σ2

t

)
.

Thus, xt
i =

t−1
t yt−1

i + 1
t si.

In any further stage, when t > n, new guesses from the neighbor do not bring any
new information to agent i. Thus, xt

i = xn
i for all t > n.

B.2 Proof for Theorem 6

Necessity Let’s take a close look at the assumption (3.4) in light of the belief
updating rule (3.3):

xt
i = λ

t
i si +

t−1∑
τ=1

µτ,ti · y
τ
i

xt+1
i = ct+1,t

i

(
λt

i si +
t−1∑
τ=1

µτ,ti · y
τ
i

)
+ µt,t+1

i · yt
i

 ⇒ xt+1
i = wt

ii x
t
i+w

t
i,N(i)y

t
i ,



165

where wt
i,N(i) = µ

t,t+1
i and wt

ii = ct+1,t
i .

This gives us (3.1).

Sufficiency For any i ∈ N and for any t ≥ 2

xt
i = wt−1

ii xt−1
i + wt−1

i,N(i)y
t−1
i = wt−1

ii

(
wt−2

ii xt−2
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t−2
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)
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i,N(i)y
t−1
i = . . .
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τ=1

wτ
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)
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t−1
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t−1
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wτ′
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)
wτ

i,N(i)y
τ
i .

On the other hand, by Assumption 2,

xt
i = λt

i si +

t−1∑
τ=1

µτ,ti · y
τ
i .

So, given Assumption 1, we must have

λt
i =

t−1∏
τ=1

wτ
ii, µt−1,t

i = wt−1
i,N(i), µτ,ti =

(
t−1∏

τ′=τ+1
wτ′

ii

)
wτ

i,N(i), 1 ≤ τ ≤ t − 2.

Therefore, for any t1 > t2 there exists a constant

ct1,t2
i =

t1−1∏
τ=t2

wτ
ii

such that (3.4) holds.

B.3 Instructions
At the beginning of this experiment, you will be divided into groups. Each group
consists of four members: A, B, C, and D. These letters correspond to the members’
IDs. This experiment consists of several periods. Your group and your ID are fixed
across all periods. Your ID will appear on the top right corner of your screen.

There are 1001 jars enumerating from 0 to 1000. Each jar contains 53 balls. Each
ball has one and only one integer on it. In jar m (m = 0, 1, . . . , 1000) there are

• 5 balls with integer m

• 5 balls with integer m + 1

• 5 balls with integer m − 1

• 5 balls with integer m + 2
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• 5 balls with integer m − 2

• 4 balls with integer m + 3

• 4 balls with integer m − 3

• 4 balls with integer m + 4

• 4 balls with integer m − 4

• 3 balls with integer m + 5

• 3 balls with integer m − 5

• 3 balls with integer m + 6

• 3 balls with integer m − 6

The above distribution of balls with different integers is graphically displayed on
top left of the screen.

Figure B.1: The distribution of the balls.

In each period, for each group, the experimenter picks a jar randomly from 1001
jars. Your task in each period is to guess which jar the experimenter picks for your
group, i.e. to guess the value of m. Your will make guesses in 5 stages and your
payment depends on your performance in all stages. Note that m is also the average
of integers on all balls in jar m.

Besides the distribution of balls with different numbers, you will get some additional
information to helps you make guesses:



167

• Your draws

At the beginning of each period, each member of your group (including
yourself) will draw one ball independently with replacement from the jar.
The number on the ball that you have drawn can be seen only by you and this
information is located on top right of your screen.

• Guesses of your group members

You will make guesses in 5 stages. From stage 2 and on, you will be able to
see the guesses that one member in your group has made in previous stages.
If you are A, you can see D’s guesses; if you are B, you can see A’s guesses;
if you are C, you can see B’s guesses; if you are D, you can see C’s guesses.
These relations are graphically described by the picture on top right of the
screen. The history of guesses is recorded at bottom right of the screen.

Figure B.2: The network.

To sum up, the procedure of the experiment is as the following:

1. In the beginning of this experiment, you are divided into groups of four and
assigned an ID.

2. In the beginning of each period, a jar is picked randomly from the 1001 jars
for each group.

3. Each member in your group makes one draw from the jar.

4. You input your guess about the number of the jar. You need to confirm your
guess by pressing the button “OK". Then you are at the waiting stage. When
all your group members submit their guesses, stage 2 starts.
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5. In stage 2 you are able to see the guess made by one of your group members
in stage 1, as well as your previous guess. You need to input a new guess and
submit it by pressing the button “OK".

6. Similar procedure continues until the last stage.

7. The experiment will last 5 stages for each period. Your payment is based on
your guesses in all stages: the closer your guesses are to the actual value of
m, the higher payoff you will get.

Here is how your payoff in each stage is calculated:

Profit = max
(
10 −

1
11
|Your Guess − m|, 0

)
You will earn 4 cents for every point.1

Adding up your profit in all stages gives your final payoff.

A calculator is available if you click the button on the bottom right corner.

The clock on the top right corner counting down from 60 seconds incentivizes you
to make decisions within a reasonable length of time. You will still be able to input
your guesses after the time expires.

1The conversion rate is 1 ruble for 1 point for all sessions in Russia.
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Figure B.3: Screenshot.
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B.4 Test (Questions Asked Before the Experiment Starts)
Please answer the following questions:

• Before observing any draws, which of the following do you think is more
likely:

– The jar is No.0.

– The jar is No.500.

• Which of the following statements is true:

– In stage 3, B can observe C’s guesses in stage 1 and 2.

– In stage 4, A can observe D’s guesses in stage 1, 2, and 3.

– In stage 2, A can observe B and C’s guesses in stage 1.

– In stage 5, C can observe B’s guesses in stage 1 only.

Suppose you see the following screen during the experiment:

Figure B.4: Screenshot.
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• Your ID is .

• There are (how many) balls in the jar.

• In this period, will you or your group members make any additional draws
after stage 1?

• You would like to input No. as your guess about the jar number.

Suppose you see the following screen during the experiment:

Figure B.5: Screenshot.

• (how many) stages have passed and there are stages left including
the current stage.

• Your guess in the first stage was (It is already shown on the screen.)

• B’s guess in the first stage was .
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B.5 Robustness Check for Section 3.7: Maximum Likelihood Comparison
Across Different Specifications

Consider the following specifications:

GM-S2345 xt
i =

(
λ2si + µ

1,2y1
i

)
· 1 (t = 2) +

(
λ3si + µ

1,3y1
i + µ

2,3y2
i

)
· 1 (t = 3) +(
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1,4y1
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2,4y2

i + µ
3,4y3

i

)
·1 (t = 4)+

(
λ5si + µ

1,5y1
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2,5y2
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3,5y3
i + µ

4,5y4
i

)
·

1 (t = 5)

BUH-S2345 xt
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(
λ2si + µ
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i

)
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(
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i
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(
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·

1 (t = 4) +
(
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i
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PBH-S2345 xt
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(
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i

)
·1 (t = 2)+

(
c3λ2si + c3µ1,2y1

i + µ
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i

)
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i + c4µ2,3y2
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i

)
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(
λ2si + µ

1,2y1
i
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· 1 (t = 2) +

(
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BUH-S234 xt
i =

(
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i
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(
λ3si + µ

2,3y2
i

)
· 1 (t = 3)
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Table B.1 below shows comparison between different specifications based on maxi-
mum likelihood and information criteria (AIC and BIC). Since PBH and BUH type
specifications have the same number of parameters, they can be safely compared
using the log-likelihood function. In contrast, GM specifications have more pa-
rameters, so AIC or BIC should be used to account for the change in degrees of
freedom.

The first row in Table B.1 compares GM-S2345, PBH-S2345 and BUH-S2345.
These specifications are the same as models (3.7), (3.8) and (3.9) and we include
themhere for completeness. They include stages 2,3,4 and 5 and have only “external”
information on the left side of a regression (private signal and a neighbor’s guesses).
LLPBH-BUH is positive, which means PBH-S2345 fits better than BUH-S2345. Both
AICGM-BUH and BICGM-BUH are negative, which means GM-S2345 fits better than
BUH-S2345. However, the comparison between GM-S2345 and PBH-S2345 is
ambiguous: GM-S2345 is better according to AIC, while PBH-S2345 is better
according to BIC.

The second row in Table B.1 compares GM-S234, PBH-S234 and BUH-S234.
These specifications exclude stage 5 from consideration. The conclusion is exactly
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LLPBH-BUH AICGM-BUH BICGM-BUH AICGM-PBH BICGM-PBH

S2345 96.4 -199 -168 -6.42 25.2
[95.5,97.3] [-201,-197] [-169,-166] [-7.39,-5.44] [24.2,26.2]

S234 61.7 -126 -111 -2.48 12.5
[61.0,62.4] [-127,-125] [-112,-110] [-3.18,-1.78] [11.8,13.2]

S23 42.7 -83.5 -79.0 1.84 6.42
[42.1,43.2] [-84.6,-82.5] [-80.0,-78.0] [1.49,2.19] [6.06,6.77]

S345 -46.1 -282 -252 -374 -344
[-49.9,-42.2] [-285,-279] [-255,-249] [-380,-368] [-350,-338]

S34 -50.0 -174 -160 -274 -260
[-52.7,-47.3] [-175,-172] [-162,-159] [-278,-270] [-265,-256]

S45 147 -333 -319 -39.3 -25.6
[146,148] [-335,-331] [-322,-317] [-40.0,-38.6] [-26.2,-24.9]

S3 -15.6 -111 -107 -143 -139
[-17.4,-13.9] [-113,-110] [-108.74,-106] [-145,-140] [-141,-136]

S4 79.5 -179 -175 -19.5 -15.6
[78.7,80.3] [-180,-177] [-176,-173] [-19.9,-19.1] [-16.0,-15.2]

S5 137 -280 -276 -6.05 -2.17
[135,138] [-282,-277] [-278,-273] [-6.27,-5.84] [-2.38,-1.95]

S345x 95.4 -486 -471 -295 -280
[90.7,100.2] [-489,-482] [-474,-467] [-301,-288] [-286,-273]

S34x 12.7 -258 -249 -232 -223
[9.7,15.8] [-260,-256] [-251,-247] [-237,-228] [-228,-219]

S45x 218 -461 -452 -26.2 -17.0
[216,219] [-464,-459] [-455,-450] [-26.7,-25.7] [-17.5,-16.5]

S345i 62.7 -151 -126 -26.0 -1.05
[61.5,63.9] [-153,-149] [-129,-124] [-26.6,-25.4] [-1.58,-0.51]

S34i 11.3 -36.9 -27.7 -14.2 -5.03
[10.9,11.7] [-37.5,-36.2] [-28.4,-27.0] [-14.5,-13.9] [-5.33,-4.73]

S45i 72.1 -140 -127 3.82 17.6
[71.1,73.2] [-142,-138] [-129,-125] [3.68,3.96] [17.4,17.7]

Table B.1: LLPBH-BUH = ln (LPBH) − ln (LBUH) is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and the
BUH model; AICGM-BUH = AICGM − AICBUH is the difference between AIC for the
GM model and the BUH model; BICGM-BUH = BICGM − BICBUH is the difference
between BIC for the GM model and the BUH model; AICGM-PBH (BICGM-PBH) is the
difference between AIC (BIC) for the GMmodel and the PBHmodel. The first column
shows the type of specification used. All subjects are pooled. 99% confidence intervals
are found by bootstrapping by uniformly sampling by sessions and by periods within
each session (only the last 15 original periods are used). Bootstrap sample size is
10,000.
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the same: PBH-S234 fits better than BUH-S234, GM-S234 fits better than BUH-
S234, GM-S234 is better than PBH-S234 according to AIC, while PBH-S234 is
better than GM-S234 according to BIC.

The next row in Table B.1 compares GM-S23, PBH-S23 and BUH-S23. These
specifications only consider stages 2 and 3. The conclusion is almost the same.
Both GM-S23 and PBH-S23 are better than BUH-S23. However, now both AIC
and BIC indicate that PBH-S23 is better than GM-S23.

The next row in Table B.1 compares GM-S345, PBH-S345 and BUH-S345. In
contrast to the S2345 specifications, these specifications exclude stage 2 and have
x2

i instead of y1
i on the left side of a regression. Specifically, the persuasion

bias hypothesis (3.5) connects the weights in the general model (3.2)-(3.3) for two
subsequent stages. Thus, if wewant to restrict weights in stage 3, we need to estimate
weights in stage 2 as well. However, excluding stage 2 data makes it impossible.
Luckily, there is another way to impose persuasion bias restriction for stage 3,
namely to include x2

i as a proxy for λ2si + µ
1,2y1

i . In the world where the PBH
model holds exactly, this is an equivalent transformation. However, the presence of
an error term means that including x2

i as a proxy for λ2si + µ
1,2y1

i changes the error
correlation structure. To match this transformation, we also substitute y1

i with x2
i

in the general model (GM-S345). Table B.1 shows that BUH-S345 is better than
PBH-S345, while GM-S345 is better than both of them.

Excluding stage 5 does not change this conclusion: BUH-S34 is better than PBH-
S34, while GM-S34 is better than both of them.

The next row in Table B.1 compares GM-S45, PBH-S45 and BUH-S45. These
specifications only consider stages 4 and 5, using x3

i as a proxy for λ3si + µ
1,3y1

i +

µ2,3y2
i in the PBH model and substituting y1

i and y2
i with x3

i in the general model.
LLPBH-BUH is positive and relatively large, which means PBH-S45 fits much better
than BUH-S45. However, the general model again is better than the other two.

The next three rows in Table B.1 compare three models by stages (3,4 and 5). In
every stage, the general model is better, through GM-S5 is only slightly better than
PBH-S5. The PBH model is better than the BUH model in stages 4 and 5 but it is
worse in stage 3.

The next row in Table B.1 compares GM-S345x, PBH-S345x and BUH-S345x. The
S345x specification is a union of S3, S4 and S5 specifications. In other words, here
we use the previous stage’s guess as a proxy for a corresponding linear combination
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of a private signal and the neighbor’s guesses in each stage. Table B.1 shows that
PBH-S345x is better than BUH-S345x, while GM-S345x is better than both of them.
Excluding the last stage does not change this conclusion (see the S34x specification),
neither does considering only stages 4 and 5 (see the S45x specification).

Specifications GM-S345i, PBH-S345i and BUH-S345i use data from stages 3, 4 and
5 but all three models are identical in stage 3. So, the S234i specification tests stages
4 and 5 together, using only “external” information on the left side of a regression.
Table B.1 shows that PBH-S345i is better than BUH-S345i, while GM-S345i is
better than both of them. Excluding the last stage does not change this conclusion
(see S34i specification). Finally, specification S45i tests stage 5 solely and it favors
PBH model over BUH and even GM.

In sum, Table B.1 shows:

1. The general model is much better than the BUH model (AICGM-BUH and
BICGM-BUH are all negative).

2. The general model is slightly better than the PBH model.

3. When only “external” information on the left side of a regression is used, the
PBHmodel is better than the BUHmodel (see S2345, S234, S23, S345i, S34i,
S45i).

4. Using x2
i as a proxy for λ2si + µ

1,2y1
i makes the PBH model worse (compare

S2345, S234, S23 with S345, S34, S3).

5. Using x3
i as a proxy for λ3si + µ

1,3y1
i + µ

2,3y2
i makes the PBH model better

(compare S34 with S34x).

6. Using x4
i as a proxy for λ4si + µ

1,4y1
i + µ

2,4y2
i + µ

3,4y3
i makes the PBH model

better (compare S45 with S45x).

7. The PBH model is arguably worse than the BUH model in stage 3 (compare
S345, S34, S345x, S34x, S345, S34 with S45, S4, S45x, S4, S345i, S34i and
see S3; S23 gives the opposite result). More precisely, using x2

i makes the
PBH model worse than the BUH model, while using λ2si + µ

1,2y1
i reverses

the comparison.

8. The PBH model is arguably better than the BUH model in stage 4 (compare
S234, S34x, S45x with S23, S3, S5 and see S4 and S34i; S34 vs S3 gives the
opposite result).
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9. The PBH model is better than the BUH model in stage 5 (compare S2345,
S345, S45, S345x, S45x, S345i with S234, S34, S4, S34x, S4, S34i and see
S5 and S45i).
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B.6 Equilibrium for Experimental Setup

Model PBH BUH GM
xt

i xt
i xt

i

si · 1 (t = 2) (λ2) 0.566∗∗∗ 0.498∗∗∗ 0.498∗∗∗
(0.070) (0.005) (0.004)

y1
i · 1 (t = 2) (µ1,2) 0.433∗∗∗ 0.501∗∗∗ 0.501∗∗∗

(0.070) (0.005) (0.004)(
λ2si + µ

1,2y1
i

)
· 1 (t = 3) (c3) 0.571∗∗∗

(0.108)
si · 1 (t = 3) (λ3 = c3λ2) 0.323 0.334∗∗∗ 0.335∗∗∗

(0.008) (0.008)
y1

i · 1 (t = 3) (µ1,3 = c3µ1,2) 0.247 0.021
(0.020)

y2
i · 1 (t = 3) (µ2,3) 0.429∗∗∗ 0.665∗∗∗ 0.644∗∗∗

(0.108) (0.007) (0.020)(
λ3si +

∑
τ=1,2

µτ,3yτi

)
· 1 (t = 4) (c4) 0.429∗∗∗

(0.046)
si · 1 (t = 4) (λ4 = c4λ3) 0.139 0.242∗∗∗ 0.243∗∗∗

(0.008) (0.009)
y1

i · 1 (t = 4) (µ1,4 = c4µ1,3) 0.106 0.0125
(0.015)

y2
i · 1 (t = 4) (µ2,4 = c4µ2,3) 0.184 -0.002

(0.023)
y3

i · 1 (t = 4) (µ3,4) 0.569∗∗∗ 0.755∗∗∗ 0.744∗∗∗
(0.046) (0.008) (0.013)

AIC 7620.819 6784.275 6784.261
BIC 7655.713 6819.168 6834.108
ln(L) -3803.41 -3385.138 -3382.13
Signif. codes: *** 1%, ** 5%, * 10%

Table B.2: Analog of Table 3.1 from Section 3.7 without stage 5 for equilibrium
data (specification S234). All subjects are pooled, standard errors are clustered by
subjects, periods and stages. Only the last 15 periods are used. Italic entries are
derived from the estimated coefficients.

The equilibrium in the experimental setup requires a long description, so we omit
it. Instead, we calculate it for every period in our experiment and then fit the linear
model: 

x2
i = λ2

i si + µ
1,2
i y1

i ,

x3
i = λ3

i si + µ
1,3
i y1

i + µ
2,3
i y2

i ,

x4
i = λ4

i si + µ
1,4
i y1

i + µ
2,4
i y2

i + µ
3,4
i y3

i .

(B.2)
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Figure B.6: Model (B.2), stage 2, equilibrium data. Only the last 15 periods are
used for each subject. 95% confidence interval is used. Red line indicates Theorem
5’s prediction.

Note that all guesses converge at the last stage, so that x5
i = x4

i .

Table B.2, last column shows the fitted model (B.2). To match the actual data
analysis, we exclude the first 5 periods and use only the last 15 periods. Comparing
this general model with the PBH model and the BUH model based on the S234
specification, we see that

1) the BUHmodel has an advantage over the general model based on BIC and the
direct comparison of the coefficients (all additional terms have nonsignificant
effect);

2) the BUH model is definitely better than the PBH model based on the log-
likelihood functions and the direct comparison of the coefficients for the PBH
model and the general model.

What is more, the weights from the BUH model are very close to the equilibrium
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Figure B.7: Model (B.2), stage 3, equilibrium data. Only the last 15 periods are
used for each subject. 95% confidence interval is used. Red line indicates Theorem
5’s prediction.

weights from Theorem 5:
x2

i = 0.5 · si + 0.5 · y1
i ,

x3
i = 0.333 · si + 0 · y1

i + 0.666 · y2
i ,

x4
i = 0.25 · si + 0 · y1

i + 0 · y2
i + 0.75 · y3

i .

(B.3)

Figures B.6, B.7 and B.8 show model (B.2) fit for each subject separately. Again,
all weights are very close to the equilibrium weights from Theorem 5.
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Figure B.8: Model (B.2), stage 4, equilibrium data. Only the last 15 periods are
used for each subject. 95% confidence interval is used. Red line indicates Theorem
5’s prediction.
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B.7 Maximum Likelihood Comparison Across Different Specifications For
Each Subject

A B C D
S2345 3.66 -4.29 2.57 17.03

[3.31,4.01] [-4.47,-4.11] [2.34,2.79] [16.61,17.45]
S234 4.24 -7.83 0.61 1.28

[3.97,4.5] [-7.98,-7.68] [0.45,0.77] [1.17,1.39]
S23 4.83 -0.16 -0.06 0.42

[4.68,4.98] [-0.33,0.01] [-0.16,0.03] [0.37,0.47]
S345 -4.44 -4.79 18.42 29.61

[-4.77,-4.11] [-4.95,-4.64] [18.14,18.71] [29.25,29.96]
S34 -0.79 -6.82 14.66 7.9

[-1.03,-0.55] [-6.94,-6.7] [14.4,14.91] [7.75,8.05]
S45 -3.92 -1.15 3.05 24.64

[-4.13,-3.71] [-1.26,-1.03] [2.86,3.24] [24.32,24.97]
S3 3.78 -1.73 9.35 5.78

[3.64,3.92] [-1.86,-1.6] [9.15,9.55] [5.66,5.9]
S4 -2.83 -3.29 0.21 4.99

[-2.94,-2.73] [-3.36,-3.22] [0,0.42] [4.89,5.08]
S5 6.9 13.36 5.7 18.48

[6.79,7.01] [12.04,14.68] [5.56,5.84] [18.26,18.7]
S345x 7.62 0.13 20.78 37.52

[7.34,7.9] [-0.02,0.28] [20.49,21.07] [37.13,37.9]
S34x 3.36 -5.5 14.56 10.83

[3.14,3.57] [-5.61,-5.38] [14.33,14.79] [10.69,10.97]
S45x 1.94 1.42 6.71 29.15

[1.76,2.12] [1.3,1.54] [6.52,6.9] [28.79,29.51]
S345i -8.28 -2.2 3.93 25.85

[-8.51,-8.06] [-2.32,-2.09] [3.76,4.11] [25.43,26.26]
S34i -6.06 -5.35 1.03 1.93

[-6.18,-5.94] [-5.44,-5.27] [0.91,1.15] [1.85,2.02]
S45i 0.93 4.16 9.29 26.71

[0.8,1.06] [4.08,4.24] [9.09,9.49] [26.31,27.11]

Table B.3: Session 1. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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A B C D
S2345 14.81 -6.36 27.65 -0.08

[14.36,15.27] [-6.51,-6.21] [27.24,28.06] [-0.35,0.2]
S234 15.34 -2.48 23.51 -0.06

[14.09,16.6] [-2.64,-2.31] [23.09,23.93] [-0.29,0.17]
S23 11.99 -2.31 19.38 -0.05

[11.16,12.82] [-2.62,-1.99] [19.06,19.7] [-0.17,0.08]
S345 8.59 -4.77 19.12 -7.28

[8.09,9.09] [-4.89,-4.64] [18.75,19.49] [-7.65,-6.91]
S34 8.42 -1.54 14.44 -6.34

[6.98,9.86] [-1.66,-1.41] [14.09,14.79] [-6.62,-6.06]
S45 0.06 -2.14 19.25 11.76

[-0.14,0.26] [-2.24,-2.05] [19.13,19.38] [11.55,11.97]
S3 5.8 -1.11 9.12 -5.98

[5.05,6.55] [-1.19,-1.03] [8.91,9.33] [-6.15,-5.82]
S4 -45.1 1.92 20.49 7.31

[-45.61,-44.59] [1.85,1.99] [20.33,20.66] [7.17,7.45]
S5 1.45 -2.79 4.07 5.08

[1.06,1.83] [-2.89,-2.7] [3.99,4.14] [4.51,5.65]
S345x 11.46 -3.41 27.97 -1.34

[11.01,11.91] [-3.56,-3.27] [27.65,28.29] [-1.69,-0.99]
S34x 10.22 0.03 21.29 -3.48

[8.81,11.62] [-0.09,0.15] [20.95,21.63] [-3.74,-3.22]
S45x 1.09 -2.31 19.45 12.63

[0.93,1.26] [-2.43,-2.19] [19.33,19.58] [12.42,12.85]
S345i 0.49 -2.54 6.42 10.43

[0.32,0.67] [-2.64,-2.44] [6.21,6.64] [10.19,10.68]
S34i -2.04 1.54 3.69 7.98

[-3.01,-1.07] [1.46,1.62] [3.5,3.89] [7.81,8.16]
S45i 3.28 -2.51 3.06 3.96

[2.65,3.92] [-2.62,-2.39] [2.95,3.16] [3.83,4.08]

Table B.4: Session 2. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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A B C D
S2345 16.42 -2.39 -0.22 -16.52

[16.14,16.7] [-2.55,-2.23] [-0.42,-0.02] [-16.72,-16.31]
S234 17.41 0.07 -2.34 -12.75

[17.19,17.64] [-0.07,0.21] [-2.54,-2.14] [-12.91,-12.58]
S23 22.79 -0.96 1.73 -5.33

[22.56,23.02] [-1.05,-0.87] [1.54,1.92] [-5.45,-5.21]
S345 12.02 -2.31 -0.86 -16.43

[11.81,12.23] [-2.5,-2.12] [-1.01,-0.71] [-16.68,-16.19]
S34 11.41 0.4 -2.33 -11.48

[11.27,11.56] [0.26,0.55] [-2.46,-2.21] [-11.67,-11.3]
S45 2.04 3.84 -0.52 -6.41

[1.89,2.2] [3.72,3.96] [-0.64,-0.39] [-6.64,-6.18]
S3 11.5 -0.9 0.29 -3.67

[11.29,11.7] [-1,-0.8] [0.19,0.4] [-3.78,-3.57]
S4 2.56 3.35 -1.95 -3.29

[2.46,2.65] [3.27,3.44] [-2.04,-1.86] [-3.44,-3.14]
S5 3.27 0.43 2.63 0.18

[3.2,3.35] [-0.16,1.02] [2.56,2.69] [-0.06,0.41]
S345x 18.06 2.95 -0.08 -9.68

[17.86,18.25] [2.77,3.13] [-0.23,0.07] [-9.94,-9.42]
S34x 13.06 2.5 -2.05 -7.07

[12.91,13.21] [2.36,2.63] [-2.18,-1.92] [-7.26,-6.88]
S45x 5.49 3.84 -0.32 -5.21

[5.33,5.64] [3.67,4.02] [-0.45,-0.2] [-5.44,-4.98]
S345i 1.35 1.03 -0.12 -7.48

[1.14,1.57] [0.92,1.13] [-0.25,0.01] [-7.62,-7.35]
S34i 2.79 2.09 -1.87 -4.95

[2.64,2.94] [2.01,2.17] [-1.98,-1.77] [-5.06,-4.84]
S45i 0.53 -0.88 2.61 -0.7

[0.42,0.64] [-0.93,-0.82] [2.53,2.69] [-0.75,-0.66]

Table B.5: Session 3. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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A B C D
S2345 22.43 33.12 -0.52 0.9

[22.26,22.6] [32.72,33.53] [-0.68,-0.37] [0.76,1.05]
S234 14.32 25.58 -0.31 0.05

[14.19,14.46] [25.19,25.96] [-0.43,-0.19] [-0.07,0.17]
S23 7.84 17.66 0.01 -0.28

[7.75,7.94] [17.41,17.9] [-0.07,0.08] [-0.35,-0.22]
S345 14.38 23.71 16.79 5.13

[14.16,14.61] [23.39,24.04] [16.52,17.06] [4.82,5.45]
S34 8.49 16.32 16.07 1.68

[8.32,8.67] [16.05,16.59] [15.88,16.25] [1.42,1.94]
S45 13.24 20.64 5.59 9.37

[13.09,13.39] [20.47,20.8] [5.41,5.76] [9.23,9.51]
S3 2.48 8.46 10.85 -0.89

[2.37,2.59] [8.34,8.59] [10.74,10.96] [-1.13,-0.64]
S4 5.57 12.05 9.89 4.16

[5.48,5.65] [11.87,12.23] [9.78,10] [4.06,4.25]
S5 10.45 12.59 2.31 7.19

[10.36,10.55] [12.51,12.66] [2.21,2.41] [7.12,7.26]
S345x 16.87 34.22 27.71 7.76

[16.65,17.08] [34.03,34.41] [27.46,27.95] [7.45,8.06]
S34x 8.78 20.47 21.34 3.25

[8.61,8.95] [20.25,20.69] [21.16,21.53] [3.01,3.49]
S45x 13.98 24.82 11.86 10.11

[13.82,14.13] [24.68,24.95] [11.68,12.03] [9.96,10.26]
S345i 19.87 23.47 -0.94 5.02

[19.69,20.05] [23.23,23.72] [-1.03,-0.85] [4.89,5.15]
S34i 10.98 12.87 -0.63 1.81

[10.86,11.09] [12.66,13.09] [-0.69,-0.57] [1.71,1.91]
S45i 7.96 14.39 -1.1 3.17

[7.74,8.18] [14.23,14.55] [-1.19,-1.02] [3.11,3.24]

Table B.6: Session 4. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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A B C D
S2345 22.57 -5.12 9.23 168.37

[22.26,22.87] [-5.3,-4.94] [8.84,9.62] [168.08,168.66]
S234 11.28 -4.01 -3.21 126.03

[11.07,11.49] [-4.2,-3.81] [-3.46,-2.96] [125.82,126.23]
S23 3.46 1.27 -10.09 80.43

[3.31,3.6] [1.16,1.38] [-10.28,-9.9] [80.26,80.59]
S345 16.37 -9.03 5.18 130.85

[16.01,16.73] [-9.25,-8.82] [4.87,5.49] [130.6,131.11]
S34 6.76 -7.61 -3.93 88.13

[6.53,6.99] [-7.83,-7.4] [-4.12,-3.74] [87.94,88.32]
S45 20.63 -0.17 16.66 94.04

[20.4,20.86] [-0.26,-0.08] [16.41,16.91] [93.85,94.24]
S3 0.78 -1.61 -7.12 43.26

[0.64,0.92] [-1.74,-1.48] [-7.24,-6.99] [42.97,43.55]
S4 7.62 0.37 5.82 50.49

[7.49,7.76] [0.27,0.47] [5.32,6.32] [50.37,50.6]
S5 13.06 -0.48 18.04 47.35

[12.99,13.13] [-0.54,-0.42] [17.46,18.62] [47.23,47.47]
S345x 20.63 -1.71 16.68 138.25

[20.35,20.92] [-1.9,-1.52] [16.44,16.91] [138.03,138.48]
S34x 9.16 -1.23 0.37 91.3

[8.94,9.38] [-1.42,-1.04] [0.18,0.56] [91.13,91.46]
S45x 19.62 -0.09 22.25 97.72

[19.43,19.8] [-0.19,0.01] [22.05,22.46] [97.54,97.9]
S345i 22.79 -2.62 13.69 120.35

[22.6,22.97] [-2.71,-2.52] [13.29,14.09] [120.06,120.65]
S34i 11.24 -2.55 3.37 77.09

[11.11,11.36] [-2.66,-2.45] [3.2,3.55] [76.88,77.29]
S45i 14.1 0.89 9.43 78.34

[13.95,14.25] [0.82,0.96] [9.13,9.73] [78.1,78.58]

Table B.7: Session 5. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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A B C D
S2345 0.28 4.74 119.66 5.68

[0.22,0.33] [4.57,4.91] [119.07,120.26] [5.58,5.77]
S234 0.25 0.98 86.17 5.06

[0.2,0.29] [0.85,1.11] [85.71,86.62] [4.98,5.14]
S23 0.27 0.9 73.08 0.97

[0.26,0.28] [0.83,0.97] [72.92,73.24] [0.94,1.01]
S345 4.24 -0.27 90.96 2.42

[4.14,4.33] [-0.45,-0.09] [90.46,91.45] [2.35,2.5]
S34 4.53 -2.87 58.44 2.94

[4.44,4.62] [-3,-2.74] [58.09,58.79] [2.87,3]
S45 1.24 8.24 58.85 0.46

[1.19,1.3] [8.1,8.38] [58.46,59.24] [0.39,0.53]
S3 4.92 -1.43 42.08 3.39

[4.84,4.99] [-1.5,-1.36] [41.93,42.23] [3.35,3.42]
S4 1.21 4.69 27.31 0.12

[1.16,1.27] [4.59,4.79] [27.07,27.54] [0.04,0.2]
S5 0.38 7.15 45.72 1.44

[0.34,0.41] [7.02,7.27] [45.56,45.89] [1.35,1.52]
S345x 5.87 8.18 97.75 3.53

[5.78,5.96] [7.98,8.38] [97.26,98.23] [3.4,3.65]
S34x 5.9 1.8 59.45 1.69

[5.81,6] [1.68,1.93] [59.08,59.82] [1.58,1.81]
S45x 1.51 11.95 62.61 1.87

[1.46,1.57] [11.8,12.11] [62.23,63] [1.77,1.97]
S345i 0.49 3.89 85.34 7.58

[0.41,0.56] [3.75,4.02] [84.84,85.85] [7.47,7.69]
S34i 0.34 0.44 52.36 7.31

[0.28,0.41] [0.36,0.51] [52,52.71] [7.21,7.42]
S45i 0.28 3.17 46.4 3.68

[0.19,0.37] [3.06,3.28] [45.97,46.83] [3.55,3.8]

Table B.8: Session 6. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. 99% confidence intervals are found by bootstrapping by uniformly
sampling by periods (only the last 15 original periods are used). Bootstrap sample
size is 10,000.
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B.8 Performance vs PBH-Fit
For all tables in this section: Only the last 15 periods are used. One data point
corresponds to one subject. Two subjects are dropped: subject D in session 5 and
subject C in session 6. So, the number of observations is 22 for every regression in
this section.

We use the following notations:

LL+PBH-BUH = LLPBH-BUH · 1 (LLPBH-BUH > 0) ,

LL−PBH-BUH = LLPBH-BUH · 1 (LLPBH-BUH < 0) .

Specification S34 Specification S34x
Profit Profit Profit Profit Profit Profit Profit Profit

Intercept -137 -134 -136 -144
(292) (285) (294) (288)

LLPBH-BUH -5.06 -5.63 -3.96 -4.57
(5.32) (5.08) (5.23) (4.99)

LL+PBH-BUH -3.09 -2.41 -2.28 -1.80
(8.49) (8.79) (6.44) (6.65)

LL−PBH-BUH -11.5 -11.2 -18.9 -17.7
(16.5) (16.9) (25.2) (25.9)

IdealProfit 1.17∗∗∗ 1.06∗∗∗ 1.04∗∗∗ 1.15∗∗∗ 1.16∗∗∗ 1.06∗∗∗ 1.03∗∗∗ 1.14∗∗∗
(0.06) (0.23) (0.23) (0.04) (0.06) (0.24) (0.23) (0.04)

Adjusted R2 0.9815 0.4575 0.4818 0.9823 0.9813 0.4527 0.4730 0.9819
Signif. codes: *** 1%, ** 5%, * 10%

Table B.9: Profit sums the actual profit from stages 1,2,3 and 4. IdealProfit sums the
profit based on Ideal Guesses from stages 1,2,3 and 4.
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Table B.10: Profit sums the actual profit from stages 1,2,3,4 and 5. IdealProfit sums
the profit based on Ideal Guesses from stages 1,2,3,4 and 5.
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Table B.11: Profit sums the actual profit from stages 3,4 and 5. IdealProfit sums
the profit based on Ideal Guesses from stages 3,4 and 5.
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Table B.12: Profit sums the actual profit from stages 3 and 4. IdealProfit sums the
profit based on Ideal Guesses from stages 3 and 4.
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Specification S23 Specification S3
Profit Profit Profit Profit Profit Profit Profit Profit

Intercept -219∗∗∗ -166∗∗ -148∗∗ -127∗∗
(65) (64) (64) (57)

LLPBH-BUH 0.90 -0.97 -3.24 -4.70∗
(1.65) (1.70) (2.25) (2.35)

LL+PBH-BUH -0.55 2.98 -5.17 -1.21
(1.93) (1.88) (3.38) (3.50)

LL−PBH-BUH -3.78 -8.45 -3.31 -8.24
(6.02) (5.04) (7.32) (6.94)

IdealProfit 1.18∗∗∗ 0.40 0.55∗∗ 1.17∗∗∗ 1.13∗∗∗ 0.63∗∗ 0.66∗∗∗ 1.14∗∗∗
(0.07) (0.24) (0.24) (0.06) (0.08) (0.23) (0.22) (0.05)

Adjusted R2 0.9539 0.3010 0.1978 0.9556 0.9605 0.249 0.2654 0.9624
Signif. codes: *** 1%, ** 5%, * 10%

Table B.13: Profit is the actual profit from stage 3. IdealProfit is the profit based on
Ideal Guesses from stage 3.

Profit Profit Profit Profit
Intercept -232 -71

(240) (238)
LLPBH-BUH 4.08 3.58

(4.70) (4.30)
LL+PBH-BUH 7.09 9.53∗

(4.67) (5.31)
LL−PBH-BUH -18.5 -22.0

(14.3) (14.8)
IdealProfit 1.18∗∗∗ 0.98∗∗∗ 1.09∗∗∗ 1.15∗∗∗

(0.04) (0.22) (0.22) (0.03)
Adjusted R2 0.9835 0.6173 0.5681 0.9822
Signif. codes: *** 1%, ** 5%, * 10%

Table B.14: Specification S23. Profit sums the actual profit from stages 1,2 and 3.
IdealProfit sums the profit based on Ideal Guesses from stages 1,2 and 3.
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Table B.15: Profit sums the actual profit from stages 4 and 5. IdealProfit sums the
profit based on Ideal Guesses from stages 4 and 5.
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Specification S4 Specification S34i
Profit Profit Profit Profit Profit Profit Profit Profit

Intercept -134∗ -127∗ -153∗∗ -135∗
(73) (73) (68) (75)

LLPBH-BUH -0.34 -0.81 0.45 -1.28
(1.32) (1.35) (3.00) (2.99)

LL+PBH-BUH 1.59 2.58 3.78 6.39
(3.24) (3.10) (3.92) (3.75)

LL−PBH-BUH -1.73 -1.42 -17.0∗ -17.1∗∗
(1.77) (1.68) (8.9) (8.1)

IdealProfit 1.30∗∗∗ 0.70∗ 0.66∗ 1.24∗∗∗ 1.39∗∗∗ 0.72∗∗ 0.63∗ 1.24∗∗∗
(0.10) (0.34) (0.34) (0.07) (0.11) (0.32) (0.35) (0.08)

Adjusted R2 0.9259 0.07933 0.0758 0.9271 0.9346 0.2434 0.07376 0.9265
Signif. codes: *** 1%, ** 5%, * 10%

Table B.16: Profit is the actual profit from stage 4. IdealProfit is the profit based on
Ideal Guesses from stage 4.

Specification S5 Specification S45i
Profit Profit Profit Profit Profit Profit Profit Profit

Intercept -59.8 -57.1 -58.3 -58.8
(62.6) (60.6) (63.2) (61.4)

LLPBH-BUH 1.08 1.12 -0.28 -0.04
(2.23) (2.22) (2.04) (2.02)

LL+PBH-BUH 0.90 0.73 -0.22 -0.40
(2.50) (2.52) (2.28) (2.30)

LL−PBH-BUH 6.16 9.03 4.44 2.80
(23.8) (24.01) (23.69) (23.85)

IdealProfit 1.23∗∗∗ 0.95∗∗∗ 0.98∗∗∗ 1.24∗∗∗ 1.20∗∗∗ 0.93∗∗∗ 0.93∗∗∗ 1.21∗∗∗
(0.10) (0.31) (0.30) (0.09) (0.09) (0.31) (0.30) (0.08)

Adjusted R2 0.9457 0.2685 0.3027 0.9483 0.9449 0.2564 0.2949 0.9476
Signif. codes: *** 1%, ** 5%, * 10%

Table B.17: Profit is the actual profit from stage 5. IdealProfit is the profit based on
Ideal Guesses from stage 5.
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B.9 Maximum Likelihood Comparison for Section 3.9.2
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Table B.18: LLPBH-BUH for different subsets of subjects when the ideal guesses are
used instead of the actual guesses. BUH-subjects are B and C in session 1, A and
C in session 3, C in session 4 and all subjects in session 5. PBH-subjects are A in
session 1 and C in session 2. Unclear group are D in session 1, A in session 2, B in
session 3, D in session 4. PBH3BUH4 group are B in session 2 and A in session 6.
BUH3PBH4 group are D in session 2, D in session 3, A and B in session 4, and B,
C and D in session 6.
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A B C D
S2345 9.52 0.79 -18.7 1.86

[9.31,9.72] [0.46,1.11] [-18.92,-18.47] [1.51,2.21]
S234 5.33 -19.44 -32.44 0.43

[5.18,5.47] [-19.66,-19.22] [-32.62,-32.25] [0.03,0.84]
S23 3.27 -13.51 -39.59 0.9

[3.11,3.44] [-13.73,-13.29] [-39.76,-39.41] [0.37,1.43]
S345 3.37 -2.31 -17.66 0.44

[3.15,3.58] [-2.58,-2.04] [-17.82,-17.49] [0.15,0.73]
S34 0.65 -14.65 -24.19 -0.32

[0.5,0.8] [-14.81,-14.5] [-24.31,-24.07] [-0.61,-0.02]
S45 6.39 9.96 1.14 12.08

[6.25,6.52] [9.79,10.14] [0.98,1.29] [11.79,12.38]
S3 0.78 -7.52 -21.12 0.1

[0.55,1.01] [-7.64,-7.41] [-21.21,-21.04] [-0.17,0.37]
S4 2.08 -4.32 -4.71 7.22

[2.01,2.16] [-4.42,-4.22] [-4.8,-4.62] [7.02,7.42]
S5 491.49 484.41 482.96 481.47

[491.14,491.84] [484.09,484.73] [482.64,483.27] [481.16,481.79]
S345x 15.49 6.05 -7.59 11.01

[15.27,15.72] [5.8,6.31] [-7.78,-7.39] [10.68,11.34]
S34x 2.93 -12.69 -20.84 5.65

[2.78,3.07] [-12.83,-12.55] [-20.95,-20.73] [5.3,6]
S45x 15.77 17.96 7.92 17.68

[15.61,15.93] [17.79,18.14] [7.74,8.11] [17.41,17.95]
S345i 12.94 13.76 2.14 0.68

[12.71,13.17] [13.58,13.93] [1.95,2.34] [0.5,0.86]
S34i 5.89 -3.86 -8.15 -0.25

[5.73,6.05] [-3.95,-3.76] [-8.3,-8] [-0.4,-0.1]
S45i 7.77 20.27 9.58 1.66

[7.61,7.94] [20.07,20.48] [9.44,9.72] [1.45,1.87]

Table B.19: Session 1. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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A B C D
S2345 32.74 -1.01 54.74 -6.3

[32.15,33.33] [-1.68,-0.33] [54.39,55.1] [-6.92,-5.68]
S234 24.49 -2.72 47.83 -14.96

[23.94,25.05] [-3.88,-1.56] [47.54,48.12] [-15.46,-14.46]
S23 16.93 7.87 76.97 -43.06

[16.11,17.75] [6.34,9.4] [75.44,78.5] [-43.7,-42.43]
S345 24.13 -3.94 41.05 -9.7

[23.67,24.58] [-4.46,-3.41] [40.78,41.32] [-10.16,-9.23]
S34 16.03 -3.75 31.88 -12.93

[15.65,16.41] [-4.53,-2.96] [31.68,32.07] [-13.26,-12.59]
S45 0.33 -9.26 15.01 7.63

[0.21,0.45] [-9.44,-9.09] [14.86,15.16] [7.31,7.94]
S3 8.32 3.16 38.15 -22.72

[7.9,8.74] [2.39,3.94] [37.36,38.94] [-23,-22.43]
S4 -1.31 -21.56 6.39 3.06

[-1.38,-1.25] [-21.65,-21.46] [6.31,6.47] [2.88,3.24]
S5 466.12 462.69 473.24 470.73

[465.8,466.44] [462.37,463.02] [472.92,473.56] [470.38,471.07]
S345x 22.53 4.09 54.3 2.18

[22.12,22.95] [3.57,4.61] [54.05,54.56] [1.74,2.62]
S34x 14.04 -2.14 32.63 -9.9

[13.67,14.4] [-2.91,-1.37] [32.46,32.8] [-10.22,-9.58]
S45x 7.27 -3.37 23.56 17.99

[7.13,7.41] [-3.55,-3.19] [23.38,23.74] [17.68,18.31]
S345i 4.71 -5.25 21.34 14.73

[4.6,4.81] [-5.46,-5.04] [21.07,21.6] [14.28,15.18]
S34i 1.56 -9.81 11.66 7.46

[1.48,1.65] [-10.22,-9.4] [11.49,11.84] [7.13,7.78]
S45i 9 37.3 10.46 8.88

[8.86,9.14] [37,37.61] [10.16,10.77] [8.72,9.05]

Table B.20: Session 2. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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A B C D
S2345 -30.02 -7.33 -3.96 7.72

[-30.31,-29.72] [-7.64,-7.02] [-4.29,-3.64] [7.46,7.98]
S234 -34.59 -11.58 -8.11 -1.46

[-34.83,-34.36] [-11.8,-11.36] [-8.39,-7.83] [-1.67,-1.24]
S23 -32.11 -67.49 -2.2 -25.5

[-32.32,-31.89] [-68.1,-66.88] [-2.54,-1.85] [-26.16,-24.83]
S345 -27.45 -8.9 -5.41 3.91

[-27.69,-27.2] [-9.14,-8.65] [-5.67,-5.15] [3.72,4.11]
S34 -27 -10.06 -6.8 -2.46

[-27.17,-26.83] [-10.22,-9.91] [-6.99,-6.6] [-2.6,-2.32]
S45 -3.29 -0.88 -0.61 6.6

[-3.46,-3.13] [-0.98,-0.78] [-0.77,-0.46] [6.45,6.75]
S3 -18.76 -34.89 -1.75 -13.85

[-18.87,-18.65] [-35.2,-34.59] [-1.93,-1.57] [-14.18,-13.52]
S4 -5.1 -0.15 -2.9 2

[-5.2,-5] [-0.2,-0.09] [-2.98,-2.83] [1.91,2.09]
S5 491.85 493.11 493.93 493.04

[491.53,492.17] [492.79,493.43] [493.61,494.25] [492.73,493.36]
S345x -14.68 -2.65 4.94 6.82

[-14.91,-14.45] [-2.77,-2.52] [4.71,5.17] [6.65,6.99]
S34x -22.19 -10.95 -4.73 -3.92

[-22.34,-22.04] [-11.04,-10.87] [-4.92,-4.55] [-4.04,-3.79]
S45x 4.61 8.97 7.13 13.14

[4.43,4.79] [8.86,9.07] [6.97,7.29] [12.97,13.3]
S345i -3.99 3.26 0.13 12.02

[-4.2,-3.79] [3.09,3.43] [-0.07,0.32] [11.77,12.27]
S34i -8.2 1.98 -3.71 5.27

[-8.33,-8.07] [1.86,2.1] [-3.82,-3.61] [5.09,5.45]
S45i 5.45 5.6 8.27 7.25

[5.27,5.63] [5.28,5.92] [8.1,8.45] [7.06,7.44]

Table B.21: Session 3. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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A B C D
S2345 25.75 -5.44 -24.12 -2.5

[25.21,26.29] [-5.66,-5.22] [-24.43,-23.81] [-2.68,-2.31]
S234 14.49 -7.06 -24.69 -1.13

[14.05,14.93] [-7.26,-6.87] [-24.93,-24.45] [-1.27,-0.99]
S23 -6.88 -7.01 -98.54 -0.21

[-7.17,-6.58] [-7.18,-6.84] [-98.7,-98.37] [-0.31,-0.12]
S345 17.75 -7.46 -22.24 2.12

[17.34,18.16] [-7.65,-7.26] [-22.47,-22.02] [1.91,2.33]
S34 8.63 -6.72 -18.89 2.69

[8.33,8.92] [-6.86,-6.57] [-19.06,-18.73] [2.53,2.85]
S45 11.43 7.45 -4.99 7.81

[11.16,11.71] [7.35,7.55] [-5.2,-4.78] [7.6,8.01]
S3 -4 -4.63 -50.42 3.18

[-4.15,-3.84] [-4.72,-4.54] [-50.5,-50.34] [3.07,3.29]
S4 4.99 2.98 -2.78 4.96

[4.84,5.15] [2.93,3.04] [-2.88,-2.68] [4.85,5.07]
S5 487.47 485.07 474.47 480.13

[487.09,487.85] [484.69,485.45] [474.11,474.82] [479.75,480.51]
S345x 27.47 14.94 -7.75 14.86

[27.07,27.87] [14.78,15.11] [-7.97,-7.53] [14.6,15.11]
S34x 7.45 0.38 -14.76 7.72

[7.17,7.73] [0.27,0.48] [-14.91,-14.61] [7.55,7.89]
S45x 21.5 17.82 4.05 14.78

[21.22,21.78] [17.7,17.93] [3.83,4.26] [14.55,15.01]
S345i 23.8 2.16 -3.58 0.65

[23.41,24.2] [2.04,2.27] [-3.89,-3.26] [0.48,0.81]
S34i 13.77 -0.09 -3.84 1.39

[13.49,14.05] [-0.18,0.01] [-4.03,-3.64] [1.28,1.5]
S45i 11.57 2.29 2.98 0.7

[11.35,11.79] [2.2,2.39] [2.79,3.18] [0.54,0.86]

Table B.22: Session 4. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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A B C D
S2345 -28.6 -26.56 -16.82 -29.64

[-28.92,-28.27] [-26.78,-26.33] [-17.12,-16.51] [-29.82,-29.45]
S234 -40 -20.33 -34.25 -39.5

[-40.25,-39.75] [-20.51,-20.16] [-34.49,-34.01] [-39.77,-39.24]
S23 -108.27 -10.76 -20.89 -42.32

[-108.44,-108.1] [-10.93,-10.59] [-21.03,-20.75] [-42.59,-42.05]
S345 -24.19 -22.4 -15 -25.06

[-24.42,-23.97] [-22.59,-22.22] [-15.23,-14.78] [-25.2,-24.91]
S34 -28.49 -14.94 -24.35 -28.26

[-28.65,-28.33] [-15.05,-14.82] [-24.51,-24.2] [-28.45,-28.07]
S45 -11.48 -11.16 -4.33 -3.77

[-11.69,-11.26] [-11.29,-11.02] [-4.54,-4.12] [-3.88,-3.66]
S3 -55.33 -6.03 -11.44 -22.17

[-55.41,-55.24] [-6.12,-5.94] [-11.51,-11.37] [-22.31,-22.04]
S4 -10.4 -5.92 -11.01 -6.49

[-10.51,-10.29] [-5.99,-5.86] [-11.15,-10.87] [-6.58,-6.39]
S5 476.13 474.25 478.71 476.74

[475.81,476.46] [473.93,474.57] [478.38,479.03] [476.41,477.06]
S345x -16.07 -6.73 -6.97 -9.89

[-16.29,-15.84] [-6.89,-6.56] [-7.18,-6.76] [-10.02,-9.76]
S34x -27.12 -11.92 -22.37 -22.53

[-27.27,-26.97] [-12.03,-11.81] [-22.52,-22.22] [-22.71,-22.35]
S45x -4.37 -1.68 1.36 4.31

[-4.6,-4.14] [-1.82,-1.55] [1.12,1.6] [4.21,4.41]
S345i -11.99 -10.79 -2.31 -5.28

[-12.29,-11.69] [-10.94,-10.65] [-2.57,-2.05] [-5.44,-5.13]
S34i -17.99 -7.12 -15.05 -12.07

[-18.19,-17.79] [-7.21,-7.04] [-15.25,-14.85] [-12.21,-11.93]
S45i 43.83 2.45 13.95 8.05

[43.48,44.19] [2.33,2.57] [13.75,14.16] [7.8,8.3]

Table B.23: Session 5. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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A B C D
S2345 -0.24 24.58 2.85 12.26

[-0.38,-0.09] [24.29,24.86] [2.59,3.12] [12.02,12.49]
S234 -3.03 12.6 2.27 -8.94

[-3.14,-2.92] [12.42,12.78] [2.04,2.49] [-9.16,-8.72]
S23 0.46 -1.33 -10.71 -105.62

[0.35,0.57] [-1.53,-1.12] [-10.93,-10.49] [-105.75,-105.49]
S345 -0.18 18.22 -1.39 5.94

[-0.29,-0.08] [18.01,18.43] [-1.61,-1.17] [5.75,6.12]
S34 -2.02 7.98 -0.61 -8.32

[-2.1,-1.95] [7.87,8.1] [-0.78,-0.44] [-8.48,-8.17]
S45 -0.03 23.15 5.84 7.63

[-0.13,0.08] [23.02,23.29] [5.7,5.98] [7.5,7.75]
S3 0.21 -1.29 -6.91 -54.13

[0.16,0.27] [-1.41,-1.18] [-7.02,-6.8] [-54.19,-54.06]
S4 -1.54 11.26 3.47 0.84

[-1.59,-1.49] [11.19,11.32] [3.4,3.55] [0.8,0.88]
S5 498.73 503.75 497.43 499.24

[498.39,499.07] [503.42,504.09] [497.1,497.76] [498.9,499.58]
S345x 9.22 24.93 10.53 8.68

[9.1,9.34] [24.75,25.1] [10.36,10.7] [8.53,8.83]
S34x -1.21 9.5 1.41 -10.21

[-1.28,-1.14] [9.41,9.59] [1.27,1.55] [-10.32,-10.1]
S45x 10.33 32.08 13.36 17.68

[10.22,10.43] [31.93,32.23] [13.23,13.5] [17.54,17.81]
S345i -0.58 18.09 5.08 17.68

[-0.69,-0.47] [17.83,18.34] [4.91,5.25] [17.51,17.86]
S34i -2.46 8.38 3.99 4.17

[-2.51,-2.4] [8.22,8.54] [3.86,4.11] [4.08,4.27]
S45i 7.36 16.24 1.08 24.25

[7.15,7.58] [15.98,16.51] [0.93,1.22] [23.97,24.54]

Table B.24: Session 6. For each subject and each specification this table shows
LLPBH-BUH = ln (LPBH) − ln (LBUH), which is the difference between the log-
likelihood functions at the estimated parameters’ values for the PBH model and
the BUH model. Every real guess xt

i is changed to Ideal Guess. 99% confidence
intervals are found by bootstrapping by uniformly sampling by periods (only the last
15 original periods are used). Bootstrap sample size is 10,000.
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B.10 Robustness Check for Table 3.5
We use the following notations:

LLideal+
PBH-BUH = LLideal

PBH-BUH · 1
(
LLideal

PBH-BUH > 0
)
,

LLideal−
PBH-BUH = LLideal

PBH-BUH · 1
(
LLideal

PBH-BUH < 0
)
.

Intercept LLideal
PBH-BUH LLideal+

PBH-BUH LLideal−
PBH-BUH Adjusted R2

S2345 6.63∗∗ 0.144 0.014
(2.62) (0.127)
0.34 0.468∗∗ -0.341 0.173
(3.73) (0.187) (0.249)

S234 5.12∗∗ 0.161 0.072
(2.15) (0.099)
-0.35 0.542∗∗∗ -0.143 0.273
(2.86) (0.173) (0.148)

S23 4.66∗∗ 0.059 0.058
(1.86) (0.039)
2.62 0.225∗∗ 0.013 0.152
(2.10) (0.099) (0.045)

S345 5.77∗∗ 0.022 -0.049
(2.61) (0.157)
0.83 0.371 -0.385 0.026
(4.00) (0.266) (0.297)

S34 3.51∗ 0.049 -0.042
(1.97) (0.126)
-0.72 0.492∗ -0.256 0.099
(2.77) (0.248) (0.191)

S45 5.91∗∗∗ 0.233 0.004
(2.06) (0.224)
2.02 0.645∗ -0.584 0.066
(3.24) (0.346) (0.577)

S3 2.46∗ 0.008 -0.049
(1.33) (0.055)
1.17 0.214 -0.048 0.016
(1.54) (0.146) (0.064)

Signif. codes: *** 1%, ** 5%, * 10%

Table B.25: The dependent variable is LLreal
PBH-BUH. Only the last 15 periods are

used. One data point corresponds to one subject. Two subjects are dropped: subject
D in session 5 and subject C in session 6. So, the total number of observations is 22
for each regression.



204

Intercept LLideal
PBH-BUH LLideal+

PBH-BUH LLideal−
PBH-BUH Adjusted R2

S4 1.85 0.189 -0.036
(2.60) (0.366)
-3.01 1.524 -0.450 0.038
(3.95) (0.908) (0.534)

S345x 10.56∗∗∗ 0.118 -0.027
(3.08) (0.178)
2.07 0.529∗∗ -1.376∗∗ 0.224
(4.10) (0.216) (0.568)

S34x 6.42∗∗∗ 0.125 -0.004
(1.89) (0.132)
1.81 0.583∗∗ -0.244 0.138
(2.83) (0.252) (0.216)

S45x 5.97∗ 0.240 0.007
(3.28) (0.224)
3.83 0.366 -1.254 -0.018
(4.47) (0.288) (2.100)

S345i 5.66∗∗ -0.022 -0.049
(2.41) (0.216)
4.78 0.049 -0.253 -0.098
(3.59) (0.304) (0.719)

S34i 2.10∗ 0.011 -0.050
(1.16) (0.144)
-0.45 0.477 -0.329 0.038
(1.88) (0.309) (0.245)

Signif. codes: *** 1%, ** 5%, * 10%

Table B.26: The dependent variable is LLreal
PBH-BUH. Only the last 15 periods are

used. One data point corresponds to one subject. Two subjects are dropped: subject
D in session 5 and subject C in session 6. So, the total number of observations is 22
for each regression.
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A p p e n d i x C

APPENDIX FOR CHAPTER 4

C.1 Proof for Theorem 7
The Hamilton-Jacobi-Bellman equation

min
{
L(p),V(p) − max

v∈{G,I}
U(v, p)

}
= 0, (C.1)

where
L(p) = κ −

2
σ2 p2(1 − p)2V ′′(p),

gives the sufficient condition for a continuously differentiable function V : [0, 1] →
R to be the value function

V(p) = sup
(τ,v)

IE [U(v, pτ) − κτ | p0 = p]. (C.2)

Differential equation L(p) = 0 has the following solution:

V(p) = C1 + pC2 + κσ
2
(
p −

1
2

)
log

(
p

1 − p

)
,

where C1 and C2 are some constants.

Consider the following class of functions defined on p ∈ [0, 1] parameterized with
λ ∈ (0, 0.5]:

Vλ(p) =


pQ + R, p ≥ 1 − λ,

(1 − λ)Q + R + κσ2
(
p − 1

2

)
log

(
p

1−p

)
− κσ2

(
λ − 1

2

)
log

(
λ

1−λ
)
, λ < p < 1 − λ,

(1 − p)Q + R, p ≤ λ.

Note that these functions are continuous, symmetric around p = 0.5, that is Vλ(p) =

Vλ(1 − p), and satisfy L(p) = 0 for λ < p < 1 − λ. Moreover, function Vλ(p) is
continuously differentiable if and only if

lim
p→λ+0

V ′λ(p) = −Q,

which is equivalent to (4.3). Note that the left hand side of (4.3) is a decreasing
function of λ ∈ (0, 0.5] from +∞ to 0. Thus, the solution to (4.3) always exists and
unique.

Finally, note that
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1. Vλ(p) ≥ max
v∈{G,I}

U(v, p) for λ < p < 1 − λ since Vλ(p) is convex for λ < p <

1 − λ,

2. L(p) ≥ 0 for p ≥ 1 − λ and p ≤ λ since the utility function is linear over the
belief.

Thus,Vλ(p) is the value function and therefore the strategy (4.2) is the unique optimal
one.

C.2 Proof for Theorem 8
First, we calculate λ′

(
σ2) from (4.3) holding κ, Q, R fixed:

λ′
(
σ2

)
=
(1 − λ)λ
σ2

(
1 − 2λ − 2(1 − λ)λ log

(
λ

1 − λ

))
. (C.3)

Substituting (C.3) into

X′
(
σ2

)
=

1
2

(
log

(
1 − λ
λ

)
−

σ2

(1 − λ)λ
λ′

(
σ2

))
, (C.4)

we get X′
(
σ2) = g

(
λ

(
σ2) ) , where for any λ ∈ (0, 0.5) function g(λ) is defined as

g(λ) = λ −
1
2
+

(
1
2
− (1 − λ)λ

)
log

(
1 − λ
λ

)
.

Function g(λ) is decreasing in λ ∈ (0, 0.5) from +∞ to 0. Thus, it is always positive
and therefore X′

(
σ2) > 0.

C.3 Proof for Theorem 9
Consider function g(η) = ηc(η) − ĉ. c′(η) > 0 if g(η) < 0 and c′(η) < 0 if g(η) > 0.
Since g′(η)|g(η)=0 = c(η) > 0, function g(η) can cross 0 only once and only from
below. From (4.14), if the solution to g(η∗) = 0 exists, it is equal to η∗ = 1

Qh′(ĉ) .
Substituting η∗ = 1

Qh′(ĉ) to (4.14), we get c(η∗) = ĉ
η∗ and thus g(η

∗) = 0.

C.4 Proof for Theorem 10
Differentiating (4.17), we get c′(η) = cQh′(ηc)

1−ηh′(ηc)Q > 0.

C.5 Dynamic Model, δ > 0
The decision maker faces the following optimization problem:1

sup
(τ,v)

IE
e−δτU(v, pτ) − κ

τ∫
0

e−δt dt
 . (C.5)

1A more general strategy space includes the opportunity to allocate partial attention to the
information flow. If the agent allocates ∆ ∈ [0, 1] amount of attention at time t, then he pays κ∆dt
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Before presenting the optimal strategy, we need to make one more assumption:

Assumption 7 −κ < (Q + R)δ.

This assumption says that if R < −Q, then δ should be small enough. It guarantees
that stopping is optimal if the true state is known. Indeed, if R < −Q, then the
decision maker gets negative utility when he makes the decision. Basically, the
final utility payment acts as a cost. If the discount factor is large, he would want
to postpone the payment of this cost forever. If Assumption 7 does not hold, the
optimal strategy does not exist.

Theorem 12 The optimal strategy exists and is given by (4.2), where threshold
λ ∈ (0, 0.5) is uniquely defined by

2λ(1 − λ)(
1 − 2

1+( 1−λ
λ )

√
1+2δσ2

)
√

1 + 2δσ2 − 1 + 2λ

− (1 − λ) =
R + κ

δ

Q
. (C.6)

Proof:

The Hamilton-Jacobi-Bellman equation (C.1), where

L(p) = κ −
2
σ2 p2(1 − p)2V ′′(p) + δV(p),

gives the sufficient condition for a continuously differentiable function V : [0, 1] →
R to be the value function

V(p) = sup
(τ,v)

IE
e−δτU(v, pτ) − κ

τ∫
0

e−δt dt | p0 = p
 . (C.7)

Differential equation L(p) = 0 has the following solution:

V(p) = −
κ

δ
+ C1p

1−
√

1+2δσ2
2 (1 − p)

1+
√

1+2δσ2
2 + C2p

1+
√

1+2δσ2
2 (1 − p)

1−
√

1+2δσ2
2 ,

where C1 and C2 are some constants.

and observes Xt+∆dt − Xt . It turns out that it is never optimal to allocate partial attention when
the discount factor is positive. Suppose ∆∗ > 0 is optimal. Then L(pt,∆∗) = min

∆∈[0,1]
L(pt,∆) = 0,

where L(p,∆) = ∆
(
κ − 2

σ2 p2(1 − p)2V ′′(p)
)
+ δV(p), V(p) is the value function. Thus, whenever

δV(p) , 0, we must have ∆∗ = 1.
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Consider the following class of functions defined on p ∈ [0, 1] parameterized with
λ ∈ (0, 0.5]:

Vλ(p) =



pQ + R, p ≥ 1 − λ,(
1−p
p

) √1+2δσ2
2

+
(

p
1−p

) √1+2δσ2
2

( 1−λ
λ )

√
1+2δσ2

2 +( λ
1−λ )

√
1+2δσ2

2

√
(1−p)p
(1−λ)λ

(
(1 − λ)Q + R + c

δ

)
− c

δ, λ < p < 1 − λ,

(1 − p)Q + R, p ≤ λ.

Note that these functions are continuous, symmetric around p = 0.5, that is Vλ(p) =

Vλ(1 − p), and satisfy L(p, 1) = 0 for λ < p < 1 − λ. Moreover, function Vλ(p) is
continuously differentiable if and only if

lim
p→λ+0

V ′λ(p) = −Q,

which is equivalent to (C.6). Note that the left hand side of (C.6) is an increasing
function of λ ∈ (0, 0.5] from -1 to +∞. Thus,

• if R+ κδ
Q > −1, then the solution to (C.6) always exists and unique,

• if R+ κδ
Q ≤ −1, then there is no λ ∈ (0, 0.5] such that Vλ(p) is continuously

differentiable.

Note that (C.6) implies that (1 − λ)Q + R + κ
δ > 0.

Finally, note that

1. Vλ(p) ≥ max
v∈{G,I}

U(v, p) for λ < p < 1−λ sinceVλ(p) is convex for λ < p < 1−λ

as long as (1 − λ)Q + R + κ
δ > 0,

2. L(p) ≥ 0 for p ≥ 1 − λ and p ≤ λ as long as (1 − λ)Q + R + κ
δ ≥ 0.

Thus,Vλ(p) is the value function and therefore the strategy (4.2) is the unique optimal
one. �

Note that when Assumption 7 just holds, that is when (Q + R)δ + κ is very small,
the optimal λ is very close to 0, which corresponds to long learning.

Theorem 13 X
(
σ2) defined by (4.10) and (C.6) is increasing in σ2.
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Proof: First, we calculate λ′
(
σ2) from (C.6) holding κ, Q, R, δ fixed:

λ′
(
σ2

)
=

(1 − λ)λ

((
1−λ
λ

)2
√

1+2δσ2

+ 2
√

1 + 2δσ2
(

1−λ
λ

)√1+2δσ2

log
(

1−λ
λ

)
− 1

)
(
1 +

(
1−λ
λ

)√1+2δσ2
)2

σ2
√

1 + 2δσ2

.

(C.8)
Substituting (C.8) into (C.4), we get X′

(
σ2) = g

(
λ

(
σ2) ,√1 + 2δσ2

)
, where for

any λ ∈ (0, 0.5) and α > 1 function g(λ, α) is defined as

g(λ, α) =

1 + α
(
1 +

(
1−λ
λ

)2α
)

log
(

1−λ
λ

)
−

(
1−λ
λ

)2α

2α
(
1 +

(
1−λ
λ

)α)2 .

For any fixed α > 1, function g(λ, α) is decreasing in λ ∈ (0, 0.5) from +∞ to 0.
Thus, it is always positive and therefore X′

(
σ2) > 0. �

C.6 Dynamic Asymmetric Model
Consider a general form of the utility function:

U(v, p) = pu(v, I) + (−p)u(v,G).

Assumption 8 u(A, I) > max{u(A,G), u(C, I)}, u(C,G) > max{u(C, I), u(A,G)}.

Denote
p∗ =

u(C,G) − u(A,G)
u(C,G) − u(A,G) + u(A, I) − u(C, I)

.

Then, the judge wants to acquit when p > p∗ and he wants to convict when p < p∗.

Without loss of generality, assume that the judge is weakly biased towards convicting

Assumption 9 p∗ ≥ 0.5.

Theorem 14 The optimal strategy exists and is given by

τ = inf {t ≥ 0: pt < (λ, µ)} , v =


A, pτ ≥ µ,

C, pτ ≤ λ,
(C.9)
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where pt is the belief that the true state is I at time t. Thresholds 0 < λ < p∗ < µ < 1
are uniquely defined by

f (µ) − f (λ) =
G
2
, µ =

1
2

(
1 +

√
1 −

4(1 − λ)λ
1 + (2p∗ − 1)G(1 − λ)λ

)
, (C.10)

where G = 2(u(A,I)−u(A,G)+u(C,G)−u(C,I))
κσ2 , f (x) = log

( x
1−x

)
− 1−2x

2(1−x)x .

The proof is similar to Theorem 7.

In asymmetric case, the choice of the welfare function is not so obvious. In sym-
metric case, it is natural to take the probability of the correct decision as the welfare
criterion. When there is bias in prior belief and / or in preferences u(v, z), there are
many different options one can take as the welfare criterion. We are not going to
consider them all and just focus on how the strategy changes with the overconfidence
level.

Theorem 15 confirms the conclusion of Theorem 8 for the upper threshold:

Theorem 15 σ2

2 log
(

µ(σ2)
1−µ(σ2)

)
is increasing in σ2.

However, this conclusion is no longer true for the lower threshold:

Theorem 16 When p∗ > 1
2 , there exists Σ2 > 0 such that σ2

2 log
(
λ(σ2)

1−λ(σ2)

)
is

decreasing for σ2 < Σ2 and it is increasing for σ2 > Σ2.

Theorem 16 states that there is a unique level of overconfidence η = σ2

Σ2 that
minimizes the lower threshold for Xt . Intuitively, there is a trade-off between
the preference bias and the overall precision of the decision. When there is a lot of
noise in information, the bias is more prominent since the decision is not precise
anyway. As information becomes more precise, the trade-off optimal resolution
moves towards the decision precision, which means that the thresholds become
more symmetric.
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