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ABSTRACT

Given a positive semidefinite (PSD) operator, such as a PSD matrix, an ellip-
tic operator with rough coefficients, a covariance operator of a random field,
or the Hamiltonian of a quantum system, we would like to find its best finite
rank approximation with a given rank. One way to achieve this objective is
to project the operator to its eigenspace that corresponds to the smallest or
largest eigenvalues, depending on the setting. The eigenfunctions are typi-
cally global, i.e. nonzero almost everywhere, but our interest is to find the
sparsest or most localized bases for these subspaces. The sparse/localized ba-
sis functions lead to better physical interpretation and preserve some sparsity
structure in the original operator. Moreover, sparse/localized basis functions
also enable us to develop more efficient numerical algorithms to solve these
problems.

In this thesis, we present two methods for this purpose, namely the sparse
operator compression (Sparse OC) and the intrinsic sparse mode decompo-
sition (ISMD). The Sparse OC is a general strategy to construct finite rank
approximations to PSD operators, for which the range space of the finite rank
approximation is spanned by a set of sparse/localized basis functions. The ba-
sis functions are energy minimizing functions on local patches. When applied
to approximate the solution operator of elliptic operators with rough coeffi-
cients and various homogeneous boundary conditions, the Sparse OC achieves
the optimal convergence rate with nearly optimally localized basis functions.
Our localized basis functions can be used as multiscale basis functions to solve
elliptic equations with multiscale coefficients and provide the optimal conver-
gence rate O(hk) for 2k’th order elliptic problems in the energy norm. From
the perspective of operator compression, these localized basis functions pro-
vide an efficient and optimal way to approximate the principal eigen-space
of the elliptic operators. From the perspective of the Sparse PCA, we can
approximate a large set of covariance functions by a rank-n operator with a
localized basis and with the optimal accuracy. While the Sparse OC works
well on the solution operator of elliptic operators, we also propose the ISMD
that works well on low rank or nearly low rank PSD operators. Given a rank-n
PSD operator, say a N -by-N PSD matrix A (n ≤ N), the ISMD decomposes
it into n rank-one matrices

∑n
i=1 gig

T
i , where the modes {gi}ni=1 are required
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to be as sparse as possible. Under the regular-sparse assumption (see Defini-
tion 1.3.2), we have proved that the ISMD gives the optimal patchwise sparse
decomposition, and is stable to small perturbations in the matrix to be decom-
posed. We provide several applications in both the physical and data sciences
to demonstrate the effectiveness of the proposed strategies.
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C h a p t e r 1

INTRODUCTION

In the last decade, significant progress has been made in a variety of fields
of data sciences using ideas centered around sparsity. Examples include least
absolute shrinkage and selection operator (lasso) (see e.g. [125, 126]), com-
pressed sensing (see e.g. [39, 19]), sparse principal component analysis (see
e.g. [137, 131]), matrix completion (see e.g. [20, 112]), robust principal compo-
nent analysis (see e.g. [22, 25]), and phase retrieval (see e.g. [21]), etc. A key
step in these examples is use of an optimization formulation with a constraint
or penalty term that uses the l1 or related norms. Sparse structures also pre-
vail in physical sciences and partial differential equations (PDEs), mostly in
two forms: localized and low rank structures. They have been explored in
several methods, such as localized Wannier functions in quantum physics (see
e.g. [90, 42, 91, 42]), localized multiscale finite element bases for the multi-
scale finite element method (MsFEM) and numerical homogenization for PDEs
with multiscale coefficients (see e.g. [66, 70, 104, 43, 99]), fast multiple meth-
ods and hierarchical matrices (see e.g. [35, 57, 59, 11]), sparse grid stochastic
finite element methods for stochastic partial differential equations (SPDEs)
(see e.g. [96, 97, 33, 34]), etc. Several attempts to extend the optimization
and l1 techniques to physical sciences and PDEs have also appeared recently,
including the l1-optimization in solving SPDEs [41, 134], the l1-optimization to
explore sparse dynamics in PDEs [116], the compressed modes for variational
problems [107, 108, 78], etc.

In this thesis, we will explore both sparse structures (localization and low rank)
of positive semidefinite (PSD) operators or matrices that arise in the physical
and data sciences. More specifically, given a PSD operator A or a large PSD
matrix A, such as the Hamiltonian of a many-body system, the covariance op-
erator of a random field, a differential operator, or a large sparse matrix that
comes from the discretization of a differential operator, we would like to find
its finite rank approximation with the smallest possible rank. Given a rank
n, it is well-known that the best rank-n approximation is the projection of
the operator to the eigen-subspaces corresponding to the n largest or smallest
eigenvalues, depending on the problem. The representation of such subspaces,
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however, is not unique. How do we represent these subspaces most efficiently,
i.e., how do we find basis functions/vectors of these eigen-subspaces that re-
quire the fewest degrees of freedom to represent? Moreover, if a small sacrifice
of the approximation accuracy is allowed, is it possible to get approximate
subspaces with much more efficient representations, i.e., subspaces with much
more localized basis functions/vectors? If so, what is the optimal trade-off be-
tween approximation accuracy and basis localization? Questions of this nature
arise in many different contexts from both the physical and data sciences.

In this chapter, we first use the second order elliptic operator with rough
coefficients as a model problem to motivate our research on operator com-
pression with sparse/localized basis functions. Then we summarize our first
method, i.e., the sparse operator compression (Sparse OC), and present its
results when compressing different kinds of elliptic operators. After that, we
summarize our second method, i.e., the intrinsic sparse mode decomposition
(ISMD), which decomposes low rank operators into optimally sparse rank-
one operators. Finally, we summarize different applications of our operator
compression methods, including solving elliptic equations with multiscale co-
efficients, conducting the sparse principal component analysis, constructing
localized Wannier functions for Hamiltonians and solving elliptic equations
with high dimensional random coefficients.

1.1 A Model Problem of Operator Compression

Solving Elliptic Equations With Rough Coefficients

Consider the elliptic equation with multiscale coefficients:

(Lu)(x) := −∇ · (a(x)∇u(x))u = f(x), x ∈ D ⊂ Rd,

u(x) = 0, x ∈ ∂D,
(1.1)

where D is a bounded Lipschitz domain in Rd and f ∈ L2(D). Here, we only
assume that a is symmetric and uniformly elliptic on D and with entries in
L∞(D), i.e., there exist 0 < amin ≤ amax such that

aminId � a(x) � amaxId, x ∈ D. (1.2)

The Lax–Milgram Lemma (see e.g. [31]) implies that Eqn. (1.1) has a unique
weak solution in H1

0 (D), denoted as L−1f . It is important to point out that
we do not impose any assumption on the structure of a, such as periodicity,
scale separation, or ergodicity at fine scales, as in the classical homogenization
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literature; see [12]. We only make the minimal assumption that ensures the
existence of a unique weak solution.

Under the framework of the Galerkin finite element method, given n basis
functions Ψ = [ψ1, . . . , ψn] in H1

0 (D), we can solve the elliptic equation (1.1)
approximately by projecting it onto the subspace spanned by Ψ , i.e.,

uΨ = ΨL−1
n ΨTf.

Here, Ln ∈ Rn×n and ΨTf ∈ Rn are the stiffness matrix and the loading vector
respectively, which are formally defined as follows:

Ln(i, j) :=

∫
D

ψiLψj, (ΨTf)(i) :=

∫
D

ψif, ∀1 ≤ i, j ≤ n. (1.3)

We would like to choose the basis Ψ so that it minimizes the solution error
measured by the following norm:

‖L−1 −ΨL−1
n ΨT‖2 := sup

‖f‖L2(D)≤1

‖L−1f −ΨL−1
n ΨTf‖L2(D),

where ‖A‖2 is the largest eigenvalue for a PSD operator A.

Therefore, for a self-adjoint, positive definite elliptic operator L, we define the
operator compression error of the basis Ψ as

Eoc(Ψ ;L−1) := min
Kn∈Rn×n, Kn�0

‖L−1 −ΨKnΨ
T‖2, (1.4)

which is the optimal approximation error of L−1 among all positive semidef-
inite operators with range space spanned by Ψ . It is easy to verify that the
operator compression error only depends on the subspace spanned by Ψ , and
is independent of the functions that are used to represent this subspace.

A Brief Review of Existing Results

The compression error Eoc(Ψ ;L−1) achieves its minimum, which is O(n−2/d),
when Ψ are taken as the eigenfunctions of L corresponding to its smallest n
eigenvalues; see e.g. [93, 36]. However, the eigenfunctions are expensive to
compute, and there are no localized basis functions that can span the eigen-
subspace; see e.g. [137, 107, 64]. In practice, localized/sparse basis functions
are preferred to preserve the sparsity in the (discretized) elliptic operator, and
thus to achieve better numerical complexity. For example, when the coeffi-
cient a is constant in Eqn. (1.1), piecewise linear elements on a uniform mesh
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achieve the optimal compression error up to a constant multiplier (see e.g. [31]).
Meanwhile, these elements are optimally localized, the corresponding stiffness
matrix (1.3) is sparse, and thus efficient numerical methods such as conju-
gate gradient method (SC) or multigrid method can be applied; see e.g. [2].
However, the compression error given by the piecewise linear elements can be
arbitrarily large if the coefficient is rough; see [5]. This motivates the general-
ized finite element method [6, 123], multiscale finite element method [66, 70,
67, 44, 43, 89, 29] and numerical homogenization [102, 103, 105, 99]. One of
the major objectives is to construct localized basis functions without loss of
the approximation accuracy (up to a constant multiplier) for Eqn. (1.1).

In [56], on a regular finite element mesh with mesh size h, the authors construct
a localized finite element basis (AL basis) with the same support of the piece-
wise linear finite elements. They have proved that with O

(
( 1
h
)d(log 1

h
)d+1

)
ba-

sis functions, the basis achieves an O(h2) compression error. Let n be the num-
ber of elements in the whole domain with mesh size h. We have n = O((1/h)d).
Their results imply that an O(n−2/d) compression error can be achieved with
O
(
n(log n)d+1

)
localized basis functions. Although the construction provided

in [56] involves solving global problems, its theoretical results support the pos-
sibility of constructing localized basis functions while achieving the optimal
compression error up to a logarithmic multiplier.

In the localizable orthogonal decomposition (LOD) [89], the authors introduce
a modified Clément interpolation Ih on a uniform mesh with mesh size h. They
define V f as the kernel of Ih (i.e., the set of functions u such that Ihu = 0), and
identify the finite element space Ψ as the orthogonal complement of V f with
respect to the inner product defined by a(u, v) =

∫
D
uLv for u, v ∈ H1

0 (D).
The finite element basis ψi is identified by ϕi − PaV fϕi, where ϕi is the nodal
piecewise linear element and Pa

V f
ϕi is its projection onto the space V f with

respect to (w.r.t.) the inner product a(u, v). The work [89] shows that this
finite element basis Ψ achieves the optimal compression rate. Moreover, they
show that the finite element basis function ψi decays exponentially fast away
from its associated node, and thus can be localized to local patches of size
O(h log(1/h)) without loss of accuracy.

In [98, 99], the basis functions (also called gamblets) are derived from a
Bayesian perspective, by conditioning certain Gaussian random fields with
some measurements of the solution (e.g., the average on a local patch). More
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specifically, for f ∈ L2(D), one can think that the solution ξ follows a distribu-
tion of a Gaussian measure with mean 0 and covariance operator L−1 a priori.
With nmeasurements of the solution, say {

∫
D
ϕiξ}ni=1, where {ϕi}ni=1 ⊂ L2(D),

the best guess of the solution (posterior mean) is

E
[
ξ |
∫
D

ϕiξ, 1 ≤ i ≤ n

]
=

n∑
i=1

(∫
D

ϕiξ

)
ψi,

where {ψi}ni=1 are the basis functions to be constructed. Intuitively, ϕi is the
best guess of the solution for the measurements

∫
D
ϕiξ = 1 and

∫
D
ϕjξ = 0

for j 6= i. In [98, 99], it is proved that the basis function ψi can be obtained
from the following quadratic optimization problem:

min
ψ∈H1

0 (D)

∫
D

∇ψ · a∇ψ

subject to (s.t.)
∫
D

ψϕj = δi,j, j = 1, 2, . . . , n.

(1.5)

In [99], by partitioning the physical domain D with a regular mesh with mesh
size h and taking {ϕi}ni=1 as the indicator function of local cells (therefore, n is
the number of cells in the partition), the author proved that {ψi}ni=1 achieves
the optimal compression rate, and that ψi decays exponentially fast away from
its associated patch. Therefore, ψi can be approximated accurately by solving
Eqn. (1.5) on a local patch with patch size O(h log(1/h)), and without loss of
the optimal compression rate. It is worth mentioning that this construction
can be implemented hierarchically on a multi-level grid and leads to a multigrid
algorithm to solve Eqn. (1.1) with complexity N log3dN as a direct solver, and
with complexity N logd+1 N for subsequent solves with a different right hand
side. This work has recently been extended to solve elliptic equations with
nonzero potentials, and hyperbolic and parabolic ODEs/PDEs with rough
coefficients in [101].

The existing results imply that for second order elliptic operators with rough
coefficients, although the eigen-subspaces do not have localized basis functions,
we can still localize the basis functions if an optimal compression accuracy up
to a constant multiplier is acceptable. Moreover, we can obtain the optimal
compression accuracy (up to a constant multiplier) with nearly optimally lo-
calized basis functions (up to a logarithmic multiplier) in the trade-off between
the approximation accuracy and basis localization. While we have these ex-
citing advances for second order elliptic operators, there is little literature on



6

operator compression for higher order elliptic operators with rough coefficients.
Moreover, the current methods for second order elliptic operators scale poorly
with the contrast of the coefficients (defined as amax/amin in Eqn. (1.2)). More
precisely, the constants in both the compression error and the localization de-
pend polynomially on the contrast in [56, 89, 98, 99]), which makes the existing
methods inefficient for coefficients with high contrast. These defects motivate
us to propose a general strategy to construct localized basis functions and to
perform the error analysis for a large class of elliptic operators.

Compressing elliptic operators with localized basis functions (also known as
multiscale finite element method and numerical homogenization) has been an
active research area and new results are still appearing. In particular, there
are new results in [110, 60] in which the LOD method has been extended to
tackle the high contrast coefficient problem. In [100], the work in [99] has been
generalized to compress a large class of bounded linear operators, including the
solution operator of higher order elliptic operators. We review these methods
in detail when we present our methods and then we compare these different
results.

1.2 The Sparse Operator Compression (Sparse OC)

Problem Setting

In this thesis, we develop a general method called sparse operator compression
to compress a bounded self-adjoint positive semidefinite (PSD) operator K :

X → X with sparse/localized basis functions, where X can be any separable
Hilbert space with inner product (·, ·). More precisely, given the operator K :

X → X and a positive integer n, the Sparse OC constructs n sparse/localized
basis functions Ψ loc := [ψloc1 , . . . , ψlocn ] ⊂ X that achieves a small operator
compression error measured in the following norm:

Eoc(Ψ
loc;K) := min

Kn∈Rn×n, Kn�0
‖K −Ψ locKnΨ

loc,T‖X,X . (1.6)

Here, Ψ loc,T is an operator that maps f ∈ X to [(ψloc1 , f), . . . , (ψlocn , f)]T ∈ Rn,
and ‖K‖X,X := sup‖f‖X≤1

‖Kf‖X
‖f‖X

is the induced operator norm for the bounded
operator K : X → X.

The Cameron-Martin space H, defined as the completion of K(X) with the
inner product

(Kϕ1,Kϕ2)H = (Kϕ1, ϕ2) ∀ϕ1, ϕ2 ∈ X, (1.7)
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plays an important role in both the construction and the analysis. In Sec-
tion 2.2, we will prove that H is a Hilbert space that can be continuously
embedded into X. In the model problem of compressing a second order el-
liptic operator L in the last section, X = L2(D), K plays the role of the
solution operator L−1, and H is the solution space H1

0 (D) equipped with the
inner product (ψ1, ψ2)H =

∫
D
∇ψ1 · a∇ψ2 for any ψ1, ψ2 ∈ H1

0 (D). We will
also apply the Sparse OC to other bounded self-adjoint PSD operators. For
example, when compressing the solution operator of a second order elliptic
operator with high contrast coefficients a ∈ L∞(D), we choose X = L2

a(D)

(L2(D) with the a-weighed inner product), and H is a subspace of the Sobolev
space H1(D) equipped with the associated energy norm; and when compress-
ing the solution operator of a 2k’th (k ≥ 1) order elliptic operator, we choose
X = L2(D), and H is a subspace of the Sobolev space Hk(D) equipped with
the associated energy norm; when compressing the covariance operator of a
Gaussian measure over L2(D), we choose X = L2(D), and H is exactly the
Cameron-Martin space associated with this Gaussian measure (see [15]). This
is the reason why we call H the Cameron-Martin space.

Constructing Basis Functions

The Sparse OC follows three steps to construct sparse/localized basis functions
Ψ loc := [ψloc1 , . . . , ψlocn ] that achieve the optimal operator compression rate. In
the first step, we partition the physical domain D with a regular finite element
mesh with mesh size h > 0, and denote all the elements (local patches) as
{τi}mi=1. On each local patch τi, we choose Qi (Qi ∈ N) measurement functions
that are only supported on τi, denoted as {ϕi,q : 1 ≤ q ≤ Qi}. In the second
step, we construct non-local basis functions {ψi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi} by
the following minimizing problem:

ψi,q = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj,q′) = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj,

(1.8)

where δiq,jq′ is the Kronecker delta that is 1 when i = j and q = q′ and 0 in all
other cases. Collecting all the nonlocal basis functions ψi,q for 1 ≤ i ≤ m and
1 ≤ q ≤ Qi, we get a nonlocal basis Ψ . Although ψi,q is not localized, we will
show that it decays exponentially fast away from its associated patch. There-
fore, in the final step, we restrict the global construction onto a neighborhood
of the patch τi with diameter r, denoted as Sr(τi), and obtain a localized basis
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function:

ψloci,q = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj,q′) = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj,

ψ(x) ≡ 0, x ∈ D\Sr.

(1.9)

Collecting all the ψloci,q for 1 ≤ i ≤ m and 1 ≤ q ≤ Qi together, we get our
local basis Ψ loc. In most of our applications, we take r = O(h log(1/h)). We
will discuss the choice of r in details when we analyze the compression error
of Ψ loc.

A General Analysis Framework

We provide a general framework to analyze the compression error Eoc(Ψ loc;K)

and the localization of the basis Ψ loc. The big picture is (1) to analyze the
compression error and the decay property of the nonlocal basis Ψ , and (2)
to choose sufficiently large Sr(τi) such that the compression rate remains the
same for the localized basis Ψ loc (although the actual compression error may
be amplified by a constant).

First of all, we show that a local projection-type approximation
property suffices to guarantee an estimate of the compression er-
ror Eoc(Ψ ;K). More precisely, we have the error estimate for the nonlocal
basis

Eoc(Ψ ;K) ≤ ε2 , (1.10)

if the following local projection-type approximation property

inf
ϕ∈Φi
‖u− ϕ‖X(τi) ≤ ε‖u‖H(τi) (1.11)

holds true for every patch τi and every u ∈ K(X) ⊂ H. Here, Φi is the space
spanned by the local measurements {ϕi,q : 1 ≤ q ≤ Qi}; ‖u‖X(τi) and ‖u‖H(τi)

are the X-norm and H-norm of u restricted to τi, respectively. Moreover, if
Ψ is used as the finite element basis to solve the corresponding linear system
Lu = f (whose solution is u = Kf), we have the following error estimate in
the energy norm:

‖u− uΨ‖H ≤ ε‖f‖X ∀f ∈ X,

where uΨ is the corresponding Galerkin finite element solution. When X =

L2(D), H ⊂ H1(D) and {ϕi,q}Qiq=1 only contains the constant function, the



9

local projection-type approximation property (1.11) can be obtained from the
Poincare inequality. These local constant measurement functions are used
in [99, 101], and thus our Sparse OC can be viewed as a generalization of their
gamblet method for second order elliptic operators. We emphasize that the
local projection-type approximation property (1.11) serves as the criterion to
pick the measurement functions when compressing a general PSD operator,
which is one of the key ideas to generalize the gamblet method [99, 101].
For example, when compressing elliptic operators of order 2k (k ≥ 1), the
solution space H is a subset of Hk(D). Since the polynomial space has a good
projection-type approximation property in Hk(D) (see Theorem 3.2.1), it is
natural to pick Φi as the local polynomial space. When compressing elliptic
operators with high contrast coefficients, we take {ϕi,q : 1 ≤ q ≤ Qi} as the
first Qi eigenfunctions of the elliptic operator with the homogeneous Neumann
boundary condition on ∂τi. The number of local measurements Qi is roughly
the number of disconnected high permeability regions (where the coefficient a
is large) contained in the local patch τi. With this construction, we are able
to achieve a compression error independent of the contrast; see Section 4.2.

Secondly, we show that a local inverse energy estimate guarantees
the exponential decay of all the nonlocal basis functions {ψi,q : 1 ≤
i ≤ m, 1 ≤ q ≤ Qi}. More precisely, suppose we have the following estimate
on every local patch τi:

‖Lψ‖H(τi) ≤
Cinv
ε
‖ψ‖H(τi) ∀ψ ∈ Ψ , (1.12)

where L, i.e. the inverse of K, is an elliptic operator in this thesis, ε > 0 is
the same as that in the local approximation property (1.11), and Cinv > 0

is some constant that may depend on the contrast of the coefficients in L.
Then we can prove that every nonlocal basis function ψi,q decays exponen-
tially fast away from its associated patch τi, with a decay rate at the order
of Cinv. Roughly speaking, we can prove that there exists xi ∈ τi such that
|ψi,q(x)| ≤∼ |ψi,q(xi)| exp(− |x−xi|

Cinvh
) holds true for any x ∈ D. Notice that the

“load” Lψ is bounded by the energy of the “solution” ψ in Eqn. (1.12), which
is in an inverse direction of the standard energy estimate for elliptic equations.
Therefore, we call it an inverse energy estimate. It is definitely not true for all
functions in the solution space H, but it can be proved for all functions in the
finite dimensional space Ψ . This exponential decay is proved for second order
uniformly elliptic operators with the homogeneous Dirichlet boundary condi-



10

tion in [99]. We prove that this exponential decay is true for second order
uniformly elliptic operators with various homogeneous boundary conditions
and with nonzero potentials. Other boundary conditions, like periodic and
Neumann boundary conditions, and nonzero potentials are of interest when
we apply the Sparse OC to compress the Hamiltonian in quantum chemistry;
see Section 2.5. Furthermore, we have proved this local inverse energy estimate
for higher order elliptic operator and for elliptic operators with high contrast
coefficients, by using {ϕi,q : 1 ≤ q ≤ Qi} that we choose to satisfy the local
approximation property (1.11). Therefore, the nonlocal basis Ψ satisfies the
error estimate (1.10) and decays exponentially fast at the same time! Finally,
for elliptic operators with high contrast coefficients, under some geometric
assumptions of the coefficients (see Section 4.5), we have shown that the expo-
nential decay rate (which is of order Cinv) is independent of the contrast under
our construction. Therefore, the basis functions can be localized such that its
support depends on the contrast of the coefficients only logarithmically. This
partially resolves the issue that current methods, e.g. the LOD [89] and the
gamblet [99, 101], scale poorly with the contrast. Recently, improved LOD
methods have appeared to tackle the high contrast coefficients (see [110, 60]).
We review these LOD-based methods and compare them with our method in
Section 4.1.

Finally, the exponential decay justifies the localized construction of
Ψ loc. On a regular finite element mesh with mesh size h, constructing ψloci,q
on a local domain with diameter O(h log(1/h)) is sufficient to preserve the
compression rate of the nonlocal basis Ψ . When compressing a second order
elliptic operator with high contrast coefficients, although the compression error
is more sensitive to the truncation, by a small modification of our method we
can prove that a local domain with diameter O

(
h
(

log(1/h) + log
(
amax
amin

)))
is

sufficient to preserve the compression error given by Ψ , which is independent of
the contrast by construction. We summarize the choice of local measurements
Φi, the compression rate and the support size of the localized basis function ψi,q
for different kinds of elliptic operators in Table 1.1. Notice that the number of
elements in a regular mesh with mesh size h is O(h−d). Since the nth largest
eigenvalue of L−1 is O(n−2d/k), i.e. λn(L−1) = O(n−2d/k), one can easily check
that the localized basis Ψ loc indeed achieves the optimal compression rate and
is nearly optimally localized (up to a logarithmic multiplier). Therefore, for
elliptic operators with low contrast coefficients, one can achieve the optimal
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compression error (up to a constant multiplier) with nearly optimally localized
basis functions (up to a logarithmic multiplier) in the trade-off between the
approximation accuracy and basis localization.

Order of L 2 2k(k ≥ 2) 2
Contrast low low high
X L2(D) L2(D) L2

a(D)

Φi or {ϕi,q}Qiq=1 P0 Pk−1 Lϕi,q = λi,qaϕi,q

Support size
of ψloci,q

O(h log(1/h)) O(h log(1/h)) O
(
h
(

log 1
h

+ log amax
amin

))
GFEM error
(in energy norm)

O(h) O(hk) O(h)

Compression
error

O(h2) O(h2k) O(h2)

Contrast
dependence

Yes Yes No

Table 1.1: Sparse OC applied to different kinds of elliptic operators: the space
X where is the space for the right hand side f , the local measurement function
space Φi (Pk denotes the polynomial space with degree no more than k), the
support size of ψloci,q , the convergence rate of the Galerkin finite element solution
in energy norm (i.e. H-norm), the operate compression rate Eoc(Ψ loc;K), and
the last row indicates whether the constants in the estimates depend on the
contrast or not.

Our Contributions

The Sparse Operator Compression is directly inspired by the Bayesian homog-
enization [98] and the gamblet method [99], including the ideas of constructing
the space Ψ from KΦ and of constructing the basis functions from energy min-
imizing problems. The recursive argument to prove the exponential decay and
basis localization has been used in [89] and [99]. Based on these existing works,
we have made the following main contributions in our Sparse OC.

First of all, our Sparse OC, which is purely based on functional analysis, gen-
eralizes the probabilistic framework for the Bayesian numerical homogeniza-
tion [98] and the gamblet method [99]. We have identified the local projection-
type approximation property and the local inverse energy estimate as the two
key components in proving the error estimate and the exponential decay. These
two inequalities serve as the criteria to choose the local measurement functions
in the Sparse OC.
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Secondly, for strongly elliptic operators of 2k’th order, we have constructed
nearly optimally localized basis functions with support size O(h log(1/h)) and
with optimal operator compression rate O(h2k). The strong ellipticity is equiv-
alent to the standard uniform ellipticity in the cases: (1) k = 1 (2)d = 1 or 2

and (3) (d, k) = (3, 2), and is only slightly stronger than the uniform ellipticity
in other cases. We have also conducted numerical experiments to demonstrate
that the fractional Laplacian operators cannot be localized using the same
approach. More precisely, the global basis functions constructed in Eqn. (1.8)
do not have exponential decay for most fractional Laplacian operators.

Thirdly, for second order elliptic operators with high contrast coefficients, we
have constructed localized basis functions with support size of order

h

(
log(1/h) + log

(
amax
amin

))
.

For the two-phase coefficients with smooth inclusions/channels, we have shown
that the decay rate of the basis functions is independent of the contrast by an
asymptotic analysis. Moreover, the error in energy norm of the corresponding
finite element solution is of order h, and is independent of the contrast. Com-
pared with recent results on the high contrast problems [110, 60], our result
requires weaker assumptions on the coefficients. For example, our method al-
lows multiple high-conductivity inclusions in a local patch but neither of the
methods in [110, 60] works in this case.

Finally, we have applied the Sparse OC to the problem of sparse principal
component analysis in statistics and constructing localized Wannier functions
in quantum chemistry; see more details of these applications in Section 1.4.
For the problem of sparse principal component analysis, the Sparse OC is
especially suitable for random fields with the Matérn class covariance opera-
tors [92], which can be seen as the solution operator of certain higher order
elliptic operators. We have compared the Sparse OC with the l1 regularization
approach [107] on simple model problems (sparse principal component analy-
sis of a Matérn class covariance operator and constructing localized Wannier
functions for the 1D free-electron model), and our results have demonstrated
the effectiveness and efficiency of the Sparse OC in these applications.

Recently, the authors of [100] introduce the Gaussian cylinder measure and
successfully generalize the work in [98, 99] to a much broader class of operators.
With a slightly different construction from our construction (1.9), they are able
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to obtain the same order of compression accuracy and basis localization as we
have achieved (the second column in Table 1.1), but without requiring the
strong ellipticity. The Sparse OC and the work [100] generalize the the work
in [98, 99] from different perspectives, resulting in different conditions for the
measurement functions and slightly different constructions of localized basis
functions. These new results in numerical methods for PDEs are likely to find
more applications in both data and physical sciences.

1.3 The Intrinsic Sparse Mode Decomposition (ISMD)

Problem Setting

In the Sparse OC above, we look for rank-n approximations in the form of

K ≈ ΨKnΨ
T , (1.13)

where Ψ = [ψ1, . . . , ψn] is a basis of the range space of the rank-n approx-
imation and Kn is any PSD n-by-n matrix that minimizes the approxima-
tion error. The corresponding error, i.e., Eoc(Ψ ;K) = minKn∈Rn×n, Kn�0 ‖K −
ΨKnΨ

T‖X,X , is invariant with respect to any non-degenerate linear transfor-
mation of Ψ . In some applications, one is interested in approximating K with
n rank-one operators, i.e.,

K ≈
n∑
i=1

ψiψ
T
i . (1.14)

The corresponding error, ‖K−ΨΨT‖X,X is only invariant to unitary transfor-
mations of Ψ .1 As in the Sparse OC, we require that the decomposed modes
{ψi}ni=1 be as sparse/localized as possible. Compared with the eigendecomposi-
tion, the decomposed modes in Eqn. (1.14) are required to be sparse/localized
instead of orthogonal.

In this part of our study, we only consider the case when the operator K
is rank-n, i.e., λn(K) > λn+1(K) = 0, or is nearly rank-n, i.e., λn(K) �
λn+1(K) ≈ 0. In this case, there is no need to consider the trade-off between
the approximation accuracy and basis sparsity: on the approximation accuracy
side, we fix the number of modes in Ψ to n and impose the hard constraint
K = ΨΨT when K is rank-n; on the sparsity/localization side, we would like
to obtain the optimally sparse/localized basis functions Ψ . More precisely, we

1Mathematically, we get the kind of approximation in Eqn. (1.14) if we limit Kn to be
diagonal in the Sparse OC approximation (1.13).
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want to solve the following optimization problem:

min
ψ1,...,ψn

n∑
i=1

|supp(ψi)| s.t. K =
n∑
i=1

ψiψ
T
i , (1.15)

where |supp(ψi)| is a measure of the volume of ψi’s support, such as the number
of nonzero entries (also known as the l0 norm) for a vector in the discrete case
or the volume of a function support in the continuous case. Compared with the
problem solved by the Sparse OC, although problem (1.15) does not consider
the trade-off between accuracy and sparsity, it is much more difficult in the
sense that we want to find the optimally localized basis functions instead of
finding nearly optimally localized basis functions up to a logarithmic multiplier
as we have done in Sparse OC.

Patchwise Sparseness and the Surrogate Problem

In most cases, minimizing support (l0 norm in the discrete setting) results in
a combinatorial problem and is computationally intractable. Therefore, we
introduce the following patchwise sparseness as a surrogate of |suppψi| and
make the problem computationally tractable.

Definition 1.3.1 (Patchwise sparseness). Suppose that P = {τi}mi=1 is a par-
tition of the physical domain D or the N nodes, i.e., D = ∪mi=1τi in the contin-
uous setting or {1, 2, 3, . . . , N} = ∪mi=1τi in the discrete setting. The patchwise
sparseness of ψ with respect to the partition P, denoted by s(ψ;P), is defined
as

s(ψ;P) = #{τ ∈ P : ψ|τ 6= 0}.

Here, ψ|τ 6= 0 means that ψ does not completely vanish on the patch τi. Once
the partition P is fixed, smaller s(ψ;P) means that ψ is nonzero on fewer
patches, which implies a sparser or more localized function. With the patch-
wise sparseness as a surrogate of |suppψi|, the sparse decomposition problem
(1.15) is relaxed to

min
ψ1,...,ψn

n∑
i=1

s(ψi;P) s.t. K =
n∑
i=1

ψiψ
T
i . (1.16)

If {gi}ni=1 is an optimizer for problem (1.16), we call them a set of intrinsic
sparse modes for K under partition P . Since the objective function of problem
(1.16) only takes nonnegative integer values, we know that for a symmetric
PSD operator K with rank n, there exists at least one set of intrinsic sparse
modes.
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Theoretical Results of the ISMD

It is obvious that the intrinsic sparse modes depend on the domain partition
P . Two extreme cases would be m → ∞ and m = 1. For m → ∞, s(ψ;P)

recovers |suppψ| and the patchwise sparseness minimization problem (1.16) re-
covers the original support minimization problem (1.15). Unfortunately, it is
computationally intractable. For M = 1, every non-zero vector has sparseness
one, and the support size makes no difference. However, in this case prob-
lem (1.16) is computationally tractable. For instance, a set of (unnormalized)
eigenfunctions is one of the optimizers. We are interested in the sparseness de-
fined in between, namely, a partition with a meso-scale patch size. Compared
to |suppψ|, the meso-scale partition sacrifices some resolution when measuring
the support, but makes the optimization (1.16) efficiently solvable. Specifi-
cally, problem (1.16) with the following regular-sparse partitions enjoys many
good properties. These properties enable us to design a very efficient algorithm
to solve problem (1.16).

Definition 1.3.2 (Regular-sparse partition). The partition P is regular-sparse
w.r.t. K if there exists a decomposition K =

∑n
i=1 gig

T
i such that all nonzero

modes on each patch τi (1 ≤ i ≤ m) are linearly independent.

If two intrinsic sparse modes are non-zero on exactly the same set of patches,
which are called unidentifiable modes in Definition 5.3.4, it is easy to see
that any rotation of these unidentifiable modes forms another set of intrinsic
sparse modes. From a theoretical point of view, if a partition is regular-sparse
w.r.t. K, the intrinsic sparse modes are unique up to rotations of unidentifi-
able modes; see Theorem 5.3.5. Moreover, as the partition gets refined, the
original identifiable intrinsic sparse modes remain unchanged, while the orig-
inal unidentifiable modes become identifiable and become sparser; see Theo-
rem 5.3.6. In this sense, the intrinsic sparse modes are essentially independent
of the partition that we use.

From a computational point of view, a regular-sparse partition ensures that
the restrictions of the intrinsic sparse modes on each patch τi can be con-
structed from rotations of local eigenvectors. Following this idea, we propose
the intrinsic sparse mode decomposition (ISMD); see Algorithm 2. The ISMD
follows the “local-modes-construction + patching-up” procedure. The key step
is to construct local pieces of the intrinsic sparse modes by a joint diagonaliza-
tion problem. Thereafter, a pivoted Cholesky decomposition is utilized to glue
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these local pieces together. In Theorem 5.3.5, we prove that the ISMD solves
problem (1.16) exactly on regular-sparse partitions. We point out that, even
when the partition is not regular-sparse, numerical experiments show that the
ISMD still generates a sparse decomposition of K.

Computational Complexity of the ISMD

The ISMD has very low computational complexity. There are two reasons for
its efficiency. First of all, instead of computing the expensive global eigende-
composition, we compute only the local eigendecompositions on every patch.
Secondly, there is an efficient algorithm to solve the joint diagonalization prob-
lems. For partitions with a large range of patch sizes, the computational cost
of the ISMD is comparable to that of the partial eigendecomposition [117,
82]. For certain partitions, the ISMD could be ten times faster than the par-
tial eigendecomposition. We have also compared the ISMD with the convex
relaxation of the Sparse PCA [78, 128]. Our numerical results indicate that
the convex relaxation of Sparse PCA fails to capture the long range correla-
tion. Moreover, it needs to perform (partial) eigendecomposition on matrices
repeatedly many times. As a result, the convex relaxation of Sparse PCA is
thus much slower than the ISMD. Finally, because both performing the lo-
cal eigendecompositions and solving the joint diagonalization problems can be
done independently on each patch, the ISMD is embarrassingly parallelizable.

Our Contributions

Our ISMD is a novel approach to decompose a low rank operator into several
sparse/localized rank-one operators, which is important in many applications,
such as uncertainty quantification (see e.g. [7, 4, 69, 106]) and latent factor
models (see e.g. [48, 129, 1, 25]). First of all, we use a domain partition
with meso-scales to define the patchwise sparseness, similar to the group spar-
sity [135, 71] or structured sparsity [72]. We then propose the ISMD algorithm,
which consists of local eigendecompositions and joint diagonalization across
patches, to solve the patchwise sparseness minimization problem (1.16). We
have conducted numerical experiments to show the efficiency and robustness of
the ISMD. We have also compared the ISMD with other existing methods, e.g.,
eigendecomposition, pivoted Cholesky decomposition, and convex relaxation
of the Sparse PCA [78, 128].

Secondly, we prove that the ISMD solves problem (1.16) exactly under the
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regular-sparse assumption. Moreover, we show that the results of the ISMD
are consistent when the partition is refined, which means that the original
identifiable intrinsic sparse modes remain unchanged and the original uniden-
tifiable modes become identifiable and become sparser as the partition is re-
fined. Finally, we prove the stability of ISMD under small perturbation of the
input low rank operators. All our theoretical results are validated by numerical
experiments using covariance matrices from porous media problems.

Last but not least, we have used the ISMD to obtain locally low dimensional
parametrization of a random field. Based on this locally low dimensional
parametrization, we propose a stochastic multiscale finite element method
(StoMsFEM) to solve the second order elliptic equations with high dimen-
sional random coefficients. The proposed method shows significant compu-
tational saving compared to the traditional MC methods or the gPC based
methods; see Section 1.4 for a brief overview and our paper [65] for details.

1.4 Applications of The Operator Compression Methods

In addition to solving elliptic equations with rough coefficients, we have ex-
plored three more applications of the proposed operator compression methods.
In the first application, we apply both the Sparse OC and the ISMD to solve
the problem of sparse principal component analysis in statistics. These two
methods look for different forms of sparse principal component analysis (the
ISMD imposes principal factors to be uncorrelated while the Sparse OC does
not), and are suitable for different kinds of covariance operators. In the second
application, we apply the Sparse OC to construct localized Wannier functions
in quantum chemistry. In the third application, we apply the ISMD to explore
the locally low dimensional structure of the solutions of second order elliptic
equations with high dimensional random coefficients, resulting in a stochastic
multiscale finite element method (StoMsFEM).

Principal Component Analysis With Sparse/Localized Loadings

Given a random field κ : D × Ω → R, where D ⊂ Rd is the physical domain
and (Ω,F , P ) is a probability space, its mean field κ̄ : D → R and covariance
function K : D ×D → R are defined by

κ̄(x) := E[κ(x, ω)], K(x, y) := E[(κ(x, ω)− κ̄(x))(κ(y, ω)− κ̄(y))].
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Its covariance operator, denoted as K : L2(D) → L2(D), is the Hilbert-
Schmidt operator with kernel K(x, y). Many basic operations on a random
field (e.g., sampling, factorization, marginalization, and conditioning) require
a finite rank approximation of its covariance operator, which can be obtained
in different ways.

Eigendecomposition

The eigendecomposition is the standard method to obtain the best low rank ap-
proximation of a PSD operator. One such example is the truncated Karhenen–
Loève (KL) expansion [75, 85], which is the most widely used method to fac-
torize a random field. The truncated KL expansion first computes the best
rank-n approximation of the covariance operator by the truncated eigende-
composition, i.e.,

K ≈
n∑
i=1

λieie
T
i ,

where {λi}ni=1 are the largest n eigenvalues and {ei}ni=1 are the correspond-
ing eigenfunctions. Without loss of generality, we assume that the random
field is centered, i.e., κ̄(x) ≡ 0, in this subsection. Then the random field is
approximately factorized by its truncated KL expansion

κ(x, ω) ≈
n∑
i=1

√
λiei(x)ξi, (1.17)

where ξi :=
∫
D
k(x, ω)ei(x)dx is the principal factor corresponding to the

eigenfunction ei. The truncated KL expansion enjoys the bi-orthogonality
property, i.e.,

(ei, ej)L2(D) = δi,j, E[ξiξj] = δi,j. (1.18)

The discrete version of the truncated KL expansion is the famous principal
component analysis in statistics. However, the eigenfunctions are typically
global, i.e., nonzero almost everywhere, and are sometimes difficult to inter-
pret. The global eigenfunctions imply that even on a local patch, all the factors
{ξi}ni=1 have influence there. This seems to be counter intuitive. It seems to
make more sense that a random variable would impact only a small number
of patches. In this case, we can apply our ISMD or Sparse OC to obtain the
low rank approximation with sparse/localized modes.
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The ISMD

When the covariance operator K is (nearly) rank-n, we can use the ISMD to
decompose it into n sparse rank-one components

K ≈
n∑
i=1

ψiψ
T
i ,

where {ψi}ni=1 are the intrinsic sparse modes. After projecting the random field
to the space spanned by {ψi}ni=1, we obtain a sparse-orthogonal factorization

κ(x, ω) ≈
n∑
i=1

ψi(x)ηi, (1.19)

where ηi is the random factor associated with the intrinsic sparse mode ψi.
One can easily check that the random factors {ηi}ni=1 are uncorrelated with
each other, i.e.,

E[ηiηj] = δi,j. (1.20)

Therefore, compared with the bi-orthogonality (1.18) in the truncated KL
expansion, the factorization (1.19) obtained from the ISMD requires orthogo-
nality only in the stochastic space but sparsity in the physical space.

The sparse-orthogonal factorization (1.19) is closely related to the latent factor
model with sparse loadings, which has found many applications ranging from
DNA microarray analysis [48], facial and object recognition [129], and web
search models [1], etc. In some scenarios, the uncorrelated latent factors make
lots of sense, but is not guaranteed by many existing factorization methods,
e.g., the non-negative matrix factorization (NMF) [80], the sparse principal
component analysis (SPCA) [73, 137, 37], the structured SPCA [72]. We
recommend the ISMD for sparse factorization problems where the covariance
operator is (nearly) low rank and the uncorrelated constraint on the factors is
imposed.

In Section 5.5, we provide such an application using covariance matrices from
porous media problems [50, 46]. We compare the ISMD with other exist-
ing methods, e.g., eigendecomposition, pivoted Cholesky decomposition and
convex relaxation of the SPCA (see [78, 128]). Our results demonstrate the
superiority of the ISMD when decomposing (nearly) low-rank PSD matrices
with sparse/localized modes.
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The Sparse OC

We can also apply our Sparse OC to obtain a rank-n approximation for the
covariance operator, i.e.,

K ≈ Ψ locKnΨ
loc,T =

n∑
i,j=1

Kn(i, j)ψloci ψloc,Tj ,

which achieves both high approximation accuracy and basis localization at the
same time. After projecting the random field to the space spanned by Ψ loc,
we obtain a sparse factorization

κ(x, ω) ≈
n∑
i=1

ψloci (x)ηi, (1.21)

where ηi is the random factor associated with the sparse mode ψloci . In this
case, the random factors {ηi}ni=1 are correlated with each other, with correla-
tion

E[ηiηj] = Kn(i, j). (1.22)

The Sparse OC is especially suitable for the Matérn class covariance [92].
In spatial statistics, geostatistics, machine learning and image analysis, the
Matérn class covariance is used to model random fields with smooth samples;
see e.g. [121, 58, 53]. The Matérn class covariance between two points x, y ∈
D ⊂ Rd is given by

Kν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
, (1.23)

where Γ is the gamma function, Kν is the modified Bessel function of the
second kind, and ρ and ν are non-negative parameters of the covariance.
Two special cases are the exponential kernel when ν = 1/2, i.e., K1/2(x, y) =

σ2 exp(−|x−y|/ρ), and the Gaussian kernel when ν →∞, i.e., limν→∞Kν(x, y) =

σ2 exp(− |x−y|
2

2ρ2 ). The Fourier transform of Matérn class covariance is given by

k̂(ω) = cν,λσ
2

(
2ν

λ2
+ |ω|2

)−(ν+d/2)

, cν,λ :=
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)λ2ν
, (1.24)

where we use the convention f̂(ω) =
∫
Rd f(x)e−ix·ωdx for the Fourier trans-

form. Recent studies [83, 16] show that the Matérn covariance and the elliptic
operators are closely connected. With proper homogeneous boundary condi-
tions, the Matérn covariance operator with ν+d/2 as an integer is the solution
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operator of an elliptic operator of order 2ν + d. For example, the exponential
kernel (Matérn covariance operator with ν = 1/2) is the solution operator of a
second order elliptic operator (2lσ2)−1

(
1− ρ2 d2

dx2

)
when the physical dimen-

sion d = 1, and is the solution operator of a fourth order elliptic operator
(8πρ3σ2)−1 (1− 2ρ2∆ + ρ4∆2) when d = 3. The Matérn covariance opera-
tor with ν = 1 is the solution operator of the fourth order elliptic operator
(4πρ2σ2)−1 (1− 2ρ2∆ + ρ4∆2) when d = 2. Note that the elliptic operator that
is associated with the Matérn covariance contains lower order terms. Thus,
it is essential that our Sparse OC can accommodate lower order terms and
various boundary conditions.

In Section 2.4, we have applied the Sparse OC to compress the 1D Matérn
kernel with ν = 1/2. We have demonstrated that the Sparse OC achieves
the optimal approximation accuracy and the nearly optimal localization. In
this application, we have also shown that the logarithmic factor in the local-
ization (i.e., localized basis functions with support diameter O(h log(1/h))) is
necessary to obtain the optimal approximate accuracy under the framework
of Sparse OC.

Constructing Localized Wannier Functions

Motivated by the localized Wannier functions developed in solid state physics
and quantum chemistry, our Sparse OC can serve as a computationally ef-
ficient method to construct the localized Wannier functions. We begin by
reviewing the basic ideas for obtaining spatially localized basis functions of
the independent-particle Schrödinger’s equation. For simplicity, we consider a
finite system with n electrons and neglect the electron spin. The ground state
energy is given by En =

∑n
i=1 λi, where λi are the eigenvalues of Hamiltonian,

H = −1
2
∆ + V (x), arranged in increasing order and satisfying Hei = λiei,

with ei being the corresponding eigenfunctions. A basic task in computational
chemistry is to compute the ground state energy En, which in turn requires
the eigendecomposition of the Hamiltonian H. Notice that the Hamiltonian is
nothing but a second order elliptic operator with a nontrivial potential V (x).

In most cases, the eigenfunctions ei are nonzero almost everywhere, i.e., they
are “dense”. This presents challenges for computational efficiency since the
eigendecomposition requires O(n3) operations, dominating the computational
effort for n ≈ 103 and above. Moreover, the screened correlations in con-
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densed matter are usually short-ranged (see [111]). It is well known that an
appropriate linear transformation of the eigenfunctions could lead to a set
of more spatially localized eigenfunctions that span the same eigenspace of
H. Methods for obtaining such functions have been developed in solid state
physics and quantum chemistry, where they are known as Wannier functions
(see [130, 76]). However, simply applying a linear transformation on the eigen-
functions has two disadvantages. First of all, in most cases, one can obtain
at most polynomially decaying functions by using linear transformations on
eigenfunctions. For example, the eigenfunctions of the 1D free electron are
harmonic waves, and no linear combinations of the first n harmonic waves can
result in compactly supported or exponentially decaying functions! Secondly,
it still requires obtaining the eigenfunctions at the first place, which does not
help the computational efficiency.

To achieve truly localized Wannier functions and computational efficiency,
one needs to look for an approximate n-dimensional subspace that is spanned
by n localized basis functions and gives an accurate approximation of the
eigenspace at the same time. Our Sparse OC is a natural choice to achieve
this goal. We point out that there is no consensus on the norm to measure the
distance between the constructed n-dimensional subspace Ψ and the eigenspace
Vn := span{e1, . . . , en} in the existing literature. Our Sparse OC measures the
distance by the operator compression error Eoc(Ψ;H−1) (1.6) (we can always
add a constant to H such that it is invertible, and this does not change the
eigenspace of H). Another natural choice to define the distance between the
approximate space Ψ and the eigenspace Vn is

Ẽoc(Ψ) = ‖PVn − PΨ‖2, (1.25)

where PV is the orthogonal projection from L2(D) to the subspace V . To com-
pare these two criteria, we rewrite them in a form that makes the comparison
easier:

Eoc(Ψ ;H−1) = min
Kn�0

∥∥∥∥∥
∞∑
i=1

1

λi
eie

T
i −ΨKnΨT

∥∥∥∥∥
2

, Ẽoc(Ψ) =

∥∥∥∥∥
n∑
i=1

eie
T
i − PΨ

∥∥∥∥∥
2

.

We believe that Eoc(Ψ ;H−1) is a better criterion for operator compression
because it takes into consideration the relative importance (1/λi) of different
eigenfunctions ei. In contrast, the quantity ‖PVn −PΨ‖2 gives equal weight to
all the first n eigenfunctions and does not count the rest of the eigenfunctions
at all.



23

One of the most commonly used methods to construct localized Wannier func-
tions is the l1 approach, which is inspired by the compressed sensing and is
briefly reviewed in Section 2.5. Our Sparse OC is inspired by the recent ad-
vances in numerical homogenization [98, 101], and has a very different philos-
ophy from the l1 approach. We compare our Sparse OC with the l1 approach
on the free-electron model in Section 2.5. We summarize the main conclusions
here.

1. With roughly the same support size of the localized basis functions, the
results given by the l1 approach and the Sparse OC are very similar, in
terms of the shape of the function and the approximate eigenvalues.

2. The total computation cost of the Sparse OC is comparable to the cost
of each iteration in the l1 approach. The l1 approach needs hundreds
(sometimes even thousands) of iterations to solve the nonconvex prob-
lem, depending on the choice of the algorithm parameters.

Application in Stochastic Multiscale Model Reduction

Finally, we have applied the ISMD and other sparse factorization methods to
solve the following random elliptic equation−∇x · (κ(x, ω)∇xu(x, ω)) = f(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D
P -almost surely,

(1.26)
where the random coefficients κ(x, ω) have a large stochastic dimension and
have multiscale features in the physical space. Here, the “stochastic dimension”
means the number of the factors/parameters in the factorization of the random
coefficients. As usual, we assume that κ(x, ω) satisfies κ(x, ω) ≥ α > 0, for ev-
ery x ∈ D and ω ∈ Ω. The random elliptic equation (1.26) is the fundamental
model to simulate flows in heterogeneous porous media, whose permeability
is often modeled as a multiscale random field. The parametrization of a mul-
tiscale random medium requires a large number of random variables, leading
to a random elliptic equation with a high stochastic dimension, which is chal-
lenging to solve numerically.

In [65], we have proposed a stochastic multiscale finite element method (StoMs-
FEM) that combines a localized factorization method and a deterministic
model reduction method. The StoMsFEM can significantly speed up the exist-
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ing non-intrusive stochastic methods. By “non-intrusive stochastic methods”,
we mean those methods that can call a deterministic PDE solver as a blackbox,
e.g., Monte Carlo, multilevel Monte Carlo [51, 9, 32], (sparse grid) stochastic
collocation [4, 96, 97, 133], least-squares methods [40, 120] and compressed
sensing methods [41, 134]. The StoMsFEm is based on the following observa-
tion: most deterministic model reduction methods only require solving local
problems (see e.g. [66, 67, 105, 89, 99]), and the local problems often have
much lower stochastic dimensions. More precisely, the random coefficients re-
stricted to a local subdomain can be factorized by a much smaller number of
parameters, which depends only on the ratio between the subdomain size and
the correlation length of the random coefficients. Therefore, the determin-
istic model reduction methods result in solving local subproblems with low
stochastic dimensions, whose solutions can be efficiently precomputed by the
gPC based methods (see e.g., [49, 132, 7, 4]) in the offline stage.

Based on this observation, the proposed StoMsFEM solves the random PDEs
in three steps. The first two steps are in the offline stage and the third step
is in the online stage. In the first step, we obtain a locally low dimensional
parametrization of the random coefficients κ(x, ω). This can be achieved by our
ISMD or Sparse OC, as well as other localized factorization methods like the
local truncated KL expansion [27] and the SPCA [137, 37, 128]. In the second
step, we apply a deterministic local upscaling method to obtain a parametric
upscaled system. We provide two methods to do the parametric upscaling:
random interpolation method and reduced basis method. The random inter-
polation method takes advantage of the fact that the local upscaled coefficients
are analytic functions of the local random parameters, and we introduce an
interpolation scheme for each upscaled coefficient at the coarse-grid level. The
random interpolation method can be viewed as a local reduced-order method
in the stochastic space. The reduced basis method makes use of the low rank
property of the solutions for the local upscaling problems, and prepares a small
set of spatial basis functions for each local upscaling problem. The reduced
basis method can be viewed as a local reduced-order method in the physical
space. In the online stage (i.e., the third step), for each sample of the ran-
dom parameters, we either interpolate the upscaled coefficients in the random
interpolation setting, or solve the small reduced-order systems to obtain the
upscaled coefficients. A numerical coarse-grid solution for this sample can be
obtained by solving the upscaled system.
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In Section 5.5, we utilize our ISMD to obtain a locally low dimensional parametriza-
tion of the random coefficients κ(x, ω), which is the first step of the StoMs-
FEM. We refer to our paper [65] for detailed information about the analysis
and implementation of the StoMsFEM.

1.5 Roadmap of the Thesis

The thesis is organized as follows.

• In Chapter 2, we present the general framework of the sparse operator
compression (Sparse OC) and its three applications. In Section 2.3,
we provide the application of the Sparse OC to second order elliptic
operators. In Section 2.4, we apply the Sparse OC to compress the 1D
exponential kernel. In Section 2.5, we apply the Sparse OC to construct
localized Wannier functions for the 1D free-election model.

• In Chapter 3, we apply the Sparse OC to compress the higher order
strongly elliptic operators. We first prove the local projection-type ap-
proximation in the Sobolev spacesHk and the corresponding local inverse
energy estimate. Then we introduce the concept of strong ellipticity, and
show its relation with the uniform ellipticity. After that, we prove the ex-
ponential decay of the global energy minimizing basis functions ψi,q and
then localize it to obtain the localized basis function ψloci,q . Finally, both
1D and 2D examples are provided to validate our theoretical results.

• In Chapter 4, we apply the Sparse OC to the second order elliptic oper-
ators with high contrast coefficients. We first obtain a local projection-
type approximation property from a local generalized eigenvalue prob-
lem, and prove the corresponding local inverse energy estimate for the
two-phase coefficients. Then we prove that the global energy minimizing
basis functions ψi,q decays exponentially fast away from its associated
patch, and the decay rate is independent of the contrast. Finally, a 2D
example with high permeability channels is provided to demonstrate the
contrast-independent decay rate.

• In Chapter 5, we present the intrinsic sparse mode decomposition (ISMD)
for low rank PSD operators. We first present our ISMD algorithm for low
rank matrices and analyze its computational complexity. Then our main
theoretical results are presented. After that, we discuss the stability of
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the ISMD by performing perturbation analysis. Finally, we present a
few numerical examples to demonstrate the efficiency of the ISMD and
compare its performance with other existing methods.

• We make some concluding remarks in Chapter 6 and outline several
future directions.
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C h a p t e r 2

SPARSE OPERATOR COMPRESSION AND ITS
APPLICATIONS

The main purpose of this chapter is to develop a general framework, i.e.,
the sparse operator compression (Sparse OC), to compress positive semidefi-
nite (PSD) operators with localized basis functions. We will also talk about
three applications of the Sparse OC: to solve elliptic equations with rough
coefficients, to solve the the problem of sparse principal component analysis
(SPCA), and to construct localized Wannier functions.

2.1 Problem Setting

Suppose K : X → X is a bounded self-adjoint PSD operator, where X can
be any separable Hilbert space with inner product (·, ·). We ask the question:
given an integer n, what is the best rank-n approximation of the operator K
with localized basis functions? This question arises in many different contexts.

Consider the elliptic equation with the homogeneous Dirichlet boundary con-
ditions

Lu := −∇ · (a∇u) = f, u ∈ H1
0 (D), (2.1)

where the load f ∈ L2(D). If a is symmetric and uniformly elliptic on D, i.e.,
there exist 0 < amin ≤ amax such that

aminId � a(x) � amaxId, x ∈ D.

Then the Lax–Milgram Lemma (see e.g. [31]) implies that Eqn. (1.1) has a
unique weak solution in H1

0 (D), denoted as L−1f . This defines the solution
operator L−1 : L2(D) → L2(D). Under the framework of the Galerkin fi-
nite element method, given n basis functions Ψ = [ψ1, . . . , ψn] in H1

0 (D), we
can solve the elliptic equation (1.1) approximately by projecting it onto the
subspace spanned by Ψ , i.e.,

uΨ = ΨL−1
n ΨTf,

Ln ∈ Rn×n and ΨTf ∈ Rn are the stiffness matrix and the loading vector,
respectively. As a candidate for the finite element basis, Ψ should minimize
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the solution error in the worst scenario:

‖L−1 −ΨL−1
n ΨT‖2 := sup

‖f‖L2(D)≤1

‖L−1f −ΨL−1
n ΨTf‖L2(D),

where ‖A‖2 is the largest eigenvalue for a PSD operator A.

Therefore, for a self-adjoint, positive definite operator K : X → X (the solu-
tion operator L−1 : L2(D)→ L2(D) when solving elliptic equations), we define
the operator compression error of the basis Ψ as

Eoc(Ψ ;K) := min
Kn∈Rn×n, Kn�0

‖K −ΨKnΨ
T‖X,X , (2.2)

where ‖K‖X,X := sup‖f‖X≤1
‖Kf‖X
‖f‖X

is the induced operator norm for the bounded
operator K : X → X. The operator compression error is the optimal approxi-
mation error of K among all positive semidefinite operators with range space
spanned by Ψ . It is easy to verify that the operator compression error only
depends on the subspace spanned by Ψ , still denoted as Ψ, and is independent
of the choice of its basis function Ψ . When solving the the problem of sparse
principal component analysis (SPCA), K will be the covariance operator of
a random field/vector; see Section 2.4. When constructing localized Wannier
functions in quantum chemistry, K will be the inverse of the Hamiltonian; see
Section 2.5. In all the current applications, X is a Hilbert space over some
bounded Lipschitz domain D ⊂ Rd, such as L2(D) and L2

a(D) (L2(D) with
a-weighted inner product).

Without imposing the sparsity constraints on the basis Ψ , the compression
error Eoc(Ψ ;K) achieves its minimum λn+1(K) if we use the first n eigenfunc-
tions (corresponding to the largest n eigenvalue) of K to form Ψ . However, the
eigenfunctions are expensive to compute, and do not have localized support,
[137, 107, 64]. In many cases, localized/sparse basis functions are preferred.
For example, in the multiscale finite element method [45], localized basis func-
tions lead to sparse linear systems, and thus result in more efficient algorithms;
see e.g. [6, 66, 123, 67, 3, 44, 43, 89, 105, 99, 29]. In quantum chemistry, lo-
calized basis functions like the Wannier functions have better interpretability
of the local interactions between particles (see e.g. [90, 42, 91, 107, 78]), and
also lead to more efficient algorithms [54]. In statistics, the sparse principal
component analysis (SPCA) looks for sparse vectors to span the eigenspace
of the covariance matrix, which in many cases leads to better interpretability
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compared with the dense principal components from the PCA; see e.g. [73,
137, 37, 131, 128].

Discussions On The Definition Of Operator Compression Error

Suppose the eigen-pairs of K are {(λi, ei)}∞i=1, where {λi}∞i=1 are in a descending
order. Another natural choice to define the compression error is the distance
between the constructed space Ψ and the first n-dimensional eigenspace Vn =

span{e1, . . . , en}:
Ẽoc(Ψ) = ‖PVn − PΨ‖2, (2.3)

where PV is the orthogonal projection from L2(D) to its subspace V . To
compare criterion (2.2) with criterion (2.3), we rewrite them in a form that
makes the comparison easier:

Eoc(Ψ ;K) = min
Kn∈Rn×n, Kn�0

∥∥∥∥∥
∞∑
i=1

λieie
T
i −ΨKnΨT

∥∥∥∥∥
2

,

Ẽoc(Ψ) =

∥∥∥∥∥
n∑
i=1

eie
T
i − PΨ

∥∥∥∥∥
2

.

We believe that Eoc(Ψ ;K) is a better criterion for operator compression be-
cause it takes into consideration the decay of the eigenvalues of the solution
operator K. In contrast, the quantity ‖PVn − PΨ‖2 gives equal weight to all
eigenfunctions and does not take into account the relative importance of dif-
ferent eigenfunctions.

Due to the unboundedness of the elliptic operators L, we use L−1 to define
its operator compression error. The compression error Eoc(Ψ ;L−1) can be
extended to any uniform elliptic operator. By the Garding’s inequality [113],
there exists λG > 0 such that L + λG satisfies the assumptions of the Lax-
Milgram lemma, and thus its inverse operator (L + λG)−1 exists. Using
Eoc(Ψ ; (L + λG)−1) to quantify the compression error is useful for operators
that are not invertible, such as −∆ with periodic boundary conditions.

Constructing Basis Functions

The Sparse OC follows three steps to construct sparse/localized basis functions
Ψ loc := [ψloc1 , . . . , ψlocn ]. In the first step, we partition the physical domain D
with a regular finite element mesh with mesh size h > 0, and denote all the
elements (local patches) as {τi}mi=1. On each local patch τi, we choose Qi
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(Qi ∈ N) measurement functions that are only supported on τi, denoted as
{ϕi,q : 1 ≤ q ≤ Qi}.

In the second step, we construct non-local basis functions {ψi,q : 1 ≤ i ≤
m, 1 ≤ q ≤ Qi} by the following minimizing problem:

ψi,q = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj,q′) = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj,

(2.4)

where δiq,jq′ is the Kronecker delta that is 1 when i = j and q = q′ and 0 in
all other cases. Here, H is a Hilbert space that is called the Cameron-Martin
space and is formally defined in Section 2.2. When K = L−1, the Cameron-
Martin space H = {L−1f : f ∈ L2(D)} is the solution space of the operator L,
and ‖ · ‖H is the energy norm associated with L and the prescribed boundary
condition. It is important to point out that the boundary condition of the
elliptic problem is already incorporated in the above optimization problem
through the solution space H and the definition of the energy norm ‖ · ‖H .
This variational formulation is very general and can be applied to any self-
adjoint PSD operator K. Collecting all the nonlocal basis functions ψi,q for
1 ≤ i ≤ m and 1 ≤ q ≤ Qi, we get a nonlocal basis Ψ . Although ψi,q is not
localized, we will see that it decays exponentially fast away from its associated
patch.

In the final step, we restrict the global construction onto a neighborhood of
the patch τi with radius r, denoted as Sr(τi) (see Figure 2.1), and obtain a
localized basis function:

ψloci,q = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj,q′) = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj,

ψ(x) ≡ 0, x ∈ D\Sr.

(2.5)

Collecting all the ψloci,q for 1 ≤ i ≤ m and 1 ≤ q ≤ Qi together, we get our local
basis Ψ loc. In all our applications, we take r = Ch(log(1/h) + log(Contrast)),
in which C is a constant independent of the coefficients and Contrast is the
contrast of the coefficients. We will discuss the choice of r in detail when we
analyze the compression error of Ψ loc.

We point out that when implementing the Sparse OC, there is no need to
compute the global basis Ψ (2.4). Conversion of the global basis Ψ to the
local basis Ψ loc is useful when we do theoretical analysis of the Sparse OC.
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Figure 2.1: A regular partition, local patch τi and its associated Sr.

Comparison With Other Existing Methods

Our approach for operator compression originates in the MsFEM and numeri-
cal homogenization, where localized multiscale basis functions are constructed
to approximate the solution space of some elliptic PDEs with multiscale co-
efficients; see [6, 66, 123, 45, 3, 43, 89, 105, 98, 99, 29]. Specifically, our
work is inspired by the work presented in [89, 99], in which multiscale basis
functions with support size O(h log(1/h)) are constructed for second order el-
liptic equations with rough coefficients and homogeneous Dirichlet boundary
conditions. In this paper, we generalize the construction [99] and propose a
general framework to compress higher order elliptic operators with optimal
compression accuracy and optimal localization.

We remark that although we use the framework presented in [99] as the direct
template for our method, to the best of our knowledge, the Local Orthogo-
nal Decomposition (LOD) [89], in the context of multi-dimensional numerical
homogenization, contains the first rigorous proof of optimal exponential de-
cay rates with a priori estimates (leading to localization to sub-domains of
size h log(1/h), with basis functions derived from the Clement interpolation
operator). The idea of using the preimage of some continuous or discontin-
uous finite element space under the partial differential operator to construct
localized basis functions in Galerkin-type methods was even used earlier e.g.
in [56], although it did not provide a constructive local basis. In addition to
establishing the exponential decay of the basis (for general non-conforming
measurements of the solution, we will generalize the proof of this result to
higher order PDEs and measurements formed by local polynomials), a major
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contribution of [99] was to introduce a multiresolution operator decomposition
for second order elliptic PDEs with rough coefficients.

There are several new ingredients in our analysis that are essential for us to
obtain our results for higher order elliptic operators with rough coefficients.
First of all, we prove an inverse energy estimate for functions in Ψ, which is
crucial in proving the exponential decay. In particular, Lemma 3.3.1 is an
essential step to obtaining the inverse energy estimate for higher order PDEs
that is not found in [89] nor [99]. We remark that Lemma 3.12 in [99] provides
such an estimate for second order elliptic operators, by utilizing a relation
between the Laplacian operator ∆ and the d-dimensional Brownian motion.
It is not straightforward to extend this probabilistic argument to higher order
cases. In contrast, our inverse energy estimate is valid for any 2kth order
elliptic operators, and is tighter than the estimation in [99] for the second order
case. Secondly, we prove a projection type polynomial approximation property
in Hk(D). This polynomial approximation property plays an essential role in
both estimating the compression accuracy and in localizing the basis functions.
Thirdly, we propose the notion of strong ellipticity to analyze the higher order
elliptic operators, and show that strong ellipticity is only slightly stronger than
the standard uniform ellipticity. Very recently, the authors of [100] introduce
the Gaussian cylinder measure and successfully generalize the probabilistic
framework in [98, 99] to a much broader class of operators, including higher
order elliptic operators without requiring strong ellipticity.

As in [89, 99], the error bound in our convergence analysis blows up for fixed
oversampling ratio r/h. To achieve the desired O(h) accuracy, we require
r/h = O(log(1/h)). There has been some previous attempt to study the
convergence of MsFEM using oversampling techniques with r/h being fixed,
see e.g. [61, 109]. In particular, the authors of [61, 109] showed that if the
oversampling ratio r/h is fixed, the accuracy of the numerical solution will
depend on the regularity of the solution and cannot be guaranteed for problems
with rough coefficients. By imposing r/h = O(log(1/h)), the authors of [61,
109] proved that the the MsFEM with constrained oversampling converges
with the desired accuracy O(h).

There has been some previous work for second order elliptic PDEs by using
basis functions of support size O(h), see e.g. [3, 63]. However, they need to
use O(log(1/h)) basis functions associated with each coarse finite element to
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recover the O(h) accuracy. It is worth mentioning that the authors of [63] use
a local oversampling operator to construct the optimal local boundary condi-
tions for the nodal multi-scale basis and enrich the nodal multis-scale basis
with optimal edge multi-scale basis. Moreover, the method in [63] allows an
explicit control of the approximation accuracy in the offline stage by truncat-
ing the SVD of the oversampling operator. In [63], the authors demonstrated
numerically that this method is robust to high-contrast problems and the num-
ber of basis functions per coarse element is typically small. We remark that
the recently developed generalized multiscale finite element method framework
(GMsFEM) [43, 29] has provided another promising approach in constructing
multiscale basis functions with support size O(h).

Another popular way to formulate the operator compression problem is to
solve the following l1 penalized variational problem:

min
Ψ

n∑
i=1

‖ψi‖2
H + λ

n∑
i=1

‖ψi‖1,

s.t. (ψi, ψj) = δi,j ∀1 ≤ i, j ≤ n,

(2.6)

where ‖ψi‖H is the energy norm induced by the operator L. In problem (2.6),
small ‖ψi‖H leads to a small compression error, small ‖ψi‖1 enforces a sparse
basis function, and λ > 0 is a parameter to control the trade-off between the
accuracy and sparsity.

The sparse principal component analysis (SPCA) is closely related to the above
l1 based optimization problem. Given a covariance functionK(x, y), the SPCA
solves a variational problem similar to Eqn. (2.6):

min
Ψ

−
n∑
i=1

(ψi,Kψi) + λ

n∑
i=1

‖ψi‖1,

s.t. (ψi, ψj) = δi,j ∀1 ≤ i, j ≤ n,

(2.7)

where (ψi,Kψi) :=
∫
D

∫
D
K(x, y)ψi(x)ψi(y)dxdy. In the SPCA (2.7), we have

the minus sign in front the variational term because we are interested in the
eigenspace corresponding to the largest n eigenvalues. Although the l1 ap-
proach performs well in practice, neither Problem (2.6) nor the SPCA (2.7)
is convex, and one needs to use some sophisticated techniques to solve the
non-convex optimization problem or its convex relaxation; see e.g. [137, 37,
107, 128, 78].
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In comparison with the l1-based optimization method or the SPCA, our ap-
proach has the advantage that this construction will guarantee that ψi,q de-
cays exponentially fast away from τi. This exponential decay justifies the local
construction of the basis functions in Eqn. (2.5). Moroever, our construc-
tion (2.5) is a quadratic optimization with linear constraints, which can be
solved as efficiently as solving an elliptic problem on the local domain Sr. The
computational complexity to obtain all n localized basis functions {ψloci }ni=1

is only of order N log3d(N) if a multilevel construction is employed, where N
is the degree of freedom in the discretization of L; see [99]. In contrast, the
orthogonality constraint in Eqn. (2.6) is not convex, which introduces addi-
tional difficulties in solving the problem. Finally, our construction of {ψloci }ni=1

is completely decoupled, while all the basis functions in Eqn. (2.6) are coupled
together. This decoupling leads to a simple parallel execution, and thus makes
the computation of {ψloci }ni=1 even more efficient.

Outline Of This Chapter

In Section 2.2, we provide an abstract and general framework to construct
the finite element space Ψ, to analyze the approximation accuracy, and to
construct a localized basis of the space Ψ. In Section 2.3, we provide the
application of the Sparse OC to second order elliptic operators, and reproduce
the result that has been obtained in [99]. In Section 2.4, we apply the Sparse
OC to compress the 1D exponential kernel. In Section 2.5, we apply the Sparse
OC to construct localized Wannier functions for the 1D free-election model.

2.2 An Abstract Framework of Sparse Operator Compression

In this section, we provide an abstract and general framework to compress
a bounded self-adjoint positive semidefinite operator K : X → X, where X
can be any separable Hilbert space with inner product (·, ·). In the case of
operation compression of an elliptic operator L, K plays the role of the solution
operator L−1 and X = L2(D). In the case of the SPCA, K plays the role of
the covariance operator. A probabilistic framework for Bayesian numerical
homogenization has been proposed in [98], but it requires the existence of
a Gaussian measure with certain given covariance operator. Our following
framework is purely based on functional analysis, which applies to any bounded
self-adjoint positive semidefinite operators.

First of all, we introduce the Cameron–Martin space, which plays the role of
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the range space of K. Secondly, we provide our main theorem to estimate
the compression error. Thirdly, we give the abstract form to construct basis
functions by minimizing their energies. Finally, we give the abstract form
to construct localized basis functions. We use this abstract framework to
compress elliptic operators in the rest of the thesis.

The Cameron–Martin space

Suppose {(λn, en)}∞n=1 are the eigen-pairs of the operator K with the eigen-
values {λn}∞n=1 in a descending order. We have λn ≥ 0 for all n since K is
self-adjoint and positive semidefinite. From the spectral theorem of a self-
adjoint operator, we know that {en)}∞n=1 can be chosen to be an orthonormal
basis of X.

Lemma 2.2.1. Let K(X) be the range space of K. We have

1. K(X) is an inner product space with inner product defined by

(Kϕ1,Kϕ2)H = (Kϕ1, ϕ2) ∀ϕ1, ϕ2 ∈ X. (2.8)

2. K(X) is continuously imbedded in X.

3. K(X) is dense in X if the null space of K only contains the origin, i.e.
null(K) = {0}.

Proof. 1. Since K is self-adjoint, we have (Kϕ1,Kϕ2)H = (Kϕ2,Kϕ1)H .
The linearity and non-negativity are obvious. Finally, if (Kϕ,Kϕ)H = 0

for some ϕ ∈ X, then (Kϕ, ϕ) = 0. Suppose that ϕ =
∑

n αnen by ex-
panding ϕ with eigenvectors of K. Then we have (Kϕ, ϕ) =

∑
n λnα

2
n =

0. Therefore, αn = 0 for all λn > 0. Equivalently, we obtain ϕ ∈ null(K),
i.e. Kϕ = 0.

2. Since λ2
n ≤ λ1λn for all n ∈ N, we have K2 � λ1K. Then we obtain√

(Kϕ,Kϕ) ≤
√
λ1(Kϕ, ϕ) =

√
λ1

√
(Kϕ,Kϕ)H , (2.9)

where we have used the definition of (·, ·)H in Eqn. (2.8) in the last step.

3. If null(K) = {0}, we have span{en, n ≥ 1} ⊂ K(X). Then K(X) is dense
in X.
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We define the Cameron–Martin space H as the completion of K(X) with
respect to the norm

√
(·, ·)H . Then H is a separable Hilbert space and we

have the following lemma.

Lemma 2.2.2. 1. H can be continuously embedded into X.

2. H is dense in X if null(K) = {0}.

3. For all ψ ∈ X and all f ∈ H, we have

(f,Kψ)H = (f, ψ). (2.10)

Proof. 1. By the continuous imbedding from K(X) to X, we know that a
Cauchy sequence in K(X) is also a Cauchy sequence in X. Therefore,
we have H ⊂ X. By Eqn. (2.9) and the the continuity of norms, we have
(ψ, ψ) ≤ λ1(ψ, ψ)H for any ψ ∈ H.

2. It is obvious from item 3 in Lemma 2.2.1.

3. If f ∈ K(X), Eqn. (2.10) is exactly the definition of (·, ·)H in Eqn. (2.8).
By the continuity of inner product, Eqn. (2.10) is true for any f ∈ H.

Operator Compression

Suppose H is an arbitrary separable Hilbert space and Φ ⊂ H is n-dimensional
subspace in H with basis {ϕi}ni=1. In the rest of the thesis, P(H)

Φ denotes the
orthogonal projection from a Hilbert space H to its subspace Φ. With this
notation, we present our theorem for error estimate as follows.

Theorem 2.2.1. Suppose there is a n-dimensional subspace Φ ⊂ X with basis
{ϕi}ni=1 such that

‖u− P(X)
Φ u‖X ≤ kn‖u‖H ∀u ∈ K(X) ⊂ H. (2.11)

Let Ψ be the n-dimensional subspace in H (also in X) spanned by {Kϕi}ni=1.
Then

1. For any u ∈ K(X) and u = Kf , we have

‖u− P(H)
Ψ u‖H ≤ kn‖f‖X . (2.12)
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2. For any u ∈ K(X) and u = Kf , we have

‖u− P(H)
Ψ u‖X ≤ k2

n‖f‖X . (2.13)

3. We have
‖K − P(H)

Ψ K‖ ≤ k2
n , (2.14)

where ‖ · ‖ is the induced operator norm on B(X,X). Moreover, the
rank-n operator P(H)

Ψ K : X → X is self-adjoint.

In Theorem 2.2.1, based on a projection type approximation property of Φ

in H, i.e. Eqn. (2.11), we obtain the error estimates of the GFEM with fi-
nite element basis {Kϕi}ni=1 in the energy norm, i.e. Eqn. (2.12). We will
take Φ as the discontinuous piecewise polynomial space later, which is a poor
finite element space for elliptic equations with rough coefficients. However,
after smoothing Φ with the solution operator K, the smoothed basis functions
{Kϕi}ni=1 have the optimal convergence rate. This data-dependent methodol-
ogy to construct finite element spaces is pioneered by the GFEM [6, 123] and
the multiscale finite element method (MsFEM) [66, 70], and is pervasive in
recent developments in finite element methods.

Our error analysis is very different from the traditional error analysis for the
GFEM from two aspects. First of all, the traditional error analysis relies on an
interpolation type approximation property where higher regularity is required.
For example, the error analysis for the FEM with standard linear nodal basis
functions for the Poisson equation requires the following interpolation type
approximation:

|u− Ihu|1,2,D ≤ Ch|u|2,2,D ∀u ∈ H2
0 (D), (2.15)

where Ihu is the piecewise linear interpolation of the solution u. In Eqn. (2.15),
one assumes u ∈ H2(D), but it is not the case for elliptic operators with rough
coefficients. Secondly, in our projection type approximation property (2.11)
the error is measured by the “weaker” ‖·‖X norm, while in the traditional inter-
polation type approximation property the error is measured by the “stronger”
‖ ·‖H norm. In this sense, our error estimate relies on weaker assumptions. As
far as we know, this kind of error estimate was first introduced in Proposition
3.6 in [99].

Proof. [Proof of Theorem 2.2.1]
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1. For an arbitrary v ∈ Ψ, due to the definition of Ψ, we can write v =

K(
∑n

i=1 ciϕi), and thus we get u−v = K(f−
∑n

i=1 ciϕi). By Lemma 2.2.2,
we have

‖u− v‖2
H = (u− v, f −

n∑
i=1

ciϕi)

= (u− v − P(X)
Φ (u− v), f −

n∑
i=1

ciϕi) + (P(X)
Φ (u− v), f −

n∑
i=1

ciϕi).

By choosing ci such that
∑n

i=1 ciϕi = P(X)
Φ (f), the second term vanishes.

Then we obtain

‖u− v‖2
H = (u− v − P(X)

Φ (u− v), f −
n∑
i=1

ciϕi)

≤ ‖u− v − P(X)
Φ (u− v)‖X‖f − P(X)

Φ (f)‖X
≤ kn‖u− v‖H‖f‖X .

Therefore, we conclude ‖u− v‖H ≤ kn‖f‖X .

2. We use the Aubin-Nistche duality argument to get the estimation in item
2. Let v = K(u− P(H)

Ψ u). On one hand,

(u− P(H)
Ψ u, v − P(H)

Ψ v)H = (u− P(H)
Ψ u, v)H

= (u− P(H)
Ψ u, u− P(H)

Ψ u)X = ‖u− P(H)
Ψ u‖2

X .

On the other hand,

(u− P(H)
Ψ u, v − P(H)

Ψ v)H ≤ ‖u− P(H)
Ψ u‖H‖v − P(H)

Ψ v‖H
≤ kn‖f‖X kn‖u− P(H)

Ψ u‖X .
We have used the result of item 1 in the last step. Combining these two
estimates, the result follows.

3. From the last item, we obtain that ‖Kf −P(H)
Ψ Kf‖X ≤ k2

n‖f‖X for any
f ∈ X. Therefore, we conclude ‖K−P(H)

Ψ K‖ ≤ k2
n. Now let’s prove that

P(H)
Ψ K is self-adjoint. For any x1, x2 ∈ X, by definition of H-norm we

have
(x1,P(H)

Ψ Kx2) = (Kx1,P(H)
Ψ Kx2)H .

Since P(H)
Ψ is self-adjoint in H, we have

(Kx1,P(H)
Ψ Kx2)H = (P(H)

Ψ Kx1,Kx2)H = (P(H)
Ψ Kx1, x2).

We used the definition of H-norm again in the last step.
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Energy Minimizing Basis Functions

By Theorem 2.2.1, the space Ψ spanned by {Kϕi}ni=1 can compress the operator
K well. In this subsection, we will construct another set of basis functions
{ψi}ni=1 for Ψ via a variational approach. Although these two sets of basis
functions span the same space Ψ, their decaying property is very different as
we will see later.

For any given i ∈ {1, 2, . . . , n}, consider the following quadratic optimization
problem

ψi = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj) = δi,j, j = 1, 2, . . . , n.

(2.16)

Due to the strong convexity of ‖ · ‖H , the minimizer of Eqn (2.16) is unique if
there exists one. For the existence, it is important to notice that the constraints
in (2.16) are equivalent to (ψ,Kϕj)H = δi,j for all j = 1, 2, . . . , n. Then
it is easy to verify that if and only if {Kϕi}ni=1 are linearly independent, i.e.
null(K)∩Φ = {0}, the constraints in (2.16) are consistent for all i = 1, 2, . . . , n.
Therefore, when {Kϕi}ni=1 are linearly independent, the unique minimizer of
Eqn. (2.16), denoted as ψi, is well-defined. For completeness, we provide the
proof of existence here.

Proposition 2.2.2. For any 1 ≤ i ≤ n, there exists ψi such that (ψi,Kϕj)H =

δi,j for all 1 ≤ j ≤ n if and only if {Kϕi}ni=1 are linearly independent, i.e.
null(K) ∩ Φ = {0}.

Proof. If {Kϕi}ni=1 are linearly independent, it is obvious that for any i =

1, 2, . . . , n there exists ψi such that (ψi,Kϕj)H = δi,j for all j = 1, 2, . . . , n.
In the other direction, we assume that for any i = 1, 2, . . . , n there exists
ψi such that (ψi,Kϕj)H = δi,j for all j = 1, 2, . . . , n. Suppose we have∑n

j=1 αjKϕj = 0. Combined with the constraints, we have for any i =

1, 2, . . . , n, 0 =
∑n

j=1 αj(ψi,Kϕj)H =
∑n

j=1 αjδi,j = αi. Therefore, we have
{Kϕi}ni=1 are linearly independent.

Define Θ ∈ Rn×n by
Θi,j := (Kϕi, ϕj). (2.17)

It is easy to verify that {Kϕi}ni=1 are linearly independent if and only if Θ

is invertible. We will write Θ−1 as its inverse and Θ−1
i,j the (i, j)-th entry of
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Θ−1. Finally, we have the following explicit formula to characterize ψi, which
is defined as the unique minimizer of Eqn (2.16).

Theorem 2.2.3. If null(K) ∩ Φ = {0} holds true, then we have

1. The optimization problem (2.16) admits a unique minimizer ψi, which
can be written as

ψi =
n∑
j=1

Θ−1
i,jKϕj. (2.18)

2. For w ∈ Rn,
∑n

i=1 wiψi is the minimizer of ‖ψ‖H subject to (ϕj, ψ) = wj

for j = 1, 2, . . . , n. Moreover, for any ψ which satisfies (ϕj, ψ) = wj for
j = 1, 2, . . . , n, we have

‖ψ‖2
H = ‖

n∑
i=1

wiψi‖2
H + ‖ψ −

n∑
i=1

wiψi‖2
H . (2.19)

3. (ψi, ψj)H = Θ−1
i,j .

The intuition of Eqn. (2.18) is that we linearly transform the basis {Kψi}ni=1 to
form another basis for Ψ, and make sure that the new basis functions satisfy
the constraints in (2.16). Noting that the constraints of ψi are equivalent to
(ψi,Kϕj)H = δi,j for all j = 1, 2, . . . , n, then it is obvious that ψi given in
(2.18) solves the energy minimization problem (2.16).

Proof. Thanks to null(K) ∩ Φ = {0}, the problem (2.16) is feasible for all
i = 1, 2, . . . , n. Let Ψ be the n-dimensional subspace of H and Ψ⊥ be the
space of vectors orthogonal to it in H.

1. Write ψi =
∑n

k=1 αi,kKϕk + ψ⊥i where ψ⊥i ∈ Ψ⊥. Then the constraints
of ψi become

∑
k Θj,kαi,k = δi,j for all j = 1, 2, . . . , n. Then we obtained

αi,k = Θ−1
i,k . Note that ‖ψi‖2

H = ‖
∑n

k=1 αi,kKϕk‖2
H + ‖ψ⊥i ‖2

H . Therefore,
the minimizer of Eqn. (2.16), still denoted as ψi, is unique and can be
explicitly written as (2.18).

2. One can verify that ψw :=
∑n

i=1wiψi is the only function in Ψ satisfying
the constraints (ϕj, ψ) = wj for j = 1, 2, . . . , n. Therefore, for any ψ

which satisfies (ϕj, ψ) = wj for j = 1, 2, . . . , n, we have (ϕj, ψ−ψw) = 0,
i.e. (Kϕj, ψ − ψw)H = 0, for j = 1, 2, . . . , n. Therefore, ψ − ψw is
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orthogonal to the n-dimensional subspace Ψ, which contains ψw, in H,
and thus Eqn. (2.19) holds true. Then the optimality of ψw naturally
follows.

3. Combined (2.18) and the H-norm definition, we have

(ψi, ψj)H = (
∑
k

Θ−1
i,kKϕk, ψj).

By the constraints of ψj, i.e. (Kϕk, ψj)H = δk,j for all k = 1, 2, . . . , n, we
have (ψi, ψj)H =

∑
k Θ−1

i,k δk,j = Θ−1
i,j .

Remark 2.2.1. If K is nuclear, i.e.
∑n

i=1 λi <∞, the basis functions {ψi}ni=1

can be interpreted by conditioning a Gaussian measure on Hilbert space X;
see [99]. In this case, there exists a Gaussian measure γ on X with mean
0 and covariance operator K. Suppose ξ is a random vector in X and is
distributed as γ. It can be proved that for any w ∈ Rn

E[ξ | (ϕi, ξ) = wi , j = 1, 2, . . . , n] =
n∑
i=1

wiψi,

where ψi = E[ξ | (ϕj, ξ) = δi,j , j = 1, 2, . . . , n] is exactly the minimizer of
Eqn. (2.16). Therefore, ψi can be viewed as the optimal guess of ξ (in the least
square sense) conditioning on the measurements (ϕj, ξ) = δi,j , j = 1, 2, . . . , n.
The very recent work [100] extends this probabilistic approach beyond the nu-
clear class by introducing the Gaussian cylinder measure.

Remark 2.2.2. Using the abstract framework above, we are able to rewrite
the l1 operator compression (2.6) and the SPCA (2.7) as follows to make the
comparison easier. We assume L is the positive definite elliptic operator, and
one wants to construct basis functions that approximates the range space of the
solution operator K = L−1 well. Thanks to Lemma 2.2.1 and 2.2.2, we have
the inclusion K(X) ⊂ H ⊂ X. The l1 operator compression (2.6) looks for a
set of sparse basis functions {ψi}ni=1 in the smaller space H:

min
{ψi}ni=1⊂H

n∑
i=1

(ψi,Lψi) + λ
n∑
i=1

‖ψi‖1,

s.t. (ψi, ψj) = δi,j ∀1 ≤ i, j ≤ n.

(2.20)
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On the contrary, the SPCA (2.7) looks for sparse basis functions {ϕi}ni=1 in
the bigger space X:

min
{ϕi}ni=1⊂X

−
n∑
i=1

(ϕi,Kϕi) + λ

n∑
i=1

‖ϕi‖1,

s.t. (ϕi, ϕj) = δi,j ∀1 ≤ i, j ≤ n.

(2.21)

On one hand, thanks to the variational terms, i.e. (ψi,Lψi) or −(ϕi,Kϕi),
both Problem (2.20) and Problem (2.21) enforce their solutions, i.e. {ψi}ni=1

or {ϕi}ni=1, to align with the eigenspace corresponding to the small eigenvalues
of L. On the other hand, Problem (2.20) is more efficient because it searches
in the smaller space H. Suppose {(λi, ei)}∞i=1 are the eigen-pairs of the elliptic
operator L with λi in an ascending order. Due to the fact that lim

i→∞
λi = ∞,

the variational term (ψi,Lψi) will be very sensitive when ψi does not align with
the eigenvectors with small eigenvalues. On the contrary, the eigenvalues of
−K, i.e. − 1

λi
, cluster around 0 when i is large, and thus the variational term

(ϕi,Kϕi) sees no difference between en and em for large m and n. In the case
when X = L2(D) and H ⊂ Hk(D), it means that (ψi,Lψi) penalizes more on
rough ψi, but (ϕi,Kϕi) is not very sensitive to the roughness of ϕi. Recall that
the eigenspace Vn := span{e1, . . . , en} contains “smooth” functions in Hk(D),
and thus Problem (2.20) has a better accuracy to locate this subspace, especially
when n is large.

Localized Basis Functions

In the case to compress an elliptic operator L, the positive semi-definite op-
erator K plays the role of the solution operator L−1 and X = L2(D). The
Cameron–Martin space H plays the role of the solution space of L, which is
a subset of Hk(D), equipped with the energy norm ‖ · ‖H . By an appropriate
choice of the basis Φ ≡ [ϕ1, . . . , ϕn] of Φ, the energy minimizing basis functions
in Eqn. (2.16) enjoy good localization properties.

Let {τi}1≤i≤m be a partition of D such that each τi is Lipschitz convex and
of diameter at most h. We also assume that the partition is regular [31]. It
means that if hi denotes the diameter of τi, there exists δ ∈ (0, 1) such that τi
contains a ball centered at xi with diameter

ρi ≥ δhi ∀i = 1, 2, . . . ,m. (2.22)

For second order elliptic operators, Φ can be chosen as the space of piecewise
constant functions, with basis ϕi to be the indicator function of the patch
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τi. In Theorem 2.3.1, we will show that the basis function ψi, defined in
Eqn. (2.16), decays exponentially fast away from its associated patch τi. For
elliptic operators of order 2k (k ≥ 1), Φ can be chosen as the space of (discon-
tinuous) piecewise polynomials, with degree no more than k − 1. We choose
{ϕi,q}m,Qi=1,q=1 to be the basis of Φ, where Q :=

(
k+d−1
d

)
is the dimension of the

d-variate polynomial space with degree no more than k− 1 and {ϕi,q}Qq=1 is an
orthonormal basis of the polynomial space on the patch τi. In Theorem 4.3
and Theorem 4.4 in Part II, we will show that the basis function ψi,q, defined
in Eqn. (2.16), decays exponentially fast away from its associated patch τi for
every 1 ≤ i ≤ Q.

The exponentially decaying property justifies the following local construction
of the basis functions:

ψloci = arg min
ψ∈H

‖ψ‖2
H

s.t. (ψ, ϕj) = δi,j, j = 1, 2, . . . , n,

ψ(x) ≡ 0, x ∈ D\Si,

(2.23)

where Si ⊂ D is a neighborhood of the patch that ψi is associated with.
Compared with Eqn. (2.16), the localized basis ψloci is obtained by solving
exactly the same quadratic problem but on a localized domain Si. Because the
basis function ψi decays exponentially fast away from its associated patch, the
localized basis function ψloci approximates ψi accurately, and the compression
rate E(Ψ loc;K) is at the same order of E(Ψ ;K). Please refer to Theorem 3.6.1,
Theorem 3.6.2 and Corollary 3.6.3 for details.

2.3 Sparse Operator Compression of Second Order Elliptic Equa-
tions

An important class of the operator K is the solution operator of elliptic op-
erators, denoted as L. In this section, we consider the following second order
elliptic equation:

Lu := −∇ · (a(x)∇u(x)) + c(x)u(x) = f(x) x ∈ D,

u ∈ H1
0 (D),

(2.24)

whereD is an open bounded domain in Rd, the potential c(x) ≥ 0 and the diffu-
sion coefficient a(x) is a symmetric, uniformly elliptic d×d matrix with entries
in L∞(D). For simplicity, we consider the homogeneous Dirichlet boundary
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condition here. We emphasize that all our analysis can be carried over for
other types of homogeneous boundary conditions. We assume that there exist
0 < amin ≤ amax and cmax such that

aminId � a(x) � amaxId, 0 ≤ c(x) ≤ cmax x ∈ D. (2.25)

By the Lax-Milgram lemma, Eqn. (2.24) has a unique weak solution u ∈
H1

0 (D), denoted as L−1f or Kf . It is well-known that the operator K :

L2(D) → L2(D) is symmetric, positive definite and compact, and its eigen-
values decay like λm(K) ∼ m−2/d; see e.g. [93]. For any m ∈ N, we want to
construct am-rank operator, denoted as Km, such that (1) ‖K−Km‖ ∼ λm(K),
(2) there exists m basis functions that span the range space of Km and have
exponentially decaying tails.

In this case, X = L2(D). Following the definition of the Cameron–Martin
space, we have H = H1

0 (D) with inner product (u, v)H =
∫
D
∇u · a∇v + cuv.

Construction Of Basis Functions And The Approximation Rate

Let {τi}1≤i≤m be a regular partition of D such that each τi is Lipschitz convex
and of diameter at most h. Following the strategy in Section 2.2, we take

Φ = span{ϕi, 1 ≤ i ≤ m}, Ψ = K(Φ), (2.26)

where ϕi is the characteristic function of the patch τi, i.e., ϕi is equal to one
on τi and zero elsewhere. From the Poincare inequality, we can easily get that:

‖u− P(X)
Φ u‖L2(D) ≤

h

π
√
amin
‖u‖H ∀u ∈ H1(D). (2.27)

Proof. By the construction of Φ, u − P(X)
Φ u = u −

∫
τi
u/|τi| on patch τi. By

the Poincare inequality,

‖u−
∫
τi

u/|τi|‖L2(τi) ≤ h/π‖∇u‖L2(τi), (2.28)

where the Poincare constant is taken to be 1/π since τi is Lipschitz convex.
Therefore, we have

‖u−P(X)
Φ u‖L2(D) ≤ h/π‖∇u‖L2(D) ≤

h

π
√
amin

(∫
D

∇u · a∇u
)1/2

≤ h

π
√
amin
‖u‖H .

We used a � aminId in the last second inequality.
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According to Theorem 2.2.1, we have

1. For any u ∈ H and Lu = f , we have

‖u− P(H)
Ψ u‖H ≤

h

π
√
amin
‖f‖L2(D) . (2.29)

2. For any u ∈ H and Lu = f , we have

‖u− P(H)
Ψ u‖L2(D) ≤

h2

π2amin
‖f‖L2(D) . (2.30)

3. We have
‖K − P(H)

Ψ K‖ ≤ h2

π2amin
. (2.31)

Since m ≈ 1/hd where m is the number of local patches τi, we have

‖K − P(H)
Ψ K‖ <

∼
λm(K) . (2.32)

Therefore, the m-dimensional subspace Ψ compresses the solution operator K
at the optimal rate.

Exponential Decay Of Basis Functions

In this subsection, we will prove that the basis function ψi for a second order
elliptic PDE has exponential decay away from τi. When c ≡ 0, this problem
has been studied in [99]. When c 6= 0, it has been recently studied in [101]
independently of our work. The results presented in this second order case
are not new. We would like to use the simpler second order elliptic PDE
example to illustrate the main ingredients in the proof of exponential decay
for a higher order elliptic PDE, namely, the recursive argument, the projection-
type approximation property, and the inverse energy estimate.

To simply our notations, for any ψ ∈ H and any subdomain S ⊂ D, ‖ψ‖H(S)

denotes
(∫

S
∇ψ · a∇ψ + cψ2

)1/2. In this chapter (second order elliptic opera-
tor with low contrast coefficients), the projection-type approximation property
is simply the Poincare inequality, as we have used in the last subsection to ob-
tain the error estimate. The following lemma provides us the inverse energy
estimate, which is a special case of Lemma 3.5.1.

Lemma 2.3.1. For any domain partition with h ≤ h0 ≡ π
√

amax
2cmax

, we have

‖Lv‖L2(τj) ≤
√
amaxC(d, δ)h−1‖v‖H(τj), ∀v ∈ Ψ ,∀j = 1, 2, . . . ,m, (2.33)
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where C(d, δ) =
√

8d(d+ 2)δ−1−d/2. If cmax = 0, i.e. c(x) ≡ 0, Eqn. (2.33)
holds true for all h > 0 and C(d, δ) =

√
4d(d+ 2)δ−1−d/2.

Now we are ready to prove the exponential decay of the basis function ψi.

Theorem 2.3.1. For h ≤ h0 ≡ π
√

amax
2cmax

, it holds true that

‖ψi‖2
H(D∩(B(xi,r))c)

≤ exp(1− r

lh
)‖ψi‖2

H(D) (2.34)

with l = e−1
π

(1+C(d, δ))
√

amax
amin

and C(d, δ) =
√

8d(d+ 2)(1/δ)d/2+1. If cmax =

0, i.e. c(x) ≡ 0, Eqn. (2.34) holds true for all h > 0 with l = e−1
π

(1 +

C(d, δ))
√

amax
amin

and C(d, δ) =
√

4d(d+ 2)δ−1−d/2.

Proof. Let k ∈ N, l > 0 and i ∈ {1, 2, . . . ,m}. Let S0 be the union of
all the domains τj that are contained in the closure of B(xi, klh) ∩ D, let
S1 be the union of all the domains τj that are not contained in the closure of
B(xi, (k+1)lh)∩D and let S∗ = Sc0∩Sc1∩D (be the union of all the remaining
elements τj not contained in S0 or S1), as illustrated in Figure 2.2.

Figure 2.2: Illustration of S0, S1, and S∗.

Let bk := ‖ψi‖2
H(Sc0), and from definition we have b0 = ‖ψi‖2

H(D), bk+1 =

‖ψi‖2
H(S1) and bk − bk+1 = ‖ψi‖2

H(S∗). The strategy is to prove that for any
k ≥ 1, there exists constant C such that bk+1 ≤ C(bk − bk+1). Then we
have bk+1 ≤ C

C+1
bk for any k ≥ 1 and thus we get the exponential decay

bk ≤ ( C
C+1

)k−1b1 ≤ ( C
C+1

)k−1b0. We will choose l such that C ≤ 1
e−1

and thus
get bk ≤ e1−kb0, which gives the result (2.34). We start from k = 1 because
we want to make sure τi ∈ S0, otherwise S0 = ∅ and τi ∈ S∗.
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Now, let’s prove that for any k ≥ 1, there exists constant C such that bk+1 ≤
C(bk− bk+1), i.e., ‖ψi‖2

H(S1) ≤ C‖ψi‖2
H(S∗). Let η be the function on D defined

by η(x) = dist(x, S0)/ (dist(x, S0) + dist(x, S1)). Observe that (1) 0 ≤ η ≤ 1

(2) η is equal to zero on S0 (3) η is equal to one on S1 (4) ‖∇η‖L∞(D) ≤ 1
lh
. 1

By integration by parts, we obtain∫
D

η∇ψi · a∇ψi +

∫
D

ηc|ψi|2 =

∫
D

ηψi(−∇ · (a∇ψi) + cψi)︸ ︷︷ ︸
I2

−
∫
D

ψi∇η · a∇ψi︸ ︷︷ ︸
I1

.

(2.35)
Since a � 0 and c ≥ 0, the left hand side gives an upper bound for ‖ψi‖H(S1).
Combining ∇η ≡ 0 on S0 ∪S1 and the Cauchy-Schwartz inequality, we obtain

I1 ≤ ‖∇η‖L∞(D)‖ψi‖L2(S∗)

(∫
S∗
∇ψi · a∇ψi

)1/2√
amax

≤ 1

lh
‖ψi‖L2(S∗)‖ψi‖H(S∗)

√
amax.

(2.36)

We have used c ≥ 0 to get
(∫

S∗
∇ψi · a∇ψi

)1/2 ≤ ‖ψi‖H(S∗) in the last in-
equality. By the construction of ψi (2.16), we have

∫
D
ψiϕj = 0 for i 6= j.

Thanks to (2.18), we have −∇ · (a∇ψi) + cψi ∈ Φ. Therefore, we have∫
S1
ηψi(−∇ · (a∇ψi) + cψi) = 0. Denoting ηj as the volume average of η

over τj, we have

I2 = −
∫
S∗
ηψi(−∇ · (a∇ψi) + cψi) = −

∑
τj∈S∗

∫
τj

(η − ηj)ψi(−∇ · (a∇ψi) + cψi)

≤ 1

l

∑
τj∈S∗

‖ψi‖L2(τj)‖Lψi‖L2(τj).

(2.37)

Up to now, I1 and I2 are some quantities of ψi purely on S∗, and we only need
to prove that both of them can be bounded by ‖ψi‖2

H(S∗) (up to a constant).
By applying the Poincare inequality, we can easily do this for I1, as we will see
soon. However, I2 involves the high-order term ‖Lψi‖L2(τj) which in general
may not be bounded by the lower order term ‖ψi‖H(S∗). Fortunately, this can
be proved since Lψi ∈ Φ, the piece-wise constant function space. Specifically,
Lemma 2.3.1 says ‖Lψi‖L2(τj) ≤

√
amaxC(d, δ)h−1‖ψi‖H(τj) when h ≤ h0 ≡

π
√

amax
2cmax

. Then, we obtain

I2 ≤
√
amaxC(d, δ)

lh
‖ψi‖L2(S∗)‖ψi‖H(S∗) ∀h ≤ h0. (2.38)

1‖∇η‖L∞(D) := ess sup
x∈D

|∇η(x)|.
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By the construction of ψi (2.16), we have
∫
τj
ψi = 0 for all τj ∈ S∗. By the

Poincare inequality, we have ‖ψi‖L2(τj) ≤ ‖∇ψi‖L2(τj)h/π, and then we obtain

‖ψi‖2
H(S1) ≤ I1 + I2 ≤

1 + C(d, δ)

πl

√
amax
amin

‖ψi‖2
H(S∗). (2.39)

By taking l ≥ e−1
π

(1 + C(d, δ))
√

amax
amin

, we have the constant 1+C(d,δ)
πl

√
amax
amin

≤
1

e−1
. With the iterative argument given before, we have proved the exponential

decay.

Remark 2.3.1. We point out that boundary conditions may be important in
several applications. For example, the Robin boundary condition is useful in
the application of the SPCA; see our application in Section 2.4. The peri-
odic boundary condition is useful in compressing a Hamiltonian with periodic
boundary condition in quantum physics; see our numerical example in Sec-
tion 2.5.

The above proof can be applied to the operator L in (2.24) with other boundary
conditions as long as the corresponding problem Lu = f has a unique solution
u ∈ Hk(D) for every f ∈ L2(D). For other homogeneous boundary conditions,
the Cameron–Martin space is not H1

0 (D) but the solution space associated with
the corresponding boundary condition. The proof of Theorem 2.3.1 can be easily
carried over to other homogeneous boundary conditions, and the only difference
is that a different boundary condition leads to slightly different integration by
parts (2.35). For the homogeneous Neumann boundary condition and the peri-
odic boundary condition, the proof is exactly the same because the integration
by parts (2.35) can be carried out in exactly the same way. For the problems
with the Robin boundary condition, i.e.

Lu := −∇ · (a(x)∇u(x)) + c(x)u(x) = f(x) x ∈ D,
∂u

∂n
+ α(x)u(x) = 0 x ∈ ∂D,

(2.40)

where α(x) ≥ 0, the Cameron–Martin space is the subspace of H1(D) in which
all elements satisfy the Robin boundary condition and the associated energy
norm is defined as

‖u‖2
H =

∫
D

∇u · a∇u+

∫
D

cu2 +

∫
∂D

αu2. (2.41)
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In this case, for a subdomain S ⊂ D, the local energy norm on S should be
modified as follows:

‖u‖2
H(S) =

∫
S

∇u · a∇u+

∫
S

cu2 +

∫
∂D∩∂S

αu2. (2.42)

Similarly, we can define the Cameron–Martin space and the associated energy
norm for the homogeneous mixed boundary conditions.

Localization Of The Basis Functions

Theorem 2.3.1 allows us to localize the construction of basis functions ψi as
follows. For r > 0, let Sr be the union of the subdomains τj intersecting
B(xi, r) (recall that B(xi, δhi/2) ⊂ τi) and let ψloci be the minimizer of the
following quadratic problem:

ψloci = arg min
ψ∈H1

0 (Sr)

‖ψ‖2
H

s.t.
∫
ϕjψ = δi,j, ∀1 ≤ j ≤ m.

(2.43)

We will naturally identify ψloci with its extension to H1
0 (D) by setting ψloci = 0

outside of Sr.

If the elliptic operator L is given with some other homogeneous boundary
condition, the localized problem (2.43) should be modified slightly as follows
such that the basis function ψi honors the given boundary condition on ∂D:

ψloci = arg min
ψ∈H

‖ψ‖2
H

s.t.
∫
ϕjψ = δi,j, ∀1 ≤ j ≤ m,

ψ(x) ≡ 0 x ∈ D\Sr.

(2.44)

When ∂Sr ∩ ∂D = ∅, Eqn. (2.44) is equivalent to Eqn. (2.43). However, when
∂Sr∩∂D 6= ∅, Eqn. (2.44) only enforces the zero Dirichlet boundary condition
on ∂Sr\∂D, but honors the original boundary condition on ∂D.

Thanks to the exponential decay of the energy minimizing basis functions
{ψi}mi=1, Sr with radius r = O(h log(1/h)) is sufficient to guarantee that the
localized basis functions {ψloci }mi=1 have the same compression accuracy as the
exponentially decaying basis functions. The following three theorems demon-
strate such properties of the localized basis functions {ψloci }mi=1. These the-
orems are the special case (k = 1) of Theorem 3.6.1, Theorem 3.6.2, and
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Corollary 3.6.3 in Chapter 3. We refer to Section 3.6 in Chapter 3 for their
proofs.

Theorem 2.3.2. Under the same assumptions as those in Theorem 2.3.1, for
any 1 ≤ i ≤ m and h ≤ h0 ≡ π

√
amax
2cmax

, it holds true that

‖ψi − ψloci ‖H(D) ≤ C3h
−d/2−1 exp(−r − 2h

2lh
), (2.45)

where

C3 = C(d, δ)

(
e2d+1amax
Vdδd

)1/2
((

2

π

√
amax
amin

+ 1

)2

+
2

π

√
amax
amin

C(d, δ)

)1/2

.

Here, the constants C(d, δ) and l are from Theorem 2.3.1, and Vd is the volume
of the unit d-dimensional ball.

When c(x) ≡ 0, i.e. Lu = −∇· (a(x)∇u), Eqn. (2.45) holds true for all h > 0.
In this case, the constant C3 can be taken as

C3 = C(d, δ)

(
e2damax
Vdδd

)1/2
((

1

π

√
amax
amin

+ 1

)2

+
1

π

√
amax
amin

C(d, δ)

)1/2

.

Theorem 2.3.3. Let u ∈ H1
0 (D) be the weak solution of Lu = f and ψloci

be the localized basis functions defined in Eqn. (2.43). Then for r ≥ (d +

4)lh log(1/h) + 2(1 + l logC4)h, we have

inf
v∈Ψloc

‖u− v‖H(D) ≤
2h

π
√
amin
‖f‖L2(D). (2.46)

The constants C4 = πa
1/2
minC3Ce. Here, C3 is defined in Theorem 2.3.2, and Ce

is the constant such that ‖u‖L2(D) ≤ Ce‖f‖L2(D) holds true.

Theorem 2.3.3 shows that we can obtain a linear convergence rate in the energy
norm when our localized basis functions {ψloci }mi=1 are used as basis functions in
the multiscale finite element method. By applying the Aubin-Nistche duality
argument, we can get the following corollary.

Corollary 2.3.4. Let ψloci,q be the localized basis functions defined in Eqn. (2.43).
Then for r ≥ (d+ 4)lh log(1/h) + 2(1 + l logC4)h, we have

‖K − P(H)

Ψloc
K‖ ≤ 4h2

π2amin
, (2.47)

where all the constants are the same as those defined in Theorem 2.3.3.
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Corollary 2.3.4 shows that we can compress the symmetric positive semidefinite
operator K with the optimal rate h2 and with the nearly optimal localized basis
(with support size of order h log(1/h)).

Connections To The LOD Method

In the localizable orthogonal decomposition (LOD) [89], the authors introduce
a modified Clément interpolation Ih on a uniform mesh with mesh size h, write
V f the kernel of Ih (i.e., the set of functions u such that Ihu = 0), and identify
the finite element space Ψ as the orthogonal complement of V f with respect
to the inner product defined by a(u, v) =

∫
D
uLv for u, v ∈ H1

0 (D). The finite
element basis ψi is identified by λi − PaV fλi, where λi is the nodal piecewise
linear element and Pa

V f
λi is its projection onto the space V f with respect to

(w.r.t.) the inner product a(u, v). The work [89] shows that this finite element
basis Ψ achieves the optimal compression rate. Moreover, they showed that
the finite element basis function ψi decays exponentially fast away from its
associated node, and thus can be localized to local patches of sizeO(h log(1/h))

without loss of accuracy. The authors of [89] have also considered other types
of Clément-type quasi-interpolation in the LOD method, and have used them
to solve different kinds of second-order elliptic equations; see e.g. [109, 110,
60].

The general LOD method can be interpreted in the framework of the Sparse
OC. Let Th denote a regular triangulation of D into closed simplices, Nh =

{zi}mi=1 denote the set of all interior mesh nodes in Th and Vh ⊂ H1
0 (D) the

corresponding piecewise linear finite element space. Given {ϕi}mi=1 ⊂ L2(D),
a Clément-type quasi-interpolation operator Ih : H1

0 (D)→ Vh is defined by

Ihv :=
∑
zi∈Nh

(

∫
D

ϕiv)λi, (2.48)

where λi ∈ L2(D) is the piecewise linear element centered at zi. In [89], ϕi
is taken as the normalized nodal piecewise linear element λi, i.e., ϕi = λi∫

D λi
.

With the Clément-type quasi-interpolation operator given in Eqn. (2.48), the
global exponentially decaying basis functions {ψi}mi=1 are the unique solution
of the following energy-minimizing problem:

ψi = arg min
ψ∈H1

0 (D)

‖ψ‖2
H

s.t.
∫
ϕjψ =

∫
ϕjλi, ∀1 ≤ j ≤ m.

(2.49)
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Like what we have done in the Sparse OC, the construction of ψi can be
localized onto a neighborhood of zi, denoted by Sr. The localized basis function
ψloci in the LOD method is the unique solution of the following local energy-
minimizing problem:

ψloci = arg min
ψ∈H1

0 (Sr)

‖ψ‖2
H

s.t.
∫
ϕjψ =

∫
ϕjλi, ∀1 ≤ j ≤ m.

(2.50)

Comparing Eqn. (2.43) and (2.50), we can clearly see the similarity between the
LOD method and the Sparse OC. Moreover, our error analysis (Theorem 2.2.1)
can be directly used to prove the optimal linear convergence rate of the global
basis {ψi}mi=1 given by Eqn. (2.49). Although our proof (following the proof
in [99]) is different from the proof in [89], we share some essential elements.
First of all, we both use a recursive argument to prove the exponential decay
of basis functions. As far as we know, this kind of recursive argument first
appeared in [89]. Secondly, the Poincare inequality plays an essential role
in both proofs, i.e., the local projection-type approximation property in our
proof and the assumption (2.5.a) in [89]. Thirdly, the stability condition of
the Clément-type quasi-interpolation operator (see assumption (2.5.b) in [89])
plays a similar role as our inverse energy estimate.

Finally, although [89] contains the first rigorous proof of exponential decay
for such energy-minimizing basis functions, the idea of its proof uses in a
crucial way the projection properties of the Clement interpolation operator
(associated with the underlying implicit measurement functions used in [89]),
which hinders its generalization. The proof of exponential decay provided in
[99] uses a combination of energy and inverse energy estimates instead and
enables the generalization beyond measurements derived from the Clement
interpolation operator as acknowledged in [109] (Page 8).

“In a setting with a modified trial space, further generalisations
are possible. Since VH does not appear any more in the method, its
conformity can be relaxed as it was recently proposed in [99] in the
context of a multilevel solver for Poisson-type problems with L∞

coefficients. This approach enables one to compute very general
quantities of the solution such as piecewise mean values.”
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Therefore, we choose to follow [99] to generalize this idea to high-order elliptic
operators and to second-order elliptic operator with high-contrast coefficients.

2.4 Application in Sparse Principal Component Analysis

In spatial statistics, geostatistics, machine learning and image analysis, the
Matérn covariance [92] is used to model random fields with smooth samples;
see e.g. [121, 58, 53]. The Matérn covariance between two points x, y ∈ D ⊂ Rd

is given by

Kν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
, (2.51)

where Γ is the gamma function, Kν is the modified Bessel function of the
second kind, and ρ and ν are non-negative parameters of the covariance. Its
Fourier transform is given by

k̂(ω) = cν,λσ
2

(
2ν

λ2
+ |ω|2

)−(ν+d/2)

, cν,λ :=
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)λ2ν
, (2.52)

where we use the convention f̂(ω) =
∫
Rd f(x)e−ix·ωdx for the Fourier transform.

For both sampling from the random fields and performing basic computations
like marginalization and conditioning, we need to compress the Matérn covari-
ance operator K : L2(D) → L2(D), the Hilbert-Schmidt operator with kernel
Kν(x, y), with rank-n covariance operators:

Eoc(Ψ ;K) := min
Kn∈Rn×n, Kn�0

‖K −ΨKnΨ
T‖2, (2.53)

where Ψ = [ψ1, . . . , ψn] span the range space of the approximate operator
ΨKnΨ

T . Recent study [83, 16] shows that the Matérn covariance and the
elliptic operators are closely connected. With proper homogeneous bound-
ary conditions, the Matérn covariance operator with ν + d/2 as an integer
is the solution operator of an elliptic operator of order 2ν + d. For exam-
ple, Matérn covariance operator with ν = 1/2 is the solution operator of a
second order elliptic operator (2lσ2)−1

(
1− ρ2 d2

dx2

)
when the physical dimen-

sion d = 1, and is the solution operator of a fourth order elliptic operator
(8πρ3σ2)−1 (1− 2ρ2∆ + ρ4∆2) when d = 3. The Matérn covariance opera-
tor with ν = 1 is the solution operator of the fourth order elliptic operator
(4πρ2σ2)−1 (1− 2ρ2∆ + ρ4∆2) when d = 2. Note that the elliptic operator that
is associated with the Matérn covariance contains lower order terms. Thus, it
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is essential that our analysis can accommodate lower order terms and various
boundary conditions.

Based on Eqn. (2.17) and (2.18), we can also compute the exponentially de-
caying basis functions from the covariance operator K. In this example, we
apply our method to compress the following exponential kernel

K(x, y) = exp(−|x− y|) x, y ∈ [0, 1], (2.54)

which is exactly the Matérn covariance (2.51) with ν = 1/2, σ = 1 and ρ = 1.
This problem has been studied by different groups; see e.g. [52, 38, 64, 8]. We
remark that since the Matérn covariance function corresponds to the solution
operator of an elliptic PDE with constant coefficient, one can compress the
Matérn covariance kernel by using a piecewise linear polynomial or wavelets
with optimal locality and accuracy. It is not necessary to use the exponential
decaying basis to perform the operator compression. We use this example to
illustrate that our method can be also applied to compress a general kernel
function.

We partition the interval [0, 1] uniformly into m = 26 patches, and follow our
strategy to construct basis functions. By the Fourier transform, we know that
it is associated with the second order elliptic operator 1

2

(
1− d2

dx2

)
. Therefore,

we take Φ as piecewise constant functions, and then compute Ψ by Eqn. (2.17)
and (2.18). In Figure 2.3, we plot ϕ32 and ψ32, which is associated with
the patch [1/2 − h, 1/2]. We can see that the basis function ψ32 clearly has
an exponential decay. We take m = 2i for 0 ≤ i ≤ 7, and compute the
compression error E(Ψ ;K). The result is shown in Figure 2.4. We can see that
the exponentially decaying basis functions Ψ has nearly the same compression
rate with the eigendecomposition.

One can easily verify that the exponential kernel (2.54) is the Green’s function
of the following second order elliptic equation

−1

2
u′′(x) +

1

2
u = f(x), 0 < x < 1,

u(0)− u′(0) = 0, u(1) + u′(1) = 0,
(2.55)

whose associated energy norm is

‖u‖2
H(D) =

1

2

(
u(0)2 + u(1)2 +

∫ 1

0

(u′)2 +

∫ 1

0

u2

)
. (2.56)
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Figure 2.3: The basis function associated with patch [1/2− h, 1/2].
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Figure 2.4: The operator compression error E(Ψ ;K) (2.53) for the exponential
kernel (2.54) with exponentially decaying basis functions Ψ . They have nearly
the same compression error as the eigenfunctions of K.

Solving the localized variational problem (2.44), we can get localized basis
functions Ψ loc. With different sizes of the support Sr, we compute the com-
pression error E(Ψ loc;K) for m = 2i (0 ≤ i ≤ 7). The results are summarized
in Figure 2.5. In the left subfigure of Figure 2.5, we take the support with size
Ch, for C = 3, 5, 7, 9, and 11. In the right subfigure of Figure 2.5, we take the
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support with size Ch log2(1/h), for C = 2, 2.1 and 2.4. For a support of size
Ch log2(1/h), it contains dC log2(1/h)e patches, where dC log2(1/h)e is the
smallest integer following C log2(1/h). We can see that the constant oversam-
pling strategy does not work well, while the h log2(1/h) oversampling strategy
has the optimal second order convergence rate as our Corollary 2.3.4 predicted.
For m = 27 and r = 2.4h log2(1/h), the constructed localized basis functions
achieves the same operator compression error as that using 128 eignefunctions.
We show several basis functions ψloci in Figure 2.6. One can see that the basis
functions on the boundary honor the Robin boundary conditions.
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Figure 2.5: The operator compression error E(Ψ loc;K) (2.53) with localized
basis functions Ψ loc. The constant oversampling strategy (left) does not work
well, while the h log2(1/h) oversampling strategy (right) has the optimal sec-
ond order convergence rate.
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Figure 2.6: A few basis functions for the case m = 27 and r = 2.4h log2(1/h).
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2.5 Application in Constructing Localized Wannier Functions

In this section, we consider the Hamiltonian of a free particle in a bounded
domain D = [−π, π] with periodic boundary condition

H = −∆. (2.57)

Suppose its eigen decomposition is given by Hei = λiei, where λi are the
eigenvalues in increasing order and ei are the corresponding eigenfunctions.
We denote Vn = span{vi : 1 ≤ i ≤ n}, the n-dimensional low-lying eigenspace.
We want to construct n localized basis functions {ψi}ni=1 that can span Vn

accurately. This problem is studied extensively before; see e.g. [90, 42, 91,
107, 78]. In this section, we propose to use the operator compression error
E(Ψ ;H−1) (2.2) to quantify the compression error. Compared with other
existing methods, our variational construction is guaranteed to obtain the op-
timal compression error with nearly optimally localized basis functions, and is
much more efficient due to its convexity and decoupling in computing different
basis functions. We will briefly review the compressed modes [107] from the
l1 approach and compare it with our Sparse OC.

Construction via The l1 Approach

In [107], the authors proposed a novel method to create a set of localized
functions {ψi}ni=1, which are compressed modes, such that

∑n
i=1 ψ

T
i Hψi ap-

proximates En =
∑n

i=1 λi. The locality is accomplished by introducing an l1
regularization of the basis functions into the variational formulation of eigen-
decomposition:

E = min
Ψn

n∑
i=1

(
1

µ
‖ψi‖1 + 〈ψi,Hψi〉

)
s.t. 〈ψi, ψj〉 = δij ∀1 ≤ i, j ≤ n,

(2.58)

where Ψn = {ψi}ni=1 and the l1 norm is defined as ‖ψi‖1 =
∫
D
|ψi(x)|dx. The

parameter µ controls the trade-off between sparsity and accuracy: larger values
of µ gives solutions that better minimize the total energy at the expense of
more extended basis functions, while a smaller µ will give highly localized wave
functions at the expense of larger errors in the calculated ground state energy
En.

The authors of [107] solve the non-convex problem (2.58) using the algorithm
of splitting orthogonality constraint (SOC) proposed in [79]. By discretizing
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H into an N -by-N Hermitian matrix, still denoted as H, and introducing
auxiliary variablesQ = Ψ and P = Ψ, Eqn. (2.58) is equivalent to the following
constrained problem:

min
Ψ,P,Q∈RN×n

1

µ
‖Q‖1 + Tr(ΨTHΨ)

s.t. Q = Ψ, P = Ψ, P TP = In,

(2.59)

where ‖Q‖1 is the entry-wise l1 norm of the matrix Q. Problem (2.59) can
be solved by the following SOC algorithm based on split Bregman iteration,
see Algorithm 1. The above subminimization problems can be easily solved as

Algorithm 1 The algorithm of splitting orthogonality constraint (SOC)
1: Initialize Ψ0

n = P 0 = Q0, b0 = B0 = 0.
2: while “not converged” do
3: Ψk

n = arg minΨ Tr(ΨTHΨ) + λ
2
‖Ψ − Qk−1 + bk−1‖2

F + r
2
‖Ψ − P k−1 +

Bk−1‖2
F .

4: Qk = arg minQ
1
µ
‖Q‖1 + λ

2
‖Ψk

n −Q+ bk−1‖2
F .

5: P k = arg minP
r
2
‖Ψk

n − P +Bk−1‖2
F s.t. P TP = In.

6: bk = bk−1 + Ψk
n −Q.

7: Bk = Bk−1 + Ψk
n − P .

8: end while

followings

(2H + λ+ r)Ψk
n = r(P k−1 −Bk−1) + λ(Qk−1 − bk−1), (2.60)

Qk = Shrink(Ψk
n + bk−1, 1/(λµ)), (2.61)

P k = (Ψk
n +Bk−1)UΛ−1/2ST , (2.62)

where UΛST = svd
(
(Ψk

n +Bk−1)T (Ψk
n +Bk−1)

)
and the “Shrink” operator is

defined as Shrink(u, δ) = sgn(u) max(0, |u| − δ).

To resolve the small scales in the basis functions, we typically discretize H
such that N = Cn, say N = 16n or N = 32n, where C is number of nodes to
resolve small scales in each localized basis function. In each iteration, the most
time consuming part is Eqn. (2.62), which involves an SVD factorization and
can be straightforwardly solved with an O(n3) algorithm. If we are allowed
to use the support as prior knowledge, the orthogonality constraint P TP = I

can be replaced by a system of banded orthogonality constraints:∫
ψjψk = δjk, , j = 1, . . . , n, k = j, j ± 1, . . . , j ± p,
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where p is the band width. Taking advantage of this banded structure, the
complexity in the SVD step can be reduced to O(8p3n). See [107] for more
details. Typically, Algorithm 1 takes hundreds of iterations to converge, de-
pending on the choice of the parameters λ and r and the convergence criterion.

Construction via the Sparse OC

Applying the Sparse OC to H = −1
2
∆ + V (x), the localized basis functions

{ψi}ni=1 are constructed as follows. First of all, we partition the physical do-
main D using a regular mesh {τi}ni=1. We denote the mesh size h. Second,
we choose r > 0, say r = 2h log(1/h). For each patch τi, let Sr be the union
of the subdomains τi′ intersecting B(xi, r) (for some xi ∈ τi), see Figure 2.1.
Finally, let ϕi be the indicator function of the patch τi. The basis function
ψi is obtained from the following convex optimization problem, which has a
quadratic objective and several linear constraints:

ψi = arg min
ψ∈H1

B(D)

〈ψ,Hψ〉

s.t.
∫
Sr

ψϕj = δi,j, ∀1 ≤ j ≤ n,

ψ(x) ≡ 0, x ∈ D\Sr.

(2.63)

In Eqn. (2.63), H1
B(D) is a subspace of H1(D) that contains the functions

satisfying the prescribed boundary condition B, such as the periodic boundary
condition. The parameter r directly controls the size of the support of ψi. For
V (x) ≥ 0, we have proved that by choosing r = Ch log(h), we can achieve
the optimal operator compression error and nearly optimally localize the basis
functions simultaneously.

Eqn. (2.63) is a convex optimization problem with a quadratic objective and
several linear constraints, and it can be solved very efficiently as follows. First
of all, we discretize H and ψ on a fine mesh (a refined mesh over the partition
{τi}ni=1) with linear nodal basis functions, and we get the discretized H ∈
RN×N and ψ ∈ RN . Suppose Ii is the set of fine mesh nodes that lies in Sr,
and Ici is the set of the other nodes. Therefore, the constraint ψ(x) ≡ 0 for
x ∈ D\Sr is ψ|Ici ≡ 0. The linear constraints

∫
Sr
ψϕj = δi,j for all 1 ≤ i ≤ n

are written as ΦTψ = ei, where ei ∈ Rn is the i-th column of the identity
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matrix In. Therefore, we can obtain ψi by solving the following problem:

ψi = arg min
ψ∈RN

ψTHψ

s.t. ΦTψ = ei, ψ|Ici ≡ 0.

(2.64)

By the method of Lagrange multipliers, the nonzero part of ψi, i.e., ψi|Ii , can
be efficiently solved by solving[

Hi Φi

ΦT
i 0

][
ψ

l

]
=

[
0

ei

]
, (2.65)

where Hi = H(Ii, Ii), Φi = Φ(Ii, :), and l ∈ Rn is the Lagrange multi-
plier. Since we take r = Ch log(1/h), say r = 2h log(1/h), the number
of fine grid nodes in Sr, i.e. |Ii|, is O(N

n
log n). The problem (2.64) or

Eqn. (2.65) can be solved efficiently by the multigrid method, with complexity
O
(
N
n

log n(log N
n

+ log log n)c
)
for some constant c. Since every ψi is solved in-

dependently, the complexity to obtain all the localized basis functions {ψi}ni=1

is simply O
(
N log n(log N

n
+ log log n)c

)
. Compared with the SOC algorithm

to solve the l1 penalized problem (2.58), the complexity of the Sparse OC is
comparable to that of a single iteration in the SOC algorithm.

Numerical Results

In this section, we compare the l1 approach with the Sparse OC by the free-
electron model in [107]. The Hamiltonian of the free-electron model is H =

−1
2
∆. We consider D = [0, 50] as the physical space, as in [107]. We discretize

D into with a fine mesh hf = 1/1024, and the resulting discretized Hamiltonian
H ∈ RN×N where N = 1024. We are interested in approximating the first
n = 128 low-lying eigenspace. In our comparison, with the same support size
for ψi, we compare their performance in approximating the first n eigenvalues
of H, i.e. {λi}ni=1, and the density ρ(x) =

∑n
i=1 e

2
i (x).

We would like to thank Professor Rongjie Lai for providing his code to solve the
l1 penalized problem (2.58). All the computations are performed in Matlab
2016a on a Macbook Pro 10.1 with 2.3 GHz Intel Core i7 processor. Since
every ψi in the Sparse OC is solved independently, it is embarrassingly easy
to implement it in a parallel fashion. However, in order to compare the total
computational complexity of two approaches, we do not use parallel computing
in the following comparison.
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The l1 approach

In this subsection, we recreate the result in [107] with µ = 0.84. We will see
that this µ gives roughly the same support size as that given by the Sparse
OC. We pick

λ = r = 1/h2
f = 419.43

in Algorithm 1.

After 390 iterations, the l1 approach achieves 1e-7 relative energy decrease,
and the iteration is stopped. The total time is 4.426 secs. Every iteration
takes 0.013 sec. Eight of the compressed modes are shown in Figure 2.7. It
seems that the compressed modes also have exponential decay near its peak.
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Figure 2.7: A few compressed modes from the l1 approach, m = 27, µ = 0.84

We can approximate eigenvalues of H by the eigenvalues of ΨTHΨ. The
approximate eigenvalues are plotted in Figure 2.8.
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Figure 2.8: The eigenvalues of ΨTHΨ , m = 27, µ = 0.84

We also plot the approximate density ρ(x) =
∑n

i=1 ψ
2
i (x) in Figure 2.9. We

can see that the density approximation is also not very accurate.
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Figure 2.9: Density approximation by the l1 approach.

The sparse operator compression

In this subsection, we show the results given by the Sparse OC. We take the
support size of the localized basis as r = h log2(h). It takes 0.035 sec to obtain
all the 128 localized basis functions, without parallel computing. We can see
that the total cost of Sparse OC is smaller than the cost per iteration in the
l1 approach. Eight of the localized modes are shown in Figure 2.10. We can
see that the localized modes look very similar to the compressed modes in
Figure 2.7.
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Figure 2.10: A few basis functions for the case m = 27 and r = h log2(1/h).

We can approximate eigenvalues of H by the eigenvalues of QTHQ, where Q
is an orthonormal basis spanning Ψ. The approximate eigenvalues are plot-
ted in Figure 2.11. The approximate eigenvalues are very similar to those in
Figure 2.8.

We also plot the approximate density ρ(x) =
∑n

i=1 ψ
2
i (x) in Figure 2.12. We

can see that the density approximation is inaccurate, as for the l1 approach in
Figure 2.9.
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Figure 2.11: The eigenvalues of QTHQ and H; Q is an orthonormal basis of
Ψ .
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Figure 2.12: Density approximation by the Sparse OC.

The operator compression error of the Sparse OC is plotted in Figure 2.13, with
different support sizes. As Corollary 2.3.4 predicts, the operator compression
error is nearly optimal, i.e., decays like h2, when the support size is taken as
r = Ch log(1/h) for some constant C > 0.
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Figure 2.13: The operator compression error E(Ψ ; (L + 1)−1) for the Hamil-
tonian with localized basis functions Ψ loc.
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Conclusions of The Comparison

We summarize our comparison with the following four points.

1. With roughly the same width of the localized modes, the results given
by the l1 approach and the Sparse OC are very similar, in terms of
the shape of the localized modes, the approximate eigenvalues, and the
approximate density function.

2. The computation cost of each iteration for the l1 approach is comparable
to the Sparse OC. The l1 approach needs many iterations to solve the
nonconvex problem, although the number of iterations are only in the
hundreds for a good choice of parameters λ and r.

3. Further speed up of the SOC algorithm is possible if one is allowed to use
the support as prior knowledge. Parallel computing is also possible in
solving both Ψk

n and P k. In the Sparse OC, we can directly localize the
support because we have proved that the localization will not affect the
operator compression error. The Sparse OC can be easily executed in
parallel, due to the decoupling of construction of every basis. Therefore,
the Sparse OC is expected to be even faster if executed in parallel.

4. The SOC algorithm will converge for any choice of µ although we might
need to be more careful about parameters. As the proposed l1 regularized
problem is nonconvex, the ADMM type methods only converge when the
parameter r is greater than a certain number (according to Prof. Rongjie
Lai).
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C h a p t e r 3

SPARSE OPERATOR COMPRESSION OF HIGHER ORDER
ELLIPTIC OPERATORS

In Chapter 2, we introduced the sparse operator compression to compress a
self-adjoint positive semi-definite operator K : L2(D) → L2(D) by localized
basis functions, where D is a bounded domain in Rd. We applied our method
to second order elliptic operators with rough and multiscale coefficients and
various boundary conditions. We showed that on a regular mesh with mesh
size h, our localized basis functions have supports of diameter h log(1/h), and
give optimal compression rate of the solution operator. The main purpose of
this chapter is to apply our sparse operator compression to higher order elliptic
operators, and to show that our localized basis functions are able to give the
optimal approximation property of the solution operator.

3.1 Problem Setting

Let L be a self-adjoint elliptic operator

Lu =
∑

0≤|σ|,|γ|≤k

(−1)|σ|Dσ(aσγ(x)Dγu), (3.1)

where the coefficients aσγ ∈ L∞(D), D is a bounded domain in Rd, σ =

(σ1, . . . , σd) is a d-dimensional multi-index. Consider the elliptic equation with
the homogeneous Dirichlet boundary conditions

Lu = f, u ∈ Hk
0 (D), (3.2)

where the load f ∈ L2(D). Here, we only consider the case when L (thus K)
is self-adjoint, i.e. ∫

D

(Lu)v =

∫
D

u(Lv) ∀u, v ∈ Hk
0 (D). (3.3)

The corresponding symmetric bilinear form on Hk
0 (D) is denoted as

B(u, v) =
∑

0≤|σ|,|γ|≤k

∫
D

aσγ(x)DσuDγv. (3.4)
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We assume that B is an inner product on Hk
0 (D) and the induced norm

(B(u, u))1/2 is equivalent to the Hk
0 (D) norm, i.e., there exists 0 < amin ≤ amax

such that

amin|u|2k,2,D ≤ B(u, u) ≤ amax|u|2k,2,D ∀u ∈ Hk
0 (D). (3.5)

Thanks to the Riesz representation lemma, Eqn. (3.1) has a unique weak
solution in Hk

0 (D) for f ∈ L2(D).

Construction Of The Basis Functions

Under the framework of Sparse OC introduced in Section 2.2, let X = L2(D)

and H = Hk
0 (D). We use the standard inner product for L2(D) and use the

inner product 〈u, v〉 = B(u, v) for H. Further, we denote K : L2(D)→ L2(D)

as the operator mapping f to the solution u in Eqn. (3.1).

First of all, we divide D into elements {τi}1≤i≤m, where each element τi is a
triangle or a quadrilateral in 2D, or a tetrahedron or hexahedron in 3D. Denote
the maximum element diameter by h. We also assume that the subdivision is
regular [31]. This means that if hi denotes the diameter of τi and ρi denotes
the maximum diameter of a ball inscribed in τi, there is a constant δ > 0 such
that

ρi
hi
≥ δ ∀i = 1, 2, . . . ,m.

Then We choose the local measurement functions {ϕi,q}Qq=1 to be an orthogonal
basis of Pk−1(τi) with respect to the inner product in L2(τi), whereQ =

(
k+d−1
d

)
is the number of d-variate monomials with degree at most k − 1. Thereafter,
we have

Φ = span{ϕi,q : 1 ≤ q ≤ Q, 1 ≤ i ≤ m}, Ψ = KΦ. (3.6)

Without loss of generality, we normalize these basis functions such that∫
τi

ϕi,qϕi,q′ = |τi|δq,q′ . (3.7)

After that, a set of global energy-minimizing basis functions of Ψ is defined
by Eqn. (2.16) accordingly, i.e.,

ψi,q = arg min
ψ∈Hk

0 (D)

‖ψ‖2
H

s.t.
∫
D

ψi,qϕj,q′ = δiq,jq′ ,∀1 ≤ q′ ≤ Q, 1 ≤ j ≤ m.

(3.8)
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We will prove that ψi,q decays exponentially fast away from τi and thus we can
localize its construction as follows.

For r > 0, let Sr be the union of the subdomains τj that intersect with B(xi, r)

(recall that B(xi, δhi/2) ⊂ τi) and let ψloci,q be the minimizer of the following
quadratic problem:

ψloci,q = arg min
ψ∈Hk

0 (Sr)

‖ψ‖2
H

s.t.
∫
ϕj,q′ψ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q.

(3.9)

We will naturally identify ψloci,q with its extension to Hk
0 (D) by setting ψloci,q = 0

outside of Sr.

If the elliptic operator L is given with some other homogeneous boundary
condition, the localized problem (3.9) should be slightly modified as follows
such that the basis function ψi,q honors the given boundary condition on ∂D:

ψloci,q = arg min
ψ∈H

‖ψ‖2
H

s.t.
∫
ϕj,q′ψ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q,

ψ(x) ≡ 0 x ∈ D\Sr.

(3.10)

When ∂Sr ∩ ∂D = ∅, Eqn. (3.10) is equivalent to Eqn. (3.9). However, when
∂Sr∩∂D 6= ∅, Eqn. (3.10) only enforces the zero Dirichlet boundary condition
on ∂Sr\∂D, but honors the original boundary condition on ∂D.

Collecting all the ψloci,q for 1 ≤ i ≤ m and 1 ≤ q ≤ Q together, we get our
localized basis Ψ loc.

Summary Of Our Main Results

To simplify the expression of constants, we will assume without loss of gen-
erality that the domain is rescaled so that diam(D) ≤ 1. In this chapter, we
prove that for r = O(h log(1/h)):

1. Ψ loc achieve the optimal convergence rate to solve the elliptic equation,
i.e.,

‖L−1f −Ψ locL−1
n (Ψ loc)Tf‖H ≤ Ceh

k‖f‖2 ∀f ∈ L2(D), (3.11)

where the constant Ce is independent of n.
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2. Ψ loc achieve the optimal approximation error to approximate the elliptic
operator, i.e.,

Eoc(Ψ
loc;L−1) ≤ C2

eh
2k. (3.12)

For n = mQ, we can show that the nth largest eigenvalue of L−1 is of the
order h2k, i.e., λn(L−1) = O(h2k); see [93, 36]. Therefore, the optimality
above implies that the constructed localized basis Ψ loc achieves nearly optimal
performance on both ends in the accuracy-sparsity trade-off (2.6).

1. They are optimally localized up to a logarithmic factor, i.e.,∣∣supp(ψloci )
∣∣ ≤ Cl log(n)

n
, ∀1 ≤ i ≤ n. (3.13)

Here, |supp(ψloci )| denotes the area/volume of the support of the localized
function ψloci in Rd, and the constant Cl is independent of n.

2. If we use the Galerkin finite element method to solve the elliptic equa-
tions, we achieve the optimal convergence rate in the energy norm, i.e.,

‖L−1f −Ψ locL−1
n (Ψ loc)Tf‖H ≤ Ce

√
λn(L−1)‖f‖2 ∀f ∈ L2(D), (3.14)

where Ln is the stiffness matrix under the basis Ψ loc, ‖ · ‖H is the asso-
ciated energy norm, and Ce is independent of n.

3. For the sparse operator compression problem, we achieve the optimal
approximation error up to a constant, i.e.,

Eoc(Ψ
loc;L−1) ≤ C2

eλn(L−1), (3.15)

where Eoc(Ψ loc;L−1) is the operator compression error defined in Eqn. (2.2).

Outline Of This Chapter

The outline of this chapter is as follows. In Section 3.2, we prove the local
projection-type approximation in the Sobolev spaces Hk(τ) (where k ≥ 1 and
τ is a subdomain of D). Based on this projection-type approximation, we pro-
vide the operator compression error estimate for the global energy minimizing
basis Ψ . In Section 3.3, we prove the local inverse energy estimate. Then
in Section 3.4, we introduce the concept of strong ellipticity, and show its re-
lation with the uniform ellipticity. In Section 3.5, we prove that the global
energy minimizing basis functions ψi,q decays exponentially fast away from
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its associated patch. In Section 3.6, we prove that localized basis functions
ψloci,q approximate ψi,q accurately and preserve the optimal O(h2k) operator
compression error. In Section 3.7, both 1D and 2D examples are provided to
validate our theoretical results.

3.2 The Projection-type Polynomial Approximation Property and
Error Estimates

The Projection-type Polynomial Approximation Property

When we compress the second order elliptic operator in Section 2.3, the
Poincare inequality plays an essential role in both obtaining the optimal ap-
proximation error and proving the exponential decay of the energy minimizing
basis functions. To prove the same kind of results for high-order elliptic oper-
ators, we first introduce the following projection-type polynomial approxima-
tion property in the Sobolev spaceHk(D), which can be viewed as a generalized
Poincare inequality.

Theorem 3.2.1. Suppose Ω ⊂ Rd is affine equivalent to Ω̂, i.e., there exists
an invertible affine mapping

F : x̂ ∈ Ω̂→ F (x̂) = Bx̂+ b ∈ Ω (3.16)

such that F (Ω̂) = Ω. Let h be the diameter of Ω and δh be the maximum
diameter of a ball inscribed in Ω. Let the mapping Π : Hk+1(Ω) → Pk(Ω)

be the projection onto the polynomial space with degree no greater than k in
L2(Ω). Then, there exists a constant C(k, Ω̂) such that for any u ∈ Hk+1(Ω)

and any 0 ≤ p ≤ k + 1

|u− Πu|p,2,Ω ≤ C(k, Ω̂)δ−phk−p+1|u|k+1,2,Ω. (3.17)

To prove Theorem 3.2.1, we use a basic result about the Sobolev spaces, due
to J. Deny and J.L. Lions, which pervades the mathematical analysis of the
finite element method: over the quotient space Hk+1(D)/Pk(D), the semi-
norm | · |k+1,D is a norm equivalent to the quotient norm. We will use the
following theorem (Theorem 3.1.4 in [31]), to prove Theorem 3.2.1.

Theorem 3.2.2. For some integers k ≥ 0 and m ≥ 0, let Hk+1(Ω̂) ≡
W k+1,2(Ω̂) and Hm(Ω̂) ≡ Wm,2(Ω̂) be Sobolev spaces satisfying the inclusion

Hk+1(Ω̂) ⊂ Hm(Ω̂),
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and let Π̂ : Hk+1(Ω̂)→ Hm(Ω̂) be a continuous linear mapping such that

Π̂p̂ = p̂, ∀p̂ ∈ Pk(Ω̂).

For any open set Ω which is affine equivalent to the set Ω̂ (see Eqn. (3.16)),
let the mapping ΠΩ be defined by

Π̂Ωv = Π̂v̂,

for all functions v̂ ∈ Hk+1(Ω̂) and v ∈ Hk+1(Ω) in the correspondence (v̂ :

Ω̂→ R)→ (v = v̂ ◦F−1 : Ω→ R). Then there exists a constant C(Π̂, Ω̂) such
that, for all affine-equivalent sets Ω,

|v − ΠΩv|m,2,Ω ≤ C(Π̂, Ω̂)δ−mhk−m+1|v|k+1,2,Ω, ∀v ∈ Hk+1(Ω), (3.18)

where h = diam(Ω) and δh is the diameter of the biggest ball contained in Ω.

By specializing the operator Π̂ to be the projection of Hk+1(Ω̂) to the polyno-
mial space Pk(Ω̂) in L2(Ω̂), we can prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Let Π̂ : Hk+1(Ω̂) → Pk(Ω̂) be the orthogonal
projection in L2(Ω̂). Let F : Ω̂ → Ω be the invertible linear map and write
F (x̂) = Bx̂+ b. Define ΠΩ as

Π̂Ωv = Π̂v̂,

for all functions v̂ ∈ Hk+1(Ω̂) and v ∈ Hk+1(Ω) in the correspondence of the
linear mapping. In the following, we prove that ΠΩ : Hk+1(Ω) → Hk+1(Ω) is
indeed the orthogonal projection from Hk+1(Ω) to Pk(Ω) in L2(Ω).

First, we have ΠΩv = (Π̂v̂) ◦ F−1 from definition. Since Π̂v̂ ∈ Pk(Ω̂), we have
ΠΩv ∈ Pk(Ω). Second, for any v ∈ Pk(Ω), v̂ = v ◦ F ∈ Pk(Ω̂), and thus
Π̂v̂ = v̂ by the definition of Π̂. Therefore, we have ΠΩv = v̂ ◦ F−1 = v for any
v ∈ Pk(Ω). Third, by changing variable with x = F (x̂), for any v ∈ Hk+1(Ω)

and any p(x) ∈ Pk(Ω), we have∫
Ω

(v(x)− (ΠΩv)(x)) p(x)dx =

∫
Ω̂

(
v̂(x̂)− (Π̂v̂)(x̂)

)
p̂(x̂)dx̂ detB = 0.

In the last equality, we have used the fact that p̂ ∈ Pk(Ω̂) if p ∈ Pk(Ω) and
the fact that Π̂ : Hk+1(Ω̂) → Pk(Ω̂) is the orthogonal projection in L2(Ω̂).
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Therefore, the kernel space of ΠΩ is orthogonal to its range space, i.e., Pk(Ω).
With the three points above, we have proved ΠΩ is the orthogonal projection
from Hk+1(Ω) to Pk(Ω) in L2(Ω).

Finally, applying Theorem 3.2.2 with Π̂ and ΠΩ above, we prove Theorem 3.2.1
with the constant C(k, Ω̂) := C(Π̂, Ω̂) in Eqn. (3.18).

We also give the following theorem, which is a direct result of the Friedrichs’
inequality; see e.g., [95].

Theorem 3.2.3. Let Ωh be a smooth, bounded, open subset of Rd with diameter
at most h. There exists a positive constant Cf such that

|u|p,2,Ωh ≤ Cfh
k−p|u|k,2,Ωh ∀u ∈ Hk

0 (Ωh). (3.19)

Here, Cf = Cf (d, k) depends only on the physical dimension d and the order
of the derivative k.

The Error Estimate Of The Global Basis Ψ

Applying Theorem 3.2.1 to Ω = τj, for any u ∈ Hk(D) and any 0 ≤ p ≤ k, we
have

|u− Πiu|p,2,τi ≤ C(k − 1, τ̂i)δ
−phk−p|u|k,2,τi ,

where Πi : Hk(τi) → Pk−1(τi) is the orthogonal projection to the polynomial
space Pk−1(τi) in L2(τi), and τ̂i is some reference domain that is affine equiv-
alent to τi. Notice that the constant C(k − 1, τ̂i)δ

−p can be bounded from
above by a constant Cp for all the elements {τi}1≤i≤m, because all elements
in {τi}1≤i≤m are affine equivalent to an equilateral triangle or square in 2D,
or a equilateral 3-simplex or cubic in 3D. Therefore, for any u ∈ Hk(D), any
1 ≤ i ≤ m and any 0 ≤ p ≤ k, we have

|u− Πiu|p,2,τi ≤ Cph
k−p|u|k,2,τi . (3.20)

Specifically for p = 0, ũ ∈ L2(D) with ũ|τi = Πiu, we conclude that

‖u− ũ‖L2(D) ≤ Cph
k|u|k,2,D. (3.21)

Combining Eqn. (3.5) and (3.21), we have

‖u− P(X)
Φ u‖L2(D) ≤

Cph
k

√
amin
‖u‖H , ∀u ∈ H. (3.22)

Applying Theorem 2.2.1 with X and H defined above, we have:
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1. For any u ∈ H and Lu = f , we have

‖u− P(H)
Ψ u‖H ≤

Cph
k

√
amin
‖f‖L2(D) . (3.23)

Here, Cp plays the role of the Poincare constant 1/π.

2. For any u ∈ H and Lu = f , we have

‖u− P(H)
Ψ u‖L2(D) ≤

C2
ph

2k

amin
‖f‖L2(D) . (3.24)

3. We have

‖K − P(H)
Ψ K‖ ≤

C2
ph

2k

amin
. (3.25)

Notice that the eigenvalues of the operator L (with the homogeneous Dirichlet
boundary conditions) in (3.1) grow like λn(L) ∼ n2k/d (see [93, 36]), and thus
the eigenvalues of K decay like λn(K) ∼ n−2k/d. Meanwhile, the rank of the
operator P(H)

Ψ K, denoted as n, roughly scales like Q/hd where 1/hd is roughly
the number of patches. Plugging n = Q/hd into Eqn. (3.25), we have

‖K − P(H)
Ψ K‖ ≤

C2
pQ

2k/d

amin
n−2k/d <

∼
λn(K) . (3.26)

Therefore, our construction of the m-dimensional subspace Ψ approximates K
at the optimal rate.

3.3 The Inverse Energy Estimate

In the sparse operator compression, we will show that the global energy mini-
mizing basis Ψ have exponentially decaying tails, which makes localization of
these basis functions possible.

The Main Results

The following lemma plays a key role in proving such exponential decay prop-
erty.

Lemma 3.3.1. Let Ωh be a smooth, bounded, open subset of Rd with diam-
eter at most h and B(0, δh/2) ⊂ Ωh for some δ > 0. For k ∈ N, consider
the operator L = (−1)k

∑
|σ|=kD

2σ with the homogeneous Dirichlet boundary
condition on ∂Ωh, i.e.

(−1)k
∑
|σ|=k

D2σuh(x) = f(x) x ∈ Ωh,

uh ∈ Hk
0 (Ωh).

(3.27)
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Let Ps be the space of polynomials with order not greater than s. For γ ≥ 0,
there exists C(k, s, d, δ) > 0, such that

‖Luh‖L2(Ωh) ≤ C(k, s, d, δ)h−k|uh|k,2,Ωh , ∀uh ∈ L−1Ps−1. (3.28)

Proof. Let Gh be the Green’s function of Eqn. (3.27). After multiplying uh
on both sides of Eqn. (3.27) and integration by parts, we have |uh|k,2,Ωh =∫

Ωh
uh(x)f(x)dx. Recall that Luh ∈ Ps−1, and thus Eqn. (3.28) is equivalent

to∫
Ωh

p2(x)dx ≤ (C(k, s, d, δ))2 h−2k

∫
Ωh

∫
Ωh

Gh(x, y)p(x)p(y)dxdy, ∀p ∈ Ps−1.

(3.29)
Let {p1, p2, . . . , pQ} be all the monomials that span Ps−1. It is easy to see
Q =

(
s+d−1
d

)
. For convenience, we assume that {pi}Qi=1 are in non-decreasing

order with respect to its degree. Specifically, p1 = 1. Let uh,i be the solution of
Eqn. (3.27) with right hand side pi, and Sh,Mh ∈ RQ×Q be defined as follows:

Sh(i, j) =

∫
Ωh

∫
Ωh

Ghpipj =

∫
Ωh

uh,ipj, Mh(i, j) =

∫
Ωh

pipj. (3.30)

Then, Eqn. (3.29) is equivalent to

Mh � (C(k, s, d, δ))2 h−2kSh, (3.31)

where A � B means that B−A is positive semidefinite. The change of variable
x = hz leads to ui(x) = h2k+oiu1,i(z) where u1,i is the solution of the following
PDE on Ω1 ≡ {x/h : x ∈ Ωh}:

(−1)k
∑
|σ|=k

D2σu1,i(x) = pi(x) x ∈ Ω1,

u1,i ∈ Hk
0 (Ω1),

(3.32)

and oi is the degree of pi. Therefore, it is easy to check that

Sh(i, j) = h2k+oi+oj+dS1(i, j), Mh(i, j) = hoi+oj+dM1(i, j), (3.33)

where S1(i, j) =
∫

Ω1

∫
Ω1
G1pipj =

∫
Ω1
u1,ipj and M1(i, j) =

∫
Ω1
pipj, which are

independent of h. Notice that both S1 andM1 are symmetric positive definite,
and let λmax(M1, S1) > 0 be the largest generalized eigenvalue of M1 and S1.
By choosing

C(k, s, d,Ω1) =
√
λmax(M1, S1), (3.34)
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we have
M1 � (C(k, s, d,Ω1))2 S1. (3.35)

Combining (3.33) and (3.35), Eqn. (3.31) naturally follows. In Proposition (3.3.1)
in next subsection, we prove that C(k, s, d,Ω1) can be bounded by C(k, s, d, δ),
and this proves the lemma.

For the case s = k = 1, we can take

C(1, 1, d, δ) = 2
√
d(d+ 2)δ−1−d/2.

as proved in Proposition (3.3.1). In this case, we have the estimate

|uh|21,2,Ωh ≥
δd+2h2|Ωh|
4d(d+ 2)

,

where |Ωh| is the volume of Ωh. The above bound is tight: when Ωh is a ball
with diameter h, the equality holds true. Making use of the mean exit time of
a Brownian motion, the author of [99] obtained a different bound

|uh|21,2,Ωh ≥
δd+2h2+dVd

25+2d
,

where Vd is the volume of a unit d-dimensional ball. The two estimates have
the same order of δ and h, but our estimates from Lemma 3.3.1 is much tighter.
Moreover, Lemma 3.3.1 give estimates for any order k and any degree s, which
plays a key role in proving the exponential decay in high-order cases, but the
mean exit time of a Brownian motion is difficult to generalize to get these
higher order results.

More On Lemma 3.3.1

In this subsection, we prove that C(k, s, d,Ω1) can be bounded by C(k, s, d, δ)

,and we give an explicit formula of C(k, s, d, δ) for the case k = s = 1. Before
we do this, we need the following comparison lemma.

Lemma 3.3.2. Let Ω be a smooth, bounded, open subset of Rd and S is a
smooth subdomain in Ω. Let GΩ be the Green’s function of L = (−1)k

∑
|σ|=kD

2σ

with the homogeneous Dirichlet boundary condition on ∂Ω and GS be the
Green’s function of L with the homogeneous Dirichlet boundary condition on
∂S. Then for all f ∈ L2(Ω),∫

S

∫
S

GS(x, y)f(x)f(y)dxdy ≤
∫

Ω

∫
Ω

GΩ(x, y)f(x)f(y)dxdy. (3.36)
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Proof. Let f ∈ L2(Ω). Let ψΩ be the solution of LψΩ = f with the homoge-
neous Dirichlet boundary conditions on ∂Ω and ψS be the solution of LψS = f

with the homogeneous Dirichlet boundary conditions on ∂S. Observe that ψΩ

and ψS are the unique minimizers of IΩ(u, f) = 1
2

∑
|σ|=k

∫
Ω
|Dσu|2 −

∫
Ω
uf

with

ψΩ = arg min
u∈Hk

0 (Ω)

IΩ(u, f), ψS = arg min
u∈Hk

0 (S;Ω)

IΩ(u, f)

Hk
0 (S; Ω) := {u ∈ Hk

0 (Ω) : u ≡ 0 on Ω\S}.
(3.37)

Moreover, we have

IΩ(ψΩ, f) = −1

2

∫
Ω

ψΩf = −1

2

∫
Ω

∫
Ω

GΩ(x, y)f(x)f(y)dxdy,

IΩ(ψS, f) = −1

2

∫
S

ψSf = −1

2

∫
S

∫
S

GS(x, y)f(x)f(y)dxdy.

(3.38)

Since Hk
0 (S; Ω) is a subset of Hk

0 (Ω), we obtain

IΩ(ψΩ, f) ≤ IΩ(ψS, f), (3.39)

which proves the lemma.

Notice that Lemma 3.3.2 in fact holds true for the general operator∑
0≤|σ|,|γ|≤k

(−1)|σ|Dσ(aσγ(x)Dγu) with various boundary conditions. Notice that

Ω1 is a smooth, bounded, open subset of Rd that satisfies B(0, δ/2) ⊂ Ω1 ≤
B(0, 1). By Lemma 3.3.2, we are able to bound the energy norm on Ω1 by
that on B(0, δ/2) and B(0, 1). To simplify the notation, we omit the subscript
“1” in the rest of this section.

Proposition 3.3.1. C(k, s, d,Ω) (defined in Eqn. (3.34)) can be bounded by
C(k, s, d, δ) which only depends on k, s, d and δ. Moreover, we can set

C(1, 1, d, δ) = 2
√
d(d+ 2)δ−1−d/2. (3.40)

Proof. From the definition (3.34), we have

(C(k, s, d,Ω))2 = λmax(M,S) = max
p∈Ps−1

∫
Ω
p2(x)dx∫

Ω

∫
Ω
G(x, y)p(x)p(y)dxdy

, (3.41)

where G(x, y) is the Green’s function of L = (−1)k
∑
|σ|=kD

2σ with the ho-
mogeneous Dirichlet boundary condition on ∂Ω. Notice that B(0, δ/2) ⊂ Ω ⊂
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B(0, 1). Utilizing Lemma 3.3.2, we have

λmax(M,S) ≤ max
p∈Ps−1

∫
B(0,1)

p2(x)dx∫
B(0,δ/2)

∫
B(0,δ/2)

Gδ/2(x, y)p(x)p(y)dxdy
:= λmax(M̂, Ŝ),

where Gδ/2 is the Green’s function of L with the homogeneous Dirichlet bound-
ary condition on ∂B(0, δ/2), λmax(M̂, Ŝ) > 0 is the largest generalized eigen-
value of M̂ and Ŝ with

Ŝ(i, j) =

∫
B(0,δ/2)

∫
B(0,δ/2)

Gδ/2pipj =

∫
B(0,δ/2)

u
δ/2,i

pj, M̂(i, j) =

∫
B(0,1)

pipj.

(3.42)
Here, {p1, p2, . . . , pQ} are all the monomials defined in Lemma 3.3.1 and u

δ/2,i
=

L−1pi with the homogeneous Dirichlet boundary condition on ∂B(0, δ/2). It
is obvious that λmax(M̂, Ŝ) only depends on k, s, d and δ. Therefore, we can
choose

C(k, s, d, δ) =

√
λmax(M̂, Ŝ). (3.43)

Since Ω has diameter at most 1, there exists x0 ∈ Ω such that Ω ⊂ B(x0, 1/2).
Therefore, we have

∫
Ω
p2(x)dx ≤

∫
B(x0,1/2)

p2(x)dx. Therefore, we have a

tighter bound for M in the case s = 1: M ≤ M̂ :=
∫
B(x0,1/2)

dx = Ad−1/(d2d),
where Ad−1 is the surface area of the (d− 1)-sphere of radius 1 (set A0 = 2).

For the case s = k = 1, u
δ/2,1

(defined as L−1p1 with the homogeneous Dirichlet
boundary condition on ∂B(0, δ/2)) can be solved explicitly:

u
δ/2,1

=
(
(δ/2)2 − r2

)
/(2d).

Then we have

Ŝ =
1

d2(d+ 2)

(
δ

2

)d+2

Ad−1, M̂ = Ad−1/(d2d).

Since λmax(M̂, Ŝ) = M̂/Ŝ in this s = 1 case, Eqn. (3.40) naturally follows.

3.4 The Strong Ellipticity Condition

In our proof, we need the following strong ellipticity condition of the operator
L to obtain the exponential decay.

Definition 3.4.1. An operator in divergence form Lu :=
∑

0≤|σ|,|γ|≤k
(−1)|σ|Dσ(aσγ(x)Dγu)

is strongly elliptic if there exists θmin > 0 such that∑
|σ|=|γ|=k

aσγ(x)ζσζγ ≥ θmin
∑
|σ|=k

ζ2
σ, ∀x ∈ D, ζ ∈ R(k+d−1

k ), (3.44)
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where ζσ and ζγ are the σ’th and γ’th entry of ζ, respectively. One can check
that

(
k+d−1
k

)
is exactly the number of all possible k-th derivatives, i.e. #{Dσu :

|σ| = k}.

For a 2k-th order partial differential operator Lu = (−1)k
∑
|α|≤2k

aαD
αu, L is

strongly elliptic if there exists a strongly elliptic operator in divergence form L̃
such that Lu = L̃u for all u ∈ C2k(D).

Remark 3.4.1. For a 2k-th order partial differential operator Lu = (−1)k
∑
|α|≤2k

aαD
αu,

its divergence form may not be unique. It is possible that it has two divergence
forms, and one does not satisfy the strong ellipticity condition (3.4.1) while
the other does. For example, the biharmonic operator L = ∆2 in 2d physical
domain have the following two different divergence forms:

Lu =
∑

|σ|=|γ|=2

Dσ(aσγD
γu) =

∑
|σ|=|γ|=2

Dσ(ãσγ(x)Dγu), (3.45)

where

(aσγ) =

1 1 0

1 1 0

0 0 0

 , (ãσγ) =

1 0 0

0 1 0

0 0 2

 , (3.46)

when {Dσu : |σ| = 2} is ordered as (∂2
x1
, ∂2

x2
, ∂x1∂x2). Obviously, the first one

does not satisfy the strong ellipticity condition (3.4.1) while the second one
does. These two divergence forms correspond to two bilinear forms on H2

0 (D):

B(u, v) =

∫
D

∆u∆v, B̃(u, v) =

∫
D

D2u : D2v, (3.47)

where D2u : D2v =
∑

i,j
∂2u

∂xi∂xj

∂2v
∂xi∂xj

.

The strong ellipticity condition guarantees that for any local subdomain S ⊂
D, the semi-norm | · |k,2,S can be controlled by the local energy norm ‖ · ‖H(S).

Lemma 3.4.1. Suppose Lu =
∑

0≤|σ|,|γ|≤k
(−1)|σ|Dσ(aσγ(x)Dγu) is self-adjoint.

Assume that aσγ(x) ∈ L∞(D) for all 0 ≤ |σ|, |γ| ≤ k and that for any x ∈ D

• L is nonnegative, i.e.∑
0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≥ 0, ∀ζ ∈ R(k+d
k ), (3.48)
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• L is bounded, i.e., there exist θ0,max ≥ 0 and θk,max > 0 such that∑
0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≤ θk,max
∑
|σ|=k

ζ2
σ + θ0,max

∑
|σ|<k

ζ2
σ, ∀ζ ∈ R(k+d

k ),

(3.49)

• and L is strongly elliptic, i.e. there exists θmin > 0 such that∑
|σ|=|γ|=k

aσγ(x)ζσζγ ≥ θmin
∑
|σ|=k

ζ2
σ, ∀ζ ∈ R(k+d−1

k ). (3.50)

For any subdomain S ⊂ D and any ψ ∈ Hk(D), define

‖ψ‖2
H(S) =

∑
0≤|σ|,|γ|≤k

∫
S

aσγ(x)DσψDγψ. (3.51)

Then the following two claims hold true.

• If L contains only highest order terms, i.e. Lu =
∑

|σ|=|γ|=k
(−1)|σ|Dσ(aσγ(x)Dγu),

then we have

|ψ|k,2,S ≤ θ
−1/2
min ‖ψ‖H(S), ∀ψ ∈ Hk(D). (3.52)

• If L contains low order terms, for any regular domain partition D =

tmi=1τi with diameter h > 0 satisfying h2(1−h2k)
1−h2 ≤ θ2

min

16θ0,maxθk,maxC2
p
, and

any subdomain S = ∪
j∈Λ
τj, we have

|ψi,q|k,2,S ≤ (2/θmin)1/2 ‖ψi,q‖H(S), ∀i 6∈ S, 1 ≤ q ≤ Q. (3.53)

Here, Λ is any subset of {1, 2, . . . ,m}, and ψi,q is defined by Eqn. (3.8).

Proof. The first point can be obtained directly from the definition of strong
ellipticity. In the following, we provide the proof of the second point. For S
stated in the second point and any ψ ∈ Hk(D), we have

‖ψ‖2
H(S) =

∑
|σ|=|γ|=k

∫
S

aσγD
σψDγψ

︸ ︷︷ ︸
J1

+
∑
|σ|,|γ|<k

∫
S

aσγD
σψDγψ

︸ ︷︷ ︸
J2

+
∑

|σ|=k,|γ|<k

∫
S

(aσγ + aγσ)DσψDγψ

︸ ︷︷ ︸
J3

.

(3.54)
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From the strong ellipticity (3.50), we have

J1 ≥ θmin|ψ|2k,2,S. (3.55)

From the nonnegativity (3.48), we have

J2 ≥ 0. (3.56)

Combining the nonnegativity (3.48) and the boundedness (3.49), we can prove
that∣∣∣∣∣∣
∑

|σ|=k,|γ|<k

(aσγ + aγσ)DσψDγψ

∣∣∣∣∣∣ ≤ 2

θ0,maxθk,max
∑
|σ|=k

|Dσψ|2
∑
|σ|<k

|Dσψ|2
1/2

.

Therefore, using the Cauchy-Schwartz inequality, we obtain

|J3| ≤ 2θ
1/2
0,maxθ

1/2
k,max|ψ|k,2,S‖ψ‖k−1,2,S. (3.57)

Thanks to the polynomial approximation property, for any i 6∈ S and 1 ≤ q ≤
Q, we have

‖ψi,q‖2
k−1,2,S ≤ C2

p

h2(1− h2k)

1− h2
|ψi,q|2k,2,S. (3.58)

Combining Eqn. (3.57) and (3.58), for h2(1−h2k)
1−h2 ≤ θ2

min

16θ0,maxθk,maxC2
p
, we have

|J3| ≤
θmin

2
|ψ|2k,2,S. (3.59)

Combining Eqn. (3.54), (3.55), (3.56), and (3.59), we prove the second point.

Remark 3.4.2. When L contains low order terms but there is no crossing
term between Dσu (|σ| = k) and Dσu (|σ| < k), i.e., J3 = 0, we can directly
get the same bound in Eqn. (3.52) for all h > 0.

The strong ellipticity condition above is different from the standard uniformly
elliptic condition (see Definition 9.2 in [113]), i.e., a linear partial differential
operator Lu = (−1)k

∑
|α|≤2k

aαD
αu is uniformly elliptic if there exists a constant

θmin > 0 such that∑
|α|=2k

aα(x)ξα ≥ θmin|ξ|2k, ∀x ∈ D, ξ ∈ Rd. (3.60)
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On one hand, it is obvious that a strongly elliptic operator with smooth coef-
ficients is uniformly elliptic, by taking ζσ := ξσ in Eqn. (3.44). On the other
hand, the relation between the uniform ellipticity and the strong ellipticity
turns out to be closely related to the relation between nonnegative polyno-
mials and sum-of-square (SOS) polynomials. In fact, the strongly ellipticity
condition (3.44) is equivalent to that there exists θmin > 0 such that∑
|σ|=|γ|=k

aσγ(x)ξσξγ − θmin
∑
|σ|=k

|ξ|2k = Sum-Of-Squares (SOS) polynomials.

Using the famous Hilbert’s theorem (1888) on nonnegative polynomials and
SOS polynomials, we have the following theorem. Readers can find the proof
and more discussions in Appendix A.1.

Theorem 3.4.2. Let aα ∈ C |α|−k(D) for k < |α| ≤ 2k, aα ∈ C(D) for |α| ≤ k,
and Lu = (−1)k

∑
|α|≤2k

aαD
αu for all u ∈ C2k(D). Then in the following two

cases, if L is uniformly elliptic it is also strongly elliptic.

• d = 1 or 2 : one or two dimensional physical domain,

• k = 1 : second order partial differential operators.

For the case (d, k) = (3, 2), i.e. fourth order partial differential operators in
3 dimensional physical domain, all uniformly elliptic operators with constant
coefficients are also strongly elliptic.

For the case (d, k) = (3, 2), we are not able to prove that strong ellipticity is
equivalent to uniform ellipticity for elliptic operators with smooth and multi-
scale coefficients, but we suspect that it is true. For all other cases, there are
uniformly but not strongly elliptic operators. Fortunately, for small physical
dimensions d and differential orders k, strongly elliptic operators approximate
uniformly elliptic operators well, and counter examples are difficult to con-
struct.

3.5 Exponential Decay of The Basis Functions

Exponential decay of basis functions I

In this subsection, we prove the exponential decay of basis functions con-
structed in Eqn. (3.8) for higher order elliptic operators that contain only the
highest order terms. We will leave the proof for the general operators to the



81

next subsection. The proof follows exactly the same structure as that in the
second order elliptic case.

Theorem 3.5.1. Let Lu = (−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu) and aσγ(x) ∈ L∞(D)

for all |σ| = |γ| = k. Assume that for any x ∈ D

• L is bounded, i.e., there exist nonnegative θk,max such that∑
|σ|=|γ|=k

aσγ(x)ζσζγ ≤ θk,max
∑
|σ|=k

ζ2
σ, ∀ζ ∈ R(k+d−1

k ), (3.61)

• and L is strongly elliptic, i.e. there exists θk,min > 0 such that∑
|σ|=|γ|=k

aσγ(x)ζσζγ ≥ θk,min
∑
|σ|=k

ζ2
σ, ∀ζ ∈ R(k+d−1

k ). (3.62)

Then for any 1 ≤ i ≤ m and 1 ≤ q ≤ Q, it holds true that

‖ψi,q‖2
H(D∩(B(xi,r))c)

≤ exp(1− r

lh
)‖ψi,q‖2

H(D) (3.63)

with
√
l2 − 1 ≥ (e − 1)CηCp(C1 + C(k, d, δ))

√
θk,max
θk,min

. Here, C1 and Cη only
depends on k and d, Cp is the constant in Eqn. (3.20) and C(k, d, δ) :=

C(k, k, d, δ) from Lemma 3.1.

Proof. The proof follows the same structure as that of Theorem 2.3.1 and [99]
(Thm. 3.9). Let k ∈ N, l > 0 and i ∈ {1, 2, . . . ,m}. Let S0 be the union
of all the domains τj that are contained in the closure of B(xi, klh) ∩ D, let
S1 be the union of all the domains τj that are not contained in the closure of
B(xi, (k+1)lh)∩D and let S∗ = Sc0∩Sc1∩D (be the union of all the remaining
elements τj not contained in S0 or S1). In the following, we will prove that
for any k ≥ 1, there exists constant C such that ‖ψi,q‖2

H(S1) ≤ C‖ψi,q‖2
H(S∗).

Then the same recursive argument in the proof of Theorem 2.3.1 can be used
to prove the exponential decay.

Let η(x) be a smooth function which satisfies (1) 0 ≤ η ≤ 1, (2) η|B(xi,klh) = 0,
(3) η|Bc(xi,(k+1)lh) = 1 and (4) ‖Dση‖L∞(D) ≤ Cη

(lh)|σ|
for all σ.

By integration by parts, we have∫
D

ηψi,qLψi,q =
∑

|σ|=|γ|=k

∫
D

aσγ(x)Dσ(ηψi,q)D
γψi,q.
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Making use of the binomial theoremDσ(ηψi,q) = ηDσϕi,q+
∑

σ1+σ2=σ

|σ1|≥1

(
σ
σ1

)
Dσ1ηDσ2ψi,q,

we obtain ∑
|σ|=|γ|=k

∫
D

ηaσγ(x)Dσ(ψi,q)D
γψi,q =

∫
D

ηψi,qLψi,q︸ ︷︷ ︸
I2

−
∑

|σ|=|γ|=k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
D

aσγ(x)Dσ1ηDσ2ψi,qD
γψi,q

︸ ︷︷ ︸
I1

.
(3.64)

Since
∑

|σ|=|γ|=k
aσγ(x)Dσψi,qD

γψi,q ≥ 0 for every x ∈ D, the left hand side gives

an upper bound for ‖ψi,q‖2
H(S1). Since D

σ1η = 0 (|σ1| ≥ 1) on both S0 and S1,
we obtain

I1 = −
∑

|σ|=|γ|=k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
S∗
aσγ(x)Dσ1ηDσ2ψi,qD

γψi,q (3.65)

≤

∑
|σ|=k

∫
S∗

∣∣∣∣∣∣∣∣
∑

σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)
Dσ1ηDσ2ψi,q

∣∣∣∣∣∣∣∣
2

1/2

‖ψi,q‖H(S∗)

√
θk,max(3.66)

≤ C1Cη

(
k∑

s′=1

(lh)−2s′|ψi,q|2k−s′,2,S∗

)1/2

‖ψi,q‖H(S∗)

√
θk,max . (3.67)

Here, C1 is a constant only dependent on k and d. We have used the Cauchy-
Schwarz inequality and the bound (3.61) in Eqn. (3.66). We will defer the proof
of the last step in Eqn. (3.67) to the Appendix. Since ψi,q ⊥ Pk−1 locally in
L2, we obtain from Theorem 3.2.1 that

|ψi,q|k−s′,2,S∗ ≤ Cph
s′|ψi,q|k,2,S∗ .

Therefore, we get

I1 ≤ C1Cη
√
θk,maxCp

(
k∑

s′=1

l−2s′|ψi,q|2k,2,S∗

)1/2

‖ψi,q‖H(S∗) (3.68)

≤
C1Cη

√
θk,maxCp√
l2 − 1

|ψi,q|k,2,S∗‖ψi,q‖H(S∗). (3.69)

In the last inequality, we have used
∑k

s′=1 l
−2s′ = 1−l−2k

l2−1
≤ 1

l2−1
.
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By the construction of ψi,q given in (3.8), we have
∫
D
ψi,qϕj,q′ = 0 for i 6= j.

Thanks to (2.18), we have Lψi,q ∈ Φ. Therefore, we get
∫
S1
ηψi,qLψi,q = 0.

Denoting ηj as the volume average of η over τj, we obtain

I2 =

∫
S∗
ηψi,qLψi,q =

∑
τj∈S∗

∫
τj

(η − ηj)ψi,qLψi,q ≤
Cη
l

∑
τj∈S∗

‖ψi,q‖L2(τj)‖Lψi,q‖L2(τj).

(3.70)

By using Lemma 3.5.1, which is stated in the beginning of Section 3.5, we
have ‖Lψi,q‖L2(τj) ≤

√
θk,maxC(k, d, δ)h−k‖ψi,q‖H(τj) for any h > 0 because L

contains only the highest order derivatives. Then we obtain

I2 ≤
√
θk,maxCηC(k, d, δ)

lhk
‖ψi,q‖L2(S∗)‖ψi,q‖H(S∗)

≤
√
θk,maxCηC(k, d, δ)Cp

l
|ψi,q|k,2,S∗‖ψi,q‖H(S∗),

(3.71)

where we have used Eqn. (3.20) in the last step.

Combining Eqn. (3.69) and (3.71), we obtain

I1 + I2 ≤
√
θk,max
l2 − 1

CηCp(C1 + C(k, d, δ))|ψi,q|k,2,S∗‖ψi,q‖H(S∗) .

By the strong ellipticity (3.62) and Eqn. (3.52), we have |ψi,q|k,2,S∗ ≤ θ
−1/2
k,min‖ψi,q‖H(S∗).

Therefore, we have

‖ψi,q‖2
H(S1) ≤

√
θk,max

(l2 − 1)θk,min
CηCp(C1 + C(k, d, δ))‖ψi,q‖2

H(S∗). (3.72)

By taking
√
l2 − 1 ≥ (e − 1)CηCp(C1 + C(k, d, δ))

√
θk,max
θk,min

, the exponential
decay naturally follows.

Exponential Decay Of Basis Functions II

The following theorem gives the exponential decay property of ψi,q for an
operator L with lower order terms. Similar to the proof of Theorem 3.5.2,
we need the polynomial approximation property (3.20) and the Friedrichs’
inequality (3.19) to bound the lower order terms, and we get an extra factor
of 2 in our error bound.

Theorem 3.5.2. Suppose Lu =
∑

0≤|σ|,|γ|≤k
(−1)|σ|Dσ(aσγ(x)Dγu) is self-adjoint.

Assume that aσγ(x) ∈ L∞(D) for all 0 ≤ |σ|, |γ| ≤ k and that for any x ∈ D
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• L is nonnegative, i.e.∑
0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≥ 0, ∀x ∈ D, ∀ζ ∈ R(k+d
k ), (3.73)

• L is bounded, i.e., there exist θ0,max ≥ 0 and θk,max > 0 such that∑
0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≤ θk,max
∑
|σ|=k

ζ2
σ+θ0,max

∑
|σ|<k

ζ2
σ, ∀x ∈ D, ∀ζ ∈ R(k+d

k ),

(3.74)

• and L is strongly elliptic, i.e. there exists θk,min > 0 such that∑
|σ|=|γ|=k

aσγ(x)ζσζγ ≥ θk,min
∑
|σ|=k

ζ2
σ, ∀ζ ∈ R(k+d−1

k ). (3.75)

Then there exists h0 > 0 such that for any h ≤ h0, 1 ≤ i ≤ m and 1 ≤ q ≤ Q,
it holds true that

‖ψi,q‖2
H(D∩(B(xi,r))c)

≤ exp(1− r

lh
)‖ψi,q‖2

H(D) (3.76)

with
√
l2 − 1 ≥ 2(e − 1)CηCp(C1 + C(k, d, δ))

√
θk,max
θk,min

. Here, C1 and Cη de-
pend on k and d only, Cp is the constant given in Eqn. (3.20), C(k, d, δ) :=

C(k, k, d, δ) is given in Lemma 4.1 and θk,max := max(θ0,max, θk,max). The
constant h0 can be taken as

h0 = sup

{
h > 0 :

h2 − h2k

1− h2
≤ 1

C2
p

,
h2(1− h2k)

1− h2
≤ min

(
θk,max

2θ0,maxC2
f

,
θ2
k,min

16θ0,maxθk,maxC2
p

)}
,

where Cf is the constant in the Friedrichs’ inequality (3.19).

Proof. The proof follows the same structure as the proof of Theorem 3.5.1.
All we need to do is to use the polynomial approximation property (3.20) and
the Friedrichs’ inequality (3.19) to bound the lower order terms when they
appear. First, the I1 in Eqn. (3.64) contains all the lower order terms and its
estimation should be modified as follows:

I1 = −
∑

0≤|σ|,|γ|≤k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
S∗
aσγ(x)Dσ1ηDσ2ψi,qD

γψi,q (3.77)

≤

∑
|σ|≤k

∫
S∗

∣∣∣∣∣∣∣∣
∑

σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)
Dσ1ηDσ2ψi,q

∣∣∣∣∣∣∣∣
2

1/2

‖ψi,q‖H(S∗)

√
θk,max(3.78)

≤ C1Cη

(
k∑
s=1

s∑
s′=1

(lh)−2s′|ψi,q|2s−s′,2,S∗

)1/2

‖ψi,q‖H(S∗)

√
θk,max. (3.79)
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Here, θk,max := max(θ0,max, θk,max). We have used the Cauchy-Schwarz in-
equality and the bound (3.74) in Eqn. (3.78). We will defer the proof of the
last step in Eqn. (3.79) to the Appendix. Since ψi,q ⊥ Pk−1 locally in L2, we
obtain from Theorem 3.2.1 that

|ψi,q|s−s′,2,S∗ ≤ Cph
s′|ψi,q|s,2,S∗ , ∀ 0 ≤ s′ ≤ s ≤ k.

Therefore, we have

I1 ≤ C1Cη
√
θk,maxCp

(
k∑
s=1

s∑
s′=1

l−2s′ |ψi,q|2s,2,S∗

)1/2

‖ψi,q‖H(S∗) (3.80)

≤
C1Cη

√
θk,maxCp√
l2 − 1

(
k∑
s=1

|ψi,q|2s,2,S∗

)1/2

‖ψi,q‖H(S∗) (3.81)

≤
C1Cη

√
2θk,maxCp√
l2 − 1

|ψi,q|k,2,S∗‖ψi,q‖H(S∗). (3.82)

If we compare the above estimate with Eqn. (3.69), we conclude that Eqn. (3.81)
contains all the lower order terms. We will use the polynomial approximation
property (3.20) and take h2−h2k

1−h2 ≤ 1/C2
p to guarantee that Eqn. (3.82) is valid.

When L contains lower order terms, by Lemma 3.5.1, we have ‖Lψi,q‖L2(τj) ≤√
2θk,maxC(k, d, δ)h−k‖ψi,q‖H(τj) for any h > 0 satisfying h2(1−h2k)

1−h2 ≤ θk,max
2θ0,maxC2

f
.

Therefore, using Eqn. (3.71) we get

I2 ≤
√

2θk,maxCηC(k, d, δ)Cp

l
|ψi,q|k,2,S∗‖ψi,q‖H(S∗), (3.83)

when h satisfies h2(1−h2k)
1−h2 ≤ θk,max

2θ0,maxC2
f
. Finally, we need to use Eqn. (3.53)

instead of Eqn. (3.52) to bound |ψi,q|k,2,S∗ . We get

‖ψi,q‖2
H(S1) ≤ 2

√
θk,max

(l2 − 1)θk,min
CηCp(C1 + C(k, d, δ))‖ψi,q‖2

H(S∗), (3.84)

where we have imposed another condition on h, i.e., h
2(1−h2k)

1−h2 ≤ θ2
k,min

16θ0,maxθk,maxC2
p
.

By taking
√
l2 − 1 ≥ 2(e − 1)CηCp(C1 + C(k, d, δ))

√
θk,max
θk,min

, we prove the ex-
ponential decay.

Remark 3.5.1. As we have pointed out in Remark 3.4.2, when L contains
low order terms but there is no crossing term between Dσu (|σ| = k) and
Dσu (|σ| < k), Eqn. (3.52) can be used to bound |ψi,q|k,2,S∗. In this case, the
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constraint on l is

√
l2 − 1 ≥

√
2(e− 1)CηCp(C1 + C(k, d, δ))

√
θk,max
θk,min

and the h0 can be taken as

h0 = sup

{
h > 0 :

h2 − h2k

1− h2
≤ 1

C2
p

,
h2(1− h2k)

1− h2
≤ θk,max

2θ0,maxC2
f

}
.

Lemmas

In this subsection, we will prove the following lemma, which is used in the
proof of Theorem 3.5.1 and Theorem 3.5.2.

Lemma 3.5.1. L is defined in Eqn. (3.1) and the space Ψ is defined as above.
Assume that for any x ∈ D∑

0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≤ θk,max
∑
|σ|=k

ζ2
σ+θ0,max

∑
|σ|<k

ζ2
σ, ∀ζ ∈ R(k+d

k ). (3.85)

Let Cf be the constant in the Friedrichs’ inequality (3.19). Then for any
domain partition with h2(1−h2k)

1−h2 ≤ θk,max
2θ0,maxC2

f
, we have

‖Lv‖L2(τj) ≤
√

2θk,maxC(k, d, δ)h−k‖v‖H(τj), ∀v ∈ Ψ, ∀j = 1, 2, . . . ,m,

(3.86)
where C(k, d, δ) = C(k, k, d, δ) from Lemma 4.1.

If the operator L contains only the highest order terms, i.e. Lu = (−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu),

we have ‖Lv‖L2(τj) ≤
√
θk,maxC(k, d, δ)h−k‖v‖H(τj) for all h > 0.

We will use Lemma 4.1 to prove this result, but we need to deal with the
variable coefficients aσγ and the low order terms aσγ with |σ|+ |γ| < 2k before
we can apply Lemma 4.1. Our strategy is to transfer the variable coefficients
to constant ones by the variational formulation (see Lemma 3.5.2), and to use
the polynomial approximation property to deal with the low order terms; see
Lemma 3.5.3. For this purpose, we first introduce the following two lemmas.

Lemma 3.5.2. Let Ω be a smooth, bounded, open subset of Rd. Lu =∑
0≤|σ|,|γ|≤k

(−1)|σ|Dσ(aσγ(x)Dγu) andMu =
∑

0≤|σ|,|γ|≤k
(−1)|σ|Dσ(bσγ(x)Dγu) are

two symmetric operators on Hk
0 (Ω). Moreover, we assume that the bilinear

forms induced by both L andM are equivalent to the standard norm on Hk
0 (Ω).
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Let GL and GM be the Green’s functions of L andM respectively. If for any
x ∈ D we have∑

0≤|σ|,|γ|≤k

aσγ(x)ζσζγ ≤
∑

0≤|σ|,|γ|≤k

bσγ(x)ζσζγ, ∀ζ ∈ R(k+d
k ). (3.87)

then for all f ∈ L2(Ω),∫
Ω

∫
Ω

GM(x, y)f(x)f(y)dxdy ≤
∫

Ω

∫
Ω

GL(x, y)f(x)f(y)dxdy. (3.88)

Proof. Let f ∈ L2(Ω). Let ψL and ψM be the weak solutions of LψL = f

andMψM = f with the homogeneous Dirichlet boundary conditions on ∂Ω.
Observe that ψL and ψM are the unique minimizers of IL(u, f) and IM(u, f)

with

IL(u, f) =
1

2

∑
0≤|σ|,|γ|≤k

∫
D

aσγ(x)DσuDγu−
∫

Ω

uf u ∈ Hk
0 (Ω),

IM(u, f) =
1

2

∑
0≤|σ|,|γ|≤k

∫
D

bσγ(x)DσuDγu−
∫

Ω

uf u ∈ Hk
0 (Ω).

(3.89)

At the minima ψL and ψM, we have

IL(ψL, f) = −1

2

∫
Ω

ψLf = −1

2

∑
0≤|σ|,|γ|≤k

∫
D

aσγ(x)DσψLD
γψL,

IM(ψM, f) = −1

2

∫
Ω

ψMf = −1

2

∑
0≤|σ|,|γ|≤k

∫
D

aσγ(x)DσψMD
γψM.

(3.90)

Observe that
IL(ψL, f) ≤ IL(ψM, f) ≤ IM(ψM, f), (3.91)

where the first inequality is true because ψL is the minimizer of IL, and the
second inequality is true because IL(u, f) ≤ IM(u, f) for any u ∈ Hk

0 (Ω).
Combining Eqn. (3.90) and (3.91), we obtain

∫
Ω
ψMf ≤

∫
Ω
ψLf . This proves

the lemma.

Lemma 3.5.3. Let Ωh be a smooth, convex, bounded, open subset of Rd with di-
ameter at most h. Let Gh be the Green’s function of Lu = (−1)k

∑
|σ|=kD

2σu+

c
∑
|σ|<k(−1)σD2σu with the homogeneous Dirichlet boundary condition on ∂Ωh

and Gh,0 be the Green’s function of L0u = (−1)k
∑
|σ|=kD

2σu with the homoge-
neous Dirichlet boundary condition on ∂Ωh. Here, c > 0 is a positive constant.
Then for any f ∈ L2(Ωh)

lim
h→0

∫
Ωh

∫
Ωh
Gh(x, y)f(x)f(y)dxdy∫

Ωh

∫
Ωh
Gh,0(x, y)f(x)f(y)dxdy

= 1. (3.92)
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Moreover,
∫
Ωh

∫
Ωh

Gh(x,y)f(x)f(y)dxdy∫
Ωh

∫
Ωh

Gh,0(x,y)f(x)f(y)dxdy
≥ 1/2 for all h > 0 such that h2(1−h2k)

1−h2 ≤
1

2cC2
f
.

Proof. Let ψh be the solution of Lψh = f with the homogeneous Dirichlet
boundary conditions on ∂Ωh and ψh,0 be the solution of L0ψh,0 = f with the
homogeneous Dirichlet boundary conditions on ∂Ωh. Let

IL(u, f) =
1

2
|u|2k,2,Ωh +

c

2
‖u‖2

k−1,2,Ωh
−
∫

Ωh

uf,

IL0(u, f) =
1

2
|u|2k,2,Ωh −

∫
Ωh

uf.

(3.93)

At the minima ψh and ψh,0, we have

IL(ψh, f) = −1

2

∫
Ωh

ψhf = −1

2

(
|ψh|2k,2,Ωh + c‖ψh‖2

k−1,2,Ωh

)
,

IL0(ψL0 , f) = −1

2

∫
Ωh

ψh,0f = −1

2
|ψh,0|2k,2,Ωh .

(3.94)

Note that Eqn. (3.94) implies that IL0(ψh,0, f) < 0. By the definition of
Green’s function, we further have∫

Ωh

∫
Ωh

Gh(x, y)f(x)f(y)dxdy =

∫
Ωh

ψhf = −2IL(ψh, f) = |ψh|2k,2,Ωh + c‖ψh‖2
k−1,2,Ωh

,∫
Ωh

∫
Ωh

Gh,0(x, y)f(x)f(y)dxdy =

∫
Ωh

ψh,0f = −2IL0(ψh,0, f) = |ψh,0|2k,2,Ωh .

(3.95)

Since IL0(u, f) ≤ IL(u, f) for any u ∈ Hk
0 (Ω), we have

∫
Ωh

∫
Ωh

Gh(x,y)f(x)f(y)dxdy∫
Ωh

∫
Ωh

Gh,0(x,y)f(x)f(y)dxdy
≤

1 for any h > 0. Applying the Friedrich’s inequality (3.19) to ‖ψh,0‖2
k−1,2,Ωh

,
we get

−2IL(ψh,0, f) ≥ −2IL0(ψh,0, f)−
cC2

fh
2(1− h2k)

1− h2
|ψh,0|2k,2,Ωh

= −2

(
1−

cC2
fh

2(1− h2k)

1− h2

)
)IL0(ψh,0, f).

Here, we have used Eqn. (3.95) in the last equality. Therefore, we have∫
Ωh

∫
Ωh
Gh(x, y)f(x)f(y)dxdy∫

Ωh

∫
Ωh
Gh,0(x, y)f(x)f(y)dxdy

=
−2IL(ψh, f)

−2IL0(ψh,0, f)
≥ −2IL(ψh,0, f)

−2IL0(ψh,0, f)
≥ 1−

cC2
fh

2(1− h2k)

1− h2
,

where we have used IL(ψh, f) ≤ IL(ψh,0, f) in the first inequality. By using
the above upper bound, we prove the lemma.
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Now we are ready to prove Lemma 3.5.1.

Proof of Lemma 3.5.1. Let v =
∑m

i=1

∑Q
q=1 ci,qψi,q. Thanks to Eqn. (2.18),

we have
Lv =

∑
i,q

∑
j,q′

ci,qΘ
−1
iq,jq′ϕj,q′ .

Let gj =
∑Q

q′=1

∑
i,q ci,qΘ

−1
iq,jq′ϕj,q′ . Due to the construction of ϕj,q′ , we have

‖Lv‖2
L2(τj)

= ‖gj‖2
L2(τj)

. (3.96)

Furthermore, v can be decomposed over τj as v = v1 + v2, where v1 solves
Lv1 = gj(x) in τj with v1 ∈ Hk

0 (τj), and v2 solves Lv2 = 0 with v2−v ∈ Hk
0 (τj).

It is easy to check that ‖v‖2
H(τj)

= ‖v1‖2
H(τj)

+ ‖v2‖2
H(τj)

. We denote Gj as the
Green’s function of the operator L with the homogeneous Dirichlet boundary
condition on τj, then

‖v1‖2
H(τj)

=

∫
τj

v1(x)gjdx =

∫
τj

∫
τj

Gj(x, y)gj(x)gj(y)dxdy.

Thanks to Lemma 3.5.2, we have

‖v1‖2
H(τj)

≥ 1

θk,max

∫
τj

∫
τj

G∗j(x, y)gj(x)gj(y)dxdy, (3.97)

whereG∗j is the Green’s function of the operator (−1)k
∑
|σ|=k

D2σu+
θk,max
θ0,max

∑
|σ|<k

(−1)σD2σu

with the homogeneous Dirichlet boundary condition on ∂τj. Thanks to Lemma 3.5.3,
for all h > 0 such that h2(1−h2k)

1−h2 ≤ θk,max
2θ0,maxC2

f
we have∫

τj

∫
τj

G∗j(x, y)gj(x)gj(y)dxdy ≥ 1

2

∫
τj

∫
τj

G∗j,0(x, y)gj(x)gj(y)dxdy, (3.98)

where G∗j,0 is the Green’s function of the operator (−1)k
∑
|σ|=kD

2σu with the
homogeneous Dirichlet boundary condition on ∂τj. Denote v1,0 as the solution
of (−1)k

∑
|σ|=kD

2σv1,0 = gj on τj with the homogeneous Dirichlet boundary
condition, i.e., v1,0(x) =

∫
τj
G∗j,0(x, y)gj(y)dy. Since gj ∈ Pk−1 in τj in this

case, Lemma 4.1 shows that

‖gj‖2
L2(τj)

≤ (C(k, k, d, δ))2 h−2

∫
τj

∫
τj

G∗j,0(x, y)gj(x)gj(y)dxdy. (3.99)

Combining Eqn. (3.97), (3.98), and (3.99), we have

‖gj‖2
L2(τj)

≤ 2 (C(k, k, d, δ))2 h−2kθk,max‖v1‖2
H(τj)

≤ 2 (C(k, k, d, δ))2 h−2kθk,max‖v‖2
H(τj)

.
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Therefore, we have proved Lemma 3.5.1. We point out that when the operator
L contains only the highest order terms, i.e. Lu = (−1)k

∑
|σ|=|γ|=k

Dσ(aσγD
γu),

we do not need to pay a factor of 2 in Eqn. (3.98), and thus ‖gj‖2
L2(τj)

≤
(C(k, k, d, δ))2 h−2kθk,max‖v‖2

H(τj)
for all h > 0 in this special case.

Let L−1
0 f ∈ Hk

0 (τi) be the unique weak solution of the following elliptic equa-
tion with the homogeneous Dirichlet boundary condition:

Lu = f(x) x ∈ τi, u ∈ Hk
0 (τi). (3.100)

We define M0, A0 ∈ RQ×Q below:

M0(q, q′) =

∫
τi

ϕi,qϕi,q′ , A0(q, q′) =

∫
τi

ϕi,qL−1
0 (aϕi,q′). (3.101)

Let λmax(M0, A0) be the maximal generalized eigenvalue of the eigenvalue
problem M0α = λA0α, which can be written as

λmax(M0, A0) = sup
v∈RQ

vTM0v

vTA0v
= sup

ϕ∈Pk(τi)

‖ϕ‖2
L2(τi)

‖L−1
0 ϕ‖2

H(τi)

. (3.102)

The proof of Lemma 3.5.1 also implies that√
λmax(M0, A0) ≤

√
2θk,maxC(k, d, δ)h−k. (3.103)

If the operator L contains only the highest order terms, we have√
λmax(M0, A0) ≤

√
θk,maxC(k, d, δ)h−k. (3.104)

3.6 Localization of The Basis Functions

Lemma 3.6.1. For any domain partition with h2(1−h2k)
1−h2 ≤ θk,max

2θ0,maxC2
f
, it holds

true that

‖ψloci,q ‖H ≤ C(k, d, δ)

(
2d+1θk,max
Vdδd

)1/2

h−d/2−k. (3.105)

If the operator L contains only the highest order terms, it holds true that

‖ψloci,q ‖H ≤ C(k, d, δ)
(

2dθk,max
Vdδd

)1/2

h−d/2−k for any h > 0.

Proof. Consider

ζi,q =

Q∑
q=1

A−1
0 (q, q′)L−1

0 ϕi,q′ ,



91

where A−1
0 is the inverse of A0 (defined in Eqn. (3.103)) and L−1

0 ϕi,q′ is the
weak solution of the local problem (3.100) with right hand side ϕi,q′ . From
the definition of A0, we know that

∫
τi
ϕi,qζi,q′ = δq,q′ . Notice that ζi,q ∈ Hk

0 ⊂
Hk

0 (Sr). Therefore, ζi,q satisfies all constraints of ψloci,q (see Eqn. (3.9)), and
thus we get

‖ψloci,q ‖H ≤ ‖ζi,q‖H . (3.106)

Making use of (L−1
0 ϕi,q,L−1

0 ϕi,q′)H =
∫
τi
ϕi,qL−1

0 ϕi,q′ = A0(q, q′), we obtain

‖ζi,q‖2
H = A−1

0 (q, q) ≤ λmax(A
−1
0 ) =

λmax(M0, A0)

|τi|
, (3.107)

where we have used M0(q, q′) = |τi|δi,j (due to the normalization (3.7)) in the
last identity. Combining Eqn. (3.104) (or (3.103)), (3.106), and (3.107) and
|τi| ≥ Vd(δh/2)d, we complete the proof of Eqn. (3.105).

Theorem 3.6.1. Under the same assumptions as those in Theorem 3.5.2,
there exists h0 > 0 such that for any h ≤ h0, 1 ≤ i ≤ m and 1 ≤ q ≤ Q, it
holds true that

‖ψi,q − ψloci,q ‖H(D) ≤ C3h
−d/2−k exp(−r − 2h

2lh
), (3.108)

where

C3 = C(k, d, δ)

(
e2d+1θk,max

Vdδd

)1/2
(2C1CηCp

√
kθk,max
θk,min

+ 1

)2

+ 2

√
θk,max
θk,min

C(k, d, δ)Cp

1/2

.

Here, all the parameters are the same as those in Theorem 3.5.2.

When the operator L contains only the highest order terms, i.e. Lu = (−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu),

Eqn. (3.108) holds true for all h > 0. In this case, the constant C3 can be taken
as

C3 = C(k, d, δ)

(
e2dθk,max
Vdδd

)1/2
(C1CηCp

√
kθk,max
θk,min

+ 1

)2

+

√
θk,max
θk,min

C(k, d, δ)Cp

1/2

.

Proof. Let S0 be the union of the subdomains τj that are not contained in Sr
and let S1 be the union of the subdomains τj that are at distance at least h
from S0. (We will assume that S0 6= ∅ and S1 6= ∅. If S0 6= ∅, the proof is
trivial. We can choose r ≥ 2h such that S1 6= ∅.) Let S∗ be the union of
the subdomains τj that are not contained in either S0 or S1, as illustrated in
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Figure 3.1. Note that in this case, we have S1 in the inner region and S0 in the
outer region. This is the opposite of the scenario that we consider in Figure
2.2.

Figure 3.1: Illustration of Sr, S0, S1 and S∗.

Let η be a smooth cut-off function such that 0 ≤ η ≤ 1, η|S1 ≡ 1, η|S0 ≡ 0 and
‖Dση‖L∞(D) ≤ Cη

h|σ|
for all σ. Since ψloci,q satisfies the same constraints as those

in the definition of ψi,q, thanks to Eqn. (2.19) we have

‖ψi,q − ψloci,q ‖2
H(D) = ‖ψloci,q ‖2

H(D) − ‖ψi,q‖2
H(D). (3.109)

Define ψi,rj,q as the (unique) minimizer of the following quadratic optimization:

ψi,rj,q := arg min
ψ∈Hk

0 (Sr)

‖ψ‖2
H(Sr)

s.t.
∫
Sr

ψϕj′,q′ = δjq,j′q′ , ∀1 ≤ j′ ≤ m, 1 ≤ q′ ≤ Q.

(3.110)

Note that ψloci,q = ψi,ri,q . Let wjq′ =
∫
D
ηψi,qϕj,q′ and ψiq,rw =

∑m
j=1

∑Q
q′=1 wjq′ψ

i,r
j,q′ .

Thanks to the orthogonality between ψi,q and ϕj,q′ , i.e. the constraints in
Eqn. (3.8), we have

ψiq,rw = ψloci,q +
∑
τj⊂S∗

Q∑
q′=1

wjq′ψ
i,r
j,q′ .

Using (3) of Theorem 2.2.3, we have (ψloci,q , ψ
i,r
j,q′)H = Θi,−1

iq,jq′ , where Θi is defined
by Eqn. (2.17) with K : L2(Sr) → L2(Sr) being the inverse of L with the
homogeneous Dirichlet boundary condition on ∂Sr. Therefore, we have

‖ψiq,rw ‖2
H = ‖ψloci,q ‖2

H + ‖
∑
τj⊂S∗

Q∑
q′=1

wjq′ψ
i,r
j,q′‖

2
H + 2

∑
τj⊂S∗

Q∑
q′=1

wjq′Θ
i,−1
iq,jq′ . (3.111)
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By (2) of Theorem 2.2.3, we know that ψiq,rw is the minimizer of the following
quadratic problem:

ψiq,rw = arg min
ψ∈Hk

0 (Sr)

‖ψ‖2
H(Sr)

s.t.
∫
Sr

ψϕj,q′ =

∫
D

ηψi,qϕj,q′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q.

(3.112)

Noting that ηψi,q satisfies the same constraint, we have ‖ψiq,rw ‖2
H ≤ ‖ηψi,q‖2

H .
By using this estimate with (3.109) and (3.111), we obtain

‖ψi,q − ψloci,q ‖2
H(D) ≤ ‖ηψi,q‖2

H − ‖ψi,q‖2
H︸ ︷︷ ︸

I1

+ 2|
∑
τj⊂S∗

Q∑
q′=1

wjq′Θ
i,−1
iq,jq′ |︸ ︷︷ ︸

I2

. (3.113)

It turns out that I1 and I2 play almost the same role as I1 and I2 did in the
proof of Theorem 3.5.2 and can be estimated in a similar way. We will estimate
these two terms as follows.

Let’s first deal with I1. Since η|S1 ≡ 1 and η|S0 ≡ 0, we have I1 = ‖ηψi,q‖2
H(S∗)−

‖ψi,q‖2
H(S∗∪S0) ≤ ‖ηψi,q‖2

H(S∗). In Appendix A.2, we give a bound for ‖ηψi,q‖H(S∗)

using a similar technique that we used to obtain Eqn. (3.82) from Eqn. (3.77)
in the proof of Theorem 3.5.2. With this bound, we obtain

I1 ≤

(
C3

2
|ψi,q|k,2,S∗ +

√
C2

3

4
|ψi,q|2k,2,S∗ + C3|ψi,q|k,2,S∗‖ψi,q‖H(S∗) + ‖ψi,q‖2

H(S∗)

)2

,

(3.114)
where C3 = C1CηCp

√
2kθk,max. With the strong ellipticity (3.75) and the

bound (3.53), we conclude

I1 ≤

(
2C1CηCp

√
kθk,max
θk,min

+ 1

)2

‖ψi,q‖2
H(S∗). (3.115)

Applying the exponential decay of Theorem 3.5.2 to ‖ψi,q‖H(S∗), we get

I1 ≤

(
2C1CηCp

√
kθk,max
θk,min

+ 1

)2

e1− r−2h
lh ‖ψi,q‖2

H(D). (3.116)

We now estimate I2. Combining (3) of Theorem 2.2.3 with the definition of
H-norm (2.8), we have

Θi,−1
iq,jq′ = (ψloci,q , ψ

i,r
j,q′)H(Sr) = (Lψloci,q , ψ

i,r
j,q′)L2(Sr).



94

Thanks to Lψloci,q |τj∈ span{ϕj,q′}Qq=1 and the orthogonality between Φ and ψi,rj,q′ ,
we have

Lψloci,q |τj=
Q∑
q′=1

Θi,−1
iq,jq′ϕj,q′ .

Since {ϕj,q′}Qq=1 is orthogonal and normalized such that
∫
ϕj,qϕj,q′ = |τj|δq,q′ ,

we get

‖Lψloci,q ‖L2(τj) = |τj|1/2
(

Q∑
q′=1

(Θi,−1
iq,jq′)

2

)1/2

. (3.117)

Moreover, we obtain wjq′ =
∫
D
ηψi,qϕj,q′ by definition, and thus we get

|τj|−1/2

(
Q∑
q′=1

|wjq′|2
)1/2

≤ ‖ηψi,q‖L2(τj) ≤ ‖ψi,q‖L2(τj), (3.118)

where we have made use of 0 ≤ η ≤ 1 in the last step. Combining (3.117) and
(3.118), we get

I2 = 2|
∑
τj⊂S∗

Q∑
q′=1

wjq′Θ
i,−1
iq,jq′|

≤ 2
∑
τj⊂S∗

(
Q∑
q′=1

(Θi,−1
iq,jq′)

2

)1/2( Q∑
q′=1

|wjq′ |2
)1/2

≤ 2
∑
τj⊂S∗

‖Lψloci,q ‖L2(τj)‖ψi,q‖L2(τj).

Now, we arrive at exactly the same situation as I2 (see (3.70)) in the proof of
Theorem 3.5.1. With the same derivation from Eqn. (3.70) to Eqn. (3.71), i.e.
applying Lemma 3.5.1 to ‖Lψloci,q ‖L2(τj) and Theorem 3.2.1 to ‖ψi,q‖L2(τj), we
obtain

I2 ≤ 2
√

2θk,maxC(k, d, δ)Cp|ψi,q|k,2,S∗‖ψloci,q ‖H(S∗)

≤ 4

√
θk,max
θk,min

C(k, d, δ)Cp‖ψi,q‖H(S∗)‖ψloci,q ‖H(S∗),
(3.119)

where we have used θk,max := max(θ0,max, θk,max), the strong ellipticity (3.75)
and the bound (3.53) in the last step. Applying the exponential decay of
Theorem 3.5.2 to both ‖ψi,q‖H(S∗) and ‖ψloci,q ‖H(S∗), we obtain

I2 ≤ 2

√
θk,max
θk,min

C(k, d, δ)Cpe
1− r−2h

lh ‖ψi,q‖H(D)‖ψloci,q ‖H(D). (3.120)
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Combining Eqn. (3.113), (3.116) and (3.120), and using Eqn. (3.105) to bound
‖ψloci,q ‖H(D) and ‖ψi,q‖H(D) (recall ‖ψi,q‖H(D) ≤ ‖ψloci,q ‖H(D)), we complete the
proof of Eqn. (3.108).

When the operator L contains only the highest order terms, i.e. Lu =

(−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu), Eqn. (3.116) and (3.120) hold true for all h > 0.

In this case, we can get rid of the factor “2” in both Eqn. (3.116) and (3.120).
Therefore, we obtain the estimate on C3 stated in the theorem.

Theorem 3.6.2. Let u ∈ Hk
0 (D) be the weak solution of Lu = f and ψloci,q

be the localized basis functions defined in Eqn. (3.9). Then for r ≥ (d +

4k)lh log(1/h) + 2(1 + l logC4)h, we have

inf
v∈Ψloc

‖u− v‖H(D) ≤
2Cp√
amin

hk‖f‖L2(D), (3.121)

where C4 = C3Ce
Cp

(Qamin)1/2, and C3 is defined in Theorem 3.6.1, amin comes
from the norm-equivalence (3.5), and Ce is the constant such that ‖u‖L2(D) ≤
Ce‖f‖L2(D) holds true.

Proof. Let v1 :=
∑m

i=1

∑Q
q=1 ciqψi,q and v2 :=

∑m
i=1

∑Q
q=1 ciqψ

loc
i,q with ciq =∫

D
uϕi,q. Estimation (3.23) gives that

‖u− v1‖H ≤
Cph

k

√
amin
‖f‖L2(D). (3.122)

Using the Cauchy inequality, we have

‖v1−v2‖H ≤ max
i,q
‖ψi,q−ψloci,q ‖H

m∑
i=1

Q∑
q=1

|ciq| ≤ max
i,q
‖ψi,q−ψloci,q ‖H

m∑
i=1

Q1/2(

Q∑
q=1

|ciq|2)1/2.

Thanks to the orthogonality of {ϕi,q}Qq=1 (3.7), we have |τi|−1/2(
∑Q

q=1 |ciq|2)1/2 ≤
‖u‖L2(τi). Then we obtain

‖v1−v2‖H ≤ max
i,q
‖ψi,q−ψloci,q ‖HQ1/2

m∑
i=1

|τi|1/2‖u‖L2(τi) ≤ max
i,q
‖ψi,q−ψloci,q ‖H(Q|D|)1/2‖u‖L2(D).

Using the energy estimation ‖u‖L2(D) ≤ Ce‖f‖L2(D) and Theorem 3.6.1, we
obtain

‖v1 − v2‖H ≤ C3CeQ
1/2h−

d
2
−k exp(−r − 2h

2lh
)‖f‖L2(D). (3.123)

Combining Eqn. (3.122) and (3.123) together, we conclude the proof.
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By applying the Aubin-Nistche duality argument, we can get the following
corollary.

Corollary 3.6.3. Let ψloci,q be the localized basis functions defined in Eqn. (3.9).
Then for r ≥ (d+ 4k)lh log(1/h) + 2(1 + l logC4)h, we have

‖K − P(H)

Ψloc
K‖ ≤

4C2
p

amin
h2k, (3.124)

where all the constants are the same as those defined in Theorem 3.6.2.

Corollary 3.6.3 shows that we can compress the symmetric positive semidefinite
operator K with the optimal rate h2k and with the nearly optimal localized
basis (with support size of order h log(1/h)).

Remark 3.6.1. All the results and proofs presented above can be carried
over to other homogeneous boundary conditions. Given a specific homoge-
neous boundary condition, one only needs to modify the proof of Lemma 3.6.1.
Specifically, when the patch τi intersects with the boundary of D, the con-
structed function ζi,q should honor the same boundary condition on ∂D. The
scaling argument in the proof of Lemma 3.6.1 still works for other homogeneous
boundary conditions.

3.7 Numerical Examples

In this section, we present two numerical results to support the theoretical
findings, and to show how the sparse operator compression is utilized in higher
order elliptic operators. In Section 3.7, we apply our method to a 1D fourth-
order elliptic equation with the homogeneous Dirichlet boundary condition,
and show that our basis functions, when used as multiscale finite element
basis, can achieve the optimal h2 convergence rate in the energy norm. In
Section 3.7, we apply our method to a 2D fourth-order elliptic equation, and
show that the energy minimizing basis functions decays exponentially fast
away from its associated patch.

The 1D Fourth Order Elliptic Operator

Consider the solution operator of the Euler-Bernoulli equation

d2

dx2

(
a(x)

d2u

dx2

)
= f(x), 0 < x < 1,

u(0) = u′(0) = 0, u(1) = u′(1) = 0,

(3.125)
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which describes the deflection u of a clamped beam subject to a transverse
force f ∈ L2([0, 1]). The flexural rigidity a(x) of the beam is modeled by

a(x) := 1 +
1

2
sin

(
K∑
k=1

k−α(ζ1k sin(kx) + ζ2k cos(kx))

)
, (3.126)

where {ζ1k}Kk=1 and {ζ2k}Kk=1 are two independent random vectors with inde-
pendent entries uniformly distributed in [−1/2, 1/2]. This oscillatory coeffi-
cient is also used in [66, 94, 105], and has no scale separation. We choose
α = 0 and K = 40 in the numerical experiment. A sample coefficient is shown
in Figure 3.2.
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flexural rigidity: a(x)

Figure 3.2: Highly oscillatory flexural rigidity without scale separation.

We partition the physical space [0, 1] uniformly intom = 26 patches, where the
ith patch Ii = [(i− 1)h, ih] with h = 1/m. In this fourth-order case, our the-
ory requires the piecewise polynomial space Φ be the space of (discontinuous)
piecewise linear functions, which has dimension n = 2m. We have two ϕ’s,
denoted as ϕi,1 and ϕi,2, associated with the patch Ii. Solving the quadratic
optimization problem (3.8), we obtain the exponentially decaying basis func-
tions. We also have two ψ’s, denoted as ψi,1 and ψi,2, associated with the
patch Ii. We plot ϕi,1 and ϕi,2 associated with the patch I32 = [1/2−h, 1/2] in
Figure 3.3 A. In Figure 3.3(B-C), we plot the basis functions ψ32,1 and ψ32,2,
which clearly show exponential decay.

To demonstrate the necessity for Ψ to contain all piecewise linear functions,
in the third column of Figure 3.3, we also plot the basis functions associated
the patch I32 when Φ is the space of piecewise constant functions. In this case,
we have only one ϕ, denoted as ϕi, associated with the patch Ii. In the third
column of Figure 3.3(A) and (B), we plot ϕ32 and ψ32. Solving the quadratic
optimization problem (3.8), we obtain only one basis function ψ, denoted as
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[ϕ32,1, ϕ32,2 for piecewise linear Φ and ϕ32 for piecewise constant Φ]
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[ψ32,1, ψ32,2 for piecewise linear Φ and ψ32 for piecewise constant Φ]
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Figure 3.3: One dimensional fourth order elliptic operator (3.125).

ψi, associated with the patch Ii. In Figure 3.3(C), we plot the basis function
ψ32 in the third column. Note that ψ32 also shows an exponential decay, but
its decay rate is much smaller than that of ψ32,1 and ψ32,2.

We have sampled a force f ∈ L2(D) from the same model (3.126) as the flex-
ural rigidity. Using the MsFEM, we use two different sets of basis functions
{ψi,q}m,2i=1,q=1 and {ψi}mi=1 to solve the corresponding fourth order elliptic equa-
tion (3.125), and get solutions uh,1 and uh,0 respectively. We show their errors
in the energy norm, i.e. ‖uh,1−u‖H and ‖uh,0−u‖H in Figure 3.4. We can see
that ‖uh,1 − u‖H decays quadratically with respect to the patch size h, while
‖uh,0−u‖H decays only linearly. Therefore, to obtain the optimal convergence
rate h2 in the energy norm, it is necessary to include all the piecewise linear
functions in the space Φ, as we have proved in Theorem 2.2.1 and Eqn. (3.23).
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Figure 3.4: Error of the finite element solutions: ‖uh,0− u‖H and ‖uh,1− u‖H .

The 2D Fourth Order Elliptic Operator

Consider the solution operator of the 2D fourth order elliptic equation on
domain D = (0, 1)2

∂2
x(a20(x, y)∂2

xu(x, y)) + ∂2
y(a02(x, y)∂2

yu(x, y)) + 2∂xy(a11(x, y)∂xyu(x, y)) = f(x, y),

u ∈ H2
0 (D),

(3.127)

which describes the vibration u of a clamped plate subject to a transverse force
f ∈ L2(D). The coefficients in the operator are given by

a20(x, y) = a02(x, y) =
1

6
(
1.1 + sin(2πx/ε1)

1.1 + sin(2πy/ε1)
+

1.1 + sin(2πy/ε2)

1.1 + cos(2πx/ε2)
+

1.1 + cos(2πx/ε3)

1.1 + sin(2πy/ε3)
+

1.1 + sin(2πy/ε4)

1.1 + cos(2πx/ε4)
+ sin(4x2y2) + 1),

a11(x, y) =1 +
1

2
sin

(
K∑
k=1

k−α(ζ1k sin(kx) + ζ2k cos(ky))

)
,

(3.128)

where ε1 = 1
5
, ε2 = 1

13
, ε3 = 1

17
, ε4 = 1

31
, K = 20, α = 0, and {ζ1k}Kk=1 and

{ζ2k}Kk=1 are two independent random vectors with independent entries uni-
formly distributed in [−1/2, 1/2].

Based on the uniform partition with grid size hx = hy = 1
8
, we construct the

piecewise linear function space Φ, which has dimension n = 3m = 192. We
solve the quadratic optimization problem (3.8) with the weighted extended
B-splines (Web-splines [62]) of degree 3 on the uniform refined grid with grid
size hx,f = hy,f = 1

32
. The 2D Gaussian quadrature with 5 points on each

axis is utilized to compute the integral on each fine grid cell. The three basis
functions associated with the patch [1/2− hx, 1/2]× [1/2− hy, 1/2] are shown
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in Figure 3.5. We also show them in the log-scale in Figure 3.6. We can clearly
see that the basis functions decay exponentially fast away from its associated
patch, which validates our Theorem 3.5.1.

Figure 3.5: The three basis functions associated with patch [1/2 − hx, 1/2] ×
[1/2− hy, 1/2].

Figure 3.6: The three basis functions associated with patch [1/2 − hx, 1/2] ×
[1/2− hy, 1/2] in log-scale.

We point out that the stiffness matrix for the fourth order elliptic opera-
tor (3.127) gets ill-conditioned very quickly when we refine the grid size. Specif-
ically, for fine grid size hx,f = hy,f = 1

64
, its condition number is at the order

of 109, and the exponential decay is heavily polluted by the numerical error.
High-precision computing is required here to further refine the domain parti-
tion and to validate the optimal convergence rate. We will leave this as our
future work.
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C h a p t e r 4

SPARSE OPERATOR COMPRESSION OF ELLIPTIC
OPERATORS WITH HIGH CONTRAST COEFFICIENTS

In Chapter 2, we introduced the sparse operator compression to compress a
self-adjoint positive semi-definite operator K : L2(D) → L2(D) by localized
basis functions, where D is a bounded domain in Rd. In this chapter, we
apply the Sparse OC framework to construct localized multiscale finite basis
functions for the elliptic equations with high contrast coefficients.

4.1 Problem Setting

Consider the second-order elliptic equation with the homogeneous Dirichlet
boundary condition

Lu := −∇ · (a∇u) = f, u ∈ H1
0 (D), (4.1)

where the load f ∈ L2(D). We consider the scalar rough coefficient a ∈ L∞(D)

that is positive and uniformly bounded below and above, i.e.,

amin ≤ a(x) ≤ amax ∀x ∈ D, (4.2)

but the contrast amax
amin

can be arbitrarily large!

Key Ideas

To design a multiscale finite element method (MsFEM) whose convergence
rate is independent of the rough coefficient and its contrast is important for
many practical applications. For example, in porous media applications, the
permeability of subsurface regions often has multiscale features and contrast.
Existing methods for second order elliptic operators scale badly with the con-
trast of the coefficients. More precisely, in the existing methods [56, 89, 98,
99] and in the application of Sparse OC to higher order elliptic operators in
Chapter 3, the coefficient contrast amax

amin
enters the proof of the exponential

decay via the following norm equivalence and Cauchy-Schwartz inequality

amin

∫
D

u2 ≤
∫
D

au2 ≤ amax

∫
D

u2 ∀u ∈ L2(D),∫
D

auv ≤ amax‖u‖L2(D)‖v‖L2(D) ∀u, v ∈ L2(D).

(4.3)
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These inequalities lead to polynomial dependence between the decay rate and
the contrast.

In this chapter, we avoid using these contrast-dependent inequalities by intro-
ducing the a-weighted L2 and H1 spaces

L2
a(D) =

{
f :

∫
D

af 2 <∞
}
, H1

0,a =

{
u ∈ H1

0 (D) :

∫
D

a|∇u|2 <∞
}
,

(4.4)
and their associated norms/inner products

‖f‖L2
a(D) := ‖f‖0,2,D,a =

(∫
D

af 2

)1/2

, H1
0,a := ‖u‖1,2,D,a =

(∫
D

a|∇u|2
)1/2

.

(4.5)
Then we can avoid the contrast by using the Cauchy-Schwartz inequality in
these a-weighted spaces, e.g.,∫

D

auv ≤ ‖u‖L2
a(D)‖v‖L2

a(D) ∀u, v ∈ L2
a(D).

By selecting the local measurement functions from the local eigenvalue prob-
lem (see Eqn. (4.6)), we naturally obtain a local projection-type approximation
property. By picking possibly more than one measurement function per patch,
the local projection-type approximation property has an approximation rate
independent of the contrast. To prove that the decay rate of the basis func-
tions is independent of the contrast, we still need an inverse energy estimate
independent of the contrast. We have proved this contrast-independent inverse
energy estimate for the two-phase coefficient model (first proposed in [46]) us-
ing asymptotic analysis. Moreover, we provide an efficient way to obtain the
decay rate of the constructed basis functions, and we can localize the basis
functions based on this known decay rate.

Our Construction

To construct such localized basis functions Ψ loc = [ψloc1 , . . . , ψlocn ], we first
partition the physical domain D using a regular partition {τi}mi=1 with mesh
size h. On every patch τi, we solve the following eigenvalue problem:

−∇ · (a∇ϕi,q) = λi,qa(x)ϕi,q

n · ∇ϕi,q = 0 on ∂τi,
(4.6)

where n is the normal vector on the boundary of τi. Assume that the eigen-
values are ordered as

0 = λi,1 ≤ λi,2 ≤ · · · ≤ λi,q ≤ . . . . (4.7)
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Let Qi be the smallest number such that 1/λi,Qi+1 ≤ C2
Ph

2, i.e.,

Qi = min{q : 1/λi,q+1 ≤ C2
Ph

2}, (4.8)

where CP is a user-specific constant. For example, one can take CP = 1/π,
which is the Poincare constant for bounded convex domains.

Let Φi ≡ span{ϕi,q : 1 ≤ q ≤ Qi}, and we choose {ϕi,q : 1 ≤ q ≤ Qi} is
an orthonormal basis of Φi in L2

a(τi). Then we apply the framework of the
Sparse OC with X = L2

a(D), H = H1
0,a(D) and local measurement functions

{ϕi,q : 1 ≤ q ≤ Qi}. Specifically, for r > 0, let Sr be the union of the
subdomains τj intersecting B(xi, r) (for some xi ∈ τi) and let ψloci,q be the
minimizer of the following quadratic problem:

ψloci,q = arg min
ψ∈H1

0 (D)

‖ψ‖2
H

s.t.
∫
Sr

aψϕj,q′ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj,

ψ(x) ≡ 0, x ∈ D\Sr.

(4.9)

Collecting all the ψloci,q for 1 ≤ i ≤ m and 1 ≤ q ≤ Qi together, we get our basis
Ψ loc.

In this chapter, we prove that for r = (Cr,1d log(1/h) + Cr,2)h, the localized
basis functions Ψ loc achieve the linear convergence rate to solve the elliptic
equation, i.e.,

∥∥u−Ψ locL−1
n (Ψ loc)Tf

∥∥
H
≤ 2CPh

(∫
D

a−1f 2

)1/2

≤ 2CPh√
amin
‖f‖L2(D) ∀f ∈ L2(D),

(4.10)
where u is the solution of the elliptic equation (4.1), Ln is the stiffness ma-
trix associated with Ψ loc, the constant Cr,1 is independent of n, and the
constant Cr,2 depends on the contrast at most logarithmically, i.e., Cr,2 =

O(log(amax/amin)).

For the two-phase coefficient model where its inclusions have smooth bound-
aries, our asymptotic analysis shows that (1) Qi can be taken as the number
of high-conductivity inclusions in the local patch τi, and that (2) the constant
Cr,1 is independent of the contrast of the coefficient. In this case, the radius
r = (Cr,1d log(1/h)+Cr,2)h only depends on the contrast logarithmically, which
significantly improves the polynomial dependence in existing methods [56, 89,
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98, 99]. Although we have not proved the independence between the constant
Cr,1 and the coefficient contrast for any coefficients with high contrast and
multiscale features, we provide an efficient way to compute the constant Cr,1.
Therefore, one can still localize the basis functions on a local patch with radius
r = (Cr,1d log(1/h) + Cr,2)h.

Comparison With Other Existing Methods

Our method is inspired by the work in [47, 46], where the authors proposed a
domain decomposition preconditioner and the resulting preconditioned conju-
gate gradient method converges independent of the contrast. Our work differs
from their work in two aspects. First of all, in [47, 46], the local eigenfunctions
ϕi,q are directly used as multiscale basis functions after multiplied by a set of
partition of unity functions, while in our method ϕi,q are local measurement
functions in our method and the energy-minimizing basis functions ψi,q are our
multiscale basis functions. Secondly, in [47, 46], the multiscale basis functions
are used to construct a domain decomposition preconditioner, and they show
that the preconditioned system has a condition number independent of the
contrast. In our method, the multiscale basis functions are directly used in
the Galerkin projection framework to solve the linear system, and we prove
that the solution error (in the energy norm) is independent of the contrast.

Recently, improved numerical methods based on the local orthogonal decom-
position (LOD [89], see section 2.3 for a brief review) have appeared to tackle
the high contrast coefficients, such as [110, 60]. Both methods use the LOD
framework and propose new Clément-type quasi-interpolation operators to
tackle the high contrast problem. Let Th denote a regular triangulation of D
into closed simplices, Nh = {zi}mi=1 denote the set of all interior mesh nodes in
Th and Vh ⊂ H1

0 (D) the corresponding piecewise linear finite element space.
The method in [110] also makes use of the a-weighted L2(D) space, and their
localized basis function ψloci is the unique solution of the following local energy-
minimizing problem:

ψloci = arg min
ψ∈H1

0 (D)

‖ψ‖2
H

s.t.
∫
aλjψ =

∫
aλjλi, ∀1 ≤ j ≤ m,

ψ(x) ≡ 0, x ∈ D\Sr,

(4.11)

where Sr is a neighborhood of the mesh node zi and λi is the nodal piecewise
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linear element centered at node zj. In [110], the authors have proved that ψi in
Eqn. (4.11) has exponential decay rate independent of the contrast for locally
quasi-monotone coefficients (which essentially requires at most one connected
high-conductivity inclusion in a local patch). Despite its similarity with our
construction (4.9), especially the a-weighted inner product, we emphasize that
they only have one local measurement function (i.e. λi) per node, while we
may have multiple local measure functions {ϕi,q : 1 ≤ q ≤ Qi}. This choice
of local measure functions allows us to work for local patches with multiple
high-conductivity inclusions while the modified LOD method in [110] cannot.
We point out although locally quasi-monotone coefficients cannot contain two
high-conductivity inclusions, they can take multiple values. From this aspect,
the proof in [110] applies to some cases that are not covered by our results.

In [60], the authors introduce a Clément-type quasi-interpolation operator
(based on Scott-Zhang node variables) for two-phase coefficients, and their
method does not need the a-weighted L2(D) space. The proposed quasi-
interpolation operator forces the basis function decay within channels, and
they prove that the localization error for this operator is independent of the
contrast. The basic idea is to select the local measurement function for each
node in such a way that the operator admits a contrast independent Poincare-
type inequality in every local patch. In practice, this requires that each
connected high-conductivity channel and inclusion include a mesh node in
Nh = {zi}mi=1, which is not true when the coefficient has many fine scale high-
conductivity inclusions but the mesh Th is not fine enough to resolve them.
This limitation of the method in [60] originates from its construction where
there is only one measurement function per node. It is interesting to see
whether they can deal with the general case as we do here by allowing more
local measurement functions. Another limitation is that the construction of
their quasi-interpolation operator makes use of the two-phase coefficient model
in a crucial way. It is not clear whether their construction can be extended to
work for general coefficients.

The flux norm approach [13] is another way to avoid the norm equivalence
and Cauchy-Schwartz inequality (4.3), which leads to a contrast-independent
error estimate. The flux norm is also used in [10] to achieve a contrast-robust
H-matrix approximation of the solution operator of second-order elliptic op-
erators.
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Outline Of This Chapter

The rest of the chapter is organized as follows. In Section 4.2, we obtain a
local projection-type approximation property from the local generalized eigen-
value problem. We also provide a local inverse energy estimate that depends
on a computable constant. In Section 4.3, we prove that the global energy
minimizing basis functions ψi,q decay exponentially fast away from its associ-
ated patch, and the decay rate only depends on the constant in the inverse
energy estimate. In Section 4.4, we prove that localized basis functions ψloci,q
approximate ψi,q accurately and preserve the O(h) convergence rate in the
energy norm. In Section 4.5, for the two-phase coefficients with smooth inclu-
sions/channels, we show the constant in the local inverse energy estimate is
independent of the contrast using an asymptotic expansion. In Section 4.6, a
2D example with high permeability channels is provided to demonstrate the
contrast-independent decay rate.

4.2 The Projection-type Approximation Property And Inverse En-
ergy Estimate

We consider the following equation:

Lu := −∇ · (a∇u) = af, u ∈ H1
0,a(D), (4.12)

where the load f ∈ L2
a(D). The model equation (4.1) is just the above equation

with a weighted load a−1f . u ∈ H1
0,a(D) is a weak solution of Eqn. (4.12) if

and only if ∫
D

a∇u · ∇v =

∫
D

afv ∀v ∈ H1
0,a(D). (4.13)

We define

C2
E := sup

u∈H1
0,a(D)

u6=0

∫
D
a|u|2∫

D
a|∇u|2

, (4.14)

which is similar to the Friedrich’s constant in the Friedrich’s inequality
∫
D
|u|2 ≤

C2
F

∫
D
|∇u|2 for any u ∈ H1

0 (D). A simple bound for CE is

CE ≤ CF

(
amax
amin

)1/2

, (4.15)

which depends on the contrast amax/amin. We note that Eqn. (4.15) is very
crude in practice. Thanks to the Riesz lemma, we can prove that Eqn. (4.12)
has a unique solution u, and u satisfies the following energy estimate:(∫

D

a|∇u|2
)1/2

≤ CE

(∫
D

af 2

)1/2

. (4.16)
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We define K : L2
a(D)→ L2

a(D) as

Kf = u, (4.17)

which is exactly the solution operator for Eqn. (4.12). Intuitively, we can
think that Kf = L−1(af). It is easy to check that K is self-adjoint and
positive definite, and thus we can apply the general framework introduced in
Chapter 2 with X = L2

a(D) and H = H1
0,a(D).

A Projection-type Approximation Property

Recall that {(λi,q, ϕi,q)}∞q=1 are the eigen-pairs of the eigenvalue problem Lu =

aλu with the homogeneous Neumann boundary conditions. From the com-
pleteness of the eigenfunctions, we know that {ϕi,q}∞q=1 is a complete orthonor-
mal basis of L2

a(τi), and they are orthogonal in H1
0,a(τi). Therefore, we have

the following lemma.

Lemma 4.2.1. Let Φi = span{ϕi,q : 1 ≤ q ≤ Qi}. Then for any Qi ≥ 1, we
have

‖u− P(L2
a)

Φi
u‖L2

a
≤ 1√

λi,Qi+1

(∫
τi

a|∇u|2
)1/2

, ∀u ∈ H1
a(τi). (4.18)

Proof. For any u ∈ H1
a(τi), we decompose it as u = uϕ + uϕ⊥ , where uϕ ∈

span{ϕi,q : q ≥ 1} and uϕ⊥ ⊥ span{ϕi,q : q ≥ 1} in H1
a(τi), which has an inner

product as 〈u, v〉 =
∫
D
a(uv +∇u · ∇v). Thanks to the zero Neumann BC of

ϕi,q, we have∫
D

a∇uϕ⊥ · ∇ϕi,q =

∫
D

uϕ⊥Lϕi,q = λi,q

∫
D

auϕ⊥ϕi,q, ∀q ≥ 1.

Then, we have

0 = 〈uϕ⊥ , ϕi,q〉 = (1 + λi,q)

∫
D

auϕ⊥ϕi,q, ∀q ≥ 1.

Since 1 + λi,q > 0 for any q and {ϕi,q : q ≥ 1} is an orthogonal basis in L2
a(τi),

we conclude uϕ⊥ = 0. Therefore, we write

u = uϕ =
∞∑
q=1

cqϕi,q,

and then we have

‖u− P(L2
a)

Φi
u‖2

L2
a

=
∞∑

q=Qi+1

c2
q,

∫
τi

a|∇u|2 =
∞∑
q=2

c2
qλi,q.

Therefore, for Qi ≥ 1, Eqn. (4.18) naturally follows.
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In the following, we will pick Qi as in Eqn. (4.8), i.e., Qi = min{q : 1/λi,q+1 ≤
C2
Ph

2}. We extend ϕi,q to the whole physical domain D by setting ϕi,q = 0

outside τi, and define Φ as the space spanned by all these functions, i.e.,

Φ := span{ϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi}. (4.19)

Then we have the following projection type approximation property, which is
useful in the error estimate, see Eqn. (2.11) in Theorem 2.2.1.

Lemma 4.2.2. Suppose that Qi = min{q : 1/λi,q+1 ≤ C2
Ph

2} and that Φ :=

span{ϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi}. We have

‖u− P(L2
a)

Φ u‖L2
a
≤ CPh‖u‖H1

0,a
, ∀u ∈ H1

0,a(D). (4.20)

Proof. By the construction of Φ, u− P(L2
a)

Φ u = u− P(L2
a)

Φi
u on patch τi. Com-

bining Lemma 4.2.1 with the choice of Qi, we have

‖u− P(L2
a)

Φ u‖L2
a(τi) ≤ CPh

(∫
τi

a|∇u|2
)1/2

. (4.21)

Therefore, we have

‖u− P(L2
a)

Φ u‖L2
a(D) =

(
m∑
i=1

‖u− P(L2
a)

Φ u‖2
L2
a(τi)

)1/2

≤

(
m∑
i=1

C2
Ph

2

∫
τi

a|∇u|2
)1/2

= CPh‖u‖H1
0,a(D).

Let Ψ be the n-dimensional subspace in H (also in X) spanned by {Kϕi}ni=1,
i.e.,

Ψ = {Kϕ : ϕ ∈ Φ} = span{Kϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi}. (4.22)

Thanks to Theorem 2.2.1, we have

‖u− P(H1
0,a)

Ψ u‖H1
0,a
≤ CPh‖f‖L2

a
, (4.23)

where u is the unique weak solution of Eqn. (4.12). Eqn. (4.23) says that
MsFEM with basis {Kϕi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi} can achieve the linear
convergence rate when solving the elliptic equation (4.12). However, Kϕi,q are
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typically global, and have the same computational cost as solving the original
equation. Moreover, the resulting stiffness is dense, which further increases
the complexity to solve the reduced linear system.

Following the our framework, we can define the energy minimizing basis

ψi,q = arg min
ψ∈H1

0,a(D)

‖ψ‖2
H

s.t.
∫
D

aψi,qϕj,q′ = δiq,jq′ , ∀1 ≤ q′ ≤ Qj, 1 ≤ j ≤ m.

(4.24)

Thanks to Theorem (2.2.3) and the positive definiteness of K, we know that
Ψ = {ψi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Qi} is another basis of Ψ. Using Eqn. (2.18),
we conclude that

Lψ |τj∈ aΦj := {aϕ : ϕ ∈ Φj}, ∀ψ ∈ Ψ, 1 ≤ j ≤ m. (4.25)

Combining Eqn. (4.25) and the orthogonality constraints in Eqn. (4.24), we
obtain that ∫

τj

ψi,qLψ = 0, ∀j 6= i, ψ ∈ Ψ. (4.26)

The above orthogonality will be very useful in the rest of the paper.

An Inverse Energy Estimate In Ψ

In this section, we propose an inverse energy bound for functions in Ψ, see
Lemma 4.2.3, which is crucial in proving the exponential decay and the lo-
calization of ψi,q. Lemma 3.12 in [99] provides such an estimate for second
order uniformly elliptic operators, by utilizing a relation between the Lapla-
cian operator ∆ and the d-dimensional Brownian motion. In [68], we proved
an inverse energy estimate that is valid for any 2k’th order elliptic operators,
but the estimation depends on the contrast of the coefficients. In this section,
we postulate the inverse energy estimate, and use numerical computations to
verify the bound.

Let L−1
0 (af) ∈ H1

0,a(τi) be the unique weak solution of the following elliptic
equation with the homogeneous Dirichlet boundary condition

Lu = −∇ · (a∇u) = af(x) x ∈ τi,

u = 0 x ∈ ∂τi.
(4.27)

We define M0, A0 ∈ RQi×Qi as below:

M0(q, q′) =

∫
τi

aϕi,qϕi,q′ , A0(q, q′) =

∫
τi

aϕi,qL−1
0 (aϕi,q′), (4.28)
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and denote λmax(M0, A0) be the maximal generalized eigenvalue of the eigen-
value problem M0α = λA0α. We define

Ci := sup
ϕ∈Φi\{0}

‖ϕ‖L2
a(τi)√

λi,Qi+1‖L−1
0 (aϕ)‖H1

0,a(τi)

=

√
λmax(M0, A0)

λi,Qi+1

, Cinv := max
1≤i≤m

Ci.

(4.29)

Lemma 4.2.3. For every ψ ∈ Ψ, we have

‖Lψ‖L2
1/a

(τi) ≤
√
λmax(M0, A0)‖ψ‖H1

0,a(τi) = Ci
√
λi,Qi+1‖ψ‖H1

0,a(τi). (4.30)

Proof. For every ψ ∈ Ψ, we have Lψ = aϕ for some ϕ ∈ Φi when restricted
to patch τi. Consider the decomposition ψ = ψ1 + ψ2 where Lψ1 = aϕ,
ψ1 = 0 on ∂τi, and Lψ2 = 0, ψ2 = ψ on ∂τi. It is easy to check that∫
τi
a∇ψ1 · ∇ψ2 = 0, and thus ‖ψ‖2

H1
0,a(τi)

= ‖ψ1‖2
H1

0,a(τi)
+ ‖ψ2‖2

H1
0,a(τi)

, which
implies that ‖ψ1‖H1

0,a(τi) ≤ ‖ψ‖H1
0,a(τi).

Notice that ψ1 = L−1
0 (aϕ). From the definition of M0 and A0, we have

‖ϕ‖2
L2
a(τi)
≤ λmax(M0, A0)‖ψ1‖2

H1
0,a(τi)

. Therefore, we have ‖Lψ‖L2
1/a

(τi) = ‖ϕ‖L2
a(τi) ≤√

λmax(M0, A0)‖ψ1‖H1
0,a(τi). We conclude the proof by using that ‖ψ1‖H1

0,a(τi) ≤
‖ψ‖H1

0,a(τi), and thus we conclude the proof.

In Theorem 4.3.1, we prove that the exponential decay rate of ψi,q is bounded
by (e− 1)(CP + Cinv). Therefore, if Cinv (i.e., every Ci for 1 ≤ i ≤ m) can be
bounded independent of the contrast of the coefficients, we obtain a decay rate
independent of the contrast. In section 4.5 we show that Ci can be bounded
by a constant independent of the contrast for the two-phase coefficient model,
and in section 4.6 our numerical examples confirm this result. For the general
L∞ coefficients with multiscale and high-contrast features, one only needs
to solve Qi local linear systems, i.e. Eqn. (4.27) with {ϕi,q}Qii=1, to obtain
the constant Ci. Compared with the computational cost to solve the local
eigenvalue problem (4.6), this extra cost is affordable.

4.3 Exponential Decay of The Basis Functions

In this section, we will prove that the basis function ψi,q decays exponen-
tially fast away from its associated patch τi. The proof follows the same
structure as that of Theorem 4.3.1 and [99] (Thm. 3.9). One important dif-
ference is that we make use of the Cauchy-Schwatz inequality in L2

a(D), i.e.
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D
auv ≤ ‖u‖L2

a(D)‖v‖L2
a(D) instead of

∫
D
auv ≤ amax‖u‖L2(D)‖v‖L2(D), to ob-

tain a contrast-independent decay rate.

To simplify our notations, for any ψ ∈ H and any subdomain S ⊂ D, we
define ‖ψ‖H(S) :=

(∫
S
a|∇ψ|2

)1/2.

Theorem 4.3.1. For any h > 0, 1 ≤ i ≤ m and 1 ≤ q ≤ Qi, it holds true
that

‖ψi,q‖2
H(D∩(B(xi,r))c)

≤ exp(1− r

lh
)‖ψi,q‖2

H(D) (4.31)

with l = (e− 1)(CP + Cinv).

Proof. Let k ∈ N, l > 0 and i ∈ {1, 2, . . . ,m}. Define S0 as the union of
all the domains τj that are contained in the closure of B(xi, klh) ∩ D, S1

as the union of all the domains τj that are not contained in the closure of
B(xi, (k + 1)lh) ∩D and S∗ = Sc0 ∩ Sc1 ∩D (be the union of all the remaining
elements τj not contained in S0 or S1).

Let bk := ‖ψi,q‖2
H(Sc0), and by definition we have b0 = ‖ψi,q‖2

H(D), bk+1 =

‖ψi,q‖2
H(S1) and bk − bk+1 = ‖ψi,q‖2

H(S∗). The strategy is to prove that for
any k ≥ 1, there exists constant C such that bk+1 ≤ C(bk − bk+1). Then
we have bk+1 ≤ C

C+1
bk for any k ≥ 1 and thus we get the exponential decay

bk ≤ ( C
C+1

)k−1b1 ≤ ( C
C+1

)k−1b0. We will choose l such that C ≤ 1
e−1

and thus
get bk ≤ e1−kb0, which gives the result (4.31). We start from k = 1 because
we want to make sure τi ∈ S0, otherwise S0 = ∅ and τi ∈ S∗.

Now, we prove that for any k ≥ 1, there exists constant C such that bk+1 ≤
C(bk − bk+1), i.e., ‖ψi,q‖2

H(S1) ≤ C‖ψi,q‖2
H(S∗). Let η be the function on D

defined by η(x) = dist(x, S0)/ (dist(x, S0) + dist(x, S1)). Observe that (1) 0 ≤
η ≤ 1, (2) η is equal to zero on S0, (3) η is equal to one on S1, (4) ‖∇η‖L∞(D) ≤
1
lh
. 1

By integration by parts, we obtain∫
D

ηa|∇ψi,q|2 =

∫
D

ηψi,q(−∇ · (a∇ψi,q))︸ ︷︷ ︸
I2

−
∫
D

aψi,q∇η · ∇ψi,q︸ ︷︷ ︸
I1

. (4.32)

Since a ≥ 0, the left hand side gives an upper bound for ‖ψi,q‖H(S1). Combining
∇η ≡ 0 on S0 ∪ S1 and the Cauchy-Schwartz inequality, we obtain

I1 ≤ ‖∇η‖L∞(D)‖ψi,q‖L2
a(S∗)‖ψi,q‖H(S∗) ≤

1

lh
‖ψi,q‖L2

a(S∗)‖ψi,q‖H(S∗). (4.33)
1‖∇η‖L∞(D) := ess sup

x∈D
|∇η(x)|.
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Thanks to Eqn. (4.26), we have
∫
S1
ηψi,q(−∇ · (a∇ψi,q)) = 0. Denoting ηj as

the volume average of η over τj, we have

I2 = −
∫
S∗
ηψi,q(−∇ · (a∇ψi,q)) = −

∑
τj∈S∗

∫
τj

(η − ηj)ψi,q(−∇ · (a∇ψi,q))

≤ 1

l

∑
τj∈S∗

‖ψi,q‖L2
a(τj)‖Lψi,q‖L2

1/a
(τj).

(4.34)
Up to now, I1 and I2 are some quantities that depend ψi,q only on S∗, and
we only need to prove that both of them can be bounded by ‖ψi,q‖2

H(S∗) (up
to a constant). By applying the Poincare inequality, we can easily do this for
I1, as we will see soon. However, I2 involves the high-order term ‖Lψi,q‖L2(τj)

which in general may not be bounded by the lower order term ‖ψi,q‖H(S∗).
Fortunately, Lemma 4.2.3 shows that ‖Lψi,q‖L2

1/a
(τj) ≤ Cjλ

1/2
j,Qj+1‖ψi,q‖H(τj).

Then, we obtain

I2 ≤
1

l

∑
τj∈S∗

Cjλ
1/2
j,Qj+1‖ψi,q‖L2

a(τj)‖ψi,q‖H(τj). (4.35)

By the construction of ψi,q (4.24), we have
∫
τj
aψi,qϕj,q′ = 0 for all τj ∈ S∗ and

1 ≤ q′ ≤ Qj. By the approximation property (4.18), we have ‖ψi,q‖L2
a(τj) ≤

λ
−1/2
j,Qj+1‖ψi,q‖H(τj). Combined with the choice of Qi (4.8), we obtain

I1 ≤
CP
l
‖ψi,q‖2

H(S∗),

I2 ≤
1

l

∑
τj∈S∗

Cj‖ψi,q‖2
H(τj)

≤ Cinv
l
‖ψi,q‖2

H(S∗).

Finally, we have

‖ψi,q‖2
H(S1) ≤ I1 + I2 ≤

CP + Cinv
l

‖ψi,q‖2
H(S∗). (4.36)

By taking l ≥ (e−1)(CP +Cinv), we conclude that the constant CP+Cinv
l

≤ 1
e−1

.
Using the same iterative given above, we prove that the basis functions have
exponential decay away from its associated patch, τi.

4.4 Localization of The Basis Functions

Theorem 4.3.1 allows us to localize the construction of basis functions ψi as
follows. For r > 0, let Sr be the union of the subdomains τj intersecting
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B(xi, r) (recall that B(xi, δhi/2) ⊂ τi) and let ψloci be the minimizer of the
following quadratic optimization problem:

ψloci,q = arg min
ψ∈H1

0,a(Sr)

‖ψ‖2
H

s.t.
∫
D

aϕj,q′ψ = δij,qq′ , ∀1 ≤ q′ ≤ Qj, 1 ≤ j ≤ m.

(4.37)

We will naturally identify ψloci,q with its extension to H1
0,a(D) by setting ψloci = 0

outside of Sr.

Thanks to the exponential decay of the energy minimizing basis functions ψi,q,
choosing Sr with radius r = O(h log(1/h)) is sufficient to guarantee that the
localized basis functions ψloci,q have the same compression accuracy as the expo-
nentially decaying basis functions. The following three theorems demonstrate
such properties of the localized basis functions {ψloci,q }

m,Qi
i=1,q=1.

We recall that {ϕi,q}Qq=1 are orthogonal in L2
a(τi). Without loss of generality,

we normalize them such that∫
τi

aϕi,qϕi,q′ = |τi|δq,q′ . (4.38)

Therefore, for M0 and A0 defined in Eqn. (4.28), we have

M0 = |τi|IQ, λmax(M0, A0) = |τi|λmax(A−1
0 ). (4.39)

Lemma 4.4.1. It holds true that

‖ψloci,q ‖H ≤
Ci
CP

δ−d/2V
−1/2
d h−d/2−1. (4.40)

Proof. Define

ζi,q =

Qi∑
q′=1

A−1
0 (q′, q)L−1

0 (aϕi,q′),

where L0 is the elliptic operator −∇ · (a∇u) with the homogeneous Dirich-
let boundary condition on ∂τi. From the definition of A0, we know that∫
τi
aϕi,qζi,q′ = δq,q′ . Notice that ζi,q ∈ H1

0,a ⊂ H1
0,a(Sr) is only supported

on τi, and thus ζi,q satisfies all constraints of ψloci,q , see Eqn. (4.37). Therefore,
we have

‖ψloci,q ‖H ≤ ‖ζi,q‖H . (4.41)

Making use of (L−1
0 (aϕi,q),L−1

0 (aϕi,q′))H =
∫
τi
aϕi,qL−1

0 (aϕi,q′) = A0(q, q′), we
obtain

‖ζi,q‖2
H = A−1

0 (q, q) ≤ λmax(A
−1
0 ). (4.42)
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We have used λmax(A−1
0 ) = sup‖v‖2=1 v

TA−1
0 v in the last inequality. Combining

Eqn. (4.41) and (4.42), we have

‖ψloci,q ‖H ≤ λ1/2
max(A

−1
0 ) =

Ciλ
1/2
i,Qi+1

|τi|1/2
,

where A0 and Ci are defined in Eqn. (4.28) and Eqn. (4.29), respectively.
With the choice of Qi, we have λi,Qi+1 ≈ C−2

P h−2. Because |τi| ≥ Vd(δh)d

where Vd is volume of the d-dimensional unit ball, we conclude the proof of
Eqn. (4.40).

Theorem 4.4.1. It holds true that

‖ψi,q − ψloci,q ‖H(D) ≤ C3h
−d/2−1 exp(−r − 2h

2lh
), (4.43)

where

l = (e− 1)(CP + Cinv), C3 =

(
e(1 + CP )2 + 2eCinv

δdVd

)1/2
Ci
CP

.

Proof. Let S0 be the union of the subdomains τj not contained in Sr and let
S1 be the union of the subdomains τj that are at distance at least h from S0.
(We will assume that S0 6= ∅ and S1 6= ∅. If S0 6= ∅, the prove is trivial. We
can choose r ≥ 2h such that S1 6= ∅.) Let S∗ be the union of the subdomains
τj that are not contained in either S0 or S1.

Let η be a smooth cut-off function such that 0 ≤ η ≤ 1, η|S1 ≡ 1, η|S0 ≡ 0

and ‖∇η‖L∞(D) ≤ 1/h.

Since ψloci,q satisfies the same constraints as ψi,q, thanks to Eqn. (2.19) we have

‖ψi,q − ψloci,q ‖2
H(D) = ‖ψloci,q ‖2

H(D) − ‖ψi,q‖2
H(D). (4.44)

Define ψi,rj,q as the (unique) minimizer of the following quadratic optimization:

ψi,rj,q := arg min
ψ∈H1

0,a(Sr)

‖ψ‖2
H(Sr)

s.t.
∫
Sr

aψϕj′,q′ = δjq,j′q′ , ∀1 ≤ j′ ≤ m, 1 ≤ q′ ≤ Qj′ .

(4.45)

Note that ψloci,q = ψi,ri,q . Let wjq′ =
∫
D
ηaψi,qϕj,q′ and ψiq,rw =

∑m
j=1

∑Qj
q′=1wjq′ψ

i,r
j,q′ .

Thanks to the orthogonality between ψi,q and ϕj,q′ , see the constraints in
Eqn. (4.24), we have

ψiq,rw = ψloci,q +
∑
τj⊂S∗

Qj∑
q′=1

wjq′ψ
i,r
j,q′ .
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Using (3) of Theorem 2.2.3, we have (ψloci,q , ψ
i,r
j,q′)H = Θi,−1

iq,jq′ , where Θi is defined
by Eqn. (2.17) with K : L2

a(Sr)→ L2
a(Sr) being the solution operator of Lu =

af with the homogeneous Dirichlet boundary condition on ∂Sr. Therefore, we
have

‖ψiq,rw ‖2
H = ‖ψloci,q ‖2

H + ‖
∑
τj⊂S∗

Qj∑
q′=1

wjq′ψ
i,r
j,q′‖

2
H + 2

∑
τj⊂S∗

Qj∑
q′=1

wjq′Θ
i,−1
iq,jq′ . (4.46)

By (2) of Theorem 2.2.3, we know that ψiq,rw is the minimizer of the following
quadratic problem:

ψiq,rw = arg min
ψ∈H1

0,a(Sr)

‖ψ‖2
H(Sr)

s.t.
∫
Sr

aψϕj,q′ =

∫
Sr

ηaψi,qϕj,q′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Qj.

(4.47)
Noting that ηψi,q satisfies the same constraints, we have ‖ψiq,rw ‖2

H ≤ ‖ηψi,q‖2
H .

Combined this estimate with (4.44) and (4.46), we obtain

‖ψi,q − ψloci,q ‖2
H(D) ≤ ‖ηψi,q‖2

H − ‖ψi,q‖2
H︸ ︷︷ ︸

I1

+ 2|
∑
τj⊂S∗

Qj∑
q′=1

wjq′Θ
i,−1
iq,jq′ |︸ ︷︷ ︸

I2

. (4.48)

It turns out that I1 and I2 play almost the same role as I1 and I2 did in the
proof of Theorem 4.3.1 and can be estimated in a similar way. We will estimate
these two terms as follows.

Let’s first estimate I1. Since η|S1 ≡ 1 and η|S0 ≡ 0, we have I1 = ‖ηψi,q‖2
H(S∗)−

‖ψi,q‖2
H(S∗∪S0) ≤ ‖ηψi,q‖2

H(S∗). Using the same trick to estimate I1 in the proof
of Theorem 4.3.1, we have

‖ηψi,q‖2
H(S∗) =

∫
S∗
aη∇ψi,q · ∇(ηψi,q) +

∫
S∗
aψi,q∇η · ∇(ηψi,q)

≤ ‖η‖L∞(S∗)‖ψi,q‖H(S∗)‖ηψi,q‖H(S∗) + ‖∇η‖L∞(S∗)‖ψi,q‖L2
a(S∗)‖ηψi,q‖H(S∗)

≤ (1 + CP )‖ψi,q‖H(S∗)‖ηψi,q‖H(S∗).

(4.49)
In the last step, we have used 0 ≤ η ≤ 1, |∇η| ≤ 1/h and ‖ψi,q‖L2

a(S∗) ≤ CPh

due to the choice of Qi, see Eqn. (4.20). Therefore, we have

I1 ≤ ‖ηψi,q‖2
H(S∗) ≤ (1 + CP )2‖ψi,q‖2

H(S∗). (4.50)
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Let’s now estimate I2. Combining (3) of Theorem 2.2.3 with the definition of
H-norm (2.8), we have

Θi,−1
iq,jq′ = (ψloci,q , ψ

i,r
j,q′)H(Sr) =

∫
Sr

ψi,rj,q′Lψ
loc
i,q .

Thanks to Lψloci,q |τj∈ span{aϕj,q′ : 1 ≤ q′ ≤ Qj} and the orthogonality between
Φj and ψi,rj,q′ , see the constraints in Eqn. (4.45), we have

Lψloci,q |τj= a

Qj∑
q′=1

Θi,−1
iq,jq′ϕj,q′ .

Since {ϕj,q}
Qj
q=1 is orthogonal and normalized such that

∫
aϕj,qϕj,q′ = |τi|δq,q′ ,

we get

‖Lψloci,q ‖L2
1/a

(τj) = |τi|1/2
(

Q∑
q′=1

(Θi,−1
iq,jq′)

2

)1/2

. (4.51)

Moreover, we obtain wjq′ =
∫
D
ηaψi,qϕj,q′ by definition, and thus we get

|τi|−1/2

 Qj∑
q′=1

|wjq′|2
1/2

≤ ‖ηψi,q‖L2
a(τj) ≤ ‖ψi,q‖L2

a(τj). (4.52)

Here, we have made use of 0 ≤ η ≤ 1 in the last step. Combining (4.51) and
(4.52), we get

I2 = 2|
∑
τj⊂S∗

Qj∑
q′=1

wjq′Θ
i,−1
iq,jq′| ≤ 2

∑
τj⊂S∗

 Qj∑
q′=1

(Θi,−1
iq,jq′)

2

1/2 Qj∑
q′=1

|wjq′|2
1/2

≤ 2
∑
τj⊂S∗

‖Lψloci,q ‖L2
1/a

(τj)‖ψi,q‖L2
a(τj).

Now, we arrive at exactly the same situation as I2 (see (4.34)) in the proof of
Theorem 4.3.1. Using the same argument from Eqn. (4.35) to Eqn. (4.36), we
obtain

I2 ≤ 2Cinv‖ψloci,q ‖H(S∗)‖ψi,q‖H(S∗). (4.53)

Applying the exponential decay of Theorem 4.3.1 to both ‖ψi,q‖H(S∗) and
‖ψloci,q ‖H(S∗), we obtain

I1 + I2 ≤(1 + CP )2‖ψi,q‖2
H(D) exp(1− r − 2h

lh
)

+ 2Cinv‖ψi,q‖H(D)‖ψloci,q ‖H(D) exp(1− r − 2h

lh
).

(4.54)
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Combining ‖ψi,q‖H(D) ≤ ‖ψloci,q ‖H(D), Eqn. (4.40), and Eqn. (4.48), we obtain
that

‖ψi,q − ψloci,q ‖H(D) ≤
(
e(1 + CP )2 + 2eCinv

δdVd

)1/2
Ci
CP

h−d/2−1 exp(−r − 2h

2lh
).

(4.55)
This completes the proof of Eqn. (4.43).

Theorem 4.4.2. Let u ∈ H1
0,a(D) be the weak solution of −∇ · (a∇u) = af

with the homogeneous Dirichlet boundary condition and ψloci,q be the localized
basis functions defined in Eqn. (4.37). Then for

r ≥ (d+ 4)lh log(1/h) + 2(1 + l logC4 + 2l logCE +
l

2
logQ)h, (4.56)

we have
inf

v∈Ψloc
‖u− v‖H(D) ≤ 2CPh‖f‖L2

a(D). (4.57)

In Eqn. (4.56), we have constants

l = (e− 1)(CP + Cinv), C4 =

(
eVol(D) ((1 + CP )2 + 2Cinv)

δdVd

)1/2
Cinv
C2
P

,

(4.58)
which are independent of the contrast amax/amin, and contrast-depending con-
stants

CE = sup
u∈H1

0,a(D),u6=0

‖u‖L2
a(D)

‖u‖H1
0,a(D)

, Q =

∑m
i=1Qi|τi|
Vol(D)

. (4.59)

The quantity Q is the average number of basis functions on each patch, and
is typically of order 1. Therefore, the term logQ is nearly independent of
the contrast amax/amin and can be ignored in practice. The contrast enters
only through log(CE). Even with the crude bound CE ≤ CF (amax/amin)1/2,
see Eqn. (4.15), we have logCE ≤ logCF + 1

2
log
(
amax
amin

)
, which grows log-

arithmically with the contrast. This term is typically dominated by the
(d + 4)lh log(1/h) term as the partition is refined. Therefore, the support
size of the localized multiscale basis functions is nearly independent of the
contrast, or at most depends on the contrast logarithmically, and we achieve
the optimal linear convergence rate with the constant CP essentially indepen-
dent of the contrast.

Proof. Let v1 :=
∑m

i=1

∑Qi
q=1 ciqψi,q and v2 :=

∑m
i=1

∑Qi
q=1 ciqψ

loc
i,q with ciq =∫

D
auϕi,q. It is easy to verify that v1 = P(H)

Ψ u and Eqn. (4.23) gives

‖u− v1‖H ≤ CPh‖f‖L2
a(D). (4.60)
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Using the Cauchy inequality, we have

‖v1 − v2‖H ≤ max
i,q
‖ψi,q − ψloci,q ‖H

m∑
i=1

Qi∑
q=1

|ciq|

≤ max
i,q
‖ψi,q − ψloci,q ‖H

m∑
i=1

Q
1/2
i (

Qi∑
q=1

|ciq|2)1/2.

Since {ϕj,q}Qiq=1 is orthogonal and normalized such that
∫
τi
aϕj,qϕj,q′ = |τi|δq,q′ ,

we have (
∑Qi

q=1 |ciq|2)1/2 ≤ |τi|1/2‖u‖L2
a(τi). Then we obtain

‖v1 − v2‖H ≤ max
i,q
‖ψi,q − ψloci,q ‖H

m∑
i=1

(Qi|τi|)1/2‖u‖L2
a(τi)

≤ max
i,q
‖ψi,q − ψloci,q ‖H(

m∑
i=1

Qi|τi|)1/2‖u‖L2
a(D).

Using the energy estimate ‖u‖L2
a(D) ≤ CE‖∇u‖L2

a(D) ≤ C2
E‖f‖L2

a(D) and Theo-
rem 4.4.1, we obtain

‖v1 − v2‖H ≤ C3C
2
E(

m∑
i=1

Qi|τi|)1/2h−
d
2
−1 exp(−r − 2h

2lh
)‖f‖L2

a(D). (4.61)

Combining Eqn. (4.60) and (4.61) together, we conclude the proof.

4.5 Asymptotic Analysis of The Two-phase Coefficient Model

In this section, under some geometric assumptions, we use asymptotic anal-
ysis to show that Ci (defined in Eqn. (4.29)) can be bounded by a constant
independent of the contrast for the two-phase coefficient model.

First of all, it is easy to check that Ci is invariant under the isotropic rescaling
and translation of the coordinates x. Specifically, we can rescale the local
domain τi to τ̂i = {(x−xi)/h : x ∈ τi} by the dilation x̂ = (x−xi)/h, and the
rescaled domain τ̂i has diameter one and B(0, δ/2) ⊂ τ̂i. After the rescaling,
we still have

Ci = sup
ϕ̂∈Φ̂i\{0}

‖ϕ̂‖L2
â
(τ̂i)√

λ̂i,Qi+1‖L̂−1
0 (âϕ̂)‖H1

0,â
(τ̂i)

,

where â(x̂) := â((x− xi)/h) = a(x), Φ̂i is the first Qi-dimensional eigenspace
of the rescaled local eigenvalue problem

−∇ · (â∇ϕ̂q) = λ̂i,qâϕ̂q

n · ∇ϕ̂q = 0 on ∂τ̂i,
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λ̂i,Qi+1 is the corresponding (Qi+1)’th smallest eigenvalue, and L̂−1
0 (âϕ̂) is the

solution of the following rescaled local problem with the Dirichlet Boundary
condition

−∇ · (â∇u) = âϕ̂(x) x ∈ τ̂i,

u = 0 x ∈ ∂τ̂i.

Therefore, when analyzing Ci, we can simply assume that τi has diameter one
and B(0, δ/2) ⊂ τi. Our analysis in this section can be applied to every local
patch, and thus we drop the subscript i to simplify our notation.

Therefore, we consider the (rescaled) local eigenvalue problem

−∇ · (a∇ϕq) = λqaϕq

n · ∇ϕq = 0 on ∂τ,
(4.62)

where the (rescaled) local domain τ has diameter 1 and B(0, δ/2) ⊂ τ . For a
given Q ∈ N, define Φ = span{ϕq : 1 ≤ q ≤ Q}. We want to show that the
following quantity

C2
i = sup

ϕ∈Φ\{0}

∫
τ
aϕ2

λQ+1

∫
τ
a|∇ψ|2

, (4.63)

can be bounded by a constant independent of the contrast of the coefficient.
In Eqn. (4.63), ψ is the solution of the following (rescaled) local problem with
the Dirichlet Boundary condition

−∇ · (a∇ψ) = aϕ(x) x ∈ τ,

u = 0 x ∈ ∂τ.
(4.64)

We will only show this result for the two-phase coefficient model, in which we
assume that the coefficient a only takes two values, i.e., 1 and η > 0, on the
(rescaled) local domain τ . We further assume that τ is the disjoint union of a
background domain and inclusions, i.e., τ = D0 ∪ (∪Qq=1Dq) and

a(x) =

η if x ∈ ∪Qq=1Dq

1 if x ∈ D0 = τ\∪Qq=1Dq

. (4.65)

We assume that D0, D1, . . . , DQ, are polygonal domains (or domains with
smooth boundaries). We also assume that each Dq is a connected domain,
q = 1, . . . , Q. Let D0 represent the background domain and the subdomains
{Dq}Qq=1 represent the inclusions.
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We first analyze the eigenvalue problem (4.6) in the first subsection. Then
we analyze the case of high-conductivity inclusions (η > 1) in the second
subsection and the case of low-conductivity inclusions (η < 1) in the third
subsection. Following the method in [18], we use asymptotic expansion with
respect to the contrast η to analyze the magnitude order of different objects.
In this thesis, we compute only the first (dominant) term in the expansion to
get the order of the quantity of interest C2

i . We do not provide the proof of
the convergence of the asymptotic expansion in H1(τ). However, as in [18],
one can continue to compute higher order terms in the expansion, and can
also prove the convergence of the asymptotic expansion in H1(τ). Finally, We
point out that the assumption that the background domain D0 is connected
can be relaxed, but we will not elaborate on this issue in this thesis.

Local Eigenvalue Problems

In this subsection, we will show that for the local eigenvalue problem (4.62) the
number of small eigenvalues is the number of disconnected high-conductivity
inclusions or channels. We will also give the principal component of the eigen-
functions. In this subsection, we assume that we have Q disconnected high-
conductivity inclusions, i.e., η > 1 in Eqn. (4.65), but we do not assume
that the background domain D0 is connected. We assume that there exists
χ

(n)
q ∈ H1(τ) such that

χ(n)
q ≡ δql on Dl for l = 1, 2, . . . , Q, (4.66)

and χ(n)
q is defined as the harmonic extension of its boundary data in D0, i.e.,∫

D0

∇χ(n)
q · ∇z = 0, for all z ∈ H1

0 (D0),

χ(n)
q = δql on ∂Dl for l = 1, 2, . . . , Q,

n · ∇χ(n)
q = 0 on ∂D0 ∩ ∂τ .

(4.67)

We call χ(n)
q the Neumann harmonic characteristic function of Dq. We define

V (n)
χ = span{χ(n)

q : 1 ≤ q ≤ Q} (4.68)

as the space spanned by the Neumann harmonic characteristic functions.

Similarly, when Dq is an interior inclusion, we define its Dirichlet harmonic
characteristic function χ(d)

q ∈ H1
0 (τ) that satisfies

χ(d)
q ≡ δql on Dl for l = 1, 2, . . . , Q, (4.69)
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and, in D0, χ
(d)
q is defined as the harmonic extension of its boundary data in

D0, i.e., ∫
D0

∇χ(d)
q · ∇z = 0, for all z ∈ H1

0 (D0),

χ(d)
q = δql on ∂Dl for l = 1, 2, . . . , Q,

χ(d)
q = 0 on ∂τ .

(4.70)

We also define

V (d)
χ = span{χ(d)

q : 1 ≤ q ≤ Q, Dq is an interior inclusion in τ.} (4.71)

as the space spanned by the Neumann harmonic characteristic functions.

We point out that the boundaries of τ and Dq (0 ≤ q ≤ Q) should be smooth
enough so that both the Neumann and Dirichlet harmonic characteristic func-
tions exist.

On the number of small contrast-dependent eigenvalues

We prove that λq = O(1/η) for q = 1, . . . , Q and λQ+1 = O(1) (i.e., it is
bounded below independent of η). The previous statement implies that if we
take the number of local measurement functions to be equal to the number of
high-conductivity inclusions and channels in τi, we obtain an error estimate
independent of the contrast. We point out that this proof follows the idea
presented in Appendix A in [46], with some minor modification.

First, we prove that there are at least Q small eigenvalues. Since we have

λQ = min
dim(V )=Q

max
v∈V \{0}

R(v), where R(v) =

∫
τ
a|∇v|2∫
τ
a|v|2

,

we need to find a Q-dimensional subspace V ⊂ H1(τ) where the quotient R(·)
is of order 1/η. Let v ∈ V (n)

χ and assume that v =
∑

q vqχ
(n)
q . Then we have

R(v) =

∫
τ
a|∇v|2∫
τ
a|v|2

=

∫
D0
|∇v|2∫

D0
v2 + η

∑Q
q=1

∫
Dq
v2
≤

∫
D0
|∇v|2

η
∑Q

q=1 v
2
q |Dq|

.

Notice that C = maxv∈RQ
∫
D0
|∇v|2∑Q

q=1 v
2
q |Dq |

is a constant that depends on the ge-
ometries of D0, D1, · · · , DQ, but is independent on η. Therefore, we have
λQ = O(1/η).

On the other hand, we have that

λQ+1 = min
dim(V )=Q+1

max
v∈V \{0}

R(v).
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Then we have to show that for every (Q+1)-dimensional subspace V ⊂ H1(τ),
there exists a function v ∈ V such that R(v) = O(1). Define the space

Vpoin = {v ∈ H1(τ) :

∫
Dq

v = 0, q = 1, 2, . . . , Q}.

The subspace Vpoin is of codimension Q. Note that for every v ∈ Vpoin, we can
apply the Poincare inequality in every Dq. Then we can write

Q∑
q=1

∫
Dq

|v|2 ≤ C1

Q∑
q=1

∫
Dq

|∇v|2, for all v ∈ Vpoin,

where C1 is independent of η, or equivalently

Q∑
q=1

(η − 1)

∫
Dq

|v|2 ≤ C1

Q∑
q=1

(η − 1)

∫
Dq

|∇v|2, for all v ∈ Vpoin, (4.72)

We can apply the standard Poincare inequality to functions in Vpoin:∫
τ

|v|2 ≤ C2

∫
τ

|∇v|2, for all v ∈ Vpoin, (4.73)

where C2 is independent of η. Adding (4.72) and (4.73), we obtain that∫
τ

a|v|2 ≤ C

∫
τ

a|∇v|2, for all v ∈ Vpoin,

where the constant C is independent of η, but depends on the geometries of
Dq (1 ≤ q ≤ Q). Let V ⊂ H1(τ) be a subspace of dimension M + 1. We have
that the intersection between V and Vpoin is a subspace of dimension at least
one. Then we can select v ∈ V ∩ Vpoin with v 6= 0, and for this vector we have

R(v) =

∫
τ
a|∇v|2∫
τ
a|v|2

≥ 1

C
= O(1).

This completes the proof.

Expansions for eigenvalues and eigenvectors

For 1 ≤ q ≤ Q, now we use the asymptotic analysis to obtain the asymptotic
expansion of the eigenvalue λq and the eigenfunction ϕq. Due to the above
analysis, we expand λq as

λq =
C1

η
+
C2

η2
+ . . . . (4.74)
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Here, C1 can be 0, since we only know that λq = O(1/η). We also expand the
corresponding eigenfunction ϕq as

ϕq = ϕq,0 +
ϕq,1
η

+
ϕq,2
η2

+ . . . . (4.75)

Plugging Eqn. (4.74) and (4.75) into the following variational form of the local
eigenvalue problem, i.e.,∫
D0

∇ϕq·∇v+η

∫
∪Qq=1Dq

∇ϕq·∇v = λq

∫
D0

ϕqv+ηλq

∫
∪Qq=1Dq

ϕqv ∀v ∈ H1(τ),

the terms corresponding to η1 and η0 give the following two equations:∫
∪Qq=1Dq

∇ϕq,0 · ∇v = 0, ∀v ∈ H1(τ), (4.76)

and∫
D0

∇ϕq,0 · ∇v +

∫
∪Qq=1Dq

∇ϕq,1 · ∇v = C1

∫
∪Qq=1Dq

ϕq,0v, ∀v ∈ H1(τ). (4.77)

From Eqn. (4.76), we know that ϕq,0 ≡ cq for some cq ∈ R and for any
1 ≤ q ≤ Q. By taking v ∈ H1

0 (D0) in Eqn. (4.77), we know that∫
D0

∇ϕq,0 · ∇v = 0, ∀v ∈ H1
0 (D0),

and thus ϕq,0 is harmonic in D0. Therefore, we conclude that

ϕq,0 ∈ V (n)
χ ∀1 ≤ q ≤ Q. (4.78)

Expansions For High-Conductivity Inclusions

In this subsection, we consider the case of high-conductivity inclusions, i.e.
η � 1. From the analysis in the last subsection, we can take the number of
local measurement functions to be the number of high-conductivity inclusions
(i.e. Q), and achieve an error estimate independent of the contrast. Because we
have proved that λQ+1 is O(1) independent of the contrast η, we only need to
prove that

∫
τ aϕ

2∫
τ a|∇ψ|2

= O(1) for all ϕ ∈ Φ\{0} to prove that C2
i =

∫
τ aϕ

2

λQ+1

∫
τ a|∇ψ|2

is O(1). In fact, we will show

sup
ϕ∈Φ\{0}

∫
τ
aϕ2∫

τ
a|∇ψ|2

= O(1/η)

when we have (at least) one interior inclusion, and

sup
ϕ∈Φ\{0}

∫
τ
aϕ2∫

τ
a|∇ψ|2

= O(1)
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when all the inclusions intersect with the domain boundary, i.e., ∂Dq ∩∂τ 6= ∅
for all 1 ≤ q ≤ Q. Therefore, the constant Ci is bounded by an O(1) constant
independent of the contrast η. Thanks to Eqn. (4.75) and (4.78), for any
ϕ ∈ Φ\{0}, we write

ϕq = ϕ0 +
ϕ1

η
+
ϕ2

η2
+ . . . , where ϕ0 =

Q∑
q=1

cqχ
(n)
q 6≡ 0. (4.79)

We will plug ϕq into the variational form of Eqn. (4.64), i.e.,∫
D0

∇ψ · ∇v + η

∫
∪Qq=1Dq

∇ψ · ∇v =

∫
D0

ϕv + η

∫
∪Qq=1Dq

ϕv ∀v ∈ H1
0 (τ)

(4.80)
to obtain the asymptotic expansion of ψ.

The case when all inclusions are interior inclusions

When all inclusions are interior inclusions, we seek to determine {ψi : −1 ≤
i ≤ +∞} ⊂ H1

0 (τ) such that

ψ = ηψ−1 + ψ0 +
ψ1

η
+
ψ2

η2
+ . . . . (4.81)

Plugging Eqn. (4.79) and (4.81) into Eqn. (4.80), the terms corresponding to
η2 and η1 give the following two equations:∫

∪Qq=1Dq

∇ψ−1 · ∇v = 0, ∀v ∈ H1
0 (τ), (4.82)

and ∫
D0

∇ψ−1 · ∇v +

∫
∪Qq=1Dq

∇ψ0 · ∇v =

∫
∪Qq=1Dq

ϕ0v, ∀v ∈ H1
0 (τ). (4.83)

From Eqn. (4.82), we know that ψ−1 ≡ zq for some zq ∈ R and for any
1 ≤ q ≤ Q. By taking v ∈ H1

0 (D0) in Eqn. (4.83), we know that∫
D0

∇ψ−1 · ∇v = 0, ∀v ∈ H1
0 (D0),

and thus ψ−1 is harmonic in D0. Therefore, we conclude that

ψ−1 =

Q∑
q=1

zqχ
(d)
q ∈ V (d)

χ . (4.84)

Since ϕ0 =
∑Q

q=1 cqχ
(n)
q 6≡ 0, we know that ψ−1 =

∑Q
q=1 zqχ

(d)
q 6≡ 0. Therefore,

we have ∫
τ
aϕ2∫

τ
a|∇ψ|2

=
η
∑Q

q=1

∫
Dq
ϕ2

0 +O(1)

η2
∫
D0
|∇ψ−1|2 +O(η)

= O(
1

η
), ∀ϕ ∈ Φ\{0}.
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The case when all inclusions intersect with the boundary

When all inclusions intersect with the boundary, we seek to determine {ψi :

0 ≤ i ≤ +∞} ⊂ H1
0 (τ) such that

ψ = ψ0 +
ψ1

η
+
ψ2

η2
+ . . . . (4.85)

Plugging Eqn. (4.79) and (4.85) into Eqn. (4.80), the terms corresponding to
η1 and η0 give the following two equations:∫

∪Qq=1Dq

∇ψ0 · ∇v =

∫
∪Qq=1Dq

ϕ0v, ∀v ∈ H1
0 (τ), (4.86)

and∫
D0

∇ψ0·∇v+

∫
∪Qq=1Dq

∇ψ1·∇v =

∫
D0

ϕ0v+

∫
∪Qq=1Dq

ϕ1v, ∀v ∈ H1
0 (τ). (4.87)

Since Dq is connected and intersects with the boundary and {Dq}Qq=1 are not
connected to each other, Eqn. (4.86) uniquely determines ψ0 restricted on Dq:∫

Dq

∇ψ0 · ∇v =

∫
Dq

ϕ0v, ∀v ∈ H1
0 (Dq),

ψ0 |∂τ∩∂Dq= 0, n · ∇ψ0 |∂τ\∂Dq= 0.

Since ϕ0 =
∑Q

q=1 cqχ
(n)
q 6≡ 0, there exists at least one q such that ψ0 |Dq 6≡ 0.

By taking v ∈ H1
0 (D0) in Eqn. (4.87), we know that∫

D0

∇ψ0 · ∇v =

∫
D0

ϕ0v, ∀v ∈ H1
0 (D0).

Together with the Dirichlet boundary condition given on ∂τ and ∂Dq (1 ≤
q ≤ Q), ψ0 |D0 can be uniquely determined. Therefore, we have∫

τ
aϕ2∫

τ
a|∇ψ|2

=
η
∑Q

q=1

∫
Dq
ϕ2

0 +O(1)

η
∑Q

q=1

∫
Dq
|∇ψ0|2 +O(1)

= O(1), ∀ϕ ∈ Φ\{0}.

The case when there is at least one interior inclusion

For the case when there is at least one interior inclusion, the asymptotic expan-
sion of ψ and the order of

∫
τ aϕ

2∫
τ a|∇ψ|2

are similar to the case when all inclusions are
interior inclusions. We will not elaborate its derivations here. To summarize,
we conclude that for the case of high-conductivity inclusions, we have

C2
i = sup

ϕ∈Φ\{0}

∫
τ
aϕ2

λQ+1

∫
τ
a|∇ψ|2

= O(1),

which implies that the constant Ci can be bounded by an O(1) constant inde-
pendent of the contrast η.
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Expansions For Low-Conductivity Inclusions

In this subsection, we consider the case of low-conductivity inclusions, i.e.
η � 1. Because we are considering the weighted operator − 1

a
∇ · (a∇), the

two-phase coefficient with low-conductivity (η) inclusions and “1” background
is equivalent to the two-phase coefficient with high-conductivity (1/η) back-
ground and “1” inclusions. Thanks to the assumption that the background
domain D0 is connected and the argument in section 4.5, there is only one
small eigenvalue, which is 0, and the second eigenvalue λ2 = O(1). Therefore,
Q = 1 is sufficient to achieve an error estimate independent of the contrast. In
this case, the one-dimensional eigenspace Φ is the space consisting of constant
functions. In this subsection, using the asymptotic analysis, we show that

C2
i =

∫
τ
a

λ2

∫
τ
a|∇ψ|2

= O(1),

where ψ is the solution of the following (rescaled) local problem with the
Dirichlet Boundary condition

−∇ · (a∇ψ) = a x ∈ τ,

u = 0 x ∈ ∂τ.

Since we already have λ2 = O(1), we only need to show
∫
τ a∫

τ a|∇ψ|2
= O(1).

Before, we go to the details, we point out that the following analysis can
be generalized to the case when the background domain D0 is not connected
and contains several connected subdomains. In this case, the number of local
measurement functions should be the number of the connected subdomains in
D0.

Now we show that
∫
τ a∫

τ a|∇ψ|2
= O(1). We seek to determine {ψi : 0 ≤ i ≤

+∞} ⊂ H1
0 (τ) such that

ψ = ψ0 + ηψ1 + η2ψ2 + . . . . (4.88)

Plugging (4.88) into Eqn. (4.80), the terms corresponding to η0 and η1 give
the following two equations:∫

D0

∇ψ0 · ∇v =

∫
D0

v, ∀v ∈ H1
0 (τ), (4.89)

and ∫
D0

∇ψ1 · ∇v +

∫
∪Qq=1Dq

∇ψ0 · ∇v =

∫
∪Qq=1Dq

v, ∀v ∈ H1
0 (τ). (4.90)
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Since D0 is connected and intersects with the boundary, Eqn. (4.89) uniquely
determines ψ0 restricted on D0:∫

D0

∇ψ0 · ∇v =

∫
D0

v, ∀v ∈ H1
0 (D0),

ψ0 |∂τ∩∂D0= 0, n · ∇ψ0 |∂τ\∂D0= 0.

Since we have the constant “1” on the right hand side, we have ψ0 6≡ 0. By
taking v ∈ H1

0 (Dq) in Eqn. (4.90), we know that∫
Dq

∇ψ0 · ∇v =

∫
Dq

v, ∀v ∈ H1
0 (Dq).

Together with the Dirichlet boundary condition given on ∂τ and ∂Dq (1 ≤
q ≤ Q), ψ0 |Dq can be uniquely determined. Therefore, we have∫

τ
a∫

τ
a|∇ψ|2

=
|D0|+O(η)∫

D0
|∇ψ0|2 +O(η)

= O(1).

It is obvious to see the similarity between the case when all high-conductivity
inclusions intersect with the boundary and the current case when we have low-
conductivity inclusions. The reason for this similarity is from the a-weighted
L2 formulation of the local eigenvalue problem (4.62) and the local elliptic
problem (4.64). With this a-weighted L2 formulation, multiplying the coeffi-
cient a by any constant (like η or 1/η) does not change the problem. Therefore,
the problem whose coefficients have low-conductivity inclusions is equivalent
to the problem whose coefficients have high-conductivity background.

4.6 Numerical Examples

In this section, we apply our method to a 2D second-order elliptic equation
with high contrast coefficients, and show that the exponential decay rate of
the energy minimizing basis function remains the same as the contrast of the
coefficients increases.

Consider the following 2D second-order elliptic equation with the homogeneous
Dirichlet boundary condition

−∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ D := (0, 1)2

u(x, y) = 0, (x, y) ∈ ∂D.
(4.91)

The coefficient

a(x, y) = 1 + (η − 1)
3∑

k=1

χDk(x, y) η ≥ 1 (4.92)
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takes only two values, i.e., 1 in the background domain and η in three channels
{Dk}3

k=1. The contrast of the coefficient is thus η. We use a uniform mesh
with mesh size hx = hy = 1/13 to partition the physical domain, resulting in
13× 13 = 169 local patches. For η = 106, the coefficient and the partition are
shown in Figure 4.1.
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Figure 4.1: The high-contrast (η = 106) coefficient with three high-
conductivity channels. The 13× 13 partition is shown in the contour plot.

We first focus on the local patch [hx, 2 ∗ hx]× [8 ∗ hx, 9 ∗ hx]. In Figure 4.2, we
plot (in log scale) the global energy-minimizing basis function ψi constructed
in section 2.3, where we do not use the a-weighted L2 norm and the local
constant function is the only local measurement function. We also plot (in
log scale) their energy norm distributions on all the local patches. On the left
column, we have ψi for η = 1, where the basis function decays exponentially
fast away from its patch, as we proved in Theorem 2.3.1. On the right column,
we have ψi for η = 106, where the basis function shows nearly no decay along
the high-conductivity channels. In the right-bottom figure, we can also see
that the energy norm shows nearly no decay along with the channels.

Using the method proposed in this chapter, we take the number of local mea-
surement functions, denoted as Qi = min{q : 1/λi,q+1 <

h2
x

0.99∗π2}, which guar-
antees an error estimate independent of the contrast. We have two measure-
ment functions on the patch [hx, 2∗hx]× [8∗hx, 9∗hx], and the corresponding
ψi,1 and ψi,2 (in log scale) are plotted in Figure 4.3. We can see that the expo-
nential decay along the high-conductivity channels is as fast as the decay in the
background domain. Comparing the energy norm distribution in Figure 4.3
with that in Figure 4.2, we can also see that our new construction improves
the decay rate along the high-conductivity channels.
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Figure 4.2: The basis function ψi and its energy norm (both in log scale) with
local piecewise constant measurement functions (construction in section 2.3).
η = 1 on the left column, and η = 106 on the right column.

In Figure 4.4, we show the number of basis functions (left) and the constant
Ci in the inverse energy estimate (right) on all the local patches. There are at
most two basis functions per patch. We point out that the number of the basis
functions does not increase any more even if we further increase the contrast η.
The constant Ci, which is associated with the decay rate of the basis function,
is bounded by 10, although the contrast has now reached 106.

In Figure 4.5, we plot the Ci(η) for three different patches. The label (2, 9)

means the patch located at [hx, 2 ∗ hx]× [8 ∗ hy, 9 ∗ hy], which is the patch we
analyzed above. The patch (4, 5) is the patch with the largest Ci in Figure 4.4
(right). We also include the patch (6, 6) which has an intermediate Ci. As we
analyzed in section 4.5, Ci does not increase in a polynomial fashion as the
contrast η increases. In fact, Ci can be bounded by a constant as the contrast
goes to infinity.

Finally, we point out that for the 13 × 13 partition, there is at most one
connected high-conductivity region per patch. If we change to a 9×9 partition,
we will have patches that contain two disconnected high-conductivity regions.
We have also run experiments on the 9 × 9 partition, and obtained similar
results as above. We choose to present the result on the 13 × 13 partition
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Figure 4.3: The two basis functions ψi,q and their energy norm (both in log
scale) constructed by Eqn. (4.24).
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because the exponential decay is visually clearer when we have more patches
per axis.
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C h a p t e r 5

INTRINSIC SPARSE MODE DECOMPOSITION FOR LOW
RANK PSD MATRICES

Many problems in science and engineering lead to huge symmetric and positive
semidefinite (PSD) matrices. Often they arise from the discretization of self-
adjoint PSD operators or their kernels, especially in the context of data science
and partial differential equations.

Consider a symmetric PSD matrix of size N × N , denoted as A. Since N is
typically large, this causes serious obstructions when dealing numerically with
such problems. Fortunately, in many applications, the matrix A is low-rank
or approximately low-rank, i.e., there exists {ψ1, . . . , ψK} ⊂ RN for K � N

such that

A =
K∑
k=1

ψkψ
T
k or ‖A−

K∑
k=1

ψkψ
T
k ‖2 ≤ ε,

respectively. Here, ε > 0 is some small number and ‖A‖2 = λmax(A) is the
largest eigenvalue ofA. To obtain such a low-rank decomposition/approximation
of A, the most natural method is perhaps the eigendecomposition with {ψk}Kk=1

as the eigenvectors corresponding to the largest K eigenvalues of A. An ad-
ditional advantage of the eigendecomposition is the fact that eigenvectors are
orthogonal to each other. However, eigenvectors are typically dense vectors,
i.e., every entry is typically nonzero.

For a symmetric PSD matrix A with rank K � N , the aim of this chapter is
to find an alternative decomposition

A =
K∑
k=1

gkg
T
k . (5.1)

Here the number of components is still its rank K, which is optimal, and the
modes {gk}Kk=1 are required to be as sparse as possible. In this chapter, we work
on symmetric PSD matrices, which are typically discretized representation of
self-adjoint PSD operators or their kernels. We could have just as well worked
on the self-adjoint PSD operators themselves, which would correspond to the
case where N =∞. Much of what will be discussed below applies equally well
to this case.



133

5.1 Our Results

The number of nonzero entries of a vector ψ ∈ RN is called its l0 norm, denoted
by ‖ψ‖0. Since the modes in (5.1) are required to be as sparse as possible,
the sparse decomposition problem is naturally formulated as the following
optimization problem:

min
ψ1,...,ψK∈RN

K∑
k=1

‖ψk‖0 s.t. A =
K∑
k=1

ψkψ
T
k . (5.2)

However, this problem is rather difficult to solve because: first, minimizing the
l0 norm results in a combinatorial problem and is computationally intractable
in general; second, the number of unknown variables is K × N where N is
typically a huge number. Therefore, we introduce the following patchwise
sparseness as a surrogate of ‖ψk‖0 and make the problem computationally
tractable.

Definition 5.1.1 (Patchwise sparseness). Suppose that P = {Pm}Mm=1 is a
disjoint partition of the N nodes, i.e., [N ] ≡ {1, 2, 3, . . . , N} = tMm=1Pm.
The patchwise sparseness of ψ ∈ RN with respect to (w.r.t.) the partition P,
denoted by s(ψ;P), is defined as

s(ψ;P) = #{P ∈ P : ψ|
P
6= 0}.

Throughout this chapter, [N ] denotes the index set {1, 2, 3, . . . , N}; 0 denotes
the vectors with all entries equal to 0; |P | denotes the cardinality of a set P ;
ψ|

P
∈ R|P | denotes the restriction of ψ ∈ RN on patch P . Once the partition

P is fixed, smaller s(ψ;P) means that ψ is nonzero on fewer patches, which
implies a sparser vector. With patchwise sparseness as a surrogate of the l0
norm, the sparse decomposition problem (5.2) is relaxed to

min
ψ1,...,ψK∈RN

K∑
k=1

s(ψk;P) s.t. A =
K∑
k=1

ψkψ
T
k . (5.3)

If {gk}Kk=1 is an optimizer for (5.3), we call them a set of intrinsic sparse modes
for A under partition P . Since the objective function of problem (5.3) only
takes nonnegative integer values, we know that for a symmetric PSD matrix
A with rank K, there exists at least one set of intrinsic sparse modes.
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It is obvious that the intrinsic sparse modes depend on the domain partition P .
Two extreme cases would be M = N and M = 1. For M = N , s(ψ;P) recov-
ers ‖ψ‖0 and the patchwise sparseness minimization problem (5.3) recovers the
original l0 minimization problem (5.2). Unfortunately, it is computationally
intractable. For M = 1, every non-zero vector has sparseness one, and thus
the number of nonzero entries makes no difference. However, in this case prob-
lem (5.3) is computationally tractable. For instance, a set of (unnormalized)
eigenvectors is one of the optimizers. We are interested in the sparseness de-
fined in between, namely, a partition with a meso-scale patch size. Compared
to ‖ψ‖0, the meso-scale partition sacrifices some resolution when measuring
the support, but makes the optimization (5.3) efficiently solvable. Specifically,
problem (5.3) with the regular-sparse partitions (see Definition 1.3.2) enjoys
many good properties. These properties enable us to design a very efficient
algorithm to solve problem (5.3).

If two intrinsic sparse modes are non-zero on exactly the same set of patches,
which are called unidentifiable modes in Definition 5.3.4, it is easy to see
that any rotation of these unidentifiable modes forms another set of intrinsic
sparse modes. From a theoretical point of view, if a partition is regular-sparse
w.r.t. A, the intrinsic sparse modes are unique up to rotations of unidentifi-
able modes; see Theorem 5.3.5. Moreover, as the partition gets refined, the
original identifiable intrinsic sparse modes remain unchanged, while the origi-
nal unidentifiable modes become identifiable and become sparser (in the sense
of l0 norm); see Theorem 5.3.6. In this sense, the intrinsic sparse modes are
independent of the partition that we use. From a computational point of view,
a regular-sparse partition ensures that the restrictions of the intrinsic sparse
modes on each patch Pm can be constructed from rotations of local eigenvec-
tors. Following this idea, we propose the intrinsic sparse mode decomposition
(ISMD); see Algorithm 2. In Theorem 5.3.5, we have proved that the ISMD
solves problem (5.3) exactly on regular-sparse partitions. We point out that,
even when the partition is not regular-sparse, numerical experiments show that
the ISMD still generates a sparse decomposition of A.

The ISMD consists of three steps. In the first step, we perform eigendecom-
position of A restricted on local patches {Pm}Mm=1, denoted as {Amm}Mm=1, to
get Amm = HmH

T
m. Here, columns of Hm are the unnormalized local eigen-

vectors of A on patch Pm. In the second step, we recover the local pieces
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of intrinsic sparse modes, denoted by Gm, by rotating the local eigenvectors
Gm = HmDm. The method to find the right local rotations {Dm}Mm=1 is the
core of the ISMD. All the local rotations are coupled by the decomposition
constraint A =

∑K
k=1 gkg

T
k and it seems impossible to solve {Dm}Mm=1 from

this big coupled system. Surprisingly, when the partition is regular-sparse,
this coupled system can be decoupled and every local rotation Dm can be
solved independently by a joint diagonalization problem (5.13). In the last
“patch-up” step, we identify correlated local pieces across different patches by
the pivoted Cholesky decomposition of a symmetric PSD matrix Ω and then
glue them into a single intrinsic sparse mode. Here, Ω is the projection of A
onto the subspace spanned by all the local pieces {Gm}Mm=1, see Eqn. (5.15).
This step is necessary to reduce the number of decomposed modes to the op-
timal K, i.e., the rank of A. The last step also equips the ISMD with the
power to identify long range correlations and to honor the intrinsic correlation
structure hidden in A. The popular l1 approach typically does not have this
property.

The ISMD has very low computational complexity. There are two reasons for
its efficiency: first of all, instead of computing the expensive global eigende-
composition, we compute only the local eigendecompositions of {Amm}Mm=1;
second, there is an efficient algorithm to solve the joint diagonalization prob-
lems for the local rotations {Dm}Mm=1. Moreover, because both performing the
local eigendecompositions and solving the joint diagonalization problems can
be done independently on each patch, the ISMD is embarrassingly paralleliz-
able.

The stability of the ISMD is also explored when the input data A is mixed
with noise. We study the small perturbation case, i.e., Â = A + εÃ. Here, A
is the noiseless rank-K symmetric PSD matrix, Ã is the symmetric additive
perturbation, and ε > 0 quantifies the noise level. A simple thresholding step
is introduced in the ISMD to achieve our aim: to clean up the noise εÃ and
to recover the intrinsic sparse modes of A. Under some assumptions, we can
prove that sparse modes {ĝk}Kk=1, produced by the ISMD with thresholding,
exactly capture the supports of A’s intrinsic sparse modes {gk}Kk=1 and the
error ‖ĝk − gk‖ is small; see Section 5.4 for a precise description.

We have verified all the theoretical predictions with numerical experiments
on several synthetic covariance matrices of high dimensional random vectors.
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Without parallel execution, for partitions with a large range of patch sizes,
the computational cost of the ISMD is comparable to that of the partial eigen-
decomposition [117, 82]. For certain partitions, the ISMD could be ten times
faster than the partial eigendecomposition. We have also implemented the con-
vex relaxation of SPCA [78, 128] and compared these two methods. It turns
out that the convex relaxation of SPCA fails to capture the long range corre-
lation, needs to perform (partial) eigendecomposition on matrices repeatedly
for many times and is thus much slower than the ISMD. Moreover, we demon-
strate the robustness of the ISMD on partitions which are not regular-sparse
and on inputs which are polluted with small noise.

Applications

The ISMD leads to a sparse-orthogonal matrix factorization for any matrix.
Given a matrix X ∈ RN×M of rank K and a partition P of the index set [N ],
the ISMD tries to solve the following optimization problem:

min
g1,...,gK∈RN

u1,...,uK∈RM

K∑
k=1

s(gk;P) s.t. X =
K∑
k=1

gku
T
k , uTk uk′ = δk,k′ ∀1 ≤ k, k′ ≤ K,

(5.4)
where s(gk;P) is the patchwise sparseness defined in Definition (5.1.1). Com-
pared to the biorthogonal property of SVD, the ISMD requires orthogonality
only in one dimension and requires sparsity in the other dimension. The
method to obtain the decomposition (5.4) consists of three steps: first, com-
pute A = XXT ; second, apply the ISMD to A to get {gk}Kk=1; third, project
X on to {gk}Kk=1 to obtain {uk}Kk=1.

The sparse-orthogonal matrix factorization (5.4) has potential applications in
statistics, machine learning, and uncertainty quantification. In statistics and
machine learning, latent factor models with sparse loadings have found many
applications ranging from DNA microarray analysis [48], facial and object
recognition [129], web search models [1], etc. Specifically, latent factor models
decompose a data matrix X ∈ RN×M by product of the loading matrix G ∈
RN×K and the factor value matrix U ∈ RM×K , with possibly small noise
E ∈ RN×M , i.e.,

X = GUT + E. (5.5)

The sparse-orthogonal matrix factorization (5.4) tries to find the optimal
sparse loadings G under the condition that latent factors are normalized and
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uncorrelated, i.e., columns in U are orthonormal. In practice, using uncor-
related latent factors makes lots of sense, but is not guaranteed by many
existing matrix factorization methods, e.g., non-negative matrix factorization
(NMF) [80], SPCA [73, 137, 37], structured SPCA [72].

In uncertainty quantification (UQ), we often need to parametrize a random
field, denoted as κ(x, ω), with a finite number of random variables. Apply-
ing the ISMD to its covariance function, denoted by Cov(x, y), we can get a
parametrization with K random variables:

κ(x, ω) = κ̄(x) +
K∑
k=1

gk(x)ηk(ω), (5.6)

where κ̄(x) is the mean field, the physical modes {gk}Kk=1 are sparse/localized,
and the random variables {ηk}Kk=1 are centered, uncorrelated, and have unit
variance. The parametrization (5.6) has a form similar to the widely used
Karhenen–Loève (KL) expansion [75, 85], but in the KL expansion the phys-
ical modes {gk}Kk=1 are eigenfunctions of the covariance function and are typ-
ically nonzero everywhere. Obtaining a sparse parametrization is important
to uncover the intrinsic sparse features in a random field and to achieve com-
putational efficiency for further scientific experiments. In [65], such sparse
parametrization methods are used to design efficient algorithms to solve par-
tial differential equations with random inputs.

Connection With The Sparse Matrix Factorization Problem

Given a matrix X ∈ RN×M of M columns corresponding to M observations in
RN , a sparse matrix factorization problem is to find a matrix G = [g1, . . . , gr] ∈
RN×r, called a dictionary, and a matrix U = [u1, . . . , ur] ∈ RM×r, called de-
composition coefficients, such that GUT approximates X well and the columns
in G are sparse.

In [81, 131, 88], the authors formulated this problem as an optimization prob-
lem by penalizing the l1 norm of G, i.e. ‖G‖1 :=

∑r
k=1 ‖gk‖1, to enforce the

sparsity of the dictionary. This can be written as

min
G∈RN×r,U∈RM×r

‖X −GUT‖2
F + λ‖G‖1 s.t. ‖uk‖2 ≤ 1 ∀1 ≤ k ≤ r,

(5.7)
where the parameter λ > 0 controls to what extent the dictionary G is regular-
ized. We point out that the l1 penalty can be replaced by other penalties. For
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example, the structured SPCA [72] uses certain l1/l2 norms of G to enforce
sparsity with specific structures, e.g. rectangular structure on a grid. Prob-
lem (5.7) is not jointly convex in (G,U). Certain specially designed algorithms
have been developed to solve this optimization problem. We will discuss one
of these methods in Section 5.2.

There are two major differences between the optimization problem (5.4) and
the optimization problem (5.7). First, the ISMD, which is designed to solve (5.4),
requires that the decomposition coefficients U be orthonormal, while many
other methods, including SPCA and structured SPCA, which are designed to
solve (5.7), only normalize every columns in U . One needs to decide whether
the orthogonality in U is necessary in a specific application and choose the
appropriate method. Second, the number of modes K in the ISMD must be
the rank of the matrix, while the number of modes r in problem (5.7) is picked
by users and can be any number. In other words, the ISMD is seeking an ex-
act matrix decomposition, while other methods make a trade-off between the
accuracy ‖X − GUT‖F and the sparsity ‖G‖1 by recovering the matrix ap-
proximately instead of obtaining an exact recovery. Although the ISMD can
be modified to do matrix approximation (with the orthogonality constraint
on U), see Algorithm 4, the optimal sparsity of the dictionary G is no longer
guaranteed anymore. Based on these two differences, we recommend the ISMD
for sparse matrix factorization problems where the orthogonality in decompo-
sition coefficients U is required and an exact (or nearly exact) decomposition
is desired.

Outline

In Section 5.2 we present our ISMD algorithm for low rank matrices, analyze its
computational complexity and talk about its relation with other methods for
sparse decomposition or approximation. In Section 5.3 we present our main
theoretical results, i.e., Theorem 5.3.5 and Theorem 5.3.6. In Section 5.4,
we discuss the stability of the ISMD by performing perturbation analysis.
We also provide two modified ISMD algorithms: Algorithm 3 for low rank
matrices with small noise, and Algorithm 4 for sparse matrix approximation.
Finally, we present a few numerical examples in Section 5.5 to demonstrate
the efficiency of the ISMD and compare its performance with other existing
methods.
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5.2 Intrinsic Sparse Mode Decomposition

In this section, we present the algorithm of the ISMD and analyze its compu-
tational complexity. Its relation with other matrix decomposition methods is
discussed at the end of this section. In the rest of the chapter, O(n) denotes
the set of real unitary matrices of size n × n; In denotes the identity matrix
with size n× n.

The Algorithm Of ISMD

Suppose that we have a symmetric positive symmetric matrix, denoted as
A ∈ RN×N , and a partition of the index set [N ], denoted as P = {Pm}Mm=1.
The partition typically originates from the physical meaning of the matrix A.
For example, if A is the discretized covariance function of a random field on
domain D ⊂ Rd, P is constructed from certain domain partition of D. The
submatrix of A, with row index in Pm and column index in Pn, is denoted as
Amn. To simplify our notation, we assume that indices in [N ] are rearranged
such that A is written as below:

A =


A11 A12 · · · A1M

A21 A22 · · · A2M

...
... . . . ...

AM1 AM2 · · · AMM

 . (5.8)

Notice that when implementing the ISMD, there is no need to rearrange the
indices as above. The ISMD tries to find the optimal sparse decomposition of
A w.r.t. partition P , defined as the minimizer of problem (5.3). The ISMD
consists of three steps: local decomposition, local rotation, and global patch-
up.

In the first step, we perform the local eigendecomposition

Amm =
Km∑
i=1

γm,ihm,ih
T
m,i ≡ HmH

T
m, (5.9)

where Km is the rank of Amm and Hm = [γ
1/2
m,1hm,i , γ

1/2
m,2hm,2 , . . . γ

1/2
m,Km

hm,Km ].
If Amm is ill-conditioned, we truncate the small eigenvalues and a truncated
eigendecomposition is used as follows:

Amm ≈
Km∑
i=1

γm,ihm,ih
T
m,i ≡ HmH

T
m. (5.10)
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Let K(t) ≡
∑M

m=1Km be the total local rank of A. We extend columns of Hm

into RN by adding zeros, and get the block diagonal matrix

Hext = diag{H1, H2, · · · , HM}.

The correlation matrix with basis Hext, denoted by Λ ∈ RK(t)×K(t) , is the
matrix such that

A = HextΛH
T
ext. (5.11)

Since columns of Hext are orthogonal and span a space that contains range(A),
Λ exists and can be computed blockwise as follows:

Λ =


Λ11 Λ12 · · · Λ1M

Λ21 Λ22 · · · Λ2M

...
... . . . ...

ΛM1 ΛM2 · · · ΛMM

 , Λmn = H†mAmn
(
H†n
)T ∈ RKm×Kn ,

(5.12)

where H†m ≡ (HT
mHm)−1HT

m is the (Moore-Penrose) pseudo-inverse of Hm.

In the second step, on every patch Pm, we solve the following joint diagonal-
iziation problem to find a local rotation Dm:

Dm = arg min
V ∈O(Km)

M∑
n=1

∑
i 6=j

|(V TΣn;mV )i,j|2 , (5.13)

in which
Σn;m ≡ ΛmnΛT

mn. (5.14)

We rotate the local eigenvectors with Dm and get Gm = HmDm. Again, we
extend columns of Gm into RN by adding zeros, and get the block diagonal
matrix

Gext = diag{G1, G2, · · · , GM}.

The correlation matrix with basis G, denoted by Ω ∈ RK(t)×K(t) , is the matrix
such that

A = GextΩG
T
ext. (5.15)

With Λ in hand, Ω can be obtained as follows:

Ω = DTΛD , D = diag{D1, D2, · · · , DM}. (5.16)



141

Joint diagonalization has been well studied in the blind source separation
(BSS) community. We present some relevant theoretical results in supplemen-
tary materials B.2. A Jacobi-like algorithm [23, 17], see Algorithm 5, is used in
our chapter to solve problem (5.13). For most cases, we may want to normalize
the columns of Gext and put all the magnitude information in Ω, i.e.,

Gext = ḠextE, Ω̄ = EΩET , (5.17)

where E is a diagonal matrix with Eii being the l2 norm of the i-th column
of Gext, Ḡext and Ω̄ will substitute the roles of G and Ω in the rest of the
algorithm.

In the third step, we use the pivoted Cholesky decomposition to patch up the
local pieces Gm. Specifically, suppose the pivoted Cholesky decomposition of
Ω is given as

Ω = PLLTP T , (5.18)

where P ∈ RK(t)×K(t) is a permutation matrix and L ∈ RK(t)×K is a lower
triangular matrix with positive diagonal entries. Since A has rank K, both Λ

and Ω have rank K. This is why L only has K nonzero columns. However, we
point out that the rank K is automatically identified in the algorithm instead
of given as an input parameter. Finally, A is decomposed as

A = GGT ≡ GextPL(GextPL)T . (5.19)

The columns in G = GextPL are our decomposed sparse modes.

The full algorithm is summarized in Algorithm 2. We point out that there are
two extreme cases for the ISMD:

• The coarsest partition P = {[N ]}. In this case, the ISMD is equivalent
to the standard eigendecomposition.

• The finest partition P = {{i} : i ∈ [N ]}. In this case, the ISMD is equiv-
alent to the pivoted Cholesky factorization on Ā where Āij =

Aij√
AiiAjj

. If

the normalization (5.17) is applied, the ISMD is equivalent to the pivoted
Cholesky factorization of A in this case.

In these two extreme cases, there is no need to use the joint diagonaliza-
tion step and it is known that, in general, neither the ISMD nor the pivoted
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Cholesky decomposition generates a sparse decomposition. When P is neither
of these two extreme cases, the joint diagonalization is applied to rotate the
local eigenvectors and thereafter the generated modes are patchwise sparse.
Specifically, when the partition is regular-sparse, the ISMD generates the op-
timal patchwise sparse decomposition as stated in Theorem 5.3.5.

Algorithm 2 Intrinsic sparse mode decomposition
Require: A ∈ RN×N : symmetric and PSD; P = {Pm}Mm=1: partition of index

set [N ]
Ensure: G = [g1, g2, · · · , gK ]: K is the rank of A, A = GGT

1: ###Local eigendecomposition
2: for m = 1, 2, · · · ,M do
3: Local eigendecomposition: Amm = HmH

T
m

4: end for
5: ###Assemble correlation matrix Λ

6: Assemble Λ = H†extA
(
H†ext

)T
blockwisely as in Eqn. (5.12)

7: ###Joint Diagonalization
8: for m = 1, 2, · · · ,M do
9: for n = 1, 2, · · · ,M do
10: Σn;m = ΛmnΛT

mn

11: end for
12: Solve the joint diagonalization problem (5.13) for Dm . Use

Algorithm 5
13: end for
14: ###Assemble correlation matrix Ω and its pivoted Cholesky decomposi-

tion
15: Ω = DTΛD
16: Ω = PLLTP T

17: ###Assemble the intrinsic sparse modes G
18: G = HextDPL

Remark 5.2.1. One can interpret Hm as the patchwise amplitude and Dm as
the patchwise phase. The patchwise amplitude is easy to obtain using a local
eigendecomposition (5.9), while the patchwise phase is obtained by the joint
diagonalization (5.13).

In fact, the ISMD solves the following optimization problem where we jointly
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diagonalize Amn:

min
Gm∈R|Pm|×Km

M∑
n=1

∑
i 6=j

|Bn;m(i, j)|2

s.t. GmG
T
m = Amm ,

GmBn;mG
T
m = AmnA

†
nnA

T
mn,

(5.20)

in which A†nn =
∑Kn

i=1 γ
−1
n,ihn,ih

T
n,i is the (Moore–Penrose) pseudo-inverse of

Ann. Eqn. (5.20) is not a unitary joint diagonalization problem, i.e., the vari-
able Gm is not unitary. The ISMD solves this non-unitary joint diagonalization
problem in two steps:

1. Perform a local eigendecomposition Amm = HmH
T
m. Then the feasible

Gm can be written as HmDm with a unitary matrix Dm.

2. Find the rotation Dm that solves the unitary joint diagonalization prob-
lem (5.13).

Computational Complexity

The main computational cost of the ISMD comes from the local KL expansion,
the joint diagonalization, and the pivoted Cholesky decomposition. To simplify
the analysis, we assume that the partition P is uniform, i.e., each group has
N
M

nodes. On each patch, we perform the eigendecomposition of Amm of size
N/M and rank Km. Then, the cost of the local eigendecomposition step is

Cost1 =
M∑
m=1

O
(
(N/M)2Km

)
= (N/M)2O(

M∑
m=1

Km).

For the joint diagonalization, the computational cost of Algorithm 5 is

M∑
m=1

Ncorr,mK
3
mNiter,m .

Here, Ncorr,m is the number of nonzero matrices in {Σn;m}Mn=1. Notice that
Σn;m ≡ ΛmnΛT

mn = 0 if and only if Amn = 0. Therefore, Ncorr,m may be
much smaller than M if A is sparse. Nevertheless, we take an upper bound
M to estimate the cost. Ncorr,mK

3
m is the computational cost for each sweep

in Algorithm 5 and Niter,m is the number of iterations needed for convergence.
The asymptotic convergence rate is shown to be quadratic [17], and no more
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than six iterations are needed in our numerical examples. Therefore, we can
take Niter,m = O(1) and in total we have

Cost2 =
M∑
m=1

MO(K3
m) = MO(

M∑
m=1

K3
m).

Finally, the pivoted Cholesky decomposition of Ω, which is of size
∑M

k=1Km,
has cost

Cost3 = O

(
(
M∑
k=1

Km)K2

)
= K2O(

M∑
m=1

Km).

Combining the computational costs in all three steps, we conclude that the
total computational cost of the ISMD is

CostISMD =
(
(N/M)2 +K2

)
O(

M∑
m=1

Km) +MO(
M∑
m=1

K3
m) . (5.21)

Making use of Km ≤ K, we have an upper bound for CostISMD,

CostISMD ≤ O(N2K/M) +O(M2K3) . (5.22)

When M = O((N/K)2/3), CostISMD ≤ O(N4/3K5/3). Compared with the cost
of partial eigendecomposition [117, 82], which is about O(N2K) 1, the ISMD
is more efficient for low-rank matrices.

For matrix A which has a sparse decomposition, the local ranks Km are much
smaller than its global rank K. An extreme case is Km = O(1), which is, in
fact, true for many random fields; see [28, 65]. In this case,

CostISMD = O(N2/M) +O(M2) +O(MK2) . (5.23)

When the partition gets finer (M increases), the computational cost first de-
creases due to the saving in local eigendecompositions. The computational
cost achieves its minimum around M = O(N2/3) and then increases due to
the increasing cost for the joint diagonalization. This trend is observed in our
numerical examples; see Figure 5.4.

We point out that the M local eigendecompositions (5.9) and the joint di-
agonalization problems (5.13) are solved independently on different patches.
Therefore, our algorithm is embarrassingly parallelizable. This will save the
computational cost in the first two steps by a factor of M , which makes the
ISMD even faster.

1The cost can be reduced to O(N2 log(K)) if a randomized SVD with some specific
technique is applied.
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Connection With Other Matrix Decomposition Methods

Sparse decompositions of symmetric PSD matrices have been studied in dif-
ferent fields for a long time. There are, in general, two approaches to achieve
sparsity: rotation or l1 minimization.

The rotation approach begins with eigenvectors. Suppose that we have decided
to retain and rotate K eigenvectors. Define H = [h1, h2, . . . , hK ] with hk being
the k’th eigenvector. We postmultiply H by a matrix T ∈ RK×K to obtain the
rotated modes G = [g1, g2, . . . , gK ] = HT . The choice of T is determined by
the rotation criterion we use. In data science, for the commonly used varimax
rotation criterion [77, 74], T is an orthogonal matrix chosen to maximize the
variance of squared modes within each column of G. This drives entries in G
towards 0 or ±1. In quantum chemistry, every column in H and G corresponds
to a function over a physical domain D and certain specialized sparse modes
(localized modes) are sought after. The most widely used criterion to achieve
maximally localized modes is the one proposed in [90]. This criterion requires
T to be unitary, and then minimizes the second moment:

K∑
k=1

∫
D

(x− xk)2|gk(x)|2dx , (5.24)

where xk =
∫
D
x|gk(x)|2dx. More recently, a method weighted by higher degree

polynomials is discussed in [42]. While these criteria work reasonably well for
simple symmetric PSD functions/operators, they all suffer from non-convex
optimization, which requires a good starting point to converge to the global
minimum. In addition, these methods only care about the eigenspace spanned
by H instead of the specific matrix decomposition, and thus they cannot be
directly applied to solve our problem (5.3).

The ISMD proposed in this chapter follows the rotation approach. The ISMD
implicitly finds a unitary matrix T ∈ RK×K to construct the intrinsic sparse
modes

[g1, g2, . . . , gK ] = [
√
λ1h1,

√
λ2h2, . . . ,

√
λKhK ] T. (5.25)

Notice that we rotate the unnormalized eigenvector
√
λkhk to satisfy the de-

composition constraint A =
∑K

k=1 gkg
T
k . The criterion of the ISMD is to

minimize the total patchwise sparseness as in (5.3). The success of the ISMD
lies in the fact that as long as the domain partition is regular-sparse, the op-
timization problem (5.3) can be exactly and efficiently solved by Algorithm 2.
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Moreover, the intrinsic sparse modes produced by the ISMD are optimally
localized because we are directly minimizing the total patchwise sparseness of
{gk}Kk=1.

The l1 minimization approach, pioneered by ScotLass [73], has a rich literature
in solving the sparse matrix factorization problem (5.7); see [137, 37, 136, 128,
107, 78]. Problem (5.7) is highly non-convex in (G,U), and there has been
a lot of effort (see e.g. [37, 128, 78]) in relaxing it to a convex optimization.
First of all, since there are no essential constraints on U , one can get rid of U
by considering the variational form [73, 137, 107]:

min
G∈RN×K

−Tr(GTAG) + µ‖G‖1 s.t. GTG = IK , (5.26)

where A = XXT is the covariance matrix as in the ISMD (5.3) and Tr is the
trace operator on square matrices. Notice that the problem is still non-convex
due to the orthogonality constraint GTG = IK . In the second step, the authors
in [128] proposed the following semidefinite programming to obtain the sparse
density matrix W ∈ Rn×n, which plays the same role as GGT in (5.26):

min
W∈RN×N

−Tr(AW ) + µ‖W‖1 s.t. 0 � W � IN , Tr(W ) = K. (5.27)

Here, 0 � W � IN means that both W and IN − W are symmetric and
positive semidefinite. Finally, the first K eigenvectors of W are used as the
sparse modes G. An equivalent formulation was proposed in [78], and the
authors proposed to pick K columns of W as the sparse modes G.

We will compare the advantages and disadvantages of the ISMD and the convex
relaxation of SPCA in Section 5.5.

5.3 Theoretical Results With Regular-Sparse Partitions

In this section, we present the main theoretical results of the ISMD, i.e.,
Theorem 5.3.5, Theorem 5.3.6 and its perturbation analysis. We first intro-
duce a domain-decomposition type presentation of any feasible decomposition
A =

∑K
k=1 ψkψ

T
k . Then we discuss the regular-sparse property and use it

to prove our main results. When no ambiguity arises, we denote patchwise
sparseness s(gk;P) as sk.

A Domain-decomposition Type Representation

For an arbitrary decomposition A =
∑K

k=1 ψkψ
T
k , denote Ψ ≡ [ψ1, . . . , ψK ] and

Ψ|
Pm
≡ [ψ1|Pm , . . . , ψK |Pm ]. For a sparse decomposition, we expect that most
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columns in Ψ|
Pm

are zero, and thus we define the local dimension on patch Pm
as follows.

Definition 5.3.1 (Local dimension). The local dimension of a decomposition
A =

∑K
k=1 ψkψ

T
k on patch Pm is the number of nonzero modes when restricted

to this patch, i.e.,

d(Pm; Ψ) = |Sm|, Sm = {k : ψk|Pm 6= 0}.

When no ambiguity arises, d(Pm; Ψ) is written as dm. We enumerate all the
elements in Sm as {kmi }dmi=1, and group together all the nonzero local pieces on
patch Pm and obtain

Ψm ≡ [ψm,1, . . . , ψm,dm ] , ψkmi |Pm = ψm,i . (5.28)

Therefore, we have
Ψ|

Pm
= ΨmL

(ψ)
m , (5.29)

where L(ψ)
m is a matrix of size dm×K with the kmi -th column being ei for i ∈ [dm]

and other columns being 0. Here, ei is the i-th column of Idm . L
(ψ)
m is called

the local indicator matrix of Ψ on patch Pm. Restricting the decomposition
constraint A = ΨΨT to patch Pm, we have Amm = Ψ|

Pm

(
Ψ|

Pm

)T , where Amm
is the restriction of A on patch Pm, as in (5.8). Since Ψm is obtained from
Ψ|

Pm
by deleting zero columns, we have

Amm = ΨmΨT
m. (5.30)

We stack up Ψm and L(ψ)
m as follows,

Ψext ≡ diag{Ψ1,Ψ2, · · · ,ΨM} , L(ψ) ≡
[
L

(ψ)
1 ;L

(ψ)
2 ; · · · ;L

(ψ)
M

]
,

and then we have:

Ψ = [Ψ|
P1

; . . . ; Ψ|
PM

] = ΨextL
(ψ) . (5.31)

The intuition in Eqn. (5.31) is that the local pieces Ψm are linked together by
the indicator matrix L(ψ) and the modes Ψ on the entire domain [N ] can be
recovered from Ψext and L(ψ). We call L(ψ) the indicator matrix of Ψ.

We use a simple example to illustrate the patchwise sparseness, the local di-
mension and Eqn. (5.31). In this case, Ψ ∈ RN×K (N = 100, K = 2) is the
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Figure 5.1: Illustration of sparseness, local dimension and Ψ = ΨextL
(ψ).

discretized version of two functions on [0, 1] and P partitions [0, 1] uniformly
into four intervals as shown in Figure 5.3. ψ1, the red starred mode, is nonzero
on the left two patches and ψ2, the blue circled mode, is nonzero on the right
three patches. The sparseness of ψ1 is 2, the sparseness of ψ2 is 3, and the local
dimensions of the four patches are 1, 2, 1, and 1 respectively, as we comment in
Figure 5.3. Following the definitions above, we have Ψ1 = ψ1|P1

, L(ψ)
1 = [1, 0],

Ψ2 = [ψ1|P2
, ψ2|P2

], L(ψ)
2 = [1, 0; 0, 1], Ψ3 = ψ2|P3

, L(ψ)
3 = [0, 1], Ψ4 = ψ2|P4

,
and L(ψ)

4 = [0, 1]. Finally, we get

[ψ1, ψ2] = ΨextL
(ψ) ≡


ψ1,1 0 0 0 0

0 ψ1,2 ψ2,2 0 0

0 0 0 ψ2,3 0

0 0 0 0 ψ2,4




1 0

1 0

0 1

0 1

0 1

 .

With this domain-decomposition type representation of Ψ, the decomposition
constraint is rewritten as:

A = ΨΨT = ΨextΩ
(ψ)ΨT

ext , Ω(ψ) ≡ L(ψ)
(
L(ψ)

)T
. (5.32)

Here, Ω(ψ) has a role similar to that of Ω in the ISMD. It can be viewed as the
correlation matrix of A under basis Ψext, just like how Λ and Ω are defined.

Finally, we provide two useful properties of the local indicator matrices L(ψ)
m ,

which are direct consequences of their definitions.

Proposition 5.3.2. For an arbitrary decomposition A = ΨΨT ,
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1. The k-th column of L(ψ), denoted as l(ψ)
k , satisfies ‖l(ψ)

k ‖1 = sk where
sk is the patchwise sparseness of ψk, as in Definition 5.1.1. Moreover,
different columns in L(ψ) have disjoint supports.

2. Define
B(ψ)
n;m ≡ Ω(ψ)

mn

(
Ω(ψ)
mn

)T
, (5.33)

where Ω
(ψ)
mn ≡ L

(ψ)
m (L

(ψ)
n )T is the (m,n)-th block of Ω(ψ). B(ψ)

n;m is diagonal
with diagonal entries either 1 or 0. Moreover, B(ψ)

n;m(i, i) = 1 if and only
if there exists k ∈ [K] such that ψk|Pm = ψm,i and ψk|Pn 6= 0.

Proof. 1. l(ψ)
k , divided into patches, can be written as l(ψ)

k = [l1,k; l2,k; · · · ; lM,k].
From the definition (5.29), we have ‖lm,k‖1 = 1 if ψk|Pm 6= 0 and 0 oth-
erwise. Therefore, we obtain

‖l(ψ)
k ‖1 =

M∑
m=1

‖lm,k‖1 = sk(ψk;P).

Moreover, on patch Pm different ψk’s correspond to different local pieces
in Ψm (when they are identical, we keep both when constructing Ψm),
and thus different columns in L

(ψ)
m have disjoint supports. Therefore,

different columns in L(ψ) have disjoint supports.

2. From the definition (5.29), the j-th row of L(ψ)
n is equal to eTkmj , where ekmj

is the kmj -th column of IK . Then we have (L
(ψ)
n )TL

(ψ)
n =

∑dn
j=1 eknj e

T
knj
.

Therefore, we obtain

B(ψ)
n;m ≡ L(ψ)

m (L(ψ)
n )TL(ψ)

n (L(ψ)
m )T =

dn∑
j=1

L(ψ)
m eknj (L(ψ)

m eknj )T =
dn∑
j=1

lm,knj l
T
m,knj

,

(5.34)
where lm,knj is the knj -th column of L(ψ)

m .

From the definition (5.29), lm,kmi , the k
m
i -th column of L(ψ)

m , is equal to
ei for i ∈ [dm] and all other columns are 0. Therefore,

K∑
k=1

lm,kl
T
m,k =

dm∑
i=1

lm,kmi l
T
m,kmi

=
dm∑
i=1

eie
T
i = Idm . (5.35)

Eqn. (5.34) sums over k ∈ {knj }dnj=1 ⊂ [K] and then we conclude that B(ψ)
n;m

is diagonal with diagonal entries either 1 or 0. Moreover, if B(ψ)
n;m(i, i) = 1

the term eie
T
i has to be included in the summation in (5.34). Among
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all terms {lm,klTm,k}Kk=1, only lm,kmi l
T
m,kmi

is equal to eieTi due to the defi-
nition of L(ψ)

m . Therefore, the term lm,kmi l
T
m,kmi

has to be included in the
summation in (5.34). Therefore, there exists j ∈ [dn] such that knj = kmi .
In other words, there exist k ∈ [K] and j ∈ [dn] such that ψk|Pm = ψm,i

and ψk|Pn = ψn,j.

Since different columns in L(ψ) have disjoint supports, Ω(ψ) ≡ L(ψ)
(
L(ψ)

)T has
a block-diagonal structure with K blocks. The k-th diagonal block is the one

contributed by l(ψ)
k

(
l
(ψ)
k

)T
. Therefore, as long as we obtain Ω(ψ), we can use the

pivoted Cholesky decomposition to efficiently recover L(ψ). The ISMD follows
this rationale: we first construct local pieces Ψext ≡ diag{Ψ1,Ψ2, · · · ,ΨM}
for a certain set of intrinsic sparse modes Ψ. Then from the decomposition
constraint (5.32) we are able to compute Ω(ψ). Finally, the pivoted Cholesky
decomposition is applied to obtain L(ψ) and the modes are assembled by Ψ =

ΨextL
(ψ). Obviously, the key step is to construct Ψext, which are local pieces of

a set of intrinsic sparse modes; this is exactly where the regular-sparse property
and the joint diagonalization come into play.

Regular-sparse Property and Local Modes Construction

In this and the next subsections (Section 5.3 and 5.3), we assume that the
submatrices Amm are well conditioned and thus the exact local eigendecompo-
sition (5.9) is used in the ISMD.

Combining the local eigendecomposition (5.9) and local decomposition con-
straint (5.30), there exists D(ψ)

m ∈ RKm×dm such that

Ψm = HmD
(ψ)
m . (5.36)

Moreover, since the local eigenvectors are linearly independent, we have

dm ≥ Km , D(ψ)
m

(
D(ψ)
m

)T
= IKm . (5.37)

We see that dm = Km if and only if columns in Ψm are also linearly indepen-
dent. In this case, D(ψ)

m is unitary, i.e., D(ψ)
m ∈ O(Km). This is exactly what is

required by the regular-sparse property, see Definition 1.3.2. It is easy to see
that we have the following equivalent definitions of regular-sparse property.

Proposition 5.3.3. The following assertions are equivalent.
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1. The partition P is regular-sparse w.r.t. A.

2. There exists a decomposition A =
∑K

k=1 ψkψ
T
k such that on every patch

Pm its local dimension dm is equal to the local rank Km, i.e., dm = Km.

3. The minimum of problem (5.3) is
∑M

m=1Km.

The proof is elementary and is omitted here. By Proposition 5.3.3, for regular-
sparse partitions, local pieces of a set of intrinsic sparse modes can be con-
structed from rotating local eigenvectors, i.e., Ψm = HmD

(ψ)
m . All the local

rotations {D(ψ)
m }Mm=1 are coupled by the decomposition constraint A = ΨΨT .

At first glance, it seems impossible to find such Dm from this big coupled
system. However, the following lemma gives a necessary condition that D(ψ)

m

must satisfy so that HmD
(ψ)
m are local pieces of a set of intrinsic sparse modes.

More importantly, this necessary condition turns out to be sufficient, and thus
provides us a criterion to find the local rotations.

Lemma 5.3.1. Suppose that P is regular-sparse w.r.t. A and that {ψk}Kk=1

is an arbitrary set of intrinsic sparse modes. Denote the transformation from
Hm to Ψm as D(ψ)

m , i.e., Ψm = HmD
(ψ)
m . Then D

(ψ)
m is unitary and jointly

diagonalizes {Σn;m}Mn=1, which are defined in (5.14). Specifically, we have

B(ψ)
n;m =

(
D(ψ)
m

)T
Σn;mD

(ψ)
m , m = 1, 2, . . . ,M, (5.38)

where B(ψ)
n;m ≡ Ω

(ψ)
mn

(
Ω

(ψ)
mn

)T
, defined in (5.33), is diagonal with diagonal entries

either 0 or 1.

Proof. From item 3 in Proposition 5.3.3, any set of intrinsic sparse modes must
have local dimension dm = Km on patch Pm. Therefore, the transformation
D

(ψ)
m from Hm to Ψm must be unitary. Combining Ψm = HmD

(ψ)
m with the

decomposition constraint (5.32), we get

A = HextD
(ψ)Ω(ψ)

(
D(ψ)

)T
Hext,

where D(ψ) = diag{D(ψ)
1 , D

(ψ)
2 , . . . , D

(ψ)
M }. Recall that A = HextΛHext and that

Hext has linearly independent columns. We obtain

Λ = D(ψ)Ω(ψ)
(
D(ψ)

)T
, (5.39)

or blockwisely,
Λmn = D(ψ)

m Ω(ψ)
mn

(
D(ψ)
n

)T
. (5.40)
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Since D(ψ)
n is unitary, Eqn. (5.38) naturally follows the definitions of B(ψ)

n;m and
Σn;m. By item 2 in Proposition 5.3.2, we know that B(ψ)

n;m is diagonal with
diagonal entries either 0 or 1.

Lemma 5.3.1 guarantees thatD(ψ)
m for an arbitrary set of intrinsic sparse modes

is the minimizer of the joint diagonalization problem (5.13). In the other
direction, the following lemma guarantees that any minimizer of the joint
diagonalization problem (5.13), denoted as Dm, transforms local eigenvectors
Hm to Gm, which are the local pieces of certain intrinsic sparse modes.

Lemma 5.3.2. Suppose that P is regular-sparse w.r.t. A and that Dm is a
minimizer of the joint diagonalization problem (5.13). As in the ISMD, define
Gm = HmDm. Then there exists a set of intrinsic sparse modes such that its
local pieces on patch Pm are equal to Gm.

Before we prove this lemma, we examine the uniqueness property of intrinsic
sparse modes. It is easy to see that permutations and sign flips of a set of
intrinsic sparse modes are still a set of intrinsic sparse modes. Specifically, if
{ψk}Kk=1 is a set of intrinsic sparse modes and σ : [K]→ [K] is a permutation,
{±ψσ(k)}Kk=1 is another set of intrinsic sparse modes. Another kind of non-
uniqueness comes from the following concept–identifiability.

Definition 5.3.4 (Identifiability). For two modes g1, g2 ∈ RN , they are uniden-
tifiable on partition P if they are supported on the same patches, i.e., {P ∈
P : g1|P 6= 0} = {P ∈ P : g2|P 6= 0}. Otherwise, they are identifiable. For
a collection of modes {gi}ki=1 ⊂ RN , they are unidentifiable if and only if any
pair of them are unidentifiable. They are pair-wisely identifiable if and only if
any pair of them are identifiable.

It is important to point out that the identifiability above is based on the reso-
lution of partition P . Unidentifiable modes for partition P may have different
supports and become identifiable on a refined partition. Unidentifiable intrin-
sic sparse modes lead to another kind of non-uniqueness for intrinsic sparse
modes. For instance, when two intrinsic sparse modes ψm and ψn are unidenti-
fiable, then any rotation of [ψm, ψn] while keeping other intrinsic sparse modes
unchanged is still a set of intrinsic sparse modes.

Local pieces of intrinsic sparse modes inherit this kind of non-uniqueness.
Suppose Ψm ≡ [ψm,1, . . . , ψm,dm ] are the local pieces of a set of intrinsic sparse
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modes Ψ on patch Pm. First, if σ : [dm]→ [dm] is a permutation, {±ψm,σ(i)}dmi=1

are local pieces of another set of intrinsic sparse modes. Second, if ψm,i and
ψm,j are the local pieces of two unidentifiable intrinsic sparse modes, then any
rotation of [ψm,i, ψm,j] while keeping other local pieces unchanged are local
pieces of another set of intrinsic sparse modes. It turns out that this kind of
non-uniqueness has a one-to-one correspondence with the non-uniqueness of
joint diagonalizers for problem (5.13), which is characterized in Theorem B.2.1.
Keeping this correspondence in mind, the proof of Lemma 5.3.2 is quite intu-
itive.

Proof. [Proof of Lemma 5.3.2] Let Ψ ≡ [ψ1, . . . , ψK ] be an arbitrary set of
intrinsic sparse modes. We order columns in Ψ such that unidentifiable modes
are grouped together, denoted as Ψ = [Ψ1, . . . ,ΨQ], where Q is the number
of unidentifiable groups. Accordingly on patch Pm, Ψm = [Ψm,1, . . . ,Ψm,Qm ]

where Qm is the number of nonzero unidentifiable groups. Denote the number
of columns in each group as nm,i, i.e., there are nm,i modes in {ψk}Kk=1 that
are nonzero and unidentifiable on patch Pm.

Making use of item 2 in Proposition 5.3.2, one can check that ψm,i and ψm,j
are unidentifiable if and only if B(ψ)

n;m(i, i) = B
(ψ)
n;m(j, j) for all n ∈ [M ]. Since

unidentifiable pieces in Ψm are grouped together, the same diagonal entries in
{B(ψ)

n;m}Mn=1 are grouped together as required in Theorem B.2.1. Now we apply
Theorem B.2.1 withMk replaced by Σn;m, Λk replaced by B(ψ)

n;m, D replaced by
D

(ψ)
m , the number of distinct eigenvalues m replaced by Qm, eigenvalue’s mul-

tiplicity qi replaced by nm,i and the diagonalizer V replaced by Dm. Therefore,
there exists a permutation matrix Πm and a block diagonal matrix Vm such
that

DmΠm = D(ψ)
m Vm , Vm = diag{Vm,1, . . . , Vm,Qm} . (5.41)

Recall that Gm = HmDm and Ψm = HmD
(ψ)
m , we obtain that

GmΠm = ΨmVm = [Ψm,1Vm,1 , . . . ,Ψm,QmVm,Qm ] . (5.42)

From Eqn. (5.42), we can see that identifiable pieces are completely separated
and the small rotation matrices, Vm,i, only mix unidentifiable pieces Ψm,i. Πm

merely permutes the columns in Gm. From the non-uniqueness of local pieces
of intrinsic sparse modes, we conclude that Gm are local pieces of another set
of intrinsic sparse modes.
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We point out that the local pieces {Gm}Mm=1 constructed by the ISMD on
different patches may correspond to different sets of intrinsic sparse modes.
Therefore, the final “patch-up” step should further modify and connect them
to build a set of intrinsic sparse modes. Fortunately, the pivoted Cholesky
decomposition elegantly solves this problem.

Optimal Sparse Recovery and Consistency of The ISMD

As defined in the ISMD, Ω is the correlation matrix of A with basis Gext,
see (5.15). If Ω enjoys a block diagonal structure with each block corresponding
to a single intrinsic sparse mode, just like Ω(ψ) ≡ L(ψ)

(
L(ψ)

)T , the pivoted
Cholesky decomposition can be utilized to recover the intrinsic sparse modes.

It is fairly easy to see that Ω indeed enjoys such a block diagonal structure
when there is one set of intrinsic sparse modes that are pair-wisely identifiable.
Denoting this identifiable set as {ψk}Kk=1 (only its existence is needed), by
Eqn. (5.41), we know that on patch Pm there is a permutation matrix Πm and
a diagonal matrix Vm with diagonal entries either 1 or -1 such that DmΠm =

D
(ψ)
m Vm. Recall that Λ = DΩDT = D(ψ)Ω(ψ)

(
D(ψ)

)T ; see (5.16) and (5.40).
We have

Ω = DTD(ψ)Ω(ψ)
(
D(ψ)

)T
D = ΠV TΩ(ψ)VΠT , (5.43)

in which V = diag{V1, . . . , Vm} is diagonal with diagonal entries either 1 or
-1 and Π = diag{Π1, . . . ,Πm} is a permutation matrix. Since the action of
ΠV T does not change the block diagonal structure of Ω(ψ), Ω still has such a
structure and the pivoted Cholesky decomposition can be readily applied. In
fact, the action of ΠV T exactly corresponds to the column permutation and
sign flips of intrinsic sparse modes, which is the only kind of non-uniqueness
of problem (5.3) when the intrinsic sparse modes are pair-wisely identifiable.
For the general case when there are unidentifiable intrinsic sparse modes, Ω

still has the block diagonal structure with each block corresponding to a group
of unidentifiable modes, resulting in the following theorem.

Theorem 5.3.5. Suppose the domain partition P is regular-sparse w.r.t. A.
Let A = GGT be the decomposition given by the ISMD (5.19) and Ψ ≡
[ψ1, . . . , ψK ] be an arbitrary set of intrinsic sparse modes. Let columns in
Ψ be ordered such that unidentifiable modes are grouped together, denoted as
Ψ = [Ψ1, . . . ,ΨQ], where Q is the number of unidentifiable groups and nq is the
number of modes in Ψq. Then there exists Q rotation matrices Uq ∈ Rnq×nq
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(1 ≤ q ≤ Q) such that
G = [Ψ1U1, . . . ,ΨQUQ], (5.44)

with reordering of columns in G if necessary. It immediately follows that

• the ISMD generates one set of intrinsic sparse modes.

• the intrinsic sparse modes are unique up to permutations and rotations
within unidentifiable modes.

Proof. By Eqn. (5.41), Eqn. (5.43) still holds true with block diagonal Vm for
m ∈ [M ]. Without loss of generality, we assume that Π = I since permuta-
tion does not change the block diagonal structure that we desire. Then from
Eqn. (5.43) we have

Ω = V TΩ(ψ)V = V TL(ψ)
(
L(ψ)

)T
V. (5.45)

In terms of block-wise formulation, we get

Ωmn = V T
mΩ(ψ)

mnVn = V T
mL

(ψ)
m

(
L(ψ)
n

)T
Vn. (5.46)

Correspondingly, by (5.42) the local pieces satisfy

Gm = [Gm,1 , . . . , Gm,Qm ] = [Ψm,1Vm,1 , . . . ,Ψm,QmVm,Qm ] .

Now, we prove that Ω has the block diagonal structure in which each block
corresponds to a group of unidentifiable modes. Specifically, Gm,i = Ψm,iVm,i

and Gn,j = Ψn,jVn,j are two identifiable groups, i.e., Ψm,i and Ψn,j are from
two identifiable groups, and we want to prove that the corresponding block
in Ω, denoted as Ωm,i;n,j, is zero. From Eqn. (5.46), one gets Ωm,i;n,j =

V T
m,iL

(ψ)
m,i

(
L

(ψ)
n,j

)T
Vn,j, where L

(ψ)
m,i are the rows in L(ψ)

m corresponding to Ψm,i.

L
(ψ)
n,j is defined similarly. Due to identifiability between Ψm,i and Ψn,j, we know

L
(ψ)
m,i

(
L

(ψ)
n,j

)T
= 0 and thus we obtain the block diagonal structure of Ω.

In (5.18), the ISMD performs the pivoted Cholesky decomposition Ω = PLLTP T

and generates sparse modes G = GextPL. Due to the block diagonal struc-
ture in Ω, every column in PL can only have nonzero entries on local pieces
that are not identifiable. Therefore, columns in G have identifiable intrinsic
sparse modes completely separated and unidentifiable intrinsic sparse modes
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rotated (including sign flip) by certain unitary matrices. Therefore, G is a set
of intrinsic sparse modes.

Due to the arbitrary choice of Ψ, we know that the intrinsic sparse modes are
unique to permutations and rotations within unidentifiable modes.

Remark 5.3.1. From the proof above, we can see that it is the block diagonal
structure of Ω that leads to the recovery of intrinsic sparse modes. The pivoted
Cholesky decomposition is one way to explore this structure. In fact, the pivoted
Cholesky decomposition can be replaced by any other matrix decomposition that
preserves this block diagonal structure, for instance, the eigendecomposition if
there is no degeneracy.

Despite the fact that the intrinsic sparse modes depend on the partition P ,
the following theorem guarantees that the solutions to problem (5.3) give con-
sistent results as long as the partition is regular-sparse.

Theorem 5.3.6. Suppose that Pc is a partition, Pf is a refinement of Pc and
that Pf is regular-sparse. Suppose {g(c)

k }Kk=1 and {g(f)
k }Kk=1 (with reordering if

necessary) are the intrinsic sparse modes produced by the ISMD on Pc and Pf ,
respectively. Then for every k ∈ {1, 2, . . . , K}, in the coarse partition Pc g(c)

k

and g(f)
k are supported on the same patches, while in the fine partition Pf the

support patches of g(f)
k are contained in the support patches of g(c)

k , i.e.,

{P ∈ Pc : g
(f)
k |P 6= 0} = {P ∈ Pc : g

(c)
k |P 6= 0},

{P ∈ Pf : g
(f)
k |P 6= 0} ⊂ {P ∈ Pf : g

(c)
k |P 6= 0}.

Moreover, if g(c)
k is identifiable on the coarse patch Pc, it remains unchanged

when the ISMD is performed on the refined partition Pf , i.e., g(f)
k = ±g(c)

k .

Proof. Given the finer partition Pf is regular-sparse, it is easy to prove the
coarser partition Pc is also regular-sparse.2 Notice that if two modes are identi-
fiable on the coarse partition Pc, they must be identifiable on the fine partition
Pf . However, the other direction is not true, i.e., unidentifiable modes may
become identifiable if the partition is refined. Based on this observation, The-
orem 5.3.6 is a simple corollary of Theorem 5.3.5.

2We provide the proof in supplementary materials; see Lemma B.1.1.
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Finally, we provide a necessary condition for a partition to be regular-sparse
as follows.

Proposition 5.3.7. If P is regular-sparse w.r.t. A, all eigenvalues of Λ are
integers. Here, Λ is computed in the ISMD by Eqn. (5.12).

Proof. Let {ψk}Kk=1 be a set of intrinsic sparse modes. Since P is regular-
sparse, D(ψ) in Eqn. (5.39) is unitary. Therefore, Λ and Ω(ψ) ≡ L(ψ)

(
L(ψ)

)T
share the same eigenvalues. Due to the block-diagonal structure of Ω(ψ), one
can see that

Ω(ψ) ≡ L(ψ)
(
L(ψ)

)T
=

K∑
k=1

l
(ψ)
k

(
l
(ψ)
k

)T
is, in fact, the eigendecomposition of Ω(ψ). The eigenvalue corresponding to
the eigenvector l(ψ)

k is ‖l(ψ)
k ‖2

2, which is also equal to ‖l(ψ)
k ‖1 because L(ψ) only

elements 0 or 1. From item 1 in Proposition 5.3.2, ‖l(ψ)
k ‖1 = sk, which is the

patchwise sparseness of ψk.

Combining Theorem 5.3.5, Theorem 5.3.6 and Proposition 5.3.7, we can de-
velop a hierarchical process that gradually finds the finest regular-sparse parti-
tion and thus obtains the sparsest decomposition using the ISMD. This spars-
est decomposition can be viewed as another definition of intrinsic sparse modes,
which are independent of partitions. In our numerical examples, our partitions
are all uniform but with different patch sizes. We see that even when the par-
tition is not regular-sparse, the ISMD still produces a nearly optimal sparse
decomposition.

5.4 Perturbation Analysis and Two Modifications

In real applications, data are often contaminated by noise. For example, when
measuring the covariance function of a random field, sample noise is inevitable
if a Monte Carlo type sampling method is utilized. A basic requirement for
a numerical algorithm is its stability w.r.t. small noise levels. In Section 5.4,
under several assumptions, we are able to prove that the ISMD is stable w.r.t.
small perturbations in the input A. In Section 5.4, we provide two modified
ISMD algorithms that effectively handle noise in different situations.
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Perturbation Analysis of The ISMD

We consider the additive perturbation here, i.e., Â is an approximately low
rank symmetric PSD matrix that satisfies

Â = A+ εÃ, ‖Ã‖2 ≤ 1. (5.47)

Here, A is the noiseless rank-K symmetric PSD matrix and Ã is the symmetric
additive perturbation and ε > 0 quantifies the noise level. We divide Ã into
blocks that are conformal with blocks ofA in (5.8) and thus Âmn = Amn+εÃmn.
In this case, we need to apply the truncated local eigendecomposition (5.10)
to capture the correct local rank Km. Suppose the eigendecomposition of Âmm
is

Âmm =
Km∑
i=1

γ̂m,iĥn,iĥ
T
n,i +

∑
i>Km

γ̂m,iĥn,iĥ
T
n,i.

In this subsection, we assume that the noise level is very small with ε � 1

such that there is an energy gap between γ̂m,Km and γ̂m,Km+1. Therefore, the
truncation (5.10) captures the correct local rank Km, i.e.,

Âmm ≈ Â(t)
mm ≡

Km∑
i=1

γ̂m,iĥn,iĥ
T
n,i ≡ ĤmĤ

T
m. (5.48)

In the rest of the ISMD, the perturbed local eigenvectors Ĥm is used as Hm

in the noiseless case. We expect that our ISMD is stable w.r.t. this small
perturbation and generates slightly perturbed intrinsic sparse modes of A.

To carry out this perturbation analysis, we will restrict ourselves to the case
when intrinsic sparse modes of A are pair-wisely identifiable and thus it is
possible to compare the error between the noisy output ĝk with A’s intrinsic
sparse mode gk. When there are unidentifiable intrinsic sparse modes of A,
it only makes sense to consider the perturbation of the subspace spanned by
those unidentifiable modes and we will not consider this case in this chapter.
The following lemma is a preliminary result on the perturbation analysis of
local pieces Gm.

Lemma 5.4.1. Suppose that partition P is regular-sparse w.r.t. A and all
intrinsic modes are identifiable with each other. Furthermore, we assume that
for all m ∈ [M ] there exists E(eig)

m such that

Â(t)
mm = (I + εE(eig)

m )Amm
(
I + ε(E(eig)

m )T
)

and ‖E(eig)
m ‖2 ≤ Ceig. (5.49)
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Here Ceig is a constant depending on A but not on ε or Ã. Then there exists
E

(jd)
m ∈ RKm×Km such that

Ĝm = (I + εE(eig)
m )Gm(I + εE(jd)

m +O(ε2))Jm and ‖E(jd)
m ‖F ≤ Cjd, (5.50)

where Gm and Ĝm are local pieces constructed by the ISMD with input A and Â
respectively, Jm is the product of a permutation matrix with a diagonal matrix
having only ±1 on its diagonal, and Cjd is a constant depending on A but not
on ε or Ã. Here, ‖ • ‖2 and ‖ • ‖F are matrix spectral norm and Frobenius
norm, respectively.

Lemma 5.4.1 ensures that local pieces of intrinsic sparse modes can be con-
structed with O(ε) accuracy up to permutation and sign flips (characterized
by Jm in (5.50)) under several assumptions. The identifiability assumption is
necessary. Without such an assumption, these local pieces are not uniquely de-
termined up to permutations and sign flips. The assumption (5.49) holds true
when eigendecomposition of Amm is well conditioned, i.e., both eigenvalues
and eigenvectors are well conditioned. We expect that a stronger perturbation
result is still true without making this assumption. The proof of Lemma 5.4.1
is an application of perturbation analysis for the joint diagonalization prob-
lem [24], and is presented in supplementary materials B.3.

Finally, Ω̂ is the correlation matrix of Â with basis Ĝext = diag{Ĝ1, Ĝ2, . . . , ĜM}.
Specifically, the (m,n)-th block of Ω̂ is given by

Ω̂mn = Ĝ†mÂmn

(
Ĝ†n

)T
.

Without loss of generality, we can assume that Jm = IKm in (5.50).3 Based
on the perturbation analysis of Gm in Lemma 5.4.1 and the standard pertur-
bation analysis of pseudo-inverse (for instance, see Theorem 3.4 in [122]), it is
straightforward to get a bound of the perturbations in Ω̂, i.e.,

‖Ω̂− Ω‖2 ≤ Cismdε. (5.51)

Here, Cismd depends on the smallest singular value of Gm and the constants
Ceig and Cjd in Lemma 5.4.1. Notice that when all intrinsic modes are iden-
tifiable with each other, the entries of Ω are either 0 or ±1. Therefore, when

3One can check that {Jm}Mm=1 only affect the sign of recovered intrinsic sparse modes
[ĝ1, ĝ2, . . . , ĝK ] if pivoted Cholesky decomposition is applied on Ω̂.
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Cismdε is small enough, we can exactly recover Ω from Ω̂ as below:

Ωij =


−1, for Ω̂ij < −0.5,

0, for Ω̂ij ∈ [−0.5, 0.5],

1, for Ω̂ij > 0.5.

(5.52)

Following Algorithm 2, we get the pivoted Cholesky decomposition Ω = PLLTP T

and output the perturbed intrinsic sparse modes

Ĝ = ĜextPL.

Notice that the patchwise sparseness information is all coded in L and we can
reconstruct L exactly due to the thresholding step (5.52), Ĝ has the same
patchwise sparse structure as G. Moreover, because the local pieces Ĝext are
constructed with O(ε) error, we have

‖Ĝ−G‖2 ≤ Cgε, (5.53)

where the constant Cg only depends on the constants Ceig and Cjd in Lemma 5.4.1.

Two Modified ISMD Algorithms

In Section 5.4, we have shown that the ISMD is robust to small noise under the
assumption of regular sparsity and identifiability. In this subsection, we pro-
vide two modified versions of the ISMD to deal with the cases when these two
assumptions fail. The first modification aims at constructing intrinsic sparse
modes from noisy input Â in the small noise level region as before, but it does
not require the regular sparsity and identifiability. The second modification
aims at constructing a simultaneous low-rank and sparse approximation of Â
when the noise level is high. Our numerical experiments demonstrate that
these modified algorithms are quite effective in practice.

ISMD with thresholding

In the general case where unidentifiable pairs of intrinsic sparse modes exist,
the thresholding idea (5.52) is still applicable but the threshold εth should be
learned from the data, i.e., the entries in Ω̂. Specifically, there are O(1) entries
in Ω̂ corresponding to the slightly perturbed nonzero entries in Ω; there are
also many O(ε) entries that are contributed by the noise εÃ. If the noise level
ε is small enough, we can see a gap between these two group of entries, and
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a threshold εth is chosen such that it separates these two groups. A simple
2-cluster algorithm is able to identify the threshold εth. In our numerical
examples, we draw the histogram of absolute values of entries in Ω̂ and it
clearly shows the 2-cluster effect; see Figure 5.10. Finally, we set all the
entries in Ω̂ with absolute value less than εth to 0. In this approach we do not
need to know the noise level ε a priori and we just learn the threshold from
the data. To modify Algorithm 2 with this thresholding technique, we just
need to add one line between assembling Ω (line 15) and the pivoted Cholesky
decomposition (line 16); see Algorithm 3.

Algorithm 3 Intrinsic sparse mode decomposition with thresholding
Require: A ∈ RN×N : symmetric and PSD; P = {Pm}Mm=1: partition of index

set [N ]
Ensure: G = [g1, g2, · · · , gK ]: A ≈ GGT

1: The same with Algorithm 2 from Line 1 to Line 13
2: ###Assemble Ω, thresholding and its pivoted Cholesky decomposition
3: Ω = DTΛD
4: Learn a threshold εth from Ω and set all the entries in Ω with absolute

value less than εth to 0
5: Ω = PLLTP T

6: ###Assemble the intrinsic sparse modes G
7: G = HextDPL

It is important to point out that when the noise level is high, the O(1) entries
andO(ε) entries mix together. In this case, we cannot identify such a threshold
εth to separate them, and the assumption that there is an energy gap between
γ̂m,Km and γ̂m,Km+1 is invalid. In the next subsection, we will present the
second modified version to overcome this difficulty.

Low rank approximation with ISMD

In the case where there is no gap between γ̂m,Km and γ̂m,Km+1 (i.e., no well-
defined local ranks), or when the noise level is so high that the threshold εth
cannot be identified, we modify our ISMD to give a low-rank approximation of
A ≈ GGT , in which G is observed to be patchwise sparse from our numerical
examples.

In this modification, the normalization (5.17) is applied and thus we have

A ≈ ḠextΩ̄Ḡ
T
ext.
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It is important to point out that Ω̄ has the same block diagonal structure as Ω

but has different eigenvalues. Specifically, for the case when there is no noise
and the regular-sparse assumption holds true, Ω̄ has eigenvalues {‖gk‖2

2}Kk=1

for a certain set of intrinsic sparse modes gk, while Ω has eigenvalues {sk}Kk=1

(here sk is the patchwise sparseness of the intrinsic sparse mode). We first
perform eigendecomposition Ω̄ = L̄L̄T and then assemble the final result by
G = ḠextL̄. The modified algorithm is summarized in Algorithm 4.

Algorithm 4 Intrinsic sparse mode decomposition for low rank approximation
Require: A ∈ RN×N : symmetric and PSD; P = {Pm}Mm=1: partition of index

set [N ]
Ensure: G = [g1, g2, · · · , gK ]: A ≈ GGT

1: The same with Algorithm 2 from Line 1 to Line 13
2: ###Assemble Ω, normalization and its eigendecomposition
3: Ω = DTΛD
4: Gext = ḠextE, Ω̄ = EΩET as in (5.17)
5: Ω̄ = L̄L̄T

6: ###Assemble the intrinsic sparse modes G
7: G = ḠextL̄

Here we replace the pivoted Cholesky decomposition of Ω in Algorithm 2 by
eigendecomposition of Ω̄. From Remark 5.3.1, this modified version generates
exactly the same result with Algorithm 2 if all the intrinsic sparse modes have
different l2 norm (there are no repeated eigenvalues in Ω̄). The advantage of
the pivoted Cholesky decomposition is its low computational cost and the fact
that it always exploits the (unordered) block diagonal structure of Ω. However,
it is more sensitive to noise compared to eigendecomposition, which is much
more robust to noise. Moreover, eigendecomposition gives the optimal low
rank approximation of Ω̄. Thus, Algorithm 4 gives a more accurate low rank
approximation for A compared to Algorithm 2 and Algorithm 3 that use the
pivoted Cholesky decomposition.

5.5 Numerical Experiments

In this section, we demonstrate the robustness of our intrinsic sparse mode
decomposition method and compare its performance with that of the eigende-
composition, the pivoted Cholesky decomposition, and the convex relaxation
of SPCA. All our computations are performed using MATLAB R2015a (64-
bit) on an Intel Core i7-3770 (3.40 GHz). The pivoted Cholesky decomposition
is implemented in MATLAB according to Algorithm 3.1 in [86].
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We will use synthetic covariance matrices of a random permeability field, which
models some underground porous media, as the symmetric PSD input A. This
random permeability model is adapted from the porous media problem [50,
46] where the physical domain D is two dimensional. The basic model has
a constant background and several localized features to model the subsurface
channels and inclusions, i.e.,

κ(x, ω) = κ0 +
K∑
k=1

ηk(ω)gk(x), x ∈ [0, 1]2, (5.54)

where κ0 is the constant background, {gk}Kk=1 are characteristic functions of
channels and inclusions and ηk are the associated uncorrelated latent variables
controlling the permeability of each feature. Here, we have K = 35, including
16 channels and 18 inclusions. Among these modes, there is one artificial
smiling face mode that has disjoint branches. It is used here to demonstrate
that the ISMD is able to capture long range correlation. For this random
medium, the covariance function is

a(x, y) =
K∑
k=1

gk(x)gk(y), x, y ∈ [0, 1]2. (5.55)

Since the length scales of channels and inclusions are very small, with width
about 1/32, we need a fine grid to resolve these small features. Such a fine
grid is also needed when we do further scientific experiments [50, 46, 65]. In
this chapter, the physical domain D = [0, 1]2 is discretized using a uniform
grid with hx = hy = 1/96, resulting in A ∈ RN×N with N = 962. One sample
of the random field (and the bird’s-eye view) and the covariance matrix are
plotted in Figure 5.2. It can be seen that the covariance matrix is sparse and
concentrates along the diagonal since modes in the ground-truth media are all
localized functions.

Note that this example is synthetic because we construct A from a sparse de-
composition (5.55). We would like to test whether different matrix factoriza-
tion methods, like eigendecomposition, the Cholesky decomposition, and the
ISMD, are able to recover this sparse decomposition, or even find a sparser
decomposition for A.

Numerical Results of ISMD

The partitions we take for this example are all uniform domain partitions with
Hx = Hy = H. We run the ISMD with patch sizes H ∈ {1, 1/2, 1/3, 1/4, 1/6,
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Figure 5.2: One sample and the bird’s-eye view. The covariance matrix is
plotted on the right.

1/8, 1/12, 1/16, 1/24, 1/32, 1/48, 1/96} in this section. For the coarsest parti-
tion H = 1, the ISMD is exactly the eigendecomposition of A. For the finest
partition H = 1/96, the ISMD is equivalent to the pivoted Cholesky factor-
ization on Ā where Āij =

Aij√
AiiAjj

. The pivoted Cholesky factorization on A

is also implemented. It is no surprise that all the above methods produce 35
modes. The number of modes is exactly the rank of A. We plot the first 6
modes for each method in Figure 5.3. We can see that both the eigendecom-
position (ISMD with H = 1) and the pivoted Cholesky factorization on A

generate modes which mix different localized feathers together. On the other
hand, the ISMD with H = 1/8 and H = 1/32 recover exactly the localized
feathers, including the upside-down smiling face.

We use Lemma 5.3.1 to check when the regular-sparse property fails. It turns
out that for H ≥ 1/16 the regular-sparse property holds and for H ≤ 1/24 it
fails. The eigenvalues of Λ’s for H = 1, 1/8, and 1/32 are plotted in Figure 5.4
on the left side. The eigenvalues of Λ when H = 1 are all 1’s, since every
eigenvector has patchwise sparseness 1 in this trivial case. The eigenvalues
of Λ when H = 1/16 are all integers, corresponding to patchwise sparseness
of the intrinsic sparse modes. The eigenvalues of Λ when H = 1/32 are not
all integers any more, which indicates that this partition is not regular-sparse
w.r.t. A according to Lemma 5.3.1.

The consistency of the ISMD (Theorem 5.3.6) manifests itself from H = 1 to
H = 1/8 in Figure 5.3. As Theorem 5.3.6 states, the supports of the intrinsic
sparse modes on a coarser partition contain those on a finer partition. In other
words, we get sparser modes when we refine the partition as long as the parti-
tion is regular-sparse. After checking all the 35 recovered modes, we see that
the intrinsic sparse modes get sparser and sparser from H = 1 to H = 1/6.
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Figure 5.3: First 6 eigenvectors (H=1); First 6 intrinsic sparse modes (H=1/8,
regular-sparse); First 6 intrinsic sparse modes (H=1/32; not regular-sparse);
First 6 modes from the pivoted Cholesky decomposition of A

When H ≤ 1/6, all the 35 intrinsic sparse modes are identifiable with each
other and these intrinsic modes remain the same for H = 1/8, 1/12, 1/16.
When H ≤ 1/24, the regular-sparse property fails, but we still get the spars-
est decomposition (the same decomposition with H = 1/8). For H = 1/32, we
recover exactly 33 intrinsic sparse modes but get the other two mixed together.
This is not surprising since the partition is not regular-sparse any more. For
H = 1/48, we exactly recover all of the 35 intrinsic sparse modes again. Ta-
ble 5.1 lists the cases when we exactly recover the sparse decomposition (5.55)
from which we construct A. From Theorem 5.3.5, this decomposition is the
optimal sparse decomposition (defined by problem (5.3)) for H ≥ 1/16. We
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second) for different partition sizes H.

suspect that this decomposition is also optimal in the l0 sense (defined by
problem (5.2)).

H 1 1/2 1/3 1/4 1/6 1/8
regular-sparse 4 4 4 4 4 4

Exact Recovery 7 7 7 7 4 4

H 1/12 1/16 1/24 1/32 1/48 1/96
regular-sparse 4 4 7 7 7 7

Exact Recovery 4 4 4 7 4 7

Table 5.1: Cases when the ISMD gets exact recovery of the sparse decompo-
sition (5.55)

The CPU time of the ISMD for different H’s is shown in Figure 5.4 on the
right side. We compare the CPU time for the full eigendecomposition eig(A),
the partial eigendecomposition eigs(A, 35), and the pivoted Cholesky de-
composition. For 1/16 ≤ H ≤ 1/3, the ISMD is even faster than the partial
eigendecomposition. Specifically, the ISMD is ten times faster for the case
H = 1/8. Notice that the ISMD performs the local eigendecomposition by
eig in Matlab, and thus does not need any prior information about the rank
K. If we also assume prior information on the local rank Km, the ISMD would
be even faster. The CPU time curve has a V-shape as predicted by our com-
putational estimation (5.23). The cost first decreases as we refine the mesh
because the cost of local eigendecompositions decreases. Then it increases as
we refine further because there are M joint diagonalization problem (5.13) to
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be solved. When M is very large, i.e., H = 1/48 or H = 1/96, the 2 layer for-
loops from Line 5 to Line 10 in Algorithm 2 become extremely slow in Matlab.
When implemented in other languages that have little overhead cost for mul-
tiple for-loops, e.g. C or C++, the actual CPU time for H = 1/96 would be
roughly the same with the CPU time for the pivoted Cholesky decomposition.

Comparison With The Semidefinite Relaxation of SPCA

In comparison, the semidefinite relaxation of SPCA (problem (5.27)) gives poor
results in this example. We have tested several values of µ, and found that
parameter µ = 0.0278 gives the best performance in the sense that the first 35
eigenvectors of W capture the most variance in A. The first 35 eigenvectors
of W , shown in Figure 5.5, explain 95% of the variance, but all of them mix
several intrinsic modes like what the eigendecomposition does in Figure 5.3.
For this example, it is not clear how to choose the best 35 columns out of all
the 9216 columns in W , as proposed in [78]. If columns of W are ordered by
the l2 norm in descending order, the first 35 columns can only explain 31.46%

of the total variance, although they are indeed localized. Figure 5.6 shows the
first six columns of W with largest norms.

We also compare the CPU time of the ISMD with that of the semidefinite
relaxation of SPCA (5.27). The SPCA is computed using the split Bregman
iteration. Each split Bregman iteration requires an eigendecomposition of a
matrix of size N × N . In comparison, the ISMD is cheaper than a single
eigendecomposition, as shown in Figure 5.4. It has been observed that the
split Bregman iteration converges linearly. If we set the error tolerance to be
O(δ), the number of iterations needed is aboutO(1/δ). In our implementation,
we set the error tolerance to be 10−3 and we need to perform 852 iterations.
Overall, to solve the convex optimization problem (5.27) with split Bregman
iteration takes over 1000 times more CPU time than the ISMD with H = 1/8.

It is expected that the ISMD is much faster than SPCA since the SPCA needs
to perform many times of partial eigendecomposition to solve problem (5.27),
but the ISMD has computational cost comparable to one single partial eigen-
decomposition. As we discussed in Section 5.1, SPCA is designed and works
reasonably well for problem (5.7). When SPCA is applied to our sparse de-
composition problem (5.3), it does not work well. However, it is not always
the case that the ISMD gives a sparser and more accurate decomposition of
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A than SPCA. In subsection 5.5, we will present another example in which
SPCA gives a better performance than the ISMD.
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Figure 5.5: Sparse PCA: The first six eigenvectors of W . The first 35 eigen-
vectors of W explain 95% of the variance.
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Figure 5.6: Sparse PCA: six columns of W with largest norms. The first 35
columns with largest norms only explain 31.46% of the variance.

We point out that unlike the structured SPCA [72], the ISMD does not take
advantage of the specific (rectangular) structure of the physical modes. The
“smiling face” mode shows that the ISMD can recover non-convex and non-
local sparse modes. Therefore, the ISMD is expected to perform equally well
even when there are no such structures known.

ISMD With Small Noise Levels

In this subsection, we report a test on the robustness of the ISMD. In the
following test, we perturb the rank-35 covariance matrix A ∈ R9216×9216 with
a random matrix:

Â = A+ εÃ ,

where ε is the noise level and Ã is a random matrix with i.i.d. elements
uniformly distributed in [−1, 1]. Notice that all elements in A are uniformly
bounded by 1, and thus ε is a relative noise level. Since all the intrinsic
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Figure 5.7: L∞ and l2 error increases linearly as the noise level increases.

sparse modes are identifiable with each other for the partition with patch size
H = 1/16, we perform ISMD with simple thresholding (5.52) on Â to get the
perturbed intrinsic sparse modes Ĝ ≡ [ĝ1, . . . , ĝK ]. The l∞ and l2 error are
defined as below:

Err∞ = max
k=1,2,··· ,K

‖ĝk − gk‖2

‖gk‖2

, Err2 =

√√√√ K∑
k=1

‖ĝk − gk‖2
2

‖gk‖2
2

.

Figure 5.7 shows that Err∞ and Err2 depend linearly on the noise level ε,
which validates our stability analysis in Section 5.4.

Separate Global and Localized Modes with ISMD

In this example, we consider a more sophisticated model in which the media
contain several global modes, i.e.,

κ(x, ω) =

K1∑
k=1

ξk(ω)fk(x) +

K2∑
k=1

ηk(ω)gk(x), x ∈ [0, 1]2, (5.56)

where {gk}K2
k=1 and ηk models the localized features like channels and inclusions

as above, {fk}K1
k=1 are functions with support on the entire domain D = [0, 1]2

and ξk are the associated latent variables with global influence on the entire
domain. Here, we keep the 35 localized features as before, but add two global
features with f1(x) = sin(2πx1 + 4πx2)/2, f2(x) = sin(4πx1 + 2πx2)/2. ξ1 and
ξ2 are set to be uncorrelated and have variance 1. For this random medium,
the covariance function is

a(x, y) =

K1∑
k=1

fk(x)fk(y) +

K2∑
k=1

gk(x)gk(y), x, y ∈ [0, 1]2. (5.57)
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As before, we discretize the covariance function with hx = hy = 1/96 and
represent A by a matrix of size 9216× 9216. One sample of the random field
(and the bird’s-eye view) and the covariance matrix are plotted in Figure 5.8.
It can be seen that the covariance matrix is dense now because we have two
global modes.

1

0.8

0.6

0.4

0.2

fieldSample

00

0.2

0.4

0.6

0.8

-20

0

80

60

40

20

1

fieldSample

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.8: One sample and the bird’s-eye view. The covariance matrix is
plotted on the right.

We apply the ISMD with patch size H = 1/16 on A and get 37 intrinsic
sparse modes as expected. Moreover, two of them are rotations of [f1, f2] and
the other 35 are exactly the 35 localized modes in the construction (5.57).
We plot the first 6 intrinsic sparse modes in Figure 5.9. As we can see, the
ISMD separates the global modes and localized modes in A, or equivalently
we separate the low rank dense part and sparse part of A. The reason why we
can achieve this separation is that the representation (5.57), in fact, solves the
patchwise sparseness minimization problem (5.3). The low-rank-plus-sparse
decomposition (also known as Robust PCA, see [26, 22, 87]) can also separate
the low rank dense part and the sparse part in A. However, the computational
cost of robust PCA is much more expensive than the ISMD.

ISMD: H=1/16 ISMD: H=1/16 ISMD: H=1/16 ISMD: H=1/16 ISMD: H=1/16 ISMD: H=1/16

Figure 5.9: First 6 intrinsic sparse modes (H=1/16, regular-sparse)
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Figure 5.10: Histogram of absolute values of entries in Ω̂.

Application of Algorithm 3

When A is constructed from model (5.57) but is mixed with small noise as in
Section 5.5, we cannot simply apply the thresholding (5.52) any more. In this
case, we have unidentifiable modes f1 and f2 and thus Ω may contain nonzero
values other than ±1. For the noise level ε = 10−6, Figure 5.10 (left) shows the
histogram of absolute values of entries in Ω̂. We can clearly see a gap between
O(ε) entries and O(1) entries from Figure 5.10(left). Therefore we choose a
threshold εth = 10−3 and apply the modified ISMD algorithm 3 on Â. The first
6 perturbed intrinsic sparse modes ĝk are shown in Figure 5.11. We can see that
their supports are exactly the same as those of the unperturbed intrinsic sparse
modes gk in Figure 5.9. In fact, the first 37 perturbed intrinsic sparse modes
{ĝk}37

k=1 exactly capture the supports of the unperturbed intrinsic sparse modes
{gk}37

k=1. However, we have several extra perturbed intrinsic sparse modes with
very small l2 error since Ω̂ has rank more than 37.

When we raise the noise level ε to 10−4, the histogram of the absolute values
in Ω̂ is shown in Figure 5.10(right). In this case, we cannot identify a gap any
more. From Figure 5.10(left), we see that the exact Ω has entries in the order
of 10−3. Therefore, the noise level ε = 10−4 is large enough to mix the true
nonzero values and noisy null values in Ω̂ together. In Figure 5.10 the total
counts are different because only values between 10−16.5 and 100.5 are counted.

Application of Algorithm 4

In this section, we consider the one-dimensional Poisson kernel:

a(x, y) = e−
|x−y|
l , x, y ∈ [−1, 1] ,
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Figure 5.11: Application of Algorithm 3 (H=1/16, approximately regular-
sparse): first 6 intrinsic sparse modes

where l = 1/16. To refine the small scale, a(x, y) is discretized by a uniform
grid with h = 1/512, resulting in A ∈ R1024×1024. In Figure 5.12 we plot the
covariance matrix. By truncating the eigendecomposition with 45 modes, we
can approximate A with spectral norm error 5%, and these 45 KL modes are
plotted on the right panel of the figure. As one can see, they are all global
functions.
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Figure 5.12: eigendecomposition: Covariance function and its first 45 KL
modes. Error is 4.936%. Both local and global dimension are 45.

We decompose the domain into 2, 4, and 8 patches respectively and apply the
Algorithm 4 with thresholding (5.52) to each case. For all the three cases,
every mode has patchwise sparseness either 1 or 2. In Figure 5.13, the left
panels show the modes that are nonzero on more than one patch, and the
right panels collect the modes that are nonzero on only one patch. To achieve
the same accuracy with the eigendecomposition, the numbers of modes needed
are 45, 47, and 49 respectively. The total number is slightly larger than the
number of eigen modes, but most modes are localized. For the two-patch case,
each patch contains 23 nonzero modes, and for the four-patch case, each patch
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contains either 12 or 13 nonzero modes, and for the eight-patch case, each
patch contains only 7 nonzero modes.
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Figure 5.13: Upper: Two patches case. Error is 4.95%. Global dimension is
45 and the local dimension is 23 for both patches. Middle: Four patches case.
Error is 4.76%. Global dimension is 47 and the local dimension is 12, 13, 13,
and 12 respectively. Bottom: Eight patches case. Error is 4.42%. Global
dimension is 49 and the local dimension is 7 for all patches.

For this translational invariant Poisson kernel, the semidefinite relaxation of
SPCA (problem (5.27)) also gives satisfactory sparse approximation in the
sense of problem (5.26). Numerical tests show that when µ < 2, SPCA tends
to put too much weight on the sparsity and it leads to poor approximation to
A (over 90% error). In Figure 5.14 we plot 47 physical modes selected out of
513 columns of W , with µ = 2.7826. The error is 4.94%. We also show 5 out
of them on the right panel. Note that we have used the translation invariance
property in selecting the columns of W .



174

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
47 sparse modes from sparse density matrix W

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
5 of the sparse modes

Figure 5.14: Sparse PCA: µ = 2.7826. We specifically choose 47 columns out
of W and show all of them on the left side and 5 of them on the right side.
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C h a p t e r 6

CONCLUDING DISCUSSIONS

The problem of approximating a positive semidefinite (PSD) operator with
sparse/localized basis functions is important in both the physical and data
sciences. In this thesis, we present two different methods, the sparse operator
compression (Sparse OC) and the intrinsic sparse decomposition (ISMD), to
achieve this goal. These two methods work well for different kinds of PSD
operators, and they look for different forms of approximations to give the
most accurate approximation of a given operator.

Given a PSD operator K and a positive integer n, the Sparse OC looks
for sparse/localized basis functions Ψ := [ψ1, ψ2, . . . , ψn] and a PSD matrix
Σ ∈ Rn×n to approximate K, i.e., K ≈ ΨΣΨT . The localized basis functions
Ψ are computed in a decoupled way by solving energy minimizing problems
on local patches. We have shown that the Sparse OC works well for the so-
lution operator of a large class of elliptic operators with rough coefficients.
For strongly elliptic operators of order 2k (k ≥ 1), we have proved that with
support size O(h log(1/h)), localized basis functions constructed by the Sparse
OC can be used to compress higher order elliptic operators with the optimal
compression rate O(h2k). For second order elliptic operators with high con-
trast coefficients, we use the Sparse OC to construct localized basis functions,
such that the error (in the energy norm) of the corresponding finite element
solution is of order h and is independent of the contrast. Moreover, for the
two-phase coefficient model, we have shown that the support diameter of basis
functions can be as small as h

(
log(1/h) + log

(
amax
amin

))
. We have also ex-

plored other applications of the Sparse OC. In the application of the sparse
PCA, our localized basis functions achieve nearly optimal sparsity and the op-
timal approximation rate simultaneously when the covariance operator to be
compressed is the solution operator of an elliptic operator. In the application
of compressing Hamiltonians in quantum physics, our localized basis functions
achieve nearly optimal localization and the optimal operator compression rate
simultaneously.

Given a PSD operator K of rank n, the ISMD looks for a decomposition
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K = ΨΨT in which the n basis functions Ψ := [ψ1, ψ2, . . . , ψn] are required to
be as sparse as possible. Instead of minimizing the total number of nonzero
entries of the basis functions, the ISMD minimizes the total patchwise sparse-
ness with a prescribed domain partition. The ISMD is equivalent to the eigen-
decomposition for the coarsest partition and recovers the pivoted Cholesky
decomposition for the finest partition. If the partition is regular-sparse with
respect to the matrix to be decomposed, we have proved that the ISMD gives
the optimal patchwise sparse decomposition. We have also proved that as long
as the partition is regular-sparse, the decomposed modes become sparser (in
the sense of l0 norm) as the partition is refined. Finally, we have provided a
result on perturbation analysis of the ISMD based on the assumption that the
partition is regular-sparse and the intrinsic sparse modes are identifiable with
each other.

In our future work, we plan to further explore the topic of operator compression
with localized basis functions in several directions.

First of all, we would like to further improve our numerical method for solving
elliptic PDEs with high-contrast coefficients. Both the LOD-based methods
(i.e. [110, 60]) and our method based on the Sparse OC in Chapter 4 con-
struct localized multiscale finite element basis functions in the offline stage,
and the same set of basis functions is used for all right hand sides in L2(D) or
L2
a(D). However, this purely offline strategy suffers from the drawback that

each high-conductivity inclusion/channel should have at least one associated
basis function. This drawback originates in the methodology that the same set
of basis functions is used for all possible right hand sides. If we can supplement
the offline basis functions with some online basis functions that are computed
locally within a patch for a new right hand side, we may not need so many ba-
sis functions. Specifically, the authors of [3] proposed an offline-online strategy
to construct localized multiscale basis functions to achieve any given accuracy
ε > 0. They construct O(log(1/h) + log(1/ε)) basis functions per local patch
in the offline stage. For a given right hand side, in addition to those offline
prepared basis functions, another basis function is solved based on the right
hand side per local patch. In total, there are O(log(1/h) + log(1/ε)) + 1 basis
functions per patch, and the support size of every basis function is only 2h.
Although it is not proved in their original paper, our recent analysis shows that
this offline-online strategy is very robust for high-contrast problems. More pre-
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cisely, with O(log(1/h)+ log(amax
amin

)+ log(1/ε))+1 localized basis functions per
patch, one is able to achieve any prescribed accuracy ε > 0. We believe that
the offline-online strategy is a promising approach to solve the high-contrast
problem, and we are now working to incorporate this idea into our Sparse OC
framework.

Secondly, it is interesting to apply the Sparse OC to graph Laplacians, which
can be viewed as discretized elliptic operators. Along this direction, we would
like to develop an algorithm with nearly linear complexity to solve linear sys-
tems with graph Laplacians. The domain partition is a nontrivial difficulty
when applying the Sparse OC to graph Laplacians. For a continuous elliptic
operator on a physical domain D (as we considered in this thesis), the topol-
ogy of the physical domain gives a natural regular domain partition. For a
graph Laplacian, what is a “regular” partition on a graph? Is there an effi-
cient algorithm to compute this “regular” partition? On one hand, a regular
partition should cluster points that have similar response to a typical right
hand side. The spectral partition (see [30] and references therein) gives such a
partition but its computational complexity is not nearly linear. Many nearly
linear complexity graph partitioning algorithms have been proposed in the
literature; see e.g., [118] and references therein. One can then combine the
existing graph-partitioning algorithm and our Sparse OC to design efficient
linear system solves for graph Laplacians. On the other hand, in our Sparse
OC, the local projection-type approximation property (the Poincare-type in-
equality on graphs) can serve as a concrete criterion to define and construct the
“regular” graph partition. This offers us a seamless combination between the
graph partitioning and the Sparse OC. Finally, it is worth mentioning other
recent results on nearly linear complexity algorithms to solve linear systems
with graph Laplacians, such as the lean algebraic multigrid (LAMG) [84] and
the method of Spielman and Teng [119].

Thirdly, we would like to look into the trade-off between the approximation
accuracy and basis localization in the operator compression problem. For a
large class of elliptic operators, we have proved that one can achieve near opti-
mality on both ends simultaneously in this trade-off. In ISMD, we examine an
extreme case where we want full accuracy (decomposition instead of approxi-
mating), and we do not consider the accuracy-localization trade-off there. In
general, the PSD operator K of interest may be neither the solution of an ellip-
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tic operator nor a nearly low-rank operator, and there is a lot to do to fill in the
gap. For the Sparse OC, although the construction of localized basis functions
(see Eqn. (1.9)) can be theoretically applied to any PSD operator K, knowl-
edge of K−1 (i.e., the elliptic operator in this thesis) is currently required for
an efficient computation of the associated H-norm. We are currently trying to
design an efficient algorithm to construct these localized basis functions using
only K. For the ISMD, although we provide a heuristic algorithm (e.g. Algo-
rithm 4) to make it work on arbitrary PSD operators, the complete resolution
of the accuracy-localization trade-off in the ISMD setting (i.e., approximating
in the form of K ≈ ΨΨT ) requires a better problem formulation and a more
robust algorithm.

Finally, inspired by the recent exciting advances in multiscale finite element
methods and numerical homogenization, we are interested in using similar
methodologies to solve other problems in the physical and data sciences. In
particular, we are interested in applying the Sparse OC to construct localized
Wannier functions for a Hamiltonian H = −∆ + V (x) in quantum chemistry.
There are two specific concerns in this application. First, what is the correct
norm to measure the operator compression error? Our Sparse OC looks for
localized basis functions Ψ to minimize the following operator compression
error

Eoc(Ψ ;H−1) := min
Kn∈Rn×n, Kn�0

‖H−1 −ΨKnΨ
T‖2,

which is reasonable in solving elliptic equations and in approximating the co-
variance operator. However, it is not clear that this is the correct norm for con-
structing localized Wannier functions. More discussions with domain experts
are needed to figure out the correct norm. Second, unlike the second order
elliptic operators with multiscale diffusion coefficients, all multiscale features
of the Hamiltonian H = −∆ + V (x) lie in its potential V (x). We suggest an
adaptive partition of the domain with variable local patch size. More precisely,
if we pick the piecewise constant functions as the measurement functions, the
local projection-type approximation property (see (2.11)) is written as

inf
c∈R

∫
τi

(u(x)− c)2dx ≤ kn

(∫
τi

|∇u(x)|2dx+

∫
τi

V (x)u(x)2dx ∀u ∈ H1(τi)

)
.

We will adapt the size of the local patch τi such that the two terms on the
right hand side, i.e.,

∫
τi
|∇u(x)|2dx and

∫
τi
V (x)u(x)2dx, are of the same order.
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In this way, we can optimize kn, which is proportional to the final operator
compression error.
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A p p e n d i x A

SUPPLEMENTARY MATERIALS FOR THE SPARSE OC

A.1 Uniform Ellipticity v.s. Strong Ellipticity

Consider the following partial differential operator of order 2k defined in a
bounded connected domain S ⊂ Rd

L(x;S) = (−1)k
∑
|α|≤2k

aα(x)Dα ≡ (−1)k
∑
|α|≤2k

aα(x)
d∏
i=1

∂αixi . (A.1)

Its characteristic polynomial is defined as

p(ξ) =
∑
|α|=2k

aα(x)ξα ≡
∑
|α|=2k

aα(x)
d∏
i=1

ξαii . (A.2)

The partial differential operator L(x;S) is called uniformly elliptic if there
exists θ > 0 such that

p(ξ) =
∑
|α|=2k

aα(x)ξα ≥ θ|ξ|2k, ∀ξ ∈ Rd, x ∈ S. (A.3)

As defined in Definition 3.4.1, L(x;S) is strongly elliptic if there exists bσγ(x)

for all |σ|, |γ| ≤ k such that

• we have

(−1)k
∑
|α|≤2k

aα(x)Dαu =
∑
|σ|,|γ|≤k

(−1)|σ|Dσ(bσγ(x)Dγu), ∀u ∈ C2k(S),

(A.4)

• and there exists a constant θ > 0 such that for any x ∈ S, we have∑
|σ|,|γ|=k

bσγ(x)ζσζγ ≥ θ
∑
|σ|=k

ζ2
σ, ∀ζ := [ζσ]|σ|=k ∈ R(k+d−1

k ). (A.5)

A homogeneous polynomial p(ξ) of degree 2k in the real d-dimensional vec-
tor ξ is sum-of-squares (SOS) if and only if there exist a finite number of
polynomials, denoted as g1(ξ), . . . , gn(ξ), such that

p(ξ) =
n∑
i=1

(gi(ξ))2.

The following lemma is a simple but useful property of the SOS polynomials.
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Lemma A.1.1. A d-variate homogeneous polynomial of degree 2k, denoted
as p(ξ), is SOS if and only if there exists a symmetric positive semidefinite
B ∈ RQ×Q such that

p(ξ) =
∑

|σ|=|γ|=k

bσγξ
σξγ,

where Q :=
(
k+d−1
k

)
is the number of the d-variate monomials of degree k.

Lemma A.1.1 can be proved by taking the eigen decomposition of B, and we
will not provide the complete proof here. Using Lemma A.1.1, the strong
ellipticity condition (A.5) is equivalent to the condition that there exists θ > 0

such that for any x ∈ S∑
|σ|=|γ|=k

bσγ(x)ξσξγ − θ
∑
|σ|=k

|ξ|2k = an SOS polynomial. (A.6)

We point out that the characteristic polynomial p(ξ), defined in Eqn. (A.2),
keeps the same when we rewrite the operator in Eqn. (A.4). Therefore, a
necessary condition for L to be strongly elliptic is that there exists θ > 0 such
that p(ξ) − θ|ξ|2k is an SOS polynomial for any x ∈ S. In comparison, the
uniform ellipticity condition (A.3) requires that the polynomial p(ξ)−θ|ξ|2k be
nonnegative. Therefore, a direct application of the Hilbert’s theorem (1988)
on nonnegative polynomials and SOS polynomials (see e.g. [115, 124, 114])
leads to the following theorem.

Theorem A.1.1. Suppose that L = (−1)k
∑
|α|=2k aαD

α is a uniformly elliptic
operator of order 2k with constant coefficients. Then in the following three
cases, L is also strongly elliptic:

• d = 1 or 2 : one or two dimensional physical domain,

• k = 1 : second order partial differential operators,

• (d, k) = (3, 2) : fourth order partial differential operators in 3 dimen-
sional physical domain.

For all other cases, i.e., d ≥ 3 or k ≥ 2 and (d, k) 6= (3, 2), there exist uni-
formly elliptic operators with constant coefficients that are not strongly elliptic.
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Proof. From the definition of uniform ellipticity, there exists θ > 0 such that
the following homogeneous polynomial with order 2k is nonnegative, i.e.,

p̃(ξ) = p(ξ)− θ|ξ|2k =
∑
|α|=2k

aαξ
α − θ|ξ|2k ≥ 0.

Applying the Hilbert’s theorem (1988), p̃(ξ) is also an SOS polynomial for
the three cases above. Using Lemma A.1.1, there exists a symmetric positive
semidefinite matrix B̃ ∈ RQ×Q such that p̃(ξ) =

∑
|σ|=|γ|=k b̃σγξ

σξγ. Therefore,
we obtain

p(ξ) =
∑

|σ|=|γ|=k

(
b̃σγ + θ

(
k

σ

)
δσ,γ

)
ξσξγ =:

∑
|σ|=|γ|=k

bσγξ
σξγ,

where
(
k
σ

)
is the multi-index combinatorial number, i.e., (

∑d
i=1 xi)

k =
∑
|σ|=k

(
k
σ

)
xσ.

Therefore, the elliptic operator can be written as

Lu =
∑
|σ|,|γ|≤k

(−1)|σ|Dσ(bσγD
γu), ∀u ∈ C2k(S).

Since p̃(ξ) = p(ξ)−θ|ξ|2k is an SOS polynomial, we have proved that L is also
strongly elliptic.

For all other cases, i.e., d ≥ 3 or k ≥ 2 and (d, k) 6= (3, 2), thanks to the
Hilbert’s theorem (1988), there is a nonnegative polynomial that is not SOS,
denoted as p̃(ξ). Recall that given the number of variables d and degree 2k,
the set of nonnegative polynomials and the set of SOS polynomials are closed,
convex cones. Then there exists λ ∈ (0, 1) such that pλ(ξ) := λp̃(ξ) + (1 −
λ)|ξ|2k is also nonnegative but not SOS. Finally, the elliptic operator with pλ as
its characteristic polynomial is uniformly elliptic but not strongly elliptic.

When the coefficients of the elliptic operator L in Eqn. (A.1) are not constant,
the coefficients should be smooth enough such that we can rewrite L in a
divergence form as in Eqn. (A.4). Theorem A.1.2 guarantees that strongly
ellipticity and uniformly ellipticity are equivalent for the case k = 1 and the
case d = 1 or 2.

Theorem A.1.2. Let aα ∈ C |α|−k(S) for k < |α| ≤ 2k, aα ∈ C(S) for |α| ≤ k,
and Lu = (−1)k

∑
|α|≤2k

aαD
αu for all u ∈ C2k(S). Then in the following two

cases, if L is uniformly elliptic it is also strongly elliptic.
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• d = 1 or 2 : one or two dimensional physical domain,

• k = 1 : second order partial differential operators.

Proof. The strategy is to first rewrite the highest order terms in a divergence
form, and then to rewrite the lower order terms. For the case d = 1, thanks
to a2k ∈ Ck(S), we can write

Lu ≡ (−1)k
2k∑
i=0

ai(x)
diu

dxi
= (−1)k

dk

dxk

(
a2k

dku

dxk

)
+ L̃u,

where the residual L̃ is an differential operator with order at most 2k−1. Since
the coefficients of L̃ are smooth enough, by Lemma 9.7 in [113], we can write L̃
in a divergence form as in Eqn. (A.4). The uniform ellipticity condition (A.3)
and the strong ellipticity condition (A.5) are the same in this case, i.e., there
exists θ > 0 such that a2k(x) ≥ θ for any x ∈ S.

For the case k = 1, thanks to aα ∈ C1(S) for |α| = 2, L can be rewritten in a
divergence form as follows:

Lu ≡ −
∑
i,j

aij(x)
∂2u

∂xi∂xj
+
∑
i

bi(x)
∂u

∂xi
+c(x)u = −

∑
i,j

∂

∂xi

(
aij(x)

∂u

∂xj

)
+
∑
i

b̃i(x)
∂u

∂xi
+c(x)u,

where b̃i := bi(x) +
∑

j
∂aji
∂xj

. The uniform ellipticity condition (A.3) and the
strong ellipticity condition (A.5) are the same in this case, i.e., there exists
θ > 0 such that

∑
i,j aij(x)ξiξj ≥ θ|ξ|2 for any ξ ∈ Rd and any x ∈ S.

For the case d = 2, we need the following lemma, whose proof is provided after
the current proof.

Lemma A.1.2. Suppose that p(ξ) =
∑
|α|=2k aα(x)ξα is a 2-variate homo-

geneous polynomial of degree 2k for every x ∈ S, and that the coefficients
aα ∈ Ck(S) for all |α| = 2k. If there exists θ > 0 such that p(ξ) ≥ θ|ξ|2k for
any ξ ∈ R2 and x ∈ S, then there exists bσγ(x) ∈ Ck(S) for any |σ| = |γ| = k

such that
p(ξ) =

∑
|σ|=|γ|=k

bσγ(x)ξσξγ ∀x ∈ S (A.7)

and that ∑
|σ|,|γ|=k

bσγ(x)ζσζγ ≥
θ

2

∑
|σ|=k

ζ2
σ, ∀ζ ∈ RQ, x ∈ S. (A.8)
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Due to the smoothness of the coefficients aα ∈ C |α|−k(S) for k < |α| ≤ 2k,
Lemma A.1.2 implies that there exists bσγ(x) ∈ Ck(S) for any |σ| = |γ| = k

such that Eqn. (A.7) and (A.8) hold true. Thanks to Eqn. (A.7), we know
that

L̃u := Lu− (−1)k
∑
|σ|,|γ|=k

Dσ(bσγ(x)Dγu)

is an differential operator with order at most 2k − 1. Since the coefficients of
L̃ are smooth enough, by Lemma 9.7 in [113], we can write L̃ in a divergence
form as in Eqn. (A.4). Thanks to Eqn. (A.8), we know that the operator L,
which can be rewritten in a divergence form as

Lu = (−1)k
∑
|σ|,|γ|=k

Dσ(bσγ(x)Dγu) + L̃u,

is a strongly elliptic operator.

Proof of Lemma A.1.2. We first write the 2-variate homogeneous polyno-
mial p(ξ) of degree 2k as

p(ξ) =
2k∑
i=0

ai(x)ξ2k−i
1 ξi2 = ψTB0(x)ψ,

where

ψ :=



ξk1

ξk−1
1 ξ2

...
ξ1ξ

k−1
2

ξk2


, B0(x) :=



a0(x) a1(x)/2

a1(x)/2 a2(x) a3(x)/2
. . . . . . . . .

a2k−3(x)/2 a2k−2(x) a2k−1(x)/2

a2k−1(x)/2 a2k(x)


.

Since aα ∈ Ck(S) for all |α| = 2k, all entries in B0(x) are in Ck(S). As
proved in Chapter 3 in [14], all the B(x) ∈ RQ×Q that satisfies the equality
constraint (A.7) form the following feasible set:

F =

{
B(x) : B(x) = B0(x) +

n∑
i=1

λi(x)Li

}
, (A.9)

where n = k(k − 1)/2 for the case d = 2, λ(x) := [λ1(x), . . . , λn(x)]T can be
any mapping from S to Rn, and {Li}ni=1 are constant square matrices of size Q-
by-Q. In the end of this proof, we construct an entry-wise continuous mapping
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B̃(x) ∈ F , which is associated with an entry-wise continuous mapping λ̃(x),
such that

B̃(x) ≡ B0(x) +
n∑
i=1

λ̃i(x)Li �
3θ

4
IQ, ∀x ∈ S, (A.10)

where IQ is the identity matrix of size Q-by-Q. Thanks to the continu-
ity of λ̃(x), the Stone-Weierstrass theorem implies that there exists λ(x) ∈
C∞(S,Rn) such that

θ

4
IQ +B(x)− B̃(x) =

θ

4
IQ +

n∑
i=1

(λi(x)− λ̃i(x))Li � 0, ∀x ∈ S. (A.11)

Combining Eqn. (A.10) and (A.11), we have

B(x)− θ

2
IQ =

θ

4
IQ +B(x)− B̃(x) + B̃(x)− 3θ

4
IQ � 0, ∀x ∈ S,

which is equivalent to Eqn. (A.8). Since λ(x) ∈ C∞(S,Rn), every entry in
B(x) belongs to Ck(S). Therefore, we have proved Lemma A.1.2.

Construction of B̃(x). Let’s consider the following 2-variate polynomial

p̃(ξ) ≡
2k∑
i=0

ãi(x)ξ2k−i
1 ξi2 := p(ξ)− 3θ

4
|ξ|2k .

Since ai ∈ Ck(S), we have ãi ∈ Ck(S). Since p(ξ) ≥ θ|ξ|2k, we have p̃(ξ) ≥
θ|ξ|2k/4. Therefore, we know that ã0(x) ≥ θ/4 for any x ∈ S. Define âi(x) =

ãi(x)/ã0(x). Consider the factorization of the following monic polynomial

p̂(ξ1) =
2k∑
i=0

âi(x)ξ2k−i
1 =

k∏
j=1

(
(ξ1 − gj)2 + h2

j

)
, (A.12)

where {gj(x)± ihj(x)}kj=1 are the complex root pairs of the nonnegative poly-
nomial p̂(ξ1). We order {gj(x) ± ihj(x)}kj=1 such that smaller real part gj(x)

comes first and smaller imaginary part hj(x) comes first if the real parts are
the same.

On one hand, combining the continuity of polynomial roots in terms of its
coefficients (see e.g. [127]) and the fact that {âi(x)}2k

i=0 ⊂ Ck(S), we know
that both {gi(x)}ki=1 and {hi(x)}ki=1 are continuous on the physical domain S.
On the other hand, thanks to Eqn. (A.12), we have

p̃(ξ) = ã0(x)
k∏
j=1

(
(ξ1 − gjξ2)2 + h2

jξ
2
2

)
= ã0(x)

∑
[τ1,τ2,...,τk]∈{0,1}k

(p̃τ (ξ))2

:= ã0(x)
∑

[τ1,τ2,...,τk]∈{0,1}k

(
k∏
j=1

(ξ1 − gjξ2)τj(hjξ2)1−τj

)2

.

(A.13)
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Here, for any [τ1, τ2, . . . , τk] ∈ {0, 1}k, the polynomial p̃τ (ξ) is defined as

p̃τ (ξ) ≡
k∑
j=0

aτj ξ
k−j
1 ξj2 :=

k∏
j=1

(ξ1 − gjξ2)τj(hjξ2)1−τj . (A.14)

The coefficients aτ = [aτ0 , . . . , a
τ
k ]T are smooth functions of {gi(x)}ki=1 and

{hi(x)}ki=1, and thus every entry in aτ is continuous on S. Then we can
construct B̃(x) as

B̃(x) = ã
1/2
0

∑
[τ1,τ2,...,τk]∈{0,1}k

aτ (aτ )T +
3θ

4
diag

{(
k

0

)
,

(
k

1

)
, . . . ,

(
k

k

)}
,

(A.15)
where the first part is the square matrix presentation of polynomial p̃(ξ), and
the second diagonal part is that of the polynomial 3θ

4
|ξ|2k. Since the first part

is positive semi-definite, we conclude that B̃(x) � 3θ
4
IQ for every x ∈ S, as

desired in Eqn. (A.10).

A.2 Derivations Involving I1

From Eqn. (3.78) to Eqn. (3.79) in the proof of Theorem 3.5.2

We want to prove that there exists a constant C1(k, d) such that

∑
|σ|≤k

∫
S∗

∣∣∣∣∣∣∣∣
∑

σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)
Dσ1ηDσ2ψi,q

∣∣∣∣∣∣∣∣
2

≤ C2
1C

2
η

k∑
s=1

s∑
s′=1

(lh)−2s′ |ψi,q|2s−s′,2,S∗ .

(A.16)

Proof. We re-arrange terms on the left hand side with the same |σ| and use
the Cauchy inequality:

LHS =
k∑
s=1

∑
|σ|=s

∫
S∗

∣∣∣∣∣∣
∑

σ1≤σ,|σ1|≥1

(
σ

σ1

)
Dσ1ηDσ−σ1ψi,q

∣∣∣∣∣∣
2

≤
k∑
s=1

∑
|σ|=s

 ∑
σ1≤σ,|σ1|≥1

(
σ

σ1

)2
 ∑

σ1≤σ,|σ1|≥1

∫
S∗
|Dσ1η|2|Dσ−σ1ψi,q|2


≤ C2

1,1C
2
η

k∑
s=1

∑
|σ|=s

∑
σ1≤σ,|σ1|≥1

∫
S∗

(lh)−2|σ1||Dσ−σ1ψi,q|2, (A.17)

where we have used |Dσ1η| ≤ Cη(lh)−|σ1| and C1,1 := max
|σ|≤k

∑
σ1≤σ,|σ1|≥1

(
σ
σ1

)2. We

re-arrange the terms in Eqn. (A.17) by grouping terms with the same |σ1|, and
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we get

∑
|σ|=s

∑
σ1≤σ,|σ1|≥1

∫
S∗

(lh)−2|σ1||Dσ−σ1ψi,q|2 ≤
s∑

s′=1

∑
|σ1|=s′

N(s, σ1)(lh)−2|σ1||Dσ−σ1ψi,q|2,

where N(s, σ1) =
∑
|σ|=s

∑
σ1≤σ,|σ1|≥1

1. Suppose that N(s, σ1) ≤ C1,2 for all 1 ≤

s ≤ k and 1 ≤ |σ1| ≤ s. Then we have

∑
|σ|=s

∑
σ1≤σ,|σ1|≥1

∫
S∗

(lh)−2|σ1||Dσ−σ1ψi,q|2 ≤ C1,2

s∑
s′=1

(lh)−2s′ |ψi,q|2s−s′,2,S∗ .

(A.18)
Combining Eqn. (A.17) and (A.18), and denoting C1 = C1,1C

1/2
1,2 , we have

proved Eqn. (A.16).

Remark A.2.1. If there are no lower order terms, we can obtain

∑
|σ|=k

∫
S∗

∣∣∣∣∣∣∣∣
∑

σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)
Dσ1ηDσ2ψi,q

∣∣∣∣∣∣∣∣
2

≤ C2
1C

2
η

k∑
s′=1

(lh)−2s′|ψi,q|2k−s′,2,S∗ . (A.19)

Here, we can take C1 = C1,1C
1/2
1,2 with C1,1 := max

|σ|=k

∑
σ1≤σ,|σ1|≥1

(
σ
σ1

)2 and C1,2 =

max
1≤|σ1|≤k

N(k, σ1). Of course, we can simply take the same C1 as in Eqn. (A.16).

Eqn. (A.19) is used from Eqn. (3.66) to Eqn. (3.67) in the proof of Theo-
rem 3.5.1.

Estimation of ‖ηψi,q‖H(S∗) in the proof of Theorem 3.6.1

In this subsection, we will prove the following result that is used in in the proof
of Theorem 3.6.1: for all h > 0 such that 1−h2k

1−h2 ≤ 2, we have

‖ηψi,q‖H(S∗) ≤
C

2
|ψi,q|k,2,S∗+

√
C2

4
|ψi,q|2k,2,S∗ + C|ψi,q|k,2,S∗‖ψi,q‖H(S∗) + ‖ψi,q‖2

H(S∗),

(A.20)
where C = C1CηCp

√
2kθk,max.



202

Proof. We begin by expressing the following integral as a sum of two terms:∑
0≤|σ|,|γ|≤k

∫
S∗
aσγD

σ(ηψi,q)D
γ(ηψi,q) =

∑
0≤|σ|,|γ|≤k

∫
S∗
ηaσγ(x)Dσψi,qD

γ(ηψi,q)︸ ︷︷ ︸
I3

+
∑

0≤|σ|,|γ|≤k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
S∗
aσγ(x)Dσ1ηDσ2ψi,qD

γ(ηψi,q)

︸ ︷︷ ︸
I4

.

(A.21)

Repeating the same argument from Eqn. (3.77) to Eqn. (3.79), we obtain

|I4| ≤ C1Cη

(
k∑
s=1

s∑
s′=1

h−2s′|ψi,q|2s−s′,2,S∗

)1/2

‖ηψi,q‖H(S∗)

√
θk,max. (A.22)

Since ψi,q ⊥ Pk−1 locally in L2, from Eqn. (3.20) we have

|ψi,q|s−s′,2,S∗ ≤ Cph
s′|ψi,q|s,2,S∗ .

Repeating the same argument from Eqn. (3.80) to Eqn. (3.82), we conclude

I4 ≤ C1CηCp
√
θk,max

(
k∑
s=1

s∑
s′=1

|ψi,q|2s,2,S∗

)1/2

‖ηψi,q‖H(S∗) (A.23)

≤ C1CηCp
√
θk,max

(
k∑
s=1

s|ψi,q|2s,2,S∗

)1/2

‖ηψi,q‖H(S∗) (A.24)

≤ C1CηCp
√

2kθk,max|ψi,q|k,2,S∗‖ηψi,q‖H(S∗). (A.25)

In the last inequality (3.82), we have used the polynomial approximation prop-
erty (3.20) again and take h2−h2k

1−h2 ≤ 1/C2
p to make it true.

Repeating the same process for I3, we have

I3 =
∑

0≤|σ|,|γ|≤k

∫
S∗
η2aσγ(x)Dσψi,qD

γψi,q︸ ︷︷ ︸
I5

+
∑

0≤|σ|,|γ|≤k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
S∗
ηaσγ(x)Dσ1ηDσ2ψi,qD

γψi,q

︸ ︷︷ ︸
I6

.
(A.26)
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Here, we have exchanged the index σ and γ so that I6 has a structure similar
to that of I4. Since∑

0≤|σ|,|γ|≤k aσγ(x)Dσψi,qD
γψi,q ≥ 0 and |η(x)| ≤ 1 for every x ∈ D, we obtain

I5 ≤ ‖ψi,q‖2
H(S∗) (A.27)

Repeating the same argument from Eqn. (3.77) to Eqn. (3.79) again, we obtain

I6 =
∑

0≤|σ|,|γ|≤k

∑
σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)∫
S∗
aσγ(x)ηDσ1ηDσ2ψi,qD

γψi,q

≤

∑
|σ|≤k

∫
S∗

∣∣∣∣∣∣∣∣
∑

σ1+σ2=σ

|σ1|≥1

(
σ

σ1

)
ηDσ1ηDσ2ψi,q

∣∣∣∣∣∣∣∣
2

1/2

‖ψi,q‖H(S∗)

√
θk,max

≤ C1Cη
√
θk,max

(
k∑
s=1

s∑
s′=1

h−2s′ |ψi,q|2s−s′,2,S∗

)1/2

‖ψi,q‖H(S∗) . (A.28)

The derivation of Eqn. (A.28) is nearly the same as that of Eqn. (A.16) and
the only difference is that we need to use |ηDσ1η| ≤ Cηh

−|σ1| (thanks to |η| ≤
1) in Eqn. (A.17). Using exactly the same argument from Eqn. (A.23) to
Eqn. (A.25), we conclude that for all h > 0 such that 1−h2k

1−h2 ≤ 2,

I6 ≤ C1CηCp
√

2kθk,max|ψi,q|k,2,S∗‖ψi,q‖H(S∗). (A.29)

Combining Eqn. (A.26), (A.27) and (A.29), we obtain

|I3| ≤ ‖ψi,q‖2
H(S∗) + C1CηCp

√
2kθk,max|ψi,q|k,2,S∗‖ψi,q‖H(S∗). (A.30)

Combining Eqn. (A.21), (A.25) and (A.30), we have

‖ηψi,q‖2
H(S∗) ≤ ‖ψi,q‖2

H(S∗)+C1CηCp
√

2kθk,max|ψi,q|k,2,S∗(‖ψi,q‖H(S∗)+‖ηψi,q‖H(S∗)).

(A.31)
Solving the above quadratic inequality, we have proved the lemma.
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A p p e n d i x B

SUPPLEMENTARY MATERIALS FOR THE ISMD

B.1 A Simple Lemma About Regular-sparse Partitions

Lemma B.1.1. Suppose that A ∈ RN×N is symmetric and PSD. Let Pc be
a partition of [N ] and Pf be a refinement of Pc. If the finer partition Pf is
regular-sparse with respect to A, then the coarser partition Pc is also regular-
sparse with respect to A.

Proof. By the definition of regular-sparseness, suppose thatA =
∑K

k=1 g
(f)
k

(
g

(f)
k

)T
and that on every patch in P(f) the nontrivial modes {g(f)

k }Kk=1 on this patch
are linearly independent. For any P (c)

m ∈ Pc, assume

dm∑
i=1

αig
(f)
kmi
≡ 0 on patch P (c)

m , (B.1)

where dm is the local dimension of decomposition A =
∑K

k=1 g
(f)
k

(
g

(f)
k

)T
on

P
(c)
m and {g(f)

kmi
}dmi=1 are the modes which are non zero there. Since Pf is a

refinement of Pc, for any i ∈ [dm], there exists one patch P
(f)
n ⊂ P

(c)
m such

that g(f)
kmi
6= 0 on this smaller patch. Restricting Eqn. (B.1) to P (f)

n , we get

αi = 0 due to regular-sparse property of Pf . Therefore, {g(f)
kmi
}dmi=1 are linearly

independent on P
(c)
m . Since the patch P

(c)
m is arbitrarily chosen, we conclude

that Pc is regular-sparse.

B.2 Joint Diagonalization of Matrices

Joint diagonalization is often used in Blind Source Separation (BSS) and In-
dependent Component Analysis (ICA), and it has been well studied. We
adopt its algorithm and sensitivity analysis in the ISMD. Suppose a series of
n-dimensional symmetric matrices {Mk}Kk=1 can be decomposed into:

Mk = DΛkD
T , (B.2)

where D is an n-dimensional unitary matrix that jointly diagonalizes {Mk}Kk=1

and the eigenvalues are stored in diagonal matrices Λk = diag{λ1(k), λ2(k), · · · , λn(k)}.
Denote λi ≡ [λi(1), λi(2), . . . , λi(K)]T ∈ RK . To find the joint eigenvectors D,
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we solve the following optimization problem:

min
V ∈O(n)

K∑
k=1

∑
i 6=j

|(V TMkV )i,j|2. (B.3)

Obviously the minimum of problem (B.3) is 0 andD is an minimizer. However,
the minimizer is not unique. The so-called unicity assumption, i.e., λi 6= λj

for any i 6= j, is widely used in existing literatures and guarantees that D is
unique up to column permutation and sign flips. In general, we assume that
there are m (m ≤ n) distinct eigenvalues {λi}mi=1 with multiplicity {qi}mi=1

respectively. Minimizers of problem (B.3) are characterized by the following
theorem.

Theorem B.2.1. Suppose that {Mk}Kk=1 are generated by (B.2) and that V
is a global minimizer of problem (B.3). There exists a permutation matrix
Π ∈ Rn×n and block diagonal matrix R such that

VΠ = DR , R = diag{R1, . . . , Rm} , (B.4)

in which Ri ∈ O(qi).

Theorem B.2.1 is the generalization of eigendecomposition of a single symmet-
ric matrix to the case with multiple matrices. Although it is elementary, we
provide the sketch of its proof here for completeness.

Proof. Since V is a global minimizer and thus achieves zero in its objective
function, V TMkV is diagonal for any k ∈ [K]. Denote Γ ≡ V TMkV =

diag{γ1(k), γ2(k), · · · , γn(k)} and γi ≡ [γi(1), γi(2), . . . , γi(K)]T ∈ RK . Define
D = [d1, d2, . . . , dn] and V = [v1, v2, . . . , vn]. If γi 6= λj, then vTi dj = 0 since
they belong to different eigen spaces for at least one Mk. Both D and V span
the full space Rn, and thus there is a one-to-one mapping between {γi}ni=1 to
{λi}mi=1 with multiplicity {qi}mi=1. Therefore, there exists a permutation matrix
Π such that

[γ1,γ2, . . . ,γn] Π = [λ1,λ2, . . . ,λn] .

Correspondingly, denoting D̃ = [d̃1, d̃2, . . . , d̃n] ≡ VΠ, we have

Mkdi,j = λi(k)di,j , Mkd̃i,j = λi(k)d̃i,j ,
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where {di,j}qij=1 and {d̃i,j}qij=1 are the eigenvectors in D and D̃ respectively
corresponding to the eigenvalue λi. By orthogonality between eigenspaces
and completeness of D and D̃, {di,j}qij=1 and {d̃i,j}qij=1 must span the same
qi-dimensional subspace. Since both {di,j}qij=1 and {d̃i,j}qij=1 are orthonormal,
there exists Ri ∈ O(qi) such that d̃i,j = Ridi,j for j ∈ [qi].

The sensitivity analysis of the joint diagonalization problem (B.3) is studied
in [24], and we directly quote its main results below.

Proposition B.2.2. Suppose that {M̂k}Kk=1 are generated as follows:

M̂k = Mk + εM̃k, Mk = DΛkD
T ,

where D is unitary, ε is a real scalar, matrices M̃k are arbitrary, and matrices
Λk are diagonal as in (B.2). Suppose that the unicity assumption, i.e., λi 6= λj

for any i 6= j, holds true. Then any solution of the joint diagonalization
problem (B.3) with the perturbed input {M̂k}Kk=1, denoted by D̂, is in the form

D̂ = D(I + εE + o(ε))J,

where J is the product of a permutation matrix with a diagonal matrix having
only ±1 on its diagonal. Matrix E has a null diagonal and is antisymmetric,
i.e., E + ET = 0. Its off-diagonal entries Eij are give by

Eij =
1

2

K∑
k=1

fij(k)dTi (M̃k + M̃T
k )dj , with fij(k) =

λj(k)− λi(k)∑K
l=1(λj(l)− λi(l))2

.

In this paper, we solve problem (B.3) using a Jacobi-like algorithm proposed
in [23, 17]. The idea is to perform 2-dimensional rotation to reduce the am-
plitude of the off-diagonal pairs one by one. Denote by R = R(p, q, c, s) the
2-dimensional rotation that deals with (p, q) entries of Mk:

R = R(p, q, c, s) = I + (c− 1)epe
T
p − seqeTq + seqe

T
p + (c− 1)epe

T
q , (B.5)

where c2 + s2 = 1 for unitarity. A simple calculation shows that
K∑
k=1

∑
i 6=j

|(RTMkR)i,j|2 =
K∑
k=1

∑
i 6=j

|Mk(i, j)|2 −
K∑
k=1

(
|Mk(p, q)|2 + |Mk(q, p)|2

)
+

K∑
k=1

(
sc(Mk(q, q)−Mk(p, p)) + c2Mk(p, q)− s2Mk(q, p)

)2

+
K∑
k=1

(
sc(Mk(q, q)−Mk(p, p))− s2Mk(p, q) + c2Mk(q, p)

)2
.

(B.6)
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It can be shown that the choice of c and s that minimizes (B.6) also minimizes
‖Lpqz‖2 where z = [c2 − s2, 2cs]

T is a 2× 1 vector, and

Lpq :=


M1(p, q) M1(q,q)−M1(p,p)

2
...

...
MK(p, q) MK(q,q)−MK(p,p)

2

 , (B.7)

is a K×2 matrix. It is apparent that the singular vector corresponding to the
smallest singular value does the job. Denote this singular vector by w with
w(1) ≥ 0. The optimizer of Eqn. (B.6) is given by:

c =

√
1 +w(1)

2
, s =

w(2)

2c
. (B.8)

We perform such rotation for each pair of (p, q) until the algorithm converges,
as shown in Algorithm 5. The algorithm has been shown to have quadratic

Algorithm 5 Jacobi-like Joint Diagonalization
Require: ε > 0; {Mk}Kk=1, which are symmetric and jointly diagonalizable.
Ensure: V ∈ O(n) such that

∑K
k=1

∑
i 6=j |(V TMkV )i,j|2 ≤ ε

∑K
k=1 ‖Mk‖2

F .
1: V ← I
2: while

∑K
k=1

∑
i 6=j |(V TMkV )i,j|2 > ε

∑K
k=1 ‖Mk‖2

F do
3: for p = 1, 2, · · · , n do
4: for q = p+ 1, p+ 2, · · · , n do
5: define Lpq as in (B.7)
6: compute w, the normalized singular vector corresponding to the

smallest singular value

7: set c =
√

1+w(1)
2

, s = w(2)
2c

and R = R(p, q, c, s)

8: set V ← V R; Mk ← V TMkV for k = 1, 2, · · · , K
9: end for
10: end for
11: end while

asymptotic convergence rate and is numerically stable; see [17].
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B.3 Proof of Lemma 5.4.1

We point out that for the noiseless case, the ISMD in fact solves the following
optimization problem to obtain Gm:

min
Gm∈R|Pm|×Km

M∑
n=1

∑
i 6=j

|Bn;m(i, j)|2

s.t. GmG
T
m = Amm ,

Bn;m = G†mAmnA
†
nnA

T
mn

(
G†m
)T
,

(B.9)

in which

G†m = (GT
mGm)−1GT

m, A†nn =
Kn∑
i=1

γ−1
n,ihn,ih

T
n,i (B.10)

is the (Moore–Penrose) pseudo-inverse of Gm and Ann respectively. The ISMD
solves this optimization problem in two steps:

1. Perform eigendecomposition Amm = HmH
T
m. Then the feasible Gm can

be written as HmDm with unitary matrix Dm.

2. Find the rotationDm which solves the joint diagonalization problem (5.13).

Similarly, one can check that for the noisy case, the ISMD (with truncated
eigendecomposition (5.10)) solves the same optimization problem with per-
turbed input to obtain Ĝm:

min
Gm∈R|Pm|×Km

M∑
n=1

∑
i 6=j

|Bn;m(i, j)|2

s.t. GmG
T
m = Â(t)

mm ,

Bn;m = G†mÂmn

(
Â(t)
nn

)†
ÂTmn

(
G†m
)T
,

(B.11)

where Â(t)
nn is the truncated Ânn defined in Eqn. (5.48) and

(
Â(t)
nn

)†
=

Kn∑
i=1

γ̂−1
n,i ĥn,iĥ

T
n,i (B.12)

is the pseudo-inverse of Â(t)
nn.
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Since Gm is a minimizer of problem (B.9), the identity matrix IKm is one
minimizer of the following joint diagonalization problem:

min
V ∈O(Km)

M∑
n=1

∑
i 6=j

|(V TBn;mV )i,j|2 , (B.13)

where
Bn;m = G†mAmnA

†
nnA

T
mn

(
G†m
)T

= DT
mΣn;mDm, (B.14)

whereDm and Σn;m are defined in the procedure of the ISMD. Let {ψk}Kk=1 be a
set of intrinsic sparse modes of A. Combining Lemma 5.3.1 with Lemma 5.3.2,
we get

Bn;m = DT
mΣn;mDm = ΠmV

T
m

(
D(ψ)

)T
Σn;mD

(ψ)VmΠm = ΠmV
T
mB

(ψ)
n;mVmΠm = ΠmB

(ψ)
n;mΠm.

(B.15)

The last equality is due to the fact that Vm are diagonal matrices with diagonal
entries either 1 or -1 in the identifiable case.1 If Ψm is reordered by Πm, we
simply have Bn;m = B

(ψ)
n;m for all n ∈ [M ]. Therefore, there exists such a set of

intrinsic sparse modes {ψk}Kk=1 that for all n ∈ [M ]

Bn;m = B(ψ)
n;m. (B.16)

One can easily verify that the unicity assumption holds true for the joint
diagonalization problem (B.13) because the intrinsic sparse modes {ψk}Kk=1

are pair-wisely identifiable.

Combining the equality constraints in problem (B.9) and problem (B.11) and
the assumption (5.49), we have

ĜmĜ
T
m =

(
(I + εE(eig)

m )Gm

) (
(I + εE(eig)

m )Gm

)T
.

Define
Fm ≡ (I + εE(eig)

m )Gm. (B.17)

Then, there exists Um ∈ O(Km) such that Ĝm = FmUm. Since Ĝm is a
minimizer of problem (B.11), Um is one minimizer of the following joint diag-
onalization problem:

min
V ∈O(Km)

M∑
n=1

∑
i 6=j

|(V T B̂n;mV )i,j|2 , (B.18)

1Readers can verify that Eqn. (B.15) is still true in the non-identifiable case.
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where
B̂n;m = F †mÂmn

(
Â(t)
nn

)†
ÂTmn

(
F †m
)T
. (B.19)

From standard perturbation analysis of pseudo-inverse (for instance see The-
orem 3.4 in [122]), we have

F †m = G†m+εE(ginv)
m , ‖E(ginv)

m ‖2 ≤ µσ−2
min(Gm)‖E(eig)

m Gm‖2 ≤ µCeigσ
−2
min(Gm)‖Gm‖2

(B.20)
and (

Â(t)
nn

)†
= A†nn + εE(ainv)

n , ‖E(ainv)
n ‖2 ≤ µγ−2

n,Kn
‖Â(t)

nn − Ann‖2/ε.

Here, σmin(Gm) is the smallest nonzero singular value of Gm and γn,Kn is the
Kn-th eigenvalue of Ann as defined in (5.9). Denote the (Kn+1)-th eigenvalue
of Ânn as γ̂n,Kn+1. From Corollary 8.1.6 in [55], we have γ̂n,Kn+1 ≤ ε‖Ãnn‖2.
Then, we get

‖Â(t)
nn − Ann‖2 ≤ ‖Â(t)

nn − Ânn‖2 + ‖Ânn − Ann‖2 ≤ 2ε‖Ãnn‖2 ≤ 2ε,

where ‖Ã‖2 ≤ 1 has been used in the last inequality. Therefore, we obtain(
Â(t)
nn

)†
= A†nn + εE(ainv)

n , ‖E(ainv)
n ‖2 ≤ 2µγ−2

n,Kn
. (B.21)

When ε � 1, the constant µ can be taken as 2 in both (B.20) and (B.21).
Combining (5.47), (B.20), and (B.21), we get

B̂n;m =Bn;m + εB̃n;m ,

B̃n;m =E(ginv)
m AmnA

†
nnA

T
mn

(
G†m
)T

+G†mÃmnA
†
nnA

T
mn

(
G†m
)T

+G†mAmnE
(ainv)
n ATmn

(
G†m
)T

+G†mAmnA
†
nnÃ

T
mn

(
G†m
)T

+G†mAmnA
†
nnA

T
mn

(
E(ginv)
m

)T
.

(B.22)

By Proposition B.2.2, there exists E(jd)
m ∈ RKm×Km such that

Um = (IKm + εE(jd)
m + o(ε))Jm,

where Jm is the product of a permutation matrix with a diagonal matrix having
only ±1 on its diagonal. Matrix E(jd)

m has a null diagonal and is antisymmetric,

i.e., E(jd)
m +

(
E

(jd)
m

)T
= 0. Its off-diagonal entries E(jd)

m (i, j) are given by

E(jd)
m (i, j) =

M∑
n=1

f(n)◦B̃n;m , with fij(n) =
Bn;m(j, j)−Bn;m(i, i)∑M

n=1(Bn;m(j, j)−Bn;m(i, i))2
.
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Here, f(n) is the matrix with entries fij(n) and f(n) ◦ B̃n;m is the matrix
point-wise product (also known as the Hadamard product). Notice that we
take advantage of the fact that B̃n;m is symmetric to simplify E(jd)

m (i, j). Since
Bn;m(j, j)−Bn;m(i, i) is either ±1 or 0, |fij(n)| ≤ 1 for any i,j and n, and thus
we have ‖f(n)‖F ≤ Km. Therefore, we conclude

‖E(jd)
m ‖F ≤

M∑
n=1

‖f(n) ◦ B̃n;m‖F ≤
M∑
n=1

‖f(n)‖F‖B̃n;m‖F ≤ K3/2
m

M∑
n=1

‖B̃n;m‖2,

(B.23)
where we have used triangle inequality, ‖f(n) ◦ B̃n;m‖F ≤ ‖f(n)‖F‖B̃n;m‖F
and ‖B̃n;m‖F ≤ K

1/2
m ‖B̃n;m‖2 in deriving the above inequalities. Combining

(B.22), (5.47), (B.20) and (B.21), we know that ‖B̃n;m‖2 are bounded by a con-
stant, denoted by Cjd, which only depends on A and Ceig. From the assump-
tion (5.49), Ceig is a constant depending on A but not on ε or Ã. Therefore,
Cjd depends only on A but not on ε or Ã.
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