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ABSTRACT 

This dissertation describes building a methodology for and the biophysical studies of 

ligand-gated ion channels (LGICs).  

The primary focus of the first half of this dissertation is on developing a fluorescence-

based assay to broadly study LGICs. Chapter 2 describes the site-selective incorporation of a 

turn-on fluorophore via unnatural amino acid mutagenesis on the mouse muscle-type nicotinic 

acetylcholine receptor (nAChR) in Xenopus laevis oocytes as a proof-of-principle study. This 

method has proven to yield very low levels of undesired fluorescent background, which was a 

problem for previous incorporation techniques. Chapter 3 describes efforts towards imaging 

this in vivo system using lifetime imaging with efforts hampered by the inability to detect a clear 

signal. Chapter 4 describes efforts to apply the lifetime imaging approach towards a different 

system involving 5-HT3 proteins fused to fluorescent proteins in COS-7 cells.  

The second half of this dissertation focuses on studies of menthol, a flavorant added to 

cigarettes that contributes to smoking addiction, as a negative allosteric modulator of the α4β2 

nAChR. Chapter 5 reveals the stereochemical effects, or rather lack of, of menthol on the two 

stoichiometries of the α4β2 receptor. Chapter 6 seeks to identify the residue interactions with 

menthol of the α4β2receptor using a combination of computational and experimental studies. 
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1 
C h a p t e r  1  

INTRODUCTION 

Neuronal membrane proteins serve vital physiological functions for the cell in our brains 

and body. They act at billions of synapses to enable rapid communication among networks of 

nerve cells. One subclass, called ion channels, plays a plethora of roles, including brain activity, 

light detection in the eye, and muscle contraction. They function as facilitators of diffusive ion 

transport across the cell’s lipid bilayer to generate transient electrical signals, which in turn trigger 

downstream signaling events in the cell. Ion channel activity can be modulated directly by 

electrical, mechanical, or chemical signals. Receptors stimulated by small-molecule chemical 

signals, including neurotransmitters such as serotonin, dopamine, and acetylcholine, are called 

ligand-gated ion channels (LGICs) (Figure 1.1).1-2 

Dysfunctional ion channels have been implicated in many human diseases, such as M. 

gravis, epilepsy, addiction, migraine, and pain excessiveness or insensitivity, making them regular 

targets for new drug design.1-2 Unfortunately, currently available drugs are not fully efficacious 

and may also cause undesirable side effects.2 Understanding the structures of ion channels and 

the molecular mechanisms that govern their functional properties can aid in designing better 

drugs. 

Ligand-gated Ion Channels 

The non-covalent binding of a natural small-molecule ligand, e.g., a neurotransmitter, 

induces an LGIC to undergo a transition into an ion-conducting state in most cases. In the ion-

conducting state, ions such as Na+, K+, Ca2+, and/or Cl- are allowed to pass through (Figure 1.1). 

One superfamily of this class of ion channels comprises the Cys-loop receptors, which are the 

focus for this dissertation. The receptors of the Cys-loop superfamily are named after a 

characteristic loop that is formed by a disulfide bond between two cysteines in the extracellular 

domain (ECD) (Figure 1.2). These receptors can either be excitatory (depolarizing the 

membrane) or inhibitory (hyperpolarizing the membrane) to the neuron. The excitatory 



 

 

2 
receptors contain the cation-selective channels, including the nicotinic acetylcholine (nACh) 

and 5-hydroxytryptamine (type 3, 5-HT3) receptors. The inhibitory receptors contain the anion-

selective receptors, including the γ-aminobutyric acid (type A and C, GABAA/C) and glycine 

receptors.  

The Cys-loop receptors are pentameric, containing either five homologous 

(heteromeric) or identical (homomeric) subunits, each contributing to a β-sheet heavy ECD, α-

helical transmembrane domain (TMD), and a smaller intracellular domain (ICD). The binding 

of a neurotransmitter at the interface of two subunits in the ECD can then cause a 

conformational rearrangement at the receptor gate ~60 Å away (Figure 1.3). 

 
Figure 1.1. Ligand-gated ion channels. The binding of a neurotransmitter(s) induces the ligand-gated ion channel to 
adopt the ion-conducting, open state, allowing ions to pass through.  
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Figure 1.2. Structural arrangements of Cys-loop receptors. a) A representation of the homologous regions for a 
single subunit (adapted from Ethan Van Arnam’s thesis)3. b) Transmembrane domain depicting the M1-M4 helices, 
where M2 lines the pore. c) Examples of the heteromeric arrangements of the mouse muscle nAChR (α1)2β1δγ 
nAChR and the (α4)2(β2)3 nAChR. 
 

  
Figure 1.3. Torpedo nAChR EM structure.4 a) View down the axis and b) from the side, parallel with the plasma 
membrane showing the agonist binding site and receptor gate. Protein figures constructed in PyMOL with PDB 
2GB9. 
  



 

 

4 
LGIC Conformations 

One part of this dissertation work is developing a methodology to study the 

conformational states of an LGIC. An ion channel can have multiple conformational states – at 

least one open state and one or two closed states – each stable conformation representing a 

different functional state. The three functional states are: closed and activatable (resting), open 

(active), or closed and non-activatable (refractory or desensitized).1 Once open, the channel can 

remain open for several milliseconds before closing. Once closed, it can also remain closed for 

several milliseconds before reopening. The transition between these states is called gating and can 

occur virtually instantaneously (in less than 10 microseconds, the present limit of experimental 

measurements).1 One model suggests that the ion-conducting pore, lined by the M2 helix, opens 

through a twisting motion of the extracellular domain coupled to the tilting of two M2 and M3 

transmembrane helices (Figure 1.2).5 Despite its functional importance, little is still known of 

the exact molecular mechanisms of gating.1,5  

Gating mechanisms can be affected by desensitization, antagonist inhibition, and 

allosteric regulation. LGICs can undergo desensitization after prolonged exposure to the 

activating ligand, causing it to transition into the refractory state. A competitive antagonist can 

block the endogenous ligand by occupying its binding site. Some LGICs have an allosteric 

binding site that can affect the normal gating mechanisms as well.1, 6 The molecular mechanisms 

underlying desensitization and allosteric modulation are not well understood. The following 

questions remain: what are the structures of desensitized states; what are the structural changes 

during gating; how large are these gating motions; and is there symmetry in the motion of the 

subunits during gating? 

Allosteric Modulation 

The second major area of this dissertation work is investigating menthol’s role as a 

negative allosteric modulator to the nicotinic receptor. Neurotransmitters, i.e., agonists, have 

been the focus of ion channel gating. Allosteric modulators are also important in channel gating. 

Agonists bind at the receptor’s orthosteric site, leading to activation, and antagonists can also 

bind here, leading to inactivation. Allosteric modulators are a class of ligands that can enhance 
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receptor activation (positive allosteric modulators) or reduce receptor function (negative 

allosteric modulators) indirectly by binding in locations adjacent to the orthosteric site or tens 

of angstroms away. The theory is that the allosteric molecule stabilizes a particular open, closed, 

or desensitized state or changes the energy barrier(s) for conformational changes. Allosteric 

modulators as drugs, such as the plant alkaloid galatamine which positively modulates the human 

α7 and α4β2 nAChRs, have been used to successfully treat neurodegenerative disorders. 

Allosteric modulators for ion channels are attractive candidates as drugs for treating many 

neurodegenerative diseases because they can be designed to have high specificity with low 

adverse off-target effects. An increasing body of research has accrued towards understanding 

positive and negative allosteric modulators for treating neurodegenerative diseases and 

addiction.7  

 
Figure 1.3. Locations of allosteric ligands. Putative-binding sites illustrated by arrows of allosteric modulators for a 
typical four transmembrane LGIC such as nAChR. Representation built based on Hogg, et al.7  
 

Methods for Interrogating Structure and Function 

Elucidating the structure and function of ion channels has been attempted with success 

using electron microscopy (EM), X-ray crystallography, electrophysiology, and mutagenesis. EM 

has revealed the overall topology of nAChR from the Torpedo electric organ, including the ECD, 

TMD, and ICD, and that it is formed by five subunits organized around a pseudosymmetrical 
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five-fold axis, forming a rosette cylinder that is ~8 nm in diameter and ~16 nm in length (Figure 

1.2).4 With X-ray crystallography, the crystal structure of the acetylcholine (ACh) binding protein 

(AChBP),8 a homolog of the ECD of nAChR, the ECD of a single subunit (α1) of the mouse 

muscle nAChR9, and the human α4β2 nAChR10 was solved. The mouse nAChR α1 subunit can 

be successfully superimposed onto an AChBP monomer, making AChBP a possible template 

of the ECD for drug design.8,11 This has been the basis for making a nAChR homology model 

for drug design – that is until the recent publication of the X-ray crystal structure of the human 

α4β2 nAChR. Structural information from EM and X-ray studies is immensely useful when 

combined with the results from functional studies.  

Site-directed unnatural amino acid (UAA) mutagenesis and electrophysiology have also 

been used for interrogating the structure-function relationships of ion channels. Implementation 

of these two techniques, for example, has helped reveal in nAChR a cluster of aromatic residues 

that comprise the ligand-binding site and particularly a cation-π interaction between the cationic 

moiety of the ligand (e.g., ACh) and the electron-rich π-system of the indole moiety of a 

tryptophan residue.12 

Although each technique has contributed to a generous breadth of knowledge, they also 

have their inherent limitations. The EM structure has provided a great topological overview, but 

the low-resolution nature of EM is insufficient for accurately understanding local molecular 

interactions. X-ray crystallography provides a high-resolution atomic image of protein structure 

but is also notoriously difficult to apply to membrane proteins.13 It also only provides one 

snapshot of the protein conformation, which is usually in the desensitized state due to the 

overdosing of the protein with agonists during the crystallization process. Electrophysiology can 

primarily distinguish between the open state and the closed state but lacks in identifying 

structural movements that may occur during transitions of dark states, i.e. non-conducting states. 

Techniques that can distinguish the open and the numerous closed states ion channels can adopt 

are needed. Fluorescence-based techniques have the potential to address this. Despite this, 

electrophysiology is a powerful tool for investigating ion channel function and the role of various 

drugs such as allosteric modulation. 
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Unnatural Amino Acid Mutagenesis 

Since being first reported in 1989, unnatural amino acid (UAA) mutagenesis has proven 

to be a powerful tool for engineering novel functionalities into proteins by expanding the genetic 

code to more than the twenty amino acids that nature provides.14 Two main approaches have 

been developed: one utilizes an evolved tRNA synthetase with specificity for a cognate amino 

acid for acylation onto tRNA15, and the other utilizes chemical acylation of the tRNA without a 

tRNA synthetase16. In the Dougherty lab, the chemical acylation approach is implemented. The 

chemical acylation strategy has enriched us with vast diversity of unique protein functionality, as 

almost any UAA can be chemically synthesized. The only broad limitation is that the 

incorporation of the UAA is dependent on the tolerance by the ribosome. Experimentally, the 

UAA is synthesized and then chemically coupled to dinucleotide dCA and lastly to the tRNA. 

The aminoacyl-tRNA along with mRNA with a stop or “nonsense” codon introduced at the 

desired position is physically injected into Xenopus laevis oocytes for protein expression. This in 

vivo nonsense suppression methodology to incorporate UAAs have been utilized and optimized 

in the Dougherty/Lester labs. Then, electrophysiology and/or bio-imaging experiments are 

performed on the oocytes.17 (Figure 1.3) 

Xenopus Laevis Oocytes Expression System 

Xenopus laevis oocytes have been established as an excellent cellular host for the 

heterologous expression of mammalian neuroreceptors and ion channels. Since multimeric ion 

channels typically require sophisticated cellular protein processing and transport, a vertebrate 

cell like the oocyte is a suitable system. Upon mRNA injection, the proteins are folded, modified, 

assembled into pentamers, and trafficked to the plasma membrane. The large size (~1 mm in 

diameter for Stage V and IV) also make handling the cells easier for mRNA or DNA injection 

and voltage clamp electrophysiology. Although Xenopus oocytes is equipped with an array of 

endogenous ion channels, the signal from heterologous receptors can still be clearly 

distinguished from the endogenous ones. Typically, the currents produced by these endogenous 

ion channels are very small compared to that of heterologous ones. These cells have also been 
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optimized for UAA mutagenesis of several ion channels in our lab, thereby further establishing 

Xenopus oocytes as a good expression system.17-19  

Electrophysiology 

The two-electrode voltage clamp (TEVC) is a conventional electrophysiological 

technique used to study the properties of electrogenic membrane proteins in large cells, such as 

Xenopus oocytes. TEVC artificially controls the membrane potential (Vm) using two intracellular 

electrodes – a voltage electrode as a Vm sensor and a current electrode for current injection to 

adjust Vm. This allows the membrane potential to be set at desired values and the membrane 

current to be recorded for analysis of ion channel activity. To study how chemical factors (e.g. 

neurotransmitters, hormones, intracellular messengers, or exogenous drugs) may modulate 

LGICs such as the nicotinic acetylcholine receptor (nAChR), the electrical conductance of 

LGICs is measured in response to the addition of chemical stimulants, and EC50 experiments 

for agonists or IC50 for inhibitors can be performed. The injected current, which is used to adjust 

Vm to a constant holding potential, is recorded as the membrane current.14  
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Figure 1.3. General procedure of experiments. For experiments performed in Chapter 2 and 3 of this study: 1) 
Suppression mRNA construction, 2) chemical acylation of tRNA with UAA, 3) injection of mRNA and tRNA, 4) 
protein expression, and 5) electrophysiology and/or bio-imaging. In Chapter 5 and 6, only mRNA is injected and 
studied using electrophysiology.  



 

 

10 
Summary of Dissertation Work  

Part one of this dissertation, namely Chapter 2 and 3, details the development of a novel 

fluorescence-based biophysical tool to probe these structural changes that underlie the function 

of LGICs, by employing unnatural amino acids, fluorescence, microscopy, and 

electrophysiology. Chapter 4 describes attempts to use many of the learnt lessons from Chapter 

2 to develop a fluorescence assay to study protein stoichiometry, which can also be extended to 

studying protein-protein interactions, cellular signaling, protein trafficking, and the like. Part two, 

namely Chapter 5 and 6, focuses on investigating the role of menthol as an allosteric modulator 

to the α4β2 nicotinic receptor, a protein that plays a key role in smoking addiction.  

Chapter 2 describes the development of a bio-orthogonal labeling method for the 

incorporation of a “turn-on” fluorophore in the mouse muscle nAChR (α1β1γδ) receptor and 

imaging with single-molecule TIRF microscopy to optimize and understand fluorescently 

labeled nAChRs in live oocytes. The novel design of the chemical synthesis of the turn-on 

fluorescent UAA is also described. 

Chapter 3 describes the efforts in measuring the lifetime of the turn-on fluorophore 

incorporated in the α1β1γδ nAChR towards building a FRET (Förster resonance energy 

transfer) assay based on fluorescence lifetime imaging microscopy (FLIM). Progress was 

hampered by uncertain and low fluorescence signals.  

Chapter 4 describes efforts in applying the FLIM-FRET approach towards studying the 

5HT3 receptor stoichiometry using fluorescent protein and expression in mammalian COS-7 

cells. Progress was hampered by the ability to distinguish plasma membrane receptors from 

receptors in the endoplasmic reticulum.  

Chapter 5 describes studies investigating the role of menthol stereochemistry in α4β2 

receptor inactivation and stoichiometry. We find that the two main stereoisomers of menthol 

do not differ in acute inhibition levels for both stoichiometries of the α4β2 nAChR.  
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Chapter 6 describes efforts towards identifying the menthol binding sites on the α4β2 

nAChR using a combination of computational docking and experimental mutagenesis screening. 

The results of the sites tested thus far did not seem to suggest a menthol binding site has been 

identified.  
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C h a p t e r  2  

A LOW-BACKGROUND FLUORESCENT LABELING STRATEGY 
FOR THE SINGLE-MOLECULE IMAGING OF NACHRS 

2.1  Abstract 

Fluorescent labeling of nAChRs, and more broadly LGICs, is valuable in probing 

conformational changes upon ligand binding. Incorporation of fluorogenic unnatural amino 

acids (UAAs) via nonsense suppression has enabled the site-selective labeling of these receptors. 

The in vivo imaging of these fluorescent-labeled proteins has previously yielded high background 

fluorescence, hampering progress in conducting further studies. We developed a strategy for the 

incorporation of turn-on small-molecule fluorophores into the mouse muscle nAChR via UAA 

mutagenesis and the tetrazine ligation reaction, imaging with total internal reflection 

fluorescence (TIRF) microscopy. This set of turn-on fluorophores yielded very small non-

specific background fluorescence in vivo. This fluorophore labeling strategy will expand the 

number sites that can be probed and allow the use of a greater variety of dyes. A second 

fluorophore can be introduced using fluorogenic UAAs or by utilizing the chemoselectivities of 

different bioorthogonal reactions to enable intermolecular Förster resonance energy transfer 

(FRET) studies. 
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2.2  Introduction 

Fluorescent labeling of proteins is valuable for probing biophysical properties of the 

protein and for understanding its role in biological processes. In many cases, fluorescent proteins 

(FPs) are incorporated through fusion with the protein of interest via genetic encoding. FPs have 

been used to identify protein-protein interactions and identify the stoichiometry of the subunits 

for ion channels.14, 20 However, FPs can interfere with protein function, folding, and stability, 

and they are limited to incorporation on the protein surface due to their typically large size (~27 

kDa). On the other hand, chemical fluorophores would be more desirable for studying 

intramolecular interactions in a protein due to their small size. One study incorporated a small-

molecule fluorophore into the channel lumen of mouse muscle nAChRs in Xenopus ooctyes via 

unnatural amino acid (UAA) mutagenesis and was imaged using single-molecule TIRF 

microscopy.21 TIRF was used to reduce the background intracellular fluorescence of oocytes. 

This study is significant for successfully incorporating a small-molecule fluorophore at a non-

cysteine site and detecting single-molecule receptors in live cells. Unfortunately, further progress 

with this study was impeded due to high background from fluorescent UAA inside the cell, and 

prior efforts to alleviate fluorescence background have been unfruitful.18 The main advantage of 

incorporating small-molecule UAAs is the ability to probe an expanded the number of sites on 

the protein with site-selectivity. However, in order to fully take advantage of fUAAs, undesired 

background fluorescence signals must be minimized. 

We developed a new labeling strategy for the site-selective incorporation of fUAAs using 

click chemistry (tetrazine ligation reaction) with turn-on fluorescence. We designed a novel 

synthesis of a turn-on Bodipy-UAA, showed successful turn-on fluorescent labeling of the 

mouse muscle nAChR in live Xenopus laevis oocytes, and dramatically reduced undesired 

background fluorescence. We used single-molecule TIRF microscopy to image fluorescent 

nAChRs in vivo.  

The Turn-on Fluorescent Labeling Strategy 

The tetrazine ligation reaction is implemented in the fluorescent labeling strategy.  

Bicyclononyne (BCN) is incorporated as a lysine-derived UAA (Figure 2.1) into nAChRs by the 
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chemical acylation approach. After mutant nAChRs are expressed on the plasma membrane, 

a small-molecule fluorophore conjugated to tetrazine is supplemented. The site of BCN 

incorporation by this strategy is chosen so as to the have adequate accessibility of the 

fluorophore.  

 
Figure 2.1. BCN-lysine UAA. 

Bio-orthogonal Chemistry – The Tetrazine Ligation Reaction 

The tetrazine ligation reaction used in these studies is a strain-promoted azide-alkyne 

cycloaddition (SPAAC), which has several advantages for bio-orthogonal labeling. Not only does 

this reaction not require a metal catalyst, it also proceeds quickly and efficiently at ambient 

temperatures and in simple, biologically relevant solvents like buffered-water. In the tetrazine 

ligation reaction, a bicyclononyne and an s-tetrazine follow an inverse-demand Diels Alder 

reaction and then a retro-Diels Alder reaction to eliminate nitrogen gas (Figure 2.2). The 

advantage of using tetrazine as a reactive group is its fast reaction with BCN (~ 0.14 M-1 s-1 22) 

and also its ability to induce “turn-on” fluorescence when conjugated to a small-molecule 

fluorophore.23 

Turn-on Fluorescence with Tetrazine-conjugation of Small-molecule Fluorophores 

Tetrazine plays a dual role as both a quencher and bioorthogonal reactant, making 

activatable “turn-on” tetrazine-linked fluorophores an attractive feature for bio-imaging. Upon 

tetrazine reacting with a dienophile (e.g., BCN), the fluorophore conjugated to the tetrazine may 

have emission increased by 20-fold or even up to 11,000-fold24 (Figure 2.2). This fluorescence 

increase is particularly important for dyes that exhibit non-specific binding. The mechanism for 

fluorescence quenching is suspected to be via through-bond energy transfer (TBET), where 

energy is transferred via a contiguous scaffold of π bonds.24 
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Figure 2.2. Turn-on fluorescence of Bodipy.  The reaction of a p-methyl-tetrazine-Bodipy with a BCN results in the 
unquenching of fluorescence emission of Bodipy. 

 
Some tetrazine-conjugated dyes that have been used in these studies are commercially 

available (Cy3, Cy5, 5-FAM, and Atto 488), while another requires in-house chemical synthesis 

(Bodipy). Coumarin is another fluorophore candidate that is not commercially available and the 

tetrazine-conjugated version has not been synthesized in-house yet. The tradeoffs for each dye 

take into consideration commercial availability and the turn-on ratio, which is an indicator of the 

undesired fluorescence signal level. On one hand, tetrazine-conjugated BODIPY (Tz-Bodipy)25 

and Tz-Coumarin26 exhibit high turn-on abilities but also require in-house chemical synthesis, 

which is time-consuming and low yielding; coumarin and BODIPY have also been used as pairs 

in ensemble FRET measurements.27-28 On the other hand, Tz-Cy3 and Tz-Cy5 are commercially 

available, but exhibit extremely low to negligible turn-on fluorescence; Cy3 and Cy5 are known 

to be highly efficient FRET pairs for single-molecule FRET.29-30 
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Figure 2.3.  Chemical structures of tetrazine-conjugated dyes. 
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2.3  Results and Discussion 

Synthesis of para-methyl-tetrazine-Bodipy 

The synthesis of para-methyl-tetrazine-Bodipy has been reported in the literature 

(Scheme 1).25 However, the reported synthetic route requires a final purification step between a 

methylated tetrazine compound and an unmethylated one. To avoid this purification step, an 

alternative route was attempted that would directly yield a methyl-tetrazine group conjugated to 

Bodipy by adapting from various literature sources (Scheme 2). To start, the aldehyde group on 

4-cyanobenzylaldehyde (1) is reduced to an alcohol, yielding a cyanobenzylalcohol (2).  Next, the 

nitrile group is converted to a methyl-1,2,4,5-tetrazine (3). Tetrazine-benzylalcohol undergoes 

an oxidation reaction to yield a tetrazine-benzylaldehyde (4). Finally, the Bodipy is formed (5).   

Although the formation of the Bodipy yielded a multitude of side products, careful 

purification between p-methyl-tetrazine-Bodipy and tetrazine-Bodipy was not necessary. 

Extremely small fractions were obtained during a silica flash column chromatography step. The 

molecular weight of each fraction was analyzed using liquid-chromatography mass-spectrometry 

(LC/MS), and the fraction containing the compound with the correct mass-to-charge ratio was 

further verified using NMR. Upon reacting this compound with (1R,8S,9S)-Bicyclo[6.1.0]non-

4-yn-9-ylmethanol (BCN-OH), fluorescence emission turn-on was observed under a long-

wavelength UV lamp. Our synthetic route directly produced p-methyl-tetrazine-Bodipy at a 

higher overall yield (4.9%) than the original published synthesis (2.4%, assuming ~30% yield as 

well for synthesis of p-cyanobenzyl-Bodipy25).   

 
Scheme 1.  Published synthesis of a mixture, including p-methyl-tetrazine-Bodipy.25 
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Scheme 2.  Our synthesis for p-methyl-tetrazine-Bodipy. 

Synthesis of α-NVOC-Lysine(BCN)-THG73 tRNA 

The synthesis of (1R,8S,9S)-Bicyclo[6.1.0]non-4-yn-9-yl (BCN) UAA for acylation onto 

tRNA has never been achieved. The synthetic route first attempted followed standard protocols 

for the preparation of α-NVOC-amino acid-dCA (Scheme 3). This involves: 1) NVOC-

protection of amine group, 2) cyanomethylation of carboxylic acid, 3) coupling to dCA, and 4) 

ligation to 74mer tRNA. The production of α-NVOC-L-Lysine(BCN)-O-dCA failed at the 

cyanomethylation step (Scheme 4). The reaction was analyzed with LC/MS, revealing mass 

traces that corresponded to BCN alone. We suspect that BCN may have hydrolyzed off of α-

NVOC-L-Lysine during the reaction. 

 
Scheme 3.  Standard synthesis for modified UAA-tRNA. 

 

 
Scheme 4.  First attempted synthesis based on standard protocols (failed). 
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protection followed by cyanomethylation, yielding α-NVOC-N-ε-Boc-Lysine-OMeCN (8). 

Next, the Boc protecting group was removed, followed by the formation of a carbamate upon 

reaction with BCN-succinimidyl ester (BCN-OSu). dCA coupling and tRNA ligation followed 

suit, yielding α-NVOC-Lysine(BCN)-O-dCA and α-NVOC-Lysine(BCN)-O-dCA-74mer.  The 

74mer tRNA from Tetrahymena thermophila was used. It recognizes the amber stop codon 11 and 

has been mutated at the position 73 (THG73) to remove its recognition by the glutamine 

synthetase.  Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was 

used to confirm the production of the modified aminoacyl-tRNA (13). Approximately 8 µg in 

25 µL of water of α-NVOC-Lysine(BCN)-O-dCA-74mer was produced. 

 
Scheme 5.  Second attempted synthesis, yielding α-NVOC-Lysine(BCN)-O-dCA-74mer (success.) 
 
 
Turn-on Fluorescence 

The fluorescence turn-on abilities of the tetrazine-conjugated dyes were tested by 

reaction with excess BCN-OH in water. Their turn-on ratios were calculated based on the peak 

intensity of fluorescence emission (Table 2.1). Tz-Bodipy and Tz-Coumarin have the highest 

turn-on ratios (from published literature).  Tz-5-FAM and Tz-Atto 488 have a longer linker 
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length and lower turn-on ratios.  Lastly, Tz-Cy3 and Tz-Cy5 have the longest linker length 

and lowest turn-on ratios. This trend may suggest that the linker length between the tetrazine-

benzyl group and the dye could potentially affect TBET efficiency – or whichever quenching 

mechanism it may be. If this trend holds up and high quenching ability is necessary, we may be 

motivated to synthesize in-house particularly Tz-Cy3 and Tz-Cy5 with a shorter linker length 

for higher turn-on ability, since Cy3 and Cy5 is an established good FRET pair. 

Probe Fluorescence 
increase in water 

Tz – 5-FAM 9-fold 
Tz – Atto 488 20-fold 
Tz – Cy3 2-fold 
Tz – Cy5 4-fold 
Tz – Bodipy  900-fold25 
Tz – Coumarin  11000-fold26 

Table 2.1.  Turn-on fluorescence ratios.  Tetrazine-conjugated dyes exhibited increase in fluorescence emission upon 
reaction with BCN-OH in water for ~ 30 minutes. 
 
 
Expression and Electrophysiology of Mutant nAChR 

Potential detriment to expression of functional nAChR due to UAA mutagenesis was 

tested using two-voltage clamp electrophysiology. For the initial round of testing, a tryptophan 

‘unnatural amino acid’ (Trp-UAA), in which a tryptophan was chemically acylated onto 

THG73TAG tRNA, was used, since tryptophan and BCN are both nonpolar and bulky. A 

THG73TAG 76mer was used as a negative control to gauge the ‘read-through’ background of 

functional receptors without the UAA.   

Six sites on the δ and β subunits of the mouse muscle-type nAChR were mutated to the 

UAG amber stop codon. δ and β subunits were chosen since there is only one subunit – 

compared to two for the α subunit – in nAChR for future FRET studies, in which a 1:1 ratio of 

each fluorophore is desired. The sites were selected for their similarity in location to α-70, which 

has previously been shown to be a permissive site31. One of the drawbacks of this labeling 

approach is the permeability of the tetrazine-dye, limiting the accessible sites to mostly residues 

in the ECD. The expression conditions in the first test round were too high, exceeding the 

instrument’s limit in measurements of currents. In the second round, two sites were tested with 
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BCN-UAA incorporation with milder expression conditions (single injection with 24 h 

expression rather than a double injection with 48 h). 

The currents of the 76mer control are comparable to that of UAA-incorporated proteins 

for all sites, except for δ-303, suggesting that the sites are permissive, since they are far from the 

channel lumen and the ligand-binding site (Table 2.2). The high currents from the 76mer control 

experiment may be due to the reacylation of the uncharged tRNA. Uncharged suppressor 

tRNAs may be recharged, or reacylated, with natural amino acids by endogenous synthetases 

and then delivered to the UAG mutation site, producing functional receptors.17 These functional 

‘read-through’ nAChRs would contribute to ionic current and cannot be distinguished from 

UAA-incorporated nAChR by electrophysiology alone. Consequently, TIRF microscopy is 

necessary to confirm the incorporation of the BCN-UAA in nAChR. 

Average Imax (µA) – 48 h, double inject  
Probe Trp-UAA N 76mer N 
δ-285 -36.1 4 -23.7 4 
δ-279 -38.3 1 -21.1 4 
δ-303 –  –  
β-276 -82.3 1 -30.2 4 
β-270 -34.1 3 -40.1 2 
β-294 -47.6 4 -41.1 5 

5 ng w/t -33.5 (N=2) 
 

Average Imax (µA) – 24 h, single inject  
Probe BCN-UAA N 76mer N 
δ-285 -8.958 1 -7.866 2 
β-294 -18.019 3 -9.489 3 
α-70 -27.889 2 -19.861 3 

Table 2.2. Average maximum current induced by 1 mM ACh of nAChR with single mutations.  N is the number of 
oocytes. 
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TIRF Imaging 

Non-specific binding  

Xenopus oocytes without mRNA and tRNA injection were incubated with the tetrazine 

and α-Bungarotoxin (αBtx) dyes. αBtx binds to the α1-β1 subunit interface (Figure 2.6). All 

receptors at the plasma membrane – with or without the UAA – will be labeled by the αBtx 

dyes. After the usual washing steps, TIRF imaging detected near-zero puncta from tetrazine-dye 

labeling, suggesting negligible non-specific binding (images not shown). A very sparse amount 

of puncta from labeling with αBtx dyes was observed, suggesting some non-specific binding 

(Figure 2.4). 

   
Figure 2.4. TIRF images of Xenopus oocytes incubated with αBtx-Alexa Fluor 488 (αBtx-488, left), αBtx-Alexa Fluor 
555 (αBtx-555, middle), and αBtx-Alexa Fluor 647 (αBtx-647, right). 
 
Tetrazine-dye labeling at α70 site 

After 48 h of expression and two injections of mRNA and L-Lysine(BCN)-THG73TAG  

(one initial injection and one at 24 h), sparse fluorescent puncta were observed when Tz-Bodipy, 

Tz-Cy3 or Tz-Cy5 were independently added (Figure 2.5). Puncta were not detectable with a 

single injection of mRNA and tRNA with 24 h of expression however. Expression at 24 h with 

a single injection is insufficient for UAA-incoporated nAChR expression. 
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Figure 2.5. TIRF image of α-70 nAChR expressed in Xenopus oocytes incubated with Tz-Bodipy (left), Tz-Cy3 
(middle), and Tz-Cy5 (right). 
 
Tetrazine-dye and αBtx-dye co-labeling at α-70 site: 

Using the 48 h, double-injection conditions for expression, oocytes were co-labeled with 

a tetrazine-dye and a αBtx-dye of a different spectral profile. αBtx-binding does not block the α-

70 site (Figure 2.6). The optical setup of the TIRF microscope has multiple laser lines and two 

sensitive cameras, allowing concurrent imaging of both dyes. Since αBtx binds to nAChR, we 

expect puncta for all nAChRs even those without the BCN-UAA. Sparse puncta were again 

observed in the channel corresponding to the tetrazine dye (right frame in Figure 2.7a and 2.7c 

and left frame in Figure 2.7b). However, in the channel corresponding to αBtx-dye, the images 

were saturated with puncta (left frame in Figure 2.7a and 2.7c and right frame in Figure 2.7b). 

This indicates that there was a saturation of ‘read-through’ receptors, which is in line with the 

electrophysiology results from the 76mer control. Because of the oversaturation of read-through 

nAChR and the limited mutant nAChR, photobleaching analysis could not be reliably 

performed.  

 
Figure 2.6. ECD of Torpedo nAChR EM structure (cyan) and AChBP X-ray structure (green) with αBtx (orange).  
Residue at α-70 site highlighted as dark blue spheres. Figure generated in Pymol with PDB 2bg9 (cyan) and 2qc1 
(green and orange). 
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 (a)    

 (b)    

(c)    
Figure 2.7. TIRF images of α-70 nAChR expressed in Xenopus oocytes incubated with (a) Tz-Cy5 and αBtx-647 (488 
nm laser (right) and 642 nm laser (left)), (b) Tz-Cy3 and αBtx-488 (488 nm laser (right) and 561 nm laser (left)), and 
(c) Tz-Cy5 + αBtx-488 (488 nm laser (right) and 642 nm laser (left)). 

 

In summary, with TIRF microscopy, we successfully: 1) detected sparse puncta from 

fluorescently labeled nAChR at the membrane, 2) determined the expression conditions needed 

for adequate expression of UAA-incorporated nAChR, 3) observed negligible non-specific 

binding from tetrazine-dyes and little from αBtx-dyes, and 4) supported the electrophysiology 

studies that a significant concentration of functional nAChR are without the bio-orthogonal 

handle BCN-UAA. Photobleaching and N&B analysis cannot reliably be used to study receptor 

clustering and another approach is needed. 
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Localization of Intracellular Autofluorescence Revealed with 3D Stack Construction 

Xenopus oocytes are known to have high intracellular fluorescence.21 Autofluorescence 

was studied by constructing a 3D z-stack image of oocytes expressing wild-type nAChR with 

and without labeling of αBtx-Alex Fluor 488 (αBtx-488). Since αBtx-488 is membrane-

impermeable and binds only nAChRs expressed at the membrane surface, αBtx-488-labeling 

gives a point of reference to the location of autofluorescence.   

The molecules near the plasma membrane of the oocyte were studied using a 488 nm 

excitation laser. 3D z-stack images of uninjected and αBtx-488 labeled oocytes were constructed, 

where each frame or ‘layer’ was ~ 2 microns thick, totaling ~ 86 microns. Further than 86 

microns, negligible fluorescence was observed and therefore not recorded. The 3D image of 

αBtx-488 labeled oocytes was indistinguishable from that of uninjected oocytes (Figure 2.8). 

That is, there is no clear delineation between the fluorescence at plasma membrane and 

autofluorescence near the membrane, further suggesting that autofluorescence is closely 

localized to the plasma membrane. This confirms our observations from TIRF studies; 

autofluorescence is observed when the TIRF penetration depth is increased (Figure 2.9). 

Although autofluorescence is indistinguishable from αBtx-488 in the 3D image, this does not 

preclude the ability of TIRF to drastically reduce autofluorescence from the images. The 

penetration depth of the evanescent wave (~ 0.1 microns) is much smaller than the thickness of 

each layer from the 3D z-stack imaging (2 microns). Unfortunately, the optical setup is unable 

to image layers in the nanometer range. 
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Figure 2.8. 3D z-stack image of wild-type nAChR expression Xenopus oocyte incubated with αBtx-488 (right) and 
uninjected oocyte (left). 
 

 
Figure 2.9. TIRF image of wild type nAChR expressing Xenopus oocyte. 
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2.4  Conclusions 

Background fluorescence has been an inherent problem for in vivo imaging with 

fluorescent labeling of ion channels via unnatural amino acid mutagenesis and nonsense 

suppression. We have successfully developed a labeling strategy by incorporating turn-on 

fluorophores via nonsense suppression that leads to extremely low background fluorescence 

that previous strategies have not been able to achieve.  

Future efforts remain in the development of two-color labeling if this method were to 

be expanded into FRET studies. The strategies for incorporating the second fluorophore include 

either incorporating a fluorogenic UAA as the second fluorophore or utilizing the 

chemoselectivity of different bioorthogonal reactions. In the first strategy, a fluorogenic UAA 

and BCN-UAA would be concurrently introduced via different suppression methods, choosing 

from frameshift or nonsense suppression. An advantage of incorporating fluorogenic UAA is 

that non-ECD sites can be reached. In a previous study, a fluorescent lysine-Bodipy was 

incorporated into the channel lumen of the mouse muscle nAChR.21 One of the potential 

disadvantages is a high background signal from intracellular fluorogenic UAAs. In a different 

strategy, two different UAAs with selective specificity for modified fluorophores can be 

incorporated via different suppression methods. Similar one-pot dual-labeling methods have 

previously been done (Figure 2.10 and 2.11).32-33 Bioorthogonal pairs that do not cross-react, 

such as BCN with one tetrazine derivative and norbornene with a different tetrazine derivative, 

can be used.  
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Figure 2.10. Selective reactivities and reaction rate amongst norbornene-lysine (NorK), tetrazine-phenylalanine 
(TetPhe), and two tetrazine derivatives (1 and 3). Red lines indicate no cross-reaction or extremely slow reaction 
rates.  Figure generated based on the results of Kaihang, et al.33 
 

 
 

Figure 2.11. Reactivities of TCO, SCO, and BCN with azide (blue), H-tet (green), and Me-tet 34. Reaction rates are 
correlated to the thickness of the arrow. Dashed lines highlight reactants that do not cross-react. Figure taken from 
Nikić, et al.32 
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2.5  Experimental Methods 

2.5.1  Organic Synthesis 

General Information.  All reactions were performed in a flame-dried round-bottom flask and 

in freshly dried solvents unless otherwise specified. Reactions were monitored with thin-layer 

chromatography using silica gel (EMD/Merck silica gel 60 F254 pre-coated plates, 0.25 mm) 

and LC/MS (Agilent 6140 Quadropole).  Silica flash column chromatography was performed 

using silica gel 60 (EMD). 

Materials.  Reagents were obtained and used as received from Sigma Aldrich. Dry solvents were 

freshly distilled from CaH2 prior to use. Deuterated chloroform solvent for NMR was purchased 

from Cambridge Isotope Laboratories. 

Instrumentation.  Proton NMR was recorded on a Varian Mercury-300 (300 MHz) NMR 

spectrometer. 

Synthesis of p-methyl-tetrazine-BODIPY 

 

(2).  Sodium borohydride (79 mg, 2.1 mmol) was added to a stirred solution of 4-

cyanobenzylaldehyde (compound 1, 250 mg, 1.9 mmol) in absolute EtOH (20 ml). The 

reaction stirred at room temperature for 5 hours and was then concentrated in vacuo using a 

rotary evaporator.  The residue was dissolved in DCM (100 ml). The organic layer was 

extracted three times with distilled water (3 x 100 ml). The combined organic extract was dried 

over Na2SO4 and concentrated in vacuo, yielding the respective 4-cyanobenzylalcohol 

(compound 2, 202.8 mg, 1.53 mmol, 80%).  Compound 2 was verified by 1H NMR.  This 

reaction was based on Wiles, et al.35 1H NMR (500 MHz, Chloroform-d) δ: 7.67 (d, J = 7.6 Hz, 

1H), 7.49 (d, J = 32.8 Hz, 1H), 4.80 (s, 1H). 
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(3).  To compound 2 in a microwave reaction tube under a stream of argon was added 5% 

NiI2 catalyst (58.7 mg, 0.188 mmol), MeCN (0.196 ml, 3.75 mmol) and NH2NH2 (0.589 ml, 

18.7 mmol). The vessel was sealed and allowed to stir at 60 °C for 24 hours.  It was then 

allowed to cool and the septum was removed. To the reaction mixture, NaNO2 (518 mg, 7.51 

mmol) in 20 ml of water was added, followed by a slow addition of 1 M HCl until gas evolution 

ceased and pH = 3. The aqueous phase was extracted three times with EtOAc (200 ml), dried 

over Na2SO4, and concentrated in vacuo using a rotary evaporator. The crude mixture was 

purified using silica flash column chromatography (EtOAc:hexanes, 1:1) to give compound 3 

(32 mg, 0.17 mmol, 43%). Compound 3 was verified by 1H NMR.  This reaction was based 

on Yang, et al.36 1H NMR (500 MHz, Chloroform-d) δ: 8.59 (s, 2H), 7.60 (s, 2H), 4.84 (s, 2H), 

3.10 (s, 2H). 

 

(4).  To a stirring solution of compound 3 (94 mg, 0.46 mmol) in dry DCM (21 ml) under a 

stream of argon at room temperature, Dess-Martin periodinane (DMP, 33 mg, 0.51 mmol) 

was added and allowed to stir for 3.5 hours. The reaction mixture, an orange slurry, was treated 

with saturated aqueous NaHCO3 (12.5 ml) and saturated aqueous Na2S2O3 (12.5 ml), stirring 

for 15 minutes at room temperature. The aqueous layer was extracted two times with DCM 

(2 x 50 ml). The combined organic layers were then washed with water and dried over Na2SO4 

and concentrated in vacuo with a rotary evaporator. The crude mixture was purified using silica 

flash column chromatography (100% EtOAc), yielding a red tetrazine-benzaldehyde, 

compound 4 (85 mg, 0.43 mmol, 91%). Compound 4 was verified by 1H NMR. This reaction 
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was based on the Dess-Martin reaction from Soenen, et al.37 1H NMR (500 MHz, 

Chloroform-d) δ: 10.17 (s, 1H), 8.80 (s, 2H), 8.12 (s, 2H), 3.15 (s, 3H). 

 

(5).  To a stirring solution of compound 4 (45 mg, 0.23 mmol) in dry DCM (6 ml) under a 

stream of argon at room temperature, 2,4-dimethylpyrrole (50 µl, 0.49 mmol) was added 

followed by 2 drops of diluted (~1:1) TFA. After 30 minutes, thin layer chromatography (TLC) 

showed the disappearance of compound 4. To the reaction mixture, DDQ (51 mg, 0.225 

mmol) dissolved in DCM (6 ml) was added, followed by DIPEA (460 µl) and BF3 �OEt2 (460 

µl), stirring for 1 hour. The aqueous layer was extracted three times with DCM (3 x 50 ml). 

The combined organic extracts were dried over MgSO4 and concentrated in vacuo using a rotary 

evaporator. The crude mixture was purified using silica flash column chromatography (100% 

toluene), yielding compound 5 (13.7 mg, 0.0327 mmol, 15%). Compound 5 was verified by 1H 

NMR and LCMS. This reaction was based on Carlson, et al.25 1H NMR (300 MHz, Methylene 

Chloride-d2) δ: 8.75 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 6.06 (d, J = 43.8 Hz, 1H), 

3.12 (s, 2H), 2.54 (s, 5H), 1.49 (s, 5H). 

Synthesis of α-NVOC-Lysine(BCN)-THG73TAG 

 

(7).  To a stirring solution of Na2CO3 dissolved in water (10 ml), N-ε-Boc-Lysine (6, 93 mg, 

0.38 mmol) dissolved in dioxane (10 ml) and NVOC-Cl (115 mg, 0.41 mmol) dissolved in 

dioxane (5 ml) was added, stirring for 3-4 hours. Dioxane was removed in vacuo using a rotary 
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evaporator. The reaction mixture was acidified with 0.2 N aqueous HCl to pH ~2. The 

organic layer was extracted three times with DCM (3 x 10 ml), combined, dried over Na2SO4, 

and concentrated in vacuo. The crude mixture was purified using silica flash column 

chromatography (one column volume of 100% EtOAc followed by one column volume of 

EtOAc plus 0.5% acetic acid), yielding compound 7 (153 mg, 0.32 mmol, 83%). Compound 7 

was verified by 1H NMR and LCMS (NES10B). 1H NMR (500 MHz, Chloroform-d) δ: 7.72 

(s, 1H), 7.02 (s, 1H), 5.79-5.68 (m, 1H), 5.61 (d, J = 15.5 Hz, 1H), 5.45 (s, 1H), 4.64 (s, 1H), 

4.39 (s, 1H), 3.97 (s, 6H), 3.14 (s, 2H), 1.46 (s, 9H). 

 

(8).  Compound 7 (153 mg, 0.32 mmol) was dissolved in ClCH2CN (1.5 ml) to which distilled 

dry TEA (216 µl, 1.58 mmol) was added and reacted under a stream of argon at room 

temperature for 24 hours. Excess TEA was removed in vacuo. The reaction mixture was 

purified using silica flash column chromatography (25% EtOAc, 75% DCM), yielding 

compound 8 (92 mg, 0.173 mmol, 56%). Compound 8 was verified by 1H NMR and LCMS 

(PES10B, m/z = 547, corresponding to compound 8 plus sodium ion, 524 + 23). 1H NMR 

(500 MHz, Chloroform-d) δ: 7.73 (s, 1H), 7.05 (s, 1H), 5.65 (d, J = 15.2 Hz, 1H), 5.44 (d, J = 

15.3 Hz, 1H), 4.85 (d, J = 15.7 Hz, 1H), 4.71 (d, J = 15.6 Hz, 1H), 3.99 (d, J = 32.1 Hz, 6H), 

3.14 (s, 3H), 1.44 (s, 12H). 

 

(9).  TFA (500 µl) was added to compound 8 dissolved in dry DCM (500 µl), stirring for 1 hr.  

Upon addition of TFA, reaction mixture turns green-blue in color. The reaction mixture is 

concentrated in vacuo and purified using silica flash column chromatography (10% MeOH in 

DCM), yielding compound 9 (9.1 mg, 0.0214 mmol, 26%). Compound 9 was verified by 1H 
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NMR and LCMS (PES10B). 1H NMR (300 MHz, Methanol-d4) δ: 7.71 (s, 1H), 7.16 (s, 1H), 

5.69-5.26 (m, 3H), 4.91 (s, 1H), 4.41-4.23 (m, 1H), 3.98 (s, 3H), 3.89 (s, 3H), 3.34 (s, 0H), 3.30 

(s, 0H), 2.93 (s, 1H), 2.04-1.89 (m, 1H), 1.84-1.66 (m, 1H), 1.61-1.45 (m, 1H), 1.26 (s, 1H). 

 

(11). BCN-OSu, compound 10 (Sigma Aldrich, 71.64 mg, 0.246 mmol) was dissolved in DMF 

(300 µl) and added drop-wise, not via cannula, with a syringe to a stirring solution of compound 

9 (241 mg, 0.24 mmol) dissolved in DIPEA (130 µl) and DMF (400 µl), then stirred under a 

stream of argon for 24 hours. The reaction mixture was diluted with Et2O (30 ml) and washed 

with water (3 x 30 ml). The organic layer was combined, dried over Na2SO4, and purified using 

silica flash column chromatography (gradient 50% - 70% of EtOAc in hexanes), yielding 

compound 11 (36 mg, 0.06 mmol, 24%). Compound 11 was verified by 2D COSY NMR (D-

chloroform) and LCMS (PES10B). 1H NMR (300 MHz, Chloroform-d) δ: 7.71 (s, 1H), 7.26 (s, 

1H), 7.02 (s, 1H), 5.70 (s, 1H), 5.64 (s, 0H), 5.59 (s, 1H), 5.47 (s, 1H), 5.42 (s, 0H), 4.87 (s, 0H), 

4.82 (s, 1H), 4.73 (s, 1H), 4.68 (s, 0H), 4.39 (s, 1H), 4.10 (s, 0H), 3.19 (s, 1H), 2.20 (s, 5H), 1.89 

(s, 1H), 1.81 (s, 0H), 1.63 (s, 1H), 1.54 (s, 2H), 1.30 (s, 1H), 0.91 (s, 1H). 
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(12). Compound 11 (15 mg, 0.025 mmol) and dCA (10 mg) were dissolved in dry DMF (1 

ml), stirring under a stream of argon for 24 hours. The presence of sample was confirmed using 

analytical HPLC. The reaction mixture was then purified using preparative HPLC (gradient of 

95% to 0% 25 mM NH4OAc, pH 4.5). Compound 12, α-NVOC-Lysine(BCN)-O-dCA, was 

verified by matrix assisted laser desorption ionization mass spectrometry (MALDI MS, 6-aza-2-

thiothymine matrix) 1179.3 [M+H]+. 

Compound 12, α-NVOC-Lysine(BCN)-O-dCA, was ligated to THG73TAG (74mer-tRNA) with 

T4 RNA ligase, yielding α-NVOC-Lysine(BCN)-THG73TAG as previously described (Pantoja 

ref. 38-40). The product is desalted using a CHROMA SPIN-30 DEPC-H2O colum (Clonetech). 

The concentration of the product was measured using the Nanodrop 2000 Spectrophotometer 

(Thermo Scientific) and verified using matrix assisted laser desorption ionization mass 

spectrometry (MALDI MS) 24,857.55 [M+H]+. The major peak indicated that α-NVOC-

Lysine(BCN)-THG73TAG was the major product. 

2.5.2  Turn-on Fluorescence Measurement 

Recordings were performed on 2 mL or 3 mL of 2 µM of Tz-Atto 488 and Tz-5-FAM 

dissolved in water in a 1 cm x 1 cm quartz cuvette using the steady-state fluorometer Fluorolog-

3 (Jobin Yvon Inc.). The emission spectra of pre-activated solution (before addition of BCN 

initiates the fluorogenic reaction) and post-activation were measured. A 300-fold excess of BCN 

and norbornene was added for a facile comparison of fluorescence turn-on magnitudes. 

Activation ratios were calculated from the peak emission intensity of the reacted product and 

the corresponding baseline intensity (pre-activated solution). 

2.5.3  Construct Preparation and mRNA Transcription 

The α, β, γ, and δ subunits of mouse muscle nAChR are in the pAMV vector. All the 

TAG constructs including α70, β-276, β-270, β-294, δ-285, δ-279, and δ-303 were prepared by 

QuikChange mutagenesis on the masked respective subunits in the pAMV vector. The mutation 

was verified by sequencing (Laragen).  The plasmid DNAs were linearized by NotI restriction 

digest. The mRNAs were prepared from linearized DNA, using a T7 mMessage mMachine kit 
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(Ambion), and purified with the RNeasy Mini kit (Qiagen). Concentration of mRNA was 

determined by absorption on the Nanodrop 2000 Spectrophotometer (Thermo Scientific).   

2.5.4  Oocyte Preparation and Injection 

Stage VI oocytes from Xenopus laeivis were isolated and incubated at 18 °C in ND96 

solution (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, 2.5 mM Na 

pyruvate, 50 µg/mL, 0.6 mM theophylline, pH 7.5). Prior to injection, α-NVOC-L-

Lysine(BCN)-THG73TAG was irradiated at 350 nm to cleave the NVOC protecting group, 

yielding the deprotected L-Lysine(BCN)-THG73TAG. L-Lysine(BCN)-THG73TAG was mixed 

with mRNA at a 1:1 volume mixture while maintained at 4 °C and then loaded for injection. 

Each oocyte was injected with 20 ng of L-Lysine(BCN)-THG73TAG and 15 ng of mRNA in 75 

nl.  For α70’TAG mRNA, α, β, γ, and δ were mixed at a ratio of 10:1:1:1.  For β’TAG mRNAs, 

α, β, γ, and δ were mixed at 2:5:1:1. For δ’TAG mRNAs, α, β, γ, and δ were mixed at 2:1:1:5. 

For wild-type (WT) naChR, α, β, γ, and δ were mixed at a ratio of 2:1:1:1 and 1 ng, 5 ng, or 10 

ng per 50 nl were injected per oocyte. Oocytes with TAG mRNAs were injected twice (at 0h 

and 24 h) with the same concentrations over 48 h of expression for imaging. For 

electrophysiology experiments, oocytes were only singly injected with a 48 h expression time. 

Oocytes with WT nAChR were injected once at 0h with a 24h or 48 h expression time. 

2.5.5  Small-molecule Fluorescent Dye Labeling  

Oocytes were labeled with tetrazine-conjugated dyes (Atto 488, Bodipy, Cy3 and Cy5) 

and α-bungarotoxin (αBtx) conjugated dyes (Alexa Fluor 488, 555, and 647), dissolved in ND96. 

They were incubated with 5 nM Tz-dyes and 40 nM αBtx-dyes for 4-8 h, and incubation was 

terminated by a series of washes before imaging (twice in ND96, then 10 minutes in 5 mg/mL 

bovine serum albumin solution, followed by two 20-minutes washes in ND96).   

2.5.6  Electrophysiology 

Currents from oocytes were recorded using a two-electrode voltage clamp on the 

OpusXpress 6000A (Axon Instruments). Recordings were performed after 24 h or 48 h after 
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initial injection. Currents were induced with 1 mM acetylcholine (ACh) for a maximum 

current response. Pipette microelectrodes were filled with 3 M KCl for resistances that ranged 

between 0.5–2 MΩ and at a holding potential of -60 mV. Calcium-free ND96 solution (96 mM 

NaCl, 2 mM KCl, 1 mM MgCl2, and 5 mM HEPES, pH 7.5) was continuously circulated for the 

oocytes. 

2.5.7  Microscopy 

The microscopes used belong to the Translational Imaging Center located at the 

University of Southern California (USC).  Images were processed using the Zen software (Zeiss) 

unless indicated otherwise. 

TIRF 

The imaging chamber with the glass coverslip (NA 1.5) was cleaned via sonication in 6 

M NaOH for 20 minutes and then stored in filtered Millipore water. Xenopus oocytes were 

prepared for single-molecule TIRF microscopy by removing the vitelline membrane and 

transferring to an imaging chamber with the animal pole oriented towards the cover slip. The 

oocyte was first incubated in hypertonic solution (220 mM sodium aspartate, 10 mM EDTA, 2 

mM MgCl2, and 10 mM HEPES, pH 7.4) for ~ 5 minutes, and then the vitelline membrane was 

removed with forceps under a dissecting microscope. Subsequently, the oocyte was washed with 

ND96 solution for a few seconds prior to transferring to an imaging chamber filled with ND96 

solution. Oocytes were incubated in the imaging chamber for ~ 10 minutes to maximize 

adherence. 

Transmitted bright-field illumination was used to confirm adherence and focus on the 

plasma membrane. The TIRF microscope for collecting images was the Zeiss ELYRA 

Superresolution PALM SIM microscope (Carl Zeiss Microscopy). A 63x oil TIRF objective with 

NA=1.40 (Plan-Apochromat) was used with immersion oil (NA=1.516).  Images were captured 

with an EM-CCD (Andor ixon 89) camera. Solid-state lasers with excitation sources at 488 nm, 

561 nm, and 642 nm were used at 30% or 50% power. The power of each laser is 100 mW. 

Images were acquired with an exposure time of 100 ms and a gain of 200. 
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3D Z-Stack 

A Zeiss LSM-780 inverted confocal microscope (Carl Zeiss Microscopy) was used to 

obtain 3D z-stack images. Xenopus oocytes were prepared in the same fashion as for TIRF 

imaging. Transmitted bright-field illumination was similarly used to confirm adherence and focus 

on the plasma membrane. A 32x water immersion objective (NA 0.85) with a 0.99 AU pinhole 

was used, collecting frames at 2.09 microns thick. An infrared laser with 488 nm excitation was 

used and two ranges of emission were collected (490-553 nm and 570-695 nm).  
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C h a p t e r  3  

EFFORTS TOWARD DEVELOPING A FLIM-FRET ASSAY FOR 
NACHRS USING TURN-ON FLUORESCENCE 

3.1  Abstract 

Interpreting FRET data has typically been labor-intensive and unreliable, especially for 

intensity-based FRET measurements.38 Measuring FRET based on lifetime is more robust. This 

work aims to develop a FLIM-FRET assay using our previously described (Chapter 2) 

fluorescent labeling strategy: the site-selective incorporation of a turn-on fUAA on nAChRs in 

vivo. We describe our strenuous attempts to measure the lifetime of our turn-on fUAA, Tz-

Bodipy, along with other dyes on the mouse muscle nAChR in Xenopus laevis oocytes using 

FLIM. For FRET, a robust strategy will eventually need to be developed for the incorporation 

of a second fluorophore. Progress was hampered by the inability to verify the source of the 

fluorescence signal due to the many limitations from combining our turn-on fUAA 

incorporation strategy with FLIM. Marked variability was observed in the phasor plots for 

different samples of the same conditions. Progress will continue to be hampered until these 

variations are understood and accounted for.  
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3.2  Introduction 

Fluorescence-based approaches have been widely employed to characterize the structure 

and function of proteins, including ion channels. They overcome the limitations associated with 

EM, X-ray, and electrophysiology, as they can probe dynamical movements of protein 

interactions and structural rearrangements. Some of the beginning fluorescence studies of ion 

channels involved a cysteine substitution for fluorescent dye labeling and then recording the 

dye’s emission simultaneously with ionic current to identify the functional state of the channel. 

However, the results from this method are an indirect representation of the protein’s 

conformational changes.39-40  

A more direct and informative fluorescence approach to probe protein structural 

rearrangements is based on FRET (Förster resonance energy transfer). FRET is a physical 

phenomenon that has been implemented at the ensemble level to study the Shaker potassium 

channel, revealing a conformational change – a twisting motion – associated with gating.41 

Ensemble FRET has been extended to single-molecules, which is advantageous when motions 

are not correlated between different ion channels in an ensemble.42 One significant proof-of-

principle experiment was the detection of single-pair FRET within a gramicidin A ion channel 

embedded in a lipid bilayer with simultaneous recording of the ionic currents.34 However, they 

reported that fluorescence and electrical measurements did not always correlate, which could 

have been due to protein aggregation near the lipid membrane edge and limited FRET signal 

compared to background.34 This study was challenging for a small protein like the gramicidin A 

channel (~ 1.9 kDa43). Executing such study to LGICs, such as nAChRs, which are much larger 

and more complex pentameric structures (290 kDA4), would be even more challenging. 

One of the major pitfalls of the FRET studies performed on ion channels thus far is the 

measurement of intensity of the FRET signal. The interpretability and reliability of intensity-

based FRET measurements is problematic for several reasons including: 1) donor or acceptor 

spectral bleed-through, 2) distinguishing between increase in FRET efficiency and increase in 

FRET population (i.e. concentration of FRET species), and 3) high noise signal in intensity 
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levels.38 Despite numerous negative control measurements, intensity is still an unreliable 

measurement of FRET efficiency. 

The measurement of lifetime of a fluorophore by fluorescence lifetime imaging 

microscopy (FLIM) is a more robust engagement of FRET efficiency. The output signal is 

independent of concentration, and thus alleviates the problem that concentration can falsely 

increase apparent FRET efficiency. Also, it requires only the measurement of the donor, thus 

avoiding spectral bleed-through problems.38 Although FLIM is unquestionably more rigorous in 

quantifying FRET efficiency than intensity-based approaches, widespread adoption of FLIM is 

hampered because the instrumentation is expensive to obtain and maintain.38, 44 

The Phasor Approach to FLIM 

In principal various conformational states of LGICs can be elucidated by measuring 

FRET efficiencies, which is an indicator of distance, using FLIM between many pairs of 

fluorescently-tagged residues on a receptor. Lifetime data acquired by frequency domain (FD) 

FLIM can be analyzed using the phasor approach. In the FD method, the excitation laser-source 

is modulated, and the emission signal is analyzed for changes in phase (phase shift) and 

amplitude (modulation) relative to the excitation source; the fluorescence lifetime is extracted 

from the phase shift and modulation.45  The phasor approach can reveal fluorescence lifetime 

data – and FRET efficiency – for each pixel in the image, and thus provide a statistically 

significant analysis on an ensemble at the single-molecule level. 

In the phasor approach, data at each pixel can be decomposed into simple phasor 

coordinates (g, s) on the plot.  Lifetime data are treated like phase vectors, or phasors. Data 

measured in FD – and time domain (TD) – can be decomposed into g and s coordinates in the 

phasor plot (Equation 3.1 and 3.2). Pixels that contain two components (i.e., two fluorophores 

with different lifetimes) can be resolved into their fractional contributions (Equations 3.3 and 

3.4). Since the phasors are treated like vectors, the multi-exponential component is the linear 

combination of the single components. The ratio of the linear combination determines the 

fraction of the components (fk). Pixels with three components will lie inside the triangle formed 

by all three phasors.   
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gi, j (ω) =mi, j cos(ϕi, j )
si, j (ω) =mi, j sin(ϕi, j )

 

Equations 3.1 and 3.2. ω is the laser repetition angular frequency (angular frequency of light modulation),  mi,j is the 
modulation, φi,j is the phase of the emission (mi,j and φi,j with respect to the excitation), and the indexes i and j identify 
a pixel of the image. 
 

gi, j (ω) =
fk

1+ (ωτ k )
2

k
∑

si, j (ω) =
fkωτ

2

1+ (ωτ k )
2

k
∑

 

Equations 3.3 and 3.4. fk is the intensity weighted fractional contribution of the component with lifetime τk.   
 
 

The phasor approach to calculating FRET efficiency is based on its classical definition 

(Equation 3.5). First, the phasor of the donor in the absence and independently in the presence 

of the acceptor is obtained. Then, all possible phasors that are quenched with different 

efficiencies are calculated, resulting in a curved trajectory. The amount of quenching (i.e. FRET 

efficiency) is determined by the position along the trajectory of the experimental phasor of a 

given pixel.46 

E =1− τ da
τ d

 

Equation 3.5. FRET efficiency E.  τda/τd is the ratio of the lifetime of the donor in the presence of an acceptor to 
that in the absence of an acceptor.47  
 
 

To study the various conformational states nAChR adopts, we aimed to measure FRET 

efficiency (i.e., distance) using FLIM between many pairs of residues on nAChR expressed in 

Xenopus oocytes in the presence and absence of agonists, allosteric modulators, and antagonists. 

We aimed to develop a FLIM-FRET assay using our previously described (Chapter 2) 

fluorescent labeling strategy – the site-selective incorporation of a turn-on fUAA on nAChRs in 

vivo. We describe our strenuous attempts to measure and understand the lifetime phasor plots of 

our turn-on fUAA, Tz-Bodipy, along with other dyes on the mouse muscle nAChR in Xenopus 

laevis oocytes using FLIM. We also describe our efforts to increase the signal-to-noise ratio by 

imaging membrane patches as opposed to whole cells.  
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3.3  Results and Discussion 

Creating a phasor ‘fingerprint’ map 

In order to calculate the FRET efficiency, the phasor plot of a donor only sample as well 

as of autofluorescence must first be mapped, essentially creating a ‘fingerprint’ map. We 

measured the lifetimes of all molecular and chemical species that we use to build our FLIM-

FRET assay, including autofluorescence of Xenopus oocytes, Tz-Bodipy, and various αBtx-dyes. 

In the phasor approach, these lifetimes are measured and transformed into g and s phasor 

coordinates.  

Autofluorescence near membrane is predominantly retinoic acid 

The lifetime decay of intracellular autofluorescence near the plasma membrane in the 

oocyte was measured. The phasor plot shows one major fluorescent species, likely to be retinoic 

acid (RA) when comparing its phasor plot to that of pure RA from previously published data48 

(Figure 3.1). RA, with an absorbance around 350 nm49, and its receptors have been identified in 

Xenopus oocytes for over a decade.50 Based on this, RA is likely the molecular species observed 

under TIRF and FLIM imaging. 

 
Figure 3.1. (a) Phasor plot of the molecular species in Xenopus oocytes. (b) Phasor plot of RA amongst other 
molecular species excited at 900 nm.48 
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Imaging whole cell oocyte with fluorescent beads 

To verify that we are measuring lifetimes at and near the cellular plasma membrane, we 

image a plain uninjected oocyte atop 200-nm (diameter) fluorescent beads that have an excitation 

and emission wavelength of 365 nm and 415 nm, respectively (Figure 3.2d). In the phasor 

approach to FLIM, we can relate the phasor plot to an image. We first measure the lifetime of 

the fluorescent beads alone, resulting in the phasor plot (Figure 3.2a). We then generate the 

phasor plot of the cell atop beads system (Figure 3.2b). The pixels in the FLIM image with 

lifetimes that are encompassed in the circle on the phasor plot are colored with the 

corresponding color. For example, the pixels corresponding to the phasor points in the green 

circle are highlighted green in the FLIM image. The resulting FLIM image clearly shows small 

round features corresponding to the fluorescent beads, as highlighted in green (Figure 3.2c).  

Towards shorter lifetimes (i.e., near g, s coordinates of 1, 0), the non-bead molecular 

species are highlighted, indicating that the region of the phasor plot near the red circle is the 

phasor of the cellular species. We believe that the cellular species is RA given the short lifetime 

of RA and by comparing the phasor plot in Figure 14. RA and the fluorescent beads are unlikely 

to exhibit FRET. Thus, the phasor plot should feature points that correspond to a linear 

combination of the two lifetimes, namely from pixels that have fluorescence from RA and beads. 
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Figure 3.2. (a) Phasor plot of 200 nm Microspheres (Life Technologies) fluorescent beads that have an 
excitation/emission wavelength of 365/415nm and were excited at 740 nm. Lifetime of the beads is measured to 
be 3.2 ns. (b) Phasor plot, (c) FLIM image, and (d) schematic of fluorescent beads and plain oocyte excited at 740 
nm. Green and red colors on the FLIM image correspond to the points within the green and red circles in the 
phasor plot.  
 
Membrane photodamage from 2-photon excitation 

The laser power had to be reduced to as low as 1% (6 mW) due to damage to the 

membrane from 2-photon excitation. A previous paper that published the ‘fingerprint’ map of 

intracellular autofluorescent species used 5 mW in laser power to excite live tissue.48 Above 2% 

(12 mW) in laser power, small bubbles formed on the plasma membrane at the site of excitation, 

indicative of photodamage, which was problematic for data collection. The bubbles created too 

much light scattering and oversaturated the detector. 

Most FLIM instrumentation is set up using 2-photon excitation, due to the ease of 

modulation for lifetime acquisition with a 2-photon laser. Very few FLIM microscopes are set 

up using a 1-photon laser. A one-photon laser system exists at UC Irvine in Enrico Gratton’s 

lab, although it is set up with a iCCD camera, which generally has poorer resolution than the 



 

 

45 
new state-of-the-art EMCCD cameras. We constantly are striking a balance between 

availability, accessibility, and resolution of our instrumentation, as well as other factors 

concerning our biological system such as photodamage and signal-to-noise ratios. For our 

biological system with nonsense suppression, expression of fluorescently labeled nAChRs is 

quite low, risking low signal-to-noise ratios compared to expression of FPs. Because there is not 

much that can be done to the biological expression system to increase protein expression by a 

substantial magnitude, increasing the laser power can help strengthen the signal. However, due 

to the oocyte’s whole-cell sensitivity towards photodamage in 2-photon excitation, we attempt 

to eliminate this issue by imaging plasma membrane patches. 

Membrane patch imaging 

Membrane patching adds an additional variable to our methodology. Because we are no 

longer working with a live whole cell, we will need to test that the ion channels are still similarly 

functional in vitro in the membrane patches. Experimentally, membrane patching adds time and 

variation. To prepare whole cells for imaging, the vitelline membrane, a clear membrane outside 

of the plasma membrane of Xenopus oocytes, needs to be manually removed; this process helps 

the oocyte stick to the imaging glass slide. The success rate of this process depends on the human 

preparer, and with experience, the success rate can be as high as 90%. However, the process of 

stripping the oocyte to a membrane patch has a success rate of less than 50% – even with a 

batch of healthy oocytes and on a good day with very careful hands. About ten times as many 

oocytes need to be prepped for imaging membrane patches than for imaging whole cells. In 

whole cell imaging, the visibly large cell acts as a guide to find the area of interest, but searching 

for the membrane patch, as it is largely transparent, becomes more time-consuming and requires 

a trained eye.  

Imaging buffer does not have a fluorescence lifetime signal 

Membrane patches are prepared in ND96 Ca2+-free buffer, which was imaged with 

FLIM and analyzed using the phasor approach. It does not have a fluorescence signal. The 

periodic nature of the signal seen in the phasor plot indicates detector noise signal (Figure 3.3).  
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Figure 3.3. Phasor plot of ND96 Ca2+-free buffer. Periodic signal indicates signal is due to detector noise. 
 
 
FLIM and TIRF imaging of oocyte membrane patch 

Imaging the membrane patch of uninjected oocytes using FLIM reveals a phasor 

footprint different to that of whole cell (Figure 3.4). We also check that membrane patching has 

not perturbed the fluorescence signal by imaging oocytes expressing wildtype mouse muscle 

nAChR labeled with α-Bungarotoxin Alexa Fluor 488 (αBtx-488). The TIRF images of the 

whole cell (Figure 3.5a) and the membrane patch (Figure 3.5b) show a reduction in background 

signal corresponding to intracellular autofluorescence. 

 
Figure 3.4. (a) Phasor plot and (b) FLIM image of a membrane patch of a plain, uninjected oocyte. A large spread 
of points in the phasor plot is due to low signal from the sample. The measured lifetime is 3.21 ns.  
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Figure 3.5. TIRF images of (a) whole cell and (b) membrane patch of the same oocyte expressing mouse muscle 
nAChR labeled with αBtx-488. 
 
 
Phasor plots of Tz-Bodipy, αBtx-488, and αBtx-555 in solution and in vivo 

After mapping the phasors of the biological specimen, namely autofluoresence, we have 

to map the phasors of the dyes in vivo. The phasors of the dyes in solution were measured to 

help interpret the dyes in vivo because dyes in vivo will be a linear combination of the dyes and 

cellular species, e.g. autofluorescence. The phasor lifetimes of αBtx-488 and activated Tz-Bodipy 

(i.e., Tz-Bodipy reacted with an excess of BCN-OH) in solution were measured. The lifetime 

from the phasor plot is interpreted as the center, which has the highest number of pixels in the 

FLIM image that correspond to that lifetime. The phasor plots of the dyes lie on the universal 

circle, indicating a single exponential, since there is only one fluorescent species (Figure 3.6). The 

measured lifetime of αBtx-488 has a single lifetime of 3.89 ns (Figure 3.6a), compare to 4.1 ns 

previously measured51. Similarly, the measured lifetime of activated Tz-Bodipy lies on the 

universal circle and is a single exponential of 3.02 ns (Figure 3.6b).  
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Figure 3.6. Phasor plots of (a) αBtx-488 in solution with a measured lifetime of 3.89 ns and (b) Tz-Bodipy with 
BCN-OH in solution with a measured lifetime of 3.02 ns.  
 
 

We attempted to measure the lifetime and phasor plot of Tz-Bodipy in vivo but acquiring 

easily interpretable signals was difficult. Much of the effort described in this chapter was driven 

towards decomposing the phasor plot and verifying that the phasor plot corresponds to Tz-

Bodipy. Theoretically, the phasor plot of Tz-Bodipy in vivo should be a linear combination of the 

dye in solution and autofluorescnece. We express mouse muscle nAChR labeled with Tz-Bodipy 

in Xenopus oocytes, prepare the membrane patches, and the image them. The resulting phasor 

map of the Tz-Bodipy in vivo sample does not lie on the universal circle, indicating multiple 

lifetime exponentials (Figure 3.7). 

Tz-Bodipy may be contributing a low signal in the in vivo sample because our nonsense 

suppression methodology tends to lower protein expression, and thus the number of fluorescent 

dyes, substantially. Therefore, we tested the sensitivity of the FLIM system by imaging 

membrane patches of oocytes expressing wildtype mouse muscle nAChR with αBtx-488 and 

αBtx-555 labeling – the signal should be orders of magnitude higher as wildtype mouse muscle 

nAChR expression is very high. First, to interpret the phasor plot of the sample in vivo, we 

measure the phasor lifetimes of the dyes in solution (Figure 3.8). We acquire the phasor lifetimes 

of αBtx-488 and αBtx-555 mixed together in solution at different ratios, which shows a perfect 

linear combination of the lifetime exponentials. The measured lifetime of αBtx-555 in solution 

is 1 ns, whereas published results indicate a 0.3 ns lifetime51. The phasor plots of membrane 



 

 

49 
patches of ooctyes expressing wild type nAChR labeled with αBtx-488 only and co-labeled 

with both αBtx-488 and αBtx-555 have similar phasor plots, suggesting that αBtx-488 

dominates the signal (Figure 3.9).  

There is substantial variability amongst in vivo samples under the same conditions. Two 

similarly prepared in vivo samples with Tz-Bodipy and αBtx-555 co-labeling have different 

phasor maps (Figure 3.10 and 3.11). The signal near (g, s) of (1, 0) in Figure 3.10 and 3.11 is 

fluorescence from retinoic acid due to insufficient washing of the membrane patches. The 

phasor plot of different membrane patches and on different oocyte batches shows variation. 

There are two distinct clusters of phasor liftimes for the same condition but different membrane 

patches (Figure 3.10). Further validation is necessary to verify the phasor footprint is that of Tz-

Bodipy. 

When comparing the phasor maps of αBtx-555 in solution to in vivo, either αBtx-555 

has a wildly shifted lifetime in vivo or αBtx-555 fluorescence is not being captured. We investigate 

this by measuring the emission intensity over a spectrum of wavelengths for the two dyes. We 

observe that the emission intensity of αBtx-488 is about twenty times higher than that of αBtx-

555 at a 2pe wavelength of 900 nm, considering that the laser power exciting αBtx-555 is twice 

that of αBtx-488 (Figure 3.12). This discrepancy in emission intensity may explain why αBtx-

555 is not observed in vivo in the presence of αBtx-488 but not why it is not observed in vivo 

alone.  
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Figure 3.7. (a) Phasor plot of a membrane patch of an oocyte expressing α70-nAChR labeled with Tz-Bodipy. 
Measured lifetime is 3.19 ns (for red circle). 
 
 

 
Figure 3.8. Phasor plots of αBtx-488, αBtx-555, and a mixture of the two dyes at different ratios in solution 
superimposed onto one plot. The phasor of αBtx-488 (lifetime of 3.93 ns) and of αBtx-555 (lifetime of 1.03 ns) lie 
on the universal circle, suggesting a single exponential lifetime. The lifetimes of the mixtures are a linear combination 
of the two dyes, and the location of the phasor is shifted towards the higher concentration dye. 
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Figure 3.9. Individual phasor plots for each FLIM image in (b) are superimposed into one phasor plot (a). Each 
FLIM image and phasor plots are of different membrane patches of an oocyte: not transfected (uninjected), 
expressing wildtype (w/t) mouse muscle nAChR labeled with αBtx-488 only or co-labeled with αBtx-555. 
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Figure 3.10. Individual phasor plots for each FLIM image in (b) are superimposed into one phasor plot (a). Each 
FLIM image and phasor plots are of different membrane patches of an oocyte: not transfected (uninjected), 
expressing mouse muscle mutant α70-nAChR with Tz-Bodipy only or co-labeled with αBtx-555, or wildtype (w/t) 
mouse muscle nAChR labeled with αBtx-555.  
 
 

 
Figure 3.11. (a) Phasor plot and (b) FLIM image of a membrane patch of an oocyte expressing α70-nAChR labeled 
with Tz-Bodipy and αBtx-555. Green and red circles indicate location on the phasor plot that Tz-Bodipy and 
autofluorescence have been observed in other samples. The signal in the yellow circle is likely retinoic acid (RA). 
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Figure 3.12. Fluorescence emission intensity spectra of (a) αBtx-488 at 15% laser power, (b) αBtx-555 at 30% laser 
power, and (c) a 1:1 mixture of αBtx-488 and αBtx-555.  
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3.4  Conclusions 

Overall, the fluorescence labeling technique via unnatural mutagenesis and tetrazine 

click chemistry with Bodipy poses severe limitations with low signal-to-noise ratios due to 2-

photon excitation and FLIM imaging. The phasor approach to FLIM is a powerful technique, 

as it allows a lifetime, i.e. phasor plot, to be mapped to an image. However, the assay we 

attempted to build does not fully utilize the power of this technique. Our expression system, i.e. 

oocytes, and the membrane patches covers the whole image field relatively uniformly. Although 

FLIM is a theoretically more robust technique for FRET, there are many other issues that arise. 

Whole-cell oocyte fluorescence lifetime imaging with 2-photon excitation results in either 

membrane photodamage or intracellular autofluorescence signal that overpowers target 

fluorescence signals, e.g. Tz-Bodipy. Imaging membrane patches has reduced autofluorescence 

signal, as seen in both FLIM measurements and TIRF images. However, variability between 

samples of the same conditions is large, and the signal from Tz-Bodipy is weak. If these 

variations are accounted for and signal-to-noise ratios can be improved, a robust strategy for the 

incorporation of a second fluorophore will eventually need to be developed to perform FRET 

studies. 
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3.5  Experimental Methods 

Oocyte preparation, dye preparation, and TIRF imaging is described in Chapter 2 Experimental Methods. 

3.5.1  Membrane Patching 

The vitelline membrane of the oocyte is first manually removed as described in Chapter 

2 and then immediately placed on glass Petri dishes filled with ND 96 Ca2+-free buffer. Oocytes 

are placed side-by-side, essentially maximally packing the glass slide with oocytes. The de-

vitellinized oocytes are left on the glass slides for at least 20 minutes. The oocytes are then 

forcefully removed using a glass Pasteur pipette, leaving a patch of membrane on the glass slide; 

the success rate is ~50%. If any of the intracellular yolk is leaked into the buffer, this will reduce 

the success of patching to near 0%. The membrane patches are then washed at least 10 times by 

exchanging the buffer; only a maximum of 90% of the buffer is removed at any time because if 

the membrane patch is exposed to air, the patch disappears. The membrane patches are then 

imaged immediately.  

3.5.2  FLIM Imaging 

A Zeiss LSM-780 inverted confocal microscope (Carl Zeiss Microscopy) with 2-photon 

excitation (Chameleon femtosecond Ti:Sa laser) was used to acquire fluorescence lifetime data. 

A LD C-Apochromat 63x/1.15 W Korr M27 objective was used. Data were acquired using the 

FLIM Box (ISS) with a sampling rate of 300 MHz, pixel dwell time of 12.61 microseconds, and 

scan time of 1.94 seconds. All FLIM images are 256 by 256 pixels with a pixel size of 0.53 µm, 

resulting in an image size of 134.4 by 134.4 µm. The spectral emission filters ranged from 467 

to 499 nm and 524 to 550 nm. A dichroic filter of 538 nm was used. FLIM data for validating 

the phasor approach calculations were calibrated using coumarin 6 (Sigma-Aldrich, dissolved in 

100% ethanol) with a lifetime of 2.55 ns. Data were analyzed using the GLOBALS for Images 

software (Laboratory for Fluorescence Dynamics, UCI, Irvine, CA) and Vista Vision. Samples 

were excited at a 2-photon wavelength of 900 nm unless noted otherwise.  
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C h a p t e r  4  

EFFORTS TOWARD DEVELOPING A FLIM-FRET ASSAY FOR 
LGICS IN COS-7 CELLS 

4.1  Abstract 

The phasor approach to FLIM is most powerful when applied to a system that takes 

advantage of lifetime differences that can be mapped to physical attributes in a FLIM image. We 

made initial attempts in applying this technique towards building a FLIM-FRET assay to study 

LGICs expressed in mammalian cells. This chapter describes efforts to image fluorescent protein 

fused to the 5HT3-A/B serotonin receptor expressed in COS-7 monkey kidney cells using 

confocal microscopy and measured lifetimes using FLIM and the phasor approach. We made 

preliminary attempts to calculate the FRET efficiencies of 5HT3-A(CYP)/B(YFP) at the plasma 

membrane by applying a masking of the phasor signal, but results do not match published 

results. Continued investigation is needed to validate our approach. 
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4.2  Introduction 

Previously, the stoichiometry of the 5HT3-A/B receptor was studied using fluorescence 

recovery after photobleaching (FRAP), an intensity-based FRET approach, in HEK283T 

mammalian cells, revealing a 5HT3-A3B2 stoichiometry. This study noted a difference in FRET 

efficiencies between measuring fluorescence signal from whole cells and membrane sheets. 

Fluorescence signal from receptors in plasma membrane is usually overcome by fluorescence 

from receptors in the endoplasmic reticulum (ER) in whole cell imaging. The ER network 

extends throughout the cytosol in a netlike labyrinth of branching tubules and flattened sacs, 

and its membrane is where all transmembrane proteins are produced.52  

In this chapter, we describe our efforts to investigate whole cell imaging of COS-7 cells 

for the development of a FLIM-FRET assay for the 5HT3-A/B receptor. The COS-7 expression 

system could be advantageous for whole cell imaging. We hypothesize that the ER network, 

although may extend throughout the cytosol, may not extend as prominently into the outer 

regions of the cell due to its relatively flat morphology. To test this new expression system, we 

first attempted to reproduce the FRET results of the prior study of 5HT3-A/B stoichiometry20 

using the phasor approach to FLIM imaging and a COS-7 mammalian cell expression system. 

We imaged COS-7 cells expressing 5HT3-A/B receptors fused to CFP and YFP using confocal 

microscopy and measured lifetimes using FLIM. Several imaging and post-processing methods 

to capture fluorescence signal from the plasma membrane are also discussed. Successful 

implementation of this technique would allow us to ask questions surrounding protein 

stoichiometry, trafficking, protein-protein interactions, and other biological processes in the 

context of cellular compartmentalization. 
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4.3  Results and Discussion  

ER Network in COS-7 Cells 

First, we studied how the ER is distributed in COS-7 cells with hopes of finding that the 

distribution of ER across the cell is less prominent in the outer regions. Imaging COS-7 cells 

transfected with 5HT3-A(YFP)-B using a confocal microscope reveals its morphology as well as 

an ER network (Figure 4.1a). The ER has a netlike organization (Figure 4.1b)52. The ER appear 

to not extend to the outermost region of the cells (circled in red, Figure 4.1a).  

 
Figure 4.1. (a) Confocal image of two COS-7 cells undergoing cell division during cytokinesis. COS-7 cells were 
transfected with 5HT3-A(YFP)-B. Scale bar is 20 microns. Circled in red appears to be one region of the cell that 
ER does not extend to. (b) Part of the ER network in a cultured mammalian cell, stained with an antibody that binds 
to a protein retained in the ER.52 
 

 
To further probe the ER, we imaged COS-7 cells transfected with 5HT3-A(YFP)-B as 

well as the mPlum fluorescent protein targeted to the Golgi and the mCherry targeted to the ER 

(Figure 4.2). It was difficult to distinguish ER, Golgi, and plasma membrane from these 

transfection conditions. Testing different transfection amounts of DNA could help find better 

labeling conditions of these organelles. However, labeling cells with a chemical small-molecule 

dye was a more straightforward approach. 
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Figure 4.2. Confocal images of COS-7 cells transfected with 5HT3-A(YFP)-B, Golgi-targeted mPlum, and ER-
targeted mCherry. Each column represents a different emission channel for that particular fluorescent protein, or 
all of them merged. Scale bar is ten microns. 
 
 

Plasma membrane and ER of COS-7 cells were successfully imaged using chemical dyes 

on a confocal microscope. ER was the main target because of its supposed large reach in the 

whole cell, as compared to the Golgi. A Golgi-targeted chemical dye was not used, as it was not 

easily accessible. COS-7 cells transfected with 5HT3-A(YFP)/B were co-labeled with ER-

TrackerTM Red (BODIPY TR Glibenclamide) to stain the ER and CellMask Deep Red to stain 

the plasma membrane. These dyes were selected to have minimal overlap in their emission 

spectra with each other and YFP (Figure 4.3). The image of these COS-7 cells clearly shows that 

a high density of the fluorescence from YFP is in the ER (Figure 4.4). That is, most of the 5HT3-

A(YFP)/B protein is trapped in the ER and not trafficked to the plasma membrane.  
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Figure 4.3. Excitation (dotted line) and emission (solid line) spectra of CellMask Deep Red, BODIPY TR, and YFP 
generated from ThermoFisher Scientific website.  
 

 
Figure 4.4. Confocal images of COS-7 cells transfected with 5HT3-A(YFP)-B stained with ER-TrackerTM Red and 
CellMask Deep Red. Each column represents a different emission channel for that particular fluorescent protein. 
Yellow arrow points to the perimeter of the cell membrane. Scale bar is ten microns. 
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Mapping the phasors of different regions of the cell in the x-y plane 

To understand how lifetime of our 5HT3-fluorescent protein fusions may vary within a 

cell, we measure the lifetime phasors for different regions of the cell using FLIM and analyzing 

using the phasor approach. We zoom in on the outer region primarily for plasma membrane, 

and also select inner regions corresponding to the nucleus, ER, and Golgi. The phasor 

coordinates for each region do not show any marked trends within the cell expressing 5HT3-

A(CFP)/B(YFP) and across two different cells (Figure 4.5). We hope to see reproducibility of 

the phasor plots for each region, but this approach of zooming into regions may not be most 

suitable. Post-acquisition “masking” of the signal from whole cell imaging to filter the signal to 

the outer region, i.e. possibly plasma membrane, is an attractive alternative.  

 
Figure 4.5. Confocal image (left) and phasor plot (right) of COS-7 cells transfected with 5HT3-A(CFP)/B(YFP). 
Phasor coordinates are not shown. Gray circle in the phasor plot indicates phasor from imaging the whole cell. The 
colors in the phasor plot correspond to imaging the region of interest as indicated in the confocal image. Scale bar 
is ten microns. 
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The periphery of the COS-7 cells appears to have a longer lifetime than the inner 

regions surrounding the nucleus (Figure 4.6). The shortened lifetime in the inner regions, 

corresponding to the ER and/or Golgi, may be due to intermolecular homoFRET from 

interactions of CFPs across neighboring receptors. We hypothesize that the lifetime (coordinates 

highlighted in the red circle) of the outer region most closely represents lifetime of 5HT3-

A(CFP)/B on the plasma membrane. 

 
Figure 4.6. FLIM image and phasor plot of COS-7 cells transfected with 5HT3-A(CFP)/B. Points encircled in the 
phasor plot are highlighted by that color in the FLIM image. 
 
 
Mapping the phasors of the whole cell in different z-planes 

The morphology of COS-7 cells is similar to a fried sunny-side egg. We tested if lifetimes 

vary in the z-axial direction by imaging in the x-y plane as before but changing the focus, 

essentially imaging at different z cross-sections. The phasor plots of COS-7 cells expressing 
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5HT3-A(CFP)/B(YFP) show little variability across different z cross-sections, but variability 

across different cells (Figure 4.7). The signal is dominated by fluorescence from the ER and/or 

Golgi. We then apply a post-acquisition mask of these measurements, removing the signal 

associated with the center of the cell (Figure 4.8). The resulting phasor lifetimes are on average 

shorter than that of whole cells without masking (Table 4.1). The important questions that 

remain are: 1) how significant is this lifetime difference, and 2) is the lifetime from masking a 

true representation of fluorescence signal from plasma membrane? These questions are difficult 

to answer.  

 Lifetime (ns) N 
Whole cell 2.16 ± 0.16 4 
Masked cell 2.24 ± 0.17 4 

Table 4.1. Fluorescence data, 5HT3-A(CFP)/B(YFP). All values are reported as mean ± standard error of mean. 
 
 

 
Figure 4.7. Phasor plots of COS-7 cells transfected with 5HT3-A(CFP)/B(YFP). Each column represents a different 
cross-section in the z-axial direction. 
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Figure 4.8. Phasor plots and FLIM image with masking of COS-7 cells transfected with 5HT3-A(CFP)/B(YFP). 
Each column represents a different cross-section in the z-axial direction. 
 
 
Calculating FRET efficiency 

We moved forward to making preliminary attempts to calculate FRET efficiencies 

despite still needing to verify our signals. The requirements for calculating FRET efficiency in 

the phasor approach are the phasors of the donor only, donor with acceptor (D/A), and cellular 

autofluorescence (AF). The autofluorescence phasor is taken from imaging untransfected COS-

7 cells, and the donor phasor is taken from the masked signal of 5HT3-A(CFP)/B; these phasors 

are used as a constant input into the FRET calculator in the software. The phasor that we 

measure across various cells is that of D/A, 5HT3-A(CFP)/B(YFP). Figure 4.9 shows a 

schematic for the generation of the FRET trajectory and the resulting FRET efficiency (E) 

calculated to be 42.2% for that one particular cell expressing 5HT3-A(CFP)/B(YFP); this is the 

same data as in Cell 1 of Figure 10. FRET efficiencies were calculated for three other cells, 

averaging 36.6% with a standard error mean (SEM) of 1.1% (Figure 4.10).  

The previous study studying 5HT3-AB stoichiometry, on which this study is built from, 

had a FRET efficiency of 26.1 ± 0.7% for the same protein constructs expressed in HEK283T 
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cells for membrane sheets and 15.7 ± 0.5% for whole cells20 (Table 4.2). Our FRET result is 

at least 1.4 times greater than the published results. Continued investigation is needed to 

determine the best way to validate our FLIM-FRET approach.  

 
 Lifetime (ns) FRET efficiency (%) N 
5HT3-A(CFP)/B 2.32 ± 0.18  4 
5HT3-A(CFP)/B(YFP) 2.24 ± 0.17 36.58 ± 2.14% 4 

Table 4.2. Fluorescence data, masked cell. All values are reported as mean ± standard error of mean. 
 
 

 
Figure 4.9. Phasor plots of 5HT3-A(CFP)/B (donor only, D) and 5HT3-A(CFP)/B(YFP) (donor CFP and acceptor 
YFP, D/A). Autofluorescence (AF) phasor is highlighted in the D/A phasor plot. Measured lifetime of CFP in 
COS-7 cells is 2.67 ns, compared to lifetimes of 2.953 and 353 ns in published studies. Most right plot shows the 
FRET trajectory, as calculated using the phasor approach. 
 
 

 
Figure 4.10. FRET trajectories and efficiencies (E) for four COS-7 cells expressing 5HT3-A(CFP)/B(YFP). 
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4.4  Conclusions   

Efforts towards building a FLIM-FRET assay to study 5HT3-A/B receptors and 

reproduce published FRET results have been made. Nonetheless, great strides are still needed 

to determine the best method to deconstruct plasma membrane signal from the rest of the cell. 

For future efforts, we will need to investigate potential intramolecular homoFRET of CFP 

within a single receptor, as there are three 5HT3-A subunits (i.e., three CFPs) in 5HT3-

A(CFP)/B(YFP). We can address the homoFRET issue by biasing transfection ratios so that 

there is one CFP per 5HT3-A/B receptor. Additionally, we will need to validate that post-

acquisition masking of whole cell signal represents receptor signal on the plasma membrane, 

which can be addressed by performing membrane stripping of COS-7 cells and comparing the 

phasor results.  
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4.5  Experimental Methods 

FLIM imaging is described in Chapter 3 Experimental Methods. 

4.5.1  COS-7 Preparation and Transfection 

COS-7 cells were cultured in Dulbecco’s modified Eagle’s medium/nutrient mix 

(DMEM) F12 (1:1) with 10% fetal bovine serum and gentamycin on 100 mm culture plates at 

37°C and 5% CO2 in a humidified atmosphere. Cells for imaging at 60–80% confluency were 

transfected on 4-well slide dishes pre-coated with poly-d-lysine (MatTek) with 100 ng of plasmid 

DNA using Qiagen Effectene. cDNA constructs of monomeric-enhanced CFP and YFP 

introduced in frame into the M3-M4 loops of the human 5HT3-A and 5HT3-B subunits were 

prepared by Tim Miles. 5HT3-A and 5HT3-B subunits were all mixed at a 1:1 ratio for a 5HT3-

A3B2 stoichiometry20. Cells were imaged one day after transfection. 

4.5.2  COS-7 Cell Staining 

COS-7 cells transfected 5HT3-A/B constructs were stained by incubating with ER-

TrackerTM Red and CellMask Deep Red (ThermoFisher Scientific) with a final concentration of 

500 ng/mL for 5 minutes, washed twice with PBS, and then placed in phenol red-free DMEM 

solution. Cells were imaged immediately after washing. 100 µg of ER-TrackerTM Red and 

CellMask Deep Red were dissolved in 110 µL of DMSO. 

4.5.3  Confocal Imaging 

Live cells were imaged at room temperature on a Zeiss LSM710 confocal laser scanning 

microscope equipped with a Plan-Apochromat 63x, 1.4 oil DIC M27 or alpha Plan-Apochromat 

100x, 1.46 oil DIC M27 objective lens. YFP, ER-TrackerTM Red, and CellMask Deep Red 

fluorescence signals were acquired by 514, 561, and 633 nm excitation, respectively, and the 

emission spectra were collected for the ranges 517–613, 579–644, and 661–740 nm, respectively. 

The pinhole sizes ranged from 49 to 92 microns.  
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C h a p t e r  5  

ACUTE EFFECTS OF MENTHOL STEREOISOMERS ON LOW-
AFFINITY AND HIGH-AFFINITY α4β2 NACHRS 

5.1  Abstract 

Previously, Henderson, et al. have found that menthol alone enhances the upregulation 

of nAChRs in the midbrain, favors the expression of the low-affinity subtype stoichiometry of 

the α4β2 nAChR, reduces the firing frequency in DA neurons, and eliminates nicotine reward-

related behavior. In that study, a racemate of menthol, the (–) and (+) stereoisomers, was used. 

The present work parsed the effects of the stereoisomers, finding that a the (–) stereoisomer is 

the active form while the (+) stereoisomer led to null effects – in chronic studies. Interestingly 

in acute studies, however, the two menthol stereoisomers do not show differing inhibitory 

effects on the α4β2 nAChR nor do they show a favorability towards either subtype 

stoichiometry (i.e., (α4)3(β2)2 (low-affinity) and (α4)2(β2)3 (high-affinity)). The effective 

concentration of menthol on α4β2 nAChRs is also several orders of magnitude larger in acute 

studies (33 µM (present work) and 111 µM (Hans, 2012)) than in chronic studies (500 nM).  
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5.2  Introduction 

Smoking is one of the leading causes of death in the United States.54 Since the targeted 

marketing and promotion of menthol-flavored cigarettes that started around the 1930s, over 

80% of all menthol smokers are African American, and menthol cigarettes constitute about 27% 

of the total US cigarette market. It was also recently exposed that all cigarettes contain some 

amount of menthol despite not being marketed as such. It is the last sole remaining flavorant 

that is allowed to be added to cigarettes.55 This demographic data raises controversy for menthol 

cigarettes because studies have shown that mentholated cigarette smokers have a lower cessation 

(quit) rate than “non-mentholated” cigarette smokers. Could this observation be a product of 

the menthol users themselves, or is something happening at a physiological and biochemical 

level making them more addicted? Extensive studies have pointed to a biochemical effect.  

Menthol is a monocyclic terpene alcohol used in a variety of products for its minty fresh 

effect. The topical application of menthol to the skin or mucosal membranes makes it an 

attractive additive to many cosmetic products, oral health care products (e.g. cough drops and 

toothpaste), and tobacco cigarettes. Although menthol has been used for medicinal purposes 

for thousands of years and is still currently well-received for oral and cosmetic products, its use 

as a flavor additive in cigarettes remains controversial. 

nAChRs and Smoking Addiction 

Addiction to smoking due to nicotine is not uncommon knowledge. Biologically, 

nicotine activates nAChRs on dopaminergic neurons in the brain’s mesolimbic reward system 

and in turn increases dopamine levels. Nicotine also interacts with nAChRs on excitatory 

glutamatergic and inhibitory gamma aminobutyric acid (GABAergic) neurons in the ventral 

tegmental area (VTA) of the brain, which either stimulate or inhibit dopaminergic neurons. The 

nicotinic receptor exists in 12 isoforms (variants). Based on extensive preclinical studies, the β2-

, α4-, α6-, and α7-containing isoforms appear to promote the addictive, reinforcing effects of 

nicotine.56 
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α4β2 nAChRs and Smoking Addiction 

The α4β2 receptor is the most abundant nAChR in the brain and is directly involved in 

tobacco addiction. Nicotine plays a dual role with α4β2 nAChRs in its addiction: upregulation 

and desensitization. The nicotine-induced upregulation of α4β2 receptors has been indicated as 

the crucial mechanism in nicotine addiction. α4β2 nAChRs are also found in most brain regions 

with high-affinity nicotine binding sites. α4β2 nAChRs can be formed in two stoichiometries: 

(α4)2(β2)3 that has high-affinity for nicotine and (α4)3(β2)2 that has low-affinity. Receptor 

desensitization due to chronic exposure to agonist (e.g. nicotine) leads to upregulation. Smokers 

inhale enough nicotine in cigarettes to cause α4β2 desensitization and upregulation in their 

brains.57 

Menthol and Smoking Addiction 

Menthol may cause smokers to have elevated nicotine concentrations in their plasma by 

alleviating airway irritation.58-59 It is also possible that menthol alters the metabolism of nicotine60, 

leading to increased systemic nicotine exposure, and may increase the nicotine concentration in 

blood by ~20%58, 61. Altogether, these observations are still insufficient to account for menthol’s 

role in upregulation of β2-containing nAChRs previously observed62, which is important as 

upregulation is ultimately the central mechanism to smoking addiction. However, a recent 2016 

finding by Henderson, et al. has revealed that menthol alone also contributes on a biochemical 

level to smoking addiction. They found that menthol, by itself, enhances the upregulation of 

nAChRs in the midbrain, favors the expression of the low-affinity stoichiometry of the α4β2 

receptor (α4)3(β2)2, reduces the firing frequency in dopaminergic neurons, and eliminates 

nicotine reward-related behavior.  

In the Henderson, et al. 2016 study, a racemate of menthol was used, that is, a 50:50 

mixture of the (–)- and (+)- enantiomers (Figure 5.1). Both the natural (–)-menthol and synthetic 

(±)-menthol, which is racemic and has different taste characteristics from the natural (–)-

menthol, have been found in tobacco.63 In new studies with colleague Brandon Henderson, we 

found that only the (–)-menthol contributes to the effects seen in chronic studies, whereas (+)-
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menthol led to null effects. Thus, we investigated the biophysical characteristics of (–)-

menthol versus (+)-menthol on the α4β2 receptor.  

 

 
Figure 5.1. Chemical structure of (–)-menthol and (+)-menthol. 
  



 

 

72 
5.3  Results and Discussion 

Hans, et al. has shown that menthol is a negative allosteric modulator. However, in this 

study, only the the (–)-enantiomer of menthol was studied. We examined the effect of (–)-

menthol and (+)-menthol for both the the high-affinity (α4)2(β2)3 and the low-affinity (α4)3(β2)2 

receptor in Xenopus laevis oocytes. 

We first performed competition binding assays to investigate the negative allostery of 

menthol. When either (–)-menthol or (+)-menthol (50 µM) was co-applied with ACh, we 

observed an approximately 40% reduction in ACh-induced current amplitude – for both 

stoichiometries. ACh and menthol co-applications did not incur a marked change in the EC50 

concentrations as compared to ACh-only induced activation (Figure 5.2 and Table 5.1). The 

maximum size of ACh-induced current ranged up to 1.05 µA and 13.6 µA with EC50 values of 

0.61 ± 1.03 µM (n = 15) and 99.8 ± 1.0 µM (n = 19) for (α4)2(β2)3 and (α4)3(β2)2, respectively 

(Table 5.1). This reinforces the finding in Hans, et al. that (–)-menthol is a non-competitive 

binder that inhibits α4β2 receptor function and also further reveals that (+)-menthol non-

competitively inhibits receptor function in a similar manner.  

We further dissected the inhibitory effect of menthol into each stoichiometry of α4β2, 

namely the high-affinity (α4)2(β2)3 and the low-affinity (α4)3(β2)2. Menthol, both stereoisomers, 

had very similar dose-response curves and IC50 concentrations for ACh-induced activation for 

both (α4)2(β2)3 and (α4)3(β2)2 (Figure 5.3 and Table 5.2). Both IC50 experiments and the 

competition binding assays indicate that menthol does act directly on the α4β2 nAChR, and 

acute studies in Xenopus oocytes suggest that the two stereoisomers of menthol used in cigarettes, 

(–)-menthol and (+)-menthol, do not show favorability nor inhibitory differences on the 

receptor.  

Findings in chronic studies by colleague Brandon Henderson showed stereoisomer 

effects on the receptor as well as menthol driving favorability towards the low-affinity receptor. 

These findings in conjunction with our acute studies suggest the possibility of multiple menthol 

binding sites. It is also possible that menthol acts on a secondary target that mediates the effects 
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as seen in the chronic studies. We sought to identify the binding sites for menthol on the α4β2 

nAChR next, as described in the following chapter. 

 

   
Figure 5.2. Concentration-response relationships of acetylcholine and of (–)-menthol and (+)-menthol in 
competition binding assays for (α4)2(β2)3 and (α4)3(β2)2. In the co-applications with ACh, 50 µM of menthol used. 
The maximum response from acetylcholine potentiation in the presence of either menthol stereoisomer is ~60% 
of the maximum response without menthol. 
 
 

Receptor  nH EC50 (µM) n Imax (µA) 

 (α4)2(β2)3 

ACh Only 1.27 ± 0.05 0.61 ± 1.03 15 0.04 – 1.05 

with (–)-menthol 1.38 ± 0.08 0.66 ± 1.05 12 0.05 – 0.82 

with (+)-menthol 1.51 ± 0.10 0.64 ± 1.05 15 0.03 – 0.85 

(α4)3(β2)2 

ACh Only 1.74 ± 0.07 99.8 ± 1.0 19 0.2 – 13.6 

with (–)-menthol 1.58 ± 0.04 120.8 ± 1.0 18 0.1 – 9.9 

with (+)-menthol 1.56 ± 0.04 126.4 ± 1.0 19 0.1 – 9.3  
Table 5.1. Competition binding assays of menthol with acetylcholine potentiation of (α4)2(β2)3 and (α4)3(β2)2 
nAChRs. 
 
 

    
Figure 5.3. Menthol-IC50 curves. Concentration-response relationships of menthol for (α4)2(β2)3 with 2 µM 
acetylcholine and for (α4)3(β2)2 with 100 µM acetylcholine. 
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Receptor  nH IC50 (µM) n Imax (µA) 

(α4)2(β2)3 
(–)-menthol -0.71 ± 0.02 44.9 ± 1.04 10 0.08 – 1.34 

(+)-menthol -0.90 ± 0.03 48.3 ± 1.04 10 0.12 – 0.97 

(α4)3(β2)2 
(–)-menthol -0.81 ± 0.03 33.1 ± 1.06 10 0.09 – 1.30 

(+)-menthol -0.85 ± 0.03 45.5 ± 1.05 10 0.13 – 1.37 
Table 5.2. Concentration-response relationships of menthol for (α4)2(β2)3 with 2 µM acetylcholine and for (α4)3(β2)2 
with 100 µM acetylcholine. 
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5.4  Methods 

5.4.1  Molecular Biology 

The α4 and β2 subunits of rat nAChR are in the pGEM vector. The plasmid DNAs 

were linearized by NotI restriction digest. The mRNAs were prepared from linearized DNA, 

using a T7 mMessage mMachine kit (Ambion), and were purified with the RNeasy Mini kit 

(Qiagen). Concentration of mRNA was determined by absorption on the Nanodrop 2000 

Spectrophotometer (Thermo Scientific).   

5.4.2  Oocyte Preparation and Injection 

Xenopus laevis stage V and VI oocytes were harvested and injected with mRNAs as 

previously described.1 The α4 and β2 mRNAs were mixed in a 1:10 ratio by mass to obtain the 

(α4)2(β2)3 or in a 10:1 ratio to obtain the (α4)3(β2)2 receptor. For all studies for identifying a 

menthol binding site, a 10:1 ratio to obtain the (α4)3(β2)2 receptor was used. A total of 50 nL of 

the mRNA mixture were injected into each oocyte, delivering a mRNA mass total of 22 ng. After 

injection, the oocytes were incubated at 18 °C in ND96 medium (96 mM NaCl, 2 mM KCl, 1 

mM MgCl2, 5 mM HEPES at pH 7.5) enriched with theophylline, sodium pyruvate, and 

gentamycin for 24h or 48 h before recording.  

5.4.3  Chemical Preparation 

Acetylcholine Cl (ACh) was purchased from Sigma-Aldrich and dissolved to 1 M stock 

solutions in ND96 Ca2+ free buffer (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES at 

pH 7.5). (+)-menthol and (–)-menthol were purchased from Sigma-Aldrich and dissolved to 1 

M stock solutions in methanol. All drug solutions contain less than 0.1% of methanol. 

5.4.4  Electrophysiology 

All electrophysiology recordings were made using the OpusXpress 6000A (Axon 

Instruments) in two-electrode voltage clamp mode at a holding potential of –60 mV. ND96 Ca2+ 

free solution was used as the running buffer. All drugs were applied as a 1 mL dose in ND96 
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Ca2+ free solution. All ACh-EC50 experiments used ACh doses applied over 15 seconds 

followed by a 2 min buffer wash at a rate of 3 mL min-1.  

For all menthol-IC50 experiments, first two doses of ACh at the EC50 concentration 

was applied to ensure proper current waveforms and receptor function. Subsequently, a menthol 

only dose was applied over 15 s followed by a 30 s buffer wash at a rate of 3 mL min-1. A dose 

of menthol and ACh co-application was then applied over 15 s followed by a 5 min buffer wash 

at a rate of 3 mL min-1. This was iterated for all concentration ranges of menthol with ACh at 

the ACh-EC50 concentration. 

For all competition binding assays assays, an ACh dose was applied over 15 seconds 

followed by a 2 min buffer wash at a rate of 3 mL min-1. Then, an ACh dose with 50 µM (–)-

menthol was applied over 15 s followed by a 3.3 min buffer wash at a rate of 3 mL min-1. Lastly, 

an ACh dose with 50 µM (+)-menthol was applied over 15 s followed by a 3.3 min buffer wash 

at a rate of 3 mL min-1. This was iterated for all concentration ranges of ACh.  

Data were sampled at 50 Hz and then low-pass filtered at 5 Hz.  

5.4.5  Data Analysis 

To assess the potency of ACh, concentration-response relationships for ACh were fitted 

using  

𝐼 𝐼"#$ = 1 − 1/ 1 + 𝐸𝐶,-/[𝐴] 12 	  

where I/Imax is the relative current induced by varying concentrations of ACh ([A]). EC50 is the 

value of [ACh] that elicits a half-maximum response, and nH is the Hill coefficient. For the 

competition binding assays, the drug applications of ACh and its co-application with (–)- or (+)-

menthol were applied to the same cell, and the Imax of the largest ACh-induced current without 

menthol was for normalization. 

To assess the potency of antagonism, inhibition-concentration relationships for menthol 

were fitted using 
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𝐼 𝐼"#$ = 1 − 1/ 1 + 𝐼𝐶,-/[𝑀] 12 	  

where I/Imax is the relative current induced by ACh in the presence of varying concentrations of 

menthol ([M]). IC50 is the value of [menthol] that elicits a half-maximum response, and nH is the 

Hill coefficient. 

The concentration-response relationships for each cell were fitted to one Hill term to 

generate EC50, IC50, and Hill coefficient (nH) values using GraphPad Prism. Error bars represent 

the standard error of the mean (SEM) values. 

Uninjected cells can occasionally give current responses up to ~200 nA. Only cells that 

gave responses larger than ~200 nA were reported, and other cells were reported as non-

responsive (NR). 
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C h a p t e r  6  

IDENTIFICATION OF A MENTHOL BINDING SITE ON α4β2 
NACHRS 

6.1  Abstract 

The binding pocket, site, and mode of menthol binding to the α4β2 receptor is currently 

unknown. We hypothesize that menthol binds in the TMD. Computational docking studies 

show multiple menthol binding sites intra- and inter-subunit in the TMD of the human α4β2 

nAChR. Initial attempts to experimentally find the binding site(s) have been made. Single 

mutations have either led to nonfunctional receptors or small changes in the IC50, indicating 

minor changes to menthol binding. There is a possibility that several residues together contribute 

to menthol binding and may induce a larger, i.e. more meaningful, shift in the IC50. We can 

continue to probe these sites by performing double or triple mutations. 
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6.2  Introduction 

Menthol is not only interesting from a drug addiction standpoint but also a biophysical 

standpoint. It is a negative allosteric modulator of the α4β2 nAChR64, but the binding mode of 

menthol to α4β2 nAChR is currently unknown. Some hypothesized that menthol inhibits 

function by favoring the desensitized state.65 The effective inhibitory concentration of menthol 

on α4β2 nAChRs (IC50) found in acute studies is 33 µM (present work) or 111 µM64, which is 

likely higher than the concentrations found in vivo. In chronic studies, nanomolar concentration 

ranges are used. The order of magnitude difference in effective concentrations between acute 

and chronic studies suggest the possibility of multiple binding sites. Many general anesthetics 

that menthol is similar to in chemical structure and size have multiple binding sites in the TMD 

of LGICs.  

Targeting the General Anesthetics (Propofol) Binding Site 

Based its structural and chemical similarity to general anesthetics, we hypothesize that 

menthol’s binding mode is similar to that of general anesthetics. General anesthetics are a class 

of drugs that induce a reversible loss of consciousness in humans by targeting the neuronal 

pathway. There are two theories for their mode of action. Early research supported the theory 

that the drugs act in a nonspecific manner, disordering and increasing the fluidity of the lipid 

membrane. Accumulating evidence indicates that they directly interact with ion channels in the 

central nervous system via an allosteric mechanism.66 

General anesthetics can either potentiate or inhibit the ion channel. Most anesthetics 

inhibit cationic Cys-loop LGICs (e.g. nAChR and 5HT3) but potentiate anionic Cys-loop LGICs 

(e.g. GABAAR and GlyR). The binding affinity also varies for each receptor and to different 

states (e.g. open, closed, and desensitized). Many studies revealed binding sites for these 

molecules on Cys-loop receptors to be intra- and/or inter-subunit in the TMD (Figure 6.1).  

Menthol is chemically and structurally similar to Propofol (Diprivan), an anesthetic that 

slows brain and nervous system activity, causing sleepiness and relaxation before and during 

medical procedures such as surgery. A number of studies have revealed specific Propofol 
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binding sites on GABAAR and GLIC, a bacterial homolog of vertebrate Cys-loop LGICs, in 

the intra- and inter-subunit region of the TMD (Figure 6.1). We hypothesize that menthol may 

bind to the human α4β2 nAChR at sites analogous to the Propofol binding sites. We use these 

sites as a guide for analyzing computational docking results and selecting residues to 

experimentally screen. 

Computational Docking  

A 3.9 Å X-ray crystal structure of the human α4β2 nAChR was reported recently in 

October 2016, revealing structural details of the ECD and TMD.10 Prior to this, mostly 

homology models of the α4β2 ECD based on the acetylcholine binding protein (AChBP) have 

been used in computational studies (e.g. docking and MD) to identify and study drug binding 

sites. One limitation is that homology models may not be very accurate although many binding 

sites have been accurately revealed with them. The major limitation of the model is that drug 

binding studies are limited to drugs that bind to the ECD only and not the TMD or ICD. This 

is particularly important for many allosteric drugs, namely general anesthetics and Propofol, as 

they are known to bind to the TMD. The recent crystal structure of human α4β2 nAChR 

provides a more reliable protein model for computational studies in identifying drug binding 

sites, particularly in the TMD. Computational docking allows identification of binding pockets 

and understanding of binding modes. Molecular dynamics allows deeper investigation of binding 

interactions.  

In this chapter, we describe our efforts in identifying the residues involved in menthol 

binding using computational modeling and docking and experimental mutagenesis screening. 
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6.3  Results and Discussion 

Computational Docking 

To predict which pockets menthol binds to in the α4β2 receptor, we employ 

computational docking using AutoDock VINA. We dock the chair conformation of (–)-menthol 

to three conformational snapshots of the human α4β2 protein model. At 0 ns, the protein is 

likely in the desensitized state. At 2.5 and 100 ns, conformational space is sampled, but the 

conformations are unlikely to be representative of a different receptor state, e.g. the open state, 

as this transition takes place on a longer timescale. Building the protein model and performing 

the conformational sampling are described in Appendix 1.  

We dock menthol to the whole protein (blind docking) and focus the docking to the 

TMD (refined docking) by refining the search box (Figure 6.2). The results show binding sites 

in the agonist site, near the Cys loop, in the channel pore, in the intra-subunit cavity, and less so 

in the interfacial cavity. We compare these results to the Propofol binding sites to select residues 

to experimentally screen (Figure 6.3). 

Experimental Screening via Mutagenesis of Target Residues 

The human α4β2 protein model is used in all computational studies, while the rat α4β2 

protein is expressed in oocytes in the experimental mutagenesis studies. The protein sequence 

identity between the α4 subunit from rat (Rattus norvegicus) and from human (Homo sapien) is 

83.07% and for the β2 subunit is 93.23%. This sequence identity is high enough to reasonably 

use the rat protein in experimental studies to inform the human model. Also, the residues 

selected for testing are in the same in the rat and human protein sequence (Figure 6.4 and 6.5).  

Menthol does not bind in the native agonist site 

Menthol is known to be a negative allosteric modulator to the α4β2 nAChR. Although 

it is unlikely that menthol binds in the native agonist site, we tested this pocket anyways based 

on the blind docking study, revealing a potential menthol binding in the agonist pocket (Figure 
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6.2). A prior study conducted by Chris Marotta in the Dougherty lab weakly suggested that 

menthol may bind here as well. He showed a weak IC50 fold-shift with mutations H144V, 

Q152F, and T154L on the α4 subunit. We repeated this study to verify the effects. The α4-

H144V, Q152F, and T154L mutation impacted the EC50 by a fold-shift of 0.74 (Figure 6.6 and 

Table 6.1). The IC50 of the wildtype and this mutant differ by only a factor of 2 (Table 6.2), 

indicating that menthol unlikely binds at the agonist site, as previous studies have already 

suggested. Thus, we continue probing other pockets of the protein. 

Menthol does not bind in a pocket near the Cys-loop 

Docking studies also revealed a potential binding site near the Cys loop (Figure 6.2 and 

6.3). Analyzing this pocket, we hypothesized that menthol may form a hydrogen bond with 

nearby residues. We analyzed the orientation of the docking poses and selected electrically 

charged residues that were within a 2-4 Å proximity to the hydroxyl group of menthol. Six 

residues were selected for screening. α4-E182, α4-DE51, and α4-Q55 were mutated to alanines 

and resulted in non-functional receptors, i.e., no ACh-induced current response. Smaller 

perturbations, α4-E52L, α4-E182Q, and β2-S44A, led to functional receptors and resulted in 

IC50 fold shifts of 0.7, 0.73, and 1.82, respectively (Figure 6.7 and Table 6.2). Fold-shifts less than 

2 suggests that these mutations do make large individual contributions to menthol binding.   

Intra-subunit in the TMD 

A highly probable pocket for menthol binding would be near the general anesthetic 

binding sites, i.e., within the intra- and inter-subunit cavity formed by the M1 to M4 helices in 

the TMD. Docking studies also showed menthol poses in this region (Figure 6.2). In this pocket, 

hydrophobic interactions seem to dominate binding. We identified and tested residues, which 

were mostly hydrophobic and neighbored docked states of menthol within 5 Å (Figure 6.2 and 

6.3). 

Twelve residues were identified in the intra-subunit region on the M1 and M3 helices in 

the TMD of the α4 subunit, of which half led to no ACh-induced current response. All the intra-

subunit mutations, with the exception of α4-G281, which is on the M3 helix and faces the M2 
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helix, faced the center of the M1 and M3 helices. Mutations of all the residues that led to no 

responses, with the exception of α4-G281, were in the upper region of the M1 and M3 helices. 

Meanwhile, mutations that led to responses and thus were subsequently characterized were in 

the lower region of the helices. α4-G281F and α4-G281A mutations notably led to a gain of 

function by 3.5 and 7.7 in the EC50 (Table 6.1). The α4-G281F mutation showed the highest loss 

of function by 3.27 in IC50, but a 3-fold change is not significant enough to suggest this as a 

menthol binding site (Figure 6.8 and Table 6.2).  

The upper region of the cavity formed by the M1 and M3 helices on the GABA and 

GLIC receptors is where Propofol binds. Based on our hypothesis that menthol is likely to bind 

in this region as well, we are unable to test this because mutations in this region led to non-

responsive receptors. We can make even smaller mutagenic perturbations, but that runs the risk 

of small IC50 fold shifts. We can also perform molecular dynamic (MD) simulations and observe 

the stability of menthol binding in this pocket over time.  

Inter-subunit in the TMD 

We also probed the inter-subunit region between the α4 and β2 subunits in the TMD. 

The two residues that retained ACh-induced current response, α4-F286A and β2-I218A, had 

less than a 2-fold loss of in IC50 (1.64 and 1.85 fold-shift), which suggests that menthol does not 

bind strongly to these residues (Figure 6.9 and Table 6.2). The two other residues that led to 

non-responsive receptors were also near the top of the M3 (α4 subunit) and M1 (β2 subunit) 

helices. We further tested an interfacial pocket by combining the α4-G281A and β2-I218A 

mutations, and the resulting IC50 fold-shift (0.72) was even lower than the individual mutations 

themselves (Figure 6.10 and Table 6.2). This may be because mutating a glycine to the larger 

residue alanine fills the cavity, while an isoleucine to the smaller residue alanine compensates for 

the other mutation. 

Channel Pore 

α4-L265 and β2-L257 both line the pore, so mutations to these residues could test if 

menthol inhibits by being a channel blocker. A β2-L257A mutation led to a 500 fold gain of 
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ACh-induced function, EC50 (Figure 6.9 and Table 6.1). Neither mutation induced a fold shift 

larger than 2 in the IC50 value, suggesting that menthol may not be a channel blocker by 

interacting with these residues (Figure 6.9 and Table 6.2). Other sites that line the pore can be 

tested as well. 
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6.4  Conclusions 

In conclusion, a specific binding site has not been identified. Nonetheless, the data for 

menthol on α4β2 receptors and its allosteric, non-competitive nature strongly suggests that 

menthol does bind to the receptor. The insurmountable non-competitive inhibition as observed 

in the studies described in Chapter 5 and by Hans, et al. has never been found to be an off-target 

effect. Most mutations that were screened for menthol binding showed less than a 2-fold shift 

in IC50 in dose response experiments with menthol. These results suggest that none of the 

mutations singly have a large contribution to menthol binding. A larger set of a combination of 

mutations could be tested next, as multiple residues could be required for menthol binding.  

It is uncertain where menthol binds on the protein. Much of our approach thus far has 

been based on the binding modes of another drug (Propofol) and computational docking. We 

could narrow our search space by performing photoaffinity labeling experiments with menthol, 

as this technique has been exhaustively applied for identifying the binding pockets of many 

allosteric drugs in the past, including Propofol. 
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6.5  Methods 

Oocyte preparation and injection, chemical preparation, electrophysiology, and data analysis is described in Chapter 

5 Experimental Methods. 

6.5.1  Computational Modeling and Docking 

We built a human α4β2 receptor model based on the published X-ray crystal structure 

(PDB ID: 5kxi), in which missing residues were modeled and the whole protein was equilibrated 

in a solvated and lipid membrane system (Appendix 1). Docking of (–)-menthol to the whole 

protein model (blind docking) and then to the TMD of the model (refined docking) was 

performed using AutoDock VINA. The search volume was a 100 by 100 by 100 Å box to 

include the whole protein (blind docking) and a 100 by 100 by 70 Å box to include only the 

TMD (refined docking). The chair conformation of (–)-menthol was used. All waters and ions 

were removed from the structures prior to docking. All hydrogen atoms and partial charges were 

also added, and nonpolar hydrogens were merged. 100 poses of menthol were generated per 

docking run.  

6.5.2  Construct Preparation 

All mutant constructs were prepared by QuikChange mutagenesis on the respective 

subunits. The mutation was verified by sequencing (Laragen). The α4 and β2 subunits of rat 

nAChR are in the pGEM vector. The plasmid DNAs were linearized by NotI restriction digest. 

The mRNAs were prepared from linearized DNA, using a T7 mMessage mMachine kit 

(Ambion), and were purified with the RNeasy Mini kit (Qiagen). Concentration of mRNA was 

determined by absorption on the Nanodrop 2000 Spectrophotometer (Thermo Scientific).  
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6.6  Figures  
 

 
Figure 6.1. Intra- and inter-subunit binding sites for Propofol and general anesthetics on GLIC. Figure taken from 
Nury, et al.67 
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a)

 
b) 

 
c) 

 
Figure 6.2. Menthol binding sites. Blind (left) and refined (TMD) docking (middle and right) of human α4β2 
nAChR, shown in cartoon representation. α4 subunit colored in deep olive. β2 subunit colored in gray. Menthol 
shown as spheres in various colors. Conformational snapshots taken from molecular dynamic (MD) simulations at 
a) 0 ns, b) 2.5 ns, and c) 100 ns (Appendix 1). Shown are 100 states of menthol per docking run.  
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Figure 6.3. Residues selected for experimental mutagenesis screening in a) the agonist site, b) near the Cys loop on 
both the α4-β2 interface and β2-α4 interface, c) the intra-subunit cavity of the α4 subunit, and d) the channel pore. 
Residues shown as black are mutations that led to non-responsive receptors to ACh activation. 
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α7_HUMAN EFQRKLYKELVKNYNPLERPVANDSQPLTVYFSLSLLQIMDVDEKNQVLTTNIWLQMSWT 83 
α4_HUMAN HAEERLLKKLFSGYNKWSRPVANISDVVLVRFGLSIAQLIDVDEKNQMMTTNVWVKQEWH 94 
α3_HUMAN EAEHRLFERLFEDYNEIIRPVANVSDPVIIHFEVSMSQLVKVDEVNQIMETNLWLKQIWN 92 
α4_MOUSE HAEERLLKRLFSGYNKWSRPVANISDVVLVRFGLSIAQLIDVDEKNQMMTTNVWVKQEWH 96 
α4_RAT   HAEERLLKRLFSGYNKWSRPVANISDVVLVRFGLSIAQLIDVDEKNQMMTTNVWVKQEWH 96 
α3_RAT   EAEHRLFQYLFEDYNEIIRPVANVSHPVIIQFEVSMSQLVKVDEVNQIMETNLWLKQIWN 86 
α2_HUMAN ETEDRLFKHLFRGYNRWARPVPNTSDVVIVRFGLSIAQLIDVDEKNQMMTTNVWLKQEWS 116 
α3_MOUSE EAEHRLFQYLFEDYNEIIRPVANVSHPVIIQFEVSMSQLVKVDEVNQIMETNLWLKQIWN 86 
α6_HUMAN ATEERLFHKLFSHYNQFIRPVENVSDPVTVHFEVAITQLANVDEVNQIMETNLWLRHIWN 91 
α2_RAT   HAEDRLFKHLFGGYNRWARPVPNTSDVVIVRFGLSIAQLIDVDEKNQMMTTNVWLKQEWN 93 
           : :* . *.  **   *** * *. : : * ::: *: .*** **:: **:*::  *  
 
α7_HUMAN DHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADERFDATFHTNVLVNSSGHCQYLPP 143 
α4_HUMAN DYKLRWDPADYENVTSIRIPSELIWRPDIVLYNNADGDFAVTHLTKAHLFHDGRVQWTPP 154 
α3_HUMAN DYKLKWNPSDYGGAEFMRVPAQKIWKPDIVLYNNAVGDFQVDDKTKALLKYTGEVTWIPP 152 
α4_MOUSE DYKLRWDPGDYENVTSIRIPSELIWRPDIVLYNNADGDFAVTHLTKAHLFYDGRVQWTPP 156 
α4_RAT   DYKLRWDPGDYENVTSIRIPSELIWRPDIVLYNNADGDFAVTHLTKAHLFYDGRVQWTPP 156 
α3_RAT   DYKLKWKPSDYQGVEFMRVPAEKIWKPDIVLYNNADGDFQVDDKTKALLKYTGEVTWIPP 146 
α2_HUMAN DYKLRWNPTDFGNITSLRVPSEMIWIPDIVLYNNADGEFAVTHMTKAHLFSTGTVHWVPP 176 
α3_MOUSE DYKLKWKPSDYQGVEFMRVPAEKIWKPDIVLYNNADGDFQVDDKTKALLKYTGEVTWIPP 146 
α6_HUMAN DYKLRWDPMEYDGIETLRVPADKIWKPDIVLYNNAVGDFQVEGKTKALLKYNGMITWTPP 151 
α2_RAT   DYKLRWDPAEFGNVTSLRVPSEMIWIPDIVLYNNADGEFAVTHMTKAHLFFTGTVHWVPP 153 
         *: *:*.  :: .   :*.*   ** ***:***.*   * .   *:. :   *   : ** 
 
α7_HUMAN GIFKSSCYIDVRWFPFDVQHCKLKFGSWSYGGWSLDLQMQ--EADISGYIPNGEWDLVGI 201 
α4_HUMAN AIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKAKIDLVNMHSRVDQLDFWESGEWVIVDA 214 
α3_HUMAN AIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSSMNLKDYWESGEWAIIKA 212 
α4_MOUSE AIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKAKIDLVSMHSRVDQLDFWESGEWVIVDA 216 
α4_RAT   AIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKAKIDLVSMHSRVDQLDFWESGEWVIVDA 216 
α3_RAT   AIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSSMNLKDYWESGEWAIIKA 206 
α2_HUMAN AIYKSSCSIDVTFFPFDQQNCKMKFGSWTYDKAKIDLEQMEQTVDLKDYWESGEWAIVNA 236 
α3_MOUSE AIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSSMNLKDYWESGEWAIIKA 206 
α6_HUMAN AIFKSSCPMDITFFPFDHQNCSLKFGSWTYDKAEIDLLIIGSKVDMNDFWENSEWEIIDA 211 
α2_RAT   AIYKSSCSIDVTFFPFDQQNCKMKFGSWTYDKAKIDLEQMERTVDLKDYWESGEWAIINA 213 
         .*:**** :*: :**** *:*.:*****:*.  .:**       :  .:  ..** ::   
 
α7_HUMAN PGKRSERFYECCKEPYPDVTFTVTMRRRTLYYGLNLLIPCVLISALALLVFLLPADSGEK 261 
α4_HUMAN VGTYNTRKYECCAEIYPDITYAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGEK 274 
α3_HUMAN PGYKHDIKYNCCEEIYPDITYSLYIRRLPLFYTINLIIPCLLISFLTVLVFYLPSDCGEK 272 
α4_MOUSE VGTYNTRKYECCAEIYPDITYAFIIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGEK 276 
α4_RAT   VGTYNTRKYECCAEIYPDITYAFIIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGEK 276 
α3_RAT   PGYKHEIKYNCCEEIYQDITYSLYIRRLPLFYTINLIIPCLLISFLTVLVFYLPSDCGEK 266 
α2_HUMAN TGTYNSKKYDCCAEIYPDVTYAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLPSDCGEK 296 
α3_MOUSE PGYKHEIKYNCCEEIYQDITYSLYIRRLPLFYTINLIIPCLLISFLTVLVFYLPSDCGEK 266 
α6_HUMAN SGYKHDIKYNCCEEIYTDITYSFYIRRLPMFYTINLIIPCLFISFLTVLVFYLPSDCGEK 271 
α2_RAT   TGTYNSKKYDCCAEIYPDVTYYFVIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGEK 273 
          *      *:** * * *:*: . :**  ::* :**:***::** *::*** **::.*** 
 
α7_HUMAN ISLGITVLLSLTVFMLLVAEIMPA-TSDSVPLIAQYFASTMIIVGLSVVVTVIVLQYHHH 320 
α4_HUMAN ITLCISVLLSLTVFLLLITEIIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHR 333 
α3_HUMAN VTLCISVLLSLTVFLLVITETIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYR 331 
α4_MOUSE VTLCISVLLSLTVFLLLITEIIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHR 335 
α4_RAT   VTLCISVLLSLTVFLLLITEIIPSPTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHR 336 
α3_RAT   VTLCISVLLSLTVFLLVITETIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYR 325 
α2_HUMAN ITLCISVLLSLTVFLLLITEIIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHR 355 
α3_MOUSE VTLCISVLLSLTVFLLVITETIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYR 325 
α6_HUMAN VTLCISVLLSLTVFLLVITETIPS-TSLVVPLVGEYLLFTMIFVTLSIVVTVFVLNIHYR 330 
α2_RAT   ITLCISVLLSLTVFLLLITEIIPS-TSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHR 332 
         ::* *:********:*:::* :*: **  :**:.:*:  ***:* **:*:**:**: *:: 

Figure 6.4. Sequence alignment using CLUSTALO of α subunits from various species. Highlighted in gray are the 
residues in the agonist pocket that were experimentally tested; yellow are residues near the Cys-loop; cyan are the 
intra-subunit residues; magenta are the interfacial residues; green is the channel pore. Sequences are truncated, 
showing only rows containing target residues. 
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β2_MOUSE MVSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEDFDNMKKVRLPSKHIWLPDVVLY 120 
β2_HUMAN MVSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLY 120 
β2_RAT   MVSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEDFDNMKKVRLPSKHIWLPDVVLY 119 
         *************************************:********************** 
 
β2_MOUSE TEIDLVLKSDVASLDDFTPSGEWDIIALPGRRNENPDDSTYVDITYDFIIRRKPLFYTIN 240 
β2_HUMAN TEIDLVLKSEVASLDDFTPSGEWDIVALPGRRNENPDDSTYVDITYDFIIRRKPLFYTIN 240 
β2_RAT   TEIDLVLKSDVASLDDFTPSGEWDIIALPGRRNENPDDSTYVDITYDFIIRRKPLFYTIN 239 
         *********:***************:********************************** 
 
β2_MOUSE LIIPCVLITSLAILVFYLPSDCGEKMTLCISVLLALTVFLLLISKIVPPTSLDVPLVGKY 300 
β2_HUMAN LIIPCVLITSLAILVFYLPSDCGEKMTLCISVLLALTVFLLLISKIVPPTSLDVPLVGKY 300 
β2_RAT   LIIPCVLITSLAILVFYLPSDCGEKMTLCISVLLALTVFLLLISKIVPPTSLDVPLVGKY 299 
         ************************************************************ 

Figure 6.5. Sequence alignment using CLUSTALO of β subunits from various species. Highlighted in yellow are 
the residues near the Cys-loop that were experimentally tested; magenta are the interfacial residues; green is the 
channel pore. Sequences are truncated, showing only rows containing target residues. 
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Figure 6.6. Dose-response curves for mutations at the agonist site and wild type. 
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Figure 6.7. Dose-response curves for mutations at the Cys loop site and wild type. Number in parenthesis is the 
mutation code linked to laboratory notebooks and data. 
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Figure 6.8. Dose-response curves for mutations in the intra-subunit cavity of α4 subunit and wild type. Number in 
parenthesis is the mutation code linked to laboratory notebooks and data. 
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Figure 6.9. Dose-response curves for mutations in the inter-subunit cavity formed by the α4-β2 interface and wild 
type. Number in parenthesis is the mutation code linked to laboratory notebooks and data. 
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Figure 6.10. Dose-response curves for a double mutation as well as the single mutations in the inter-subunit cavity 
formed by the α4-β2 interface and wild type. Number in parenthesis is the mutation code linked to laboratory 
notebooks and data. 
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Table 6.1: Dose-response values for ACh 

 EC50 (µM) |Imax| (µA) nH N Fold 
Wild type 99.8 ± 1.00 0.2 – 13.6 1.74 ± 0.07 19  

Agonist Site     
α4-H144V, 

Q152F, 
T154L 72.2 ± 1.1 1.4 – 5.3 1.26 ± 0.12 12 0.72 

Near Cys Loop     
α4-E52L 33.3 ± 1.08 1.0 – 12.5 1.3 ± 0.13 7 0.33 
α4-E182Q 63.5 ± 1.07 0.006 – 0.35 1.6 ± 0.16 8 0.64 
β2-S44A 86.1 ± 1.1 0.4 – 0.6 1.7 ± 0.25 2 0.86 
α4-E182A NR   8  
α4-DE51AA NR   8  
α4-Q55A NR   8  

Intra-subunit     
α4-C233A 143.4 ± 1.06 1.3 – 9.3 0.99 ± 0.04 6 1.43 
α4-T235A 47.72 ± 1.08 1.0 – 4.8 1.13 ± 0.08 5 0.48 
α4-V236A 76.23 ± 1.15 0.2 – 2.3 1.31 ± 0.20 2 0.76 
α4-G281F 28.24 ± 1.07 0.4 – 1.5 1.13 ± 0.08 2 0.28 
α4-S232A 162 ± 1.09 0.1 – 0.2 0.99 ± 0.05 4 1.62 
α4-G281A 13.3 ± 1.17 1.6 – 17.1 0.87 ± 0.11 6 0.13 
α4-I280A NR   8  
α4-I225A NR   8  
α4-L279A NR   8  
α4-Y283A NR   8  
α4-L229A NR   8  
α4-G281W NR   8  

Inter-subunit     
α4-F286A 46.5 ± 1.2 0.18 – 0.45 1.0 ± 0.1 2 0.47 
β2-I218A 118.6 ± 1.1 0.59 – 2 2.2 ± 0.1 3 1.19 
α4-E282D NR   4  
α4-E282A NR   4  
β2-I214A NR   4  
α4-G281A + 
β2-I218A 26.6 ± 1.1 0.22 – 9.6 0.86 ± 0.06 6 0.26 

Channel Pore     
α4-L265A 26.5 ± 1.3 0.24 – 3.26 0.9 ± 0.2 3 0.27 
β2-L257A 0.2 ± 1.4 3.37 – 10.1 1.0 ± 0.3 4 0.002 
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Table 6.2: Dose-response values for (–)-menthol 

 IC50 (uM) |Imax| (µA) nH N Fold 
Wild type 33.1 ± 1.06 0.09 – 1.30 -0.81 ± 0.03 10  

Agonist Site     
α4-H144V, 

Q152F, 
T154L 64.42 ± 1.03 0.14 – 1.7 -1.20 ± 0.05 15 1.94 

Near Cys Loop     
α4-E52L 22.7 ± 1.15 0.04 – 0.26 -0.97 ± 0.14 6 0.70 
α4-E182Q 24.3 ± 1.18 0.02 – 0.07 -1.23 ± 0.25 3 0.73 
β2-S44A 59.6 ± 1.05 0.14 – 1.18 -2.9 ± 0.34 8 1.82 

Intra-subunit     
α4-C233A 46.08 ± 1.13 1.2 – 8.6 -1.53  ± 0.24 8 1.39 
α4-T235A 66.57 ± 1.09 0.6 – 5.4 -1.60  ± 0.19 8 2.03 
α4-V236A 58.86 ± 1.15 0.1 – 0.7 -1.79 ± 0.34 8 1.79 
α4-G281F 107.5 ± 1.17 0.1 – 0.7 -1.14 ± 0.18 5 3.27 
α4-S232A 91.95 ± 1.27 0.04 – 0.4 -1.63 ± 0.58 5 2.76 
α4-G281A 41.9 ± 1.12 0.93 – 19.9 -1.30 ± 0.17 13 1.27 

Inter-subunit     
α4-F286A 54.2 ± 1.5 0.054 – 0.058 -0.9 ± 0.3 2 1.64 
β2-I218A 60.9 ± 1.2 0.03 – 0.56 -1.1 ± 0.2 4 1.85 
α4-G281A + 
β2-I218A 23.8 ± 1.1 0.5 – 3.6 -2.2 ± 0.3 6 0.72 

Channel Pore     
α4-L265A 21.1 ± 1.2 0.4 – 1.1 -1.2 ± 0.2 3 0.64 
β2-L257A 62.8 ± 1.2 0.5 – 13.2 -1.1 ± 0.2 3 1.91 

 
Fold = (mutant EC50 or IC50)/(wildtype EC50 or IC50) 
NR = non-responsive  
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A p p e n d i x  1  

MOLECULAR DYNAMICS SIMULATION SYSTEM SETUP AND 
EQUILIBRATION FOR THE HUMAN α4β2 NACHR 

*The work described in this section was done and written by Shyam Saladi with minor 

adaptations by Betty Wong. 

Modeling 

To model the human α4β2 nAChR, the X-ray crystal structure (PDB 5kxi) of the human 

α4β2 nAChR resolved to 3.94Å10 was used as the starting template. The structure omitted a 

number of missing residues both as a result of the genetic modifications to improve protein 

expression and as a result of lack of density after X-ray crystallography. Residues unable to be 

resolved from the crystallography are shown in Appendix 1.1. 

We performed a sequence alignment between the protein sequence of the expression 

construct and the native α4 and β2 protein sequences to determine any additional residues with 

MAFFT using G-INS-i68.  As expected, this analysis shows the replacement of the M3-M4 linker 

by the “MX” linker as noted by Morales-Perez, et al. but no additional missing residues. Since 

Morales-Perez, et al. show that this construct has functionally similar activity to the full-length 

protein, and since known allosteric modulators are not found to bind in this region69, we choose 

to model the α4β2 structure with the MX linker. Given the lack of direct structural information 

for the entire M3-M4 linker, further work may include the development of a reliable modelling 

procedure and experimental assays to ascertain the atomistic structure of this region.  Missing 

residues were then modeled using Modeller70 (see Appendix 1.1) using a harmonic lower bound 

restraint on the N- and C-terminal regions to ensure they did not enter the membrane plane.  
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Building the System 

With a set of full, contiguous subunit chains, protons were added, and geometry was 

checked and fixed using Reduce71. The simulation system was built using CHARMM-GUI72-74. 

Disulfide bonds and the protonation state of ionizable side chains were determined using 

Propka75-76 and specified to CHARMM-GUI for patching. 

The system was built into a hexagonal box to minimize “dead” volume within the 

simulation cell with 20 Å of spacing in the z-direction (i.e. along pore axis of the protein) between 

periodic images. The lipid membrane was built using POPC lipids at 1.5 times the size of the 

protein in the x-y plane again to provide adequate room to avoid the protein from interacting 

with its periodic images. As the crystal structure does not provide direct information on the 

position of the lipid membrane, the location was calculated using OPM77 omitting the entire MX 

linker since, as an interfacial segment, it can complicate this orientation calculation. The final 

model does include the MX region, as noted above. 

The system was solvated with TIP3P water and then neutralized and brought to 150 

mM NaCl using CHARMM-GUI’s Monte-Carlo replacement method for a total of 436,742 

atoms. All standard residues were assigned CHARMM36 force field parameters.78-79 Non-

standard residues (i.e. nicotine, menthol) were parameterized using CGenFF80 (Appendix 1.3) 

and manually verified to be physically reasonable. 

Molecular Dynamics  

The system was gradually equilibrated by the stepwise reduction of initially imposed 

restraints before a production simulation by modifying the procedure provided by CHARMM-

GUI (see Appendix 1.2). The initial system was first energy minimized with conjugate gradient 

descent for 1,000 steps to eliminate poor contacts. The surface tension of the membrane was 

targeted to 17 dyne/cm, which has been shown to reproduce bulk experimental measurements 

for POPC membranes81. All simulations were carried out with GPU-accelerated NAMD 2.1282 

for a total simulation time of 100 ns with all other simulation parameters provided in Appendix 

1.2.  
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Docking 

Snapshots of the protein at its initial state (i.e. 0 ns), at 2.5 ns, and at 100 ns of production 

dynamics were taken and used for menthol docking (See Chapter 6 Methods). Poses were 

manually filtered for uniqueness and then built into the system at 100ns; poses docked to an 

earlier snapshot were inserted after aligning the protein to the 100ns snapshot. Each pose was 

then inspected within the context of the entire system for egregious contacts (e.g. lipid piercing 

to the menthol ring) and fixed by moving the non-menthol residue. The stability of the pose was 

then assessed by at least 5000 steps of conjugate gradient minimization to minimize any 

problematic contacts (e.g. steric clashes) followed by 1ns of molecular dynamics using the same 

setup as the production simulation described above. 
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Appendix 1.1  Modeling missing residues 

Missing residues that were either unresolved or truncated on the X-ray structure (PDB 

5kxi) were determined through a sequence alignment. In summary, the following residues were 

missing and needed to be built. 

• On the α4 subunit 

o 7 residues at the N terminus 

o 11 residues on the MX linker (between M3 and M4) 

o 5 residues at the C terminus 

• On the β2 subunit 

o 15 residues on the MX linker (between M3 and M4) 

o 30 residues at the C terminus (including the Strep-tag) 

Highlighted residues indicate that they were built using Modeller: 

α4 Subunit Alignment 

N-terminus 
 
5KXI:A,D_SOLVED ---------------------------------AHAEERLLKKLFSGYNKWSRPVANISD 
Hs_ACHA4_P43681 MELGGPGAPRLLPPLLLLLGTGLLRASSHVETRAHAEERLLKKLFSGYNKWSRPVANISD 
5KXI:A,D_FULL   --------------------------SSHVETRAHAEERLLKKLFSGYNKWSRPVANISD 
 
M3-M4 linker through C-terminus 
 
5KXI:A,D_SOLVED LVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHTMPTWVRRVFLDIVPRLLL--- 
Hs_ACHA4_P43681 LVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHTMPTWVRRVFLDIVPRLLLMKR 
5KXI:A,D_FULL   LVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHTMPTWVRRVFLDIVPRLLLMKR 
 
5KXI:A,D_SOLVED ------------------------------------------------------------ 
Hs_ACHA4_P43681 PSVVKDNCRRLIESMHKMASAPRFWPEPEGEPPATSGTQSLHPPSPSFCVPLDVPAEPGP 
5KXI:A,D_FULL   PSVV-------------------------------------------------------- 
 
5KXI:A,D_SOLVED ------------------------------------------------------------ 
Hs_ACHA4_P43681 SCKSPSDQLPPQQPLEAEKASPHPSPGPCRPPHGTQAPGLAKARSLSVQHMSSPGEAVEG 
5KXI:A,D_FULL   ------------------------------------------------------------ 
 
5KXI:A,D_SOLVED ------------------------------------------------------------ 
Hs_ACHA4_P43681 GVRCRSRSIQYCVPRDDAAPEADGQAAGALASRNTHSAELPPPDQPSPCKCTCKKEPSSV 
5KXI:A,D_FULL   ------------------------------------------------------------ 
 
5KXI:A,D_SOLVED ---------------------------------------------ERSVKEDWKYVAMVI 
Hs_ACHA4_P43681 SPSATVKTRSTKAPPPHLPLSPALTRAVEGVQYIADHLKAEDTDF--SVKEDWKYVAMVI 
5KXI:A,D_FULL   -----------------------------------------DTDFERSVKEDWKYVAMVI 
 
5KXI:A,D_SOLVED DRIFLWMFIIVCLLGTVGLFLPPW----- 
Hs_ACHA4_P43681 DRIFLWMFIIVCLLGTVGLFLPPWLAGMI 
5KXI:A,D_FULL   DRIFLWMFIIVCLLGTVGLFLPPWLAGMI 
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β2 Subunit Alignment 

 
N-terminus 
 
5KXI:B,C,E_SOLV -------------------------TDTEERLVEHLLDPSRYNKLIRPATNGSELVTVQL 
Hs_ACHB2_P17787 MARRCGPVALLLGFGLLRLCSGVWGTDTEERLVEHLLDPSRYNKLIRPATNGSELVTVQL 
5KXI:B,C,E_FULL -------------------------TDTEERLVEHLLDPSRYNKLIRPATNGSELVTVQL 
 
M3-M4 linker through C-terminus 
 
5KXI:B,C,E_SOLV LMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLPALLF------------ 
Hs_ACHB2_P17787 LMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLPALLFMQQPRHHCARQR 
5KXI:B,C,E_FULL LMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLPALLFMQQPRHH----- 
 
5KXI:B,C,E_SOLV ------------------------------------------------------------ 
Hs_ACHB2_P17787 LRLRRRQREREGAGALFFREAPGADSCTCFVNRASVQGLAGAFGAEPAPVAGPGRSGEPC 
5KXI:B,C,E_FULL ------------------------------------------------------------ 
 
5KXI:B,C,E_SOLV -----------------------------SEDWKYVAMVIDRLFLWIFVFVCVFGTIGMF 
Hs_ACHB2_P17787 GCGLREAVDGVRFIADHMRSEDDDQ--SVSEDWKYVAMVIDRLFLWIFVFVCVFGTIGMF 
5KXI:B,C,E_FULL ---------------------DDDQERSVSEDWKYVAMVIDRLFLWIFVFVCVFGTIGMF 
 
5KXI:B,C,E_SOLV LQPL------------------------------ 
Hs_ACHB2_P17787 LQPLFQNYTTTTFLHSDHSAPSSK---------- 
5KXI:B,C,E_FULL LQPLFQNYTTTTFLHSDHSAPSSKSAWSHPQFEK  
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Appendix 1.2  Simulation Parameters 
 

General Parameters 

Nonbonded exclusion  scaled1-4 (unitary factor) 
Cutoff distance 12 Å 
Switch distance 10 Å 
Pairlists distance 16 Å 
Steps per cycle 20 
Pairlists per cycle 2 
Rigid bonds All heavy to H 
Electrostatics Particle Mesh Ewald  (spline order 6) 
vdw Force Switching Yes 
Atom wrapping All to nearest periodic image 

Write frequency 

Restart file  1000 steps 
Trajectory snapshot 1000 steps 
Extended system snapshot 1000 steps 
Energy calculation 125 steps 
Timing estimate 1000 steps 

Temperature and Pressure Control  

Damping 1.0 
Coupled to hydrogens Off 
Barostat type Nosé-Hoover  
Piston target 1.01325 bar 
Piston period 50 fs 
Piston decay 25 fs 
Surface tension 17 dyn/cm 
Pressure control Group 
Unit cell Flexible with constant x-y ratio 

 
 

 Equilibration Production 1 Production 2 
Timestep 1 fs or 2 fs 2 fs 2 fs 
Temperature reassignment  500 steps NA 
Temperature 303.15 K 310.15 K 
Non-bonded  Every step 
Full Electrostatics Every step Every other step 
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Appendix 1.3  Force Field Parameters for Nicotine 

Force field parameters for nicotine calculated by CGenFF 

RESI NCT       1.000 ! param penalty=  95.000 ; charge penalty=  58.371 
GROUP            ! CHARGE   CH_PENALTY 
ATOM C1     CG3C52 -0.120 !   21.922 
ATOM C2     CG3C53 -0.054 !   53.239 
ATOM N3     NG3P1  -0.223 !   34.812 
ATOM C4     CG3C54 -0.364 !   12.847 
ATOM C5     CG3C52 -0.108 !   13.232 
ATOM H6     HGA2    0.090 !    1.500 
ATOM H7     HGA2    0.090 !    1.500 
ATOM H8     HGA1    0.090 !    3.922 
ATOM H9     HGA2    0.280 !    0.794 
ATOM H10    HGA2    0.280 !    0.794 
ATOM H11    HGA2    0.090 !    0.030 
ATOM H12    HGA2    0.090 !    0.030 
ATOM C13    CG2R61  0.177 !    0.000 
ATOM C14    CG2R61 -0.114 !    2.150 
ATOM C15    CG2R61 -0.122 !    5.722 
ATOM C16    CG2R61  0.135 !   58.371 
ATOM C17    CG2R61  0.166 !   10.101 
ATOM N18    NG2R60 -0.602 !    7.891 
ATOM H19    HGR62   0.122 !    0.000 
ATOM H20    HGR61   0.115 !    0.000 
ATOM H21    HGR61   0.115 !    0.340 
ATOM H22    HGR62   0.122 !    0.390 
ATOM C23    CG334   0.178 !   11.329 
ATOM H24    HGA3    0.090 !    0.460 
ATOM H25    HGA3    0.090 !    0.460 
ATOM H26    HGA3    0.090 !    0.460 
ATOM HN3    HGP2    0.297 !   19.436 
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Appendix 1.4 Force Field Parameters for (–)-Menthol 

Parameters are for the chair conformation of (–)-Menthol. The chair conformation of 

(–)-Menthol was built by Rezvan Shahoei in Emad Tajkhorshid’s lab at University of Illinois at 

Urbana-Champaign. 

RESI MEN       0.000 ! param penalty=   0.900 ; charge penalty=   0.213 
GROUP            ! CHARGE   CH_PENALTY 
ATOM C5     CG311  -0.091 !    0.000 
ATOM C10    CG331  -0.268 !    0.000 
ATOM H101   HGA3    0.090 !    0.000 
ATOM H102   HGA3    0.090 !    0.000 
ATOM H103   HGA3    0.090 !    0.000 
ATOM H5     HGA1    0.090 !    0.000 
ATOM C4     CG321  -0.182 !    0.000 
ATOM H41    HGA2    0.090 !    0.000 
ATOM H42    HGA2    0.090 !    0.000 
ATOM C3     CG321  -0.178 !    0.190 
ATOM H31    HGA2    0.090 !    0.000 
ATOM H32    HGA2    0.090 !    0.000 
ATOM C2     CG311  -0.103 !    0.070 
ATOM C7     CG311  -0.079 !    0.064 
ATOM C8     CG331  -0.273 !    0.045 
ATOM H81    HGA3    0.090 !    0.000 
ATOM H82    HGA3    0.090 !    0.000 
ATOM H83    HGA3    0.090 !    0.000 
ATOM C9     CG331  -0.273 !    0.045 
ATOM H91    HGA3    0.090 !    0.000 
ATOM H92    HGA3    0.090 !    0.000 
ATOM H93    HGA3    0.090 !    0.000 
ATOM H7     HGA1    0.090 !    0.000 
ATOM H2     HGA1    0.090 !    0.000 
ATOM C1     CG311   0.146 !    0.200 
ATOM H1     HGA1    0.090 !    0.000 
ATOM O1     OG311  -0.652 !    0.213 
ATOM HO1    HGP1    0.419 !    0.000 
ATOM C6     CG321  -0.176 !    0.000 
ATOM H61    HGA2    0.090 !    0.000 
ATOM H62    HGA2    0.090 !    0.000 
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