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ABSTRACT

In this thesis, I develop a new suite of tools to address two questions in exoplanet
science: how common are Earth-mass planets in the habitable zones of Solar-type
stars, and can we detect signs of life on other worlds?

Answering the first question requires a method for detecting Earth-Sun analogs.
Currently, the radial velocity (RV) method of exoplanet detection is one of the
most successful tools for probing inner planetary systems. However, degeneracy
between a spectrometer’s wavelength calibration and the astrophysical RV shift has
limited the sensitivity of today’s instruments. In my thesis, I address a method
for breaking this degeneracy: by combining a traditional spectrometer design with
a dynamic interferometer, a fringe pattern is generated at the image plane that is
highly sensitive to changes in the radial velocity of the target star. I augmented
previous theoretical studies of the method, creating an end-to-end simulation to 1)
introduce and recover wavelength calibration errors, and 2) investigate the effects
of interferometer position errors on the RV precision. My simulation showed that
using this kind of interferometric system, a 5-m class telescope could detect an
Earth-Sun analog.

Addressing the occurrence rate of Earth twins also requires an understanding of
planet formation in multiple star systems, which encompass half of all Solar-type
stars. Gravitational interactions between binary components separated by 10 −
100AU are predicted to truncate the outer edges of their respective disks, possibly
reducing the disks’ lifetimes. Consequently, the pool of material and the amount of
time available for planet formation may be smaller than in single star systems. The
stars’ rotational periods provide a fossil record of these events: star-disk magnetic
interactions initially prevent a contracting pre-main sequence star from spinning
up, and hence a star with a shorter-lived disk is expected to be spinning more
quickly when it reaches the zero age main sequence. In order to conduct a large-
scale multiplicity survey to investigate the relationship between stellar rotation and
binary system properties (e.g. their separations and mass ratios), I contributed to
the commissioning of Robo-AO, a robotic laser guide star adaptive optics system,
at the Kitt Peak 2.1-m. After the instrument’s installation, I wrote a data pipeline
to optimize the system’s sensitivity to close stellar companions via reference star
differential imaging. I then characterized Robo-AO’s performance during its first
year of operations. Finally, I used Robo-AO to search for binaries among the 759
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stars in the Pleiades with rotational periods measured using the photometric data of
the re-purposed Kepler telescope, K2.

Detecting signs of life on other worlds will require detailed characterization of
rocky exoplanet atmospheres. Polarimetry has long been proposed as a means of
probing these atmospheres, but current instruments lack the sensitivity to detect
the starlight reflected and polarized by such small, close-in planets. However, the
latest generation of high contrast imaging instruments (e.g. GPI and SPHERE) may
be able to detect the polarization of thermal emission by young, gas giants due to
scattering by aerosols in their atmospheres. Observational constraints on the details
of clouds physics imposed by polarized emission will improve our understanding
of the planets’ compositions, and hence their formation histories. For the case of
the brown dwarf HD19467B orbiting a nearby Sun-like star, I demonstrated that
the Gemini Planet Imager can detect linear polarizations on the order predicted for
these cloudy exoplanets. My current pilot programs can produce the first detections
of polarized exoplanet emission, while also building expertise for reflected starlight
polarimetry with future observatories.
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C h a p t e r 1

INTRODUCTION

The last thirty years of astronomy have seen a revolution in planetary science. In
1990, the only known planets were those in our own solar system; as of May 2017,
nearly 3000 planets have been discovered. Among these many “exoplanets” are
worlds unlike any found orbiting the Sun: Jupiter-mass planets with years as short
as a day, rocky planets twice as massive as the Earth, and planets so giant that they
have more in common with brown dwarfs than with Jupiter. This new menagerie of
exoplanets, however, ismissing themost familiar specimen: a temperate, Earth-mass
planet orbiting a solar-type star.

Our task as students of exoplanet science is therefore two-fold: 1) to develop the
technology to detect the full range of exoplanet masses and orbital parameters, and 2)
to understand the formation, dynamics, and physical properties of the planets that are
already known. Chapter 2 of this thesis addresses the first task by simulating the per-
formance of a new method for detecting Earth-mass exoplanets with medium-sized
telescopes. Chapter 4 proposes a new methodology for describing the performance
of planet-imaging instruments and choosing optimal detection thresholds. Chapter
3 addresses the second task by investigating the use of a so-far unexploited observ-
able in exoplanet science – polarization – to understand the clouds that shroud the
atmospheres of the most massive exoplanets. Finally, Chapters 5 and 6 describe the
performance of a newly commissioned instrument for high-acuity imaging and its
application to the study of multiple star systems. With nearly half of all solar-type
stars residing in such multiple systems, their origins and evolution have significant
implications for planet formation.

The remainder of this introductory chapter describes the variousways that exoplanets
are detected and characterized, with special attention paid to the techniques that will
be referenced later in this thesis. Figure 1.1 sets the stage for this discussion by
showing all currently known exoplanets on a plot of mass versus orbital separation,
with the different detection techniques marked in different colors. The diversity of
technologies and interpretive frameworks represented by Figure 1.1 is a testament
to the ingenuity of generations of astronomers and engineers; it is an honor to join
this on-going effort.
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Transits 
Radial Velocities 
Microlensing 
Direct Imaging 

Figure 1.1: The masses and separations of all exoplanets detected as of April 24th,
2017. The red points show planets detected using transits, the blue points radial
velocities, the green points microlensing, and the magenta points direct imaging.
This figure was generated using the Exoplanet Data Explorer at exoplanets.org (Han
et al 2014).

1.1 Methods for Exoplanet Detection and Characterization
The Radial Velocity Method
The radial velocity method of exoplanet detection refers to the periodic wavelength
shift in a stellar spectrum that is induced by the star’s line-of-sight motion as it orbits
the star-planet center of mass (Figure 1.2). The relationship between the starlight’s
wavelength shift and the star’s radial velocity is given by the Doppler effect:

k · v = c
λB − λ0

λ0
, (1.1)

where k is the unit vector pointing from the observer to the star, v is the velocity
of the star, c is the speed of light, λB is the starlight’s wavelength measured by an
observer at our solar system’s center of mass, and λ0 is the starlight’s wavelength in
the rest frame of the star.

In order to derive the amplitude of a stellar radial velocity (RV) signal, we first
consider the seven parameters describing the elliptical Keplerian orbit of a single
body in a two-body system, where the system’s center of mass is located at one
of the foci of the ellipse (Figure 1.3). The semi-major axis and eccentricity of the
ellipse are given by a and e, respectively. The body’s orbital period is given by P,
and the parameter tp refers to a position of the body at a particular reference time.
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To Observer 

1 2 3 4 

Figure 1.2: A star (large filled circle) and planet (small black circle) are shown or-
biting their mutual center of mass (black cross), with the star’s spectrum represented
schematically at the top of each panel. The observer is located at the bottom of the
figure. When the star’s velocity is entirely horizontal on the page, the observer sees
no shift in the spectral features (first and third panels). When the star is moving
away from the observer, the star’s spectral features are redshifted (second panel).
When the star is moving towards the observer, its spectral features are blueshifted
(fourth panel). Hence, the periodic red and blue shift of the star’s spectral features
reveal the gravitational influence of the planet.

The inclination i, longitude of the ascending node Ω, and argument of pericenter
ω describe the projection of the three dimensional orbit onto the reference plane
tangent to the observer’s line of sight (the gray plane in Figure 1.3). We additionally
define the true anomaly ν(t) as the time-dependent angle describing the body’s
location on the ellipse, and z(t) as the body’s height on the ellipse relative to the
reference plane. Hence, z(t) describes the body’s motion along the observer’s line
of sight.10 Radial velocities

The true anomaly, ν(t ), also frequently denoted f (t ),
is the angle between the direction of pericentre and
the current position of the body measured from the
barycentric focus of the ellipse. It is the angle normally
used to characterise an observational orbit.

The eccentric anomaly, E(t ), is a corresponding an-
gle which is referred to the auxiliary circle of the ellipse.
The true and eccentric anomalies are geometrically re-
lated by

cosν(t ) = cosE(t )−e

1−e cosE(t )
, (2.6)

or, equivalently,

tan
ν(t )

2
=

(
1+e

1−e

)1/2
tan

E(t )

2
. (2.7)

The mean anomaly, M(t ), is an angle related to a
fictitious mean motion around the orbit, used in calcu-
lating the true anomaly. Over a complete orbit, during
which the real planet (or the real star) does not move at
a constant angular rate, an average angular rate can nev-
ertheless be specified in terms of the mean motion

n ≡ 2π/P , (2.8)

where P is the orbital period. The mean anomaly at time
t − tp after pericentre passage is then defined as

M(t ) = 2π

P
(t − tp) ≡ n(t − tp) . (2.9)

The relation between the mean anomaly, M(t ), and the
eccentric anomaly, E(t ), can be derived from orbital dy-
namics. This relation, Kepler’s equation, is given by

M(t ) = E(t )−e sinE(t ) . (2.10)

The position of an object along its orbit at any cho-
sen time can then be obtained by calculating the mean
anomaly M at that time from Equation 2.9, (iteratively)
solving the transcendental Equation 2.10 for E , and then
using the geometrical identity Equation 2.6 to obtain ν.

Orbit specification A Keplerian orbit in three dimen-
sions (Figure 2.2) is described by seven parameters:
a,e,P, tp, i ,Ω,ω. The first two, a and e, specify the size
and shape of the elliptical orbit. P is related to a and the
component masses through Kepler’s third law (see be-
low), while tp corresponds to the position of the object
along its orbit at a particular reference time, generally
with respect to a specified pericentre passage.3

The three angles (i ,Ω,ω) represent the projection of
the true orbit into the observed (apparent) orbit; they

3A few remarks are in order: (i) some texts state that just six
parameters are required, and omit P , implicitly invoking the re-
lation between a and P (and the component masses) as given
by Kepler’s third law; (ii) a is the semi-major axis of the orbit-
ing body with respect to the system barycentre, assumed here

reference plane

ascending node

i

orbit plane

ν(t)

Ω =
longitude of

ascending node

ω
ϒ =

reference
direction

⇓
to observer

orbiting
body pericentre

ellipse focus ≡
centre of mass

rz
descending
node

apocentre

Figure 2.2: An elliptical orbit in three dimensions. The reference
plane is tangent to the celestial sphere. i is the inclination of the
orbit plane. The nodes are the points where the orbit and ref-
erence planes intersect. Ω defines the longitude of the ascend-
ing node, measured in the reference plane. ω is the fixed angle
defining the object’s argument of pericentre relative to the as-
cending node. The true anomaly, ν(t ), is the time-dependent
angle characterising the object’s position along the orbit.

depend solely on the orientation of the observer with re-
spect to the orbit. In general, the semi-major axis of the
true orbit does not project into the semi-major axis of
the apparent orbit.

i specifies the orbit inclination with respect to the
reference plane, in the range 0 ≤ i < 180◦. i = 0◦ cor-
responds to a face-on orbit. In the discussion of binary
orbits, motion is referred to as prograde (in the direc-
tion of increasing position angle on the sky, irrespective
of the relation between the rotation and orbit vectors) if
i < 90◦, retrograde if i > 90◦, and projected onto the line
of nodes if i = 90◦.

Ω specifies the longitude of the ascending node, mea-
sured in the reference plane. It is the node where the
measured object moves away from the observer through
the plane of reference. [For solar system objects, it is the
node where an orbiting object moves north through the
plane of reference.]

ω specifies the argument of pericentre, being the an-
gular coordinate of the object’s pericentre relative to its
ascending node, measured in the orbital plane and in
the direction of motion. [For e = 0, where pericentre is
undefined, ω = 0 can be chosen such that tp gives the
time of nodal passage.]

to be in linear measure unless otherwise noted. If a is deter-
mined in angular measure, as in the relative astrometry of bi-
nary stars, the system distance d (equivalently the parallax ϖ)
is required to establish the linear scale; (iii) the parameters of
the two co-orbiting bodies (e.g. a star and planet) with respect
to the barycentre are identical, with the exception of their val-
ues of a which differ by a factor Mp/M⋆, and their values of ω
which differ by 180◦.

Figure 1.3: An illustration of a three dimensional Keplerian orbit. The labeled
parameters are described in the main text. This figure is adopted fromM. Perryman
(2011).

FollowingM. Perryman (2011), if we consider Figure 1.3 to represent a star orbiting
the center of mass of the planet-star system, the star’s radial motion z(t) is given by

z(t) = d(t) sin i sin(ω + ν(t)), (1.2)
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where d(t) is the star’s distance from the center of mass. Differentiating with respect
to time and simplifying the result gives the radial velocity of the star:

vr = K[cos(ω + ν(t)) + e cosω]. (1.3)

Here, K is the semi-amplitude of the star’s radial velocity. Substituting Kepler’s
laws gives a practical expression for K:

K =
28.4329ms−1
√

1 − e2

m2 sin i
MJup

(
m1 +m2

M�

)−2/3 (
P

1 yr

)−1/3
, (1.4)

where m1 is the mass of the star, m2 is the mass of the planet, MJup is the mass
of Jupiter, and M� is the mass of the Sun. Using Kepler’s third law, we can also
express Equation 1.4 in terms of the planet’s semi-major axis:

K =
28.4329ms−1
√

1 − e2

m2 sin i
MJup

(
m1 +m2

M�

)−1/2 ( a
1 au

)−1/2
. (1.5)

A Jupiter-mass planet orbiting a solar-mass star at 5.0 au givesK = 12.7ms−1, while
an Earth-mass planet orbiting a solar-mass star at 1.0 au gives K = 0.09ms−1.

If the planet is assumed to be much less massive than the star, and the star’s mass is
known, then fitting an observed radial velocity curve to K and e gives an estimate
of the planet’s minimum mass m2 sin i.

In the late 19th and early 20th Century, RV measurements were routinely employed
to study stellar binaries and pulsations (Wilson, 1953). In 1952, University of
California, Berkeley, astronomer Otto Struve suggested that RVmeasurements could
be used to detect exoplanets. He wrote that "a planet might exist at a distance of
1/50 au ... causing the observed radial velocity of the star to oscillate with a range
of 0.2 km/s - a quantity that might be just detectable" (Struve, 1952). It was not until
1995, however, that the first unambiguously planetary-mass companionwas detected
with the RV method: the 0.5 MJup planet orbiting the solar-type star 51 Pegasi b was
the first of the 1000+ planets now discovered with RVs (Mayor and Queloz, 1995).
While the radial velocity method continues to discover new exoplanets, its role as a
follow-up technique is increasing in importance. This role will be discussed further
in the transit method subsection below.

Figure 1.1 illustrates an important shortcoming of RV efforts to date: no planets
with masses less than or equal to that of the Earth have yet been detected with the
RV method. Detecting the radial velocity signals of such low-mass exoplanets is the
subject of Chapter 2.
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Additional Methods for Probing Exoplanet Masses

The radial velocity method is one among several techniques that are sensitive to
exoplanet masses. While these additional techniques will not be discussed further
in this thesis, they are briefly introduced below.

Figure 1.1 shows the ∼ 20 planets that have been detected with gravitational mi-
crolensing. When two distant stars align radially from the perspective of the Earth,
the gravitational influence of the foreground star bends the light of the background
star. To the Earth-bound observer, the background star appears to temporarily
brighten. For certain geometries, the gravity of a planet orbiting the foreground star
will further brighten the image of the background star for a fraction of the duration
of the full lensing event. These microlensing light curves can be used to reconstruct
that planet’s mass and orbital elements. The most important advantage of the mi-
crolensing technique is that it can detect planets at much larger distances from the
Earth than any other method of exoplanet detection. Because it is a photometric
technique, it is well-suited to monitoring many stars at one time. The principal
disadvantages of the technique are that the microlensing events are non-repeating,
and the planets it identifies cannot be followed up with other detection methods.

Exoplanets can also be detected by measuring the deflection of the parent star’s
position on the sky due to the gravitational influence of the planet. This astrometric
technique produced the first claims of exoplanet detections in the 1940s (e.g. Strand,
1943). Unfortunately, these and all subsequent claims have been refuted with
additional astrometric data and follow up with the radial velocity method. The
space-based Gaia astrometric monitoring mission, however, is expected to identify
tens of thousands of exoplanets by the end of its five-year mission (M. Perryman
et al., 2014).

The Transit Method

An exoplanet transit occurs when a planet crosses the line of sight between the
observer and the planet’s host star (Figure 1.4). The planet is detected as a diminution
of the starlight that recurs with the period of the planet’s orbit. Assuming that the
planet’s nightside contributes negligible flux to the star-planet system, a full transit
diminishes the starlight by the ratio of the planetary to stellar radii. In the infrared,
sufficiently warm planets can also be detected as they pass behind their parent stars:
during this “occultation” event, the total flux of the system is reduced as the planet’s
contribution is blocked by the star.
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AA48CH16-Seager ARI 27 July 2010 15:21

Primary eclipse 
Measure size of planet 
See star’s radiation transmitted
through the planet atmosphere  

Secondary eclipse 
See planet thermal radiation
disappear and reappear  

Learn about atmospheric circulation
from thermal phase curves   

Figure 5
Schematic of a transiting exoplanet and potential follow-up measurements. Note that primary eclipse is also
called a transit.

from direct imaging. The first event is the existence and discovery of a large population of planets
orbiting very close to their host stars. These so-called hot Jupiters, hot Neptunes, and hot super
Earths have up to about four-day orbits and semimajor axes less than 0.05 AU (see Figure 1). The
hot Jupiters are heated by their parent stars to temperatures of 1,000 to 2,000 K, making their
IR brightness on the order of 1/1,000 that of their parent stars (Figure 4). Although it is by no
means an easy task to observe a 1:1,000 planet-star flux contrast, such an observation is possible,
and it is unequivocally more favorable than the 10−10 visible-wavelength planet-star contrast for
an Earth twin orbiting a Sun-like star.

The second favorable occurrence is that of transiting exoplanets—planets that pass in front of
their star as seen from Earth. The closer the planet is to the parent star, the higher its probability to
transit. Hence, the existence of short-period planets has enabled the discovery of many transiting
exoplanets. It is the special transit configuration that allows us to observe the planet atmosphere
without imaging the planet.

Transiting planets are observed in the combined light of the planet and star (Figure 5). As
the planet passes in front of the star, the starlight drops by the amount of the planet-to-star area
ratio. If the size of the star is known, the planet size can be determined. During transit, some of
the starlight passes through the the planetary atmosphere (depicted by the annulus in Figure 5),
picking up some of the spectral features in the planet atmosphere. A planetary transmission spec-
trum can be obtained by dividing the spectrum of the star and planet during transit by the spectrum
of the star alone (the latter taken before or after transit).

Planets on circular orbits that pass in front of the star also disappear behind the star. Just
before the planet goes behind the star, the planet and star can be observed together. When the
planet disappears behind the star, the total flux from the planet-star system drops because the
planet no longer contributes. The drop is related to both the relative sizes of the planet and star
and their relative brightnesses (at a given wavelength). The flux spectrum of the planet can be
derived by subtracting the flux spectrum of the star alone (during secondary eclipse) from the
flux spectrum of both the star and planet (just before and after secondary eclipse). The planet’s
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Figure 6
Infrared light curve of
HD 189733A and b at
8 µm. The flux in this
light curve is from the
star and planet
combined. (a) The first
dip (from left to right)
is the transit and the
second dip is the
secondary eclipse.
(b) A zoom in of panel
a. Error bars have
been suppressed for
clarity. Adapted from
Knutson et al. (2007a).

flux gives information on the planetary atmospheric composition and temperature gradient (at IR
wavelengths) or albedo (at visible wavelengths).

Observations of transiting planets provide direct measurements of the planet by separating
photons in time, rather than in space as does imaging (see Figures 5 and 6). That is, observations
are made of the planet and star together. (We do not favor the combined light terminology because
ultimately the photons from the planet and star must be separated in some way. For transits and
eclipses, the photons are separated in time.) Primary and secondary eclipses enable high-contrast
measurements because the precise on/off nature of the transit and secondary eclipse events provide
an intrinsic calibration reference. This is one reason why the HST and the Spitzer have been so
successful in measuring high-contrast transit signals that were not considered in their designs.

2.2. Atmosphere Models and Theory
A range of models are used to predict and interpret exoplanet atmospheres. Usage of a hierar-
chy of models is always recommended. Interpreting observations and explaining simple physical
phenomena with the most basic model that captures the relevant physics often lends the most
support to an interpretation argument. More detailed and complex models can further support
results from the more basic models. The material in this subsection is taken from Seager (2010).

2.2.1. Computing a model spectrum. The equation of radiative transfer is the foundation not
only to generating a theoretical spectrum but also to atmosphere theory and models. The radiative
transfer equation is the change in a beam of intensity dI/dz that is equal to losses from the beam
–κI and gains to the beam ε, and the 1D plane-parallel form is

µ
d I (z, ν, µ, t)

d z
= −κ(z, ν, t)I (z, ν, µ, t) + ε(z, ν, µ, t).

Here, I is the intensity [ Jm−2 s−1 Hz−1], a beam of traveling photons; κ is the absorption coefficient
[m−1], which includes both absorption and scattering out of the radiation beam; ε is the emission

640 Seager · Deming
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flux gives information on the planetary atmospheric composition and temperature gradient (at IR
wavelengths) or albedo (at visible wavelengths).

Observations of transiting planets provide direct measurements of the planet by separating
photons in time, rather than in space as does imaging (see Figures 5 and 6). That is, observations
are made of the planet and star together. (We do not favor the combined light terminology because
ultimately the photons from the planet and star must be separated in some way. For transits and
eclipses, the photons are separated in time.) Primary and secondary eclipses enable high-contrast
measurements because the precise on/off nature of the transit and secondary eclipse events provide
an intrinsic calibration reference. This is one reason why the HST and the Spitzer have been so
successful in measuring high-contrast transit signals that were not considered in their designs.

2.2. Atmosphere Models and Theory
A range of models are used to predict and interpret exoplanet atmospheres. Usage of a hierar-
chy of models is always recommended. Interpreting observations and explaining simple physical
phenomena with the most basic model that captures the relevant physics often lends the most
support to an interpretation argument. More detailed and complex models can further support
results from the more basic models. The material in this subsection is taken from Seager (2010).

2.2.1. Computing a model spectrum. The equation of radiative transfer is the foundation not
only to generating a theoretical spectrum but also to atmosphere theory and models. The radiative
transfer equation is the change in a beam of intensity dI/dz that is equal to losses from the beam
–κI and gains to the beam ε, and the 1D plane-parallel form is

µ
d I (z, ν, µ, t)

d z
= −κ(z, ν, t)I (z, ν, µ, t) + ε(z, ν, µ, t).

Here, I is the intensity [ Jm−2 s−1 Hz−1], a beam of traveling photons; κ is the absorption coefficient
[m−1], which includes both absorption and scattering out of the radiation beam; ε is the emission
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Figure 6
Infrared light curve of
HD 189733A and b at
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is the transit and the
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secondary eclipse.
(b) A zoom in of panel
a. Error bars have
been suppressed for
clarity. Adapted from
Knutson et al. (2007a).

flux gives information on the planetary atmospheric composition and temperature gradient (at IR
wavelengths) or albedo (at visible wavelengths).

Observations of transiting planets provide direct measurements of the planet by separating
photons in time, rather than in space as does imaging (see Figures 5 and 6). That is, observations
are made of the planet and star together. (We do not favor the combined light terminology because
ultimately the photons from the planet and star must be separated in some way. For transits and
eclipses, the photons are separated in time.) Primary and secondary eclipses enable high-contrast
measurements because the precise on/off nature of the transit and secondary eclipse events provide
an intrinsic calibration reference. This is one reason why the HST and the Spitzer have been so
successful in measuring high-contrast transit signals that were not considered in their designs.

2.2. Atmosphere Models and Theory
A range of models are used to predict and interpret exoplanet atmospheres. Usage of a hierar-
chy of models is always recommended. Interpreting observations and explaining simple physical
phenomena with the most basic model that captures the relevant physics often lends the most
support to an interpretation argument. More detailed and complex models can further support
results from the more basic models. The material in this subsection is taken from Seager (2010).

2.2.1. Computing a model spectrum. The equation of radiative transfer is the foundation not
only to generating a theoretical spectrum but also to atmosphere theory and models. The radiative
transfer equation is the change in a beam of intensity dI/dz that is equal to losses from the beam
–κI and gains to the beam ε, and the 1D plane-parallel form is

µ
d I (z, ν, µ, t)

d z
= −κ(z, ν, t)I (z, ν, µ, t) + ε(z, ν, µ, t).

Here, I is the intensity [ Jm−2 s−1 Hz−1], a beam of traveling photons; κ is the absorption coefficient
[m−1], which includes both absorption and scattering out of the radiation beam; ε is the emission
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Figure 1.4: A schematic illustration of the transit method of exoplanet detection
and atmospheric characterization. Panel (a) shows a cartoon of a transit event as
a planet passes in front of its host star. This event corresponds to the first flux
diminution in the plot of stellar flux versus planet phase in panel (b). The second,
smaller diminution corresponds to the occultation event. This figure is adapted from
S. Seager and Deming (2010).

Two years after the discovery of the first transiting exoplanet, D. Charbonneau,
Brown, et al. (2002) detected the first exoplanet atmosphere: using the Hubble Space
Telescope, the transit depth was observed to vary as a function of wavelength as the
planet’s atmosphere absorbed the starlight passing through it. Observations of planet
occultations in the mid-IR also give spectroscopic results: as the occultation’s depth
varies with wavelength, features in the planet’s thermal emission can be uncovered
(e.g. D. Charbonneau, Allen, et al. 2005 and Deming, S. Seager, Richardson, et al.
2005). The Transiting Exoplanet Survey Satellite (TESS) mission, scheduled for
launch in 2018, is designed to search for transiting exoplanets around bright stars –
these will be the most favorable planets for transmission and emission spectroscopy
studies in the future (Ricker, 2014).

The time between transits and occultations has also proven to be useful – Knutson
et al. (2007) observed the first flux variations as the warm dayside of the transiting
planet HD 189733 b rotated in and out of view. This “phase curve” measurement
gave insight into the transport of heat between the tidally locked planet’s perpetual
day and night sides, revealing a hot spot displaced from the nearest point to the star.

Because the brightness of many stars can be monitored simultaneously with modern
wide field imagers, the transit method is well suited to large-scale planet searches.
From 2009 to 2013, the Kepler space telescope continuously monitored a 115 deg2

region of the sky, identifying > 2300 transiting exoplanets (Borucki, D. Koch, et al.,
2010; Batalha, 2014). While the Kepler mission was not sensitive to planets with
years as long as the Earth’s, the statistics of the many planets it did identify were
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extrapolated to conclude that 5.7+1.7
−2.2% of Sun-like stars have an Earth-radius planet

with an orbital period of 200−400 days (Petigura, A. W. Howard, and G. W. Marcy,
2013).

Since an observed transit ensures that the planet’s inclination is near zero, a detection
of the same planet with the radial velocity method yields a powerful combination:
the planet’s radius and mass, assuming that the host star’s mass and radius are also
known. The bulk density given by these two values allows planets to be classified as
gas giants (e.g. Jupiter), ice giants (e.g. Neptune), or rocky planets like the Earth.

Imaging

Direct imaging is perhaps the most intuitive method for exoplanet discovery and
characterization: by detecting an exoplanet as a separate point source from its host
star, the projected position and spectrum of the planet can be directly observed.
Because direct imaging is currently the only method for obtaining spectra of non-
transiting planets, its development is crucial to the success of the field – high
resolution spectroscopy is required to probe the compositions of planets and their
atmospheres. Furthermore, because the probability of transit decreases with the
planet’s semi-major axis, direct imaging is particularly useful for obtaining spectra
of exoplanets orbiting more than a few astronomical units from their host stars.

Direct imaging is challenging due to the combination of planets’ angular proximity
to their host stars and the typically small planet-to-star flux ratios. Following S.
Seager (2010), this flux ratio can be approximated as

fp(i, φ, λ)
fs(λ)

= p(λ)
(

Rp

a

)2
g(i, φ) +

Bλ(Teff,p)R2
p

Bλ(Teff,s)R2
s
. (1.6)

The first term on the right hand side of Equation 1.6 refers to the fraction of starlight
reflected by the planet, where p(λ) is the geometric albedo of the planet as a function
of wavelength, Rp is the radius of the planet, a is the semi-major axis, and g(i, φ)
is the phase function. If the planet is approximated as a fully reflecting, diffusively
scattering sphere, p(λ) = 2/3. The phase function g(i, φ) gives the fraction of the
planet’s disk that is illuminated by the star in terms of the orbital inclination i and
the orbital phase φ. The second term on the right hand side of Equation 1.6 gives the
relative contributions of the star and planet’s thermal radiations. Both objects are
approximated as blackbodies with specific intensities Bλ given by the Plank function
and effective temperatures Teff,s and Teff,p for the star and planet respectively.
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To illustrate these contributions to the planet-to-star flux ratio, Figure 1.5 shows the
flux of a solar system analog at a distance of 10 pc, where the Sun is approximated
as a Teff = 5750K blackbody. The first hump in the maximum-phase planetary
fluxes is due to reflected starlight (see the first term in Equation 1.6), where the
reflected light flux ratio of the Earth-Sun analog reaches a maximum of about 10−10.
The second hump is due to the planets’ thermal emission (see the second term in
Equation 1.6). The Earth-Sun analog’s flux ratio reaches a maximum of about 10−7

in the infrared.

Figure 1.5: The flux as a function of wavelength for a solar system analog at 10 pc.
This figure is adapted from S. Seager and Deming (2010).

At a distance of 10 pc, a planet with a semi-major axis of 1 au would appear at an
angular separation of 0.1′′ from its parent star. Detecting such a planet is beyond
the capabilities of current exoplanet imaging instruments. Section 1.2 explains the
practical challenges and opportunities for such instruments.

Within the purview of modern instrumentation, however, is the direct imaging of
young, massive planets located & 10 au from their parent stars (see the pink dots
on Figure 1.1). Unlike the ∼ 4Gyr Earth, whose infrared emission is dominated by
re-radiated starlight, planets in the first ∼ 100Myrs of their lives thermally radiate
their energy of formation and gravitational contraction.

Figure 1.6 plots models of the luminosity versus age of low mass stars, brown
dwarfs, and planets of various masses, with several directly imaged planets and
planet candidates indicated. All models plotted for 3MJup − 2MJup planets show
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that their luminosity at 1Myrs is more than an order of magnitude greater than
their luminosity at 100Myrs, emphasizing the advantageousness of young, massive
planets for direct imaging studies. Indeed, the planet-to-star flux ratio of the directly
imaged planet β Pictoris b (gray point on Figure 1.6) is 10−4 at 2.18 µm (Bonnefoy,
Lagrange, et al., 2011).

M. Bonnefoy et al.: Characterization of the gaseous companion  Andromedae b
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Fig. 10. Evolution of the luminosity of gaseous objects pre-
dicted by the COND models (black solid line), and Marleau
& Cumming (2013) models with typical “hot-start” (light pink
dashed curve; 3, 5, 10, 13.6 MJup), and “cold-start” initial condi-
tions (dark blue dashed curve; 3, 5, 10, 13.6 MJup). We over-
lay measured luminosity of young low mass companions. A
more complete version of this figure can be found in Marleau
& Cumming (2013).

We also derived absolute flux predictions of SB12 models
for the given filter passbands and the four sets of boundary
conditions (cloud-free models at solar metallicity - cf1s, cloud-
free models with three times the solar metallicity - cf3s, hybrid
clouds at solar metallicity - hy1s, hybrid clouds with three times
the solar metallicity - hy3s) used for  And b following the same
method as in Bonnefoy et al. (2013a). These synthetic fluxes
were compared to the observed SED. The results are reported in
Table 5. The comparison is biased by the limited mass coverage
of the models. We note however, that solutions found within the
models boundaries correspond to initial entropies intermediate
between those of hot and cold-start models, placing the mass at
the typical planet/brown-dwarf boundary (⇠13.6 MJup Spiegel
et al. 2011b; Mollière & Mordasini 2012; Bodenheimer et al.
2013). These solutions correspond to Te↵ values that are in good
agreement with those determined from the companion SED.

In comparison, the models of Marleau & Cumming (2013)
have a much simpler outer boundary condition (hereafter
MC13), using a grey, solar-metallicity atmosphere. We used
them as they can be used to evaluate the impact of underly-
ing hypotheses made in the models (e.g. atmosphere treatment,
equation of state) on the derived joint mass and Sinit values. We
ran Markov Chain Monte Carlo simulations (MCMCs) in mass
and initial entropy as in Marleau & Cumming (2013) with the
related models to account for the uncertainties on the age, Te↵ ,

Table 5. Best fit photometric predictions of the “warm-start”
evolutionary models. Solutions found at the edges of the param-
eter space (mass, Sinit) covered by the models are highlighted in
italic.

Atmospheric model Age Mass Sinit �2

(Myr) (MJup) (kB/baryon)
Cloud free - 1x solar 20 15 9.75 83.19
Cloud free - 3x solar 20 15 9.75 57.77
Hybrid cloud - 1x solar 20 14 9.75 14.56
Hybrid cloud - 3x solar 20 14 9.75 11.92
Cloud free - 1x solar 30 14 9.75 83.39
Cloud free - 3x solar 30 14 9.75 58.32
Hybrid cloud - 1x solar 30 14 10.25 13.73
Hybrid cloud - 3x solar 30 14 10.00 11.29
Cloud free - 1x solar 50 14 10.25 82.45
Cloud free - 3x solar 50 14 10.50 57.66
Hybrid cloud - 1x solar 50 14 13.00 19.30
Hybrid cloud - 3x solar 50 14 13.00 16.27
Cloud free - 1x solar 150 14 13.00 185.43
Cloud free - 3x solar 150 14 12.75 175.71
Hybrid cloud - 1x solar 150 14 13.00 173.50
Hybrid cloud - 3x solar 150 14 13.00 168.67
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Fig. 11. Predictions of the “warm-start” evolutionary models of
SB12 for And b for a system at t ⇡ 30+20

�10 Myr. The extreme val-
ues of the companion age, Te↵ , and luminosities define a range
of masses and initial entropies lying between the dashed and
dotted-dashed curves. We also overlay the initial entropies con-
sidered in “hot-start” (open circles) and “cold-start” (dots) mod-
els of FM08 (based on Marley et al. 2007).

and luminosity of  And b. We assumed Gaussian distributions
on L and Te↵ . We took normal or lognormal errorbars for the two
considered age ranges (t = 30+20

�10 Myr and t = 30+120
�10 Myr), and

chose flat priors in S init and M.
Fig. 12 displays the 68-, 95- and 99 % joint confidence re-

gions from the MCMC runs for both age groups. Open and
closed circles are as in Marley et al. (2007), show the approx-
imate range of entropies spanned by hot and coldest starts, re-
spectively, but shifted upwards by +0.38 kB/baryon to match the

12

Credit: Bonnefoy et al., A&A, 562, A111, 2014, reproduced with permission © ESO 

Figure 1.6: The luminosity of stars, brown dwarfs, and planets are plotted as a
function of age. Several directly imaged exoplanets are overplotted. This figure is
adapted from Bonnefoy, Currie, et al. (2014).

Figure 1.6 also illustrates several important questions raised by the discovery of
∼ 10MJup substellar companions – namely, how these bodies formed, and what,
if anything, distinguishes them from brown dwarfs. A simplistic division between
brown dwarfs and giant planets is the 13MJup mass cutoff for deuterium burning: in
the absence of nuclear fusion at any point during its lifetime, perhaps a companion
body could safely be called a planet. However, this demarcation was called into
question with the discovery of the first directly imaged M < 13MJup companion:
2M1207–3932 b is a ∼ 5MJup object at a distance of 41 au from a 25MJup brown
dwarf (Chauvin et al., 2004). While the lower mass companion certainly falls below
the deuterium burning mass limit, the two bodies are similar enough in mass that
they are likely to have formed like a binary star system via cloud fragmentation.
Hence, a more robust division between planets and brown dwarfs may be their
formation mechanisms – if a body formed from the circumstellar disk of its host
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star, than perhaps it should be classified as a planet regardless of its fusion history.

The dotted pink and purple lines in Figure 1.6 represent two such models of planet
formation. The pink lines represent the “hot start” model of planet formation, in
which a gravitational instability in the disk leads to a rapid collapse to form a high-
entropy gas giant planet (Stevenson, 1982; Burrows et al., 1997). The dotted purple
lines indicate the “cold start” model, in which the comparatively slow accretion
of solid materials leads to a lower-entropy rocky planet or gas giant planet with
a rocky core (Pollack et al., 1996; Bodenheimer, Hubickyj, and Lissauer, 2000).
Measuring the occurrence rates, metallicities, and luminosities of directly imaged
planets at different ages can begin to distinguish between and refine the details of
these formation paradigms.

Unfortunately, young, massive, widely-separated exoplanets are extremely rare:
< 4.1% of FGK stars host a 5− 13MJup planet at 30− 3000 au (B. P. Bowler, 2016).
This paucity of planets within the purview of current direct imaging instruments has
hampered efforts to test planet formation scenarios.

The ∼ 20 planetary mass companions that have been directly imaged, however,
provide their own mysteries. Figure 1.7 shows a color-magnitude sequence of stars
and brown dwarfs with directly imaged exoplanets shown in bold circles. It is
clear that the planets are generally redder than the brown dwarf color-magnitude
sequence, a fact first noted in 2008 with the discovery of the first directly imaged
M< 13MJup planets orbiting a main sequence star (C. Marois, B. Macintosh, et al.,
2008). This color difference is likely due to the planets’ retention of clouds at
lower temperatures than brown dwarfs, as planets’ lower surface gravities affect
their photospheric pressure. Chapter 3 discusses the use of polarimetry as a tool for
studying clouds in the atmospheres of these directly imaged gas giant exoplanets.

1.2 Technology for Exoplanet Imaging
Exoplanet imaging relies on four key pieces of technology and methodology: adap-
tive optics, coronagraphy, observing strategies for differential imaging, and image
post-processing. Starting with a discussion of the affect of atmospheric turbulence
on telescope image quality, these four pieces are introduced below.

The Point Spread Function and Atmospheric Turbulence
If we consider light emitted by a star at a large distance from a circular aperture of
radius a, then the wavefront at the aperture can be assumed to be flat. Under the
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atmospheric condensates. Dust reddens spectra and can
modify the near-infrared colors and absolute magnitudes
of ultracool objects by several magnitudes. This intro-
duces another source of uncertainty if the spectral shape
is poorly constrained, though the difference between
dusty and cloud-free models is smaller at longer
wavelengths and higher temperatures.

One of the most important and unexpected empirical
results to emerge from direct imaging has been the
realization that young brown dwarfs and massive planets
retain photospheric clouds even at low effective tem-
peratures where older, high-gravity brown dwarfs have
already transitioned to T dwarfs (Chauvin et al. 2004;
Metchev & Hillenbrand 2006; Marois et al. 2008; Bowler
et al. 2010b, 2013; Patience et al. 2010; Faherty
et al. 2012; Liu et al. 2013; Filippazzo et al. 2015). This
is demonstrated in Figure 7, which shows the location of
imaged companions near and below the deuterium-
burning limit on the near-infrared color–color diagram.
At young ages, warm giant planets are significantly
redder than the field population of brown dwarfs, and
several of the most extreme examples have anomalously
low absolute magnitudes. For old brown dwarfs, this
evolution from dusty, CO-bearing L dwarfs to cloud-free,
methane-dominated T dwarfs takes place over a narrow
temperature range (∼1200–1400 K) but occurs at a lower
(albeit still poorly constrained) temperature for young gas
giants. The lack of methane is likely caused by
disequilibrium carbon chemistry at low surface gravities
as a result of vigorous vertical mixing (e.g., Barman
et al. 2011a; Ingraham et al. 2014; Skemer et al. 2014b;
Zahnle & Marley 2014), while the preservation of
photospheric condensates can be explained by a depen-
dency of cloud base pressure and particle size on surface
gravity (Marley et al. 2012). Unfortunately, the dearth of
known planets between ∼L5–T5 is the main limitation to
understanding this transition in detail (Figure 8).

In principle, the mass of a planet can also be inferred
by fitting synthetic spectra to the planet’s observed
spectrum or multi-band photometry. The mass can then
be obtained from best-fitting model as follows:

⎛
⎝⎜

⎞
⎠⎟� q �M M

R
R

12.76 10 . 3p
g

Jup
log 4.5 dex

Jup

2

( ) ( )( )

Here glog( ) is the surface gravity (in cm s−2) and R is the
planet’s radius. The radius can either be taken from
evolutionary models or alternatively from the multi-
plicative factor that scales the emergent model spectrum
to the observed flux-calibrated spectrum (or photometry)
of the planet. This scale factor corresponds to the planet’s
radius over its distance, squared (R2/d2; see Cushing

et al. 2008 for details).
Clearly the inferred mass is very sensitive to both the

surface gravity and the radius. In practice, gravity is
usually poorly constrained for model fits to brown dwarf
and giant planet spectra because its influence on the
emergent spectrum is more subtle (e.g., Cushing et al.
2008; Barman et al. 2011a; Bowler et al. 2011;
Macintosh et al. 2015). In addition, the scale factor
strongly depends on the model effective temperature
(r �Teff

4), which is typically not known to better than
∼100 K. Altogether, the current level of systematic

Figure 7. The modern color–magnitude diagram spans nearly 35 mag in the
near-infrared and 5 mag in J–K color. The directly imaged planets (bold
circles) extend the L dwarf sequence to redder colors and fainter absolute
magnitudes owing to a delayed transition from cloudy atmospheres to
condensate-free T dwarfs at low surface gravities. The details of this transition
for giant planets remains elusive. OBAFGK stars (gray) are from the extended
Hipparcos compilation XHIP (Anderson & Francis 2012); M dwarfs (orange)
are from Winters et al. (2015); late-M dwarfs (orange), L dwarfs (green), and T
dwarfs (light blue) are from Dupuy & Liu (2012); and Y dwarfs (blue) are
compiled largely from Dupuy et al. (2014), Tinney et al. (2014), and Beichman
et al. (2014) by T. Dupuy (2016, private communication). Directly imaged
planets or planet candidates (bold circles) represent all companions from
Table 1 with near-infrared photometry and parallactic distances.
(A color version of this figure is available in the online journal.)
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Figure 1.7: The absolute H−band magnitude is plotted as function of J−K color for
various stars and brown dwarfs. Several directly imaged exoplanets are overplotted,
with their color indicating their spectral type. This figure is adapted from B. P.
Bowler (2016).

Huygens-Fresnel principle, the wavefront at each area element dS in the circular
aperture generates spherical wavelets propagating outwards. The electric field at
point P, located at a distance R � a from the center of the circular aperture, is then
the sum of the spherical wavelets originating at all area elements on the circular
aperture. A diagram of this setup is shown in Figure 1.8. Following Hardy (1998),
the expression for this electric field at point P is given by Fraunhofer diffraction:

E(P) = EAei(ωt−kR)

R

∬
Aperture

eik(Y y−X x)/RdS, (1.7)

where ω is the time frequency and k = 2π/λ is the wavenumber of the radiation.
The planewave also has a constant amplitude EA at the aperture. Substituting for
polar coordinates (ρ, θ) in the aperture plane and (r , Φ) in the plane of point P,
Equation 1.7 can be re-written as

E(P) = EAei(ωt−kR)

R

∫ a

0
ρ

∫ 2π

0
ei(kρr/R) cos(θ−Φ)dρdθ. (1.8)

We can simplify this expression using Bessel functions to give

E(P) = EAei(ωt−kR)

R
2πa2

(
R

kar

)
J1

(
kar
R

)
, (1.9)
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where J1 is a Bessel function of the first kind of order one. Finally, the inten-
sity at point P is given by the time-averaged modulus square of the electric field.
Substituting r/R = sin β, this intensity is

I =

(
E2

AA2

2R2

) (
2J1(ka sin β)

ka sin β

)2
, (1.10)

where A is the area of the aperture. This is the Airy function describing the
diffraction pattern far from a circular aperture.
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Figure 1.8: A circular aperture whose center is located at a distance R from a point
of observation P (not to scale). This figure is inspired by Figure 4.2 in Hardy 1998.

If a focusing element (e.g. a lens or parabolic mirror) is co-located with the circular
aperture, the flat wavefront entering the aperture will be made spherical by the
focusing element and will converge to a focus while leaving the Airy diffraction
pattern unchanged.

Unfortunately, a flatwavefront entering the Earth’s atmosphere is no longer flat by the
time it reaches a telescope aperture on the ground. This is primarily due to variations
in the index of refraction of turbulent air pockets encountered by the wavefront as
it propagates through the atmosphere. These different indices of refraction induce
optical path length differences which distort the shape of the wavefront, imparting
a random phase error on the light reaching the telescope:

φ =
2π
λ

∫
nds, (1.11)

where n = N− < N > represents the variations in the index of refraction N of
the atmosphere and ds represents a unit of length through the atmosphere. Here,
φ varies spatially across the wavefront. We can now define the mean square phase
difference between two points on the wavefront separated by a distance r as

Dφ(r) ≡
〈
[φ(0) − φ(r)]2

〉
, (1.12)
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where Dφ(r) is the phase structure function. Adopting a Kolmogorov model of
atmospheric turbulence, the phase structure function can be more simply expressed
as

Dφ(r) = 6.88
(

r
r0

)5/3
, (1.13)

where r0, the Fried parameter, is the characteristic length scale of the turbulence
(Fried, 1966). A telescope with an aperture diameter of r0 would encounter a mean
square wavefront error of 1 radian.

Due to interference between different parts of the wave, a short exposure point
spread function will be composed of ∼ (D/r0)2 “speckles,” each with a diameter of
∼ 1 λ/D, occupying a circular region with a diameter of λ/r0. In a long exposure
image, changes in the atmospheric turbulence will lead to a washed-out, roughly
Gaussian-shaped disk with a full width at half maximum (FWHM) of 0.98λ/r0.
The goal of an adaptive optics system is to flatten the distorted wavefront in order
to bring the PSF back to its diffraction-limited Airy pattern.

Adaptive Optics
An adaptive optics (AO) system brings the point spread function closer to its diffrac-
tion limited shape by sensing and correcting wavefront distortions. A schematic of
an AO system is shown in Figure 1.9.

Science  
Camera 

Wavefront	  
Sensor	  

Computer	  

Beam Splitter 

Deformable	  

Mirror	  

Figure 1.9: A schematic of an adaptive optics system.

The optical path length differences induced by the atmosphere can be mitigated by
a deformable mirror (DM): if the shape of the aberrated wavefront is imposed on a



14

flexible mirror surface, the wavefront of the light bouncing off of that mirror will
flat.

A common DM design consists of a continuous mirror surface with a number of
piezoelectric actuators attached to the back side of the mirror. When voltage is
applied to the actuators, they bend the surface of the mirror by an amount that is
linearly proportional to the applied voltage. The advantages of this piezoelectric
face-sheet DM class include a wide range of physical sizes and actuator densities,
high amplitudes of mirror surface deformation (“stroke"), and high speeds of oper-
ation. Their disadvantages include temperature sensitivity and hysteresis. Adaptive
optics systems such as PALM-3000 and Spectro-Polarimetric High-contrast Exo-
planet Research (SPHERE) use this class of DMs (Beuzit et al., 2008; Dekany et al.,
2013).

Other AO systems, such as Robo-AO and the Gemini Planet Imager (GPI) use
micro electro-mechanical systems (MEMS) mirrors (B. A. Macintosh et al., 2008;
Christoph Baranec, R. Riddle, A. Ramaprakash, et al., 2011). These mirrors are
made usingmicro-lithography, and the their surfaces are deformed using electrostatic
forces rather than piezoelectric actuators. The relative ease and efficiency of MEMS
DM manufacturing processes promise ever lower cost devices with higher actuator
counts.

In practice, the post-DM beam is not perfectly corrected due to errors such as the
DM’s finite number of deformable elements, the delay between the measurement
and correction of the wavefront aberrations, and our knowledge of the shape of
the wavefront. The fitting error, σ2

fitting, refers to the limited ability of a deformable
mirror with N actuators to correct for atmospheric turbulence with a scale parameter
r0 over a telescope diameter D:

σ2
fitting = k

(
D
r0

)5/3
N−5/6 (1.14)

where the scaling value k depends on the details of the DM.

Wavefront sensing is accomplished by splitting off a portion of the light (often in a
different wavelength than the intended science observations), and using specialized
optics to transform the offending phase variations into intensity variations that can be
recorded by a detector. A common wavefront sensor design is the Shack-Hartmann:
a would-be flat wavefront is passed through a grid of small lenses to form a grid of
points on a detector located the lenses’ focal length (J. Hartmann, 1900; Shack and
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Platt, 1971). The displacement of the points gives a measure of the local slope of
the wavefront.

While the Shack-Hartmann wavefront sensor is widespread among both general-
purpose and exoplanet-centric AO systems (e.g. Robo-AO, PALM-3000, and the
Gemini Planet Imager), it is not the ideal wavefront sensor for all situations. For
example, the linear proportionality between thewavefront slope and the spot centroid
breaks down for large-amplitude spot shifts. Other designs (e.g. the pyramid and
Zernike wavefront sensors) have different sensitivity and linearity trade-offs. Guyon
(2005) gives a comprehensive comparison of these different wavefront sensors.

For the case of a Shack-Hartmann wavefront sensor, the wavefront measurement
error σ2

meas. is related to the signal-to-noise ratio (SNR) of the spots formed on the
wavefront sensing detector behind the grid of lenses. Following Hardy (1998), if
the diameter d of the individual lenses is roughly equal to r0 and the spot size on
the detector is λ/d, the measurement error can be approximated as

σ2
meas. =

6.3
SNR

. (1.15)

The SNRmust be carefully traded with the wavefront sensor integration time, which
is linked to the total time lag τs between sensing and correcting the wavefront. For
the simplified case of a single turbulent layer following Kolmogorov statistics, the
temporal wavefront error is given by

σ2
temporal = 28.4 (τs fG)5/3 , (1.16)

where fG = 0.427v/r0 is the Greenwood frequency for a turbulent atmospheric layer
with wind velocity v (Greenwood, 1977).

The combination of Equations 1.15 and 1.16 demonstrate the importance of a bright
wavefront reference source: a very dim source (e.g. a faint star) requires a longer
integration time on the wavefront sensor detector to reduce the measurement error,
but a longer integration time increases the temporal error term. In such cases where
the science target star is too dim to meet the required wavefront error budget, a
nearby brighter star can be used as the wavefront reference source. However, the
angular separation between the science and reference stars means that they will
experience slightly different wavefront aberrations as their light moves through the
atmosphere, leading to an imperfectly corrected science star. The wavefront error
due to this “angular anisoplanatism ” effect is given by
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σ2
angular anisoplanatism =

(
θ

θ0

)
, (1.17)

where θ0 depends on the details of the turbulence statistics, but is generally 15′′−20′′

at 2 µm (Hardy, 1998).

If there is no astrophysical reference source that is bright enough and close enough to
yield satisfactory values of σ2

meas. and σ2
angular anisoplanatism, we must turn to artificial

bright, locatable reference sources.

In the late 1970s and 1980s, the United States government sponsored the develop-
ment of laser beacons to act as bright guide sources for AO systems built for satellite
imaging and high altitude laser energy transfer (Hardy, 1998). Converging with
the conclusions of parallel unclassified efforts, these early explorations led to the
deployment of two classes of laser guide stars: Rayleigh beacons, in which laser
light focused at 10 - 20 km is returned to the telescope by elastic scattering, and
sodium beacons, which induce the fluorescence of sodium atoms at 90 km. In both
cases, the laser light returning to the AO system travels through a subset of the
atmosphere that has affected the astrophysical source originating from above the
atmosphere. The wavefront error due to this “cone effect,” or focal anisoplanatism,
is given by

σ2
focal anisoplanatism =

(
D
d0

)
, (1.18)

where D is the diameter of the telescope and d0 is the reference diameter over
which the wavefront error from focal anisoplanatism is 1 radian2 depending on the
wavelength of measurement and the zenith angle. Equation 1.18 demonstrates that
focal anisoplanatism plays a larger role for telescopes of larger diameters. Hence,
most 8 − 10m-class telescopes employ sodium beacons. Rayleigh beacons, which
are lower cost and simpler to operate than sodium beacons, are better suited to AO
systems on smaller telescopes.

The above discussion can thus be consolidated into a single wavefront error budget
for adaptive optics systems:

σ2
resid. = σ

2
fitting + σ

2
temporal + σ

2
meas. + σ

2
anisoplanatism + σ

2
other. (1.19)

Other sources of wavefront error contributing to Equation 1.19 might include resid-
ual tip and tilt, which reduce the peak intensity of the corrected PSF by smearing
the core over an area wider than λ/D, and wavefront errors in the science focal plane
due to unsensed aberrations introduced after the wavefront sensing beam has been
split off from the science beam.
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Coronagraphy
We now return to the topic of directly imaged planetary mass companions orbiting
nearby stars. It is clear that adaptive optics improves our sensitivity to faint com-
panions at small angular separations from a star because AO moves the starlight
from the halo surrounding the star into its λ/D-sized core. However, the photon
noise from the diffraction rings of a well-corrected stellar PSF also inhibit our sen-
sitivity to faint companions near the star. To suppress the light from the diffraction
rings before that light reaches the science detector, we employ a device called a
coronagraph.

To explain the physics of coronagraphs, we must first return the description of
Frauhoffer diffraction given by Equation 1.8. Continuing to follow Hardy (1998),
we may re-express Equation 1.8 using the spatial frequencies fx = k X/R and
fy = kY/R to give

E( fy, fx) =
∫ +∞

−∞

∫
A (y, x)ei( fy f+ fx x)dydx, (1.20)

where A (y, x) is a re-expression of the term outside of the parentheses in Equation
1.8 in terms of the amplitude variations A0 and the phase variations eiφ(y,x) at the
telescope aperture:

A (y, x) = A0(y, x)eiφ(y,x). (1.21)

Equation 1.20 above demonstrates an important relationship: the electric field at
the image plane is simply the Fourier transform of the electric field at the telescope
aperture.

With this Fourier relationship inmind, we turn to the classic Lyot coronagraph design
shown in Figure 1.10 (B. Lyot, 1939). This design consists of four “planes,” where
each plane is the Fourier transform of the previous plane. The Fourier transform
of the uniformly illuminated aperture is of course the Airy function. At this first
focal plane, we place an opaque “occulting" mask. The Fourier transform of this
masked Airy function is shown in the third plane, where the starlight is now mostly
at the edges. We block out those edges using a circular ring called a Lyot stop. The
Fourier transform of this plane is the final image, which contains less than a few
percent of the star’s original power. An off-axis source such as a planet, however,
will miss the occulting mask and will continue largely undisturbed to the final focal
plane. Hence, the planet-to-star contrast ratio has been drastically increased.

In this example, we placed optical elements at a focal plane and in a plane conjugate
to the telescope’s aperture. Our occulting mask and Lyot stop only affected the
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FIG. 1.ÈThe Lyot coronagraph uses an opaque mask in the image plane, whereas the nulling coronagraph uses a phase mask. Light distribution in the
pupil is very di†erent for the two coronagraphs. For the Lyot coronagraph the light is concentrated inside the pupil near the edge. For the phase mask it is
moved outside the pupil. This Ðgure shows the light distribution in four di†erent planes for both coronagraphs. Plane P1 is the entrance pupil plane ; plane P2
is the focal plane, where the occulting (or phase) mask is ; plane P3 is the second pupil plane, where the ““ Lyot ÏÏ stop is ; and plane P4 is the second focal plane.

pares the two coronagraphs. The Lyot coronagraph, devel-
oped by Lyot for solar corona imaging (Lyot 1939), is the
most common coronagraph used in astronomy. In this
paper, we will consider stellar coronagraphs only. The Lyot
stellar coronagraph uses an opaque mask in the image
plane to remove almost all the light of the star (only the
Airy rings outside the mask are still present). The mask is
usually at least three Airy rings wide. Of course, at this
point, no improvement has been made yet on the detection
of faint light sources near the star, which is the purpose of a
coronagraph.

To understand how the Lyot coronagraph works, the
image of the star in the image plane has to be seen as being
the power spectrum of the pupil complex amplitude (a uni-
formly bright disk). The opaque mask on the central part of
the Airy pattern removes the low-frequency components of
the Fourier transform of the pupil complex amplitude.
Hence, putting an opaque mask on the center of the Airy
pattern increases the relative intensity of the edges of the
pupil in comparison to the center (the edges of the pupil are
di†racting the light away from the central part of the Airy
spot).

The use of a stop in the second pupil plane (after the
mask) can suppress the light contribution from the edge of
the pupil to the Ðnal image. Hence, the Airy rings that were
still present in the Ðrst image plane, outside the mask, are
attenuated. The Ðnal image of the occulted star will be a
dark disk (the mask) surrounded by very faint di†raction
rings. If a light source is far enough from the star so that its
image is outside the mask, its light distribution in the
second pupil plane will be a uniformly bright disk of light
and the pupil stop will remove only a small fraction of its
light. The o†set light source will then be attenuated by a
factor which is far lower than the attenuation of the Airy
rings of the central occulted star, making it easier to detect.

The nulling coronagraph works di†erently. The mask is
not opaque : it is a phase mask which shifts the phase of the
light by 180¡. When the phase mask has the right size,
destructive interference occurs inside the pupil and the light
from the star is sent outside the pupil in the second pupil
plane (see Fig. 1). The nulling coronagraph is not the only
way to use destructive interference on a star in order to
image faint light sources very close to it. The achromatic
interferometric coronagraph (Gay 1996) can cancel out effi-
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Figure 1.10: A schematic of a Lyot coronagraph optical setup. The lower part of
the figure indicates the intensity patterns at the entrance pupil, first focal plane,
second “Lyot" pupil plane, and second focal plane (Guyon, C. Roddier, et al. 1999,
©The Astronomical Society of the Pacific. Reproduced with permission. All rights
reserved).

amplitude of the star’s electric field. Other coronagraph designs place different
components at these key locations, some affecting the amplitude and others the
phase of the starlight’s electric field. Figure 1.11 shows the planet-to-star contrast
ratios achieved by current and planned high contrast imaging instruments, each of
which includes a coronagraph. The currently available facilities shown in Figure
1.11 (the Hubble Space Telescope and the Gemini Planet Imager) do not achieve
the contrasts required to image a solar system analog at 10 pc. Future space-based
observatories (e.g. Wide Field Infrared Survey Telescope) as well as future large-
aperture ground-based observatories (e.g. the EuropeanExtremely Large Telescope)
may achieve this challenging goal (Gilmozzi and Spyromilio, 2007; Spergel et al.,
2015).

To understand the limitations to these instruments’ contrast ratios, we must return
to the concept of “speckles” introduced in the first part of this sub-section when
discussing a short exposure image of a stellar PSF in the presence of turbulence.
Unfortunately, wavefront aberrations introduced by the telescope and instrument’s
optical aberrations (e.g. a ripple pattern on a mirror due to a polishing tool)
also produce such speckles. Aberrations that occur after the AO system, such
as imperfections on the lens that brings the science beam to a focus in Figure
1.9, are particularly problematic because they do not affect the wavefront sensor.
Furthermore, a speckle’s intensity is related to the intensity of the residual post-
coronagraphic stellar PSF at the speckle’s location in the focal plane, which increases
the intensity of speckles falling on the peaks of the diffraction rings. While these
instrument-induced speckles do evolve over time (e.g. due to thermal, gravity
vector, and telescope pointing changes), their noise contribution does not scale with
the square root of the exposure time, and they may persist for the duration of an
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Figure 1.11: The planet-to-star contrast ratios achieved by current and future planet
imaging instruments (black, red, and bold blue lines). Several young, massive
planets that have already been detected in the near infrared are shown by the red
dots. The open blue circles represent the visible-wavelength contrast ratios of
planets that have been detected by the radial velocity method, but have not yet been
directly imaged. The solar system planets at visible wavelengths are shown as black
dots, with the thin blue curves representing different phase angles. This figure was
adapted from Spergel et al. (2015).

observation.

Figure 1.12 shows an example of an image from an AO+coronagraph system on
a real telescope. While one bright companion is visible, any fainter companions
closer to the central star would be difficult to distinguish from speckles. This task –
the differentiation of speckles from planets – is the subject of the next subsection.

Observing Strategies for Differential Imaging
There are several fortuitous differences between speckles and astrophysical signals
that may be exploited to detect faint companions.

First, a telescope with an altitude-azimuth mount can be operated in such a way
that the telescope+instrument orientation stays fixed relative to the image plane
while the astrophysical scene rotates about the telescope’s optical axis. Hence, a
planet will rotate about the central star over the course of an observation, but the
speckles will not (although the speckles will evolve temporally and spatially due to
variations in temperature, pointing, etc). If many short exposures are taken in this
mode, the resulting image cube can be re-aligned based on the planet’s positions.
Median-combining this re-aligned cube increases the SNR of the companion by
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Figure 1.12: An example of a post-AO, post-coronagraphic stellar point spread
function (P1640/Nilsson, private communication). Many bright “speckles” are
visible around the attenuated star in the center of the image. The speckles are slightly
elongated due to the wide bandpass of the image (λ0 = 1.3 µm, ∆λ = 25 nm). The
four bright speckles are intentionally created in order to provide astrometric and
photometric calibration sources.

allowing the spatially-varying speckles to average down. This technique is called
angular differential imaging, or ADI (C. Marois, D. Lafrenière, R. Doyon, et al.,
2006). An important drawback of ADI is that regions closer to the star rotate over
a smaller angular distance than regions farther away for a given exposure time.
Hence, obtaining sufficient rotation for the innermost regions of the image can be
prohibitively time consuming.

Another technique, which can be combined with ADI, is called spectral differential
imaging, or SDI (Racine et al., 1999; Sparks and Ford, 2002; C. Marois, R. Doyon,
et al., 2005; Biller et al., 2006). This technique takes advantage of the variation
of the speckles’ angular separation from the central star with wavelength while the
planet’s position remains fixed for all wavelengths. Many high contrast imaging
systems (e.g. P1640 and GPI) are equipped with a post-coronagraph integral field
unit (IFU), which allows SDI to be used routinely for exoplanet searches while also
providing spectra for known exoplanets (B. A. Macintosh et al., 2008; S. Hinkley et
al., 2011). The speckle subtraction provided by SDI is often limited by a combination
of the contrast of a speckle’s peak intensity compared with the background and the
stability of the speckles over the course of the observation.

Third, a polarized astrophysical signal such as a planet or a disk can be distinguished
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from unpolarized starlight with a technique called dual-mode polarimetric image,
or DPI (Kuhn, D. Potter, and Parise, 2001; M. D. Perrin, J. R. Graham, et al., 2004;
B. R. Oppenheimer et al., 2008). To understand this method, we first consider a
monochromatic plane wave at the arbitrary point r = 0 in the axes x and y:

®E = (x̂E1 + ŷE2)e−iωt = ®E0e−iωt . (1.22)

This is Rybicki and Lightman (1979) Equation 2.35. Following their discussion, the
complex amplitudes in the x̂ and ŷ directions are

E1 = ε1eiφ1, E2 = ε2eiφ2 . (1.23)

The components of the electric field oscillating in the x̂ and ŷ directions are therefore
the real parts of E1e−iωt and E2e−iωt , respectively:

Ex = ε1 cos(φ1 − ωt), Ey = ε2 cos(φ2 − ωt). (1.24)

If we were to plot (Ex , Ey) on the (x, y) plane for various values of t, we would trace
out an ellipse for most values of ε1, ε2, φ1, and φ2. In such a situation, the wave is
elliptically polarized. For special values of these parameters, however, (Ex , Ey) over
time may trace out a circle (corresponding to circular polarization), or a straight line
(corresponding to linear polarization). We can describe the polarization using the
Stokes vectors:

I ≡ ε2
1 + ε

2
2,

Q ≡ ε2
1 − ε

2
2,

U ≡ 2ε2
1 ε

2
2 cos(φ1 − φ2),

V ≡ 2ε2
1 ε

2
2 sin(φ1 − φ2).

(1.25)

We note that under real observing conditions, these quantities are time-averages. If
the electric field of the planet is linearly polarized along the x̂ direction, we can
choose ε1 = 1 and ε2 = 0. Hence, Stokes Q is equal to one while Stokes U and V are
zero. If the star’s electric field has no preferred plane of oscillation, the starlight’s
Stokes Q and U will average to zero.

A straightforward way to distinguish polarized planets or disks from unpolarized
starlight is to insert a Wollaston polarizer between the the coronagraph and the final
image plane. This device is made of birefringent material – i.e. a material whose
index of refraction differs for the two orthogonal linearly polarized components of an
incoming beam. The Wollaston polarizer spatially separates the perpendicular po-
larization vectors to form two images. Unpolarized starlight will contribute equally
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to these two images, while a polarized source will not. Hence, by subtracting the two
perpendicularly polarized images, the star’s PSF and speckles will be removed while
a polarized source will remain. We will return to the topic of polarized emission
from exoplanets in Chapter 3.

While DPI allows for precise subtraction of the stellar PSF and associated speckles,
it is only useful when the planet or disk is itself polarized. Young, massive, widely
separated planets are not universally highly polarized in the near-IR, and so ADI
and SDI remain more popular as general purpose planet-hunting strategies.

Finally, an observation of a reference star with no astrophysical companion can be
subtracted from the science star of interest to remove the stellar PSF (D. Lafrenière,
C. Marois, Rene Doyon, et al., 2009). The difficulty with this reference star dif-
ferential imaging (RDI) method is that the speckle pattern will inevitably evolve
between the observations of the target and reference stars. However, RDI is a partic-
ularly promising method for subtracting the speckles closest to the star, where ADI
exposure times are long. Given a very large library of reference star observations,
a synthetic reference star can be constructed that resembles the science PSF more
than any one reference observation. This post-processing concept is discussed in
the following section.

Image Post-Processing Techniques
Each of the above observing strategies provides imperfect speckle subtraction. Here,
we will describe two post-processing methods that have been developed to remove
residual speckles and bring the noise statistics of the image to the photon noise limit.

C. Marois, D. Lafrenière, R. Doyon, et al. (2006) and D. Lafrenière, C. Marois,
Renè Doyon, et al. (2007) first developed the locally optimized combination of
images (LOCI) technique for speckle calibration. LOCI works by dividing the
science image into sections and for each section finding the linear combination of
reference image sections that, when subtracted, gives the least residual noise. The
reference images can be obtained from any of the methods described in the previous
section (for the example of ADI, the de-rotated frames in which the companion is
sufficiently displaced can serve as the reference frames). The principle drawbacks of
the LOCI algorithm are its speed and the biases that it introduces to the companion’s
photometry and astrometry.

R. Soummer, L. Pueyo, and Larkin (2012) proposed the Karhunen–Loéve image
projection (KLIP) algorithm to mitigate the problems with LOCI mentioned above.
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Like LOCI, KLIP creates a linear combination of reference images originating from
ADI, RDI, SDI, etc, but it processes the library of images differently: KLIP takes
the Karhunen–Loéve transform of the reference library, the output of which is the
optimal set of orthogonal reference images. The science image is projected onto the
first Kklip references to generate the synthetic PSF to be subtracted. The choice of
Kklip depends on the exact observing objective, but is generally chosen to optimize
the planet-to-star contrast ratio or planet SNR. KLIP can be performed on the full
image or on difference pieces of the image separately.
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C h a p t e r 2

ATTAINING DOPPLER PRECISION OF 10 CM S−1 WITH A
LOCK-IN AMPLIFIED SPECTROMETER
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ABSTRACT

We explore the radial velocity performance benefits of coupling starlight to a fast-
scanning interferometer and a fast-readout spectrometer with zero readout noise. By
rapidly scanning an interferometer we can decouple wavelength calibration errors
from precise radial velocity measurements, exploiting the advantages of lock-in
amplification. In a Bayesian framework, we investigate the correlation between
wavelength calibration errors and resulting radial velocity errors. We construct an
end-to-end simulation of this approach to address the feasibility of achieving 10 cm
s−1 radial velocity precision on a typical Sun-like star using existing, 5-meter-class
telescopes. We find that such a precision can be reached in a single night, opening
up possibilities for ground-based detections of Earth-Sun analog systems.
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2.1 Introduction
Recent results from NASA’s Kepler mission indicate that Sun-like stars are teeming
with rocky exoplanets (D. G. Koch et al., 2010; Borucki, D. G. Koch, et al., 2011;
A. W. Howard, G. W. Marcy, et al., 2012; Batalha et al., 2013; Petigura, A. W.
Howard, and G. W. Marcy, 2013). According to statistics derived from Kepler’s
discoveries, and consistent with prior exoplanet searches, ground-based radial ve-
locity and transit surveys targeting nearby stars are approaching the performance
edge of discovering hundreds of exoplanets suitable for detailed atmospheric studies
(e.g. Deming, S. Seager, Winn, et al., 2009; A. W. Howard et al., 2010; Dressing
and D. Charbonneau, 2013; Berta, Irwin, and D. Charbonneau, 2013). NASA’s
future Transiting Exoplanet Survey Satellite (TESS) will likely find those rocky
planets that transit nearby stars in short-period orbits (Ricker, 2014). TESS will
determine the radii of exoplanets transiting nearby stars. With precise radial velocity
measurements of the TESS discoveries, the exoplanet masses, mean densities and
surface gravities can be determined, thereby constraining their interior structures
and atmospheric characteristics.

The future of exoplanet science is therefore promising; however, the precision
needed to detect nearby rocky planets with radial velocities (RVs), and measure the
masses of those found to transit with TESS, is daunting. For example, the Earth
introduces an 8.9 cm s−1 semi-amplitude Doppler reflex motion on the Sun. To
date, the smallest semi-amplitude radial velocity measured on a star is 51 cm s−1

on α Centauri Bb, indicating the presence of an exoplanet with a minimum mass
of 1.13 M⊕, and a semi-major axis of 0.04 AU (X. Dumusque et al., 2012). The
planet’s discovery has yet to be confirmed by independent instruments or techniques,
so α Centauri Bb is widely regarded as an exoplanet candidate. Nevertheless,
the measurement indicates the state-of-the-art in stellar radial velocity precision.
The detection of α Centauri Bb requires both astrophysical and instrumental noise
corrections. Known astrophysical noise sources such as stellar oscillation modes,
granulation, and activity signals can be individually removed through careful choices
of exposure times and observing cadence, as well as modeling each effect separately
(X. Dumusque et al., 2011). Pepe et al. (2011) describe how instrumental noise
sources in HARPS, such as changes to temperature, pressure, and illumination, are
addressed through high cadence, long time baseline observations of nearby, slowly
rotating stars with little known activity. To this end, HARPS observed HD 85512
for 7.5 years, obtaining 185 RV data points and discovering a 3.5 M⊕ planet. The
standard deviation of the data residuals after subtracting the model of the planet
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was measured to be 0.75 m s−1. While this value could encompass uncharacterized
astrophysical noises, 0.75 m s−1 is taken to be representative of the instrumental
noise in HARPS. In order to reduce the state-of-the-art RV semi-amplitude from 51
cm s−1 (α Centauri Bb) to 8.9 cm s−1 (Earth-Sun analog), these instrumental noise
sources must be understood and eliminated.

Eliminating the effects of instrumental noise on radial velocity measurements re-
quires ever more precise wavelength calibration techniques. Historically, iodine
absorption cells and thorium-argon (ThAr) lamps have been the principal wave-
length calibration tools. Starlight passing through an iodine gas cell results in a
dense series of iodine absorption lines superimposed onto the stellar spectrum. This
method has been implemented on HIRES, where planet semi-amplitudes as small
as 1.89 m s−1 have been detected (HD 156668b, A. W. Howard, J. A. Johnson,
et al., 2011). The small number of absorption lines at red and near-IR wavelengths,
however, limits the use of iodine cell calibration for redder stars. Furthermore,
the technique requires complex modeling of the combined iodine/stellar spectrum,
which in turn requires high signal-to-noise data (Lovis and Pepe, 2007). As an alter-
native to the iodine cell approach, fiber-fed spectrographs have used ThAr lamps as a
simultaneous wavelength reference (Baranne et al., 1996). Starlight and ThAr lamp
light are fed into the spectrograph through separate fibers such that their spectra are
simultaneously recorded onto the detector. While ThAr provides more lines in the
near-IR than iodine, the non-uniformity in line spacing and long-term variability of
ThAr sources limits the technique.

Recently, laser frequency combs (LFCs) have provided large numbers of equally
spaced, stable lines over a wide range of wavelengths (e.g. Murphy et al., 2007;
Steinmetz et al., 2008). LFCs fix the phase of standing waves inside a laser cavity
such that the waves periodically interfere constructively, producing bursts of light.
The time between bursts can be accurately controlled using an atomic clock. In the
frequency domain, the laser therefore produces a series of equally spaced spectral
lines.

An experimental LFC installed on HARPS in 2010 has yielded unprecedented RV
stability over short timescales (Wilken et al., 2012). The HARPS spectrograph
is fed by two multimode fibers, or channels; one channel is coupled to starlight,
and the other to light from the LFC. In Wilken et al., 2012, the HARPS team
fed LFC light through both fibers, and differenced the two channels to measure
the instrumental drift. By optimally binning 20-30s exposures for 4 minutes, the
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limiting RV precision due to instabilities between the two channels was found to be
2.5 cm s−1. Between November of 2010 and January of 2011, however, synchronous
drift in the channels induced a standard deviation of 34 cm s−1 between data taken
in the two time periods. While planned changes to the environmental conditions
surrounding HARPS made this 34 cm s−1 drift measurement a slight underestimate
of the long term stability, the two channels nevertheless experienced long term drifts
larger than the 2.5 cm s−1 short term limiting RV precision. These drifts are thought
to be due to uncontrolled, long timescale instrumental changes.

An innovative approach to acquiring Doppler measurements of stars was proposed
by Erskine (2003). By introducing a Michelson or Mach-Zender interferometer into
the optical path before a traditional spectrometer, Erskine (2003) suggested high
Doppler precision could be achieved with instrumental fluctuations minimized. The
technique, called externally dispersed interferometry (EDI), requires that the optical
path difference in the interferometer be modulated, either spatially or temporally.
He suggested both a spatial modulation, by tilting one of the interferometer cavity
mirrors, and a temporal modulation, by physically moving one of the cavity mirrors.
The phases of the resulting fringe patterns, whether temporal or spatial, are highly
sensitive to changes in the Doppler velocity of the target star. As noted by Erskine
(2003), the modulation of a spectrum into a fringe pattern provides a robust way
of eliminating systematic effects, such as fixed-pattern noise, in the resulting radial
velocity measurements.

Since then, multiple groups have implemented EDI systems. Ge et al. (2006) and S.
Mahadevan et al. (2008) describe an instrument called the Exoplanet Tracker (ET)
which uses a tilted cavity mirror without temporal modulation. Van Eyken, Ge, and
S. Mahadevan (2010) describe the theory and implementation of ET and a simi-
lar instrument called the Multi-object APO Radial Velocity Exoplanet Large-area
Survey (MARVELS). Hajian et al. (2007) describe the dispersed Fourier Transform
Spectrometer (dFTS), designed to acquire high-resolution spectra rather than mea-
sure precise radial velocities, also achieved by Erskine et al. (2003). And finally,
Muirhead et al. (2011) describe the TripleSpec Exoplanet Discovery Instrument
(TEDI), which used temporal rather than spatial modulation to map out the fringes.

A particularly interesting result from Muirhead et al. (2011) was the achievement
of 30 m s−1 of RMS radial velocity performance without any calibration of the
spectrometer point-spread function. Typically, precise radial velocity spectrometers
involve a significant amount of effort to stabilize the spectrometer PSF because un-
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calibrated asymmetries in the PSF are degenerate with wavelength calibration errors,
and result in spurious radial velocity measurements on the target star. Muirhead
et al. (2011) show that the reduced importance of wavelength calibration is a direct
result of the radial velocity measurement being encoded in the phase of a sinusoid
varying within each pixel, rather than the change in flux across several pixels, as is
the case for traditional spectroscopy as well as for ET and MARVELS, which use
spatial modulation across pixels rather than temporal modulation within a pixel.

However, a significant challenge to temporal modulation techniques involves effects
from readout noise. The robustness against errors in wavelength calibration is due
to modulation taking place on short timescales, and the PSF fluctuations taking
place over longer timescales. PSF fluctuations or wavelength calibration errors that
occur over the same timescale as the modulation are not removed. Fast scanning is
therefore desired. Readout noise in large format detectors limits the speed at which
one can scan and read out the detector in the spectrometer. InMuirhead et al. (2011),
the authors took 30 second exposures to ensure that the dominant noise source was
photon noise, rather than detector readout noise.

Recent developments in large format, high frame rate and low-readout noise detec-
tors motivate studies of temporal modulation at very high frame rates. Electron
multiplying charge-coupled devices (EMCCDs) and complementary metal-oxide-
semiconductor (CMOS) detectors can be manufactured and operated to have inher-
ently low readout noise (< 1 electron per pixel) and the ability to expose and read
out at very high frame rates ( 100 megapixels per second). With a high enough
gain enabled, EMCCDs have effectively zero readout noise. These detectors are be-
coming commonplace in astronomical instruments (e.g. Dhillon and Marsh, 2001;
C. Baranec et al., 2013), motivating a study of the advantages of fast-modulation
EDI for ultra-precise Doppler velocimetry.

In this chapter, we show that the act of modulating a spectrum in time effectively
decouples wavelength calibration errors from radial velocity measurements. There-
fore, the nature of the radial velocity measurement is fundamentally different from
that obtained from conventional spectroscopy, where wavelength calibration com-
pletely determines the resulting radial velocity measurement. Instead, the radial
velocity precision relies upon precise knowledge of the interferometer positions1.
We augment previous theoretical studies of the EDI technique (e.g. Erskine, 2003;

1Apossible implementation could involve a combination of fine pathlength control with precision
PZTs and fine sensing using a co-propagating laser with exceptional wavelength stability.
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van Eyken, Ge, and S. Mahadevan, 2010) by specifically introducing and recovering
wavelength calibration errors into simulated data. We also investigate the effects of
interferometer position errors on radial velocity precision. Finally, we simulate the
performance of a time-varying interferometric system on a medium-sized telescope
to determine the feasibility of an Earth-Sun analog detection.

2.2 Theory
Following the discussion inErskine (2003) and alsoMuirhead et al. (2011), we derive
the relationship between a temporally modulated spectrum and a radial velocity
measurement. We use this relationship to demonstrate the decoupling of wavelength
calibration errors and RV measurements.

The intensity of the stellar spectrum recorded by the detector depends on both the
wavelength and the interferometer delay. The interferometer delay is assumed to
vary sinusoidally with time, therefore acting as a sinusoidal transmission comb. For
a wave number ν, and delay τ, the measured intensity is given by

Iν,τ = [Sν(1 + cos (2πτν))] ∗ Rν, (2.1)

where Sν is the intrinsic stellar spectrum, (1+cos (2πτν)) represents the transmission
comb, Rν is the spectrograph line spread function, and ∗ represents the convolution.
While most practical interferometer configurations will result in two output beams,
we assume here that the beams have been combined (for example, by placing a
spectrograph and detector at each output and combining the intensities in post-
processing).

The interferometer delay τ can be expressed as the sum of a constant bulk delay,
τ0, and a smaller time-varying phase shift ∆τ. Taking τ = τ0 + ∆τ, and applying
trigonometric identities, the measured intensity can be re-written as:

Iν,τ0,∆τ = Aν + Bν cos (2π∆τν) − Cν sin (2π∆τν). (2.2)

The coefficients Aν, Bν, and Cν are defined as

Aν = Sν ∗ Rν, (2.3)

Bν = [Sνcos(2πτ0ν)] ∗ Rν, (2.4)

Cν = [Sν sin (2πτ0ν)] ∗ Rν, (2.5)

where Aν is the non-modulated spectrum, while Bν and Cν describe the interference
between the stellar spectrum and the transmission comb. These coefficients can
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be determined by varying the interferometer delay ∆τ, and observing the intensity
Iν,τ0,∆τ. A data set, or “scan" is a list of intensities at a range of ∆τ and ν values.

In order to compare the fitted coefficients between two scans, Bν andCν are combined
into a “complex visibility:"

Bν − iCν = [Sνe−i2πτ0ν] ∗ Rν . (2.6)

The complex visibility is used to compare two scans, where one has been Doppler
shifted by ∆ν = (∆RV/c)ν. ∆ν and 1/τ0 are assumed to be small compared to a
resolution element of the spectrograph. By applying the Fourier convolution and
shift theorems, the Doppler shifted “epoch" complex visibility B1

ν − iC1
ν and the

unshifted “template" visibility B0
ν − iC0

ν are related by an exponential phase:

B1
ν − iC1

ν = [B0
ν − iC0

ν ]e−i2πτ0∆ν

= [B0
ν − iC0

ν ]e−i2πτ0(∆RV)ν/c.
(2.7)

For clarity, the discussion above applies to small radial velocity shifts only, due to
the use of the Fourier shift theorem. On-sky observations, however, will be affected
by the Earth’s motion relative to the barycenter of the solar system, producing RV
shifts on the order of 10 km s−1. Muirhead et al. (2011) describe the detailed
derivation of the relationship between the epoch and template complex visibilities,
arriving at the following generalization of Equation 2.7:

B1
ν − iC1

ν = ei2πτ0∆ν
[
(B0

ν − iC0
ν )e−i2πτ0∆ν

]
ν→ν+∆ν

. (2.8)

Therefore, a Doppler shift changes the phase of the complex visibility (for example,
an Earth-Sun analog would result in a phase shift of 3.4 × 10−5 radians). A wave-
length calibration error re-assigns the phase values to a different wavelength grid
without changing the value of the phase itself. The radial velocity measurements are
therefore decoupled from wavelength calibration changes; instead, the RV precision
relies upon precise knowledge of the interferometer positions, described by ∆τ and
τ0. Section 2.4 describes the effects of wavelength calibration and interferometer
position errors in detail.

2.3 Simulation Architecture
In order to quantify instrumental contributions to radial velocity precision, we
construct an end-to-end simulation of the radial velocity reconstruction process
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described in Section 2.2.The flux entering the instrument is modeled using a sim-
ulated solar spectrum (Coelho et al., 2007). We multiply the stellar spectrum by
the interferometer comb, which is modeled as a sinusoidal transmission comb as
a function of wavenumber ν and interferometer delay τ (see Equation 2.1). The
result is therefore a series of spectra multiplied by transmission combs of different
interferometer delays.

The product of the stellar spectrum and interferometer transmission comb is con-
volvedwith the spectrograph instrument profile (IP). The spectrograph IP ismodeled
as a normal distribution with a width corresponding to a spectrograph resolution of
R=10000. The resolution was chosen to be low in order to avoid resolving the inter-
ferometer comb; in order for the phase of the interference fringes to correspond to a
radial velocity change, the comb must remain unresolved. The sampling is assumed
to be 4 pixels per resolution element. The result is a stellar spectrum recorded at
each interferometer step (Figure 2.1). The final data product can be represented by a
three dimensional map of interferometer delay, wavelength, and observed intensity
(Figure 2.2).

It is clear from the axes of Figure 2.2 that wavelength calibration and radial velocity
information are separated; the y-axis represents time (the time-varying position
of the interferometer), while the x-axis represents detector pixels (the wavelength
information introduced by the spectrograph). A radial velocity shift will therefore
result in a vertical shift as the phase of the interference fringes changes, whereas
a change in wavelength calibration will result in a global horizontal shift as the
spectrum’s wavelength is re-assigned.

Figure 2.1: A horizontal cut through Figure 2.2 reveals the simulated stellar spec-
trum. Note that for ease of viewing, Figure 2.2 shows the mean subtracted fringes.
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∆λ ∆RV 

Figure 2.2: A simulated mean subtracted spectrum vs. wavelength and ∆τ for
SNR = 500. The x-axis corresponds to wavelength, or pixels on the spectrometer
detector. The y-axis corresponds to changes in the optical path difference of the
interferometer, and therefore represents time as the interferometer optical path dif-
ference is modulated temporally. The regions of high fringe contrast correspond to
absorption lines in the stellar spectrum. An error in the wavelength calibration is
fundamentally different from a change in the radial velocity of the target star, as long
as the wavelength calibration error does not occur during an interferometer scan.

Each vertical cut through Figure 2.2 represents the intensity as a function of phase
delay at a given wavenumber described by Equation 2.2. Noise is added to the
intensity at each phase delay by adding values drawn from a Gaussian distribution
with a mean of zero and a standard deviation given by the spectrum’s mean divided
by the desired signal-to-noise ratio. For clarity, we refer to this as Poisson noise, but
our simplifications (Gaussian statistics with a constant standard deviation) should
be noted. The Aν, Bν, and Cν coefficients are then fit to each vertical cut, defining
the complex visibilities (Equation 2.6).

In order to measure a radial velocity shift, two data sets, each represented by a figure
like Figure 2.2, are produced: a template spectrum and an epoch spectrum with an
RV shift and wavelength calibration error. The template spectrum is assumed to
have infinite signal-to-noise, due to either a long on-sky integration or the use of a
simulated spectrum. The template spectrum is multiplied by a complex phasor as in
Equation 2.8, containing a test RV shift, and is interpolated onto a new wavelength
grid to represent the effect of the wavelength calibration error. This modified
template spectrum and the originally shifted epoch spectrum are then compared
using a chi-squared test that treats the real and imaginary parts of the complex
visibilities separately:

−χ2

2
=

∑
ν

(
Bs
ν − B1

ν

)2
+

(
Cs
ν − C1

ν

)2
, (2.9)

where B1
ν and C1

ν describe the epoch spectrum, and Bs
ν and Cs

ν describe the modified
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Table 2.1: Simulation Parameters

Parameter Value Units Description
Spectrograph resolution 10,000 This is chosen to be small to

avoid resolving the interferom-
eter comb

Pixels per res. elem. 4.0 pixels Slightly exceeds Nyquist sam-
pling

Bandpass 507-
595

nm V-band FWHM

Stellar model Coelho N/A G star spectrum from Coelho et
al 2007

Scan step size 0.012 µm 20×(Nyquist sampling)
Scan stroke 2.5 µm 5 fringe cycles
Bulk Delay 2.0 cm

template spectrum. Because the likelihood function is defined as

L = e
−χ2

2 , (2.10)

Equation 2.9 is considered to be log(L). We compute log(L) on a grid of radial ve-
locity and wavelength calibration error test points, and find the points that minimize
Equation 2.9 by parabola fitting. By computingmany such solutions for independent
realizations of the noise, we construct histograms of radial velocity and wavelength
calibration errors solutions that are well described by Gaussian statistics. We define
the standard deviation of 100 radial velocity solutions to be the “radial velocity
precision." By fitting a 2D Gaussian distribution to a 2D histogram of several thou-
sand radial velocity and wavelength calibration error solutions, we compute error
ellipses demonstrating the relationship between the two parameters (Figure 2.3). In
contrast to traditional RV reconstruction methods, the contours show an elliptical
shape, demonstrating that the RV and wavelength calibration error measurements
are not highly correlated.

2.4 Error Budget
The simulation described in Section 2.3 is used to analyze the effects of Poisson
noise, wavelength calibration errors, and interferometer position errors. The as-
sumptions used in the simulation are listed in Table 2.1. We also note that all
radial velocity and wavelength calibration error solutions discussed in this section
were generated using a spectral bandwidth of ∆λ = 88Å, while the FWHM of the
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Figure 2.3: Simulated likelihood contours describing the radial velocity and wave-
length calibration error reconstructions for injected values of 1000 m s−1 and 500 m
s−1 respectively, for SNR=100 and a spectral bandwidth of ∆λ = 88Å. In contrast
to traditional RV reconstruction methods, the contours show an elliptical shape,
demonstrating that the RV and wavelength calibration error measurements are not
highly correlated.

V-band filter is ∆λ = 880Å. We chose this smaller bandwidth to accommodate the
available computing resources. Because the number of spectral lines increases with
the square root of the bandwidth, however, we can represent the ∆λ = 880Å radial
velocity precision by dividing the ∆λ = 88Å radial velocity precision by

√
10. The

text and figures below refer to radial velocity precisions that have been modified by
this factor.
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Figure 2.4: Radial velocity precision is plotted against the signal-to-noise ratio
for Poisson noise limited measurements, (no instrumental or astrophysical noise
sources). Under these conditions, an SNR of about 94 per phase step, for 200 phase
steps, is required to reach a precision of 10 cm s−1. The RV precisions shown in
this plot were calculated using a spectral bandwidth of ∆λ = 88Å, and were divided
by
√

10 to reflect the RV precisions associated with the full V-band bandwidth of
880Å.

Poisson Noise
In the absence of all instrumental or astrophysical noise sources, the radial velocity
precision decreases as 1/SNR (Figure 2.4). Under these conditions, a signal to noise
ratio of about 94 per spectrograph resolution element is required to reach a radial
velocity precision of 10 cm s−1. Sections 2.4-2.4 below describe how instrumental
noise sources cause the RV precision to deviate from this ideal case.

Wavelength Calibration Errors
Figure 2.5 shows that the radial velocity precision changes by mm/s per km/s
of wavelength calibration error for high signal-to-noise ratios. The black line in
Figure 2.5 represents the 1:1 correspondence between wavelength calibration and
radial velocity using conventional RV reconstruction methods. We have therefore
demonstrated that by temporally varying a stellar spectrum, the dependence of the
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Figure 2.5: The radial velocity precision is shown to be approximately constant over
10 km s−1 (∼ 0.2Å) wavelength calibration errors for SNR = 10, 100, and 1000. In
contrast, the radial velocity precision is proportional to the wavelength calibration
error in conventional spectroscopy. The RV precisions shown in this plot were
calculated using a spectral bandwidth of ∆λ = 88Å, and were divided by

√
10 to

reflect the RV precisions associated with the full V-band bandwidth of 880Å.

radial velocity precision on a consistent, correct wavelength solution is reduced.

Interferometer Position Errors
This robustness against wavelength calibration errors comes at the cost of precise
knowledge of the interferometer position. The interferometer position is described
by a constant “bulk" offset and a much smaller time varying phase shift (τ0 and ∆τ,
respectively, in Equation 2.2).

Equation 2.8 shows that errors in estimation of the bulk delay produce proportional
errors in the RV precision. Therefore, the same error in a bulk delay measurement
will result in poorer RV precision for stars with larger radial velocities. In order to
calculate the smallest required bulk delay measurement error, we must consider the
target stars with the largest radial velocities. Barycentric motion produces radial
velocity differences of up to 60 km s−1. In order to reach an RV precision of 10 cm
s−1 with a typical bulk delay of 2 cm, the maximum bulk delay measurement error is(

10 cm
60 km

)
2 cm = 33 nm. State-of-the-art piezo electric stages are capable of sub-nm

RMS measurement accuracy (e.g. Samuele et al. (2007)), so we conclude that the
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Figure 2.6: The RV precision is plotted against the standard deviation of the phase
step error. The horizontal dotted lines represent the Poisson limited RV precision
for each SNR. In the phase step error limited regions, the RV precisions approach
the limiting SNR = ∞ condition, shown by the black line. For SNR = 100, ∆τ must
be measured to less than 1 nm to reach the Poisson limited regime. Because the
phase step errors are assumed to be uncorrelated, the total number of phase steps
affects the final RV precision. In this simulation, we chose 200 steps (Table 2.1).
The RV precisions shown in this plot were calculated using a spectral bandwidth of
∆λ = 88Å, and were divided by

√
10 to reflect the RV precisions associated with

the full V-band bandwidth of 880Å.

bulk delay can be adequately measured to provide 10 cm s−1 precision on the stars
with the largest radial velocities.

Errors in the phase step estimations, however, impose more strict metrology require-
ments. Figure 2.6 shows the radial velocity precision as a function of phase step
error. Normally distributed errors with standard deviations represented by the values
on the x-axis were added to the true phase delays. The horizontal regions of the
SNR = 10, 100, and 1000 plots show the Poisson limited regime, while the sloped
regions represent the phase step error limited regime. The black line represents SNR
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=∞. For a single SNR = 100 scan, the phase steps must be known to sub-nanometer
precision to remain in the Poisson limited regime. Because the phase step position
errors are expected to be normally distributed, however, taking multiple scans will
improve the RV precision by the square root of the number of scans. In this way,
the SNR of the combined scan is increased while the errors due to interferometer
position errors are reduced. Section 2.5 describes this approach in detail.

2.5 The Feasibility of an Earth-Sun Analog Measurement
We have shown that the modulation of a stellar spectrum in time decouples wave-
length calibration errors from RV measurements, while coupling interferometer
position errors to RV measurements. Given these new constraints, we now address
the feasibility of reaching a radial velocity precision of 8.9 cm s−1 on a G-type
star using an exiting telescope. Our assumed bandpass, throughput, interferometer
control requirement, and target star magnitude are summarized in Table 2.2 and
described in detail below.

Operating in the visible (≈ 500 − 600 nm) while observing Sun-like stars has the
dual advantage of covering the peak of the G star blackbody function while reducing
contamination due to telluric lines compared to the infrared. A visible bandpass,
however, may come at the cost of throughput. In order to minimize the effects

Table 2.2: Instrument-Specific Parameters

Parameter Value Units Comments
Bandpass 507-

595
nm V-band FWHM

Sky to detector through-
put

7.4 % Representative of a singlemode
fiber coupled to a 30% Strehl
input beam and a spectrograph
with 30% efficiency

Interferometer position
control requirement

1 nm Conservative requirement
based on 0.4nm state-of-the-art
piezoelectric parameters

Stellar visual magnitude 8.5 mv Representative of the mode of
the visual magnitudes of the
100 brightest G stars

Minimum SNR per reso-
lution element

8 Based on minimum SNR to
avoid the read noise limited
regime
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of interferometer position errors, calibration and starlight should share a common
path in the interferometer and spectrograph. One possible approach would be to
feed the instrument with a single mode fiber, containing both starlight and light
from a calibration source (for example, a frequency stabilized laser). In this way,
modulation of the calibration light, imprinted on the science data itself, will measure
the changes in the optical path difference of the interferometer.

The single-mode fiber coupling efficiency is determined primarily by the Strehl
ratio of the associated adaptive optics system. Single-mode fibers are inherently
diffraction limited, and require diffraction-limited beams delivered from a telescope
in order to have any consequential coupling: seeing-limited telescopes will not
couple nearly enough starlight for a Doppler survey of nearby stars (Shaklan and F.
Roddier, 1988). Recently, however, advanced adaptive optics systems have reported
significant Strehl ratios at visible wavelengths. For example, the Robo-AO system
on the Palomar 60-inch telescope has achieved a Strehl ratio of 18% in i-band (C.
Baranec et al., 2012). The PALM-3000 adaptive optics system on the Palomar
200-inch telescope is designed to achieve high Strehl ratios at visible wavelengths.
PALM-3000 is predicted to achieve 30% Strehl in V-band, equivalent to a 95 nm
RMS wavefront error (Dekany et al., 2013). Researchers at the University of
Arizona recently commissioned a visible-light adaptive optics system (VisAO) on
the 6.5-m Magellan Clay Telescope, demonstrating a 43% Strehl ratio, or 149 nm
RMSwavefront error, in Y-band (Close et al., 2013). For the purposes of this study,
we estimate the total sky-to-detector throughput to be 7.4% by multiplying the ideal
fiber coupling efficiency of 82% by a Strehl ratio of 30%, based on the performance
of PALM-3000 at visible wavelengths, and a spectrograph efficiency of 30%.

As described in Section 2.2, instrumental noise varying more slowly than the inter-
ferometer’s phase steps is rejected. For maximum noise rejection, the interferometer
should therefore scan as quickly as possible. The interferometer’s speed is then lim-
ited by detector frame rates and read noise. The lowest noise detectors at optical
wavelengths, CCDs, have significant readout times of seconds to minutes. This
limits the rate at which we can modulate an optical signal to the point that lock-in
amplification is effectively pointless with most CCD detectors. However, the devel-
opment of high-frame rate, low read noise EMCCDs and sCMOS detectors opens
up the possibility of using lock-in amplification at optical wavelengths. Assuming a
detector read noise of 2e− per pixel, gain = 1, and four pixels per resolution element,
the detector must measure 64 photons per resolution element (SNR=8) to remain
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well within the photon noise limited regime. The exposure time necessary to reach
this minimum SNR will place an upper limit on the scanning speed.

Taking a series of scans can reduce normally distributed noise due to interferometer
position errors. The number of scans is chosen such that the desired RV precision
is achieved under realistic position error conditions. State-of-the-art piezoelectric
stages can be controlled to less than 1 nmRMS (e.g. Samuele et al. (2007) controlled
the Physik Instrumente P-752 flexure stage to 0.4 nm rms), so we choose a 1 nm
control requirement. In order to reach 10 cm s−1 with phase step errors of 1 nm
RMS and bulk delay errors of 10% τ0 , we require 139 scans, each with SNR = 8.

We now choose a target star magnitude and telescope size to determine the observ-
ing time required to take 139 such scans. To choose a representative target star
magnitude, we constructed a histogram of the 100 brightest G stars. We choose
mv = 8.5 as a representative magnitude from this sample.

The Palomar 200" telescope would take about 0.074 seconds to reach SNR=8 per
resolution element, given the assumptions in Tables 2.1 and 2.2. For 139 scans, each
with 200 0.074 s phase steps, the 200" telescope would require about 0.57 hours to
reach a radial velocity precision of 10 cm s−1. It is therefore possible to reach the
radial velocity precision necessary to detect Earth-like planets around Sun-like stars
using existing, 5-meter-class telescopes.

2.6 Conclusions
The current state-of-the-art radial velocity instruments are limited by their ability
to maintain their system’s wavelength solution in the presence of slowly varying in-
strumental noise. Lock-in amplification, however, can suppress such long timescale
noise sources, while decoupling the effects of wavelength calibration errors from
radial velocity precision. The simulations presented in this chapter indicate that
lock-in amplified, externally-dispersed interferometry is a possible path forward to
reach the radial velocity precision necessary to detect Earth-Sun analog systems on
existing, medium-sized telescopes.
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C h a p t e r 3

POINT SOURCE POLARIMETRY WITH THE GEMINI PLANET
IMAGER: SENSITIVITY CHARACTERIZATION WITH T5.5

DWARF COMPANION HD 19467 B
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ABSTRACT

Detecting polarized light from self-luminous exoplanets has the potential to provide
key information about rotation, surface gravity, cloud grain size, and cloud cover-
age. While field brown dwarfs with detected polarized emission are common, no
exoplanet or substellar companion has yet been detected in polarized light. With
the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE,
such a detection may now be possible with careful treatment of instrumental po-
larization. In this chapter, we present 28 minutes of H-band GPI polarimetric
observations of the benchmark T5.5 companion HD 19467 B. We detect no po-
larization signal from the target, and place an upper limit on the degree of linear
polarization of pCL99.73% ≤ 2.4%. We discuss our results in the context of T dwarf
cloud models and photometric variability.
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3.1 Introduction
Recent imaging spectroscopy of directly imaged planets such as β Pic b, HR 8799
bcd, and 51 Eri b (Chilcote et al., 2015; Ingraham et al., 2014; B. Macintosh et al.,
2015) has demonstrated that this technique will soon become routine. At the same
time, these early studies have underscored the challenges of fitting atmospheric
models based on field brown dwarf spectra to exoplanets with comparatively low
masses and surface gravities (Barman et al., 2011; M. S. Marley et al., 2012).
For instance, the HR 8799 planets’ red colors are consistent only with models that
include dusty, patchy clouds and non-equilibrium chemistry, but these scenarios
require radii that are inconsistent with the predictions of evolutionary models (C.
Marois, B. Macintosh, et al., 2008; B. P. Bowler et al., 2010; Ingraham et al., 2014).
The spectra of β Pic b gathered to date also require a cloudy atmosphere, but even
the best fitting models contain large (5% − 10%) systematic offsets from the data
(Chilcote et al., 2015). These and other studies indicate that clouds are common
in planetary atmospheres, but current atmospheric models require a more detailed
treatment of cloud physics (e.g. dust grain size distributions, grain chemistry, and
large scale opacity holes, or “patchy" cloud regions).

Polarimetry is well-suited to the problem of analyzing planetary atmospheres. As
early as 1929, Bernard Lyot published reflected light polarimetry of Venus as a
means of probing the planet’s cloud composition (B. Lyot, 1929). In the modern era
of exoplanet astronomy, at least 10 years of theoretical work have been devoted to the
polarization of reflected starlight by a close-in directly imaged exoplanet (Schmid
et al., 2006; Stam, 2008; Buenzli and Schmid, 2009). In this chapter, we address a
separate regime of exoplanet polarimetry: scattering by grains in the atmospheres of
cloudy, self-luminous exoplanets, which induces polarization of thermally emitted
radiation in the near infrared (Sengupta and M. S. Marley, 2009; M. S. Marley and
Sengupta, 2011; Kok, Stam, and Karalidi, 2011). While Rayleigh scattering in the
atmospheres of cloud-free exoplanets can polarize visible wavelength radiation, we
concentrate on the case of ∼micron sized dust grains that polarize infrared radiation,
where young, self-luminous exoplanets emit the bulk of their radiation.

A perfectly spherical, uniformly cloudy planet, however, would have zero disk-
integrated polarization. In order to produce a non-zero polarization signature when
the planet is viewed as a point source, the clouds must be nonuniformly distributed
(e.g. patchy or banded) and/or the body must be oblate (Basri, 2000; Sengupta and
Krishan, 2001). Both of these characteristics have been invoked to explain the ob-
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served polarization of brown dwarfs in the field. Time-varying polarimetric signals
indicate evolving or rotating nonuniform cloud distributions, while comparisons
of fast and slow brown dwarf rotators show that oblate bodies are more likely to
produce observable polarimetric signals than spherical bodies (Ménard, Delfosse,
and Monin, 2002; Osorio, Caballero, and Bejar, 2005; Goldman et al., 2009; Tata
et al., 2009; Zapatero Osorio et al., 2011; Miles-Páez et al., 2013). For example,
Miles-Páez et al. (2013) found that 40±15% of rapidly rotating (v sin i ≥ 30 km s−1)
M7-T2 dwarfs are linearly polarized in the Z− and J−bands, with linear degrees of
polarization of 0.4% − 0.8%. The fastest rotators (v sin i > 60 km s−1) were more
frequently polarized, and had larger detected polarizations compared to moderate
rotators (v sin i = 30 − 60 km s−1). Furthermore, polarimetry in different broad
wavelength bands has provided a diagnostic of grain sizes (Osorio, Caballero, and
Bejar, 2005).

These field observations set the stage for exoplanet and brown dwarf companion po-
larimetry. Becausemodels and field dwarf observations agree that the cloud-induced
degree of linear polarization is generally p ≤ 1%, the observational challenge is
to reach the companion-to-star contrast ratio and absolute polarimetric accuracy
needed to detect such small signals. SPHERE (Beuzit et al., 2008) and GPI (B. A.
Macintosh et al., 2008; B. Macintosh et al., 2014) are the first spectro-polarimeters
capable of achieving contrasts < 10−5 at separations < 1" and an absolute accuracy
in the degree of linear polarization of p < 0.1% in the near infrared (Wiktorowicz
et al., 2014). These instruments are poised to make the first detections of polarized
light from substellar companions, providing a powerful new tool for atmospheric
characterization.

In order to assessGPI’s accuracy in linear polarization for point sources, we observed
the benchmark T dwarf HD 19467 B for 28 minutes of integration time on February
1st 2015. HD 19467 B is unique among substellar companions in that it is the only
T dwarf with a solar-analog primary to be detected both as a long term trend in RV
measurements and by direct imaging (J. R. Crepp, J. A. Johnson, A. W. Howard,
G. W. Marcy, Fischer, et al., 2012). Recently, J. R. Crepp et al. (2015) determined a
spectral type of T5.5 ± 1 and an effective temperature of Teff = 978+20

−43 K (see Table
3.1 below) using the Project 1640 integral field spectrograph at Palomar Observatory
(S. Hinkley et al., 2011). While mid T dwarfs are generally thought to be cloudless,
HD 19467 B was the only brown dwarf companion or exoplanet meeting GPI’s
observability requirements (I < 9 parent star and planet-star separation < 2.0”) at
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the time of the pathfinder experiment.

We describe our observational methods and Stokes parameter extraction in Section
3.2. In Section 3.3 we measure the degree of linear polarization at the location of
the companion and empirically estimate GPI’s polarimetric point source sensitivity.
In Section 3.4, we place our results in the context of field T dwarf observations and
discuss our upcoming GPI campaign for exoplanet polarimetry.

Table 3.1: HD 19467 System Properties, After J. R. Crepp, J. A. Johnson, A. W.
Howard, G. W. Marcy, Brewer, et al. (2014) and J. R. Crepp et al. (2015)

HD 19467 A Properties
J 5.801 ± 0.020
H 5.447 ± 0.036
Ks 5.401 ± 0.026
Mass [M�] 0.95 ± 0.02
Radius [R�] 1.15 ± 0.03
Luminosity [L�] 1.34 ± 0.08
Teff [K] 5680 ± 40
SpT G3V
d [pc] 30.86 ± 0.60
Age, multiple techniques [Gyr] 4.6 - 10
[Fe/H] −0.15 ± 0.04

HD 19467 B Properties
J 17.61 ± 0.11
H 17.90 ± 0.11
Ks 17.97 ± 0.09
Mass [MJup] ≥ 51.9+3.6

−4.3
Teff [K] 978+20

−43
SpT T5.5 ± 1
Separation [AU, as] 51.1 ± 1.0, 1.65"

3.2 Observations and Data Reduction
We briefly summarize GPI’s polarimetric mode here; for details, see B. Macintosh
et al. (2014), Wiktorowicz et al. (2014), and M. D. Perrin, Duchene, et al. (2015).
In polarimetry mode, a Wollaston prism replaces the integral field spectrograph’s
dispersing prism, and an achromatic half waveplate is inserted between the coro-
nagraph’s focal plane and Lyot mask. In an observing sequence, the waveplate is
rotated after each exposure in steps of 22.5◦. GPI operates in angular differen-
tial imaging (ADI) mode, allowing the sky to rotate with respect to the telescope
pupil. The Stokes datacube [x, y, (I,Q,U,V)] describing the astronomical polariza-
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tion is extracted from the raw data by inverting the Mueller matrix whose elements
represent the polarization induced by the instrument and sky rotation. A detailed
description of the Stokes cube extraction can be found in M. D. Perrin, Duchene,
et al. (2015).

The observing sequence consisted of twenty-eight 60s exposures in the H-band,
where each sequence of four exposures cycled through the waveplate angles 0.0◦,
22.5◦, 45.0◦, and 67.5◦. The exposures were taken from Modified Julian Day
57054.0536728 to 57054.0773418 and the airmass ranged from 1.21 to 1.32. The
total field rotation was 4◦. The observations were taken under Gemini program
number GS-2014B-Q-503.

In this study, the Stokes datacube was constructed from the raw data using a modi-
fied version of the publicly available GPI pipeline v1.2.1 (Maire et al., 2010; M. D.
Perrin, Maire, et al., 2014). Modifications, which will be released in a future ver-
sion of the pipeline, included improved flat fielding and instrumental polarization
subtraction. The latter was achieved by measuring the fractional polarization inside
the coronagraphic mask, which was assumed to contain only diffracted starlight
affected by instrumental polarization, on each polarization difference cube. The
instrumental polarization was then subtracted from the image as a whole, by mul-
tiplying the measured fractional polarization by the total intensity at each spatial
location. This method was introduced by Millar-Blanchaer et al. (2015), who found
similar instrumental polarization levels as those measured using the same dataset
by Wiktorowicz et al. (2014). The method used in Wiktorowicz et al. (2014) to
estimate the instrumental polarization measures the fractional polarization in each
frame using aperture photometry on the occulted PSF, and fits an instrumental po-
larization model that leverages the field rotation within their dataset to distinguish
between an astrophysical source and the instrumental polarization. The method
used here and in Millar-Blanchaer et al. (2015) has the advantage of operating on
each polarization datacube individually and therefore this method does not rely on
sky rotation. While promising for point source polarimetry data, techniques such as
LOCI or PCA that take greater advantage of the sky rotation to reduce instrumental
polarization are beyond the scope of this chapter. Section 3.3 briefly describes how
our results could be improved by these techniques.

Spurious pixels in the Stokes cube were replaced with values obtained by interpo-
lation over pixels with counts greater than three standard deviations from the mean,
and the detector’s gain of 3.04e-/ADU was applied to convert the raw counts to
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electrons (this gain is reported in the FITS headers of all GPI data cubes). The final
reduced Stokes I, Q, and U images are shown in Figure 1. The four bright areas in
the corners of the Stokes I frame (Figure 1a) are satellite spots used for photometric
and astrometric calibration in GPI’s imaging spectroscopy mode. HD 19467 B is
readily visible on the righthand side of the Stokes I frame, but is not apparent in
the Stokes Q or U frames. In the next section, we will calculate the companion’s
signal-to-noise ratio in each Stokes frame, and comment on the degree of linear
polarization at the companion’s location.
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Figure 3.1: The reduced Stokes images with the ring of comparison apertures super-
imposed (the white arrow indicates the companion in Stokes I). The companion’s
SNR (Equation 3.1) is 7.4 in Stokes I, but SNR< 1.0 in Stokes Q and U. Hence, no
polarized radiation is detected from the companion.

3.3 Polarimetric Analysis
A linearly polarized companion would produce signal in the Stokes Q and/or U
frames at the same location as the companion’s signal in the Stokes I frame. In order
to determine whether we detect polarized radiation from HD 19467 B, we must
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therefore calculate the signal-to-noise ratio (SNR) in an aperture at the companion’s
location in each of the Stokes frames.

In order to choose the optimal aperture size, we first estimate the companion’s full
width at half maximum (FWHM) in the Stokes I frame by fitting the sum of a 2D
Gaussian distribution and a plane to an 11 × 11 pixel (≈ 3 × 3 FWHM) window
around the companion’s PSF. The plane component was included to account for
the shape of the parent star’s halo at the companion’s location. The FWHM is
found to be 3.44 pixels, or 0.049", which is consistent with the diffraction limit of
λ/D=0.041" in the J band.

The optimal aperture size for photometry will maximize the companion’s signal-
to-noise ratio in the Stokes I frame. The “signal" is the difference of the sum of
the counts inside the companion’s aperture and the contribution from the parent
star’s residual halo at the companion’s separation. This halo contribution is found
by constructing a ring of apertures around the parent star at the same separation
as the companion. These comparison apertures, shown in Figure 1, do not form a
complete ring because the parent star was offset from the detector’s center to allow
for more sky rotation of the companion. We also deleted those apertures that fall
within a FWHM of the bright astrometric spots. Despite these removals, the effect
of small sample statistics is negligible here (Mawet et al., 2014). For each aperture
size, the total number of apertures is modified to prevent them from overlapping.
We then sum the flux in each of these comparison apertures. A histogram of the
Stokes I aperture sums is shown in Figure 2a. The histogram is asymmetric due
to the competing effects of the modified Rician statistics governing speckle noise
and the whitening of those statistics after ADI reduction. We take the parent star’s
halo contribution to the flux inside the companion’s aperture to be the mean of the
comparison apertures sums, µi, and the noise to be the standard deviation of the
comparison aperture sums, σI . The signal to noise ratio is therefore

SNR =
Ic − µI

σI
, (3.1)

where the c subscript denotes the sum of the counts inside the companion’s aperture
(Ic = 26127.4e−). The signal-to-noise reached a maximum of SNRI = 7.4 for an
aperture diameter of 1×FWHM. The “aper" aperture photometry tool provided by
the IDL Astronomy User’s Library was used to compute all aperture sums.

To calculate the SNR in the Stokes Q and U frames, we use the same comparison
aperture size and locations as in the Stokes I frames. The histograms of the aperture
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sums in the Stokes Q and U frames are shown in Figure 2b,c. We take the parent
star’s halo contribution to the flux inside the companion’s aperture in the Q and U
frames to be the means of the aperture sums, µQ and µU , and the noise terms to be
the standard deviations σQ and σU of the aperture sums. Following Equation 3.1,
we find that Qc = −99.0 and Uc = 41.7, while SNRQ = 0.90 and SNRU = 0.79. We
therefore conclude that we do not detect any polarized radiation from HD 19467 B.
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Figure 3.2: Histograms of the summed counts in the Stokes comparison apertures.
The aperture size is equal to the full width at half maximum of the companion (3.44
pixels, or 0.049"). The Stokes I histogram (a) has an excess of higher values due to
speckle noise. Because HD 19467 A is an unpolarized star, there is little flux at the
companion’s separation in the Q and U frames. The large spread in Q and U values
is due in part to the small number of apertures used (66).

Our goal now is to place an upper limit on the companion’s linear polarization
fraction, p. In general, p is defined as

p =

√
Q2 +U2

I
. (3.2)
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Our strategy will be to compute the probability density function (PDF) of p, and
take the representative upper limits on p to be the upper bounds of the 68.27%,
99.73%, and 99.9999% confidence intervals.

We take the PDFs of Q and U to be Gaussian distributions with means and standard
deviations matching those of the Q and U aperture sums via maximum likelihood
estimation. We compute the PDF of

√
Q2 +U2 using the formalism of Aalo,

Efthymoglou, and Chayawan (2007), which considers the most general case of the
PDF of R =

√
X2

c + X2
s where Xc and Xs are correlated real Gaussian random

variables with means µc, µs and standard deviations σc, σs. Aalo, Efthymoglou,
and Chayawan, 2007 first rotate (Xc, Xs) through the angle φ, chosen such that the
new coordinates (Y1,Y2) are uncorrelated:

Y1 = Xc cos φ + Xs sin φ, (3.3a)

Y2 =−Xc sin φ + Xs cos φ, (3.3b)

φ =
1
2

tan−1
(

2ρσcσs

σ2
c − σ2

s

)
, (3.3c)

where ρ is the correlation coefficient between Xc and Xs. The full derivation of the
PDF of R is beyond the scope of this chapter, but we quote the result here and refer
to Aalo, Efthymoglou, and Chayawan (2007) for a more detailed treatment. The
final PDF is given by
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where µ1, µ2 and σ1, σ2 are the mean and standard deviations ofY1 andY2, εn=0 = 1
and εn,0 = 2, δkodd = 0 and δkeven = 2(−1)k/2, Cn

k is the binomial coefficient, and In

is the n-th order modified Bessel function of the first kind. We find that Equation
3.4 gives consistent results to within machine precision after five terms.

We find that the PDF of
√

Q2 +U2 is negligibly affected by the assumption that U

and Q are uncorrelated. The PDF is fit by a Hoyt distribution, which is equivalent
to Equation 3.4 for the special case of µQ = µU = 0.
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To find the PDF of p =
√

Q2+U2

I , we first assume that
√

Q2 +U2 and I are uncorre-
lated. The PDF of I represents the distribution of companion intensity values, and
is therefore taken to be the counts in the companion’s aperture, Ic, minus the distri-
bution of counts in the comparison apertures. The comparison apertures’ Stokes I

distribution is influenced by both the modified Rician distribution governing speckle
statistics and the whitening effects of angular differential imaging. Hence, we take
pI(i) to be the skewed Gaussian distribution fit to the histogram of Ic - aperture I

sums shown in Figure 2a. Because the width, σI , of Figure 2a is > 10× larger than
√

Ic, the contribution of the companion’s Poisson noise to pI(i) is neglected. For R
=

√
Q2 +U2, the CDF of p = R/I is the probability that R/I is less than a given

value of p, or

Fp(p) =P(R/I ≤ p), (3.5a)

Fp(p) =
∫ +∞

i=0

∫ ip

r=−∞
fRI(r, i)drdi +

∫ 0

i=−∞

∫ ∞

r=ip
fRI(r, i)drdi. (3.5b)

Differentiating with respect to p gives the final PDF of the linear polarization
fraction:

fp(p) =
∫ ∞

−∞
|I | fR(Ip) fI(i)di. (3.6)

The calculated values of fp(p) and several fitted distributions are shown Figure
3.3. We find that fp(p) is best fit by a Hoyt distribution. Table 3.2 lists the
upper limits to the linear polarization fraction corresponding to three representative
confidence intervals calculated using the fitted Hoyt distribution. We emphasize
that our analysis described in this section is distinct from that of disk polarimetry,
which benefits from the assumption that light scattered by a disk is polarized in the
direction perpendicular to the direction towards the central star. To our knowledge,
this work presents the first analysis of point source polarimetric precision using a
high contrast, integral field polarimeter.

We now return to the question of how our limiting polarization fraction would
be affected by greater sky rotation and algorithms such as PCA (R. Soummer, L.
Pueyo, and Larkin, 2012) and LOCI (D. Lafrenière, C. Marois, Renè Doyon, et al.,
2007) that help attenuate quasi-static speckles caused by instrumental effects. The
shape of the polarization fraction’s PDF is governed by the PDFs of the Stokes
I, Q, and U histograms shown in Figure 2. The width of the Stokes I PDF is
larger than expected based on photon noise alone – the standard deviation of the
aperture values is 1479.6e−, while the square root of the mean is 104.7e−. This
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extra width is primarily due to speckle noise, which increases the distribution’s
standard deviation and skewness (C. Marois, D. Lafrenière, B. Macintosh, et al.,
2008). Because speckles are mostly unpolarized, however, their flux is attenuated
in the Stokes Q and U frames. Visual inspection of the polarized channels in
Figure 1 confirm that speckles, and hence speckle noise, are not present at the
companion’s separation. Indeed, M. D. Perrin, Duchene, et al. (2015) demonstrate
that in GPI’s polarimetric mode the polarized intensity,

√
Q2 +U2, at HD19467 B’s

separation of 1.65" is dominated by photon noise (see also B. R. Oppenheimer et al.
(2008) and S. Hinkley, B. R. Oppenheimer, Rèmi Soummer, et al. (2009)). Hence,
greater sky rotation and PSF subtraction techniques would reduce the contribution
of speckle noise to the PDF of Stokes I, but would not significantly affect the PDFs
of Stokes Q and U. To assess the contribution of non-photon noise to our p upper
limits, we replace the PDF of Stokes I values shown in Figure 2a with a poisson
distribution of µ = µI . The resulting p upper limits are 0.9%, 1.8%, and 2.7%, for
the confidence intervals of 68.27%, 99.73%, and 99.9999%, respectively. Speckle
reduction techniques would therefore provide some improvement to our limiting
polarization fraction, but our assessment is dominated by the noise in the polarized
channels.

Table 3.2: Degree of Linear Polarization Upper Limits

Confidence Interval p upper limit
68.27% 1.2%
99.73% 2.4%
99.9999% 3.8%

3.4 Discussion
Recent observations of photometric variability outside the L/T transition hint at the
presence of cloud variability that might lead to a non-zero polarization signatures in
a T5.5 dwarfs such as HD 19467 B. J. Radigan et al. (2014) detected J-band 1.6%
peak-to-peak variability in a red T6.5 dwarf, and 0.6% − 0.9% variability in three
additional T dwarfs later than T3.5 without remarkably red colors. Photometric
monitoring at 3 − 5µm with Spitzer revealed that 19 − 62% of T0-T8 dwarfs vary
with peak-to-peak amplitudes > 0.4%, with T0-T-3.5 objects in the L/T transition
showing no higher incidence of variability than later type T dwarfs (Metchev et al.,
2015). The source of this variability may be due to variations in cloud coverage
and thicknesses, or “patchy" clouds. While it has been recently suggested that
temperature variations driven by atmospheric changes below the cloud layermay also
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Figure 3.3: The probability density function of p =
√

Q2+U2

I , via Equation 3.6. The
four fits are to skewed Gaussian, Rayleigh, Rice, and Hoyt distributions. All but the
skewed Gaussian are special cases of Equation 3.4 for different values of the means
and standard deviations of Q and U. The best fit is the Hoyt distribution.

contribute to photometric variability (e.g. Robinson andM. S.Marley (2014)), Apai,
J. Radigan, et al. (2013) and J. Radigan et al. (2012) have shown that temperature
fluctuations alone cannot reproduce the observed amplitudes of variability.

The results of these photometric surveys suggest that even outside the L/T transition,
T dwarfs commonly have time-varying cloud and spot weather patterns. These
variations may produce polarized intensity: Kok, Stam, and Karalidi (2011) show
that a fixed hotspot on the surface of an otherwise uniformly cloudy dwarf produces a
higher amplitude of polarimetric variability as a function of time than flux variability.
The difficulty of detecting a linear degree of polarization of less than 1.0%, however,
has prevented observers from testing this theoretical link between photometric and
polarimetric variability. For example, SIMP J013656.57+093347.3 is a T2.5 dwarf
with periodic large amplitude (50mmag) variability, which is explained by invoking
cool dusty cloud patches against a warmer clear background (Artigau, R. Doyon,
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et al., 2006; Artigau, Bouchard, et al., 2009). However, Zapatero Osorio et al.
(2011) find no polarization, and place an upper limit of p < 0.9% on the J-band
degree of linear polarization.

In fact, only two T-dwarfs have published near-infrared polarimetric observations:
the aforementioned SIMP J013656.57+093347.3 T2.5 dwarf observed by Zapatero
Osorio et al. (2011), and 2MASS J12545393-0122474, a T2 dwarf observed by
Miles-Páez et al. (2013) with a linear degree of polarization of p = 0.00%± 0.34%.
Our observations of HD 19467 B constitute the third polarimetric observation
of a T dwarf, and the third null result. We also note that our upper limit of
pCL99.73% ≤ 2.4% is within a factor of a few of the previously mentioned T-
dwarf upper limits, demonstrating that high contrast, integral field polarimeters are
approaching the performance of direct polarimetric imaging modes.

While these null results could be due to unfavorable viewing angles or insufficient
detection limits, it is also possible that theseT-dwarfs are simply cloudless, and hence
would not polarize infrared radiation. Multiple scattering polarization models for
cloudless T dwarfs indicate negligible polarization signals at wavelengths longer
then 0.6µm at a range of inclinations and rotational velocities (Sengupta and M. S.
Marley, 2009). These results are consistent with non-detections of near infrared T
dwarf polarization.

Clearly, more targets must be observed at higher polarimetric precisions in order
to draw meaningful conclusions about the cloud properties of brown dwarfs and
exoplanets. Our upper limit of pCL99.73% ≤ 2.4% is within a factor of a few of
the predicted p ≤ 1.0% signature of a cloudy, oblate body (M. S. Marley and
Sengupta, 2011), suggesting that GPI is capable of detecting polarized radiation
from substellar companions given sufficient integration times to reduce photon
noise in the polarized channels. To this end, our group is actively pursuing a GPI
program to observe several exoplanet and brown dwarf companions at the predicted
p ≤ 1.0% level. Observing multiple targets will reduce the risk of non-detections
resulting from unfavorable viewing angles, and may shed light on the diversity of
low-mass polarimetric properties.

3.5 Conclusion
We observed the T5.5±1 dwarf HD 19467 B in the H band for 28 minutes on
February 1st 2015 using the Gemini Planet Imager’s polarimetry mode. We detect
no polarization signal from the target, and place an upper limit on the degree of linear
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polarization of pCL99.73% ≤ 2.4%. Because this limit is larger than the predicted
p ≤ 1.0% signature of a cloudy, oblate body, we cannot constrain the atmospheric
properties of HD 19467 B from this measurement. Our method for analyzing point
source polarimetry data, however, will be applied to our upcoming GPI survey
for which we expect to reach p ≤ 1.0% for multiple exoplanet and brown dwarf
companions.

The future of exoplanet polarimetry is promising: because the breakup of clouds
usually associated with the L/T transition occurs at lower temperatures for lower
surface gravity objects, exoplanet polarimetry signals will likely benefit from the
surface asymmetries introduced by patchy clouds. Indeed, J. Radigan et al. (2014)
show that HR8799 c falls near the highest amplitude photometric variables in NIR
color magnitude diagrams, a region populated by L/T transition objects.

With the advent of modern high contrast spectro-polarimeters such as GPI and
SPHERE, we are entering a new era of complementary photometric and polari-
metric observations of exoplanets and brown dwarf companions. Future exoplanet
polarimetric detections have the power to inform cloud particle size distributions
at different pressures and corroborate the interpretations of L and T photometric
survey results. Brown dwarf and exoplanet atmosphere models are currently limited
by our understanding of cloud physics and its effects on observables; polarimetry is
an as-yet unexploited tool to fill in these gaps.
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C h a p t e r 4

A NEW STANDARD FOR ASSESSING THE PERFORMANCE
OF HIGH CONTRAST IMAGING SYSTEMS



60

ABSTRACT

As planning for the next generation of high contrast imaging instruments (e.g.
WFIRST, HabEx, and LUVOIR, TMT-PFI, EELT-EPICS) matures, and second-
generation ground-based extreme adaptive optics facilities (e.g. VLT-SPHERE,
Gemini-GPI) are halfway through their principal surveys, it is imperative that the
performance of different designs, post-processing routines, observing strategies,
and survey results be compared in a consistent, statistically robust framework. In
this chapter, we argue that the current industry standard for such comparisons –
the contrast curve – falls short of this mandate. We propose a new figure of merit,
the “performance map," that incorporates three fundamental concepts in signal
detection theory: the true positive fraction (TPF), false positive fraction (FPF), and
detection threshold. By supplying a theoretical basis and recipe for generating the
performance map, we hope to encourage the widespread adoption of this newmetric
across subfields in exoplanet imaging.
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4.1 Introduction
The contrast curve describes an imaging system’s sensitivity for a given detection
significance in terms of the planet/star flux ratio and angular separation. A consistent
methodology for computing the contrast curve, however, is lacking: a variety of
approaches to throughput, small sample-size, and non-Gaussian noise corrections
are represented in the literature (e.g. C. Marois, D. Lafrenière, B. Macintosh, et
al., 2008; Wahhaj et al., 2013; Mawet et al., 2014; L. Pueyo, 2016; Otten et al.,
2017). As inner working angles are pushed below 5λ/D, these details dominate the
calculation of the contrast curve. Secondly, the contrast curve’s information content
is limited: by fixing the detection significance for all separations, the contrast curve
conceals important trade offs between the choice of detection criteria, false positive
rates, and detection completeness statistics.

The purpose of this chapter is to critically examine the contrast curve and present
alternative figures of merit for the ground and space-based exoplanet imaging mis-
sions of the coming decades. In Section 4.2, we summarize the key points of signal
detection theory, which provide the basis for our discussion of performance metrics.
Section 4.3 describes the strengths and weaknesses of the contrast curve as a general
purpose performance metric. Finally, Section 4.4 gives our proposal for a new figure
of merit based on signal detection theory.

4.2 Overview of Signal Detection Theory
Our task as planet hunters is to decide whether the data at each location in a “high
contrast” image meets our criteria for a planet detection. Regardless of the details
of the dataset (e.g. field rotation, spectral coverage, etc.), the presence of noise
will interfere with the accuracy of our detection decisions. Signal detection theory
provides a precise framework for describing the relationships between detections,
non-detections, and detection criteria.

If we assume that a planet is present at a location of interest in our data (the H1,
or “signal present" hypothesis), and we succeed in detecting that planet, our result
is a true positive (TP). If we fail to detect the planet, our result is a false negative
(FN). Clearly, we aim to maximize the number of true positives while minimizing
the number of false negatives. Hence, we define a true positive fraction, or TPF:

TPF =
TP

TP + FN
=

∫ +∞

τ
pr(x |H1)dx, (4.1)

where τ is the threshold of the detection criterion and pr(x |H1) is the probability
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density function (PDF) of the data x under the hypothesis H1. Our goal is to
approach TPF= 1.

If we instead assume that no planet is present in the data (the H0, or “signal absent"
hypothesis), and we fail to make a detection, our result is a true negative (TN). If
we incorrectly claim to detect a planet, however, our result is a false positive (FP).
We are then interested in achieving a false positive fraction (FPF) close to zero:

FPF =
FP

TN + FP
=

∫ +∞

τ
pr(x |H0)dx. (4.2)

These various hypotheses and outcomes are summarized in the “confusion matrix"
(Figure 4.1). An early review of signal detection theory is given by J. Swets, Tanner,
and Birdsall (1961).

Figure 4.1: The Confusion Matrix

To make these relationships concrete, consider a post-processed image in which the
pixel intensities, x, in a certain annulus around the central star are drawn from a
normal distribution (µ = 0 and σ = 1, where the choice of an annular region is
justified by the symmetry of the star’s point spread function). The PDF of the noise
is shown in Figure 4.2a. Now let us assume that our goal is to detect a planet with
a mean intensity of x = 3 inside the annulus of interest. Because the pixels at the
planet’s location are also affected by the noise, they are described by a PDF identical
to that of the noise, but with a mean of x = 3 (here, we ignore the contribution of
the planet’s shot noise). The PDF of the signal is shown in Figure 4.2b.

Given our knowledge of the PDFs of the noise and the signal, we nowwish to choose
a detection criterion. Let us assume that because our detection follow-up resources
(e.g. telescope time) are limited, we wish to achieve a false positive fraction of
0.001. We therefore choose a detection criterion of 3σ because a fraction 0.001
of the area of the noise PDF falls above this value (4.2a, dotted line). A second
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consequence of this choice of detection criterion is that we will only detect half of
all planets with a mean intensity of x = 3 (TPF= 0.5; 4.2b, dotted line). If we wish
to increase the TPF, we must lower the detection criterion and hence unfavorably
raise the FPF.

(a) Noise distribution (b) Signal distribution

Figure 4.2: (a) The normally distributed PDF of a noise source with a mean of
zero and standard deviation of one. Here, the detection criterion is arbitrarily set
to 3σ (dashed line), which corresponds to x = 3 for this distribution. Because the
noise PDF falls above the detection threshold a fraction 0.001 of the time, the false
positive fraction in this example is 0.001. (b) The Gaussian PDF of a signal source
with a mean of x = 3 and a standard deviation of one. Because half of the signal
distribution’s area falls above the detection criterion, the true positive fraction is 0.5.

The detection criterion therefore allows us to trade between the FPF and TPF, within
the constraints imposed by the noise PDF and the signal mean. The receiver operator
characteristic (ROC) curve allows us to visualize this trade by plotting the TPF as a
function of the FPF, with each parameter varying between 0 and 1 as the detection
criterion moves from large to small values (Tanner and J. A. Swets (1954) gives an
early example of an ROC curve). The black line in Figure 4.3 shows the ROC curve
associated with our example. The (TPF, FPF) pair corresponding to our example
criterion of 3σ is labeled, along with a broader range of criteria choices.

The shape of the ROC curve is determined by the shape of the noise distribution
as well as the signal mean. For example, if we change the mean of the signal
distribution in Figure 4.2b from x = 3 to x = 1, we obtain the gray ROC curve
shown in Figure 4.3. Alternatively, if we had chosen a positively skewed rather than
a normal noise distribution, the nearly vertical part of the black ROC curve at small
FPFs would tilt to the right.
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Figure 4.3: Black line: an ROC curve corresponding to a range of criteria applied
to the noise and signal distributions in Figure 4.2. The (TPF, FPF) locations
corresponding to criteria of 1σ − 3σ are labeled to demonstrate the trade-offs
between these key parameters. We note that FPF values larger than 0.5 require a
criterion that is less than the mean of the noise distribution. Because the noise
is normally distributed in this example, such criteria are negative. Grey line: the
equivalent ROC curve for a signal distribution centered at x = 1. Because the noise
distribution was unchanged, the 1σ − 3σ criterion points are located directly under
their equivalent on the black curve.

We may now describe our task as exoplanet imagers in the vocabulary of signal
detection theory: we wish to determine the maximum FPF and minimum TPF that
satisfy our resource limitations and science goals – in other words, we must choose a
target location in (TPF, FPF) space. Our goal in designing an instrument, observing
strategy, or post-processing routine is to produce a noise distribution whose ROC
curve will reach that location for a signal of interest.

An ROC curve, however, only represents a single noise distribution (i.e. image
location) and signal level. In the sections that follow, we will discuss methods for
representing the performance of a full image.
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4.3 Contrast Curves as Performance Metrics
The Definition of the Contrast Curve
The contrast curve is a means of representing the true and false positive fractions
associated with a range of signals and positions in a final image. Schematically, we
can define the contrast as:

contrast =
(
factor × noise
star photometry

) (
1

throughput

)
, (4.3)

where the numerator is the detection criterion, expressed as a multiple of the noise
distribution’s width. Typically, we choose the “noise” to be the standard deviation of
the counts in a given annulus (e.g. 1 λ/D thick) centered on the star, and the “factor”
to be three or five to produce a 3σ or 5σ contrast curve. In Figure 4.2, factor = 3 and
noise = σ = 1. The detection criterion is then converted from the units of counts to
a fraction of the parent star’s brightness via the “Star Photometry" term. Finally, the
“throughput” term corrects this brightness ratio for any attenuation of the off-axis
signal relative to the star’s (e.g. due to field-dependent flux losses imposed by the
coronagraphic system and post-processing routine). The final contrast is therefore
the planet-to-star flux ratio of a planet whose brightness is equal to the detection
criterion. Figure 4.2 illustrates that the TPF associated with such a signal is 0.5.
Hence, the contrast curve can be interpreted as the signal for which we achieve
50% completeness given our choice of detection criterion in the numerator. The
numerator also fixes the false positive fraction – for example, choosing factor= 3 for
a white noise distribution gives FPF = 0.001.

Where the Contrast Curve Falls Short
Both practical and fundamental shortcomings, however, undermine the utility of
the contrast curve as a general purpose performance metric. First, the contrast is
inflexible: by fixing the true positive fraction to 0.5 and the false positive fraction to
a value set by the numerator, we cannot explore the (TPF, FPF, detection criterion)
trade space. Even if we were to plot multiple contrast curves on the same figure
to show different detection criteria, we could not escape the arbitrary choice of
TPF= 0.5. Similarly, if we were to plot a 90% detection completeness curve as a
function of separation, we could not access a range of false positives fractions.

More problematic, however, is the calculation of the terms in Equation 4.3. As men-
tioned above, the “noise” term is typically chosen to be the standard deviation of
counts in a region of the image, whose shape and size widely varies in the literature.
This approach is valid if two conditions are met: 1) if the region includes enough
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statistically independent realizations of the noise to allow for an accurate measure
of the distribution’s standard deviation, and 2) if the underlying noise distribution
is Gaussian. While there is no hard and fast rule for deciding whether the first
condition is met, statisticians generally consider 30 independent samples to be the
boundary between large and small sample statistics (Wilcox, 2009). For the case
of 1 λ/D-wide annular regions, 30 samples corresponds to a separation of ∼ 5λ/D.
Below this threshold, the number of independent elements is small enough that a
naive computation of their standard deviation leads to extreme underestimates of the
false positive fraction (Student, 1908; Mawet et al., 2014). The mitigating strategy
proposed by Mawet et al. (2014), however, also requires that condition #2 (Gaussian
noise) is met. Aime and R. Soummer (2004) and many others have shown that
uncorrected low-order wavefront aberrations cause the noise at small separations to
follow a positively skewed modified Rician distribution rather than a normal distri-
bution (M. D. Perrin, Sivaramakrishnan, et al., 2003; Bloemhof, 2004; Fitzgerald
and J. R. Graham, 2006; R‚ Soummer et al., 2007; S. Hinkley, B. R. Oppenheimer,
R‚ Soummer, et al., 2007; C. Marois, D. Lafrenière, B. Macintosh, et al., 2008).
While numerous observing and post-processing strategies have been employed to
whiten this skewed distribution (e.g. Liu, 2004; C. Marois, D. Lafrenière, R. Doyon,
et al., 2006; D. Lafrenière, C. Marois, Renè Doyon, et al., 2007; Amara and Quanz,
2012; R. Soummer, L. Pueyo, and Larkin, 2012), their success at small separations
is limited by the temporal and spectral variability of the noise (Appendix 4.7 dis-
cusses the difficulty of testing for normality using methods such as the Shapiro-Wilk
test). The result is that the noise distribution at small angles retains an unknown
skewness at small separations that increases the false positive fraction compared to a
Gaussian distribution. Hence, neither condition for the use of the standard deviation
as a proxy for the FPF is met at small separations1. In Section 4.4 we will address
alternative methods for probing the distribution of the noise without the assumption
of normality.

Inconsistencies in Contrast Curve Computations
We further note that the contrast and its constituent terms are inconsistently com-
puted in the literature, in particular the noise and throughput terms. While many

1It is worth noting that some authors interpret the numerator of Equation 4.3 as an empirical
signal to noise threshold without reference to the distribution of the noise or a false positive fraction.
This interpretation, however, robs the contrast curve of much of its practical use – the knowledge that
we can achieve TPF= 0.5 for a given planet:star flux ratio does not guide our observing or science if
the associated false positive fraction can fall anywhere from zero to one.
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authors (e.g. Wahhaj et al., 2013) account for spatially correlated speckle statistics
by defining the noise to be the standard deviation of pixel counts in an annulus,
others do not. For example, Otten et al. (2017) define the noise in relation to the
standard deviation of pixel counts inside of a 1 λ/D aperture of interest. The region
within a few λ/D of the inner working angle, however, is fundamentally sensitive
to azimuthally correlated speckle noise: effects such as pointing jitter, thermal vari-
ations, and non-common path aberrations induce low order wavefront aberrations,
and hence close-in, variable speckles, on the timescale of an observation (Shi et
al., 2016). Secondly, the definition of the term “throughput" is context dependent.
Authors computing contrast curves for angular differential imaging (ADI) datasets
typically define the throughput in terms of the flux losses imposed by signal self-
subtraction (e.g. Wahhaj et al., 2013). However, in discussions of coronagraph
design trades, throughput refers to the often field-dependent flux losses caused by
the coronagraphic system itself (e.g. Guyon, Pluzhnik, et al., 2006; Krist, Nemati,
and B. Mennesson, 2015). Finally, the small sample correction presented by Mawet
et al. (2014) has been adopted by some authors (e.g. Wertz et al., 2017), but not oth-
ers (e.g. Uyama et al., 2017). Such a variety of methodologies inhibit meaningful
comparisons of instrument performance.

In this section, we have described three shortcomings of the contrast curve: 1) its
inability to illustrate the (TPF, FPF, detection criterion) trade space, 2) its reliance
on an estimate of the width of an unknown noise distribution, and 3) its inconsistent
treatment in the literature. In the sections that follow, we will discuss strategies for
computing the FPFs and TPFs associated with an unknown noise distribution and
present a new figure of merit for the performance of high dynamic range imaging
systems.

4.4 Estimating the False Positive Fraction at Small Separations
Given our inability to sample the unknown noise distribution at small separations, we
choose to proceed by calculating the FPF empirically: for each annulus of interest,
we will simply count the number of resolution elements that exceed our detection
threshold. Following Mawet et al. (2014), we define a resolution element to be a
circular aperture with a diameter of λ/D. The number of resolution elements, Nr

at a distance r from the central star is 2πr , where r is also expressed in terms of
λ/D (Figure 4.4). We consider only whole numbers of resolution elements (e.g. six
resolution elements at 1λ/D.).
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1λ/D 2λ/D 3λ/D 4λ/D 

Figure 4.4: The number of resolution elements of width λ/D at a distance r from
the central star is 2πr , where here we consider only whole numbers of resolution
elements.

For a single 1 λ/D-thick annulus in the final, post-processed image, the possible
values of the empirical false positive fraction are now constrained to i/Nr , where i is
an integer between zero and Nr (inclusive). We have two options for accessing FPFs
between zero and 1/Nr : assuming an underlying noise distribution, or obtaining
additional realization of the noise. Given the unknown skewness of the data at small
separations (Section 4.3), we address the latter choice.

One opportunity for obtaining further realization of the noise is to break up a dataset
temporally (i.e. by parallactic angle in the case of ADI data) or by wavelength
(in the case of spectral differential imaging data: C. Marois, René Doyon, et al.,
2000; Sparks and Ford, 2002) to produce multiple “final” images. Assuming that
these additional images give independent realizations of the same underlying noise
distributions, we can concatenate the resolution elements at the same separations
before calculating the empirical FPF. The least non-zero FPF per r is then 1/(Nr N f ),
where N f is the total number of independent final images.

We note that this approach may not be immediately appealing, as breaking up an
observing sequence into multiple images necessarily degrades the planet’s SNR:
if the original datacube is temporally divided into N f final frames, the least non-
zero FPF is given by 1/Nr N f , while the signals’ S/Nshot are reduced by

√
N f (see

the “debinning factor" introduced by Mawet et al., 2014). However, we see only



69

two alternative approaches to this “break up" strategy. First, data from the same
instrument can provide additional resolution elements if the distribution of the
noise is assumed to be constant with time. Ruffio et al. 2017, in prep, describe
the application of this technique to the Gemini Planet Imager Extra Solar Survey
(GPIES) campaign. We view this as the most promising option, but note that
it cannot be applied if the historical data has been used to reduce the target of
interest via reference star differential imaging. Second, in the case of ADI data, an
additional image can be obtained “for free" by reversing the order of the parallactic
angle assignments (Wahhaj et al., 2013). This produces an image with similar
azimuthal noise characteristics to the science image, giving N f = 2 without dividing
the original datacube into two pieces. Further angle randomization, however, will
artificially whiten the speckle noise, as it will fail to capture the temporal speckle
evolution that de-rotation translates into azimuthal variation.

1 10 20 30 40 50
Separation [FWHM]

10−7

10−6

10−5

10−4

A
st

ro
p
h
y
si

ca
l 
Fl

u
x
 R

a
ti

o

HR8799 Performance Map: 1. 0 False Positive per Separation

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1. 0

T
ru

e
 P

o
si

ti
v
e
 F

ra
ct

io
n

(a) Performance Map: one false positive per
separation
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Figure 4.5: (a) The performance map shows the astrophysical flux ratio versus the
separation, color-coded by the true positive fraction. The solid black line represents
the approximate TPF = 0.95 contour. (b) The classic 5σ contrast curve. The
regions interior to the inner working angle of 2λ/D are shaded in gray. The key
difference between the performance map and the contrast curve is that the contrast
curve fixes the detection criterion for all separations, while the performance map
fixes the number of false positives for all separations. Because the false positive
fractions are calculated empirically, we obtain a minimum of one false positive per
separation for the case of a single image. In order to access smaller numbers of
false positives per separation, we must either break the observation into several final
images (Figure 4.6), which sacrifices the sensitivity, or make use of historical data
from the same instrument.

Equipped with a strategy for determining an empirical FPF (and, after injecting
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artificial companions, an empirical TPF), we return to the challenge of visualizing
the five key parameters of exoplanet imaging: the separation from the central star,
planet signal, detection criterion, true positive fraction, and false positive fraction.

We propose a new figure, the “performancemap," that represents the performance of
an exoplanet imaging system without any assumptions about the distribution of the
noise. The performance map plots the astrophysical flux ratios of injected signals
as a function of separation, color-coded by the true positive fraction. While the
traditional contrast curve keeps the detection criterion constant for all separations,
we choose to vary the criterion in order to fix the number of false positives (NFP)
per separation, where NFP(r) = 2πr × FPF(r). For example, in a performance map
representing a single image, we might choose one false positive per separation. This
choice sets the FPFs for all separations (FPF= 1/6 at 1λ/D, FPF= 1/12 at 2λ/D,
etc), and hence the detection criteria that determine the TPFs. We may also overplot
a TPF contour for clarity.

We summarize the key differences between the performance map and the contrast
curve below:

1. The contrast curve fixes the detection criterion for all separations, while the
performance map fixes the number of false positives for all separations.

2. The contrast curve’s detection criterion (e.g. 5σ or 3σ) refers to the signal-
to-noise of a planet, assuming that the noise is Gaussian. In Section 4.3,
we argued that such detection criteria choices are not well motivated unless
the assumption of Gaussian noise can be rigorously justified. The detection
criteria used to generate the performance map, however, have no intrinsic
physical meaning – they are simply chosen to produce empirical FPFs and
TPFs between zero and one.

The performance map brings our attention back to the scientifically and program-
matically relevant quantities: the TPFs of the signals of interest for a given number
of false positives. Of course, displaying more information in a single figure is
simultaneously a disadvantage if that figure becomes too difficult to interpret at a
glance. Including the TPF= 0.95 contour (or other desired TPF value), however,
provides a simplified visual summary.
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Practical Example: Single Frame
To illustrate the construction of a performance map in detail, we consider a set of
HR8799 observations taken by the Spectro-Polarimetric High-contrast Exoplanet
REsearch (SPHERE, Beuzit et al., 2008) at the Very Large Telescope (VLT). The
data were acquired in December of 2014 during science verification of the Infra-
Red Dual-band Imager and Spectrograph (IRDIS, Dohlen et al., 2008) instrument,
and have been extensively described in the literature (Zurlo et al., 2016; Apai,
Kasper, et al., 2016; Wertz et al., 2017). We adopt a 200 frame broadband H filter
(1.48−1.77 µm) sequence from December 4th 2014, where the detector integration
time was 8 s and the total amount of parallactic angle rotation was 8◦.7. We choose
to include only the data taken on the left-hand side of the IRDIS detector.

Following Wertz et al. (2017), we use an off-axis broadband H image of β Pictoris
(January 30th 2015, PI: A.-M. Lagrange) as our PSF template due to the absence
of an off-axis exposure in the original observing sequence. We fit a 2D Gaussian
function to the β Pictoris template PSF to obtain FWHM = 4.0 pixels = 0′′.049 for
a plate scale of 12.251mas (Wertz et al., 2017). We take FWHM= 4.0 pixels as our
resolution element diameter.

For the purposes of this demonstration, we are interested in estimating the FPFs and
planet-injected TPFs. Hence, we begin our reduction by subtracting HR8799 bcde
from the dataset. This is accomplished via theVortex Image Processing (VIP,Gomez
Gonzalez et al., 2016) package’s functions for injecting negative fake companions
into the data and optimizing their flux and positions using a Nelder-Mead based
minimization.

Next, we use VIP’s implementation of the PCA-ADI algorithm to subtract a recon-
structed datacube from our set of 200 images. The reconstructed cube was generated
using three principle components (chosen to maximize the SNR of HR8799 c in a
full reduction of the dataset prior to planet subtraction). We median-combine the
residual datacube to obtain our final reduced image. We compute the algorith-
mic throughput (signal self-subtraction) as a function of separation by injecting fake
planets at separation intervals of 1FWHMand azimuthal intervals of 120◦. For each
separation interval, the data is PCA-ADI reduced, and the signals’ flux attenuation
in the three azimuthally separated apertures are averaged.

To generate a performance map from this single, “final” image, we first make a list
of FPFs for a range of detection criteria and separations by the following recipe:
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1. Draw rings of FWHM-diameter apertures around the central star and sum the
fluxes inside of the apertures. The result is a list of 2πr aperture sums for
each separation r .

2. Choose a detection criterion.

3. For each separation, find the fraction of resolution elements whose sum ex-
ceeds the criterion. These are the FPFs.

4. Vary the detection criterion and repeat Step 3 to produce all possible FPF
values for all separations.

Using the same set of detection criteria and separations as the preceding recipe,
we can find the associated TPFs for a range of planet signals of interest. This is
accomplished by the following steps:

1. Sum the flux inside of a FWHM-diameter aperture around the unocculted
stellar PSF2.

2. Choose an astrophysical flux ratio and multiply by the star’s aperture sum
(previous step) to obtain the planet’s signal.

3. For each separation, multiply the planet’s signal by the algorithmic throughout
(previous paragraph), and add the result to each resolution element.

4. Choose a detection criterion from the same list of criteria used to generate the
FPFs above.

5. For each separation, find the fraction of resolution elements whose sum ex-
ceeds the criterion. These are the TPFs.

6. For the same range of detection criteria used to calculate the FPFs, repeat Step
5.

7. Repeat Steps 2-6 for different astrophysical flux ratios.
2As mentioned above, our example dataset lacks an unocculted image, but we fit the positions

and fluxes of the HR8799 planets using a later off-axis observation of β Pictoris. For the purposes of
this example, we estimate HR8799’s unocculted aperture sum based on the fitted flux of HR8799 b
and the H-band planet-to-star flux ratio given in C. Marois, B. Macintosh, et al. (2008).



73

To plot the performance map, we elect to consider the detection criteria associated
with the least non-zero FPFs (1/Nr), giving 1.0 false positives per separation. For
each injected signal flux at each separation, we then plot the TPFs corresponding
to these detection criteria. Figure 4.5a shows the resulting performance map. For
each separation, we also plot the signal with the TPF nearest to, but not exceeding,
TPF= 0.95, for these detection criteria.

For comparison, we also plot a classic 5σ contrast curve in Figure 4.5b. For each
λ/D-width annulus, comprising 2πr resolution elements, the contrast was calculated
via Equation 4.3, where factor=5, σ has been adjusted to account for small sample
statistics (Mawet et al., 2014), and the algorithmic throughout was calculated by
fake planet injection (see preceding discussion).
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Figure 4.6: A performance map where the detection criteria have been chosen to
produce 0.1 false positives per separation. This is achieved by breaking the original
200-frame observation into ten 20-frame observations and appending the resolution
elements at each separation. Hence, the number of false positives is reduced at the
expense of sensitivity.

Practical Example: Multiple Frames
As discussed in Section 4.4, plotting a performance map representative of fewer than
one false positives per separation requiresmore than one final frame. To demonstrate
the trade-offs between the sensitivity and FPF characterization, we divide the PCA-
ADI reduced datacube into 10 de-rotated, median-combined final images, each
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including 20 individual frames. Because we wish to capture the temporal evolution
of the speckle noise over the course of the full observation in each final image, we
do not divide the datacube into temporally sequential chunks. Rather, we choose
the temporal distance between frames in a given sub-observation to be equal to the
total number of sub-observations.

We compute the FPFs and TPFs as before, except that the number of aperture sums
per r is 10 × 2πr rather than 2πr . The least non-zero FPF is now (1/Nr N f ), giving
0.1 false positives per separation for N f = 10. Figure 4.6 shows the resulting
performance map. It is clear that the approximate TPF= 0.95 contour corresponds
to brighter planets than was the case in 4.5a – hence, we have traded sensitivity for
greater knowledge of the false positive fraction.

We conclude our discussion of the performance map by reiterating its purpose:
to represent the performance of a high dynamic range exoplanet imaging system
without any assumptions about the distribution of the noise. The examples given
in Sections 4.4 - 4.4 are worst case scenarios, in the sense that they deal with only
one dataset. Future publications will demonstrate the use of historical data from the
same instrument to increase the number of resolution elements without breaking up
the dataset of interest.

4.5 Hypothesis Testing
In the discussion above, our calculation of the true and false positive fractions
required a choice of hypotheses: either H1 (signal present; planet-injected data), or
H0 (signal absent; planet-free data). This approach allowed us to characterize the
performance of the instrument by probing the range of possible TPFs and FPFs for
various positions and signals.

We may also consider a different objective: deciding whether a particular bright
spot in our final science image is a planet. In this scenario, we must decide which
hypothesis, H1 or H0, applies to our location of interest. While hypothesis testing is
beyond the scope of this chapter, we refer to the detailed discussions in N. J. Kasdin
and Braems (2006), Section 5, and Young, N. J. Kasdin, and Carlotti (2013).

4.6 Conclusion
As the cost and complexity of ground and space-based exoplanet imaging missions
increase, so too must the fidelity and relevance of our diagnostic tools improve. We
argue that the drawbacks of the contrast curve – its lack of transparency, flexibility,
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and connection to the data – motivate a re-evaluation of its use as a general purpose
performance metric. Our proposed “performance map” is one amongmany possible
methods for visualizing the true and false positive fractions associated with a high
dynamic range image. The performance map is an opportunity for displaying the
results of planet search programs in a consistent and statistically correct way as
well as comparing the performance of various post-processing algorithms within a
well-defined statistical framework. By encouraging the scrutiny of this new metric,
we hope to improve the prediction and evaluation of the performance of the next
generation of high contrast imaging instruments.
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4.7 Appendix: The Shapiro-Wilk Test
For a given post-processed dataset, we may be interested in testing whether our
data has been successfully whitened at small separations. The Shapiro-Wilk test
(Shapiro and Wilk, 1965) tests the null hypothesis that a dataset was drawn from a
normal distribution; it returns a p−value that specifies that probability of obtaining
the dataset given the null hypothesis. In order to test the utility of the Shapiro-Wilk
test at small separations, we consider data drawn from two different distributions:
a normal distribution (Figure 4.7a, black line), and a positively skewed Rayleigh
distribution (Figure 4.7a, red line). At face value, we expect to easily reject the
Shapiro-Wilk test’s null hypothesis when testing data drawn from the dramatically
non-white Rayleigh distribution.

We first compute the Shapiro-Wilk test p−value using a normally distributed dataset
with 2πr elements. We then draw new sets of 2πr elements to repeat the test 104

times, giving 104 p−values per separation. We arbitrarily choose p ≤ 0.01 as
our criterion for rejecting the null hypothesis. As expected, we find that for all
separations, the normally distributed test data gives p ≤ 0.01 a fraction 0.01 of the
time (Figure 4.7b, black points).

Next, we repeat this procedure for the Rayleigh distributed data. We find that these
data reject the null hypothesis for a much larger fraction of trials than the normally
distributed data (Figure 4.7b, red points). However, we quickly see a problem: at
15λ/D, the Rayleigh distributed data only rejects the null hypothesis about half of
the time. This means that in any one science image, the probability of erroneously
accepting the null hypothesis that the data is normally distributed is also 50%. At
smaller separations, we draw the wrong conclusion most of the time – hence, the
Shapiro-Wilk test cannot be used to test for normality at small separations.

Some tests (e.g. the Kolmogorov-Smirnov test) perform better in these respects than
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the Shapiro-Wilk test, while others (e.g. the Anderson-Darling test) are similarly
problematic. The purpose of the example given here is to demonstrate that the
outcomes of normality tests cannot be taken at face value, and must be rigorously
validated in order to be applied to observational datasets.
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(a) The PDF of a normal distribution
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(b) The fraction of all trials that reject
the null hypothesis (p ≤ 0.01) for the
normally distributed data (black cir-
cles) and Rayleigh distributed data
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Figure 4.7: Even though the Rayleigh distribution (scale parameter = 2) is highly
skewed compared with the normal distribution, the Shapiro-Wilk test cannot reliably
distinguish it from a normal distribution for the sample sizes shown here. For
separations less than 15 λ/D, the Shapiro-Wilk test gives the wrong outcome (fails
to reject the null hypothesis) for more than half of all trials.
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C h a p t e r 5

THE PERFORMANCE OF THE ROBO-AO LASER GUIDE STAR
ADAPTIVE OPTICS SYSTEM AT THE KITT PEAK 2.1-M

TELESCOPE
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ABSTRACT

Robo-AO is an autonomous laser guide star adaptive optics system recently commis-
sioned at the Kitt Peak 2.1-m telescope. Now operating every clear night, Robo-AO
at the 2.1-m telescope is the first dedicated adaptive optics observatory. This chapter
presents the imaging performance of the adaptive optics system in its first eighteen
months of operations. For a median seeing value of 1.31′′, the average Strehl ratio
is 4% in the i′ band. After post-processing, the contrast ratio under sub-arcsecond
seeing for a 2 ≤ i′ ≤ 16 primary star is five and seven magnitudes at radial offsets
of 0.5′′ and 1.0′′, respectively. The data processing and archiving pipelines run
automatically at the end of each night. The first stage of the processing pipeline
shifts and adds the data using techniques alternately optimized for stars with high
and low SNRs. The second “high contrast" stage of the pipeline is eponymously
well suited to finding faint stellar companions.
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5.1 Introduction
Adaptive optics (AO) systems correct wavefront aberrations introduced by the at-
mosphere and instrumental optics, restoring the resolution of a telescope to the
diffraction limit. Laser guide stars (LGS) were developed in the 1980s to provide
AO systems with bright, locatable wavefront reference sources, bringing fainter
astrophysical objects into the purview of adaptive optics. Over half of all >8-
m aperture telescopes are now equipped with an LGS AO system. The primary
application of these AO instruments is for high angular resolution studies of inter-
esting astronomical objects. As such minimizing the overhead has not been a major
consideration in the overall design of AO systems on large telescopes.

Robo-AO is a robotic LGS AO system designed for maximum target throughput.
Unlike LGS systems on large telescopes, it is based on an artificial star produced by
Rayleigh scattering of a near UV laser. Robo-AO achieves high target throughput by
minimizing overhead times to less than one minute per target. This is accomplished
by three key design elements: 1) each step of the observation sequence is automated,
allowing tasks that would be performed sequentially by a human operator to be
performed in parallel and with minimal delay by the robotic system; 2) the λ =
355 nm Rayleigh scattering laser guide star is invisible to the human eye. As a
result, while coordination with the U.S. Air Force Joint Space Operations Center
(JSpOC) is still required to prevent illumination of sensitive space assets, no control
measures are required by the Federal Aviation Administration; 3) Robo-AO employs
an automated queue scheduler which chooses each new science target based on
telescope slew times and approved lasing windows provided in advance by JSpOC.

Robo-AO was first commissioned at the Palomar 1.5-m telescope in 2011, where it
completed 19 science runs as a PI instrument fromMay2012 through June 2015. Full
details of the Robo-AO hardware and software can be found in Christoph Baranec,
R. Riddle, N. M. Law, A.N. Ramaprakash, et al. (2013), Christoph Baranec, R.
Riddle, N. M. Law, A. N. Ramaprakash, et al. (2014) and R. L. Riddle et al. (2014).

In 2012, the National Optical Astronomy Observatory (NOAO), following the rec-
ommendation of the Portfolio Committee which was chartered by the the National
Science Foundation (NSF), decided to divest the Kitt Peak 2.1-m telescope. In
2015, the Robo-AO team made a bid for the telescope and was selected to operate
the telescope for three years. Robo-AO was installed at the 2.1-m telescope in
November, 2015; since then it has been operating nearly every clear night. As the
first dedicated, automated adaptive optics facility, Robo-AO at Kitt Peak is well
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Telescope Kitt Peak 2.1-m telescope
Science camera Andor iXon DU-888
EMCCD detector E2V CCD201-20
Read-noise (without EM gain) 47 e−

EM gain, selectable 300, 200, 100, 50, 25
Effective read-noise 0.16, 0.24, 0.48, 0.96, 1.9 e−

Full-frame-transfer readout 8.6 frames per second
Detector format 10242 13-µm pixels
Field of view 36′′ × 36′′
Pixel scale 35.1 milli-arcsec per pixel
Observing filters g′, r′, i′, z′, lp600

Table 5.1: The Specifications of the Robo-AO Optical Detector at Kitt Peak.

positioned to support the next generation of large-scale survey programs that are
focused on stellar and exoplanet astronomy (e.g. K2, GAIA, CRTS, PTF, TESS
and others), as well as AO follow up of interesting sources. Early science results
including Robo-AO KP data can be found in Adams et al. (2017) and Vanderburg,
Becker, et al. (2016) and Vanderburg, Bieryla, et al. (2016).

In this chapter, we describe the performance of Robo-AO since commissioning.
The chapter is organized as follows: §5.2 introduces the Robo-AO imaging systems;
§5.3 provides an overview of our automatic data reduction pipelines; §5.4 shows
the relationships between the weather conditions and the measured seeing; §5.5
presents the Strehl ratio and contrast curve statistics as well as the point spread
function (PSF) morphology; §5.6 describes our automated data archiving system;
finally, §5.7 describes the newly installed near-IR camera.

5.2 Summary of the Robo-AO Imaging System
The Robo-AO imaging system includes two optical relays, each using a pair of
off-axis parabolic mirrors. The first relay images the telescope pupil onto a 140-
actuator Boston Micromachines micro-electro-mechanical-systems (MEMS) de-
formable mirror used for wavefront correction. A dichroic then reflects the UV
light to an 11×11 Shack-Hartmann wavefront sensor. The second optical relay
includes a fast tip-tilt correcting mirror and an atmospheric dispersion corrector
(ADC; here, two rotating prisms1) located at a reimaged pupil. The output of the

1From the commissioning of Robo-AO at Kitt Peak in November of 2015 through February of
2017, the right ascension (RA) axis of the 2.1-m telescope suffered from a ∼ 3.7Hz jitter (see §5.5
and §5.9) that caused a slight elongation of the stellar PSFs. As a result, the ADCs were not correctly
calibrated until an upgrade to the telescope control system removed the jitter.
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second relay is an F/41 beam that is intercepted by a dichroic mirror, which reflects
the λ < 950 nm portion of the converging beam to the visible wavelength filter
wheel and EMCCD detector (see Table 5.1). The filter wheel includes g′, r′, i′, and
z′ filters, as well as a long-pass “lp600" filter cutting on at 600 nm and extending
beyond the red limit of the EMCCD (see Figure 1 in Christoph Baranec, R. Riddle,
N. M. Law, A. N. Ramaprakash, et al. 2014). The dichroic transmits the longer
wavelength light to the near-infrared (NIR) instrument port (see §5.7).

Robo-AO was originally designed for simultaneous optical and NIR operations,
such that deep science integrations could be obtained in one band while the image
displacement could be measured in the other and corrected with the fast tip-tilt
mirror. In February of 2017, we achieved first light with a science-grade novel
infrared array, a brief summary of which appears in §5.72. In this chapter, we
consider the imaging performance of Robo-AO using the optical imaging camera
only. In lieu of an active tip-tilt correction, the EMCCD is run at a framerate of
8.6Hz to allow for post-facto image registration followed by stacking (see §5.3).

5.3 Data Reduction Pipelines
Overview
Image registration and stacking (see §5.2) is accomplished automatically by the
“bright star” and “faint star” pipelines, which are optimized for high and low signal-
to-noise (SNR) targets, respectively. The data are then processed by the “high
contrast” pipeline to maximize the sensitivity to faint companions. These pipelines
are described in detail below.

Image Registration Pipelines
All observations are initially processed by the “bright star” pipeline. This pipeline
generates a windowed datacube centered on an automatically selected guide star.
The windowed region is bi-cubically up-sampled and cross correlated with the
theoretical point spread function to give the center coordinates of the guide star’s
PSF in each frame. The full-frame, unprocessed images are then calibrated using the
nightly darks and dome flats. Finally, the calibrated full frames are aligned using the
center coordinates identified by the up-sampled, windowed frames, and co-added
via the Drizzle algorithm (Fruchter and Hook, 2002). These steps are described in
detail in N. M. Law, C. Baranec, and R. L. Riddle (2014).

2A detailed analysis of the operation of this camera, its imaging performance, and its incorpora-
tion into an active tip-tilt control loop will be reported elsewhere.
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After an observation has been processed by the “bright star” pipeline, the core of
the brightest star in the frame is fit by a 2D Moffat function. If the full width at
half maximum (FWHM) of the function fit to the core is < λ/D, indicating that the
stellar centroiding step has failed, the observation is re-processed by the “faint star”
pipeline to improve the SNR in the final science image.

The individual frames for a given observation are summed to create a master dark-
and-flat-corrected reference image. This frame is then high pass filtered and win-
dowed about the guide star. Each raw short exposure frame is then dark and flat
corrected, filtered, and windowed. These individual frames are registered to the
master reference frame using the Image Registration for Astronomy python
package written by Adam Ginsburg3. The package finds the offset between the
individual and reference frames using DFT up-sampling and registers the images
with FFT-based sub-pixel image shifts. Figure 5.1 illustrates the strengths and
weaknesses of the bright and faint star pipelines.

These automatic pipelines have reduced thousands of Robo-AO observations since
the instrument was commissioned in November of 2015. Figure 5.2 shows a collage
of representative observations.

High Contrast Pipeline
For science programs that aim to identify point sources at small angular separations
from known stars further processing is needed. Our “high contrast imaging” pipeline
generates a 3.5′′ frame windowed about the star of interest in the final science frame.
A high pass filter is applied to the windowed frame to reduce the contribution of
the stellar halo. To whiten correlated speckle noise at small angular separations
from the target star we subtract a synthetic PSF generated by Karhunen-Loève
Image Processing (KLIP). The KLIP algorithm is based on the method of Principal
Component Analysis (R. Soummer, L. Pueyo, and Larkin, 2012). The PSF diversity
needed to create this synthetic image is provided by a reference library of Robo-
AO observations – a technique called Reference star Differential Imaging (RDI;
D. Lafrenière, C. Marois, Rene Doyon, et al., 2009). We note that the angular
differential imaging approach (C. Marois, D. Lafrenière, R. Doyon, et al., 2006) is
not possible here because the 2.1-m telescope is an equatorial mount telescope. Our
pipeline uses the Vortex Image Processing (VIP) package (Gomez Gonzalez
et al., 2016).

3https://github.com/keflavich/image_registration
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(a) Bright star, bright star pipeline (b) Bright star, faint star pipeline

(c) Faint star, bright star pipeline (d) Faint star, faint star pipeline

Figure 5.1: The bright star pipeline (a) produces a superior Strehl ratio for the
V= 8.84 double star HIP55872 compared with (b) the faint star pipeline. For the
V= 15.9 star 2MASSJ1701+2621, however, the bright star pipeline (c) fails to
correctly center the PSF, leading to an erroneously bright pixel in the center. The
faint pipeline (d) successfully shifts and adds this observation.

The full reference PSF library consists of several thousand 3.5′′ square high pass
filtered frames that have been visually vetted to reject fields with more than one
point source. The PSF library is updated on a nightly basis to ensure that each
object’s reduction has the opportunity to include frames from the same night. Each
frame in the full library is cross correlated with the windowed and filtered science
frame of interest. The five frames with the highest cross correlation form the
sub-library provided to KLIP. We then adopt only the first principal component
(PC) as our synthetic PSF, as including more PCs provides no additional noise
reduction on average. A future version of the pipeline will choose the number of
PCs automatically for each observation based on SNR maximization.

Figure 5.3 shows an example of a PSF reduced by the standard data pipeline (panel
a), then high pass filtered (panel b), and finally processed with RDI-KLIP (panel c).
After a science frame has been fully reduced we use VIP to produce a contrast curve
that is properly corrected for small sample statistics and algorithmic throughput
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Figure 5.2: Examples of Robo-AO i′−band images at Kitt Peak (square root scaling).
The full-frame (36′′×36′′) images on the left are the globular cluster Messier 5 (top)
and Jupiter (bottom). The images on the right are examples of bright single stars
and stellar binaries with a range of separations and contrasts.

losses. The corresponding contrast curves for the three panels are shown in panel d.

Given that over two hundred new targets are observed during a clear night of Robo-
AO observations the reference library is rapidly expanding and increasingly includes
PSFs affected by a very wide range of environmental conditions. Hence, speckle
noise in a past observation can be further reduced by a fresh RDI-KLIP reduction
if the data is more correlated with later PSFs. Clearly a new reduction will benefit
from the advantage of the larger reference library.
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(a) PSF after standard
pipeline reduction

(b) PSF in (a) after high pass
filtering

(c) PSF in (b) after
RDI+KLIP reduction

(d) The dashed, dot-dashed, and solid contrast curves correspond to the PSFs shown in (a),
(b), and (c), respectively.

Figure 5.3: An example of the reduction steps in the “high contrast” pipeline for a
z′ observation of the star EPIC228859428.

5.4 Site Performance
Site Geography
Kitt Peak is located 56miles southwest of Tucson, Arizona, at an elevation of
6800 feet. The 2.1-m telescope is situated 0.4miles to the south of the peak’s
highest point (the location of the Mayall 4-m telescope). The WIYN 3.5-m and
0.9-m telescopes are respectively 700 ft and 400 ft to the west of the 2.1-m telescope
and at approximately the same elevation. There are no structures at equal or greater
elevations to the east of the telescope, and the terrain is relatively flat beyond Kitt
Peak in that direction. The 7730 ft Baboquivari Peak is 12miles directly south of
the telescope.

Seeing Measurement
Before the start of each science observation, a 10 s seeing observation is taken with
the AO correction off. During this period the wavefront sensor camera acquires
a background image. These seeing observations are dark and flat calibrated and
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summed without any registration of the individual exposures. The seeing is defined
as the FWHM of a two-dimensional Gaussian function fit to this summed frame.
Starting in January of 2017, a 90 s seeing observation was obtained each hour.
Specifically, the Robo-AO queue schedules an observation of a bright (V < 8)
star within 10◦ of zenith to refocus the telescope and measure the seeing. As of
this writing, there is no significant difference between these “long” and “short”
seeing observations. Here on we proceed with the assumption that the 10 s seeing
measurements are representative of the long-exposure seeing.

We display a histogram of these fiducial seeing values in Figure 6.2c. Figure 5.4
displays the seeing as a function of the seasons. The seeing values measured in a
given wavelength are scaled to a fiduciary wavelength of 500 nm by the scaling law
seeing500 nm = seeingλ × (λ/500 nm)1/5.

Figure 5.4: Seasonal fiducial (λ = 500 nm; see §5.4) seeing measurements. Nightly
median values were used to fit a monthly distribution. The fraction of nights with
seeing data for each month is shown. The quartile values and the actual measured
range are shown.

Seeing Contributions
We note that our median seeing of 1.31′′ differs from the median seeing of 0.8′′

reported by the adjacent WIYN telescope4. One possible explanation for this
discrepancy is that the WIYN was built in 1994 with careful attention paid to dome
ventilation and telescope thermal inertia. In contrast, the 2.1-m telescope saw
first light in 1964 before such considerations were fully appreciated. Figure 5.6
demonstrates the challenging thermal conditions at the 2.1-m telescope: during the
majority of Robo-AO observations, the mirror is warmer than the ambient dome
temperature which in turn is warmer than the outside air. The experience of other
observatories indicates that improvements to dome thermalization can significantly
improve the measured seeing (e.g. Bauman et al., 2014).

4https://www.noao.edu/wiyn/aowiyn/
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Figure 5.5: A histogram of the seeing measurements (all referenced to a wavelength
λ = 500 nm) from December 2015 to March 2017. A zenith distance dependent
correction has been applied. The 25th, 50th, and 75th percentile seeing values are
indicated by the vertical lines.
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Figure 5.6: Histograms of the difference between the primary mirror and dome
temperatures (solid) and the dome temperature minus the outside air temperature
(dashed).

Another possible cause of the comparatively poor seeing at the 2.1-m telescope
is perhaps a more turbulent ground layer. Figure 5.7 shows a “wind rose,” or
the frequency of wind speeds originating from different directions, for December
2015 through June 2016. We find that during this period the wind most commonly
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blows from the NNW, or the direction of the higher elevation Mayall 4-m telescope,
and rarely from the SE where the terrain is less mountainous. The highest winds
(> 40mph) come from the north while the south has the largest fraction of low wind
speeds (the wind speeds originating from within 20◦ of due south are under 10mph
73% of the time).

0.4” – 0.7” 
0.7” – 1.0” 
1.0” – 1.4” 
1.4” – 1.7” 
1.7” – 2.0” 
> 2.0”  
 

1.4 – 9.4 mph 
9.4 – 17.3 mph 
17.3 – 25.3 mph 
25.3 – 33.2 mph 
33.2 – 41.2 mph 
> 41.2 mph  
 

0.6% - 2.5% 
2.5% - 4.4% 
4.4% - 6.3% 
6.3% - 8.2% 
8.2% - 10.2% 
> 10.2% 
 

Figure 5.7: A “wind rose" showing a stacked polar histogram of wind speeds and
directions fromDecember 2015 through June 2016. Thewindmost frequently blows
from the NW,N, and NE, which correspond to themoremountainous region towards
the direction of the Mayall 4-m telescope. These also tend to be the direction of the
high wind speeds while slower wind speeds most often come from the south, where
the terrain is less mountainous.

Despite these terrain variations, the seeing is not significantly correlated with the
wind direction. The wind speed, however, degrades the seeing by several tenths of
an arcsecond for winds over 20mph (the dome closes for winds over 40mph).

Figure 5.8 plots the seeing versus the wind speed, demonstrating that poorer seeing
is correlated with higher wind speeds5. We note that the wind monitor became
nonfunctional after June of 2016, and hence further study of the relationship between
the seeing and the wind speed will occur after a new wind monitor is in place.

5The mean binned seeing measurements in Figure 5.8 are larger than the median of all Robo-AO
KP seeing measurements (Figure 6.2c) due to binning effects and the difference between the mean
and median of the asymmetric distribution of seeing measurements.
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Figure 5.8: The mean binned seeing versus the wind speed for December 2015
through June 2016. The error bars are the standard deviation of the seeing values
in a given wind speed bin divided by the square root of the number of seeing
measurements in the bin. For wind speeds over 20mph, the seeing is degraded by
up to 0.3′′.

5.5 Adaptive Optics Performance
Strehl Ratio
The goal of an adaptive optics system is to bring the observed PSF closer to its the-
oretical diffraction-limited shape; hence, an important measure of the AO system’s
performance is the ratio between the peak intensity of an observed PSF and that of
the telescope’s theoretical PSF – the Strehl ratio. As the AO performance improves,
the Strehl ratio increases.

We calculate the Strehl ratio by 1) generating a monochromatic diffraction-limited
PSF by Fourier transforming an oversampled image of the pupil, 2) combining
several monochromatic PSFs to create a PSF representative of the desired bandpass,
3) re-sampling the polychromatic PSF to match our 0.0175′′/pixel platescale of the
up-sampled “drizzled” frames, 4) obtaining the “Strehl factor," or the ratio of the
peak intensity to the sum of the intensity in a 3′′ square box, and 5) calculating the
Strehl ratio by repeating step 4 for the observed image and dividing by the Strehl
factor. These steps are described in detail in Salama et al. (2016).

Once Robo-AO began regular observations at the 2.1-m telescope, we noticed that
the achieved Strehl ratios were noticeably smaller than those that were achieved
(for similar seeing values) at the Palomar 1.5-m telescope. A number of exercises
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were undertaken to determine possible causes for this degradation. Eventually, we
determined that the Telescope Control System (TCS) was the main contributing
factor. In Appendix 5.9 we discuss the problem in detail. The mitigation consisted
of upgrading the TCS (completed February 2017). Below, and for the rest of the
chapter, we discuss the instrument performance since the TCS upgrade.

Figure 5.9 plots the Strehl ratio versus the measured seeing for the i′ and lp600
filters. It is clear that the delivered Strehl ratio drops off quickly as the seeing
increases – while Robo-AO achieves > 10% Strehl ratio when the seeing is < 1.0′′,
a 0.25′′ seeing increase halves the Strehl ratio.

In Table 5.2 we present a detailed error budget under different seeing conditions.
This error budget was originally developed by R. Dekany (private communication),
and was validated against the on-sky performance of laser AO systems on the Keck
telescope, the Hale telescope and the Palomar 1.5-m telescope (C. Baranec et al.,
2012). Since we lacked turbulence profile(s) for the 2.1-m telescope site we adopt a
mean C2

n (h) profile from aMASS-DIMM atmospheric turbulence monitor collected
over a year’s baseline at Palomar and scaled to the seeing at Kitt Peak.

High-order errors are added in quadrature and are dominated by focal anisoplanatism
(which is an error arising from the finite altitude of the Rayleigh laser guide star
resulting in imperfect atmospheric sampling). We estimate one-axis tip-tilt errors
as being dominated by bandwidth error for magnitudes greater than 13. As noted
in §5.2 we did not use the built-in tip-tilt facility but instead resorted to shift and
add. We approximate the error resulting from this approach as follows. We assume
a standard −3db rejection frequency matching the full-frame rate of the science
camera to approximate bandwidth error. The tip-tilt errors are then converted
to an equivalent wavefront error and summed in quadrature with the high-order
errors. Other high-order and tip-tilt errors include chromatic, scintillation, aliasing,
calibration and digitization errors.

Strehl ratios are calculated using the Maréchal approximation. The full-widths at
half-maximum (FWHM) are calculated from PSF models assuming the residual
diffraction-limited, concentrated light, residual seeing, and scattered light halos are
proportional to the phase variance of the residual errors. These models have shown
accuracy of a few percent for Strehl ratios as low as 4% (Sheehy, McCrady, and
J. R. Graham, 2006). Figure 5.9 demonstrates Robo-AO’s ability to approach the
predicted Strehl ratio of 14% in sub-arcsecond seeing conditions.
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Figure 5.9: The Strehl ratio versus the measured seeing values for 21 February 2017
through 10 March 2017 in the i′ and lp600 filters.

PSF Morphology
Figure 5.10 shows a representative Robo-AO point spread function (PSF) corre-
sponding to the V=10 star HIP56051. The observation was taken in the i′ band with
a total exposure time of 90 s. The seeing at the time of the observation was 0.94′′,
and the Strehl ratio of the final PSF is 10.17%.
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Figure 5.10: A 1D cut through the PSF of HIP56051 is plotted with two Moffat
functions fit to the PSF core and halo, respectively. The dashed curve is a Gaussian
distribution with a FWHM corresponding to the seeing measurement and an area
equal to the observed PSF’s area.
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Table 5.2: The Robo-AO Error Budget

Percentile Seeing 25% 50% 75%
Seeing at Zenith 1.00′′ 1.13′′ 1.31′′ 1.56′′
Zenith Angle 20 20 20 20
Effective Seeing 1.04′′ 1.17′′ 1.36′′ 1.62′′
High-order Errors
Atmospheric Fitting Error 65 72 82 95
Bandwidth Error 54 60 67 78
High-order Meas. Error 35 38 44 52
LGS Focal Anisop. Error 99 109 124 143
Other High Order Errors 64 65 68 72
Total HighOrderWavefront
Error

149 nm 163 nm 182 nm 208 nm

Tip-Tilt Errors
Tilt Bandwidth Error 24mas 26mas 30mas 34mas
Other Tip-Tilt Errors 7mas 7mas 7mas 8mas
Total Tip/Tilt Error (one-
axis)

25mas 27mas 31mas 35mas

Total Effective Wavefront
Error

165 nm 180 nm 200 nm 228 nm

Spectral
Band

λ λ/D Strehl FWHM Strehl FWHM Strehl FWHM Strehl FWHM

r ′ 0.62 µ 0.07′′ 6% 0.10′′ 4% 0.11′′ 2% 0.14′′ 0% 0.34′′
i′ 0.75 µ 0.08′′ 14% 0.11′′ 10% 0.11′′ 6% 0.12′′ 2% 0.15′′
z′ 0.88 µ 0.10′′ 25% 0.12′′ 19% 0.12′′ 13% 0.13′′ 7% 0.14′′
J 1.25 µ 0.14′′ 49% 0.15′′ 43% 0.16′′ 35% 0.16′′ 26% 0.17′′
H 1.64 µ 0.18′′ 66% 0.19′′ 61% 0.20′′ 54% 0.20′′ 45% 0.20′′

The effect of the AO system is to re-arrange the starlight from the equivalent area
seeing-limited PSF (dashed curve) to the sharper, observed PSF plotted by the
black points. The AO-corrected PSF includes two components: a sharp core and a
broader halo, each separately fit by Moffat functions (the light and dark gray curves,
respectively). The full width at half maximum (FWHM) of the Moffat function fit
to the core is 0.1′′ ± 0.01′′. This value is consistent with the diffraction limit of
1.028 λ/D = 0.08′′.

Contrast Curves
Section §5.3 described the “high contrast pipeline,” which produces 5σ contrast
curves from the high pass filtered, RDI-PCA reduced science frames. Figure 5.11
plots the median and best 10% contrast curves for i′ and lp600 filter science frames.
Under sub-arcsecond seeing (the best 10% of cases), the contrast ratios for a 2 ≤
i′ ≤ 16 primary star are five and seven magnitudes at 0.5′′ and 1.0′′, respectively.
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Figure 5.11: The contrast as a function of distance from the central star for the i′

and lp600 filters. The dashed lines show the best 10% contrast curves for each filter.

5.6 Data Archive
We have developed a fully automated data processing and archiving system6. The
data reduction chain for an observing night proceeds as follows. At the end of
each night, the visual camera data are compressed and transferred to the network
storage. Next, the darks and dome flats taken at the beginning of each night are
combined into master calibration files and applied to the observations. The bright
star pipeline is then run on each observation followed by the computation of the
Strehl ratio of the resulting image. The high contrast pipeline also produces high
pass filtered, PSF-subtracted images and contrast curves for each of these processed
images (see Section 5.3). If the “drizzled” image produced by the bright star pipeline
does not pass a quality check (i.e. if a 2-component Moffat fit to the PSF has an
anomalously narrow core or wide halo) then the faint star pipeline re-reduces the
rapid readout data. Additionally, the “archiver” processes the nightly seeing data,
and generates summary plots of the seeing measurements, Strehl ratios, and contrast
curves. Completing the full reduction chain for a typical night’s worth of data takes
a few hours.

The “house-keeping” system uses a Redis7-based huey python package8 to manage
the processing queue, which distributes the jobs to utilize all available computational

6https://github.com/dmitryduev/roboao-archive
7An efficient in-memory key-value database.
8https://github.com/coleifer/huey
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resources. The processing results together with ancillary information on individual
observations and system performance are stored in a MongoDB9 NoSQL database.
For interactive data access, we developed a web-based interface powered by the
Flask10 back-end. It allows the user to access previews of the processing results
together with auxiliary data (e.g. external VO images of a field), nightly summary
and system performance information. The web application serves as the general
interface to the database providing a sophisticated query interface and also has a
number of analysis tools.

5.7 Near-infrared Camera
In November 2016, we installed a NIR camera for use with Robo-AO. While similar
to the camera deployed in engineering tests at the Palomar 1.5-m telescope in 2014
(Christoph Baranec, D. Atkinson, et al., 2015), the new camera uses a science-
grade detector and faster readout electronics. The detector is a Mark 13 Selex ES
Advanced Photodiode for High-speed Infrared Array (SAPHIRA) with an ME-911
Readout Integrated Circuit (D. E. Atkinson et al., 2016; Baker et al., 2016). It
has sub-electron readnoise and 320×256-pixel array with λ = 2.5 µm cutoff. The
single-board PB1 ‘PizzaBox’ readout electronics were developed at the Institute
for Astronomy and we use 32 readout channels, each capable of a 2 Mpixel/sec
sampling rate, for a maximum full-frame read rate of ∼ 800Hz.

The NIR camera attaches to the Robo-AO f /41 infrared camera port that accesses
λ > 950nm after transmission through a dichroic. The camera has an internal cold
λ < 1.85 µm short-pass filter and an external warm filter wheel with J, H, clear, and
blocking filters. The camera has a plate scale of 0.064′′ per pixel and field-of-view
of 16.5′′ × 20.6′′.

We achieved first light on sky in February 2017 during final testing of the upgraded
TCS. Initially we used a 1Mpixel/sec sampling rate (a full frame read rate of 390Hz)
with detector resets every 300 reads. To create a reduced image, we first assembled
difference frames between 39 consecutive reads, totaling ∼ 0.1 s of integration time,
short enough to effectively freeze stellar image displacement. We subtracted a
frame median to approximate removing the background. We then synthesized a
long exposure image by registering each corrected frame on the brightest target in
the field. Figure 5.12 shows an example image of a binary star observed in H-band.

9https://www.mongodb.com
10https://github.com/pallets/flask



96

Figure 5.12: A 5.5 s image of GJ1116 taken in H-band with the near-infrared camera
(linear stretch).

For the moment, data acquisition and reduction is performed manually. In the com-
ing months, we will optimize the detector readout routines for maximum sensitivity
to faint objects (including dithering for background removal), integrate the operation
of the camera into the robotic queue and modify our existing data reduction pipeline
to handle the NIR data. We will also investigate automating active tip-tilt correction
by using either the visible or infrared camera as a tip-tilt camera, as previously
demonstrated at Palomar.

5.8 Conclusion
Robo-AO at the Kitt Peak 2.1-m telescope is the first dedicated adaptive optics
observatory. Observing every clear night, Robo-AO has the capacity to undertake
LGS AO surveys of large samples. For instance, a 1000-star survey with exposure
times of 60 s per target can be completed on the timescale of a week.

Science programs designed to exploit Robo-AO’s unique capabilities are underway.
These programs include stellar multiplicity in open clusters, minor planet bina-
rity, major planet weather variability, extragalactic object morphology, sub-stellar
companions to nearby young stars, M-star multiplicity, and the influence of stellar
companions on asteroseismology. By the summer of 2017, Robo-AO will become
the first LGS AO system to operate entirely autonomously, as on-going upgrades to
the 2.1-m telescope will remove the need for a human observer.
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5.9 Appendix: Telescope Jitter
After moving Robo-AO from the Palomar 1.5-m telescope to the Kitt Peak 2.1-m
telescope, the median Strehl ratio across all wavelengths was initially reduced from
5.8% to 3.2%. The source of this degradation was a ∼ 3.7Hz vibration in the RA
axis. Because Robo-AO mitigates tip/tilt by post facto shift and add rather than a
real-time loop, and because its framerate is typically only 8.6Hz, the targets were
smeared in the RA direction. Figure 5.13 a and b show the power spectral densities
of the mean subtracted RA centroid positions of targets observed at Kitt Peak and
Palomar, respectively. The peak at ∼ 3.7Hz is clear in the Kitt Peak data, but
is not present at Palomar. The RA-axis smearing for a single test observation is
demonstrated in Figure 5.14.

The jitter wasmitigated by two changes to the system. First, theKPNO staff noticed a
ticking sound corresponding to each rotation of the telescope driveworm gear, which
was solved by lubrication. This step reduced the height of, but did not eliminate, the
PSD peak. Second, we took a test observation in which only sidereal tracking was
enabled, and all fine computer guiding was turned off. The peak was absent in this
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test observation, leading us to conclude that the telescope control system (TCS) was
giving erroneous commands that “kicked” the telescope’s position. The TCS was
replaced in the winter of 2017 to allow the Robo-AO robotic system to fully control
the telescope’s motion, eliminating the remaining RA jitter (Figure 5.15). Figure
5.16 shows a comparison of the Strehl ratios versus the seeing before and after the
TCS upgrade.

(a) Kitt Peak mean subtracted RA
centroids

(b) Palomar mean subtracted RA
centroids

Figure 5.13: The power spectral densities of the mean subtracted RA target positions
for each sub-exposure at Kitt Peak (a) and Palomar (b). The peak at ∼ 3.7Hz is
present at Kitt Peak, but not at Palomar. The solid black lines show the theoretical
power-law dependencies of the tilt: f −2/3 at low frequencies, and f −2 for 1 − 10Hz
(Hardy, 1998).



99

250 200 150 100 50 0

Angle [Degrees]

2

4

6

8

10

12

14

16

18

20

P
ix

e
ls

Semi-Major Axis

Semi-Minor Axis

Figure 5.14: For a test observation, the standard deviation along the semi-major and
semi-minor axes of 2D Gaussian fits to each 0.116s sub-exposure are plotted versus
the rotation angle of the Gaussian. Here, −90◦ (dashed black line) indicates that
the semi-major axis lies along the RA-axis. Clearly, the PSF is elongated along the
RA-axis.

Figure 5.15: The power spectral densities of the mean subtracted RA target po-
sitions for the Kitt Peak sub-exposures since the telescope control upgrade (22
February 2017 through 8 March 2017). The peak that was present in Figure 5.13a
is eliminated.
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Figure 5.16: Strehl ratios of the observations taken in i′ as a function of the seeing
scaled to 500 nm before (December 2015 through 22 February 2017; black points)
and after (22 February 2017 through 10 March 2017; gray stars) the enhancements.
Note the significant improvement for seeing under ≈ 1.1 arcseconds.
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C h a p t e r 6

THE EFFECT OF COMPANIONS ON STELLAR ANGULAR
MOMENTUM IN THE PLEIADES
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ABSTRACT

We present laser guide star adaptive optics observations of 525 Pleiades members
using Robo-AO at the Kitt Peak 2.1-m telescope and NIRC2 at the Keck II telescope.
These targets are drawn fromPleiadesmemberswith rotational periodmeasurements
from K2 light curves (Rebull et al., 2016). From our sample of Robo-AO observa-
tions, we identify 40 candidate binaries with projected separations ranging from 0.4′′

to 7.5′′ (54.3 − 1021.1 au). We further identify 19 candidate binary systems with
Keck/NIRC2, with separations ranging from 0.08′′ to 0.7′′ (10.6− 102.1 au). Given
prior observational evidence that circumstellar disks brake the rotation of pre-main
sequence stars and the prediction that close stellar companions disrupt the disk, we
investigate the hypothesis that Pleiades members with close companions spin faster
than single stars or those with distant companions. We do not find evidence of a
relationship between the observed binaries’ separations and rotational periods.
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6.1 Introduction
Measurements of stellar angular velocities (Ω∗) in clusters of varying ages show
an evolution that drastically differs from simple angular momentum conservation
(Figure 6.1; Gallet and Bouvier, 2013; Bouvier, Matt, et al., 2014). The latter pre-
dicts that Ω∗ should increase as the star contracts onto the zero age main sequence
(ZAMS), and then remain constant during the main sequence phase. Observations
show a much more complicated picture – a star’s angular velocity remains con-
stant for the first few million years, then increases until the ZAMS, and decreases
afterwards.

The duration of the early, constantΩ∗ phase coincides with the lifetimes of accretion
disks, suggesting that star-disk interactions regulate a star’s angular velocity. There
are several possible mechanisms for this regulation, including disk-locking (Ghosh
and Lamb, 1979), accretion-powered stellar winds (Shu et al., 1988; L. Hartmann
and J. R. Stauffer, 1989), magnetospheric ejections (Hayashi, Shibata, and Mat-
sumoto, 1996), and X-winds (Ostriker and Shu, 1995), but the detailed physics and
applicability of these mechanisms to a wide range of stellar masses remains poorly
understood.

However, even without a detailed picture of star-disk interactions, the data in Figure
6.1 suggest that the lifetime of the disk affects the star’s subsequent rotational
evolution – the shorter the lifetime of the disk, the more time the star has to spin up
before reaching the ZAMS.

Observations of stellar multiplicity in nearby star forming regions indicate that
binary systems are the preferred output of star formation (e.g. Simon et al., 1995).
Given that most solar-type stars form with one or more companions, the effect of
stellar companions on disks and subsequent angular momentum evolution must be
considered in order to gain a complete picture of star and planet formation.

For close stellar companions that each retain their own accretion disk, Papaloizou and
Pringle (1977) suggest that the individual components’ disks are tidally truncated
to about 0.3a − 0.5a, or about ten times smaller than the typical ∼ 100 au extent of
an accretion disk around a single star (here, a is the distance between the two stars).
Because the viscous timescale of the disk is proportional to its radius, the disk’s
lifetime may also be shortened by about a factor of ten. On the other hand, if the disk
material is being replenished by a circumbinary disk or envelope, the truncated disks’
lifetimes may ultimately match those of single star disks. Observations, however,
generally support shorter lifetimes: for example, Cieza et al. (2009) observed 125
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Envelope

Core

Fig. 3. Angular velocity of the radiative core (dashed lines) and of the convective envelope (solid lines) as a function of time for fast (blue), median
(green), and slow (red) rotator models. The angular velocity is scaled to the angular velocity of the present Sun. The blue, red, and green tilted
squares and associated error bars represent the 90th percentile, the 25th percentile, and the median, respectively, of the rotational distributions of
solar-type stars in star forming regions and young open clusters obtained with the rejection sampling method (see text). The open circle is the
angular velocity of the present Sun and the dashed black line illustrates the Skumanich relationship, Ω ∝ t−1/2.

mass-loss rate (Ṁ⊙ = 1.25−1.99 × 1012 g s−1, see Table 2 from
Cranmer & Saar 2011).

The middle panel of Fig. 2 shows the evolution of the mass-
loss rate as a function of stellar angular velocity in our models.
The saturation of the mass-loss rate again appears around 10Ω⊙,
corresponding to the saturation of f∗. We derive the following
asymptotic expressions for the mass loss-rate prescription in the
slow and fast rotation regimes, respectively,

Ṁwind ≃ 1.14 × 1012
(
Ω∗
Ω⊙

)1.58

g s−1, (14)

if 1.5 Ω⊙ ≤ Ω∗ ≤ 4 Ω⊙, and

Ṁwind ≃ 2.4 × 1013 g s−1, (15)

if Ω∗ ≥ Ωsat, where Ωsat ≈ 15 Ω⊙.

3.3.3. Angular momentum loss rate: asymptotic forms

To highlight the dependency of the angular momentum loss rate
on stellar parameters and primarily on stellar angular velocity,
we express dJ/dt, in the asymptotic cases of slow and fast ro-
tators, as a power law combining Eqs. (3), (4), and (12)−(15)
above, to yield
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in the saturated regime (Ω∗ ≥ 15 Ω⊙). Figure 2 shows how the
angular momentum loss rate varies with angular velocity for the
three rotational models developed below.

4. Results

The free parameters of the model are the initial rotational pe-
riod at 1 Myr Pinit, the core-envelope coupling timescale τc−e,
the disk lifetime τdisk, and the scaling constant of the wind brak-
ing law K1. The value of these parameters are to be derived by
comparing the models to the observed rotational evolution of
solar-type stars. The models for slow, median, and fast rotators
are illustrated in Fig. 3 and their respective parameters are listed
in Table 2. As explained below, the initial period for each model
is dictated by the rotational distributions of the youngest clus-
ters, while the disk lifetime is adjusted to reproduce the observed
spin up to the 13 Myr h Per cluster. We did not attempt any chi-
square fitting but merely tried to reproduce by eye the run of the
rotational percentiles as a function of time.

For the fast rotator model (Pinit = 1.4 d), the disk lifetime is
taken to be as short as 2.5 Myr, resulting in a strong PMS spin
up. This is required to fit the rapid increase of angular velocity
between the youngest clusters at a few Myr (Ω∗ ≃ 10−20 Ω⊙)
and the 13 Myr h Per Cluster (Ω∗ ≃ 60 Ω⊙). The choice of
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Credit: Gallet & Bouvier, A&A, 556, A36, 2013, reproduced with permission © ESO. 

Figure 6.1: The observed angular velocities of solar-type pre-main sequence stars
in clusters as a function of age. The circle indicates the Sun. The solid lines show
a simulation of the angular velocity of the convective envelope, while the colored
dotted lines represent the radiative core. The blue, green, and red colors indicate
fast, medium, and slow rotator categories respectively. The black dashed lines show
the rotational evolution assuming conservation of momentum starting with the same
initial rotations as the blue and red lines. This figure is adapted from Gallet and
Bouvier (2013).

binary pre-main sequence (PMS) stars with Spitzer and concluded that binaries
with smaller separations are less likely to meet their disk-indicator color criterion.
Furthermore, binaries with a < 100 au in Scorpius-Ophiuchus and Taurus-Auriga
have decreased millimeter and submillimeter flux compared with wider binaries,
supporting the hypothesis that closer binaries have shorter disk lifetimes (Beckwith
et al., 1990; Jensen, Mathieu, and Fuller, 1996).

If this hypothesis is correct, then closer binaries would also be expected to rotate
more quickly at a given age because they would have had more time to spin up
between the dissipation of the disk and contraction onto the ZAMS. Open clusters
are an ideal laboratory for studying this relationship because their members formed
at the same time and in a similar environment – two important considerations given
the variations observed in rotational periods as a function of time and between
similarly aged clusters. The Pleiades is well-suited to these measurements because
at 136.2 pc away it lends itself well to imaging surveys, and with an age of 125Myrs,
Figure 6.1 indicates that it should still show a diversity of rotational periods (Melis
et al., 2014; J. R. Stauffer, Schultz, and Kirkpatrick, 1998). However, when Bouvier,
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Rigaut, and Nadeau (1997) compared the separations of twelve a < 100 au binaries
in the Pleiades with previous vsini measurements, no correlation between separation
and rotation was found. There could be many reasons for this finding – the sample
size was small, vsini is an imperfect proxy for Ω∗, and perhaps the complexity of
the first 125Myrs of angular momentum evolution in 10 − 100 au binaries is not
yet appreciated. On the other hand, Patience et al. (2002) compared the vsini and
separations of 16 solar-type binaries in α Persei, and concluded that binaries with
a < 60AU are indeed rotating more quickly than binaries with larger separations.

A new dataset is now available to shed new light on the evolution of stellar angular
momentum. For 72 days in 2015, the NASA K2 space telescope continuously
observed 1020 candidate Pleiades members with a 30minute cadence. Rebull
et al. (2016) analyzed the light curves from these data to obtain rotational period
measurements of 759 high-confidence Pleiadesmembers – themost complete census
of its kind due to the sensitivity, photometric precision, and continuity of the K2
data. However, K2 is not well suited to resolving stellar binaries in part because
its detector’s pixels are 3.98′′ × 3.98′′. In this chapter, we present laser guide star
adaptive optics observations of 525 Pleiades targets from the periodic K2 sample.
These high-resolution images allow for the identification and characterization of 59
candidate binary systems.

6.2 Observations
In order to resolve binary star systems from among the Rebull et al. (2016) sample
of 759 Pleiades members with periodic K2 lightcurves, we observed the 465 i′ < 15
targets with Robo-AO at the Kitt Peak 2.1-m telescope and 60 10.9 < Ks < 13.7
targets with Keck/NIRC2. These observations are described in detail below.

Robo-AO
Robo-AO is a robotic adaptive optics system newly commissioned at the Kitt Peak
2.1-m telescope (see Chapter 5). Because Robo-AO is capable of observing > 200
distinct targets per night, it is the ideal adaptive optics system for the large-scale
survey described here.

The i′ filter was used for all Robo-AO observations. Of the installed g′, r′, i′, and
z′ filters, the i′ filter is an appropriate compromise between the rapidly decreasing
quantum efficiency of the detector beyond 800 nm and the red colors of the low-
mass Pleiades targets. Robo-AO also provides a clear window and a long-pass
filter cutting on at 600 nm and extending to the red limit of the detector. Previous
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binary searches with Robo-AO have chosen the long-pass filter for initial binary
identification to maximize the flux contribution from a faint secondary. The newly
discovered binaries were then followed up in multiple filters. However, because this
survey was conducted during Robo-AO’s commissioning at Kitt Peak, the i′ filter
was chosen for all observations as a risk management strategy: while published
evolutionary models can provide a mass estimate based on Mi′, no such models are
available for the specialized long-pass filter. Hence, any binaries that could not be re-
observed due to instrument down time or under-performance during commissioning
would be missing a robust mass measurement. Hence, we decided to observe all
targets in i′ in order to guarantee a mass measurement for all binaries regardless of
the availability of follow-up observations.

As the performance of Robo-AO improved between the instrument’s first light in
November of 2015 and the conclusion of the telescope control system upgrade in
March of 2017, observations of the Pleiades targets were attempted several times.
Approximately 70% of the targets were successfully observedmore than once, and in
this sample the average number of observations was four. The remaining 30% of the
sample tended to be faint stars whose observations failed in poor seeing conditions.
For those targets with multiple observations, the “best” observation to be used for
companion searches was chosen based on the nearest seeing measurements. The
seeing was chosen as the selection metric rather than the Strehl ratio because many
of the observations were only reduced with the faint pipeline where the Strehl
measurement code has not yet been validated.

For the selected observations, Figure 6.2 shows histograms of the targets’ elevations
at the time of the observation, estimated i′magnitudes, nearest seeingmeasurements,
and Strehl measurements (for those targets that were processed with the bright star
pipeline only). The i′ magnitudes were calculated using a combination of the target
Ks magnitudes reported by Rebull et al. (2016) and 120Myr BT-Settl evolutionary
models given by Allard, Homeier, and Freytag (2011).

The Robo-AO observations were carried out with an Andor iXon+ 888 electron
multiplying CCD (EMCCD). Approximately 80% of the selected observations were
taken with Robo-AO’s default framerate of 8.6Hz. For the remaining 20% of the
observations, the center 1/4 of the detector was read out at ∼ 35Hz to provide an
improved tip/tilt correction in post-processing. The choice of the standard versus
“high speed” mode is at the discretion of the observer, where the high speed mode is
typically selected for stars brighter than 13th magnitude when the seeing is . 1.5′′.
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Figure 6.2: A summary of the Robo-AO Pleiades observations selected for compan-
ion searches.

Table 6.1: Robo-AO EMCCD Gain Values

Target Magnitude EM Gain Value
< 8 5
8 − 10 50
10 − 12 100
12 − 13 200
> 13 300

For both the standard and high speed observing modes, the detector is read out with
a 10MHz 14 bit electron multiplying amplifier with a pre-amplifier sensitivity of
10.9 e−/ADU. The EMgain value is then chosen based on the target star’s magnitude
(Table 6.1), where fainter stars are multiplied by a higher gain value.

The data were processed by both the bright and faint star pipelines described in
Chapter 5. The final shifted-and-added frames provided by each of these pipelines
were multiplied by 10.9 e−/ADU divided by the appropriate EM gain value.
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Keck NIRC2
BecauseRobo-AO’s post-facto tip/tilt correction strategy requires guide stars brighter
than about 15th magnitude in the filter of observation, the Robo-AO Pleiades sam-
ple is incomplete for masses less than about 0.4 M�. Hence, we observed 60 low
mass Pleiades objects with the Keck/NIRC2 laser guide star adaptive optics system
over two nights: UT 10 October 2016 and 6 November 2016. Due to a temporary
problem with the laser guide star on the first night of observations, three bright
(Ks < 10) Pleaides targets were also observed using natural guide star AO.

The DIMM seeing varied from 0.4′′ to 1.1′′, with some high cirrus clouds on the
first night. The airmass ranged from 1.0 to 2.16, with some elongation of the PSF
observed at larger airmasses.

For both nights of observation, we chose the Ks filter to maximize our sensitivity
to red companions. We chose the narrow camera mode, giving a field of view of
10.2′′ × 10.2′′. We dark subtracted, flat fielded, cleaned, and combined the images
for each target star using the Keck/NIRC2 data pipeline developed by Henry Ngo
(Ngo et al., 2015). We then multiplied each reduced frame by the detector gain of
4e−/ADU.

6.3 Binary System Analysis
Identification of Candidate Binary Systems
The candidate binary systemswere identified by visual inspection. For theKeck/NIRC2
data, this yielded unambiguous results: 19 stars had candidate binary companions.
The calculation of the binary systems’ separations and mass ratios are discussed in
the following subsection.

The Robo-AO data, however, included a wider variety of observing conditions and
stars per frame. For each of the selected Robo-AO observations (see Section 6.2),
we visually inspected three frames: the final frames produced by the faint and bright
star pipelines, and the PSF-subtracted inner region of the frame produced by the
combination of the bright star pipeline and the high contrast pipeline (see Chapter 5
for a description of these pipelines). Because we are interested in the gravitational
interactions of binary pairs and their disks, we considered only candidate compan-
ions within 1000 au of the target star, as the typical extent of a G-star circumstellar
disk is 100 au. We identified 40 such binary candidates. None of these candidate
companions required PSF subtraction to be identified, so we simplified the sub-
sequent analysis by considering only non-PSF subtracted frames. For subsequent
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analysis steps, we then needed to chose between the frames generated by the bright
and faint star pipelines. While this choice was not always straightforward, we found
that the bright star pipeline’s PSF-subtracted frames showed a single bright pixel in
the center of the residual PSF for very faint stars, indicating that the shift-and-add
algorithm had given erroneous results (see Chapter 5). For stars with that residual
pattern, we selected the faint star pipeline.

Separation and Flux Ratio Measurements
We now wish to measure the separations and flux ratios of each of the candidate
binary systems. Our strategy for these measurements will be to fit model functions
to the stellar PSFs. For “close” binary systems with significant flux overlap, we
will simultaneously fit the PSFs, while for “wide” systems we will fit the two stars
independently. We consider all of the binary systems identified with Keck/NIRC2
to be close; while the full width at half maxima of the Robo-AO binary sample vary,
we find that a threshold separation of 3′′ is adequate in the sense that simultaneous
and independent fits give similar results for test binaries larger than that separation.

For each of the stars in the widely separated binary systems, we fit the PSFs with the
sum of a constant and the following 2D functions: a single Gaussian, the sum of two
Gaussians, and the sum of three Gaussians (see B. P. Bowler and Hillenbrand (2015)
for a discussion of a similar approach using Keck/NIRC2 data). We simultaneously
fit combinations of this same set of functions to the close binary systems. The
functions were fit using the astropy implementation of the Levenberg-Marquardt
algorithm, and the best fitting function was chosen by the least squares statistic. The
data that requires the faint pipeline is typically very low Strehl and hence each PSF
is well-fit by a single Gaussian function. The PSFs in high Strehl data, however,
include both a sharp ∼ λ/D-sized core and a broader halo. These PSFs are best
fit by the sum of two or three Gaussian functions. We note that some of the stars
were better fit by the sum of two Moffat functions than any of the aforementioned
Gaussian distributions; however, the integral of the best fitting Moffat function was
often divergent, giving unstable results for the binary pair’s flux ratio.

Each binary separation is then simply the distance between the means of the best
fitting distributions. To calculate the flux ratio, a model image is created separately
for each star in a system. For those binaries in which both stars are best fit by single
Gaussians, we draw an aperture around the 2σ contour of each model (hence this
aperture is allows to be elliptical), and take the binary flux ratio to be the ratio of
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these aperture sums. For binaries in which one or more component is best fit by the
sum of multiple Gaussians, we generate a model image for each star that extends far
enough for the model flux to go to zero in all directions to machine precision. The
flux ratio is then the ratio of the sums of these large model images.

To estimate the uncertainties on the binary separations and flux ratios, we repeat
the fitting and measurement steps described above 1000 times, each using a new
“original” Robo-AO image, where each pixel in the new image is drawn from
a Poisson distribution whose mean is the value of that pixel in the true original
frame. The peak location of a histogram of the 1000 values of the parameter in
question is taken to be the peak of that parameter’s probability density function.
The 68% confidence interval is found by constructing an empirical cumulative
distribution (ECDF) function of the 1000 values and finding the shortest interval
that encompasses 68% of the values. An example of a histogram and ECDF
generated by this process is shown in Figure 6.3. We note that the our confidence
intervals do not account for the fact that the Gaussian models are imperfect fits to the
data. To briefly address this point, we simulated three-component-Gaussian binary
stars of various widths and separations and obtained their flux ratios and separations
by fitting them to single-component Gaussians. For typical widths and separations
represented by the “close” binary star data, we find that the errors due to a poor
choice of model are likely on the order of 10%.

To translate our measured flux ratios into mass ratios, we first adopt the absolute
Ks magnitudes obtained by J. Stauffer et al. (2016) for the Pleiades K2 sample.
These values have been shifted based on the authors’ single-star Ks versus (V − Ks)
track; this approach accounts for the overbrightness of photometric binaries in such
a way that the final Ks magnitudes represent the primary star’s magnitude only.
We then use 120Myr BT-Settl evolutionary models given by Allard, Homeier, and
Freytag (2011) to obtain the primary stars’ masses based on their corrected Ks

values assuming a Pleiades distance of 136.2 pc. Because the BT-Settl models
provide masses based on both Ks and i′ magnitudes, we can translate our 68%
confidence interval flux ratios into upper and lower bounds on the secondary star’s
mass.

Table 6.2 summaries the results of this analysis. Figure 6.4 plots the best fit mass
ratios versus the best fit separations. Clearly, our observations are more sensitive to
higher mass ratio companions when the projected separation is larger.
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(a) Robo-AO image (b) Model image (c) Residual image
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Figure 6.3: An example sequence of images showing the Robo-AO observation
of EPIC 211078780 on 22 February 2017 in (a). The i′ image was processed
with the faint star pipeline. Panel (b) shows the simultaneously fit models to the
primary and secondary stars, where each star was modeled as the sum of two
Gaussian distributions. Panel (c) shows the difference between the observation
and the model. Panel (d) plots the histogram of the primary-to-secondary flux
ratio measurements generated by many realizations of Poisson noise in the original
image. The corresponding empirical cumulative distribution function of the flux
ratio measurements is shown in panel (e), where the dotted lines represent the 68%
confidence interval.

6.4 Discussion
Figure 6.5 plots the rotational periods of all Pleiades members measured by Rebull
et al. (2016) versus their (V − Ks)0 color, where the stars observed with adaptive
optics (this work) are shown in color. There are several distinct regimes in this
period-color diagram: 1.1 < (V − Ks)0 < 3.7 represents F5 - K8 stars at or near
the zero age main sequence whose magnetized stellar winds have started to break
their rotation according to their mass. Redward of (V − Ks)0 = 3.7 (M dwarfs), the
sample follows a P ∝ M1.5 relation. It is clear that the sample presented here is less
complete for (V − Ks)0 > 5, where the stars are generally too faint in i′ for Robo-AO
observations. Figure 6.6 shows a histogram of the Pleiades observations by color.

We will now proceed by examine the “slowly rotating" sequence in the color range
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Figure 6.4: This figure shows the best fit mass versus the best fit separation for
the binary candidates identified with Keck/NIRC2 (red points) and Robo-AO (blue
points).

1.1 < (V − Ks)0 < 3.7, and testing the hypothesis that stars with closer companions
have shorter rotational periods than stars with more distant companions.

J. Stauffer et al. (2016) identify three distinct populations in the 1.1 < (V − Ks)0 <
3.7 color space: slow, intermediate, and fast rotators. They define the “slow”
locus using a 2nd degree polynomial fit to the 1.1 < (V − Ks)0 < 2.6 and 2.6 <

(V − Ks)0 < 3.7 regions in period logspace. Those starswithin 30% of the fitted lines
are labeled as “slow" rotators. Stars with 0.13 < P/P f it < 0.7 are “intermediate”
rotators while stars with P/P f it < 0.13 are “fast rotators” (P f it being the fitted
period at that color). These populations are indicated in Figure 6.7.

J. Stauffer et al. (2016) find that 62% of photometric binaries in their sample fall in
the intermediate population compared with 22% of supposedly single stars. They
suggest that this displacement is due to the deleterious effect of a stellar companion
on disk-dependent angular momentum regulation. Similarly, we find that 52% of
the binary candidates identified with Robo-AO fall in the intermediate population
compared with 24% of stars for which Robo-AO revealed no companions. However,
we find no difference between the mean projected separation of the binaries in the
slow and intermediate populations. We might consider only those binaries with
separations less than 100 au (the typical extent of the disk surrounding a single G-
type star), but there are only five such candidate binaries in this color range. It may
also be the case that comparatively low mass companions do not significantly affect
the primary’s rotation. Whenwe consider only those binaries with M1/M2 < 2, only
three and six targets remain in the slow and intermediate populations, respectively;
their mean projected separations are not significantly different.
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Figure 6.5: A period-color diagramwhere the periodic Pleiades members are shown
in gray (Rebull et al., 2016), the subset observed with Robo-AO are shown in
cyan (single stars) and blue (binary candidates ), and the subset observed with
Keck/NIRC2 are shown in orange (single stars) and red (binary candidates).

We now consider the color range 4.0 < (V − Ks)0 < 7.0 (M spectral types). This
region does not include such distinct populations as the 1.1 < (V − Ks)0 < 3.7
slow, intermediate, and fast groups. However, we continue to follow J. Stauffer
et al. (2016) by dividing this redder color region into six bins of width 0.4 , and
fitting the mean rotational periods in each bin with a function of the form P ∝ Mα,
where the best fitting α is 1.5. This line is plotted in black in Figure 6.8. We
note that for consistency with J. Stauffer et al. (2016), we have used Baraffe et al.
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Figure 6.6: Left: A histogram of periodic Pleiades observations by K2 (gray),
Robo-AO (cyan), and Keck/NIRC2 (orange). Right: A histogram of Robo-AO and
Keck/NIRC2 observations with the binaries marked in dished lines.

(2015) isochrones of the appropriate age and distance to construct this fit rather
than the BT-Settl models used in Section 6.2 to compute the mass ratios of the
binaries. While 15 binaries were identified with Robo-AO in the approximate range
4.0 < (V − Ks)0 < 5.0, here we only consider the Keck/NIRC2 observations where
the companion sensitivity was the most uniform.

While J. Stauffer et al. (2016) find evidence that photometric binaries and targets
with multi-periodic lightcurves (presumably due to multiple stars) are preferentially
fast rotators, our binaries resolved with Keck are equally likely to fall above or below
the best fit line in Figure 6.8. Furthermore, the mean projected separations of the
binaries are indistinguishable above and below the best fit line. Because all but one
of the binaries resolved with Keck/NIRC2 have mass ratios less than two, this result
is probably not due to the varying effects of companions with different masses.

6.5 Conclusion and Future Work
We find no relationship between the rotational periods and the projected separations
of the candidate binary systems identified with Robo-AO and Keck/NIRC2. If we
accept the J. Stauffer et al. (2016) conclusion that binaries in the Pleaides have
systematically shorter periods than single stars (due to the dynamical truncation and
hence shorter lifetime of the primary star’s disk), then it is reasonable to expect that
a larger sample of resolved binaries would reveal a systematic difference between
the rotational periods of close and wide binary systems.

An important extension to the work presented here will be to understand the adaptive
optics surveys’ sensitivities to companions of different mass ratios as a function of
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Figure 6.7: All periodic Pleiades members observed with K2 (gray circles) and
Robo-AO binary candidates (circles colored by the projected separation of the
binary) for the color range 1.1 < (V − Ks)0 < 3.7 (FGK stars). The “slow” sequence
(dark gray shaded region) includes stars with periods falling within 30% of the best
fit lines shown in black. The “intermediate” sequence (medium gray shaded region)
includes star with periods 30% to 87% shorter than the best fit lines. Finally, the
“fast” sequence (light gray shaded region) are stars with periods more than 87%
shorter than the best fit lines.

separation from the primary star. This task will be more straightforward after re-
observing the Pleiades in the fall of 2017 (much of dataset presented here was
affected by telescope jitter and ADC calibration issues, which were mitigated in the
spring of 2017 just as the Pleiades were setting). Re-observing the targets presented
here will also allow us to determine whether the candidate binaries are truly bound.
Finally, re-observing the sample with Robo-AO’s recently installed infrared camera
will increase our sensitivity to lower mass stellar companions.
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Figure 6.8: All periodic Pleiades members observed with K2 (gray circles) and
Robo-AO binary candidates (circles colored by the projected separation of the
binary) for the color range 4.0 < (V − Ks)0 < 7.0 (M stars). The black circles are
the binned points to which the black line (P ∝ M1.5) is fit.

Table 6.2: Derived Parameters for Pleiades Binaries

EPIC Name Pri. M� ∆M� Sep. (au) Instrument
210833049 0.59 1.19+0.05

−0.08 116.49+5.82
−5.28 Robo-AO

211014883 1.2 1.17+0.08
−0.04 54.35+2.73

−0.37 Robo-AO
211046494 0.83 3.26+0.37

−0.51 161.11+7.23
−3.57 Robo-AO

211070599 1.29 1.02+0.0
−0.0 253.12+0.06

−0.1 Robo-AO
211115638 1.22 5.82+0.21

−0.15 372.21+0.17
−0.63 Robo-AO

211086025 0.96 1.06+0.0
−0.0 118.44+0.12

−0.11 Robo-AO
210966700 1.06 1.13+0.03

−0.06 73.79+0.81
−0.69 Robo-AO

211106344 1.05 1.48+0.17
−0.16 55.46+13.82

−4.01 Robo-AO
210977505 0.66 2.4+0.01

−0.03 331.34+0.38
−0.37 Robo-AO

211030680 0.72 1.34+0.01
−0.05 112.45+1.02

−2.64 Robo-AO
211046240 0.83 1.0+0.01

−0.01 85.04+0.24
−0.29 Robo-AO

211047980 0.61 1.19+0.02
−0.02 63.96+0.63

−0.44 Robo-AO
211059650 0.68 1.05+0.06

−0.03 90.85+0.42
−0.5 Robo-AO
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211059979 0.55 1.02+0.02
−0.0 85.33+0.3

−0.56 Robo-AO
211064196 0.6 1.21+0.02

−0.01 81.54+0.91
−0.4 Robo-AO

211074858 0.44 1.72+0.13
−0.15 139.88+5.61

−4.38 Robo-AO
211076650 0.66 1.56+0.02

−0.02 227.73+1.51
−1.53 Robo-AO

211078780 0.75 1.03+0.0
−0.0 246.57+0.19

−0.1 Robo-AO
211087985 0.6 4.47+0.98

−1.54 133.56+16.37
−14.68 Robo-AO

211090866 0.43 3.94+0.03
−0.18 982.63+0.74

−0.67 Robo-AO
211099297 0.81 2.1+0.02

−0.01 451.57+0.22
−0.36 Robo-AO

211106969 0.65 1.92+0.01
−0.13 181.12+3.15

−1.01 Robo-AO
211118542 0.96 1.43+0.02

−0.08 129.4+2.32
−4.17 Robo-AO

211120664 0.43 3.66+0.17
−0.08 320.18+2.6

−1.16 Robo-AO
211122237 0.69 1.87+0.08

−0.25 60.82+4.58
−2.67 Robo-AO

211153286 0.84 1.65+0.03
−0.03 291.0+3.27

−0.65 Robo-AO
211066337 0.91 3.47+−2.36

−2.37 767.45+0.24
−0.48 Robo-AO

211015853 1.17 19.05+−15.73
−15.77 498.21+0.13

−0.23 Robo-AO
211028956 0.91 10.64+−8.65

−8.67 457.29+0.19
−0.15 Robo-AO

210927331 0.39 1.49+0.02
−0.02 933.79+0.65

−0.43 Robo-AO
210963935 0.62 4.02+0.11

−0.04 1021.09+0.71
−1.37 Robo-AO

210965155 0.65 7.4+0.12
−0.24 692.11+0.64

−1.9 Robo-AO
210996584 0.56 2.08+0.05

−0.01 903.88+0.49
−0.68 Robo-AO

211020371 0.45 1.42+0.03
−0.02 844.79+0.54

−0.94 Robo-AO
211023687 0.69 4.95+0.13

−0.13 639.17+1.72
−0.42 Robo-AO

211063935 0.41 2.85+0.09
−0.01 463.4+0.79

−0.62 Robo-AO
211103222 0.49 2.71+0.03

−0.03 765.15+0.64
−0.56 Robo-AO

210940129 0.24 2.3+0.16
−0.26 27.17+0.1

−0.07 Keck/NIRC2
211005163 0.2 1.67+0.01

−0.01 102.13+0.05
−0.02 Keck/NIRC2

211017407 0.21 1.38+0.45
−0.12 10.7+0.08

−0.07 Keck/NIRC2
211023167 0.5 1.0+0.0

−0.0 28.37+0.01
−0.01 Keck/NIRC2

211036881 0.44 1.52+0.26
−0.15 24.0+0.16

−0.18 Keck/NIRC2
211038622 0.28 1.13+0.02

−0.01 39.01+0.11
−0.17 Keck/NIRC2

211045153 0.58 1.07+0.0
−0.0 23.46+0.0

−0.0 Keck/NIRC2
211057712 0.36 1.07+0.02

−0.02 40.34+0.04
−0.05 Keck/NIRC2

211059981 0.41 1.08+0.05
−0.03 27.32+0.03

−0.03 Keck/NIRC2
211063361 0.42 1.03+0.0

−0.01 37.31+0.11
−0.36 Keck/NIRC2

211066062 0.26 1.19+0.29
−0.3 10.64+0.22

−0.65 Keck/NIRC2
211080177 0.21 1.12+0.03

−0.08 18.47+0.11
−0.06 Keck/NIRC2
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211093040 0.49 1.29+0.03
−0.02 36.57+0.01

−0.19 Keck/NIRC2
211109330 0.26 1.01+0.14

−0.04 15.15+0.02
−0.15 Keck/NIRC2

211121361 0.46 1.09+0.01
−0.01 70.89+0.21

−0.07 Keck/NIRC2
211125236 0.4 1.25+0.04

−0.06 40.05+0.02
−0.01 Keck/NIRC2

211132712 0.48 1.59+0.03
−0.03 42.36+0.05

−0.02 Keck/NIRC2
211138781 0.38 1.04+0.01

−0.01 29.72+0.2
−0.01 Keck/NIRC2

211138883 0.38 1.09+0.0
−0.01 90.29+0.04

−0.09 Keck/NIRC2
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C h a p t e r 7

FUTURE OUTLOOK

We now return to the tasks posed in Chapter 1: 1) to develop the technology to detect
the full range of exoplanet masses and orbital parameters, and 2) to understand the
formation, dynamics, and physical properties of the planets that are already known.
These tasks can be re-stated more specifically as detecting an Earth-mass planet in
the habitable zone of a solar-type star and probing its atmosphere for signs of life.
This latter task requires spectroscopy, and hence the planet must either transit or be
accessible to direct imaging.

Detecting the∼ 80 ppm signal of an Earth-analog transit with SNR> 3 requiresmore
precise photometry than has ever been achieved on the ground (e.g. D. E. Potter,
2006; Zhao et al., 2014); none of the current or near-term space-based missions
searching for transiting exoplanets (e.g. K2, TESS, and CHEOPS) will achieve this
challenging precision. When such a transiting planet is eventually discovered (the
probably of transit for an Earth-analog is a mere 0.47%), obtaining a high-SNR
transmission spectrum will be challenging: Kaltenegger and Traub (2009) find that
the SNR of the transmission spectral features of an Earth-analog at 10 pc will be
less than two for a photon noise limited observation of a single transit by a 6.5-m
telescope. A larger space telescope such as the 8 − 16m Large UV/Optical/IR
Surveyor (LUVOIR) concept may be better suited to these observations (Dalcanton
et al., 2015).

The prospects for directly imaging Earth-analogs with near-term facilities are also
sobering: for an idealized adaptive optics system on a ground-based 30-m telescope,
Traub & Oppenheimer conclude that there are no stars bright enough to provide a
Shack-Hartmann wavefront sensor with enough signal to deliver the 10−10 contrast
required to directly image an Earth-analog (S. Seager, 2010). This limitation is ripe
for creative solutions – investing in the development of novel schemes for wavefront
sensing and control may be our most likely path towards making these challenging
detections, given the maturity of 30-m class telescope projects.

Given the current limitations of ground-based adaptive optics, it is possible that
Earth-analogs will first be detected with space-based telescopes. Near-term, multi-
purpose space telescopes such as JWST and WFIRST, however, are not designed to
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achieve the contrast ratios required for such detections. An exception is a possible
rendezvous betweenWFIRST and a starshade – a free-flying “external coronagraph”
that occults the starlight before it ever reaches the telescope, lessening the require-
ments on the telescope system’s wavefront quality (S. Seager, Turnbull, et al., 2015).
The outcomes of the WFIRST and starshade efforts will become clear as planning
progresses in the next several years.

Perhaps the most appealing avenue for imaging exo-Earths is a dedicated space mis-
sion. For example, HabEx is a candidate NASA mission that would be specifically
designed to detect biosignatures in the atmospheres of Earth-analogs (B.Mennesson
et al., 2016). If HabEx or a space telescope with similar capabilities is selected by
the 2020 Decadal Survey in Astronomy and Astrophysics, it could be expected to
see first light in the 2030s or beyond.

Detecting and probing the atmosphere of an Earth-analog by any of the above
methods will require greater coordination and consensus amongst the exoplanet
research community than any other task in the field’s short, eventful history. As the
first cohort of astronomers with the tools to realize these goals, we have much to
look forward to.
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