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ABSTRACT

Methods to advance a machine’s visual awareness of people with a focus on under-
standing ‘who is where’ in video are presented. ‘Who’ is used in a broad sense that
includes not only the identity of a person but attributes of that person as well. Efforts
are focused on improving algorithms in four areas of visual recognition: detection,
tracking, fine-grained classification and person reidentification.

Each of these problems appear to be quite different on the surface; however, there
are two broader questions that are answered across each of the works. The first, the
machine is able tomake better predictions when it has access to the extra information
that is available in video. The second, that it is possible to learn on-the-fly from single
examples. How each work contributes to answering these over-arching questions as
well as its specific contributions to the relevant problem domain are as follows:

The first problem studied is one-shot, real-time, instance detection. Given a single
image of a person, the task for the machine is to learn a detector that is specific
to that individual rather than to an entire category such as faces or pedestrians. In
subsequent images, the individual detector indicates the size and location of that
particular person in the image. The learning must be done in real-time. To solve this
problem, the proposed method starts with a pre-trained boosted category detector
from which an individual-object detector is trained, with near-zero computational
cost, through elementary manipulations of the thresholds of the category detector.
Experiments on two challenging pedestrian and face datasets indicate that it is indeed
possible to learn identity classifiers in real-time; besides being faster-trained, the
proposed classifier has better detection rates than previous methods.

The second problem studied is real-time tracking. Given the initial location of
a target person, the task for the machine is to determine the size and location of
the target person in subsequent video frames, in real-time. The method proposed
for solving this problem treats tracking as a repeated detection problem where
potential targets are identifiedwith a pre-trained boosted person detector and identity
across frames is established by individual-specific detectors. The individual-specific
detectors are learnt using the method proposed to solve the first problem. The
proposed algorithm runs in real-time and is robust to drift. The tracking algorithm
is benchmarked against nine state-of-the-art trackers on two benchmark datasets.
Results show that the proposed method is 10% more accurate and nearly as fast as
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the fastest of the competing algorithms, and it is as accurate but 20 times faster than
the most accurate of the competing algorithms.

The third problem studied is the fine-grained classification of people. Given an image
of a person, the task for the machine is to estimate characteristics of that person
such as age, clothing style, sex, occupation, social status, ethnicity, emotional state
and/or body type. Since fine-grained classification using the entire human body is a
relatively unexplored area, a large video dataset was collected. To solve this problem,
a method that uses deep neural networks and video of a person is proposed. Results
show that the class average accuracy when combining information from a sequence
of images of an individual and then predicting the label is 3.5-7.1% better than
independently predicting the label of each image, when severely under-represented
classes are ignored.

The final problem studied is person reidentification. Given an image of a person,
the task for the machine is to find images that match the identity of that person
from a large set of candidate images. This is a challenging task since images of the
same individual can vary significantly due to changes in clothing, viewpoint, pose,
lighting and background. The method proposed for solving this problem is a two-
stage deep neural network architecture that uses body part patches as inputs rather
than an entire image of a person. Experiments show that rank-1 matching rates
increase by 22-25.6% on benchmark datasets when compared to state-of-the-art
methods.
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C h a p t e r 1

INTRODUCTION

Intelligent machines are everywhere. From a simple cruise control system in a
vehicle, to a smart-phone that can answer questions from speech or identify bird
species from images, to machines that defeat humans in complex games such as
chess or go [9]. If we believe that people are the most important component of a
machine’s environment, then we will want to make machines capable of interacting
with people. How then does one design an intelligent machine that has such a
capability?

An intelligent machine has three basic components. 1) A set of sensors that receive
information about the world; possible sensors include those that are responsive to
visual, auditory, tactile, or olfactory inputs. 2) A cognitive component that interprets
the input, maybe using past experiences or other information, to make a decision
about an action that needs to be taken. This is the intelligent part of the machine.
3) A set of effectors that allow the machine to interact with the world based on the
decided action. Possible effectors include those that create visual, auditory, tactile
or olfactory outputs.

Machine vision concerns itself with designing the cognitive component of an intel-
ligent machine that is responsible for understanding and interpreting visual input.
While other sensory inputs are useful and important, the focus on visual input is
because it is informative and fast, which is why it is used by humans so much—50%
of our neural tissue is directly or indirectly related to vision. For the rest of this
work, the discussion will focus on the methods used by machines to understand
visual information.

To design algorithms that are responsible for visual cognition it is useful to think
through a scenario that allows for a rich and natural interaction between humans and
machines. Consider the case of a robot monitoring an operating room, and its job
is to keep an eye out for mistakes (it might warn the surgeon if an implement has
been left inside the patient). The robot would thus need to understand the following
things about people from the stream of images it is receiving1:

1Although we discuss people specifically, the same thought process can be applied to other
objects since the robot also needs to have an understanding about the other things in the room.



2

1. Where are all the people in space and time. The robot needs to know the
location of all the people that are within its visual field. In machine vision,
the task of finding an object in an image is called detection [5, 12, 4]. If the
objects are to be followed in video, the task is called tracking [13, 11]. A
finer level of detection is determining the location of the parts of an object,
such as the position of the hands, fingers or eyes of a person. This is called
pose estimation [8, 10], which is essentially a detection task with a set of
constraints about where the parts can be relative to each other.

2. What are the characteristics or attributes of these people. Once the robot
knows where people are, it can then start to make higher level judgements
about the characteristics of these people, determining their age, clothing style,
occupation, ethnicity and/or identity. This task is known as fine-grained
classification [3, 14] and allows the robot to distinguish between the people
that are doctors from those that are nurses. Determining identity is the ‘finest’
possible fine-grained classification and is treated separately in machine vision
due to its importance. Assigning unique identities to individuals allows the
robot to keep track of people, particularly when they exit and re-enter the
robot’s visual field. This task is known as person reidentification [2].

3. What are these people doing. Once the robot knows ‘who is where’ (who
is used in a broad sense that includes not only the identity of a person but
attributes of that person as well) it can make judgements about what fine-
grained tasks people are doing such as injecting, reaching or cutting. In
machine vision this is called action recognition [6]. By combining a sequence
of actions the robot can then make a judgement about the activity that is
occurring, such as the patient is being anaesthetised. This is called activity
recognition [1, 7].

4. What should I be doing. Once the robot has an understanding of what is
happening around it, it can now decide how to act based on this information
and its own goals. Knowing which people are where and what they are doing
helps the robot determine if they need to warn a specific individual because
they are doing something hazardous or have left an object behind.

By thinking through what a machine needs to perceive from a sequence of images,
it is obvious that visual cognition for machines is a diverse area of research with
elements that build upon each other. Since the more complex, higher level tasks of
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planning and activity recognition depend on the accuracy of the lower level tasks,
I focus my efforts on improving the algorithms for detection, tracking, fine-grained
classification and person reidentification.

Each of these problems appear to be quite different on the surface; however, there
are two broader questions that are explored across each of the works. The first,
how do you do visual recognition in video? The machine may be able to make
better predictions when it has access to the extra information that is available in
video. The second, how do you learn on-the-fly from single examples? Updating
the machine’s understanding of the world quickly and with small amounts of data
gives the machine the ability to interact with humans in real-time. To summarise:

This thesis seeks to advance the methods for machines to be visually aware of
people with a focus on understanding who, along with their attributes, is where
in video.

The reader will find a collection of self-contained chapters. Each chapter advances
the methods for one of the low level tasks of detection, tracking, fine-grained classi-
fication and person reidentification but also addresses the broader problems of visual
recognition in video and learning on-the-fly from single examples. Chapters 2-4
have been adapted from peer-reviewed publications. Chapter 5 is in submission at
the time of writing. Related work is discussed separately in each chapter. An outline
of the thesis follows.

Chapter 2 addresses the problem of instance detection. Instance detection involves
learning detectors for specific individuals rather than an entire category such as faces
or pedestrians. In this chapter a method for real-time, online training of individual
detectors from individuals that are detected by a category detector is presented.
Two questions are answered, assuming that a category detector is available. The
first is how should individual detectors be designed so that their additional run-time
cost is small or zero; the second is how can such individual detectors be trained
on-the-fly with minimal computational cost once one or more training examples
become available from the category detector. A unified boosting-based approach
for simultaneous category and individual detection is proposed.

Chapter 3 addresses the tracking problem. In this chapter a method for online,
real-time tracking of people is presented. Tracking is treated as a repeated detection
problem where potential target objects are identified with a pre-trained category
detector and object identity across frames is established by individual-specific de-
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tectors. The individual-specific detectors are learnt using the method proposed in
Chapter 2. The proposed tracking algorithm runs in real-time and is robust to drift.

Chapter 4 addresses the fine-grained classification problem. In this chapter a public
video dataset—CaltechRoadside Pedestrians (CRP)—is collected to further advance
the state-of-the-art in fine-grained classification of people using the entire human
body. A unified model for the fine-grained classification of people using single
images is proposed. A study of how temporal information can be utilised for the
fine-grained classification of people is also conducted.

Chapter 5 addresses the person reidentification problem. In this chapter, a method
for reidentifying people using pose information is presented. A two-stage deep
neural network architecture that uses body part patches as inputs rather than an
entire image of a person is proposed. Different strategies for combining the per part
information are explored.

Finally, in Chapter 6, findings are summarised and a discussion of future work is
presented.
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C h a p t e r 2

INSTANCE DETECTION

The contents of this chapter are from the peer-reviewed publication “From Cate-
gories to Individuals in Real Time—AUnified Boosting Approach” by D. Hall and
P. Perona, appearing at CVPR 20141.

2.1 Abstract
A method for online, real-time learning of individual-object detectors is presented.
Starting with a pre-trained boosted category detector, an individual-object detector
is trained with near-zero computational cost. The individual detector is obtained
by using the same feature cascade as the category detector along with elementary
manipulations of the thresholds of the weak classifiers. This is ideal for online
operation on a video stream or for interactive learning. Applications addressed by
this technique are reidentification and individual tracking. Experiments on four
challenging pedestrian and face datasets indicate that it is indeed possible to learn
identity classifiers in real-time; besides being faster-trained, our classifier has better
detection rates than previous methods on two of the datasets.

2.2 Introduction
Detecting objects in image collections and video is a rich area of application of
visual recognition. Technical approaches change significantly depending onwhether
one focuses on individual-objects [36] or on categories [6, 16, 19] and the two
challenges are pursued as distinct research questions. While this separation is useful
in academic research, real-world systems require a combination of category and
individual detection.

For concreteness, we describe two such scenarios. The first is tracking. Appli-
cations include tracking of pedestrians in railway stations and airports, vehicles
on the road for traffic monitoring and faces for interfacing people with comput-
ers. A common approach used is tracking-by-repeated-detection. In its simplest
form this consists of a frame-by-frame category detector followed by an algorithm
that combines detections across space and time into trajectories [3, 5]. Trajec-
tory smoothness constraints confer a degree of robustness to false detections; the

1Project Website: http://vision.caltech.edu/~dhall/projects/CategoriesToIndividuals

http://vision.caltech.edu/~dhall/projects/CategoriesToIndividuals
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Figure 2.1: Tracking individuals across a video sequence: faces (top) and pedes-
trians (bottom). The first column shows the detections made by a category detector.
These detections are used to initialise three individual face detectors, and a single
individual pedestrian detector, and are then evaluated on the subsequent frames in
the video sequence. Individual detector outputs are colour-coded.

main challenge is continuing trajectories when detection fails over multiple frames
because of occlusion, unusual pose or unfavourable lighting conditions. Once an
object (a pedestrian) has been detected by the category detector (or by a human
operator), tracking is made more robust by training an individual-object detector,
exploiting the specifics of the individual’s appearance (a person with a red sweater
and backpack) [39].

Reidentification is another scenario with applications in video surveillance [10]
and content-based indexing of image collections, consumer videos and commercial
video libraries. After a category detector detects instances of the category, indi-
vidual detectors are trained to cluster and classify the individuals that appear in the
collection [17]. Individual reidentification across networks of cameras is similarly
important [7, 8, 28, 46].

It is clear from these examples that it is useful to detect objects both as members
of categories and as individuals. In the first scenario, individual detectors trained
on-the-fly improve tracking robustness. In the second scenario, individual classifiers
reveal recurring individuals in an entire collection or video stream. In both cases it
is crucial that an individual detector is trained in real-time and that its runtime cost
does not add significantly to the overall computational cost of the system.

Here we present a method for real-time, online training of individual detectors
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from individuals that are detected by a category detector. We make three main
contributions:
1. A unified boosting-based approach for simultaneous category and individual
detection.
2. A method for training individual detectors in real-time from a single training
example.
3. Two novel challenging datasets of faces and pedestrians.

2.3 Related work
Researchers in visual categorisation agree that objects are best represented as con-
stellations of visually distinctive parts that appear in flexible geometrical arrange-
ments [21, 34, 6, 19]. A variety of practical approaches to detecting parts and rep-
resenting mutual positions have been proposed, where the representation of shape
is either explicit [20, 19] or implicit [35, 40, 44, 14]; best performance is currently
obtained with discriminatively trained part detectors [14, 19]. This work is based
on boosted cascades of classifiers [44, 4, 14] because they deliver state-of-the-art
detection performance at video-rate computational speeds [2].

Researchers focusing on individual detection [36] and re-identification [10] focus
both on the design of (domain-specific) features [28, 7, 46] and on efficient algo-
rithms for detection and classification [36]. In our work we are feature-agnostic, in
that our framework allows the implementation of a large variety of different features,
and we rely on the computational efficiency of cascaded boosted classifiers.

Online learning of detectors for tracking individual objects, given an operator-
supplied initial training window, is a topic of much interest [9, 31]; the main
challenge is drifting from the original target. The closest work to our own are
the online boosted trackers of Grabner et al. [23, 24, 25]. In their work, boosted
individual-object detectors are trained online and are paired with a prior to limit
drift. The individual detectors operate at frame rates of between 10–15 frames-per-
second on a video with a resolution of 640x480; however, this cost is in addition to
the cost of running a category detector, the output of which initialises the individual
detector.

Our work aims to produce a unified approach for simultaneous category and in-
dividual detection to ensure that real-time operation can be achieved. We focus
on two questions that have, to our knowledge, not yet been studied: assuming that
a category detector is available, (a) how to design individual detectors whose ad-
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ditional run-time cost is small or zero; (b) how to train such individual detectors
on-the-fly with minimal computational cost once one or more training examples
become available from the category detector.

2.4 Approach
Our approach is based on using cascaded boosted classifiers both for category and
individual detection [43, 44, 14, 13]. Detectors of this form have been shown to
be fast and have state-of-the-art detection performance [2]. In order to make this
paper self-contained, we review cascaded boosted classifiers (Sec. 2.4), discuss the
implementation of category detectors (Sec. 2.4) and finally outline the approach for
designing individual detectors (Sec. 2.4).

Boosting
A boosted classifier takes feature vector x ∈ RD as input and outputs a binary
decision:

H(x) = sign

(
M∑

m=1
αmhm(x) − τ

)
(2.1)

where the threshold τ is chosen to produce the desired tradeoff between false reject
rate and false alarm rate. Given a labelled training set {xi, yi}i of N samples, the
boosted classifier is trained by greedily minimising a loss function (which depends
on the type of boosting being used: AdaBoost, LogitBoost, etc.). This means that
at each iteration m up until the maximum number of iterations M an optimal weak
classifier hm(x) and weight αm are selected. For training, each data sample xi is
assigned a weight wm

i (depends on the loss function). At each iteration, samples
that are classified incorrectly are weighted more heavily, which means the penalty
for classifying them incorrectly in subsequent iterations increases.

Category Detector
In this work category detectors are trained offline using AdaBoost [22]. The family
of weak classifiers used are stumps. This means that given an input x ∈ RD, the
decision only depends on the j-th dimension of x, a threshold θ ∈ R and a polarity
p ∈ {±1}

hm(x) =
{

1, pmx jm > pmθm

−1, otherwise
(2.2)

During training, the optimal weak classifier at the m-th iteration of boosting is
selected by choosing j, θ and p so that the number of the N weighted training
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examples that are misclassified is minimised. Choosing these parameters at each
of the M iterations is O (MND) and is the most computationally expensive part
of training a boosted classifier. Note that any boosting method and decision trees
of any depth could be used to train the category detector; our proposed method is
agnostic to these choices. For the sake of clarity, in the following discussion we will
continue to refer to AdaBoost and decision stumps.

Individual Detectors
The proposed approach for designing individual detectors relies on four key prin-
ciples: 1) the individual detector has the form of a cascade of boosted classifiers
(Eqn. 2.1); 2) an individual detector is learnt from a single instance of the individual;
3) the training and 4) the runtime costs of an individual detector must be minimal
to guarantee online, real-time operation.

The most obvious strategy for training an individual detector is to repeat the Ad-
aBoost training process using an object identified by the category detector as a
positive training example. Recent work has made the training stage of AdaBoost
faster [1]; however, it is still a computationally expensive process and remains
ill-suited for real-time operation. In the following exposition we will look at the
limitations of a traditional boosting approach and examine a set of constraints that
can be placed on the individual detectors to avoid the computationally costly steps
of a traditional boosted detector.

The first design goal requires individual detectors to be of the same form as the
category detector. This is a reasonable restriction to place on the individual detectors
since cascades are fast, making them suitable for real-time operation and their
performance is state-of-the-art as has been previously mentioned. This requirement
also ensures there is simplicity in design and a unified approach for both category
and individual detection.

The second principle, that an individual detector is learnt from a single instance of
an individual is also a reasonable requirement. Training using a traditional boosting
approach is possible by jittering or transforming the original example. This results
in multiple, slightly altered versions of the original instance which can all be used
as positive training examples. The drawback here is that negative examples are now
required. This either requires precomputed negatives to be stored in memory (which
may be limited) or for negative examples to be mined online, which is another costly
computation.
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To ensure design goals 3) and 4) are satisfied it is important to examine the most
computationally expensive steps in the object detection pipeline, the first of which
is feature computation.

Computing features is expensive; however, some features have already been com-
puted for the category detector. If we can re-use the same features for the individual
detector, the additional runtime and training costs for an individual detector due to
feature computation are zero. For this reason, individual detectors will be con-
strained to only use features that have already been computed for category
detection.

A second computationally expensive stage to consider is feature selection during
training. This is equivalent to choosing parameter j at the m-th boosting iteration
(Sec. 2.4). Typically, D, the dimensionality of the feature space is large so per-
forming this optimisation is costly; however, this optimisation can be avoided if
the individual detectors are constrained to use only the M features that were
selected by AdaBoost for the category detector. We will denote this set of fea-
tures by J = ( j1, . . . , jM) where jm ∈ {1, . . . ,D} and the importance of each feature
through the weights α = (α1, . . . , αM). The additional training cost due to feature
selection is thus zero.

It is not intuitive that category detection features (features that are good at dis-
tinguishing faces from background), are also useful for individual identification
(distinguishing faces from other faces). It is reasonable to expect that the features
AdaBoost would select for a face detector are features that are common to all faces;
consequently, these common features should be uninformative for distinguishing be-
tween faces. Consequently, constraining the individual detectors to only use the M

features of the category detector ought to doom it to failure. However, this intuition
is not necessarily correct.

For a category detector to perform well, it needs to be able to detect many different
types of faces in different lighting conditions. It is not necessary for an individual
stump to cover the complete range of feature values; it only needs to capture a
narrow range. Breadth is achieved by combining multiple stumps. It would then
be reasonable to expect that the feature distributions for an individual are localised
within narrower intervals that are contained within the category distribution for that
particular feature.

Plots in Figure 2.2 show the empirical distribution of nine features from faces used
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Figure 2.2: The empirical distributions of a set of faces and four individual faces
across the first nine features selected by AdaBoost for the category detector. The
set of faces was used to train the category detector (refer to Sec. 2.6 for details).
The four individuals represent a single sequence of an individual lasting for at least
fifty-five frames from a test video in the FPOQ dataset (Sec. 2.6).

to train the category detector (grey) as well as the distributions for four different
individuals (colour); the individual distributions are obtained from video sequences
lasting at least fifty-five frames from a test video in the FPOQ dataset (Sec. 2.6).
(In video, a sequence is a consecutive set of frames in which an individual appears.
Individuals occur inmultiple sequences across the length of the video.) Each subplot
is for one of the first nine features selected by AdaBoost for the category detector.
This plot suggests that the distribution of a feature for a particular individual is
localised within the broader category distribution. To substantiate this claim, a
statistical analysis across many different individuals is required.

Let X+ ∈ RNxM be the matrix of M-dimensional feature vectors of the N positive
examples of a category. The N positive examples consist of multiple instances of the
same individual, possibly under different pose and lighting conditions. The range
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Figure 2.3: The empirical distributions of the median spread (Eqn. 2.3) for the M
features selected by a boosted category detector of the faces in the FPOQ (solid)
and of the pedestrians in the CRP (dashed) datasets (Sec. 2.6). The red curves
correspond to the median spread of individuals across multiple sequences, the
pink to individuals in a single sequence, the green to 30 consecutive frames of an
individual and the blue to 10 consecutive frames of an individual.

of feature j for the entire category can then be defined as r+j = Q0.95(X j)−Q0.05(X j)
where Qp is the p-th quantile and X j is the j-th column of X+. The range of feature
j for an individual across multiple sequences is r i

j = Q0.95(X i
j) − Q0.05(X i

j) where
X i

j is the j-th column of X+ but only with the rows that correspond to individual i.
The median spread l j across all individuals for feature j is then defined as:

l j = median
i
(

r i
j

r+j
) (2.3)

The median spread of an individual in a single sequence, in 30 consecutive frames
and in 10 consecutive frames is also considered and can be defined similarly. Fig-
ure 2.3 shows the empirical distributions of the median spread for the features for
all faces in the FPOQ and all pedestrians in the CRP datasets (Sec. 2.6) .

Figure 2.3 suggests that reidentifying individuals within sequences (pink curves)
or within 30 (green curves) or 10 (blue curves) frames of each other is possible
since most features are localised (the spread is small with respect to the category
distribution). It also suggests that reidentifying individuals across sequences (red
curves) may be problematic since there are more features with higher spread values;
however, the architecture of a cascaded boosted classifier provides some robustness
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to this variability between sequences. If there are enough features that exhibit
limited variability (FPOQ (solid red) has a number of features with a spread of
less than 0.5) then an individual detector may still classify an individual correctly
across sequences because there is sufficient evidence to suggest that the individual
is present.

The third and final computationally expensive stage in a traditional boosting ap-
proach is threshold selection during training. Even if features have already been
selected (parameter j has been fixed), the optimal threshold θ, at the m-th boosting
iteration still needs to be chosen (Sec. 2.4). This is once again computationally
expensive; however, this optimisation can be avoided if we consider an alternative
approach.

Selecting the thresholds for a single weak classifier h′(x′), which depends on a single
feature x′ ∈ R, can be achieved at almost zero computational cost by using transfer
learning. Consider the single instance of an individual that has been detected by
the category detector and call γ′ the value of feature x′ for this instance. Figure 2.2
suggests that the distribution of features for an individual tends to be localised. The
average spread σ′ of feature x′ across many individuals may be estimated offline
using a validation set composed of images grouped by individual. An interval
(γ′ − βσ′, γ′ + βσ′) can then be defined where β is a free parameter that can be
tuned experimentally. This interval represents the most likely values that the feature
x′ will take for the individual detected by the category detector. According to
this strategy, the weak classifier h′(x′) may be obtained directly from one training
example:

h′(x′; γ′, σ′) =


1 γ′ − βσ′ < x′ < γ′ + βσ′

−1 otherwise.
(2.4)

This weak classifier provides evidence for an individual being present (absent) if the
feature x′ lies inside (outside) the interval (γ′− βσ′, γ′+ βσ′). The training cost for
selecting the thresholds for a single weak classifier is thus a small constant.

Using the ideas presented, an individual detector in the form of a cascaded boosted
classifier can now be constructed. Given the set of features J and weights α that
were selected for the category detector, the first instance uk of the k-th individual
detected by the category detector, and an estimate of the spread σ = (σ1, . . . , σM)
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of the features J a classifier Fk(x) for the k-th individual can be defined by:

Fk(x;γk,σ) =
M∑

m=1
αmh′(x jm; γk

m, σm) (2.5)

where γk = (γk
1 . . . γ

k
M)with γ

k
m = uk

jm
. The total computational cost for learning an

individual detector using the outlined approach is only O(M). This is significantly
less expensive than if the individual detector was trained using standard AdaBoost
which is O(DMN).

2.5 Datasets
To carry out the experiments it was necessary to collect two new challenging video
datasets that contain many different individuals that reappear at different moments
in time.

The first dataset is the Fifty People One Question (FPOQ) face dataset. It contains
6 videos with 222 annotated individuals across 725 sequences (in video, a sequence
is a consecutive set of frames in which an individual appears). Each annotation
contains the bounding box, the identity and the sequence number of the face. In
total the are 68,676 bounding boxes, 78,181 frames and 57,274 frames that contain
faces. The videoswere collected fromYouTube and involve either a single individual
or groups of individuals being asked a question in front of a fixed camera. Their
responses are edited in such a way so that an individual’s response is interspersed
between the responses of others. This means individuals can appear at any time
point within the video. Examples of the different individuals as well as the different
appearances of those individuals throughout the video are displayed in Figure 2.4.
The face category detector was trained using 800 different faces extracted from
single frames across 26 other videos (these videos are in the same style as the FPOQ
videos). The faces used to train the face detector are not used during testing. The
spreadσ of the features selected by the face detector averaged over many individuals
is estimated from a video in the FPOQ dataset. The other 5 videos are used for
testing.

The second dataset is the Roadside Pedestrian (RP) dataset. It contains 2 videos with
170 annotated individuals across 263 sequences. In total there are 7450 bounding
boxes, 77,450 frames and 5606 frames that contain pedestrians. Each video is
captured by mounting a rightwards-pointing video camera to the roof of a car.
The car then completes two laps of a ring road within a park where there are many
walkers and joggers. This dataset is more challenging than the face dataset due to the
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Figure 2.4: (Left) The faces of five different people from the FPOQ dataset. In
digital versions of this work, clicking on the image will redirect you to YouTube
to view one of the videos in the dataset. The faces in this dataset are quasi-
frontal; lighting varies between overcast and direct sunlight; a variety of expressions
are present as individuals are filmed while talking. (Right) Examples of five
different pedestrians (one for each row) from the Roadside Pedestrian Dataset. The
pedestrians show a wide range of poses, lighting conditions and backgrounds. The
individuals were sampled randomly from a video in each of the datasets.

considerable differences in lighting and pose for an individual. Figure 2.4 displays
a few examples of the pedestrians in this set. The pedestrian category detector was
trained using 64 of the individuals in the RP dataset; σ was also estimated from this
set. The remaining 106 individuals were used for testing.

For completeness we also evaluate our method on two existing re-identification
datasets, VIPeR [26], which contains 632 person image pairs and ETHZ [42, 15]
which contains multiple windows of people extracted from 3 video sequences. For
conciseness we only report the results on ETHZ Sequence 2 which contains 35
persons across 1961 images.

2.6 Experiments
To assess the performance of our procedure for training individual detectors (we
call it IDBoost), as well as to determine the limitations and applicability of the

https://youtu.be/aQk30nYUOAw?list=PL6D9C9DB65C09AFB3
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Figure 2.5: Ademonstration of the reidentification of individuals in (left) the FPOQ
and (right) the RP datasets using IDBoost. Column 1 shows the instance used to
train the individual detector, it is the first instance of that individual detected by the
category detector. For the FPOQ dataset, columns 2–6 show the top, 50th, 100th,
200th and 300th best scoring results returned by the individual detector after being
evaluated on the ∼10,000 detections made by the category detector. For the RP
dataset columns 2–6 show the top, 5th, 10th, 20th and 30th best scoring results from
∼2500 detections.

approach, two types of experiments, that illustrate two possible operating regimes
for the individual detectors, are considered. The experiments are evaluated on
two different categories: faces and pedestrians. All experiments are carried out
using the multi-scale detection framework of Dollar et al. [13], with the channels of
brightness, colour, gradient magnitude and gradient orientation used as features; the
code is available in Dollar’s publicly available Image and Video Matlab Toolbox2.
In all experiments, the parameter β = 0.6; this choice ensured detectors operated at
a fast enough rate whilst maintaining performance.

Reidentification
The first mode of operation for an individual detector is as a classifier. This means
that the individual detector is evaluated on the single windows indicated by the

2https://github.com/pdollar/toolbox

https://youtu.be/TzBnBJ63sX0
https://github.com/pdollar/toolbox
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category detector to contain an object of interest. Given a single example of
an individual, the reidentification problem is a binary classification task where
subsequent objects of interest are classified as either matching or not-matching that
individual. This can be challenging since each instance of an individual varies in
pose, lighting, background and occlusion. The reidentification experiments are run
on both the FPOQ and the RP datasets.

The setup for this experiment is as follows:

1. The category detector extracts all instances of an object (faces in the FPOQ
dataset and pedestrians in the RP dataset) in a video.

2. An individual detector is then trained for each of the individuals present in
the video. Only the very first instance of an individual is ever used to train an
individual detector. Each new individual is determined by a human operator.

3. Each individual detector is then applied to every other instance that was
detected by the category detector in the video. A true positive occurs when
an individual detector fires on the same individual that it was trained on.

4. An ROC curve is generated for each of the individual detectors and the average
ROC across all individuals is then computed. The mean equal error rate is
also reported.

Reidentification: Existing Methods
The performance of individual detectors trained using the proposed method (ID-
Boost) is compared to individual detectors trained using four other methods: Ad-
aBoost [22]; the One-Shot Similarity score using LDA (OSS+LDA) [33] (code
obtained from the authors website); KISSME [32], a metric learning algorithm
that has state-of-the-art performance on the VIPeR dataset (code obtained from the
authors website); and an l2 distance detector as a baseline. These methods all use
a single example of an individual for online training to provide a fair comparison.
IDBoost and KISSME have an offline training component.

To learn an individual detector from a single example using AdaBoost, virtual
positives are created by applying slight transformations to the examplewhile negative
examples are sampled from the background of the frame; this is similar to the
initialisation stage of the online boosting trackers [23, 25].
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Figure 2.6: Reidentification performance. ROC curves for reidentification averaged
over the 207 individuals in the FPOQ dataset. The mean equal error rate is also
reported. IDBoost has the best mean equal error rate of 0.12. It is marginally better
then OSS+LDA. In the FPOQ dataset there are 9375–15521 face detections per
video

OSS+LDA returns a score that reflects the likelihood of an input vector belonging
to the class defined by a single positive example and not to a class defined by a set of
negative examples. The first instance of an individual is used as the single positive
example and the set of first instance feature vectors of all the other individuals are
used as the set of negative examples.

KISSME is an extremely fast, non-iterative method for learning a Mahalanobis
metric. From a set of N exemplars the l2 difference is computed for every pair of
exemplars resulting in the distancematrix D. D is then partitioned into twomatrices:
D0, which corresponds to pairs of exemplars that do not have the same identity and
D1, which corresponds to pairs of exemplars that do have the same identity. The
metric is then formulated as a difference between the inverted covariance matrices of
D0 and D1. In these experiments D0 and D1 are computed using the same validation
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Figure 2.7: Reidentification performance. ROC curves for reidentification averaged
over the 106 individuals in the RP dataset. Themean equal error rate is also reported.
Again, IDBoost has the best mean equal error rate of 0.31. The closest competitor
is again OSS+LDA. Performance on the RP dataset is 2.5 times worse than FPOQ
indicating that the pedestrian dataset is far harder than the face dataset. This is not
surprising since RP has a greater variation in pose and illumination than FPOQ. In
the RP dataset there are ∼2500 pedestrians detected per video.

subsets that IDBoost used to estimate σ. To then learn a KISSME individual
detector at runtime, one of the inputs to the detector is fixed to be the feature vector
of the fist instance of that individual.

The l2 baseline detector operates in the same way as KISSME except that the metric
is set to the identity.

Reidentification: Classification Performance
The results of the experiments are in Figures 2.6 and 2.7 with examples in Figure 2.5.
They indicate that reidentification of faces is fairly easy due to the interview style of
the videos with the pose, background and lighting of the face changing minimally
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so an individual looks the same from the first instance to its last. Reidentifying
pedestrians is much more difficult due to the large changes in appearance that occur
due to lighting and pose. From the ROC curves it is clear that our method (IDBoost)
performs equally or better than any of the other methods for both datasets, despite
the fact that its computational cost is a tiny fraction as shown in Figure 2.12 (top).

Unsurprisingly, the results also suggest that performance depends on the first instance
of an individual used to train the detector. In Figure 2.5 we see that in the fifth row
of faces the training example was selected during a fade in sequence of the video.
As a result, the best scoring matches all have similar lighting rather than the same
face.

Reidentification: Cross Dataset Perfomance
To evaluate the cross-dataset performance of IDBoost, experiments are also run on
the VIPeR and ETHZ datasets (see Sec. 2.5 for details). Figures 2.8 and 2.9 show
the results.

This experimental setup involves training IDBoost (the offline learning ofσ (Eqn 2.4))
using the validation subset of RP and testing on the ETHZ and VIPeR datasets. For
reference we provide the performance curves of a number of methods that were
trained on those datasets[18, 41]. ID boost performs comparably to the other meth-
ods on the ETHZ dataset, whose statistics are close to RP’s since individuals were
sampled by a moving camera. On the VIPeR dataset, IDBoost performs less well
than methods which were trained on VIPeR; this is probably because individuals
were imaged by separate cameras with different lighting conditions.

For a fairer comparison, we also take the state-of-the-art method KISSME [32]
and train it (estimate the covariance matrices offline (Sec. 2.6)) using the validation
subset of RP. KISSME-RP performs poorly on both VIPeR and ETHZ. It over-fits
the training data, so it is unable to generalise to new datasets with different statistics.
This result suggests that IDBoost has a greater capacity to generalise across datasets.

Reidentification: Applications
Reidentification can be used in videos in a number of different ways. Here we
demonstrate two possible applications where IDBoost is used as the underlying
algorithm.

The first application is one where a user identifies an individual and they want to see
all the frames of a video that contain that person. The identified user can be used
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Figure 2.8: Cross-dataset performance of the proposed method (IDBoost) (red
curves). The offline training of IDBoost and KISSME-RP was carried out using the
validation subset of RP. The offline training of KISSME-ETHZwas carried out using
the ETHZ SEQ2 training set (as were all the other methods shown whose curves
have been provided as a reference [18, 41]). The ETHZ SEQ2 dataset was then used
for testing. IDBoost performs significantly better than KISSME-RP, which suggests
that IDBoost has a greater capacity to generalise across datasets. It also performs
comparably to the other methods trained on the ETHZ dataset. This is because the
statistics of ETHZ are simliar to CRP’s since the dataset was collected by a moving
camera.

to train an individual detector using IDBoost which can be applied to the remaining
frames of the video. The system fast-forwards through the frames of the video that
don’t contain the person of interest. This can all be done in real time since the cost
of training and operating the individual detector is low. In digital versions of this
work, clicking on the left image in Figure 2.10 will redirect you to YouTube to view
a demonstration of this application on a video from the FPOQ Dataset.

The second application is a reidentification system where a database of individuals
is built as a video progresses. When a new individual is identified by the category
detector an individual detector is learnt using that example. Each individual detector
is then evaluated on the subsequent frames with the identity of the object being
assigned to the best scoring detector (if the scores of all the individual detectors
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Figure 2.9: Cross-dataset performance of the proposed method (IDBoost) (red
curves). The offline training of IDBoost and KISSME-RP was carried out using
the validation subset of RP. The offline training of KISSME-VIPER was carried out
using the VIPeR training set (as were all the other methods shown whose curves
have been provided as a reference [18, 41]). The VIPeR dataset was then used for
testing. IDBoost again performs better than KISSME-RP, however, when compared
to other methods trained on the VIPeR dataset it does quite poorly. This is probably
because the differences between RP and VIPeR are too great with VIPeR being
collected from two disjoint cameras rather than from a moving vehicle.

are low, then the system would ask a human operator to verify if the example is a
new individual). Even though the cost of running this system increases with the
number of individuals, it is still very fast since each individual detector is only ever
evaluated on windows in the image that the category detector has indicated contain
an object of interest. In digital versions of this work, clicking on the right image in
Figure 2.10 will redirect you to YouTube to view a demonstration of this application
on a video from the FPOQ Dataset.

Tracking
The second mode of operation for an individual detector is as an actual sliding-
window detector, where it is evaluated on every window in every frame of a video.
The additional runtime cost in this mode of operation is higher than in the reidenti-
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Figure 2.10: Demonstrations of reidentification applications using IDBoost. In dig-
ital versions of this work, clicking on the (left) image will redirect you to YouTube to
view a demonstration of how frames containing certain individuals can be extracted
from a video in the FPOQ Dataset. Clicking on the (right) image will take you
to view a demonstration of how a database of individuals can be built as a video
progresses.

fication scenario since individual detectors are now being applied to every window
rather than just the windows that the category detector fires on. However, this extra
cost is still very small since our method utilises the features that have already been
computed by the category detector.

Experiments were carried out on both the FPOQ and the RP datasets to test this
mode of operation. In this experiment sequences of individuals (a consecutive set
of frames in which an individual occurs) were extracted and the category detector
is evaluated on the first frame of the sequence. The output of the category detector
is used to initialise an individual detector created using our method. The individual
detector is then evaluated on the remaining frames in the sequence. This is a form
of tracking by repeated detection using an appearance model. A motion model is
not incorporated (it would be easy to implement this and would further reduce the
additional runtime cost, but it would risk confusing the results of the experiments)
and so the individual detector is evaluated on every window in a frame. Performance
is measured by the number of times the tracker misses the individual it has been
trained to track.

We compare the performance of our tracker to two other tracking methods: the
Semi-Supervised Online Boosting Tracker [25] (OnlineBoost) (code obtained from
authors website) and the Mean Shift or Kernel-based object tracker [9] (using the

https://youtu.be/TzBnBJ63sX0
https://youtu.be/gssL0haruYs
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Figure 2.11: Tracking performance. The miss rate averaged over the (left) 680
sequences of individuals in the FPOQ dataset and over the (right) 199 sequences of
individuals in the RP dataset. For each sequence, the output of the category detector
evaluated on the first frame of the sequence is used to initialise an individual tracker
(either an IDBoost, OnlineBoost or MeanShift tracker). The miss rate (the number
of times the tracker misses the individual it was initialised to track) is then computed
for each sequence and the average miss rate over all sequences is the computed. Our
method has the best performance on the both datasets. In digital versions of this
work, clicking on the plot will redirect you to YouTube to view a demonstration of
three individuals being tracked from a video in the RP Dataset.

implementation in Dollar’s toolbox). Both methods are initialised with the category
detector output. Our method only uses the first instance of an individual from
the first frame of a sequence whereas the other methods update the model of the
individual over time.

The results in Figure 2.11 indicate that our method (IDBoost) has the best perfor-
mance in terms of miss rate. Performance could be further improved by allowing the
IDBoost tracker to update based on the appearance of the individual at the current
frame rather than just using the appearance of the individual in the first frame of the
sequence. Figure 2.12 (bottom) also shows that the additional computational cost
of IDBoost is reasonable since real-time operation is still possible even without a
motion model.

2.7 Discussion and Conclusions
We presented a method for training detectors of individual objects from a boosted
category detector. Training happens in real-time using a single instance of an
individual as a positive training example. The individual detectors make use of the

https://youtu.be/rpa21leh2ss
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Figure 2.12: Computational performance. The average time it takes to train and
evaluate an individual detector (either per window or per frame depending on the
application) versus error rate for the (top) reidentification and (bottom) tracking
scenarios using the RP dataset. Our method (IDBoost) operates just as fast as L2
and KISSME but has the best performance for the reidentification scenario. In
the tracking scenario our method still achieves real-time operation with the best
performance. This could be faster if a motion model was included. MeanShift is
exceptionally fast for this reason but its performance is poor. All experiments were
conducted on a single core of a 3.20 GHz processor. The ideal performance is in
the bottom left corner of the plot.

category detector’s feature computations; the thresholds for a single weak classifier
are set using transfer learning. This ensures that the additional training and run-time
costs for the individual detectors are minimal.

We carried out experiments on four datasets containing faces and pedestrians. The
experiments were designed to test whether our simple and inexpensive strategy
would work on real-world videos. We carried out two experiments. The first was
designed to test reidentification, where the same individual is discovered across an
entire video or image collection. The second was designed to test tracking, where
an individual is tracked across consecutive video frames.

Our experiments suggest three conclusions: (a) both training and runtime computa-
tion of individual detectors is extremely inexpensive, (b) our method has both better
tracking and reidentification performance than previous methods on the FPOQ
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and RP datasets, (c) the cross-dataset performance of our method is better than
KISSME [32], a state-of-the-art, reidentification method.

Since our results show that individual object detectors can be trained quickly, it
suggests that a tracking system robust to drift could be implemented. In this system,
individual object detectors are used to track individuals and are updated using the
appearance of the individual on a frame-by-frame basis rather than only using the
first example of the individual, as is done in this work.
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C h a p t e r 3

TRACKING

The contents of this chapter are from the peer-reviewed publication “Online, Real-
Time Tracking using a Category-to-Individual Detector” by D. Hall and P. Perona,
appearing at ECCV 20141.

3.1 Abstract
A method for online, real-time tracking of objects is presented. Tracking is treated
as a repeated detection problem where potential target objects are identified with
a pre-trained category detector and object identity across frames is established by
individual-specific detectors. The individual detectors are (re-)trained online from
a single positive example whenever there is a coincident category detection. This
ensures that the tracker is robust to drift. Real-time operation is possible since
an individual-object detector is obtained through elementary manipulations of the
thresholds of the category detector and therefore only minimal additional compu-
tations are required. Our tracking algorithm is benchmarked against nine state-of-
the-art trackers on two large, publicly available and challenging video datasets. We
find that our algorithm is 10% more accurate and nearly as fast as the fastest of the
competing algorithms, and it is as accurate but 20 times faster than the most accurate
of the competing algorithms.

3.2 Introduction
The objective of tracking is to determine the size and location of a target object in
a sequence of video frames, given the initial state of the target. It is important for a
variety of applications, including the tracking of pedestrians in railway stations and
airports, vehicles on the road for traffic monitoring, and faces for interfacing people
with computers. It is a well studied problem and although many offline tracking
methods exist [3, 9, 10, 30, 33, 34, 37, 38], the focus of this work will be on online
trackers.

We present a novel method for real-time, online, appearance-based tracking. Track-
ing is treated as a detection problem where an individual-object detector is trained
online to distinguish the target-to-be-tracked from background. Objects to track are

1Project Website: http://vision.caltech.edu/~dhall/projects/CIT/

http://vision.caltech.edu/~dhall/projects/CIT/
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Figure 3.1: Tracking individuals across a video sequence using our proposed track-
ing algorithm. (Top) A face from the Buffy dataset [41] and (bottom) pedestrians
from Caltech Pedestrians [17, 18]. The appearance of the face changes over time
with a full frontal face example at initialisation (far left) to a quasi-frontal face in
the final frame (far right). Despite the change in appearance, our tracker is able to
track the target since the model for the target is updated over time (see Sec. 3.4).
Pedestrians are also tracked successfully even when they are subject to occlusion.
The magenta target is initialised in the first frame, occluded by the light pole in
the second and successfully reacquired in the third. Individual tracker outputs are
colour-coded. Each image is 30 frames apart (model update is still occurring every
frame).

first identified with a pre-trained category detector (a face, pedestrian or vehicle
detector for example); each of the detections made by the category detector are now
identified as individual targets to be tracked; for each of these targets an individual
detector is learnt on-the-fly using IDBoost, a category-to-individual learning algo-
rithm [2]. During tracking, the individual detector is updated using the currently
detected sample of the target but only if there is a coincident category detection. This
ensures that the tracker is robust to drift. Crucially, the algorithm runs in real-time
since the individual-object detector is obtained through elementarymanipulations of
the thresholds of the category detector. We then benchmark our tracking algorithm
against nine other publicly available, state-of-the-art trackers on two challenging
video datasets. We make two main contributions:

1. A fast, accurate, tracking algorithm that is robust to drift.

2. A careful and reliable benchmark of state-of-the-art trackers.
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3.3 Related work
Appearance-based tracking algorithms typically contain the following elements: 1)
an appearance model for the target object to be tracked, 2) a search strategy to find
potential candidates in subsequent frames that match the target and 3) a mechanism
to dynamically update the appearance model of the target so that changes in pose
and illumination over time can be modelled.

A pitfall of dynamically updating the appearance model is that when trackers make
mistakes this incorrect information is then incorporated into the model. The result
is that the tracker no longer tracks the original target. This is known as drift.
Designing algorithms that are robust to noisy updates is thus essential for good
tracking performance.

Many trackers use generative appearance models. One of the representations used
for target objects within this class of trackers are subspaces. Black and Jepson [12]
learn offline an eigenbasis to model the target object along with particle filtering as
a search mechanism. The IVT method of Ross et al. [39] proposes an online update
of the target subspace over time using incremental PCA. Wu’s ORIA [35] tracker
also includes online updates but updates only occur if the new target is significantly
different from the existing basis set.

Kernel based methods are also used to represent target objects. The influential work
of Comaniciu et al. with their Kernel-Based Object Tracker (KMS) [14] represent
the target object with a histogram in some feature space; a metric based on the
Bhattacharyya coefficient is used to match the target to potential candidates, while
the mean-shift algorithm [24] is used to efficiently search for these candidates. In
traditional histogram-based algorithms information about the spatial distribution of
features is lost; the FRAG [1] tracker of Adam et al. represents the target using mul-
tiple histograms obtained from many different patches in the target, thus preserving
some of the spatial information. Neither of these methods update the model online.

Alternative representations include probability distribution fields (DFT) [40], sparse
linear combinations of target and trivial templates (L1AP) [6] and the superpixels
of (LOT) [36].

Discriminative appearancemodels are alsowidely used. Avidan’s ensemble tracker [4]
constructs a feature vector for every pixel. A classifier to separate pixels belonging to
the target from those in the background is then trained by using an adaptive ensemble
of weak classifiers. The compressive tracking (CT) algorithm of Zhang et al. [46]
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generates multi-scale features for the positive and negative samples and applies a
sparse sampling matrix to reduce dimensionality. A naive Bayes classifier with
online update is then used to classify windows as target or background. Grabner et
al.’s online boosting method (OAB) [25] adaptively selects features to discriminate
the object from the background.

To avoid drift, Grabner et al. [26] propose a semi-supervised, online boosting algo-
rithm (SBT) where only the initial samples of the target are labelled while all of the
self-learnt samples are unlabelled. The MIL tracker of Babenko et al. [5] uses mul-
tiple instance learning where a bag of positive samples are used to update the model.
Kalal’s [31] TLD tracker also approaches tracking as a semi-supervised learning
problem with positive and negative examples being selected by an online classifier
that has structural constraints. The BSBT tracker of Stalder et al. [42] combines the
supervised and semi-supervised approaches into a single implementation.

For all of the approaches mentioned so far a sparse sampling strategy is used. This
means that in each frame, positive samples are collected close to the predicted target
while the negative samples are further from the target’s centre. The CSK algorithm
of Henriques et al. [28] proposes a different approach where a classifier is trained
using all possible samples in a dense sampling strategy. The circulant structure of the
problem is exploited allowing for not only efficient training but fast detection since
all responses can be computed simultaneously rather than using a sliding-window
scheme.

There are many benchmark datasets available for a number of vision problems. For
pedestrians there is INRIA [15] and Caltech Pedestrians [17], for unconstrained face
recognition there is LFW [29], and for person reidentification there is VIPeR [27].
Tracking, however, still lacks a decent benchmarking dataset although progress has
been made recently to fill this gap. Wu et al. [45] have collected a benchmark that
contains 50 sequences commonly used in the literature to evaluate tracking algo-
rithms. While most algorithms have been evaluated on a subset of these sequences
by their original authors, Wu et al. provide a far more comprehensive analysis by
evaluating 29 tracking algorithms on all 50 sequences given the initial bounding box
of the target object.

While the progress that has been made by Wu et al. is appreciable, we feel that the
dataset is lacking for the following reasons: 1) the size of the dataset is too small; 2)
the difficulty of most sequences is low with a focus on tracking only single objects;
3) about half of the sequences are unrealistic as they are in controlled environments;
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and 4) trackers are perfectly initialised by a ground truth bounding box. This gives
little insight into how robust trackers are to poor initialisation. Wu et al. address
this by jittering the ground truth bounding box.

3.4 Approach

EVALUATE AND UPDATE IDENTIFY TARGET INITIALISE 

Category 
Detector+

=
Individual 
Detector

...

(a) (b) (c)

2

1

Figure 3.2: Tracking Algorithm Outline. (a) A new target (2) is identified by a
non-coincident category detection (green). There is also a category detection that
coincides with an individual detection (blue) which indicates that this target (1) is
already being tracked. (b) An individual detector (red) for target 2 is initialised
using the category-to-individual learning algorithm in [2]. The only two pieces of
information required to initialise the individual detector is a single positive example
of the target and the category detector itself. (c) The individual detector is then
evaluated on subsequent frames using a sliding window scheme. The location with
the maximal score is identified as the new location of the target object. If a detection
made by the individual detector is coincident with a detection made by the category
detector then the individual detector is re-initialised with the current example of the
target. If there is no coincident category detection the individual detector is not
updated. If this occurs for more than a fixed number of frames tracking of that target
stops.

In this section we present the details of our tracking algorithm. We treat the
tracking problem as a detection task and train an individual-object detector, online,
to distinguish the target from background. We break down the algorithm into 5
major components: 1) identify target objects to track; 2) initialise the tracker; 3)
evaluate the tracker on a new frame; 4) update the tracker; 5) stop the tracker. There
is no assumption made about the number of objects being tracked and our algorithm
is able to handle tracking multiple objects that enter and exit a scene. An outline of
our approach is depicted in Figure 3.2.



36

Identify Target Objects to Track
Identifying new targets to track is a problem that most of the tracking literature
avoids. It is usually assumed that an initial tracking window has already been pro-
vided either manually or by a ‘perfect’ category detector [39]. In this work, instead
of providing initial locations by hand, a category detector is used. This is a more re-
alistic setting under which trackers would operate since for most online applications,
having a human operator identify potential targets would not be feasible, particularly
if there are many targets to identify. This setting also allows us to evaluate how
robust tracking algorithms are to poor initialisation.

A new target is identified if the category detector makes a detection and there is no
coincident individual detection as shown in Figure 3.2.

Category detectors are trained offline using AdaBoost [23]. A boosted classifier
takes feature vector x ∈ RD as input and outputs a binary decision:

H(x) = sign

(
M∑

m=1
αmhm(x) − τ

)
(3.1)

where hm(x) is a weak classifier; αm its weight and the threshold τ is chosen to
produce the desired trade-off between false reject rate and false alarm rate.

The family of weak classifiers used are stumps. This means that given an input
x ∈ RD, the decision only depends on the j-th dimension of x, a threshold θ ∈ R
and a polarity p ∈ {±1}

hm(x) =
{

1, pmx jm > pmθm

−1, otherwise
(3.2)

Note that any boosting method and decision trees of any depth could be used to train
the category detector; our proposed method is agnostic to these choices.

Initialise Tracker
Once a new target has been identified; a tracker can now be initialised to track
the object. In this section we briefly outline IDBoost, the category-to-individual
learning algorithm (see [2] for details), which allows us to efficiently train the
individual detector that only detects the target object.

The approach for learning an individual detector from a category detector has four
elements:
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The individual detector is a boosted cascade of classifiers. Cascades are fast
and their performance is state-of-the-art [8, 20, 16, 43, 44], making the individual
detector suitable for real-time operation.

The individual detector is learnt from a single sample. The object identified
by the category detector, which we will denote by u0 ∈ RD, is used as the single
positive training example to train the individual detector. Costly computations are
avoided by using a single positive sample and by not mining negative samples.

The individual detector uses the same M features that were selected by Ad-
aBoost for the category detector. We will denote this set of features by J =
( j1, . . . , jM) where jm ∈ {1, . . . ,D} and the importance of each feature through the
weights α = (α1, . . . , αM). Computational cost is reduced since there is no need to
compute extra features (this has already been done for the category detector). There
is also no cost for selecting which features to use since they are fixed.

Only the thresholds for a single weak classifier in the boosted cascade of the
individual detector are modified. Selecting the thresholds for a single weak
classifier h′(x′), which depends on a single feature x′ ∈ R, can be achieved at almost
zero computational cost.

Consider the target that has been detected by the category detector and call u′

the value of feature x′. An interval, centred at u′, can now be defined. The width of
this interval is determined offline, from a small validation set that contains tracks of
a few individuals. The standard deviation of feature x′ for a single individual across
its track is calculated; the median standard deviation or spread σ′ is then computed
across the set of individuals. The spread σ′ gives an estimate of the width of the
interval.

Formally, the interval is (u′ − βσ′, u′ + βσ′) where β is a free parameter that
can be tuned experimentally. If the appearance of the individual is changing slowly
over time, which is a reasonable assumption to make for video (since the difference
from frame-to-frame is small), this interval represents the most likely values that
the feature x′ will take for that individual.

The weak classifier h′(x′) can thus be obtained from one training example and
by only setting two thresholds (making the computational cost near zero):

h′(x′; u′, σ′) =


1 u′ − βσ′ < x′ < u′ + βσ′

−1 otherwise.
(3.3)
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This weak classifier provides evidence for an individual being present (absent) if the
feature x′ lies inside (outside) the interval (u′ − βσ′, u′ + βσ′).

An individual detector in the form of a cascaded boosted classifier can now be
constructed. Given the set of features J and weights α that were selected for the
category detector, the single positive example u0 of the target, and an estimate of
the spread σ = (σ1, . . . , σM) of the features J, a classifier F(x) for the target can be
defined by:

F(x; u0,σ) =
M∑

m=1
αmh′(x jm; u jm, σm) (3.4)

Evaluate Tracker
Given the next frame in the video the individual detector F(x; u0,σ) is evaluated
using a sliding-window scheme. The location with the maximal classification score
is identified as the new location of the target object. Since the individual detector
is a cascade of boosted classifiers, sliding window detection is very efficient. It
would also be possible to use a motion model to reduce the number of sub-windows
evaluated (we have not done this).

Update Tracker
If at the new location of the target object (the one identified by the individual
detector) there is also a coincident detection made by the category detector, then the
individual detector is updated with the new sample, u1, of the target. The update
procedure is then as simple as reinitialising the individual detector with the new
sample which results in F(x; u1,σ). The updated individual detector is then applied
to the next frame and so on. If there fails to be a coincident category detection
then the individual detector is not updated at all and is simply applied to the next
frame. Figure 3.2 outlines this update procedure. Drift is avoided by only updating
the model when the individual detector and category detector are coincident. This
strategy ensures that only “good” positive samples are used to update the model. A
category detection and individual detection are coincident if their overlap is greater
than 50%.

Stop Tracker
There are two conditions, either of which can be met, for tracking of the target object
to cease. The first is that there are no detections made by the individual detector for
T1 consecutive frames. This condition is usually met when the target object leaves
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the frame. The second is that the detections made by the individual detector fail to
coincide with those made by the category detector for T2 consecutive frames. This
condition is usually met when a tracker is initialised by a false detection made by
the category detector. In this work we set both of these quantities to five frames.

3.5 Datasets
To benchmark the performance of our tracking algorithm we use two publicly
available video datasets.

The first dataset is the Caltech Pedestrians [17, 18] dataset. It contains 250,000
frames of video, at a resolution of 640x480, taken from a vehicle driving through
regular traffic in an urban environment. The dataset is labelled with a total of
350,000 bounding boxes and around 1900 unique individual pedestrians. Around
30% of the frames have two or more pedestrians. Pedestrians are visible for 150
frames on average. The dataset is divided into 11 sets; 6 are used for training (S0-
S5) and 5 are used for testing (S6-S10). This division is provided by the authors.
The training set contains 192,000 bounding boxes and the test set contains 155,000.
The authors also refer to experiments conducted on pedestrians over 50 pixels tall,
with no or partial occlusion as the reasonable evaluation setting. There are 73,256
labelled bounding boxes and 769 unique individuals that meet these requirements
in the test set. All of our experiments are conducted using the reasonable evaluation
setting.

The second dataset used is the Buffy dataset [41]. It has been regularly used for the
automatic labelling of faces of TV characters using subtitle and script text [41, 21].
In this work we use the publicly available, ground truth labels of [7]. The dataset
contains episodes 1–6 from season 5 of Buffy theVampire Slayer with around 64,000
frames per episode. The faces are labelled using an automatic algorithm rather than
by a human operator. This means that the ground truth labels are noisy. In total
there are 317,831 labelled bounding boxes and 5513 unique face tracks across the
six episodes. There is also a wide variety in the appearance of individuals in this
dataset with many shots set outdoors and at night time; there are also a number of
close-up shots.

Examples of the different individuals and how their appearance changes over time
for both datasets are displayed in Figure 3.3.

The reason we benchmark tracking performance on these datasets is 1) because
of their size and 2) because of their complexity. The benchmarking procedure of
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Figure 3.3: Dataset Examples. (Left) face tracks from the Buffy dataset and
(right) pedestrian tracks from Caltech Pedestrians. The ground-truth trajectories
were sampled randomly from a video in each of the datasets. There are frontal
and profile faces; the lighting can change considerably across a face track; facial
expressions are varied. The pedestrians are low resolution; they change scale as the
car mounted camera approaches and there is occlusion. The datasets are large with
a combined total of 7500 individual tracks and 800,000 bounding boxes. They
are also difficult due to the variety in pose, lighting, background and scale across
a track as well as having multiple objects present at any one time. To the best
of our knowledge this is one of the largest datasets that appearance-based tracking
algorithms have been evaluated on. In digital versions of this work, clicking on the
either of the images will redirect you to YouTube to view one of the videos in the
corresponding dataset.

Wu et al. [45] only evaluates tracking performance on 50 different individuals. In
this work we make this evaluation on around 6000 individuals, a 120-fold increase.
The datasets here are also more complex. Having to track multiple objects of a
similar appearance is a far more difficult task than the tracking of a single object,
particularly when the target objects interact with each other, which may lead to
trackers swapping identities. These datasets are also less biased since they were
collected independently of the authors of any the trackers mentioned in section 3.2.
They are also more realistic in the sense that the sequences haven’t been generated
in a lab as around half of the sequences in [45] are.

https://youtu.be/zJ6o43coGOc
https://youtu.be/dNeRvoVMrAY
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3.6 Performance Metrics
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1 3
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Ground 
Truth

Legend
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Figure 3.4: A graphical example of the performance measures. The performance
measures used are precision, recall and continuity/fragmentation of a trajectory.
Tracker 1 (pink squares) is initialised to track the ground-truth targetA (pink circles).
Tracker 1 has 3 matches since it is only ever matched with target A and has a track
length of 3. Tracker 2 (solid blue squares) only has 3matches with a length of 6. This
is because it is initialised to track the ground-truth target B (blue circles), however,
it’s last three detections coincide with ground-truth target A which is incorrect.
Tracker 3 (dotted blue squares) is also initialised to track ground-truth target B and
has 3 matches with a length of 3. The precision is then 9/12. Ground-truth target A
has 3 matches with a length of 6. The last three ground-truth targets are unmatched
due to tracker 2 being initialised to track target B. Ground-truth target B has 6
matches and a length of 7 since all of the corresponding trackers were initialised to
track target B. The recall is 9/13. Target A is only covered by tracker 1 (tracker 2 is
not included since it has not been initialised to track A) while target B is covered by
trackers 2 and 3. The fragmentation is thus 3/2 and so the continuity is 2/3.

There are a variety of methods [45, 32, 11] to measure the performance of a tracking
algorithm. In this work we use three simple and intuitive measures to capture
tracking performance (refer to Figure 3.4).

In a multiple-object tracking scenario, given a single frame, there are a number of
options for determining whether a tracked target and ground-truth location match.
The centre location error which is the Euclidean distance between the centre’s of
the two locations is one option [5, 45, 11]. This measure is not very robust to
labelling error and relies heavily on the fact that the ground-truth is perfect. A more
robust method to use is the bounding box overlap. Using the PASCAL criteria [22]
a tracked object matches a ground-truth object if the area of overlap between their
respective bounding boxes exceeds 50%.

In addition to bounding box overlap we also include another criterion for matching
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to occur. A tracked object matches a ground-truth object if the tracker was initialised
by a target that has the same identity as the ground-truth object. This is a reasonable
condition to enforce since a tracker initialised by target A should not be tracking
target B.

Now that single frame matching has been defined, performance across trajectories
can be measured. If there are a total of N tracking trajectories and M ground truth
trajectories then three quantities can be defined: precision, recall and continuity.

If ln
tracker is the length of tracking trajectory n and dn

tracker is the number of matches
in trajectory n, then the precision P across all tracking trajectories is defined as:

P =

∑N
n=1 dn

tracker∑N
n=1 ln

tracker

(3.5)

This measure is similar to the MOTP metric proposed by Bernardin and Stiefelha-
gen [11]. Precision gives a measure of how well a tracker initialised on target A
tracks target A. If the tracker drifts or there is an identity swap, precision will be
low.

If lm
gt is the length of ground truth trajectory m and dm

gt is the number of matches
in ground truth trajectory m then the recall R across all ground-truth trajectories is
defined as:

R =

∑M
m=1 dm

gt∑M
m=1 lm

gt

(3.6)

Let f m be the number of trackers that are required to cover ground truth trajectory
m. The continuity C is then defined as:

C =
∑M

m=1 1( f m > 0)∑M
m=1 f m

(3.7)

where 1 is the indicator function. Continuity is the inverse of the mean number of
trackers needed to cover a ground truth trajectory. This is described as fragmentation
in [32]. Trajectories that have no trackers covering them are not included in this
calculation. The reason continuity is used instead of fragmentation is that continuity
is easier to compare to precision and recall since a value of 1 for all three of these
measures indicates perfect performance.

Recall and continuity give a measure of how well targets are tracked. If the tracker
does not adapt to the appearance of the target, continuity will be low.
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Figure 3.5: Tracking Performance on Buffy (top) and Caltech Pedestrians (bot-
tom) for a category detector operating at a recall of 0.5. Refer to Section 3.6 for
definitions of recall, precision and continuity. The average performance is the mean
of the precision, recall and continuity. The precision calculation ignores trajecto-
ries that have been initialised by false category detections. A tracker with perfect
performance would have a value of 1 for each of the measurements. The results
indicate that our method CIT is one of the best performers; however, most of the
methods have similar performance results. The relative performance of the trackers
is roughly equivalent across the two very different, very distinct datasets. The BSBT
algorithm ran too slowly and so its performance on Caltech Pedestrians is omitted

The overall performance of a tracking algorithm is given as themean of the precision,
recall and continuity. We feel that this is a reasonable metric to compare algorithms
on since all three quantities are equally as important.

3.7 Experiments
For the remainder of this paperwewill refer to our proposed tracking algorithm as the
Category-to-Individual Tracker (CIT). To assess the performance of CIT we conduct
experiments using the Buffy and Caltech Pedestrian datasets (refer to Sec 3.5). To
the best of our knowledge, this is one of the largest performance evaluations for
appearance-based tracking. The most important findings are reported here in this
manuscript; the remainder are included as supplementary material in Sec. 3.9.

The results of CIT are compared to 9 other, publicly available, appearance-based
tracking algorithms. The source code for each of the algorithms was downloaded
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Figure 3.6: The average performance and frame rate for each tracking algorithm
using the Buffy dataset. The average performance is the same as the value in the
top plot of Fig 3.5. The results indicate that our method, CIT, is 10% more accurate
and nearly as fast as the fastest of the competing algorithms. It is also as accurate
but 20x faster than the most accurate of the competing algorithms.

from the original author’s website. Minor modifications were then made so that
each tracker would operate in our multi-target, automatic initialisation framework
(as opposed to single target, human initialised frameworks that these algorithms
were originally tested on). If an algorithm had parameters to set then those that
were recommended by the original authors were used.

For all of the experiments we use the multi-scale ACF detector of Dollar et al. [16,
19] for the category detector. The code was downloaded from the website2.

The category detector used for the Buffy dataset was trained using 882 faces from a
separate dataset [13] which was also downloaded from the web. Due to the ground-
truth for Buffy being noisy, an external dataset was used to train the face detector to
ensure detection results were reasonable. The category detector used for the Caltech
Pedestrians dataset was trained using the recommended training sets S0-S4 (refer to
Sec.3.5).

Each category detector was then calibrated to operate at a specific recall by using a
validation set. Episode 1 was used for Buffy and set S5 for Caltech Pedestrians. By
operating the category detectors at different recall rates different targets are identified

2http://vision.ucsd.edu/~pdollar/toolbox/doc/

http://vision.ucsd.edu/~pdollar/toolbox/doc/
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thus having an impact on the initialisation and update stages of tracking. We only
include the results for a category detector recall of 0.5. Refer to the supplementary
material for other values.

The validation sets were also used to calibrate each of the tracking methods. Each
of the tracking methods have a confidence score associated with their predictions; in
our regime, individuals enter and exit the scene so it is important to stop tracking a
target when the confidence of the tracker is below a certain threshold otherwise the
trackers will update their target model with background. To choose this threshold
we evaluated each algorithm on the validation set for each dataset and selected the
threshold that gave the best average performance. For the CIT tracker we selected the
value of β (refer to Eqn. 3.3) during validation rather than the confidence threshold
which was set to zero.

Each tracking algorithm was then evaluated on the test set for Buffy (episodes 2-5)
and for Caltech Pedestrians (sets S6-S10) with trackers being initialised by non-
coincident category detections (refer to Fig. 3.2). The resulting trajectories were
used to compute precision, recall and continuity for each algorithm. The results for
both datasets are in Figure 3.5, which includes the average performance, which is
the mean of the precision, recall and continuity. The precision calculation ignores
trajectories that have been initialised by false category detections.

The speed at which each of these algorithms operate at is also important. To compute
the average frame rate of a tracking algorithm we need to decouple the computation
time due to the tracker and the computation time due to the category detector. The
time it takes for the category detector to run without tracking is subtracted from
the time it takes a tracker to run. The results are in Figure 3.6. We only include
the results for Buffy since the results on Caltech Pedestrians (in the supplementary
material) are similar. The average frame rates were computed using the first 10,000
frames of episode 3 of Buffy on an Intel i5, 3.20 GHz machine.

Qualitative examples of how our tracking method works on both Buffy and Caltech
Pedestrians can be found in Figure 3.1. The sequences give an indication of how
tracking of a target is successful despite occlusion and changes in pose.

3.8 Discussion and Conclusions
We have presented a novel tracking method which is designed to track objects
belonging to a specific category. The method makes use of a category detector
to identify target objects to track and of an individual-specific detector to track the
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target in subsequent video frames. The individual-specific detector is trained on-the-
fly at almost no extra cost, making it possible for the tracker to operate in real-time.
The well-known problem of drift is addressed by updating the individual-specific
detector only when there are coincident category detections.

We compare the performance of our scheme to 9 state-of-the-art trackers and find
that it is as accurate as the most accurate competitor, but 20x faster. It is only slightly
slower than the fastest competitor, but 10% more accurate.

In order to carry out our benchmark comparison we developed a methodology based
on considering four metrics: precision, recall, fragmentation and computational
cost. Our experiments were carried out on two large (hundreds of thousands of
detections), challenging and heterogeneous datasets of faces and pedestrians; we
observe identical rankings of the various algorithms on the two datasets, which
gives us the confidence that our findings are general and may be expected to carry
over to a variety of datasets and tasks. We believe that our benchmark surpasses,
both in method and set size, any such comparative evaluation in the literature.
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3.9 Appendix: Further Experiments
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Figure 3.7: The average performance and frame rate for each tracking algorithm
using the Caltech Pedestrians dataset. The average performance is the same as the
value in the bottom plot of Figure 3.5. The results indicate that our method, CIT
is the most accurate and slightly faster than the next most accurate. The relative
performance and frame rate of the tracking methods are similar to those as reported
on the Buffy dataset which can be found in Figure 3.6. However, the absolute frame
rate has increased significantly between datasets due to Caltech Pedestrians having
a lower resolution than Buffy.

In the supplementary material we report the results of some additional experiments.
The most important findings are reported in the manuscript. In Figure 3.7 we
report the average performance and frame rate of each tracking algorithm on the
Caltech Pedestrians Dataset. In Figure 3.8 we report the tracking performance of
each tracking algorithm for a category detector operating at different recall rates.
The rankings of the algorithms across the different datasets and across the different
category detector recall rates gives us confidence that our findings are general.

In Figure 3.9 we report results by evaluating the tracking algorithms on every 30th
frame of the datasets rather than on every frame as in the previous analysis. This
experiment demonstrates how well trackers cope with large changes in appearance
and in position. CIT is not the best method in this case for some settings; however,
it is still 10–90x faster than the methods that do have a better average performance.
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Figure 3.8: Tracking Performance on Buffy and Caltech Pedestrians for a category
detector operating at a recall of (top) 0.6 [Buffy], 0.7 [CaltechPeds] and (bottom)
0.7 [Buffy], 0.9 [CaltechPeds]. The results indicate that our method CIT is one
of the best performers, however, most of the methods have similar performance
results. The relative performance of the trackers is roughly equivalent across the
two datasets as well as across the different category detector recall rates. (BSBT
and SBT were omitted because they operate too slowly; at higher recall rates more
objects are identified to track and so the computational requirements increase.)
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Figure 3.9: Tracking Performance with a 30 frame jump on Buffy and Caltech
Pedestrians for a category detector operating at a recall of (top) 0.5 [Buffy], 0.5
[CaltechPeds] (middle) 0.6 [Buffy], 0.7 [CaltechPeds] and (bottom) 0.7 [Buffy],
0.9 [CaltechPeds]. Instead of evaluating the trackers on every single frame in the
datasets, they are evaluated on every 30th frame. This gives an indication of how
well trackers can handle large appearance changes and large changes in position
from one frame to the next. The performance of the KMS tracker suffers because
the target can have large changes in position from frame to frame. CIT, CSK, DFT,
OAB, SBT and BSBT are all able to handle large changes reasonably well. CIT is
outperformed by DFT, OAB, SBT and BSBT on Buffy for a category detector recall
of 0.5; however, these are the slowest tracking methods.
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C h a p t e r 4

FINE-GRAINED CLASSIFICATION

The contents of this chapter are adapted from the peer-reviewed publication “Fine-
Grained Classification of Pedestrians in Video: Benchmark and State of the Art”
by D. Hall and P. Perona, appearing at the Conference on Computer Vision and
Pattern Recognition (CVPR) 20151. The study of how temporal information can be
utilised for the fine-grained classification of people, as well the experiments using
the unified model, is unpublished work.

4.1 Abstract
A video dataset that is designed to study fine-grained classification of pedestrians is
introduced. Pedestrians were recorded “in-the-wild” from a moving vehicle. Anno-
tations include bounding boxes, tracks, 14 keypoints with occlusion information and
the fine-grained categories of age (5 classes), sex (2 classes), weight (3 classes) and
clothing style (4 classes). There are a total of 27,454 bounding box and pose labels
across 4222 tracks. This dataset is designed to train and test algorithms for fine-
grained classification of people. A unified model is introduced that takes a single
image as input and outputs the class distributions for each of the four fine-grained
categories in the dataset. A study of how temporal information can be utilised for
the fine-grained classification of people is also conducted. Results show that the
class average accuracy when combining information from a sequence of images of
an individual and then predicting the label is 3.5-7.1% better than independently
predicting the label of each image, when severely under-represented classes are
ignored. The dataset is also useful for benchmarking tracking, detection and pose
estimation of pedestrians.

4.2 Introduction
People are an important component of a machine’s environment. Detecting, track-
ing, and recognising people, interpreting their behaviour and interacting with them
is a valuable capability for machines. Using vision to estimate human attributes
such as: age, sex, activity, social status, health, pose and motion patterns is useful
for interpreting and predicting behaviour. This motivates our interest in fine-grained

1Project Website: http://vision.caltech.edu/~dhall/projects/CRP/

http://vision.caltech.edu/~dhall/projects/CRP/
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Figure 4.1: Three examples from the CRP dataset. Annotations include a
bounding box, tracks, parts, occlusion, sex, age, weight and clothing style.

classification of people.

Visual classification involves recognising basic categories (e.g. ‘birds’ vs. ‘chairs’)
and fine-grained categories, also called subcategories (e.g. ‘barn swallow’ vs.
‘marten’) [7]. Since subcategories are similar in appearance subtle differences are
often crucial. This is in contrast to basic classification where categories are visually
distinct and therefore broad statistics of the image are often sufficient.

While research in broad classification is well-supported by large datasets comprising
thousands of categories [15, 33], fine-grained classification has so far been explored
in a small number of domains including: animal breeds and species [8, 29, 53], plant
species [43], objects [50, 36] and, what will be the focus of this work, people [9, 13,
6, 56]. The availability of good-quality, large annotated datasets covering as many
domains as possible is crucial for progress in fine-grained classification.
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Prior work on the fine-grained classification2 of people has typically focused on
faces with subcategories including: identity, age, sex, clothing type, facial hair and
skin colour [14, 20, 40, 48, 3, 31].

Fine-grained classification using the entire human body is still a relatively unex-
plored area. The current benchmark using images is “The Attributes of People
Dataset” [6] which was introduced in 2011. It includes nine subcategories and has
large variations in viewpoint and occlusion. This dataset has been useful for re-
searchers working on human attribute recognition [6, 56] but is limited by a) its size,
particularly when training deep networks [56], b) only bounding box annotations
are provided and c) all subcategories are binary.

There are also a number of video-based benchmark datasets [47, 24, 37] that are
geared towards gait recognition. These datasets are limited by a) the raw video
footage is difficult to obtain with only silhouettes being readily available, b) subjects
are cooperative (they know they are being filmed), c) the background is static and
uncluttered, d) viewpoints are all profile and e) subcategories are limited to identity
and sex.

In this work, the first contribution we make is the introduction of a public
video dataset—Caltech Roadside Pedestrians (CRP)—to further advance the
state-of-the-art in fine-grained classification of people using the entire human
body. Its novel and distinctive features are:

1. Size (27,454 bounding box and pose labels) – making it suitable for training
deep-networks.

2. Natural behaviour – subjects are unaware, and behave naturally.

3. Viewpoint – Pedestrians are viewed from front, profile, back and everything
in between.

4. Moving camera – More general and challenging than surveillance video with
static background.

5. Realism – There is a variety of outdoor background and lighting conditions;
examples can be found in Figure 4.25.

6. Multi-class subcategories – age, clothing style and body shape.
2In the literature, fine-grained classification ismore commonly referred to as attribute recognition

in the human domain.



57

7. Detailed annotation – bounding boxes, tracks and 14 pose keypoints with
occlusion information; examples can be found in Figure 4.1. Each bounding
box is also labelled with the fine-grained categories of age (5 classes), sex (2
classes), weight (3 classes) and clothing type (4 classes).

8. Availability – All videos and annotations are publicly available

The second contribution is the introduction of a unified model for the fine-
grained classification of people using single images. This model is a neural
network that takes a single image as input and outputs the class distributions for
each of the four fine-grained categories in the CRP dataset.

Since this is a video dataset, the final contribution is a study of how temporal
information can be utilised for the fine-grained classification of people. Using
sequences of images of an individual, we explore different strategies for combining
that information so that a consistent fine-grained classification prediction is obtained.
To the best of our knowledge this is the first time that the fine-grained classification
of pedestrians in video has been studied.

4.3 Related work
Existing fine-grained datasets on birds [8, 52, 5], dogs [29, 34, 45], cats [45],
butterflies [53], flies [38], leaves [32], flowers [43, 42], aircraft [36] and cars [50]
cover a single subcategory (usually species, breed or type) but have hundreds of
classes.

Fine-grained classification of people, however, began with a focus on the single
binary subcategory of sex. Using neural networks, SEXNET [20] andEMPATH [14]
were the first efforts to classify sex from faces; methods using support vector
machines [40] and boosting [48, 3] soon followed. Work on classifying age and race
from faces can also be found in the literature, with in-depth surveys available [19, 18].
The first attempt at collecting a face dataset with multiple, multi-class subcategories
was FaceTracer [31]. It captured seven subcategories relevant to people, these
included sex, age (4 classes) and race (3 classes). Each subcategory had between
1000-4000 examples.

In low resolution situations and particularly surveillance settings, faces are not suit-
able for fine-grained classification. This has led to work that looks at using the
entire body, which presents additional cues such as clothing, body shape and motion
patterns. Cao [9] took the existing MIT pedestrian dataset [44] and manually anno-
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tated it with sex labels; this was repeated by [13] who also labelled the VIPeR [21]
dataset. It wasn’t until “The Attributes of People Dataset” [6] was released in 2011,
that a full-body dataset, with more than a single subcategory, was publicly available.
This dataset has 9 binary subcategories across 8035 images, with large variations in
viewpoint and occlusion. Bounding box annotations are also provided. The dataset
has a high resolution with an average bounding box size of 532 x 298 pixels and
is the current benchmark. More recently, the “Attributes 25K Dataset” [56] was
collected; it is a large dataset with 24,963 examples and the same subcategories
as [6]; however, it is not publicly available.

The gait recognition community utilise the temporal information available in video
for fine-grained classification, with a particular focus on identity. The task here is
to infer the identity of someone from the way they walk. State-of-the-art methods
for gait recognition extract a sequence of silhouettes of a particular person. A Gait
Energy Image [22] or a Gait Entropy Image [4] is then computed from the sequence
of silhouettes once an estimate of the gait period is determined. These features are
then used for classification.

There are a number of video datasets available, the first being the USF HumanID
Dataset [47]. It contains 1870 sequences of 122 individuals. It is collected outdoors
with a static background. Participants are cooperating subjects, aware of being
filmed, who are asked to walk a predefined elliptical path, with only the back
portion used ensuring the viewpoint is always profile. Silhouettes are available for
immediate download while the entire video collection can take up to 3 months to
obtain. Amore recent example is the Large PopulationDataset [24]. It contains 4016
subjects who each occur in 2 sequences. It is collected indoors with a green screen
background. Participants walk a predefined path, however, the viewpoint varies
from nearly-frontal to profile. Sex and age labels were also collected, however these
have not yet been released. Only silhouettes are available for download but only
after authorisation is granted by the authors.

While utilising temporal information for fine-grained classification is relatively
unexplored, it is a well studied field in the person re-identification [39, 35] and
action recognition [2, 17, 23, 25, 28, 41, 49] domains.

For activity recognition Donahue et al. [17] extracts features from each frame of a
video sequence using a convolutional neural network. These features are then passed
through an RNNwhich, at each time step, outputs the predicted class distribution for
the activity recognition task. These class distributions are then averaged to produce



59

Figure 4.2: An example frame from the Caltech Roadside Pedestrian Dataset. In
digital versions of this work, clicking on the image will redirect you to YouTube to
view one of the videos in the CRP dataset.

the final prediction. Singh et al. [49] have a similar approach but use a bi-directional
LSTM. McLaughlin et al. [39] also have a similar methodology but apply it to the
person reidentification task. Both Ng et al. [41] and Karpathy et al. [28] explore
multiple temporal feature pooling architectures when experimenting with activity
recognition. They both look at what stage of a deep neural network temporal features
should be pooled, whether it be at the input image stage, at the end of the network
or somewhere in between. They also consider whether features should be fused
using max or average pooling or whether the fusion should be performed by a fully
connected layer.

4.4 Dataset Collection
In this section we describe in detail, the method in which the videos of the dataset
were collected and annotated. Due to the large number of annotations required it
was important to develop an efficient and cost effective pipeline. For this reason,
crowdsourcing, usingworkers fromAmazon’sMechanical Turk (MTURK)was used
for all of the annotation tasks.

Video Collection
This dataset contains 7 videos. Each video is captured by mounting a rightwards-
pointing, GoPro Hero3 camera to the roof of a car. The car then completes three

https://www.youtube.com/watch?v=Yf5R6k4TX8U
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Figure 4.3: (Left) Dataset Statistics. (Right) A histogram of the height and width
of the bounding boxes in the dataset. The mean bounding box size is 71 pixels wide
by 201 pixels high. The resolution is twice as large as Caltech Pedestrians [16] but
2.5 times smaller than the “Attributes of People Dataset”, which is currently used
for fine-grained classification [6].

laps of a ring road within a park where there are many walkers and joggers. The
videos were shot using a wide-angle mode, at a resolution of 1280x720 pixels, and
a frame rate of 30 fps. Each video has on average, 37,000 frames, for a total of
261,645 frames in the entire dataset. Each video was recorded at 8AM on different
days of the week, over a 9 month period.

Bounding Box Annotation
For each video, the first task was to annotate all of the pedestrians with bounding
boxes. To make this a cost-effective task, a coarse-to-fine approach was used. Every
10th frame was sent to MTURK where three workers were instructed to draw a
bounding box around every pedestrian in the image. The bounding boxes from each
worker were then combined into a single set of bounding box labels for each frame
using clustering. For this stage, a total of 26,168 frames were sent for annotation.
Figure 4.21 contains an example of the interface.

A further set of frames were sent for annotation so that every 5th frame of the video
would be labelled. To avoid sending empty frames, the results from the coarse
labelling attempt were used. For every frame x that had a set of bounding box
labels (the image actually contained pedestrians), two frames were sent to MTURK
for labelling, frames x + 5 and x − 5. These frames were again annotated by three
workers and a single set of bounding box labels were generated as before. For this
stage, 12,540 frames were sent for annotation. A total of 32,457 bounding box
annotations were collected.



61

Figure 4.4: (Left) A histogram of the number of bounding boxes in each of the
labelled frames in the dataset. 63% of frames have only a single person in them,
the remainder have two or more. (Right) A histogram of the track length. Since
only every fifth frame is labelled, each pedestrian takes an average of 32.5 frames
or 1.1 seconds to move through the field of view of the camera.

Track Annotation
The next task was to create tracks (the time trajectory of an individual) from the
bounding boxes. To do this, a worker was given a cropped image of a person from
frame x (obtained using the bounding box labels). They were then instructed to
make a selection from the set of cropped people from frame x + 5 that matched
the original image. There was also an option to select that there was no match.
Every person with a bounding box over 100 pixels in height was labelled by three
workers. The workers’ annotations were combined using a majority vote. If there
was disagreement between all three workers, the bounding box was assigned a no-
match label. Tracks were formed by chaining together the bounding boxes until a
no-match label was encountered. Tracks were then verified by an expert annotator.
Their task was to eliminate short tracking gaps and to correct any other mistakes.
A total of 4,222 tracks were collected. An example of the interface can be found in
Figure 4.22.

Pose Annotation
To represent the pose of a human body, 14 body parts were used as keypoints: top of
the head, chin, the right and left shoulders, elbows, wrists, hips, knees, and ankles.
These are the same parts used in existing datasets [27, 46]. To annotate the parts,
workers were given a cropped image of a person (obtained using the bounding box
labels but with some extra padding) and instructed to click on one of the 14 body
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SEX
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Young Adult

TYPE
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STYLE

Workout

Light Athletic

Comfy Casual

Dressy

Figure 4.5: The possible class labels for each of the four subcategories: sex, age,
weight and clothing style

parts. If the part was occluded in any way, the workers were asked to right click
where they thought the part was located. It was also possible to indicate if a part was
not in the image. Every person with a bounding box over 100 pixels in height was
labelled by three workers for each of the 14 keypoints. The workers annotations were
combined by taking the median of the labels. A total of 27,454 pose annotations
with 14 keypoints and occlusion information were collected. The pose annotations
were then used to refine the bounding box labels since the worker labelled bounding
boxes were not always tight. The refined bounding box is the tightest box that covers
the set of keypoints. An example of the interface can be found in Figure 4.23.

Fine-Grained Category Annotation
As mentioned in Section 4.2, using vision to estimate human attributes is useful
for interpreting and predicting behaviour. In this dataset we look at four fine-
grained categories of people: sex, age, weight and clothing style. The possible class
labels for these subcategories are shown in Figure 4.5. While the classes for sex,
age and weight were intuitive for us, those for clothing style were not. The four
clothing style classes (workout, light athletic, comfortable casual and well-dressed
(or dressy)) were chosen in consultation with a fashion expert. The ‘workout class’
groups people wearing spandex, singlet tops or no shirt at all. The ‘light athletic’
class includes people who are wearing yoga pants and tracksuits. The ‘comfortable
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(a) Sex (b) Age

(c) Body Type (d) Clothing Style

Figure 4.6: The percentage of labels for each class in the four fine-grained categories
of the dataset. For all subcategories there is quite a large class imbalance. Very
few children, teenagers, under weight or well-dressed people were seen. Given the
setting, this is not surprising. The remaining classes have a reasonable number of
labels.

casual’ class contains people wearing shorts or items of clothing that would be
typically worn in a casual setting. The ‘well-dressed’ class are of people with
button-up or collared shirts and dresses. Examples of these classes can be found in
Figure 4.25

To annotate the fine-grained categories, workers were given 4 examples of a person,
sampled from one of the tracks. This allowed the worker to see the person from all
possible viewpoints. They were then asked to select the best class label for one of
the subcategories. For the clothing style task, workers were also shown examples
of each class. The workers fine-grained labels were combined by taking a majority
vote. If there was complete disagreement between workers a further 2 workers
labelled the track and another majority vote was taken. An example of the interface
can be found in Figure 4.24.
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Figure 4.7: The percentage of labels that are occluded for each keypoint. The top
of the head is rarely occluded, followed by the left and right ankles. The wrists,
shoulders, elbows, hips and chin are all occluded around 25% of the time.

4.5 Dataset Analysis
In this section, we analyse labelling error and explore the properties of the dataset.
A summary of the dataset’s statistics can be found in Figure 4.3. The distribution
of bounding box widths and heights, the number of people per frame, and the
distribution of track lengths can be found in Figure 4.4. Occlusion statistics for pose
keypoints and a breakdown of the the number of labels for each class in each of the
four subcategories can be found in Figure 4.7.

Since the final bounding box estimates were derived from the pose labels and the
tracks were verified by an oracle, the analysis of labelling error is focused on
keypoints and fine-grained classes.

Pose Error
To estimate pose error, we take a keypoint from a particular sample (an image of a
person). Since the location (x and y co-ordinates) of this keypoint was labelled by
three different workers, the distance between each of the three locations can then be
computed. The distance is normalised with respect to the height of the bounding
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Figure 4.8: An estimate of keypoint location error as a fraction of body height.
Given an image of a person, pose error is the distance between all of the workers
keypoint locations, normalised by the height of the sample. The green band is where
error is less than 3%, the yellow band between 3-15% and the red band is greater
than 15% (See Section 4.5).

box for the sample. The distribution of these distances across all samples for each
of the 14 keypoints can be found in Figure 4.8.

The results indicate that workers tended to agree the most about the location of the
chin. This is expected since the chin is a sharp, well defined point on the face. The
most disagreement occurred for the left shoulder and right hip. Both of these body
parts are harder to localise since they are not sharp points.

The keypoints are classified into three error classes: excellent (the green band),
where error is less than 3%, good (yellow band), where error is between 3-15% and
poor (red band) where error is greater than 15%. The poor errors tend to occur
when workers incorrectly exchange left and right labels.
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Figure 4.9: Estimates of the fine-grained labelling error for each subcategory. The
histograms correspond to the entropy of 30 workers labelling 180 randomly selected
tracks from the dataset. The yellow line corresponds to our statistical model as
described in Section 4.5. The noise values in the model are 0.07, 0.15, 0.11 and
0.23 for sex, age, weight and clothing respectively. They need to be compared to the
size of the bins, which depends on the number of classes in the subcategory. Bin
sizes are equal to 0.5, 0.2, 0.33 and 0.25 respectively.

Fine-Grained Label Error
To estimate the error in the fine-grained labels, 180 tracks were randomly selected
from the dataset and sent toMTURK to be labelled by 30workers. The same process
as outlined in Section 4.4 was followed except for the increase in annotators.

Given a sample track, for each subcategory, the empirical probability distribution
of its classes was calculated from the 30 worker labels. The normalised entropy
for the sample was then computed using this distribution. A histogram of entropies
for each subcategory across the 180 examples can be found in Figure 4.9. Low
entropies indicate high agreement amongst annotators.

The fine-grained label error may be modelled statistically. Each one of the attributes
we considered may be thought as varying in one dimension; thus, we assume that the
L class labels of a given attribute are the result of discretising a uniformly distributed
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Figure 4.10: The most ambiguous cases to label for sex (far left), age (centre left),
weight (centre right), and clothing style (far right), based on the entropy from the
set of images labelled by 30 workers.

continuous variable (e.g. age ranges from 0 to 100 years, and it is binned into five
age categories).

We assume that each annotator may estimate the underlying continuous variable,
with the addition of some ‘annotator noise’ and produce a label by binning their
continuous estimate. We model annotator noise as zero-mean with a free parameter
σ, which we assume constant over the population of the annotators (a more sophis-
ticated point of view may be found in [54]). In order to estimate σ we fit this model
to the empirical labelling results for each of the four subcategories (for convenience
we rescaled the range of the underlying continuous variable to (0, 1)). Results are
shown in Figure 4.9. The noise values that best fit the data are 0.07, 0.15, 0.11 and
0.23 for sex, age, weight and clothing respectively. This has to be compared to the
size of the bins, which depends on the number of classes and is thus equal to 0.5, 0.2,
0.33 and 0.25 for each subcategory respectively. This means that the annotators’
estimates of sex are excellent, quite consistent for weight, and somewhat vague for
age and clothing, as one might expect. Figure 4.10 contains examples of the three
most ambiguous samples for each of the four subcategories.
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Figure 4.11: Baseline Model. The baseline model used is the ’pose normalised
deep convolutional nets’ method of Branson et al. [7]. Given an image containing a
person, it is warped using a similarity transform to fit a prototypical pose template
that has been hand defined. This warped image and the original image are then
fed through a convolutional neural network with an AlexNet [30] architecture,
pre-trained on ImageNet [26]. Features are extracted from the 5th layer after max-
pooling and then concatenated. Separate one-vs-all linear SVM’s are then trained
to classify each of the fine-grained categories.

4.6 Experiments: Fine-Grained Classification - Single Images
In this section we present two sets of fine-grained classification experiments. The
first set considers only single images of people while the second set uses sequences
of people. The dataset is split into a training/validation set containing four videos,
with the remaining three videos forming the test set. Since each video was collected
on a unique day, different images of the same person do not appear in both the
training and testing sets. While it is conceivable that a person appears in different
videos while wearing the same clothes and in the same lighting conditions, we
consider this to be unlikely.

Baseline Model: Pose Normalised Deep Convolutional Nets
The baseline model we use is the ‘pose normalised deep convolutional nets’ method
of Branson et al. [7]. It has state-of the-art performance on bird species classification
and we believe that the method will generalise to the people dataset. This is the only
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Figure 4.12: UnifiedModel. The unifiedmodel takes an input imagewhich is passed
through a convolutional neural network with an InceptionV3 [51] architecture,
pre-trained on ImageNet [26]. The final 1000-way fully-connected classification
layer of the InceptionV3 model is then replaced with four separate fully-connected
classification layers — one for each of the fine-grained categories in the dataset.

model benchmarked in the published version of this work.

In this framework, features are extracted by applying deep convolutional nets to
image regions that are normalised by pose. To elaborate, given a sample, image
regions are extracted and then warped so that they are aligned to a set of prototypical
models. Each warped region is then fed through a deep convolutional network where
features are extracted from certain layers. The features from each warped region are
then concatenated and used in a classifier.

For this benchmark, given an image containing a person, two regions are extracted:
1) the full bounding box and 2) the full bounding box warped to a hand-defined pose
prototype using a similarity alignment model, which was suggested by Branson et
al. to work best [7]. The pose prototype only considers the location of the shoulders,
the hips and the head. The ground-truth keypoints for the left and right shoulder, the
left and right hip, the top of the head, and the chin are used to compute the warping
of the input image to the prototype.

The two regions are then fed through a convolutional neural network with an
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AlexNet [30] architecture that has been pre-trained on ImageNet [26]. Features
are extracted from the 5th layer after max-pooling (this layer gave the best perfor-
mance). Features for each region are then concatenated and separate one-vs-all
linear SVMs are trained to classify each of the fine-grained categories. To be clear,
the only trainable weights are those of the SVMs; the weights of the neural network
are fixed. This method is referred to as “pose: bb+body”. We also consider the
case where only the bounding box is used as the extracted image region (the warped
input image is not used). This method is referred to as “pose: bb”. A diagram of
this baseline model can be found in Figure 4.11.

Unified Model
Since the original version of this work was published, neural network architectures
have improved. We thus propose a unified model to predict fine-grained categories
of people. The unified model takes an input image which is passed through a
convolutional neural network with an InceptionV3 [51] architecture that has been
pre-trained on ImageNet [26].

The final 1000-way fully-connected classification layer of the InceptionV3 model
is then replaced with four separate fully-connected classification layers — one for
each of the fine-grained categories we are interested in. The number of neurons in
each of the classification layers is equivalent to the number of classes for a particular
fine-grained category. The resulting model thus takes an image and outputs the class
distributions for each of the fine-grained categories of interest.

During training the network is fine-tuned so the weights of the convolutional stage as
well as the classifier stages can be updated. The categorical cross-entropy loss is used
for each of the four outputs. The total loss is the sum of each of the individual losses
(this could be a weighted sum, giving different importance to different categories,
but it is something we have not explored). This model differs from the baseline
model in that there is no need for pose and the model can be trained end-to-end. A
diagram of the unified model can be found in Figure 4.12.

Results: Single Images of People
The class average classification accuracy (the accuracy for each class is computed
independently then averaged across all the classes for a given category) is reported for
each of the fine-grained categories in the dataset. This metric says that predicting
one class correctly is equally as important as predicting any of the other classes
correctly. For all the experiments, keypoint occlusion information was not used and
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Figure 4.13: Single Image Fine-grained Classification Results. The class average
accuracy is reported for each of the subcategories comparing each of the three
models to human performance. Compared to humans, classification performance is
quite poor for age, body type and style. Sex classification is better. This suggests that
this is a challenging dataset to work with. The unified model does only marginally
better or about the same when compared to the baseline models for sex, age and
style. For body type the unified model does 10% better than the pose normalised
models.

samples with missing parts were ignored.

The baseline model was trained using code that was obtained directly from the
authors [7]. The unified model is implemented using keras [12] with tensorflow [1]
as a backend. We use stochastic gradient descent for training with a learning
rate of 0.0001, a momentum of 0.9 and a batch size of 32. Weight decay is
used for regularisation with a value of 0.0005. Dropout is also used between
the convolutional layers and the classification layers with a drop ratio of 0.5. A
validation set is used to determine when to stop training (the best validation loss
was achieved after 28 epochs). Finally, since the classes for each of the fine-grained
categories are imbalanced, the dataset is balanced during training by giving each
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Figure 4.14: Fine-grained Classification Model for Sequences of Images. Features
are extracted independently for each image using a convolutional network. The
image feature vectors are combined or pooled to form a track feature vector. The
prediction is then made using the track feature vector. Image features can be pooled
in a number of different ways. Refer to Section 4.7 for details.

class a weight that is inversely proportional to the frequency of that class.

The input images are also augmented during training with a random horizontal flip,
a random translation of up to 10% of the image’s height and width, a random rotation
of up to 10◦, a random shear of up to 5◦, a random zoom between 0.9 and 1.1, and
a random channel shift between −10 and 10 for each channel.

For reference we also compare to human performance.

Results can be found in Figure 4.13. Compared to humans, classification perfor-
mance is poor for age, body type and style, with the best performing model being
35%, 30% and 25% worse respectively. Sex classification is only 15% poorer than
humans. The unified model does only marginally better or about the same when
compared to the baseline models for sex, age and style. The greatest difference in
performance is for body type with the unified model doing 10% better than the pose
normalised models. This suggests that this is a challenging dataset.

4.7 Experiments: Fine-Grained Classification - Sequences of Images
It can be challenging to determine the sex, age, body type or style of a person from a
single cropped out window of that person. The task is easier if a sequence of images
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of that person is given from different viewpoints (front-view, side-view, rear-view).
This is the reason humans annotators were given a sequence of four images when
labelling fine-grained categories (see Figure 4.24 in the supplementary materials to
see an example of a sequence human annotators were given).

In the previous section, comparing the machines performance on single images to
humans may be unfair since humans had the advantage of seeing a sequence of
images to make their prediction. In this section we instead give the machine a
sequence of images as input. We also explore different strategies for combining
information from a sequence of images of the same person to obtain a consistent
fine-grained classification for that person.

Combining Information from a Sequence of Images
In this section we assume that a unified model has already been trained on single
images. This model will be referred to as the single-image model.

There are a number of ways to combine information from a sequence of images of a
particular person. The simplest way to obtain a consistent fine-grained classification
for that individual is to predict the class for each image independently using the
single-image model then take a majority vote. We will refer to this method as vote.

An alternative approach as shown in Figure 4.14 is to independently extract features
for each image using the convolutional network of the single-image model (these
weights are fixed for all variants). Combine or pool the image feature vectors into a
new, track feature vector. Then classify the track feature vector using the classifiers
of the single-image model.

There are a number of alternatives for pooling the image features:

1. Average Pooling. The track feature vector is the mean of the image feature
vectors. If the classifier weights of the single-image model are fixed we refer
to this variant as ave. If they can be fine-tuned this variant is referred to as
ave+ft. This is similar to the late pooling used by Ng et al. [41] for activity
recognition.

2. Max Pooling. The track feature vector is the component-wise maximum of
the image feature vectors. The variants are known as max and max+ft as
explained above.
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3. Fully Connected. The track feature vector is a weighted sum of the image
feature vectors followed by a non-linearity. The weights are learnt. The
classifier weights of the single-image model are tuneable. This variant is
referred to as fc. This is similar to the late fusion used by Karpathy et al. [41]
for activity recognition.

4. RNN. The image feature vectors are sequentially combined using an RNN.
The track feature vector is the output of an RNN at its final time step. We
consider RNNs with 5 (rnn 5) and 10 (rnn 10) time steps. Again the classifier
weights of the single-image model are tuneable. This is similar to the LCRN
method proposed by Donahue et al. [17] for activity recognition.

Results: Tracks of People
For the rnn experiments Gated Rectified Units [11] (GRUs) with 32 units are used
as the recurrent neural network. For the fc, ave+ft and max+ft experiments the
input sequence length was a maximum of five images. If an image sequence was
longer than five images it was linearly sampled in time to obtain five images.

Experiments were run using each of the previously mentioned methods for pool-
ing for each of the subcategories in the dataset, as was done in the single image
case. Results can be found in Figure 4.15. For conciseness we report only the
class average accuracy in the main document. Per-class results can be found in
Figures 4.26, 4.27, 4.28 and 4.29 in the supplementary material. We compare to
single image performance using the joint model.

For sex, all sequence basedmethods improve class average accuracy when compared
to the single-imagemethod. Average pooling with no fine tuning of the classification
stage sees the greatest improvement (6.7%). For age,max and fc do worse than the
single-image method while the rest do marginally better. The best being rnn 10with
an improvement of 2.6%. For body type, all methods do significantly worse than the
single-image method. For style, vote is the best performer with a .9% improvement.

From the class average accuracy results it is difficult to draw any conclusions about
how information from sequences of images should be combined. If instead we
look at the overall accuracy results (simply count the number of correct predictions
regardless of class) as shown in Figure 4.16, a far more consistent result emerges.
Now, all sequence methods do better than the single image method for each of the
fine-grained categories. The best method is max with a 8.4%, 10.6% and 6.3%
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Figure 4.15: Fine-grained class average accuracy results using sequences of images.
Experiments predicting the sex, age, body type and style of a person were performed
using each of the feature pooling variants mentioned in Section 4.7. A comparison
is made to single image performance using the joint model. For sex, all sequence
based methods improve class average accuracy when compared to the single-image
method. Average pooling with no fine tuning of the classification stage sees the
greatest improvement (6.7%). For age and style most sequence-based methods do
better than the single-image method while for body type they always does worse.

improvement for age, type and style respectively. For sex there is a 5.7% increase
using max but a 6.6% using ave.

To make further conclusions the per-class results in Figures 4.26-4.29 need to be
looked at. The increase in overall accuracy and the fluctuations in class average
accuracy for the age, style and body type categories indicate that the sequence-
based models are over-fitting to the most common class since these categories are
the most imbalanced. This behaviour is best highlighted by themax and fcmethods
which overfit the most to the most common classes — healthy, athletic and middle
aged accuracy all increase while the other less represented classes all decrease in
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Figure 4.16: Fine-grained overall accuracy results using sequences of images. The
overall accuracy counts the number of correct predictions regardless of class. All
sequencemethods do better than the single imagemethod for each of the fine-grained
categories. However, since the age, type and style classes are all highly unbalanced,
these results, when looked at in conjunction with the results of Figure 4.15, suggest
that the models are probably over-fitting to the most common class of a category.
Per-class accuracy results can be found in 4.11 to support this claim.

accuracy.

Another observation is that the severely under-represented classes (dressy for style,
child and teen for age, and under for body type (see Figure 4.7 for the class distri-
butions for each fine-grained category)) are effected the most by using sequences of
images. Most methods cause the accuracy to drop to zero or close to zero. Since
images are being combined into sequences, the number of training examples for the
under-represented classes is further reduced and so they essentially get ignored dur-
ing training (even when training examples are weighted to account for unbalanced
classes). Humans still perform extremely well on the under-represented classes.

Figure 4.17 shows results on age, body type and style for the case where the severely



77

50
52
54
56
58
60
62
64

C
la

ss
 A

v
e
ra

g
e

A
cc

u
ra

cy
 (

%
)

55.4
58.7 60.4

54.5

61.7 62.5
60.3 61.3 60.6

Age

56

58

60

62

64

C
la

ss
 A

v
e
ra

g
e

A
cc

u
ra

cy
 (

%
)

58.7 59.6 60.4 61.2 60.9 61.1
59.6

62.2
59.5

Type
un

ifi
ed

vo
te

av
e

m
ax

av
e+

ft

m
ax

+
ft fc

rn
n 

5

rn
n 

10

56
58
60
62
64
66
68

C
la

ss
 A

v
e
ra

g
e

A
cc

u
ra

cy
 (

%
)

60.3

65.0 64.4 62.8 64.2 63.1
60.4

63.3 63.5

Style

Figure 4.17: Fine-grained class average accuracy results using sequences of images,
re-computed to ignore severely under-represented classes. The ignored classes
correspond to dressy for style, child and teen for age, and under for body type.
The sequence-based methods nearly always have a better class average accuracy
than the single-image method, joint. The best pooling method still varies between
categories.

under-represented classes are ignored and the class average accuracy is re-computed.
Amore consistent result is now seen with the sequence-basedmethods nearly always
having a better class average accuracy than the single-image method. The best
pooling method still varies between categories with the best results for age, body
type and style coming from max+ft, rnn 5 and vote respectively.

To summarise, for the purpose of fine-grained classification, combining information
from a sequence of images of an individual then predicting the label3 is 3.5-7.1%
better, in terms of class average accuracy, than independently predicting the label
of each image, assuming that severely under-represented classes are ignored (a
severely under-represented class makes up less than 5% of the class labels). The
best method for combining information is unclear from these experiments with all
variants performing differently depending on the fine-grained category.
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Figure 4.18: Pose estimation results. We report the PCP for the parts in our
dataset using the method described in Section 4.8. CRPa corresponds to the pose
model trained using the LSP dataset [27] but tested on CRP. CRPb correponds to
the case when the CRP dataset is used for both training and testing. Performance is
best on the torso, with the lower arms and lower legs performing the most poorly.
For comparison, results for a pose model trained and tested using the LSP dataset —
the current pose estimation benchmark — are provided. The errors for our dataset
are worse than those on the LSP dataset. This suggests that ours is a challenging
dataset for pose estimation.

4.8 Experiments: Pose Estimation
Since many fine-grained classification techniques rely on parts, it is important to
look at pose estimation. To benchmark human pose estimation we used the state-
of-the-art, articulated pose estimator of Chen and Yuille [10]. This method extends
Yang and Ramanan’s work [55] to use deep features. The code is publicly available.

Two experiments were run using a single train/test split. In the first experiment,
the pose model was trained using data from the LSP dataset [27]. In the second,
training was done using data from the CRP dataset. In both cases keypoint occlusion
information was not used and samples with missing parts were ignored.

The results are reported using a standard measure: the stricter interpretation of the
percentage of correct parts (PCP) [46]. The results are shown in Figure 4.18

The results indicate that this dataset is more challenging than the existing pose
estimation benchmark, the LSP dataset. The mean PCP is approximately 12% lower

3the predicted label is then assigned to each of the images in the sequence.
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than that of LSP. The high amount of occlusion present in our dataset is contributing
to the poorer results.

4.9 Discussion and Conclusions
We introduce a video dataset designed to study fine-grained classification of people
using the entire human body. Its novel and distinctive features are size, realism
(natural behaviour, variety in viewpoint, moving camera), fine-grained multi-label
attributes (sex, weight, clothing, age), detailed annotations, and public availability.
The dataset is called Caltech Roadside Pedestrians (CRP).

Three sets of experiments were conducted to provide a performance baseline for the
dataset. The first was a fine-grained classification task using single images, where
we introduced a unified model based on the InceptionV3 [51] neural network archi-
tecture. This model takes a single image as input and outputs the class distributions
for each of the four fine-grained categories in the CRP dataset. The unified model
is compared to the pose normalisation + deep network system of Branson et al. [7],
which has state-of-the-art performance on bird species classification. The unified
model does only marginally better or about the same when compared to the baseline
model for sex, age and style. For body type the unified model does 10% better
than the pose normalised model. Compared to humans, classification performance
is quite poor for age, body type and style (29.4-33.7% worse). Sex classification
performance is better (only 15.4% worse). This suggests that our realistic and
large dataset is challenging and will contribute to advance the state-of-the-art in
fine-grained classification.

The second set of experiments was a fine-grained classification task using sequences
of images where we explore different strategies for combining information so that a
consistent fine-grained classification prediction is obtained. The results indicate that
combining information from a sequence of images of an individual and then pre-
dicting the label is 3.5-7.1% better, in terms of class average accuracy, than indepen-
dently predicting the label of each image, assuming that severely under-represented
classes are ignored. A class is considered to be severely under-represented if it
makes up less than 5% of the class labels. The best method for combining infor-
mation is unclear from these experiments with all variants performing differently
depending on the fine-grained category.

The third set of experiments was a pose estimation task where we used an articulated
pose model with deep features as a baseline method [10]. We find that the baseline
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method performance is 12% lower than the samemethods performance on LSP [27],
an existing pose estimation dataset. This suggests that CRP will also contribute to
advance the state-of-the-art in pose estimation.

An interesting feature of the dataset is the presence of severely under-represented
classes for some of the fine-grained categories. While human performance at
predicting the class labels of images from these classes is still quite high, achieving
the same level of accuracy from a small number of examples is still a challenge for
computer vision algorithms. While the comparison may not be completely fair since
humans have the advantage of seeing many more training examples throughout their
lifetime, the ability of humans to apply what they know about one class to another
class is unmatched by machines. Exploring better methods for transfer learning may
be the first step towards improving the fine-grained classification performance on
the under-represented classes.
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4.10 Appendix: Dataset Collection

1

Dataset Collection

Figure 4.19: The GoPro camera attached to the vehicle.

Figure 4.20: The route that was taken during capture. The circuit was completed
three times in a session. A total of seven sessions were captured on different days.
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Figure 4.21: The interface used by Amazon Mechanical Turk workers to draw
bounding boxes around people in the Caltech Roadside Pedestrians Dataset. This
interface was created by Dr. Steve Branson.

Figure 4.22: The interface used by Amazon Mechanical Turk workers to create
tracks of people in the Caltech Roadside Pedestrians Dataset.
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Figure 4.23: The interface used by Amazon Mechanical Turk workers to label the
left elbow of a person in the Caltech Roadside Pedestrians Dataset. The other body
parts are collected in a similar way.

Figure 4.24: The interface used by Amazon Mechanical Turk workers to label the
sex attribute of a person in the Caltech Roadside Pedestrians Dataset. The other
attributes are collected using a similar interface.
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(A) (B) (C)

Figure 4.25: Class examples. From top to bottom the corresponding class labels
for each category are: (A) age - teen, young adult, middle aged, and senior; (B)
weight - under, healthy, over, and over; (C) clothing style - workout, light athletic,
casual comfort and dressy. The examples shown in this figure illustrate the variety of
lighting conditions (full sunlight, hazy, front and back lighting), viewpoints (front,
profile, back) and backgrounds.
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4.11 Appendix: Fine Grained Classification Results
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Figure 4.26: Per-class fine-grained classification results for the Sex category.
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Figure 4.27: Per-class fine-grained classification results for the Age category.
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Figure 4.28: Per-class fine-grained classification results for the Body Type category.
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Figure 4.29: Per-class fine-grained classification results for the Style category.
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C h a p t e r 5

PERSON REIDENTIFICATION

The contents of this chapter are from the unpublishedwork ”Putting Pose into Person
Reidentification” by D. Hall and P. Perona. It is in submission at ICCV 2017 at the
time of publication of this thesis.

5.1 Abstract
For deep neural network based person reidentification, a network needs to learn a
representation of a person that is invariant to the pose of that person. The idea
that pose information should be explicitly used to make learning this invariant
representation easier for a network is introduced. Pose is utilised by extracting
patches around body part locations that have been estimated using state-of-the-
art pose estimation methods. These patches are used as inputs to weight sharing
convolutional neural networks that output a feature vector representing the similarity
of two part patches. To aggregate the similarity features generated for each part into
a single representation, two different strategies are proposed. Experiments show
that rank-1 matching rates increase by 22% on CRP and 25.6% on hand labelled
CUHK03 when compared to other deep neural network methods.

5.2 Introduction
Reidentifying individuals across fixed cameras with non-overlapping views is im-
portant for surveillance systems in airports, train stations and cities. It reduces the
time it takes to recognise suspicious behaviour as well as to identify perpetrators
of a crime. Recognising people from a moving camera that views pedestrians at
different locations as well as across large time scales has applications in robotics
and automated vehicles.

The person reidentification task is best described as the problem of finding a match
for a given query image from a gallery of candidate images. This is a challenging
task since images of the same individual can vary significantly due to changes in
clothing, viewpoint, pose, lighting and background. The size of the gallery and the
similarity between different individuals further impact the difficulty of the task (see
Figure 5.1).
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Figure 5.1: The person reidentification task. The left column contains examples
of query images. On the right is the gallery of candidate images within which it is
necessary to find a match for the query. The true match for each query is highlighted
in green. Finding a match is a challenging task since the correct match can vary
significantly from the query due to changes in clothing, viewpoint, pose, lighting and
background. The similarity between different individuals also adds to the challenge.

Traditionally, person reidentificationwork has focused on engineering visual appear-
ance features [17, 13, 30, 49, 42] and the design of metric learning algorithms[17,
39, 30, 49, 20, 19, 23, 27, 29, 42, 45]. More recently, deep convolutional neu-
ral networks (DCNN’s) have been used to learn features and a similarity function
jointly [22, 44, 2, 36].

One can imagine that for person reidentification to be successful, a network would
need to learn a representation of a person that is invariant to the pose of that person.
This representation may encode that the person is wearing a white hat, blue shorts,
black sunglasses and a red shirt, but most importantly, the network needs to have the
same representation whether the person is front on, side on or viewed from behind.
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Existing deep learning approaches [22, 44, 2, 36] use the whole image of a person
and expect that pose invariance is implicitly learnt by the network. However, this
seems like a challenging task, particularly if the network is never told anything about
pose.

To make learning a pose invariant representation easier for the network, an approach
that explicitly uses pose information is introduced. Rather than use the whole
image of a person as an input to the network, patches are extracted around body
part locations. To determine the location of the body parts, state-of-the-art pose
estimation techniques are used.

A two-stage deep neural architecture is proposed. The first stage is a set of weight
sharing similarity networks that compare two patches of a particular body part from
two different people. This stage outputs a similarity feature vector. The second
stage is a feature aggregation network that combines the similarity feature vectors
for each part to produce a single representation to be input into a classifier.

In addition to this we also introduce a new dataset for person reidentification.
Traditionally, person re-identification has been studied from a surveillance paradigm
where pedestrians are matched across fixed cameras with non-overlapping views.
However, with the increasing popularity of automated vehicles and with a number
of companies collecting street-view imagery (Google, Carmera, Mapillary), it is
important to consider the person reidentification problem in the moving-camera
domain. We add identity labels to an existing roadside pedestrian dataset CRP [6].
These labels will be made publicly available.

To summarise, we make three main contributions:

1. That pose information should be utilised to make learning a pose invari-
ant representation for person reidentification, easier for convolutional neural
networks.

2. A two-stage deep neural network architecture that uses body part patches
as inputs rather than an entire image of a person.

3. The addition of identity labels to an existing roadside pedestrian dataset [6],
to study person reidentification in the moving-camera domain.

5.3 Related work
Typically, person reidentification work focuses on engineering features that are
quasi-invariant to changes in illumination, background and pose. Features that have
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been proposed include colour histograms [17, 13, 30, 49, 42], Gabor and Schmid
filters [17, 30, 49], image patches [47, 46] and semantic colour names [15]. To
incorporate spatial information, features are usually computed on horizontal strips
of a pedestrian image [17, 30, 49, 25]

Another major area of focus is metric learning [17, 39, 30, 49, 20, 19, 23, 27, 29,
42, 45]. Given a set of features, the goal is to learn a similarity function that forces
features of matching image pairs to be closer than those of non-matching images.

With the recent success of deep convolutional neural networks acrossmany problems
in computer vision [21, 7, 32, 33, 16], there has been an effort to move person
reidentification away from hand designed features. There have been a number of
recent works that use deep learning for person reidentification [22, 44, 2, 8, 37, 36,
38, 41]

Li et al. [22] were the first to use deep learning for person reidentification with
the filter pairing neural network (FPNN). The network has six layers and it takes
two images as input (at both train and test time) and outputs the probability that
they match. The internal layers are designed to handle misalignment, cross-view
photometric and geometric transforms of the image pairs.

Yi et al. [44] introduce siamese convolutional networks for person reidentification.
Their model contains three separate siamese networks, each being independently
trained on one of three sections of the two input images (the images are split into
head, body and leg sections). The outputs of each siamese network are fused to
produce a final similarity score.

The work of Ahmed et al. [2] introduces a novel, cross neighbourhood input dif-
ference layer that compares the features from one input image with the features
computed in neighbouring locations of the other image. It currently has state-of-
the-art performance on the CUHK03 [22] labelled dataset.

More recent work includes that of Cheng et al. [8] who use a multi channel CNN
framework on global and local features. They refer to the local features as ‘body
part’ features; however, these do not correspond to semantic body parts but are a
partitioning of the global convolution layer.

Adding pose information into models has proven useful for a number of computer
vision problems. Branson et al. [5] introduced ’pose normalised deep convolutional
nets’ for the fine-grained categorisation of bird species. In this framework, given
an image, keypoint part locations of a bird are predicted (beak, leg, wing etc.). The
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parts are then aligned to a set of prototypical models. Features are then extracted
from the pose normalised image using deep nets. It has state-of the-art performance
on bird species recognition. There is also the work of Taigman et al. [33] where
pose is used to align faces to a 3D model. This improved face-verification results
by 27% from prior state-of-the-art.

The work of Wu et al. [40] and Garcia et al. [14] use viewpoint based pose in the
person reidentification domain where each image is assigned a viewing angle (a
single scalar). This differs from the part-based or articulated pose approach we
are proposing where (x,y) locations are assigned to multiple semantic body part
locations.

There is a great deal of work on human pose estimation and a full discussion of the
topic is outside the scope of this paper. We refer the reader to [28] for a summary
of the field.

5.4 Approach
A person reidentification algorithm takes as input a query and a candidate image.
It outputs a score indicating how well the two images match. A true match occurs
when the query and candidate have the exact same person in them. This is repeated
for every candidate image. The candidates are then sorted based on the score they
received.

In this section the details of our algorithm are outlined. Firstly, given a query and a
candidate image we explain how part patches are extracted. Secondly, for a single
part patch, we describe the convolutional network used to produce a feature vector
that encodes how similar the query and candidate patches are. Finally, we detail
how the similarity features for each part are combined to form an aggregated feature
vector which is then used by a final classification layer. A diagram of our pipeline
can be found in Figure 5.2

Part Extraction
To extract patches from an image at body part locations, we must first use a pose
estimation algorithm [43, 7, 35, 34, 28] to estimate where these body parts are.
Fortunately, human pose estimation has greatly improved in recent years with state-
of-the art methods being fast and accurate.

In this work we use the hourglass network for pose estimation [28] which has
state-of-the-art performance on MPII [3] (a pose estimation dataset). Patches are
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Figure 5.2: The Proposed Person Reidentification Pipeline. Body part locations
are estimated by an ‘as is’ pose estimator [28] for a query and a candidate image.
30 × 30 part patches are then extracted from the 128 × 64 images and fed into the
single part similarity network which produce similarity features. The similarity
features for each part are then aggregated and a final classification layer determines
whether the query and candidate have the exact same person in them. The similarity
networks have the same set of parameters. We show the case for three parts but in
practice all of the sixteen parts that the pose estimator predicts are used.

extracted around the 16 body part locations that the pose estimator has been trained
to find (top of the head, chin, chest, groin, shoulders, elbows, wrists, hips, knees and
ankles). Each part patch is a 30 × 30 crop centred at the (x, y) keypoint location.
The crop is extracted from a 128 × 64 image.

Single Part Similarity Network
Given a patch from the query and a patch from a candidate for a particular body part
(e.g. the left ankle), a similarity network is used to determine whether these patches
correspond to the same person.

The similarity network has the following architecture. There are two convolutional
neural networks (CNN) that share the same parameters (they have identical weights
and biases). The first CNN takes the query patch as input and the second takes
the candidate patch. The size of the inputs are 30 × 30 × 3. The CNNs have two
repeated blocks. Each block contains a convolutional layer with a 3x3 kernel and
25 channels followed by a ReLU [21] activation function and then a max-pooling
layer which have 2x2 kernels with no-overlap. The CNNs each output a vector that
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Figure 5.3: Single Part Similarity Network. The similarity network takes two
30×30×3 part patches as inputs to two convolutional neural networks that have the
same parameters. Each CNN has a 3×3×25 convolutional layer followed by a max
pooling layer. This structure is repeated twice. ReLU activations are used. Each
CNN outputs a 1600 × 1 vector which are concatenated. A final fully-connected
layer is then used to output a similarity feature vector of 500 dimensions.

has size 1600 × 1. These two outputs are then concatenated and passed through a
fully-connected layer to produce a similarity feature vector of 500 dimensions. A
diagram of the architecture can be found in Figure 5.3.

Since 16 body part locations are being used 16 similarity networks are required. A
drawback of this formulation is that the number of parameters in the entire network
grows with the number of body parts. To avoid this we also have each similarity
network share parameters.

Feature Aggregation
The next question to ask is how are the similarity features for each of the 16 parts
aggregated into a single representation? Two possibilities are considered for feature
aggregation: 1) a basic approach where each of the 16 similarity feature vectors
are concatenated. 2) a more sophisticated approach using an L layer, 16 time step
recurrent neural network (RNN). At each time step a similarity feature vector for a
particular part is input into the RNN. The aggregated feature vector is the output
of the RNN at the final step. We use Gated Rectified Units [10] (GRUs) for our
recurrent neural networks with 200 dimensions. In our experiments we consider the
L = 1 and L = 2 cases. A diagram of each of the Feature Aggregation strategies
can be found in Figure 5.4
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Figure 5.4: Feature Aggregation Strategies. Two possibilities are considered for
feature aggregation: A) each of the 16 similarity vectors are concatenated. B) An
L layer, 16 time step recurrent neural network that takes a similarity feature vector
as an input at each time step and outputs the aggregated feature vector at the final
step. We use Gated Rectified Units [10] (GRUs) for our recurrent neural networks
with 200 dimensions. In our experiments we consider the L = 1 and L = 2 cases

The aggregated feature vector is then passed through a final fully-connected classi-
fication layer. The classification layer outputs a one if the query and candidate have
the exact same person in them and zero otherwise. The cross-entropy loss is used
during training.

5.5 Datasets
In this work we conduct experiments on 1) CUHK03 [22], an existing dataset with a
fixed-camera paradigm and 2) Caltech Roadside Pedestrians (CRP) [6], an existing
moving-camera dataset for which we have collected identity labels. As mentioned in
Section 5.2 with the increasing prevalence of automated vehicles, it is important to
consider the person reidentification problem in the moving-camera domain. To the
best of our knowledge, we are the first to conduct person reidentification experiments
in the moving-camera framework.

While there are other standard person reidentification datasets [17, 31, 48, 9], they
are all quite small, making it difficult to train deep networks with them. However,
both CRP and CUHK03 have a large number of examples, making them appropriate
for studying CNNs.
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CUHK03
The CUHK03 [22] dataset contains 13,158 images of 1,359 unique pedestrians
across 2,934 sequences. Each individual occurs in exactly 2 sequences. Each
sequence contains on average 4.8 pedestrian images. The dataset is captured using
ten surveillance cameras with disjoint views. They monitor an open area where
pedestrians walk in different directions. This dataset doesn’t contain any ground
truth pose labelling. It contains hand labelled pedestrian bounding boxes as well as
boxes automatically detected by a deformable-part-model. We include results for
both cases.

CRP
CRP [6] is a large video dataset of pedestrians. It contains 30,000 bounding box
annotations of pedestrians in 4222 tracks (sequences) across 7 videos collected on
different days and times. For each bounding box, there are 14 body parts labelled.
CRP was collected by mounting a camera to a vehicle which did laps of a park [6].
Two features of this dataset are as follow: 1) The camera had a fish-eye lens so
within a track the same person is captured from all viewpoints (so front, side, back).
2) Since the vehicle is doing laps, individuals are seen again at different points in
time, in different locations, with different backgrounds, different lighting conditions
and sometimes even different clothing. For further details about the dataset refer to
Chapter 4.

When CRP [6] was originally collected it included many types of annotations but
it lacks global identity labels for the pedestrian sequences. To make it possible to
study person reidentification from amoving-camera using this datasetwe add to the
annotations by using Amazon Mechanical Turk to collect identity labels. Workers
were given a probe pedestrian sequence and a gallery of 50 sequences. They were
then asked to click on any sequence in the gallery that matched the probe. This
resulted in us collecting labels for 1,155 unique individuals. Each individual occurs
on average in 2.6 sequences. Each sequence contains on average 6.1 pedestrian
images. An example of the interface can be found in Figure 5.10.

5.6 Experiments
Pose Estimation
To determine the location of body parts we useNewell et al.’s [28] hourglass network
for pose estimation. It has state-of-the-art performance on the pose estimation dataset
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MPII [3]. In all of our experiments we use the publicly available model1 provided
by Newell [28]. This model has been trained on MPII. We use this model as is,
without any fine-tuning on CRP or CUHK. This pose estimator predicts 16 body
part locations.

Proposed Model Variants
We conduct experiments using the following model variants: (a) RNN feature
aggregation with 2 layers (2-RNN). (b) RNN feature aggregation with 1 layer (1-
RNN). (c) Concatenated feature aggregation (Concat). (d) RNN feature aggregation
with 2 layers but weights are not shared between the 16 similarity networks (2-
RNN+no_sharing). (e) RNN feature aggregation with 2 layers and the similarity
feature vectors are input into the RNN in no particular order (2-RNN+shuffled).
Rather than input the similarity feature vectors in an arbitrary fixed order (the left
ankle at time-step one, the left knee at time-step two. etc.) we experiment with
inputting the feature vectors for a particular part at any time-step. For example, for
the first pair of images the left ankle might be input at time-step 3 but for the second
pair it might be input at time-step 14.

Each variant has the following number of parameters: 2-RNN has 1, 893, 251; 1-
RNNhas1, 652, 651; Concat has 1, 247, 852; and 2-RNN+no sharing has 20, 232, 001.
In comparison CIND [2] has 2, 308, 147 parameters.

Baseline Models
We also consider two baseline approaches to compare against. The first is the
Whole Image method. For this approach the Concat network architecture is used
but instead of using 16, 30x30 patches as input, the entire image is used (a single
input of 128x64).

The second is the Low Level method. In this approach, for each of the extracted
part patches a colour histogram (8x8x8 HSV descriptor) and a Scale Invariant Local
Ternary Pattern (SILTP) [24] descriptor is computed. XQDA [25] is then used to
learn a metric from these descriptors. This approach is similar to that of [25] except
that features are extracted from patches at the part locations rather than densely
sampling the image in rows, then max pooling.

1https://github.com/anewell/pose-hg-demo

https://github.com/anewell/pose-hg-demo
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Data Splits
The CUHK03 dataset was split into a training set of 1160 identities, a validation
set of 100 identities, as well as a test set of 100 identities. These sets come from
cameras pairs 1-6. This is the standard set up as described in [22] and is the setting
in which all prior work reports results on.

The CRP dataset had a train set of 5 videos containing 1636 individuals (870 occur
more than once) in 14,769 images. A validation set of 1 video containing 260
individuals (130 occur more than once) in 2326 images. A test set of 1 video
containing 209 individuals (117 occur more than once) in 2,039 images.

The validation sets for both datasets were used to select the network parameters.

Training Parameters
Our network is implemented using keras [11] with tensorflow [1] as a backend. We
use the stochastic optimisation method, Adam [4] for training. Each mini-batch has
20 pairs with an equal ratio of matching image pairs to non-matching image pairs
(so 10 of each). The identity of the pairs as well as the image for each selected
identity is chosen at random.

We train for 200 epochs with a learning rate of 0.0001. The learning rate is then
reduced to 0.00001 and the network is trained for a further 20 epochs. There are
20, 000 training examples per epoch. Weight decay is also used for regularisation
with a value of 0.0005.

To avoid over-fitting we also augment the part patches extracted from an image.
Each patch undergoes a random translation of up to 5% of its height and width, a
random rotation of up to 10◦ and a random horizontal flip.

CUHK03
The CUHK03 experiment we consider is the standard test case. In this setting there
are 100 query sets. For each query set a query image is selected at random. There
is also a set of 100 candidate sets. A candidate image is selected at random from
each candidate set to form a gallery of 100 images. There is only one matching
image in the gallery. The gallery images are then ranked according to how well their
identities match the query. This is repeated 10 times and the average cumulative-
match-characteristic (CMC) is reported.

We compare against several existing methods:
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Figure 5.5: The CMC for labelled CUHK03. The 2-RNN variant is 25.6% better at
rank-1 than CIND [2], the state-of-the-art deep learning approach. It is also 19.3%
better than NULL [45] at rank-1, a metric learning method that operates on top
of pre-computed LOMO [25] features. Solid lines correspond to variants of our
proposed method. Dashed lines correspond to state-of-the-art methods.

(a) Older, metric learning basedmethods: KISSME [20], eSDC [47], SDALF [13],
ITML [12], LDM [18], LMNN [39], RANK [26], and the euclidean distance.
These methods use dense colour histograms and dense SIFT for features [22].

(b) More recent metric learning methods NULL [45] and XDQA [25] which both
use LOMO [25] features.

(c) Deep learning methods FPNN [22], CIND [2] (which we have implemented
ourselves since it has state of the art performance) and GATED [36] (only
reports results on detected).

Results on hand labelled images are show in Figure 5.5. Our 2-RNN variant is
25.6% better at rank-1 than CIND, the best existing deep learning approach. It is
19.3% better than NULL at rank-1, a metric learning method that operates on top of
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Figure 5.6: The CMC for detected CUHK03. We are doing 26.2% better than
CIND and 10% better than GATED [36]. The 2-RNN variant is the best performing
variant, performing 13.4% better than Concat.

pre-computed LOMO [25] features.

The 2-RNN variant is 3.4% better than the 1-RNN variant and 13.4% better than
the Concat variant at rank-1 with both these variants still improving on the state-
of-the-art results. The 2-RNN+no sharing variant performs 11.4% worse at rank-1
than its weight sharing counterpart probably due to over-fitting. When the inputs to
the RNN are presented in no particular order a significant improvement is still seen
over state-of-the-art.

TheWhole Image baseline model does surprisingly well with a rank-1 performance
close to both CIND and NULL. However, Concat, its part-based equivalent still
performs 9.2% better. This indicates that explicitly using the part information helps
the network to learn a better representation. LOMO+XQDA performs 8.8% better
than its part-based equivalent, the Low Level baseline model. This result indicates
that parts aren’t as useful when a feature designing+metric learning approach is used
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Figure 5.7: The CMC for CRP. The 2-RNN variant is 22% better at rank-1 than
CIND [2]. The 2-RNN variant is again the best performing variant, performing
22% better than Concat.

compared to an end-to-end deep neural network method.

Similar results using detected images can be found in Figure 5.6. Again, the 2-RNN
variant is doing 26.2% better than CIND and 10% better than GATED.

CRP
We also conduct experiments on the CRP dataset and compute the average CMC.
In this setting there are 117 query sets (since this is the number of individuals that
occur more than once in the test set.) A query image is selected at random from each
query set. There are 209 candidate sets. A random image is selected from each set
to form a gallery of 209 images. There is only one matching image in the gallery.
The gallery images are then ranked as before and the process repeated 10 times.

Results can be found in Figure 5.7. The 2-RNN variant is 22% better at rank-1
than CIND. When comparing the different variants we see a similar ranking to the
CUHK03 experiments with the results again demonstrating that the 2 layer RNN
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Figure 5.8: The Impact of Removing Different Parts. Instead of inputting all parts
into the network, only a subset of parts are input. Parts are removed by setting the
input patches to zero. The parts that were removed are: 1) the head (chin and top of
head), 2) the left and right shoulders, 3) the left and right hips, 4) the torso (shoulders
and hips), 5) the torso and the head, and 6) the limbs (all elbows, wrists, ankles and
knees). The results suggest that the head and shoulders are less important than the
limbs when discriminating individuals.

feature aggregation method is better than the concatenation method.

Impact of Removing Different Parts
In this section we run an experiment where instead of inputting all parts into the
network, only a subset of parts are input. We remove parts by setting their 30×30×3
input patches to zero. We run this experiment to quantify the effect groupings of
parts have on the CMC. Ground truth pose is used. The parts that we remove are:
1) the head (chin and top of head), 2) the left and right shoulders, 3) the left and
right hips, 4) the torso (shoulders and hips), 5) the torso and the head, and 6) the
limbs (all elbows, wrists, ankles and knees).

Results can be found in Figure 5.8. If only the hips or shoulders are removed there
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is a 4.8-7.8% reduction in performance when compared to using all available parts.
This suggest that these parts only play a minor role in discriminating individuals
from one another. On the other hand, if the limbs are removed, there is a 25.8%
decrease in performance. This suggests that elbows, knees, wrists and ankles are
important body parts for identity discrimination.

A reason for this could be that the shoulder patches give information about the
overall colour of a person. When those patches are removed, the overall colour can
still be identified in hip patches and possibly wrist or elbow patches. For the limbs,
knee patches give information about whether someone has shorts or pants on, elbow
patches whether there is long sleeves or short sleeves. If these patches are removed
this information is harder to recover from other parts and so performance degrades.

Qualitative Comparison
Qualitative results, comparing the rankings produced by CIND [2] and our method
can be found in Figure 5.9.

The top three rows are results from CRP. Each of the three query images have a
person wearing a white hat. If we look at the rankings returned by CIND we notice
that the rank-1 images have a feature that is similar to the query despite them all
being an incorrect match. In row one they have white tops, in row two both have
a cap, and in row three both have a white hat. Lower ranked images tend to be
matching in overall colour, such as in row two, where everyone has dark clothes.
The rankings returned by our method are more consistent, in that the highest ranked
images all have a white hat. This is one of the reasons why our method has a better
CMC.

The bottom three rows are results from CUHK03. The rank-1 matches using the
CIND method are what we call ‘unreasonable errors’ since the query image is
visually, completely different. In row four, the query has a person with a grey shirt
and blue pants but the rank-1 image is a person with a purple shirt and shorts. In row
five, the query has dark clothing while the best match has a red backpack. In row
six, the query has a light, patterned shirt while the top match has a dark shirt. The
results returned by our method do not have as many ‘unreasonable errors’. Rows
five and six are the correct match. While for row one, even though the correct match
is at rank-2, the top match has a light top and blue pants, which is visually similar
to the query.
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5.7 Discussion and Conclusions
Existing deep learning approaches [22, 44, 2, 36] use the whole image of a person
and expect that pose invariance is implicitly learnt by the network. However, this is
a challenging task, particularly if the network is never told anything about pose.

We claim that pose information should be utilised to make learning a pose invariant
representation for person reidentification easier for convolutional neural networks.
To the best of our knowledge, using part-based pose has never been used before in
the person reidentification setting.

We utilise the pose by extracting patches around body part locations that have been
estimated using a state-of-the-art pose estimator [28]. The pose estimator is used
as is with no fine-tuning on any person reidentification dataset. These patches are
used as inputs to weight sharing convolutional neural networks that output a feature
vector representing the similarity of two part patches. To aggregate the similarity
features generated for each part into a single representation, a number of different
variants were considered. The best performing feature aggregator was the two-layer
recurrent neural network.

We also add identity labels to an existing roadside pedestrian dataset [6], to study
person reidentification in the moving-camera domain. These labels will be made
publicly available.

Experiments show that by using our approach, rank-1matching rates increase by 22%
on CRP. On hand labelled CUHK03 there is an increase of 25.6% when compared
to other, deep neural network methods and a 19.3% increase when compared to the
best metric learning method. Similar increases are observed on detected CUHK03.
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Figure 5.9: Example Ranking Results. Qualitative results, comparing the rankings
produced by CIND [2] (yellow) and our method (blue). The top three rows are
results from the CRP dataset. The bottom three are from CUHK03. Query images
have purple borders and the correct matches in the candidate sets have green borders.
For a discussion of these results see Sec 5.6
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5.8 Appendix: Dataset Collection

Figure 5.10: The interface used by Amazon Mechanical Turk workers to label
the identity of a person in the Caltech Roadside Pedestrians Dataset. The user is
presented with an example individual on the left. They then scroll through the
examples on the right, clicking on the ones that match.
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C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, I present work that advances the methods for machines to be visually
aware of people with a focus on understanding who, along with their attributes,
is where in video. Efforts are focused on improving algorithms in four areas
of visual recognition: detection, tracking, fine-grained classification and person
reidentification.

Each of these problems appear to be quite different on the surface; however, there
are two broader questions that are answered across each of the works. The first, the
machine is able tomake better predictions when it has access to the extra information
that is available in video. The second, that it is possible to learn on-the-fly from
single examples. A summary of how each work contributes to answering these
over-arching questions as well as its specific contributions to the problem domain
are as follows:

In Chapter 2, a method for training detectors of individual objects from a boosted
category detector was presented. Training happens in real-time using a single
instance of an individual as a positive training example. The individual detectors
make use of the category detector’s feature computations; the thresholds for a single
weak classifier are set using transfer learning. This ensures that the additional
training and run-time costs for the individual detectors are minimal.

Experimentswere carried out on two datasets containing faces and pedestrians. They
suggest two conclusions: (a) both training and runtime computation of individual
detectors is extremely inexpensive and, (b) the proposed method has both better
tracking and reidentification performance than previousmethods aswell as operating
at faster frame rates.

In Chapter 3, a novel tracking method which is designed to track objects belonging
to a specific category was presented. The method makes use of a boosted category
detector to identify target objects to track and of an individual-specific detector
to track the target in subsequent video frames. The individual-specific detector is
trained on-the-fly at almost no extra cost (using the method proposed in Chapter 2),
making it possible for the tracker to operate in real-time. The well-known problem
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of drift is addressed by updating the individual-specific detector only when there
are coincident category detections.

The performance of our method is compared to 9 state-of-the-art trackers and results
show that it is as accurate as the most accurate competitor, but 20x faster. It is only
slightly slower than the fastest competitor, but 10%more accurate. The experiments
were carried out on two large (hundreds of thousands of detections), challenging
and heterogeneous datasets of faces and pedestrians. This benchmark surpasses,
both in method and set size, any such comparative evaluation in the literature.

In Chapter 4, a video dataset designed to study the fine-grained classification of
people using the entire human body is introduced. Its novel and distinctive features
are size, realism (natural behaviour, variety in viewpoint, moving camera), fine-
grained multi-label attributes (sex, weight, clothing, age), detailed annotations, and
public availability.

Two methods were proposed. The first is the deep neural network based unified
model which takes a single image as input and outputs the class distributions for
each of the four fine-grained categories in the CRP dataset. The unified model does
only marginally better or about the same when compared to the baseline model for
sex, age and style. For body type the unifiedmodel does 10% better than the baseline
model. Compared to humans, classification performance is quite poor for age, body
type and style (29.4-33.7% worse). Sex classification performance is better (only
15.4% worse).

The secondmethod uses sequences of images as input. The results indicate that com-
bining information from a sequence of images of an individual and then predicting
the label is 3.5-7.1% better, in terms of class average accuracy, than independently
predicting the label of each image, assuming that severely under-represented classes
are ignored. A class is considered to be severely under-represented if it makes up
less than 5% of the class labels. The best method for combining information is
unclear from these experiments with all variants performing differently depending
on the fine-grained category.

In Chapter 5, a method that uses pose information for person reidentification is
proposed. Part-based pose has never been used before in the person reidentification
setting. Pose is utilised by extracting patches around body part locations that have
been estimated using some pose estimation technique. The patches are used as
inputs to weight sharing convolutional neural networks that output a feature vector
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representing the similarity of two part patches. To aggregate the similarity features
generated for each part into a single representation, a number of different variants
were considered. The best performing feature aggregator was the two-layer recurrent
neural network. Identity labels were also added to the dataset collected in Chapter 4
to study person reidentification in the moving-camera domain.

Experiments show that by using the proposed method, rank-1 matching rates in-
crease by 22% on CRP. On hand labelled CUHK03 there is an increase of 25.6%
when compared to other deep neural network methods and a 19.3% increase when
compared to the best metric learning method. Similar increases are observed on
detected CUHK03.

I’ll finish this dissertation with a few thoughts on future directions for the problems
of fine-grained classification and person reidentification. To do better on these prob-
lems the simple answer is to collect more data. Compared to the ImageNet dataset
which is used for object detection/recognition, the datasets used for reidentification
and fine-grained classification of people are tiny, being around one hundred times
smaller. With deep neural networks transforming machine vision in the past five
years, if these problems had larger training sets then performance would keep im-
proving. However, I think the real challenge lies in being able to make predictions
from a small number of training examples. Humans have the ability to learn new
classes of object from very few examples because they are able to transfer what
they know about other objects to the new example. Exploring better methods for
transfer learning in machines is a direction I would suggest those interested in this
field should take.
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