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Abstract

Typical cosmological states have structure, obey to very good approximation the laws
of classical physics on large scales, and are far from equilibrium. Typical quantum-
mechanical states have none of these properties. If the universe is described by a
state in a Hilbert space, the state and its Hilbert space must therefore obey a number
of constraints to describe realistic cosmological spacetimes. In particular, they must
admit a quantum-to-classical transition via decoherence that allows for the emergence
of classical spacetimes, and such spacetimes must obey gravitational constraints, in
particular on the entanglement entropy of subsystems within them. The papers
collected in this thesis are concerned with these constraints. We investigate two
holographic correspondences inspired by AdS/CFT, the AdS-MERA correspondence,
which suggests that anti-de Sitter space may be given a discretized description as
a tensor network, and the ER=EPR duality, which identified entangled qubits with
wormholes connecting them. In the former case, we use holographic entropy bounds
to severely constrain the properties of any such tensor network; in the latter case we
prove a new general-relativistic area theorem which states that an area corresponding
to the entanglement entropy in wormhole geometries is exactly conserved. We use
information-theoretic constraints to show that under mild assumptions about the
black hole interior an observer falling beyond the horizon is unable to verify the
claimed cloning of information in the firewall paradox before reaching the singularity.
Finally, we analyze the decoherence structures of late-time de Sitter space and early-
time slow-roll eternal inflation. We show that in the former case a universe with
an infinite-dimensional Hilbert space and a positive cosmological constant inevitably
reaches a maximum-entropy state from which no further branching or decoherence
is possible, forbidding the existence of dynamical quantum fluctuations at late time.
In the latter case, gravitational-strength interaction among inflaton modes leads to
decoherence of sufficiently super-Hubble modes, which we argue backreacts to cause
different histories of cosmological evolution on different branches and hence creates
the conditions necessary for eternal inflation.
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Introduction

The papers collected together in this thesis have at least two things in common.
First, they were written (at least in part) by the author of this thesis. Second, they
are concerned (at least in part) with attempts to constrain cosmology through the
use of quantum mechanics. The basic idea is to embrace the message from quantum
mechanics that Hilbert space is fundamental. Instead of starting from cosmological
objects or a spacetime metric, we take the position that such structures must emerge
as features inside the wave function of the universe, which is “just” a quantum state
in a Hilbert space. But, of course, most quantum states do not look like the current
state of our universe as we perceive it! In particular, we observe that the universe
has structure, that it is (approximately) classical, and that it is far from equilibrium.
Each of these properties place constraints on the quantum-mechanical structure of
cosmological systems, and the hope of the broad program of which the papers in this
thesis are a part is that collecting and implementing these constraints will allow us
to better understand and constrain even highly classical cosmologies.

In quantum-mechanical language, the fact that the universe has structure means
that the Hilbert space of the universe does as well: it can be decomposed into a
tensor product of very many subsystems, each themselves smaller Hilbert spaces,
and the time evolution of states in this Hilbert space (at least the ones that look
similar to our own) can be understood as a sum of interactions between only small
numbers of these subystems. As an example, consider quantum field theories. The
Hilbert space of a QFT is of course infinite-dimensional, which leads to a number
of well-known problems, but more importantly for our purposes it is highly struc-
tured. Consider, to specialize further, the Hamiltonian for a free scalar field in
four-dimensional Minkowski space:

Ĥ =
∫ d3p

(2π)3ωp

(
â†pâp + 1

2
[
âp, â

†
p

])
. (1.1)

The Hilbert space of this theory is the product of multiparticle Hilbert spaces at each
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point in (Fourier) space; the Hamiltonian1 is the sum of terms that contain operators
âp, â

†
p which act on the individual Hilbert spaces. This theory also has additional

symmetries, such as rotation and translation invariance.
When the Hilbert space of a quantum-mechanical theory decomposes, the data

associated with a state |Ψ〉 in this Hilbert space becomes much richer. In particular,
when the Hilbert space can be divided into two pieces, H = HA⊗HĀ (each of which
might be able to be further decomposed), we can construct a reduced density matrix
by tracing out one of these pieces:

ρA ≡ Tr Ā ρ = Tr Ā |Ψ〉〈Ψ|. (1.2)

In particular, we can characterize ρA in a basis-independent way by computing its
entanglement entropy,

SA ≡ −Tr A (ρA ln ρA) . (1.3)

The entanglement entropy will be crucial for much of the papers in this thesis, as
will the reduced density matrix, especially its evolution with time. These concepts
are key for making contact with the classical world, as well as with gravitational
theories.

First consider (approximate) classicality. Throughout this thesis we will equate
classicality with decoherence [3–7]: the dynamical emergence from an overall wave
function of multiple distinct noninterfering branches. In the simplest example of
decoherence, we partition the Hilbert space into system and environment

H = HS ⊗HE. (1.4)

An arbitrary state |Ψ〉 ∈ H can be written

|Ψ〉 =
∑

i≤|HS |,j≤|HE |
cij|Si〉|Ej〉, (1.5)

where {Si} and {Ej} are complete orthonormal bases for HS and HE, respectively.
The expression (1.5) is not unique: we can change the coefficients by changing our
choices of bases, and in particular linear algebra guarantees that we can always find

1Even if we didn’t know about this decomposition, we might be able to infer it from the spectrum
of the Hamiltonian; see [1, 2] for recent progress in this direction.
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some special choice of bases (the Schmidt decomposition) for which

|Ψ〉 =
∑

i≤min(|HS |,|HE |)
ci|S ′i〉|E ′i〉. (1.6)

Then the branches |S ′i〉|E ′i〉 are orthogonal (and thus noninterfering). However, this
is not a dynamical statement: in general, the action of the Hamiltonian will not
respect this decomposition, and in particular product states will not evolve into
product states. Instead, decoherence is concerned with approximate, dynamical non-
interference: starting with an initial product state, the interactions that lead to
decoherence evolve the state into a superposition of product states each of which
evolve approximately without interference,

|Ψ(0)〉 = |S0〉|E0〉 → |Ψ(t)〉 ≈
∑
i

ci|S̃i(t)〉|Ẽj(t)〉. (1.7)

By inspection we see that states |S̃i(t)〉|Ẽi(t)〉 are eigenstates of the Hamiltonian Ĥ

associated with the Hilbert space. When the number of branches is less then the
dimensionality of the system, this implies that the reduced density matrix ρS is di-
agonal in the {Si} basis, and it is consistent to treat ρS as a probabilistic ensemble
over states |S̃i(t)〉. If the states |S̃i(t)〉 are additionally eigenstates of some classical
observables (e.g. position or field value), we say that classicalization has occurred:
decoherence has driven a quantum-to-classical transition from a single quantum state
to a distribution of classical states. In cosmological applications, these states are gen-
erally (approximately) classical spacetime geometries, with a definite metric sourced
by some field content. In Everettian terms, the wave function has branched into
distinct classical universes. Implicit in this formalism is that decoherence is accom-
panied by entropy production: from (1.7) we see that the entanglement entropy
between system and environment was initially zero but has now increased.

In the context of quantum field theory in curved spacetime, the most common
way to define a system is to trace out the degrees of freedom behind some cosmo-
logical horizon. Such horizons arise in many contexts: for example in black hole
(Schwarzschild, Kerr, Reissner-Nordström) geometries, for accelerated (Rindler) ob-
servers in Minkowski space, and in de Sitter space. In all of these geometries, tracing
out the degrees of freedom behind the horizon from the ground state of the theory
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yields a thermal density matrix, with temperatures

THawking = 1
8πGM = κ

2π , TUnruh = a

2π , TGibbons-Hawking = H

2π . (1.8)

We can also compute the entanglement entropy across the horizon: for a Rindler
observer this is infinite, but in the other two cases we get the famous expression

S = A

4G (1.9)

with A the horizon area. Given the accompanying temperature it is natural to
identify the entanglement entropy with thermodynamic entropy and treat the horizon
as a thermodynamical system in its own right. Furthermore, at least semiclassically
both black holes and de Sitter space are states of maximum entropy. There are no-
hair theorems (for the less-well-known de Sitter case, see [8–11]) which imply in the
black hole case that once a horizon forms the state approaches the vacuum solution
and in the de Sitter case that perturbations redshift across the horizon. Our universe
is manifestly not in a maximum-entropy state, as the existence of this document
attests, but in de Sitter phases it approaches one, and if the current observed dark
energy is due at least in part to a positive cosmological constant such an equilibrium
will be its ultimate fate.

We have therefore identified a number of broad classes of quantum-mechanical
constraints on cosmological systems:

• constraints on the Hilbert space decomposition and Hamiltonian to allow for
cosmological structure;

• given such structure, constraints on the initial state and Hamiltonian to allow
for the emergence of classical spacetimes via decoherence;

• given such classical spacetimes, the need for them to obey gravitational con-
straints on the entanglement entropy of subystems.

The last category of constraints fall under the broad category of holography; they
include the area laws for black holes and de Sitter geometries already mentioned,
but also the powerful set of ideas [12–14] relating anti-de Sitter space to conformal
field theory in the context of string theory, where the Ryu-Takayanagi formula [15]
(which is just (1.9), again!) equates the entropies of regions in the CFT living at the
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boundary of AdS with the area of minimal surfaces in the bulk of AdS which share
a boundary with these regions.

The papers in this thesis have been organized to begin with explicitly holo-
graphic considerations and gradually move towards more general constraints from
decoherence on the wave function and Hamiltonian:

• In Chapter 2, we are concerned with the proposed AdS-MERA correspondence,
which conjectured that a computationally successful method of approximating
the ground states of CFTs on a lattice using tensor networks, the multiscale
entanglement renormalization ansatz, should by analogy with AdS/CFT pro-
vide a discretization of anti-de Sitter space. Our strategy is to demand that
gravitational area laws be obeyed not only for regions ending on the bound-
ary, but also for areas purely inside the bulk–in other words, that the MERA
should not allow for regions with entropy larger than that of a black hole of the
same size. Imposing such a constraint places severe constraints on the allowed
parameters of the MERA and indicates the need to use more general tensor
networks to discretize AdS.

• Chapters 3, 4, and 5 comprise a series of three papers which investigate the
general-relativistic limit of another proposed holographically-inspired corre-
spondence, this time a much more general one. The ER=EPR correspon-
dence [16] proposes an entropy-area duality for all entangled states: every
pair of entangled qubits should be connected by a Planck-scale wormhole. In
the general relativistic limit, the conjecture stipulates that two black holes
of the same size connected by an Einstein-Rosen bridge (wormhole) should
be maximally entangled. Evidence comes from the thermofield double state
in AdS/CFT–two noninteracting CFTS on distinct boundaries entangled in a
thermal state–which is known to have a bulk description corresponding to max-
imally entangled Schwarzschild spacetime. If ER=EPR is true, it implies that
quantum-mechanical constraints and no-go theorems should map to general-
relativistic ones. In Chapter 3 we indeed show that the no-cloning theorem in
quantum mechanics is dual to the no-go theorem forbidding topology change
in general relativity. In Chapter 4 we verify that just as the presence or ab-
sence of entanglement is not observable neither is the presence or absence of a
wormhole connected to a given black hole. Finally, in Chapter 5, we show in
full generality that we can define an area for a spacetime geometry containing
wormholes which is exactly equivalent to the entanglement entropy between
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the two sides of the wormhole. In particular we demonstrate that the area is
unchanged by operations acting on only a single side of the wormhole, just as
entanglement between two systems is unchanged by acting on only one at a
time.

• In Chapter 6, we investigate whether the claimed violation of unitarity within
black hole complementarity (the “firewall paradox” [261, 262]) can actually
be experimentally observed. We propose a slight relaxation of the no-drama
condition in black hole complementarity, “little drama,” in which macroscopic
objects and observables remain unchanged when passing though the black hole
horizon but microscopic entanglement structure is diffused throughout the in-
terior just as it is scrambled in the complementary description of the black hole
boundary. We show that, after information is diffused, regaining this informa-
tion in the black hole interior cannot be accomplished before encountering the
singularity.

• In Chapter 7, we consider the decoherence properties, and thus the possible
branching structures, of late-time de Sitter space. As already anticipated in
this Introduction, once the state of the universe approaches pure de Sitter
it is exponentially close to a maximum-entropy state and no further entropy
production is possible, so further decoherence is forbidden. Since we know
the quantum state of the de Sitter vacuum we can determine its branching
structure exactly; in particular, it includes no time-dependent fluctuations.
If the dimensionality of the Hilbert space of the universe is infinite, as it is
in quantum field theory, Poincaré recurrences are also forbidden. Hence under
these assumptions the late-time state of a universe with a positive cosmological
constant entirely lacks dynamical quantum fluctuations.

• Finally, in Chapter 8 we perform an analysis of the decoherence of inflaton
perturbations in slow-roll eternal inflation. Unlike in pure de Sitter space,
gravitational-strength interactions suppressed by the slow-roll parameters act
to decohere modes in their field value basis once they become sufficiently su-
perhorizon. Starting from the vacuum state, the wave function repeatedly
branches as modes progressively grow beyond the threshold of decoherence.
Modes smaller than the Hubble scale, or localized observers, therefore experi-
ence a cosmological history which varies from branch to branch—that is, the
decoherence of large-scale modes backreacts on the subsequent cosmological
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evolution. Our analysis of decoherence and backreaction reveals that all of
the required conditions necessary for eternal inflation are present in slow-roll
inflation.



8

Consistency Conditions for an AdS/MERA
Correspondence



9

2.1 Introduction

The idea that spacetime might emerge from more fundamental degrees of freedom
has long fascinated physicists. The holographic principle suggests that a (D + 1)-
dimensional spacetime might emerge from degrees of freedom in a D-dimensional
theory without gravity [17, 18]. While a completely general implementation of this
idea is still lacking, the AdS/CFT correspondence provides a specific example in
which to probe the holographic emergence of spacetime. AdS/CFT is a conjectured
correspondence between D-dimensional conformal field theories (CFTs) in Minkowski
space and (D + 1)-dimensional asymptotically anti-de Sitter (AdS) spacetimes [14,
19, 20]. An intriguing aspect of this duality is the Ryu–Takayanagi formula [21, 22],
according to which the entanglement entropy of a region B on the boundary is
proportional to the area of a codimension-two extremal surface B̃ embedded in the
bulk curved spacetime whose boundary is B:

S(B) = area(B̃)
4G + corrections. (2.1.1)

In other words, given a CFT state, one may think of bulk distance and geometry (at
least near the boundary) as being charted out by the entanglement properties of the
CFT state.

A central question in this picture of spacetime emerging from entanglement is:
What is the precise relationship between bulk degrees of freedom and boundary
degrees of freedom? Expressed in a different way, what is the full map between
states and operators in the boundary Hilbert space and those in the bulk? While
investigations of AdS/CFT have thrown a great deal of light on this question, explicit
simple models are still very helpful for studying it in more detail.

Meanwhile, from a very different perspective, tensor networks have arisen as
a useful way to calculate quantum states in strongly-interacting many-body sys-
tems [23]. One significant example is the Multi-scale Entanglement Renormalization
Ansatz (MERA) [24], which is relevant for critical (gapless) systems, i.e., CFTs.
Starting from a simple state in a low-dimensional Hilbert space, acting repeatedly
with fixed tensors living on a network lattice produces an entangled wave function
for the quantum system of interest; varying with respect to the tensor parameters
efficiently computes the system’s ground state.

Working “backwards” in the MERA, starting with the ground state and gradually
removing entanglement, produces a set of consecutively renormalized quantum states.
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This process reveals a renormalization direction along the graph, which may be
thought of as an emergent radial direction of space. As pointed out by Swingle
[25], the MERA graph can serve as a lattice discretization of spatial slices of AdS.
Furthermore, one can use the MERA to calculate the entanglement entropy of regions
of the original (boundary) critical system; this calculation amounts to tracing over
bonds in the tensor network that cross the causal cone of the boundary region. The
causal cone is a sort of extremal surface for the MERA, motivating comparison to
the Ryu–Takayanagi formula.

It is therefore natural to conjecture that the MERA provides a concrete imple-
mentation of the emergence of spacetime, in the form of a correspondence between
boundary and bulk regions reminiscent of AdS/CFT [25]. Such an AdS/MERA cor-
respondence would be extremely useful, since the basic building blocks of the MERA
are discrete quantum degrees of freedom from which quantities of physical interest
may be directly calculated. Some specific ideas along these lines have recently been
investigated [26–29].

In this paper, we take a step back and investigate what it would mean for such
a correspondence to exist and the constraints it must satisfy in order to recover
properties we expect of physics in a bulk emergent spacetime. After reviewing the
MERA itself and possible construals of the AdS/MERA correspondence in the next
section, in Sec. 2.3 we then derive relationships between the MERA lattice and the
geometry of AdS. We find that the MERA is unable to describe physics on scales
shorter than the AdS radius. In Sec. 5.2 we explore constraints from calculating
the entanglement entropy of regions on the boundary, in which we are able to relate
MERA parameters to the central charge of the CFT. Finally, in Sec. 3.3 we apply
the covariant entropy (Bousso) bound to regions of the bulk lattice. In the most
näıve version of the AdS/MERA correspondence, we find that no combination of
parameters is consistent with this bound, but we suggest that generalizations of the
tensor network may be able to provide a useful correspondence.

2.2 AdS/MERA

Let us begin by recalling the definition and construction of the MERA. We will
then introduce the AdS/MERA correspondence and discuss the motivation for and
consequences of this proposal.
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Figure 2.1. (a) Basic construction of a k = 2 MERA (2 sites renormalized to 1). (b) The
squares represent disentanglers: unitary maps that, from the moving-upward perspective,
remove entanglement between two adjacent sites. (c) The triangles represent isometries:
linear maps that, again from the moving-upward perspective, coarse-grain two sites into
one. Moving downward, we may think of isometries as unitary operators that, in the
MERA, map a state in V ⊗ |0〉 into V ⊗ V . The i and j labels in (b) and (c) represent the
tensor indices of the disentangler and isometry.

2.2.1 Review of the MERA

The MERA is a particular type of tensor network that provides a computationally
efficient way of finding the ground states of critical quantum many-body systems,
i.e. CFTs, in D dimensions. (For a recent review of tensor networks in general, see
Ref. [23]. Detailed analyses of the MERA are given in [24, 30, 31] and references
therein.) In this work, we restrict our attention to the case D = 1 + 1.

The MERA tensor network is shown in Fig. 2.1. The quantum system being
modeled by the MERA lives at the bottom of the diagram, henceforth “the boundary”
in anticipation of the AdS/MERA connection to be explored later. We can think of
the tensor network as a quantum circuit that either runs from the top down, starting
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with a simple input state and constructing the boundary state, or from the bottom
up, renormalizing a boundary state via coarse-graining. One defining parameter of
the MERA is the rescaling factor k, defining the number of sites in a block to be
coarse-grained; in Fig. 2.1 we have portrayed the case k = 2. The squares and
triangles are the tensors: multilinear maps between direct products of vector spaces.
Each line represents an index i of the corresponding tensor, ranging over values from
1 to the “bond dimension” χ. The boundary Hilbert space Hboundary = V ⊗Nboundary is
given by a tensor product of Nboundary individual spaces V , each of dimension χ. (In
principle the dimension of the factors in the boundary could be different from the
bond dimension of the MERA, and indeed the bond dimensions could vary over the
different tensors. We will assume these are all equal.)

As its name promises, the MERA serves to renormalize the initial boundary
state via coarse-graining. If we were to implement the MERA for only a few levels,
we would end up with a quantum state in a smaller Hilbert space (defined on a fixed
level of the tensor network), retaining some features of the original state but with
some of the entanglement removed. However, we can also run the MERA backwards,
to obtain a boundary state from a simple initial input. By varying the parameters
in the individual tensors, we can look for an approximation of the ground state of
the CFT on the boundary. Numerical evidence indicates that this process provides
a computationally efficient method of constructing such ground states [31, 32].

The tensors, or gates, of the MERA come in two types. The first type are
the disentanglers, represented by squares in Fig. 2.1. These are unitary maps U :
V ⊗ V → V ⊗ V, as in Fig. 2.1b. The name comes from thinking of moving upward
through the network, in the direction of coarse-graining, where the disentanglers
serve to remove local entanglement; as we move downward, of course, they take
product states and entangle them. The second type of tensors are the isometries,
represented by triangles. From the moving-downward perspective these are linear
maps W : V → V ⊗ V; moving upward, they implement the coarse-graining, see
Fig. 2.1c. The isometries are subject to the further requirement that W †W = IV ,
where IV is the identity map on V , and WW † = PA , where PA is a projector onto
some subspace A ⊂ V ⊗ V. From the top-down perspective, we can also think of
the isometries as bijective unitary operators WU : V ⊗ V → V ⊗ V, for which a fixed
“ancilla” state (typically the ground state |0〉) is inserted in one of the input factors,
as shown in Fig. 2.1c. More generally, isometries could map q < k sites onto k sites,
W : V ⊗q → V ⊗k.

The MERA is not the simplest tensor network which implements coarse-graining.
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For instance, the tree tensor network [33] (also considered in a holographic context in
Ref. [26]), similar to MERA but without any disentanglers, also implements coarse-
graining. However, tensor networks without disentanglers fail to capture the physics
of systems without exponentially-decaying correlations, and consequently cannot re-
produce a CFT ground state.

An example that invites analysis with a MERA is the transverse-field Ising model
[34]. In 1 + 1 dimensions, the model describes a chain of spins with nearest-neighbor
interactions subject to a transverse magnetic field. Its Hamiltonian is

Ĥ = −J
∑
i

σ̂zi σ̂
z
i+1 − h

∑
i

σ̂xi , (2.2.1)

where σ̂zi and σ̂xi are Pauli operators and where J and h set the strength of the
nearest-neighbor interactions and the magnetic field, respectively. Notably, the sys-
tem achieves criticality at J = h, where a quantum phase transition occurs between
ordered (J > h) and disordered (J < h) phases. In this example, the open legs
at the bottom of the MERA describe the state of the one-dimensional lattice of
spins. A single application of disentanglers and isometries can be thought of as a
true real-space renormalization, producing a lattice of spins that is less dense than
the preceding lattice by a factor of q/k.

In general, much information is required to describe an arbitrary MERA. In
principle, the Hilbert spaces, the disentanglers, and the isometries could all be dif-
ferent. Also, for k > 2, there is no canonical way of laying out the disentanglers
and isometries; the circuit itself must be specified. We will restrict ourselves to the
case q = 1, so that isometries have 1 upward-going leg and k downward-going legs.
Further, without loss of generality, we take the same vector spaces, disentanglers,
and isometries everywhere in the MERA, a simplification that is enforced by the
symmetries of the boundary ground state. These symmetries — namely, translation-
and scale-invariance — dictate that the MERA parameters and structure be homo-
geneous across the whole tensor network.

For geometric considerations, it is useful to abstract away all of the information
about unitary operators and to draw a MERA as a graph as shown in Fig. 2.2. In
such a graph, we only indicate the connectivity of sites at any given level of coarse-
graining as well as the connectivity of sites under renormalization group flow.
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Figure 2.2. (a) A k = 2 MERA, and (b) the same MERA with its disentanglers and
isometries suppressed. The horizontal lines in the graph on the right indicate lattice con-
nectivity at different renormalization depths, and the vertical lines indicate which sites at
different depths are related via coarse-graining due to the isometries. Each site, represented
by a circle, is associated with a Hilbert space V with bond dimension χ. In the simplest
case, a copy of the same Hilbert space is located at each site. When assigning a metric
to the graph on the right, translation and scale invariance dictate that there are only two
possible length scales: a horizontal proper length L1 and a vertical proper length L2.

2.2.2 An AdS/MERA correspondence?

The possibility of a correspondence between AdS and the MERA was first proposed
by Swingle in Ref. [25], where it was noted that the MERA seems to capture certain
key geometric features of AdS. At the most basic level, when viewed as a graph with
legs of fixed length, a MERA may be thought of as a discretization of the hyperbolic
plane, which is a spatial slice of AdS3. In this discretization, the base of the MERA
tree lies on the boundary of the AdS slice and the MERA lattice sites fill out the
bulk of the slice [25, 35].

Interestingly, the structure of a MERA is such that it seems to go beyond a simple
discretization of the hyperbolic plane. Certain discrete paths in the MERA naturally
reproduce geodesics of the hyperbolic plane [25, 36]. Moreover, this phenomenon
makes it possible to understand the computation of CFT entanglement entropy using
a MERA as a discrete realization of the Ryu–Takayanagi formula [37]. These and
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other examples [25, 36] seem to suggest that a MERA may in fact be elucidating the
structural relationship between physics on the boundary of AdS and its bulk.

In this work we take the term “AdS/MERA correspondence” to mean more than
simply a matching of graph geometry and continuous geometry. In the spirit of the
AdS/CFT correspondence, we suppose that (at least some aspects of) both boundary
and bulk physics are described by appropriate Hilbert spaces Hboundary and Hbulk

respectively, which must have equal dimensions. A full AdS/MERA correspondence
would then be a specification of these Hilbert spaces, as well as a prescription which
makes use of the MERA to holographically map states and operators in Hboundary

to corresponding states and operators in Hbulk and vice-versa. To preserve locality
in the bulk and the symmetries of AdS, it is natural to identify Hbulk with the
tensor product of individual spaces Vbulk, each located at one site of the MERA. If it
exists, this correspondence provides a formulation of bulk calculations in terms of the
MERA. An AdS/MERA correspondence should allow us to, for example, calculate
bulk correlation functions, or bulk entanglement entropies using tools from or the
structure of the MERA.

There is one straightforward way to construct such a map Hboundary ↔ Hbulk.
We have noted that the isometries W : V → V ⊗ V can be thought of as unitaries
WU : V ⊗ V → V ⊗ V by imagining that a fixed ancillary state |0〉 is inserted in the
first factor; for a k-to-one MERA, one would insert k − 1 copies of the |0〉 ancilla
at each site to unitarize the isometries. From that perspective, running upwards in
the tensor network provides a map from the MERA ground state on the boundary
to a state |0〉⊗(k−1)Nbulk ∈ V ⊗(k−1)Nbulk , where at each isometry there is a copy of
V ⊗(k−1) and Nbulk denotes the number of bulk lattice sites, excluding the boundary
layer. As we ultimately show in Sec. 3.3, one has Nboundary = (k − 1)Nbulk. We
can then identify Hboundary = Hbulk = V ⊗Nboundary and think of the tensor network
as a quantum circuit providing a map between arbitrary states Hboundary → Hbulk.
In this construction, the MERA ground state on the boundary gets mapped to the
factorized bulk state |0〉⊗(k−1)Nbulk , but other boundary states will in general produce
entangled states in the bulk (keeping the tensors themselves fixed).

Something very much like this construction was proposed by Qi [26], under the
name “Exact Holographic Mapping” (EHM). That work examined a tensor network
that was not quite a MERA, as no disentanglers were included, only isometries. As
a result, while there is a map Hboundary → Hbulk, the boundary state constructed
by the tensor network does not have the entanglement structure of a CFT ground
state. In particular, it does not seem to reproduce the Ryu–Takayanagi formula in a
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robust way. Alternatively, we can depart from Qi by keeping a true MERA with the
disentanglers left in, in which case the bulk state constructed by the quantum circuit
has no entanglement: it is a completely factorized product of the ancilla states. Such
a state doesn’t precisely match our expectation for what a bulk ground state should
look like, since there should be at least some entanglement between nearby regions
of space.

Therefore, while it is relatively simple to imagine constructing a bulk Hilbert
space and a map between it and the boundary Hilbert space, it is not straightforward
to construct such a map that has all of the properties we desire. It might very well
be possible to find such a construction, either by starting with a slightly different
boundary state, or by adding some additional structure to the MERA.

For the purposes of this paper we will be noncommittal. That is, we will imagine
that there is a bulk Hilbert space constructed as the tensor product of smaller spaces
at each MERA site, and that there exists a map Hboundary → Hbulk that can be
constructed from the MERA, but we will not specify precisely what that map might
be. We will see that we are able to derive bounds simply from the requirements that
the hypothetical correspondence should allow us to recover the properties we expect
of bulk physics, including the background AdS geometry and features of semiclassical
quantum gravity such as the Bousso bound on bulk entropy.

2.3 MERA and Geometry

If a MERA is a truly geometrical object that describes a slice of AdS, then the graph
geometry of a MERA should give the same answers to geometric questions as the
continuous geometry of a slice of AdS. Here, we reconsider the observation by Swingle
[25, 36] that certain trajectories on the MERA coincide with trajectories in AdS and
we investigate the constraints that this correspondence places on the graph metric
of the MERA. We find that a MERA necessarily describes geometry on super-AdS
length scales, moreover, there is no redefinition of the MERA coordinates that results
in the proper distance between MERA sites mapping to any sub-AdS length scale.

2.3.1 Consistency conditions from matching trajectories

In order to speak of graph geometry, one must put a metric on the MERA graph, i.e.,
one must assign a proper length to each bond in the graph of Fig. 2.2. Presumably,
the metric should originate from correlations between the sites in the MERA. In the
absence of an explicit identification of the origin of the graph metric, however, at
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least in the case of a MERA describing the ground state of a CFT, it is sensible to
identify two length scales. Explicitly, we must assign a proper length L1 to horizontal
bonds and a proper length L2 to vertical bonds. Indeed, translational and conformal
invariance guarantee that these are the only two length scales in any graph metric
one can assign to a MERA for which an AdS/MERA correspondence exists. In
particular, the ground state of a CFT is translation invariant, so each horizontal
bond in the finest (UV-most) lattice should have the same proper length so as to
respect this symmetry. Self-similarity at all scales then requires that any horizontal
bond at any level of renormalization have this same proper length. There is no a
priori reason why the vertical bonds should share the proper length of the horizontal
bonds and indeed we will see that their proper length will be different. However,
again by self-similarity and translation invariance, all vertical bonds must be assigned
the same proper length.

The observation in Ref. [25] that certain paths in the MERA graph coincide
with corresponding paths in slices of AdS is what established the possibility of an
AdS/MERA correspondence. Here we will carefully examine these paths and deter-
mine what constraints the requirements that they match place on MERA parameters,
i.e., on the bond lengths L1 and L2 and on the rescaling factor k.

Consider a constant-time slice of AdS3 with the following metric:

ds2 = L2

z2 (dz2 + dx2). (2.3.1)

We will compare the proper lengths of straight horizontal lines and geodesics in the
AdS slice to the proper lengths of the corresponding paths in the MERA graph. In
the AdS slice, let γ1 be a straight horizontal line (dz = 0) sitting at z = z0 with
coordinate length x0. Let γ2 be a geodesic whose endpoints lie near the boundary
z = 0 and are separated by a coordinate distance x0 at the boundary. In this
choice of coordinates, such a geodesic looks like a semicircle (see Fig. 2.3). It is a
straightforward computation to show that the proper lengths of these curves are

|γ1|AdS = L

z0
x0 and |γ2|AdS = 2L ln

(
x0

a

)
. (2.3.2)

Note that there is a UV cutoff at z = a � x0 and that we have neglected terms of
order a/x0.

We fix L1 and L2 by comparing γ1 and γ2 to horizontal lines and “geodesics” in
the MERA, respectively. Consider two sites in a horizontal lattice at depth m (i.e.,
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Figure 2.3. A horizontal line (γ1) and a geodesic (γ2) in a spatial slice of AdS3.

m renormalizations of the UV-most lattice) and separated by a coordinate distance
x0 in the coordinate system shown in Fig. 2.2. By fiat, this lattice sits at z0 = kma.
The number of bonds between the two sites at depth m is x0/(kma) (see Fig. 2.2
for the case k = 2). It follows that the proper length of the line connecting the two
points is just

|γ1|MERA = L1 · (number of bonds between endpoints)

= L1
x0

z0

∣∣∣∣
z0=kma

.
(2.3.3)

To have |γ1|AdS = |γ1|MERA, we should therefore set L1 = L.
Similarly, consider two lattice sites on the UV-most lattice separated by a coordi-

nate distance x0. If we assume that x0 � a, then the shortest path (geodesic) in the
MERA connecting the two lattice sites is the path that goes up in the renormaliza-
tion direction and then back down again. The two sites are separated by x0/a bonds
on the UV-most lattice, so logk(x0/a) renormalization steps are needed to make the
sites either adjacent or superimposed. This means that the geodesic that connects
the endpoints is made up of 2 logk(x0/a) bonds (as we have to go up and then back
down again, giving the factor of 2). It follows that the proper length of the geodesic
is

|γ2|MERA = L2 · (number of bonds in the geodesic)

= 2L2 logk
(
x0

a

)
.

(2.3.4)

To have |γ2|AdS = |γ2|MERA, we should therefore set L2 = L ln k.
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2.3.2 Limits on sub-AdS scale physics

One aspect of the matching of geodesics that is immediately apparent is that the
MERA scales L1 and L2 that parametrize the proper distance between lattice sites
are of order the AdS scale L or larger, as was also noted in Refs. [25, 35]. This
runs counter to the typical expectation that, in a discretization of spacetime, one
expects the granularity to be apparent on the UV, rather than the IR, scale. That
is, sub-AdS scale locality is not manifested in the MERA construction and must be
encoded within each tensor factor [36].

One could try to evade this difficulty by attempting to redefine the MERA co-
ordinates (x, z)MERA (those of Fig. 2.2) as functions of the AdS coordinates (x, z)AdS

(those of Fig. 2.3) and taking a continuum limit; above, we assumed that the two
sets of coordinates were simply identified. That is, suppose xMERA = f(xAdS)
and zMERA = g(zAdS). (For example, one could consider f(x) = εx for small ε
and imagine taking the continuum limit, with the aim of making L1 much smaller
than the AdS scale.) If a is still the UV cutoff on the AdS side, then in the
MERA we have f(a) as the UV-most lattice spacing and g(a) as the UV cutoff
in the holographic direction. Consider the computation of |γ1|. From the AdS
side, we have |γ1|AdS = LxAdS

0 /zAdS
0 . On the MERA side, the number of sites

spanned by xMERA
0 = f(xAdS

0 ) is xMERA
0 /kmf(a), while the holographic coordinate

is zMERA
0 = kmg(a). Hence,

|γ1|MERA = L1
f(xAdS

0 )
f(a)

g(a)
g(zAdS

0 ) . (2.3.5)

Equating |γ1|AdS = |γ1|MERA ≡ |γ1|, we have

g(zAdS
0 ) ∂

∂xAdS
0
|γ1| = L1

f ′(xAdS
0 )

f(a) g(a) = L
g(zAdS

0 )
zAdS

0
. (2.3.6)

Since the right side of the first equality only depends on xAdS
0 and the second equal-

ity only depends on zAdS
0 , but we can vary both parameters independently, both

expressions must be independent of both AdS coordinates. Hence, we must have
f(x) = εxx and g(z) = εzz for some constants εx and εz. Plugging everything back
into Eq. (2.3.5) and comparing with |γ1|AdS, we again find that L1 = L, so no con-
tinuum limit is possible. Similarly, in computing |γ2|, we note that the number of
bonds between the endpoints on the UV-most lattice level is xMERA

0 /f(a), so the
geodesic connecting the endpoints has 2 logk(xMERA

0 /εxa) bonds. On the other hand,



20

we have |γ2|AdS = 2L ln(xAdS
0 /a) = 2L ln(xMERA

0 /εxa). That is, in equating |γ2|AdS

and |γ2|MERA, we must again set L2 = L ln k. We thus also find that no continuum
limit is possible in the holographic direction. That is, we have shown that there is a
constant normalization freedom in the definition of each of the coordinate distances
on the AdS and MERA sides of any AdS/MERA duality, but such a coordinate am-
biguity is unphysical and does not allow one to take a continuum limit. One still
finds that the physical MERA parameters L1 and L2 are AdS scale. This means
that there truly is no sense in which a discrete MERA can directly describe sub-AdS
scale physics without the addition of supplemental structure to replace the individ-
ual tensors. This fact limits the ability of the MERA to be a complete description
of the gravity theory without such additional structure. It might be the case that
one needs a field theoretic generalization of the MERA, such as continuous MERA
(cMERA) [38–40] or some local expansion of the individual tensors into discrete ten-
sor networks with a different graph structure to describe sub-AdS physics, but such
a significant generalization of the tensor network is beyond the scope of this work
and in any case would no longer correspond to a MERA proper.

2.4 Constraints from Boundary Entanglement Entropy

Because the MERA can efficiently describe critical systems on a lattice, quantities
computed in the MERA on scales much larger than the lattice spacing should agree
with CFT results. In this section, we will compute the entanglement entropy of `0

contiguous sites in the MERA and exploit known CFT results to obtain constraints
on the properties of the MERA. In particular, we will find an inequality relating the
MERA rescaling factor k and bond dimension χ to the CFT central charge c. This
constraint is interesting in its own right, but it will prove critical in the next section
when we begin to compute bulk properties.

2.4.1 MERA and CFT entanglement entropy

For a (1 + 1)-dimensional CFT in a pure state, the von Neumann entropy of a finite
interval B, which is typically referred to as the entanglement entropy, is known to
be [41, 42]

S(B) = c

3 ln `0 , (2.4.1)

where the length of the interval is much smaller than the system size. Here, `0 is the
length of the interval in units of the UV cutoff. In the notation of the last section, we
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have `0 = x0/a. In the special case that the CFT is dual to AdS in 2 + 1 dimensions,
the central charge is set by the Brown–Henneaux formula [43],

c = 3L
2G. (2.4.2)

Also note that the length of the geodesic that connects the two ends of B (the curve
γ2 in Fig. 2.3) is given in Eq. (2.3.2) by |γ2| = 2L ln `0. The Brown–Henneaux relation
allows us to reproduce the Ryu–Takayanagi formula [21, 44] from the entanglement
entropy,

S(B) = area(B̃)
4G , (2.4.3)

where B̃ = γ2 is the extremal bulk surface with the same boundary as B. For a
boundary with one spatial dimension and a bulk with two spatial dimensions, any
simply-connected region B is an interval, the extremal bulk surface is a geodesic,
area(B̃) is a length, and G has mass dimension −1.

The MERA calculation of the entanglement entropy of `0 sites in the CFT has an
analogous geometric interpretation. Suppose one is given the MERA representation
of a lattice CFT ground state, i.e., one uses a MERA to generate the CFT state.
Denote by SMERA(`0) the entanglement entropy of the resulting state restricted to
`0 sites. In Ref. [37], it is shown that for a specific, optimal choice of `0 sites, for `0

parametrically large, the following bound is placed on SMERA(`0) for a MERA with
k = 2:

SMERA(`0) ≤ 2 log2 `0 lnχ. (2.4.4)

Parsing the equation above, this bound essentially counts the number of bonds that
the causal cone of the `0 sites in question crosses (∼ 2 log2 `0) and lnχ is the maximum
entanglement entropy that a single bond can possess when the rest of the MERA is
traced out.

The causal cone of a region B consisting of `0 contiguous UV sites in a MERA
resembles a bulk extremal surface for the boundary region B. Given `0 sites in the
UV, their causal cone is defined as the part of the MERA on which the reduced
density matrix (or in other words, the state) of B depends. An example of a causal
cone is illustrated in Fig. 2.4.

In particular, note that the number of bonds that a causal cone crosses up to
any fixed layer scales like the length of the boundary of the causal cone up to that
layer. It is in this sense that Eq. (2.4.4) is a MERA version of Ryu–Takayanagi.
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Figure 2.4. Causal cone (shaded) for a set of `0 = 6 sites in a MERA with k = 2. The
width `m of the causal cone at depth m is `1 = 4, `2 = 3, `3 = 3, `4 = 3, etc. The crossover
scale for this causal cone occurs at m̄ = 2. Between the zeroth and first layer, ntr

1 = 2
bonds are cut by the causal cone. Similarly, ntr

2 = 2, ntr
3 = 3, etc.

Also note that the width of the causal cone shrinks by a factor of ∼ 1/k after every
renormalization step until its width is comparable to k. As such, if one denotes the
width of the causal cone at a layer m by `m, then `m is roughly constant for all m
greater than some m̄ (see Fig. 2.4). The scale m̄ is called the crossover scale.

For general k, it is also possible to formulate a bound similar to Eq. (2.4.4) for
the entanglement entropy of `0 sites. For parametrically large `0, we find that

SMERA(`0;B) ≤ 4(k − 1) logk `0 lnχ . (2.4.5)

We demonstrate this bound in App. 2.A using techniques that are similar to those
developed in Ref. [37]. In particular, note that we do not allow ourselves to choose
the location of the `0 sites in question. As such, we remind ourselves that SMERA can
depend on the location of the region B (and not only its size) by including it in the
argument of SMERA. This is also the reason why our Eq. (2.4.5) is more conservative
than the optimal bound given in Eq. (2.4.4).
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2.4.2 Constraining SMERA

Let us examine Eq. (2.4.5) a bit more closely. As discussed in App. 2.A, 4(k − 1)
is an upper bound on the number of bonds that the causal cone could cut at any
given depth m below the crossover scale m̄. (The crossover scale m̄ is attained after
roughly logk `0 renormalization steps.) For a given causal cone, i.e., for `0 sites at
a given location with respect to the MERA, let us parametrize our ignorance by
writing

SMERA(`0;B) ≤ 4fB(k) logk `0 lnχ , (2.4.6)

where fB(k) grows no faster than (k− 1) and counts the (average) number of bonds
cut by the causal cone at any depth up to the crossover scale. Explicitly,

fB(k) ≡ 1
4m̄

m̄−1∑
m=0

ntr
m , (2.4.7)

where ntr
m denotes the number of bonds that the causal cone cuts at the mth level.

Each cut bond contributes at most lnχ to the entropy (the case of maximal
entanglement). As such, it is instructive to introduce a parameter ηB ∈ [0, 1] that
describes the degree of entanglement of the sites in the causal cone. In doing so we
may rewrite the inequality (2.4.6) as an equality:

SMERA(`0;B) = 4fB(k) logk `0 · ηB lnχ. (2.4.8)

The quantity ηB lnχ is the average entanglement entropy per cut bond in the causal
cone of B. Equivalently, Eq. (2.4.8) may be taken as the definition of ηB.

This definition of ηB of course depends on the location of B and only applies to
bonds that are cut by the causal cone of B. In what follows, it will be advantageous
to have a notion of average entanglement entropy per bond that applies to all bonds
in the MERA. To this end, start with a lattice consisting of `tot sites in total and
consider the limit in which the size of a region B is unbounded but where the ratio
`0/`tot is held constant (so that B does not grow to encompass the whole domain
of the CFT). In this limit, SMERA(`0;B) → SMERA(`0) and fB(k) → f(k) should
be independent of the exact location of B, i.e., SMERA should exactly agree with
Eq. (2.4.1). Let us consequently define the average entanglement entropy per bond
in the MERA:

η lnχ = lim
`0→∞

SMERA(`0)
4f(k) logk(`0) , (2.4.9)
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The quantity η is then a property of the MERA itself.
Intuitively, one would not expect each individual bond in the MERA to be

maximally entangled and so it should be possible to constrain η more tightly than
η ≤ 1. This expectation is made more precise via the following considerations.
To begin, consider a MERA with k = 2 and examine a pair of isometries at a fixed
depth m. As indicated in Fig. 2.5a, let ρ2 denote the density matrix of the bonds and
ancillae emanating from the two isometries and let ρ1 denote the density matrix of
the four highlighted bonds below the isometries. We again assume that the ancillae
are initialized to the pure product state composed of factors of |0〉. Taking into
account the ancillae, or in other words promoting the isometries to unitaries, we
see that ρ1 and ρ2 are related by a unitary transformation, so S(ρ1) = S(ρ2). By
assumption, the state of each ancilla is |0〉, so ρ2 = ρ̃2⊗|0〉〈0|⊗|0〉〈0| for some density
matrix ρ̃2. This in turn implies that S(ρ2) = S(ρ̃2) ≤ 2 lnχ. From the definition of
η above, the entanglement entropy of a single bond is asymptotically given by η lnχ,
so S(ρ1) ' 4η lnχ. It therefore follows that η ≤ 1/2.

b b b

b b b

b b b

ρ2

ρ1

|0〉 |0〉

bb b b

(a)

b
b

b

b b b

b b b

b b b

b

b b b

b b b

b b b

b
b

b

|0〉⊗(k−1) |0〉⊗(k−1)

ρ2

ρ1

b b b

b b b

(b)

Figure 2.5. A pair of isometries with their ancillae explicitly indicated for a MERA with
(a) k = 2 and (b) general k. The thick bonds below the isometries, the state of which is
denoted by ρ1, are unitarily related to the bonds that exit the isometries and the ancillae,
the state of which is denoted by ρ2.

For general k, the argument is nearly identical. We again begin by considering
a pair of isometries at a given level m (see Fig. 2.5b). Analogously with the k = 2
case, let ρ2 denote the density matrix of the two bonds and 2k−2 ancillae emanating
from the two isometries and let ρ1 denote the density matrix of the 2k highlighted
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bonds below the isometries. There is only one disentangler that straddles both
of the isometries in question for any layout of the MERA. As such, at most k of
the lower bonds enter a disentangler from below and the rest directly enter the
isometries. Here as well ρ1 and ρ2 are related by a unitary transformation so that
S(ρ1) = S(ρ2). Similarly, ρ2 = ρ̃2 ⊗ (|0〉〈0|)⊗2k−2 for some density matrix ρ̃2, so
S(ρ2) = S(ρ̃2) ≤ 2 lnχ. The region described by ρ1 always consists of 2k bonds,
so we may again asymptotically write S(ρ1) ' 2kη lnχ. It therefore follows that
kη ≤ 1, and since f(k) ≤ (k − 1), we may write

ηf(k) ≤ k − 1
k

. (2.4.10)

We note that, in computational practice, one typically does not use the “worst-case
scenario” construction explored in App. 2.A; a more conventional construction would
result in a tighter bound on f(k) and hence a stricter inequality than Eq. (2.4.10).
For our purposes, however, we will remain as conservative as possible and therefore
use the inequality (2.4.10) in our subsequent bounds.

2.4.3 Matching to the CFT

Finally, we obtain a constraint on k, χ, and η in terms of the central charge c by
collecting the results of this section. Let us work in the limit where the interval is
much larger than the lattice spacing, logk `0 � 1. We have seen that this is precisely
the regime in which η and f(k) are well-defined quantities independent of the choice
of B. It is also the regime in which we can equate the CFT entropy S(`0) = (c/3) ln `0

with the MERA entropy (2.4.8). Doing so, the central charge is given by

c = 3L
2G = 12η f(k) lnχ

ln k . (2.4.11)

Then in light of Eq. (2.4.10), we find that

c ≤ 12
(
k − 1
k ln k

)
lnχ . (2.4.12)

To recapitulate, given a CFT with central charge c and a MERA representation
of its ground state, a necessary condition for a consistent AdS/MERA correspondence
is that the MERA parameters k and χ satisfy the constraint (2.4.12). Importantly,
this implies that, for a well-defined semiclassical spacetime (for which c � 1), the
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bond dimension χ must be exponentially large in the size of the AdS scale compared
to the Planck scale.

Let us also note that we can still obtain a bound from Eq. (2.4.11), albeit a
weaker one, without using the result of Eq. (2.4.10). Recall that this latter result
relies on having unentangled ancillae in the MERA. This is not necessarily the case
for other tensor network bulk constructions, as we will subsequently discuss. As such,
if we disregard the result of Eq. (2.4.10), we still have by virtue of their definitions
that f(k) ≤ k − 1 and η ≤ 1. The following weaker but more general bound on
the central charge therefore follows from Eq. (2.4.11) for such generalized tensor
networks:

c ≤ 12
(
k − 1
ln k

)
lnχ. (2.4.13)

2.5 Constraints from Bulk Entanglement Entropy

In addition to the compatibility conditions from geodesic matching and boundary
entanglement entropy, it is well-motivated to seek out any other possible quantities
that can be computed in both the MERA and AdS/CFT frameworks, so as to place
further constraints on any AdS/MERA correspondence. One important example of
such a quantity is the entropy associated with regions in the bulk, as opposed to on
the boundary.

2.5.1 The Bousso bound

The notion of placing bounds on the entropy of regions of spacetime in a quantum
gravity theory has been explored for many years, first in the context of black hole
thermodynamics [45] and the Bekenstein bound [46] and later in more general holo-
graphic contexts, culminating in the covariant entropy bound, i.e., the Bousso bound
[47, 48].

The statement of the Bousso bound is the following: given a spacelike surface B
of area A, draw the orthogonal null congruence on the surface and choose a direction
in which the null generators have non-positive expansion. Let the null geodesics
terminate at caustics, singularities, or whenever the expansion becomes positive.
The null hypersurface swept out by these null geodesics is called the lightsheet. Then
the entropy S going through the lightsheet is less than A/4G.

Let our spacelike surface B be a 2-ball of area A on a spacelike slice of AdS and
choose as the lightsheet the ingoing future-directed null congruence. This lightsheet
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will sweep out the entire interior of B and will terminate at a caustic at the center
of B. Since the system is static, the entropy S passing through this lightsheet is the
entropy of the system on B, which by the Bousso bound satisfies

S(B) ≤ A

4G . (2.5.1)

It is natural to cast the Bousso bound as a constraint on the dimension of the bulk
Hilbert space. As argued in Ref. [49], the thermodynamic entropy of a system about
which we only know the boundary area A is just the logarithm of the dimension of
the true Hilbert space of the bulk region in question (as opposed to the näıve Hilbert
space in quantum field theory), which the Bousso bound implies is less than A/4G.1
As such, if we denote the Hilbert space of B by HB, let us replace Eq. (2.5.1) with
the slightly more concrete statement

ln dimHB ≤
A

4G. (2.5.2)

2.5.2 A MERA version of the Bousso bound

Our aim is to compute both sides of the inequality (2.5.2) using the MERA. For this
calculation, it is instructive to change our parametrization of the hyperbolic plane
from coordinates (x, z), which take values in the half-plane z > 0, to coordinates
(ρ, θ), which take values in a disk 0 ≤ ρ < 1, 0 ≤ θ < 2π. Embeddings of the MERA
in a disk are often depicted in the literature, e.g., [53]; here we make this coordinate
transformation explicit, since we wish to carefully study the geometric properties of
the MERA.

To begin, consider a MERA consisting of a single tree that contains a finite
number of layers m. This situation is illustrated in Fig. 2.6a for k = 2 and m = 4.
Note that such a MERA begins with a top-level tensor at the mth level that seeds
the rest of the MERA in the IR.

The base of the MERA is made up of km sites. Without loss of generality, let
us locate the leftmost site of the base of the MERA at x = 0, so that the UV-most
sites sit at coordinates (x, z) = (na, a), where n = 0, 1, 2, . . . , (km − 1) as shown

1Moreover, it is known that there exists an asymptotically-AdS bulk configuration that saturates
the Bousso bound, namely, the BTZ black hole [50, 51], which further implies that ln dimHB in
fact equals A/4G. However, we will not need this stronger assertion in what follows. A similar
but unrelated result equating the area of a region with its entanglement entropy in vacuum was
obtained in Ref. [52].
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Figure 2.6. (a) A k = 2 MERA consisting of m = 4 layers and with periodic boundary
conditions, (b) the corresponding embedding in (x, z) coordinates, and (c) the embedding
in (ρ, θ) coordinates.

in Fig. 2.6b. Let us also assume periodic boundary conditions for this MERA and
hence identify x = 0 and x = kma.
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Next, define the coordinates (ρ, θ) as follows:

ρ = kma− z
kma

,

θ = 2π x

kma
.

(2.5.3)

In these coordinates, the metric reads

ds2 = L2

(1− ρ)2

dρ2 +
(

dθ
2π

)2
 , (2.5.4)

cf. Eq. (2.3.1). This embedding of the MERA is shown in Fig. 2.6c; the top-level
tensor always sits at ρ = 0 and the lower layers of the MERA are equally spaced on
circles of radii 1/2, 3/4, 7/8, . . . that are centered at ρ = 0.

More generally, one could construct a top-level tensor that has T legs, each of
which begets a tree of sites. In this case, x = 0 and x = Tkm−1a are identified, so
one should define the angular variable as θ ≡ 2πx/(Tkm−1a). The metric (2.5.4) is
correspondingly modified and reads

ds2 = L2

(1− ρ)2

dρ2 + T 2

k2

(
dθ
2π

)2
 . (2.5.5)

This situation is depicted in Fig. 2.7. (If T = k, however, then it is not necessary to
introduce any new structure in addition to the disentanglers and isometries that were
already discussed, i.e., one may take the top-level tensor to be one of the isometries.)

We may immediately compute the right-hand side of Eq. (2.5.2). Let the ball
B be centered about ρ = 0, and suppose B contains the top-level tensor, the sites
at the top tensor’s legs, and then the first NB generations of the MERA emanating
from these sites, as indicated in Fig. 2.7. The boundary of B is a circle at constant ρ,
so its circumference according to the MERA is A = TkNBL. As such, we may write

A

4G = TkNBL

4G = TkNBc

6 , (2.5.6)

where in the second equality we used the Brown-Henneaux relation, Eq. (2.4.2).
How one evaluates the left-hand side of Eq. (2.5.2) using the MERA is not as

immediate. Recall that HB is the Hilbert space of bulk states. The MERA, however,
does not directly prescribe the quantum-gravitational state in the bulk; it is not
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Figure 2.7. Disk parametrization of the Poincaré patch of AdS in which a MERA has
been embedded. The top tensor of the MERA shown has T = 6. The shaded region is a
ball B, which is this case contains NB = 1 generation.

by itself a bulk-boundary dictionary. As we mentioned in Sec. 2.2.2, the minimal
assumption that one can make is to posit the existence of a bulk Hilbert space factor
Vbulk associated with each MERA site that is not located at the top tensor. To keep
the assignment general, we assign a factor VT to the top tensor. The dimensionality
of each Vbulk factor should be the same in order to be consistent with the symmetries
of the hyperbolic plane. The assumption of a Hilbert space factor at every MERA
site is minimal in the sense that it introduces no new structure into the MERA. A
true AdS/MERA correspondence should dictate how states in the bulk Hilbert space
are related to boundary states. However, for our analysis, it is enough to simply
postulate the existence of the bulk Hilbert space factors Vbulk and VT, each of which
may be thought of as localized to an AdS-scale patch corresponding to the associated
MERA site.

In addition to the site at the top tensor, the number of regular MERA sites that
the ball B contains is given by

NB = T
NB∑
i=0

ki = T

(
kNB+1 − 1
k − 1

)
. (2.5.7)

As such, the Hilbert space of bulk states restricted to B is HB = (Vbulk)⊗NB ⊗ VT.
Next, suppose that dim Vbulk = χ̃ and that dim VT = χ̃T, where, like χ, χ̃ and χ̃T
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are some fixed, NB-independent numbers. Then dimHB = χ̃T(χ̃NB). Note that one
would expect χ and χ̃ to have a very specific relationship in a true bulk/boundary
correspondence, the nature of which will be explored later in this section. Combining
Eqs. (2.5.6) and (2.5.7), the dimensionality of HB is upper bounded as follows:

ln dimHB ≤
A

4G =⇒ T

(
kNB+1 − 1
k − 1

)
ln χ̃+ ln χ̃T ≤

TkNB c

6 . (2.5.8)

After isolating c in Eq. (2.5.8) and using the result of Eq. (2.4.11), we find that

c = 12ηf(k) lnχ
ln k ≥ 6

(
kNB+1 − 1
kNB(k − 1) ln χ̃+ 1

TkNB
ln χ̃T

)
. (2.5.9)

Next, let us consider this inequality in the limit of large NB. A motivation for this
limit is the fact that the natural scale of validity of an AdS/MERA correspondence
is super-AdS, as was established in Sec. 2.3. Moreover, by virtue of its definition,
there is always an ambiguity of order the AdS scale in the radius of the ball B. That
is, the region in AdS denoted by B is only well-defined in the MERA if B is large
compared to the AdS scale L. Taking the limit of large NB, Eq. (2.5.9) reduces to

ηf(k) ≥ k ln k
2(k − 1)

(
ln χ̃
lnχ

)
. (2.5.10)

By using the bound on ηf(k) given by Eq. (2.4.10), we arrive at a constraint on k,
χ, and χ̃:

k2 ln k
2(k − 1)2

(
ln χ̃
lnχ

)
≤ 1. (2.5.11)

In principle, the above inequality could be satisfied for any k, provided that the
dimension χ̃ of the factors Vbulk can be arbitrarily chosen with respect to the bond di-
mension χ. However, the essence of holography, that the bulk and boundary are dual
descriptions of the same degrees of freedom and therefore have isomorphic Hilbert
spaces [14], implies a relation between χ and χ̃. Namely, for a MERA with a total
of N levels of sites in the bulk strictly between the UV-most level and the top-level
tensor, the number of bulk sites Nbulk that are not located at the top tensor is given
by Eq. (2.5.7) with NB = N , and the number of sites in the boundary description
is Nboundary ≡ TkN+1. The bulk Hilbert space thus has dimension χ̃Nbulkχ̃T and the
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boundary Hilbert space has dimension χNboundary . Equating2 the dimension of the
bulk and boundary Hilbert spaces then yields

ln χ̃
lnχ = 1

Nbulk

(
TkN+1 − ln χ̃T

lnχ

)
N large→ k − 1, (2.5.12)

where we took the limit of N large, consistent with Eq. (2.5.10) and in keeping with
the expectation that the UV cutoff be parametrically close to the boundary at ρ = 1.
Putting together Eqs. (2.5.11) and (2.5.12), we obtain a constraint on k alone:

k2 ln k
2(k − 1) ≤ 1. (2.5.13)

This constraint cannot be satisfied for any allowed value of the rescaling factor k,
which must be an integer greater than or equal to 2. We thus learn that a conventional
MERA cannot yield a consistent AdS/MERA correspondence. The MERA cannot
simultaneously reproduce AdS geodesics, respect the Ryu–Takayanagi relation, and
(using the only construction for the bulk Hilbert space available to the MERA by
itself) satisfy the Bousso bound. That is, there exists no choice of MERA parameters
that can faithfully reproduce geometry, holographic properties, and bulk physics.

If we relax this bound and, instead of Eq. (2.4.10), only observe the weaker,
natural bounds η ≤ 1 and f(k) ≤ k − 1 as discussed at the end of Sec. 2.4.3, the
constraint (2.5.13) is correspondingly modified:

k ln k
2(k − 1) ≤ 1. (2.5.14)

In contrast to Eq. (2.5.13), this latter bound can be satisfied, but only for k = 2, 3,
or 4. As such, other AdS/tensor network correspondences, in which the ancillae are
perhaps entangled and therefore do not describe a conventional MERA, are not ruled
out. Note that we never needed to compute bulk entanglement entropy explicitly —
and therefore did not need to treat separately the possibility of entanglement among
ancillae — because we cast the Bousso bound as a constraint on the size of the bulk
Hilbert space itself. The appearance of η in Eq. (2.5.10) corresponds to entanglement

2We recognize that there are other proposals [27, 54] that do not require an exact equivalence
between the bulk and boundary Hilbert spaces, but, even in these cases, there is the requirement
of an exact equivalence between the logical qubits on the boundary with the Hilbert space of the
bulk.
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in the boundary theory as computed by the tensor network; Eqs. (2.5.10) and (2.5.12)
still apply.

2.6 Conclusion

The notion of emergence of spacetime based on a correspondence between AdS and
a tensor network akin to AdS/CFT is a tantalizing one. A necessary step in such a
program is the evaluation and comparison of calculable quantities on both sides of the
duality. In this work, we have subjected the proposed AdS/MERA correspondence
to such scrutiny. To summarize, let us restate our three main findings:

1. In matching the discrete graph geometry of the MERA to the continuous ge-
ometry of a spatial slice of AdS, we demonstrated that the MERA describes
geometry only on scales larger than the AdS radius. Concretely, as shown in
Sec. 2.3, the proper length assigned to the spacing between adjacent sites in
the MERA lattice must be the AdS scale.

2. By requiring that the entropy of a set of boundary sites in the MERA —
whose computation is a discrete realization of the Ryu–Takayanagi formula —
be equal to the CFT ground state entropy of the same boundary region in the
thermodynamic limit, we obtained a constraint on the parameters that describe
a MERA in terms of the CFT central charge [Eqs. (2.4.12) and (2.4.13)], which
implies that the bond dimension χ must be exponentially large in the ratio of
the AdS scale to the Planck scale.

3. In the natural construction of a bulk Hilbert space (Hbulk) using the MERA, we
used the Bousso bound to constrain the dimension of Hbulk. When combined
with our previous results, we found that any strict AdS/MERA correspondence
cannot satisfy the resulting constraint, Eq. (2.5.13). Upon relaxing the defini-
tion of the MERA or allowing for additional structure, however, we obtained a
looser constraint, Eq. (2.5.14), which may not rule out some other AdS/tensor
network correspondences.

In particular, more general correspondences between AdS and MERA-like tensor
networks, in which we allow the ancillae to be entangled when reproducing the CFT
ground state [and for which Eq. (2.5.14) applies in place of Eq. (2.5.13)] are not ruled
out by our bounds, provided that the rescaling factor k = 2, 3, or 4. Further, it is
interesting to note that our bounds extend to states other than the vacuum that are
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also described by a MERA. One such example, namely, states at finite temperature
dual to black holes in AdS, is discussed in App. 2.B below.

While the consistency conditions that we found are specific to the MERA ten-
sor network, many of the ideas and techniques that we used apply equally well to
other tensor networks. In the EHM, for instance, the type of bulk Hilbert space
dimensionality arguments that we made based on the covariant entropy bound may
be directly transferred to the EHM. The same stringent final constraints that we
derived do not apply to the EHM, however, since it is unclear to what extent the
EHM reproduces the Ryu–Takayanagi formula (which renders the results of Sec. 5.2
inapplicable). Our bulk Hilbert space arguments similarly apply to the holographic
error-correcting code proposal in Ref. [27], which furthermore purports to reproduce
a version of the Ryu–Takayanagi formula. It is presently unknown, however, whether
the boundary state of a holographic code can represent the ground state of a CFT,
so an identification of entropies similar to the identification SMERA = SCFT, upon
which our boundary entropy constraints so crucially depend, cannot yet be made.

In closing, we have found several consistency conditions that any AdS/MERA
correspondence must satisfy. The totality of these constraints rules out the most
straightforward construal of an AdS/MERA correspondence. Other interesting holo-
graphic correspondences that are described by tensor networks more general than the
MERA and that respect all of our bounds may indeed be possible. Our consistency
conditions are nice validity checks for these correspondences when applicable and in
other cases they may inspire similar consistency conditions. The program of identi-
fying the emergence of spacetime from the building blocks of quantum information
is an ambitious one; stringent consistency conditions, such as those presented in this
paper, are important for elucidating the subtleties in this quest and in providing
guidance along the way.
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2.A Entropy Bound for General MERAs

Following the method presented in Ref. [37], let us compute an upper bound for the
entanglement entropy of a region B consisting of `0 sites in a MERA with rescaling
factor k. We will use the notation of Ref. [37] throughout.

First, recall the result from Ref. [37] that the entanglement entropy of a region
consisting of `0 sites is bounded by

SMERA(`0;B) ≤ (`m′ +N tr
m′) lnχ. (2.A.1)

The quantity `m′ is the width of the causal cone at depth m′ and N tr
m′ = ∑m′−1

m=0 n
tr
m

is the total number of sites that are traced out along the boundary of the causal
cone. In other words, N tr

m′ is the number of bonds that are cut by the causal cone
up to a depth m′ (cf. Fig. 2.4). The quantity lnχ is the maximum entanglement
entropy that each site that is traced out could contribute to SMERA(`0;B). Note that
Eq. (2.A.1) holds for all m′ ≥ 0.

The width of the causal cone for a given m′ depends sensitively on the struc-
ture of the MERA. In particular, the number of sites that are traced out at each
renormalization step depends on the choice of disentanglers, as well as how they are
connected to the isometries. For instance, in a MERA with a rescaling factor k, any
given disentangler could have anywhere from 2 up to k incoming and outgoing legs.
(It should be reasonable to require that any disentangler can have no more than k

incoming and k outgoing legs so that it straddles no more than two isometries.) It
is thus clear that the number of bonds that one cuts when drawing a causal cone,
and hence the entanglement entropy of the region subtended by that causal cone,
depends on the choice of disentanglers and connectivity.

Nevertheless, we can compute an upper bound for SMERA(`0;B) by considering
a worst-case scenario for the number of bonds cut by the causal cone. We begin
by asking: What is the largest number of bonds that a causal cone could cut in
one renormalization step at a depth m′? The layout of disentanglers and isometries
that produces this situation is shown at one side of a causal cone in Fig. 2.8. If the
causal cone at the bottom of the renormalization step incorporates a single bond
that goes into a disentangler accepting k bonds, then the causal cone must cut the
other k − 1 bonds entering the disentangler. Then if this disentangler is arranged
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so that its leftmost outgoing bond is the first bond to enter an isometry from the
right, the causal cone must cut the other k − 1 bonds entering the isometry. If this
arrangement is mirrored on the other side of the causal cone, we see that 4(k − 1)
bonds are cut by the causal cone in this renormalization step, i.e., ntr

m′ = 4(k − 1).

k − 1k − 1

Figure 2.8. Left side of a causal cone that cuts the maximum possible number of bonds
over the course of one renormalization step. The rectangles are disentanglers that accept
k bonds as input and the triangles are isometries that coarse-grain k bonds into one. The
causal cone is the shaded region. If this situation is mirrored on the right side of the causal
cone, then 4(k − 1) bonds are cut in this renormalization step.

Recall that for any finite `0, after a fixed number of renormalization steps, the
width of the causal cone remains constant for any further coarse-grainings. The depth
at which this occurs is called the crossover scale and is denoted by m̄. Therefore,
the causal cone will cut the largest possible number of bonds when the arrangement
described above and depicted in Fig. 2.8 occurs at every step up until the crossover
scale. Then, by Eq. (2.A.1), the entropy bound is given by

SMERA(`0;B) ≤ (`m̄ + 4(k − 1)m̄) lnχ, (2.A.2)

where `m̄ is the width of the causal cone at the crossover scale.
For any given causal cone in a MERA with scale factor k ≥ 2, the maximum

number of additional sites the causal cone can pick up at some level m′ is 4(k − 1).
Therefore, for a causal cone that contains `m′ sites at depth m′, the number of sites
in the causal cone after one renormalization step `m′+1 ≤ d(`m′ + 4(k − 1))/ke ≤
`m′/k + 5. Applying the relation recursively, we find that the number of sites `m′ at
any layer m′ < m̄ is bounded,

`m′ ≤
`0

km′
+ 5

m′∑
m=1

1
km
≤ `0

km′
+ 5 . (2.A.3)
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Setting m′ = m̄, it trivially follows that the crossover scale obeys m̄ ≤ logk `0.
Furthermore, we notice that this is the scale at which the entanglement entropy is
minimized if we trace over the remaining sites. In other words, the number of bonds
cut by going deeper into the renormalization direction is no less than the bonds cut
horizontally, so 4(k − 1) ≥ `m̄

3. Applying the bounds for m̄ and `m̄ on Eq. (2.A.2),
we arrive at an upper bound on SMERA(`0;B) for a k-to-one MERA,

SMERA(`0;B) ≤ 4(k − 1)(1 + logk `0) lnχ. (2.A.4)

When `0 is parametrically large, we neglect the O(1) contribution to the bound on
SMERA(`0;B), which yields Eq. (2.4.5).

2.B BTZ Black Holes and Thermal States in AdS/MERA

Thus far, we have found constraints on the structure of a MERA that can describe
CFT states dual to the AdS3 vacuum. One might ask whether these results extend
to other constructions that exist in three-dimensional gravity. Although pure gravity
in AdS3 has no local or propagating degrees of freedom, there exist interesting non-
perturbative objects, namely, BTZ black holes [50]. In this appendix, we extend our
constraints on boundary entanglement entropy to these objects.

The non-rotating, uncharged BTZ black hole solution is given in Schwarzschild
coordinates by

ds2 = −(r2 − r2
+)

L2 dt2 + L2

(r2 − r2
+)dr2 + r2dφ2 , (2.B.1)

with a horizon at r = r+. Noting that Euclidean time is compactified by identifying
τ ∼ τ+2πL2/r+, the horizon temperature of the black hole is given by T = r+/2πL2.
Additionally, the Bekenstein–Hawking entropy of the black hole is

SBH = Area
4G = πr+

2G . (2.B.2)

Let us now consider applying a MERA with rescaling factor k and bond dimen-
sion χ to a CFT at a finite temperature, where instead of minimizing the energy of

3Alternatively, we can see this from a heuristic argument by noting that the crossover scale is the scale
at which the causal cone has a constant width for further coarse-grainings, i.e., (`m̄+4(k−1))/k ≈
`m̄. Therefore, `m̄ . 4 ≤ 4(k − 1).
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the boundary state, one minimizes the free energy. In the CFT, turning on a temper-
ature introduces a scale, going as the inverse temperature, which screens long-range
correlations. Thus, the state will have classical correlations in addition to entan-
glement and the effect of a finite temperature on the entanglement entropy is the
appearance of an extensive contribution. As one runs the MERA and coarse-grains,
the thermal correlations that cannot be removed become more relevant. The MERA,
which is unable to remove the extensive contribution, truncates at a level with mul-
tiple sites. The schematic entanglement renormalization process is illustrated in
Fig. 2.9. The state at the top level effectively factorizes, where each factor appears
maximally mixed [25, 36]. A tractable realization of this tensor network structure
recently appeared in Ref. [55], which found a MERA representation of a thermal
state.

ρ ρ ρ ρ

1

Z
exp









−

ĤCFT

T









Figure 2.9. The MERA, when applied to a thermal CFT state Z−1 exp(−ĤCFT/T ), where
Z = tr(exp(−ĤCFT/T )), truncates after a finite number of layers. The boundary state at
the top of the truncated MERA effectively factorizes into a product of maximally mixed
states ρ = I/χ.

Keeping in mind that the holographic dual of a finite-temperature state in the
CFT is a black hole in AdS, where the temperature of the CFT corresponds to
the Hawking temperature of the black hole, we note that the truncated MERA
is suggestive of a black hole horizon [25]. If the MERA is to be interpreted as a
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discretization of the geometry, then the geometry has ended at some scale. Also,
as we approach the horizon, the amount of Hawking radiation that we see increases
and the temperature measured by an observer at the horizon diverges. The density
matrix of some system in the infinite-temperature limit is given by the product of
a maximally mixed state at each site, just like the state at the top of the MERA.
It is important to note that, as was pointed out in Ref. [55], in order to reproduce
the correct thermal spectrum of eigenvalues, a small amount of entanglement must
be present between the sites at the horizon. If the bond dimension were taken to
be infinite, then the sites at the horizon truly would factorize. But for a finite bond
dimension, one should really think of the horizon as a high-temperature state, with
sites effectively factorized.

For small regions on the boundary, the length of the subtending bulk geodesic
is subextensive and so the Ryu–Takayanagi formula maintains that the boundary
region’s entanglement entropy is subextensive as well. However, if we consider a
large enough region on the boundary, the geodesic will begin to probe the horizon
of the black hole. The geodesic will run along the black hole horizon and pick up an
extensive contribution to the entropy. We consider a boundary theory living on a
lattice consisting of nb sites, with total system coordinate length xsys = nba. In the
limit as r approaches the boundary in the metric (2.B.1), we see that Txsys = r+/L,
as was pointed out in Refs. [21, 44]. We further note that this implies that the system
coordinate size is of order AdS radius, xsys = 2πL.

Let us now view the MERA of Fig. 2.9 as a discretization of a BTZ spacetime
and repeat the analysis of Sec. 2.3. In this discretization, the layers of the MERA lie
along circles of fixed radius r in the coordinates of Eq. (2.B.1). Again, we ask what
proper length L1 separates sites in any given layer of the MERA.

First, note that a path at fixed r0 that subtends an angle φ0 has proper length
r0φ0. At the boundary of the MERA, we consider a region defined by 0 ≤ φ ≤
φ0 = 2πx0/xsys, where x0 is the coordinate length of the interval, consisting of `0

lattice sites. The boundary of the MERA is at a fixed radius r = rb. Naturally, the
boundary radius rb can be interpreted as a UV cutoff and is related to the lattice
spacing a by rb = L2/a [21]. By equating the proper distance of the region in the
MERA, `0L1, with that at the boundary of the BTZ spacetime, rbφ0, we find the
proper length between horizontal bonds to be L1 = L.

With the foresight that the top of the MERA is suggestive of a black hole horizon
with proper length 2πr+, the number of sites at the final layer is therefore nh =
2πr+/L. This further tells us that the MERA truncates after a finite number of
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layers m, given by
m = logk

(
nb

nh

)
= logk

1
2πTa . (2.B.3)

This coincides with the conclusion in Refs. [55, 56] that the MERA representation of
a thermal state is obtained after O(logk(1/T )) iterations of coarse-graining.

Now consider a region B on the boundary consisting of `0 sites and for which
the corresponding geodesic contains a segment running along the BTZ horizon. The
subextensive contribution to the entropy in the MERA is exactly as before, in which
we pick up at most lnχ from each bond we cut with the causal cone of the region B.
Furthermore, we will now pick up an extensive contribution from the horizon, where
the number of horizon sites within the causal cone is `h and each such site in the
product state on the horizon contributes maximally to the entropy by an amount
lnχ. Combining the contributions, we find

SMERA(B) = 4ηBfB(k) logk
(
`0

`h

)
lnχ+ `h lnχ . (2.B.4)

Recall that the entanglement entropy of a single interval B of coordinate length
x0 in a CFT at finite temperature [42] is given, up to a non-universal constant, by

SCFT(B) = c

3 ln
( 1
πaT

sinh πx0T
)
, (2.B.5)

where x0 is much smaller than the total system size xsys. The standard field-theoretic
derivation of the above entropy is done by computing the Euclidean path integral on
an n-sheeted Riemann surface and analytically continuing to find the von Neumann
entropy. The same result can be derived by computing geodesic lengths on spatial
slices of BTZ spacetimes and making use of the Ryu–Takayanagi formula.

When T → 0 in Eq. (2.B.5), we recover the usual result (2.4.1). In the T →∞
limit, the von Neumann entropy gives the usual thermal entropy as entanglement
vanishes. Taking Tx0 � 1, the leading and subleading contributions to the entan-
glement entropy are

SCFT = c

3πx0T + c

3 ln 1
2πaT , (2.B.6)

where the first term is the thermal entropy for the region B.
Now let us consider a finite-temperature CFT that is dual to a BTZ black hole

with horizon temperature T = r+/2πL2. In terms of geometric MERA parameters,
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we find that Eq. (2.B.6) becomes

SCFT = c

6 `h + c

3m ln k . (2.B.7)

Here we used the fact that `h = x0r+/L
2 as well as Eq. (2.B.3), where we note that

m can also be written as logk(`b/`h). The result (2.B.7) coincides precisely with the
extensive and subextensive contributions calculated using the MERA in Eq. (2.B.4)
provided that c/ lnχ ∼ O(1). Therefore, we find that the truncated MERA correctly
captures the entanglement structure of thermal CFT states and their dual BTZ
spacetimes. These conclusions are in agreement with those in [35, 56].

As a check of the claim that c and lnχ should be of the same order, we can
compare the horizon entropy given by the contribution from the sites at the final
layer with the Bekenstein–Hawking entropy (2.B.2) of a BTZ black hole. There are
nh sites comprising the horizon, each with Hilbert space dimension χ. The system
is in the infinite-temperature limit — and hence described by a maximally mixed
density matrix, with entropy contribution lnχ from each site — so

Shorizon = nh lnχ . (2.B.8)

Making use of the Brown–Henneaux relation and requiring the entropy (2.B.8) to
coincide with the Bekenstein-Hawking entropy, we again find that c/ lnχ ∼ O(1).
More specifically, taking the counting to be precise, we find that

c/ lnχ = 6 , (2.B.9)

which is qualitatively in agreement with the previous conclusion (2.4.12) that the
Hilbert space dimension must be exponentially large in c.

With this relation, the extensive terms in Eqs. (2.B.4) and (2.B.7) agree precisely.
Further identifying the subextensive terms, we find ηBfB(k) = (ln k)/2. If we then
impose the constraint (2.4.10), we find that

k ln k
2(k − 1) ≤ 1 . (2.B.10)

This last inequality exactly reproduces Eq. (2.5.14) and thus constrains k to be 2, 3,
or 4. Interestingly, we have found the weaker of the two bounds derived in Sec. 3.3,
without needing to consider the Bousso bound.
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As desired, the truncated MERA computation of entanglement entropy agrees
with the expected entanglement entropy given by the application of the Ryu–Takayanagi
formula to the length of the minimal surface in a BTZ spacetime. The fact that the
results of matching boundary entanglement entropy given in Sec. 5.2 further hold in
BTZ spacetimes might not be too surprising given that such spacetimes are quotients
of pure AdS3.
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Splitting Spacetime and Cloning Qubits:
Linking No-Go Theorems across the
ER=EPR Duality
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3.1 Introduction

The connection between entanglement and geometry is an unexpected stepping-stone
on the path to an understanding of quantum gravity. Historically originating from
black hole thermodynamics [57, 58] and later in the context of the holographic princi-
ple [59, 60], the AdS/CFT correspondence [12–14], entropy bounds [61], and the Ryu–
Takayanagi formula [15], the relation between quantum entanglement and spacetime
geometry is increasingly thought to be an important feature of a consistent theory
of quantum gravity. Underscoring this view is recent work on deriving the Ein-
stein equations holographically from entanglement constraints [62] and perhaps even
spacetime itself from qubits [63, 64]. However, significant puzzles remain. The classic
black hole information paradox [65, 66] has given way to new questions about black
hole interiors and their entanglement with Hawking radiation [67, 68]. One of the
most drastic, albeit promising, proposals to arise from these debates is the so-called
ER=EPR duality [16].

The ER=EPR correspondence [16] is a compelling [69, 70] proposal for an exact
duality between Einstein-Podolsky-Rosen (EPR) pairs [71], that is, qubits entangled
in a Bell state [72], and nontraversable wormholes, that is, Einstein-Rosen (ER)
bridges [73–75]. More specifically, the ER=EPR proposal generalizes the notion of
entangled black hole pairs at opposite ends of an ER bridge, by asserting that every
pair of entangled qubits is connected by a Planck-scale quantum wormhole. The
proposal, if true, would have profound implications for AdS/CFT and suggest a
solution to the firewall paradox of Ref. [67], not to mention the fundamental shift it
would induce in our understanding of both quantum mechanics and general relativity.

The ER=EPR correspondence might allow the exploration of gravitational ana-
logues of fundamental properties of quantum systems (and vice versa). In particular,
we can check whether there is a precise correspondence between no-go theorems in
quantum mechanics and similar no-go theorems in gravity. Arguably the most cel-
ebrated no-go theorem in quantum mechanics is the no-cloning theorem [76], which
prohibits the duplication of quantum states.

In this paper, we investigate the manifestation of the no-cloning theorem on the
gravitational side of the ER=EPR duality. In particular, we show that violation of
the no-cloning theorem is dual under ER=EPR to topology-changing processes in
general relativity, which, via classical topology-conservation theorems [77–83], lead
to causal anomalies through violation of the Hausdorff condition (which leads to
the breakdown of strong causality), creation of closed timelike curves (CTCs), or
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violation of the null energy condition (NEC) (which allows for wormhole traversabil-
ity and hence CTCs). While the validity of ER=EPR requires both unitarity and
wormhole nontraversability, it is interesting that these two requirements seem to be
fundamentally related: the no-cloning theorem and the topology-conservation theo-
rem, both of which are related to causality, are in fact dual no-go theorems under
ER=EPR.

3.2 Quantum Cloning

Here, we reconstruct the standard argument for why the no-cloning theorem prohibits
superluminal signaling [84]. Assume that cloning of states is allowed, that is, that
there exists an operation that takes an arbitrary state |Ψ〉 in a product state with
some |0〉 state and replaces the |0〉 state with |Ψ〉:

|Ψ〉A|0〉B → |Ψ〉A|Ψ〉B. (3.2.1)

Suppose that there exists an EPR spin pair, the state (|00〉+ |11〉)/
√

2. We give one
spin to each of a pair of individuals, Alice and Bob, who may then move to arbitrary
spacelike separation. Alice now makes a decision as to the classical bit she wishes to
communicate: to send a “1”, she measures in the σz basis, while to send a “0”, she
does nothing.

Bob now proceeds to clone his qubit as in Eq. (3.2.1). Note that each of his cloned
qubits remains maximally entangled with Alice’s qubit, in violation of monogamy of
entanglement, while remaining unentangled with each other. By measuring enough of
his own qubits in the σz basis, Bob can determine, to any desired degree of confidence,
whether Alice performed a measurement or not: his measurements will all yield the
same result if Alice performed a measurement, but will be equally and randomly
split between the two outcomes if she did not. As this experiment does not depend
on their separation, Bob’s utilization of cloning and their shared entanglement has
allowed Alice to send one classical bit to Bob acausally.

3.3 Black Hole Cloning

In order to geometrically interpret the no-cloning theorem using the ER=EPR pro-
posal, we need a system with both a high level of entanglement (like the EPR pair
just considered) and a robust geometric description. One such system is the eternal
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AdS-Schwarzchild black hole, which is described in AdS/CFT by two noninteracting
large-N CFTs in a thermally entangled state on the boundary sphere [85, 86]:

|Ψ〉 = 1√
Z

∑
n

e−βEn/2|n〉L ⊗ |n〉R, (3.3.1)

where |n〉L(R) is the nth eigenstate on the left (respectively, right) CFT with energy
En, β is the inverse temperature, and Z is the partition function. In this state, the
reduced density matrices ρL,R of either side are identically thermal. If both exte-
rior regions of the geometry are considered [85–87], this state describes a spacetime
consisting of two separate AdS-Schwarzchild regions that are spatially disconnected
outside the horizon but linked by an ER bridge between a maximally entangled1 pair
of black holes with temperature β−1. This is a concrete realization of ER=EPR: to
reiterate, the two black holes are both maximally entangled (EPR) and connected
by a nontraversable wormhole (ER). It will be convenient to consider the slight gen-
eralization of this setup in which the two black holes share the same asymptotic
space. As discussed in Ref. [16], such black hole pairs can be naturally obtained as
an instanton solution in a geometry with a constant magnetic field.

We now consider repeating the experiment in the previous section using entan-
gled black holes instead of qubits, as depicted in Fig. 3.1. Alice and Bob, who live
in an asymptotically-AdS spacetime, are each given access to a Schwarzschild black
hole, with the two black holes, labeled A and B respectively, maximally entangled
and therefore connected by a nontraversable wormhole. If Bob now clones all the
degrees of freedom on his stretched horizon [88], he is left with two black holes B
and B′, each of which is connected by an ER bridge to Alice’s black hole. That is,
cloning is dual to change of spacetime topology under ER=EPR.

3.4 Changing Spacetime Topology

We now turn to the question of whether the double-wormhole geometry of Fig. 3.1
suffers from any inconsistencies in general relativity. Throughout, we assume that the
Einstein equations hold and that the spacetime can be well described by a semiclas-
sical geometry (which corresponds to a choice of how Bob implements the cloning).

The simplest interpretation of the geometry M in Fig. 3.2 is that, since horizon
pairs AB and AB′ are each in the thermofield double state (3.3.1), the geometries

1Strictly speaking, the state is only truly maximally entangled when ρL = ρR = 1, i.e., when
β → 0, but we adopt the terminological abuse of Ref. [16].
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Figure 3.1. Illustration of the black hole cloning thought experiment in the context of
the ER=EPR conjecture. If Bob has access to a device that can clone quantum states, he
can transform black hole B, which is entangled with A, into two black holes B and B′,
each connected to A via an ER bridge.

Figure 3.2. Penrose diagram for the topology-change process depicted in Fig. 3.1, with
spatial slices Σ1 (blue) and Σ2 (orange) shown as embedding diagrams. The spacetime
region M (green) is indicated; the compact region K with nontrivial topology is bounded
by horizons A, B, and B′. All of the spatial infinities i0 are identified, as the black holes
share the same asymptotically-AdS spacetime. The diagonal stripes at the bottom of the
Penrose diagram indicate that the half of the spacetime containing the past horizons is not
shown.

of both wormholes are the same. In this case, the geometry after Bob performs
the cloning simply consists of two separate sheets, each a copy of the original ER
bridge, glued together along horizon A. Note that in this case M contains bifurcate
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geodesics: any timelike geodesic intersecting horizon A after the cloning occurs will
split into two timelike geodesics, one going along the sheet containing B and the other
along the sheet containing B′. These timelike bifurcate curves indicate a breakdown
of the Hausdorff condition, the requirement that for any two points x 6= y, there
exist disjoint open sets X 3 x and Y 3 y.2 Since the bifurcate timelike curve in
question has bounded (being a geodesic, zero) acceleration and moreover the non-
Hausdorff boundary of M (horizon A) is codimension 1, it follows by a theorem
of H̊aj́ıček [81] that M is not strongly causal. Strong causality is the requirement
that for all points p ∈ M there is an open neighborhood P 3 p such that any
timelike curve passing through P does so only once; this is a weaker condition than
global hyperbolicity, so the setup depicted in Fig. 3.2 leads, via H̊aj́ıček’s theorem, to
breakdown of Cauchy evolution [90]. Intuitively, this happens because once a timelike
curve intersects horizon A it becomes impossible to predict its future. If we wish to
avoid immediately abandoning strong causality, we must relax the assumption that
the geometry after cloning is merely a two-sheeted copy of the original ER bridge
and instead turn to the question of whether the topology change induced by cloning
is alone sufficient to guarantee a pathology for a spacetime that remains Hausdorff.

The topology change in question occurs in a localized region of spacetime. Let
us define a partial Cauchy surface [79] to be a spacelike slice through the entire
spacetime such that any causal (timelike or null) curve intersects the surface at most
once. A 3-surface Σ is called externally Euclidean if there exists compact Γ ⊂ Σ such
that Σ− Γ is diffeomorphic to Euclidean space minus a 3-ball, i.e., Σ− Γ ' S2 ⊗ R.
Given these definitions, we can draw two disjoint externally Euclidean partial Cauchy
surfaces Σ1 and Σ2, where Σ1 passes through horizons A and B before the cloning
and Σ2 passes through horizons A, B, and B′ after the cloning, as shown in Fig. 3.2.
Importantly, Σ1 and Σ2 are not diffeomorphic, Σ1 6' Σ2. Taking A, B, and B′ to be
centered on a line on Σ2 and quotienting by the rotation group SO(2) around this
line, Σ1/SO(2) and Σ2/SO(2) are 2-manifolds with genera 1 and 2, respectively, and
are therefore not topologically equivalent. The four-dimensional spacetime region
whose boundary is Σ1 ∪ Σ2, called M in Fig. 3.2, is externally Lorentzian: there
exists a compact manifold K such that M −K ' S2⊗R⊗ [0, 1], a timelike foliation
of spacelike slices S2 ⊗ R. Then Geroch’s topology-conservation theorem [77–79]
implies that, since Σ1 6' Σ2, M must contain a CTC.

While the existence of a CTC somewhere in spacetime is already problematic,
2Bifurcating geodesics imply failure of the Hausdorff condition, but the converse is not necessarily

true; see, for example, the discussion of Taub-NUT space in Refs. [81, 89].



49

we can state a stronger result. We note that Σ1 is a Cauchy surface for M −K, that
is, for all p ∈ M − K, every future- and past-inextendible causal curve through p

intersects Σ1. Let us assume the generic condition, which asserts that every causal
geodesic with tangent vector kµ passes through some point for which

kαkβk[µRν]αβ[ρkσ] 6= 0. (3.4.1)

This means that every timelike or null geodesic experiences a tidal force at some
point.3 Then Tipler’s topology-conservation theorem [79, 80] implies that since Σ1 6'
Σ2, the NEC4 must fail. That is, the topology change dual to cloning under ER=EPR
implies that there must exist fields in the theory for which one can arrange an energy-
momentum tensor Tµν such that

Tµνk
µkν < 0 (3.4.2)

along some null vector kµ.
Although violations of the NEC (see also Ref. [91]) have been shown to occur at

a quantum level [92], it has not been shown that such violation is sufficient to allow
unusual semiclassical gravitational behavior [16, 93]. However, the NEC violation
in the present thought experiment implies macroscopic topology change that results
from Bob’s cloning procedure with, for example, astrophysical-scale entangled black
holes. We conclude that violation of the no-cloning theorem is dual under ER=EPR
to topology change and problems with causality, leading to CTCs (by Geroch’s the-
orem) or strong violation of the NEC (by Tipler’s theorem).

It is worth noting that the topology theorems do not rule out sensible processes
like black hole pair production in the context of ER=EPR. If we consider entangle-
ment as a conserved quantity [94], then creation of a pair of entangled black holes
does not change the topology, as the ER bridge between them is formed in ER=EPR
from the Planckian wormholes connecting the entangled vacuum. Moreover, the pro-
cess of black hole pair creation is not well described semiclassically, so our results do
not apply in that case; in contrast, the cloning process examined in this work can
be treated in the setting of semiclassical geometry. Unlike pair production, cloning

3If the spacetime under consideration has some special symmetry allowing Eq. (3.4.1) to fail
for some geodesic, we can enforce the generic condition by simply adding gravitational waves (that
is, nonzero Weyl tensor) sufficiently weak to avoid nonnegligible back-reaction on the rest of our
argument.

4While Ref. [79] states the theorem in terms of the weak energy condition, this can be strength-
ened to the NEC as stated in Ref. [80].
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does violate the axioms of the topology-conservation theorems precisely because it
involves non-unitarily creating entanglement (and therefore wormholes) that did not
previously exist.

3.5 Wormholes and Causality

We have shown that violation of the no-cloning theorem is dual under ER=EPR
either to immediate breakdown of Cauchy evolution or to severe violation of the
NEC [Eq. (3.4.2)]. The latter implies the condition that allows for stabilization of
wormholes; specifically, one must have violation of the averaged NEC [93, 95]. That
is, a traversable ER bridge requires∫ ∞

0
Tµνk

µkνdλ < 0 (3.5.1)

for some null geodesics with affine parameter λ and tangent vector kµ. Ref. [93]
exhibits a construction of a traversable ER bridge that just satisfies Eq. (3.5.1)
within the wormhole while retaining nonnegative total energy.

The connection between wormhole stabilization and the NEC is highly relevant in
the context of the ER=EPR correspondence, as the argument in Ref. [16] regarding
the impossibility of using wormholes (and by duality, entanglement) to transmit
information is critically dependent on the ER bridges pinching off too quickly to allow
for signal traversal [75]; a stabilized wormhole would falsify this line of reasoning.
Said another way, violation of the NEC plus the existence of wormholes leads to
traversable wormholes, which would lead to causality violation. In particular, given
a traversable ER bridge, one can immediately form a causal paradox (i.e., a closed
signal trajectory) by simply moving the wormhole mouths far apart and giving them
a small relative boost [93, 96]. The connection between topology change and causality
violation in the gravitational sector is now explicit and is satisfyingly analogous to the
connection between unitarity/no-cloning and causality on the quantum mechanical
side of the ER=EPR duality.

3.6 Perspectives for Future Work

As we have seen, spacetime topology change leads inexorably to violation of causality,
via either breakdown of the Hausdorff condition or creation of traversable wormholes.
Using ER=EPR to translate this result to quantum mechanics, we find that violation
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of the axioms of the topology-conservation theorems is dual to violation of monogamy
of entanglement (i.e., cloning) and the existence of wormholes is dual to the existence
of entanglement entropy. The logical flow of our reasoning is:

C & ∃ QE =⇒ SLS
l l l

∆T & ∃WH ���NEC=⇒ TWH
⇓(

���NEC & ∃ CTCs
)
||��SC.

(3.6.1)

Here, C denotes “quantum cloning”, “QE” quantum entanglement, “SLS” superlu-
minal signaling, “T” topology, “WH” wormholes, “TWH” traversable wormholes,
and “SC” strong causality. The single-lined arrows in Eq. (3.6.1) indicate duality of
specific statements under ER=EPR, double-lined arrows indicate logical implication,
and strikethroughs indicate violation.

It is striking that on both the general relativistic and quantum mechanical sides
of the duality, violation of the no-go theorem leads to problems for causality. The
unexpected connection between cloning and topology change offers support for the
ER=EPR correspondence, which provides a natural explanation for their relation.

A promising avenue for future research is the investigation of whether other no-
go theorems in quantum mechanics and gravity neatly correspond under ER=EPR.
The no-deleting theorem corresponds to the topology theorem in exactly the same
way as the no-cloning theorem, while the no-communication theorem is equivalent
to the assertion of nontraversability of wormholes. On the gravity side, violation of
Hawking’s area theorem, i.e., the generalized second law of thermodynamics, requires
either breakdown of cosmic censorship or of the null energy condition [97], the latter
allowing wormhole traversal [93]. In ER=EPR, this corresponds to violation of the
no-communication theorem [16] and, in AdS/CFT, would correspond to violation of
unitarity in the dual CFT state of Eq. (3.3.1) [96]. Whether all known gravitational
or quantum mechanical no-go theorems map onto each other in this way is a fasci-
nating open question. More generally, the connections among infrared constraints
on ultraviolet physics, such as unitarity and causality [96, 98–100], will continue to
play an important role in understanding quantum gravity.
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4.1 Introduction

Black holes are the paradigmatic example of a system where both field-theoretic
and gravitational considerations are important. Black hole thermodynamics and
the area theorem [57, 58] already provided a relationship between entanglement and
geometry, while the classic black hole information paradox [65] and its potential
resolution via complementarity [88, 101, 102] pointed at the subtlety of the needed
quantum mechanical description. In the last few years, the firewall paradox [67]
has heightened the tension between these two descriptions, prompting a number of
proposals to modify the standard picture to a greater or lesser extent.

One set of proposals [104–107, 267] modifies quantum mechanics to allow for
state-dependence of the black hole horizon, so that an infalling observer does not
encounter a firewall even though the state of the black hole horizon can be written
as a superposition of basis states that each have high energy excitations [108]. In
order to avoid this problem, the presence or absence of a black hole firewall must
become a nonlinear observable, contrary to standard quantum mechanics. In a recent
paper, Marolf and Polchinski [109] have pointed out that this nonlinearity cannot
be “hidden”; if it is strong enough to remove a firewall from a generic state, it must
lead to violations of the Born Rule visible from outside the horizon.

In this paper, we consider a different idea inspired by the firewall paradox, the
ER=EPR correspondence [16], which asserts the existence of an exact duality be-
tween Einstein-Podolsky-Rosen (EPR) pairs, i.e., entangled qubits, and Einstein-
Rosen (ER) bridges [73–75], i.e., nontraversable wormholes. This duality is supposed
to be contained within quantum gravity, which is in itself meant to be a bona fide
quantum mechanical theory in the standard sense. The ER=EPR proposal is radi-
cal, but it is not obviously excluded by either theory or observation, and indeed has
passed a number of nontrivial checks [69, 70, 110–112]; if true, it has the potential to
relate previously unconnected statements about entanglement and general relativity
in a manner reminiscent of the AdS/CFT correspondence [12–14]. In a previous
paper [113], we pointed out that in ER=EPR the no-cloning theorem is dual to the
general relativistic no-go theorem for topology change [77, 79]; violation on either
side of the duality, given an ER bridge (two-sided black hole), would lead to causality
violation and wormhole traversability.

In light of the result of Ref. [109], one might be worried that ER=EPR is in
danger. It is well-known that entanglement is not an observable, in the sense we
will make precise below; we cannot look at two spins and determine whether they
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are in an arbitrary, unspecified entangled state with one another. Yet ER=EPR
implies that the two spins are connected by a wormhole, so that the geometry of
spacetime differs according to whether or not they are entangled. If this difference in
geometry could be observed, entanglement would become a (necessarily nonlinear)
observable as well and the laws of quantum mechanics would be violated, contrary
to the assumption that the latter are obeyed by quantum gravity.

In this paper, we show that ER=EPR does not have this issue. Unlike the mod-
ifications to quantum mechanics considered by Ref. [109], wormhole geometry can
be hidden. In particular, we show that in general relativity no measurement can
detect whether the interior of a black hole has a wormhole geometry. More precisely,
observers can check for the presence or absence of specific ER bridge configurations,
but there is no projection operator (i.e., observable) onto the entire family of worm-
hole geometries, just as (and, in ER=EPR, for the same reason that) there is no
projection operator onto the family of entangled states.

The remainder of this paper is organized as follows. We first review the basic
quantum mechanical statement that entanglement is not an observable. Next we
introduce the maximally extended AdS-Schwarzschild geometry in general relativity
and, using AdS/CFT, on the CFT side. As a warmup, we first show that no single
observer can detect the presence of a wormhole geometry. We then turn to more
complicated multiple-observer setups and show, as desired, that they are unable to
detect the presence of nontrivial topology in complete generality.

4.2 Entanglement Is Not an Observable

The proof that one cannot project onto a basis of entangled states [114] proceeds
as follows. Assume the existence of a complete basis set of entangled states |ψEi〉,
distinct from the basis set of all states. A projection onto this basis could be written
in the form

P̂E =
∑
i

|ψEi〉〈ψEi|. (4.2.1)

Note, however, that the set of all entangled states has support over the entire Hilbert
space, as the entangled states can be written as linear sums of unentangled states:

|ψEi〉 =
∑
j∈Bi
|ψj〉 (4.2.2)
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for some set Bi. Therefore, the projector onto the set of all entangled states does not
project out any states in the Hilbert space. Said another way, the set of all entangled
states is not a set that is closed under superposition, thus preventing a projection
thereupon. Since no projector exits, entanglement is therefore not an observable.

4.3 Setup

We consider the maximally extended AdS-Schwarzschild geometry [115, 116], which,
following Ref. [16], we will interpret as an Einstein-Rosen bridge connecting two black
holes. The metric for the AdS-Schwarzschild black hole in D spacetime dimensions
is [117, 118]

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
D−2, (4.3.1)

where dΩ2
D−2 is the surface element of the unit (D− 2)-dimensional sphere and f(r)

is defined to be
f(r) = 1− 16πGDM

(D − 2)ΩD−2rD−3 + r2

L2 , (4.3.2)

writing GD for Newton’s constant in D dimensions, ΩD−2 = 2π(D−1)/2/Γ[(D − 1)/2]
for the area of the unit (D − 2)-sphere, and L for the AdS scale. The horizon rH is
located at the point where f(rH) = 0. The tortoise coordinate can be defined as r∗ =∫

dr/f(r), the ingoing and outgoing Eddington-Finkelstein coordinates v = t + r∗

and u = t− r∗, with which we can define the lightcone Kruskal-Szekeres coordinates

(I) U = −e−f ′(rH)u/2 V = ef
′(rH)v/2

(II) U = e−f
′(rH)u/2 V = ef

′(rH)v/2

(III) U = e−f
′(rH)u/2 V = −ef ′(rH)v/2

(IV) U = −e−f ′(rH)u/2 V = −ef ′(rH)v/2.

(4.3.3)

Regions I through IV are depicted in Fig. 4.1 and define the maximally extended AdS-
Schwarzschild black hole geometry. Defining T = (U+V )/2 and X = (V −U)/2, the
horizon is located at T = ±X, that is, at UV = 0, while the singularity is located
at T 2−X2 = 1. The one-sided AdS black hole occupies Region I and half of Region
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Figure 4.1. The maximally extended AdS-Schwarzschild geometry, with Kruskal-Szekeres
coordinates T,X and lightcone coordinates U, V indicated. Of course, the singularity actu-
ally appears as a hyperbola in T,X. This diagram is a conformally-transformed sketch to
indicate the general relationship among the coordinates; see Ref. [119] for more discussion.
Regions I through IV are defined by Eq. (4.3.3).

II, i.e., V > 0, X > 0. In these coordinates, the metric becomes

ds2 = −4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 dUdV + r2dΩ2
D−2

= 4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 (−dT 2 + dX2) + r2dΩ2
D−2,

(4.3.4)

where r is now defined implicitly in terms of U and V via

UV = T 2 −X2 = ±ef ′(rH)r∗ , (4.3.5)

where the sign is − for Regions I and III and + for Regions II and IV.
We now turn to the CFT interpretation of the geometry. In the Maldacena

and Susskind proposal of ER=EPR [16], it is pointed out that, in AdS/CFT, the
state |ψ(t)〉 in the CFT corresponds at different times to different causal diamonds
in the eternal, maximally extended AdS-Schwarzschild geometry. Different spatial
slices through a given causal diamond that intersect the boundaries at fixed points
are related to each other by the Wheeler-deWitt equation in the bulk. If one is
outside a black hole in AdS, without knowing a priori which time slice one is on,
then the different |ψ(t)〉 are simply a one-parameter family of states |ψα〉, where α
has replaced t and is now just the label for the state of the CFT at time t = 0; all of
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Figure 4.2. (left) The state |ψ0〉, corresponding to a wormhole geometry where the ER
bridge intersects the boundary at T = 0. (right) The family of states |ψα〉, α > 0, for
which the ER bridge intersects the boundary at T > 0.

the |ψα〉 describe pairs of black holes containing some sort of ER bridge. The various
geometries are shown in Fig. 4.2.

Famously, the maximally extended AdS black hole can be described on the CFT
side of the AdS/CFT correspondence by the thermofield double state of two nonin-
teracting large-N CFTs on the boundary sphere. We take the interpretation [16] of
the state as two entangled black holes that both evolve forward in time, that is,

|ψ(t)〉 = 1√
Z

∑
n

e−βEn/2e−2iEnt|n̄〉L ⊗ |n〉R, (4.3.6)

where |n〉L and |n〉R are the nth eigenstates of the left and right CFTs, respectively,
with eigenvalue En, a bar denotes the CPT conjugate, and β is the inverse tem-
perature. We note that the CFT time t in Eq. (5.4.1) is the r → ∞ limit of the
Schwarzschild time t that appears in Eq. (4.3.1). By considering the surface of con-
stant Kruskal time T that intersects the r = ∞ boundary at Schwarzschild time t,
we can instead parameterize the CFT state corresponding to the eternal AdS black
hole as |ψ(T )〉. Equivalently, we can write as |ψT 〉 the family of ER bridges indexed
by T , which correspond at the fixed Kruskal time T = 0 to the CFT state |ψ(T )〉.
The black hole described by |ψT0〉 is given by the metric (4.3.4) with T replaced with
T − T0 in Eq. (4.3.5). The analogous states with two one-sided black holes on the
boundary CFTs will be called |φT 〉, where

|φt〉 = 1√
Z

(∑
m

e−βEm/2e−iEmt|m̄〉L
)
⊗
(∑

n

e−βEn/2e−iEnt|n〉R
)
. (4.3.7)
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4.4 The Single-Observer Case

To gain intuition for the setup, in this section we restrict ourselves to measure-
ments that a single (test particle) observer can perform in an otherwise empty (AdS-
)Schwarzschild spacetime. Such observers are forbidden from receiving information
from or coordinating with other observers; that is, we first investigate the aspects of
the geometry that can be probed by a single causal geodesic. We will refer to this
class of observers as isolated observers. The simplest way for an isolated observer
to verify the existence of an ER bridge would be to pass through it, i.e., to traverse
the wormhole. It turns out, however, that this process is disallowed both by classical
general relativity and, via ER=EPR, by quantum mechanics.

In general relativity, the nontraversability of wormholes follows immediately from
a more fundamental result, the topological censorship theorem [120], which is the
statement that in a globally hyperbolic, asymptotically flat spacetime satisfying the
null energy condition (NEC), any causal curve from past null infinity to future null
infinity is diffeomorphic to an infinite causal curve in topologically trivial spacetime
(such as Minkowski space). In other words, no causal observer’s worldline can ever
probe nontriviality of topology of spacetime.1 Probing the nontrivial topology of an
ER bridge simply means passing through the wormhole, which is therefore forbidden
given the NEC. In a previous paper [113], we showed that violation of the NEC in
ER=EPR necessarily leads to violation of the no-cloning theorem and the breakdown
of unitary evolution. Traversable wormholes are therefore also forbidden by quantum
mechanics given ER=EPR, as they would correspond to a breakdown of unitarity
by allowing superluminal signaling.

The next simplest means of verifying the existence of an ER bridge would be to
detect the nontrivial topology of the wormhole without traversing it. In the present
context, we see that detecting the nontrivial topology is equivalent under ER=EPR
to detecting the existence of entanglement—more precisely, to constructing a linear
operator that detects if an unknown state is entangled with anything else. But it is
well known that such an operator is forbidden by the linearity of quantum mechanics,

1Of course, nonisolated observers can determine topological characteristics of their spacetime,
for example by seeing the same stars on opposite sides of the sky and thereby determining that
spatial sections of their spacetime are toroidal. However, they must receive information from
outside their worldline—in this case, photons emitted by distant stars that travel on topologically
distinct geodesics—to do so. Furthermore, the topological censorship theorem guarantees that if the
spacetime is asymptotically flat, satisfies the NEC, and allows Cauchy evolution, then any handles
must collapse to a singularity before an observer can travel around them.
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as Ref. [109] discusses. Briefly, this is because projection operators cannot project
onto a subspace unless that subspace is closed under superposition. An attempt
to project onto the set of all entangled states will therefore fail due to the set of all
entangled states not being closed under superposition; such a projector will inevitably
project onto the entire Hilbert space of all states. On the gravity side, this leads to
a result stronger than the nontraversability of wormholes: not only does ER=EPR
forbid an observer from traversing wormholes, it forbids an isolated observer from
verifying their existence even once inside them.

This result can be straightforwardly verified in general relativity by examining
the applicable metrics. Importantly, the metric given in Eqs. (4.3.4) and (4.3.5) for
the maximally extended geometry has several isometries: it is invariant under the
exchange (U, V ) ↔ (−U,−V ) and also under the exchanges (T,X) ↔ (T,−X) and
(T,X)↔ (−T,X). That is, Regions I and II in Fig. 4.1 are the same as Regions III
and IV, respectively, and moreover the entire metric is symmetric under spatial (X)
or temporal (T ) reversal. In particular, the regions present in both this geometry and
the one-sided black hole geometry (Region I and half of Region II, i.e., V > 0, X > 0)
are completely identical in the two cases. It is this property that implies that an
observer on a geodesic entering a one-sided black hole cannot distinguish it from a
two-sided black hole via any local measurement of curvature.

We have therefore shown that a single (isolated) observer cannot observe whether
a given black hole hosts an ER bridge, even by jumping into it. We next consider
observables that require multiple communicating observers to implement.

4.5 The Multiple-Observer Case

One can ask the question of whether two (or, for that matter, many) observers can
detect the existence of entanglement or, equivalently, of nontrivial topology. The
setup of the experiment is as follows. Consider a maximally extended, eternal AdS-
Schwarzschild geometry, as depicted in Fig. 4.3. Allow two observers, Alice and Bob,
to initially begin in the white hole portion of the geometry. (We will consider the
case of more than two observers later in this section.) Now let the observers exit the
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Figure 4.3. The procedure described in the text for detecting a wormhole. Alice and Bob
emerge from the white hole portion of the AdS-Schwarzschild geometry, then meet again
inside the black hole.

white hole2 to the two different asymptotic regions not contained in the black hole.
Next, they both jump into their respective black holes and compare notes. In such
a way, they could potentially determine if there was entanglement before hitting the
singularity.

The problem with this construction is that it doesn’t definitively tell the ob-
servers if there was entanglement or not. Indeed, Alice and Bob could jump into the
|ψ0〉 ER bridge at sufficiently late time T that they are unable to communicate (since
one or both of them will hit the singularity before being able to do so); equivalently,
the geometry could be |ψα〉 for α too large (instead of |ψ0〉), as depicted in Fig. 4.4.
The same argument that states that no linear operator permits the observers from
detecting whether or not there is entanglement precludes this verification procedure
from succeeding with probability 1. But how is it possible to reconcile the fact
that Alice and Bob can sometimes verify the existence of an ER bridge with the

2We note that the white holes mentioned in our construction are for convenience only; it suffices
for Alice and Bob to have communicated at some past time and simply to have moved out of causal
contact. Indeed, it is possible for Alice and Bob to both exist in the same asymptotically AdS
vacuum, as long as a wormhole exists connecting their locations. It is, however, necessary for them
to enter the wormhole in order to attempt to detect information regarding the entanglement in this
picture.
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Figure 4.4. Unlike in Fig. 4.3 above, here the geometry is shifted to some |ψα〉 for some
sufficiently large α 6= 0; Alice and Bob hit the singularity before they can meet and are
therefore unable to verify the existence of a wormhole.

impossibility of projecting onto a generic family of states?
To be concrete, suppose that Alice and Bob are in some geometry in the set of all

|ψα〉 (for α unknown) and travel on outgoing nearly null trajectories beginning in the
white hole at (T,X) = (−q, 0), with Alice (Bob) entering Region III (respectively,
I) at (T,X) ' (−q/

√
2,∓q/

√
2), turning around at (T,X) ' (0,∓q), and entering

Region II through their respective black holes at (T,X) ' (q/
√

2,∓q/
√

2). Now, if
they do not hit a singularity, their geodesics will cross again at (T,X) ' (q, 0). That
is, their geodesics will cross if they are in the state |ψα〉, i.e., the state in which T

is shifted by α, for α < 1 − q. If α > 1 − q for a |ψα〉 state or if they had instead
been in any one of the |φα〉 states, they would hit the singularity without their paths
ever crossing. (Recall that for X = 0, the singularity is located at T = ±1 for
the |ψ0〉 geometry.) Hence, Alice and Bob are able to verify if they are in the set
Sq = {|ψα〉|α < 1− q}.

However, this thought experiment does not require the existence of a projection
operator onto the entire family Sq. Instead, after their geodesics cross, Alice and
Bob can actually determine in which of the |ψα〉 they are. All null geodesics from
the horizon to the singularity are isomorphic and experience the same pattern of
values of the curvature tensor on the way in. That is, a family of null geodesics with,
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e.g., constant V = V0 can be labeled by the time t at which they cross a surface
at fixed proper distance from the horizon in Region I, which is the only difference
among the geodesics; since the metric (4.3.1) is independent of t, all of these geodesics
experience the same inward journey. Hence, before meeting Bob inside Region II,
there is no distinguishing event by which Alice can measure α. However, the value
of the Riemann tensor at the moment Alice’s and Bob’s geodesics cross is unique for
each |ψα〉.

In particular, at the moment their geodesics cross, Alice and Bob can measure
the tidal forces acting in their local Lorentz frames by computing some component
of the Weyl tensor. At (T,X) = (q, 0), Eq. (4.3.5) implies that, in Region II, r∗
and hence r is a monotonic function of (q − α). (Recall that for |ψα〉 all equations
describing the metric are shifted by T → T −α.) Let us define a local Lorentz frame
in coordinates (t̂, r̂, θ̂), where θ̂ is the orthonormal coordinate in the D − 2 angular
directions. When their paths cross, Alice and Bob can measure the r̂θ̂r̂θ̂ component
of the Weyl tensor, which is

Wr̂θ̂r̂θ̂ = − 1
L2 −

(
D − 3
D − 2

) 8πGDM

ΩD−2rD−1 . (4.5.1)

Note that this quantity monotonically increases as r [and so in (q−α)]. This implies
that Alice and Bob can determine α by measuring tidal forces at the moment when
their geodesics cross; there is a bijection between α and the size of the tidal force.
This measurement thus acts as a projection operator Pα = |ψα〉〈ψα|. This is anal-
ogous to the possibility of being able to detect if two qubits are in some particular
entangled state, rather than absolutely any entangled state whatsoever.

The key point here is that if the observers hit the singularity before exchanging
a signal, i.e., if the wavefunction is one of the |ψα〉 for which α > 1 − q, then Alice
and Bob are unable to confirm the existence of the ER bridge. If α < 1 − q, the
experiment Alice and Bob perform actually determines α. This procedure therefore
fails to determine if the region behind a horizon contains a generic wormhole: it can
sometimes reveal its existence, but not rule out its presence. It therefore does not
implement a projector onto the set of all wormhole states. Thus, no contradiction
with linearity of quantum mechanics arises in ER=EPR from the ability of Alice and
Bob to jointly explore the wormhole geometry.

A priori, one could wonder whether even more general configurations of more
than two observers could make the existence of wormhole topology into an observable.
Note that it is not consistent to consider a setup in which there is an infinite set of



64

observers (or signals) entering a horizon at earlier and earlier times, as this would
violate the necessary assumption of weak backreaction and hence invalidate the AdS-
Schwarzschild spacetime ansatz. Hence, in a given slicing of spacetime, there must
be an initial observer to enter the horizon. A prototypical setup for the thought
experiment with more than two observers can therefore be rephrased as follows.
After meeting and arranging the experiment, Bob and Alice go their separate ways.
Bob jumps into his horizon, crossing it at spacetime point p = (T,X) ' (q, q)/

√
2

as before. This time, however, Alice remains outside her horizon and instead sends
into her black hole multiple light pulses at regular intervals, with the first light
pulse she emits (after leaving Bob) entering her wormhole mouth at p′ = (T,X) '
(q′,−q′)/

√
2. The multiple light pulses are equivalent to having multiple observers

enter the black hole at different times. However, one can choose a slicing of spacetime
in which p and p′ are on the same spacelike sheet; that is, one can simply apply a boost
to equate the spatial components of p and p′. Since a boost can be independently
applied to each asymptotically AdS spacetime, it follows that the case in which
Bob is also replaced by multiple observers can be similarly simplified. As a result,
the multiple observer setup reduces to the two observer setup, which we showed
previously cannot definitively answer the question of whether there is a wormhole
geometry.

Thus, even with multiple observers, the measurement of whether or not there
is an ER bridge in general is not a valid observable, any more than the question of
whether two qubits are arbitrarily entangled is a quantum mechanical observable.

4.6 Conclusions

The ER=EPR proposal is a compelling but surprising idea about quantum gravity,
identifying features of ordinary quantum mechanics with geometrical and topological
features of spacetime. As an extraordinary claim, it is necessary that it be subjected
to rigorous theoretical tests to ascertain whether it suffers from any inconsistencies.
One such potential issue, which we have addressed in this paper, is whether ER=EPR
implies a serious modification of quantum mechanics, namely, the introduction of
state dependence. The argument that ER=EPR implies state dependence rests on
the observation that the correspondence identifies entanglement with wormholes.
Famously, entanglement is not a quantum mechanical observable, so this leads to
the question of whether the observation of a wormhole contradicts, under ER=EPR,
linearity of quantum mechanics.
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In this paper, we have argued that ER=EPR does not contradict this principle
of quantum mechanics precisely because the general question of the existence or
nonexistence of a wormhole is also not an observable. We showed that neither a
single observer nor a group of observers is able to definitively establish whether a
pair of event horizons is linked by an ER bridge. A single observer can never detect
the (nontraversable) wormhole’s existence, which mirrors the fact that, given a single
qubit, one cannot tell if it is entangled by anything else. On the other hand, by
exploring the spacetime, two or more observers working in concert can decide if they
are in a particular ER bridge geometry, but cannot project onto the entire family.
Under ER=EPR, this statement mirrors the fact that one can project two qubits
onto a particular entangled state but not onto the family of all possible entangled
states.

Many options are available for future investigation. The ER=EPR correspon-
dence has been subjected to some tests [69, 70, 110–113], but the challenge of seeing
the duality between wormholes and any arbitrary form of quantum entanglement
remains, as does the very definition of what is meant by a “wormhole” in ER=EPR
for theories without a weakly-coupled holographic gravity dual. Other open issues
include the investigation of whether firewalls are truly nongeneric in ER=EPR [73]
and whether the correspondence can be concretely realized outside of asymptotically
AdS spacetime. The answers to these questions and others will likely provide impor-
tant insight in future investigations in the connections between entanglement and
spacetime geometry.
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Entanglement Conservation, ER=EPR,
and a New Classical Area Theorem
for Wormholes
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5.1 Introduction

All of the states of a quantum mechanical theory are on the same footing when
considered as vectors in a Hilbert space: any state can be transformed into any
other state by the application of a unitary operator. When the Hilbert space can be
decomposed into subsystems, however, there is a natural way to categorize them: by
the entanglement entropy of the reduced density matrix of a subsystem constructed
from the states. Entanglement between two subsystems is responsible for the “spooky
action at a distance” often considered a characteristic feature of quantum mechanics:
measuring some property of a subsystem determines the outcome of measuring the
same property on another entangled subsystem, even a causally disconnected one.

It is well known that this seeming nonlocality does not lead to violations of
causality. It cannot be used to send faster-than-light messages [84] and in fact it is
impossible for any measurement to determine whether the state is entangled (see,
e.g., Ref. [114]). Similarly, it is impossible to alter the entanglement between a sys-
tem and its environment (that is, to change the entanglement entropy of the reduced
density matrix of the system) by acting purely on the degrees of freedom in the sys-
tem or by adding more unentangled degrees of freedom. A number of well-established
properties, such as monogamy [121] and strong subadditivity [122], constrain the en-
tanglement entropy of subsystems created from arbitrary factorizations of the Hilbert
space.

Although entanglement entropy is a fundamental quantity, it is typically very
difficult to compute in field theories, where working directly with the reduced den-
sity matrix can be computationally intractable, although important progress has
been made in certain conformal field theories [123, 124] and more generally along
lightsheets for interacting quantum field theories [125]. The AdS/CFT correspon-
dence [12–14], however, allows us to transform many field-theoretic questions to a
gravitational footing. In particular, the Ryu-Takayanagi formula [15] equates the
entanglement entropy of a region for a state in a conformal field theory living on the
boundary of an asymptotically AdS spacetime to the area of a minimal surface with
the same boundary as that region in the spacetime corresponding to that CFT state.
Using this identification of entropy with area, a number of “holographic entangle-
ment inequalities” have been proven [126, 127], some reproducing and some stronger
than the purely quantum mechanical entanglement inequalities.

Motivated in part by AdS/CFT, as well as a number of older ideas in black
hole thermodynamics [57, 58] and holography [59, 60, 128], Maldacena and Susskind
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have recently conjectured [16] an ER=EPR correspondence, an exact duality be-
tween entangled states (Einstein-Podolsky-Rosen [71] pairs) and so-called “quantum
wormholes”, which reduce in the classical general relativistic limit to two-sided black
holes (Einstein-Rosen [73] bridges, i.e., wormholes). In a series of recent papers,
we have considered the implications of this correspondence in the purely classical
regime. In this limit, if the ER=EPR duality holds true, certain statements in quan-
tum mechanics about entangled states should match directly with statements in
general relativity about black holes and wormholes [129], with the same assumptions
required on both sides. We indeed previously found two beautiful and nontrivial de-
tailed correspondences: the no-cloning theorem in quantum mechanics corresponds
to the no-go theorem for topology change in general relativity [130] and the un-
observability of entanglement corresponds to the undetectability of the presence or
absence of a wormhole [131].

In this paper, we extend this correspondence to a direct equality between the
entanglement entropy and a certain invariant area, which we define, of a geometry
containing classical black holes and wormholes. We follow a long tradition of clar-
ifying general relativistic dynamics using area theorems [132–136], which hold that
various areas of interest satisfy certain properties under time evolution. Our strategy
is to show that the area in question remains unchanged under dynamics constitut-
ing the gravitational analogue of applying tensor product operators to an individual
system and its complement. We show that, just as entanglement entropy cannot be
changed by acting on the subsystem and its complement separately, this area is not
altered by merging pairs of black holes or wormholes or by adding classical (unen-
tangled) matter. The area we consider is chosen to be that of a maximin surface
[137, 138] for a collection of wormhole horizons, a time-dependent generalization of
the Ryu-Takayanagi minimal area, which again establishes that the entanglement
entropy is also conserved under these operations. At least for asymptotically AdS
spacetimes, our result constitutes an explicit characterization of the ER=EPR cor-
respondence in the classical limit. Moreover, our theorem is additionally interesting
from the gravitational perspective alone, as it constitutes a new area law within
general relativity.

This paper is structured as follows. In Section 5.2, we review the simple quantum
mechanical fact that entanglement is conserved under local operations. In Section
5.3, we define the maximin surface and review its properties. In Section 5.4, we prove
our desired general relativistic theorem. Finally, we discuss the implications of our
result and conclude in Section 5.5.
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5.2 Conservation of Entanglement

Consider a Hilbert space H that can be written as a tensor product of two factors HL

and HR to which we will refer as “right” and “left”, though they need not have any
spatial interpretation. For a state |ψ〉 ∈ H, let us define the reduced density matrix
associated with HL as ρL = TrHR |ψ〉〈ψ| and use this to define the entanglement
entropy between the right and left sides of the Hilbert space:

S(L) = S(R) = −TrHLρL log ρL. (5.2.1)

It is straightforward to see that adding more unentangled degrees of freedom to HL

will not affect the entanglement entropy, as by construction this does not introduce
new correlations between HL and HR. This is particularly clear to see by using
the equivalence of S(L) and S(R) for pure states, as adding in further unentangled
degrees of freedom will maintain the purity of the joint system.

Now let us consider the effect on S(L) of applying a unitary U = UL⊗UR to |ψ〉.
As TrHRU = UL, we can consider only the action of UL on ρL, as UR acts trivially in
HL. This transforms S(L) into

S(L) = −TrHLULρLU
†
L log

(
ULρLU

†
L

)
. (5.2.2)

One can at this point expand the logarithm by power series, with individual terms
of the form

Sn(L) = −TrHLcnULρLU
†
L

(
1− ULρLU

†
L

)n
(5.2.3)

for some real cn. For each term in the expansion of the product, all but the first
UL and the last U †L will cancel as U †LUL = 1. Finally, by cyclicity of the trace, the
remaining UL and U †L will also cancel, leaving Sn(L) invariant. Thus, S(L) remains
invariant under unitary transformations of the form U = UL ⊗ UR. This is the
statement of conservation of entanglement.

5.3 The Maximin Surface

A holographic characterization of the entanglement entropy begins with its calcula-
tion on a constant-time slice, where the Ryu-Takayanagi (RT) formula [15] holds:

S(H) = AH
4G~ . (5.3.1)
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This relates the area AH of the minimal surface subtending a region H to the entan-
glement entropy of that region with its complement. When the region is a complete
boundary, this reduces to the minimal surface homologous to the region. For exam-
ple, in a hypothetical static wormhole geometry, the entanglement entropy between
the two ends would be given by the minimal cross-sectional area of the wormhole.

This method of computing entanglement entropy on a constant-time slice for
static geometries was generalized by the Hubeny-Rangamani-Takayanagi (HRT) pro-
posal [137]. The key insight here was that in general there do not exist surfaces that
have minimal area in time, as small perturbations can decrease the area. The new
proposal was that the area now scales as the smallest extremal area surface, as op-
posed to the minimal area. The homology condition mentioned previously remains
in this prescription.

The maximin proposal [138] gives an explicit algorithm for the implementation
of the HRT prescription. In the following definitions, we will closely follow the
conventions used by Wall [138]. We define C[H,Γ] to be the codimension-two surface
of minimal area homologous to H anchored to ∂H that lies on any complete achronal
(i.e., spacelike or null) slice Γ. Note that C[H,Γ] can refer to any minimal area surface
that exists on Γ. Next, the maximin surface C[H] is defined as any of the C[H,Γ]
with the largest area when optimized over all achronal surfaces Γ. When multiple
such candidate maximin surfaces exist, we refine the definition of C[H] to mean any
such surface that is a local maximum as a functional over achronal surfaces Γ. In the
HRT proposal, the entanglement of H with its complement in the boundary is given
by S(H) = area[C[H]]/4G~.

As an example, for a wormhole geometry in which we are computing the entan-
glement entropy between the two horizons of the ER bridge, ∂H is trivial and the
homology condition means that C[H,Γ] is the surface of minimal cross-sectional area
on an achronal surface Γ in the interior causal diamond of the horizons. Then the
maximin surface C[H] is a C[H,Γ] with Γ chosen such that the area is maximized.

Such surfaces can be shown to exist for large classes of spacetimes and in par-
ticular C[H] can be proven to be equal to the extremal HRT surface for spacetimes
obeying the null curvature condition, which is given by

Rµνk
µkν ≥ 0, (5.3.2)
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where kµ is any null vector and Rµν is the Ricci tensor.1 As HRT is a covariant
method of calculating entanglement entropy, the maximin construction is therefore
manifestly covariant as well.

Maximin surfaces in general have some further nice properties, proven in Ref. [138]:
they have smaller area than the causal surface (the edge of the causal domain of de-
pendence associated with bulk causality), they move monotonically outward as the
boundary region increases in size, they obey strong subadditivity, and they also obey
monogamy of mutual information, but not necessarily other inequalities that hold
for constant-time slices [126, 127, 138]:

S(AB) + S(BC) ≥ S(B) + S(ABC),
S(AB) + S(BC) + S(AC) ≥ S(A) + S(B) + S(C) + S(ABC)

(5.3.3)

for disjoint regions A, B, and C. The above statements are all proven in detail for
maximin surfaces in Ref. [138].

5.4 A Multi-Wormhole Area Theorem

We are now ready to find the gravitational statement dual to entanglement conser-
vation. Let us take as our spacetime M the most general possible setup to consider
in the context of the ER=EPR correspondence: an arbitrary, dynamical collection of
wormholes and black holes in asymptotically AdS spacetime. We work in D space-
time dimensions. Throughout, we will assume that M obeys the null curvature con-
dition (5.3.2). The degrees of freedom associated with the Hilbert space H = ⊗iHi

can be considered to be localized on the union of the stretched horizons, with each
horizon comprising one of the Hi factors. We choose our spacetime setup such that
the wormholes are past-initialized, by which we mean that for t ≤ 0 the wormholes
are far apart and the spacetime around the wormholes is in vacuum, with negligible
back-reaction. Suppose we arbitrarily divide this system into two subsystems by
labeling each horizon as “left” or “right”. The left and right Hilbert spaces factorize
as HL = ⊗iHL,i and HR = ⊗iHR,i, where HL(R),i contains the degrees of freedom as-
sociated with horizon i in the left (right) set. Now, some of the black holes in the left
subset may be entangled with each other and so be described by ER bridges among
the left set. A similar statement applies to the right set. Importantly, there may be

1For spacetimes satisfying the Einstein equation Rµν−Rgµν/2 = 8πGTµν for energy-momentum
tensor Tµν , the null curvature condition is equivalent to the null energy condition Tµνk

µkν ≥ 0.
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horizons in the left set entangled with horizons in the right set, describing ER bridges
across the left/right boundary. For the sake of tractability, we consider horizons that
are only pairwise entangled and that begin in equal-mass pairs in the asymptotically
AdS spacetime; this stipulation can be made without loss of generality provided we
consider black holes smaller than the AdS length and do not consider changes to the
asymptotic structure of the spacetime (see, e.g., Ref. [139]). (To treat wormholes
with mouths of unequal masses, we could start in an equal-mass configuration and
add matter into one of the mouths.) We thus take any two horizons i and j that are
entangled to be in the thermofield double state at t = 0,

ΠiΠj|ψ〉(t = 0) = |ψi,j〉(t = 0) = 1√
Z

∑
n

e−βEn/2|n̄〉i ⊗ |n〉j, (5.4.1)

where Πi is a projector onto the degrees of freedom associated with Hi, 1/β is the
temperature, and |n〉i is the nth eigenstate of the CFT corresponding to the degrees
of freedom in Hi with eigenvalue En.

Let us define a time slicing of the spacetime M into spacelike codimension-
one surfaces Σt parameterized by a real number t that smoothly approaches the
standard AdS time coordinate in the limit of spacelike infinity, where the metric
is asymptotically AdS. The Σt are chosen to pass through the wormholes without
coordinate singularities along the horizon (cf. Kruskal coordinates); see Fig. 5.1
for an example geometry. For the wormholes spanning the left and right subsets, we
write as Li and Ri the null codimension-one surfaces that form the outermost left and
right apparent horizons, respectively, and define L = ∪iLi and R = ∪iRi. Note that,
since new apparent horizons can form outside of the initial apparent horizons, Li and
Ri are each not necessarily connected, but are the piecewise-connected union of the
outermost connected components of the apparent horizons. On a given spacelike slice,
an apparent horizon is a boundary between regions in which the outgoing orthogonal
null congruences are diverging (untrapped) or converging (trapped) [133]. Of course,
the indexing i may become redundant if horizons merge among the Li or Ri. Let us
define the restriction of the outermost apparent horizons to the constant-time slice
Σt as the spacelike codimension-two surfaces Lt,i = Li ∩ Σt and Rt,i = Ri ∩ Σt and
similarly Lt = L ∩ Σt and Rt = R ∩ Σt. Without loss of generality, we will use the
initial spatial separation of the wormholes along with diffeomorphism invariance to
choose the Σt and the parameterization of t such that Σ0 intersects the codimension-
two bifurcation surfaces Bi ≡ L0,i = R0,i at which all the wormholes have zero length.
The past-initialization condition then means that the wormholes are far apart in the
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Figure 5.1. Penrose diagram, for an example spacetime M , of a slice through a particular
wormhole i joining a left and right horizon. (Showing the full geometry would require a
multi-sheeted Penrose diagram to accommodate the multiple wormholes.) The spacelike
codimension-one surface Σ0 is shown in burgundy. The initial bifurcation codimension-two
surface Bi is illustrated by the orange dot. Apparent horizons are denoted by the orange
lines, with the outermost apparent horizons Li and Ri being the solid lines. For t ≤ 0, the
setup is past-initialized and the metric is given to good approximation by the eternal black
hole in AdS, where the past event horizon of the white hole is indicated by the dashed black
lines. The dotted black lines denote the future event horizon of M . As the spacetime at
negative t is known, we do not show the entire Penrose diagram in this region, as indicated
by the diagonal gray lines.

white hole portion of the spacetime, which corresponds to t ≤ 0. Throughout, we
will assume that M ∪ ∂M is globally hyperbolic; equivalently [140], we will assume
that the closure of Σ0 is a Cauchy surface for M ∪ ∂M .

Now, for each t > 0, let us define a D-dimensional region of spacetime Wt as
the union over all achronal surfaces with boundary Lt ∪Rt; that is, Wt is the causal
diamond associated with Lt ∪ Rt. A single wormhole has topology SD−2 ⊗ R when
restricted to Σt. The initial spacetime W0 is special: it is a codimension-two surface
that is just the union over all the Bi, with topology (SD−2)⊗N , where N is the number
of wormholes connecting the left and right subsets.
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Figure 5.2. Penrose diagram (top), for the example geometry of Fig. 5.1, of the segment
of the region Wt∗ (green shading), for some t∗, that passes through a particular wormhole
i joining a left and right horizon. The apparent horizons (orange lines, with solid lines for
the outermost apparent horizons Li and Ri), bifurcation surface Bi (orange dot), spacelike
codimension-one surface Σ0 (burgundy line), and past event horizons for the white hole
(dashed black lines) are illustrated as in Fig. 5.1. The spacelike codimension-one surface
Σt∗ is shown as a blue line. The purple dotted line denotes the truncated null surface B̃t∗,i
formed from the rightward outgoing orthogonal null congruence B̃i originating on Bi, used
in Proposition 1. The codimension-two boundaries of Wt∗ along wormhole i, Lt∗,i and Rt∗,i,
are indicated by the blue dots. The achronal codimension-one surfaces Γt∗(α) foliating Wt∗

are indicated within wormhole i by the green lines; the codimension-two surfaces Ct∗(α)
of minimal area for some slices Γt∗(α) are indicated within wormhole i by red dots. The
particular surface Γt∗(0), constructed in Eq. (5.4.8), is shown (for the portion restricted to
wormhole i) by the dashed and dotted green lines, corresponding to Σ0∩Wt∗ (the horizontal
section) and M+∩J̇−[Σt∗\Wt∗ ] = L̃∪R̃ (the diagonal sections), respectively. The burgundy
dots denote the pieces of L̃0 and R̃0 in the vicinity of wormhole i. The embedding diagram
(bottom) shows a particular slice Γt∗(α) through Wt∗ for some α, where, as in the Penrose
diagram, the codimension-two boundaries Lt∗,i and Rt∗,i are shown in blue and the surface
Ct∗(α) of minimal cross-sectional area, restricted to wormhole i, is shown in red.

For a given Wt, let us define a slicing of Wt, parameterized by α, with achronal
codimension-one surfaces Γt(α), where the boundary of Γt(α) is anchored at Lt ∪Rt

for all α and where α increases monotonically as we move from the past to the future
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boundary of Wt. Now, we can imagine slicing Γt(α) into codimension-two surfaces
and write as Ct(α) the surface with minimal area [i.e., the minimal cross-sectional
area of Γt(α)]; see Fig. 5.2. We can now define the maximin surface Ct for Wt as a
surface for which the area of Ct(α) attains its maximum under our achronal slicing
Γt(α), maximized over all possible such slicings. That is, Ct is a codimension-two
surface with the maximum area, among the set of the surfaces of minimal cross-
sectional area, for all achronal slices through Wt.

The main result that we will prove is that the area of the maximin surface Ct is
actually independent of t, equaling just the sum of the areas of the initial bifurcation
surfaces Bi.2 In most cases, the maximin surface Ct will actually be the union of the
initial bifurcation surfaces Bi, independent of t. In other words, the maximin area is
invariant among all of the different causal diamonds Wt. Interpreting the area of the
maximin surface as an entropy, this is the gravitational analogue of entanglement
conservation. We will first prove a few intermediate results.

Proposition 1. The area of the maximin surface Ct is upper bounded by the sum
of the areas of the initial bifurcation surfaces Bi.

Proof. Consider the rightward outgoing orthogonal null congruence B̃i, a null surface
of codimension one starting on Bi and satisfying the geodesic equation. Choosing
some particular t∗ arbitrarily, we truncate the null geodesics generating B̃i whenever
a caustic is reached or when they intersect either the future singularity or the future
null boundary of Wt∗ ; we further extend the null geodesics into the past until they
intersect the past null boundary of Wt∗ . We will hereafter write the truncated null
surface as B̃t∗,i. Let λ be an affine parameter for B̃t∗,i that increases toward the future
and vanishes on Bi; let us write B̃t∗,i(λ) for the spatial codimension-two surface at
fixed λ. The rotation ω̂µν in a space orthogonal to the tangent vector kµ = (d/dλ)µ
satisfies [142]

Dω̂µν
dλ = −θω̂µν , (5.4.2)

where θ = ∇µk
µ is the expansion. Since θ vanishes on Bi, ω̂µν vanishes identically

2In Ref. [141] it was shown for the special cases of the Schwarzschild-AdS and the single, sym-
metric, Vaidya-Schwarzschild-AdS geometries that the initial bifurcation surface is the extremal
surface in the HRT prescription. Our theorem in this paper generalizes this result to an arbitrary,
dynamical, multi-wormhole geometry in asymptotically AdS spacetime that is past-initialized and
that obeys the null curvature condition.
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on B̃t∗,i. The Raychaudhuri equation is therefore

dθ
dλ = − 1

D − 2θ
2 − σ̂µν σ̂µν −Rµνk

µkν , (5.4.3)

where σ̂µν is the shear and Rµν is the Ricci tensor. We note that if the null curvature
condition (5.3.2) is satisfied, then θ is nonincreasing, as σ̂µν σ̂µν is always nonnegative.
Since the apparent horizon consists of marginally outer trapped surfaces (i.e., surfaces
for which the outgoing orthogonal null geodesics have θ = 0), it must be either null
or spacelike, so any orthogonal null congruence starting on the apparent horizon
remains either on or inside the apparent horizon in the future [133]. In particular,
B̃t∗,i ⊂ Wt∗ .

Now, we can also write θ as d log δA/dλ, where δA is an infinitesimal cross-
sectional area element of B̃t∗,i(λ). That is, area[B̃t∗,i(λ)] has negative second deriva-
tive in λ. Since θ vanishes on the bifurcation surface Bi = B̃t∗,i(0), we have that
area[B̃t∗,i(λ)] is monotonically nonincreasing in λ. Moreover, since for all λ < 0
there exists t < 0 such that B̃t∗,i(λ) ⊂ Σt, the past-initialization condition means
that area[B̃t∗,i(λ)] = area[Bi] for all λ < 0. Hence, for all λ we have

area[B̃t∗,i(λ)] ≤ area[Bi]. (5.4.4)

By the past-initialization condition, there are no caustics to the past of Bi. Fur-
ther, by definition, the wormhole does not pinch off until the singularity is reached,
so some subset of the generators of B̃i must extend all the way through Wt∗ without
encountering caustics. Writing Γt∗(α) as a foliation of Wt∗ by achronal slices, we thus
have that B̃t∗,i(λ) ∩ Γt∗(α) is never an empty set for all α, i.e., for all λ there exists
α such that B̃t∗,i(λ) ⊂ Γt∗(α). Moreover, we can reparameterize and identify the
affine parameters for each i of the B̃t∗,i such that for each λ there exists α for which
∪iB̃t∗,i(λ) ⊂ Γt∗(α); for such α, ∪iB̃t∗,i is a complete cross-section of Γt∗(α), possibly
with redundancy due to merging horizons. We choose our slicing Γt∗(α) such that
there exists some α∗ for which Γt∗(α∗) contains the maximin surface Ct∗ for Wt∗ , so

Ct∗ = Ct∗(α∗) such that area[Ct∗(α∗)] = max
α

area[Ct∗(α)], (5.4.5)

where Ct∗(α) is the codimension-two cross-section of Γt∗(α) with minimal area.
Since B̃t∗,i is only completely truncated at future and past boundaries of Wt∗ ,

it follows that for every α there must exist λ such that Γt∗(α) ⊃ B̃t∗,i(λ). By the
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definition of Ct∗(α), we have (for such λ) that

area[Ct∗(α)] ≤
∑
i

area[B̃t∗,i(λ)]. (5.4.6)

Putting together Eqs. (5.4.4) and (5.4.6), taking the maximum over λ and α on both
sides, applying Eq. (5.4.5), and using the fact that t∗ was chosen arbitrarily, we have
a t-independent upper bound on the area of the maximin surface Ct:

area[Ct] ≤
∑
i

area[Bi]. (5.4.7)

Let us now construct a lower bound on the area of the maximin surface Ct.
We can do this by examining an achronal codimension-one surface through Wt and
computing its minimal cross-sectional area; judiciously choosing the achronal surface
optimizes the bound. In particular, for some arbitrary t∗, consider Γt∗(0) passing
through ∪iBi, where we choose the slicing such that

Γt∗(0) = (Σ0 ∩Wt∗) ∪
(
M+ ∩ J̇−[Σt∗\Wt∗ ]

)
, (5.4.8)

where M+ is the restriction of M to t ≥ 0, J−[A] denotes the causal past of a set A,
and the dot denotes its boundary. That is, Γt∗(0) consists of the codimension-one
null surfaces forming the t ≥ 0 portion of the boundary of Wt∗ towards the past,
plus a codimension-one segment of Σ0 containing ∪iBi; see Fig. 5.2. Let us label the
left and right boundaries of Σ0 ∪Wt∗ (equivalently, the left and right portions of the
intersection of Σ0 and J̇−[Σt∗\Wt∗ ]) as L̃0 and R̃0, respectively.

We will show in two steps that the minimal cross-sectional area of Γt∗(0) is just∑
i area[Bi]. We will first consider the cross-sectional area of slices of Σ0 ∩Wt∗ and

then examine the changes in cross-sectional area along slices of M+ ∩ J̇−[Σt∗\Wt∗ ].

Proposition 2. The minimal cross-sectional area of Σ0 ∩Wt∗ is ∑i area[Bi].

Proof. By the requirement that the wormholes be past-initialized, the metric on Σ0

is, up to negligible back-reaction, just a number of copies of the metric on the t = 0
slice of the single maximally-extended AdS-Schwarzschild black hole; for this metric
the tKS = 0 and tS = 0 slices are the same, where tKS is the Kruskal-Szekeres time
coordinate and tS is the Schwarzschild time coordinate [131]. Taking the t-slicing
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to correspond to the Kruskal-Szekeres coordinates in the vicinity of each wormhole,
therefore, the metric on Σ0 ∩Wt∗ is

ds2
Σ0∩Wt

= 4|f(r)|e−f ′(rH)r∗

[f ′(rH)]2 dX2 + r2dΩ2
D−2 = dr2

f(r) + r2dΩ2
D−2, (5.4.9)

where on Σ0, the Kruskal X coordinate describing distance away from the wormhole
mouth at Bi is X = ±ef ′(rH)r∗/2, with the sign demarcating the left and right side of
Bi and the tortoise coordinate being r∗ =

∫
dr/f(r). The function f(r) is

f(r) = 1− 16πGDM

(D − 2)ΩD−2rD−3 + r2

`2 , (5.4.10)

where ΩD−2 is the area of the unit (D − 2)-sphere, GD is Newton’s constant in D

dimensions, M is the initial mass of each wormhole mouth, ` is the AdS length, and
rH is the initial horizon radius, defined such that f(rH) = 0. For r > rH, f(r) is
strictly positive, so r∗ and X are monotonic in r. As we move from Bi at X = 0
towards L̃0 or R̃0 at XL and XR, the area of the cross-section of Σ0 ∩Wt∗ for the
surface parameterized by X(φ) [or equivalently r(φ)], for (D−2) angular variables φ,
attains its minimum at Bi, where r(φ) is identically rH, its minimum on Σ0∩Wt∗ .

We now turn to the behavior of the cross-sectional area of M+ ∩ J̇−[Σt∗\Wt∗ ].

Proposition 3. The cross-sectional area of M+ ∩ J̇−[Σt∗\Wt∗ ] is nondecreasing to-
wards the future.

Proof. Let us label the left and right halves of M+ ∩ J̇−[Σt∗\Wt∗ ] as L̃ and R̃,
so the boundary of L̃ is just L̃0 ∪ Lt∗ and similarly for R̃. We note that both L̃

and R̃ are generated by outgoing null geodesics. Suppose that some segment of
M+ ∩ J̇−[Σt∗\Wt∗ ] has area decreasing towards the future. We can without loss of
generality restrict to the left null surface, which we then assume has decreasing area
along some segment.

We first observe that since the apparent horizons are null or spacelike and since
L̃ is part of the null boundary of the past of a slice through the outermost apparent
horizon, all outer trapped surfaces must lie strictly inside L̃ ∩ Σt for all spacelike
slices Σt for t ∈ [0, t∗].

Let us define an affine parameter λ̃ for L̃, for which λ̃ = 0 on L̃0 and λ̃ = 1 on
Lt∗ , and consider the expansion θ̃ = ∇µk̃

µ, where k̃µ = (d/dλ̃)µ. In order for the
area to be strictly decreasing, there must be some open set U for which θ̃(λ̃) < 0 for
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λ̃ ∈ U . By continuity of the spacetime, there must exist t̃, where we can choose the
affine parameterization such that Σt̃ ⊃ L̃(λ̃) for some λ̃ ∈ U , such that Σt̃ contains
a region V ⊃ L̃(λ̃) for which θ̃ ≤ 0 for all outgoing orthogonal null congruences
originating from V . Then V is an outer trapped surface not strictly inside L̃ ∩ Σt̃.
This contradiction completes the proof.

Thus, we have constructed a lower bound for the area of Ct.

Proposition 4. The area of Ct is lower bounded by the sum of the areas of the
initial bifurcation surfaces Bi.

Proof. To prove a lower bound on the maximin area, area[Ct∗ ], it suffices to exhibit
an achronal surface through Wt∗ for which the minimal cross-sectional area is equal
to the desired lower bound. Such a surface is given by Γt∗(0) in Eq. (5.4.8): by
Proposition 2, ∑i area[Bi] is the minimal cross-sectional area of Σ0 ∩ Wt∗ and, in
particular, ∑i area[Bi] ≤ area[L̃0] + area[R̃0]. By Proposition 3, the minimal cross-
sectional area of M+∩ J̇−[Σt∗\Wt∗ ] is area[L̃0]+area[R̃0]. Thus, Γt∗(0) is an achronal
slice through Wt∗ with minimal cross-sectional area equal to ∑i area[Bi].

Finally, as an immediate corollary, we have the gravity dual of entanglement
conservation.

Theorem 1. For the family of spacetime regions Wt defined as the causal diamonds
anchored on the piecewise-connected outermost apparent horizons Lt and Rt for an
arbitrary set of dynamical, past-initialized wormholes and black holes satisfying the
null curvature condition, the corresponding maximin surface Ct dividing the left and
right collections of wormholes has an area independent of t, equaling the sum of the
areas of the initial bifurcation surfaces for the wormholes linking the left and right
sets of horizons.

Proof. By Proposition 1, area[Ct] ≤
∑
i area[Bi], while by Proposition 4, area[Ct] ≥∑

i area[Bi]. Hence,
area[Ct] =

∑
i

area[Bi]. (5.4.11)

Thus, the maximin surface dividing one collection of wormhole mouths from an-
other has an area that is conserved under arbitrary spacetime evolution and horizon
mergers as well as arbitrary addition of matter satisfying the null energy condition.



80

Viewing the maximin surface area as the entanglement entropy associated with the
left and right sets of horizons in accordance with the HRT prescription, we have
proven a statement in general relativity that is a precise analogue of the statement
in Sec. 5.2 of conservation of entanglement under evolution of a state with a tensor
product unitary operator.

5.5 Conclusions

The proposed ER=EPR correspondence is surprising insofar as it identifies a generic
feature (entanglement) of any quantum mechanical theory with a specific geometric
and topological structure (wormholes) in a specific theory with both gravity and
spacetime (quantum gravity). Until an understanding is reached of the geometrical
nature of the “quantum wormholes” that should be dual to, e.g., individual entangled
qubits, it will be difficult to directly establish the validity of the ER=EPR corre-
spondence as a general statement about quantum gravity. In a special limiting case
of quantum gravity—namely, the classical limit, which gives general relativity—this
task is more tractable. In this paper, we have provided a general and explicit eluci-
dation of the ER=EPR correspondence in this limit. For a spacetime geometry with
an arbitrary set of wormholes and black holes, we have constructed the maximin
area of the multi-wormhole throat separating a subset of the wormholes from the
rest of the geometry, the analogue of the entanglement entropy of a reduced density
matrix constructed from a subset of the degrees of freedom of a quantum mechanical
state. We then proved that the maximin area is unchanged under all operations that
preserve the relation between the subset and the rest of the geometry, the equivalent
of quantum mechanical operations that leave the entanglement entropy invariant.
We have therefore completely characterized the ER=EPR relation in the general
relativistic limit: the entanglement entropy and area (in the sense defined above) of
wormholes obey precisely the same rules.

In addition to providing an examination of the ER=EPR duality, our result
constitutes a new area theorem within general relativity. The maximin area of the
wormhole throat is invariant under dynamical spacetime evolution and the addition
of classical matter satisfying the null energy condition. The dynamics of worm-
hole evolution were already constrained topologically (see Ref. [130] and references
therein), but this result goes further by constraining them geometrically. Note that
throughout this paper we have worked in asymptotically AdS spacetimes in order to
relate our results to a boundary theory using the language of the AdS/CFT corre-
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spondence, but our area theorem is independent of this asymptotic choice provided
that all of the black holes are smaller than the asymptotic curvature scale.

In the classical limit, we have characterized and checked the consistency of the
ER=EPR correspondence in generality. However, extending these insights to a well-
defined notion of quantum spacetime geometry and topology remains a formidable
task. Understanding the nature of the ER=EPR duality for fully quantum me-
chanical systems suggests a route toward addressing the broader question of the
relationship between entanglement and geometry.
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Little Drama
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6.1 Introduction

The information paradox [260] and its more modern AMPS incarnation [261, 262]
are deeply puzzling issues lying at the center of any attempts at reconciling quantum
mechanics with gravity. Black hole complementarity, as proposed by [263], attempted
to resolve the information paradox by asserting that information that falls into the
black hole interior is also retained at the stretched horizon. Observers are only able
to access this information in one of two “complementary” descriptions, either in the
interior or at the horizon, so that the apparent violation of the no-cloning theorem
visible in a global description could never be verified. AMPS, however, considered a
scenario in which an observer first collects information on the outside by gathering
Hawking radiation, then jumps through the horizon and into the black hole interior.
Assuming standard postulates of black hole complementarity, namely

1. unitarity,

2. the validity of low-energy effective field theory outside the stretched horizon,

3. that the black hole is a quantum mechanical system with dimension given by
eA/4,

and further

4. that the horizon is not a special place—that “no drama” happens at the horizon,
so an observer can actually enter the black hole interior,

AMPS pointed out an apparent violation of monogamy of entanglement1 among
three systems: the black hole interior, the recently emitted Hawking radiation (late
radiation), and the previously emitted Hawking radiation (early radiation). To avoid
this violation, it therefore seemed necessary to give up one of the assumptions men-
tioned above, all of which are cherished pillars of modern physics. Giving up the
final assumption would mean that observers who attempt to enter the black hole
would be violently destroyed by high-energy excitations, hence the name “firewall
paradox.”

This led to a flurry of attempts to resolve the paradox by weakening one or more
of the core axioms, or by changing the paradigm completely [264–273]. Reaching
consensus as to which resolution is the correct one has proven challenging.

1Monogamy of entanglement is the statement that no single qubit can be simultaneously maxi-
mally entangled with two different systems.
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An interesting proposed resolution to the information paradox, based on argu-
ments from computational complexity, was given by Harlow and Hayden [274]. They
argued that the part of the AMPS experiment where the experimenter has to decode2

entanglement between the old radiation and the late radiation of the black hole in-
volves an extremely difficult computational task. Under very plausible conjectures in
computational complexity3, the time required to perform this quantum computation
in general would be exponentially longer than the evaporation time of the black hole.
Thus, by the time that the entanglement is decoded, there will remain no black hole
within which to check for the violation of monogamy of entanglement. While the
two quantum mechanical descriptions of the black hole appear to imply a violation of
monogamy, this apparent violation cannot be “revealed” by the AMPS experiment,
and thus the experimenter does not see any contradiction with quantum mechanics.
Just like the original violation of no-cloning in black hole complementarity itself, this
would signal that only the various partial descriptions accessible by a single observer
should be considered.

The main appeal of this argument is that it does not require a weakening of any
of the core assumptions mentioned previously. However, it is not without its vulner-
abilities. For example, Oppenheim and Unruh [276] gave an argument showing that
a very motivated experimenter could evade the Harlow-Hayden complexity barrier
by offloading the hard computation into a “precomputation” phase before the black
hole had even formed, and then perform the AMPS experiment efficiently using the
“cached computation.” Another vulnerability is that the computational hardness
of the Harlow-Hayden argument assumes that the black hole in question somehow
encodes a cryptographically difficult one-way function; however, one may be able to
set up a black hole so that the entanglement decoding task is particularly easy [277].

Nevertheless, the Harlow-Hayden proposal remains a compelling one, and it sets
the context for the argument that we present in this paper. Here, we also study
whether ideas from information theory and computer science can help resolve the
information paradox, but in another setting: whereas Harlow and Hayden focus on
the computational complexity of the AMPS experiment outside the black hole, we
examine the information processing that must be performed inside the black hole
in order to check for violations of monogamy of entanglement. This is a potentially

2To “decode the entanglement” of a state |ψ〉AB is to act with local unitaries on A and B to
create a Bell pair across A and B. This is similar to the notion of entanglement distillation [275],
except here we have only one copy of the state |ψ〉AB , whereas in distillation one has multiple
identical copies of the state.

3Namely, that quantum computers cannot efficiently invert cryptographic one-way functions.
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different line of argument, because while it might be possible to evade computational
limits outside of the horizon [262, 276], one certainly cannot extend one’s time inside
the horizon, as an infalling observer invariably hits the singularity in a bounded
amount of time.

In this paper we study an observer who begins outside of an evaporating Schwarzschild
black hole well after the Page time and who has learned that a subset of late Hawking
radiation that she holds is maximally entangled with the early Hawking radiation4.
We suppose that the observer then enters the black hole, sees no firewall, and then
attempts to decode maximal entanglement between the late radiation that she holds
and the black hole interior. If she succeeds in completing this task, she can then
perform measurements on an ensemble of her decoded Bell pairs in order to proba-
bilistically detect a violation of monogamy of entanglement. We compare the proper
time it takes for the observer to perform this procedure with the infall time before
the observer hits the singularity. We find that, under the assumption that the sub-
system of the black hole interior with which the observer’s late radiation is entangled
has diffused throughout the whole interior at the time she crosses the horizon, the
observer will not have enough time to complete even the first step of the procedure,
i.e., entanglement decoding, before encountering the singularity. As such, while a
global description, if it existed, would contain an implicit violation of monogamy
of entanglement, an observer who entered the black hole would unable to directly
verify any such violation. Therefore, our resolution of the firewalls paradox is simi-
lar in spirit to complementarity [263] in the sense that apparent global violations of
quantum mechanics are not verifiable by local observers.

The assumption that we make about dynamics inside the horizon is a mild
weakening of the no-drama condition that is typically considered: while we expect
no-drama to hold for macroscopic, classical objects that cross the event horizon,
fine-grained quantum information should be scrambled throughout the black hole’s
degrees of freedom, regardless of whether these degrees of freedom are described as
the black hole horizon or as the black hole interior. In particular, the assertion that
an observer inside the black hole sees such scrambling is the novel assumption of our
paper. We thus call this assumption “little drama,” and it is central to our argument.

The organization of this paper is as follows. In Section 6.2 we review facts
about black holes and their scrambling from the perspective of different observers
in spacetime. In Section 6.3, we focus on the specific task of collecting a late-time

4Though this is the task that Harlow and Hayden argue is difficult, we assume for the purpose
of the argument that this task has been achieved.
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Hawking radiation particle, assess the degree of scrambling that has occurred prior
to the observer crossing the stretched horizon of the black hole, and give a discussion
of the little-drama condition. In Section 6.4, we combine all the ingredients from the
previous sections and analyze the time needed to perform the task of checking for
violations of monogamy. Finally, we discuss and conclude in Sections 6.5 and 6.6.

6.2 Background: Black Holes and Scrambling

In the thought experiments to follow, we will consider black holes that formed from
the gravitational collapse of matter and that eventually evaporate into a gas of
Hawking radiation. We will assume that the initial mass of any black hole that
we consider is large enough that physics outside the black hole is well-described
by effective field theory on a black hole background in regions of spacetime that
are sufficiently distant from the end of evaporation. We will also suppose that the
process of black hole formation and evaporation is a fundamentally unitary process.
As such, if the matter that collapsed to form a black hole was initially in a pure
quantum state, then the state of the Hawking radiation after evaporation—as well
as any combined intermediate state of the black hole and hitherto emitted Hawking
radiation—is also a pure state.

Consider now some observer who resides outside the black hole. We will adopt
the viewpoint that such an observer’s observations are described according to com-
plementarity [263] and the membrane paradigm [278]. Explicitly, suppose that the
black hole spacetime is foliated by some set of achronal (spacelike or null) surfaces
with respect to which the observer performs field-theoretic calculations. In accor-
dance with complementarity, an observer outside the black hole should not associate
a Hilbert space to an entire surface Σ if it intersects the event horizon. In such a case,
she instead organizes the physical Hilbert space associated to Σ into a tensor product
H = O⊗D. The space O describes the degrees of freedom on the portion of Σ that
lies outside of the black hole, and D is a Hilbert space that describes the black hole’s
degrees of freedom and that is localized about the event horizon (Fig. 6.1). From
the outside observer’s point of view, all of physics is described by, and all processes
play out in, these two Hilbert spaces; she never has to (and in fact may not) make
reference to the the black hole interior.5

5See also [279] (in particular Sec. 4) as well as Sec. 6.5.4 for further discussion of the way in
which H factorizes and the ways in which different factorizations are related as a consequence of
assuming complementarity.
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Figure 6.1. Penrose diagram of a black hole that forms from the gravitational collapse of
matter and that ultimately evaporates.

We will suppose that D is localized to the stretched horizon of the black hole
[263]. We take the outer boundary of the stretched horizon to be at a proper distance
on the order of a Planck length above the event horizon. As such, the outer boundary
of the stretched horizon is a timelike surface with which an outside observer can
interact.

Despite the fact that a complete theory of quantum gravity is not known and that
the full dynamics of black holes are not understood, it is widely expected that the
quantum state of matter gets scrambled when it enters the stretched horizon [280–
282]. There are many possible ways to define scrambling, but informally speaking, a
system scrambles if it diffuses quantum information over all its degrees of freedom.
In particular, a black hole has scrambled the information in a small subset D′ ⊂
D when any initial entanglement between D′ and the outside O gets distributed
evenly throughout D, i.e., when almost all small subsets of D have nearly the same
amount of entanglement with O. After scrambling, an observer cannot recover this
entanglement unless she examines a sizable fraction of the entire horizon D.

The characteristic timescale over which scrambling occurs, called the scrambling
time, is given by

ts = 1
2πT ln S , (6.2.1)
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where T and S are the temperature and entropy of the black hole respectively [280,
281, 283–285]. (Both in this expression and throughout the paper we have set c =
kB = ~ = 1.) This time is measured with respect to the clock of an asymptotic
observer who is far away from the black hole. For example, for a Schwarzschild black
hole in 3 + 1 dimensions, the metric is given by

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2 dΩ2

2, (6.2.2)

the temperature is
T = 1

8πGM = 1
4πrs

, (6.2.3)

and the entropy is
S = A

4G = 4πrs2

4l2P
= πrs

2

l2P
. (6.2.4)

As such, the scrambling time is given by

ts = rs ln
√
πrs
lP

. (6.2.5)

The event horizon is located at r = rs = 2GM , and lP denotes the Planck length.
Importantly, a stationary observer who hovers at some fixed value of r = r0 above
the black hole sees scrambling happen faster, since her clock ticks faster relative to
Schwarzschild time. In other words, the scrambling time as measured in the proper
time of a stationary observer at coordinate height r0 is

τs(r0) =
√

1− rs
r0
ts . (6.2.6)

In particular, we can work out what the scrambling time at the stretched horizon
must be. If we fix the boundary of the stretched horizon to lie at a proper distance
lP above the event horizon, one finds that this corresponds to a coordinate distance
r = rs + δr, where

δr = l2P
4rs

+O

(
l3P
rs2

)
. (6.2.7)
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It then follows that

τs(rs + δr) =

√√√√ l2P
l2P + 4rs2 rs ln

[√
πrs
lP

]

≈ lP
2 ln

[√
πrs
lP

]
, (6.2.8)

which is consistent with other calculations of the scrambling time at the stretched
horizon [280, 281].

6.3 Hawking Radiation and Scrambling: What Alice Sees

Having established the preliminaries, we can now begin to investigate the central
question of this work: whether an observer who crosses the event horizon of an evap-
orating black hole can, in the absence of a firewall, verify a violation of monogamy
of entanglement before she hits the singularity. The answer to this question depends
on several considerations: in particular, the nature of scrambling from the point
of view of an observer inside the black hole, under what circumstance an ingoing
Hawking mode is scrambled before an observer carrying the corresponding outgoing
mode crosses the horizon, and the difficulty of undoing scrambling inside the black
hole. We address the first two points, the nature of scrambling and under what con-
ditions scrambling occurs, in this section. In particular, we motivate the little-drama
assumption used in the argument of this paper.

6.3.1 Scrambling, inside and out

Suppose that Alice has been monitoring a black hole since its formation and that she
collects any Hawking radiation that it emits. At some point well past the Page time,
she decides to perform her ultimate experiment: an experimental test of the AMPS
paradox. To this end, she collects k particles of (late) Hawking radiation and first
checks whether they are maximally entangled with the radiation that was emitted
earlier. Let us momentarily grant Alice unlimited computational power outside of
the black hole and suppose that she finds that these late quanta of radiation are
indeed maximally entangled with the early radiation. She then holds on to these
final Hawking particles and enters the black hole. To her transient relief, suppose
that she does not encounter a firewall at the horizon. As such, suspecting a possible
violation of monogamy of entanglement, her next objective is to check whether the
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k Hawking particles that she collected outside of the black hole are entangled with
degrees of freedom in the black hole interior.

Recall that Hawking radiation consists of paired entangled excitations of field
modes. The outgoing modes constitute the radiation that is visible to stationary
observers, but for each outgoing mode there is also an ingoing mode which remains
confined to the black hole interior. In principle, Alice’s task is to “catch up” with
the ingoing excitations that correspond to the k particles that she collected and
check whether they are entangled. In the next section, we will consider whether and
how Alice can actually perform this check. For now, we will consider a prerequisite
question: what do the ingoing excitations look like to Alice should she catch up to
them inside the black hole?

Because of complementarity, while Alice is outside of the black hole, she should
not think of an ingoing excitation as some particle which falls toward the singularity.
Rather, she sees it as some excitation of the stretched horizon, which begins to
scramble as the dynamics of the stretched horizon unfold. Yet, also because of
complementarity, Alice’s description of physical processes changes once she crosses
the event horizon of the black hole. The stretched horizon is no more and she is now
fully entitled to describe physics in the black hole interior. For example, she can
now associate a Hilbert space with each of her past lightcones and make the division
H = A ⊗ O, where A and O describe degrees of freedom on the intersection of her
past lightcone with the interior and exterior of the black hole, respectively. It is in
this frame that she must look for the ingoing excitations.

Our aim is to understand the interplay between scrambling in the stretched
horizon and the change in Alice’s description of physics as she enters the black
hole. Or, in other words, complementarity maintains that physics as described from
inside and outside the black hole should, in an appropriate sense, be equivalent; we
want to understand how scrambling—which is a process that occurs from an outside
observer’s point of view—appears to an observer inside the black hole.

To be more precise, suppose that Alice follows a timelike trajectoryA that crosses
the event horizon and ultimately hits the singularity, as shown in Fig. 6.2. (Partially)
foliate the spacetime with her past lightcones. When she is inside the black hole,
we associate A to the portion of her lightcone that lies inside the black hole. For all
of her lightcones, we associate O to the part of the lightcone that lies outside the
black hole and D to the surface where her lightcone intersects the stretched horizon.
According to complementarity, we postulate that for each lightcone whose tip lies
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Figure 6.2. Alice’s trajectory A and past lightcones (shown in yellow) as she falls toward
the singularity. The stretched horizon is shown in grey, and the trajectories of the outgoing
and ingoing Hawking particles are shown as dotted lines. We suggest that scrambling causes
information about the ingoing excitation to spread out behind the event horizon so that
it is delocalized on the intersection of Alice’s past lightcones with the causal future of the
excitation’s horizon crossing point (shaded region).

inside the black hole, there exists a unitary map

Ucomp : D ⊗O −→ A⊗O (6.3.1)

that relates the complementary descriptions of physics on either side of the event
horizon. (Ucomp is a effectively a change of basis.) If scrambling amounts to a
unitary process in the stretched horizon, Uscr : D → D, then scrambling causes the
state of the ingoing modes that Alice finds inside the black hole to evolve according
to the action of

Ũscr ≡ Ucomp (Uscr ⊗ Iout)U †comp . (6.3.2)

Intuitively, one would expect that scrambling should persist behind the event
horizon. For instance, if one were to drop a qubit into the stretched horizon and
wait for it to be well-scrambled, it would be surprising to find it more or less intact
and localized after jumping into the black hole. Moreover, such a discovery would
be troubling in light of Hayden and Preskill’s finding that the information contained
in that qubit is very rapidly returned to the exterior of the black hole [280]. Mathe-
matically, this expectation is equivalent to the statement that we do not expect the
unitary operator (6.3.2) to act trivially on the physically relevant states in A. We
note, however, that it is not logically impossible that Ucomp exactly undoes the action
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of Uscr.
On the other hand, it would also be desirable to reconcile the unitary (6.3.2)

with the semiclassical expectation that spacetime and macroscopic gravitating ob-
jects near the event horizon are well-described by general relativity. Put another
way, the field equations of general relativity should be sufficient, at least to a first
approximation, to track classical matter thrown into the black hole on timescales
where Hawking evaporation is unimportant. For example, from a semiclassical point
of view, if you were to drop a rock into a black hole, you would still expect to find
the rock on its freefall trajectory if you accelerated to catch up with it behind the
event horizon.

We therefore expect that Ũscr should act highly nontrivially on fine-grained quan-
tum degrees of freedom, but preserve the coarse-grained state of macroscopically ro-
bust and decohered objects. More precisely, we expect that the classical geometry
inside the black hole should be described by some coarse-graining of A, and that the
resulting coarse-graining of Ũscr should act trivially on classical states in this reduced
Hilbert space, but that its action on typical states in the full Hilbert space is highly
nontrivial. In particular, this implies that typical ingoing Hawking quanta, which
are of course fully quantum, should be rapidly mixed with the rest of the modes in
the black hole interior. On the other hand, a classical observer like Alice should be
relatively unaffected by the same dynamics, though of course she will be destroyed
in an infall time anyway. We leave it as an open problem to find a reasonable family
of scrambling unitaries that implements little-drama: i.e., dynamics that scrambles
small quanta, but leaves classical objects largely intact. However the arguments that
follow will only make use of the fact that the ingoing Hawking quanta are rapidly
scrambled over the black hole interior, and not the fact that macroscopic objects are
preserved. As such, we will model Uscr (and hence Ũscr) as a generic unitary6.

We emphasize that the dynamics that we have proposed constitute a violation
of the no-drama condition, albeit a far milder one than firewalls. In classical general
relativity, the equivalence principle remains intact: the black hole geometry is still
described by the Schwarzschild metric, and nothing special happens at the horizon.
Even semiclassically, expectation values of operators should remain unchanged: we
are not changing the emission rate of Hawking quanta or the effective temperature
of the black hole. However, working with Hawking emission on a particle-by-particle
basis requires a more detailed description. We can write the quantum state describing
the evaporating black hole in a basis of states which each contain Hawking parti-

6See Sec. 6.5 for a discussion on this simplifying assumption.
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cles. In each basis state, individual Hawking quanta are pair-produced as genuine
particles (i.e., wavepackets) at a specific spot on the horizon of the black hole, with
one wavepacket excitation describing a particle produced in A and a corresponding
particle in O. In each basis state, Ũscr acts to rapidly spread the excitation in A into
many other modes, so that after a scrambling time it can no longer be described as a
wavepacket or particle. It is this evolution, which differs dramatically from the prop-
agation of a particle on an empty background metric, that can be seen as violating
no drama.

6.3.2 Scrambling and kinematics

Next we investigate under what circumstances scrambling of the ingoing modes oc-
curs from Alice’s point of view. Let a clock fixed at the stretched horizon begin
ticking when Alice’s final particle of Hawking radiation is emitted. We shall use its
reading when Alice reaches the stretched horizon to determine whether or not the
corresponding ingoing excitation—which, again, Alice sees as an excitation on the
stretched horizon while outside the black hole—has scrambled.

In principle, Alice could wait arbitrarily closely to the stretched horizon so that
the ingoing excitation has little time to scramble. We note, however, that the scram-
bling time at the stretched horizon is a fantastically small amount of time. For
example, for a supermassive black hole like Sagittarius A* with a mass of about four
million solar masses, Eq. (6.2.8) predicts that the scrambling time at the stretched
horizon should be τs ≈ 3×10−42 s, or about 50 Planck times. As such, Alice does not
have much time at all outside of the black hole before scrambling happens, and in
practice she will have some amount of computational overhead if she verifies the en-
tanglement between late radiation and early radiation before entering the black hole.
Furthermore, if Alice collects k > 1 Hawking particles, then scrambling of the first
k − 1 ingoing excitations is virtually guaranteed to have happened before Alice can
cross the horizon. This is because the average rate of Hawking emissions is (much)
slower than the rate of scrambling [286, 287]. Consequently, instances where Alice
can cross the horizon before ingoing modes have scrambled are (k− 1)-fold exponen-
tially suppressed.7 As we will discuss in the next section, Alice will need to collect

7From [286], the cumulative Hawking emission rate for a Schwarzschild black hole is about
10−4 c3/GM , so take the characteristic timescale of Hawking emissions to be tH ∼ 104 GM/c3.
Note that this is measured in Schwarzschild time, so with the relevant boost factor of lP /2rs and
for the supermassive black hole discussed above, the characteristic (proper) timescale of Hawking
emissions at the stretched horizon is about (103−104) lP /c, which is much larger than the scrambling
time. Also c.f. footnote 9 below.
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Figure 6.3. Minimum height above which scrambling is guaranteed to occur.

k > 1 Hawking particles in order to be statistically confident in her measurements
inside the horizon.

Separately from the considerations above, it is also interesting to ask what is the
theoretical minimum height at which Alice can wait above the black hole is above
which scrambling is guaranteed to have happened when Alice enters the black hole.
This is the height for which exactly one scrambling time elapses at the stretched hori-
zon in the time it takes a light ray to make a round trip between the stretched horizon
and a mirror at the height in question. This situation is depicted in Schwarzschild
coordinates in Fig. 6.3.

The radial lightlike geodesics are given by

r − (rs + δr) + rs ln
[

rs − r
rs − (rs + δr)

]
= ±

(
t+ ts

2

)
, (6.3.3)

with ts and δr as given in Eqs. (6.2.5) and (6.2.7) respectively. The minimum coor-
dinate height is obtained by setting t = 0 in Eq. (6.3.3) and solving for r:

rmin = rs ·W
(
δr

rs
exp

[
2δr + ts

2rs

])
. (6.3.4)

In the above, W (·) denotes the Lambert W function. The minimum proper distance
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is therefore given by

r̃min =
∫ rmin

rs

(
1− rs

r

)−1
dr

= 2
√
rsets/2R

√
δr +O

(
(δr)3/2

)
≈
√
πrs . (6.3.5)

This result is interesting in light of proposals by Nomura, Sanches, and Weinberg
[272] and by Giddings [288] which both suggest that Hawking radiation is largely
invisible to observers unless they are at least on the order of a few Schwarzschild
radii away from the horizon of a black hole, which further limits Alice’s ability to
evade scrambling.

6.4 Computation behind the Horizon

To summarize the previous section, if excitations at the stretched horizon are scram-
bled when Alice reaches the stretched horizon, then we are proposing that the state
of the ingoing Hawking modes is thoroughly mixed with other degrees of freedom
in the black hole’s interior. In this section we assume that this scrambling has had
time to occur; as we explain in Sec. 6.3.2, such a situation should be generic. As
such, Alice is forced to access and process a large number of degrees of freedom
that are distributed throughout the interior of the black hole if she wants to verify
monogamy of entanglement. In this section, we discuss how to model the task of
verifying entanglement and we investigate its complexity. In the rest of this paper
we will set lP = 1 for brevity.

6.4.1 Model for verifying entanglement

Following the convention of [261], we continue to denote the Hilbert space of the
interior of the black hole by A, and we label the Hilbert spaces of the early radiation
and late radiation by R and B respectively (so that R and B are subsets of the
space O that we defined in Sec. 6.2). Let b(k) ⊂ B denote the Hilbert space of the
k outgoing Hawking modes that Alice collected and a(k) ⊂ A the Hilbert space of
the corresponding k ingoing modes. We model b(k) and a(k) each as a collection of
k qubits. Referring to Eq. (6.3.1), since the Hilbert space O is the same in both



96

complementary descriptions of physics8, it follows that |A| = |D| = eSBH , where
SBH is the Bekenstein-Hawking entropy of the black hole and where | · | denotes the
dimension of a Hilbert space. As such, we model A as a collection of n ∼ SBH qubits
that are distributed throughout the interior of the black hole and that are visible to
Alice on her past lightcones.

First, what do we mean by “detecting a violation of the monogamy of entangle-
ment?” This is nonsensical from the point of view of quantum mechanics, in which
monogamy of entanglement is inviolable. Here, we are given an apparent quantum
description of entanglement between b(k) and R outside the horizon, and an appar-
ent quantum description of entanglement between b(k) and a(k) across the horizon.
While the AMPS paradox shows that there cannot be a global quantum picture that
is consistent with both descriptions, the crucial question now is whether Alice can
perform an experiment to detect this paradox: in other words, whether she can verify
the entanglement between R and b(k), and then verify the entanglement between b(k)

and a(k). If Alice succeeds in verifying both entanglements, then we say that she has
detected a violation of monogamy.

What do we mean by verifying entanglement? In quantum theory, there is no
measurement that reliably distinguishes between entangled states and unentangled
states—this is because the set of unentangled pure states is non-convex. However,
it is possible to statistically test if an unknown state is in a particular entangled
state. For example, if we let |Φ〉 = 1√

2 (|00〉+ |11〉) denote an EPR pair, then the
two-outcome measurement M = {|Φ〉〈Φ|, I − |Φ〉〈Φ|} will probabilistically indicate
whether a given pair of particles |ψ〉 is an EPR pair or not. If |ψ〉 is indeed an EPR
pair, then this measurement will always return outcome |Φ〉〈Φ| with certainty. On
the other hand, if |ψ〉 is an unentangled state |φ〉 ⊗ |θ〉, then it will return outcome
I − |Φ〉〈Φ| with probability at least 1/2. While the error of this statistical test is
rather large, it can be reduced exponentially by repeating it many times. Let V and
W denote two disjointed quantum systems. When we say that Alice has “verified
maximal entanglement between V and W ,” we mean that Alice has decoded k pairs of
particles from V and W , measured each pair using the two outcome measurement M ,
and verified that all k pairs projected to an EPR pair. This occurs with probability
1 if Alice did indeed decode k EPR pairs; if V and W were unentangled, then this
occurs with probability at most 2−k. Therefore as k grows, the probability that Alice
thinks that V and W are entangled (when they are actually unentangled) becomes
exponentially small. For example, if Alice wants to obtain 5 sigma certainty (error

8We stress, though, that Ucomp does not factorize over D and O.
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probability 1 in 3.5 million) that V and W share maximally entangled particles, she
only needs to decode k = 22 EPR pairs from V and W .

6.4.2 Alice’s computational task

In this argument, we focus on Alice’s task of verifying the entanglement between b(k)

and a(k) when she jumps into the black hole—we will assume that she has already
verified the entanglement between b(k) and R prior to jumping in. We consider the
quantum description of the black hole interior A, along with the late-time Hawking
modes b(k)a(k). Consider the moment at the stretched horizon that k Hawking pairs
b(k)a(k) were produced9. The state of the Hawking pairs and the black hole interior
can be described by the density matrix

σb
(k)a(k)A = (|Φ〉〈Φ|⊗k)b(k)a(k) ⊗ ρA ,

where |Φ〉 = 1√
2 (|00〉+ |11〉) is a maximally entangled Hawking pair, and ρA is the

density matrix of the black hole interior right before the pair production event. By
Page’s theorem [289, 290], after the Page time ρA is close to being maximally mixed;
for the remainder of this argument, we will assume that ρA is exactly the maximally
mixed state on n qubits.10

As discussed in the previous section, by the time that Alice arrives at the
stretched horizon with b(k) in tow, the black hole interior (which now includes a(k))
has experienced extensive scrambling. We model this as follows. Let U be the uni-
tary representing the scrambling dynamics, which acts on A′ = a(k)A. From Alice’s
point of view, the state of the scrambled interior A′ and b(k) can then be described
by

τ b
(k)A′ = (Ib(k) ⊗ UA′)σb(k)A′(Ib(k) ⊗ UA′)†.

Because our understanding of the quantum mechanical evolution of black holes is
rather limited, we will model the unitary U as being Haar-random. (In fact our
arguments will carry through in the case that U is chosen from an ensemble of

9For simplicity here we assume that they are produced simultaneously rather than one-by-one,
but this does not hinder the argument. Indeed, if they are produced sequentially, then due to
arguments by Page [286, 287], the average rate of Hawking pair production is less than one pair per
scrambling time. Therefore, in a sequential production picture, all but the last Hawking pair will
have been scrambled by the time that Alice can enter the black hole. If Hawking radiation can be
modeled thermally, sequential emission is exponentially preferred over simultaneous emission.

10If ρA is ε-close to the maximally mixed state, then our final bounds will only acquire an
additional ε additive error.
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efficiently constructible unitaries that is sufficiently randomizing; we will discuss this
in more detail in Sec. 6.5.)

As Alice falls towards the singularity, she attempts to interact with a set S of
qubits of the interior in order to recover at least one unit of entanglement between
the interior and b(k). First, suppose S is a subsystem of A′ that has at most n/2
qubits. Then, by [280], we have that∫

dU
∥∥∥τ b(k)S − τ b(k) ⊗ τS

∥∥∥2

1
≤ |b(k)S| · Tr

[
(σb(k)A′)2

]
. (6.4.1)

We have that Tr
[
(σb(k)A′)2

]
= Tr

[
(|Φ〉〈Φ|b(k)a(k))⊗k ⊗ (ρA)2

]
= Tr [(ρA)2] = 2−n. The

dimension of b(k)S is at most 2n/2+k, so therefore∫
dU

∥∥∥τ b(k)S − τ b(k) ⊗ τS
∥∥∥2

1
≤ 2−n/2+k.

Thus, by the time Alice reaches the event horizon, with probability exponentially
close to one (over the choice of unitary U), any subset S of at most n/2 qubits of the
interior of the black hole will essentially be uncorrelated with her Hawking modes
b(k): the black hole dynamics “smears” the entanglement between b(k) and a(k) over
the entirety of the black hole. This holds for as long as k � n/2, i.e., as long as
the amount of material that Alice brings with her into the black hole is negligible
compared to the size of the black hole11. Therefore, unless Alice interacts with more
than half of the qubits of the black hole, she has no hope of decoding a partner qubit
that is maximally entangled with b(k) after crossing the event horizon.

However, can Alice interact with more than half of the qubits in A′? We assume
that Alice is a localized experimenter (such that she is unable to do parallel com-
putation on a spacelike region), so that she can only process at most O(1) qubits of
the black hole interior per Planck time. Thus, to touch at least n/2 qubits, Alice
would require Ω(n) Planck times. However, Alice also has no chance of doing this
before experiencing an untimely demise: the longest amount of time that can elapse
on Alice’s clock before she reaches the singularity is O(rs) = O(

√
n) in Planck units.

Again, she has no hope of decoding any entanglement between b(k) and A′. In other
words, because of black hole scrambling, Alice does not have enough time to verify
the entanglement between b(k) and a(k), and thus is unable to perform the AMPS

11Otherwise, if Alice is bringing a sizable fraction of the black hole’s mass with her across the
horizon, this could plausibly take the state of the black hole to before the Page time, change the
horizon size, or any number of other nonperturbative effects which break the setup of the paradox.
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experiment.

6.5 Discussion

We now elaborate upon several aspects of our argument, including discussing possible
objections.

6.5.1 Modeling scrambling dynamics

In our argument, we model the scrambling dynamics of the black hole as a generic
unitary sampled from the Haar distribution. As mentioned before, we model Uscr as a
generic unitary in order to capture the part of little-drama where fine-grained quanta
get scrambled. It does not model the other part of little-drama where macroscopic
objects are preserved, but we do not use this part in our argument.

An immediate objection to this modeling choice is that black hole dynamics can-
not, strictly speaking, look anything like a Haar-random unitary. This is because
a generic unitary will have exponential complexity: the minimum number of local
quantum operations that need to be applied in order to implement the unitary –
known as the circuit complexity of the unitary – is exponential in the number of
its degrees of freedom. Assuming the Physical Church-Turing Thesis12, an n-qubit
black hole that evolves for poly(n) Planck times should only be able to realize uni-
taries that have poly(n) circuit complexity, where poly(n) denotes some polynomial
in n. Perhaps unitary matrices with polynomial circuit complexity will not ade-
quately “smear” entanglement across the entire black hole interior, as required by
our argument.

As noted by Hayden and Preskill [280], one can model the dynamics of a black
hole using random unitary designs. Informally speaking, unitary designs are ensem-
bles of unitaries with polynomial circuit complexity that in many respects behave
like Haar-random unitaries. In our argument, the Haar unitary ensemble can be
replaced by an (approximate) unitary design and our conclusion remains essentially
unchanged: unitary designs, though possessing small circuit complexity, still “smear”
quantum information across all degrees of freedom. Unitary designs have been ex-
tensively studied in the quantum information community. By now, we know several
examples of (approximate) unitary designs [291, 292].

12Briefly, the Physical Church-Turing Thesis states that all computations in the physical universe
can be simulated, with polynomial time overhead, by a universal quantum computer.
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Still, what do we mean when we say that a particular black hole behaves like a
unitary randomly chosen from an ensemble? After all, a black hole behaves according
to none other but the unitary given by the theory of quantum gravity. Unfortunately,
since this theory is still unavailable to us, in our calculations we must make a “best
guess” at what a black hole unitary must look like. Without presupposing unjustified
constraints on the theory of quantum gravity, our best guess for black hole dynamics
is that the Hamiltonian governing the interior should be local and strongly mixing,
and that the black hole evolves in polynomial time. The Maximum Entropy Principle
from statistics and learning theory tells us that our best guess for the black hole
unitary is a randomly chosen one from the uniform distribution over unitaries with
polynomial circuit complexity13. We note that this ensemble of unitaries is known
to form an approximate unitary design [291], and thus has the scrambling properties
required by our argument.

6.5.2 Black holes in other dimensions.

One may also object that this argument is specific to spacetimes of dimension 3+1.
In higher dimensions this argument only becomes stronger, since in spacetimes with
spatial dimension d, the number of qubits that make up the interior Hilbert space,
|A|, scales like O(rd−2

s ), while the infall time scales like O(rs). As such, the infall
time is increasingly smaller with respect to |A| for d > 3. But, this is not necessarily
true for lower spatial dimensions. For example, in AdS3, the number of qubits and
the infall time both scale linearly with rs. Consequently, our previous trivial bound
on the number of accessible qubits does not suffice here. In this case one can appeal
to the fast scrambling conjecture to render the computation impossible. The fast
scrambling conjecture of Sekino and Susskind [281] states (among other things) that
black holes are the fastest scramblers in nature14. Lashkari et al. [282] formalized
this notion in terms of quantum information by stating that black holes saturate
the rs log rs lower bound for scrambling time. In this work, we consider a quantum
complexity formulation:

13The Maximum Entropy Principle is a formalization of Occam’s Razor in machine learning
and statistical learning theory [293]. It says that, given a set of hypotheses consistent with one’s
observations, one’s best hypothesis is the maximum entropy one: a randomly chosen one from that
set.

14We note that the fast scrambling conjecture stating that the fastest scrambling time for a black
hole is rs log rs is an asymptotic statement, and thus not broken by earlier statements of log rs
scrambling time at the stretched horizon.
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Conjecture 2. Let k � n/2, i.e., let k be much smaller than the number of qubits
in the black hole. Let U be the unitary corresponding to running black hole dy-
namics for time t on A′ = a(k)A, as measured by an asymptotic observer. Then
recovering the entanglement between a(k) and b(k) from A′ and b(k) requires time
at least t. More formally, for any unitary V acting on system A′, if νb(k)A′ =
(Ib(k) ⊗ V A′UA′)σb(k)A′(Ib(k) ⊗ V A′UA′)† is the state of the system after applying V U
to A′ , and if ∥∥∥νb(k)A′ − νb(k) ⊗ νA′

∥∥∥2

1
≥ δ ,

where δ is a small constant (say 0.01), then V has circuit depth at least t.

This is a circuit-depth version of the statement “black holes are the fastest scram-
blers in nature.” It says that if one wishes to invert the scrambling performed by the
black hole, then one requires at least the scrambling time to do so. If such a state-
ment is true, then in our model, unscrambling the entanglement between a(k) and
b(k) requires at least rs log rs time in any dimension, whereas the infall time scales
as rs. Therefore, such a conjecture would suffice for our arguments to hold in any
dimension.

6.5.3 Localization of the experimenter.

In our argument, we assume that Alice is localized throughout our experiment, and
therefore can access only O(rs) qubits after crossing the horizon. One might object
that if one knew the exact dynamics of Ũscr, one could set up the infalling matter
such that a nonlocal experiment is performed on the interior modes and the result is
then sent to Alice. However, this is impossible because Alice is out of causal contact
with most of the black hole interior [294] from which the results of the nonlocal
experiment would have to be sent. Therefore, even this non-local experiment cannot
reveal entanglement between the interior and exterior Hawking modes before Alice
hits the singularity.

6.5.4 Relation to prior works

We first note that in [294] arguments have already been made about the inability of
the infalling observer to access the entirety of the interior of the black hole except at
the singularity. These arguments are quite different in nature from the information-
theoretic ones of this paper. In particular, there appears to be the possibility to work
around the arguments in [294] by using multiple observers [295], something which
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does not seem to be an issue in the more information-theoretic arguments of this
note.

Readers may notice that our argument significantly resembles that given by
Hayden and Preskill [280]. While the techniques are similar, our conclusions and
assumptions differ in several ways. First, [280] concludes that black holes, rather than
being information sinks, are plausibly more like information “mirrors;” information
deposited into the black hole gets released (in scrambled form) as quickly as possible.
On the other hand, our goal is to demonstrate a lower bound on Alice’s ability to
recover a single qubit of information within the black hole after it has been scrambled.
Second, Hayden and Preskill explicitly model the joint state of the black hole and its
radiation as well as some reference system as a pure state. However, in the context
of the firewalls paradox, we cannot write down such a description to begin with! In
our setting, we focus solely on the part of the black hole that Alice sees after she has
collected her Hawking mode and has crossed the event horizon. This is consistent
with complementarity; we only need to provide a valid description of physics inside
the horizon, which need not be in a tensor product with the description of physics
outside the horizon.

Our proposal also shares some spiritual similarities with fuzzball complemen-
tarity [296], in which undisturbed freefall through the horizon is recovered in the
limit where the incident energy of the observer is much larger than the tempera-
ture of the black hole, in the sense that local properties of the infalling observer are
important to consider in both cases. We note that in the context of the fuzzball
program, the definition of complementarity invoked by AMPS—which we follow in
Sec. 6.2 when we define the Hilbert space relevant to the problem—is replaced by
a different and perhaps more correct definition involving the definition of the state
along the complete slice, both inside and outside of the horizon. While it would be
interesting to reformulate our results in that lens, it is perhaps unnecessary: in that
limit the fuzzballs program already precludes the need for a different resolution to
the information paradox! Instead, we emphasize that, even when cleaving as close to
AMPS-style complementarity definitions as possible, information- and complexity-
theoretic arguments by themselves strongly constrain the ability for any observer to
actually observe violation of monogamy of entanglement.

We also differ from the fuzzballs approach in analyzing operationally what is
possible for the observer to compute after crossing the stretched horizon of the black
hole on the way to an existent singularity. In this work, the singularity plays a vital
role in determining the longest possible time available to perform the computation.
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But, in fuzzball complementarity, the singularity is fuzzed out and resolved at some
characteristic fuzzball radius, behind which space stops existing. It may be interest-
ing to see by what degree our bounds would tighten in the specific case of fuzzballs;
we reiterate, though, that we are already able to demonstrate that we cannot opera-
tionally detect monogamy of entanglement even without the shorter longest possible
time for the computation given by the fuzzball program.

Finally, we also note the recent paper [297], which provides a concrete toy model
for fuzzball complementarity. It would be interesting to examine our proposals in
the context of this work, since the dynamics of infalling excitations discussed in [297]
may be able to inspire and inform a similarly concrete realization of the scrambling
dynamics that we discussed in Sec. 6.3.1.

6.5.5 Other black hole geometries

We have thus far restricted our attention to only Schwarzschild black holes. It is
a reasonable question to ask what happens once we consider other geometries with
nonzero spin or charge. With regard to these, the addition of spin or charge to a
black hole splits the horizon into an inner and an outer horizon. It is possible in
such geometries to spend a longer amount of time between the two horizons, so in
principle Alice could have enough time to complete her monogamy verification before
hitting the singularity, thus implying a naive breakdown of the story up to this point.
Alternatively, in maximal extensions of these black hole spacetimes, Alice could pass
from the black hole interior into other asymptotically flat spacetime regions and
continue to exist indefinitely.

We note, however, that the inner horizon is not entirely understood from either
a general-relativistic or quantum-theoretic perspective [298, 299]. (For example,
the inner horizon is strongly believed to be unstable.) As such, it is likely that
our assumptions about quantum mechanics and general relativity would need to be
modified (at least in the vicinity of the inner horizon) in order to discuss charged
spinning black holes, and it is another question entirely what form the AMPS paradox
would take if it persists.

6.6 Conclusion

We have described a resolution of the information paradox that amounts to a weak-
ening of the no-drama condition — a new condition that we call little-drama. We
suppose that quantum systems that cross the event horizon of a black hole experience
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nontrivial evolution which entangles them with other degrees of freedom in the black
hole interior. Such evolution inside the horizon is the complementary description
of scrambling on the stretched horizon and constitutes a mild departure from the
predictions of a non-gravitating field theory.

The little-drama condition allows for an apparent violation of monogamy of
entanglement that is similar in spirit to the Harlow-Hayden proposal. Past the
Page time, an observer can verify that early and late Hawking radiation have the
right entanglement structure outside of a black hole and then smoothly pass through
the event horizon. While the smooth crossing implies a violation of monogamy of
entanglement—it would seem that the late radiation is maximally entangled with
both the early radiation and the black hole interior—we found that the observer
could not verify this violation before encountering the singularity.

It is also worth emphasizing that, as an information-theoretic proof, our ar-
guments for larger than three spacetime dimensions are resilient to the Oppenheim-
Unruh precomputation-style attacks, which are complexity-theoretic in nature. Though
our complexity-theoretic argument (which holds in all dimensions) does not neces-
sarily share this feature, it is possible that precomputation cannot simultaneously
prevent both our construction and the Harlow-Hayden argument from resolving the
AMPS paradox. Two distinct and mutually exclusive precomputation style attacks
are required to foil both obstacles to AMPS. In the first, one collapses halves of Bell
pairs into a black hole to evade Harlow-Hayden. In the second, one takes entire Bell
pairs and collapses them into a black hole to evade our arguments. We note it is
not simultaneously possible to do both for any single qubit. Therefore these two
resolutions of the information paradox might be complementary in a different sense
of the word.

Directions for future research include finding a model for black hole dynamics
that faithfully captures all parts of little-drama. Other directions include working out
the details for other black hole geometries with nonzero spin or charge. As previously
discussed, it is not clear that such geometries would be precluded from violation of
monogamy of entanglement in the same way, but a parametric comparison of how
much leeway they have would be interesting to conduct. It would also be interesting
if the information-theoretic proof method could be extended to spacetimes with fewer
than three spatial dimensions without assuming the fast-scrambling conjecture.
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7.1 Introduction

De Sitter spacetime, and approximations to it, have come to play an important role
in modern cosmology, both in inflation and in the likely future evolution of our uni-
verse. The Hubble parameter in de Sitter is constant and related to the cosmological
constant by H =

√
Λ/3. A stationary observer is surrounded by a cosmological

horizon at a distance R = H−1. Quantum field theory (QFT) in curved spacetime
describes a unique state that is both de Sitter invariant and Hadamard (well-behaved
at short distances), called the Euclidean (or Bunch-Davies [145, 146]) vacuum for a
free, massive scalar field or the Hartle-Hawking vacuum [147] for an interacting scalar
field. A particle detector sensitive to a field in the Hartle-Hawking vacuum will de-
tect thermal Gibbons-Hawking radiation with a temperature T = H/2π [148]. Each
horizon-sized patch (which we will henceforth simply call a “patch”) of de Sitter
can be associated with an entropy equal to the area of the horizon in Planck units,
S = 3π/GΛ. In horizon complementarity, the quantum state of the bulk of each
patch can be described by a density operator defined on a Hilbert space of dimen-
sion dimH = eS [149, 150].

Conventional wisdom holds that the Hartle-Hawking vacuum experiences fluctu-
ations, which may be thought of as either “quantum” or “thermal,” since a patch is
a quantum system at a fixed temperature. These fluctuations play several important
roles in modern cosmological models. During inflation, when the metric is approxi-
mately de Sitter, fluctuations seed the density perturbations responsible for the cos-
mic microwave background (CMB) anisotropies and large-scale structure [151–153].
Eternal inflation (either stochastic [154–156] or in a landscape of vacua [157–161])
makes use of fluctuations upward in energy density, often described as “uptunnel-
ing” [162, 163]. Finally, the phenomena of Poincaré recurrences and fluctuations into
Boltzmann brains can be problematic features of long-lived de Sitter phases [164–
166].

We will argue that some of this conventional wisdom is wrong. Although a
patch in the Hartle-Hawking vacuum is in a thermal state, we argue that it does
not experience any kind of time-dependent fluctuations. The density operator in the
patch takes the form ρ̂ ∼ e−βĤ , where β = 1/T and Ĥ is the static Hamiltonian. The
state is stationary; there is no time dependence of any sort. While it is true that an
out-of-equilibrium particle detector inside the patch would detect thermal radiation,
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there are no such particle detectors floating around in the Hartle-Hawking vacuum.1
In fact, any particle detector placed in the vacuum would equilibrate, reaching a
stationary state with thermal occupation numbers [168].

Fluctuations observed in a quantum system reflect the statistical nature of mea-
surement outcomes. Making a definite measurement requires an out-of-equilibrium,
low-entropy detection apparatus that interacts with an environment to induce de-
coherence. Quantum variables are not equivalent to classical stochastic variables.
They may behave similarly when measured repeatedly over time, in which case it is
sensible to identify the nonzero variance of a quantum-mechanical observable with
the physical fluctuations of a classical variable. In a truly stationary state, how-
ever, there is no process of repeated measurements and hence no fluctuations that
decohere. We conclude that systems in such a state—including, in particular, the
Hartle-Hawking vacuum—never fluctuate into lower-entropy states, including false
vacua or configurations with Boltzmann brains.

Although our universe, today or during inflation, is of course not in the vacuum,
the cosmic no-hair theorem [8–10] implies that any patch in an expanding universe
with a positive cosmological constant will asymptote to the vacuum. Within QFT in
curved spacetime, the Boltzmann brain problem is thus eliminated: a patch in eternal
de Sitter can form only a finite (and small) number of brains on its way to the vacuum.
At the same time, the standard story of inflationary perturbations remains intact:
decoherence is accompanied by copious production of entropy during reheating. Our
analysis of fluctuations only calls into question the idea of dynamical transitions
from stationary states to states with lower entropy. We point out that the stochastic
approximation in slow-roll eternal inflation [154–156] makes use of such transitions
to describe putative upward fluctuations of the inflation field. Our picture rules out
such fluctuations and may therefore change the conventional understanding of the
conditions required for eternal inflation to occur. In particular, eternal inflation is
no longer an inevitable consequence of monomial inflation potentials like V = m2ϕ2.

The cosmic no-hair theorem is given in the context of QFT in curved space-
time. Once quantum gravity is included, we need to be more careful. If we accept
the notion of horizon complementarity [150, 169, 170, 263], we should not use lo-
cal QFT to simultaneously describe locations separated by a horizon. Rather, we
should treat each patch of eternal de Sitter space, together with its horizon, as a
closed, finite-dimensional quantum system. The system is not stationary, so must

1See [167] for a discussion on the difficulties of measurements in a finite-dimensional asymptotic
de Sitter space if a measuring device were indeed present.
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undergo Poincaré recurrences as well as fluctuations, including into configurations
we would describe as Boltzmann brains. Alternatively, there might be a higher-
entropy vacuum to which the system can decay, in which case the false de Sitter
vacuum patch can be thought of as an open subsystem embedded in a larger theory.
If the higher-entropy vacuum is de Sitter, then the full system still has a finite-
dimensional Hilbert space, subject to Poincaré recurrences and fluctuations. If there
is a Minkowski vacuum with potentially infinite entropy, the larger theory has an
infinite-dimensional Hilbert space. Here, we argue that the QFT analysis applies,
and the patch rapidly approaches the vacuum and becomes quiescent, with only a
finite number of fluctuations along the way.

This paper is organized as follows:

• In Section 7.2 we define what we mean by “quantum fluctuations,” distinguish-
ing between three independent concepts: measurement-induced fluctuations,
Boltzmann fluctuations, and vacuum fluctuations. Measurement-induced fluc-
tuations appear when an out-of-equilibrium measuring apparatus interacts with
a quantum system, which results in time-dependent branching of the wave func-
tion. In contrast, “Boltzmann fluctuations” are inherently dynamical statisti-
cal fluctuations, familiar from statistical mechanics. “Vacuum fluctuations,”
which exist even in stationary states, represent differences between classical
and quantum behavior, but do not correspond to dynamical (time-dependent)
processes.

• In Section 7.3 we examine eternal de Sitter space in or near the unique Hartle-
Hawking vacuum. We first describe the system using QFT in a fixed back-
ground. Because the Hartle-Hawking vacuum is stationary, we argue that there
are no dynamical fluctuations, despite the fact that an out-of-equilibrium de-
tector (of which there are none present) would measure a nonzero temperature.
The cosmic no-hair theorem ensures that all states evolve toward the vacuum,
so the system must settle down to a state that is free of dynamical fluctuations.
In the context of horizon complementarity, however, each horizon volume can
be treated as a system described by a finite-dimensional Hilbert space, and the
cosmic no-hair theorem does not apply. If de Sitter space in horizon comple-
mentarity is eternal, there will be recurrences and Boltzmann fluctuations, and
the conventional picture is recovered.

• In Section 7.4, we turn to models that contain false de Sitter vacua. In semi-
classical quantum gravity, or in complementarity in a landscape that includes
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a Minkowski vacuum, the dynamics occur in an infinite-dimensional Hilbert
space. The situation is then similar to QFT in global de Sitter, where each
patch can relax to a stationary quantum state, free of dynamical fluctuations.
In complementarity without a Minkowski vacuum, when all vacua are de Sit-
ter, there will still be Boltzmann fluctuations, since the total Hilbert space is
finite-dimensional.

• In Section 7.5, we discuss the ramifications of this analysis. First, the con-
ventional Boltzmann brain problem is greatly ameliorated. Even with horizon
complementarity, there are no fluctuations in the vacuum to lower-entropy
states as long as the larger Hilbert space is infinite dimensional. Similarly, we
do not expect uptunneling to higher-energy vacua, which dramatically alters
the picture of eternal inflation on a landscape. The standard picture of den-
sity fluctuations from inflation remains unchanged, but the understanding of
stochastic eternal inflation could be significantly different. Finally, we note that
these results depend crucially on one’s preferred version of quantum mechanics.

7.2 Fluctuations in Quantum Systems

One way of thinking about the fluctuations of a quantum system is to consider an
observable represented by a self-adjoint operator Ô. If a state |Ψ〉 is not an eigenstate
of Ô, then the variance

(∆Ô)2
Ψ = 〈Ô2〉Ψ − 〈Ô〉2Ψ (7.2.1)

will be strictly positive. Hence, Ô does not have a definite value. However, a
nonzero variance is not a statement about the dynamics of the state, which may
well be stationary; it is merely a statement about the distribution of measurement
outcomes. In quantum field theory, it is common to refer to radiative corrections
from virtual particle pairs as “quantum”, “zero-point,” or “vacuum” fluctuations,
which give rise to phenomena such as the Lamb shift or Casimir effect; they are not,
however, “fluctuations” in the sense of a dynamical process that changes the state of
the system.

In order to facilitate the investigation of the nature of fluctuations, we define
and distinguish between the following types:

Vacuum fluctuations are non-dynamical features of quantum states, which dis-
tinguish between classical and quantum behavior, and which ultimately arise
as a consequence of the uncertainty principle. In quantum mechanics, vacuum
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fluctuations are described by (7.2.1); specifically, in quantum field theory, these
fluctuations are understood as radiative corrections from virtual particle pairs.

Measurement-induced fluctuations are fluctuations whose dynamics are gener-
ated from a series of measurements of a quantum-mechanical system, resulting
in decoherence and wave function branching.

Boltzmann fluctuations are dynamical fluctuations that arise when the microstate
of a system is time-dependent, even though the coarse-grained macrostate may
be stationary. They are associated, for example, with downward fluctuations
in entropy of a thermal macrostate.

To study the Boltzmann brain problem and eternal inflation, we focus on the lat-
ter two types of fluctuations, in which time dependence plays a role. For conve-
nience we will use the term “dynamical fluctuations” to refer to either Boltzmann
or measurement-induced types. Vacuum fluctuations, of course, are a feature of all
quantum systems, but our analysis will not be concerned with such non-dynamical
features.

In the remainder of this section we clarify the meanings of “measurement-induced
fluctuations,” along with the role of measuring devices, and “Boltzmann fluctua-
tions.”

7.2.1 Decoherence and Everettian worlds

Let us rehearse the standard understanding of quantum measurement and decoher-
ence in the Everett formulation [7, 171, 172]. There are two underlying postulates
of the Everett formulation:

1. The world is represented by quantum states |ψ〉 that are elements of a Hilbert
space H.

2. The time evolution of states is generated by a self-adjoint Hamiltonian operator
Ĥ, according to the Schrödinger equation

Ĥ|ψ(t)〉 = i∂t|ψ(t)〉 . (7.2.2)

In order to extract a description of a classical world from this formulation, we need to
connect observables with measurement outcomes; this connection may be provided
by the decoherence program.
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As an illustration of decoherence, consider a Hilbert space that factors into an
apparatus A that may observe a system S:

H = HS ⊗HA . (7.2.3)

The Schmidt decomposition theorem allows us to write an arbitrary state as

|Ψ〉 =
∑
n

cn|sn〉|an〉 , (7.2.4)

where the |sn〉 form an orthonormal basis for the system and |an〉 are orthogonal
states of the apparatus. We assume that dimHS < dimHA, and the sum over n
runs up to dimHS. The bipartite form of (7.2.4) is unique up to degeneracies in the
coefficients |cn|. (For simplicity, we assume there are no degeneracies throughout the
remainder of this paper.) Although the Schmidt decomposition identifies a unique
basis, there is no mechanism in place to ensure that system and apparatus states
are ones that appropriately describe actual measurements. Interactions between the
system/apparatus and the environment are crucial for using decoherence to solve the
measurement problem.

Incorporating the environment E, the Hilbert space is

H = HS ⊗HA ⊗HE . (7.2.5)

It may be possible to write a state in the full Hilbert space using a generalized
Schmidt decomposition

|Ψ〉 =
∑
n

cn|sn〉|an〉|en〉 , (7.2.6)

where |sn〉 are system basis states; |an〉 are linearly independent, normalized appara-
tus states; and |en〉 are mutually noncollinear, normalized environment states. The
triorthogonal uniqueness theorem [173] guarantees that the form of this tripartite de-
composition, if it exists, is unique. (Although this decomposition does not generically
exist, it is a necessary feature of the standard decoherence program [7].) Observa-
tions are restricted to the system and apparatus, so predictions of the outcomes of
measurements are encoded in the reduced density matrix for the system and appa-
ratus, found by tracing out the unobserved degrees of freedom of the environment
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from the full density matrix ρ = |Ψ〉〈Ψ|:

ρSA = TrE |Ψ〉〈Ψ|
=
∑
m,n

cmc
∗
n 〈en| em〉 |sm〉|am〉〈sn|〈an| . (7.2.7)

In order for this formalism to describe a quantum state that splits into inde-
pendent Everettian branches or “worlds,” several requirements must be satisfied.
First, decoherence must occur—there must be no quantum interference between the
different worlds, so observers on one branch evolve independently of the existence
of other branches. The absence of interference between states in HS ⊗HA requires
that the reduced density matrix (7.2.7) be diagonal, i.e., that the environment states
associated with different branches be orthogonal.

Any density matrix is diagonal in some basis, but that basis might not be a
physically viable one, nor one that is in the tripartite form of (7.2.6), where mea-
surement outcomes are accurately reflected in the state of the apparatus. The second
requirement is, therefore, that there must exist a basis of apparatus “pointer states”
in which decoherence naturally occurs through the dynamical diagonalization of ρSA
in this preferred basis [4, 7, 174–176]. A precise characterization of the pointer states
is subtle and context-dependent but roughly corresponds to states of the apparatus
that are macroscopically robust (stable). Any interactions between the apparatus
and environment should have a minimal effect on the system-apparatus correlations.
In principle, we can deduce the pointer states by writing the Hamiltonian as a sum
of system/apparatus, environment, and interaction terms:

Ĥ = ĤSA ⊗ 1E + 1SA ⊗ ĤE + ĤI . (7.2.8)

The pointer states |an〉 are those whose projectors P̂n = |an〉〈an| commute with the
interaction Hamiltonian,

[ĤI , P̂n] = 0 . (7.2.9)

In practice, the fact that interactions are local in space implies that pointer states
for macroscopic objects are those with definite spatial configurations. For instance,
if a large object (a billiard ball, a planet, a cat) is in a quantum superposition of
two different position eigenstates, interactions with the environment (the air in a
room, the cosmic background radiation) will rapidly cause those two possibilities to
decohere, creating separate branches of the wave function.

The final feature that is important to describe branching is an arrow of time. We
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conventionally imagine that worlds split via decoherence as time passes but almost
never merge together, because we implicitly assume that the universe is very far
from equilibrium and has evolved from a lower-entropy state in the past. In the
present context, “low entropy” means that subsystems begin in a particular state of
little or no entanglement, as in (7.2.10). As we demonstrate in the next subsection,
dynamical interactions between apparatus and environment naturally increase the
amount of entanglement, leading to branching and generating entropy.2 The standard
picture of decoherence and branching is specific to the far-from-equilibrium situation.
Near equilibrium, decoherence can arise through rare fluctuations, but is not tied to
quantum measurements, as we discuss in Subsection 7.2.3.

7.2.2 Measurement-induced fluctuations

We can use the decoherence program from the previous section to understand the
nature of measurement-induced fluctuations. For clarity in the following example, let
us identify states in S, A, and E explicitly with subscripts. In the case of real-world
quantum measurement, we posit that there is initially no entanglement between any
of the factors:

|Ψ(t0)〉 = |σ∗〉S|aR〉A|e∗〉E . (7.2.10)

The initial state, denoted by an asterisk, of the system can be arbitrary; but the
measuring apparatus must be in a specific “ready” state, denoted by the subscript
R. For definiteness, imagine that the system is a single qubit with basis states
{|+〉S, |−〉S}. The apparatus should begin in a ready state and record the results of
repeated measurements of the system. We take the apparatus state to be a tensor
product of a number of registers (at least one for each measurement we want to
perform), where each register is a qutrit with three basis states {|+〉A, |−〉A, |0〉A}.
The ready state of the apparatus is |aR〉A = |000 · · · 〉A, and a measurement correlates
one of the registers with the state of the system. That is, under unitary evolution
we record a measurement in the first register via

|+〉S|000 · · · 〉A → |+〉S|+ 00 · · · 〉A , (7.2.11)
|−〉S|000 · · · 〉A → |−〉S| − 00 · · · 〉A . (7.2.12)

2For the purposes of this paper, we are concerned with only the von Neumann entropy from
entanglements. There is also the thermodynamic entropy associated with a mixed thermal den-
sity matrix, which sets an upper bound on the von Neumann entropy. As the quantum system
thermalizes, the von Neumann entropy approaches the thermodynamic entropy [177].
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If the apparatus does not start in the ready state, we cannot be confident that it
will end up correctly correlated with the state of the system. Since unitary evolution
must be reversible, there can be no valid evolution that takes |+〉S|ψ〉A to |+〉S|+〉A
for every possible |ψ〉A, for example.

Imagine that the system starts in a superposition, so the state takes the form

|Ψ(t0)〉 = (α|+〉S + β|−〉S) |000 · · · 〉A|e∗〉E . (7.2.13)

The first step in the evolution is premeasurement, which correlates the apparatus
with the system:

|Ψ(t1)〉 = (α|+〉S|+ 00 · · · 〉A + β|−〉S| − 00 · · · 〉A) |e∗〉E . (7.2.14)

The second step is decoherence, in which the apparatus becomes entangled with the
environment:

|Ψ(t2)〉 = α|+〉S|+ 00 · · · 〉A|e+〉E + β|−〉S| − 00 · · · 〉A|e−〉E . (7.2.15)

Next, we reset in order to perform the measurement again, which means returning
the system to its original state. Generally, the environment states will also evolve
during this operation. We leave the apparatus unchanged in order to keep a record
of the prior measurement outcomes:

|Ψ(t3)〉 = α|σ∗〉S|+ 00 · · · 〉A|ẽ+〉E + β|σ∗〉S| − 00 · · · 〉A|ẽ−〉E . (7.2.16)

Finally, we repeat the entire procedure, this time recording the measurement outcome
in the second register of the apparatus. After one more iteration of premeasurement
and decoherence, we end up with

|Ψ(t4)〉 = α2|+〉S|+ +0 · · · 〉A|e++〉E
+ αβ|+〉S| −+0 · · · 〉A|e−+〉E
+ αβ|−〉S|+−0 · · · 〉A|e+−〉E
+ β2|−〉S| − −0 · · · 〉A|e−−〉E . (7.2.17)

At this point the wave function consists of four different decoherent branches, pro-
vided that all of the environment states are approximately orthogonal, 〈eµ| eν〉E ≈ 0.

In this context, the statement “we observe quantum fluctuations” is a statement



116

about measurement-induced fluctuations: it is simply the observation that the his-
tory of each individual decoherent branch is one in which the state of the apparatus
experiences a time series of observational outcomes, bouncing between |+〉 and |−〉.
On a randomly chosen branch, the history will exhibit fluctuations between the two
outcomes, and all macroscopic objects are robust and physically well-defined (pointer
states) by construction. Schrödinger cat superpositions are not allowed, and different
worlds or branches must evolve separately.

We see that obtaining the standard measurement outcomes requires both the
apparatus to be initially in its ready state and the three Hilbert space factors (sys-
tem/apparatus/environment) to be initially unentangled. These conditions highlight
the crucial role of entropy production in the branching of the wave function and thus
in the existence of measurement-induced fluctuations. The reduced density matrix
ρSA has a von Neumann entropy

SSA = −Tr ρSA log ρSA . (7.2.18)

Since the state as a whole is pure in our example, all of the entropy comes from
the entanglement between SA and E. In the initial state (7.2.13), there is no en-
tanglement, and SSA = 0. The entropy increases as the state evolves into two
branches (7.2.15) and again as it evolves into four branches (7.2.17). Since the en-
tropy of the pure state vanishes, the entropy of the environment equals that of the
system/apparatus factor and increases as well. Without entropy production, there
are no measurement-induced fluctuations.

Now consider what happens if the entire wave function describing the system,
apparatus, and environment (i.e., the whole universe) begins in an energy eigenstate.
We assume there are interaction terms in the Hamiltonian that connect the different
factors of the Hilbert space. An energy eigenstate obeys

Ĥ|Ψn〉 = En|Ψn〉 , (7.2.19)

where Ĥ is the full Hamiltonian. Because the wave function is in an energy eigenstate,
its time evolution just takes the form of multiplication by an overall time-dependent
phase:

|Ψn(t)〉 = e−iEn(t−t0)|En〉 . (7.2.20)

The overall phase factor does not affect any of the observable properties of the state;
therefore, it is sensible to refer to such a state as “stationary,” and its associated
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density operator
ρΨ = |Ψn(t)〉〈Ψn(t)| = |En〉〈En| (7.2.21)

is manifestly time independent. Another example of stationary density operator is
that of a thermal state with temperature β−1:

ρ ∼ exp(−βĤ) =
∑
n

e−βEn|En〉〈En| . (7.2.22)

Indeed, any density matrix diagonal in the energy eigenbasis will be stationary.
In a stationary state, none of the behavior we characterized as “measurement-

induced fluctuations”—branching of the wave function into a set of histories with
stochastic measurement outcomes over time—is present. In fact, there is no time
dependence at all.3 Certainly, the variance of an observable Ô can be positive in
a stationary state, but that variance only leads to dynamical fluctuations if the
observable is actually measured. Doing so requires an apparatus that is not itself
stationary. Indeed, the apparatus must start in a specific ready state, a condition that
we may describe as low entropy. If a quantum state describes the whole universe (as
it does in cosmology), and this state is stationary, then it cannot undergo dynamical
fluctuations, because nothing can actually change as time passes. For a thermal state
in particular, it will be the case that a particle detector beginning in its ready state
would detect thermally fluctuating particles; but if all we have to use as a detector
is a part of the stationary system itself, it will simply remain stationary, just as the
rest of the quantum state does.

7.2.3 Boltzmann fluctuations

There is an important difference between a quantum-mechanical thermal state and
one in classical statistical mechanics. Classically, a state in thermal equilibrium has a
uniform temperature in space that is also constant in time. However, this description
is macroscopic and obtained by coarse graining. Any realization of such a system

3Even in stationary states, one can define an effective evolution with respect to correlations
with a clock subsystem [178]. The effective time parameter τ has nothing to do with the ordinary
coordinate time t; all such time evolutions are present at every moment of (ordinary) time. From
this perspective, a large number of Boltzmann brains and similar fluctuations actually exist at
every moment in an apparently stationary spacetime. Such a conclusion would apply to Minkowski
spacetime as well as to de Sitter, in conflict with the conventional understanding that dynamical
fluctuations in de Sitter depend on the Gibbons-Hawking temperature (but see [179, 180]). This
kind of effective evolution is fundamentally different from the ordinary evolution studied in this
paper.
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with nonzero temperature has a microstate that is time-dependent. For instance, the
atoms and molecules in a box of gas are individually moving, even if the temperature
and density are constant. The system will, therefore, undergo rare fluctuations to
nonequilibrium states. The probability of observing such a fluctuation to a state with
entropy ∆S lower than equilibrium scales as ∼ e−∆S. To avoid confusion we refer to
such events, in which the evolution of the microstate causes a reduction in entropy,
as “Boltzmann fluctuations,” to distinguish them from “measurement-induced fluc-
tuations” where the wave function branches, which increase von Neumann entropy.

In quantum mechanics, individual energy eigenstates are stationary, in contrast
with classical states of nonzero energy. Stationary quantum states will not experience
Boltzmann fluctuations. A statistical ensemble of stationary states will itself be
stationary; we expect no Boltzmann fluctuations there as well. In particular, a closed
system in a mixed thermal state, with a stationary density operator ρ ∼ e−βĤ , should
not have Boltzmann fluctuations when regarded as a statistical ensemble of energy
eigenstates. However, we most commonly encounter thermal density matrices after
tracing over environmental degrees of freedom. In that case the remaining system is
not closed, and we need to be a bit more careful.

Consider a decomposition of a closed quantum system into a set of macroscopi-
cally observable system variables and an environment:

H = HS ⊗HE . (7.2.23)

(We have absorbed the apparatus that appears in (7.2.5) into our definition of the
macroscopic system.) The environment includes local but microscopic variables (such
as the positions and momenta of individual gas molecules, as opposed to macroscopic
fluid variables such as temperature and pressure), as well as causally disconnected
degrees of freedom (such as modes outside a cosmological horizon). Expectation
values of macroscopic observables in a pure state |Ψ〉 ∈ H are encoded in the reduced
density matrix ρS = TrE |Ψ〉〈Ψ|, with entropy given by SS = −Tr ρS log ρS. While
the evolution of the pure state |Ψ〉 is unitary, that of ρS is generally not. It is
described by a Lindblad equation [181], which allows for transfer of information
between the macroscopic system and the environment:

ρ̇S = i[Ĥ∗, ρS] +
∑
n

(
L̂nρSL̂

†
n −

1
2 L̂
†
nL̂nρS −

1
2ρSL̂

†
nL̂n

)
. (7.2.24)

The Lindblad operators L̂n characterize the non-unitary part of the evolution of the



119

x
0

0
0

0
0

0

x
x

x
x

0
0

0

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

.  .  .  .  .  .  .  .

x 0

0 0

0( ) ( ) ( )( )
Figure 7.1. Schematic evolution of a reduced density matrix in the pointer basis. The
density matrix on the left represents a low-entropy situation, where only a few states are
represented in the wave function. There are no off-diagonal terms, since the pointer states
rapidly decohere. The second matrix represents the situation after the wave function has
branched a few times. In the third matrix, the system has reached equilibrium; the density
matrix would be diagonal in an energy eigenbasis, but in the pointer basis, decoherence has
disappeared and the off-diagonal terms are nonzero. The last matrix represents a Boltz-
mann fluctuation in which one pointer state has fluctuated into existence by decohering
with respect to the other states.

system as induced by interactions with the environment, and will depend on the
specific setup being studied. The Hermitian operator Ĥ∗ is not necessarily equal
to the self-interaction Hamiltonian of the system alone; it captures the part of the
entire Hamiltonian that induces unitary evolution on the reduced density matrix,
including possible renormalization effects due to interaction with the environment.
A system far from equilibrium will generally exhibit dissipation and entropy increase
(see e.g. [182]), and we may define a dissipation timescale on which the system will
approach a stationary state.

On much longer timescales, however, even systems with approximately-stationary
reduced density matrices can experience decoherence and transitions to lower-entropy
states, in precise analogy with Boltzmann fluctuations in classical statistical me-
chanics. In Figure 7.1 we provide a schematic representation of the evolution of the
reduced density matrix, written in the pointer basis. The first two entries show the
splitting of branches of the wave function starting from a low-entropy configuration,
as described for example by the transition from (7.2.13) to (7.2.15) and to (7.2.17).
The state branches and decoheres, remaining diagonal in the pointer basis. Even-
tually, it approaches equilibrium and becomes diagonal in the energy eigenbasis; by
that point, the off-diagonal elements in the pointer basis are comparable to the diag-
onal ones, and the pointer states are no longer decoherent. From equilibrium, there
can be rare fluctuations (if the total Hilbert space is finite-dimensional) to lower-
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entropy configurations where one branch has once again decohered from the rest, as
shown in the last entry.

Crucially, the existence of such fluctuations depends on the dimensionality dE
of the Hilbert space HE of the environment (assumed to be larger than the dimen-
sionality of the system’s Hilbert space HS). For finite dE, Hilbert space is bounded,
and one can derive a quantum version of the Poincaré recurrence theorem [164]; for
infinite dE, the recurrence time goes to infinity, and excitations in the system can
dissipate into the environment and never come back. Zurek [183] has shown that,
under reasonable assumptions concerning the initial wave function and the distribu-
tion of eigenvalues, the correlation amplitudes governing off-diagonal elements in the
reduced density matrix will have an average of zero and experience fluctuations with
a magnitude that scales as

∆ ∼ d
−1/2
E . (7.2.25)

In a finite-dimensional Hilbert space, Boltzmann fluctuations are inevitable; however,
in an infinite-dimensional space, the system can settle into equilibrium and stay there
forever. The reduced density matrix corresponding to the latter asymptotes to a
stationary form, free of Boltzmann fluctuations.

This discussion presumes that the branching structure of the wave function can
be discerned from the form of the reduced density matrix for the macroscopic vari-
ables HS. In general, we cannot tell what states of a quantum system are actually
realized on different branches simply by looking at its reduced density matrix.4 For
example, we might have a single qubit that takes on different states on three different
branches of the wave function, specified by three mutually orthogonal environment
states:

|Ψ〉 = 1√
2
|+ z〉S|e↑〉E + 1

2 |+ x〉S|e→〉E −
1
2 | − x〉S|e←〉E . (7.2.26)

The reduced density matrix for the qubit is

ρS = 1
2 |+ z〉S〈+z|+

1
4 |+ x〉S〈+x|+

1
4 | − x〉S〈−x| (7.2.27)

= 3
4 |+ z〉S〈+z|+

1
4 | − z〉S〈−z| . (7.2.28)

In the last line, the existence of three branches is completely obscured; the reduced
density matrix does not reveal which states of the system exist as part of distinct

4We thank Alan Guth, Charles Bennett, and Jess Riedel for discussions on this point.
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worlds.
Thus, the reduced density matrix alone is not enough information to reveal what

is truly happening inside a system. Indeed, it is possible to construct a stationary re-
duced density matrix from an appropriate mixture of nonstationary states by tracing
out the environment. Therefore, the fact that a reduced density matrix is stationary
does not suffice to conclude that there are no dynamical processes occurring on dis-
tinct branches within the system that it describes; for that, it is necessary to consider
the full quantum state. When we discuss the thermal nature of a patch of de Sitter
space in Section 7.3.1, we have the benefit of knowing the full state of the de Sitter
vacuum, allowing us to circumvent this issue and draw conclusions about the (lack
of) dynamics in a patch.

7.3 Single de Sitter Vacua

We now apply these ideas to de Sitter cosmology—specifically, to the case of a unique
vacuum with Λ > 0. In the Hartle-Hawking vacuum, the quantum state of any one
causal patch is described by a thermal reduced density matrix. As emphasized in
Subsection 7.2.3 above, we cannot claim that the patch is stationary on the sole basis
of its reduced density matrix; however, given that we know the full vacuum state, we
argue that the patch is indeed stationary. Were we to observe the patch, we would see
fluctuations, but in the absence of an external observing device, nothing fluctuates.
In particular, there are no decohered branches of the wave function containing time-
series records of fluctuating observables. This picture does not apply if horizon
complementarity is valid; in this case the entire Hilbert space is finite-dimensional,
and unless it starts there, the state cannot asymptote to the vacuum as t → ∞. In
complementarity, we expect Boltzmann fluctuations and Poincaré recurrences.

7.3.1 Eternal de Sitter

Let us recall some basic properties of quantum fields in de Sitter space [168, 184].
De Sitter space is the unique maximally symmetric spacetime with positive curvature.
In 4D, it has a scalar curvature 12H2 and satisfies the Einstein equations with a
cosmological constant Λ = 3H2, where H−1 is the radius of de Sitter space. Consider
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a massive5, noninteracting scalar field ϕ, which satisfies the Klein-Gordon equation

(�−m2)ϕ = 0 (7.3.1)

in the de Sitter metric. In order to quantize fields in de Sitter space, we must first
choose a coordinate system. There are numerous possibilities, but we narrow the
scope to flat coordinates and static coordinates, as they are used most often in the
literature.

In flat coordinates, the metric reads

ds2 = 1
H2τ 2

(
−dτ 2 + dxidx

i
)
, (7.3.2)

which has the form of a flat, expanding Friedmann-Robertson-Walker metric with a
constant Hubble parameter H and conformal time τ . In these coordinates, there is
no timelike Killing vector to provide a sensible prescription for defining modes of ϕ.
Since there is translational and rotational invariance among the spatial directions,
we are still able to separate the mode solutions with wave number ~k as

f(τ)ei~k·~x (7.3.3)

for some function f . Thus, we may attempt to define modes in the asymptotic re-
gions of de Sitter, I±, by analogy with Minkowski space. Because of this analogy,
the vacuum defined by these modes will have the same symmetries as the free field
Minkowski vacuum. Unfortunately, the asymptotic regions are not static in an ex-
panding universe, so we are left to define modes in the adiabatic approximation for
a universe that has an infinitely slow expansion. The Euclidean vacuum, formed
from the adiabatic modes, is invariant under the de Sitter group and, thus, does
not change with time. Although de Sitter invariance alone does not define a unique
state, the Euclidean vacuum is the unique de Sitter-invariant Hadamard6 state for a
massive, noninteracting scalar field [185, 188–192].

5We do not consider the massless case, since there is no (vacuum) state that is invariant under the
full de Sitter group [185], which is problematic for the cosmic no-hair theorem in Subsection 7.3.2.
However, if one assumes the shift invariance of the massless scalar field is just a global gauge
transformation, then a fully de Sitter invariant vacuum can in fact be defined [186].

6Relaxing the Hadamard condition [187] yields a continuous family of de Sitter-invariant states,
known as the α vacua, which are related to one another via Bogoliubov transformations [185].
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In static coordinates the metric becomes

ds2 = −
(
1−H2r2

)
dt2 +

(
1−H2r2

)−1
dr2 + r2 dΩ2 . (7.3.4)

These coordinates give a timelike Killing vector −∂t that points toward the future
(past) in the northern (southern) causal diamond, and we may use this Killing vector
to define modes. Following [193], the mode expansions for the southern and northern
diamonds of de Sitter space are

ϕS =
∫ ∞

0
dω

∞∑
j=−∞

[
aSωjϕ

S
ωj +

(
aSωj

)† (
ϕSωj

)∗]
(7.3.5)

ϕN =
∫ ∞

0
dω

∞∑
j=−∞

[
aNωjϕ

N
ωj +

(
aNωj

)† (
ϕNωj

)∗]
, (7.3.6)

where ω is the mode frequency. The operators aNωj and
(
aSωj

)†
are annihilation oper-

ators in the northern and southern diamonds. The Euclidean vacuum is

|Ω〉 =
∞∏
ω=0

∞∏
j=−∞

(
1− e−2πω

)1/2
exp

[
e−πω

(
aNωj

)†
aSωj

]
|S〉 ⊗ |N〉 , (7.3.7)

where |S〉 and |N〉 are the southern and northern no-particle vacua. Ignoring grav-
itational back-reaction, the static Hamiltonian associated with the northern modes
is

ĤN =
∫ ∞

0
dω

∞∑
j=−∞

(
aNωj

)†
aNωj ω , (7.3.8)

and the reduced density matrix in the northern diamond is

ρN = TrS |Ω〉〈Ω| =
[∏
ω

(1− e−2πω)
]
e−βĤN , (7.3.9)

which is a thermal density matrix with temperature T = 1/β.
If the universe is in the Euclidean vacuum, the reduced density matrix describing

the area inside a causal horizon is thermal. In Subsection 7.2.3, we argued that a
subsystem with a thermal density matrix may still evolve into one with a Boltzmann
fluctuation. In the case of the Euclidean vacuum, however, we have both the reduced
density matrix ρN and the full quantum state |Ω〉. From an examination of (7.3.7),
we see that the modes of a given frequency ω in the northern diamond are in a
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one-to-one correspondence with the modes in the southern diamond. By tracing
out the southern diamond to construct ρN , we know precisely which correlations we
are discarding, mode by mode. Furthermore, there is no interaction Hamiltonian
between the northern and southern diamonds, since the diamonds are not in causal
contact. The entanglement structure is not disrupted by the separate evolution
in each diamond, so dynamical processes, akin to the one shown in the last panel
of Figure 7.1, are forbidden. Then the reduced density matrix of each diamond
is truly stationary, and no Boltzmann fluctuations are possible in either diamond.
(The spacetime geometry does not necessarily approach de Sitter globally, but it
asymptotes toward stationarity in each patch, which is all we really need.)

We have argued that there are no Boltzmann fluctuations in the de Sitter vac-
uum. It remains to determine whether the universe may actually be described by
the de Sitter vacuum. Accordingly, the rest of our analysis consists of understanding
the conditions under which the quantum state takes on this stationary vacuum form
in different models.

7.3.2 Cosmic no-hair

We turn now to situations, like that of our universe today, in which the universe is
not in the vacuum but rather evolving in time. We will see that, though there may
be dynamical fluctuations initially if the state is very far from the vacuum, the state
of a single patch will quickly approach the vacuum on time scales proportional to
the inverse of the Hubble parameter, after which no fluctuations will arise.

We begin with the classical form of the cosmic no-hair theorem, which states that,
given a positive vacuum energy density (i.e., a positive cosmological constant Λ), the
metric evolves locally toward that of de Sitter space [8]. Physically, excitations of
de Sitter (including matter and radiation fields with substantial energy densities)
redshift away across the horizon, so every causal patch relaxes to the vacuum.

The physical intuition behind the cosmic no-hair theorem extends to quantum
fields in curved spacetime. For generic states, the expectation value of a massive
scalar field ϕ decays exponentially in time:

〈ϕ(x)〉ψ = O(e−M |τ |) , (7.3.10)

for a decay constantM > 0 and proper time τ between the point x and some reference
point at τ →∞ [9]. Higher n-point correlation functions at large separations decay
as well. The vacuum is stable against perturbations and is an attractor state for local
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operators, whose expectation values in a generic state will approach the expectation
values in the vacuum in the asymptotic region [194].

A quantum-gravitational version of the no-hair theorem would presumably yield
analogous results for the graviton field hµν , but a scalar field can stand in as a
proxy in order to make calculations manageable. Although we have focused on a
free scalar field theory to write an explicit form of the Euclidean vacuum and the
reduced density matrix, the graviton has self interactions, so the analysis needs to
be extended to an interacting scalar theory with a Hartle-Hawking vacuum. For
renormalizable interactions, the cosmic no-hair theorem still holds at an arbitrary
number of loops, for arbitrary n-point functions, and for D ≥ 2. Furthermore, M
does not receive any radiative corrections. The results of [9, 10] show that the decay
constant for massive7 scalar fields is

M =


3
2H for m > 3

2H
3
2H −

√
9
4H

2 −m2 for 0 < m ≤ 3
2H .

(7.3.11)

If the universe is in an arbitrary state that is perturbed around the Hartle-
Hawking vacuum, the state will approach the vacuum at large spacetime distances
exponentially fast, with a decay constant 3H/2 for large m. Once the field corre-
lations have sufficiently decayed, the arguments of Subsection 7.2.3 tell us that no
dynamical fluctuations occur.

7.3.3 Complementarity in eternal de Sitter

Horizon complementarity posits that the spacetime interpretation of a quantum state
depends on the viewpoint of a specified observer [150, 169, 170, 263]. In particular, a
description in terms of local quantum field theory will not extend smoothly beyond
a horizon. Applied to de Sitter space, this philosophy implies that spacetime locality
only applies within a cosmological horizon volume, and the corresponding quantum
system has a finite-dimensional Hilbert space. The Hilbert space of the patch can
be decomposed as a product of bulk and boundary factors [198, 279]:

H = Hbulk ⊗Hboundary . (7.3.12)
7As previously mentioned, the massless case is problematic, since there is no de Sitter-invariant

vacuum in the noninteracting limit [185]. With nonvanishing interactions, correlation functions
of the field at large timelike separations grow no faster than a polynomial function of Hτ at
the perturbative level [195]. There is, however, evidence at one and two loops that the 2-point
correlation function decays as a polynomial of H [195–197].
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(We ignore a possible factor corresponding to singular spacetime geometries, which
will not be important for our analysis.)

From the Bekenstein-Hawking relation [199, 200], the entropy associated with
the patch is one quarter of the area of the horizon: SdS = A/4. This entropy is
related to the density matrix ρ ∼ e−βĤ for the patch via SdS = −Trboundary ρ ln ρ, so
the patch is thermal even if the system as a whole is in a pure quantum state. The
energy spectrum is discrete, with only a finite number of eigenvalues with energies
less than any given cutoff value [201].

If we interpret the entropy as being the logarithm of the number of quantum
states, the horizon patch is analogous to a closed thermal system at a temperature
T [149, 150]. Although the relationship dimH = eS holds only at infinite temper-
ature, there are compelling reasons (e.g., from black holes) to think that the static
Hamiltonian is bounded from above [202].8 In our discussion of complementarity, we
assume that this bound exists and that the dimension of the Hilbert space

dimH = e2SdS = exp(6πΛ−1) (7.3.13)

is finite. (The factor of 2 comes from the fact that the bulk and boundary components
have equal dimensionality.)

The complementarity picture of eternal de Sitter with a unique vacuum state
is, therefore, very different from the situation of QFT in a de Sitter background
discussed in Subsection 7.3.1. In the latter, the ability of excitations to leave the
horizon and never return depended crucially on the fact that Hilbert space was
infinite-dimensional. In complementarity, eternal de Sitter space is a truly closed
finite-dimensional system, subject to Poincaré recurrences [164]. Of course, there is
a true vacuum state, the lowest-energy eigenstate, that is strictly stationary, but a
generic state is nonstationary. We may think of excitations as being absorbed by a
stretched horizon with a finite area and eventually being emitted back into the bulk,
as shown in Figure 7.2. Boltzmann fluctuations into lower-entropy states (described
in Subsection 7.2.3) are allowed, in agreement with the conventional picture of a
thermal de Sitter patch. As we argue below, this story changes in important ways
in theories with more than one metastable vacuum.

8For subtleties involving the use of the static Hamiltonian in quantum gravity, see [203].
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-1H

Figure 7.2. Conformal diagrams for de Sitter space in the global (QFT) picture [left]
and with horizon complementarity [right]. We consider an observer at the north pole,
represented by the line on the left boundary and their causal diamond (solid triangle).
The wavy line represents excitations of the vacuum approaching the horizon. In QFT in
curved spacetime, the excitation exits and the state inside the diamond approaches the
Hartle-Hawking vacuum, in accordance with the cosmic no-hair theorems. In contrast,
horizon complementarity implies that excitations are effectively absorbed at the stretched
horizon (dashed curve just inside the true horizon) and eventually return to the bulk.

7.4 Multiple Vacua

In this section we consider theories with more than one metastable potential min-
imum, at least one of which has Λ > 0, as portrayed schematically in Figure 7.3.
We consider the existence of dynamical fluctuations in both the lowest-energy “true”
vacuum and in any higher-energy false vacua. For convenience, we limit our atten-
tion to vacua with non-negative energy, Λ ≥ 0. Transitions from vacua with Λ ≥ 0
to those with Λ < 0 generally result in singular crunches; evolution might continue
via quantum-gravity effects, but we will not address that possibility here.

7.4.1 Semiclassical quantum gravity

We first consider semiclassical quantum gravity, by which we mean QFT coupled to
a classical (but dynamical) spacetime background. Coleman studied false vacua in
this context and calculated the rate at which a higher-energy vacuum would decay
to a lower-energy state via bubble nucleation [204, 205]. It is useful to consider an
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Figure 7.3. A scalar field potential with multiple local minima. The global minimum
corresponds to the true-vacuum value ϕT (which may have Λ = 0 or Λ > 0), and for
simplicity we have portrayed a single false-vacuum value ϕF . The dashed line represents
the perturbative Hamiltonian for the false vacuum, in which the potential is given by a
local approximation to the true potential in the vicinity of ϕF .

analogous problem in one-dimensional quantum mechanics, in which a single particle
moves in a potential V (x), with a global (true) minimum at xT and a local (false)
minimum at xF . Then, one can calculate the transition amplitude using the path
integral defined with respect to Euclidean time T :

〈
xT
∣∣∣ e−HT ∣∣∣xF〉 = N

∫
[dx]e−SE [x(T )] , (7.4.1)

where H is the Hamiltonian and SE is the Euclidean action, while the states |xT 〉
and |xF 〉 are position eigenstates. This quantity can be calculated using instanton
methods and represents the amplitude for finding the particle at position xT , given
that it started at position xF—something that might be of relevance to an observer
measuring the position of the particle. An analogous field theory calculation can
be used to calculate the rate of transition from one field configuration |ϕ1(x)〉 to
another |ϕ2(x)〉, including the tunneling rate from one vacuum to another, as shown
in Figure 7.3.

Our interest, however, is not in what an out-of-equilibrium observer with a field-
value detection device would measure, but in how quantum states evolve in isolated
patches of de Sitter space. Eigenstates of the field operator ϕ̂(x) are not energy
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eigenstates; therefore, we need to be careful when we use terms such as “false vacuum”
and “true vacuum” to refer to quantum states rather than field values. For some
purposes it is useful to study eigenstates of a perturbative Hamiltonian constructed
by approximating the potential in the vicinity of one local minimum, as shown for
ϕF in Figure 7.3. In that case the results from Section 7.3.1, where we studied QFT
in a fixed de Sitter background, are relevant.

Consider first the true vacuum quantum state |0〉 of the full theory. A generic ho-
mogeneous field value ϕ∗ will have some nonzero overlap with this state, 〈ϕ∗| 0〉 6= 0,
but the field will be mostly localized near the global minimum value ϕT . While it is
difficult to rigorously prove a version of the cosmic no-hair theorem for this interact-
ing theory, we intuitively expect the physics in this case to mirror that of QFT with a
unique de Sitter vacuum. Namely, excitations above the lowest-energy state will dis-
sipate outside the horizon, and each local patch will approach the vacuum state |0〉.
This state is stationary, and we expect no measurement-induced or Boltzmann fluc-
tuations. Since we are dealing with QFT, the Hilbert space is infinite-dimensional,
and there are no recurrences.

We also do not expect uptunneling to a higher-energy vacuum from the true
vacuum state for the same reason (energy eigenstates are stationary and do not
fluctuate). This assertion might seem to be in tension with the existence of instantons
that contribute a nonzero amplitude to processes analogous to (7.4.1), but such a
counterargument confuses field values with quantum states. Although there are
instanton solutions, their role is to shift the value of the vacuum energy in the true
vacuum from what one would compute in a local approximation to the effective
potential near ϕT . As noted above, the nonzero overlap between two perturbative
vacua can be interpreted as a transition rate between them. But we are interested
in the states of definite semiclassical geometry, which should correspond to vacua of
the full potential, where instanton corrections have already been taken into account.

The situation is analogous to that of the QCD vacuum, where instantons con-
necting vacua of different winding numbers provide a shift in energy that depends on
the value of θQCD. The QCD vacuum is a single, static state which incorporates the
instanton corrections, not constantly occurring dynamical transitions between states
of definite winding number, just like a harmonic oscillator in an energy eigenstate is
static rather than undergoing constant fluctuations. Even though we can write the
QCD vacuum in a basis of states of different winding number, or an energy eigenstate
of the harmonic oscillator in a basis of position eigenstates, the lesson of Section 7.2
is that such descriptions have no physical reality. Instantons are important for cal-
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culating energy eigenvalues, but once the quantum system is in a stationary state
such as the vacuum |0〉, they do not describe true dynamical transitions. The local
perturbative vacuum will be unstable to uptunneling via instantons, but that’s not
the true nonperturbative vacuum into which the system settles.

Next we turn to false vacua. A semiclassical state with 〈ϕ〉 = ϕF is not strictly a
vacuum state, or indeed any form of energy eigenstate, as it will decay via tunneling.
We may nevertheless consider the energy eigenstates of the perturbative Hamiltonian,
obtained by locally approximating the potential in the vicinity of ϕF , as shown in
Figure 7.3. These are not energy eigenstates of the full Hamiltonian, but their
dynamics are well-described by a combination of processes near the false-vacuum
value plus decays via bubble nucleation. We may think of the “false de Sitter vacuum
state” as the Hartle-Hawking vacuum state of this perturbative Hamiltonian. Once
again, we expect excitations to rapidly dissipate by leaving the horizon, resulting
in a state that does not exhibit thermal fluctuations. We refer to such states as
“quiescent” (reserving the term “stationary” for true energy eigenstates).

We are left with two kinds of possible non-perturbative processes to consider:
downtunneling to lower-energy vacua and uptunneling to higher-energy vacua. First,
we examine downtunneling. In the conventional picture of false-vacuum decay, a
small bubble of true vacuum nucleates and grows at nearly the speed of light. This
picture is clearly a semiclassical description of a single branch of the wave function,
rather than a full treatment of the quantum state. We can decompose the Hilbert
space into the product of the state space of a smooth background field ϕλ(x) and
small-scale fluctuations:

H = Hϕλ ⊗Hδϕ . (7.4.2)

Here, λ is a length scale used to smooth the field. The factor Hϕλ includes configura-
tions with bubbles of different sizes and locations, as well as completely homogeneous
configurations. When a bubble nucleates, some of the energy density that was in the
potential for ϕ gets converted into fluctuation modes, resulting in the production of
entropy. Therefore, a reduced density matrix for the background field obtained by
tracing over Hδϕ will exhibit decoherence, as the fluctuations produced by bubbles
in different locations will generically be orthogonal to each other. In that sense,
the semiclassical configurations described by bubble nucleation correspond to truly
distinct branches of the wave function. With that single caveat, we agree with the
standard picture of downtunneling to lower-energy vacua.

Different cases of interest for bubble nucleation are shown in Figure 7.4. An
observer at the north pole in the de Sitter diagram could witness the nucleation of a
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Figure 7.4. Conformal diagrams for de Sitter space with a false vacuum. The first
two diagrams show the effect of a bubble (dashed line) nucleating within the northern-
hemisphere causal patch, leading to lower-energy de Sitter [left] and Minkowski [middle],
while the third shows a false-vacuum region that does not experience any bubbles [right].
H−1
F and H−1

T are the Hubble radii of the false and true vacua, with the latter being infinite
in the Minkowski case. In both cases the true horizon is larger than the Hubble radius in
the false vacuum; in the left-hand diagram, it becomes equal to the horizon in the true
vacuum, while on the right it becomes infinitely large. In either of these cases, excitations
can leave the apparent horizon in the false vacuum while remaining inside the true horizon.
On the right, the observer at the North pole remains in the false vacuum state forever,
although there are bubbles outside their horizon.

bubble to a lower-energy de Sitter vacuum, or to a Minkowski vacuum (the triangular
“hat”), or avoid seeing bubbles at all. The probability of seeing a bubble along any
specified geodesic asymptotes to 1, but for a sufficiently small nucleation rate, the
physical volume of space remaining in the false vacuum grows with time.

Next we turn to uptunneling from one false-vacuum state to another of even
higher energy.9 In the true vacuum, we could straightforwardly argue that the spirit
of the cosmic no-hair theorem is obeyed: excitations leave the horizon and the system
approaches its lowest-energy eigenstate. In the false vacuum, the argument is not so
clean, since there are no true energy eigenstates to approach. Nevertheless, the phys-
ical situation is quite similar. The Hilbert space is still infinite-dimensional, so we do
not expect recurrences, and excitations within a patch can readily leave the horizon,

9We thank Stefan Leichenauer and Paul Steinhardt for discussions of these issues.
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leaving us in the perturbative vacuum. Once again, there exist instantons reflecting
the overlap of the perturbative false vacuum with excited states. Just as above,
however, we cannot interpret these instantons as true dynamical processes; they sig-
nal, instead, that the actual state of the field in the false vacuum is not entirely
concentrated around ϕF , but also has some support on field values corresponding
to potential minima of higher energies. We said above that excitations around the
perturbative false vacuum state dissipate away, resulting in a state quiescent with
respect to perturbative fluctuations. Incorporation of instanton effects simply shifts
the quiescent state slightly, like it did for the true vacuum state. It is this quiescent
state that is physical, not the perturbative vacua connected by instanton transitions.

We can see, in particular, that the wave function cannot start in a quiescent state
and then split into two branches, describing uptunneling: uptunneling represents a
decrease rather than an increase of entropy, so it can only be a Boltzmann fluctuation
rather than a branching of the wave function. The timescale over which the pertur-
bative vacuum relaxes to the physical one (presumably with slightly smaller effective
cosmological constant) will be governed by the barrier-penetration factor connecting
the false vacuum to higher-energy minima. That factor also governs the rate for up-
tunneling to such minima. Therefore, we expect a relatively short window in which
uptunneling can happen before the state relaxes, after which the rate of uptunneling
falls to zero. We can check this picture by considering the limit in which the barrier
between false and true vacuum becomes infinitely large. In that case, transitions
from the false to true vacua are suppressed, and the behavior of the false vacuum
should increasingly resemble our picture of the true vacuum. This is precisely what
we have found: in both cases, uptunneling is forbidden (more precisely, the rate of
uptunneling is suppressed as excitations dissipate away).

While these results are not rigorous, they provide a strong indication that false-
vacuum states in semiclassical quantum gravity either decay or asymptote to quies-
cent states that are free of dynamical fluctuations.

7.4.2 Complementarity in a landscape

We now consider theories with multiple vacua, each labeled by a field expectation
value ϕi, in the context of horizon complementarity. In this case the Hilbert space
appropriate to a single vacuum (7.3.12) is promoted to a direct sum, with one term
for each semiclassical patch geometry:

H =
⊕
i

H(i)
bulk ⊗H

(i)
boundary . (7.4.3)
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The structure is similar to that of Fock space [198, 279]. The dimensionality of the
entire Hilbert space is the sum of the dimensions of each term, dimH(i) = e2S(i)

dS =
exp(6πΛ−1

i ). There are two cases of interest: the finite-dimensional case where every
vacuum has Λ > 0 and the infinite-dimensional case where there is at least one
vacuum with Λ = 0. (As mentioned previously, we do not consider vacua with
Λ < 0, as transitions into them lead to singularities.)

If all vacua have Λ > 0, the situation is very similar to the single-vacuum case
discussed in Subsection 7.3.3. Exact energy eigenstates, including the lowest-energy
vacuum state, will be stationary and no dynamical fluctuations will occur. The vac-
uum will feature a de Sitter semiclassical geometry with the field value concentrated
near the true minimum, although it will not be a field eigenstate. Generic states,
however, will not be stationary, and in a finite-dimensional Hilbert space there is no
room for excitations to dissipate outside the horizon, so recurrences are expected.

Now consider theories with at least one vacuum having Λ = 0, as might be
expected in supersymmetric or string theories. The future development of the space-
time includes census-taker observers living in a Minkowski “hat” [206, 207], as shown
in the middle and right diagrams of Figure 7.4. The Hilbert space of the full theory is
then infinite dimensional, and such observers have access, in principle, to an infinite
amount of information.

From (7.2.25), the rate of Boltzmann fluctuations goes to zero (and the timescale
for recurrences goes to infinity) for infinite-dimensional Hilbert spaces, where ΛT = 0.
Of course, there are no dynamical fluctuations in the true Minkowski vacuum. But
we can make a stronger statement: the rate of the fluctuations will asymptote to zero
even in the false vacua. The intuition is that states with excitations around false-
vacuum geometries are more likely to decay than the vacuum states themselves.
So time evolution will skew the population of false vacua towards states that are
stationary except for the possibility of decay by bubble nucleation, i.e. quiescent
in the sense of the previous subsection. After a high-energy vacuum decays to a
lower-energy one, transient excitations will allow for the existence of Boltzmann
fluctuations, but the excited states will again preferentially decay. The surviving
configurations will become effectively stationary, and the Boltzmann fluctuation rate
will asymptote to zero, rather than to a nonzero constant. We therefore expect only
a finite (and presumably small) number of Boltzmann fluctuations in a landscape of
vacua that includes a Minkowski vacuum.

This intuition can be bolstered by an analogy to one-dimensional quantum me-
chanics in the presence of a barrier. Consider once again a particle of mass m and



134

energy E moving in a potential V (x) schematically similar to the false-vacuum po-
tential shown in Figure 7.3. The particle can escape the well by tunneling through
the barrier. A wave packet initially in the potential well will leak out, and the WKB
approximation relates the wave functions on either side of the potential:

ψ(xe)
ψ(x0) = exp

(
−1
~

∫ xe(E)

x0(E)

√
2m(V (x)− E)dx

)
≡ e−γ/2 , (7.4.4)

where x0(E) and xe(E) are the starting and ending points for the region where the
particle “has negative energy,” so V (x0(E)) = V (xe(E)) = E. The escape probability
is simply e−γ, and the tunneling rate is given by the product of this probability with
some characteristic frequency:

R = f(E)e−γ . (7.4.5)

The classic barrier penetration problem considers a square-well potential, in which
the bound particle has a position-independent momentum, p(E) =

√
2m(E − V ),

and a characteristic “collision frequency”, f(E) = p(E)/(2mx0). Here, we assume
a more general potential, so the momentum is a function of both E and x, and
the frequency will be given by some integral over positions inside the well. The
exact expression is not important for us—we assume only that the frequency is an
increasing function of E, f ′(E) > 0. Then, the energy dependence of the tunneling
rate is

dR

dE
= f ′(E)e−γ − 2

~
f(E)e−γ

∫ xe(E)

x0(E)

− 2√
2m(V (x)− E)

 , (7.4.6)

which is manifestly positive. (We have used the fact that V (x0)−E = V (xe)−E = 0
to eliminate the terms which arise from varying the limits of integration.)

This simple exercise demonstrates an intuitively sensible result: among states
trapped behind a barrier, those with higher energy tunnel out more quickly. In the
case of the cosmological false vacuum, the analogous statement is that excited states
of the perturbative Hamiltonian undergo false-vacuum decay more rapidly.

In complementarity, we see that only in the case of a Minkowski true vacuum
can recurrences and Boltzmann fluctuations be avoided entirely. A version of this
phenomenon—the crucial difference in the long-term quantum evolution of land-
scapes with and without Λ = 0 vacua—has been previously noted in a slightly



135

different context [198, 208]. There, it was pointed out that quantum measurements
in a false-vacuum state will decohere by becoming entangled with environment de-
grees of freedom, but they must eventually recohere if the total Hilbert space is
finite-dimensional. In infinite-dimensional Hilbert spaces, in contrast, decoherence
can persist forever. This argument is analogous to our own, in that such models are
largely free of Boltzmann fluctuations.

7.5 Consequences

7.5.1 Boltzmann brains

In the conventional picture, because de Sitter space has a temperature, it experiences
thermal fluctuations that lower the entropy by ∆S with a finite rate proportional
to e−∆S. If the Hartle-Hawking vacuum is eternal, then all dynamical fluctuations
that fit within a horizon volume are produced an infinite number of times inside each
such volume. Such fluctuations could contain conscious observers like ourselves [164–
166, 179, 209–213]. Due to the exponential suppression of lower-entropy states, the
fluctuations containing observers—even the ones that contain exact copies of our
own brains—that occurred most frequently would look entirely unlike the world we
observe. In particular, fluctuations containing the room you are reading this paper
in would be vastly more likely than fluctuations containing all of Earth, let alone the
entire observable universe, and the momentary coalescence of your brain thinking
the precise thoughts you are having right now out of thermal equilibrium would
be likelier still. If this conclusion were correct, we would not be able to trust our
memories or our (supposed) observations, a solution inconducive to the practice of
science.

We have argued, however, that this situation is less generic in de Sitter cos-
mologies than is often supposed.10 The appearance of Boltzmann brains is avoided
in the context of QFT in eternal de Sitter space or in a landscape with a terminal
Minkowski vacuum (with or without complementarity). In these cases, the dimension
of the Hilbert space is infinite, so the recurrence time also goes to infinity, and the
(possibly false) de Sitter vacuum becomes quiescent. If the horizon volume is initially
in an excited state (as it is if the dark energy is a positive cosmological constant),
then the cosmic no-hair theorem dictates that correlations fall off exponentially with
time as the excitations leave the horizon. The total number of Boltzmann brains will

10For related work that questions the validity of Boltzmann brains for decoherence-based reasons,
see [180, 214, 215]. For the need for Hilbert space to be infinite-dimensional, see [216].
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thus be finite and presumably small, given the vast exponential suppression of macro-
scopic fluctuations. Thus, if enough observers are produced before de Sitter space
approaches the vacuum (e.g., in a period of structure formation) the vast majority of
observers can, in fact, trust their memories and observations. This conclusion opens
the door for many multiverse models that might have been discounted because of a
Boltzmann brain problem, and could help resolve potential tensions with low-energy
physics [217].

7.5.2 Landscape eternal inflation

Another kind of fluctuation into a lower-entropy state that is often invoked in de Sit-
ter cosmology is uptunneling from one de Sitter vacuum state to another one of
higher energy [162, 163]. Processes such as this can be crucial for populating an
entire landscape of vacua, starting from a state concentrated on any particular field
value.

Uptunneling is conceptually very similar to the standard picture of a fluctua-
tion into a Boltzmann brain: a vacuum in a thermal state undergoes a transition
to a lower-entropy configuration with probability e−∆S. The situation is the time-
reverse of the well-known process of vacuum decay, which results in the production
of particles and an increase in entropy. The analysis presented in this paper leads
to an analogous conclusion to that of the last subsection: if the total Hilbert space
is infinite-dimensional, excitations around any particular false vacuum will dissi-
pate. As discussed in Section 7.4, the system will relax to a (perturbative, semi-
perturbative, or true) vacuum state, not a state of definite field value. The state
becomes quiescent, and the rate of Boltzmann fluctuations asymptotes to zero.

Note that eternal inflation is still conceivable: uptunneling is suppressed, but
downtunneling proceeds as usual, and different branches of the wave function will
correspond to different distributions of bubbles in a semiclassical spacetime back-
ground. If the field starts out in a metastable vacuum, then the portion of it that
remains there (on any one branch) is rewarded with greater volume production. Al-
most every world line will intersect a bubble of lower-energy vacuum, but if the
tunneling rate is low enough to avoid percolation, the physical volume remaining in
the high-energy vacuum grows without bound, as depicted in the rightmost diagram
in Figure 7.4. In this sense inflation continues forever.

On the other hand, it is clear that the details of eternal inflation in a landscape
of vacua will change. In particular, the conclusions of the previous section suggest a
reinterpretation of the rate equations for eternal inflation that relate the probabilities
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of transitions between different vacua [218, 219, 279]. Consider the simple landscape
of Figure 7.3, with minima located at field values ϕF and ϕT , respectively. In the
standard presentation, e.g. [218], the rate equations for a two-minimum landscape
read

dpf
dτ

= −κfpf + κtpt ,
dpt
dτ

= −κtpt + κfpf , (7.5.1)

where κf and κt are transition probabilities per unit proper time. The usual inter-
pretation is that κf (κt) represents the probability to transition from the false (true)
vacuum to the true (false) one. But we have argued that, in the long-time limit, the
probability to transition from the true to a false vacuum falls to zero. However, both
the true and the false vacuum states have nonzero overlap with the states of any
definite field value, so heuristically we may think of the true vacuum, for example, as
containing an exponentially small piece with field value near ϕF . The rate equations
should essentially be interpreted as probabilities to transition between states of def-
inite field value in an (unrealistic) idealization where an observer is measuring the
value of the field at regular intervals. In the real universe, where there is no external
observer and the wave function evolves unitarily, the state simply evolves toward the
true vacuum as time passes. Dynamical fluctuations in de Sitter space do not provide
a mechanism for populating an entire landscape with actual semiclassical geometries
centered on different vacua and living on different branches of the wave function.

With horizon complementarity, this picture changes somewhat. If the true vac-
uum is de Sitter, Hilbert space is finite-dimensional, and Boltzmann fluctuations
will lead to true transitions between states concentrated at different minima of the
potential. If the true vacuum is Minkowski, on the other hand, Hilbert space is
infinite-dimensional, and the above discussion is once again valid.

7.5.3 Inflationary perturbations

The absence of dynamical fluctuations in the de Sitter vacuum might seem to call
into question the standard picture of the origin of density perturbations in inflation.
In this case, however, the conventional wisdom gets the right answer; our approach
leaves the standard predictions for density and tensor fluctuations from inflation es-
sentially unaltered. The basic point is that the quantum state of light fields can
remain coherent during inflation itself, and possess (non-dynamical) vacuum fluctu-
ations, but then experience decoherence and branching of the wave function when
entropy is generated at reheating.

We can describe the Hilbert space during inflation as a product of the quantum
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states of the large-scale homogeneous background ϕ(t) (macroscopic) perturbations
and the small-scale (microscopic) perturbations:

H = Hϕ(t) ⊗Hmacro ⊗Hmicro . (7.5.2)

The small-scale perturbations, including the specific microstates of individual pho-
tons and other particles, are unobservable, in the same way that individual atoms
and molecules are unobservable in an ordinary box of gas. They serve as an en-
vironment we can trace over to understand the state of the observable large-scale
perturbations. During inflation, the overall quantum state approaches a factorizable
form, as excitations dissipate and perturbations approach their lowest-energy states:

|Ψinflation〉 = |ϕ(t)〉 ⊗ |0〉macro ⊗ |0〉micro . (7.5.3)

The state |0〉macro has a nonzero variance for the field operator ϕ, as calculated in
standard treatments, but its quantum coherence is maintained.11

At reheating, however, entropy is generated. Energy in the inflaton is converted
into a dense, hot plasma with many degrees of freedom. The specific form of the
microscopic perturbations will depend on the state of the macroscopic perturbations;
these factors become entangled, producing a state of the form

|Ψreheating〉 = |ϕ(t)〉 ⊗
[∑

i

|δϕi〉macro ⊗
(∑

µ

|δϕi,µ〉micro

)]
. (7.5.4)

Tracing over the microscopic fluctuations leaves a mixed-state density matrix for
the macroscopic fluctuations, inducing decoherence [220–225]. By this process, the
unique quantum state of the inflaton field evolves into a large number of decohered
branches, each with a specific pattern of perturbations such as we observe in the
CMB, with statistics given by the Born rule. In effect, reheating acts as an ex-
plicit measurement process. We, therefore, expect that the standard calculations of
scalar and tensor fluctuations in any given inflationary model are unaffected by the
considerations in this paper.

11One might imagine that decoherence occurs because modes become super-Hubble-sized, and
we should trace over degrees of freedom outside the horizon. This reasoning is not quite right, as
such modes could (and often do) later re-enter the observable universe; they become larger than
the Hubble radius during inflation but never leave the true horizon.
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7.5.4 Stochastic eternal inflation

We next turn to the possibility of eternal inflation in a slow-roll potential, as distin-
guished from a landscape of false vacua. The traditional approach to this scenario
makes use of the stochastic approximation, which treats the inflaton field value in
the slow-roll regime as a stochastic variable, undergoing a random walk [154–156];
for recent treatments see [226–228]. Consider the case of a power-law potential,

V (ϕ) = λϕ2n

2nM2n−4
pl

. (7.5.5)

In a single Hubble time, the expectation value of the field decreases by

∆ϕ =
nM2

pl

4πϕ , (7.5.6)

but the dispersion of perturbations around this value is

∆2 =
〈
δϕ2

〉
= H3

4π2 t . (7.5.7)

In a Hubble time H−1, we have ∆ = H/2π.
Now comes the critical step. In the stochastic approximation, one asserts that

∆ represents an RMS fluctuation amplitude

|δϕ| = H

2π , (7.5.8)

and that the effective value of the inflaton in a given Hubble patch should be treated
as a random variable drawn from a distribution with this amplitude. Above a critical
field value,

ϕ∗ = λ−1/(2n+2)Mpl , (7.5.9)

the fluctuations dominate, |δϕ| � ∆ϕ. In this picture, to an excellent approxima-
tion, ϕ undergoes a random walk with time step H−1 and step size |δϕ|. Causality
dictates that each horizon area undergoes these fluctuations independently. Every
Hubble time, when a horizon volume grows by a factor e3 ∼ 20, the field value in
approximately 10 of the new horizon volumes is larger than its parent. In fact, this
statement is a much stronger condition than required for eternal inflation. It suffices
for only one of these volumes to move upward on the potential: |δϕ| ≈ O (∆ϕ/20).
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Figure 7.5. Potential supporting different kinds of inflation. Dashed lines are schematic
representations of two different initial quantum states for the field. If the field begins at the
right edge near the Planck cutoff, we expect it to evolve smoothly to the non-inflationary
regime at the bottom of the potential. In contrast, if it begins at the top of a hill, it
is plausible to imagine that part of the wave function remains in an inflationary state
for arbitrarily long periods of time (although the amplitude for that branch of the wave
function will be monotonically decreasing).

The stochastic-approximation approach to eternal inflation is in tension with
the analysis presented in this paper. As we have argued in Section 7.2, quantum
fluctuations in closed systems near equilibrium cannot be treated as classical ran-
dom variables. Fluctuations δϕ only become real when they evolve into different
decoherent branches of the wave function and generate entropy (what we have called
measurement-induced fluctuations). For the perturbations we observe in the CMB,
this entropy source is provided by reheating. But precisely in the slow-roll regime,
where the stochastic inflation story is invoked, there is no entropy production, no
measurement or decoherence, and no branching of the wave function. All that hap-
pens during a Hubble time is a decrease in the classical field expectation value, ∆ϕ.
There is no quantum-dominated regime; the field simply rolls down its potential.

A more honest approach to eternal inflation would be to take the quantum na-
ture of the dynamics seriously, and investigate the evolution of the wave function
describing the coupled background and perturbations; we hope to study this more
carefully in future work. Nevertheless, it is possible to draw some qualitative con-
clusions by considering the evolution of a wave packet in field space representing the
homogeneous mode. If the initial state of the field has support near a local maximum
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of the potential, inflation is plausibly eternal: part of the wave packet will roll down
the potential, eventually couple to perturbation modes, and experience decoherence,
while part will remain near the maximum and continue to inflate. In contrast, if
the field is slowly rolling down a monotonic portion of the potential—as expected
for a polynomial potential with a Planck-scale energy density cutoff—it will reach
the bottom of the potential, and the inflationary phase will end in a finite time and
after a finite number of e-folds. These two possibilities are portrayed in Figure 7.5.
We note that the simplest inflaton potentials, monomial power-laws V (ϕ) ∼ ϕn, do
not have saddle points and should thus avoid eternal inflation given a Planck-scale
cutoff. (The recent BICEP2 detection [229] of large-scale B-mode polarization in the
CMB, if interpreted as a tensor/scalar ratio r ∼ 0.2, is well fit by an m2ϕ2 potential.)

For a field on the monotonic portion of the potential, one might object that,
even once the field has rolled down, some portion of the wave function will always
remain arbitrarily close to the maximum allowed value of the potential, e.g. the
Planck-scale cutoff, just as a wave packet is supported throughout all of space de-
spite being concentrated around a single point. This reasoning is correct, but it
does not imply that there are some portions of the wave function where the end of
inflation is postponed. The problem with this interpretation was already noted in
Subsections 7.4.1 and 7.5.2: states of definite field value are not the same as states of
definite energy density. In the slow-roll approximation, the cosmic no-hair theorem
acts to bring the inflaton field to the appropriate vacuum state—a state of energy
density corresponding perturbatively to de Sitter space with the appropriate cosmo-
logical constant. Each such state has nonzero overlap with the states of definite field
value, but the cosmic no-hair theorem guarantees (to the extent that the slow-roll
approximation is valid, so that no entropy is produced) that the field is driven into
the appropriate false vacuum state, and then rolls smoothly to states with lower and
lower energy density until the point that inflation ends. Again, there is negligible
entropy production, no measurement-induced fluctuations, and no branching during
this period—the inflaton remains in a single coherent state until reheating occurs.

To gain intuition for the points we make above, it is useful to consider applying
the stochastic approximation to a free massive scalar field in eternal de Sitter space
itself. At the minimum of the potential V = m2ϕ2/2, it is clear that the classical
change ∆ϕ vanishes while the quantum variance δϕ does not, so the system is au-
tomatically in the quantum-dominated regime. If the stochastic approximation is
applied, we expect occasional fluctuations of the field to very large values, leading
to rapid inflation in those regions but not in others. In other words, if the stochastic
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picture is valid, one is led to the conclusion that de Sitter space with a massive
scalar field has a runaway instability, in contrast with the usual view that there is a
lowest-energy eigenstate with a stable semiclassical geometry (c.f. [230]). In light of
the above, we interpret this purported instability differently: it indicates a problem
with the stochastic approximation, not with de Sitter space itself. The vacuum state
of the scalar field is not a state of definite field value, although it is centered around
the minimum of the potential. Rather, the state has overlap with all field values, at
least up to a potential Planck-scale energy density cutoff. But we do not interpret
the de Sitter vacuum as an unstable superposition of different field values expanding
at different rates. Instead, we say that the field is in a single state, the vacuum, with
a definite energy density given by the cosmological constant Λ.

7.5.5 Other formulations of quantum mechanics

Throughout this paper we have worked in the context of the Everett/Many-Worlds
formulation of quantum mechanics, in which a single wave function evolves unitarily
in Hilbert space according to the Schrödinger equation. Our conclusions could be
dramatically altered in other formulations. We will not explore these possibilities in
detail here, but we briefly mention two alternatives.

One would be the de Broglie-Bohm approach, in which the variables include
both a wave function and variables in a separate configuration space [231–234]. In
such a theory, the wave function could be completely stationary (as in the de Sitter
vacuum), but the configuration-space variables could still fluctuate. What we think
of as a stationary thermal state in the Everett approach would be more closely
analogous to a thermal distribution function in classical statistical mechanics; while
the density operator is stationary, the underlying state could still be evolving in time.
We might, therefore, observe dynamical fluctuations even in equilibrium. Recent
work has argued, however, that in practice these Boltzmann fluctuations can be
avoided in Bohmian cosmology [235].

Another alternative is a stochastic dynamical-collapse theory, such as the Ghirardi-
Rimini-Weber (GRW) model [236, 237]. Set in the context of nonrelativistic, many-
particle quantum mechanics, the wave function has a fixed probability per particle
per unit time of spontaneously collapsing to a localized position. Entanglement be-
tween particles induces an effective, ongoing “measurement” of macroscopic systems.
There is not a well-developed GRW model for QFT in de Sitter space, but the phi-
losophy of the approach leads us to expect that a thermal state would experience
true fluctuations; the possibility of dynamical collapse introduces a new kind of time-
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dependence that would be absent in equilibrium in Everettian quantum theory. It
seems we are dealing with one of the rare cases in which one’s favorite formulation
of quantum mechanics can drastically affect one’s expectation for how observable
quantities evolve.

7.6 Conclusions

Quantum variables are not equivalent to classical stochastic variables. They can
be related by the appearance of measurement-induced fluctuations, which require
entropy generation, decoherence, and branching of the wave function. In stationary
states, entropy is not generated, and the wave function remains fixed; therefore,
there are no dynamical fluctuations, and treating a quantum field as a classical
stochastic field is inappropriate. We have argued that this shift in thinking has
important consequences for the cosmology of de Sitter space, since de Sitter regions
tend to approach a stationary thermal state. In particular, if the true Hilbert space
is infinite-dimensional (as is the case in QFT in curved spacetime or in horizon
complementarity in the presence of a Minkowski vacuum), de Sitter vacua settle
down and do not fluctuate. There are no Boltzmann brains in such states, relieving
a major problem for many multiverse cosmological models. On the other hand,
we also suggest there is neither uptunneling to higher-energy vacua nor stochastic
fluctuations up a slow-roll potential, implying that eternal inflation is much less
generic than often supposed. A better understanding of complementarity and the
correct formulation of quantum mechanics will help establish what happens in the
real universe.

Acknowledgments

We have benefited from helpful discussions with Scott Aaronson, Charles Bennett,
Alan Guth, James Hartle, Stefan Leichenauer, Spyridon Michalakis, Don Page, John
Preskill, Jess Riedel, Charles Sebens, Paul Steinhardt, and several participants at the
Foundational Questions Institute conference on The Physics of Information (though
they might not agree with our conclusions). This research is funded in part by DOE
grant DE-FG02-92ER40701 and by the Gordon and Betty Moore Foundation through
Grant 776 to the Caltech Moore Center for Theoretical Cosmology and Physics.



144

How Decoherence Affects
the Probability of
Slow-Roll Eternal Inflation



145

8.1 Introduction

The state of the early universe – hot, dense, and very smooth – is extremely fine-
tuned by conventional dynamical measures [238]. Inflationary cosmology [239–241]
attempts to account for this apparent fine-tuning by invoking a period of accelerated
expansion in the very early universe. The potential energy of a slowly rolling scalar
field, the inflaton, serves as a source of quasi-exponential expansion through the
Friedmann equation, leading to a universe that is nearly smooth and spatially flat.

Quantum mechanics, however, changes this picture of slow-roll inflation in an
important way. Although the classical equations of motion completely determine the
behavior of the inflaton zero mode (i.e. the expectation value of the field) rolling
down the potential, quantum field theory in curved spacetime dictates that each
Fourier mode of the field has a nonzero variance (two-point function). This variance
persists after a mode leaves the Hubble radius and classically freezes out, and it
is still present when inflation ends and the mode re-enters the Hubble radius. If
reheating at the end of inflation produces a sufficiently rich thermal bath of particles
and radiation, decoherence [3–7] occurs (if it has not already): the thermal bath
becomes entangled with definite values of the curvature perturbation entering the
Hubble radius, so that the quantum states corresponding to different values of the
inflaton field become orthogonal and evolve without interference [220–225, 242, 243].
Hence, any modes within a Hubble volume after the end of inflation have inevitably
undergone decoherence; our observable universe, including the Cosmic Microwave
Background (CMB) and large-scale structure, is one branch of the universal quantum
state.

Slow-roll eternal inflation occurs when there is a period during which the quan-
tum variance in the inflaton field is sufficiently large that the field may fluctuate
upward on its potential [226, 228, 244–246]. In regions where these upward fluctua-
tions occur, the universe expands at a faster rate, and such regions come to dominate
the physical volume of space. If the probability of upward fluctuations is sufficiently
high, the total volume of inflating space expands as a function of time, and inflation
is eternal. Although there are other mechanisms to achieve an eternally inflating
universe, such as tunneling transitions which produce inflating bubbles [154], we
concentrate on slow-roll eternal inflation and refer to it simply as eternal inflation
throughout the paper.

Eternal inflation hinges on the idea that quantum fluctuations of the inflaton are
true, dynamical occurrences. However, quantum fluctuations become dynamical in
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unitary (Everettian, Many-Worlds) quantum mechanics only when decoherence and
branching of the wave function occur [247]. To put the slow-roll eternal inflation
story on a firm foundation, it is therefore necessary to examine carefully just when
inflationary modes decohere, and how that decoherence enables backreaction that
can effect the value of the expansion rate in different regions.

In this paper we therefore investigate eternal inflation carefully from a quantum-
mechanical perspective. Following the approach of the recent work of Ref. [248],
we work with the adiabatic curvature perturbation ζ and consider the lowest-order
gravitationally-sourced interaction between modes of different wavelengths. This
interaction vanishes in the limit as slow-roll parameters go to zero, and therefore
maintains the stability of pure de Sitter space itself, where no decoherence should
occur [247]. It was shown in Ref. [248] that this interaction decoheres the modes
that we observe in the CMB on O(10) Hubble times after they cross the Hubble
radius. We consider the effects of this long-wavelength decoherence on the evolution
of modes that still have short wavelengths compared to the Hubble radius at the time
of decoherence, which we use as a proxy for the cosmological backreaction due to the
decoherence. We find that the standard lore in which eternal inflation occurs when
quantum dispersion dominates over classical rolling down the potential is qualita-
tively correct, but we also show that the quantitative predictions of eternal inflation
must be adjusted to incorporate the time it takes for gravitational interactions to
bring about decoherence.

The remainder of this paper is structured as follows. In Section 8.2 we review
the standard picture of slow-roll eternal inflation and explain the basic quantum-
mechanical picture behind our analysis. In the next two sections we construct the
technical machinery needed to establish the details of our picture of eternal infla-
tion. In Section 8.3 we set up the general problem of finding the time evolution of
the inflaton field and describe its solution by path-integral methods and Feynman
diagrams. We review the result of Ref. [248] that gravitational backreaction deco-
heres super-Hubble adiabatic curvature modes during inflation. In Section 8.4 we
interpret this result in the language of wave function branching, and introduce the no-
tion of observables within a particular branch, where the long-wavelength decohered
modes have a definite classical value. We describe the Feynman rules for comput-
ing these observables, and show in particular that the evolution of short-wavelength
modes depends on the long-wavelength background, suggesting that different deco-
hered branches have different cosmological histories. In Section 8.5 we then use this
machinery to study eternal inflation. We consider the statistics of the daughter cos-



147

mologies that emerge from a single region of space as super-Hubble modes decohere
and the wave function branches. We write the probability of the effective upward
evolution of the cosmological constant that heralds eternal inflation as a function of
the inflationary potential. The expression for the probability, as expected, largely
reproduces previous results, with slight modifications as a result of correctly incorpo-
rating a potential-dependent time until decoherence. Finally, we discuss the broader
implications of this work for the standard eternal inflation in Section 8.6 and then
conclude in Section 8.7.

8.2 The Basic Picture

To set the stage, let us consider this picture more closely. In order to determine
the global structure of a universe in which inflation has begun, it is necessary to
consider modes which have left the Hubble radius and have yet to return—and in-
deed will possibly never return, due to the present acceleration of the universe. If
super-Hubble modes decohere in some particular basis, the quantum state of the
universe as a whole can be written as a superposition of different states with def-
inite values of the modes in that basis—“branches”—which do not interfere with
one another. In particular, some branches may have definite values of cosmological
parameters, such as the Hubble constant, which differ from the values on the initial
classical slow-roll trajectory. Although the expectation values themselves will not
change, individual classical patches after inflation may have values of the parameters
that differ strongly from the expectation values. Even if the parameters of a par-
ticular inflationary potential are chosen to produce a particular amplitude δρ/ρ for
the density perturbations, for example, some of the classical cosmologies resulting
from inflation on this potential will nevertheless have entirely different values. If
decoherence produces a distribution of Hubble constants around the classical value,
there will be some branches of the wave function on which the Hubble constant
grows rather than decreases monotonically according to the equations of motion and
hence on which the end of inflation can be postponed indefinitely. If these branches
are common enough, the volume of inflating space may grow indefinitely. There is
no global spacelike hypersurface on which inflation ends, and the universe is in the
regime of eternal inflation [226].

It is therefore important to understand if eternal inflation actually occurs and
under what conditions. In the standard picture of inflation, the Hubble rate of
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expansion is determined by

ȧ

a
=
√
V (φ)

3 = H(φ) , (8.2.1)

where 8πG = c = ~ = 1, the dot notation indicates a derivative with respect to the
physical time t, and φ ≡ 〈φ〉 + δφ is the inflaton field. Quantum fluctuations of δφ
behave as [244, 245, 249]

〈δφ2(t+ ∆t)〉 − 〈δφ2(t)〉 = H3

4π2 ∆t (8.2.2)

over a time ∆t. According to the standard story, the quantum state of a mode
collapses when it reaches the Hubble scale – corresponding in our language to deco-
herence – and each mode obtains a value given by the sum of its classical evolution
plus a quantum fluctuation up its potential [244, 245]. In the stochastic approxima-
tion, these super-Hubble modes are assumed to decohere quickly, and the evolution
of the inflaton field is treated as a random walk on top of its classical slow-roll trajec-
tory [154, 226, 245, 249]. In a Hubble time ∆t ∼ H−1, the fluctuation in field value
is ∆φ ∼ H/(2π). If the size of these fluctuations are sufficiently large, inflation may
persist due to the scalar field stochastically fluctuating up in its potential, countering
the classical motion. We will discuss this more extensively in Section 8.5 below.

The assumption of rapid decoherence does not necessarily hold in all circum-
stances, in which case eternal inflation must be treated appropriately in the context
of quantum mechanics. Let us therefore be a bit more explicit about the relationship
between backreaction and decoherence, in a simplified toy-model context.

Consider a Hilbert space decomposed into two factorsH = HL⊗HS, correspond-
ing roughly to long-wavelength and short-wavelength modes. Let {|φi〉} be a basis
for HL and {|ωa〉} be a basis for HS. We would like to illustrate the relationship
between entanglement and backreaction. Therefore consider a state of the form

|Ψ〉 = α|φ1〉|ω1〉+ β|φ2〉|ω2〉 . (8.2.3)

For generic α and β such a state is clearly entangled, but for α = 1, β = 0 it is a
product state, so this form suffices to examine both possibilities.

We would like to illustrate the (perhaps intuitive) fact that the evolution of the
short-wavelength states can depend on that of the long-wavelength states with which
they are entangled, but without entanglement it will simply depend on the long-
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wavelength state as a whole. In the absence of entanglement (and the decoherence
that leads to it) there are no fluctuations or quantum jumps; in particular, it does
not matter if the form of that state is that of a squeezed state [250, 251].

We therefore consider an interaction Hamiltonian that does not itself lead to
decoherence; in other words, one that is a tensor product of operators on the two
factors of Hilbert space, ĤI = ĥ(L)⊗k̂(S). The matrix elements of such a Hamiltonian
in the {|φi〉, |ωa〉} basis take the form

HI
iajb = h

(L)
ij k

(S)
ab . (8.2.4)

Its action on the state (8.2.3) is

ĤI |Ψ〉 = α
∑
jb

(
h

(L)
1j |φj〉

)
⊗
(
k

(S)
1b |ωb〉

)
+ β

∑
jb

(
h

(L)
2j |φj〉

)
⊗
(
k

(S)
2b |ωb〉

)
. (8.2.5)

From this form it should be clear that the evolution of the short-wavelength modes
depends on the branch of the wave function they are in. In the α branch they evolve
under the influence of the components k(S)

1b , while in the β branch they evolve under
the influence of k(S)

2b . If the state were unentangled, there would be no differentiation
in how different parts of the long-wavelength state might affect the evolution of
the shorter modes. In this way, decoherence is necessary for backreaction to occur
differently within different branches. It is therefore important to examine the rate of
decoherence during inflation to accurately calculate the stochastic evolution of the
inflationary spacetime on each branch.

8.3 Gravitational Decoherence during Inflation

We would like to understand the full quantum dynamics of the inflaton field during
slow-roll inflation. Following [248], we write down an expression for the wave func-
tion and then extract information about particular modes of interest. We confine
ourselves in this section and the next to perturbative quantum field theory in curved
spacetimes rather than full nonperturbative quantum gravity, so we carry out the
calculations on a fixed de Sitter background. We argue below that our perturba-
tive results, when appropriately interpreted, nevertheless suffice to determine how
backreaction alters the effective Hubble constant and hence determine when eternal
inflation occurs. Since we are tracking the evolution of the wave function, we work
in the Schrödinger picture rather than in the interaction picture used in typical flat-
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space QFT calculations: we view states rather than operators as evolving in time,
and our expectation values are always with respect to the wave function at the time
of interest rather than S-matrix elements.

8.3.1 The general problem

We want to consider the (coordinate or conformal) time evolution of (particular
modes of) a quantum state |Ψ〉 in the Hilbert space Hζ of a quantum field theory of
a single real scalar field ζ with translationally and rotationally invariant interactions.
A natural basis spanning this Hilbert space is the basis of field configurations, which
we can think of either as functions of position space ζ(x) or, more often, as functions
of momentum space ζ(k). We decomposeHζ into an infinite tensor product of factors
representing each point in (position or momentum) space,

Hζ =
⊗

k
Hζ,k , (8.3.1)

so that a particular field configuration |ζ〉 is the product of a specific multi-particle
state in each individual Hilbert space factor,

|ζ〉 =
⊗

k
|ζk〉 . (8.3.2)

Each |ζk〉 is an eigenstate of the field value operator ζ̂k on the appropriate factor
Hζ,k:

ζ̂k|ζk〉 = ζk|ζk〉 . (8.3.3)

Thus a field configuration |ζ〉 is a simultaneous eigenstate of all operators which
consist of the tensor product of the field value operator in a given Hilbert space factor
Hζ,k and the identity in all other factors. The collection of all of the eigenvalues ζk

comprises the field configuration as a function of momentum space, ζ(k).
Given this basis, it is often convenient to work with the wave functional Ψ[ζ]

instead of the state itself:
Ψ[ζ] ≡ 〈ζ| Ψ〉 . (8.3.4)

We work in the Schrödinger picture and consider states rather than operators as
evolving in time. Time evolution is generated by the Hamiltonian Ĥ(t); the symme-
try assumptions mean that can we decompose it as a sum of symmetry-respecting
polynomial interactions among the fields ζk and the canonical momenta π

(ζ)
k ≡

−i(δ/δζ−k). The lowest-order terms, up to quadratic order in the fields, make up
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the free Hamiltonian Ĥfree. Given Ĥfree, we can write a special Gaussian state |ΨG〉,
which is the superposition of field configuration basis states with coefficients given
by the weight ΨG[ζ](t) that solves the Schrödinger equation:

|ΨG〉 =
∑
ζ

ΨG[ζ]|ζ〉, i
d

dt
ΨG[ζ] = Ĥfree[ζ](t)ΨG[ζ] . (8.3.5)

This weight is given by a Gaussian integral over the field modes:

ΨG[ζ](t) ≡ Nζ(t) exp
[
−
∫

k
ζkζ
†
kAζ(k, t)

]
, (8.3.6)

where Nζ(t) is a normalization constant, the shorthand notation for the integral
is given by Eq. (8.A.4) below, the complex conjugate (denoted with †) enforces
the reality condition on ζ(x), and Aζ depends only on the magnitude of k by the
symmetry assumption. The function Aζ(k, t) is given implicitly by Eq. (8.3.5), and
we derive it explicitly for our Hamiltonian of interest below.

We assume that the initial (at t = 0 or equivalently τ = −∞) state is simply

Ψ[ζ](t = 0) = ΨG[ζ](t = 0) . (8.3.7)

Our assumption is motivated by the fact that this state has the form of the Euclidean1

vacuum [185, 188–192], the unique state which is both de Sitter-invariant and well-
behaved at short distances, i.e. obeys the Hadamard condition [187]. Nevertheless,
it is an assumption: it implies in particular that short-wavelength modes which have
just crossed the Planck scale and entered the domain of validity for QFT are in their
vacuum state and unentangled with modes of different wavelengths.

8.3.2 The free action

We now specialize to the case of interest: perturbations around a de Sitter back-
ground. The background de Sitter metric in a flat slicing is ds2 = −dt2 + a(t)2 dx2,
where a(t) = eHt = −1/Hτ . Concentrating solely on scalar modes, we work in a
gauge in which fluctuations are represented as perturbations ζ of the induced spatial
metric,

gij = a(t)2e2ζ(x,t) . (8.3.8)
1The Euclidean vacuum is also known as the Bunch-Davies vacuum [145, 146] for a massive,

noninteracting scalar field or the Hartle-Hawking vacuum [147] for an interacting one.
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This curvature perturbation describes the amount of expansion at any point; if ζ � 1,
it describes the expansion in the given region. The quadratic action for ζ is

Sfree [ζ] = 1
2

∫
d4x

2εM2
p

c2
s

a3
[
ζ̇2 − c2

s

a2 (∂iζ)2
]
, (8.3.9)

where Mp ≡ 1/
√

8πG is the reduced Planck mass and ε ≡ −Ḣ/H2 � 1 is the
first slow-roll parameter. We set the propagation speed to cs = 1; Appendix B of
Ref. [248] treats the general case. We work in Fourier space, using the conventions in
Appendix 8.A. Note that because ζ(x, t) is real we have ζ†k = ζ−k, at least classically.
It is also true quantum-mechanically if the quantum state is invariant under k→ −k,
which is the case for our initial vacuum state. In Appendix 8.A we use the free action
(8.3.9) to derive the free Hamiltonian

Ĥfree[ζ] = 1
2

∫
k

[
1

2εM2
pa

3π
(ζ)
k π

(ζ)
−k + 2εM2

pak
2ζkζ−k

]
, (8.3.10)

and hence an expression for Aζ ,

Aζ(k, τ) = k3 εM
2
p

H2
1− i

kτ

1 + k2τ 2 . (8.3.11)

8.3.3 Interactions

Thus far we have worked only with the free Hamiltonian Ĥfree [ζ]. The full Hamilto-
nian consists of the free term and an interaction term: Ĥ[ζ] = Ĥfree[ζ]+Ĥint[ζ]. If the
interaction Hamiltonian is perturbatively small, evolution with the full Hamiltonian
instead of the free one adds an extra multiplicative term to the wave functional:

Ψ[ζ](t) = ΨG[ζ](t)×ΨNG[ζ](t). (8.3.12)

The lowest-order interaction is cubic, so the non-Gaussian factor can be written

ΨNG[ζ](t) ≡ exp
[∫

k,k′,q
ζkζk′ζqFk,k′,q(t)

]
, (8.3.13)

where the shorthand notation for the integral, which includes a momentum-conserving
delta function, is given by Eq. (8.A.4) below. Because we have taken Ĥint to be rota-
tionally invariant, Fk,k′,q depends only the magnitudes k, k′, and q of the momenta.

We solve for F by writing the Schrödinger equation using H[ζ] and then sub-
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tracting the free Schrödinger equation. Intuitively, F(τ) represents the cumulative
effect of all three-point interactions from the initial (conformal) time τ0 to time τ .
Each specific interaction is computed by using the free Hamiltonian to evolve up to
an intermediate time τ ′, then inserting the interaction term at that time; the full
effect is the result of integrating over all these intermediate times. The result is

Fk,k′,q(t) = i
∫ τ

τ0

dτ ′

Hτ ′
H̃(int)

k,k′,q(τ) exp
[
−i
∫ τ ′′

τ ′
dτ ′′αk,k′,q(τ ′′)

]
, (8.3.14)

where H̃(int) is a classical source, defined implicitly through the action of Ĥint on ΨG,

Ĥint[ζ](t)ΨG[ζ](t) ≡
[∫

k,k′,q
ζkζk′ζqH̃(int)

k,k′,q(t)
]

ΨG[ζ](t) . (8.3.15)

The quantity α implements the free evolution,

αk,k′,q(τ) ≡ [fζ(k, τ)Aζ(k, τ) + fζ(k′, τ)Aζ(k′, τ) + fζ(q, τ)Aζ(q, τ)] /(Hτ), (8.3.16)

where fζ is the coefficient of the kinetic term in Hfree[ζ],

fζ(k, τ) = 1
2εM2

pa
3 = − τ

3H3

2εM2
p

. (8.3.17)

Note that Fk,k′,q is completely symmetric in its three momentum arguments.
The physically relevant interaction term for the case of interest here is the grav-

itationally sourced ζζζ interaction which contains no time derivatives and hence
does not vanish in the super-Hubble limit, where ζ̇ terms are redshifted away. We
have defined ζ as the fluctuations around a de Sitter background, so the interaction
terms should vanish in the limit of pure de Sitter space, i.e. they should have coeffi-
cients proportional to the slow roll parameters ε and η. In particular, the interaction
Hamiltonian is [248, 252]

Ĥint [ζ] =
M2

p

2

∫
d3xε (ε+ η) aζ2∂2ζ . (8.3.18)

This expression for Ĥint then sets the form of F ; the computation is performed in
Ref. [248], which finds in particular that in the late-time limit τ → 0 the imaginary
part of F dominates, |ReF| � |ImF|. This means ΨNG can be approximated as a
pure phase, |ΨNG[ζ](t)|2 ≈ 1.
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8.3.4 Feynman rules

In order to address the issue of backreaction, it is necessary to extend the results of
Ref. [248] by going beyond the pure-phase approximation. Given the expression in
Eq. (8.3.12), we can proceed to calculate expectation values of observables. In partic-
ular, we are interested in the evolution of short-wavelength, sub-Hubble modes. The
free evolution of a mode is given by Eq. (8.3.11), which appears in the computation
of the two-point function 〈ζk?ζ−k?〉.

We begin by converting the operator expectation value into a path integral.
For convenience we write the path integral over field configurations as

∫
Dζ ≡

∫
ζ .

Inserting a complete set of states with a definite field value in each momentum mode,
we have

〈ζk?ζ−k?〉 =
〈
Ψ
∣∣∣ ζ̂k? ζ̂−k?

∣∣∣Ψ〉
=
〈

Ψ
∣∣∣∣ (∫

ζ
|ζ〉〈ζ|

)
ζ̂k? ζ̂−k?

(∫
ζ′
|ζ ′〉〈ζ ′|

) ∣∣∣∣Ψ〉
=
∫
ζ

Ψ†[ζ]ζk?ζ−k?Ψ[ζ] (8.3.19)

= 1
N

∫
ζ
ζk?ζ−k?Ψ

†
GΨGΨ†NGΨNG . (8.3.20)

To lowest order in ReF/ImF , ΨNG is a pure phase, so Ψ†NGΨNG ≈ 1 and the path
integral becomes Gaussian:

〈ζk?ζ−k?〉 ≈
1
N

∫
ζ
ζk?ζ−k?Ψ

†
GΨG

=
∫
ζ ζk?ζ−k? exp

{
−
∫

k ζkζ
†
k

[
A†ζ(k, t) + Aζ(k, t)

]}
∫
ζ exp

{
−
∫

k ζkζ
†
k

[
A†ζ(k, t) + Aζ(k, t)

]} (8.3.21)

= (2π)3δ3(0)
4 ReAζ (k?, t)

, (8.3.22)

recovering the free evolution2. Recall again that we are working in the Schrödinger
picture, where the time dependence lives in the state |Ψ〉 rather than the operators,
so the details of the calculation differ from the more familiar computation of the
2-point correlator from the path integral in QFT (though it should give the same

2Our expression differs by a factor of 2 from that in Eqs. (4.8-9) of Ref. [248], but as noted in
Appendix 8.A our definition of Aζ itself also differs by a factor of 2 and the two factors cancel here.
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result); in particular note that because of the Ψ†Ψ term it is not the action S itself
but rather S + S† = 2 ReS that appears in the exponential.

We see that the pure phase assumption ensures that the (even-point) correlation
functions are unchanged by the interactions. Thus, to capture the effect of these
interactions, we need to go beyond the pure phase assumption by writing the full
expression for Ψ†NGΨNG rather than simply approximating it as 1. We find

Ψ†NGΨNG = exp
[∫

k,k′,q
ζkζk′ζqFk,k′,q +

∫
k,k′,q

(ζkζk′ζqFk,k′,q)†
]

= exp
[∫

k,k′,q
ζkζk′ζqFk,k′,q +

∫
k,k′,q

ζ−kζ−k′ζ−qF †k,k′,q
]

= exp
[∫

k,k′,q
ζkζk′ζq

(
Fk,k′,q + F †k,k′,q

)]
(8.3.23)

= exp
[∫

k,k′,q
2ζkζk′ζqReFk,k′,q

]
. (8.3.24)

To obtain Eq. (8.3.23), we substitute k,k′,q → −k,−k′,−q in the second integrand,
which leaves the integral unchanged, keeping in mind that Fk,k′,q depends only on the
magnitude of the momenta. As desired, the imaginary part of F drops out entirely,
and the integrand vanishes in the limit ReF → 0.

We now insert our improved expression for Ψ†NGΨNG into the two-point function
〈ζk?ζ−k?〉 (8.3.20):

〈ζk?ζ−k?〉 = 1
N

∫
ζ
ζk?ζ−k? exp

[
−
∫

k
2ζkζ

†
k ReAζ(k, t)

]
exp

[∫
k,k′,q

2ζkζk′ζq ReFk,k′,q

]
.

(8.3.25)
Since we cannot integrate this expression analytically, we Taylor-expand the inter-
action term, assuming that each term in the integral is perturbatively small:

exp
[∫

k,k′,q
2ζkζk′ζq ReFk,k′,q

]
= 1 +

∫
k,k′,q

2ζkζk′ζq ReFk,k′,q + . . . (8.3.26)

We see that we can straightforwardly calculate the correlation functions using a
Feynman diagram expansion, with the propagator given by 1/ [4Aζ(k, t)] and a single
three-point interaction with coefficient 2 ReFk,k′,q.
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8.3.5 Decoherence

Thus far we have written down an expression (8.3.12) for the wave functional Ψ [ζ] (t),
and hence the wave function is

|Ψ(t)〉 =
∫
ζ

Ψ [ζ] (t)|ζ〉 . (8.3.27)

Using this expression we can compute expectation values by writing them as a path
integral which admits a solution using the Feynman diagrams.

This is not, however, all that can be done with the wave function. We have
seen in the previous subsection that computing expectation values of the fields alone
yields an expression (e.g. Eq. (8.3.19)) that depends only on the wave functional as
Ψ†Ψ. Such expectation values depend only on the magnitude of the wave function,
not its phase. In addition to expectation values, we can also construct the density
operator ρ̂ ≡ |Ψ〉〈Ψ|, which has complex matrix elements ρ[ζ, ζ ′] = Ψ[ζ]Ψ†[ζ ′]. In
particular, we can factorize Hilbert space by partitioning the wavenumbers, assigning
those above a cutoff Λ to the “system” and those below Λ to the “environment,”

|ζ〉 = |S〉|E〉, Hζ = HS ⊗HE , (8.3.28)

where
|S〉 =

⊗
|k|>Λ

|ζk〉, |E〉 =
⊗
|k|≤Λ

|ζk〉 . (8.3.29)

We can then write the reduced density matrix of the system

ρS[S, S ′] = 〈S|ρ̂S|S ′〉 = 〈S|TrE (|Ψ〉〈Ψ|) |S ′〉

= 〈S|
∫
DE 〈E| Ψ〉 〈Ψ| E〉 |S ′〉 =

∫
DE Ψ[S,E]Ψ†[S ′, E] (8.3.30)

where in the last step we have defined the wave functional Ψ[S,E] as the matrix
element between |S〉|E〉 and |Ψ〉:

Ψ[S,E] = (〈S| ⊗ 〈E|) |Ψ〉 . (8.3.31)

Decoherence occurs in the system when interactions between the system and the
environment cause the decoherence factor (the ratio of the off-diagonal elements of
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ρS to the diagonal ones) to become small:

D[S, S ′] ≡ |ρS[S, S ′]|√
ρS[S, S]ρS[S ′, S ′]

� 1 . (8.3.32)

Inserting our expression for Ψ (8.3.12) and noting that the Gaussian part (8.3.6)
factors as ΨG[ζ] = Ψ(S)

G [S](t)×Ψ(E)
G [E](t), the decoherence factor becomes

D[S, S ′] =

∣∣∣∣∣∣
∫
DE Ψ[S,E]Ψ†[S ′, E]√

(
∫
DE Ψ[S,E]Ψ†[S,E]) (

∫
DE Ψ[S ′, E]Ψ†[S ′, E])

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
∫
DE

∣∣∣Ψ(E)
G [E]

∣∣∣2 ΨNG[S,E]Ψ†NG[S ′, E]√(∫
DE

∣∣∣Ψ(E)
G [E]

∣∣∣2 |ΨNG[S,E]|2
)(∫

DE
∣∣∣Ψ(E)

G [E]
∣∣∣2 |ΨNG[S ′, E]|2

)
∣∣∣∣∣∣∣∣∣∣
.

(8.3.33)

When the non-Gaussian piece of the wave function is a pure phase, which is the case
to lowest order in ReF/ImF in Section 8.3.3, both integrals in the denominator
integrate to one and the decoherence factor simplifies to

D[S, S ′] =
∣∣∣∣∫ DE ∣∣∣Ψ(E)

G [E]
∣∣∣2 ΨNG[S,E]Ψ†NG[S ′, E]

∣∣∣∣ . (8.3.34)

The problem is now reduced to performing the calculation with the previously
given forms of ΨG and ΨNG. Ref. [248] carries out this calculation for the case of
a single super-Hubble mode, HS = {ζq, ζ

†
q = ζ−q, q < H}. As in Section 8.3.4,

Eq. (8.3.34) can be written as an expectation value, this time in the theory of the
environment modes, and solved in the deeply super-Hubble limit |qτ | � 1 using
Feynman diagrams and the cumulant expansion. In our notation, the result is [248]

D[ζq, ζ̃q](τ = −1/aH) = exp
− 1

288(ε+ η)2|∆ζ̄q|2
(
aH

q

)3

+ . . .

 , (8.3.35)

where the dots indicate terms higher-order in F2 and ∆ζ̄q ≡ ζ̄ − ζ̄ ′q is the rescaled
dimensionless amplitude of ζq − ζ ′q, defined by ζq ≡ V 1/2q−3/2π

√
2ζ̄q. The barred
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quantities have variance

〈
|ζ̄q|2

〉
= H2

2εM2
p

1
(2π)2 ≡ ∆2

ζ , (8.3.36)

and so
〈
|∆ζ̄q|2

〉
= 2∆2

ζ . The dimensionless decoherence “rate” is then the negative
log of the decoherence factor with |∆ζ̄q|2 set equal to its expectation value,

Γdeco(q, a) ≈
(
ε+ η

12

)2
∆2
ζ

(
aH

q

)3

for q � aH . (8.3.37)

Decoherence has occurred when this rate, and hence the negative of the exponent in
the decoherence factor, becomes large. The rate does not grow large until long after
Hubble crossing, at q = aH, because of the smallness of the slow-roll parameters
and the amplitude of fluctuations (constrained by observations of the CMB [253]
to be ∆2

ζ ∼ 10−9 at 60 e-folds before the end of inflation). For reasonable values of
(ε+η) ∼ 10−5–10−2, the modes seen in the CMB would have decohered 10–20 e-folds
after Hubble crossing.

In the remainder of this paper, we discuss the implications of this delayed de-
coherence for eternal inflation. In the next section, we establish that decoherence
of long-wavelength modes affects the evolution of short-wavelength modes evolving
in the decohered long-wavelength background, and argue that this change in evolu-
tion implies the backreaction of the Hubble constant required for eternal inflation.
We then turn to discussion of the quantitative differences between the resulting pic-
ture and the standard picture of stochastic eternal inflation caused by the delay of
decoherence far beyond Hubble crossing.

8.4 Branching and Backreaction

As we have shown, the results of Ref. [248] indicate that decoherence of super-Hubble
modes due to gravitational interactions alone is inevitable, though the weakness of
these interactions means that the modes typically take several Hubble times after
Hubble crossing to decohere. Because modes continually expand across the Hubble
radius during inflation, they are also continually decohering, so the overall wave
function is itself continually branching; on each branch there is a definite classical
value for every mode which has become sufficiently long-wavelength. Since long-
wavelength and short-wavelength modes interact gravitationally, we expect the short-
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wavelength modes to have a different reaction in different branches to the decohered
long-wavelength modes.

In this section we formalize this argument, which we have already made schemat-
ically in Section 8.2, by introducing the notion of per-branch observables. We show
that short-wavelength modes do indeed evolve differently in different branches of
the wave function. We argue that this differing evolution indicates the nature of
backreaction away from our perturbative picture; short-wavelength modes evolve as
if they experience different values of the Hubble constant in different branches, and
there exists a gauge choice on which the effective Hubble constant itself differs from
branch to branch.

8.4.1 Observables on branches

In the previous section, we calculated the expectation value of products of fields
with respect to the overall state |Ψ〉. Once decoherence has occurred, however, the
evolution in a particular decohered branch is not given by this expectation value,
but from the expectation value with respect to the state of that particular branch.
As discussed in Section 8.3.1 above, every field configuration |ζ〉 is an eigenstate of
field value for each individual momentum mode. Since the mode decoheres in the
field value basis, we can label individual branches by the field value of the decohered
mode3 in that branch, ζ?kdec

. The state |Ψ〉 can thus be projected onto an individual
branch by considering only the field configurations on which the field value of the
decohered mode is ζ?kdec

, then renormalizing.
More precisely, we define the state |ζ?k〉 ∈ Hζ,k as the eigenstate of ζ̂k with

eigenvalue ζ?k, as in Eq. (8.3.3). Then |ζ?k〉〈ζ?k| projects states in the Hilbert space
factor Hζ,k, and we can define an associated projector on the entire Hilbert space Hζ

by multiplying this projector by the identity on all other factors,

P̂
ζ?k
k ≡

|ζ?k〉 ⊗ ⊗
k′ 6=k

1lk′

〈ζ?k| ⊗ ⊗
k′ 6=k

1lk′

 , (8.4.1)

3In fact modes larger than kdec have also decohered, so properly speaking we must specify the
values of all the decohered modes to uniquely label a branch. We neglect this complication, which
can easily be incorporated at the cost of complicating the notation, throughout the section. The
final Feynman rules presented in Fig. 8.1, however, take the need to consider each decohered mode
into account.
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whose action on field configurations defined by Eq. (8.3.2) is simply

P̂
ζ?k
k |ζ〉 = 〈ζ?k| ζk〉 |ζ〉 = δζ?k,ζk |ζ〉 . (8.4.2)

We can now repeat the calculation in Section 8.3.4 above for a branch with a
definite field value ζ?kdec

in the kdec-th mode:

〈ζk?ζ−k?〉ζ?kdec
= 1
Nζ?kdec

〈
Ψ
∣∣∣∣ P̂ ζ?kdec

kdec
ζ̂k? ζ̂−k?P̂

ζ?kdec
kdec

∣∣∣∣Ψ〉

= 1
Nζ?kdec

〈
Ψ
∣∣∣∣ (∫

ζ
|ζ〉〈ζ|

)
P̂
ζ?kdec
kdec

ζ̂k? ζ̂−k?P̂
ζ?kdec
kdec

(∫
ζ′
|ζ ′〉〈ζ ′|

) ∣∣∣∣Ψ〉

= 1
Nζ?kdec

∫
ζ

Ψ†[ζ]
∫
ζ′
〈ζ|P̂

ζ?kdec
kdec

ζ̂k? ζ̂−k?P̂
ζ?kdec
kdec
|ζ ′〉Ψ[ζ ′]

= 1
Nζ?kdec

∫
ζ

Ψ†[ζ]
∫
ζ′
ζk?ζ

′
−k?

〈
ζkdec

∣∣∣ ζ?kdec

〉 〈
ζ?kdec

∣∣∣ ζ ′kdec

〉
〈ζ| ζ ′〉Ψ[ζ ′]

= 1
Nζ?kdec

∫
ζ

〈
ζ?kdec

∣∣∣ ζkdec

〉2
Ψ†[ζ]ζk?ζ−k?Ψ[ζ]

= 1
Nζ?kdec

∫
ζ

〈
ζ?kdec

∣∣∣ ζkdec

〉2
ζk?ζ−k?Ψ?

GΨGΨ†NGΨNG , (8.4.3)

where the normalization factor is defined so that the wave function on each branch
has unit norm,

〈
Ψ
∣∣∣∣ P̂ ζ?kdec

kdec
P̂
ζ?kdec
kdec

∣∣∣∣Ψ〉 /Nζ?kdec
= 1. Again, Eq. (8.4.3) says that we are

supposed to integrate only over the field configurations where the decohered mode
has the correct field value, i.e. the ones on the appropriate branch.

8.4.2 Feynman rules on branches

In the pure-phase approximation, the integrals over ζkdec and ζk? are independent and
the extra term contributes only an overall constant of proportionality that cancels
in the normalization. In this approximation, evolution of short-wavelength modes
is unaffected by decoherence. A better approximation is to treat ReF as small
compared to ImF , yielding Eq. (8.3.24). Inserting this quantity into the two-point
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function for a decohered branch 〈ζk?ζ−k?〉ζ?kdec
, Eq. (8.4.3) gives

〈ζk?ζ−k?〉ζ?kdec
= 1
Nζ?kdec

∫
ζ

〈
ζ?kdec

∣∣∣ ζkdec

〉2
ζk?ζ−k? exp

[
−
∫

k
2ζkζ

†
kReAζ(k, t)

]

× exp
[∫

k,k′,q
2ζkζk′ζqReFk,k′,q

]
.

(8.4.4)

This expression, combined with the Taylor expansion (8.3.26), allows us to com-
pute correlation functions on decohered branches, but actually writing down the
equivalent Feynman rules requires some thought. Ultimately (from the path-integral
perspective) we can use Feynman diagrams to compute correlation functions because
Taylor expansion lets us write each integral over momentum modes in the form of
a polynomial multiplied by a Gaussian in a particular momentum mode, which we
can compute using Wick’s theorem. Only the integrals for which the polynomial is a
nontrivial function of the momentum modes yield nontrivial results; the contribution
of every other Gaussian is canceled by the denominator. In terms of Feynman dia-
grams, these canceled expressions are just the disconnected diagrams. For example,
in computing the propagator in Eq. (8.3.22) from Eq. (8.3.21), only the terms in the
exponential with k = ±k? are important.

We can use Feynman diagrams to compute correlation functions in a particular
branch, but we need to carefully take into account the extra factor of

〈
ζ?kdec

∣∣∣ ζkdec

〉2
,

i.e. we need to restrict the path integral to only span over field configurations with
nonzero overlap with the branch. This gives a delta function for each decohered
mode. We could impose the delta function separately on each diagram containing
decohered modes, but we may also immediately use the delta function to integrate
over these modes and simplify the path integral. We integrate each integral over
the decohered field mode ζkdec by localizing to the actual value of the mode on the
branch, replacing ζkdec by ζ?kdec

wherever it appears.
One replacement is in the ζ2

kdec
term that is the coefficient of ReAζ(kdec, t) in

(8.4.4). After we have made this replacement, this term yields a ζ-independent
normalization factor which cancels in the numerator and denominator. In terms of
Feynman diagrams, the propagator factor for a decohered momentum mode is just
1, which is unsurprising because we have set this mode equal to its classical value
in the branch. At this point we can simply integrate out the propagating decohered
modes entirely; all interactions involving them will involve the insertion of a classical
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Figure 8.1. Computation of 〈ζk?ζ−k?〉ζ?kdec
using Feynman diagrams. As discussed in

Section 8.3.4 above, non-decohered modes have a propagator given by 1/ [4Aζ(k, t)] and a
single three-point interaction with coefficient 2 ReFk,k′,q. A decohered mode field insertion
comes with a factor of its field value, ζ?kdec

. At leading order the ζk? two-point function
is corrected by diagrams with two interaction vertices. We split the diagrams into two
categories: those where no intermediate momenta are decohered, which we write as a
loop correction integrating over momenta greater than kdec, and those involving decohered
momenta, which we represent as a sum over diagrams with two field insertions.

external source.
In addition, we need to replace the decohered field modes which appear in the

interaction term. We treat each such mode as a frozen classical source, to be inserted
as necessary in the propagator for the dynamical short-wavelength modes, as shown in
Fig. 8.1. Our assumption of perturbativity allows us to approximate the interaction
term by its Taylor expansion truncated at a given order, yielding a polynomial in ζk.
The delta function means that we need to replace the polynomial with a piecewise
function which substitutes ζ?kdec

for ζkdec on configurations that overlap with the
branch and is zero on all other configurations. Again, this substitution takes place
in both the numerator and the denominator (normalization factor). At the level of
the first quantum corrections, only the lowest-order term in the denominator (the
zero-interaction term, with no factors of ζ?kdec

) contributes, so there is a contribution
to the path integral with two insertions of the decohered modes4, proportional to
(ζ?kdec

)2. In terms of Feynman diagrams, each insertion of an external decohered
mode gives a factor of ζ?kdec

. As expected, the leading correction to the two-point
4Because interactions conserve momentum, the term with one insertion does not contribute to

〈ζk?
ζ−k?

〉ζ?
kdec

, which has equal ingoing and outgoing short-wavelength momentum.
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function of a non-decohered field is proportional to the square of the field value of the
classical ζkdec field. This confirms our intuition that short-wavelength modes should
evolve differently in different branches.

In summary, the Feynman rules, shown in Fig. 8.1, are the following. For non-
decohered fields, the propagator is 1/ (4Aζ(k, t)). For each decohered field ζkdec,i

labeled by i, only modes with the specific decohered field value ζ?kdec,i
contribute on

a given branch, and only as external sources. For these modes, field insertions give a
factor of ζ?kdec,i

. All three-point functions among decohered and non-decohered fields
have the same interaction vertex, with coefficient 2ReFk,k′,q.

8.4.3 Cosmological evolution

In the previous subsection we established the intuitive result that short-wavelength
modes evolving in a particular branch are affected by long-wavelength modes as if
they are evolving in a particular classical background5, namely the solution to the
Einstein equations with the particular nonzero values of the ζ field at long wave-
lengths (i.e. field values ζ?kdec

) that characterize the branch. In general these geome-
tries, unlike our initial background cosmology, will have nonzero (and nontrivial)
spatial curvature. Reproducing the usual eternal inflation story requires transform-
ing to a gauge where the spatial curvature is once again zero, in which we expect that
the geometries on various branches of the wave function will have different Hubble
constants. This is a standard procedure in the eternal inflation literature (see e.g.
Ref. [153]) and we only sketch out the steps schematically.

We first switch from the ζ basis, where the probability distribution over field
values is given in the pure phase approximation by Eq. (8.3.6), to the basis of inflaton
field values φk in which the eternal inflation picture is usually developed. In the
inflaton field gauge, the propagating degree of freedom is the variation δφ of the

5In single-field slow-roll inflation, the three-point function 〈ζqζkphζk′
ph
〉′ in “physical coordinates”

vanishes in the squeezed limit, q → 0 [254, 255], where kph ≡ k(1 − ζL) and the prime indicates
the removal of the momentum-conserving delta function. The vanishing correlation between short-
wavelength modes and long-wavelength modes in these coordinates might seem in contradiction
with our claim that the evolution of the short-wavelength modes depends on the value of the
long-wavelength modes. However, decoherence does not change the value of expectation values
with respect to the overall wave function |Ψ〉. Our claim is that the evolution of short-wavelength
modes on each individual branch depends on the long-wavelength field values which characterize the
branch. As previously discussed, this evolution is distinct from the evolution of short-wavelength
modes in the overall wave function. The short-wavelength modes are thus uncorrelated with long-
wavelength modes in expectation values with respect to the overall wave function, but not with
respect to individual branches.
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inflaton field from its expectation value. The power spectrum is that of a light scalar
field in de Sitter space:

〈δφkδφk′〉 = (2π)3 δ (k + k′) 2π2

k3

(
H

2π

)2
. (8.4.5)

Just as the ζ power spectrum defines the coefficient Aζ(k, t) of the kinetic term in the
action via Eq. (8.3.22)—and hence the wave function through Eq. (8.3.6)—the δφ
power spectrum defines a new coefficient Aδφ. We can therefore rewrite Eq. (8.3.6)
in the inflaton field value basis by replacing Aζ(k, t) → Aδφ(k, t). This is simply
a change of variables which does not alter the wave function itself: we are merely
shifting a constant factor 1/2ε between the coefficient A and the field variable. In
particular, the branching structure of the wave function itself is preserved: decoher-
ence gives definite values of long-wavelength δφ modes just as it gives definite values
of long-wavelength ζ modes. For the rest of the paper, it is convenient to work with
the resulting distribution of inflaton field values.

On each branch of the wave function, we treat the decohered mode as a delta-
function momentum-space perturbation of the inflaton field away from its background
value. This perturbation breaks the isotropy of the system, so we can no longer solve
for the cosmological evolution using the Friedmann equations, but we can instead
use perturbation theory around the initial de Sitter background (e.g. Ref. [152])
to compute the shift in the spatial geometry. Finally, we change gauges to one in
which the spatial part of the metric is again homogenous and isotropic. This yields
a probability distribution over de Sitter regions with different values of the Hubble
parameter H, producing branches on which inflation proceeds at different rates.
The usual practice in the eternal inflation literature is to instead say that inflation
proceeds at different rates in separate spatial regions in a single overall spacetime.
We will comment further on this interpretation in the Discussion below.

8.5 Eternal Inflation

Our goal in this section is to consider how the classical picture of slow-roll inflation, in
which the cosmology of a region of space undergoing inflation simply responds to the
expectation value of the inflaton field, is modified when we include decoherence and
branching. Following the existing literature on eternal inflation and the stochastic
approximation, we work directly with Fourier modes of the inflaton field φ rather
than the adiabatic curvature perturbation ζ. As noted in the previous section, even
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though we established decoherence in the ζ field value basis, branches with definite
values of ζk should also have definite values of φk.

8.5.1 The distribution of branches after decoherence

Although we have seen that modes are continually decohering as they grow larger
than the decoherence scale k−1

dec, it suffices to follow the evolution of one particular
mode, with expectation value φ? at the time it grows beyond the Hubble radius.
First consider the classical evolution. Recall the Friedmann equations:

H2 = ρ/3, ä

a
= − (ρ+ 3p) /6 , (8.5.1)

where as in Section 8.2 we have set 8πG = c = 1. A scalar field obeys the Klein-
Gordon equation,

φ̈+ 3Hφ̇ = −V ′ , (8.5.2)

where ′ = d/dφ, and has energy density

ρ = φ̇2/2 + V (φ) . (8.5.3)

In the slow-roll regime, φ̈ � 3Hφ̇,−V ′ and φ̇2 � V , and the field value evolves
classically at a rate

φ̇ = − V ′

3H . (8.5.4)

In one Hubble time the classical change is therefore

∆φc ≡ φ̇H−1 = − V ′

3H2 . (8.5.5)

Meanwhile, the dispersion around the classical value [154, 226, 244, 245, 249] obeys
Eq. (8.2.2), so the variance accumulated in a single Hubble time is

∆2
q ≡

(
〈δφ2(t+ ∆t)〉 − 〈δφ2(t)〉

)
∆t=H−1

= H2

4π2 . (8.5.6)

The overall variance of δφ continues to grow as modes expand past Hubble crossing,
but the variance of individual modes freezes out once they exceed the Hubble scale,
with variance ∆2

q.
We are interested in what happens after N e-folds after Hubble crossing, where

N is the number of e-folds at which modes decohere, which we write explicitly for
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Δt = H -1

λ      = e   HN -1
dec

λ      dec

eλ      dec

Figure 8.2. The evolution of patches in eternal inflation. We choose to look at an initial
patch of linear size given by the wavelength at which modes decohere, N e-folds after
Hubble crossing, λdec = eNH−1. One Hubble time later, the linear size of this comoving
region has expanded by e, so the volume now contains e3 ≈ 20 patches of the size of the
original region.

a general slow-roll potential V (φ) below. At this time the particular mode we are
following, now with size λdec ≡ eNH−1, decoheres into branches. On each branch
of the wave function, the mode has a definite classical value, and the probability
distribution of these classical values is given by a Gaussian with width ∆q and mean
φ? +N∆φc:

P (φ) ≡ 1√
2π∆2

q
exp

[
−(φ− φ? −N∆φc)2

2∆2
q

]
, (8.5.7)

where the prefactor ensures proper normalization of the probability distribution.
Note that V ′ and H are both properly functions of φ, so the classical change

∆φc also depends on the inflaton’s location on the potential. In Eq. (8.5.7) we have
neglected this effect and assumed that ∆φc is constant over the range of field values
we are interested in, so that the total classical rolling over N e-folds is just N∆φc.
We will relax this assumption below when we consider corrections to the standard
eternal inflation picture.



167

8.5.2 The regime of eternal inflation

Eq. (8.5.7) gives the probability distribution over field values for decohered inflaton
modes. Given this probability distribution, when does eternal inflation occur? We are
concerned with computing the change in eternal inflation due to delayed decoherence,
so we first give the conventional account of eternal inflation [226, 228, 244–246]. We
need to compare the expectation value 〈φ(t = t0)〉 of the mode of interest at some
initial time t0 before decoherence has occurred to its value in particular decohered
branches, drawn from the probability distribution P (φ), which is defined at the time
of decoherence, t = t0 + ∆t. The probability that the field on a particular branch
has moved up its potential is given by

Pr(φ > 〈φ(t = t0)〉) ≡
∫ ∞
〈φ(t=t0)〉

P (φ)dφ . (8.5.8)

Because P (φ) is supported on all values of φ, the probability that the field on a
particular branch has moved up its potential is always strictly nonzero. When the
probability is large enough, however, we say that the entire ensemble of branches,
i.e. the wave function, is undergoing eternal inflation. Here “large enough” is usually
taken to mean larger than the reciprocal of the growth in volume during this time:
Pr(φ > 〈φ0〉) & e−3H∆t.

This criterion for eternal inflation to occur is usually justified in terms of the
growth of the volume of inflating spacetime. The situation is depicted in Fig. 8.2.
Consider a volume of space with initial size given by the decoherence length λdec ≡
eNH−1. In the time ∆t it takes for a given mode to reach the scale λdec and decohere,
the initial volume will have grown by a factor e3H∆t. We can therefore divide the
volume into e3H∆t regions with volume equivalent to the initial one. We imagine for
now that decoherence results in a separate classical field value in each of these regions
(we will discuss the validity of this assumption later). Hence if the probability of
moving up the potential in a given region is larger than e−3H∆t, a typical branch of
the wave function describing the evolution of the entire initial volume will contain at
least one region of the same size as that initial volume where the field has moved up
on the potential and the rate of expansion has increased. In this case inflation is said
to be “self-reproducing” or eternal. It remains only to choose a convenient timescale.
The physically relevant timescale in the problem is the Hubble time H−1, which leads
to the familiar criterion that eternal inflation occurs if there is a probability to move
up the potential of at least e−3 ≈ 5%.

Accordingly, consider the situation one Hubble time before decoherence occurs.
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Subject to the assumptions discussed at the end of Subsection 8.5.1, the expectation
value of the mode of interest is then

〈φ(t = t0)〉 = φ? + (N − 1)∆φc = φ? + (N − 1)V ′/3H2 , (8.5.9)

where again φ? is the field value at Hubble crossing, while the variance, which has
been frozen out since Hubble crossing, remains ∆2

q = H2/4π2. Now wait for one last
Hubble time. The volume of the inflating space expands by a factor of e3 ≈ 20, and
the expectation value of the field changes to φ? +N∆φc.

The probability that the field has effectively “jumped” up the potential compared
to where it was an e-fold ago is given by the proportion of the probability distribution
where φ > φ? + (N − 1)∆φc:

Pr (φ > φ? + (N − 1)∆φc) ≡
∫ ∞
φ?+(N−1)∆φc

P (φ)dφ = 1
2

[
1− erf

(
−∆φc

∆q
√

2

)]
.

(8.5.10)
Recall that the error function erf(x) ranges from 0 to 1 as x ranges from 0 to ∞. So
a large probability of jumping up the potential requires that the quantum dispersion
is large compared to the classical rolling.

Notice that the final expression in Eq. (8.5.10) lacks any direct dependence on
N , the number of e-folds from Hubble crossing to decoherence. Hence when the
expression is valid we recover exactly the standard predictions of eternal inflation.

We can now insert the details of the inflationary potential. First, the argument
of the error function is

−∆φc

∆q
√

2
= π
√

2V ′
3H3 = 2π

√
ε

H
, (8.5.11)

where we have used ε = (V ′/V )2/2, H2 = V/3. Slow-roll eternal inflation in the
sense we have described above occurs when

Pr [φ > φ? + (N − 1)∆φc] > e−3 . (8.5.12)

Eqs. (8.5.10) and (8.5.11) let us check where this is true for a given potential given
the Hubble parameter H and slow-roll parameters ε and η. We see from Eq. (8.5.11)
that quantum fluctuations become more important for flatter potentials (small ε)
and at greater energy scales (large H/Mp).
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8.5.3 Corrections from delayed decoherence

In deriving Eq. (8.5.10) we assumed, as discussed at the end of Subsection 8.5.1, that
the rate of classical rolling ∆φc was constant over the range of e-folds from Hubble
crossing to decoherence and hence that the total classical rolling in this time was
just N∆φc. In this subsection we investigate the slight corrections which result from
relaxing this assumption. We focus on determining the range of φ values in which
modes that cross the Hubble scale freeze out with sufficiently large variance to allow
for eternal inflation.

As explained in the last subsection, we are interested in the last e-fold of classical
expansion before decoherence occurs. Denote the value of φ at the start of this
interval by φs and at the end by φe. As above, the value of φ when the mode of
interest crossed the Hubble scale is denoted by φ?. We can now rewrite the probability
distribution of classical field values at decoherence as

P (φ) ≡ 1√
2π∆2

q (φ?)
exp

[
−(φ− φe)2

2∆2
q

]
(8.5.13)

and the probability of moving upward on the potential as

Pr (φ > φs) ≡
∫ ∞
φs

P (φ)dφ = 1
2

[
1− erf

(
− (φs − φe)
∆q (φ?)

√
2

)]
. (8.5.14)

If the field is still in the slow-roll regime at the time that the mode of interest
decoheres, Eq. (8.5.5) is still valid:

φs − φe ≈ φ̇H−1 = − V ′

3H2 , (8.5.15)

but now we should evaluate V ′ and H during the last e-fold of inflation before
decoherence, say at (φs + φe) /2, rather than at Hubble crossing.

We would like to evaluate Eq. (8.5.15) and thus Eq. (8.5.14) as a function of the
field value at horizon crossing, φ?. A first approximation is to take

φs − φe ≈ −
V ′

3H2

∣∣∣∣∣
φ=φ?

, (8.5.16)

but this simply reproduces the N -independent expression for Pr(φ) given in the
previous expression. If we are far enough in the slow-roll regime, Nφ̈ � 3Hφ̇, we
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can do better by evaluating H and φ at the first-order approximation to (φs + φe) /2,
i.e. φ? + (N − 1/2)∆φc:

φs − φe ≈ −
V ′

3H2

∣∣∣∣∣
φ=φ?−(N− 1

2) V ′
3H2 |φ=φ?

. (8.5.17)

This expression may then straightforwardly be evaluated for a given potential. No-
tably, a dependence on N has now been reintroduced. Using Eqs. (8.3.37) and
(8.3.36),

N ≡
(

ln aH
q

s.t. Γdeco = 1
)

= −1
3 ln H

2 (ε+ η)2

1152π2ε
≈ 3.11− 1

3 ln H
2 (ε+ η)2

ε
.

(8.5.18)
At the order we are working it is consistent to evaluate this expression at φ = φ?.

As a worked example, Figure 8.3 plots the two expressions (8.5.10) and (8.5.14)
for a φ4 potential. For this potential N(φ) decreases logarithmically with φ, from
9.38 at φ = 100 to 7.85 at φ = 1000. This delayed decoherence has only a small
effect on the probability of eternal inflation, changing the probability by order 10−5.

8.6 Discussion

In the previous section we have largely worked within the standard picture of eternal
inflation, altering it only by changing when the onset of decoherence occurs. In
the process we have noted a few uncertainties regarding this picture, which to our
knowledge have not been fully resolved.

One ambiguity is the value of ∆t, the time interval at which we calculate how
the wave function has branched (or in conventional language, at which quantum
jumps occur). Equivalently, this is the time before decoherence at which we take
the expectation value 〈φ〉, in order to compare it to the distribution P (φ) of values
of the field in decohered branches, and therefore evaluate the probability that the
field has jumped up in its potential, allowing for eternal inflation. We have chosen
∆t = H−1, which reproduces the criterion that inflation is eternal when at least
5% of patches have jumped upward on the potential. Note that this implies that
N = 1 in the standard picture, which corresponds to decoherence occurring one e-
fold after Hubble crossing, not at Hubble crossing itself—a fact which does not seem
to be commonly appreciated but is implicit in early work on eternal inflation such
as Ref. [154]. The criterion for when eternal inflation occurs depends on ∆t, though
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Figure 8.3. Eternal inflation for a φ4 potential. We have set λ ≈ 4.28×10−14, which is the
value required to reproduce the amplitude of fluctuations in the CMB: ∆2

ζ ≈ 2.5× 10−9 60
e-folds before the end of inflation. On the top plot, the green solid line plots the probability
of eternal inflation for modes passing the Hubble scale at a field value φ? using Eqs. (8.5.14)
and (8.5.17); the black dots show the result using Eq. (8.5.10). The red dotted horizontal
line shows the probability value required for eternal inflation, e−3 ≈ 0.05. The bottom
plot shows the difference between the two expressions: the difference in probabilities has
a value of around 10−5 at field values φ? ∼ 500 near the lower end of the regime where
eternal inflation is allowed. The difference in probabilities is always positive because λφ4

is concave up, so moving downward on the potential decreases V ′ and thus the classical
rolling per e-fold.

only slightly, since it changes the field value at which we should evaluate the classical
rolling.

We are therefore left with the perhaps disquieting fact that whether or not
inflation is eternal does not seem to be entirely objective, but rather depends on
our choice of discretization. For now, we note that two alternate choices of ∆t seem
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unsatisfactory. Comparing the situation at decoherence to the situation at Hubble
crossing itself, ∆t = NH−1, neglects the fact that in this time many other modes have
decohered, making eternal inflation seem harder to achieve than it should actually
be. On the other hand, making the approximation that decoherence is instantaneous,
∆t = 0, in addition to being physically unrealistic, simply gives a probability of 50%
that the field value increased, which does not seem to match our intuition that eternal
inflation should depend on the details of the inflaton potential. So for the moment
our choice of ∆t = H−1 seems most natural, in addition to most directly allowing for
comparison to the standard picture. We hope to return to this issue in future work.
One possibility is that, instead of assuming that decoherence happens immediately,
we should be more careful in computing the timescale over which decoherence occurs
and inserting this timescale in our calculations. Another possibility, as we now
discuss, is that the comparison of field values before and after decoherence is not the
appropriate way to determine whether inflation is eternal.

A second, perhaps more serious, issue is the tension between a traditional semi-
classical spacetime picture, in which branches of the wave function represent par-
ticular spacetimes in which the inflaton takes on slightly different values in nearby
patches of space, versus a more intrinsically quantum picture, in which the wave
function itself is primary and spacetime is emergent. Establishing that decoherence
has occurred means that we can write the wave function in terms of non-interfering
branches, each of which has a definite classical value of the decohered mode. It is
not clear how we should take into account different probabilities for our universe to
emerge from reheating in each of these branches (though one of us has considered a
more general version of this question [256]), and/or whether we should consider the
different rates of expansion in the different branches. This question seems intimately
related to the inflationary measure problem (for reviews, see, e.g., [257, 258]). Some
authors have argued that there is a coherent picture of different inflating regions as
present in a single spacetime [208], others that the multiverse must be thought of
as inherently quantum [259]. We hope to consider this question more extensively in
future work. One step in this direction might include more fully carrying out the pro-
gram sketched in Section 8.4.3 to explicitly derive the wave function of an inflating
scalar field in terms of branches with definite values of the Hubble parameter.
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8.7 Conclusion

In this paper we have tried to place the assumptions of decoherence and backreaction
required for slow-roll eternal inflation on a firmer quantum-mechanical footing. In
single-field slow-roll inflation, we can definitively establish the decoherence properties
of the inflaton by considering spatial perturbations around a background de Sitter
metric. In this gauge the leading interaction is a gravitationally sourced cubic one
(8.3.18) whose strength depends on the parameters of the inflaton potential, so that in
the slow-roll regime inflaton modes do not typically decohere until they have become
very long-wavelength, several e-folds after they pass the Hubble scale (8.5.18). When
decoherence has occurred, we have shown that the evolution of inflaton modes is
different on different decohered branches of the wave function, each representing a
different classical spacetime. Hence the daughter cosmologies after decoherence has
occurred have the differing cosmological evolutions required for the eternal inflation
mechanism. We can use this backreaction to reproduce the standard predictions for
the regime of eternal inflation given a potential, and compute the (typically small)
numerical changes to the boundaries of this regime.
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8.A Free Hamiltonian and Green Function

In this Appendix we derive the free Hamiltonian in Eq. (8.3.10) and the Green
function in Eq. (8.3.11) in the Schrödinger picture. We begin with the quadratic
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action for ζ (8.3.9), setting cs = 1. To first order6, the conjugate momentum of ζ is

π(ζ) = ∂L
∂ζ̇

= 2εM2
pa

3ζ̇ , (8.A.1)

which obeys the canonical commutation relation [ζ(x), π(ζ)(y)] ≡ iδ3(x − y). Al-
though we will write quantities as function of τ , recall that we defined the overdot
notation to denote derivatives with respect to t. We use the Fourier transform
ζk =

∫
d3xζ(x)e−ik·x to write the conjugate momentum in terms of its wavelength

modes
π

(ζ)
k = 2εM2

pa
3ζ̇k , (8.A.2)

which are still functions of time. Hence the free Hamiltonian is

Ĥfree [ζ] =
∫
d3x

[
π(ζ)ζ̇ − L

]
= (2εM2

pa
3)
∫
d3x

[
ζ̇2 − 1

2

(
ζ̇2 − 1

a2 (∂iζ)2
)]

= 1
2

∫
k

[
1

2εM2
pa

3π
(ζ)
k π

(ζ)
−k + 2εM2

pak
2ζkζ−k

]
, (8.A.3)

which matches Eq. (8.3.10). For convenience, we define
∫

k
≡
∫ d3k

(2π)3 and
∫

k,k′,q
≡
∫ d3k

(2π)3
d3k′

(2π)3
d3q

(2π)3 (2π)3 δ3 (k + k′ + q) .

(8.A.4)
With this Hamiltonian and the assumed form of the wave function in Eq. (8.3.6),

we expand both sides of the free Schrödinger equation (8.3.5)

i
d

dt
ΨG[ζ](τ) = Ĥfree[ζ]ΨG[ζ](τ) . (8.A.5)

For the left-hand side of this equation, we find

i
d

dt
Ψ(ζ)
G [ζ](τ) = iΨ(ζ)

G [ζ](τ)
(
Ṅζ

Nζ

−
∫

k
ζkζ−kȦζ(k, τ)

)
. (8.A.6)

For the right-hand side, we must act with the conjugate momentum on the wave
6It suffices to work at lowest order because the terms generated by quadratic corrections cancel

in the Hamiltonian density up to cubic order; see footnote 18 of Ref. [248].
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function, and thus we express it as a functional derivative: π(ζ)
k = −iδ/δζ−k. We find

π
(ζ)
k Ψ(ζ)

G [ζ](τ) = iζk [Aζ(−k, τ) + Aζ(k, τ)] Ψ(ζ)
G [ζ](τ) (8.A.7)

π
(ζ)
−kΨ(ζ)

G [ζ](τ) = iζ−k [Aζ(−k, τ) + Aζ(k, τ)] Ψ(ζ)
G [ζ](τ) (8.A.8)

π
(ζ)
k π

(ζ)
−kΨ(ζ)

G [ζ](τ) = (2π)3 [Aζ(−k, τ) + Aζ(k, τ)] Ψ(ζ)
G [ζ](τ)

− ζkζ−k [Aζ(−k, τ) + Aζ(k, τ)]2 Ψ(ζ)
G [ζ](τ). (8.A.9)

The right-hand side of the free Schrödinger equation becomes

Ĥfree(t)Ψ(ζ)
G [ζ](τ) = 1

2

∫
k

[
(2π)3fζ2A(k, τ)

−fζ(2A(k, τ))2ζkζ−k + 1
fζ

k2

a2 ζkζ−k

]
Ψ(ζ)
G [ζ](τ) , (8.A.10)

where
fζ(τ) ≡ 1

2εM2
pa

3 = − τ
3H3

2εM2
p

. (8.A.11)

We are interested in solving for A, so we match the terms proportional to ζkζ−k to
obtain the differential equation

Ȧ = −2ifζA2 + i

2fζ
k2

a2 . (8.A.12)

After making a change of variables to a = exp(Ht) and defining

A = aH

2ifζ(a)
du

da

1
u
, (8.A.13)

the differential equation becomes [242]

a2d
2u

da2 + 4adu
da

+ k2

H2a2u = 0 . (8.A.14)

This is the Klein-Gordon equation in de Sitter, which can be solved in terms of Bessel
functions. We define u = x3/2y and change variables to x = k/aH = −kτ to obtain

x2 d
2y

dx2 + x
dy

dx
+
(
x2 − ν2

)
y = 0 , (8.A.15)
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where ν = 3/2, and the solutions are the Bessel functions of the first and second
kinds. To find the correct form of y(x), we need to apply initial conditions: we
assume that in the far past (a → 0 or x → ∞ or τ → −∞ or t → −∞) space is
de Sitter and thus the solution is quasistatic, dA/dt|t→−∞ = 0. The limiting form of
y becomes

y → u0x
−3/2e−ix . (8.A.16)

The appropriate combination of Bessel functions that give the exp(−ix) dependence
is the Hankel function of the 2nd kind, H(2)

ν (x). For ν = 3/2,

y(x) = H3/2(x) = −
√

2
πx

(
1− i

x

)
e−ix . (8.A.17)

Substituting y for A, we find

Aζ(k, τ) = k3 εM
2
p

H2
1− i

kτ

1 + k2τ 2 , (8.A.18)

which is our desired result. Note that this expression differs by a factor of 2 from
Eq. (5.4) of Ref. [248].
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