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ABSTRACT

The collective behavior exhibited by a large number of microscopic quantum

particles is at the heart of some of the most striking phenomena in condensed-

matter physics such as Bose-Einstein condensation and superconductivity.

Physicists and mathematicians have made great progress in understanding

when and how these collective phenomena emerge through the interplay of

particle statistics, particle interaction and the value of thermodynamic pa-

rameters like the temperature or the chemical potential. Due to the extreme

complexity of realistic many-body systems, it is natural to introduce appro-

priate simpli�cations to render their analysis feasible. Three examples of such

simpli�cations which have proven themselves as viable starting points for a

fruitful and mathematically rigorous analysis of many-body systems are the

following: (a) the study of integrable models; (b) the derivation of e�ective

theories, valid on a macroscopic scale, from more fundamental microscopic

theories under appropriate coarse-graining; and (c) the use of quantum infor-

mation theory to understand general connections between correlation, entan-

glement and particle statistics.

In this thesis, we present mathematically rigorous results that were obtained

in these three directions. (1) We prove anomalous quantum many-body trans-

port in XY quantum spin chains for certain choices of the external magnetic

�eld. The anomalous transport is described via new kinds of anomalous Lieb-

Robinson bounds, including one of power-law type. We note that the XY

spin chain is integrable as it can be mapped to free fermions via the non-local

Jordan-Wigner transformation. (2) We derive e�ective macroscopic theories

of Ginzburg-Landau type from the microscopic BCS theory of superconduc-

tivity in certain circumstances. We study the case of a multi-component order

parameter for translation-invariant systems and the condensation of fermion

pairs at zero temperature in a domain with a hard boundary. (3) We use

techniques from quantum information-theory to derive bounds on the entropy

of fermionic reduced density matrices, a measure of the entanglement inherent

to a fermionic quantum state.
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C h a p t e r 1

INTRODUCTION

This thesis is devoted to a mathematical study of aspects pertaining to the

quantum many-body problem. Chapter I is a general introduction to the

topic. It is purposefully kept rather informal and mainly serves to illustrate

the big picture. Chapter II contains an overview of the results presented in

Chapters III-VII. These chapters contain speci�c results that were obtained

during my Ph.D. studies. They belong to the following three general avenues

of investigation into the quantum many-body problem.

(a) Integrable toy models. Chapters III and IV treat anomalous quantum

many-body transport in certain quantum XY spin chains.

(b) Emergence of e�ective macroscopic theories from microscopic

ones. Chapters V and VI are concerned with the emergence of e�ective

Ginzburg-Landau type theories from the BCS theory of superconductiv-

ity, in particular for a system with a hard boundary.

(c) Quantum information theory and the study of many-body en-

tanglement. Chapter VII contains bounds on the entropy of fermionic

reduced density matrices which quantify the entanglement inherent to

fermionic states.

We now begin the general introduction. The quantum many body problem

refers to a variety of phenomena that are associated with systems comprised of

a large number of interacting microscopic quantum particles. First we review

the mathematical framework that is used to de�ne and study quantum many-

body systems. Then we continue with an overview of the kind of questions

that one commonly asks about these systems, followed by an explanation of

why their analysis is di�cult. Next, we survey ways to approach and simplify

the quantum many-body problem in various contexts and we describe how the

results of this thesis �t into this landscape.
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1.1 The de�nition of a quantum many-body system

We have in mind a system consisting of N indistinguishable quantum particles,

where N is a �xed large number. In de�ning such a system, we specify the

following three ingredients.

• One-body Hilbert space H1. In many applications, this is an L2(X)

space of complex-valued functions, where X is the con�guration space

(the set of allowed positions) of a single particle. For example, if a

particle can sit anywhere in three-dimensional Euclidean space, one takes

H1 = L2(R3) with Lebesgue measure; if a particle is placed on a one-

dimensional lattice, one takes H1 = `2(Z).

• Particle statistics. The usual rule in quantum mechanics is that the

composition of two Hilbert spaces HA and HB is described by their

tensor product HA ⊗ HB. For example, when we combine N copies of

the one-body Hilbert space H1, we obtain H⊗N1 . To obtain from this

tensor power the true many-body Hilbert space, we take into account the

indistinguishability of the particles. Namely, we project H⊗N1 onto the

subspace that is appropriate for the particle statistics. It is a fundamental

fact of Nature that only two kinds of statistics can occur for elementary

particles (we ignore the possibility of emergent anyonic statistics here and

in the following). These two kinds of statistics give rise to the bosonic

and fermionic Hilbert spaces

Hbos
N = S(H⊗N1 ), Hfer

N = A(H⊗N1 ), (1.1)

where S (respectively A) denotes the projection onto symmetric (respec-

tively antisymmetric) tensors.

• Hamiltonian. To complete the de�nition of a quantum many-body sys-

tem, the �nal ingredient is a choice of many-body Hamiltonian, denoted

HN . This is a (potentially unbounded) self-adjoint operator de�ned on

the many-body Hilbert space from (1.1). The Hamiltonian determines

the physical e�ects that contribute to the energy of the system and so

there is a great variety of Hamiltonians that can be considered.

It is often the case that H1 is an L2(X) space and so its N -fold tensor power

is isomorphic to L2(XN). In this way, one can identify the many-body Hilbert
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space (1.1) with the subspace of L2(XN) corresponding to either symmetric

or antisymmetric functions as in (1.2) below. The elements of this space are

called many-body wave functions.

We now give an example of a many-body quantum system that can be de�ned

according to the above procedure.

The example is that of interacting fermions in three dimensions. For this, we

take the one-body Hilbert space to be H1 = L2(R3) with Lebesgue measure.

Since the particles have fermionic statistics, the many-body Hilbert space is

Hfer
N = A((L2(R3))⊗N) ∼= A(L2(R3N)).

(We ignore spin variables here.) Equivalently, the many-body wave functions

are those ΨN ∈ L2(R3N) satisfying

ΨN(x1, x2, . . . , xN) = sgn(π)ΨN(xπ(1), xπ(2) . . . , xπ(N)), ∀π ∈ SN , (1.2)

for almost every (x1, . . . , xN) ∈ R
3N . Here, xi ∈ R

3 describes the position

of the ith particle, sgn(π) is the sign of a permutation and SN denotes the

permutation group of N elements.

To complete the example, we de�ne a many-body Hamiltonian HN . We take

HN to be a sum of one-body terms (acting only on a single xi) and of a two-

body local interaction (a multiplication operator V (xi − xj) for every pair of

particles). Namely, we take

HN =
N∑
i=1

(−∆xi +W (xi)) +
∑

1≤i<j≤N

V (xi − xj). (1.3)

The i-th term in the �rst sum represents the energy of a single quantum par-

ticle in an external potential W : R3 → R (−∆xi is the kinetic energy of a

non-relativistic particle in appropriate units). The second sum ascribes the

potential energy V (xi − xj) to each pair of particles. The potentials V and

W can be speci�ed further depending on the physical system under study.

Common speci�cations are that W (x) = x2 is a harmonic trapping potential

and that V depends only on the distance |xi − xj|.

The above example is the kind of system that we have in mind when we speak

of a quantum many-body system. In the next section, we discuss the general
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questions that are of interest for these systems.

We close the introduction with two remarks concerning alternative formalisms

for quantum many-body systems.

For the sake of simplicity, we have focused the above presentation to the case

when the total number of particles N is �xed. For systems where N is not

�xed, one employs the Fock space formalism [70]. The data specifying a quan-

tum many-body system in this formalism is unchanged: One �xes a one-body

Hilbert space, the particle statistics and the system Hamiltonian. The idea of

the Fock space formalism, in a nutshell, is that in order to de�ne the system

state, it su�ces to keep track of which elements of the one-body Hilbert space

are �occupied� by the many-body system (and the multiplicity of their occu-

pation). This leads to the de�nition of creation and annihilation operators

whose commutation properties implement the particle statistics. The Fock

space formalism is important, both from a conceptual and technical stand-

point. However, in order to keep the introduction brief, we have opted not to

give a detailed de�nition of the Fock space formalism here.

The above discussion focused on systems in which the positions of spinless

particles constitute are free to vary. Another important class of quantum

many-body systems are quantum spin systems, in which conversely the parti-

cles are localized to �xed lattice sites but their spin can vary. For example,

the many-body Hilbert space of a system of spin 1/2 particles located at the

sites j of a �nite graph Γ is given by⊗
j∈Γ

C
2.

Common examples of many-body Hamiltonians that are considered on this

Hilbert space are the quantum Ising, XY and Heisenberg Hamiltonians with

nearest-neighbor couplings. Note that there is no symmetrization or antisym-

metrization involved in this de�nition, in contrast to (1.1). Implicitly, quantum

spin systems are bosonic models because operators that act on di�erent ten-

sor copies of the local Hilbert space C2 automatically commute. The bosonic

nature of these models can be made apparent by mapping them to lattice gas

models in the Fock space formalism via the introduction of spin raising and

lowering operators. We will discuss these ideas in detail in Chapters III and

IV.
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1.2 Questions of interest

In this section, we present the questions that are generally of interest when

studying quantum many-body systems.

There are two broad categories: (1) questions that concern the static/time-

independent behavior of the system; these are often associated with varia-

tional formulations; (2) questions that concern the dynamical/time-dependent

behavior of the system; these are often associated with partial di�erential

equations.

Common questions in the static case

We begin with some background concerning quadratic forms. In the static

setting, many questions concern the ground state, i.e., the wave function of

minimal energy. One commonly studies this in a variational framework, using

the quadratic form associated to the Hamiltonian HN . For the example from

the previous section, which had HN given by (1.3), this quadratic form is

obtained from the L2 scalar product 〈ΨN , HNΨN〉 by formally integrating by

parts, and it reads

q[ΨN ]

:=
N∑
i=1

∫
R3N

(
|∇xiΨN |2 +

(
W (xi) +

∑
j>i

V (xi − xj)

)
|ΨN |2

)
dx1 . . . dxN .

Assuming that V and W are su�ciently nice functions, this quadratic form

is well-de�ned and bounded from below when the input varies over all ΨN ∈
H1(R3N). (Note that we only need one derivative of ΨN to de�ne q[ΨN ], this

is the virtue of working with quadratic forms instead of operators.)

Quadratic forms that are bounded from below are the central object of study for

static questions. Lower boundedness is essential because it renders the problem

of �nding the ground state and ground state energy well-de�ned. Moreover, if

one has a slightly stronger condition than lower-boundedness, one can use the

KLMN theorem to recover the self-adjoint operator HN from the quadratic

form [159]. (In this context, we mention the related concept of stability of the

second kind, the fact that one can obtain a lower bound on the quadratic form

that is linear in the number of particles for atomic Hamiltonians [126].)

We now list some of the questions that are commonly asked in the static case.
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• What is the ground state energy infΨN q[ΨN ]? If the in�mum is attained,

consider the minimizers of q, the ground states. What is their functional

form? Are they unique? What are their symmetry properties? How

entangled are they?

• Can we describe minimizing sequences in an analogous way? (This is

a sensible question also if ground states exist, since it gives a way to

establish the stability of certain properties of ground states.)

• Are there macroscopically observable e�ects that are a consequence of

the quantum nature of the microscopic particles? Examples of such

macroscopic e�ects are Bose-Einstein condensation and superconductiv-

ity. More generally, does the system display markedly di�erent behavior

on di�erent length or energy scales?

• How do the system properties described so far behave in the thermody-

namic limit, as the system size and particle number N go to in�nity?

In particular, are there any phase transitions? I.e., do any of the above

answers depend discontinuously on the value of some thermodynamic

parameters, like density or temperature? The discontinuity may present

itself in a derivative, in that case one speaks of a higher-order phase

transition.

• For a system de�ned on a �nite domain, do its properties depend on the

boundary conditions or on the topology of that domain?

Common questions in the dynamic case

We come to the dynamic (or time-dependent) case. The dynamics are gener-

ated by the many-body Schrödinger equation

i
d

dt
ΨN(t) = HNΨN(t).

It is sometimes convenient to discuss a dual notion of dynamics, the Heisenberg

dynamics that are generated on bounded operators via

i
d

dt
A(t) = [A(t), HN ].

These two notions of dynamics are dual in the sense that they yield the same

expectation values 〈ΨN(t), A(0)ΨN(t)〉 = 〈ΨN(0), A(t)ΨN(0)〉 for all t.

The following kinds of questions are commonly asked in the dynamic case.
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• Is there transport in the system? Transport can refer for example to the

propagation of particles (perhaps understood as wave packets), informa-

tion and entanglement. The complete absence of transport and ergodic

behavior indicates the occurrence of the special �many-body localized�

phase.

• If there is transport in any of the above senses, one can ask how fast it is.

Is the propagation di�usive, does it occur at a positive ballistic speed,

or is it anomalous?

• Suppose we have an e�cient description of the system at an initial time

(say in form of a tensor product state). For how long is this description

valid, at least approximately?

• Is there return to equilibrium? For instance, is there a mechanism that

ensures that the time-evolution of some or all initial states converges to

a ground state? (A common way to generate such a mechanism is to

couple the system to a large environment.) If so, what is the asymptotic

rate of equilibration?

• As in the static case: How do the properties described above behave in

the thermodynamic limit? Are there phase transitions? What roles do

boundary conditions and topology play?

This completes our list of general questions that are commonly asked about

quantum many-body systems.

1.3 The di�culty in analyzing quantum many-body systems

Recall formula (1.3) that gave an example of a quantum many-body Hamil-

tonian. The di�culty in studying such systems comes from the interaction

term ∑
1≤i<j≤N

V (xi − xj),

since it creates correlations between the di�erent particles. Correlation can

occur both in the classical sense (as for correlated random variables) and in

the quantum sense (realized e.g. as entanglement).

In particular the quantum correlations pose di�culties. They can be highly

non-local and it is not always clear how they manifest themselves. For instance,
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the antisymmetry of a fermionic wave function ΨN as described by the relation

(1.2) is an instance of a �quantum correlation� that is inherent to all the

available states of a fermionic system but its e�ects are not easily quanti�able.

It is an ongoing quest to understand what kind of reduced density matrices

can arise from an antisymmetric N -body wave function ΨN . This is called

the N-representability problem and its solution would have great bearing on

quantum chemistry.

The di�culty with controlling entanglement is also related to the fact that the

number of possible system states grows exponentially in the system size for

quantum systems, due to the built-in tensor product structure. For instance,

consider a lattice of N spin 1/2 particles. Its Hilbert space is (C2)⊗N , which

has complex dimension 2N and this grows exponentially with N .

Another issue is that the particle number N is often quite large in applications

to real-world systems. (An exception are experiments with cold quantum

gases. For these, the particle number can be comparatively small, say of the

order 102.)

To summarize, the quantum aspects and the large numbers of particles in-

volved in quantum many-body systems allow for extensive and intricate cor-

relations within the system state. For interacting systems, these correlations

play an important role and cannot be ignored. Consequently, one cannot solve

a quantum many-body system analytically, or even numerically, in general.

Since the early days of quantum mechanics, extensive e�orts have been made

to �nd approaches to the quantum many-body problem that circumvent these

issues. These approaches should be simple enough to allow for conclusive

theoretical and numerical investigations, but complex enough to describe the

relevant aspects of the true system to good accuracy, at least in certain regimes.

This will be the topic of the next section.

1.4 Approaches to the quantum many-body problem

We present a number of the di�erent approaches that have been invented to

study the quantum many-body problem. We focus on topics that have been

studied mathematically as well.

(1) Integrable models. In special cases, the quantum many-body Hamilto-

nian under consideration possesses additional algebraic structure that allows
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one to solve the system exactly. Here, �solving a system exactly� does not have

a unique meaning. Typically, it means that one can write down the exact

eigenstates and eigenvalues for the Hamiltonian, or that one can derive an

exact and computable formula for the partition function of the system. High-

lights in this context were Bethe's solution of the one-dimensional Heisenberg

antiferromagnet [25], Onsager's solution of the two-dimensional Ising model

[142] and Lieb's solution of the square ice model [122].

While integrable systems are very special, one can study them in detail and

they serve as a testbed for theories and conjectures about more general sys-

tems. This is particularly true for system properties that are believed to be

the same in an entire universality class.

(2) E�ective theories. Soon after the advent of quantum mechanics, in 1927,

Thomas and Fermi [167, 69] invented the �rst version of density functional

theory to simplify the quantum theory of atomic physics to a more amenable

theory. Their simpli�ed theory is in fact correct in the limit of large atomic

number [129].

There exist a great number of similar theories that describe the static or dy-

namical behavior of a quantum many-body system in some parameter limit.

Three particularly prevalent examples are the semiclassical limit, the dilute

limit and the mean-�eld limit. Justifying the validity of these e�ective the-

ories in the appropriate parameter limit has been an active �eld of research

in mathematical physics in the last decades. An important example was the

derivation of the Gross-Pitaevskii theory describing a Bose-Einstein conden-

sate in the static [127, 128] and in the dynamical case [67]. A common feature

of e�ective theories is that one starts from a quantum many-body Hamiltonian,

i.e., a linear theory of O(N) degrees of freedom and then, upon coarse-graining

the appropriate microscopic degrees of freedom, one derives an e�ective non-

linear theory of O(1) degrees of freedom.

(3) Renormalization group methods. Assume that the interaction term,

e.g.
∑

i<j V (xi−xj), is multiplied by a small parameter λ > 0. Then, for some

systems one can obtain convergent power series expansions of physically rele-

vant quantities in λ; a rigorous approach has been developed, e.g. by Benfatto

and Gallavotti [18]. In some cases, one can obtain power series that do not

converge but that provide valid asymptotic series.
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(4) Quantum information theory and the role of entanglement. It can

be very useful for studying a quantum many-body system if one can restrict

to studying states that are only mildly entangled (for example when searching

for the ground state of a many-body Hamiltonian). Small entanglement may

yield a representation of the state which is more e�cient for computation

and theoretical investigation. For example, a state satisfying the area law for

the entanglement entropy (e.g. the ground state of a gapped one-dimensional

lattice Hamiltonian [98] or one-dimensional many-body localized states [26]),

can be expressed as a matrix product state with small bond dimension [13, 77].

It is therefore important to understand both (a) which Hamiltonians have

ground states of small entanglement and (b) how small entanglement con-

strains the structure of a many-body state. In particular the latter issue

belongs to the realm of quantum information theory and can be studied using

entropy inequalities.

This concludes our discussion of the various approaches to the quantum many-

body problem.

We �nish this part with an explanation of how the mathematical results in

this thesis �t into the landscape that was just discussed.

Chapters III and IV concern the dynamics of an integrable toy model, the

isotropic XY spin chain in an external magnetic �eld. We are interested in

how its Heisenberg dynamics propagate information. More precisely, we are

interested in the dynamical propagation rate of quantum correlations, which

are expressed as commutators of initially localized observables.

Chapters V and VI concern the ground state properties of certain e�ective

theories. We consider the relation between the microscopic BCS theory and

macroscopic Ginzburg-Landau type theories. We are interested in the relation

between energy minimizing sequences in these two theories, in particular in

terms of degeneracy, symmetry and boundary conditions.

Chapter VII concerns the implications that fermionic statistics have on the

entanglement structure of quantum states. This vein of research is loosely

motivated by the N -representability problem and thus ultimately by the goal

of understanding the ground-state properties of large molecular systems.
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C h a p t e r 2

OVERVIEW OF THE RESULTS

In this chapter, we give an overview of the results presented in Chapters III-VII

of this thesis. For the overview, the results are grouped as follows: anomalous

Lieb-Robinson bounds (Chapters III and IV); e�ective theories derived from

BCS theory (Chapters V and VI); entanglement of fermionic states (Chapter

VII).

2.1 Anomalous Lieb-Robinson bounds

Review of the standard Lieb-Robinson bounds

The standard Lieb-Robinson (LR) bounds are propagation bounds for many-

body systems de�ned on a lattice via a local Hamiltonian. They control the

spread of quantum correlations (expressed as the commutators of initially lo-

calized observables) under the Heisenberg dynamics. One may interpret LR

bounds as saying that under the many-body dynamics information propagates

at most ballistically, namely up to exponentially small errors that leak out

of a certain spacetime light cone. LR bounds were �rst proved by Lieb and

Robinson [124] in 1972 and they were generalized to a larger class of systems

by Nachtergaele and Sims [138]. Hastings and collaborators have found many

uses for LR bounds, e.g., for studying the ground states of gapped Hamiltoni-

ans [29, 13, 98].

Let us state the standard LR bound (in a slightly simpli�ed version), so that

we can compare our results with it. We may consider any system de�ned

on a lattice via a Hamiltonian that has local and bounded interactions. For

de�niteness, we restrict to quantum spin systems de�ned on the lattice Zd.

The local Hilbert space of a spin 1/2 site is simply C2. The total Hilbert space

of a box ΛL ⊂ Z
d of sidelength 2L+ 1 is then

HL =
⊗
j∈ΛL

C
2.

The Hamiltonian HL is taken to be a self-adjoint operator on this Hilbert space

with bounded and �nite-range interaction terms. Common and important

examples include the nearest-neighbor quantum Heisenberg, XY and Ising

models.
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To state the LR bound, we introduce a notion of locality for observables. Since

HL is a �nite-dimensional Hilbert space, the set of viable observables is just

the set of all matrices on HL, which we denote by Mat(HL) (we do not require

self-adjointness here). We de�ne the local algebra of observables at a site

j ∈ ΛL by

Oj :=
{
A ∈ Mat(HL) : A = Aj ⊗ IΛL\{j} for some Aj ∈ Mat(C2)

}
.

In other words, a local observable at site j ∈ ΛL is one that acts non-trivially

exactly at j. For any observable A ∈ Mat(HL), we de�ne its Heisenberg

dynamics at time t ∈ R by

A(t) := eitHNAe−itHN .

Theorem 2.1.1 (LR bound). Let HL be a Hamiltonian on HL that has local

and bounded interactions. There exist constants C, ξ > 0 and v ≥ 0 such that

the following holds. For all j, k ∈ ΛL with j 6= k, we have the bound

‖[A(t), B]‖ ≤ C‖A‖‖B‖eξ(vt−|j−k|), (2.1)

for all observables A ∈ Oj and B ∈ Ok.

Here we wrote || · ‖ for the standard operator norm on Mat(HL) and | · | for
graph distance on Zd.

Let us make some comments about this theorem.

The left-hand side in (2.1) vanishes at t = 0. Indeed, A(0) = A and [A,B] = 0

since the two operators only act non-trivially at di�erent sites j 6= k. In other

words, A and B are uncorrelated observables at time t = 0. For any arbitrarily

small positive time t > 0, A(t) will be supported on the whole box ΛL, so the

above argument breaks down immediately. Nonetheless, the LR bound (2.1)

quanti�es the extent to which the correlation (commutator) between A(t) and

B remains small under the Heisenberg dynamics.

The LR bound is useful when the right-hand side is small and this is the case

precisely outside of the spacetime light cone vt = |j−k|, namely for vt < |j−k|.
The slope of the cone is v, the so-called Lieb-Robinson velocity. (The name

�light cone� is of course used in reference to relativistic systems which possess

a light cone of slope c, the speed of light, outside of which correlations vanish
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identically; in LR bounds the slope is v and correlations are only exponentially

suppressed outside of the cone.)

We also remark on the thermodynamic limit L→∞. The constants C, ξ and

v depend on the dimension d and the operator norm of the local interaction

terms. Therefore, if the individual interaction terms that are added as L grows

are all identical (e.g. if HL describes a quantum Heisenberg, XY or Ising model

at �xed coupling), then the constants C, ξ and v are uniform in the thermo-

dynamic limit L→∞.

Our results on anomalous LR bounds

We are now ready to discuss our results in Chapters III and IV. In both of

these chapters, we consider an isotropic XY quantum spin chain. The Hilbert

space of a one-dimensional chain of L quantum spins reads

HL =
L⊗
j=1

C
2.

On this Hilbert space, we consider the Hamiltonian

HL = −
L−1∑
j=1

(
σ1
jσ

1
j+1 + σ2

jσ
2
j+1

)
+

L∑
j=1

hjσ
3
j . (2.2)

Here σ1, σ2, σ3 denote the standard Pauli matrices; they are embedded into

Mat(HL) by tensoring them with the identity, i.e. σaj = σa ⊗ I{1,...,L}\{j} for
a = 1, 2, 3. The remaining free parameters in the model are the local magnetic

�elds hj ∈ R.

The model (2.2) is an integrable toy model for truly interacting systems. It is

unitarily equivalent to a system of free fermions via the Jordan-Wigner trans-

formation. This allows to relate its many-body transport properties, expressed

in terms of LR bounds, to the transport properties of a one-dimensional dis-

crete Schrödinger operator describing a single electron, a topic that has been

studied extensively in the past. The magnetic �eld hj becomes the on-site po-

tential felt by the single electron under the Jordan-Wigner transformation. In

this way, one can vary hj to obtain many-body models (2.2) showing various

di�erent kinds of transport behavior. We mention that relating the transport

properties of the Schrödinger operator back to the many-body system is non-

trivial because the Jordan-Wigner transformation is non-local (and transport
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bounds of course depend inherently on the notion of locality that is being

used).

Previous results concerning LR bounds in the model (2.2) (and its anisotropic

generalization) considered the following two extreme cases.

• Hamza, Sims and Stolz [96] proved that if the {hj} are i.i.d. random

variables sampled according to a distribution with bounded probability

density, then the LR bound (2.1) holds with velocity v = 0. This may

be understood as a version of many-body localization.

• Damanik, Lukic and Yessen [50] proved that if the {hj} are periodic,

then the LR bound (2.1) can only hold for v ≥ v∗ > 0, where the

minimal velocity v∗ can be characterized explicitly in terms of a certain

propagation operator. This may be understood as saying that for pe-

riodic potentials, many-body transport is precisely ballistic. The result

was later generalized to quasi-periodic potentials admitting a Floquet

decomposition [105].

Given these two results, it is natural to ask if one can derive intermediate

transport behavior by selecting a di�erent magnetic �eld. This is the content

of our joint works [48, 47] with David Damanik, Milivoje Lukic and William

Yessen. The main result of these works reads as follows. We write χI for the

indicator function of an interval I.

Theorem 2.1.2. Let hj be given by the Fibonacci external potential, i.e.,

hj = λχ[1−φ−1,1)(jφ
−1mod1),

where λ ≥ 8 is a coupling constant and φ = (1 +
√

5)/2 is the golden mean.

Then, there exists 0 < α < 1 and constants C, ξ > 0, v ≥ 0 such that for all

1 ≤ j < k ≤ L, we have

‖[A(t), B]‖ ≤ C‖A‖‖B‖eξ(vtα−|j−k|), (2.3)

for all observables A ∈ Oj and B ∈ Ok.

The key here is the occurrence of the exponent 0 < α < 1 in (2.3). It signi�es

anomalous quantum many-body transport because it �bends� the light cone
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where the LR bound is e�ective. The new �light cone� is now the set {vtα =

|j − k|}.

Our results in [48, 47] also give an explicit characterization of the optimal

value of α such that (2.3) holds. Namely, α has to be greater or equal to the

one-body transport exponent α+
u of the discrete Schrödinger operator obtained

via the Jordan-Wigner transformation. (This statement holds for all λ > 0,

but we only know that 0 < α+
u < 1 for λ > 8.) Roughly speaking, α+

u is the

propagation rate of the fastest part of an initially localized wave packet under

the one-body dynamics. That is, if one starts with an initially localized wave

packet at the origin, then after time t the fastest part of the wave packet has

traveled a distance O(tα
+
u ) if one ignores exponential tails (exponential tails

usually cannot be avoided in quantum theory). The precise de�nition of α+
u

and further details are discussed in Chapter III.

Let us explain why the bound (2.3) is indeed a qualitative improvement over

the standard LR bound (2.1). (We do not track the numerical values of the

constants C, ξ and v, so we cannot make quantitative statements.) Let j = 1,

�x a far away site k and start the dynamics at t = 0. Then the bound (2.3)

is informative for times of the order |k|1/α, while the original bound (2.1) is

informative for times of the order |k|. Since 0 < α < 1, we have |k|1/α � |k|
for large k and so the new bound (2.3) is useful for substantially longer times.

Lieb-Robinson bounds of power-law type

We now come to the results of Chapter IV, which were obtained in collabora-

tion with Martin Gebert. To motivate these, we mention that there exist other

discrete Schödinger operators which display intermediate transport behavior

in a di�erent sense than the Schödinger operator with Fibonacci potential

considered above.

For the discrete Schrödinger operator with Fibonacci potential, one quanti�es

the one-body quantum transport on an exponential scale in terms of the trans-

port exponent α+
u described above. It is then natural that the anomalous LR

bound (2.3) for the Fibonacci model also features an exponentially small error

term.

However, for some other models, like the random dimer model of Dunlap,

Wu and Philips [63], the one-body quantum transport looks ballistic on the

exponential scale, but it is anomalously slow if power-law errors are allowed.
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For such models, α+
u = 1 and so a bound like (2.3) will only hold with α = 1,

meaning that there is no improvement over the original LR bound. However,

one may take the perspective that this is the case only because one is asking

for a lot by requiring exponential decay away from the light cone. These

considerations led us to attempt to prove LR bounds with power-law error

terms for the random dimer model in [48, 47], but it turns out that the method

breaks down for this model. (In a nutshell, the reason is that the Jordan-

Wigner transformation allows one to bound ‖[A(t), B]‖ by a sum of one-body

transport quantities. These can be bounded by objects that decay like a power

law for the random dimer model, but the power-law decay decreases by one

order under summation. This decrease by one renders the method inconclusive

for the random dimer model.)

A year after the works [48, 47] were completed, in a collaboration with Martin

Gebert [79], we found a di�erent model to which the idea of power-law type

LR bounds could be applied. The model is one with decaying randomness,

i.e.,

hj = λ
ωj√
j
, (2.4)

where λ > 0 is a coupling constant and {ωj} are i.i.d. random variables of

mean zero, variance one and distributed according to a bounded probability

density. The decaying envelope j−1/2 is critical in the sense that it is just barely

not square-summable. The corresponding one-body Schrödinger operator was

studied extensively by Delyon, Simon and Souillard [56] and by Kiselev, Last

and Simon [111].

Our �rst result with M. Gebert, which is discussed in more detail in Chapter

IV of this thesis, says that one has a zero-velocity power-law LR bound on

average when the disorder strength λ is su�ciently large.

Theorem 2.1.3. Let HL be given by (2.2) with hj as in (2.4). Then, there

exist constants C, κ > 0 such that for all λ > 0 with κλ2 > 5/4 and for all

1 ≤ j < k ≤ L, we have

E

(
sup
t∈R
‖[A(t), B]‖

)
≤ C‖A‖‖B‖(jk)5/4

(
j

k

)κλ2

, (2.5)

for all observables A ∈ Oj and B ∈ Ok.

We comment on the form of the right-hand side in (2.5). The model is not

translation-invariant, so there is no direct dependence on |j−k|. For simplicity,
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set j = 1. Then, the bound says that the commutator [A(t), B] decays like

a power-law in k, with a power that is determined by the disorder strength.

The bound holds uniformly in time, making it a zero-velocity LR bound.

In [79], we also prove a converse statement: For small disorder (λ < 2), there

are signs of transport in the model. Namely, the anomalous power-law LR

bound

‖[A(t), B]‖ ≤ C‖A‖‖B‖
(
vta

k

)b
will fail (for some A ∈ O1 and B ∈ Ok) if a is small and b is large. (The precise

condition is 1 + 1/(2b − 1) < a−1.) The failure of such a propagation bound

to hold suggests that the model exhibits a phase transition, as the disorder

strength is varied, from a phase with many-body localization in the sense of

(2.5) to a phase with many-body transport.

A breakdown of the delicate many-body localized (MBL) phase is indeed ex-

pected to occur in more realistic systems [144, 171]. The MBL phase should

break down as interactions get too strong, which is equivalent to λ getting

smaller in our model. The fact that the present model might exhibit a break-

down of the MBL phase is an advantage it holds compared to another popular

toy model, the XY chain with ordinary i.i.d. (non-decaying) disorder. The

latter model is fully localized for arbitrarily small disorder strength.

This concludes our discussion of anomalous Lieb-Robinson bounds. Further

details are provided in Chapters III and IV. An interesting open problem in

this context is whether one can establish analogously anomalous dynamical

behavior for the entanglement entropy in the systems discussed above. A

static variant of this question is whether the many-body ground states of these

systems violate the area law for the entanglement entropy (and if so, in which

way).

2.2 E�ective theories derived from BCS theory

Translation-invariant multi-component systems

In Chapter V, we describe joint work with Rupert L. Frank. We consider

a system of interacting fermions in d dimensions (d = 1, 2, 3) at chemical

potential µ ∈ R and temperature T ≥ 0. The particles have a tendency to

form pairs due to some underlying physical mechanism which is expressed by

a local interaction potential V (x). There are no external �elds and therefore

the system is translation-invariant.
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The system is described using a variational formulation of BCS theory in

which system states are described by quasi-free states. Thanks to translation-

invariance, a BCS state is fully characterized by the following multiplication

operator on L2(Rd) ⊕ L2(Rd). For any value of the momentum p ∈ R
d, the

operator is de�ned by

Γ̂(p) =

(
γ̂(p) α̂(p)

α̂(p) 1− γ̂(p)

)
. (2.6)

The physical meaning of the functions appearing here is that γ̂(p) is the Fourier

transform of the one-body density matrix and α̂(p) is the Fourier transform of

the Cooper pair wave function. Since Γ̂ describes a fermionic quantum state,

it must satisfy the constraint 0 ≤ Γ̂(p) ≤ 1 for every p ∈ Rd. The variational
theory is de�ned via the BCS free energy of a system state Γ̂

FBCS(Γ̂) =

∫
Rd

(p2 − µ)γ̂(p)dp− TS[Γ̂] +

∫∫
Rd×Rd

V (x)|α(x)|2dx. (2.7)

Here we introduced the entropy

S[Γ̂] = −
∫
Rd

Tr[Γ̂(p) log Γ̂(p)]dp.

This variational formulation of BCS theory is due to [11, 57]. For a heuristic

derivation of the free energy functional (2.7) from an appropriate many-body

Hamiltonian, see, e.g., Appendix A in [89].

To get a better grasp of the free energy, (2.7), let us consider the terms sepa-

rately. The �rst term describes unpaired electrons and would be minimal for

γ̂(p) = 1p2<µ, which is the indicator function of the Fermi sphere (the con-

straint 0 ≤ Γ̂(p) ≤ 1 implies that 0 ≤ γ̂(p) ≤ 1 as well). The third term

in (2.7) describes the energetic gain of pair formation and would be minimal

when α(x) is large where V (x) is negative. While the third term could be made

arbitrarily large, its size is constrained by the estimate |α̂(p)|2 ≤ γ̂(p)(1− γ̂(p))

which follows from 0 ≤ Γ̂(p) ≤ 1. In particular, if γ̂(p) is an indicator function,

then α = 0. The di�culty in analyzing the free energy functional (2.7) stems

from the constraint |α̂(p)|2 ≤ γ̂(p)(1 − γ̂(p)) and the entropy term in (2.7),

which couples γ̂ and α̂ in a nonlinear way.

The BCS free energy is a microscopic model for superconductivity or super-

�uidity (depending on the physical context). These are macroscopic quantum

e�ects which stem from the existence of a Cooper pair wave function that is
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coherent over the system. In the variational framework considered here, we say

that pair formation (and therefore superconductivity, respectively super�uid-

ity) occurs if any BCS state Γ̂ minimizing the BCS free energy has a non-zero

Cooper pair wave function α̂ 6= 0.

It turns out that in the translation-invariant model considered here, there

exists a unique critical temperature Tc such that pair formation occurs i�

T < Tc. In 2008, Hainzl, Hamza, Seiringer and Solovej [89] characterized the

critical temperature by the following linear criterion. To state it, we introduce

the linear operator

KT :=
−∆− µ

tanh
(−∆−µ

2T

)
on the space of even functions

L2
symm(Rd) =

{
f ∈ L2(Rd) : f(x) = f(−x) a.e.

}
.

The operator KT can be de�ned as a multiplication operator in Fourier space.

Elementary considerations inform us that the operator KT + V (which may

be thought of as a variant of a Schrödinger operator) has essential spectrum

starting at 2T > 0. The following theorem is proved in [89].

Theorem 2.2.1. The system exhibits pair formation (i.e. any minimizer of

FBCS has α̂ 6= 0) i� KT + V has at least one negative eigenvalue. There

exists a unique critical temperature Tc ≥ 0 such that KT + V has a negative

eigenvalue i� T < Tc.

The basic idea behind this linear criterion describing Tc is that it checks

whether the Hessian KT + V of the �normal state� Γ0 is positive de�nite.

(The normal state Γ0 is the minimizer of FBCS for α = 0; its γ̂(p) is just the

Fermi-Dirac distribution.) The reason for this is that the normal state is the

prime competitor for the presence of non-trivial α and therefore its instability

signi�es the onset of pair formation. What is remarkable about this theorem

is that it proves that in the nonlinear theory under consideration, the local

instability of the normal state is equivalent to global instability. The unique-

ness of Tc follows from the monotonicity properties of KT (note that tanh is a

monotone function).

Given the de�nition of the critical temperature, one may ask if one can de-

rive an e�ective Ginzburg-Landau description of the superconductivity (or
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super�uidity) for T close to Tc, in the spirit of Gorkov's argument [85] for the

original BCS model (which featured a very particular choice of V , an indicator

function in Fourier space). This question was asked and answered in a break-

through paper by Frank, Hainzl, Seiringer and Solovej [73] who considered the

technically more challenging situation with weak and slowly varying external

�elds (so that one loses translation-invariance). However, they work under a

non-degeneracy assumption that we explain now.

At the critical temperature, the operator KTc + V has a zero eigenvalue. The

key parameter for us is the dimension of this eigenspace

n := dim ker(KTc + V ).

We know that 1 ≤ n < ∞, since zero belongs to the discrete spectrum.

The assumption in [73] is that n = 1 and our contribution is to drop this

assumption for translation-invariant systems. The physical meaning of the

case n > 1 is that superconductivity, respectively super�uidity, may occur in

di�erent �channels�. Indeed, the elements of ker(KTc + V ) are precisely the

microscopically realized Cooper pair wave functions.

The �rst main result of Chapter V is that one obtains a multi-component

Ginzburg-Landau (GL) theory from the microscopic BCS free energy close

to the critical temperature. The degeneracy parameter n gives exactly the

number of order parameters in the GL theory.

To state the theorem, we recall that Γ0 denotes the normal state. We restrict

the BCS free energy to an appropriate set of admissible states D in order

to ensure that the corresponding minimization problem is well-de�ned. The

detailed de�nition of this set is of no further importance and we refer the

interested reader to Chapter V for the details.

Theorem 2.2.2. As T ↑ Tc, we have

inf
Γ∈D
FBCS(Γ)−FBCS(Γ) =

(
Tc − T
Tc

)2

inf
a∈ker(KTc+V )

EGP (a) +O

(
Tc − T
Tc

)3

(2.8)

with the Ginzburg-Landau energy

EGP (a) =

∫
Rd

F (p)|a(p)|4dp−
∫
Rd

G(p)|a(p)|2dp (2.9)

for certain explicit functions F,G : Rd → R+.
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This theorem expresses an energetic �derivation� of GL theory from BCS the-

ory. One may also establish the convergence of approximate minimizers. We

discuss this in Chapter V as well.

This theorem establishes the naturality of the �Mexican hat shape� in the GL

description of translation-invariant systems. The usual Mexican hat potential

emerges when n = 1, in which case we have ker(KTc + V ) = span{a0} and so

we can rewrite the minimization over a ∈ ker(KTc +V ) as one over coe�cients

ψ ∈ C where a = ψa0. Then (2.9) becomes

EGP (ψ) =|ψ|4
(∫

Rd

F (p)|a0(p)|4dp

)
− |ψ|2

(∫
Rd

G(p)|a0(p)|2dp

)
=c1|ψ|4 − c2|ψ|2.

In Chapter V, we compute and study examples of microscopically derived GL

theories with multi-component order parameters: a pure d-wave order param-

eter and a mixed (s + d)-wave order parameter. One of our �ndings is that

the emergent symmetry group in the case of a pure d-wave order parameter is

rather large, O(5), as compared to the O(3) that could be expected.

Moreover, in Chapter V, we construct radial potentials of the form

V (x) = −λδ(|x| −R),

which produce eigenspaces ker(KTc + V ) of arbitrary angular momentum, for

open sets of parameter values. This is in stark contrast to the Schrödinger

case ker(−∆ + V ) for which ground states are non-degenerate (and therefore

have angular momentum zero in the radial case). This is a consequence of the

Perron-Frobenius theorem which holds under weak assumptions on V . The

construction of these potentials is based on a new fact about the maxima of

half-integer Bessel functions which is discussed in the appendix to Chapter V.

The macroscopic persistence of boundary conditions

In Chapter VI, we describe joint work with Rupert L. Frank and Barry Simon

in which we consider a zero-temperature and low-density version of the BCS

theory in which particles are con�ned to a domain Ω ⊂ R
d and are subjected

to a weak external �eld W : Ω → R. Clearly, the model is then no longer

translation-invariant. Consequently, we need to make some changes in the

setup of the theory.
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First, the system states are now described by an operator 0 ≤ Γ ≤ 1 on

L2(Ω)⊕ L2(Ω) of the form

Γ =

(
γ α

α 1− γ

)
,

which is no longer a multiplication operator in Fourier space. Here γ and α

are operators on L2(Ω) and we can describe them via their operator kernels

γ(x, y) and α(x, y).

We introduce a small parameter h > 0 that describes the ratio between the

microscopic and macroscopic lengthscales. The BCS energy is de�ned as

EBCSµ (Γ) = Tr[(−h2∆Ω + h2W − µ)γ] +

∫∫
Ω×Ω

V

(
x− y
h

)
|α(x, y)|2dxdy.

(2.10)

Here −∆Ω is the Dirichlet Laplacian on Ω; it indicates the con�nement of

the particles to the domain Ω. The bounded function W : Ω → R describes

the external potential; it is weak because it comes with the h2 prefactor. We

emphasize that there is no entropy term in (2.10) because we consider the

system at zero temperature.

We will consider this energy at choices of the chemical potential µ ∈ R that

correspond to small particle density. The physical picture that we have in

mind is the following: the system will be composed mostly of tightly bound

fermion pairs. At low density, these pairs are on average far apart and thus

look like bosons to one another. Since we are at zero temperature, the pairs

should then form a Bose-Einstein condensate. In analogy to the derivation

of Ginzburg-Landau theory in the previous section, we can then derive an

e�ective Gross-Pitaevskii theory describing the condensate of fermion pairs.

The fact that BCS theory can be used to describe this physical regime was

noticed in the early 80s and is commonly called the BCS-BEC crossover.

To implement the idea of tightly bound fermion pairs, we make the key as-

sumption that the potential V is indeed strong enough to form a bound state.

Assumption 2.2.3. V : Rd → R is such that −Eb := inf spec(−∆Rd +V ) < 0.

The following theorem derives Gross-Pitaevskii (GP) theory from the BCS

energy (2.10) in a regime of low density (it is proved in Chapter VI by a

duality argument that the choice of chemical potential µ = −Eb + O(h2)
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below indeed corresponds to low density). The GP energy is de�ned similarly

to the Ginzburg-Landau energy from the previous section as

EGPD (ψ) :=

∫ (
1

4
|∇ψ|2 + (W −D)|ψ|2 + g|ψ|4

)
dx,

where D ∈ R and g > 0 are parameters. As before, D represents some ad-

missible class of BCS states Γ that renders the minimization problem EBCSµ

well-de�ned. The detailed de�nition of D can be found in Chapter VI.

Theorem 2.2.4. Assume that Ω ⊂ R
d is a bounded Lipschitz domain and that

V satis�es the assumption above. Then, there exists cΩ > 0 so that, as h ↓ 0,

we have

inf
Γ∈D
EBCS−Eb+Dh2(Γ) = h4−d inf

ψ∈H1
0 (Ω)
EGPD (ψ) +O(h4−d+cΩ), (2.11)

for some explicit g > 0.

We remark that the constant cΩ > 0 in the error term depends on the regularity

of Ω. For example, one can choose cΩ = 1− ε for any ε > 0 if Ω is convex.

This theorem is not the �rst in this context. Similar results were proved on

the torus [94] and on the full space with bounded W [28]. A time-dependent

analogue was proved in [91]. The di�erence between all of these results and

ours is that they consider a system without boundary. We consider instead a

system with a sharp boundary, modeled by the Dirichlet condition.

On the right-hand side of (2.11), observe that the minimization takes place

over the Sobolev space H1
0 (Ω). In other words, the Dirichlet boundary condi-

tions are preserved under the limit h ↓ 0. This is not a priori clear. We are

integrating out microscopic scales to arrive at the GP energy and one might

think that the boundary condition is a subleading e�ect as one integrates out

small scales. The result says that the boundary in fact plays a role on the

macroscopic scale to leading order. To see that this is a subtle question, we

mention that de Gennes [58] predicted that, at positive temperature and den-

sity, the sharp boundary conditions should be forgotten (i.e. a Dirichlet BCS

energy should yield a Neumann Ginzburg-Landau energy).

This concludes our presentation of the results concerning e�ective theories

derived from BCS theory in Chapters V and VI.
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2.3 The entanglement inherent to fermionic states

In Chapter VII, we describe a recent result concerning the entropy of the

reduced density matrices of any permutation-invariant quantum state. These

entropies can be viewed as a way to quantify the entanglement that is inherent

to a quantum state.

To make this more precise, let us de�ne the quantities under consideration.

We consider the many-body Hilbert space
⊗N

m=1 C
d, where d is the dimension

of the one-body Hilbert space. We will take d ≥ N which is necessary for

having fermionic states. (We have d ≥ N e.g. for a tight-binding model of N

spin-polarized electrons hopping on d lattice sites.) Given any quantum state

ρN on the many-body Hilbert space, we obtain its k-body reduced reduced

density matrix by tracing out N − k of the particles, i.e.,

γk = Trk+1,...,N [ρN ].

Here we use the convention for the partial trace that gives Tr[γk] = Tr[ρN ] = 1.

We are interested in the following entropies

Sk := S(γk) := −Tr[γk log γk].

These entropies quantify the entanglement of the state ρN with respect to the

Hilbert space decomposition

N⊗
m=1

C
d =

k⊗
m=1

C
d ⊗

N−k⊗
m=1

C
d,

i.e., they quantify the extent to which k particles are entangled with the re-

maining N − k particles in the state ρN . We are interested in �nding lower

bounds on the entropies Sk. In other words, we are interested in �nding the

states that are the least entangled in this sense.

For bosonic states, one can make all Sk = 0. This is achieved by taking ρN to

be a pure condensate wave function, namely

ρN = |φ⊗N〉〈φ⊗N |.

Indeed, then we have for every k that γk = |φ⊗k〉〈φ⊗k| is still a pure state and

so its entropy vanishes.

The situation is markedly di�erent for fermions. The entropies Sk can not all

be made zero and therefore fermionic states are always non-trivially entangled
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in this sense. A natural question is then which fermionic states minimize the

entropies Sk. By concavity of the entropy, one may restrict to pure fermionic

states |ΨN〉〈ΨN |.

In 1976, Coleman [39] solved this problem in the k = 1 case.

Theorem 2.3.1 (Coleman). S(γ1) ≥ logN and the minimum is achieved if

ΨN is a Slater determinant.

Coleman's result was generalized to the following conjecture by Carlen, Lieb

and Reuvers (CLR) in 2016 [33].

Conjecture 2.3.2. S(γ2) ≥ log
(
N
2

)
and the minimum is achieved if ΨN is a

Slater determinant.

The fact that S(γ2) = log
(
N
2

)
for Slater determinants follows from an elemen-

tary computation. CLR also put forward a weaker, asymptotic form of their

conjecture that S(γ2) ≥ 2 logN + o(1) as N →∞. They prove in their paper

that

S(γ2) ≥ logN + o(1) (2.12)

by using a strengthened form of the strong subadditivity of the quantum en-

tropy. (Alternatively, this fact can be proved by using Yang's bound on the

largest eigenvalue of γ2, as is also mentioned in [33].)

One of the observations put forward in Chapter VII are general properties of

the map k 7→ Sk that yield an improvement of (2.12) as a corollary.

Theorem 2.3.3. Let γk be the k-body density matrix of any permutation-

invariant pure state |ΨN〉〈ΨN |. Then the map k 7→ Sk has the following prop-

erties.

(i) Monotonicity. For every 1 ≤ k ≤ N
2
− 1,

Sk ≤ Sk+1. (2.13)

(ii) Concavity. For every 2 ≤ k ≤ N − 1,

Sk ≥
Sk+1 + Sk−1

2
. (2.14)
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These properties follow directly from applications of the monotonicity of the

relative entropy and the symmetry property Sk = SN−k which holds for any

permutation-invariant state. (Note that if ΨN is a fermionic wave function,

then |ΨN〉〈ΨN | is a permutation-invariant state.)

Combining the monotonicity property with Coleman's theorem yields

S2 ≥ S1 ≥ logN,

so as a corollary we obtain a new proof of (2.12).

Chapter VII contains the proof of this result as well as another theorem that

establishes the bound S(γ2) ≥ 2 logN + log(d −N). This bound also follows

from Yang's bound on ther largest eigenvalue of γ2, but we give an entropic

proof of it that is is inspired by a joint work on approximate quantum cloning

with Mark M. Wilde [121]. We note that the bound S(γ2) ≥ 2 logN + log(d−
N) implies the conjecture by CLR if d−N = O(1).

This �nishes our overview of the results in Chapters III-VII. The remainder

of this thesis contains further details and proofs of the statements that we

presented in this overview.
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C h a p t e r 3

NEW ANOMALOUS LIEB-ROBINSON BOUNDS IN

QUASI-PERIODIC XY CHAINS

David Damanik, Marius Lemm, Milivoje Lukic and William Yessen

3.1 Introduction

Relativistic systems are local in the sense that information propagates at most

at the speed of light. In their seminal paper [124], Lieb and Robinson found

that non-relativistic quantum spin systems described by local Hamiltonians

satisfy a similar �quasi-locality� under the Heisenberg dynamics. Their Lieb-

Robinson bound and its recent generalizations [97, 138] implies the existence of

a �light cone� |x| ≤ v|t| in space-time, outside of which quantum correlations

(concretely: commutators of local observables) are exponentially small. In

other words, the LR bound shows that, to a good approximation, quantum

correlations propagate at most ballistically, with a system-dependent �Lieb-

Robinson velocity� v.

About ten years ago, the general interest in LR bounds re-surged when Hast-

ings and co-workers realized that they are the key tool to derive exponential

clustering, a higher-dimensional Lieb-Schultz-Mattis theorem and the cele-

brated area law for the entanglement entropy in one-dimensional systems with

a spectral gap [99, 97, 98]. These results highlight the role of entanglement in

constraining the structure of ground states in gapped systems and yield many

applications to quantum information theory, e.g. in developing algorithms to

simulate quantum systems on a classical computer [29, 13].

In this paper, we announce and sketch the rigorous proof of a new kind of

anomalous (or sub-ballistic) Lieb-Robinson bound for an isotropic XY chain

in a quasi-periodic transversal magnetic �eld. The LR bound is anomalous in

the sense that the forward half of the ordinary light cone is changed to the

region |x| ≤ v|t|α for some 0 < α < 1.

Previous study has focused on the dependence of the Lieb-Robinson velocity v

on the system details [138], with particular interest in the case v = 0, since it

may be interpreted as dynamical localization [96]. In a very recent paper [82],
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a logarithmic light-cone was obtained for long-range, i.e. power-law decaying,

interactions. The anomalous LR bound we �nd yields a qualitatively completely

di�erent, anomalously slow many-body transport.

We expect that if one has an anomalous LR bound for a system with a spec-

tral gap, the arguments of [99, 138] will yield anomalously strong exponential

clustering (see the discussion after Def. 1).

We actually have an exact characterization of the values of α for which the

anomalous LR bound holds, namely whenever α exceeds α+
u , the upper trans-

port exponent of the one-body discrete Schrödinger operator with potential

given exactly by the quasi-periodic �eld. Thanks to extensive study, there

exist both rigorous and numerical upper and lower bounds on α+
u [3, 42, 43,

45, 46, 51, 52].

We mention that quasi-periodic sequences serve as models for one-dimensional

quasi-crystals and their sometimes exotic transport properties. Especially the

discrete one-body Schrödinger operator with Fibonacci potential, see (3.5), has

been considered [113, 143, 3, 35, 165, 86, 166, 49, 46, 51, 52, 44, 43, 45]. Quasi-

periodic spin chains (in particular with Fibonacci disorder) have also been

studied extensively, with a focus on spectral properties and critical phenomena

[21, 22, 23, 59, 100, 36, 153, 130].

While we give the full statements below, we only give a rough sketch of the

proof; a detailed version will appear elsewhere [48].

3.2 Setup and main result

For any integer N , we consider the isotropic XY chain de�ned by the Hamil-

tonian

HN = −
N−1∑
x=1

(
σ1
xσ

1
x+1 + σ2

xσ
2
x+1

)
+

N∑
x=1

hxσ
3
x, (3.1)

where σ1, σ2, σ3 are the usual Pauli matrices. We scaled out the usual J factor

in front of the �rst term and chose zero boundary conditions for convenience.

For de�niteness, we let hx be the Fibonacci magnetic �eld

hx = λχ[1−φ,1)(xφ+ ω mod 1), (3.2)

where λ > 0 is a coupling constant, ω ∈ [0, 1) is an arbitrary phase o�set, and

φ is the inverse of the golden mean, i.e.

φ =

√
5− 1

2
.
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The Fibonacci �eld (3.2) is prototypical in the study of one-dimensional quasi-

crystals, but in fact φ can be replaced by an arbitrary irrational number in

(0, 1) here (�Sturmian class�); compare [113, 143, 154, 17, 43]. We letOx denote
the set of observables at site x, which is of course just the set of Hermitian

2× 2 matrices, and for an observable A, we let

A(t) ≡ eitHNAe−itHN (3.3)

be its image under the Heisenberg evolution after time t. Note that A(t)

implicitly depends on N as well.

De�nition 3.2.1 (anomalous LR bound). We say that LR(α) holds if there

exist positive constants C, ξ, v such that for all integers x, x′, N with 1 ≤ x <

x′ ≤ N and all times t > 0, the bound

‖[A(t), B]‖ ≤ C‖A‖‖B‖e−ξ(|x−x′|−vtα) (3.4)

holds for all observables A ∈ Ox and B ∈ Ox′.

Let us make a few remarks about this: Firstly, the usual Lieb-Robinson bound

corresponds to LR(1) and is known to hold by general considerations [124].

When comparing LR(α) with LR(1) in the particularly relevant regime of

small times, it is important to keep in mind that |x−x′| ≥ 1 by de�nition and

consequently |x− x′|1/α > |x− x′| for 0 < α < 1. Hence, for �xed t, LR(α) is

e�ective at smaller distances than LR(1). Secondly, (3.4) can be extended to

a much wider class of observables, provided that their supports are a non-zero

distance apart [48, 50]. Thirdly, we emphasize that the constants above do

not depend on the system size N , so that the estimate (3.4) is stable in the

thermodynamic limit N → ∞. Finally, as mentioned in the introduction, if

one can prove LR(α) for a system with a spectral gap, we expect that ground-

state correlations will decay anomalously fast, i.e. the usual exponential decay

in d(X, Y ) is replaced by decay in d(X, Y )1/α (see e.g. Theorem 2 in [138]).

Essentially, this should follow from the proofs in [99, 138], by using LR(α)

instead of LR(1), which only changes the optimization problem in the time

cuto� parameter (called s in [138]).

Our �rst main result is:

Theorem 3.2.2. Let λ ≥ 8. There exists 0 < α < 1 such that LR(α) holds.
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As mentioned in the introduction, we actually have a characterization of the

values of α for which LR(α) holds for all λ > 0. This characterization is in

terms of the upper transport exponent α+
u of the one-body discrete Schrödinger

operator h with Fibonacci potential. It acts on a square-summable sequence

{ψx}x≥1 by

(hψ)x = ψx+1 + ψx−1 + hxψx, (3.5)

with ψ0 ≡ 0 and hx given by (3.2). α+
u is then the propagation rate of the

fastest part of an initially localized wave-packet. Since exponential tails cannot

be evaded in quantum mechanics, α+
u is, roughly, the largest exponent β for

which the probability of an initially localized wavepacket to travel a distance

tβ in time t is not exponentially small.

More formally: For any integer x ≥ 1 and any positive real number β, let

P (x, t) =
∑
x′>x

|〈δx′|e−ith|δ1〉|2, (3.6)

R+(β) = − lim sup
t→∞

logP (tβ, t)

log t
. (3.7)

Then, we de�ne

α+
u = sup

β≥0

{
R+(β) <∞

}
. (3.8)

Note that α+
u = α+

u (λ). We mention that α+
u is just one of several transport

exponents commonly associated to anomalous one-body dynamics [51, 52], but

as it turns out it is the only one relevant for LR bounds.

As anticipated before, we have the following characterization:

Theorem 3.2.3. Let λ > 0. If α > α+
u , then LR(α) holds. Conversely, if

α < α+
u , then LR(α) does not hold.

In words, LR(α) is a precise way to state that tails are exponentially decaying

beyond a modi�ed light-cone of the form |x| ≤ vtα, and our theorem states that

this is true for α > α+
u and false for α < α+

u . In fact, the second statement

holds for completely general transversal magnetic �elds (e.g. periodic ones,

where α+
u = 1). At �rst sight, it may be surprising that the quantity α+

u , which

describes large-time asymptotics, characterizes the LR bound. Intuitively, this

is due to the fact that the asymptotics capture precisely the fastest moving

part of the one-body dynamics.
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We also obtain an explicit expression for the LR velocity v, see (38) in [48].

Appropriately, v is a decreasing function of α.

Let us discuss α+
u from a quantitative viewpoint. Since Theorem 2 holds for

arbitrary coupling constant λ > 0, we see that the restriction to λ ≥ 8 in

Theorem 1 is due to the fact that we do not know rigorously that α+
u < 1

for all λ > 0 (we do know that α+
u > 0 for all λ > 0 [46]). We emphasize

that estimating α+
u is only a problem of one-body dynamics however, which

is simpler from both a theoretical and a numerical standpoint. A rough nu-

merical study we conducted suggests that α+
u < 1 also holds for 0 � λ < 8,

and we think it would be interesting to pursue the numerical aspects further.

Moreover, explicit rigorous upper and lower bounds for α+
u exist [51, 52, 45].

Asymptotically, they behave like 2 log(1+φ)
log λ

for large λ and they can be used to

obtain quantitative estimates, such as

0.1 < α+
u < 0.5

for all 12 ≤ λ ≤ 7, 000. We stress the upper bound by 0.5 because the par-

ticular case α+
u = 0.5 is sometimes called di�usive transport and not assigned

the �anomalous� label.

3.3 Sketch of proof

Following [125], we map the XY chain to free fermions via the Jordan-Wigner

transformation. That is, we introduce the spin raising and lowering operators

S± =
1

2

(
σ1 ± iσ2

)
,

and de�ne

c1 = S−1 , cx = σ3
1 . . . σ

3
x−1S

−
x . (3.9)

These operators satisfy the CAR and allow us to rewrite the Hamiltonian as

HN =
N∑
x=1

N∑
y=1

c†x(hN)x,ycy.

Here, hN is the operator h de�ned in (3.5), but with a zero boundary condition

at site N + 1. At this stage, HN can be diagonalized by a standard Bogoli-

ubov transformation. One �nds the following formula [96] for the Heisenberg

dynamics (3.3) of the fermion operators:

cx(t) =
N∑
y=1

(
e−2ihN t

)
x,y
cy. (3.10)
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De�nition 3.3.1. We say that LRfermi(α) holds if there exist positive con-

stants C, ξ, v such that for all integers x, x′, N with 1 ≤ x < x′ ≤ N and all

times t > 0, the bound

‖[cx(t), B]‖+ ‖[c†x(t), B]‖ ≤ C‖B‖e−ξ(|x−x′|−vtα) (3.11)

holds for all observables B ∈ Ox′.

As we will see, (3.10) allows us to prove LRfermi(α) by controlling the one-body

transport created by h. This is not surprising, because (3.10) is an expression

of the fact that we are now describing free particles.

The problem that arises, though, is that the Jordan-Wigner transformation

(3.9) is highly non-local, while a Lieb-Robinson bound is of course an inherently

local statement. The key lemma, which is somewhat surprising at �rst sight,

however, says

Lemma 3.3.2. LRfermi(α) is equivalent to LR(α).

The point is that, as originally realized in [96] and adapted here to our pur-

poses, inverting the non-local Jordan-Wigner transformation essentially just

requires summing up fermionic LR bounds: By an iteration argument, which

is based only on (AB)(t) = A(t)B(t) and the usual commutator rules, one can

show

‖[S−x (t), B]‖ ≤ 2
x∑
y=1

(
‖[cy(t), B]‖+ ‖[c†y(t), B]‖

)
(3.12)

for allB ∈ Ox′ . By taking adjoints and using commutator rules, similar bounds

hold for S−x , S
−
x S

+
x , S

+
x S
−
x and hence for all elements of the four-dimensional

algebra of observables Ox. Assuming that LRfermi(α) holds, we now see that

LR(α) follows from (3.12) and the trivial, but important, fact that

x∑
y=1

e−ξ(|y−x
′|−vtα) ∝ e−ξ(|x−x

′|−vtα).

For more details and the argument for the converse statement, see [48]. In

conclusion, we found that the price of non-locality was the additional sum

over y in (3.12), but we can a�ord this because tails of exponentially decaying

series still decay exponentially.
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To prove Theorem 2, thanks to Lemma 1, it remains to characterize the values

of α for which LRfermi(α) holds. We �rst show that α > α+
u implies LRfermi(α).

By (3.10) and the fact that cy and B commute for y < x′, we get

‖[cx(t), B]‖ ≤ ‖B‖
N∑
y=x′

∣∣〈δx|e−2ihN t|δy〉
∣∣ . (3.13)

Since spatial translation corresponds to a shift of the (anyway arbitrary) phase

o�set ω, modulo some technical di�culties, the right-hand side is equal to

N−x−1∑
y=x′−x−1

∣∣〈δ1|e−2ihN t|δy〉
∣∣ (3.14)

and this expression is already quite similar to the de�nition of the �outside

probability� in (3.6). This explains why we can apply techniques developed in

[42, 51, 52, 45] to study the transport exponent α+
u to our situation. A rough

outline of the by now standard approach reads:

(a) use Dunford's formula

〈δ1|e−2ihN t|δy〉 = − 1

2πi

∫
Γ

e−itz〈δ1|
1

−2hN − z
|δy〉dz

to express the time-evolution in terms of resolvents (Γ is a simple posi-

tively oriented contour around the spectrum of −2hN),

(b) bound matrix elements of resolvents in terms of transfer matrix norms,

by studying individual solutions,

(c) bound transfer matrix norm by the exponentially decaying right-hand

side in LRfermi(α), by studying the Fibonacci trace map.

However, the original results of [42, 51, 52, 45] do not translate directly to

our situation. Firstly, the operator h lives on the half-line, while hN has a

zero boundary condition at N + 1. This is a minor obstruction and can be

removed, for an upper bound, by one-rank perturbation theory on the level of

resolvents.

The bigger problem is that the summands in (3.14) are not squared, as they

are in (3.6), which may of course make for a much larger sum. The technical
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solution we have found to this will not be presented here for the sake of brevity

and instead we refer the interested reader to [48].

We now turn to the converse direction in Theorem 2. We prove the logically

equivalent statement that LRfermi(α) implies α ≥ α+
u . Using (3.10) and an

appropriate trial state to bound the operator norm (see [48] for details), we

obtain the key estimate

‖[cx(t), S+
x′ ]‖ ≥

∣∣〈δx|e−2ihN t|δx′〉
∣∣

(compare with (3.13)). Thus, LRfermi(α) implies∣∣〈δx|e−2ihN t|δx′〉
∣∣ ≤ Ce−ξ(|x−x

′|−vtα)

for all 1 ≤ x ≤ x′ ≤ N and all t > 0. We take the limit N → ∞ to pass to

the half-line operator, ∣∣〈δx|e−2iht|δx′〉
∣∣ ≤ Ce−ξ(|x−x

′|−vtα) (3.15)

for all x, x′ ∈ N and all t > 0. Using this on de�nition (3.6) gives

P (tβ, t) ≤ C2

1− e−2ξ
e−2ξ(tβ−v(t/2)α) ≤ C̃e−ξt

β

whenever β > α. By de�nitions (3.7), (3.8) we conclude that β ≥ α+
u , so

α ≥ α+
u .

3.4 The random dimer model

We explain why our method does not extend to yield an anomalous LR bound

with power-law tails for the random dimer model [63]. The focus is on ideas

here, for a detailed discussion see [48].

Recall the one-body discrete Schrödinger operator h from (3.5). In the ran-

dom dimer model, the potential hn is a random variable taking either of the

two values ±λ, each with probability 1/2 say, but these values must always

occur in pairs (or dimers). The intuition, due to Anderson's work, that a one-

dimensional disordered quantum system should exhibit localization is only al-

most correct here: There exist critical energies Ec = ±λ for which the transfer

matrices across dimers commute and the system shows anomalous transport.

As it turns out, the anomalous transport is so fast that α+
u = 1 and so we

cannot hope for an LR(α) with α < 1.
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Intuitively, this is because α+
u = 1 means that the probablity to �nd the parti-

cle within a distance tβ of its initial location after time t, is not exponentially

small for β < 1. However, in the random dimer model, this probability is

polynomially small for some β < 1. In fact, there are similar transport expo-

nents β̃+(p), related to time-averaged p-th moments of the position operator,

which characterize when this is the case and which were determined explicitly

in [102, 103].

With this in mind, one may hope to use our method to �nd an anomalous LR

bound with power-law tails, which would be of the general form

‖[A(t), B]‖ ≤ C‖A‖‖B‖
(
|t|γ(p)

|x− x′|

)p
(3.16)

for any p ≥ 0 and some 0 < γ(p) < 1, that is related to β̃+(p). A prob-

lem arises, however, when we want to �pull back� the LR bound through the

Jordan-Wigner transformation, as we did to prove Lemma 1. As we explained,

the non-locality gives rise to the extra sum in (3.14). While we stressed that

the sum was irrelevant in the case of exponential decay, power-law decay de-

creases by one order under summation and it turns out that this restricts γ(p)

in (3.16) to γ(p) > 1. Of course, the ordinary LR bound is then again a better

estimate and the argument is inconclusive.

3.5 Conclusions

We have sketched the rigorous proof of anomalous Lieb-Robinson bounds (3.4)

for isotropic XY chains with a quasi-periodic transverse �eld, which can be

viewed as models for quasi-crystals. To our knowledge, this is the �rst deriva-

tion of anomalous quantum many-body transport.

The characterization of the correct exponent α in the anomalous LR bound

(3.4) as the one-body transport exponent α+
u yields rigorous and quantitative

bounds on it and opens the anomalous LR bound up to numerical study.

We also present the concept of an anomalous LR bound with power-law tails

(3.16). While our argument is inconclusive for the random dimer model, we

understand exactly why it fails. In particular, it would yield power-law LR

bounds for models with somewhat smaller values of the transport exponent

β̃+(p), if such models exist.
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C h a p t e r 4

ON POLYNOMIAL LIEB-ROBINSON BOUNDS FOR THE XY

CHAIN IN A DECAYING RANDOM FIELD

Marius Lemm and Martin Gebert

4.1 Introduction

It is well known that a single quantum particle in one dimension which is sub-

jected to an arbitrarily weak random potential exhibits exponential Anderson

localization [7, 116]. In the presence of interactions, one enters the subject

of many-body localization (MBL) which has been a hot topic of condensed-

matter physics in recent years, see e.g. [15, 16, 65, 77, 101, 139] and references

therein. On a heuristic level, MBL is described as absence of thermalization.

Proposed criteria for this include the validity of an area law for the entan-

glement entropy and absence of information propagation (e.g. a zero-velocity

Lieb-Robinson bound and logarithmic in time growth of the entanglement en-

tropy). For an extensive list of possible criteria, see the review [81]. The very

special MBL phase is expected to break down for su�ciently weak randomness,

in what is called the MBL transition [144, 171].

A possible starting point for understanding MBL is the XY quantum spin chain

in an i.i.d. random �eld. This is an integrable toy model which can be mapped

to non-interacting fermions in a random environment. Since the fermions are

then localized in the usual Anderson sense, it can be shown rigorously that

this model enjoys an area law for the entanglement entropy for large classes

of states [1, 2, 146] and a zero-velocity Lieb-Robinson bound [31, 96]. A

continuum analogue of this toy model, the disordered Tonks-Girardeau gas,

was recently shown to display features of MBL for bosons, such as the absence

of BEC and super�uidity [155], even at zero temperature.

However, a shortcoming of the toy model (apart from integrability) is that it

will never display a transition to a non-MBL phase because the fermions are

localized at arbitrarily small disorder strength (which is equivalent to arbitrar-

ily large interaction strength).



37

In this paper, we propose a variation of the XY chain with disorder which

rigorously displays features suggesting that such a phase transition might occur

as the disorder strength is varied. The model is the isotropic XY chain on the

half line with a random and decaying external �eld in the z direction. The

Hamiltonian reads

HXY
n (ω) := −

n−1∑
j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
+ λ

n∑
j=1

Vj(ω)

j1/2
σzj

where the Vj are i.i.d. random variables satisfying E[Vj] = 0 and E[V 2
j ] = 1.

Moreover, λ > 0 is a parameter describing the disorder strength. Note the

decaying envelope j−1/2 for the random �eld. It is �critical� in that the po-

tential is just barely not in `2(N). For other decay rates, the random �eld is

either too weak or too strong to observe a qualitative transition from MBL to

non-MBL features (such as transport) when λ is varied.

We now explain in which sense our system exhibits features suggesting a phase

transition from transport to localization as the disorder strength λ > 0 is

increased. While our results will be more general and include bounds on the

particle number transport as well, the key notion for quantifying many-body

transport for this model are new anomalous polynomial Lieb-Robinson (PLR)

bounds. The traditional Lieb-Robinson (LR) bounds [124, 138] apply to general

local Hamiltonians de�ned on a lattice and establish the existence of a certain

�light cone� in spacetime outside of which correlations are exponentially small.

We say PLR(a, b) holds for parameters 0 ≤ a ≤ 1 and b > 0, if there exists a

universal constant C > 0 such that for any observables A supported at site 1

and B supported at site k > 1, we have the bound

‖[τnt (A), B]‖ ≤ C‖A‖‖B‖
(
ta

k

)b
. (4.1)

Here τNt is the Heisenberg time evolution generated by the Hamiltonian HXY
n ,

see (4.3), and ‖ · ‖ is the standard operator norm. Intuitively, PLR(a, b) says

that in time t, information (as measured by the commutator of the initially

localized observables) propagates at most a distance of order ta, up to errors

decaying like x−b away from the bent �light cone� ta = k in spacetime. The

case a = 1 corresponds to ballistic transport.
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We now discuss our results in words; the precise statements are given later.

For simplicity, in this discussion A is supported at site 1 and B is supported

at site k > 1.

• When λ is large enough, the system is �polynomially localized� in the

sense that

E
[

sup
t∈R
‖[τnt (A), B]‖

]
≤ C‖A‖‖B‖

(
1

k

)κλ2−5/4

(4.2)

for a coe�cient 0 < κ ≤ 5
16

(Theorem 4.3.2). This is a disorder-averaged

version of PLR(0, κλ2 − 5/4) and may be understood as a zero-velocity

PLR bound. It is of course only e�ective when κλ2 − 5/4 > 0.

• When λ is small enough, PLR(a, b) cannot hold if a is too small or b is

too large (Corollary 4.3.9). In other words, there exist observables A,B

for which the bound (4.1) fails and in this sense transport is at least of

order ta. Concretely, in Corollary 4.3.9 we show that for λ < 2, (4.1)

fails with probability one if 0 ≤ a ≤ 1 and b > 1/2 satisfy

a

(
1 +

1

2b− 1

)
< 1.

In particular, for any 0 ≤ a < 1, there exists b > 1/2 large enough such

that (4.1) fails with probability one.

Remark 4.1.1. (i) It follows from [48, Thm. 2.6] and Proposition 4.3.8

that if only exponentially small errors are tolerated in an LR bound,

then our model will exhibit ballistic transport for all λ > 0. This �ts with

the localization being only polynomial in type, even for large λ.

(ii) We emphasize that our results do not exclude that for small λ, an ana-

logue of (4.2) holds with the exponent κλ2 − 5/4 replaced by a number

b ≤ 1/2. If this were true, it would be misleading to speak of a true tran-

sition from non-trivial transport to localization and it is for this reason

that we do not claim to prove such a transition.

(iii) For the PLR(a, b) bounds de�ned by (4.1) and (4.2), we only consider

observables A supported at site 1. If A is supported at a site j > 1, the

decaying factor is not replaced by the distance of the supports |j − k|
(as would be the case in a direct polynomial generalization of the LR
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bound, compare [47, 48]), but instead by min{j, k}/max{j, k}. The pre-
cise statement is in Theorem 4.3.2. The reason why one cannot expect the

distance |j−k| is that the system is far from being translation-invariant.

To prove the results, we use the standard method of expressing the XY chain

in terms of free fermions via the Jordan-Wigner transformation. The basic idea

is to take bounds for the corresponding one-body system [56, 80, 110, 111] and

to pull them through the (non-local) Jordan-Wigner transformation by using

ideas of Hamza, Sims and Stolz [96].

[96] considered a non-decaying random external �eld which yields an exponen-

tially localized system, see also [112, 161]. Here we apply the method of [96]

to a situation in which errors decay only polynomially. Related papers which

study the dependence of parameters in LR bounds and their generalizations

on the external �eld are [47, 48, 50, 105]. The idea of studying polynomial LR

bounds was conceived in [47, 48], but there it was only shown that the idea

does not apply to the random dimer model (a model with anomalous one-body

transport).

For large λ, we use the fact that the Kunz-Souillard method utilized in [56]

actually yields a polynomial bound on the eigenfunction correlator (4.16). We

are grateful to David Damanik for pointing this out to us.

As mentioned before, we also show similar results for particle number trans-

port. For this we adapt the techniques from [1], where such bounds were

studied for non-decaying i.i.d. randomness, to our situation with polynomial

decay. Similar bounds on particle number transport were also proved in the

recent paper [155] on the disordered Tonks-Girardeau gas, a continuum ana-

logue of the disordered XY chain.

Overall, our results follow rather directly by combining the above mentioned

methods. Nonetheless, we believe that this alternative toy model provides an

opportunity to study a phase transition, in terms of transport properties, from

a mathematical and physics perspective and can stimulate further research. In

particular, we have also attempted without success to prove analogous results

for the entanglement entropy of eigenstates in the spirit of the recent works

[1, 2, 66, 146]. However we ran into di�culty bounding the entanglement

entropy of eigenstates in the �localization regime� of large λ because of the
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growth in j of the bound (4.16). We believe that this question constitutes an

interesting open problem.

4.2 The model

The XY Chain in a random decaying external �eld

For every n ∈ N = {1, 2, 3, . . .}, we consider the Hilbert space

Hn =
n⊗
j=1

C
2.

On Hn, the Hamiltonian of the isotropic XY chain with a random decaying

external �eld is given by

HXY
n (ω) := −

n−1∑
j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1

)
+ λ

n∑
j=1

Vj(ω)

j1/2
σzj ,

where λ > 0 is a coupling constant. The sequence
(
Vj(ω)

)
j∈N is a family of iid

random variables on a probability space (Ω,Σ,P). We assume that its single-

site distribution has zero mean and is absolutely continuous with a bounded

density of compact support and E[V 2
j ] = 1. In the above,

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)

are the Pauli matrices and σx,y,zj is short-handed for

11 ⊗ . . . 1j−1 ⊗ σx,y,z ⊗ 1j+1 . . .⊗ 1n

for 1 ≤ j ≤ n. In the following we omit the ω-dependence for brevity. For a

�nite set J ⊂ N, we de�ne the algebra of observables supported on J by

AJ =
⊗
j∈J

B(C2),

where B(C2) is the set of all complex 2× 2 matrices. We will often make use

of the fact that for J ⊂ J ′, there is a natural embedding of AJ into AJ ′ by
tensoring with the identity on J ′ \ J . Also, we set Aj ≡ A{j}.

Finally, the Heisenberg dynamics of an observable A ∈ AJ under the Hamil-

tonian HXY
n is de�ned by

τnt (A) := eitH
XY
n Ae−itH

XY
n . (4.3)
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The Jordan-Wigner transformation

We use the standard procedure, going back to [125], of mapping the XY chain

to free fermions via the Jordan-Wigner transformation.

For the details of the diagonalization procedure, we refer to Section 3.1 in [96].

Here we only recall what we need to establish notation. The �rst step is to

introduce the lowering operator

aj =
1

2

(
σxj − iσ

y
j

)
=

(
0 0

1 0

)
j

(4.4)

and its adjoint the raising operator a∗j for all 1 ≤ j ≤ n. The Jordan-Wigner

transformation maps these to the fermion operators

c1 = a1, cj = σz1 . . . σ
z
j−1aj for 2 ≤ j ≤ n. (4.5)

The {cj} then satisfy the canonical anticommutation relations (CAR). We

have the identity

a∗jaj = c∗jcj. (4.6)

In terms of the fermion operators, the Hamiltonian reads,

HXY
n = 2C∗HnC −

n∑
j=1

Ṽj (4.7)

where C := (c1, ..., cn)T and Ṽj := λ
j1/2

Vj. The n× n matrix Hn is given by

Hn =


Ṽ1 1

1
. . . . . .
. . . . . . 1

1 Ṽn

 , (4.8)

Note that Hn can be identi�ed with a discrete Schrödinger operator on the half

line, i.e. on `2(N), with the random decaying potential {Ṽj} and zero boundary
conditions at site n + 1. The constant

∑n
j=1 Ṽj in (4.7) does not change the

Heisenberg dynamics (4.3) and can thus be ignored in the following.

We will often use that the Heisenberg dynamics of the cj operators is given in

the following simple fashion.

Proposition 4.2.1. [96, Sec. 3] For all 1 ≤ j, k ≤ n, the identity

τnt (cj) =
n∑

m=1

〈δj, e−2itHnδm〉cm (4.9)
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holds and consequently

‖[τnt (aj), B]‖ ≤ 2

j∑
l=1

n∑
m=1

|〈δl, e−2itHnδm〉| (‖[cm, B]‖+ ‖[c∗m, B]‖) . (4.10)

Proof. The �rst equality follows from diagonalizing the one-particle operator

Hn. For details see [96, Eq. (3.15)]. Taking adjoints, the same is also true for

c∗k. Using the Leibniz rule for commutators, i.e.

[AB,C] = A[B,C] + [A,C]B (4.11)

we obtain the estimate

‖[τnt (c∗jcj), B]‖ ≤
n∑

m=1

〈δj, e−2itHnδm〉 (‖[cm, B]‖+ ‖[c∗m, B]‖) . (4.12)

The latter inequality also holds for the adjoint cjc
∗
j .

To see inequality (4.10), we note that (σzj )
−1 = σzj for all 1 ≤ j ≤ n gives

aj = σzj−1...σ
z
1cj. (4.13)

Thus, an iteration of the Leibniz rule (4.11) implies

‖[τnt (aj), B]‖ = ‖[τnt (σzj−1...σ
z
1cj), B]‖

≤ ‖[τnt (cj), B]|+
j−1∑
l=1

‖[τnt (σzl ), B]‖.
(4.14)

Since σzl = 2c∗l cl − idC2 , the identity (4.9) and the bound (4.12) imply

(4.14) ≤
n∑

m=1

|〈δj, e−2itHnδm〉|‖[cm, B]‖

+ 2

j−1∑
l=1

n∑
m=1

|〈δl, e−2itHnδm〉 (‖[cm, B]‖+ ‖[c∗m, B]‖) .
(4.15)

4.3 Polynomial Lieb-Robinson bounds

Localization for large enough λ

We start with recalling an old result by [56] which provides bounds on the

eigenfunction correlator of the Anderson model with a random decaying po-

tential.
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Lemma 4.3.1. Let Hn be the operator given in (4.8). Then there exist con-

stants C, κ > 0 such that for all n ∈ N and all 1 ≤ j ≤ k ≤ n, we have

E
[

sup
|g|≤1

|〈δj, g(Hn)δk〉|
]
≤ C

λ
(jk)1/4

(
j

k

)κλ2

. (4.16)

In particular, one can choose g(x) = e−itx in the above. The exponent κ will

feature in all of the following bounds and we show later that it satis�es κ ≤ 5
16
,

see Corollary 4.3.11.

Proof. We estimate

E
[

sup
|g|≤1

|〈δj, g(Hn)δk〉|
]
≤ E

[ ∑
E∈σ(Hn)

|ψnE(j)||ψnE(k)|
]

=: ρn(j, k,R) (4.17)

where the sequence
(
ψnE
)
E∈σ(Hn)

denotes the normalized eigenvectors of Hn

counted with multipicity. An adaption of [56, Prop. III.1] implies

ρn(j, k,R) ≤ C

λ2
(jk)1/4

(
j

k

)κλ2

. (4.18)

The latter follows from inequality [56, Eq. III.16] using the bounds [56, Eq.

III.14 and eq. III.15] and we remark that in the result [56, Eq. III.4] the

1/2-exponent should be replaced by a 1/4-exponent.

As a consequence, we obtain a disorder-averaged polynomial Lieb-Robinson

bound with a = 0 for the spin chain HXY
n .

Theorem 4.3.2. Let κ be as in Lemma 4.3.1 above. Suppose that κλ2 > 5
4
.

Then there exists a constant C > 0 such that for all choices of 1 ≤ j ≤ k ≤ n,

E
[

sup
t∈R
‖[τnt (A), B]‖

]
≤ C‖A‖‖B‖(jk)5/4

(
j

k

)κλ2

(4.19)

holds for all observables A ∈ Aj and B ∈ Ak,...,n.

We emphasize that the constant C is also uniform in n.

Proof. Note that Aj is spanned by the matrices {aj, a∗j , aja∗j , a∗jaj}. According
to Proposition 4.2.1, we can estimate

‖[τnt (aj), B]‖ ≤ 2

j∑
l=1

n∑
m=1

|〈δl, e−2itHnδm〉| (‖[cm, B]‖+ |‖[c∗m, B]‖) (4.20)
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We note that [cm, B] = 0 for all m < k. Hence, Lemma 4.3.1 implies

E(4.20) ≤4C

λ2
‖B‖

j∑
l=1

n∑
m=k

(lm)1/4

(
l

m

)κλ2

≤4C

λ2
‖B‖

j∑
l=1

∞∑
m=k

(lm)1/4

(
l

m

)κλ2

≤C
λ2
‖B‖(jk)5/4

(
j

k

)κλ2

(4.21)

for some constant C > 0 which is �nite for λ >
√

5
4κ
. Taking adjoints the same

estimate is true for a∗j . For the products a∗jaj and aja
∗
j , we use the Leibniz

rule (4.11).

Remark 4.3.3. Instead of the distance |j − k| of the supports of the observ-

ables, which would appear in a straightforward polynomial generalization of the

traditional LR bound as was proposed in [47, 48], the right hand side depends

on the quotient j/k. Note that the distance |j − k| is not so natural for our

model, which is far from being translation-invariant.

However, if we consider observables A supported at a �xed site, say the site

1, the bound (4.19) reduces to a polynomial Lieb-Robinson bound involving the

distance of the supports. Let A ∈ A1. Then the bound

E
[

sup
t∈R
‖[τnt (A), B]‖

]
≤ C‖A‖‖B‖

(
1

k

)κλ2−5/4

(4.22)

holds uniformly in n ∈ N and B ∈ Ak,...,n for any 1 < k ≤ n.

For small t the above is not satisfactory. One can improve the result:

Proposition 4.3.4. Let κ be as in Lemma 4.3.1. There exists a constant C

such that for all choices of 1 ≤ j ≤ k ≤ n,

E [‖[τnt (A), B]‖] ≤ C‖A‖‖B‖|t|
(1

k

)κλ2−5/4

(4.23)

holds for all observables A ∈ A1, B ∈ Ak,...,n.

Proof. We follow the proof of [96, Cor. 3.4]. De�ne

f(t) := [τt(A), B]. (4.24)
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Then, f(t) solves the ODE

f ′(t) = i[f(t), τnt (H1)]− i[[B, τnt (H1)], τnt (A)]. (4.25)

where H1 := σx1σ
x
2 + σy1σ

y
2 + V1σ

z
1. Following [136, App. A] we obtain

‖f(t)‖ ≤
∫ |t|

0

ds ‖[τns (H1), B]‖. (4.26)

Since H1 is supported on A1 ⊗ A2 we use Theorem 4.3.2 to obtain a time

independent bound on the integrand which yields the theorem.

Lower bounds on transport for small enough λ

In this section we restrict ourselves to pairs of observables for which one of the

observables is supported at the site 1.

De�nition 4.3.5. Let 0 ≤ a ≤ 1 and b ≥ 0. We say that HXY
n exhibits the

polynomial Lieb-Robinson bound PLR(a, b), if there exists a constant C > 0

such that for all n ∈ N

‖[τnt (A), B]‖ ≤ C‖A‖‖B‖
(
ta

k

)b
(4.27)

holds for all A ∈ A1, B ∈ Ak,...,n.

Let H be the discrete Schrödinger operator on `2(N) which arises as the in-

ductive limit of the family (Hn)n∈N.

De�nition 4.3.6. We de�ne the p-th moment of the position operator

|X|p(t) :=
∑
k∈N

kp|〈e−itHδj, δk〉|2 (4.28)

and its time-average

〈|X|p〉(T ) :=
2

T

∫ ∞
0

dt e−2t/T |X|p(t) (4.29)

for all T > 0. The upper and lower transport exponents are de�ned by

β−(p) := lim inf
t→∞

ln |X|p(t)
p ln t

and β+(p) := lim sup
t→∞

ln |X|p(t)
p ln t

(4.30)

and their averaged versions are de�ned by

〈β−(p)〉 := lim inf
T→∞

ln〈|X|p〉(T )

p lnT
and 〈β+(p)〉 := lim sup

T→∞

ln〈|X|p〉(T )

p lnT
.

(4.31)
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Theorem 4.3.7. Assume PLR(a, b) holds for some 0 ≤ a ≤ 1 and b > 1/2.

Then,

lim sup
ε→0

β+(2b− 1− ε) ≤ a

(
1 +

1

2b− 1

)
. (4.32)

Proof. The strong resolvent-convergence of Hn to H (this follows e.g. from

the geometric resolvent identity) implies the convergence

lim
n→∞
〈eitHnδ1, δk〉 = 〈eitHδ1, δk〉, (4.33)

for any 1 ≤ k ≤ n. Hence, Fatou's lemma implies the inequality∑
k∈N

k2b−1−ε|〈e−itHδ1, δk〉|2 = lim
M→∞

∑
1≤k≤M

k2b−1−ε|〈e−itHδ1, δk〉|2

≤ lim
M→∞

lim inf
n→∞

∑
1≤k≤M

k2b−1−ε|〈e−itHnδ1, δk〉|2, (4.34)

where ε > 0 is arbitary.

Now, we bound the one-body propagation in terms of the many-body propa-

gation using [48, Lm. 4.1]. It implies that for any 1 ≤ k ≤ n

|〈e−itHnδ1, δk〉| ≤ ‖[τnt (c1), a∗k]‖. (4.35)

Using this and the assumption that PLR(a, b) holds, we bound

(4.34) ≤ t2ab
∑
k∈N

k−1−ε. (4.36)

Since the latter is summable for any ε > 0, this implies

β+(2b− 1− ε) ≤ 2ab

2b− 1− ε
(4.37)

and therefore (4.32) follows.

Proposition 4.3.8. Let p > λ
4
. The lower bound

β+(p) ≥ 1− λ

4p
(4.38)

holds P-almost surely. In the case of λ < 2 one has

β+(p) = 1 (4.39)

P-almost surely.
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Before we give the proof, which is based on results in [80, 110, 111], we discuss

the consequences of combining Theorem 4.3.7 and Proposition 4.3.8. What

we obtain can be interpreted as lower bounds on transport, as we explained in

the introduction, however see also the caveat in Remark 4.1.1(iii).

Corollary 4.3.9. Let (a, b) be a pair of 0 ≤ a ≤ 1 and b > 1/2. If either

of the following two conditions applies, then, with probability one, PLR(a, b)

cannot hold.

• λ < 2 and a
(
1 + 1

2b−1

)
< 1

• λ < 4(2b− 1) and a
(
1 + 1

2b−1

)
< 1− λ

4(2b−1)
.

In particular, if λ < 2, then for any �xed 0 ≤ a < 1 there exists b > 1/2 large

enough such that PLR(a, b) cannot hold.

Remark 4.3.10. A shortcoming of our results is that we need to assume

b > 1/2, see Remark 4.1.1(iii). This is ultimately a consequence of summing up

one-body transport bounds when inverting the Jordan-Wigner transformation

(compare Proposition 4.2.1) and is therefore intimately connected to the core

of the method.

We also get a bound on the maximal power of the polynomial decay coe�cient

κ which was introduced considered in the previous section.

Corollary 4.3.11. The constant κ from Proposition 4.3.1 satis�es κ ≤ 5
16
.

Proof. Note that κ is independent of λ. Fix λ < 2 and p > 0. By Proposition

4.3.8, supt>0 |X|p(t) =∞. Recalling the de�nition (4.28) of |X|p(t) and using

the estimate in Lemma 4.3.1 then gives p + 1/4 − κλ2 ≥ −1. Sending λ → 2

and p→ 0 yields κ ≤ 5
16
.

It remains to give the

Proof of Prop. 4.3.8. For equation (4.38), we apply the lower bound [80, Thm.

5.1, Eq. (5.3)] to the function f ∈ C∞c (R) with f ≡ 1 on σ(H). This provides

for any ε > 0 the bound

〈|X|〉pj(T ) ≥ Cω(p, ε)T p−2γ−ε, (4.40)
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P-almost surely, where γ := infE∈(−2,2)
λ

8−2E2 . This implies

〈β−(p)〉 ≥ 1− λ

4p
. (4.41)

The chain of inequalities 〈β−(p)〉 ≤ 〈β+(p)〉 ≤ β+(p) gives the result. To

see the last inequality, note that β := β+(p) > 0 implies for any ε > 0,

|X|p1(t) ≤ Ctpβ+ε. This readily gives

〈|X|p1〉(T ) =
2

T

∫ ∞
0

dt e−2t/T |X|p1(t) ≤ CT pβ+ε (4.42)

and the inequality 〈β+(p)〉 ≤ β.

For equation (4.39), we use [110, Thm 5.1] with m = p, where we have to

prove its assumption, which is Pcδ1 6= 0. Here, Pc is the orthogonal projection

onto continuous part of the spectrum. Since |λ| < 2, the operator H exhibits

singular continuous spectrum [111], thus Pc 6= 0. Now, Pcδ1 6= 0 follows from

cyclicity of δ1, which can be proven by induction because the Hamiltonian acts

on the half space `2(N) only.

4.4 Propagation bounds for the number operator

In this section, we derive bounds on the propagation of the number operator by

combining ideas from [1] with the bounds on the one-body dynamics discussed

before. We recall that [1] derived such bounds for the case of non-decaying

randomness (see also [155] for a continuum analogue).

We de�ne the number operator and the local number operator by

N :=
n∑
j=1

a∗jaj and NS :=
∑
j∈S

a∗jaj, (4.43)

where aj is given in (4.4) and S ⊂ {1, ..., n}. This measures the number of

up-spins in S. Let

ρ =
n⊗
j=1

ρj, ρj :=

(
ηj 0

0 1− ηj

)
(4.44)

and 0 ≤ ηj ≤ 1. We denote by ρt := e−itHnρeitHn the time evolution of the

state ρ and by 〈A〉ρ := trAρ the expectation of an observable A with respect

to the state ρ.
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Theorem 4.4.1. Let κ > 0 be as in Lemma 4.3.1. There exists a constant

C > 0 such that for every n ≥ 1 and S ⊂ {1, . . . , n},

E

[
sup
t≥0
〈NS〉ρt

]
≤ C

λ

∑
j∈S

n∑
k=1

ηk(jk)1/4

(
min{j, k}
max{j, k}

)κλ2

. (4.45)

This follows directly by combining results of [1] with Lemma 4.3.1.

Remark 4.4.2. To illustrate the above we split {1, ..., n} = I ∪ J with I :=

{1, ...,m} and J := {m + 1, ..., n} for n > m ∈ N. We set ηj = 0 on I and

ηj = 1 on the complement J . In other words ρ = |ϕ〉〈ϕ| with the vector

|ϕ〉 = | ↓〉⊗m ⊗ | ↑〉⊗(n−m+1) (4.46)

in standard notation. Let m > l ∈ N and S = {1, ..., l}. For κλ2 > 5/4, the

above theorem implies the bound

E

[
sup
t≥0
〈NS〉ρt

]
≤ C

(
l

m

)κλ2

(lm)5/4 (4.47)

for a constant C > 0 uniform in l,m, n. This is a time-independent bound on

the number of up-spins which propagate from J into S and it decays as the

distance m→∞ (when λ is large enough to guarantee κλ2 > 5/4).

Proof. The same computation that gives [1, eq. (41)] shows

〈NS〉ρt =
∑
j∈S

n∑
k=1

|〈δj, e2itHnδk〉|2ηk. (4.48)

Using this, Lemma 4.3.1 implies

E

[
sup
t≥0
〈NS〉ρt

]
≤
∑
j∈S

n∑
k=1

ηkE
[

sup
t≥0
|〈δj, e2itHnδk〉|2

]
(4.49)

The assertion now follow from |〈δj, e2itHnδk〉|2 ≤ |〈δj, e2itHnδk〉| and Lemma

4.3.1.

Theorem 4.4.3. If for some 0 ≤ a ≤ 1 < b and all k, n ∈ N with k ≤ n

〈N1〉ρt ≤
(
ta

k

)b
(4.50)

holds for all ρ of the form (4.44) and ηj = 0 for j < k. Then, the upper

transport exponent satis�es the bound

lim sup
ε→0

β+(b− 1− ε) ≤ ab

b− 1
. (4.51)
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Again, Proposition 4.3.8 then gives restrictions on the possible values of 0 ≤
a ≤ 1 < b for which (4.50) can hold. Therefore Theorem 4.4.3 may be inter-

preted as a lower bound on the transport of particles (from sites k and larger

to the site 1) if at most error of order x−b with b > 1 can ignored, compare

Remark 4.1.1(iii).

Proof. Let ρk be given as in (4.44) with ηj = δj,k. By (4.48)

〈N1〉ρkt = |〈δ1, e
−itHnδk〉|2. (4.52)

Hence, the computation in (4.34) and assumption (4.50) imply that for any

p > 0

|X|p(t) ≤ lim
M→∞

lim inf
n→∞

∑
1≤k≤M

kp|〈e−itHnδ1, δk〉|2

≤
∑
k∈N

kp
(
ta

k

)b
= tab

∑
k∈N

kp−b.

(4.53)

Taking p = b − 1 − ε for an ε > 0, the last sum is �nite and this gives the

assertion.
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C h a p t e r 5

MULTI-COMPONENT GINZBURG-LANDAU THEORY:

MICROSCOPIC DERIVATION AND EXAMPLES

Rupert L. Frank and Marius Lemm

5.1 Introduction

Since its advent in 1950 [83], Ginzburg�Landau (GL) theory has become ubiq-

uitous in the description of superconductors and super�uids near their critical

temperature Tc. GL theory is a phenomenological theory that describes the

superconductor on a macroscopic scale. Apart from being a very success-

ful physical theory, it also has a rich mathematical structure which has been

extensively studied, see e.g. [40, 71, 87, 152] and references therein. Micro-

scopically, superconductivity arises due to an e�ective attraction betweeen

electrons, causing them to condense into Cooper pairs. In 1957 Bardeen,

Cooper and Schrie�er [14], were the �rst to explain the origin of the attractive

interaction in crystalline s-wave superconductors. By integrating out phonon

modes, they arrived at their e�ective �BCS theory�, in which one restricts to

a certain class of trial states now known as BCS states. In 1959, Gor'kov [85]

argued how the microscopic BCS theory with a rank-one interaction gives rise

to the macroscopic GL theory near Tc. An alternative argument is due to de

Gennes [57].

The �rst mathematically rigorous proof that Ginzburg�Landau theory arises

from BCS theory, on macroscopic length scales and for temperatures close to

Tc, was given in [73] under the non-degeneracy assumption that there is only

one type of superconductivity present in the system. The derivation there

allows for local interactions and external �elds and hence applies to super�uid

ultracold Fermi gases, a topic of considerable current interest.

In the present paper, we use the same formalism as in [73] and study mi-

croscopically derived Ginzburg�Landau theories involving multiple types of

superconductivity for systems without external �elds.

We �rst discuss the main result of part I, which forms the basis for the ap-

plications in parts II and III. Afterwards, we discuss the physical motivation
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for studying multi-component GL theories and the extent to which our model

applies to realistic systems. The introduction closes with a description of the

main results of parts II and III.

Main result of part I

As in [73], we employ a variational formulation of BCS theory [11, 119] with

an isotropic electronic dispersion relation. We use previous rigorous results

about this theory in the absence of external �elds [72, 89, 92, 93]. Particularly

important is the result of [89] that the critical temperature Tc can be charac-

terized by the following linear criterion. Tc is the unique value of T ≥ 0 for

which the �e�ective gap operator�

KT + V (x) =
−∇2 − µ

tanh
(
−∇2−µ

2T

) + V (x)

has zero as its lowest eigenvalue. Here V is the electron-electron interaction

potential. Throughout the microscopic derivation of GL theory in [73], it is

assumed that zero is a non-degenerate eigenvalue of KTc + V . For radially

symmetric V , this means that the order parameter is an s-wave, i.e. it is

spherically symmetric.

The main result of part I, Theorem 5.2.10, is that for systems without

external �elds the microscopic derivation of GL theory also holds when the

eigenvalue is degenerate of arbitrary order n > 1. (A general argument shows

that always n < ∞.) The arising GL theory now features precisely n order

parameters ψ1, . . . , ψn. It turns out that one can use the same general strategy

as in [73].

In fact, one can classify approximate minimizers of the BCS free energy via

the GL theory. Given an orthonormal basis {a1, . . . , an} of ker(KTc + V ),

Theorem 5.2.10 (ii) says that, near the critical temperature, the Cooper pair

wave function α of a BCS state of almost minimal free energy (i.e. the Cooper

pair wave function realized by the physical system) is approximately given by

a linear combination of the {a1, . . . , an} of the form

α ≈
√
Tc − T
Tc

n∑
j=1

ψjaj, (5.1)

where the �amplitudes� ψ1, . . . , ψn ∈ C almost minimize the corresponding GL

function.
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The results of [73] allow for the presence of weak external �elds which vary

on the macroscopic scale. A key step is to establish semiclassical estimates

under weak regularity assumptions. We emphasize that in our case the system

has no external �elds and is therefore translation-invariant. This simpli�es

several technical di�culties present in [73]. In particular, the semiclassical

analysis of [73] reduces to an ordinary Taylor expansion. The result of the

expansion is stated as Theorem 5.5.3 and we give the simpli�ed proof for the

translation-invariant situation. We do this (a) to obtain optimal error bounds

and (b) to hopefully make the emergence of GL theory more transparent in

our technically simpler situation.

Physical motivation

Background. The degenerate case corresponds to systems which have mul-

tiple order parameters, i.e. which can host multiple types of superconductivity.

Physically, this situation occurs e.g. for unconventional superconductors. By

de�nition, these are materials in which an e�ective attractive interaction of

electrons leads to the formation of Cooper pairs, but the e�ective attraction is

not produced by the usual electron-phonon interactions. (Identifying the un-

derlying mechanisms is a major open problem in condensed matter physics.)

Two important classes of unconventional superconductors are the layered cup-

rates and iron-based compounds, typically designed to have large values of

Tc (�high-temperature superconductors�). Many of these materials possess

tetragonal lattice symmetry, though the prominent example of YBCO has

orthorhombic symmetry. There is strong experimental evidence for the oc-

currence of d-wave order parameters in these materials, in contrast to the

pure s-wave order parameter in conventional superconductors. More precisely,

phase-sensitive experiments with Josephson junctions [108, 109, 168, 169, 174]

have evidenced the presence of a dx2−y2-wave order parameter (for tetragonal

symmetry) and of mixed (s+dx2−y2)-wave order parameters (for orthorhombic

symmetry).

There also exist proposals of d-wave super�uidity for molecules in optical lat-

tices [115].

Multi-component Ginzburg�Landau theories. On the theoretical side,

one of the most important tools for studying unconventional superconductors

are multi-component Ginzburg-Landau theories [8, 24, 104, 120, 150, 162, 170,
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172, 175, 176]. Many of these papers study the symmetry properties near the

vortex cores in two-component GL theories. A very common example is a GL

theory with (s+dx2−y2)-wave order parameters; this case has also been studied

mathematically in [61, 107]. The e�ect of an an anisotropic order parameter

on the upper critical �eld was studied in [118].

Another avenue where two-component GL theories have been successful is in

the description of type I.5 superconductors [10, 34, 157]. These are systems

in which the magnetic �eld penetration depth lies in between the coherence

lengths of the di�erent order parameters (of course this e�ect only manifests

itself in an external magnetic �eld).

Microscopically derived GL theories. In many of the papers cited above,

the GL theories that are studied are �rst obtained microscopically by using

Gor'kov's formal expansion of Green's functions. The advantage of having a

microscopically derived GL theory is that it has some remaining �microscopic

content�. By this we mean:

1. One can directly associate each macroscopic order parameters with a cer-

tain symmetry type of the system's Cooper pair wave function. There-

fore, if we can classify the minimizers of the microscopically derived GL

theory, we understand exactly which Cooper pair wave functions α can

occur in the physical system in con�gurations of almost minimal free

energy.

2. One has explicit formulae for computing the GL coe�cients as integrals

over microscopic quantities.

The �rst point is expressed by (5.1) above and is therefore a corollary of

Theorem 5.2.10. The second point is represented by formulae (5.21),(5.22) in

Theorem 5.2.10.

While the papers cited above provide important insight about the vortex struc-

ture in unconventional superconductors, they are restricted in that the GL

theories are obtained using the formal Gorkov procedure and that almost ex-

clusively two-component GL theories are studied. Our Theorem 5.2.10 pro-

vides a rigorous microscopic derivation of n-component GL theories with n

arbitrary starting from a BCS theory with an isotropic electronic dispersion.
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Physical assumptions of our model. We discuss the main physical as-

sumptions of our model and the resulting limitations in its applicability to

realistic systems.

(a) Translation-invariance. We view the degenerate translation-invariant

systems as toy models for multi-component superconductivity. We be-

lieve that the examples of multi-component GL theories studied in part

II are already rich enough to show that the translation-invariant case

can be interesting. From a technical perspective, translation invariance

yields major technical simpli�cations. In particular, the semiclassical

analysis of [73] reduces to a Taylor expansion.

(b) BCS theory with a Fermi-Dirac normal state. There are two assumptions

here: First, we start from a BCS theory (meaning a theory in which

electrons can form Cooper pairs and which restricts to BCS-type trial

states). The question whether such a theory can be used to describe

unconventional superconductors is unresolved [120]. Second, we work

with a BCS theory for which the normal state is given by the usual

Fermi-Dirac distribution. Most realistic unconventional superconductors

are strongly interacting systems with a non-Fermi liquid normal state

[120, 156].

(c) Isotropy. We study a BCS theory in which the electrons live in the

continuum and have an isotropic dispersion. Many of the known ex-

amples of unconventional superconductors are layered compounds which

are e�ectively two-dimensional. When we say that their order parameter

has dx2−y2-wave symmetry, then this only means that it has a four-lobed

shape similar to that of k2
x−k2

y for−π < kx, ky < π, but its precise depen-

dence on kx, ky depends on the symmetry group of the two-dimensional

lattice [120]. Order parameters of the form k2
x − k2

y have been stud-

ied as a �rst approximation to unconventional superconductors, see e.g.

[150, 172, 175].

For the examples in part II, we consider a spherically symmetric interac-

tion potential, resulting in a fully isotropic BCS theory. Consequently,

the d-wave order parameters that we consider are the �usual� ones, known

from atomic physics (see section 5.3). By isotropy, all the d-waves (there

are two in two dimensions and �ve in three dimensions) are energetically
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equal. The examples in part II show that even this isotropic micro-

scopic theory can lead to rather rich coupling phenomena of anisotropic

macroscopic order parameters, as we discuss next.

(d) Spin singlet order parameter. We restrict to order parameters which are

singlets in spin space. This is indeed the case for unconventional super-

conductors [120], but it excludes systems with p-wave order parameters

such as super�uid Helium-3.

Main results of part II

In part II, we compute the n-component GL theories that arises from the BCS

theory according to Theorem 5.2.10 for several exemplary cases. For each

situation, we make some observations about the minimizers of the GL energy

and their symmetries and give a physical interpretation.

Throughout part II, V is assumed to be spherically symmetric, so the BCS

theory becomes fully isotropic. The order parameters can then be described

by the decomposition into angular momentum sectors (see section 5.3) and

we consider the case of pure d-wave and mixed (s+ d)-wave order parameter.

Here and in the following, we write �GLn� for �n-component Ginzburg�Landau

theory�. The dimension D will be either two or three.

(i) Let D = 3. Assume the Cooper pair wave function is a linear combi-

nation of the �ve linearly independent d-waves with a given radial part.

Theorem 5.3.1 explicitly computes the microscopically derived GL5

energy and gives a full description of all its minimizers. Surprisingly,

the GL5 energy in three dimensions exhibits the emergent symmetry

group O(5), see Corollary 5.3.3 (i), which is considerably larger than the

original O(3) symmetry group coming from the spherical symmetry and

re�ection symmetry of V .

(ii) Let D = 2. Assume the Cooper pair wave function is a linear combi-

nation of the two linearly independent d-waves with a given radial part.

Theorem 5.3.5 explicitly computes the microscopically derived GL2

energy and gives a full description of all its minimizers. We �nd that

the (dx2−y2 , dxy) order parameter must be of the form (ψ,±iψ) with |ψ|
minimizing an appropriate GL1. In particular, the minimizers of this

GL2 form a double cover of the minimizer of a GL1.
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(iii) Let D = 3. Assume the Cooper pair wave function is a linear combina-

tion of the �ve linearly independent d-waves with a given radial part and

the s-wave with another given radial part. Theorem 5.3.7 explicitly

computes the microscopically derived GL6 energy. It also gives a simple

characterization of the parameter values for which the pure d-wave mini-

mum is always unstable under s-wave perturbations and of the parameter

values for which, vice-versa, the pure s-wave minimum is unstable under

d-wave perturbations. As a consequence, we give parameter values for

which s- and d-waves must couple non-trivially to be energy-minimizing.

We also consider the mixed (s+d)-wave case in D = 2 dimensions. The result

is presented in Remark 5.3.9 (v) for brevity.

Main results of part III

Recall from the discussion of part I above, that the candidate Cooper pair wave

functions are the ground states of the e�ective gap operator KTc +V . A priori,

it is not at all clear that the fully isotropic BCS theory can produce ground

state sectors of KTc +V which are not spherically symmetric. In particular, it

is not clear that the examples considered in part II actually exist.

In fact, if KTc is replaced by the Laplacian −∇2 we have a Schrödinger opera-

tor and under very general conditions on the potential V , the Perron-Frobenius

theorem implies that the ground state is in fact non-degenerate, see e.g. The-

orem 11.8 in [123]. For spherically symmetric V , this means the ground state

is also spherically symmetric (�s-wave�).

In part III, we remedy this by exhibiting examples of spherically symmetry

potentials V such that the ground state sector of KTc + V can in fact have

arbitrary angular momentum. These potentials will be of the form

Vλ,R(x) = −λδ(|x| −R)

in three dimensions. Here λ and R are positive parameters. The result holds

for open intervals of the parameters values, so it is �not un-generic�.



58

5.2 Part I: Microscopic derivation of GL theory in the degenerate

case

BCS theory

We consider a gas of fermions in R
D with 1 ≤ D ≤ 3 at temperature T > 0

and chemical potential µ ∈ R, interacting via the two-body potential V (x).

We assume that V (x) = V (−x) is re�ection symmetric. We do not consider

external �elds, so the system is translation-invariant. A BCS state Γ can then

be conveniently represented as a 2 × 2 matrix-valued Fourier multiplier on

L2(R3)⊕ L2(R3) of the form

Γ̂(p) =

(
γ̂(p) α̂(p)

α̂(p) 1− γ̂(p)

)
, (5.2)

for all p ∈ RD. Here, γ̂(p) denotes the Fourier transform of the one particle-

density matrix and α̂(p) the Fourier transform of the Cooper pair wave func-

tion. We require α̂(p) = α̂(−p) and 0 ≤ Γ(p) ≤ 1 as a matrix, which is

equivalent to 0 ≤ γ̂(p) ≤ 1 and |α̂(p)|2 ≤ γ̂(p)(1 − γ̂(p)). The BCS free

energy per unit volume reads, in suitable units

FBCST (Γ) =

∫
RD

(p2 − µ)γ̂(p) dp− TS[Γ] +

∫
RD

V (x)|α(x)|2 dx, (5.3)

where the entropy per unit volume is given by

S[Γ] = −
∫
RD

TrC2

[
Γ̂(p) log Γ̂(p)

]
dp. (5.4)

Remark 5.2.1 (BCS states). (i) In general [11, 73], SU(2)-invariant BCS

states are represented as 2× 2 block operators

Γ =

(
γ α

α 1− γ

)

where γ, α are operators on L2(RD) with kernel functions γ(x,y) and

α(x,y) in L2(RD) ⊕ L2(RD). Since 0 ≤ Γ ≤ 1 is Hermitian, γ(x,y) =

γ(y,x) and α(x,y) = α(y,x). In the translation-invariant case consid-

ered here, these kernel functions are assumed to be of the form γ(x− y)

and α(x−y). Since convolution by γ, α becomes multiplication in Fourier

space, we can equivalently describe the BCS state by its Fourier transform

Γ̂ de�ned in (5.2) above. In the translation-invariant case, the symme-

tries of γ, α turn into the relations γ(x) = γ(−x) and α(x) = α(−x)



59

or equivalently γ̂(p) = γ̂(p) and α̂(p) = α̂(−p). Finally, since we are

interested in states with minimal free energy, we may also assume

γ̂(p) = γ̂(−p) (5.5)

and this was already used on the bottom right element in (5.2). To see

this, let Γ̂ be a BCS state not satisfying (5.5), set Γ̂r(p) := Γ̂(−p) and

observe that

FBCST

(
Γ + Γr

2

)
< FBCST (Γ)

by strict concavity of the entropy and re�ection symmetry of all terms in

FBCST .

(ii) Note that α(x,y) = α(y,x) means that the Cooper pair wave function

is symmetric in its arguments. To obtain a fermionic wave function, we

would eventually tensor α with an antisymmetric spin singlet. Since α is

re�ection-symmetric in the translation-invariant case, α must be of even

angular momentum if V is radial.

The restriction to symmetric α is a consequence of assuming SU(2) in-

variance in the heuristic derivation of the BCS free energy [89, 119]. This

means the full Cooper pair wave function must be a spin singlet and so

its spatial part α must be symmetric. Note that this excludes systems,

e.g. super�uid Helium-3, which display a p-wave order parameter.

(iii) For more background on the BCS functional, in particular a heuristic

derivation from the many-body quantum Hamiltonian in which one re-

stricts to quasi-free states, assumes SU(2) invariance and drops the di-

rect and exchange terms, see [119] or the appendix in [89]. Recently,

[27] justi�ed the last step for translation-invariant systems by proving

that dropping the direct and exchange terms only leads to a renormaliza-

tion of the chemical potential µ, for a class of short-ranged potentials.

We make the following technical assumption on the interaction potential.

Assumption 5.2.2. We either have V ∈ LpV (RD) with pV = 1 for D = 1,

1 < pV <∞ for D = 2 and pV = 3/2 for D = 3, or we have

V (x) = Vλ,R(|x|) := −λδ(|x| −R), (5.6)

when D = 1, 2, 3 and λ,R > 0.
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We note

Proposition 5.2.3. A potential V satisfying Assumption 5.2.2 is in�nitesi-

mally form-bounded with respect to −∇2.

We quote a result of [89], which provides the foundation for studying the

variational problem associated with FBCST . De�ne

D :=
{

Γ as in (5.2) : 0 ≤ Γ̂ ≤ 1, γ̂ ∈ L1(RD, (1 + p2) dp), α ∈ H1
sym(RD)

}
with H1

sym(RD) =
{
α ∈ H1(RD) : α(x) = α(−x) a.e.

}
.

Proposition 5.2.4 (Prop. 2 in [89]). Under Assumption 5.2.2 on V , the BCS

free energy (5.3) is bounded below on D and attains its minimum.

The physical interpretation rests on the following

De�nition 5.2.5 (Superconductivity). The system described by FBCST is su-

perconducting (or super�uid, depending on the context) i� any minimizer Γ

of FBCST has o�-diagonal entry α 6≡ 0.

It was shown in [89] that the question whether the system is superconducting

can be reduced to the following linear criterion, which we will use heavily.

(In [89], the results are proved for D = 3 and without the restriction to the

re�ection-symmetric subspace of L2(RD), but it was already observed in [73]

that the statement holds as stated here.)

Proposition 5.2.6 (Theorems 1 and 2 in [89]). De�ne the operator

KT :=
−∇2 − µ

tanh
(
−∇2−µ

2T

) (5.7)

as a Fourier multiplier and consider KT + V in the Hilbert space

L2
sym(RD) := {f ∈ L2(RD) : f(x) = f(−x) a.e.}. (5.8)

Then:

(i) the system is superconducting in the sense of De�nition 5.2.5 i� KT +V

has at least one negative eigenvalue.
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(ii) there exists a unique critical temperature 0 ≤ Tc <∞ such that

KTc + V ≥ 0,

inf spec(KT + V ) < 0, ∀T < Tc.
(5.9)

Tc is unique because the quadratic form associated with KT is strictly mono-

tone in T . In a nutshell, the reason why the operator KT + V appears, is that

it is the Hessian of the map

φ 7→ FBCST

(
Γ0 +

(
0 φ

φ 0

))

at φ = 0 with Γ0 the normal state of the system, see (5.13), and naturally, the

positivity of the Hessian is related to minimality. For the details, we refer to

[89]. In the following, we make

Assumption 5.2.7. V is such that Tc > 0.

By Theorem 3 in [89], V ≤ 0 and V 6≡ 0 implies Tc > 0 in D = 3 and this

result is stable under addition of a small positive part.

De�nition 5.2.8 (Ground-state degeneracy). We set

n := dim ker(KTc + V ). (5.10)

Remark 5.2.9. (i) We always have n < ∞. The reason is that, by As-

sumption 5.2.2 on V , the essential spectrum of KT + V is contained in

[2T,∞). Therefore, zero is an isolated eigenvalue of KTc + V of �nite

multiplicity and so n <∞.

(ii) A su�cient condition for n = 1 is that V̂ ≤ 0 and V̂ 6≡ 0 [72, 92].

(iii) For Schrödinger operators −∇2 + V , the ground state is non-degenerate

by the Perron-Frobenius theorem. That is, one always has the analogue

of n = 1 in that case. One may therefore wonder if n > 1 ever holds. In

part III, we present a class of radial potentials such that for open intervals

of parameter values, we have n > 1. In fact, one can tune the parameters

such that ker(KTc + V ) lies in an arbitrary angular momentum sector.
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GL theory

In GL theory, one aims to �nd �order parameters� that minimize the GL

energy. The minimizers then describe the macroscopic relative density of su-

perconducting charge carriers, up to spontaneous symmetry breaking. Mi-

croscopically, they describe the center of mass coordinate of the Cooper pair

wave function α. In our case, translation-invariance implies that the order

parameters are complex-valued constants, which are non-zero i� the system is

superconducting.

When n = 1 (and the system is translation-invariant), there is a single order

parameter ψ ∈ C and for T < Tc the GL energy is of the all-familiar �Mexican

hat� shape

EGL(ψ) = c|ψ|4 − d|ψ|2, c, d > 0. (5.11)

Below, in Theorem 5.2.10, we show that for n > 1, the GL energy is of the

form

EGL(a) =

∫
f4(p)|a(p)|4dp−

∫
f2(p)|a(p)|2dp (5.12)

and a varies over the n-dimensional set ker(KTc + V ). The functions f4 and

f2 are explicit; they are radial (p ≡ |p|) and positive for T < Tc.

Thus, we see that the Mexican hat shape is characteristic for the translation-

invariant case, even in the presence of degeneracies. However, there exists

nontrivial coupling (i.e. mixed terms) between the di�erent basis elements of

ker(KTc + V ) in general.

Result

We write Γ0 for the minimizer of the free energy FBCST as in (5.3) but with

V ≡ 0. That is, Γ0 describes a free Fermi gas at temperature T and for this

reason we call Γ0 the �normal state� of the system. From the Euler-Lagrange

equation, one easily obtains

Γ̂0(p) =

(
γ̂0(p) 0

0 1− γ̂0(p)

)
, (5.13)

where

γ̂0(p) =
1

1 + exp((p2 − µ)/T )
(5.14)

is the well-known Fermi-Dirac distribution. (Of course, Γ0 depends on µ and

T , but for the following we implicitly assume that it has the same values of

µ, T as the free energy under consideration.)



63

We now state our �rst main result. It says that an appropriate n-component

GL theory arises from BCS theory on the macroscopic scale and for tempera-

tures close to Tc. Recall that p ≡ |p|.

Theorem 5.2.10. Let V satisfy Assumptions 5.2.2 and 5.2.7 and let

µ ∈ R, T < Tc. Recall that n = dim ker(KTc + V ). Then:

(i) As T ↑ Tc,

min
Γ
FBCST (Γ)−FBCST (Γ0)

=

(
Tc − T
Tc

)2

min
a∈ker(KTc+V )

EGL(a) +O
(
(Tc − T )3

)
,

(5.15)

where EGL is de�ned by

EGL(a) =
1

Tc

∫
RD

g1((p2 − µ)/Tc)

(p2 − µ)/Tc
|KTc(p)|

4 |a(p)|4 dp

− 1

2Tc

∫
RD

1

cosh2
(
p2−µ
2Tc

) |KTc(p)|
2 |a(p)|2 dp.

(5.16)

Here we used the auxiliary functions

g0(z) :=
tanh(z/2)

z

g1(z) :=− g′0(z) = z−1g0(z)− 1

2
z−1 1

cosh2(z/2)

KT (p) :=
p2 − µ

tanh
(
p2−µ

2T

) .
(5.17)

(ii) Moreover, if Γ is an approximate minimizer of FBCST in the sense that

FBCST (Γ)−FBCST (Γ0) =

(
Tc − T
Tc

)2(
min

a∈ker(KTc+V )
EGL(a) + ε

)
, (5.18)

for some 0 < ε ≤ M , then we can decompose its o�-diagonal element α̂

as

α̂(p) =

√
Tc − T
Tc

a0(p) + ξ, (5.19)

where ‖ξ‖2 = OM (Tc − T ) and a0 ∈ ker(KTc + V ) is an approximate

minimizer of the GL energy, i.e.

EGL(a0) ≤ min EGL + ε+OM (Tc − T ) .

(Here OM means that the implicit constant depends on M .)
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The idea is that near Tc, where superconductivity is weak, the normal state Γ0

is the prime competitor for the development of a small o�-diagonal component

α̂ of the BCS minimizer. Theorem 5.2.10 then says that the lowest-order

deviation from the normal state is well-described by a GLn whose coe�cients

are given explicitly as integrals over microscopic quantities.

Remark 5.2.11. (i) We can equivalently rewrite the GL energy in terms

of �order parameters� ψ1, . . . , ψn as follows. We �x an orthonormal ba-

sis {aj} of ker(KTc + V ) and decompose a ∈ ker(KTc + V ) as a(p) =∑n
j=1 ψj âj(p). The basis coe�cients ψ1, . . . , ψn ∈ C are the n order pa-

rameters, each one corresponds to a di�erent �type� of superconductivity

âj. The GL energy (5.16) can then be rewritten in the equivalent form

EGL(ψ1, . . . , ψn) =
∑
i,j,k,m

cijkmψiψjψkψm −
∑
i,j

dijψiψj. (5.20)

Here the �GL coe�cients� cijkm, dij are given by

cijkm =
1

T 2
c

∫
RD

g1((p2 − µ)/Tc)

p2 − µ
|KTc(p)|

4 âi(p)âj(p)âk(p)âm(p) dp

(5.21)

dij =
1

2Tc

∫
RD

1

cosh2
(
p2−µ
2Tc

) |KTc(p)|
2 âi(p)âj(p) dp. (5.22)

The minimum in (5.15) turns into the minimum over all ψ1, . . . , ψn ∈ C.
In part II, we compute the integrals (5.21),(5.22) for special symmetry

types and study the resulting minimization problem given by (5.20).

(ii) If one assumes n = 1, this result is a corollary of Theorem 1 in [73],

which is obtained by restricting it to translation-invariant systems. (When

comparing, note that [73] rescale the BCS free energy to macroscopic

units.) In this case, the microscopically derived GL theory is simply of

the form (5.11).

(iii) Note that the error term in (5.15) is O(Tc − T ) higher than the order

at which the GL energy enters. Such an error bound is probably optimal

because the semiclassical expansion of Lemma 5.5.4 will contribute terms

at this order. It improves on the error term that one would obtain from

Theorem 1 of [73] in the case n = 1.
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We note that writing min EGL in the above theorem is justi�ed because

Proposition 5.2.12. The microscopically derived Ginzburg�Landau energy

satis�es infCn EGL > −∞. Moreover, the in�mum is attained.

When T ≥ Tc, it was proved in [89] that the unique minimizer of Γ 7→ FBCST (Γ)

is the normal state Γ0. In other words, the left-hand side in (5.15) vanishes

identically for all T ≥ Tc. Nonetheless, one can still ask if GL theory describes

approximate minimizers of the BCS free energy similarly to Theorem 5.2.10 (ii)

when T − Tc is positive but small. Indeed, above Tc approximate minimizers

must have small GL order parameters (as one would expect):

Proposition 5.2.13. Suppose T > Tc and Γ satis�es

FBCST (Γ)−FBCST (Γ0) = ε

(
T − Tc
Tc

)2

,

with 0 < ε ≤M . Let {aj} be any choice of basis for ker(KTc + V ).

Then, there exist ψ1, . . . , ψn ∈ Cn and ξ ∈ L2(RD) such that

Γ̂12 ≡ α̂ =

√
T − Tc
Tc

n∑
j=1

ψj âj + ξ

with ‖ξ‖2 = OM (T − Tc) and

n∑
i=1

|ψi|2 ≤
ε

λmin

+OM (Tc − T ) (5.23)

as T → Tc. Here λmin > 0 is a system-dependent parameter.

5.3 Part II: Examples with d-wave order parameters

Angular momentum sectors

In order to explicitly compute the GL coe�cients given by formulae (5.21),

(5.22), we make some assumptions on the potential V . First and foremost,

we assume that V is radially symmetric. We can then decompose L2(R3) into

angular momentum sectors. We review here some basic facts about these and

establish notation. For the spherical harmonics, we use the de�nition

Y m
l (ϑ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosϑ)eimϕ, (5.24)
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where Pm
l is the associated Legendre function, which we de�ne with a factor

of (−1)m relative to the Legendre polynomial Pm. While we will use the Y m
l in

the proofs, it will be convenient to state the results in the basis of real-valued

spherical harmonics de�ned by

Yl,m =


i√
2

(
Y m
l − (−1)mY −ml

)
, if m < 0

Y 0
0 , if m = 0

1√
2

(
Y m
l + (−1)mY −ml

)
, if m > 0.

(5.25)

We let Sl = span{Y m
l }m=−l,...,l = span{Yl,m}m=−l,...,l and de�ne

Hl = L2(R+; r2dr)⊗ Sl, (r ≡ |x|). (5.26)

We employ the usual physics terminology

H0 ≡ {s-waves}, H1 ≡ {p-waves}, H2 ≡ {d-waves}. (5.27)

Note thatH0 is just the set of spherically symmetric functions and Y2,2 ∝ x2−y2

x2+y2

is the dx2−y2-wave in this classi�cation. In analogy to Fourier series, we have

the orthogonal decomposition [164]

L2(R3) =
∞⊕
l=0

Hl. (5.28)

Recall that r ≡ |x|. The Laplacian in 3-dimensional polar coordinates reads

∇2 = ∇2
rad +

∇2
S2

r2
, (5.29)

where ∇2
rad = r−2∂r(r

2∂r) and ∇2
S2 is the Laplace-Beltrami operator, which

acts on spherical harmonics by

−∇2
S2Yl,m = l(l + 1)Yl,m. (5.30)

SinceKT commutes with the Laplacian and V clearly leaves the decomposition

(5.28) invariant, we observe that the eigenstates of KT + V can be labeled by

l (in physics terminology, l is a �good quantum number�). To make contact

with unconventional superconductors, we will suppose we are in either of the

two cases:

• ker(KTc + V ) = span{ρ2} ⊗ S2, �pure d-wave case"
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• ker(KTc + V ) = span{ρ0} ⊗ S0 + span{ρ2} ⊗ S2, �mixed (s + d)-wave

case".

Here ρ0, ρ2 ∈ L2(R+; r2dr) are radial functions. They are determined as the

ground states of an appropriate l-dependent operator acting on radial func-

tions. We assume that these radial ground states are non-degenerate for sim-

plicity. This assumption is satis�ed for the examples we give in part III, but

may not be satis�ed in general.

Results

The pure d-wave case in three dimensions

Theorem 5.3.1 (Pure d-wave case, 3D). Let D = 3. Let V be such that

Theorem 5.2.10 applies and such that ker(KTc +V ) = span{ρ2}⊗S2 for some

0 6≡ ρ2 ∈ L2(R+; r2dr). Let {a2,m}m=−2,...,2 be an orthonormal basis of the

kernel such that

â2,m(p) = %(p)Y2,m(ϑ, ϕ) (5.31)

for an appropriate % ∈ L2(R+; p2dp) (explicitly, % is the Fourier-Bessel trans-

form (5.131) of %). Let ψm denote the GL order parameter corresponding to

â2,m for −2 ≤ m ≤ 2. Then:

(i) The GL energy that arises from BCS theory as described in Theorem

5.2.10 reads

EGLd-wave(ψ−2, . . . , ψ2) =
5c

14π

( 2∑
m=−2

|ψm|2 − τ

)2

− τ 2 +
1

2

∣∣∣∣∣
2∑

m=−2

ψ2
m

∣∣∣∣∣
2
 .

(5.32)

where τ := 7πd
5c

and

c =

∫ ∞
0

f4(p)dp, d =

∫ ∞
0

f2(p)dp. (5.33)

Here, we introduced the positive and radially symmetric functions

f4(p) =
p2

T 2
c

g1

(
p2−µ
Tc

)
p2 − µ

|KTc(p)%(p)|4

f2(p) =
p2

2Tc

1

cosh2
(
p2−µ
2Tc

) |KTc(p)%(p)|2.
(5.34)

See (5.17) for the de�nition of g1 and KT (p).
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(ii) We have min EGLd-wave = − 5c
14π
τ 2. The set of minimizers is

Md-wave =

{
(ψ−2, . . . , ψ2) ∈ C5 :

2∑
m=−2

|ψm|2 = τ and
2∑

m=−2

ψ2
m = 0

}
.

(5.35)

Remark 5.3.2. (i) The existence of V such that the assumption we made

on ker(KTc + V ) holds for an open interval of parameter values follows

from statement (i) of Theorem 5.4.1 by choosing l0 = 2.

(ii) Observe that the minimization problem in (5.32) is trivial, i.e. (ii) is

immediate.

(iii) Recall that we normalized the GL order parameters such that they are

related to the Cooper pair wave function via (5.19). For the special case

(5.35), we see that a minimizing vector will have absolute value
√
τ . We

can then reduce to the case where a minimizing vector lies on the unit

sphere by rescaling the order parameters. The advantage of this other

normalization is that it allows to interpret the absolute value of the order

parameters as relative densities of superconducting charge carriers.

We discuss what symmetry of EGL one can expect. First of all, GL theory

always has the global U(1) gauge symmetry ψj 7→ eiφψj (this is due to the

presence of the absolute value signs in (5.20)). Second, SO(3) acts on spherical

harmonics by pre-composition, i.e. for g ∈ SO(3) and ω ∈ S2,

gYl,m(ω) := Yl,m(g−1ω) =
∑
m′

Agmm′Yl,m′

where Ag ∈ O(2l + 1) is the analogue of the well-known Wigner d-matrix for

real spherical harmonics [9]. By changing the angular integration variable in

(5.21) and (5.22) from gω to ω, it is easy to see that

EGL((Ag)−1 ~ψ) = EGL(~ψ),

where we introduced ~ψ = (ψ−2, . . . , ψ2). Since Yl,m is re�ection-symmetric for

even l, we can extend the action to all of O(3) and retain the invariance of

EGL. This shows that we can expect EGL to have symmetry groups U(1) and

O(3). However:

Corollary 5.3.3. In the situation of Theorem 5.3.1:



69

(i) For all φ ∈ [0, 2π), R ∈ O(5) and ~ψ ∈ C5,

EGL(eiφR~ψ) = EGL(~ψ) (5.36)

Moreover, O(5) acts transitively and faithfully onMd-wave.

(ii) Md-wave is a 7-dimensional manifold in R10.

(iii) Any minimizer of EGLd-wave has at least two non-zero entries ψj.

Remark 5.3.4. (i) Surprisingly, the emergent symmetry group O(5) is con-

siderably larger than the O(3)-symmetry discussed above. (Recall also

that Ag from above is in O(5), so that the O(3)-symmetry is really con-

tained in the O(5)-symmetry.) The particularly nice form of the O(5)

action is a consequence of choosing the real-valued spherical harmonics

as a basis.

(ii) We interpret faithfulness of the group action as saying that Md-wave is

�truly� invariant under the full O(5).

(iii) Transitivity means that the set of minimizers Md-wave is a single orbit

under the O(5) symmetry. In other words, there exists a unique mini-

mizer modulo symmetry.

(iv) We interpret (iii) as a proof of non-trivial coupling between the real-

valued d-wave channels (it is of course a basis-dependent statement).

Proof. The invariance under multiplication by eiφ is trivial. To see the O(5)

symmetry, we use real coordinates because they also provide an interesting

change in perspective. Writing ~ψ = ~x + i~y with ~x, ~y ∈ R
5, the GL energy

becomes

EGL(~x+ i~y) =
5c

14π

((
~x2 + ~y2 − τ

)2 − τ 2 +
1

2

∣∣~x2 − ~y2
∣∣2 + |~x · ~y|2

)
. (5.37)

This is clearly invariant under the O(5)-action ~x + i~y 7→ R~x + iR~y. We can

rewrite the set of minimizers as

Md-wave =
{

(~x, ~y) ∈ R5 × R5 : ~x2 = ~y2 =
τ

2
, ~x · ~y = 0

}
. (5.38)

Without loss of generality, we may set τ/2 = 1, so thatMd-wave is just the set

of pairs of orthonormal R5-vectors. To see that the O(5)-action is transitive,
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consider the orbit of (e1, e2) ∈ Md-wave, namely {(Re1,Re2) : R ∈ O(5)}.
Since any two orthonormal vectors can appear as the �rst two columns of an

orthogonal matrix, we have transitivity. To see that the action is faithful, note

that for any two distinct R, R̃ ∈ O(5), there exists ei such that Rei 6= R̃ei.

For (ii), we employ the implicit function theorem and observe that the Jacobian

associated with the functions ~x2, ~y2, ~x · ~y from (5.38) has rank 3. Finally, (iii)

is immediate from (5.35).

The pure d-wave case in two dimensions

Note that the two-dimensional analogue of the space Sl, namely the homoge-

neous polynomials of order l on S1, is spanned by cos(lϕ) and sin(lϕ). Thus

assumption (5.39) below is the two-dimensional analogue of the assumption

ker(KTc + V ) = span{ρ2} ⊗ S2 in Theorem 5.2.10 above.

Theorem 5.3.5 (Pure d-wave case, 2D). Let D = 2. Let V be such that

Theorem 5.2.10 applies and such that ker(KTc + V ) = span{axy, ax2−y2} with

âx2−y2(p) = %(p)
cos(2ϕ)√

π
, âxy(p) = %(p)

sin(2ϕ)√
π

, (5.39)

for an appropriate, normalized 0 6≡ % ∈ L2(R+, pdp). Let ψx2−y2 and ψxy

denote the corresponding GL order parameters. Then:

(i) The GL energy that arises from BCS theory as described in Theorem

5.2.10 reads

EGLd-wave,2D(ψx2−y2 , ψxy)

=
c

2π

{(
|ψx2−y2|2 + |ψxy|2 −

πd

c

)2

− π2d2

c2
+

1

2

∣∣ψ2
x2−y2 + ψ2

xy

∣∣2}
(5.40)

where c, d are de�ned in the same way as in Theorem 5.3.1 with f2(p), f4(p)

replaced by f2(p)/p, f4(p)/p.

(ii) We have min EGLd-wave,2D = −πd2

2c
. The set of minimizers is

Md-wave,2D

=

{
(ψx2−y2 , ψxy) ∈ C2 : |ψx2−y2|2 + |ψxy|2 =

πd

c
, ψ2

x2−y2 + ψ2
xy = 0

}
=

{
(ψ,±iψ) ∈ C2 : |ψ|2 =

πd

2c

}
(5.41)
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Remark 5.3.6. (i) Statement (i) directly implies the �rst equality in (5.41)

and the second equality is elementary. Note that the result can be con-

veniently stated in terms of the complex-valued spherical harmonics as

well.

(ii) From the second equation in (5.41), we see that the minimizers of the

GL2 for a pure d-wave superconductor in two dimensions (in the cosine,

sine basis) form a double cover of the minimizers of the usual �Mexican-

hat� GL1.

(iii) A similar result holds for any pure angular momentum sector in two

dimensions.

The mixed (s+ d)-wave case

We write <[z] for the real part of a complex number z.

Theorem 5.3.7 (Mixed (s + d)-wave case, 3D). Let D = 3. Let V be such

that Theorem 5.2.10 applies and such that ker(KTc + V ) = span{ρ0} ⊗ S0 +

span{%2} ⊗ S2 for some 0 6≡ ρ0, ρ2 ∈ L2(R+; r2dr). As an orthonormal basis,

take a2,m as in Theorem 5.3.1 and as with

âs(p) = %s(p)Y0,0(ϑ, ϕ). (5.42)

Let ψm, (m = −2, . . . , 2) and ψs denote the GL order parameters corresponding

to the respective basis functions. Then:

(i) The microscopically derived GL energy reads

EGL(s+ d)-wave(ψs, ψ−2, . . . , ψ2)

= EGLs-wave(ψs) + EGLd-wave(ψ−2, . . . , ψ2) + EGLcoupling(ψs, ψ−2, . . . , ψ2)
(5.43)

where EGLd-wave(ψ−2, . . . , ψ2) is given by (5.32),

EGLs-wave(ψs) =
c(4s)

4π

((
|ψs|2 − τs

)2 − τ 2
s

)
, (5.44)
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with τs = 2πd(2s)

c(4s)
, and

EGLcoupling(ψs, ψ−2, . . . , ψ2)

=
c(2s)

2π

(
2|ψs|2

2∑
m=−2

|ψm|2 + <

[
ψs

2

(
2∑

m=−2

ψ2
m

)])
+

√
5c(s)

7π

×

(
<

[
ψs

(
2ψ0|ψ0|2 +

∑
m=±1,2

|m|(−1)m+1(2ψ0|ψm|2 + ψ0ψ
2
m)

)]

+
√

3<

[
ψs
∑
m=±1

m
(
2ψ2|ψm|2 + ψ2ψ

2
m

)]

+2
√

3<
[
ψs
(
ψ−2ψ1ψ−1 + 2ψ−2<

[
ψ1ψ−1

])])
.

(5.45)

The coe�cients c, d are given by (5.33). Moreover, for m = 1, 2, 4, we

introduced

c(ms) =

∫ ∞
0

f4(p)gs(p)
m dp, d(2s) =

∫ ∞
0

f2(p)gs(p)
2 dp, (5.46)

with f2, f4 as in (5.34) and

gs(p) =

∣∣∣∣%s(p)%(p)

∣∣∣∣ . (5.47)

(ii) The following are equivalent:

• dc(2s) < 5
7
cd(2s),

• for all su�ciently small ε > 0, and for any minimizer (ψ−2, . . . , ψ2)

of EGLd-wave, there exists ψs with |ψs| = ε such that

EGL(s+ d)-wave(ψs, ψ−2, . . . , ψ2) < EGLd-wave(ψ−2, . . . , ψ2) = min EGLd-wave.
(5.48)

(iii) The following are equivalent:

• d(2s)c(2s) ≤ dc(4s),

• for all su�ciently small ε > 0, and for any minimizer ψs of EGLs-wave,
there exists (ψ−2, . . . , ψ2) with |ψm| < ε for m = −2, . . . , 2 such that

EGL(s+ d)-wave(ψs, ψ−2, . . . , ψ2) < EGLs-wave(ψs) = min EGLs-wave. (5.49)
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We see that EGL(s+ d)-wave yields a much richer GL theory than EGLd-wave. Especially
the terms which depend on the relative phases of several GL order parameters

make this a rather challenging minimization problem. Accordingly, we no

longer have an explicit characterization of the set of minimizers. However,

using (ii) and (iii) above, we immediately obtain

Corollary 5.3.8 (Non-trivial coupling of s- and d-waves). In the situation of

Theorem 5.3.7 suppose that dc(2s) < 5
7
cd(2s) and d(2s)c(2s) ≤ dc(4s). Then any

minimizer (ψs, ψ−2, . . . , ψ2) of EGL(s+ d)-wave must satisfy ψs 6= 0 and ψm 6= 0 for

some −2 ≤ m ≤ 2.

Remark 5.3.9. (i) The existence of V such that the assumption required by

Theorem 5.3.7 on ker(KTc + V ) holds for appropriate parameter values

follows from statement (ii) of Theorem 5.4.1.

(ii) Using the same method and the two-dimensional analogues of all quan-

tities above, one can also compute the GL3 that arises for a two-dimen-

sional isotropic (s+ d)-wave superconductor

4πEGL(s+ d)-wave,2D(ψs, ψx2−y2 , ψxy)

= 3c|ψx2−y2|4 + 3c|ψxy|4 + 2c(4s)|ψs|4 + 2c<[ψx2−y2
2
ψ2
xy]

+ 4c|ψx2−y2|2|ψxy|2 + 4c(2s)<[ψs
2
(ψ2

x2−y2 + ψ2
xy)]

+ 8c(2s)|ψs|2(|ψx2−y2|2 + |ψxy|2)

− 4πd
(
|ψx2−y2 |2 + |ψxy|2

)
− 4πd(2s)|ψs|2

(5.50)

Its complexity lies somewhere between the GL theories in Theorems 5.3.5

and 5.3.7. Setting ψxy = 0 (that is, we forbid the dxy channel ad hoc),

we obtain the GL2

4πEGL(s+ d)-wave,2D(ψs, ψx2−y2 , 0)

= 3c|ψx2−y2|4 + 2c(4s)|ψs|4 + 4c(2s)<[ψs
2
ψ2
x2−y2 ]

82c(2s)|ψs|2|ψx2−y2 |2 − 4πd|ψx2−y2|2 − 4πd(2s)|ψs|2
(5.51)

Compare this with EGLd-wave,2D from Theorem 5.3.5. While one cannot

complete the square because the coe�cients di�er in a way that depends

on the microscopic details, notice that the only phase-dependent term is

of the form

4c(2s)<[ψs
2
ψ2
x2−y2 ] (5.52)

with c(2s) > 0. It is then clear that for minimizers, the dx2−y2- and s-wave

order parameters must have a relative phase of ±i.
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5.4 Part III: Radial potentials with ground states of arbitrary an-

gular momentum

In this part, D = 3 and µ > 0. Recall that

KT (p) =
p2 − µ

tanh
(
p2−µ

2T

) , (5.53)

and the operator KT is multiplication by the function KT (p) in Fourier space.

Recall the de�nition (5.6) of the Dirac delta potentials

Vλ,R(x) = −λδ(|x| −R),

for λ,R > 0.

The following theorem says that, given a non-negative integer l0, we can choose

parameter values for µ, λ,R from appropriate open intervals such that the

zero-energy ground state sector of KTc + Vλ,R lies entirely within the angular

momentum sector Hl0 .

Theorem 5.4.1. (i) Let l0 be a non-negative integer. For every R > 0,

there exist an open interval I ⊂ R+ and λ∗ > 0 such that for all µ ∈ I
and all λ ∈ (0, λ∗) there exists Tc > 0 such that

inf spec(KTc + Vλ,R) = 0, (5.54)

ker(KTc + Vλ,R) = span{ρl0} ⊗ Sl0 , (5.55)

inf spec(KT + V ) < 0, ∀T < Tc. (5.56)

Explicitly, the (non-normalized) radial part is

ρl0(r) = r−1/2

∫ ∞
0

p
Jl0+ 1

2
(rp)Jl0+ 1

2
(Rp)

KTc(p)
dp. (5.57)

(ii) For every R > 0, there exists T∗ > 0 such that for all Tc < T∗, there

exist µ, λ > 0 such that

inf spec(KTc + Vλ,R) = 0, (5.58)

ker(KTc + Vλ,R) = span{ρ0} ⊗ S0 + span{ρ2} ⊗ S2, (5.59)

inf spec(KT + V ) < 0, ∀T < Tc. (5.60)

with ρ0, ρ2 as in (5.57).
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Remark 5.4.2. (i) To be completely precise, in (i) there exists T0 such that

the analogue of (5.54)-(5.56) holds with T0 in place of Tc. Then Tc = T0

by de�nition (5.9).

(ii) The parameter R can be removed by rescaling µ, λ and T appropriately.

(iii) In statement (i), for given µ ∈ I, λ ∈ (0, λ∗) and R > 0, Tc is given as

the unique solution to the implicit relation

1 = λ

∫ ∞
0

pR

KTc(p)
J 2
l0+1/2(pR)dp. (5.61)

(iv) The fact that statement (i) holds for open intervals of µ and λ values is

to be interpreted as saying that the occurrence of degenerate ground states

for KTc + Vλ,R is �not un-generic�. This may be surprising at �rst sight,

because if one replaces KT +V by the Schrödinger operator −∇2 +V , the

Perron-Frobenius Theorem (see e.g. [123]) implies that the ground state

is always simple.

(v) The proof critically uses that KT (p) is small (for small enough T ) on the

set {p : p2 = µ}. Note that this set would be empty for µ < 0.

(vi) It is interesting to compare Theorem 5.4.1 with Theorem 2.2 from [72]

which characterizes the critical temperature in the weak-coupling limit

λ→ 0 through an e�ective Hilbert-Schmidt operator Vµ acting only on L2

of the Fermi sphere. For radial potentials, [72] shows that ker(KTc+V ) ⊂
Hl0 for all su�ciently small λ i� l0 is the unique minimizer of

l 7→
√
µ

2π2

∫
V (x)|jl(

√
µ|x|)|2dx (5.62)

where jl(z) =
√

π
2z
Jl(z) is the spherical Bessel function of the �rst kind.

While our proof here will be independent of [72], one can take V = Vλ,R

in (5.62) to see that the key fact needed to prove ker(KTc + V ) ⊂ Hl0

is that there is a point at which j2
l0
> supl 6=l0 j

2
l . This is the content of

Theorem 5.8.1.

We conclude by discussing the conceivable extensions of Theorem 5.4.1. State-

ment (i) also holds if KT + V is de�ned on all of L2(R3) instead of just on

L2
symm(R3), so there is nothing special about even functions in (i).
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Statement (ii) can not be generalized as much: (a) it will not hold when odd

functions are also considered and (b) it does not generalize to arbitrary pairs

(l0, l0 + 2) with l0 even. The reason is that, as demonstrated within the proof

of Theorem 5.4.1, for small enough T , (ii) is equivalent to the existence of a

point where J1/2 > Jl+1/2 for all even l ≥ 1. The generalizations to more l-

values described above require the analogous inequalities for Bessel functions.

However, these facts will not hold in the cases above, as becomes plausible

when considering Figure 5.1.

5.5 Proofs for part I

The strategy of the proof follows [73].

We introduce the family of BCS states Γ∆ from which the trial state generating

the upper bound will be chosen. The relative entropy identity (5.68) rewrites

the di�erence of BCS free energies as terms involving Γ∆.

The main simpli�cation of our proof as compared to [73] is then in the �semi-

classical� Theorem 5.5.3. While [73] requires elaborate semiclassical analysis

for analogous results, the proof in our technically simpler translation-invariant

case reduces to an ordinary Taylor expansion.

Afterwards, we discuss how one concludes Theorem 5.2.10 by separately prov-

ing an upper and a lower bound. In the lower bound, the degeneracy requires

modifying the arguments from [73] slightly.

Relative entropy identity

All integrals are over RD unless speci�ed otherwise. We introduce the family

of operators

Γ̂∆ :=
1

1 + exp(Ĥ∆/T )
, Ĥ∆ :=

(
h ∆̂

∆̂ −h

)
. (5.63)

Here ∆ is an even function on RD and we have introduced

h(p) = p2 − µ, (5.64)

the energy of a single unpaired electron of momentum p. Note that the choice

∆̂ ≡ 0 in (5.63) indeed yields the normal state Γ0 de�ned in (5.13).

Recall that Γ is a BCS state i� 0 ≤ Γ̂ ≤ 1 and Γ̂ is of the form (5.2).
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Proposition 5.5.1. Γ∆ de�ned by (5.63) is a BCS state and

Γ̂∆(p) =

(
γ̂∆(p) α̂∆(p)

α̂∆(p) 1− γ̂∆(p)

)
with

γ̂∆(p) =
1

2

(
1− (p2 − µ)

tanh(E∆(p)/(2T ))

E∆(p)

)
, (5.65)

α̂∆(p) = −∆̂(p)

2

tanh(E∆(p)/(2T ))

E∆(p)
, (5.66)

E∆(p) =
√

h(p)2 + |∆(p)|2. (5.67)

Proof. It is obvious from (5.63) that 0 ≤ Γ̂∆(p) ≤ 1. Since (Ĥ∆)2 = E2
∆I2 and

since tanh(x)/x only depends on x2, it follows that

Γ̂∆ =
1

1 + exp(Ĥ∆/T )
=

1

2

(
1− tanh(Ĥ∆/(2T ))

)
=

1

2

(
1− Ĥ∆

E∆

tanh(E∆/(2T ))

)
,

which yields (5.65) and (5.66).

We now give an identity which rewrites the di�erence FBCST (Γ)−FBCST (Γ0) in

terms of more manageable quantities involving Γ∆, one of them is the relative

entropy.

Proposition 5.5.2 (Relative Entropy Identity, [73]). Let Γ be an admissible

BCS state and a ∈ H1
sym(RD). Set ∆̂ = 2V̂ a. It holds that

FBCST (Γ)−FBCST (Γ0)

= −T
2

Tr
[
log
(

1 + e−Ĥ∆/T
)
− log

(
1 + e−Ĥ0/T

)]
+
T

2
H(Γ,Γ∆)−

∫
V |a|2 dx +

∫
V |α− a|2 dx

(5.68)

where H(Γ,Γ∆) is the relative entropy de�ned by

H(Γ,Γ∆) := Tr
[
φ(Γ̂, Γ̂∆)

]
. (5.69)

Here we introduced

φ(x, y) = x(log(x)− log(y)) + (1−x)(log(1−x)− log(1− y)), ∀0 ≤ x, y ≤ 1.
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Proof. This is a computation, see [73] or [74].

For the sake of comparability with [73], we note that in the translation-

invariant case the L2-trace per unit volume of a locally trace-class operator

(which they denote by Tr) is just the integral of its Fourier transform and so

Tr[Γ] =

∫
RD

TrC2 [Γ̂(p)] dp.

�Semiclassical� expansion

We prove Theorem 5.5.3 by a Taylor expansion, which is su�cient because

of the simpli�cations introduced by the translation-invariance. The analogous

results in [73] require many more pages of challenging semiclassical analysis.

The result and the key lemma

Recall the de�nition of g1 in (5.17). The following is the main consequence of

the Taylor expansion

Theorem 5.5.3. Let ∆̂ = 2hV̂ a for some a ∈ ker(KTc + V ). De�ne h > 0 by

h =

√
Tc − T
Tc

. (5.70)

Then, as h→ 0,

FBCST (Γ∆)−FBCST (Γ0) = h4E2 +O(h6), (5.71)

where

E2 =
1

16T 2
c

∫
g1(h(p)/Tc)

h(p)
|t(p)|4 dp− 1

8Tc

∫
1

cosh2(h(p)/(2Tc))
|t(p)|2 dp

(5.72)

with t = 2V̂ a.

We emphasize that this is the place where the e�ective gap operator appears

in the analysis. The choice a ∈ ker(KTc + V ) ensures that there are no O(h2)

terms in the expansion (5.71).

The theorem follows from the key
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Lemma 5.5.4. Let Γ∆ be given by (5.63) with ∆̂(p) = ht(p) for a function t

satisfying

t ∈ Lq(RD) with


q =∞ if D = 1,

4 < q <∞ if D = 2,

q = 6 if D = 3.

(5.73)

Then, as h→ 0,

(i)

− T

2
Tr
[
log
(

1 + e−Ĥ∆/T
)
− log

(
1 + e−Ĥ0/T

)]
= h2E1 + h4E2 +O(h6)

(5.74)

where E2 is de�ned by (5.72) and (see (5.17) for g0)

E1 = − 1

4Tc

∫
g0(h(p)/Tc)|t(p)|2 dp, (5.75)

(ii)

‖α∆ − φ̌‖H1 = O(h3) (5.76)

with φ(p) = −h t(p)
2Tc
g0(h(p)/Tc).

This may be compared to Theorems 2 and 3 in [73].

To conclude Theorem 5.5.3 from the key lemma, we need a regularity result

for the translation-invariant operator.

Proposition 5.5.5. Let a ∈ H1(RD) satisfy (KTc + V )a = 0. Then, â ∈
L∞(RD). Let t := V̂ a and 〈p〉 := (1 + p2)1/2. Then, 〈p〉−1t ∈ L2(RD) and t

satis�es (5.73).

Proof. Recall Assumption 5.2.2 on the potential V . When V ∈ LpV (RD), then

the result follows from Proposition 2 in [73]. For the potentials Vλ,R in D = 3,

the regularity properties can be read o� directly from the explicit solution of

the eigenvalue problem (KTc + Vλ,R)a = 0, see (5.133) in the proof of Lemma

5.7.1 for its Fourier representation. Indeed, since Yl,m and the Bessel function

of the �rst kind Jl+1/2 are smooth and bounded with Jl+1/2(0) = 0 and since

E < 2T , we get â ∈ L∞. Moreover,

t(p) ∝ Yl,m (ϑ, ϕ)
Jl+1/2(pR)
√
p
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and since Jl+1/2 also decays like p−1/2 for large p-values, the regularity prop-

erties of t follow. In D = 1, 2, one can again solve the eigenvalue problem

(KTc + Vλ,R)a = 0 explicitly and obtains the claimed regularity by similar

considerations. The details are left to the reader.

Proof of Theorem 5.5.3. First, note that t = 2V̂ a has all the regularity prop-

erties needed to apply (i), thanks to Proposition 5.5.5. We invoke the relative

entropy identity (5.68) and use Lemma 5.5.4 to �nd

FBCST (Γ∆)−FBCST (Γ0)

= h2E1 + h4E2 − h2

∫
V |a|2dx+

∫
V |α∆ − ha|2dx+O(h6).

(5.77)

Observe that

g0(h(p)/Tc) = TcK
−1
Tc

(p). (5.78)

By Plancherel and the eigenvalue equation (KTc + V )a = 0, (5.77) becomes

FBCST (Γ∆)−FBCST (Γ0) = h4E2 +

∫
V |α∆ − ha|2dx +O(h6).

Thus, it remains to show∫
V (x)|α∆(x)− ha(x)|2 dx = O(h6). (5.79)

To see this, recall that V is form-bounded with respect to −∇2, so it su�ces

to prove that ‖α∆−ha‖H1 = O(h3). Using the eigenvalue equation and (5.78),

â(p) = −K−1
Tc

(p)V̂ a(p) = −t(p)

2Tc
g0(h(p)/Tc)

and so (5.79) follows from Lemma 5.5.4 (ii).

Proof of Lemma 5.5.4

Proof of (i) We have

log
(

1 + e−Ĥ∆(p)/T
)

= −Ĥ∆(p)/(2T ) + log cosh(Ĥ∆(p)/(2T )).

Observe that TrC2

[
Ĥ∆(p)

]
= 0, that x 7→ coshx is an even function and that

Ĥ∆(p)2 = E∆(p)2I2. We �nd

TrC2

[
log
(

1 + e−Ĥ∆/T
)]

= TrC2

[
log cosh(Ĥ∆(p)/(2T ))

]
= 2 log cosh(E∆(p)/(2T )) .
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This and a similar computation for ∆ = 0 show that

− T

2
Tr
[
log
(

1 + e−Ĥ∆/T
)
− log

(
1 + e−Ĥ0/T

)]
= −T

∫
(log cosh(E∆/(2T ))− log cosh(h/(2T ))) dp. (5.80)

We denote the function in (5.80) by

f(h2) := T (h2)

(
log cosh

(
E(h2)

2T (h2)

)
− log cosh

(
E(0)

2T (h2)

))
,

where we wrote E(h2) for E∆ and T (h2) = Tc(1−h2). Note that E ′ = |t|2/(2E)

and recall the de�nition (5.17) of g0 and g1. By an easy computation

f(0) = 0,

f ′(0) = −g0(h/Tc)
|t|2

4Tc
,

1

2
f ′′(0) =

g1(h/Tc)

h

|t|4

16T 2
c

− 1

cosh2(h/(2Tc))

|t|2

8Tc
.

With this, we can expand (5.80) as follows

T

2
Tr
[
log Γ̂∆ − log Γ̂0

]
(5.81)

=− h2

∫
g0(h/Tc)

|t|2

4Tc
dp

+ h4

 1

16T 2
c

∫
g1(h/Tc)

h
|t|4 dp− 1

8Tc

∫
1

cosh2
(

h
2Tc

) |t|2 dp

+O(h6).

(5.82)

It remains to check that the O(h6) term is indeed �nite. Using the Lagrange

remainder in Taylor's formula, it su�ces to show∫
sup

0<δ<h2

1

3!
|f ′′′(δ)| dp <∞. (5.83)

We will control this quantity in terms of appropriate integrals over t which are

�nite by our assumptions on t. We introduce the function

g2(z) := g′1(z) +
2

z
g1(z) =

1

2z

1

cosh2(z/2)
tanh(z/2). (5.84)
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By a straightforward computation

1

3!
f ′′′(δ) =

1

8T (δ)3

[
|t|6

12E(δ)2

(
3
g1(E(δ)/T (δ))

E(δ)/T (δ)
− g2(E(δ)/T (δ))

)
− Tc

2T (δ)
|t|4g2(E(δ)/T (δ))

+T 2
c |t|2

 1

cosh2
(
E(δ)
2T (δ)

) − (E(δ)

T (δ)

)2

g2(E(δ)/T (δ))

 .
Note that, for h2 small enough, Tc/2 ≤ T (δ) ≤ 2Tc for all 0 < δ < h2. Using

this and the fact that 1
cosh2(z)

and g2(z) are monotone decreasing for z > 0, we

can estimate∫
sup

0<δ<h2

1

3!
|f ′′′(δ)| dp

≤C1

∫
|t|6 sup

0<δ<h2

E(δ)−2

∣∣∣∣3g1(E(δ)/T (δ))

E(δ)/T (δ)
− g2(E(δ)/T (δ))

∣∣∣∣ dp (5.85)

+ C2

∫
|t|4g2(h/(2Tc)) dp (5.86)

+ C3

∫
|t|2
(

1

cosh2(h/(4Tc))
+ g2(h/(2Tc)) sup

0<δ<h2

E(δ)2

)
dp.

Here C1, C2, C3 denote constants which depend on D,Tc and may change from

line to line in the following. For de�niteness, assumeD = 3. The arguments for

D = 1, 2 are similar. Since g2(z) is a bounded function that decays exponen-

tially for large z, we can use Cauchy-Schwarz and the fact that h(p) ∼ C〈p〉2

for large p to conclude

C2

∫
|t|4g2(h/(2Tc)) dp ≤ C2

∫ (
|t|6 + 〈p〉−2|t|2

)
dp

and the right-hand side is �nite by Proposition 5.5.5. Using that E(δ)2 =

h2 + δ|t|2 ≤ h2 + |t|2 for small enough h, the same argument applies to the C3

term in (5.86).

The C1 term in (5.86) contains a factor E(∆)−2 which looks troubling because,

as δ → 0, it is of the form h−2 and thus singular on the sphere {p : p2 = µ}
if µ > 0. For the radial integration, this singularity would not be integrable

(and we have not even considered the factor |t|6 yet). However, the singularity
is canceled by the factor 3g1(z)/z−g2(z) with z = E(δ)/T (δ) in (5.86). To see

this, recall the de�nition (5.17) of g1 and (5.84) of g2 and observe that g1(z)/z

and g2(z) are both even functions. Using the power series representation for
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1
cosh2 and tanh, it is elementary to check that in the expansion of 3g1(z)/z −
g2(z) the coe�cients of order z−2 and z0 vanish and so the lowest non-vanishing

order is z2. Therefore, the singularity is removed and since g1(z)/z and g2 are

bounded, we get

sup
0<δ<h2

E(δ)−2

∣∣∣∣3g1(E(δ)/T (δ))

E(δ)/T (δ)
− g2(E(δ)/T (δ))

∣∣∣∣ ≤ C <∞.

Since
∫
|t|6 dp <∞ by our assumption on t, the C1 term in (5.86) is �nite and

we have proved (5.83).

Proof of (ii) From (5.66) we have

α̂∆(p) = −ht(p)

2T
g0(E∆(p)/T ).

Therefore

‖α∆ − φ̌‖2
H1 = h2

∫
〈p〉2|t|2|f(h2)− f(0)|2 dp, (5.87)

where we introduced the function

f(h2) :=
g0(E(h2)/T (h2))

2T (h2)
. (5.88)

Recall that g′0 = −g1. Using this and the fact that for h2 small enough,

Tc/2 ≤ T (δ) ≤ 2Tc for all 0 < δ < h2, Taylor's theorem with Lagrange

remainder yields

|f(h2)− f(0)|

≤ Ch2 sup
0<δ<h2

(
|g0(E(δ)/T (δ))|+ |g1(E(δ)/T (δ))|

(
|t|2

E(δ)
+ E(δ)

))
.

Note that g0(z) and g1(z)/z are monotone decreasing and so

|f(h2)− f(0)| ≤ Ch2 |g0(h/(2Tc))|+ C ′ sup
0<δ<h2

∣∣∣∣g1(h/(2Tc))

h

∣∣∣∣ (|t|2 + E(δ)2
)

≤ Ch2

(
|g0(h/(2Tc))|+

∣∣∣∣g1(h/(2Tc))

h

∣∣∣∣ (|t|2 + h2
))

≤ Ch2
(
|t|2h−3 + 〈h〉−1

)
where in the second step we used that E(δ) = h2 + δ|t|2 ≤ h2 + |t|2 for

small enough h and in the third step we used g0(z) ≤ C〈z〉−1 as well as

g1(z)/z ≤ C〈z〉−3. Assume D = 3 for de�niteness. We can bound (5.87) as

follows

h2

∫
〈p〉2|t|2|f(h2)− f(0)|2 dp ≤ Ch6

∫ (
|t|6〈p〉−10 + |t|2〈p〉−2

)
dp = Ch6,

where the last equality holds by the assumption on t. This proves (ii).
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Proof of Theorem 5.2.10

We follow the strategy in [73]. That is, we prove theorem Theorem 5.2.10 (i) by

separately proving an upper and a lower bound on the left-hand side in (5.15).

The upper bound follows by choosing an appropriate trial state Γ∆ and using

the semiclassical expansion of the BCS free energy in the form of Theorem

5.5.3. For the lower bound, we show that the chosen trial states Γ∆ indeed

describe any approximate minimizer Γ to lowest order in h (this is precisely

statement (ii) in Theorem 5.2.10) and conclude by using the semiclassical

expansion once again.

Upper bound

Recall the de�nition of h in (5.70). In this section we prove

min
Γ
FBCST (Γ)−FBCST (Γ0) ≤ h4 min

a∈ker(KTc+V )
EGL(a) +O(h6), (5.89)

where EGL is given by (5.16).

We get this by using the trial state Γ̂∆, de�ned by (5.63) with the choice

∆̂ = 2h(̂V ǎ) (5.90)

where a ∈ ker(KTc +V ) minimizes EGL (recall that minimizers exist by Propo-

sition 5.2.12). Then, (5.89) follows from Theorem 5.5.3 and the fact that

evaluating the de�nition (5.72) of E2 for the choice

t(p) = ∆̂(p)/h = −2KTc(p)a(p)

produces the de�nition (5.16) of EGL(a).

Lower bound: Part A

Following [73], we will prove the lower bound in (5.15) in conjunction with

statement (ii) about approximate minimizers. We consider any BCS state Γ

satisfying

FBCST (Γ)−FBCST (Γ0) ≤ O(h4). (5.91)

Note that we may restrict to such Γ when minimizing FBCST thanks to the

upper bound (5.89) and that (5.91) still includes the approximate minimizers

considered in (ii). In Part A, we prove Proposition 5.5.6, which says that the

o�-diagonal element α of such a Γ will be close to a minimizer of EGL. In Part
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B, we will use this to get FBCST (Γ) − FBCST (Γ∆) ≥ O(h6) for ∆ of the form

(5.90) and hence

FBCST (Γ)−FBCST (Γ0) ≥ FBCST (Γ∆)−FBCST (Γ0) +O(h6).

Since we know FBCST (Γ∆) − FBCST (Γ0) = h4EGL(ψ1, . . . , ψn) + O(h6) from

Theorem 5.5.3, this will imply both the lower bound in (5.15) and statement

(ii) about approximate minimizers.

In the remainder of this section, we will prove:

Proposition 5.5.6. Suppose Γ satis�es (5.91) and let P denote the orthogonal

projection onto ker(KTc + V ) and let P⊥ = 1− P . Then, ‖Pα‖2 = O(h) and

‖P⊥α‖2 = O(h2).

This implies statement (ii) in Theorem 5.2.10 with a0 ≡ h−1Pα. The proof of

Proposition 5.5.6 will use the following lemma, which bounds the relative en-

tropy H(Γ,Γ∆) from below in terms of a weighted Hilbert-Schmidt norm. The

result without the second �bonus� term on the right-hand side �rst appeared

in [90], the improved version is due to [73].

Lemma 5.5.7 (Lemma 1 in [73]). For any 0 ≤ Γ ≤ 1 and Γ(H) = (1 +

exp(H))−1, it holds that

H(Γ,Γ(H)) ≥Tr

[
Ĥ

tanh(Ĥ/2)
(Γ̂− Γ̂(H))2

]
+

4

3
Tr
[
(Γ̂(1− Γ̂)− Γ̂(H)(1− Γ̂(H)))2

]
.

(5.92)

Proof. By the identity (5.7) in [73] and Klein's inequality for 2 × 2 matrices,

(5.92) even holds pointwise in p.

Here is a quick outline of the proof of Proposition 5.5.6: Following [73], we

rewrite FBCST (Γ)−FBCST (Γ0) by invoking the relative entropy identity (5.68).

Then, we bound the right hand side from below by 〈α, (KT + V )α〉, which
is therefore negative due to (5.91). Since KTc + V ≥ 0 with a spectral gap

above zero, this will allow us to conclude that the part of α lying outside of

ker(KTc + V ) must be small, more precisely that ‖α− Pα‖2 = O(h2). To get

that ‖Pα‖2 itself is O(h), we use the second �bonus� term on the right-hand

side of Lemma 5.5.7.
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Proof of Proposition 5.5.6. Step 1: We �rst apply the relative entropy identity

(5.68) with the choice a = 0 to get

O(h4) ≥ FBCST (Γ)−FBCST (Γ0) =
T

2
H(Γ,Γ0) +

∫
V |α|2 dx. (5.93)

Next, we use Lemma 5.5.7. To evaluate the resulting expression, note that

Ĥ0

tanh(Ĥ0/(2T ))
= KT I2×2,

Γ̂(1− Γ̂)− Γ̂0(1− Γ̂0) =
(
γ̂(1− γ̂)− γ̂0(1− γ̂0)− |α̂|2

)
I2×2,

are diagonal matrices. We obtain

T

2
H(Γ,Γ0) ≥

∫ (
KT (·)(γ̂ − γ̂0)2 dp +KT (·)|α̂|2

+
4T

3

(
γ̂(1− γ̂)− γ̂0(1− γ̂0)− |α̂|2

)2
)

dp.

We estimate the �rst term using KT (p) ≥ 2T and �nd the lower bound∫ (
KT (·)|α̂|2 + 2T (γ̂ − γ̂0)2 +

4T

3

(
γ̂(1− γ̂)− γ̂0(1− γ̂0)− |α̂|2

)2
)

dp.

By

(x(1− x)− y(1− y))2 ≤ (x− y)2, ∀0 ≤ x, y ≤ 1

and the triangle inequality, we get the pointwise estimate(
2(γ̂ − γ̂0)2 +

4

3

(
γ̂(1− γ̂)− γ̂0(1− γ̂0)− |α̂|2

)2
)
≥ 4

5
|α̂|4.

Going back to (5.93), we have shown that

4T

5
‖α̂‖4

4 + 〈α, (KT + V )α〉 ≤ O(h4). (5.94)

Step 2: Next, we replace KT by KTc in (5.94) to make use of the spectral gap

of KTc + V . This is an easy version of what is Step 2 of Part A in [73], which

is more involved because it also removes the dependence on the external �elds

A,W . For us, it su�ces to observe that

d

dT
KT (p) =

1

2T 2

h(p)2

sinh2(h(p)/(2T ))

is uniformly bounded in p for all h small enough such that T > Tc/2. By the

mean-value theorem, ‖KT −KTc‖∞ ≤ O(h2). Using this on (5.94), we �nd

4T

5
‖α̂‖4

4 + 〈α, (KTc + V )α〉 ≤ O(h2)‖α‖2
2 +O(h4). (5.95)
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Let κ > 0 denote the size of the spectral gap of KTc + V above energy zero.

We write α = Pα + P⊥α. Using (KTc + V )Pα = 0, we obtain

4T

5
‖α̂‖4

4 + κ‖P⊥α‖2
2 ≤ O(h2)‖α‖2

2 +O(h4). (5.96)

For the moment we drop the �rst term on the left-hand side of (5.96) and use

orthogonality to get

‖P⊥α‖2
2 ≤ O(h2)(‖Pα‖2

2 + ‖P⊥α‖2
2) +O(h4)

which yields

‖P⊥α‖2
2 ≤ O(h2)‖Pα‖2

2 +O(h4). (5.97)

Thus, both claims will follow, once we show ‖Pα‖2 = O(h).

Step 3: Here the degeneracy requires a slight modi�cation. We now drop the

second term on the left-hand side of (5.96) to get

‖α̂‖4 ≤ O(h1/2)‖α̂‖1/2
2 +O(h). (5.98)

By orthogonality and (5.97),

‖α̂‖4 ≤ O(h1/2)‖P̂α‖1/2
2 +O(h), (5.99)

On the right-hand side of (5.98) however, the replacement of α̂ by P̂α requires

more work. By the triangle inequality for ‖ · ‖4 and (5.97)

‖α̂‖4 ≥ ‖P̂α‖4 − ‖P̂⊥α‖4 ≥ ‖P̂α‖4 − ‖P̂⊥α‖1/2
2 ‖P̂⊥α‖1/2

∞

≥ ‖P̂α‖4 −O(h1/2)‖P̂α‖1/2
2 ‖P̂⊥α‖1/2

∞ .

We use P̂⊥α = α̂− P̂α and |α̂|2 ≤ γ̂(1− γ̂) ≤ 1/4 pointwise to �nd ‖P̂⊥α‖∞ ≤
1
4
+‖P̂α‖∞. It is slightly more convenient to conclude the argument by choosing

an orthonormal basis {aj} for ker(KTc + V ). This allows us to write

Pα = h
n∑
j=1

ψjaj (5.100)

By Proposition 5.5.5, ‖âj‖∞ ≤ C for all j and therefore ‖P̂α‖∞ ≤ O(h)|ψ|∞.
We have shown

‖α̂‖4 ≥ ‖P̂α‖4 −O(h1/2)‖P̂α‖1/2
2 (1 + h|ψ|∞)1/2.
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Combining this with (5.99), we obtain

‖P̂α‖4 ≤ O(h1/2)‖P̂α‖1/2
2 (1 + h|ψ|∞)1/2 +O(h). (5.101)

It remains to bound ‖P̂α‖4 from below in terms of ‖P̂α‖2. Let R > 0. We

split the integration domain into {p ≤ R} and {p > R}. Applying Hölder's

inequality to the former yields

‖P̂α‖2
2 ≤ CRD/2‖P̂α‖2

4 + h2|ψ|2∞
∑
i,j

∫
{p>R}

|âi||âj| dp (5.102)

where C > 0 denotes a constant independent of h,R. Note that for all i, j,

Cauchy-Schwarz implies |âi||âj| ∈ L1(RD) and so for R0 > 0 large enough,∑
i,j

∫
{p>R0}

|âi||âj| dp <
1

2
.

We recall (5.101) to �nd

‖P̂α‖2
2 ≤ O(h)‖P̂α‖2(1 + h|ψ|∞) +

1

2
h2|ψ|2∞ +O(h2).

Since the {aj} in (5.100) are orthonormal, h|ψ|∞ ≤ ‖P̂α‖2 ≤
√
nh|ψ|∞. This

implies (
1

2
+O(h)

)
|ψ|2∞ ≤ O(1)|ψ|∞ +O(1). (5.103)

Let h be small enough such that the 1/2+O(h) term exceeds 1/4. We conclude

that |ψ|∞ ≤ O(1). Since ‖P̂α‖2 ≤
√
nh|ψ|∞, it follows that ‖P̂α‖2 ≤ O(h) as

claimed.

Lower bound: Part B

We use once more the relative entropy identity (5.68). Together with Lemma

5.5.4 (i) and the eigenvalue equation, we get

FBCST (Γ)−FBCST (Γ0)

=h4EGL(Pα) +
T

2
H(Γ,Γ∆) +

∫
V |α− Pα|2 dx +O(h6).

(5.104)

We see that to prove the lower bound it remains to show

T

2
H(Γ,Γ∆) +

∫
V |α− Pα|2 dx =

T

2
H(Γ,Γ∆) +

∫
V |P⊥α|2 dx ≥ O(h6).

(5.105)
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By Lemma 5.5.7 and the fact that x 7→ x/ tanh(x) is a monotone function that

depends only on x2, we have

T

2
H(Γ,Γ∆) ≥ 1

2
Tr

(Γ̂− Γ̂∆)
Ĥ∆

tanh
(
Ĥ∆/(2T )

)(Γ̂− Γ̂∆)


=

1

2
Tr

[
(Γ̂− Γ̂∆)

E∆

tanh (E∆/(2T ))
(Γ̂− Γ̂∆)

]
≥ 1

2
Tr
[
(Γ̂− Γ̂∆)KT (Γ̂− Γ̂∆)

]
.

(5.106)

Since KT ≥ 0, we have for every �xed (i.e. h-independent) 0 < ε < 1,

1

2
Tr
[
(Γ̂− Γ̂∆)KT (Γ̂− Γ̂∆)

]
≥
∫
KT |α̂− α̂∆|2 dp

≥
∫
KT |P̂⊥α|2 dp− 2<

∫
KT P̂⊥α

(
P̂α− α̂∆

)
dp

≥ (1− ε)
∫
KT |P̂⊥α|2 dp− Cε

∫
KT |P̂α− α̂∆|2 dp

≥ (1− ε)
∫
KT |P̂⊥α|2 dp +O(h6).

In the last step, we used Lemma 5.5.4 (ii) and KT (p) ≤ C〈p〉2 to get∫
KT |P̂α− α̂∆|2 dp = O(h6). (5.107)

Using these estimates on (5.105) and setting ξ := P⊥α, we see that it remains

to show that there exists an h-independent choice of 0 < ε < 1 such that

〈ξ, ((1− ε)KT + V )ξ〉 ≥ O(h6). (5.108)

Recall from step 2 of the proof of Proposition 5.5.6 that ‖KT−KTc‖∞ ≤ O(h2).

Since also ‖ξ‖2 = O(h2) by Proposition 5.5.6, we get

〈ξ, ((1− ε)KT + V )ξ〉 = 〈ξ, ((1− ε)KTc + V )ξ〉+O(h6).

We claim that there exists a constant c > 0 such that

〈ξ, (KTc + V )ξ〉 ≥ c〈ξ,KTcξ〉. (5.109)

Choosing ε su�ciently small will then give 〈ξ, (1 − ε)KTc + V )ξ〉 ≥ 0. Thus,

it remains to prove (5.109). Since V− is in�nitesimally form-bounded with

respect to KTc , we have for any δ > 0

(1− δ)KTc ≤ KTc − V− + Cδ ≤ KTc + V + Cδ (5.110)
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or

KTc ≤ C1(KTc + V ) + C2. (5.111)

Now, on ker(KTc + V )⊥, it also holds that KTc + V − κ ≥ 0 where κ > 0

denotes the gap size. Thus, for all λ > 0,

KTc ≤ (C1 + λ)(KTc + V ) + C2 − λκ, on ker(KTc + V )⊥ (5.112)

and choosing λ = C2/κ, we see that (5.109) follows. This proves (i).

Statement (ii) was proved along the way: Any approximate minimizer satis�es

(5.91) and hence Proposition 5.5.6 implies that its o�-diagonal part can be split

into α = Pα+ξ with ‖ξ‖ = O(h2). Since P is the projection onto ker(KTc+V ),

Pα ∈ ker(KTc + V ). Moreover, a0 ≡ h−1Pα approximately minimizes the GL

energy because the proof of the lower bound shows that for all Γ satisfying

(5.91) (not just for actual minimizers),

FBCST (Γ)−FBCST (Γ0) ≥ h4EGL(a0) +O(h6).

This �nishes the proof of Theorem 5.2.10.

Proofs of Propositions 5.2.3, 5.2.12 and 5.2.13

Proof of Proposition 5.2.3. For the LpV potentials, this is a standard argument

combining Hölder's inequality and Sobolev's inequality.

Consider the potentials (5.6), i.e. V (x) = −λδ(|x| − R) with λ,R > 0. Let

f ∈ H1(RD). We �rst consider the case D = 1. Then

〈f, V f〉 = −λ|f(R)|2.

We apply the simplest Sobolev inequality

2 sup
x∈R
|u(x)| ≤

∫ ∞
−∞
|u′(x)|dx, ∀u ∈ W 1,1(R), (5.113)

(which follows from the fundamental theorem of calculus) with the choice

u(s) = f(s)2. By (5.113) and Cauchy-Schwarz, we get

|f(R)|2 ≤
∫ ∞
−∞
|f(x)f ′(x)|dx ≤ ε‖f ′‖2

2 +
1

4ε
‖f‖2

2

for any ε > 0. This proves the claimed in�nitesimal form-boundedness of V

when D = 1.
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Let now D = 2, 3. We have

〈f, V f〉 = −λ
∫
SD−1

RD−1|f(Rω)|2dσ(ω),

where dσ is the usual surface measure on SD−1. Observe that the inequality

(5.113) implies

2 sup
s>0
|u(s)| ≤

∫ ∞
0

|u′(s)|ds, ∀u ∈ W 1,1
0 (R+).

We use this with the choice u(s) = sD−1f(sω)2, pointwise in ω ∈ S2, and �nd∫
SD−1

RD−1|f(Rω)|2dσ(ω)

≤
∫
SD−1

∫ ∞
0

(
D − 1

2
sD−2|f(sω)|2 + sD−1|f(sω)∂sf(sω)|

)
dsdσ(ω).

(5.114)

Consider the �rst term in the parentheses. We split the integration domain

into s > 1 and s ≤ 1 and estimate sD−2 < sD−1 in the �rst region. By applying

Hölder's inequality in the second region, we get∫
SD−1

∫ ∞
0

sD−2|f(sω)|2dsdσ(ω) < ‖f‖2
2 +

∫
SD−1

∫ 1

0

sD−2|f(sω)|2dsdσ(ω)

≤ ‖f‖2
2 +

(∫ 1

0

sD−8/3ds

)3/5

‖f‖2
5

= ‖f‖2
2 + C‖f‖2

5

where C is a �nite constant, since D − 8/3 > −1. The L5 norm is in�nitesi-

mally form-bounded with respect to −∇2 by the usual argument via Sobolev's

inequality.

We come to the second term in (5.114) in parentheses. By Cauchy-Schwarz,

for every ε > 0, it is bounded by

ε

∫
SD−1

∫ ∞
0

sD−1|∂sf(sω)|2dsdσ(ω) +
1

4ε
‖f‖2

2.

The �rst term is the quadratic form corresponding to (the negative of) the

radial part of the Laplacian, see (5.29). It di�ers from the full Laplacian by a

multiple of the Laplace-Beltrami operator−∇2
SD−1 , i.e. a nonnegative operator.

This implies in�nitesimal form-boundedness when D = 2, 3.
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Proof of Proposition 5.2.12. Recall (5.16)

EGL(a) =
1

Tc

∫
RD

g1((p2 − µ)/Tc)

(p2 − µ)/Tc
|KTc(p)|

4 |a(p)|4 dp

− 1

2Tc

∫
RD

1

cosh2
(
p2−µ
2Tc

) |KTc(p)|
2 |a(p)|2 dp,

We denote the quartic term by A(a) and the quadratic term by −B(a). Note

that A,B > 0 whenever a is not identically zero.

We use the basis representation of the GL energy mentioned in Remark 5.2.11

(i). That is, we �x a basis {aj} of ker(KTc+V ) and write a(p) =
∑n

j=1 ψj âj(p)

with (ψ1, . . . , ψn) ∈ Cn. Then we write

(ψ1, . . . , ψn) = Lω, L ≥ 0, ω ∈ S(Cn),

where S(Cn) is the unit sphere in Cn. It follows that

inf
(ψ1,...,ψn)∈Cn

EGL(ψ1, . . . , ψn) = inf
ω∈S(Cn)

inf
L≥0
EGL(Lω)

= inf
ω∈S(Cn)

inf
L≥0

(
L4A(ω)− L2B(ω)

)
= inf

ω∈S(Cn)

−B(ω)2

4A(ω)

and since A,B are continuous functions which never vanish on the compact

set S(Cn), the last in�mum is �nite and attained.

Proof of Proposition 5.2.13. The same argument that proves Theorem 5.2.10

(ii) applies for T > Tc and yields the same result with the sign of the |a|2 term
in the GL energy (5.16) �ipped. Consequently, the unique minimizer of the

GL energy is a = 0. To see coercivity of the GL energy around this minimizer,

we drop the quartic term and rewrite the the quadratic term as in the proof

of Proposition 5.2.12 above. We get

EGL(ψ1, . . . , ψn) ≥ ελmin

n∑
j=1

|ψj|2

with

λmin := min
ω∈S(Cn)

1

2Tc

∫
RD

1

cosh2
(
p2−µ
2Tc

) |KTc(p)|
2

∣∣∣∣∣
n∑
j=1

ωj âj(p)

∣∣∣∣∣
2

dp.

Note that λmin > 0, since it is the minimum of a positive, continuous function

over a compact set.



93

5.6 Proofs for part II

Setting

We use the formulation of GL theory from Remark 5.2.11(i). We compute

the GL coe�cients cijkm and dij given by formulae (5.21) and (5.22). They

determine the GL energy EGLd-wave : C5 → R via

EGL
(
ψ̃−2, . . . , ψ̃2

)
=

2∑
i,j,k,m=−2

cijkmψ̃iψ̃jψ̃kψ̃m −
2∑

i,j=−2

dijψ̃iψ̃j

It remains to pick a convenient basis to compute (5.21) and (5.22). Since the

Fourier transform maps Hl to itself in a bijective fashion, see e.g. [164], we can

choose

âm(p) = %(p)Y 2
m(ϑ, ϕ), p ≡ (p, ϑ, ϕ), (5.115)

for an appropriate radial function %. We will denote the GL order parameter

corresponding to âm (in the sense of (5.1)) by ψ̃m with −2 ≤ m ≤ 2. (Note

that we use the ordinary spherical harmonics Y m
2 (5.24) as a basis because it

is more convenient to do computations, but our �nal result is phrased in terms

the basis of real spherical harmonics (5.25).)

With the choice (5.115), equations (5.21),(5.22) for the GL coe�cients read

cijkm =

∫
p−2f4(p)Y i

2 (ϑ, ϕ)Y j
2 (ϑ, ϕ)Y k

2 (ϑ, ϕ)Y m
2 (ϑ, ϕ) dp (5.116)

dij = −
∫
p−2f2(p)Y i

2 (ϑ, ϕ)Y j
2 (ϑ, ϕ)(p) dp, (5.117)

where i, j, k,m = −2, . . . , 2 and we used the functions f2, f4 de�ned in (5.34).

Note that f2, f4 are positive (since g1 de�ned by (5.17) satis�es g1(z)
z

> 0) and

radially symmetric.

Proof of Theorem 5.3.1

While the radial integrals in (5.116),(5.117) depend on the details of the mi-

croscopic potential V through %, the integration over the angular variables can

be performed explicitly. Since the spherical harmonics form an orthonormal

family with respect to surface measure on S2, we immediately get

dij = dδij

where d > 0 is the result of the radial integration in (5.117), i.e.

d =

∫ ∞
0

f2(p) dp (5.118)
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i j k m cijkm · 28π
2 2 2 2 10c
2 1 2 1 5c
1 1 1 1 10c
0 2 0 2 5c
1 1 0 2 0
0 1 0 1 5c
−1 2 −1 2 5c
0 1 −1 2 0
0 0 0 0 15c
1 −1 1 −1 10c
2 −2 2 −2 10c
0 0 2 −2 5c
0 0 1 −1 −5c
1 −1 2 −2 −5c

Table 5.1: Non-trivial equivalence classes of Ginzburg�Landau coe�cients in
the pure d-wave case. c is de�ned as the result of the radial integration (5.119).
Notice that the case i + j = 0 behaves rather di�erently. This is due to the
fact that the �pair permutation� and �pair sign-�ip� symmetries fall together
in this case. We keep the factor 5 to ensure better comparability with Table
5.2 later on.

and this is the second relation claimed in (5.33).

Next, we consider (5.116). Firstly, note that cijkm is always proportional to

the result of the radial integration in (5.116), i.e.

c =

∫ ∞
0

f4(p) dp (5.119)

and this is the �rst relation claimed in (5.33).

It remains to compute the angular part of the integral in (5.116). We express

the product of two spherical harmonics of angular momentum l = 2 as a linear

combination of spherical harmonics of angular momentum ranging from l = 0

to l = 4. The general relation involves the well-tabulated Clebsch-Gordan

coe�cients, which we denote by 〈l1, l2;m1,m2|L;M〉, and can be found in
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textbooks on quantum mechanics (see e.g. [38] p. 1046):

Y m1
l1

(ϑ, ϕ)Y m2
l2

(ϑ, ϕ) =

l1+l2∑
L=|l1−l2|

√
(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
〈l1, l2; 0, 0|L; 0〉

× 〈l1, l2;m1,m2|L;m1 +m2〉Y m1+m2
L (ϑ, ϕ).

(5.120)

Physically, this corresponds to expressing a pair of particles, uncorrelated in

the angular variable, in terms of a wave function for the composite system.

Since the total angular momentum of the composite system is not determined

uniquely by the product wavefunction on the left-hand side, the sum over L

appears on the right. However, the total z-component of the angular momen-

tum is determined to be m1 + m2. This �selection rule� will greatly restrict

which cijkm may be non-zero.

Now, we can use the orthonormality of the spherical harmonics to compute

the angular integrals and �nd

cijkm =
∑

L=0,2,4

25c

4π(2L+ 1)
〈2, 2; 0, 0|L; 0〉2〈2, 2; i, j|L; i+ j〉

× 〈2, 2; k,m|L; k +m〉δi+j,k+m,

(5.121)

where we used that the Clebsch-Gordan coe�cients are real-valued and that

〈l1, l2; 0, 0|L; 0〉 = 0 unless L is even [38]. Note that the selection rule from

above yielded the necessary relation i+ j = k +m for cijkm 6= 0.

There are further symmetries: Considering the original expression (5.116), we

that cijkm = cjikm = cijmk. Since (5.121) shows cijkm ∈ R, (5.116) also implies

that cijkm = ckmij. We subsume these relations as �pair permutation� symme-

try. Physically, they correspond to the exchange of Cooper pairs. Moreover,

as can be seen from reference tables for Clebsch-Gordan coe�cients, we have

cijkm = c(−i)(−j)km, to which we will refer as �pair sign-�ip� symmetry. Phys-

ically, it is a consequence of the invariance of our system under re�ection in

the xy-plane.

It thus su�ces to look up (5.121) in a reference table for Clebsch-Gordan

coe�cients once for each member of a �pair permutation�and �pair sign-�ip�

equivalence class, ignoring those tuples (i, j, k,m) which do not satisfy the

selection rule i+ j = k+m. The result is presented in Table 5.1. By counting
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the number of elements of each equivalence class, we �nd

EGLd-wave
(
ψ̃−2, . . . , ψ̃2

)
=

5c

14π

((
2∑

m=−2

|ψ̃m|2 − τ

)2

− τ 2 +
1

2
|ψ̃0|4 + 2

∑
m=1,2

|ψ̃m|2|ψ̃−m|2

− 2<
(
ψ̃0

2

ψ̃1ψ̃−1

)
+ 2<

(
ψ̃0

2

ψ̃2ψ̃−2

)
− 4<

(
ψ̃1ψ̃−1ψ̃2ψ̃−2

))
,

where τ = 7πd
5c
. Notice that this expression contains a second complete square:

EGLd-wave
(
ψ̃−2, . . . , ψ̃2

)
=

5c

14π

( 2∑
m=−2

|ψ̃m|2 − τ

)2

− τ 2 +
1

2

∣∣∣ψ̃2
0 − 2ψ̃1ψ̃−1 + 2ψ̃2ψ̃−2

∣∣∣2
 (5.122)

To conclude Theorem 5.3.1, it remains to make the basis change to the real-

valued spherical harmonics, i.e. to invert (5.25). On the level of the GL order

parameters, this yields the SU(5) transformation

ψ̃0 = ψ0, ψ̃−1 =
−ψ1 + iψ−1√

2
, ψ̃1 =

ψ1 + iψ−1√
2

,

ψ̃−2 =
ψ2 − iψ−2√

2
, ψ̃2 =

ψ2 + iψ−2√
2

.

(5.123)

Proof of Theorem 5.3.5

The situation is as in three dimensions, only simpler. The dij GL coe�cients

are again diagonal by orthogonality and they come with a factor d de�ned in

the same way as in Theorem 5.3.1 but with f2(p) replaced f2(p)/p since D = 2

(of course the de�nition of % has changed as well). For the cijkm coe�cients,

instead of considering Clebsch-Gordan coe�cients, it su�ces to compute

c

π2

∫ 2π

0

cos(2ϕ)k sin(2ϕ)4−kdϕ (5.124)

for all 0 ≤ k ≤ 4. Here, the GL coe�cient c is de�ned in the same way as in

Theorem 5.3.1. We omit the details.

Proof of Theorem 5.3.7

We compute EGL(s+ d)-wave by using the formulae (5.21) and (5.22) for the GL

coe�cients as in the previous section. We already computed most of the GL

coe�cients, namely all the ones that couple d-waves to d-waves.
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i j k m cijkm · 28π

s 2 0 2 −2
√

5c(1s)

s 2 s 2 7c(2s)

s 2 1 1
√

30c(1s)

s 1 0 1
√

5c(1s)

s 1 s 1 7c(2s)

s 1 −1 2 −
√

30c(1s)

s 0 0 0 2
√

5c(1s)

s s 0 0 7c(2s)

s 0 s 0 7c(2s)

s s s 0 0
s s s s 7c(4s)

s 0 2 −2 −2
√

5c(1s)

s s 2 −2 7c(2s)

s 0 1 −1 −
√

5c(1s)

s s 1 −1 −7c(2s)

Table 5.2: Equivalence classes of new Ginzburg�Landau coe�cients in the
mixed (s+ d)-wave case. c(1s), c(2s), c(4s) are de�ned in (5.46).

By orthonormality of the spherical harmonics, dij is still diagonal. For i, j 6= s,

d is as in (5.118). Notice however that d depends on % through f2. When

i = j = s, we have to replace % by %s, which is conveniently described as

multiplication by gs =
∣∣∣%s% ∣∣∣. We conclude that

dij =

d(2s) if i = j = s,

dδij otherwise.

with d(2s) as de�ned in (5.46).

We turn to the quartic GL coe�cients cijkm. Note that the �pair permutation�

and �pair sign-�ip� symmetries described in the proof of Theorem 5.3.1 still

hold. In addition to the results listed in Table 5.1, we now have equivalence

classes of cijkm where some indices are equal to s. Since the corresponding âs

carry zero momentum in the z-direction, the selection rule dictates that cijkm

can only be non-zero if the s replaces a 0-index.

We thus consider all equivalence classes of GL coe�cients that can be obtained

by replacing a 0 in Table 5.1 by s. We compute their values again via (5.120)
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(some follow immediately from the fact that Y 0
0 = 1/

√
4π). The results are

presented in Table 5.2.

Just as for dij, the c
(1s), c(2s), c(4s) are the result of a radial integration where for

each index equal to s, f4 is multiplied by a factor gs. This yields the expressions

(5.46) for c(1s), c(2s), c(4s). Note that according to Table 5.2, csss0 = 0 and thus

it is not necessary to de�ne c(3s).

Armed with Table 5.2, it remains to count the number of GL coe�cients in

each equivalence class. After some algebra, we obtain

EGL(s+ d)-wave

(
ψ̃s, ψ̃−2, . . . , ψ̃2

)
=EGLd-wave(ψ̃−2, . . . , ψ̃2) + EGLs-wave(ψ̃s) + EGLcoupling(ψ̃s, ψ̃−2, . . . , ψ̃2).

(5.125)

where

EGLcoupling(ψ̃s, ψ̃−2, . . . , ψ̃2)

=

√
5c(1s)

7π

(
2<

[
ψ̃sψ̃0

( ∑
m=0,±1

|ψ̃m|2 − 2
∑
m=±2

|ψ̃m|2
)]

− 2
∑
m=1,2

m<
[
ψ̃sψ̃0ψ̃mψ̃−m

]
+
√

6
∑
σ=±1

(
<
[
ψ̃σ

2

ψ̃sψ̃2σ

]
− 2<

[
ψ̃sψ̃σψ̃−σψ̃2σ

]))

+
c(2s)

2π

(
2|ψ̃s|2

2∑
m=−2

|ψ̃m|2 + <
[
ψ̃s

2 (
ψ̃2

0 − 2ψ̃1ψ̃−1 + 2ψ̃2ψ̃−2

)])
where EGLd-wave(ψ̃−2, . . . , ψ̃2) is given by (5.122) and

EGLs-wave(ψ̃s) =
c(4s)

4π

((
|ψ̃s|2 − τs

)2

− τ 2
s

)
with τs = 2πd(2s)

c(4s)
. Statement (i) in Theorem 5.3.1, which gives the expression

for EGL(s+ d)-wave, now follows by transforming into the basis of real spherical

harmonics via (5.123).

To prove (ii), we use the GL energy expressed in the basis of real spherical

harmonics. Let ε > 0 and take (ψ−2, . . . , ψ2) ∈Md-wave, the set of minimizers

of Ed-wave described by (5.35). Set ψs = εω with |ω| = 1 and note that

EGL(s+ d)-wave (ψs, ψ−2, . . . , ψ2) = inf EGLd-wave + ε<[ωz]

+ ε2

(
τc(2s)

π
− τsc

(4s)

2π

)
+
c4s

4π
ε4.
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for some z ∈ C, which is independent of ε and w. Consider �rst the case that

(ψ−2, . . . , ψ2) ∈ Md-wave is such that z 6= 0. Then, we can choose ω such that

Re[ωz] < 0 and we obtain (5.48) for su�ciently small ε. Thus, suppose that

z = 0, which is e.g. the case for (0, τ/
√

2, 0, iτ/
√

2, 0) ∈ Md-wave. It is then

clear that (5.48) holds i� τc(2s)

π
< τsc(4s)

2π
, or equivalently dc(2s) < 5

7
cd(2s). This

proves (ii).

For statement (iii), let ψs be a minimizer of EGLs-wave, i.e. |ψs|2 = τs. Now let

ε > 0 and let (ψ−2, . . . , ψ2) have entries of the form ψm = εψ′m with |ψ′m| < 1.

We have

EGL(s+ d)-wave (ψs, ψ−2, . . . , ψ2)

= min EGLs-wave + ε2

((
−d+

c(2s)τs
π

)∑
m

|ψ′m|2 +
c(2s)

2π
<

[
ψ2
s

2∑
m=−2

(ψ′m)
2

])
+O(ε3)

as ε → 0. The real part is clearly minimal when we choose Arg(ψ′m) =

Arg(ψs) + π/2 for all m with ψ′m 6= 0. This choice yields

EGL(s+ d)-wave (ψs, ψ−2, . . . , ψ2)

= min EGLs-wave + ε2
∑
m

|ψ′m|2
(
−d+

c(2s)τs
π

)
+O(ε3).

When the term in parentheses is strictly negative, which is equivalent to

d(2s)c(2s) < dc(4s), we see that EGL(s+ d)-wave < min EGLs-wave for su�ciently small

ε. Vice-versa, when the term in parentheses is strictly positive, EGL(s+ d)-wave >

min EGLs-wave for all small ε > 0.

To conclude statement (iii), it remains to consider the case d(2s)c(2s) = dc(4s),

when the O(ε2)-term vanishes. The leading correction is now given by the

O(ε3)-term and by choosing ψm = 0 for m 6= 0, we �nd

EGL(s+ d)-wave (ψs, 0, 0, ψ0, 0, 0) = min EGLs-wave + ε3 2
√

5c(s)

7π
|ψ′0|2<[ψsψ

′
0] +O(ε4).

Letting Arg(ψ′0) = Arg(ψs) + π shows that EGL(s+ d)-wave (ψs, 0, 0, ψ0, 0, 0) <

min EGLs-wave in this case as well. This proves statement (iv).

5.7 Proofs for part III

The proof of Theorem 5.4.1 is based on three steps.
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• In Lemma 5.7.1, we solve the eigenvalue problem for KT +Vλ,R explicitly

in each angular momentum sector Hl. The key result is the �eigenvalue

condition� (5.128) which gives a formula for the eigenvalue (or energy) E

in terms of the other parameters l, µ, T and λ. We will see that one can

solve this for λ and one obtains an integral formula which is monotone

in E. Therefore, instead of showing that E is minimal for l = l0, one

can equivalently show that λ is minimal for l = l0.

• In Lemma 5.7.2, we show how, by adapting the parameters µ, T of the

�weight function� p/KT (p), one can conclude that
∫∞

0
p

KT (p)
f(p)dk is pos-

itive, if one assumes that f is strictly positive on an interval.

• By Theorem 5.8.1, for any half-integer Bessel function of the �rst kind

Jl0+1/2, there exists an open interval around its �rst maximum on which

it is strictly larger than (the absolute value of) all other half-integer

Bessel functions.

The idea is then to use the eigenvalue condition (5.128) to rephrase the question

whether some state in Hl0 has lower energy than all states in Hl as the more

tangible question whether the quantity∫ ∞
0

(
J 2
l0+1/2(p)− J 2

l+1/2(p)
) p

KT (p)
dp

is positive. By Theorem 5.8.1 there is an interval of p-values on which the

integrand is positive and by Lemma 5.7.2 there are intervals of µ- and T -

values such that the entire integral is positive.

Solving the eigenvalue problem

For any radial V , we can block diagonalize KT + V by using the orthogo-

nal decomposition of L2(R3) into angular momentum sectors (5.28), namely

L2(R3) =
⊕∞

l=0Hl with Hl de�ned in (5.26). It is well-known [164] that

the Fourier transform leaves each Hl invariant. Consequently, if we have

α ∈ H1(R3) satisfying the eigenvalue equation

(KT + V )α = Eα, (5.126)

then we can decompose it as α =
∑

l αl with αl ∈ Hl mutually orthogonal.

Taking the Fourier transform of (5.126) and using the fact that V αl ∈ Hl since

V is radial, we get from orthogonality

KT (p)α̂l(p) + V̂ αl(p) = Eα̂l(p),
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for every l ≥ 0 and a.e. p ∈ R
3. Thus, we can study each component αl

separately. When Vλ,R is the speci�c radial potential (5.6), we can say even

more.

Lemma 5.7.1. Let Vλ,R be as in (5.6) and let l be a non-negative integer.

We write Jl+ 1
2
for the Bessel function of the �rst kind of order l + 1/2. Let

E < 2T if µ ≥ 0 and E < |µ|
tanh(|µ|/(2T ))

if µ < 0. Then

ker (KT + Vλ,R − E) ∩Hl 6= ∅ (5.127)

is equivalent to the �eigenvalue condition�

1 = λ

∫ ∞
0

pR

KT (p)− E
J 2
l+ 1

2
(pR)dp. (5.128)

Moreover, if (5.127) holds, then ker (KT + Vλ,R − E) = span{ρl} ⊗ Sl with

ρl(r) = r−1/2

∫ ∞
0

p
Jl+ 1

2
(rp)Jl+ 1

2
(Rp)

KT (p)− E
dp. (5.129)

Since |Jl+ 1
2
(p)| ≤ Cp−1/2, the numerator in (5.128) and (5.129) poses no threat

for convergence of the integral.

Proof. By the de�nition of Hl, we have

αl(x) =
l∑

m=−l

αl,m(r)Y m
l (ϑ, ϕ), x ≡ (r, ϑ, ϕ).

We suppose αl satis�es (KT + Vλ,R)αl = Eαl. Recall that the Fourier trans-

form not only leaves each Hl invariant, it also reduces to the Fourier-Bessel

transform Fl on it [164]. That is, a function of the form f(x) = g(r)Y m
l (ϑ, ϕ)

has Fourier transform given by

f̂(p) = i−l (Flg) (p)Y m
l (ϑ, ϕ), p ≡ (p, ϑ, ϕ), (5.130)

where the Fourier-Bessel transform reads

Flg(p) =

∫ ∞
0

s3/2p−1/2Jl+ 1
2
(sp)g(s)ds. (5.131)

We apply the Fourier transform to the eigenvalue equation. By (5.130) and

orthogonality of the spherical harmonics,

(KT (p)− E)Flαl,m(p) + Fl(Vλ,Rαl,m)(p) = 0
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for all m and a.e. p ∈ R3. The assumption on E is such that KT (p) − E > 0

and therefore

Flαl,m(p) = −Fl(Vλ,Rαl,m)(p)

KT (p)− E
. (5.132)

So far we only used that the potential is radial. Since Vλ,R = −λδ(| · | −R),

−Fl(Vλ,Rαl,m)(p) = −αl,m(R)(FlVλ,R)(p)

= λαl,m(R)R3/2p−1/2Jl+ 1
2
(Rp).

Plugging this back into (5.132), we �nd the following explicit expression for

the solution to the eigenvalue problem:

Flαl,m(p) = λαl,m(R)R3/2p−1/2
Jl+ 1

2
(Rp)

KT (p)− E
(5.133)

Now we apply F−1
l which, by unitarity of the Fourier transform, has the op-

erator kernel r−1/2k3/2Jl+ 1
2
(rk) when evaluated at r > 0. For all r > 0, we

have

αl,m(r) = αl,m(R)λR3/2r−1/2

∫ ∞
0

p
Jl+ 1

2
(rp)Jl+ 1

2
(Rp)

KT (p)− E
dp

Note that we may assume that for some m, αl,m(R) 6= 0, since otherwise

αl ≡ 0. Evaluating the above expression for that particular m at r = R gives

(5.128). We write αl,m(R) = cl,mλ
−1R−3/2 and absorb cl,m into the angular

part Sl to get (5.129). Clearly the argument works in reverse, proving the

claimed equivalence.

Choosing µ and T

From now on, let µ > 0. The following lemma concerns the quantity∫ ∞
0

p

KT (p)
f(p)dp.

Suppose we know that f > ε on some interval I, while f may be negative

outside of I. Our goal in this section is to choose the right values of µ and T

such that the above integral is then also positive.

The basic idea is to view p/KT (p) as a weight function which is centered at

the point p =
√
µ, where it takes a value proportional to T−1. By making

T small enough, we can ensure that the neighborhood of the point p =
√
µ

dominates in the above integral. By choosing
√
µ ∈ I and T su�ciently small,

the integral will pick up mostly points where f is positive and will therefore

yield a positive value itself. This is spelled out in the following lemma.
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We will eventually apply this lemma with f = J 2
l0+1/2−J 2

l+1/2 and positivity of

the above integral will translate via (5.128) to the statement that the angular

momentum sector Hl0 has lower energy than Hl.

Lemma 5.7.2. Let f : R+ → R be a continuous function satisfying |f(p)| ≤
Cf (1 + p2)−1/2 for some Cf > 0. Suppose there exists ε > 0 and an interval

(a, b) such that f > ε on (a, b). Then,

(i) for every δ > 0 small enough, there exists T∗ > 0 and an interval I such

that for every µ ∈ I and T ∈ (0, T∗),∫ ∞
0

p

KT (p)
f(p)dp > 0. (5.134)

(ii) letting δ := b2−a2

4
, one can choose

I := (a2+δ, b2−δ), T∗ :=
δ

2
exp

(
−

2Cf
(√

1 + 2b2 + 1
2b

)
εδ

)
. (5.135)

Proof. Let µ ∈ (a2 + δ, b2 − δ). Since p
KT (p)

> 0 and | tanh | ≤ 1, we can

estimate∫ ∞
0

pf(p)

KT (p)
dp ≥ −Cf

∫
[0,a)∪(b,∞)

p

(1 + p2)1/2|p2 − µ|
dp+ ε

∫ b

a

p

KT (p)
dp.

(5.136)

In the �rst integral, we estimate pointwise

|p2 − µ|−1 ≤ δ−1(χ{p≤2b} + 2p−2χ{p>2b})

with χA denoting the characteristic function of a set A. This gives

−Cf
∫

[0,a)∪(b,∞)

p

(1 + p2)1/2|p2 − µ|
dp ≥ −Cfδ−1

(√
1 + 2b2 +

1

2b

)
(5.137)

In the second integral, we change variables and use µ ∈ (a2 + δ, b2 − δ) with

tanh(u)/u > 0 to get∫ b

a

p

KT (p)
dp =

1

2

∫ b2−µ
2T

a2−µ
2T

tanh(u)

u
du >

∫ δ
2T

− δ
2T

tanh(u)

u
du > log

(
δ

2T

)
,

where in the last step we also used that tanhx ≥ 1/2 for x ≥ 1. Combining

everything, we get∫ ∞
0

pf(p)

KT (p)
dp ≥ −Cfδ−1

(√
1 + 2b2 +

1

2b

)
+ ε log

(
δ

2T

)
. (5.138)

The claim follows from some algebra.
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Proof of Theorem 5.4.1

Proof of (i). By rescaling the parameters µ, λ and T , we may assume that

R = 1. We �x a non-negative integer l0 and invoke Theorem 5.8.1 to get ε > 0

and an interval (a, b) on which J 2
l0+1/2 − J 2

l+1/2 > ε for all l 6= l0. Then we

apply Lemma 5.7.2 to

f := J 2
l0+1/2 − J 2

l+1/2,

which satis�es

|f(p)| ≤ 21/2(1 + p2)−1/2. (5.139)

and so Cf = 21/2 in Lemma 5.7.2. To prove (5.139), ones uses statement (ii)

in Lemma 5.8.5 to get J 2
ν (p) ≤ M2

ν (p) ≤ 1
p
for all ν. Together with |Jν | ≤ 1

from (9.1.60) in [4], this implies |f(p)| ≤ min{1, p−1} and hence (5.139).

Note that T∗ and I de�ned in Lemma 5.7.2 (ii) work for all l 6= l0, because

they depend on f only through (a, b), which is uniform in f by Theorem 5.8.1,

and through Cf = 23/2. Hence, Lemma 5.7.2 provides T∗ > 0 and an interval

I such that for all µ ∈ I, all T < T∗ and all l 6= l0 we have∫ ∞
0

p

KT (p)

(
J 2
l0+1/2(p)− J 2

l+1/2(p)
)

dp > 0 (5.140)

For every non-negative integer l, we de�ne the function

λl(T, µ) :=

(∫ ∞
0

p

KT (p)
J 2
l+1/2(p)dp

)−1

(5.141)

which is chosen such that λ satis�es the eigenvalue condition (5.128) with

E = 0. We write

El(T, µ, λ) := inf spec (KT + Vλ,1)
∣∣
Hl
.

With these de�nitions, Lemma 5.7.1 says

El(T, µ, λl(T, µ)) = 0 (5.142)

At the heart of our proof is the following monotonicity argument. For all

µ ∈ I, all T < T∗ and all l 6= l0, we have

0 = El(T, µ, λl(T, µ)) < El(T, µ, λl0(T, µ)), (5.143)

where the inequality holds by the variational principle applied to the operator

(KT + Vλ,1)
∣∣
Hl

and the observation that (5.140) is equivalent to λl0(T, µ) <
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λl(T, µ). (The inequality is strict because 〈α, Vλ,1α〉 = −λα(R)2 is either

strictly monotone decreasing in λ or identically zero and in the latter case the

energy has to be at least 2T .)

This would already prove (5.54) and (5.55) under the condition that one �xes

T < T∗ and determines λ through (5.140). We �nd it physically more appealing

to �x λ small enough and determine T instead. To this end, we observe

that T 7→ λl0(T, µ) is monotone increasing, because T 7→ KT (p) is monotone

increasing for every p > 0. Therefore, for every µ ∈ I, we have the monotone

increasing inverse function

(0, λl0(T∗, µ))→ (0, T∗)

λ 7→ T (λ, µ)

satisfying λl0(T (λ, µ), µ) = λ. To remove the µ-dependence from the maximal

value for λ, we set

λ∗ := min
µ∈I

λ(T∗, µ) (5.144)

and note that λ∗ > 0 since the integral in (5.141) is continuous in µ by domi-

nated convergence. For λ < λ∗, (5.142) and (5.143) become

El0(T (λ, µ), µ, λ) = 0, El(T (λ, µ), µ, λ) > 0, ∀l 6= l0.

This proves that for all µ ∈ I and all λ < λ∗, there exists T0 < T∗ (namely T0 :=

T (λ, µ)) such that (5.54) holds (modulo restoring the R parameter). Moreover,

(5.55) is a direct consequence of the explicit characterization of ker(KTc + V )

in Lemma 5.7.1. Finally, (5.56) follows via the variational principle from the

observation that T 7→ KT (p) is strictly increasing for all p > 0 and so T 7→
El0(T, µ, λ) is strictly increasing as well, as long as it stays below 2T .

Proof of (ii). Consider the function

δT : µ 7→
∫ ∞

0

p

KT (p)

(
J 2

1/2(p)− J 2
5/2(p)

)
dp.

Claim: There exists T∗∗ > 0 such that for all 0 < T < T∗∗ there exists µT > 0

such that δT (µT ) = 0. Moreover,
√
µT → z1/2 as T → 0, where z1/2 = min{z >

0 : J 2
1/2(z) = J 2

5/2(z)}.

The claim follows essentially from the intermediate value theorem. Before

we give the details, we explain how one may conclude statement (ii) from
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the claim. Let 0 < T < T∗∗. By de�nition (5.141), δT (µT ) = 0 implies

λ0(T, µT ) = λ2(T, µT ). By Lemma 5.7.1 and using the notation (5.142),

E0(T, µT , λ0(T, µT )) = E2(T, µT , λ0(T, µT )) = 0. (5.145)

This implies ⊂ in (5.59) according to Lemma 5.7.1. Equation (5.60) follows

by the same monotonicity argument as in the proof of statement (i) above.

In order to prove (5.58) with the choices µ ≡ µT and λ ≡ λ0(T, µT ) and the

remaining ⊃ in (5.59), we shall show that there exists T∗ ∈ (0, T∗∗] such that

for all 0 < T < T∗,

El(T, µT , λ0(T, µT )) > 0, ∀l ≥ 4, l is even. (5.146)

By Theorem 5.8.1 (ii) (with l0 = 1) and Lemma 5.8.6, there exists an open

interval containing z1/2 such that

J 2
5/2 − sup

l≥4
l even

J 2
l+1/2 > ε′ on this interval.

As in part (i), Lemma 5.7.2 provides T∗∗ > 0 and an interval I ′ containing z2
1/2

such that for all µ ∈ I ′, all T < T∗∗ and all even l ≥ 4 we have∫ ∞
0

p

KT (p)

(
J 2

5/2(p)− J 2
l+1/2(p)

)
dp > 0 . (5.147)

Since the second part of the claim gives µT → z2
1/2 as T → 0, we may assume,

after decreasing T∗∗ to T∗ if necessary, that µT ∈ I ′ for all 0 < T < T∗.

Therefore (5.147) implies that λ0(T, µT ) = λ2(T, µT ) < λl(T, µT ) for all T < T∗

and all even l ≥ 4. By the same variational argument as in (5.143), this implies

(5.146).

We now prove the claim. The reader may �nd it helpful to consider Figure

5.1. Since µ 7→ KT (p) is continuous for every p, µ 7→ δT is also continuous

by dominated convergence. Let xl (l = 0, 2) denote the �rst maximum of

Jl+1/2. It is well-known that x0 < x2 [145] and that J 2
1/2(x0) > J 2

5/2(x0) and

J 2
5/2(x2) > J 2

1/2(x2) (which is also a very special case of our Theorem 5.8.1

(i)). By continuity these inequalities hold also in neighborhoods of x0 and x2.

Therefore Lemma 5.7.2 provides open intervals Il ⊂ R+ (l = 0, 2), containing

xl, and a T∗∗ > 0 such that for all T < T∗∗, we have δT > 0 on I0 and

δT < 0 on I2. By the intermediate value theorem, for any T < T∗∗ there is a

µT ∈ [sup I0, inf I2] with δT (µT ) = 0. This proves the �rst part of the claim.
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We are left with showing that
√
µT → z1/2 as T → 0. Since µT ∈ [sup I0, inf I2]

is bounded, it has a limit point as T → 0. We argue by contradiction and

assume that there is a limit point z̃ di�erent from z1/2. By Lemma 5.8.6,

z1/2 is also the position of the �rst critical point of Jl+3/2. By the interlacing

properties of the zeros of Bessel functions and their derivatives, see e.g. [145],

z1/2 ∈ (x0, x2) and there is no other point z ∈ (x0, x2) at which J 2
1/2(z) =

J 2
5/2(z). Therefore J 2

1/2 − J 2
5/2 is either strictly positive or strictly negative

at z̃ and, by continuity, also in an open interval containing z̃. Lemma 5.7.2

provides an open interval Ĩ containing z̃2 and a T̃ > 0 such that δT (µ) is

either strictly positive or strictly negative for all T < T̃ and µ ∈ Ĩ. Since

z̃ is a limit point of
√
µT , there is a sequence Tm → 0 with µTm → z̃2. In

particular, µTm ∈ Ĩ and Tm < T̃ for all su�ciently large m. Thus, δTm(µTm)

is either strictly positive or strictly negative for all su�ciently large m. This,

however, contradicts the construction of µT , according to which δT (µT ) = 0

for all T < T∗∗. Thus, we have shown that
√
µT → z1/2.

5.8 Properties of Bessel functions

While one might expect the following fact about Bessel functions to be known,

it appears to be new:

At its �rst maximum, a half-integer Bessel function is strictly larger than (the

absolute value of) all other half-integer Bessel functions.

The precise statement is in Theorem 5.8.1 (i) below. It extends to families of

Bessel functions {Jν+k}k∈Z+ with ν ∈ [0, 1], in particular to the family of inte-

ger Bessel functions. We acknowledge a helpful discussion on mathover�ow.net

[135] that led to Lemma 5.8.5.

Let l0 be a non-negative integer. We recall that the Bessel function Jl0+1/2 (of

the �rst kind, of order l0 +1/2) vanishes at the origin and then increases to its

�rst maximum, whose location we denote as usual by j′l0+1/2,1. The following

theorem says that at j′l0+1/2,1, J 2
l0+1/2 is strictly larger than any other J 2

l+1/2

with l a non-negative integer di�erent from l0.

Theorem 5.8.1. Let Z+ denote the set of non-negative integers and let l0 ∈
Z+. Recall that j

′
l0+1/2,1 denotes the position of the �rst maximum of Jl0+1/2.
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Figure 5.1: A plot of the squared Bessel functions J 2
1/2,J 2

3/2,J 2
5/2, . . . ,J 2

23/2.
Observe that in an open interval around its maximum, each function is the
largest one among all the shown ones (in particular it is the largest among all
the J 2

l+1/2 according to Lemma 5.8.3).

(i) There exist ε > 0 and an open interval I containing j′l0+1/2,1 such that

J 2
l0+1/2 − sup

l∈Z+\{l0}
J 2
l+1/2 > ε on I. (5.148)

(ii) If l0 ≥ 1, then Jl0−1/2(j′l0+1/2,1) = Jl0+3/2(j′l0+1/2,1) and there exist ε′ > 0

and an open interval I ′ containing j′l0+1/2,1 such that

min{J 2
l0−1/2,J 2

l0+3/2} − sup
l≥l0+3
l−l0 odd

J 2
l+1/2 > ε′ on I ′. (5.149)

Remark 5.8.2. Statement (i) is the key result and implies Theorem 5.4.1 (i).

Statement (ii) is used to prove Theorem 5.4.1 (ii).

The proof of (i) in Theorem 5.8.1 is split into three Lemmata, each treating

one of the following three regimes of l:

L> : = {l ∈ Z+ : l > l0} ,

L. : =
{
l ∈ Z+ : l < l0, jl+1/2,1 ≥ j′l0+1/2,1

}
,

L� : =
{
l ∈ Z+ : l < l0, jl+1/2,1 < j′l0+1/2,1

}
.

Here, as usual, jl+1/2,1 denotes the �rst positive zero of Jl+1/2. The most

cumbersome regime is L�. The proof there is based on a combination of some
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hands-on elementary estimates and bounds on the zeros of Bessel functions

and their derivatives, which we could not �nd in the usual reference books

[4],[173]. The �rst regime L> is the easiest

Lemma 5.8.3. There exist ε1 > 0 and an open interval I1 containing j′l0+1/2,1

such that

J 2
l0+1/2 − sup

l>l0

J 2
l+1/2 ≥ ε1 on I1 (5.150)

Proof. According to [117], the function

ν 7→ max
y
|Jν(y)|

is strictly decreasing. Therefore

ε1 :=
1

2

(
J 2
l0+1/2(j′l0+1/2,1)−max

y
J 2
l0+3/2(y)

)
is strictly positive. By continuity, there exists an open interval I1 containing

j′l0+1/2,1 such that for all x ∈ I1,

|J 2
l0+1/2(j′l0+1/2,1)− J 2

l0+1/2(x)| < ε1.

For x ∈ I1, we have

J 2
l0+1/2(x)− sup

l>l0

J 2
l+1/2(x) > −ε1 + J 2

l0+1/2(j′l0+1/2,1)− sup
l>l0

max
y
J 2
l+1/2(y)

≥ −ε1 + J 2
l0+1/2(j′l0+1/2,1)−max

y
J 2
l0+3/2(y)

= ε1.

Lemma 5.8.4. There exist ε2 > 0 and an open interval I2 containing j′l0+1/2,1

such that

J 2
l0+1/2 − sup

l∈L.
J 2
l+1/2 ≥ ε2 on I2.

Proof. Since the supremum of �nitely many continuous functions is itself con-

tinuous, it su�ces to prove J 2
l0+1/2(j′l0+1/2,1) > J 2

l+1/2(j′l0+1/2,1) for every l ∈ L..

We de�ne the sequence {al}l∈L. by

Jl+1/2(j′l0+1/2,1) = alJl0+1/2(j′l0+1/2,1). (5.151)

With this de�nition, the recurrence relation for Bessel functions from (9.1.27)

in [4] appears in the form of a second-order di�erence equation

al−1 = 2
l + 1/2

x0

al − al+1 (5.152)
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with initial conditions al0 = 1 and al0−1 = (l0 + 1/2)/j′l0+1/2,1. It is well-known

that the latter quantity is strictly less than one, see eq. (3) on p. 486 of [173].

Moreover, al ≥ 0 for all l ∈ L., because jl+1/2,1 ≥ j′l0+1/2,1 and all Bessel

functions are positive before they �rst become zero. An easy induction lets

us conclude from (5.152) that al < al+1 < 1 for all l ∈ L.. In particular,

al ≤ al0−1 = (l0 + 1/2)/j′l0+1/2,1 < 1. Recalling the de�nition (5.151) of al, this

proves the claim.

We �nally come to the regime L�. As a tool, we will use the �modulus�

function de�ned by

Mν :=
√
J 2
ν + Y2

ν ,

where Yν is the Bessel function of the second kind. The �rst two statements of

the following Lemma are known facts about the modulus function. Statement

(iii) is the key result to derive (iv).

Lemma 5.8.5. (i) The map ν 7→Mν(x) is strictly increasing for all x > 0.

(ii) For all x > ν,

M2
ν (x) <

2

π

1√
x2 − ν2

.

(iii) If l0 ≥ 11, there exists l1 < l0 such that we have both,

(iii.a) J 2
l0+1/2(j′l0+1/2,1) > M2

l1+1/2(j′l0+1/2,1)

(iii.b) jl1+1/2,1 > j′l0+1/2,1

(iv) There exist ε3 > 0 and an open interval I3 containing j′l0+1/2,1 such that

J 2
l0+1/2 − sup

l∈L�
J 2
l+1/2 ≥ ε3 on I3.

The intuition why such l1 as in (iii) should exist is based on a heuristic ar-

gument of which we learned through [135], involving asymptotic formulae for

the relevant expression. To turn this into a rigorous proof, we need to replace

the asymptotics by bounds that hold for all l0 (or at least for all l0 ≥ 11). [78]

contains results which are su�cient for our purposes when combined with a

number of elementary estimates.

Proof. Statement (i) is a direct consequence of Nicholson' formula, see p. 444

in [173], and the fact that K0 > 0. Statement (ii) is formula (1) on p. 447 of

[173].
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We come to statement (iii). For convenience, we write m = l + 1/2, so in

particular m0 = l0 + 1/2. We also abbreviate x0 = j′l0+1/2,1. The basic idea

(inspired by asymptotics) is to choose

m1 = m0 − cm1/3
0

with c small enough to have (iii.a) hold but large enough to have (iii.b) hold.

By (i), (iii.a) is implied by

2

π

1√
x2

0 −m2
1

< J 2
m0

(x0). (5.153)

By [78], we have the lower bound

x0 > m0 exp
(

2−1/3a′1m
−2/3
0 − 1.06m

−4/3
0

)
(5.154)

for all m0 ≥ 11.5. Here, a′1 is the absolute value of the �rst zero of the

derivative of the Airy function, with a numerical value of about 1.018793.

From m0 ≥ 11.5, we can conclude that the argument of the exponential in

(5.154) is greater than 0.6m
−2/3
0 . Thus, by the elementary estimate ey ≥ 1+y,

(5.154) implies the more manageable lower bound

x0 > m0 + 0.6m
1/3
0

Setting m1 = m0− cm1/3
0 with c to be determined and using the above bound

on x0, as well as m0 ≥ 11.5, we see that (5.153) is implied by

2

π

1√
1.26 + 2c− 0.19c2

<
(
m

1/3
0 max

x
|Jm0(x)|

)2

(5.155)

According to [117], ν 7→ ν1/3 maxx |Jν(x)| is an increasing function and so we

can estimate the right-hand side in (5.155) from below by ν2/3 maxx Jν(x)2 for

any 1/2 ≤ ν ≤ m0. Unfortunately, the numerical value one obtains for the

�worst case� ν = 1/2 is not good enough to also get (iii.b). Instead, we assume

that c ≤ 1 and use m0 ≥ 11.5 to get m0 − cm−1/3
0 ≥ 8.5 and so(

m
1/3
0 max

x
|Jm0(x)|

)2

>
(

(8.5)1/3 max
x
|J8.5(x)|

)2

> 0.42

where the last inequality can be read o� from a plot, for example. Therefore,

(5.155) holds if we can �nd c ≤ 1 that satis�es

2

π

1√
1.26 + 2c− 0.19c2

< 0.42 (5.156)

and it is easily seen that this holds for c ∈ [0.5, 1].

Now, we want to ensure that c is also small enough to have (iii.b) hold, i.e.

jm1 > x0. To this end, we invoke two more facts:
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• the upper bound

x0 < m0 + 0.89m
1/3
0 . (5.157)

This is a consequence of the bound

x0 < m0 exp
(

2−1/3a′1m
−2/3
0

)
from [78], where again a′1 ≈ 1.018793, by noting that m0 ≥ 11.5 implies

that the argument of the exponential, call it y, satis�es y < 1.59. On

[0, 1.59], we can estimate exp(y) < 1 + 1.09y, as one can verify e.g. by

plotting and this yields (5.157).

• the lower bound

jm1 > m1 + 1.85m
1/3
1 (5.158)

which we obtained from the optimal lower bound proved in [149] by

rounding down. This is better than the bound one can derive from a

corresponding result of [78] as we did above.

From (5.157) and (5.158), we see that jm1 > x0 will follow from

(m0 − cm1/3
0 ) + 1.85(m0 − cm1/3

0 )1/3 > m0 + 0.89m
1/3
0 , (5.159)

Since c ≤ 1 and m0 ≥ 11.5, we have 1− cm−2/3
0 > 0.8 and so (5.159) is implied

by

c < (0.8)3 ∗ 1.85− 0.89 = 0.827.

So any choice of c ∈ [0.5, 0.8] will ensure that (iii.a) and (iii.b) hold.

We prove statement (iv). By continuity, it su�ces to prove J 2
l0+1/2(x0) >

J 2
l (x0) for all l ∈ L� (which we recall means l < l0 with jl+1/2 ≤ x0). Assume

�rst that l0 ≥ 11. Choosing l1 as in statement (iii), (iii.a) states

J 2
l0+1/2(x0) > M2

l1+1/2(x0) (5.160)

and (iii.b) implies that l1 ∈ L.. By the monotonicity of ν 7→ jν , it holds that

l ∈ L� implies l < l1. Thus, the de�nition of Mν and statement (i) imply

J 2
l+1/2 ≤M2

l+1/2 ≤M2
l1+1/2. (5.161)

Together with (5.160), this implies (iv) for l0 ≥ 11. Since for l0 = 0, 1 there

are no l � l0, we may assume l0 ≥ 2. For 2 ≤ l0 ≤ 10, one can then check by

hand that (5.160) holds with the choice l1 = l0 − 2. Since l0 − 1 ∈ L., we get

that l ∈ L� implies l ≤ l1 and so (5.161) applies for all such l.



113

Lemma 5.8.6. For any positive integer l,

min{z > 0 : J 2
l−1/2(z) = J 2

l+3/2(z)} = j′l+1/2,1 (5.162)

and Jl−1/2,Jl+1/2,Jl+3/2 are positive on (0, j′l+1/2,1].

Proof. We recall the recurrence relation from (9.1.27) in [4], which says that

for all ν, z > 0,

Jν−1(z)− Jν+1(z) = 2J ′ν(z).

Applying this with ν = l + 1/2, z = j′l+1/2,1 we obtain Jl−1/2(j′l+1/2,1) =

Jl+3/2(j′l+1/2,1) and hence ≤ in (5.162). Notice that by the interlacing prop-

erties of zeros and extrema of Bessel functions, see e.g. [145], j′l+1/2,1 is to

the left of the �rst positive zeros of Jl−1/2,Jl+1/2,Jl+3/2. Since Bessel func-

tions are positive before they reach their �rst positive zero, we conclude that

Jl−1/2,Jl+1/2,Jl+3/2 are positive on (0, j′l+1/2,1]. In particular, Jl−1/2,Jl+3/2

are positive at the left side of (5.162), call it zl, and so we can take square

roots to get Jl−1/2(zl) = Jl+3/2(zl). By the recurrence relation from above,

J ′l+3/2(zl) = 0 implying zl ≥ j′l+1/2,1, as claimed.

It remains to give the

Proof of Theorem 5.8.1. Statement (i) is a direct consequence of Lemmata

5.8.3 to 5.8.5.

For statement (ii) we �rst observe that for any positive integer l,

J 2
l−1/2 > J 2

l+3/2, on (0, j′l+1/2,1). (5.163)

In fact, by standard asymptotics, this inequality holds near zero and, according

to Lemma 5.8.6, j′l+1/2,1 is the �rst point of intersection of J 2
l−1/2 and J 2

l+3/2.

Therefore the inequality holds on all of (0, j′l+1/2,1), as claimed.

We now use the fact that j′l+1/2,1 is increasing in l [145]. Choose I ′ to be

an open interval containing j′l0+1/2,1 whose closure is contained in (0, j′l0+5/2,1).

Then by (5.163) (with l = l0 + 2) and continuity there is an ε′ > 0 such that

J 2
l0+3/2 ≥ J 2

l0+7/2 + ε′ on I ′.

Applying (5.163) successively with l = l0 + 4, l0 + 6, . . ., we conclude that

J 2
l0+3/2 ≥ sup

l≥l0+3
l−l0 odd

J 2
l+1/2 + ε′ on I ′,



114

which is one part of the claim. Finally, we want to prove the same inequality

with J 2
l0−1/2 on the left side (with possibly smaller ε′ and I ′). Clearly, (5.163)

implies that this is true on I ′ ∩ (0, j′l0+1/2,1]. Now use continuity to �nd δ > 0

such that J 2
l0−1/2 ≥ J 2

l0+3/2 − ε′/2 on [j′l0+1/2,1, j
′
l0+1/2,1 + δ]. Thus,

J 2
l0−1/2 ≥ J 2

l0+7/2 + ε′′ on I ′′

with ε′′ = ε′/2 and I ′′ = I ′ ∩ (0, j′l0+1/2,1 + δ). As before, (5.163) now implies

the inequality in part (ii). This completes the proof.
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C h a p t e r 6

CONDENSATION OF FERMION PAIRS IN A DOMAIN

Rupert L. Frank, Marius Lemm and Barry Simon

6.1 Introduction

We consider a gas of fermions at zero temperature in d = 1, 2, 3 dimensions

and at chemical potential µ < 0. The particles are con�ned to an open and

bounded domain Ω ⊆ R
d with Dirichlet (i.e. zero) boundary conditions. They

interact via a microscopic local two-body potential V which admits a two-body

bound state. Additionally, the particles are subjected to a weak external �eld

W , which varies on a macroscopic length scale.

At low particle density, this leads to tightly bound fermion pairs. The pairs

will approximately look like bosons to one another and, since we are at zero

temperature, they will form a Bose-Einstein condensate (BEC). It was un-

derstood in the 1980s [119] [141] that BCS theory, initially used to describe

Cooper pair formation in superconductors on much larger (but still micro-

scopic) length scales [14], also applies in this situation. Moreover, the macro-

scopic variations of the condensate density are given in terms of the nonlinear

Gross-Pitaevskii (GP) theory [60][148][151]. An e�ective GP theory was re-

cently derived mathematically starting from the microscopic BCS theory, see

[28][94] for the stationary case and [91] for the dynamical case. This is in the

spirit of Gorkov's paper [85] on how Ginzburg-Landau theory arises from BCS

theory for superconductors at positive temperature. The latter problem has

been intensely studied mathematically in recent years [73][75][74][76][95].

The papers mentioned above all work under the assumption that the system

has no boundary (either by working on the torus or on the whole space). In the

present paper, we start from low-density BCS theory with Dirichlet boundary

conditions and we show that the e�ective macroscopic GP theory also has

Dirichlet boundary conditions.

Our result is new even in the linear setting. The formal statement and its

comparatively short proof can be found in Appendix 6.12 and we hope that

this part may serve to illustrate the ideas. In a nutshell, in the linear case we
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consider the two-body Schrödinger operator

Hh :=
h2

2
(−∆Ω,x +W (x)−∆Ω,y +W (y)) + V

(
x− y
h

)
,

acting on L2(Ω×Ω), where −∆Ω is the Dirichlet Laplacian. Hh describes the

energy of a fermion pair con�ned to Ω. While the center of mass variable x+y
2

and the relative variable x−y do not decouple due to the boundary conditions,

we show that, up to �rst subleading order as h → 0, the ground state energy

of Hh can be computed in a decoupled manner. Namely, one can separately

minimize (a) in the relative variable without boundary conditions and (b) in

the center of mass variable with Dirichlet boundary conditions and combine

the results to obtain the leading and subleading terms in the asymptotics for

the ground state energy of Hh as h ↓ 0. For the details, we refer to Theorem

6.12.1.

At positive temperature, de Gennes [58] predicted that BCS theory with

Dirichlet boundary conditions should instead lead to a Ginzburg-Landau the-

ory with Neumann boundary conditions. We believe that the discrepancy with

our result here is due to the fact that we study the system in the low density

limit.

BCS theory with a boundary

Let Ω ⊂ R
d, d = 1, 2, 3, be open; further assumptions on Ω are described below.

In the BCS model, one considers so-called BCS states (also called �quasi-free�

states), which are fully described by an operator

Γ =

(
γ α

α 1− γ

)
, 0 ≤ Γ ≤ 1 (6.1)

acting on L2(Ω) ⊕ L2(Ω). Physically, γ is the one-body density matrix and

α is the fermion pairing function, see also Remark 5.2.1 (ii). The condition

0 ≤ Γ ≤ 1 implies that 0 ≤ γ ≤ 1, α = α∗ and 0 ≤ αα ≤ γ − γ2. (The last

inequality can be proved by observing that γ− γ2−αα is the top left entry of

the non-negative block operator Γ(1−Γ) and must therefore be a non-negative

operator as well.)

We let h > 0 denote the ratio between the microscopic and macroscopic length

scales; it will be a small parameter in our study. The energy of unpaired

electrons at chemical potential µ < 0 is described by the one-body Hamiltonian

h = −h2∆Ω + h2W − µ, W : Ω→ R.
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Here, −∆Ω is the Dirichlet Laplacian on Ω. By de�nition, it is the self-adjoint

operator corresponding to the quadratic form∫
Ω

|∇f(x)|2dx, f ∈ H1
0 (Ω).

The BCS energy of a BCS state Γ is given by

EBCSµ (Γ) = Tr [hγ] +

∫∫
Ω2

V

(
x− y
h

)
|α(x, y)|2dxdy. (6.2)

Here and in what follows, we denote by γ(x, y) and α(x, y) the integral kernels

of the operators γ and α. (The fact that γ and α are indeed integral operators

is guaranteed by De�nition 6.1.5 of admissible BCS states.)

Remark 6.1.1. (i) The formulation of the BCS model that we use is due

to [11][119]. A heuristic derivation from the quantum many-body Hamil-

tonian can be found in the appendix to [89].

(ii) The matrix elements of a BCS state Γ have the following physical signif-

icance. If we write 〈·〉 for the expectation value of an observable in the

system state, then γ(x, y) = 〈a†xay〉 is the one-particle density matrix and
α(x, y) = 〈axay〉 is the fermion pairing function. (Here a†x, ax denote the

fermion creation and annihilation operators.)

(iii) We ignore spin variables. Implicitly, the pairing function α(x, y) (which

is symmetric since α∗ = α) is to be tensored with a spin singlet, yielding

an antisymmetric two-body wave function, as is required for fermions.

(iv) For simplicity, we do not include an external magnetic �eld in the model.

There is no apparent obstruction to applying the methods with a su�-

ciently regular and weak external magnetic �eld as in [73][74][94].

Throughout, we make

Assumption 6.1.2 (Regularity of V and W ). V : Rd → R is a locally in-

tegrable function that is in�nitesimally form-bounded with respect to −∆ (the

ordinary Laplacian) and V is re�ection-symmetric, i.e. V (x) = V (−x). More-

over, −∆ + V admits a ground state of negative energy −Eb.

We also assume that W ∈ LpW (Ω) with 2 ≤ pW ≤ ∞ if d = 1, 2 < pW ≤ ∞ if

d = 2 and 3 ≤ pW ≤ ∞ if d = 3.



118

Remark 6.1.3. (i) The assumption that −∆ + V admits a ground state is

critical for the fermion pairs to condense. Without it, the pairs would

prefer to drift far apart to be energy-minimizing. (Strictly speaking, each

fermion pair is described by the operator −2∆ + 2V and has the ground

state energy −2Eb. We have made the factor two disappear for notational

convenience; observe also the lack of a symmetrization factor 1/2 in front

of the V term in (6.2).)

(ii) The integrability assumption on W is such that Wψ ∈ L2(Ω) for every

ψ ∈ H1
0 (Ω) and the numerical value of pW is derived from the critical

Sobolev exponent.

Note that the assumption implies that W is in�nitesimally form-bounded

with respect to −δ. However, the assumption is stronger than in�nites-

imal form-boundedness and the two places where we use this additional

strength are (a) for the semiclassical expansion (Lemma 6.3.2) and (b)

for Davies' approximation result (Lemma 6.7.2).

Assumption 6.1.4 (Regularity of Ω). The open set Ω ⊆ R
d is a bounded

Lipschitz domain.

We recall that a set Ω is a Lipschitz domain if its boundary can be locally rep-

resented as the graph of a Lipschitz continuous function. The formal de�nition

is given in Appendix 6.11.

De�nition 6.1.5 (Admissible states). We say that a BCS state Γ of the form

(6.1) is admissible, if Tr[γ1/2(1−∆Ω)γ1/2] <∞. Here γ1/2 denotes the square

root in the sense of operators.

An admissible state Γ has the integral kernel α ∈ H1
0 (Ω2) thanks to the oper-

ator inequality αα ≤ γ and α∗ = α (we skip the proof, see the last step in the

proof of Proposition 6.4.2 for a closely related argument). We note

Proposition 6.1.6. EBCSµ is bounded from below on the set of admissible states

Γ.

In principle, this is a standard argument based on the operator inequality αα ≤
γ and our assumption that V is in�nitesimally form-bounded with respect to

−∆. However, a little care has to be taken regarding the boundary conditions;
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we leave the proof to the interested reader because the required ideas appear

throughout the paper.

In this paper, we shall study the minimization problem

EBCS
µ := inf

Γ admissible
EBCSµ (Γ). (6.3)

Note that EBCS
µ > −∞ by Proposition 6.1.6. We are especially interested in

the occurrence of EBCS
µ < 0 and in that case we say that the system exhibits

fermion pairing.

Here is the reasoning behind this de�nition: We will consider chemical po-

tentials µ = −Eb + Dh2 with D ∈ R so that h ≥ 0 for h small enough, see

Proposition 6.5.3. Then EBCS
µ < 0 implies that any minimizer Γ must satisfy

α 6= 0, i.e. it must have a non-trival fermion pairing function α.

Main results. We now discuss our main results in words, they are stated

precisely in Section 6.1 below.

By the monotonicity of µ 7→ EBCS
µ for every �xed h > 0, there exists a

unique critical chemical potential µc(h) such that we have fermion pairing i�

µ > µc(h). The �rst natural question is then whether one can compute µc(h).

In our �rst main result, Theorem 6.1.7, we show that

µc(h) = −Eb + h2Dc +O(h2+ν), as h ↓ 0.

That is, to lowest order in h, µc(h) is just one half of the binding energy of

a fermion pair. The subleading correction term Dc ∈ R is the ground state

energy of an explicit Dirichlet eigenvalue problem on Ω (the linearization of

the GP theory below).

Physically, the choice of µ ≈ µc(h) corresponds to small density; this is ex-

plained after Proposition 6.1.11. We expect that for µ above and close to

µc(h), the fermion pairs look like bosons to each other and (since we are at

zero temperature) the pairs will form a Bose-Einstein condensate, which will

then be describable by a Gross-Pitaevskii (GP) theory.

Accordingly, in our second main result, Theorem 6.1.10, we derive an

e�ective, macroscopic GP theory of fermion pairs from the BCS model for all

µ = −Eb + Dh2 with D ∈ R. The resulting GP theory also has Dirichlet

boundary conditions.
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Theorems 6.1.7 and 6.1.10 show that the boundary conditions make a signif-

icant di�erence on the (macroscopic!) GP scale, a physically non-trivial fact.

The results hold for the rather general class of bounded Lipschitz domains.

Related works. The BCS model that we consider has received consider-

able interest in recent years in mathematical physics. Most closely related to

our paper are the derivations of e�ective GP theories for periodic boundary

conditions in [94] and for a system in R
3 at �xed particle number [28]. The

dynamical analogue of this derivation was performed in [91]. The related, and

technically more challenging, case of BCS theory close to the critical tem-

perature for pair formation has also been considered: In [72][89], the critical

temperature was described by a linear criterion. The analogue of Theorem

6.1.7 for the upper and lower critical temperatures was the content of [74].

In [75, 76] and especially [73] e�ective macroscopic Ginzburg-Landau theories

have been derived.

We emphasize that all of these papers assume that the system has no boundary

(either by working on the torus or on the whole space) and the same holds

true for the resulting e�ective GP or GL theories. (We also mention that

the derivation in [28] depends on ‖W‖L∞(Rd) < ∞ and so one cannot obtain

the Dirichlet boundary conditions as the limiting case of a su�ciently deep

potential well from [28].)

Our main contribution is thus to show the non-trivial e�ect of boundary con-

ditions on the e�ective macroscopic GP theory. As we mentioned in the in-

troduction, this is in some contrast to de Gennes' arguments [58] at positive

temperature and positive density.

Main result 1: The critical chemical potential

Considering de�nitions (6.2) and (6.3) of the BCS energy, we see that the

non-positive function µ 7→ EBCS
µ is monotone decreasing (and concave). This

allows us to de�ne the critical chemical potential µc(h) as the unique number

(potentially in�nity) such that

µc(h) := inf
{
µ < 0 : EBCS

µ < 0
}

(6.4)

If µc(h) is �nite, then the monotonicity and continuity of the function µ 7→
EBCS
µ allows us to write

{
µ : EBCS

µ < 0
}

= (µc(h),∞). The de�nition (6.4)

is analogous to the de�nition of the upper and lower critical temperature in
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[74], but the explicit dependence of the BCS energy on µ simpli�es matters

here.

Our �rst main result gives an asymptotic expansion of µc(h) in h up to sec-

ond order, where the subleading term Dc is given as an appropriate Dirichlet

eigenvalue, namely

Dc := inf specL2(Ω)

(
−1

4
∆Ω +W

)
(6.5)

The result is the analogue of the main result in [74] for the critical temperature.

Theorem 6.1.7 (Main result 1). We have

µc(h) = −Eb +Dch
2 +O(h2+ν), as h ↓ 0

The exponent of the error term is ν := min{d/2, cΩ − δ} where δ > 0 is

arbitrarily small and cΩ ∈ (0, 1] depends only on Ω, see Remark 6.1.8 (iii)

below.

Remark 6.1.8. (i) It follows from the de�nition of Dc that the Dirichlet

boundary conditions have a non-trivial e�ect on the value of µc(h).

(ii) The critical value Dc is uniquely determined by EGP
D = 0 for D ≤ Dc

and EGP
D < 0 for D > Dc, where E

GP
D is de�ned in (6.7) and (6.8) below.

For the proof, see Lemma 2.5 in [74].

(iii) The constant cΩ in the de�nition of ν is the constant such that the Hardy

inequality (6.65) holds on Ω. Under additional assumptions on Ω, quan-

titative information on cΩ is known: If Ω is convex or if ∂Ω is given as

the graph of a C2 function, then cΩ = 1 which is optimal [30][132][134]

and if Ω ⊂ R
2 is simply connected, then we can take cΩ = 1/2 [6].

(iv) The asymptotic expansion of µc(h) to this order is the same as the ex-

pansion of the ground state energy of the two-body Schrödinger operator

Hh, see Theorem 6.12.1. Intuitively, this is due to the fact that at µc(h)

fermion pairing just onsets, so the order parameter is small and the non-

linear terms become negligible.

Main result 2: E�ective GP theory

De�nition 6.1.9. (i) We write α∗ for the unique positive and L
2-normalized

ground state of −∆+V . By de�nition, it satis�es (−∆+V )α∗ = −Ebα∗.
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We let

gBCS := (2π)−d
∫
Rd

(p2 + Eb)|α̂∗(p)|4dp. (6.6)

(ii) For any D ∈ R and ψ ∈ H1(Rd), we de�ne the Gross-Pitaevskii (GP)

energy functional by

EGPD (ψ) :=

∫
Rd

(
1

4
|∇ψ(X)|2 + (W (X)−D)|ψ(X)|2 + gBCS|ψ(X)|4

)
dX.

(6.7)

Here and in the following, we extend W : Ω → R by zero to obtain a

function on Rd to compute the integral.

(iii) Given a domain U ⊂ R
d, we will consider its Dirichlet GP energy, de�ned

as

EGP
U,D := inf

ψ∈H1
0 (U)
EGPD (ψ). (6.8)

Here and in the following, we extend ψ ∈ H1
0 (U) by zero to obtain a

function in H1(Rd).

We now state our second main result. It says that the GP theory EGPD arises

from EBCS−Eb+Dh2 as the scale parameter h goes to zero.

Theorem 6.1.10 (Main result 2). Let µ = −Eb +Dh2 with D ∈ R.

(i) As h ↓ 0, we have

EBCS
µ = h4−dEGP

Ω,D +O(h4−d+ν), (6.9)

where ν is as in Theorem 6.1.7.

(ii) Let Ω be convex. Suppose that Γ is a BCS state such that

EBCSµ (Γ) ≤ EBCS
µ + εh4−d

for some small ε > 0. Then, its upper right entry α in the sense of (6.1)

can be decomposed as

α(x, y) = h1−dψ

(
x+ y

2

)
α∗

(
x− y
h

)
+ ξ

(
x+ y

2
, x− y

)
(6.10)

with ψ ∈ H1
0 (Ω) satisfying EGPD (ψ) ≤ EGP

Ω,D+ε+O(hν) and ξ ∈ H1
0 (Ω×Rd)

such that

‖ξ‖2
L2(Ω×Rd) + h2‖∇ξ‖2

L2(Ω×Rd) ≤ O(h4−d). (6.11)
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The interpretation of Theorem 6.1.10 (ii) is that GP theory describes the

center-of-mass part of the fermion pairing function of any approximate mini-

mizer of the BCS energy. To see this, observe �rst that ξ is an error term in

(6.10), because for the �rst term in (6.10) the norm in (6.11) is of order h2−d.

Therefore, to leading order in h, the fermion pairing function of any approx-

imate BCS minimizer is of the form ψ
(
x+y

2

)
α∗
(
x−y
h

)
. Here α∗ describes the

pair binding on the microscopic scale h. By contrast, ψ describes the center-

of-mass of the pairs on a macroscopic scale and it must be an approximate

minimizer of the GP energy.

If Ω is not convex, one can still get a weaker version of Theorem 6.1.10 (ii)

in which ψ and the Dirichlet energy live on a slightly enlarged domain, see

Theorem 6.2.1 (LB).

We close the presentation by explaining why the choice of µ = −Eb + Dh2

corresponds to a low density limit.

Proposition 6.1.11 (Convergence of the one-body density). Let Γ be a BCS

state satisfying the inequality EBCS−Eb+Dh2(Γ) ≤ EBCS
−Eb+Dh2 + o(h4−d) (e.g. Γ is

an approximate minimizer as in Theorem 6.1.10 (ii)) and let ργ denote its

one-body density (i.e. ργ(x) = γ(x, x) if γ is continuous). Then we have

hd−2ργ ⇀ |ψ∗|2, in Lp
′
W (Ω) (6.12)

where ψ∗ is a minimizer of EGP
D . p′W is the Hölder dual exponent of pW .

We mention that minimizers of EGP
D exist and are unique up to a complex

phase by Proposition 6.2.5 (though they may be identically zero).

The proof of Proposition 6.1.11 is in Appendix 6.9. It is a classical argument

which is based on Theorem 6.1.10 and the fact that the one-body density ργ

and the external �eld W are �dual variables� [84][129].

Note that we can test (6.12) against the indicator function 1Ω to obtain the

expected particle number

N :=

∫
Ω

ργdx = h2−d
∫

Ω

|ψ∗|2dx+ o(h2−d),

compare (1.14) in [94]. The expected particle density in microscopic units is

given by

hdN = h2‖ψ∗‖2
L2(Ω) + o(h2)→ 0.
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We see that our scaling limit indeed corresponds to low density. (We point

out that the physical model is somewhat pathological in d = 1 because even

N will go to zero as h → 0. Since N is only the expected particle number,

the model still makes sense in principle, but it is of course debatable that

statistical mechanics still applies in this case.)

Outline of the paper

The proof of the main results is based on two distinct key results.

• In key result 1 (Theorem 6.2.1), we bound the BCS energy over Ω in

terms of GP energies on a slightly smaller domain than Ω (upper bound)

and on a slightly larger domain than Ω (lower bound). If Ω is convex,

the lower bound simpli�es to the GP energy on Ω itself. The general

strategy here is as in [73][91][94], though some technical di�culties arise

from the Dirichlet boundary conditions, see (i) and (ii) below. This part

only requires Ω to have �nite Lebesgue measure.

• In key result 2 (Theorem 6.2.2), we show that the GP energy is contin-

uous under approximations of the domain Ω, if Ω is a bounded Lipschitz

domain. The idea is to use Hardy inequalities to control the boundary de-

cay of GP minimizers using the fact that these lie in the operator domain

of the Dirichlet Laplacian. This approach is due to Davies [54][55] who

treated the linear case of Dirichlet eigenvalues. (Davies does not treat

continuity under exterior approximations because a Hardy inequality is

not su�cient for this to hold, see the example in Remark 6.2.4)

We point out that key result 1 concerns the many-body system. Key result 2,

by contrast, is a continuity result for a certain class of nonlinear functionals

on Rd and is based on ideas from spectral theory and geometry.

In Section 6.2, we present the two key results in detail and derive the two

main results from them.

In Section 6.3, we present the semiclassical expansion (Lemma 6.3.2). This is

an important tool in the proof of all parts of Theorem 6.2.1 (key result 1). The

version here is very close to the one in [28], though we generalize it somewhat

as described in (iii) below.
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In Section 6.4, we prove the upper bound part of Theorem 6.2.1. We con-

struct a trial state following [28][91], with an appropriate cuto� to ensure that

it satis�es the Dirichlet boundary conditions. The semiclassical expansion

then yields an upper bound by a GP energy in a slightly smaller region than

Ω. One �nishes the proof by applying the continuity of the GP energy under

domain approximations (key result 2).

In Sections 6.5-6.6, we prove the lower bound part of Theorem 6.2.1. The

overall strategy is as in [28][73]: One �rst proves an a priori decomposition

result yielding (6.10) for the o� diagonal entry α of any approximate BCS

minimizer Γ (with H1 control on the involved functions). This is Theorem

6.5.1 and it shows that the GP order parameter is naturally associated with

the center of mass variable x+y
2

(living on the macroscopic scale). Then, one

can use the semiclassical expansion on the main part of α to �nish the proof.

While the overall strategy is as in [28][73], there are some signi�cant di�culties

due to the boundary conditions:

(i) The boundary conditions prevent the variables in the center of mass

frame from decoupling as usual. This poses a problem, because the

GP energy/order parameter should only depend on the center of mass

variable. The solution we have found to this is to forget the boundary

conditions in the relative coordinate altogether. (Note that this gives a

lower bound, since Dirichlet energies decrease under an increase of the

underlying function spaces.) In this way, we decouple the variables in

the center of mass frame. Moreover, one has not lost much, thanks to

the exponential decay of the Schrödinger eigenfunction α∗ governing the

relative coordinate via (6.10). This idea is most clearly seen in Appendix

6.12.

(ii) The center of mass variable x+y
2

naturally takes values in the set

Ω̃ :=
Ω + Ω

2
.

After some steps in the lower bound, we are led to a GP energy on Ω̃.

Note that when Ω is convex, Ω̃ = Ω and so one is essentially done at

this stage. If Ω is not convex, however, some additional work is required.

The idea is to use the exponential decay of α∗ again, the details are in

Section 6.6.
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(iii) We observe that the arguments from [28] can be extended to dimensions

d = 1, 2 and to external potentials which satisfyW ∈ LpW (Ω). We do not

see, however, that the arguments can be extended to the case W = ∞
on a set of positive measure (i.e. the Dirichlet boundary conditions).

In Section 6.7, we prove key result 2, Theorem 6.2.2. The crucial input

are Davies' ideas [54][55] of deriving continuity of the Dirichlet energy under

domain approximations from the Hardy inequality, see Lemma 6.7.2. Along

the way, we need Theorem 6.7.3 which says that the Hardy inequality holds

along a suitable sequence of exterior approximations Ω` to Ω, with uniform

dependence of the Hardy constants on `, and may be of independent interest.

Theorem 6.7.3 is proved in Appendix 6.11 by extending Necas' proof [140] of

the Hardy inequality on any bounded Lipschitz domain. The appendix also

contains the proofs of some technical results used in the main text, as well as

a presentation of the linear version of our main results, the asymptotics of the

ground state energy of the two-body Schrödinger operator Hh mentioned in

the introduction (see Appendix 6.12).

Notation. We write C,C ′, . . . for positive, �nite constants whose value may

change from line to line. We typically do not track their dependence on pa-

rameters which are assumed to be �xed throughout, such as the dimension d

and the potentials V andW . The dependence on D will be explicit only where

relevant.

We will suppress the parameter dependence on µ and D in the following. That

is, we will write EBCSµ ≡ EBCS, EGPD ≡ EGP , etc.

Finally, we will abuse notation and identify a function ψ ∈ H1
0 (U) on some

domain U ⊂ R
d with the function on Rd that is obtained by extending ψ by

zero. We note that this extension lies in H1(Rd)

6.2 The two key results

Key result 1: Bounds on the BCS energy

We bound the BCS energy on Ω in terms of GP energies on interior approxi-

mations of Ω for an upper bound (�UB�) and on exterior approximations of Ω

for a lower bound (�LB�).
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Let Ω ⊂ R
d be an open set of �nite Lebesgue measure. For ` > 0, de�ne the

interior and exterior approximations of Ω

Ω−` := {X ∈ Ω : dist(X,Ωc) > `} , (6.13)

Ω+
` :=

{
X ∈ Rd : dist(X,Ω) < `

}
, (6.14)

and de�ne Ω±0 := Ω.

Theorem 6.2.1 (Key result 1). Let `(h) := h log(h−q) with q > 0 su�ciently

large but �xed. Let µ = −Eb +Dh2 for some �xed D ∈ R. Then:

(UB) For every function ψ ∈ H1
0 (Ω−`(h)), there exists an admissible BCS state

Γψ such that

EBCS(Γψ) = h4−dEGP (ψ) +O(h5−d)(‖ψ‖2
H1(Rd) + ‖ψ‖4

H1(Rd)). (6.15)

The implicit constant depends continuously on D.

(LB) Let Γ be an admissible BCS state satisfying EBCS(Γ) ≤ CΓh
4−d. Then,

there exists ψ ∈ H1
0 (Ω+

`(h)) such that

EBCS(Γ) ≥ h4−dEGP (ψ) +O(h4−d+ν′), (6.16)

where ν ′ = min{d/2, 1}. Moreover, there exists ξ ∈ H1
0 (Ω̃ × R

d), Ω̃ :=
Ω+Ω

2
, such that α can be decomposed as in (6.10) and we have the bounds

‖∇ψ‖L2(Ω+
`(h)

) ≤ C‖ψ‖L2(Ω+
`(h)

) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)(‖ψ‖2
L2(Ω̃)

+ CΓ)
(6.17)

The implicit constants depend continuously on D.

(LBC) If Ω is convex, then one can take `(h) = 0 everywhere in (LB). In par-

ticular, there exists ψ ∈ H1
0 (Ω) such that

EBCS(Γ) ≥ h4−dEGP (ψ) +O(h4−d+ν′). (6.18)

Key result 2: Continuity of the GP energy under domain approxi-

mations

The following theorem says that, on any bounded Lipschitz domain Ω, we have

continuity of the GP energy under domain approximations. The continuity is

derived from the Hardy inequality (6.65) in an approach due to Davies [54][55],

see also [68]. The details are in Section 6.7.

We recall De�nition 6.1.9 of the GP energies and the conventions made therein.
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Theorem 6.2.2. Assume that Ω is a bounded Lipschitz domain. For ` > 0,

de�ne Ω±` as before in Theorem 6.2.1. Then, there exists a constant cΩ ∈ (0, 1]

such that

|EGP
Ω±`
− EGP

Ω | ≤ O(`cΩ). (6.19)

Moreover, the statement holds irrespectively of the value of the parameters

gBCS and D in (6.8). In particular it holds for gBCS = D = 0 and then it

shows that

|D±c (`)−Dc| ≤ O(`cΩ), D±c (`) := inf specL2(Ω)

(
−1

4
∆Ω±`

+W

)
. (6.20)

Here Dc ≡ D±c (0) is de�ned in (6.5).

Remark 6.2.3. The constant cΩ is the same as in Theorem 6.1.7; see Remark

6.1.8 (iii) for quantitative results on cΩ if more information on Ω is known.

We close with a cautionary example, which shows that a two-sided continuity

result such as (6.19) cannot be valid without additional assumptions on the

regularity of the boundary ∂Ω.

Remark 6.2.4 (Exterior approximation is delicate). Consider the slit domain

Ω = [−1, 1]2 \ ((−1, 0]×{0}). The slit will disappear for any exterior approxi-

mation Ω+
` (` > 0) and this will lead to an order one decrease of the GP energy.

Therefore, the GP energy on Ω is not continuous under exterior approxima-

tion. (However, it is continuous under interior approximation: As discussed

in Section 6.7, this follows from the validity of the Hardy inequality (6.65) on

Ω, and since Ω ⊂ R
2 is simply connected, it satis�es the Hardy inequality with

cΩ = 1/2 [6].)

On GP minimizers

We collect some standard results about GP minimizers for later use. We recall

De�nition 6.1.9 of the GP energy.

Proposition 6.2.5. (i) For any ψ ∈ H1(Rd), we have the coercivity in-

equality

EGP (ψ) ≥ C1‖ψ‖2
H1

0 (Rd) − (C2 +D)2, (6.21)

where the constants C1, C2 > 0 are independent of D.
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(ii) Let U ⊂ R
d be an open set of �nite Lebesgue measure. Then EGP

U >

−∞. Moreover, there exists a minimizer for EGP
U and it is unique up to

multiplication by a complex phase. Minimizing sequences are precompact

in H1
0 (U).

(iii) There exists C > 0, independent of U and D, such that the minimizer

ψ∗ corresponding to E
GP
U satis�es

‖∆Uψ∗‖L2(U) ≤ C(1 + |D|)(‖ψ∗‖H1
0 (U) + ‖ψ∗‖3

H1
0 (U)). (6.22)

For completeness, the standard proof of these results is included in Appendix

6.8.

Derivation of the main results from the key results

In this section, we assume that the two key results (Theorems 6.2.1 and 6.2.2)

hold.

Proof of main result 1, Theorem 6.1.7

Upper bound. Let µ = −Eb +Dh2 with D = Dc +C0h
ν for some constant

C0 > 0 to be determined. We will show that for large enough C0 > 0, there

exists an admissible BCS state Γ such that

EBCS(Γ) < 0. (6.23)

By De�nition (6.4) (and the comment following it), this implies the claimed

upper bound µc(h) ≤ −Eb +Dch
2 + C0h

2+ν .

We let ` ≡ `(h) = h log(h−q) with q > 0 large enough and we recall de�nitions

(6.13) and (6.20) of Ω−` and D−c (`). Following [74] p.209, we choose ψ = θψ`,

where θ > 0 and ψ` ∈ H1
0 (Ω−` ) is the eigenfunction

(−∆Ω−`
+W )ψ` = D−c (`)ψ`.

Optimizing over θ yields

EGP (ψ) = −C(D −D−c (`))2, θ = C ′
√
D −D−c (`). (6.24)

Hence, any relevant norm of ψ = θψ` is proportional to
√
D −D−c (`). Since

ψ ∈ H1
0 (Ω−`(h)), we can apply Theorem 6.2.1 (UB) to get an admissible BCS
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state Γψ such that

hd−4EBCS(Γψ) =EGP (ψ) +O(hν)(‖ψ‖2
H1(Rd) + ‖ψ‖4

H1(Rd))

=− C(D −D−c (`))2 +O(hν)(θ2‖ψ`‖2
H1(Rd) + θ4‖ψ`‖4

H1(Rd)).

We have the a priori bound ‖ψ`‖H1(Rd) ≤ O(1). Indeed, the in�nitesimal-form

boundedness of W with respect to −∆Ω−`
implies

‖ψ`‖H1(Rd) − C ≤ D−c (`) ≤ D−c (`0),

where `0 > 0 is �xed. In the second step, we used the fact that Dirichlet

energies increase when the underlying domain decreases.

By our choice of D and the last part of Theorem 6.2.2, there exists C1 > 0

such that

D = Dc + C0h
ν ≥ D−c (`) + (C0 − C1)hν

and so, for C0 > C1,

hd−4EBCS(Γψ) ≤ −C(C0 − C1)2h2ν +O(h2ν)(C0 − C1).

We recall that the implicit constant depends on D in a continuous way. Let C2

denote the maximum absolute value that this constant takes on the interval

[Dc − 1, Dc + 1]. We choose C0 = 2C2/C + C1. Then, for all small enough

h > 0, D = Dc + C0h
ν ∈ [Dc − 1, Dc + 1] and consequently

hd−4EBCS(Γψ) ≤ h2ν(C0 − C1)(−C(C0 − C1) + C2) < 0.

This proves (6.23) and hence the claimed upper bound on µc(h).

Lower bound (convex case). Let µ = −Eb+Dh2 and D = Dc−C0h
ν with

C0 to be determined. Let Γ be a BCS state satisfying EBCS(Γ) ≤ 0. We will

show that Γ ≡ 0 and this will prove the claim µc(h) ≥ −Eb + h2Dc − C0h
2+ν .

Assumption 6.1.2 on W implies that it is in�nitesimally form-bounded with

respect to −∆Ω on H1
0 (Ω) and from this one derives that h ≥ 0 for su�ciently

small h, see Proposition 6.5.3. Therefore, the zero state is the unique minimizer

of the �rst term Tr[hγ] in EBCS and it su�ces to show that α ≡ 0 to get Γ = 0.

We apply Theorem 6.2.1 (LBC) with CΓ = 0 and obtain ψ ∈ H1
0 (Ω) such that

0 ≥ hd−4EBCS(Γ) ≥ EGP (ψ) +O(hν)‖ψ‖2
H1

0 (Ω).
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We drop the (non-negative) quartic term in EGP for a lower bound and use

the de�nition of Dc to get

EGP (ψ) ≥ (Dc −D)‖ψ‖2
L2(Ω)

The analogue of the �rst relation in (6.17) in the convex case is ‖ψ‖2
H1

0 (Ω)
≤

C‖ψ‖2
L2(Ω). It gives

0 ≥ (C(Dc −D) +O(hν))‖ψ‖2
H1

0 (Ω). (6.25)

Recall that the implicit constant depends on D in a continuous way and let

C2 denote its maximum value on the interval [Dc − 1, Dc + 1]. Taking D =

Dc − C0h
ν with C0 = 2C2/C, we get from (6.25) that ψ ≡ 0 for small enough

h > 0.

Since CΓ = 0, the analogue of the second bound in (6.17) in the convex case

yields ξ ≡ 0 and so α ≡ 0 as claimed.

Lower bound (non convex case). We write ` ≡ `(h) throughout. We

apply Theorem 6.2.1 (LB) and argue as in the convex case to �nd

0 ≥ hd−4EBCS(Γ) ≥ (D+
c (`)−D +O(hν))‖ψ‖2

L2(Ω).

Now, the last part of Theorem 6.2.2 gives D+
c (`)−D+O(hν) = Dc−D+O(hν).

This can be made positive by choosing C0 large enough in the same way as

above. We conclude that ψ = 0 and so ξ = 0 by (6.17) and CΓ = 0 (since we

assume EBCS(Γ) ≤ 0). This completes the proof of Theorem 6.1.7.

Proof of main result 2, Theorem 6.1.10

We let µ = −Eb + Dh2 with D ∈ R �xed and we let `(h) = h log(h−q), with

q ≥ 1 large but �xed.

Upper bound. By Proposition 6.2.5, the minimization problem EGP
Ω−
`(h)

has

a unique minimizer, call it ψ− ∈ H1
0 (Ω−`(h)). We apply Theorem 6.2.1 (UB)

with ψ = ψ− to obtain an admissible BCS state Γψ− such that

EBCS ≤ EBCS(Γψ−) =h4−dEGP (ψ−) +O(h5−d)(‖ψ−‖2
H1(Rd) + ‖ψ−‖4

H1(Rd))

≤h4−dEGP
Ω−
`(h)

+O(h5−d)(1 + EGP
Ω−
`(h)

)2.
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In the second step, we used the fact that ψ− is a minimizer and the coercivity

(6.21).

Now we apply Theorem 6.2.2. Since `(h) = O(h1−δ) for every δ > 0, we get

EBCS ≤ h4−dEGP
Ω +O(h4−d+ν),

where ν is as in Theorem 6.1.7.

Lower bound. Thanks to the upper bound right above, for any minimizer

Γ of the BCS energy, we have

EBCS(Γ) ≤ h4−d(EGP
Ω + ε)

for all ε > 0. In particular, EBCS(Γ) ≤ CΓh
4−d and so Γ satis�es the assump-

tion in Theorem 6.2.1 (LB) and (LBC).

If Ω is convex, the claim follows directly from Theorem 6.2.1 (LBC).

If Ω is a non convex bounded Lipschitz domain, Theorem 6.2.1 (LB) yields

ψ ∈ H1
0 (Ω+

`(h)) such that

EBCS(Γ) ≥ h4−dEGP (ψ) +O(h4−d+ν′) ≥ h4−dEGP
Ω+
`(h)

+O(h4−d+ν′).

The lower bound now follows from Theorem 6.2.2. This �nishes the proof of

Theorem 6.1.10.

6.3 Semiclassical expansion

We state an important tool for the proof of Theorem 6.2.1, the semiclassical

expansion. The version here is essentially the one from [28].

Though not strictly necessary for the result, it will be convenient for us to

assume the following decay condition

De�nition 6.3.1. We say that a function a ∈ L2(Rd) decays exponentially in

the L2 sense with the rate ρ, if∫
Rd

e2ρ|s||a(s)|2ds <∞. (6.26)

Recall that α∗ denotes the unique ground state of −∆ + V . It is well known

that weak assumptions on the potential V imply the exponential decay of α∗

in an L2 sense. The fact that in�nitesimal form-boundedness of V is su�cient
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is essentially contained in [160] but was known to the experts even earlier.

That is, there exists ρ∗ > 0 such that∫
Rd

e2ρ∗|s||α∗(s)|2ds <∞. (6.27)

In particular, we can apply the following lemma with a = α∗ later on.

Lemma 6.3.2 (Semiclassics). For ψ, a ∈ H1(Rd), we set

aψ(x, y) := h−dψ

(
x+ y

2

)
a

(
x− y
h

)
, x, y ∈ Rd. (6.28)

Suppose that a(x) = a(−x) and that a decays exponentially in the L2 sense of

De�nition 6.3.1.

Then:

(i)

Tr[(−h2δ − µ)aψaψ] +

∫∫
Rd×Rd

V

(
x− y
h

)
|aψ(x, y)|2dxdy

=h−d‖ψ‖2
L2(Rd)〈a |−∆ + Eb + V | a〉

+ ‖a‖2
L2(Rd)

(
h2−d

4
‖∇ψ‖2

L2(Rd) + h−d(−Eb − µ)‖ψ‖2
L2(Rd)

)
.

(ii) There exists a constant C > 0 such that∣∣∣∣Tr[Waψaψ]− h−d‖a‖2
L2(Rd)

∫
Rd

W (X)|ψ(X)|2dX

∣∣∣∣
≤Ch1−d‖a‖2

L2(Rd)‖W‖LpW (Ω)‖ψ‖2
H1(Rd).

(iii) Let

gBCS(a) : = (2π)−d
∫
Rd

(p2 + Eb)|â(p)|4dp,

g0(a) : = (2π)−d
∫
Rd

|â(p)|4dp

(6.29)

Then, as h ↓ 0,

Tr[(−h2δ + Eb + h2W )aψaψaψaψ]

=h−dgBCS(a)‖ψ‖4
L4(Rd) +O(h1−d)‖ψ‖4

H1(Rd),

and

Tr[aψaψaψaψ] = h−dg0(a)‖ψ‖4
L4(Rd) +O(h1−d)‖ψ‖4

H1(Rd).
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Lemma 6.3.2 was proved in in [28] for d = 3, a = hα∗, W ∈ L∞(R3) and at

�xed particle number. We sketch the proof in Appendix 6.10 to show that it

generalizes to the present version.

Remark 6.3.3. To see that gBCS(a), g0(a) < ∞, observe that the decay as-

sumption (6.26) implies a ∈ L1(Rd) ∩H1(Rd) and so â is bounded.

6.4 Proof of Theorem 6.2.1 (UB)

The idea of the proof is to construct an appropriate trial state and then to use

the semiclassical expansion from Lemma 6.3.2.

The trial state

The trial state Γψ is de�ned as in [28], following an idea of [91], see (6.31)

below. However, we multiply α∗ by an appropriate cuto� function χ, in order

to satisfy the Dirichlet boundary conditions in the relative variable.

De�nition 6.4.1 (Trial state). Let χ ∈ C∞c (Rd) be a symmetric cuto� func-

tion, i.e. χ(r) = χ(−r), 0 ≤ χ ≤ 1 and χ ≡ 1 on B1 and suppχ ⊂ B3/2. Let

`(h) = hφ(h) with limh→0 φ(h) =∞ and de�ne

a(r) := χ

(
r

φ(h)

)
hα∗(r). (6.30)

For any ψ ∈ H1(Rd), we de�ne aψ by (6.28) and

γψ := aψaψ + (1 + h1/2)aψaψaψaψ, Γψ :=

(
γψ aψ

aψ 1− γψ

)
. (6.31)

Proposition 6.4.2. Let ψ ∈ H1
0 (Ω−`(h)). For all su�ciently small h, Γψ is an

admissible BCS state.

Proof. 0 ≤ Γψ ≤ 1 holds by a short computation, see [28]. We show that

aψ ∈ H1
0 (Ω2). First, we observe that suppaψ ⊆ Ω2. To see this, we note that

suppψ ⊆ Ω−`(h) and suppa ⊆ suppχ(·/φ(h)) ⊆ B3φ(h)/2 and therefore

suppaψ ⊆
{

(x, y) ∈ Rd × Rd :
x+ y

2
∈ Ω−`(h),

x− y
2
∈ B3`(h)/4

}
,

where we also used hφ(h) = `(h). By construction, dist(x+y
2
,Ωc) ≥ `(h) and

by expressing

(x, y) =

(
x+ y

2
+
x− y

2
,
x+ y

2
− x− y

2

)
,
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we obtain that, indeed, suppaψ ⊆ Ω2.

It remains to show that, after extending ψ and a by zero to R
d, we have

aψ ∈ H1(Rd × Rd). By using a(r) = a(−r) to symmetrize the derivatives and

changing to center-of-mass coordinates (6.40), we indeed get an upper bound

on ‖aψ‖H1(Rd×Rd) in terms of the (�nite) quantities ‖ψ‖H1(Rd) and ‖a‖H1(Rd).

We leave the details to the reader, as similar computations appear several

times in the lower bound, see e.g. the proof of Lemma 6.5.2.

This proves aψ ∈ H1
0 (Ω2). To see that γψ satis�es De�nition 6.1.5, we note

that γψ ≤ 3aψaψ since aψaψ ≤ γψ ≤ 1. We can then bound√
1−∆Ωγψ

√
1−∆Ω ≤3

√
1−∆Ωaψaψ

√
1−∆Ω

=3
√

1−∆Ωaψ

(√
1−∆Ωaψ

)∗
by a product of two Hilbert Schmidt operators and therefore it is trace class.

Controlling the e�ect of the cuto�

When we apply the semiclassical expansion in Lemma 6.3.2, we want to remove

the e�ect of the cuto�, i.e. we want to replace a by α∗, up to higher order

corrections. We will get this from the estimates in Proposition 6.4.3 below,

which follow essentially from the exponential decay (6.27) of α∗.

We recall de�nition (6.29) of gBCS(a) and g0(a).

Proposition 6.4.3. We have

‖a‖2
L2(Rd) = h2

(
1 +O(e−2ρ∗φ(h))

)
, (6.32)

gBCS(a) = h4
(
gBCS +O(e−ρ∗φ(h)/2)

)
, (6.33)

g0(a) = h4
(
g0(α∗) +O(e−ρ∗φ(h)/2)

)
, (6.34)

〈a |−∆ + Eb + V | a〉 = h2O(e−2ρ∗φ(h)). (6.35)

Proof. For (6.32), we observe

‖hα∗‖2
L2(Rd) − ‖a‖

2
L2(Rd) = h2

∫
Rd

|α∗(r)|2
(

1− χ
(

r

φ(h)

)2
)

dr

≤h2

∫
Bc
φ(h)

|α∗(r)|2dr ≤ Ch2e−2ρ∗φ(h).
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In the last step, we used the fact that α∗ satis�es the decay assumption (6.27).

This proves (6.32) since ‖α∗‖L2(Rd) = 1.

To get (6.33), we �rst write

|hα̂∗|4 − |â|4 =
(
|hα̂∗|2 + |â|2

)
(|hα̂∗|+ |â|) (|hα̂∗| − |â|) . (6.36)

The smallness comes from the last term. Indeed, the decay assumption (6.27)

gives

sup
p∈Rd
||hα̂∗(p)| − |â(p)|| ≤ sup

p∈Rd
|hα̂∗(p)− â(p)| ≤ ‖hα∗ − a‖L1(Rd)

≤h
∫
Bc
φ(h)

|α∗(r)|dr = h

∫
Bc
φ(h)

|α∗(r)|eρ∗re−ρ∗rdr ≤ Che−ρ∗φ(h)/2.

Note also that (6.27) implies ‖α̂∗‖L∞(Rd) ≤ (2π)−d/2‖α∗‖L1(Rd) ≤ C and conse-

quently ‖â‖L∞(Rd) ≤ Ch. Applying these estimates to (6.36), we get

|hα̂∗|4 − |â|4 ≤ Ch2e−ρ∗φ(h)/2
(
|hα̂∗|2 + |â|2

)
.

Recall the de�nition (6.29) and observe that gBCS(α∗) = gBCS from (6.6).

Hence,

|gBCS(a)− h4gBCS| ≤Ch2e−ρ∗φ(h)/2

∫
Rd

(p2 + Eb)
(
|hα̂∗|2 + |â|2

)
dp

≤Ch2e−ρ∗φ(h)/2
(
h2‖α∗‖2

H1(Rd) + ‖a‖2
H1(Rd)

)
.

To conclude the claim (6.33), it remains to see that ‖a‖2
H1(Rd)

≤ Ch2 as h ↓ 0.

For the L2 part of the H1 norm this follows from χ2 ≤ 1. For the derivative

term, we denote χh ≡ χ(·/φ(h)) and use the Leibniz rule to get

‖∇a‖2
L2(Rd) ≤ 2h2

(
‖χh∇α∗‖2

L2(Rd) + ‖α∗∇χh‖2
L2(Rd)

)
.

For the �rst term, we use χ2 ≤ 1 to get

‖χh∇α∗‖2
L2(Rd) ≤ ‖χh∇α∗‖

2
L2(Rd) ≤ C.

The second term is in fact much smaller:

‖α∗∇χh‖2
L2(Rd) ≤ Ce−2ρ∗φ(h). (6.37)

Indeed, by Hölder's inequality and (6.27) we have

‖α∗∇χh‖2
L2(Rd) =‖α∗∇χh‖2

L2(B2φ(h)\Bφ(h))
≤ e−2ρ∗φ(h)‖∇χh‖2

L∞(Rd)

=e−2ρ∗φ(h)φ(h)−2‖∇χ‖2
L∞(Rd) ≤ Ce−2ρ∗φ(h).
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In the last step we used φ(h)→∞ as h→ 0. This proves (6.37) and completes

the proof of (6.33). The argument for (6.34) is even simpler.

Finally, we come to (6.35). Since (−∆ + Eb + V )α∗ = 0,

〈a |−∆ + Eb + V | a〉 = h〈a |[−∆, χh]|α∗〉 = h2‖α∗∇χh‖2
L2(Rd).

Therefore, (6.35) follows from (6.37) and Proposition 6.4.3 is proved.

Conclusion

Given a function ψ ∈ H1
0 (Ω−`(h)), we de�ne Γψ as in Proposition 6.4.2. We have

EBCS(Γψ) =Tr[haψaψ] +

∫∫
Rd×Rd

V

(
x− y
h

)
|aψ(x, y)|2dxdy

+ (1 + h1/2)Tr[haψaψaψaψ].

We apply the semiclassical expansion in Lemma 6.3.2 (note that the assump-

tions are satis�ed by a, since it is as regular as α∗ and of compact support).

We �nd, using D = h−2(µ+ Eb),

EBCS(Γψ)

=h−d‖ψ‖2
L2(Rd)〈a |−∆ + Eb + V | a〉

+ ‖a‖2
L2(Rd)

(
h2−d

4
‖∇ψ‖2

L2(Rd) − h
2−dD‖ψ‖2

L2(Rd)

)
+ h2−d‖a‖2

L2(Rd)

∫
Rd

W (X)|ψ(X)|2dX + h−dgBCS(a)‖ψ‖4
L4(Rd)

+O(h5−d)(‖ψ‖2
H1(Rd) + ‖ψ‖4

H1(Rd))

The main term in this expression is h4−d times the GP energy de�ned in

(6.8), up to errors which are controlled by Proposition 6.4.3 and the choice

φ(h) = log(h−q) with q su�ciently large compared to 1/ρ∗. We �nd

EBCS(Γψ) = EGP (ψ) + (O(h5−d)− Ch6−dD)(‖ψ‖2
H1(Rd) + ‖ψ‖4

H1(Rd)).

Note that the constant in front of the error term is an a�ne function of D; in

particular it is continuous in D. This proves Theorem 6.2.1 (UB).

6.5 Proof of Theorem 6.2.1 (LB): Decomposition

We prove Theorem 6.2.1 (LB) and (LBC) together. (The situation will dras-

tically simplify for convex Ω in due course.)
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In this �rst part of the proof, we consider any BCS state Γ satisfying EBCS(Γ) ≤
CΓh

4−d and we show that its o�-diagonal element α can be decomposed as in

(6.10), with good a priori H1 control on all the functions involved. Recall that

Ω̃ :=
Ω + Ω

2
.

Theorem 6.5.1 (Decomposition and a priori bounds). Suppose that µ =

−Eb + Dh2 for some D ∈ R and that Γ is an admissible BCS state satisfying

EBCS(Γ) ≤ CΓh
4−d. Then, there exist ψ ∈ H1

0 (Ω̃) and ξ ∈ H1
0 (Ω̃ × R

d) such

that α, the upper right entry of Γ, can be decomposed as in (6.10). Moreover,

we have the bounds

‖∇ψ‖L2(Ω̃) ≤ C‖ψ‖L2(Ω̃) ≤ O(1),

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)(‖ψ‖2
L2(Ω̃)

+ CΓ).
(6.38)

The implicit constants depend continuously on D.

The key input to the proof is the spectral gap of the operator −∆ + V above

its ground state energy −Eb.

Center of mass coordinates

De�ne the set

D :=
{

(X, r) ∈ Ω̃× Rd : X +
r

2
, X − r

2
∈ Ω

}
.

Lemma 6.5.2. Suppose that µ = −Eb + Dh2. Let Γ be an admissible BCS

state. Set α̃(X, r) := α(X + r/2, X − r/2) so that α̃ ∈ H1
0 (D). Then, for

su�ciently small h > 0, we have

EBCS(Γ) ≥
∫∫
D

α̃(X, r)

(
− h2

4
∆X − h2∆r + h2W (X + r/2)− µ

+ V (r/h)

)
α̃(X, r)drdX +

Eb
2

Tr[αααα].

We separate the following statement from the proof for later use. The constant

1/2 is not sharp, but it is su�cient for the purpose of proving a priori bounds.

Proposition 6.5.3. For h small enough, h ≥ Eb/2 > 0.
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Proof. By Assumption 6.1.2 W is in�nitesimally form-bounded with respect

to −∆Ω. Hence, |W | ≤ −1
2
δ + C and h ≥ −h2

2
δ − µ − h2C hold in the sense

of quadratic forms. Since µ = −Eb + Dh2, this implies that h ≥ Eb
2
for small

enough h > 0.

We come to the

Proof of Lemma 6.5.2. The key input is that for any BCS state, we have the

operator inequality αα + γ2 ≤ γ. For small enough h, we have h ≥ 0 by

Proposition 6.5.3. Hence, we can apply αα + γ2 ≤ γ to the term Tr[hγ] =

Tr[h1/2γh1/2] in the BCS energy to get

EBCS(Γ) ≥ Tr[hαα] +

∫∫
Ω2

V

(
x− y
h

)
|α(x, y)|2dxdy + Tr[hγ2]. (6.39)

We estimate the last term further. By Proposition 6.5.3, αα ≤ γ and the fact

that A 7→ Tr[A2] is operator monotone, we have

Tr[hγ2] ≥ Eb
2

Tr[γ2] ≥ Eb
2

Tr[αααα].

We now rewrite the �rst two terms in (6.39) in center of mass coordinates.

Using α(x, y) = α(y, x) (Γ is Hermitian), we can write out the �rst term as

Tr[hαα] =

∫∫
Ω2

α(x, y)

(
−h2∆x + h2W (x)− µ+ V

(
x− y
h

))
α(x, y)dxdy

=

∫∫
Ω2

α(x, y)

(
−h

2

2
∆x −

h2

2
∆y + h2W (x)− µ+ V

(
x− y
h

))
α(x, y)dxdy.

Now we change to center-of-mass coordinates

X =
x+ y

2
, r = x− y, α̃(X, r) := α(X + r/2, X − r/2). (6.40)

Since the Jacobian is equal to one and ∆x + ∆y = 1
2
∆X + 2∆r, Lemma 6.5.2

follows.

De�nition of the order parameter ψ

An important idea is that from now on we isometrically embed H1
0 (D) ⊂

H1
0 (Ω̃× Rd) by extending functions by zero. Note that all local norms are left

invariant by the extension, in particular ‖α̃‖L2(D) = ‖α̃‖L2(Ω̃×Rd).
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We de�ne the order parameter ψ and establish some of its basic properties.

For a �xed X ∈ Ω̃, we de�ne the �ber

DX :=
{
r ∈ Rd : (X, r) ∈ D

}
=
{
r ∈ Rd : X +

r

2
, X − r

2
∈ Ω

}
.

Proposition 6.5.4. For α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃× Rd), de�ne

ψ(X) :=h−1

∫
DX

α∗(r/h)α̃(X, r)dr, for all X ∈ Ω̃, (6.41)

α̃ψ(X, r) :=h1−dψ(X)α∗(r/h), for a.e. X ∈ Ω̃, r ∈ Rd, (6.42)

ξ(X, r) := α̃(X, r)− α̃ψ(X, r), for a.e. X ∈ Ω̃, r ∈ Rd. (6.43)

Then:

(i) ψ ∈ H1
0 (Ω̃) and ξ ∈ H1

0 (Ω̃× Rd).

(ii) We have the norm identities

‖α̃‖2
L2(D) = h2−d‖ψ‖2

L2(Ω̃)
+ ‖ξ‖2

L2(Ω̃×Rd)
,

‖∇X α̃‖2
L2(D) = h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇Xξ‖2

L2(Ω̃×Rd)
.

(6.44)

Proof. From the de�nition of the weak derivative, we get that ψ ∈ H1
0 (Ω̃) with

∇ψ(X) = h−1

∫
DX

α∗(r/h)∇X α̃(X, r)dr. (6.45)

Since α∗ ∈ H1(Rd) andH1
0 (Ω̃×Rd) is a vector space, we also get ξ ∈ H1

0 (Ω̃×Rd).
This proves claim (i). For claim (ii), we observe the orthogonality relation∫

Rd

α∗(r/h)ξ(X, r)dr = 0, (6.46)

which holds for a.e. X ∈ Ω̃. Thus, by expanding the square that one gets from

(6.43) and using ‖α∗(·/h)‖2
L2(Rd)

= hd,

‖α̃‖2
L2(D) = ‖α̃‖2

L2(Ω̃×Rd)
= h2−d‖ψ‖2

L2(Ω̃)
+ ‖ξ‖2

L2(Ω̃×Rd)
.

This is the �rst identity in (6.44). The second one follows by an analogous

argument using (6.45).
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Bound on the W term

Lemma 6.5.5. Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃ × R
d) and let α̃ψ and ξ be as in

Proposition 6.5.4. For every ε > 0, there exists Cε > 0 such that∫
Ω̃

∫
Rd

|W (X + r/2)||α̃ψ(X, r)|2drdX ≤ h4−d
(
ε‖∇ψ‖2

L2(Ω̃)
+ Cε‖ψ‖2

L2(Ω̃)

)
∫

Ω̃

∫
Rd

|W (X + r/2)||ξ(X, r)|2drdX ≤ h2
(
ε‖∇ξ‖2

L2(Ω̃×Rd)
+ Cε‖ξ‖2

L2(Ω̃×Rd)

)
.

holds for su�ciently small h.

Proof. Recall that α̃ = α̃ψ + ξ, see (6.43). In the following, we freely identify

functions with their extensions by zero to all of Rd, respectively to all of Rd×Rd.
By the semiclassical expansion in Lemma 6.3.2(ii),∫

Ω̃

∫
Rd

|W (X + r/2)||α̃ψ(X, r)|2drdX

≤h2−d
∫
Rd

|W (X)||ψ(X)|2dX + Ch3−d‖W‖LpW (Rd)‖ψ‖2
H1(Rd)

=h2−d
∫

Ω

|W (X)||ψ(X)|2dX + Ch3−d‖W‖LpW (Ω)‖ψ‖2
H1

0 (Ω̃)
.

In the second step, we used our knowledge of where the functions are actually

supported. Recall that W is in�nitesimally form-bounded with respect to −δ.
Hence, for every ε > 0, there exists Cε > 0 such that∫

Ω

|W (X)||ψ(X)|2dX ≤ ε‖∇ψ‖2
L2(Ω) + Cε‖ψ‖2

L2(Ω)

This proves the �rst claimed bound.

By Hölder's inequality (on the space Ω̃× Rd with Lebesgue measure) and the

Sobolev interpolation inequality (on R
d × R

d), we get that for every ε > 0,

there exists Cε > 0 such that∫
Ω̃

∫
Rd

|W (X + r/2)||ξ(X, r)|2drdX

≤2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2
L4(Ω̃×Rd)

=2d/2|Ω̃|1/2‖W‖L2(Ω)‖ξ‖2
L4(Rd×Rd)

≤2d/2|Ω̃|1/2‖W‖L2(Ω)

(
ε‖∇ξ‖2

L2(Ω̃×Rd)
+ Cε‖ξ‖2

L2(Ω̃×Rd)

)
.

Since pW ≥ 2 in all dimensions, this �nishes the proof of Lemma 6.5.5.
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Proof of Theorem 6.5.1

The auxiliary results proved so far combine to give the following H1 type

lower bound on EBCS. From it, the a priori bounds stated in Theorem 6.5.1

will readily follow.

Lemma 6.5.6. Assume that µ = −Eb+Dh2. Let α̃ ∈ H1
0 (D) ⊂ H1

0 (Ω̃×Rd) be
decomposed as α̃ = α̃ψ + ξ as in Proposition 6.5.4. Then, there exist constants

c1, c2 > 0 such that

EBCS(Γ) ≥c1h
2
(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd)

)
+ c1‖ξ‖2

L2(Ω̃×Rd)

− (µ+ Eb + c2h
2)‖α̃‖2

L2(Ω̃×Rd)
+
Eb
2

Tr[αααα].

holds for all su�ciently small h.

Proof. Given the bounds from Lemma 6.5.5 on the W term, one can follow

the proof of Lemma 3 in [28]. The key ingredient is the spectral gap of the

operator −∆ + V above its ground state (and the standard fact that the gap

can be used to obtain H1 control on the error term).

Proof of Theorem 6.5.1. Let µ = −Eb+Dh2 and let Γ be a BCS state satisfying

EBCS(Γ) ≤ CΓh
4−d. By Lemma 6.5.6 and µ = −Eb +Dh2, we have

h2(c2 +D)‖α̃‖2
L2(Ω̃×Rd)

+ CΓh
4−d ≥h2

(
h2−d‖∇ψ‖2

L2(Ω̃)
+ ‖∇ξ‖2

L2(Ω̃×Rd)

)
+ ‖ξ‖2

L2(Ω̃×Rd)
+ Tr[αααα]

(6.47)

We will eventually use all the terms in this equation. We write c2 +D = O(1).

All the following implicit constants are obtained from this one in a continuous

way and will therefore be continuous in D.

We begin by concluding from (6.47) that

‖ξ‖2
L2(Ω̃×Rd)

≤ h2(c2 +D)‖α̃‖2
L2(Ω̃×Rd)

+ CΓh
4−d. (6.48)

From the �rst identity in (6.44), we therefore get

‖α‖2
L2(Ω2) ≤ h2−d‖ψ‖2

L2(Ω̃)
+O(h2)‖α‖2

L2(Ω2) + CΓh
4−d

and so, for all su�ciently small h,

‖α‖2
L2(Ω2) ≤ Ch2−d‖ψ‖2

L2(Ω̃)
+ CΓh

4−d. (6.49)
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Applying (6.49) to (6.47) and dropping some non-negative terms, we conclude

‖∇ψ‖2
L2(Ω̃)

≤ C(‖ψ‖2
L2(Ω̃)

+ CΓ), (6.50)

‖ξ‖2
L2(Ω̃×Rd)

+ h2‖∇ξ‖2
L2(Ω̃×Rd)

≤ O(h4−d)
(
‖ψ‖2

L2(Ω̃)
+ CΓ

)
. (6.51)

Thus, to prove (6.38), it remains to show

Lemma 6.5.7. ‖ψ‖L2(Ω̃) = O(1).

Remark 6.5.8. At this stage, [28] prove Lemma 6.5.7 (in three dimensions)

by using ‖ψ‖2
L2 ≤ h‖α‖2

L2 = hTr[αα] ≤ hTr[γ] and the fact that they work at

�xed particle number Tr[γ] = N/h. Since we do not have this assumption, we

use the semiclassical expansion of the quartic term Tr[αααα] similarly as in

[73]. Here, as in the proof of Lemma 6.6.1 and in [28], one uses that in the

Schatten norm estimate ‖ξ‖S4 ≤ ‖ξ‖S2, the right hand side is still of higher

order in h for dimensions d ≤ 3.

Proof of Lemma 6.5.7. We retain only the trace on the right-hand side of

(6.47),

Ch2‖α‖2
L2(Ω2) + CΓh

4−d = Ch2‖α̃‖2
L2(Ω̃×Rd)

+ CΓh
4−d ≥ Tr[αααα]. (6.52)

For the following argument, we extend all the relevant kernels to functions on

R
d×Rd. In this way, we can identify Tr[αααα] ≡ ‖α‖4

S4 , where ‖ · ‖Sp denotes
the Schatten trace norm of an operator on L2(Rd). Equation (6.43) may be

rewritten as

α = αψ + ξ̃, αψ(x, y) = h1−dψ

(
x+ y

2

)
α∗

(
x− y
h

)
,

ξ̃(x, y) = ξ

(
x+ y

2
, x− y

)
.

(6.53)

Here and in the following, the kernel functions αψ, ξ̃ are understood to be

functions on R
d × R

d (obtained by extension by zero). The Schatten norms

satisfy the triangle inequality and are monotone decreasing in p. Also, the

‖ · ‖S2 norm of any operator agrees with the ‖ · ‖L2(Rd×Rd) norm of its kernel.

From these facts, we obtain

‖α‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S4 ≥ ‖αψ‖S4 − ‖ξ̃‖S2 = ‖αψ‖S4 − ‖ξ̃‖L2(Rd×Rd)

= ‖αψ‖S4 − ‖ξ‖L2(Ω̃×Rd) ≥ ‖αψ‖S4 +O(h)‖α‖L2(Ω2) +O(h2−d/2).
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In the last step, we used (6.48). From this, (6.52) and (6.49), we get

‖αψ‖4
S4 ≤ C

(
‖α‖4

S4 + h4‖α‖4
L2(Ω2) +O(h8−2d)

)
≤ C

(
h2‖α‖2

L2(Ω2) + h4‖α‖4
L2(Ω2) +O(h4−d)

)
≤ C

(
h4−d‖ψ‖2

L2(Ω̃)
+ h8−2d‖ψ‖4

L2(Ω̃)
+O(h4−d)

)
.

(6.54)

Along the way, we used 8− 2d > 4− d for d = 1, 2, 3. After extension by zero,

ψ ∈ H1(Rd) and we apply Lemma 6.3.2 (iv) to get

‖αψ‖4
S4 = h4−dg0(α∗)‖ψ‖4

L4(Ω̃)
+O(h5−d)‖ψ‖4

H1
0 (Ω̃)

.

Then, by (6.50) and Hölder's inequality, ‖αψ‖4
S4 ≥ Ch4−d‖ψ‖4

L2(Ω̃)
. Combining

this estimate with (6.54) and using 8− 2d > 4− d, we get

‖ψ‖4
L2(Ω̃)

≤ C‖ψ‖2
L2(Ω̃)

+O(1)

This proves ‖ψ‖L2(Ω̃) ≤ O(1) and hence Lemma 6.5.7 and Theorem 6.5.1.

6.6 Proof of Theorem 6.2.1 (LB): Semiclassics

From a priori bounds to GP theory

We begin by deriving a lower bound in terms of GP energy on Ω̃, by assuming

a decomposition with a priori bounds as in Theorem 6.5.1 and applying the

semiclassical expansion from Lemma 6.3.2.

Accordingly, in this section, ψ and ξ are general functions, not necessarily the

ones de�ned previously in Proposition 6.2.5 (they will be the same for convex

domains).

Lemma 6.6.1. Let µ = −Eb + Dh2 and de�ne ν ′ := min{d/2, 1}. Let Γ be

a BCS state such that α can be decomposed as in (6.10) for some ψ ∈ H1
0 (Ω̃)

and ξ ∈ H1
0 (Ω̃× Rd). Moreover, suppose that ‖ψ‖H1

0 (Ω̃) ≤ O(1) and ξ satis�es

the bound in (6.38). Then, wee have

EBCS(Γ) ≥ h4−dEGP (ψ) +O(h4−d+ν′)‖ψ‖2
H1

0 (Ω̃)
. (6.55)

The implicit constant depends continuously on D.

Proof of Lemma 6.6.1

It will be convenient to de�ne the auxiliary energy functional

ELB(α) :=Tr[(−h2∆Ω + h2W − µ)αα]

+

∫∫
Ω×Ω

V

(
x− y
h

)
|α(x, y)|2dxdy + Tr[hαααα].
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We �rst note that this auxiliary functional provides a lower bound to the BCS

energy. The basic idea is to replace γ by expressions in α using αα ≤ γ as in

the proof of Lemma 6.5.2. However some additional di�culty is present here

because the last term in ELB(α) still features h and so we need the stronger

operator inequality (6.56) below.

Proposition 6.6.2. For su�ciently small h, we have EBCS(Γ) ≥ ELB(α),

where α denotes the o�-diagonal element of the BCS state Γ.

Proof of Proposition. The claim will follow from the operator inequality

γ ≥ αα + αααα. (6.56)

To prove (6.56), we start by observing that 1− γ ≤ (1 + γ)−1 by the spectral

theorem. Consequently

0 ≤ Γ =

(
γ α

α 1− γ

)
≤

(
γ α

α (1 + γ)−1

)
.

The Schur complement formula implies

γ ≥ α(1 + γ)α.

Using γ ≥ αα, we �nd

γ ≥ α(1 + γ)α ≥ αα + αααα

which proves (6.56). To conclude, let h be su�ciently small such that h ≥ 0,

see Proposition 6.5.3. Then (6.56) yields

Tr[hγ] ≥ Tr[hαα[+Tr[hαααα]

and this proves Proposition 6.6.2.

The following key lemma says that we can apply the semiclassical expansion

to the auxiliary energy functional with the desired result.

Lemma 6.6.3. Under the assumptions of Lemma 6.6.1, we use the splitting

α = αψ + ξ̃ from (6.53). Then

ELB(α) ≥ ELB(αψ) +O(h4−d+ν′)‖ψ‖2
H1

0 (Ω̃)
.

The implicit constant depends continuously on D.
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Before we prove this lemma, we note that it directly implies Lemma 6.6.1.

Indeed, it gives

EBCS(Γ) ≥ ELB(α) ≥ ELB(αψ) +O(h4−d+ν′)‖ψ‖2
H1

0 (Ω̃)
.

All the terms in ELB(αψ) were computed in the semiclassical expansion in

Lemma 6.3.2. On the result of the expansion, we use the eigenvalue equa-

tion (−δ + V +Eb)α∗ = 0 and recall gBCS(α∗) = gBCS from (6.6). This yields

EGP (ψ) plus the appropriate error terms. These are of the claimed size because

‖ψ‖H1(Rd) ≤ O(1) by Theorem 6.5.1 and µ = −Eb+Dh2 by assumption. More-

over, they depend on the previously derived error terms in explicit continuous

ways and are therefore also continuous in D.

It remains to give the

Proof of Lemma 6.6.3. We treat the terms in ELB in four separate parts. First,

by changing to center-of-mass coordinates (6.40), compare the proof of Lemma

3 in [28],

Tr[(−h2∆Ω + Eb)αα] +

∫∫
Rd×Rd

V

(
x− y
h

)
|α(x, y)|2dxdy

≥Tr[(−h2∆Ω + Eb)αψαψ] +

∫∫
Rd×Rd

V

(
x− y
h

)
|αψ(x, y)|2dxdy.

(6.57)

Second, from µ = −Eb +Dh2, (6.49) and (6.38), we get

−(µ+ Eb)Tr[αα] ≥ −(µ+ Eb)Tr[αψαψ] +O(h6−d)‖ψ‖2
L2(Ω̃)

. (6.58)

Next, by Cauchy-Schwarz, Lemma 6.5.5 and (6.38):

Tr[Wαα] ≥Tr[Wαψαψ]− C
(
‖ξ‖2

L2(Ω̃×Rd)
+ h2‖∇ξ‖2

L2(Ω̃×Rd)

)
− C

(
‖ξ‖2

L2(Ω̃×Rd)
+ h2‖∇ξ‖2

L2(Ω̃×Rd)

)1/2

h1− d
2‖ψ‖H1

0 (Ω̃)

≥Tr[Wαψαψ] +O(h3−d).

Using h = −h2∆Ω + h2W − µ, the claim will then follow from

Tr[hαααα] ≥ Tr[hαψαψαψαψ] +O(h4−d+ν′). (6.59)

This can be obtained by expanding the quartic and using the a priori bounds

(6.38), see the proof of (7.12) in [28]. Modi�cations are only needed for the W
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term, which we control via form-boundedness (instead of using ‖W‖L∞). Con-
sider e.g. the term Tr[Wαψααξ̃]. By cyclicity of the trace, Hölder's inequality

for Schatten norms and form-boundedness,

Tr[Wαψααξ̃] ≤‖α‖2
S6‖
√
|W |αψ‖S6‖

√
|W |sgn(W )ξ̃‖S2

=‖α‖2
S6‖αψ|W |αψ‖1/2

S3 ‖ξ̃|W |ξ̃‖1/2

S1

≤C‖α‖2
S6 (‖∇αψ‖S6 + ‖αψ‖S6)

(
‖∇ξ̃‖S2 + ‖ξ̃‖S2

)
.

(6.60)

In the last step, we used the fact that form-boundedness of W implies the op-

erator inequality |W | ≤ C(1−∆). The resulting expression is up to constants

the �rst term on the right hand side in (7.16) of [28] and is estimated there for

d = 3. The bounds directly generalize to all d = 1, 2, 3 and we brie�y sketch

the conclusion of the argument in that general case.

First, one uses α = αψ + ξ, the triangle inequality for the S6-norm and the

fact that ‖ · ‖S6 ≤ ‖ · ‖S2 to get

‖α‖2
S6 ≤ C

(
‖αψ‖2

S6 + ‖ξ‖2
S2

)
.

Now one can bound all the terms by generalizing the estimates in Lemma 1

of [28] to all d = 1, 2, 3 and by the a priori bounds from Theorem 6.5.1 (recall

that the Hilbert-Schmidt norm is equal to the L2 × L2 norm of the kernel).

This gives

‖αψ‖S2 ≤ O(h1−d/2), ‖αψ‖S6 ≤ O(h1−d/6),

‖ξ̃‖S2 ≤ O(h2−d/2), ‖∇ξ̃‖S2 ≤ O(h1−d/2),

‖∇αψ‖S6 ≤ C (‖∇Xαψ‖S6 + ‖∇rαψ‖S6) ≤ O(h−d/6)

and we conclude that

h2Tr[Wαψααξ̃] ≤ O(h5−d).

The same idea applies to all the other W dependent terms in the expansion of

the quartic and we obtain (6.59). This proves Lemma 6.6.3 and consequently

Lemma 6.6.1.

Proof of Theorem 6.2.1 (LBC)

Let Ω be convex and let Γ be an approximate BCS minimizer, i.e. EBCS(Γ) ≤
CΓh

4−d. We apply Theorem 6.5.1 and then Lemma 6.6.1. Since Ω = Ω̃ by

convexity, this �nishes the proof.
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Proof of Theorem 6.2.1 (LB)

Let Ω be a non-convex bounded Lipschitz domain. The order parameter ψ

de�ned in Proposition 6.5.4 now lives on Ω̃ = Ω+Ω
2

, which may be a much

larger set than Ω.

Decay of the order parameter

We �rst show that ψ in fact decays exponentially away from Ω. This follows

easily from its de�nition (6.41) and the exponential decay of α∗, see (6.27).

Proposition 6.6.4. There exists a constant C0 > 0 such that for every ` > 0

and almost every X ∈ Ω̃ with dist(X,Ω) ≥ `, we have

|ψ(X)| ≤ C0h
d/2−1e−ρ∗

2`
h ‖α̃(X, ·)‖L2(DX) (6.61)

|∇ψ(X)| ≤ C0h
d/2−1e−ρ∗

2`
h ‖∇X α̃(X, ·)‖L2(DX). (6.62)

Proof. Let ` > 0 and X ∈ Ω̃ with dist(X,Ω) ≥ `. The key observation is that

the triangle inequality implies

DX ⊆
{
r ∈ Rd : |r| > 2`

}
,

where DX was de�ned in Proposition 6.5.4. Therefore, by Cauchy-Schwarz

and (6.27)

|ψ(X)| ≤ h−1

∫
DX
|α∗(r/h)||α̃(X, r)|dr

= h−1

∫
DX

e−ρ∗
r
h eρ∗

r
h |α∗(r/h)||α̃(X, r)|dr

≤ C0h
d/2−1e−ρ∗

2`
h ‖α̃(X, ·)‖L2(DX).

This proves (6.61). Starting from (6.45), the same argument gives (6.62).

Conclusion by a cuto� argument

With Proposition 6.6.4 at our hand, we just have to cut o� part of ψ that

lives su�ciently far away from Ω. We �rst apply Theorem 6.5.1 to get the

decomposition and the a priori bounds stated there. Then, we de�ne

ψ1(X) : = η `(h)
4
,Ω+
`(h)

(X)ψ(X),

ξ1(X, r) : = ξ(X, r) + (ψ(X)− ψ1(X))α∗(r/h).
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Here Ω+
` was de�ned in (6.14), the cuto� function η`,U was de�ned in (6.66)

and `(h) = h log(h−q). Note that we also have (6.10) with ψ, ξ replaced by

ψ1, ξ1.

Note that ψ1 ∈ H1
0 (Ω+

`(h)). Hence, the claim will follow from Lemma 6.6.1 ap-

plied with the choices ψ = ψ1, ξ = ξ1. It remains to show that its assumptions

are satis�ed, namely that ‖ψ1‖H1
0 (Ω+

`(h)
) ≤ O(1) and ξ1 satis�es (6.38).

For this part, we denote η ≡ η c0`(h)
4

,Ω+
`(h)

and ` ≡ `(h) for short. We �rst prove

that ‖ψ1‖H1
0 (Ω+

` ) ≤ O(1). Using η ≤ 1 and Cauchy-Schwarz, we get

‖ψ1‖2
H1

0 (Ω+
` )
≤ 2‖ψ‖2

H1
0 (Ω+

` )
+ 2

∫
Ω+
` (h)

|∇η|2|ψ|2dX = O(1) + 2

∫
Ω+
`

|∇η|2|ψ|2dX.

(6.63)

The term with |∇η| may look troubling since we can only control |∇η| ≤ `−2

on supp∇η. The key insight is that this potential blow up in h is su�ciently

dampened on supp∇η by the exponential decay of |ψ| established by Propo-

sition 6.6.4. Namely, we will prove

Lemma 6.6.5. supp∇η(p) ⊂ (Ω+
`/2)c

We postpone the proof of this geometrical lemma for now. Assuming it holds, it

is straightforward to use the decay estimates from Proposition 6.6.4 to conclude

from (6.63) that ‖ψ1‖H1
0 (Ω+

` ) ≤ O(1), by choosing q large enough (with respect

to 1/ρ∗).

Next, we show that ξ1 satis�es (6.38). From Theorem 6.5.1, we already know

that ξ satis�es (6.38). When integrating the other term in the de�nition of ξ1,

we change to center of mass coordinates and write ψ − ψ1 = ψ(1 − η). Since

∇(1−η) and∇η are supported on the same set, one can use the argument from

above again on the center of mass integration (i.e. a combination of Lemma

6.6.5 and Proposition 6.6.4). We leave the details to the reader.

To �nish the proof of Theorem 6.2.1 (LB), it remains to give the

Proof of Lemma 6.6.5. Let p ∈ Rd be a point such that ∇η(p) 6= 0. Then, by

de�nition (6.66) of η,

dist(p, (Ω+
` )c) < `/2.
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Let q` ∈ (Ω+
` )c be a point such that dist(p, (Ω+

` )c) = |p − q`| and let q ∈ Ω

be a point such that dist(p,Ω) = |p− q| (such points exists by a compactness

argument). By de�nition (6.14) of Ω+
` and the triangle inequality,

` ≤ dist(Ω, (Ω+
` )c) ≤ |q − q`| ≤ |q − p|+ |p− q`| < |q − p|+ `/2.

Therefore, dist(p,Ω) = |q − p| > `/2 and so p ∈ (Ω+
`/2)c. Since p was an

arbitrary point with ∇η(p) 6= 0 and (Ω+
`/2)c is closed, Lemma 6.6.5 is proved.

6.7 Proof of the continuity of the GP energy (Theorem 6.2.2)

Davies' use of Hardy inequalities

This section serves as a preparation to prove the second key result Theorem

6.2.2.

The central idea that we discuss here is Lemma 6.7.2. It is based on the

insight of Davies [54][55] that continuity of the Dirichlet energy under interior

approximations of a domain U follows from good control on the boundary

decay of functions that lie in the operator domain of ∆U (the decay is better

than that of functions that merely lie in the form domain of −∆U). The key

assumption is that the domain U satis�es a Hardy inequality (6.65).

Importantly, GP minimizers corresponding to EGP
U are in dom(∆U) thanks to

the Euler Lagrange equation; this was proved in Proposition 6.2.5.

As its input, the lemma requires the validity of the

De�nition 6.7.1 (Hardy inequality). Let U ⊆ R
d and denote

dU(x) := dist(x, U c). (6.64)

We say that U satis�es a Hardy inequality, if there exist cU ∈ (0, 1] and λ ∈ R
such that∫

U

dU(x)−2|ϕ(x)|2dx ≤ 4

c2
U

‖∇ϕ‖2
L2(U) + λ‖ϕ‖2

L2(U), ∀ϕ ∈ C∞c (U). (6.65)

We shall refer to cU and λ as the �Hardy constants�.

We can now state
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Lemma 6.7.2. For any 0 < ` < 1, we de�ne the function η`,U : Rd → [0,∞)

by

η`,U(x) :=


0, if 0 ≤ dU(x) ≤ `

dU (x)−`
`

, if ` ≤ dU(x) ≤ 2`

1, otherwise.

(6.66)

Suppose that U satis�es the Hardy inequality (6.65) for some cU ∈ (0, 1] and

some λ ∈ R. Then, there exists a constant c > 0 depending only on cU and λ

such that

EGP (η`,Uϕ)− EGP (ϕ) ≤ c`cU
(
‖ϕ‖H1

0 (U)‖∆Uϕ‖L2(U) + ‖ϕ‖2
H1

0 (U)

)
holds for all ϕ ∈ dom(∆U). Moreover, the same bound holds for the quantity

‖η`,Uϕ‖2
H1

0 (U)
− ‖ϕ‖2

H1
0 (U)

.

We remark that η`,U is a Lipschitz continuous function with a Lipschitz con-

stant that is independent of U (this is because dU has the Lipschitz constant

one for all U).

Proof. We write η ≡ η`,U . First, we note that the nonlinear term drops out

because |ηϕ|4 − |ϕ|4 = (η4 − 1)|ϕ|4 ≤ 0 thanks to 0 ≤ η ≤ 1. For the gradient

term, we note that the Hardy inequality (6.65) is the main assumption in

[54][55]. Thus, by Lemma 11 in [55], there exists a c > 0 (depending only on

the Hardy constants cU and λ) such that∫
U

(|∇(ηϕ)|2 − |∇ϕ|2)dx ≤ c`cU‖∆Uϕ‖L2(U)‖∇ϕ‖L2(U), ∀ϕ ∈ dom(−∆U).

Since η ≤ 1, this already implies the last sentence in Lemma 6.7.2. Using

Cauchy-Schwarz, Assumption 6.1.2 on W and Theorem 4 in [55], we get∫
U

(W +D)(η2 − 1)|ϕ|2dx ≤
∫
U

(|W |+ |D|)(1− η2)|ϕ|2dx

≤
(
‖Wϕ‖L2(Ω) + |D|‖ϕ‖L2(Ω)

)(∫
U∩{dU≤2`}

|ϕ|2dx

)1/2

≤c
(
‖W‖LpW (Ω) + |D|

)
‖ϕ‖H1

0 (U)`
1+cU/2

(
‖∆Uϕ‖L2(U)‖∇ϕ‖L2(U)

)1/2

for another constant c depending only on cU and λ. We estimate the last term

via 2
√
ab ≤ a+ b. Then we use that `1+cU/2 ≤ `cU holds for all cU ∈ (0, 1] and

0 < ` < 1. This proves Lemma 6.7.2.
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With Lemma 6.7.2 at our disposal, we need conditions on U such that it

satis�es the Hardy inequality (6.65).

It is a classical result of Necas [140] that any bounded Lipschitz domain Ω

satis�es a Hardy inequality for some cΩ ∈ (0, 1] and some λ ∈ R. Hence, we

can apply Lemma 6.7.2 with U = Ω and this is already su�cient to obtain

continuity of the GP energy under interior approximation, i.e. Theorem 6.2.2

with Ω−` . The details of this argument are given in the next subsection.

To summarize, we see that therefore Necas' result is already su�cient to derive

(i) the upper bounds in the two main results, Theorems 6.1.7 and 6.1.10.

(ii) the complete Theorem 6.1.10 for bounded and convex domains Ω. In-

deed, Theorem 6.2.1 (LBC) gives the lower bound and the upper bound

holds because any convex domains satis�es a Hardy inequality [132][134].

(In fact, the Hardy constants can be taken as c = 1 and λ = 0.)

To prove the lower bounds in the main results for non-convex domains, we

need continuity of the GP energy under exterior approximation. This relies

on the following new theorem which is is an extension of Necas' argument

[140]. The proof is deferred to Appendix 6.11.

Theorem 6.7.3. Let Ω be a bounded Lipschitz domain. There exist cΩ ∈ (0, 1],

λ ∈ R and `0 > 0, as well as a sequence of exterior approximations {Ω`}0<`<`0

such that the Hardy inequality (6.65) holds with U = Ω` for all ` < `0.

Moreover, the sequence of approximations {Ω`}` satis�es the following proper-
ties.

(i) There exists a constant c0 > 1 such that Ω+
` ⊂ Ω` ⊂ Ω+

c0`
.

(ii) There exists a constant a > 0 such that{
q ∈ Rd : dist(q, (Ω`)

c) > a`
}
⊂ Ω. (6.67)

We emphasize that the Lipschitz character of Ω is important for the sequence

of approximations {Ω`}` to exist. Concretely, properties (i) and (ii) cannot

both hold for exterior approximations of the slit domain example presented in

Remark 6.2.4 (while there do exist approximations that all satisfy the Hardy

inequality with the `-independent constant cΩ = 1/2).
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Proof of Theorem 6.2.2

We begin by observing that Ω−` ⊂ Ω ⊂ Ω+
` trivially gives

EGP
Ω+
`
≤ EGP

Ω ≤ EGP
Ω−`
.

Theorem 6.2.2 says that the reverse bounds hold as well, up to the claimed

error terms. The basic idea is to take a minimizer on the larger domain and to

cut it o� near the boundary, where the energy cost of the cuto� is controlled

by Lemma 6.7.2.

Interior approximation

The situation is easier for interior approximation, since then we consider GP

minimizers and the Hardy inequality on the �xed domain Ω. We want to apply

Lemma 6.7.2 and we gather prerequisites.

First, by Proposition 6.2.5, there exists a unique non-negative minimizer cor-

responding to EGP
Ω , call it ψ, and it satis�es

‖∆Uψ‖L2(U) ≤ C(1 + |D|)(‖ψ‖H1
0 (U) + ‖ψ‖3

H1
0 (U)) (6.68)

Second, since Ω is a bounded Lipschitz domain, there exists cΩ ∈ (0, 1] and

λ ∈ R such that the Hardy inequality (6.65) holds on U = Ω [140]. Now we

apply Lemma 6.7.2 with the domain U = Ω and the cuto� function η2`,Ω. We

get

EGP (η2`,Ωψ) ≤ EGP (ψ) +O(`2/cΩ)(‖ψ‖H1
0 (Ω)‖∆Ωψ‖L2(Ω) + ‖ψ‖2

H1
0 (Ω))

≤EGP (ψ) +O(`2/cΩ)

In the second step, we used (6.68) and the fact that all norms of ψ are inde-

pendent of `. The de�nitions of η2`,Ω and Ω−` are such that supp η2`,Ω ⊂ Ω−` .

Since η2`,Ω is Lipschitz continuous, this implies η2`,Ωψ ∈ H1
0 (Ω−` ) and therefore

EGP (η2`,Ωψ) ≥ EGP
Ω−`
. (6.69)

This proves the claimed continuity under interior approximation.

Exterior approximation

The idea is similar as before, but additional ` dependencies complicate the

argument somewhat. We let {Ω`}0<`<`0 be the sequence of exterior approxi-

mations given by Theorem 6.7.3. That is, Ω+
` ⊂ Ω` and the Hardy inequality
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(6.65) holds on all U = Ω` with Hardy constants that are uniformly bounded

in `.

By Proposition 6.2.5, there exists a unique non-negative minimizer correspond-

ing to EGP
Ω`

, call it ψ`, and it satis�es the analogue of (6.68) with a C that is

independent of `.

Recall de�nition (6.66) of the cuto� function ηa`,Ω` . Here we choose a > 0 such

that property (ii) in Theorem 6.7.3 holds which is equivalent to

supp ηa`,Ω` ⊂ Ω. (6.70)

Now we apply Lemma 6.7.2. We note that the constant c appearing in it

depends only on the Hardy constants (and these are uniformly bounded in `).

Therefore, using the analogue of (6.68), we get

EGP (ηa`,Ω`ψ`) ≤ EGP (ψ`) +O(`2/c)O(‖ψ`‖2
H1

0 (Ω`)
+ ‖ψ`‖4

H1
0 (Ω`)

). (6.71)

Regarding the error term, we note

Lemma 6.7.4. ‖ψ`‖H1
0 (Ω`) ≤ O(1).

Proof of Lemma 6.7.4. We use that the GP energy can only increase under a

decrease of the underlying domain to get

EGP (ψ`) = EGP
Ω`
≤ EGP

Ω (6.72)

The claim now follows from the coercivity (6.21), since the constants C1, C2, D

there do not depend on the underlying domain and hence not on `.

By (6.70) and the fact that ηa`,Ω` is a Lipschitz function, we get ηa`,Ω`ψ` ∈
H1

0 (Ω). Returning to (6.71), we can conclude the proof as in (6.69), which

yields Theorem 6.2.2.

6.8 On GP minimizers

We prove Proposition 6.2.5.

Proof of (i). The coercivity (6.21) is a straightforward consequence of the form-

boundedness of W and the elementary bound

|ψ|4 − (C +D)|ψ|2 ≥ −(C2 +D)2.
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The constants C1, C2 only depend on W .

Proof of (ii). Let {ψn} be a minimizing sequence corresponding to EGP
U . By

the coercivity (6.21), the sequence is bounded in H1
0 (U) and hence weakly

H1
0 (U)-precompact. Let ψ∗ ∈ H1

0 (U) denote one of its weak limit points. By

Rellich's theorem, ψn → ψ∗ in L
2(U). Hence,∣∣∣∣∫

U

W (|ψn|2 − |ψ∗|2)dx

∣∣∣∣
≤
(
‖Wψn‖L2(U) + ‖Wψ∗‖L2(U)

)
‖|ψn| − |ψ∗|‖Lp(U)

≤C‖W‖LpW (U)(‖∇ψn‖H1
0 (U) + ‖∇ψ∗‖H1

0 (U))‖ψn − ψ∗‖L2(U) → 0.

The last estimate holds by Assumption 6.1.2 on W . The same argument gives

the continuity of the D term in EGP .

Let # ∈ {n, ∗}. We write EGP (ψ#) = A# + B#, where A# = ‖∇ψ#‖2
L2(U)

and B# contains the remaining terms. Then, the above shows that Bn → B∗.

Moreover, by weak convergence is H1
0 (U), lim inf An ≥ A∗, so E

GP
U = lim(An+

Bn) ≥ A∗ +B∗. Since A∗ +B∗ ≥ EGP
U by de�nition of EGP

U , we conclude that

ψ∗ is a minimizer and that An → A∗. Thus, ‖ψn‖H1
0 (U) → ‖ψ∗‖H1

0 (U) and

therefore ψn → ψ∗ strongly in H1
0 (U).

To prove the uniqueness statement we �rst note that ‖∇|ψ|‖L2(U) ≤ ‖∇ψ‖L2(U).

Moreover, since ρ 7→ ‖∇√ρ‖2
L2(U) is convex and ρ 7→ ‖ρ‖2

L2(U) is strictly con-

vex, we see that EGP (ψ) is a strictly convex functional of |ψ|2, and therefore

has a unique minimizer.

Proof for (iii). We compute the Euler Lagrange equation for the GP energy

and �nd

−1

4
∆Uψ∗ + (W −D)ψ∗ + 2gBCS|ψ∗|2ψ∗ = 0.

This equation holds in the dual of H1
0 (U), that is, when tested against H1

0 (U)

functions. By our Assumption 6.1.2 on W and Sobolev's inequality, ∆Uψ∗ is

in fact an L2(U) function and we have the bound

‖∆Uψ∗‖L2(U) =‖4(W −D)ψ∗ + 8gBCS|ψ∗|2ψ∗‖L2(U)

≤C(1 + |D|)(‖ψ∗‖H1
0 (U) + ‖ψ∗‖3

H1
0 (U)).

This �nishes the proof of Proposition 6.2.5.

6.9 Convergence of the one-body density

Proof of Proposition 6.1.11. We �x a real valued w ∈ LpW (Ω) and t ∈ R and

de�neWt := W + tw. We denote the BCS/GP energies which are de�ned with
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Wt by EBCSt , EBCS
t , EGPt , etc. On the one hand, our assumption on Γ gives

EBCS − EBCS
t ≥ EBCS(Γ)− EBCSt (Γ) + o(h4−d) = th2Tr[γw] + o(h4−d).

On the other hand, Theorem 6.1.10 yields

EBCS − EBCS
t = h4−d(EGP − EGP

t ) +O(h4−d+ν)

where the implicit constant depends on w. We denote the unique non-negative

minimizer of EGPt by ψt (see Proposition 6.2.5). Multiplying through by hd−4

and taking h→ 0, we �nd

lim sup
h→0

thd−2Tr[γw] ≤ EGP − EGP
t ≤ EGP (ψt)− EGPt (ψt) = t

∫
Ω

w|ψt|2dx.

(6.73)

We claim that ψt → ψ∗ in H
1
0 (Ω). This will imply the main claim (6.12). To

see this, one divides (6.73) by t, distinguishing the cases t > 0 and t < 0, and

sends t→ 0. Then one uses Rellich's theorem to get |ψt|2 → |ψ0|2 in Lp
′
W (Ω).

Hence, it remains to prove that ψt → ψ∗ in H1
0 (Ω). This is a simple com-

pactness argument. We denote ηt := ψt − ψ∗. The coercivity (6.21) and the

triangle inequality imply that ‖ηt‖H1
0 (Ω) remains bounded as t→ 0. We have

0 ≤EGP (ψt)− EGP (ψ∗) = EGPt (ψt)− EGPt (ψ∗)− t
∫

Ω

w(2<(ηt)ψ∗ + |ηt|2)dx

≤− t
∫

Ω

w(2<(ηt)ψ∗ + |ηt|2)dx

The right hand side vanishes as t→ 0, since ‖ηt‖H1
0 (Ω) remains bounded as t→

0. Therefore, ψt is a sequence of approximate minimizers of EGP . Proposition
6.2.5 (ii) then implies that ψt → ψ∗ in H

1
0 (Ω).

6.10 On the semiclassical expansion

We sketch the proof of Lemma 6.3.2, especially where it departs from similar

results in [28]. All norms and all integrals are taken over Rd, unless noted

otherwise.

Proof of Lemma 6.3.2. Proof of (i). This follows directly from changing to the

center-of-mass coordinates (6.40), compare the proof of Lemma 6.5.2.

Proof of (ii). We write out the trace with operator kernels, change to center-

of-mass coordinates (6.40) and apply the fundamental theorem of calculus to
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get

Tr[Waψaψ] = h−d
∫∫

W (X)|a(r)|2
∣∣∣∣ψ(X − hr

2

)∣∣∣∣2 dXdr

=h−d
∫
W (X)|ψ(X)|2dX − h−dη

with

η = Re

∫∫
W (X)|a(r)|2

(∫ 1

0

ψ

(
X − shr

2

)
hr · ∇ψ

(
X − shr

2

)
ds

)
dXdr.

(6.74)

By Hölder's and Sobolev's inequalities, |η| ≤ h‖W‖LpW (Ω)‖
√
| · |a‖2

L2‖ψ‖2
H1 .

This is O(h), since ‖
√
| · |a‖2

L2 <∞ by our assumptions on a.

Proof of (iii). The argument in Lemma 1 in [28] generalizes because the critical

Sobolev exponent is always greater or equal to six in d = 1, 2, 3 and so all the

error terms can be bounded in terms of ‖ψ‖H1(Rd). We mention that the idea

of the proof is to write the trace in terms of operator kernels and to change to

the four-body center-of-mass coordinates

X =
x1 + x2 + x3 + x4

4
, rk = xk+1 − xk, k = 1, 2, 3.

Then, one rescales the relative coordinates rk by h (since they appear as

a(rk/h)) and expands in h.

When proving the �rst equation in (iii), the W term requires a di�erent ar-

gument. Namely, as in the proof of (6.59), one uses Hölder's inequality for

Schatten norms and form-boundedness of W with respect to −∆ to get

|Tr[Wαψαψαψαψ]| ≤ C
(
‖∇αψ‖2

S4 + ‖αψ‖2
S4

)
‖∇αψ‖2

S4 .

Afterwards, one multiplies by h2 and uses the bounds from Corollary 1 in

[28]. This gives the �rst equation in (iii). For the second equation in (iii), one

replaces ‖V a‖L1 in the estimate of the error term A2 in [28] by ‖a‖L1 , which

is also �nite.

6.11 On Lipschitz domains and Hardy inequalities

We �rst present the construction of a suitable sequence of exterior approxi-

mations to a bounded Lipschitz domain. Then, we prove that this sequence

satis�es Hardy inequalities with uniformly bounded Hardy constants (Theo-

rem 6.7.3).
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The proof of Theorem 6.7.3 is an extension of Necas' argument [140] for a �xed

Lipschitz domain and draws on known results on the geometry of the sequence

of the exterior approximations [32][131]. (We remark that we could alterna-

tively work with the naive enlargements Ω+
` (6.77), but this would require

writing down a non trivial amount of elementary geometry estimates.)

De�nitions

We begin by recalling

De�nition 6.11.1 (Lipschitz domain). A bounded domain Ω ⊆ R
d is a Lips-

chitz domain, if its boundary ∂Ω can be covered by �nitely many bounded and

open coordinate cylinders C1, . . . , CK ⊂ R
d such that for all 1 ≤ k ≤ K, there

exist Rk, βk > 0 and a Cartesian coordinate system such that

∂Ω ∩ Ck ={(x, fk(x)) ∈ BRk × R},

Ω ∩ Ck = {(x, y) ∈ BRk × R : −βk < y < fk(x)} ,

Ωc ∩ Ck = {(x, y) ∈ BRk × R : fk(x) < y < βk} .

where fk : BRk → R is a uniformly Lipschitz continuous function on BRk ⊂
R
d−1, the ball of radius Rk centered at the origin.

The exterior approximations Ω` are obtained by extending Ω in the direction

of a smooth transversal vector �eld, which any Lipschitz domain is known to

host.

By Rademacher's theorem, the Lipschitz continuous function fk is di�eren-

tiable almost everywhere. Hence, for every 1 ≤ k ≤ K and almost every

x ∈ BRk , we can de�ne the outward normal vector �eld (to ∂Ω) in the coordi-

nate cylinder Ck by
n(x) :=

(∇fk(x),−1)√
1 + |∇fk(x)|2

. (6.75)

Proposition 6.11.2 (Normal and transversal vector �elds). Let Ω be a bounded

Lipschitz domain in the sense of De�nition 6.11.1. Then, Ω hosts a smooth

vector �eld v : Rd → R
d which is �transversal�, i.e. there exists κ ∈ (0, 1) such

that for all 1 ≤ k ≤ K,

v(x, fk(x)) · n(x) ≥ κ, |v(x, fk(x))| = 1, (6.76)

for almost every x ∈ BRk .
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The basic idea for Proposition 6.11.2 is that in each coordinate cylinder Ck
from De�nition 6.11.1, one takes the constant vector �eld ed, i.e. the y direc-

tion, and then one smoothly interpolates between di�erent Ck via a partition

of unity. For the details, see e.g. pages 597-599 in [131] (and note that the sur-

faces measure, called σ there, and the Lebesgue measure on BRk are mutually

absolutely continuous).

We are now ready to give

De�nition 6.11.3 (Exterior approximations). Let Ω be a bounded Lipschitz

domain and let v be the transversal vector �eld from Proposition 6.11.2. For

every ` > 0, de�ne its enlargement by

Ω̂` := {p+ `v(p) : p ∈ Ω} . (6.77)

Bounds on Ω̂`

Each set Ω̂` has many nice properties if ` is small enough, see Proposition 4.19

in [131] (though this is stated for the case ` < 0, analogous results hold for

` > 0, as is also mentioned there). In particular, Ω̂` is also a bounded Lipschitz

domain and there exist coordinate cylinders in which both ∂Ω and ∂Ω̂` are

represented as the graphs of Lipschitz continuous functions, with Lipschitz

constants that are uniformly bounded in `. Moreover:

Proposition 6.11.4. There exists a constant c0 > 0, such that for all ` > 0

small enough,

Ω+
c0`
⊂ Ω̂` ⊂ Ω+

` . (6.78)

This lemma will give property (i) in Theorem 6.7.3, up to reparametrizing

Ω` := Ω̂`/c0 .

Proof. The second containment follows directly from Proposition 4.15 in [131].

For the �rst containment, we invoke Proposition 4.19 in [131]. It gives Ω ⊂ Ω̂`

and consequently

dist(Ω, Ω̂c
`) = dist(∂Ω, ∂̂Ω`). (6.79)

We will show that dist(∂Ω, ∂Ω̂`) ≥ c0`. By Proposition 4.19 (i) in [131],

∂Ω̂` = {p+ `v(p) : p ∈ ∂Ω} . (6.80)
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Hence, by a compactness argument, there exist p, p′ ∈ ∂Ω such that

dist(∂Ω, ∂Ω̂`) = |p′ − (p+ `v(p))| = |V (p′, 0)− V (p, `)|,

where we introduced the map

V : ∂Ω× (−`0, `0)→ R
d

(p, s) 7→ p+ sv(p).
(6.81)

By (4.67) in [131], V is bi-Lipschitz if `0 > 0 is small enough. In particular,

there exists c0 > 0 such that

|V (p′, 0)− V (p, `)| ≥ c0|(p′, 0)− (p, `)| ≥ c0`.

This proves dist(∂Ω, ∂Ω̂`) ≥ c0`. The claim then follows from (6.79) and

de�nition (6.14) of Ω+
` .

Proof of Theorem 6.7.3

We apply Necas' proof [140] to all Ω` simultaneously (with ` su�ciently small)

and observe that all the relevant constants can be bounded uniformly in `.

By Proposition 4.19 (ii) in [131], for `0 > 0 small enough, there exist coordinate

cylinders C1, . . . , CK that (a) cover ∂Ω` for all 0 ≤ ` < `0 and (b) characterize

them as the graph of Lipschitz functions fk,` in the ed direction, as described

in De�nition 6.11.1. Moreover, the Lipschitz constants of fk,` are uniformly

bounded in `.

Let C0 ⊂ Ω be an open set such that dist(C0,Ω
c) > 0 and such that Ω ⊂⋃K

k=0 Ck. Let φ0, . . . , φK : Rd → R
d be a smooth partition of unity subordinate

to this covering, i.e.

suppφk ⊂ Ck,
K∑
k=0

φk = 1 on
K⋃
k=0

Ck.

The key observation is that, locally, the distance d` := dist(·, ∂Ω`) is compara-

ble to fk,` − y up to constants which depend on the Lipschitz constant of fk,`

and are thus uniformly bounded in `. Concretely, we have

Lemma 6.11.5. There exist constants a > 0 and 0 < b ≤ 1 such that for all

1 ≤ k ≤ K and all 0 ≤ ` < `0, we have

min{a, b|fk,l(x)− y|} ≤ d`(x, y) ≤ |fk,`(x)− y| (6.82)

for all (x, y) ∈ suppφk.
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Proof. Fix 1 ≤ k ≤ K. The second inequality is trivial because (x, fk,`(x)) ∈
∂Ω` implies

d`(x, y) ≤ |(x, y)− (x, fk,`(x))| = |fk,`(x)− y|.

For the proof of the �rst inequality in (6.82), we de�ne

a := min
k=0,...,K

dist(suppφk, ∂Cck) > 0.

Since ∂Ω` is compact, d`(x, y) is achieved at some point p0 ∈ ∂Ω`. In case

p0 6∈ Ck, we can bound

d`(x, y) = |p0 − (x, y)| ≥ a,

and in case p0 ∈ Ck we can write it as p0 = (x0, fk,`(x0)) and proceed as follows.

Recall that every fk,` is Lipschitz continuous with a Lipschitz constant that is

uniformly bounded in `; call the bound L. Hence, for every τ ∈ (0, 1),

d`(x, y)2 =(x− x0)2 + (y − fk,`(x0))2

≥(x− x0)2 + (1− τ−1)(fk,`(x)− fk,`(x0))2 + (1− τ)(y − fk,`(x0))2

≥(1− L(τ−1 − 1))(x− x0)2 + (1− τ)(y − fk,`(x))2.

Now one chooses τ ∈ (0, 1) so that 1 − L(τ−1 − 1) = 0. This yields the �rst

inequality in Lemma 6.11.5 with an appropriate b > 0. We have thus proved

Lemma 6.11.5.

We resume the proof of Theorem 6.7.3. Take any ϕ ∈ C∞c (Ω`) and use the

partition of unity to write the left hand side of the Hardy inequality (6.65) as∫
Ω`

|ϕ(x)|2d`(x)−2dx =
K∑
k=0

∫
Ck∩Ω`

φk(x)|ϕ(x)|2d`(x)−2dx

≤C‖ϕ‖2
L2 +

K∑
k=1

∫
Ck∩Ω`0

φk(x)|ϕ(x)|2d`(x)−2dx.

where C = dist(C0,Ω
c)−2 < ∞. We emphasize that we used Ω` ⊂ Ω`0 in the

last integral. Now, we write each integral over Ck in boundary coordinates and

apply Lemma 6.11.5. Importantly, the resulting expression is independent of

` (it only depends on `0). Hence, one can conclude the proof, exactly as in

[140], by Fubini and the one-dimensional Hardy inequality [88]. This proves
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the �rst part of Theorem 6.7.3.

It remains to show properties (i) and (ii) in Theorem 6.7.3. (i) holds by

Proposition 6.11.4. For (ii), we take any q ∈ Rd such that dist(q,Ωc
`) ≥ a`. In

particular, q ∈ Ω`. Hence, if ` is small enough, there exists p ∈ Ω such that

q = p+ `v(p).

Recall that the vector �eld v : Rd → R
d is di�erentiable. We introduce the

�nite and ` independent constants

C0 := ‖v‖L∞(Ω`0 ), C1 := ‖∇v‖L∞(Ω`0 ).

Using the characterization (6.80) and q ∈ Ω`, we have

a` ≤dist(q,Ωc
`) = min

p′∈∂Ω
|p+ `v(p)− p′ − `v(p′)|

≤(1 + C1`) min
p′∈∂Ω

|p− p′| = (1 + C1`)dist(p,Ωc).

We can choose ` small enough so that C1` ≤ 1. We get

dist(q,Ωc) = inf
p′∈Ωc

|p+ `v(p)− p′| ≥ inf
p′∈Ωc

|p− p′| − C0`

=dist(p,Ωc)− C0` ≥ `(a/2− C0).

By choosing a > 0 large enough, we get that q ∈ Ω as claimed. This �nishes

the proof of Theorem 6.7.3.

6.12 The linear case: Ground state energy of a two-body operator

In this section, we discuss a linear version of our main result. It gives an

asymptotic expansion of the ground state energy of the two-body operator

(6.83), describing a fermion pair which is con�ned to Ω

While in principle the center of mass and relative coordinate are coupled due to

the boundary conditions, the result shows that they contribute to the ground

state energy of Hh on di�erent scales in h (and therefore in a decoupled man-

ner).

Theorem 6.12.1. Let Ω ⊂ R
d be a bounded Lipschitz domain. Given functions

V : Rd → R and W : Ω → R satisfying Assumption 6.1.2, we de�ne the two-

body operator

Hh :=
h2

2
(−∆Ω,x +W (x)−∆Ω,y +W (y)) + V

(
x− y
h

)
(6.83)
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with form domain H1
0 (Ω× Ω). Then, as h ↓ 0,

inf specL2(Ω×Ω)Hh = −Eb + h2Dc +O(h2+ν), (6.84)

where ν > 0 is as in Theorem 6.1.10 (i) and

−Eb = inf specL2(Rd)(−∆ + V ), Dc = inf specL2(Ω)

(
−1

4
∆Ω +W

)
.

This could be proved by following the line of argumentation in the main text

and ignoring the nonlinear terms throughout. However, the proof of the lower

bound is considerably simpler in the linear case. To not obscure the key ideas,

we give the proof in the special case when W ≡ 0 and Ω is convex.

It is instructive to think of the even more special case when Ω is an interval,

say Ω = [0, 1]. This case is depicted in Figure 6.1 and the proof is sketched in

the caption.

Proof. We denote the ground state energy of −1
4
∆Ω−`

by D−c (`) (compare

(6.20)), where Ω−` is de�ned in (6.13).

Upper bound. We construct a trial state with the following functions: α∗,

the ground state satisfying (−∆ + V )α∗ = −Ebα∗, χ a cuto� function as

described in De�nition 6.4.1, and ψ`(h), the normalized ground state of −∆Ω−
`(h)

for `(h) = h log(h−q) and q > 0 large but �xed. In center of mass variables,

X = x+y
2
, r = x− y, the trial state then reads

ψ`(h)(X)χ

(
r

`(h)

)
h1−dα∗

( r
h

)
. (6.85)

We apply Hh to this and use the fact that −1
2
∆x − 1

2
∆y = −1

4
∆X − ∆r.

The exponential decay of α∗ controls the localization error introduced by χ

as in the proof of Proposition 6.4.3. Therefore the energy of the trial state is

−Eb +h2D−c (`(h)) +O(h2+ν). The second (linear) part of Theorem 6.2.2 with

W ≡ 0 says that D−c (`(h)) ≤ Dc +O(hν). Hence the upper bound in (6.84) is

proved.

Lower bound. The key idea is to drop the Dirichlet boundary condition in the

relative variable. The center of mass coordinates are originally de�ned on the

domain

D :=
{

(X, r) ∈ Ω× Rd : X +
r

2
, X − r

2
∈ Ω

}
.



164

Figure 6.1: When Ω = [0, 1], the region Ω × Ω has a diamond shape when
depicted in the center of mass coordinates (X, r). To prove the upper bound
in Theorem 6.12.1, one uses a trial state, see (6.85), which is supported on
the small dashed rectangular region I, where `(h) = h log(h−q) with q > 0
large but �xed. When Ω = [0, 1], the Dirichlet eigenfunctions are explicit
sine functions and so one does not need to invoke Theorem 6.2.2 to get the
upper bound. For the lower bound, one drops the Dirichlet condition in the
relative variable, i.e. one extends the problem from the diamond to the strip
II = [0, 1] × R. This decouples the X and r variables and directly yields the
lower bound.

(Here we use the convexity of Ω.) Observe that D ⊂ Ω × R
d. On the space

L2(Ω× Rd), we de�ne a new operator

H̃h = −h
2

4
∆Ω,X − h2∆r + V (r/h),

with form domain H1
0 (Ω×Rd). By domain monotonicity we have H̃h ≤ Hh in

the sense of quadratic forms, and therefore

inf specL2(Ω×Rd)H̃h ≤ inf specL2(Ω×Ω)Hh. (6.86)

Now inf specL2(Ω×Rd)H̃h can be computed exactly since the X and r variables

are decoupled and so the corresponding operators commute. The ground state

is just

ψ0(X)h1−dα∗

( r
h

)
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where ψ0 is the normalized ground state of −1
4
∆Ω. The energy of this state is

precisely equal to −Eb + h2Dc. By (6.86), the lower bound follows.
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C h a p t e r 7

ON THE ENTROPY OF FERMIONIC REDUCED DENSITY

MATRICES

Marius Lemm

7.1 Introduction

The entropy of the k-body reduced density matrix of a quantum state measures

the entanglement of k particles with the rest of the system. The antisymmetry

of a fermionic quantum state has a marked e�ect on these entropies. For

example, there is no fermionic state for which these entropies all vanish and in

this sense, a many-fermion system will always display non-trivial entanglement.

This is in stark contrast to the bosonic case. Indeed, there are bosonic states,

namely product wave functions, for which the entropy of all reduced density

matrices vanishes and such states are completely unentangled from this view-

point.

One commonly considers Slater determinants to be the minimally entangled

fermionic states, since they arise from the most natural antisymmetrization

procedure. Therefore, one often measures the entanglement of a fermionic state

relative to Slater determinants, e.g., in the de�nition of Slater rank [5, 64, 147].

A similar idea appears in quantum chemistry, where one separates the indirect

electrostatic energy into an �exchange part� and a �correlation part�. The

correlation part vanishes for Slater determinants, i.e., they are considered to

be uncorrelated modulo antisymmetrization/exchange.

The intuition that Slater determinants are the minimally entangled fermionic

states was recently turned into the following mathematical conjecture by Carlen,

Lieb and Reuvers (CLR) [33]. Their conjecture says that the minimal entropy

of a fermionic two-body reduced density matrix is achieved for Slater determi-

nants. (The value of the minimal entropy is then log
(
N
2

)
in their convention.)

While analogous conjectures can be made for the k-particle density matrices

for other values of k, the case k = 2 is the most important one for applications

to many-body theory. The statement is known when k = 1; it was proved by

Coleman [39] in 1963.
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The conjecture of CLR is part of an e�ort to better understand the kinds of

two-body reduced density matrices that can arise from fermionic pure states.

This e�ort is partly motivated by the N -representability problem in many-

body theory.

For further background and results concerning other entanglement measures in

many-fermion systems, we refer to [5, 12, 33, 37]. We mention in particular the

result of CLR [33] that convex combinations of Slater determinants uniquely

minimize the entanglement of formation [19, 20] among fermionic mixed states.

In the present paper, we apply techniques from quantum information the-

ory, most notably the monotonicity of the quantum relative entropy under

the partial trace, to study the problem posed by CLR. Our �rst main result

gives general facts about the entropy of the k-body reduced density matrix

of any permutation-invariant pure state as a function of k: It is concave for

all 1 ≤ k ≤ N and it is non-decreasing for 1 ≤ k ≤ N−1
2

(Theorem 7.2.4).

Combining the monotonicity with Coleman's theorem, we obtain the lower

bound logN on the entropy of fermionic k-body reduced density matrices for

all k ≥ 2 ([33] proved this for the k = 2 case). See Remark 7.2.5 (ii).

In our second main result, we show that the relative entropy approach also

yields a dimension-dependent bound on the entropy of the two body reduced

density matrix (Theorem 7.2.6). The bound implies the asymptotic form

of the CLR conjecture when the dimension of the underlying Hilbert space is

not too large. The proof is inspired by recent work on approximate quantum

cloning in collaboration with Mark M. Wilde [121]. (We mention that a similar

bound can be obtained from Yang's bound on the largest eigenvalue of the two

body reduced density matrix.)

7.2 Setup and results

Basic de�nitions and facts

We work on the �nite-dimensional Hilbert space (Cd)⊗N , where 1 ≤ N ≤ d

are integer-valued parameters. The antisymmetric subspace is given by

HN := ΛN
C
d, dN := dimHN =

(
d

N

)
.

By de�nition, an N -fermion quantum state ρN is a density matrix (a non-

negative matrix of trace one) that is supported in HN . We can associate to
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each ρN the family of its k-body reduced density matrices

γk := Trk+1,...,N [ρN ].

Here Trk+1,...,N [·] denotes the partial trace over the last N − k variables when

we decompose (Cd)⊗N = (Cd)⊗k⊗ (Cd)⊗(N−k). We use the convention that the

partial trace is trace-preserving, i.e. Tr[γk] = 1.

The quantity of interest is the entropy of the k-body reduced density matrix

S(γk) := −Tr[γk log γk], 1 ≤ k ≤ N.

We view this as the entanglement entropy associated to the decomposition

(Cd)⊗N = (Cd)⊗k⊗(Cd)⊗(N−k); it gives a measure on the entanglement between

k of the particles with the remaining N − k ones.

As mentioned in the introduction, we are interested in lower bounds on S(γk),

in particular S(γ2), when ρN varies over the set of fermionic density matri-

ces. By linearity of the partial trace and concavity of the entropy, we may

restrict our considerations to the extreme points of this set, the pure states.

By de�nition, a fermionic pure state is a projector

|ΨN〉〈ΨN |, ΨN ∈ HN .

In the following, we restrict to the case ρN = |ΨN〉〈ΨN |.

A basic fact that will be important for us is that the entanglement entropy of

a fermionic pure state is symmetric under re�ection at N/2, i.e.,

S(γk) = S(γN−k), ∀ 1 ≤ k ≤ N − 1. (7.1)

The conjecture of Carlen, Lieb and Reuvers

Thanks to Coleman's work [39], we have a good understanding of the case

k = 1.

Theorem 7.2.1 (Coleman's theorem). Let ρN = |ΨN〉〈ΨN | for some ΨN ∈
HN . Then S(γ1) is minimal for Slater determinants, i.e.,

S(γ1) ≥ logN.
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Remark 7.2.2. An elementary computation shows that if |ΨN〉 = |φ1 ∧ . . . ∧
φN〉 is a Slater determinant, then S(γk) = log

(
N
k

)
for any 1 ≤ k ≤ N . A

detailed proof of this fact can be found e.g. in Appendix E of [121].

In [33], Carlen, Lieb and Reuvers make the following two conjectures which

would give analogues of Coleman's theorem for k = 2. The second statement

is an asymptotic (and therefore weaker) version of the �rst one.

Conjecture 7.2.3 (CLR). Let ρN = |ΨN〉〈ΨN | for some ΨN ∈ HN . Then

S(γ2) ≥ log

(
N

2

)
, (7.2)

or at least S(γ2) ≥2 logN +O(1), as N →∞. (7.3)

In their paper, CLR derive a strengthened subadditivity inequality for the

quantum entropy, cf. Theorem 5.1 in [33]. Applied to the problem at hand,

they obtain

S(γ2) ≥ logN +O(1), as N →∞. (7.4)

Alternatively, as is mentioned in [33], one can use Yang's bound on the largest

eigenvalue of γ2 to �nd

S(γ2) ≥ −‖γ2‖∞ ≥ log(N − 1) + log

(
d

d−N + 1

)
≥ log(N − 1). (7.5)

Both bounds, (7.4) and (7.5) are o� by a factor of two from the conjectured

bound (7.3). We investigate the problem using entropy inequalities and as

corollaries we obtain bounds which asymptotically behave similarly to (7.4)

and (7.5). Establishing the conjectured bound (7.3) remains an interesting

open problem.

Main results

Our �rst main result gives general properties of the function k 7→ S(γk). It

allows us to improve the CLR result (7.4) to (7.8) below. For simplicity, we

de�ne

Sk := S(γk).

Theorem 7.2.4. Let ρN = |ΨN〉〈ΨN | for some ΨN ∈ HN . The map k 7→ Sk

has the following properties.
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(i) Monotonicity. For every 1 ≤ k ≤ N
2
− 1,

Sk ≤ Sk+1. (7.6)

(ii) Concavity. For every 2 ≤ k ≤ N − 1,

Sk ≥
Sk+1 + Sk−1

2
. (7.7)

Together with the symmetry property Sk = SN−k, this theorem provides re-

strictions on what graphs can be exhibited by k 7→ S(γk).

Remark 7.2.5. (i) Theorem 7.2.4 generalizes verbatim to bosonic reduced

density matrices. (The proof only uses general inequalities and the sym-

metry property Sk = SN−k, which holds for any permutation-invariant

pure state.)

(ii) From the monotonicity (7.6) and Coleman's theorem, we get

S(γ2) ≥ S(γ1) ≥ logN, (7.8)

which is to be compared with (7.4) of [33].

(iii) In fact, we obtain S(γk) ≥ logN for all 1 ≤ k ≤ N . This shows that,

for fermionic pure states, all possible decompositions of the particles into

two groups are entangled.

We now consider the asymptotic version of the CLR conjecture (7.3). It claims

that the lower bound (7.8) can be improved to 2 logN + O(1). Our second

main result implies this as a corollary, provided the dimension d ≥ N is not

too far from N .

Theorem 7.2.6. Let ρN = |ΨN〉〈ΨN | for some ΨN ∈ HN . Then

S(γ2) ≥ S(γ1) + log

(
N − 1

d−N + 2

)
. (7.9)

From Coleman's theorem, we conclude

Corollary 7.2.7. As N →∞, we have

S(γ2) ≥ 2 logN − log(d−N + 2) + o(1).

In particular, if d−N = O(1) as N →∞, then (7.3) holds.
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Let us explain the role of the dimension d. It does not enter in Conjecture

7.2.3, meaning that the result should be true for all dimensions d ≥ N (in

particular for in�nite-dimensional separable Hilbert spaces). Since our bound

(7.9) depends on d, we can only obtain a version of the conjecture for certain

values of d.

Note that Conjecture 7.2.3 holds trivially when d = N , which is the minimal

value of d. (Indeed, in that case dimHN = 1 and the only available antisym-

metric state |ΨN〉 is necessarily a Slater determinant.) Therefore, it is not too

surprising that the number d−N enters in the bound (7.9). The same holds

true for the bound (7.5) derived from Yang's theorem.

We close the presentation with two remarks concerning a possible extension

of Theorem 7.2.6.

Remark 7.2.8. (i) In view of Remark 7.2.2, it is natural to generalize Con-

jecture 7.2.3 to any �xed k > 2 by conjecturing that S(γk) ≥ log
(
N
k

)
, or

at least that

S(γk) ≥ k logN +O(1), (7.10)

as N → ∞. The proof of Theorem 7.2.6 generalizes to this case and

yields, together with Coleman's theorem,

S(γk) ≥ k logN − (k − 1) log(d−N + k) + o(1), (7.11)

as N →∞. That is, the generalized conjecture (7.10) holds for any �xed

k ≥ 2 when d−N = O(1) as N →∞.

(ii) It is of course unsatisfactory that the dimension d enters in the bounds

(7.9) and (7.11). For instance, the bounds become worse if one takes a

�xed state |ΨN〉 and embeds it in a Hilbert space of increasing dimension

d. This particular issue can be remedied however: Given a �xed state

|ΨN〉, one can restrict from the outset to the Hilbert space ΛN
C
dΨ where

dΨ ≤ d is the dimension of the support of γ1. Then, (7.9) also holds with

d replaced by dΨ. While this allows us to replace the completely arbitrary

parameter d with one that actually depends on the state, it does not yield

a better bound than (7.9). The reason is that dΨ could be very large due

to the presence of many small eigenvalues that do not a�ect S(γ1) very

much.
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7.3 Proofs

We now give the proofs of Theorems 7.2.4 and 7.2.6. As mentioned in the in-

troduction, they are mostly based on the symmetry property S(γk) = S(γN−k)

and the monotonicity of the quantum relative entropy under the partial trace,

which we recall now.

The quantum relative entropy

De�nition 7.3.1. Given two quantum states ρ and σ, their quantum relative

entropy is de�ned by

D(ρ‖σ) :=

Tr[ρ(log ρ− log σ)], if kerσ ⊂ ker ρ,

∞, otherwise.

The key property of the quantum relative entropy that we will use is that

it decreases under application of the partial trace. Namely, if ρAB, σAB are

quantum states on a Hilbert space HA ⊗HB, then

D(ρAB‖σAB) ≥ D(TrB[ρAB]‖TrB[σAB]). (7.12)

Proof of Theorem 7.2.4

We begin with the concavity estimate (7.7), since it is slightly easier. Let

2 ≤ k ≤ N − 1. By (7.12), we have

D(γk+1‖γ1 ⊗ γk)−D(γk‖γ1 ⊗ γk−1)

=D(γk+1‖γ1 ⊗ γk)−D(Trk+1[γk+1]‖Trk+1[γ1 ⊗ γk]) ≥ 0.
(7.13)

Using that log(XA⊗YB) = logXA⊗ IB + IA⊗ log YB and the de�nition of the

partial trace, we can express the left-hand side in terms of Sk−1, Sk and Sk+1

as follows.

D(γk+1‖γ1 ⊗ γk) =Tr[γk+1 log γk+1]− Tr[γk+1(log γ1 ⊗ I(Cd)⊗k + ICd ⊗ log γk)]

=− Sk+1 − Tr[γ1 log γ1]− Tr[γk log γk]

=− Sk+1 + S1 + Sk.

Applying this identity to (7.13), we get −Sk+1+S1+Sk−(−Sk+S1+Sk−1) ≥ 0

and this is equivalent to (7.7).
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Next we prove the monotonicity (7.6). Let 1 ≤ k ≤ N−1
2
, so thatN−2k−1 ≥ 0.

By (7.12), we have

D(γN−k‖γ1 ⊗ γN−k−1)−D(γk+1‖γ1 ⊗ γk)

=D(γN−k‖γ1 ⊗ γN−k−1)−D(Trk+2,...,N−k[γN−k]‖Trk+2,...,N−k[γ1 ⊗ γN−k−1])

≥0.

Here we used the convention that Trk+2,...,N−k[X] = X if N − 2k − 1 = 0.

Using Sk = SN−k, we �nd

D(γN−k‖γ1 ⊗ γN−k−1) = −SN−k + S1 + SN−k−1 = −Sk + S1 + Sk+1.

Therefore, we have −Sk+S1 +Sk+1−(−Sk+1 +S1 +Sk) ≥ 0 which is equivalent

to Sk+1 ≥ Sk, i.e., (7.6). This concludes the proof of Theorem 7.2.4.

Proof of Theorem 7.2.6

On (Cd)⊗k, we introduce the projector Pk onto the subspace

Hk := Λk
C
d ⊂ (Cd)⊗k, dk := dimHk =

(
d

k

)
.

We denote πk := d−1
k Pk. Note that Tr[πk] = 1, i.e., πk is a density matrix

(called the maximally mixed state on Hk).

We write Sk = S(γk). Theorem 7.2.6 will be implied by the following two

lemmas.

Lemma 7.3.2. For every 1 ≤ k ≤ N ,

Sk = −D(γk‖πk) + log dk. (7.14)

Lemma 7.3.3. For every 1 ≤ l < m ≤ N − 1, we have Trl+1,...,m[πm] = πm−l.

We assume that these lemmas holds for now and give the

Proof of Theorem 7.2.6. Thanks to the symmetry Sk = SN−k, we have

S2 = S1 + S2 − S1 = S1 + SN−2 − SN−1

Using Lemmas 7.3.2 and 7.3.3, we get

S2 =S1 + log

(
dN−2

dN−1

)
+D(γN−1‖πN−1)−D(γN−2‖πN−2)

=S1 + log

(
dN−2

dN−1

)
+D(γN−1‖πN−1)−D(TrN−1[γN−1]‖TrN−1[πN−1]).

(7.15)
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By the monotonicity of the relative entropy (7.12), we get

S2 ≥ S1 + log

(
dN−2

dN−1

)
= S1 + log

((
d

N−2

)(
d

N−1

)) = S1 + log

(
N − 1

d−N + 2

)
.

This proves the claim (7.9).

It remains to give the proofs of Lemmas 7.3.2 and 7.3.3.

Proof of Lemma 7.3.2. The key observation is that γk is a matrix taking Hk

to itself, meaning that

γk = γkPk = Pkγk, (7.16)

for every 1 ≤ k ≤ N . This follows from

|ΨN〉〈ΨN | = |ΨN〉〈ΨN |
(
Pk ⊗ I(Cd)⊗(N−k)

)
=
(
Pk ⊗ I(Cd)⊗(N−k)

)
|ΨN〉〈ΨN |

and properties of the partial trace. Indeed, we have

γk =Trk+1,...,N−k[|ΨN〉〈ΨN |] = Trk+1,...,N−k
[
|ΨN〉〈ΨN |

(
Pk ⊗ I(Cd)⊗(N−k)

)]
=Trk+1,...,N−k[|ΨN〉〈ΨN |]Pk = γkPk.

This proves the �rst equality in (7.16); the second one is proved analogously.

Now we use (7.16) to �nd

Sk =− Tr[γk log γk] = −Tr[γk log(γkdkd
−1
k )]

=− Tr[γk log γk]− Tr[γkPk log(dk)] + Tr[γk] log dk

=− Tr[γk log γk] + Tr[γk log(d−1
k Pk)] + log dk

=−D(γk‖πk) + log dk.

In the second-to-last step, we used the fact that Tr[γk] = 1, as well as

−Pk log(dk) = Pk log(d−1
k ) = Pk log(d−1

k Pk)Pk.

This proves Lemma 7.3.2.

Proof of Lemma 7.3.3. This is Lemma 12 in [121]. First, observe that

Trl+1,...,m[πm]
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maps Hl to itself by (7.16). Moreover, it commutes with all unitaries Ul on

Hl. Indeed, by standard properties of the partial trace and the fact that πm

commutes with all unitaries on Hm,

UlTrl+1,...,m[πm] =Trl+1,...,m[(Ul ⊗ I(Cd)m−l)πm] = Trl+1,...,m[πm(Ul ⊗ I(Cd)m−l)]

=Trl+1,...,m[πm]Ul.

Since it commutes with all unitaries, Trl+1,...,m[πm] = CIHl for some constant

C. This constant is determined by Tr[Trl+1,...,m[πm]] = 1 to be C = d−1
l . This

proves Lemma 7.3.3 and therefore �nishes the proof of Theorem 7.2.6.
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