
ANALYSIS OF PACKAGING AND DEPLOYMENT

OF ULTRALIGHT SPACE STRUCTURES

Thesis by

Lee Wilson

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2017

(Defended April 25, 2017)



c© 2017

Lee Wilson

ORCID: [0000-0002-5865-9903]

All Rights Reserved

ii



iii



Acknowledgments
Out of all people who helped me get to this point, the most deserving of my thanks is my advisor,

Professor Sergio Pellegrino, who has gone above and beyond in his support and advice. His hands

on approach has kept me on track and focused on solving interesting research questions. His tireless

support has helped me finally make it to the end of the PhD journey.

I am also grateful for my fellow graduate student and post-doc collaborators, including Christophe

Leclerc, Manan Arya, Miguel Bessa, and James Umali, for enabling my research.

To the fellow members of the AAReST project, who I have spent hours discussing spacecraft

design and testing with, thank you. In particular Dr. Federico Bosi for sharing the hours spent by

the shake table, Dr. Nicolas Lee and Dr. Steve Bongiorno for being able to bounce microsatellite

subsystem design ideas off, and Serena Ferraro for carrying on the design and testing of the sub-

system I poured my heart and soul into. I am also grateful to Dr. Gregory Davis, John Baker, and

Dr. James Breckinridge for advice and mentorship.

Of course I also want to thank the Caltech staff for helping me with the more hands on aspect of

my research, in particular Petros Arakelian for help in the lab, and John van Deusen, Joe Haggerty,

and Ali Kiani for advice in machining and design. Thanks also to Kate Jackson, Christine Ramirez,

and Dimity Nelson who kept the administrative part of my work running smoothly.

And of course, I want to thank my fellow members of the Space Structures Laboratory, for ideas,

discussion, and support, including but not limited to Dr. Melanie Delapierre, Dr. John Steeves,

Dr. Kristina Hogstrom, Thibaud Talon, Dr. Keith Patterson, Dr. Ignacio Maqueda Jimenez, Dr.

Xin Ning, Yuchen Wei, Maria Sakovsky, and Gina Olson.

Finally, last but certainly not least, thanks so much to my family and friends.

iv



Abstract

This thesis presents a new approach to modeling in finite element analysis (FEA) creased thin-film

sheets such as those used for drag sails, as well as modeling the packaging behavior of coilable

deployable booms. This is highly advantageous because these deployable space structures are

challenging to test on the ground due to their lightweight nature and the effects of gravity and air

resistance. Such structures are utilized in the space industry due to their low mass and ability to

be packaged into a small volume during their launch into space.

It is shown that removing the crease bending stiffness in creased sheets still allows the deploy-

ment behavior of a benchmark problem to be captured, including deployment forces and equilibrium

configurations. In addition, folding creased sheets from a flat state into a packaged configuration

can result in crease crumpling and excessive wrinkling. To avoid this the Momentless Crease Force

Folding (MCFF) technique is developed.

Further presented is the behavior of tape springs and Tubular Rollable and Coilable (TRAC)

booms when coiled to radii greater than their natural bend radius. Under these conditions the

booms can form multiple localized folds which may jam during boom deployment. Understanding

this behavior is important for extending the use of these booms to large scale space structures such

as orbital solar power stations.

A useful analytical model is developed determining when the localized folds in a tape spring

will bifurcate and is verified against simulation results. Additionally, a numerical model of the

wrapping an isotropic tape spring around a hub with a radius greater than the localized fold radii

is validated against physical experiments. This model is used to predict trends in the force required

to fully wrap a tape spring around a given hub radii.

Finally, when examining the coiling and uncoiling behavior of TRAC booms it was found that

the tension force required to keep a TRAC boom tightly coiled is significantly less than the force

required to initially coil the boom.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Deployable Structures

Deployable structures are an integral component of many spacecraft. One common feature of these

systems is an ability to be tightly packaged during launch, and then deployed into a much larger

configuration once in space. Deployable structures are implemented in applications as diverse as

antennae, solar sails, solar panels, booms, and inflatable habitats. Of key importance is the pack-

aging efficiency, stiffness in deployed configuration, and predictability of the deployment process.

The predictability of deployment is often the most difficult to capture without flight testing.

1.1.2 Testing of Deployable Structures

On the ground, gravity adds an extra variable to the testing of deployable structures that is not

present in space. Gravity offload systems are the traditional solution, but more applicable to

sufficiently stiff structures whose deployment is motorized. In offload systems, components are

suspended by cables from low friction rollers that travel along rails above the deployable structure.

However, even for scenarios such as these, this technique is not perfect. Friction between the rollers

and rails can reduce deployment speed, while pendulum motion can occur due to the presence of

the cables themselves. This approach becomes even more challenging for ultralight structures, such

as thin carbon-fiber booms and planar arrays made from Kapton (polyimide) or Mylar that are on

the order of tens of microns thick. Although the mass is lower, so too is the stiffness. This can

cause booms and thin-films to sag, which can then change the deployment dynamics significantly.
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Midway between testing on the ground and testing in space lie drop towers and zero-gravity

flights. With drop towers the device to be tested is released from the top of a tower, and experiences

weightlessness as it falls [39]. The effects of atmospheric drag can be reduced by pumping the air

out, although there is always residual air resistance [22]. This approach is acceptable for small

devices whose deployment time is on the order of seconds, that are either rugged enough to survive

the fall or inexpensive enough to replace after each test.

For larger systems, on the order of meters, or those with longer deployment times, reduced-

gravity flights are an option. Here an airplane flies in a series of parabolic arcs that allows the

interior to experience weightlessness for durations of approximately 30 seconds. However, air-

resistance is still present which can be problematic for deploying thin-film structures, such as solar

sails.

In addition to these drawbacks, ground testing can be very expensive. An alternative to pure

testing is to build either a numerical or analytical model of the deployment structure and use testing

to validate this model. Once the model is validated, gravity and air-resistance can be removed from

the model and the in-space performance estimated.

1.1.3 Analytical and Numerical Models of Deployable Structures

Many deployable structures utilize membrane or thin-shell components. There are two broad

classes of approaches to modeling the behavior of these components. The first is a purely analytical

approach. This can include capturing the bending energy within a coiled boom [8], or the stiffness

in a series of folds in a packaged membrane [21].

However, these analytical approaches run into trouble when contact is a significant factor. Since

the entire purpose of a deployable structure is to be packaged into a small volume, the effect of

contact quickly becomes vitally important to include in the modeling approaches.

The final approach is to use numerical analysis, and in particular finite element analysis, or

FEA. Here the system is divided into a large number of elements with nodes at each of the vertices.

FEA can further be broken down into the numerical solver used, either implicit or explicit. Implicit

solvers are best for quasi-static analysis without significant contact. Although commercial solvers

are making progress in implementing robust contact algorithms in implicit solvers, explicit solvers

are still better able to capture the behavior of systems with multiple contact conditions. A good
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example is a creased thin-film sheet for a solar sail which has multiple overlapping layers when

packaged. For these reasons, this work focuses on using explicit finite element analysis to capture

both the static and dynamic behavior of ultralight deployable structures.

1.2 Objective and Scope

This work focuses on the deployment of creased thin-film structures, as well as strain-energy de-

ployed tape springs and Triangular, Rollable and Coilable (TRAC) booms.

The deployment of creased thin-film structures differs significantly from traditional deployment

mechanisms such as pantographs. Firstly, sheets with thicknesses on the order of tens of microns

are extremely flexible and yet sufficiently stiff that it is important to consider the effect of bending

stiffness in a numerical model. Secondly, the creases that are introduced can have a significant

effect on both the deployment force and dynamic deployment behavior. One objective of this work

is to determine if accurate quantitative and qualitative deployment forces can be obtained if the

crease stiffness is removed entirely. Following this is the objective to develop a method for folding

from flat and then deploying creased thin films structures in finite element software.

The second area of research focused upon in this body of work is strain-energy deployed booms.

These booms have the advantage over traditional telescoping or pantograph booms in that they

do not need motors to deploy. This reduces the number of failure points in the design as well as

the overall complexity. However, to date neither tape springs nor TRAC booms, a derivative of

tape springs, have been used in large space structures. This means they have not been packaged or

deployed from being coiled to radii significantly greater than their local bend radius. Rather than

fully conform to the large radius, these booms attempt to form many localized bends on the order

of the natural bend radius of the boom. The final objective of this work is to simulate the effect

these localized folds have on coiling behavior and wrapping forces. This includes developing FEA

models that capture the localized fold behavior in tape springs and TRAC booms, including how

the folds travel along the boom, how they bifurcate, and the corresponding force profiles. Trends

in the forces required for wrapping tape springs to hub diameters greater and smaller than natural

bend radius are also investigated.
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1.3 Layout of Dissertation

This dissertation consists of seven chapters, including this first introductory chapter.

Chapter 2 is a literature review of both creased thin-film deployable structures and strain

energy deployed booms. The modeling techniques used to capture these structures’ behavior is

then reviewed in detail.

Chapter 3 utilizes Abaqus/Explicit and LS-Dyna to capture the deployment behavior of wrapped

polyimide sheets. These sheets are folded according to the GP92 fold pattern developed by Pelle-

grino & Guest [45] and are potentially useful in solar-sail packaging schemes.

Chapter 4 compares experiments, analytical, and simulation models of tape springs to validate

the simulation approach for strain-energy deployed booms. These simulations capture the dynamic

behavior of unfolding a single tape spring hinge and the dynamic uncoiling of a tape spring from

around a fixed spool.

Chapter 5 extends the body work on tape springs to the force profile required to coil them

around hubs of radii greater than and less than their natural bend radius.

Chapter 6 presents the results of extending the simulations to TRAC booms manufactured from

ultra-thin carbon fiber composite.

Chapter 7 concludes the dissertation and provides recommendations for future work.

4



Chapter 2

Background

This thesis is primarily concerned with applying explicit finite element solvers to better understand

and predict the deployment of ultralight deployable structures. In particular, the focus is on (a)

creased thin-film sheets used for large planar spacecraft, such as solar sails and drag sails, and (b)

strain-energy deployed booms such as tape springs and TRAC booms.

This chapter is split into three sections. The first section provides a general overview of the

importance to space applications of these two classes of deployable structures. The second section

focuses on modeling techniques currently used to analyze the behavior of large planar thin-film

structures. The final section details the methods used to characterize and predict the behavior of

strain-energy deployed booms.

2.1 Spacecraft Deployable Structures

Deployable structures are commonly used on spacecraft for their ability to be tightly packaged into

a rocket payload fairing for launch and then deployed into a larger configuration once in orbit.

These structures can range from wideband UHF helical antennae [38] to inflatable habitats under

development by Bigelow Aerospace [29].

2.1.1 Large Planar Thin-Film Structures

Ever since Japan Aerospace Exploration Agency’s (JAXA) IKAROS mission, solar sails have come

under renewed scrutiny as a means of moving spacecraft around the solar system [43]. Solar sails

are effectively very large sheets of a thin material such as Kapton or Mylar, stiffened by three or

more booms. As light reflects off these sails, it imparts momentum which accelerates the whole
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spacecraft. Since the force imparted by light is exceptionally small, solar sails need to be very large

and lightweight. Other smaller solar sail missions include LightSail-1 by the Planetary Society [6]

and NASA’s NanoSail-D [17].

(a) (b)

Figure 2.1: Artist impressions of deployed solar sails for (a) IKAROS [43], and (b) LightSail-1 [6].

A similar system is a drag sail such as the University of Surrey’s CubeSail [19, 48]. With the

proliferation of cubesats (a class of satellites with side lengths ranging from 0.1 m to 0.3 m), orbital

debris mitigation is a key concern. The UN Space Debris Mitigation Guidelines state satellites

must de-orbit within 25 years of their design lifetime [15] or be moved to a graveyard orbit above

2000 km. This places an upper altitude limit of 600 km on cubesat orbits because with their small

form factor, atmospheric drag is insufficiently strong to de-orbit cubsats above this altitude. When

equipped with a drag sail the projected area of the satellite is increased substantially, increasing

atmospheric drag and leading to a much faster de-orbit.

To be effective these types of systems need to be stiffened. LightSail-1, NanoSail-D, and most

other solar sail designs call for four equispaced booms to force a square sail into planarity. Since

these booms also need to be packaged into a tight configuration all of these booms are also ultralight

deployable space structures in their own right.

2.1.2 Strain Energy Deployed Booms

There are a large number of classes of deployable booms, including telescoping booms like those

used on the James Webb Space Telescope [2] and cylindrical booms that can be inflated with

internal pressure and become rigid once in space, for instance via a reaction with UV light [11, 44].
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These booms are relatively complex, heavy, and often require motors for deployment. This

increases the number of potential failure points in the spacecraft design and operations if these

motors fail. One solution is strain-energy deployed booms such as thin-walled composite tubes

with tape-spring hinges [24]. In this case a dog-bone shape is cut out from the cylindrical tube to

form tape spring hinges, the folded and deployed configurations are shown in Figure 2.2 below.

When these booms are packaged, elastic strain energy is introduced through bending. A hold-

down and release mechanism is added to the system to keep the boom packaged during launch. Once

in orbit, the boom is released and allowed to deploy, either with or without a control system. With

fewer ancillary mechanisms required, the booms require less space than more complex solutions.

(a) (b)

Figure 2.2: Cylindrical carbon fiber boom incorporating dog-bone cutout hinges in (a) deployed
configuration, and (b) folded configuration.

2.1.3 Coilable Deployable Booms

A subclass of strain-energy deployed booms are coilable, deployable booms. These booms are

distinct from other stored energy booms because they can be flattened and tightly wrapped around a

centralized hub. This allows for a very efficient packaging scheme ideal for space based applications.

Sails in particular benefit from this approach as they need to be packaged bi-axially. Four main

classes of these booms are tape springs, Storable Tubular Extendible Member (STEM) booms,

Collapsible Tubular Masts (CTM), and Tubular Rollable and Coilable (TRAC) booms.

Tape springs, also known as carpenter’s tapes, are the most simple of the coilable booms and

because of this are often used in cubesat missions. Both metal [19] and carbon reinforced poly-

mers [32, 16] have been used to fabricate these booms. One such deployment mechanism is shown
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in Figure 2.4. Tape springs do, however, have low torsional stiffness and in most cases, do not have

equal stiffness in both bending directions.

Figure 2.3: Tape spring [51]

Figure 2.4: Exploded hub view of a CubeSat boom in initial stage of deployment [16].

A slight modification of a tape spring is the Storable Tubular Extendible Member (STEM)

architecture, developed in Canada in the 1960s [24, 42] shown in Figure 2.5. Like a tape spring,

it consists of a thin-walled cylindrical shell that can be flattened and rolled on a hub. The main

difference is the arc-length of the cylindrical cross-section exceeds 2π radians. The increased arc-

length results in higher axial and bending stiffness but the torsional stiffness is still low due to the
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open cross section. Additional modifications are the bi-STEM concept as per Figure 2.5(b), where

two STEM booms are overlapped during deployment. An interlocking STEM boom is displayed in

Figure 2.5(c) and has a higher torsional stiffness than a standard bi-STEM boom.

Figure 2.5: Storable Tubular Extendible Member booms [42] (a) Pure STEM (b) bi-STEM (c)
Interlocking bi-STEM.

Collapsible Tubular Masts (CTMs) on the other hand have a closed cross-section and are formed

by bonding two Ω shaped thin-shells together along the shared edge regions [24]. Figure 2.6 shows

such a boom developed by DLR and made from composite material. It was found that for the

DLR boom excessive strain energy in the coiled state led to unstable deployment dynamics and

thus required an active deployment control mechanism [7].

Figure 2.6: Example of a carbon fiber Collapsible Tubular Masts developed by DLR [7].

The final type of coilable, strain energy deployed boom considered here is the Triangular Rollable
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and Collapsible (TRAC) boom [33]. Originally developed at the Air Force Research Laboratory,

it consists of two tape springs joined together along one edge. Figure 2.7 shows a schematic of a

TRAC boom in both the coiled and deployed configurations. The open cross-section allows TRAC

booms to be flattened and coiled more easily than CTMs [4]. An advantage over tape-springs is

the comparitive simplicity in selecting design parameters to achieve equivalent bending stiffness in

the X and Y directions [34]. These advantages led to TRAC booms being used in several cubesat

missions [6, 52], where their low mass, high packaging efficiency, and ability to self-deploy were an

asset.

Figure 2.7: Schematic of a TRAC Boom [4].

2.2 Finite Element Modeling Approaches

Due to their low thickness when compared to overall size, ultralight deployable structures such as

solar sails and coilable booms can be modeled with thin-shell elements in finite element analysis

(FEA). Shells are useful for modeling thin components, since more than one element through the

thickness is not required and thickness does not factor into the time step calculation for explicit

solvers. The number of integration points through the thickness can be specified for shell elements.

For nonlinear materials, a minimum of three through thickness integration points is recommended

so that a nonlinear stress distribution can be calculated. Two integration points through the

thickness are generally sufficient for elastic materials [23].
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In general, reduced integration quadrilateral shell elements are preferred due to their low com-

putational cost as well as the fact they do not experience shear or membrane locking. However,

with the exception of triangular shells, any underintegrated shell formulation undergoes nonphysical

modes of deformation called hourglass modes. These modes can be inhibited by tailoring internal

‘hourglass forces’ to counteract these deformations, among other methods [5].

Neither fully integrated quadrilateral, or triangular shell elements experience hourglass modes,

however, they can be overly stiff under particular loading conditions [23]. In certain circumstances

shear locking occurs, which is when transverse shear strain appears even if the material is under pure

bending. Membrane locking on the other hand occurs if, due to the mesh, a finite element cannot

bend without stretching. Shells have low bending stiffness when compared to their membrane

stiffness. If the bending energy is incorrectly shifted into membrane energy, then the resulting

displacements and strains will be under predicted. Controlling membrane locking is particularly

important for simulating buckling [5].

Commercial FEA packages include Abaqus/Explicit and LS-Dyna. Abaqus/Explicit contains S4

fully integrated quadrilaterals, S4R reduced integration quadrilaterals, and S3 triangular thin-shell

elements [1]. LS-Dyna offers are wide array of shell element formulations that can be specified in

the simulations. The standard LS-Dyna shell elements are the reduced integration Belytschko-Tsay

quadrilateral and C0 triangular elements. The Belytschko-Tsay shell includes co-rotational coordi-

nates that allow elements to twist/warp up to 1%. Belytschko-Wong-Chiang (BWC) elements are

modified Belytschko-Tsay elements that can include additional warping. The C0 triangular shell

element is based on Mindlin-Reissner plate theory. LS-Dyna also offers a fully integrated quadri-

lateral shell element formulations, named Type 16, with assumed strain interpolants to alleviate

locking and enhance in-plane bending behavior [13].

2.2.1 Implicit vs Explicit Finite Element Analysis

FEA can further be broken down into the numerical solver used, either implicit or explicit. In

general implicit solvers are preferred because solution accuracy can be controlled through the

selection of a suitable tolerance, while relatively large time steps are allowed. Explicit solvers

control stability and accuracy through the use of time steps governed by the element level stress

wave speed which can increase simulation time significantly. However, implicit solvers can be
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inefficient for problems involving high velocity impact or high frequency vibration, and for problems

with poorly conditioned contact stiffness [41], such as when multiple thin-film layers are packaged

against each other. Explicit solvers are generally necessary in those cases.

Benchmark problems have been compared to determine the relative effectiveness of Sierra Solid

Mechanics code, both implicit and explicit, and LS-Dyna explicit code [30, 41]. One study by

researchers at JPL investigated four benchmark problems, including the dynamics of three masses

connected with highly flexible straps, and fabric contacting flexible straps. They compared the

multi-body code MSC/ADAMS, the explicit solver in LS-Dyna, and the implicit and explicit solvers

within Sierra Solid Mechanics finite element codes. The most significant result was all three codes

could handle the presence of contact between flexible bodies, but required varying degrees of simula-

tion tuning to be convergent. For example, the Sierra implicit parallel solver was found to function

up to two orders of magnitude faster than the corresponding explicit solver for a given number of

processors. However, this advantage was found to degrade in the presence of high speed contacts

and for soft contact.

2.3 Modeling Approaches for Large Thin-Film Planar Structures

Packaging large planar structures such as solar sails for launch requires creases to be introduced into

the thin-film. Creases are narrow regions of high curvature where the film has deformed plastically.

These creases not only reduce the level of flatness that can be achieved in the fully deployed

structure, but also affect the deployment force required. Deployment is a complex process. It

may appear to be random in nature, but successful automated deployment requires quantitative

estimates and/or measurements of the maximum deployment force to be developed. It has been

found, both during ground testing and in-orbit deployment, that the required deployment forces

are difficult to predict, and the difficulty of reliably predicting the maximum force level has led to

unexpected complications and failures [28, 35].

Characterizing the deployment behavior numerically or analytically requires determining the

material properties of the sheet, the bending properties of the creases and friction response when

the sheet comes into contact with itself. In general, the material and friction properties can be

determined with standard ground tests. Crease responses are more challenging to capture, although

substantial work has been done to analytically and numerically characterize the behavior of a single
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crease [14, 20, 54].

Moving beyond a relatively simple crease model requires understanding the behavior of sheets

with multiple creases where additional factors are important. In particular, when a wrapped film

unfolds, it is governed by the interaction between the creases and the surrounding uncreased regions,

as well as the sliding self-contact between different parts of the film.

For simulating sheets with multiple creases, one option is to represent creases with a moment

vs angle relationship, as was done for simulations of the IKAROS solar sail mission. The sail

was modeled as a membrane (endowed with finite extensional stiffness but zero bending stiffness)

consisting of a large number of point masses connected by springs [37, 36, 46]. Crease bending

moments were implemented by applying forces to the point masses either side of the creases.

This method does not account for the bending stiffness of the film, a key effect in capturing the

actual shape, localized buckling, and wrinkling. To include this, a different model can be employed

using thin shell elements and commercial FEA software [40] such as Abaqus or LS-Dyna.

In these packages typically creases are modeled as a kink in the meshed surface. This approach

has been utilized to model the interaction between creases with wrinkles [53]. The crease stiffness,

or the bending moment as a function of crease angle, depends on the initial kink angle. This

approach has two key disadvantages. Firstly, the crease material stiffness is the same as that of

the base film. Secondly, and more importantly, for structures that include many creases it is often

impossible to ensure all creases have the correct initial crease angle, which will substantially change

the crease stiffness.

Figure 2.8: Abaqus simulation of a systematically creased sheet with a Miura-Ori crease pattern
[40].
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(a) (b)

Figure 2.9: (a) Infinitesimal element of a thin-shell laminate with force and moment resultants,
and (b) Infinitesimal element of a thin-shell laminate including coordinate notation for individual
plies [9].

2.4 Modeling Thin-Shell Deployable Booms

There has been a significant amount of research characterizing the behavior of strain energy de-

ployed booms, and in particular tape springs. The first subsection provides a brief overview in

classical lamination theory. The following three subsections focus on the analytical characteriza-

tion of the behavior and deployment of tape springs and draw heavily on work performed by Seffen

& Pellegrino [45]. The final two subsections cover numerical approaches used to model tape springs

and TRAC booms.

2.4.1 Classical Lamination Theory

The mechanical properties of thin-shell booms can be described with classical lamination theory [9],

and in particular with the ABD matrix which relates shell force and moment resultants to the

applied strains and curvature. Figure 2.9(a) shows an infinitesimal elements of a multi-ply laminate

with a thickness t with force and moment resultants applied. Figure 2.9(b) shows the individual ply

layups within the laminate, measured from a common reference plane. Nx, Ny are normal forces

per unit length, and Ns is the shear forces per unit length. Mx, My are bending moments forces

per unit length, and Ms is the twisting moment per unit length. The forces and moments can be

found by integrating the in-plane and shear stress through the thickness of the laminate.
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Nx

Ny

Ns

 =
n∑
k=1

∫ zk

zk−1


σx

σy

τs


k

dz (2.1)

and 
Mx

My

Ms

 =

n∑
k=1

∫ zk

zk−1


σx

σy

τs


k

zdz (2.2)

The stresses in each ply can be found by first finding the stresses in the principle material

direction of each ply in terms of the principle strains


σ1

σ2

τ6


k

=


Q11 Q12 0

Q21 Q22 0

0 0 Q66


k


ε1

ε2

γ6


k

(2.3)

where for an orthotropic material

Q11 =
E2

11

E11 − ν12E22
, Q12 =

ν12E11E22

E11 − ν212E22
, Q22 =

E11E22

E11 − ν212E22
, Q66 = G12 (2.4)

with E11 and E22 the Young’s modulus values in the longitudinal and transverse material directions,

ν12 the poisson ratio and G12 the shear modulus. Transforming the system into the laminate

coordinates, rather than the material coordinates of each ply, gives


σx

σy

τs


k

=


Qxx Qxy Qxy

Qxy Qyy Qsy

Qsx Qsy Qss


k


εx

εy

γs


k

(2.5)

or in brief,

σk = Qkε (2.6)

Finally, the strains at any point in the laminate can be written in terms of the strains at a
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reference plane in the laminate and the curvature of the laminate


εx

εy

γs

 =


ε0x

ε0y

γ0s

+ z


κx

κy

κs

 (2.7)

where κx, κy, and κs are the bending and twisting curvatures in the laminate, and ε0x, ε0y, and γ0s

are the in-plane and twisting strains at the laminate reference plane. Combining Equation 2.5 and

Equation 2.7 gives

σk = Qkε
0 + zQkκ (2.8)

Equation 2.1 and Equation 2.2 then become
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k
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(2.9)

and
Mx

My

Ms

 =

n∑
k=1



Qxx Qxy Qxy

Qxy Qyy Qsy

Qsx Qsy Qss


k


ε0x

ε0y

γ0s
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zdz +


Qxx Qxy Qxy
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κx

κy
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∫ zk
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z2dz


(2.10)

This can be simplified into the form

 N

M

 =

 A B

B D

 ε0

κ

 (2.11)

where A, B, and D are 3x3 matrices of the form
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Aij =
n∑
k=1

Qkij (zk − zk−1)

Bij =
1

2

n∑
k=1

Qkij
(
z2k − z2k−1

)
Dij =

1

3

n∑
k=1

Qkij
(
z3k − z3k−1

)
(2.12)

2.4.2 Characterizing Tape Spring Bending Moment

Seffen & Pellegino have shown that the behavior of a tape spring can be represented by a moment-

angle relationship M(θ) as shown in Figure 2.10 [45]. The initial unloaded configuration is repre-

sented by O at the origin. In Figure 2.10 the positive bending moment corresponds to opposite

sense bending, where the applied bending moment induces compression loading along the edges

of the tape spring. The moment-angle relationship is linear between O and A, after which the

tape spring buckles into two almost straight sections connected by a localized bend, as shown in

Figure 2.11(a). From B to C the radius of the localized bend remains unchanged, but its arc

length increases while the bending moment is constant. Upon unfolding, the tape spring follows

the constant-moment path from C to D until it suddenly snaps to E.

When a negative moment is applied, however, the moment-angle relationship is linear until a

sudden bifurcation occurs at F , corresponding to a flexural torsional deformation. For equal-sense

bending the unloading path is almost identical to the loading path.

For an isotropic material, the strain energy areal-density µ in the localized fold region can be

found from the standard expression for bending strain energy per unit area in a thin-shell. Since

purely cylindrical bending is assumed the stretching strain energy is neglected.

µ =
1

2
D
(
∆κ2t + 2ν∆κt∆κl + ∆κ2l

)
(2.13)

where ∆κl and ∆κt are the change in longitudinal and transverse curvature, respectively. ν is the

Poisson ratio and D the flextural stiffness

D =
Et3

12(1− ν2)
(2.14)
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Figure 2.10: Moment-angle relationship for a general tape spring [45].

where E is the Young’s modulus and t the thickness of the tape spring. As the transverse and

longitudinal directions are principal directions of curvature, ∆κl = ± 1
Ri

, ∆κt = 1
Rt

, where +

corresponds to opposite-sense curvature, and - to equal-sense curvature. Ri is the natural bend

radius of the localized fold region. Since the transition region between the localized fold and the

straight undeformed tape spring is independent of Ri, the energy contained in the transition region

can be neglected from the analysis to find Ri [8].

By minimizing the total energy in the fold region, it has been shown that the radius of the

localized bend Ri depends on the initial transverse radii of the tape spring Rt, and the longitudinal

and transverse bending stiffness D11 and D22, respectively [8]. D11 and D22 are elements of the D

matrix defined in Equation 2.12.

Ri = Rt

√
D11

D22
(2.15)

For an isotropic material, D11 = D22 and thus Ri = Rt. Therefore, for an isotropic material,

the energy areal density can be simplified to

µ =
D(1± ν)

R2
t

(2.16)
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(a)

(b)

Figure 2.11: Tape spring bending in (a) opposite-sense, and (b) equal-sense [45].

The total energy in the localized fold U for an isotropic tape spring can be found by multiplying

Equation 2.16 with the surface area of the localized fold.

U = µR2
tαθ = D(1± ν)αθ (2.17)

where α is the arc-angle of the tape spring in the transverse direction, and θ is defined in Figure 2.11.

2.4.3 Unfolding of a Tape Spring with a Single Fold

In 1999 Seffen & Pellegrino [45] developed two analytical models of the unfolding of a tape spring

with a single opposite sense fold. Figure 2.12 shows a schematic of this system including key

parameters. λ is the ratio of deployed length to total length, and θ is the deployed angle. The

difference between y and ξR is the transition region length. g indicates the direction of gravity.

When released from an initially folded configuration, the straight section λL rotates towards the

vertical position, while the localized fold travels along the tape spring, until it reaches the clamped

end. The localized fold then reflects off the clamped end and travels back up the tape spring. This

effect is seen experimentally, as shown in Figure 2.13. Figure 2.13 contains a series of photos taken

of a 0.54 m long tape spring with radius Rt = 13.3 mm, α = 150o starting in an initially folded

configuration with θ0 = 90o. The images are taken at intervals of 1
25 s running from top left to

19



bottom right. The tape was encased in epoxy at the base.

Figure 2.12: Schematic of a tape spring with a localized fold distance y away from a clamped
end [45].

Of the two analytical models developed to capture this behavior, the first was based on an energy

formulation that included the gravitational potential and kinetic energy in the tape spring, and the

strain energy in the tape spring folds. As the tape spring unfolds, the localized fold travels along

the tape spring until it reflects off a clamped end. However, the approach enforced conservation

of energy and did not account for energy loss through the boundary. Without this loss, the tape

spring would return to its initial configuration after each reflection of the localized fold from the

clamped end.

To account for this energy loss, the second model was based on an impulse-momentum approach.

This approach used a different formulation of the equations of motion which did not assume energy

conservation. The impulse-momentum approach was compared against experimental data from

three tests of tape springs clamped in three different orientations with respect to gravity. The

results for the case corresponding to that in Figure 2.12 are plotted in Figure 2.14.

The model and experiments captured the first reflection of the localized fold at 0.1 s, after

which the fold traveled up the tape spring until 0.19 s. The fold traveled back down to the clamped

region at 0.25 s. After each reflection θ increased, but reached a lower peak value because of the

energy loss associated with the fold reflecting off the clamped end. After 0.31 s the tape spring was
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Figure 2.13: Deployment sequence of a 0.54 m long tape spring with a localized fold of 90o in the
middle. Time delay between successive frames is 0.04 s [45].

Figure 2.14: The solid lines are the predictions of θ and λ during deployment, based on an impulse-
momentum formulation [45]. The circles and crosses correspond to experiment measurements of θ
and λ, respectively.

almost fully deployed and straight.
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2.4.4 Uncoiling Tape Spring Booms

In 1999 Seffen & Pellegrino also developed the theory for the two-dimensional deployment dynamics

of isotropic tape springs coiled on a free-turning circular spool whose radius Rhub is approximately

equal to the transverse radius of curvature Rt of the tape. The theory is applicable to the main

part of the deployment process, during which the tape spring uncoils. They focused on the case

where Rhub ≈ Rt because this is the radius the tape will attempt to form when coiled. For the

case where Rhub ≤ Rt the radius expands as soon as deployment starts and for Rhub ≥ Rt the tape

forms a series of localized folds of radius Rt connected by straight regions. These types of behavior

were beyond the scope Seffen & Pellegrino studies.

Assuming that Rhub ≈ Rt and that the tape does not change radius, the tape was modelled in

two parts as shown in Figure 2.15. The first part is a straight deployed section of tape spring of

length λL, where L is the total length of tape spring. The second is a section of tape spring coiled

around a spool of radius Rhub. ξ corresponds to the angle of rotation of the entire spool and γ to

the total angle of the remaining coiled tape spring.

Figure 2.15: Schematic diagram of a tape spring coiled around a fixed spool [45].

With these assumptions Seffen & Pellegrino derived equations for the motion of a coiled tape

spring by the application of Lagranges equations

d

dt
(
∂ L
∂q̇i

)− ∂ L
∂qi

= Qi (2.18)

where qi are the generalized coordinates of the system, in this case γ and ξ. Qi are the generalized
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forces corresponding to any non-conservative forces acting on the system and L is the Lagrangian of

the system, specifically the difference between the total kinetic and potential energies. By neglecting

the transition region and gravity, and assuming a fixed spool, i.e., ξ = 0, ξ̇ = 0, and ξ̈ = 0, Seffen

& Pellegrino derived the following equation

1

3
ρ(L−Rhubγ)3γ̈ − 1

2
ρ(L−Rhubγ)2γ̇2 + µRhubRtα = 0 (2.19)

The first and last terms are derived from the potential energy of the coiled tape spring, and the

second term from the tape kinetic energy as it deploys. It was shown that

γ̇2 =
6µRhubRtα

ρ

γ0 − γ
(L− rγ)3

(2.20)

Setting the deployed length of the tape spring as λL, γ and γ̇ become

γ = (1− λ)
L

Rhub

γ̇ = − λL̇

Rhub

(2.21)

Finally, by assuming that at t = 0 the tape is in the fully coiled configuration with λ = 0 and

integrating with respect to time, the ratio of deployed length to total length was derived as

λ =
4

√
6µRtR2

hubα

ρL4

√
2t (2.22)

Seffen & Pellegrino validated their equation experimentally and obtained the result in Fig-

ure 2.16. Figure 2.16 shows Seffen & Pellegrino’s results assuming no air drag, and including a

drag parameter that was tuned such that the model matches the analytical prediction. Gravity

was also included in the second model but was found to have only a small effect on the results.

2.4.5 Numerical Models for Tape Springs

While analytical approaches to predicting tape spring behavior have focused on isotropic tape

springs, significant numerical work has been performed on both composite tape springs and tape

springs coupled to additional parts.
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Figure 2.16: Deployment plot of a coiled tape spring under opposite sense bending on a fixed
spool. Crosses are experimental results; solid lines are analytical predictions. Top solid line is the
deployment assuming no air drag, lower solid line includes air drag with a tuned drag coefficient [45].

In particular, tape spring hinges have been the focus of many numerical studies. The composite

booms detailed in Section 2.1.2 have been modeled in Abaqus/Explicit with S4 fully integration

quadrilateral shell elements, or S4R reduced integration quadrilateral shell elements [26, 27, 55].

The main advantage of using explicit solvers for the folding and deployment simulations is that

these solvers deal efficiently with changing contact conditions and are insensitive to ill conditioning

of the stiffness matrix. These features are particularly useful in the analysis of ultra-thin shell

structures that are folded and allowed to dynamically deploy.

A standard approach is to start with the thin-shell structures in an unstressed configuration,

and then use either boundary conditions or contact with another part to flatten the tape spring.

Once flattened, the tape spring can be folded by applying boundary conditions to the ends. An

example of folding a composite boom containing a tape spring hinge is shown in Figure 2.17.

Figure 2.17: Folding stages of a composite tape spring hinge in Abaqus/Explicit [26] (a) Initial
configuration, (b) Rigid plates compress tape springs, (c) Boundary conditions fold hinge.
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Explicit code can be used for quasi-static problems involving significant contact as well. How-

ever, techniques such as varying loading rates, or applying numerical damping such as bulk viscosity

or viscous damping, are required to remove excess kinetic energy. Mass scaling is an alternative

technique where the density of a part is increased. The specific effect of each of these parameters

has been studied in depth [25].

Additional FEA studies have determined the bending stiffness of deployed booms and the

buckling load [10, 50]. Abaqus/Explicit has even been used to simulate the coiling of a carbon fiber

tape spring around a hub [47], where Rhub ' Ri. Figure 2.18 depicts the fully coiled configuration.

Figure 2.18: Coiled composite tape spring in Abaqus/Explicit [47]. Contours correspond a failure
index.

2.4.6 TRAC Boom Characterization

As explained in Section 2.1.3, Tubular Rollable and Coilable (TRAC) booms are derived from tape

springs, but designed to allow for increased bending and torsional stiffness [33, 34]. They consist of

two tape springs of radius Rt and arc length Rtα joined along a single, common edge with a bond

region of height w, as shown in Figure 2.19. This architecture allows the boom to be flattened

and coiled around a central hub of radius Rhub, similar to a tape spring. The upper section has a

natural bending radius that corresponds to that of a tape-spring with equal radius and material

properties. The addition of the flat bond region increases the natural bend radius.

Previous characterizations of the mechanical properties of deployed TRAC booms have focused

on booms made from carbon fiber composite with flange thickness of ∼1 mm [4]. Such char-

acterizations have included bending stiffness and estimation of the buckling load, both through

experiments as well as Abaqus simulations. One such buckling mode is shown in Figure 2.20. Their
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Figure 2.19: TRAC boom cross-section including variable names [34].

Figure 2.20: TRAC boom buckling mode [4].

vibration properties have also been characterized at the Air Force Institute of Technology [49].

One challenge with employing TRAC booms on spacecraft larger than small satellites is TRAC

booms exhibit ‘triangular buckles’ when coiled to radii significantly larger than the natural bending

radius of the boom [34]. If the bond region is constrained to larger radii, the inner flange will open

as shown in Figures 2.21(a) and 2.21(b). These ‘buckles’ can cause stress concentrations in the

boom which in turn can cause delamination between composite layers.

For spacecraft that require long TRAC booms, by necessity the maximum coiling radii will

be greater than the natural coiling radii of the boom. Although current work has identified the

existence of these ‘buckles’, little has been done to quantitatively understand them.
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(a)

(b)

Figure 2.21: FEA image of ‘triangular buckles’ identified in TRAC booms when coiled to a radius
greater than its natural bending radius [34] (a) close up of ‘buckle’, and (b) a series of ‘buckles’.
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Chapter 3

Packaging & Deployment of Creased
Thin-Film Sheets

This chapter presents accurate FEA models of the packaged configuration of creased thin-film

sheets. The effectiveness of excluding bending stiffness when modeling creases is investigated.

Simulations of a benchmark crease pattern are used to develop a general technique for modeling

the packaging and deployment of creased thin-film sheets, including avoiding excessive wrinkling,

crumpling and ensuring creases remain straight. The knowledge gained from these simulations is

used to formulate the Momentless Crease, Force Folded (MCFF) modeling technique for the folding

of creased thin-film sheets with minimal defects in FEA software such as LS-Dyna.

3.1 Obtaining an Accurate Wrapped Configuration

As detailed in Section 2.1.1, creased thin-film sheets are useful for a large range of spacecraft

applications, including solar sails, drag sails, and deployable antennas. One significant advantage

of using thin-film sheets is their high packaging efficiency. However, to take advantage of this, the

sheet needs to be folded into a tightly packaged configuration by forming a suitable set of creases

in the sheet.

Creases are narrow regions of high curvature where the film has deformed plastically. These

creases not only reduce the level of flatness that can be achieved in the fully deployed structure,

but also affect the deployment force required. Due to the difficulties of testing these ultra-thin

lightweight structures on the ground, as explained in Section 1.1.2, finite element analysis is an im-

portant tool to obtaining a qualitative and quantitative understanding of the deployment behavior
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and forces.

To capture this behavior, custom models are traditionally developed [37, 36, 46]. These can be

time consuming to implement and may neglect real physical behavior such as bending stiffness of

the film. In addition, these analysis approaches start in an already packaged configuration that is

generated analytically. This has the downside of being an approximation, as well as being unable

to include any of the stresses within the sheet in the folded configuration. Finally, depending on

the folding process, the exact folded configuration may not be initially known.

This leads to the need to find the wrapped or packaged configuration after starting with an

undeformed sheet surface. For developable surfaces, this means starting with an initially flat,

planar surface and then folding into the packaged configuration. This is a highly challenging

problem because thin-films have very low bending stiffness and can easily be wrinkled or crumpled.

In addition to being a problem in the physical world, in FEA simulations wrinkling can be on

the order of the element length and generate mesh artifacts that lock into place, as covered in

Section 3.4.

3.2 Implenting Creases in FEA Software

Abaqus/Explicit and LS-Dyna were selected as the FEA software to develop the technique for

folding and deploying creased thin-film structures because of their robust algorithms for handling

contact efficiently. Both sets of software are also widely used by the aerospace community [23].

In these FEA packages sheets can be meshed with either membrane, thin-shell or continuum

shell elements. Membrane elements neglect the bending stiffness of the sheet and so are not used

here. Continuum shell elements are better suited to sheets with thickness-to-length ratios much

greater than those found in solar or drag sails. Thin-shell elements are therefore utilized for the

following simulations. More details on elements available in these FEA packages can be found in

Section 2.2.

3.2.1 Capturing Crease Behavior

In previous finite element work [40] creases have been introduced into a sheet as simple kinks in the

surface meshed with thin-shell elements. There are two key drawbacks to this approach. Firstly,

the crease stiffness k is constant and entirely dependent on the material properties of the base film.
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(a) (b)

Figure 3.1: Schematics of a crease cross-section, meshed with thin-shell elements of length L. (a)
Initial configuration and (b) configuration with bending moment M applied

Secondly, for structures that include many creases, it is difficult to set the initial kink crease

angle θ0 equal to the neutral crease angle θn for all creases. θn is the crease angle when zero external

force or moment is applied. If θn 6= θ0 then the opening and closing moments M are incorrect and

may change the force required to deploy the structure. A schematics of crease cross-sections meshed

with thin-shell elements is shown in Figure 3.1, and the relationship between angle and moment is

M = k(θ) (θ − θn) (3.1)

A modification of this strategy involves imposing a thermal gradient through the sheet thickness

in the elements on either side of a crease. This approach still represents creases as kinks in the

surface. However, the imposed thermal gradient will control θn. Even if additional creases constrain

θ0 in the folded configuration, θn will depend only on the thermal gradient and the bending stresses

will reflect that. Never the less k will still depend upon the material properties of the sheet. Also,

unless the coefficient of thermal expansion is orthortopic and set to zero along the crease direction,

additional non-realistic stresses would be introduced due to expansion of the material in the crease

direction.

The approach proposed in this chapter is to remove the crease bending stiffness entirely and

set k = 0. While this approach neglects the bending moment contribution from the creases, it does

not impose unrealistic crease moments that change with θ0, θ or mesh density. This approach is

implemented in the following sections for Abaqus/Explicit via connector elements and in LS-Dyna

via tied constraints.
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3.2.2 Generating Zero-Stiffness Creases in Abaqus/Explicit

To generate zero-stiffness creases in Abaqus, an effective way is to separate the material on either

side of the crease into separate parts, and mesh the two parts so the nodes on either side of a crease

have the same x,y,z coordinates. CONN3D connector elements then join the translational degrees

of freedom of each set of nodes with the same x,y,z coordinates together, effectively creating a

pin-joint. The row of pin-joints approximates a zero-stiffness crease with k = 0.

3.2.3 Generating Zero-Stiffness Creases in LS-Dyna

Similar to Abaqus, one way to create zero-stiffness creases in LS-Dyna is to split the sheet on either

side of the crease into separate parts. Once meshed, one part is defined as the slave and the other

the master. The nodes on the edge of the slave part have their translational degrees of freedom

tied to the adjacent master facet elements, using the Contact Tied Nodes to Surface command.

One challenge to creating creases in LS-Dyna is that even if the master and slave nodes perfectly

intersect, the solver may not identify the correct master surface to project the tied slave node onto,

as shown in Figure 3.2(a). In practice it was found that in some cases a small overlap of the

slave node on the master surface of up to 25 µm was needed for elements 2 mm wide, for the

tied constraint to initialize on all slave nodes. In the benchmark problem simulations presented in

Section 3.4 an overlap of 10 µm was sufficient.

3.2.4 Contact & Crease Model Interaction

Self-contact is critical for modeling the packaged configuration of creased sheets. In both Abaqus/Explicit

and LS-Dyna, contact can be specified as either pairs of master and slave surfaces, or a single sur-

face under self-contact. For sheets with a large number of creases and individual facets, utilizing a

single self-contact surface is simpler and more robust.

In LS-Dyna self-contact can be applied through the Automatic Single Surface keyword, while

in Abaqus/Explict the General Contact command is used. To stop the self-contact conditions

from conflicting with the tied constraint or connector elements forming the crease, elements on one

side of every crease are excluded from the self-contact surface, as illustrated in Figure 3.2(b). At

vertices, only one facet can be part of the self-contact condition. If this is insufficient for capturing

all the contact that occurs in the structure, additional self-contact surfaces can be defined.
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(a)

Nodes tied to facet F1,2 

V1,1
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F2,1
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F1,2

F1,3

Contact surface

L1
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(b)

Figure 3.2: (a) Vertex not subjected to tie constraint in LS-Dyna due to insufficient overlap
between the three slave parts and the master part. (b) Close up of vertex V1,1 after surface has
been meshed in LS-Dyna. Black dots are nodes from facets F2,1, F2,2, and F1,3 that have their
translational degrees of freedom tied to facet F1,2. Green highlighted regions are included in the
self-contact condition, white regions are excluded to avoid interference with the creases.

3.3 Benchmark Problem

To develop a robust technique for finding the folded configuration of a creased thin-film structure,

a benchmark problem was selected. This problem is the folding of a thin-film sheet according to

the GP92 crease pattern proposed by Guest & Pellegrino [12]. The GP92 crease pattern is shown

in Figure 3.3, and consists of n radial sectors. Solid lines represent mountain folds that fold out of

the page, while dotted lines are valley folds and fold into the page. Individual regions separated by

creases are called facets. Each radial sector is bordered by two major creases which fold up to π

radians and contain m minor creases which fold to 2π
n radians. Facet and vertices are labeled Fi,j

and Vi,j , with i corresponding to the radial sector and j to the facet number from the hub. P0 &

P1 are locations on the creases used to define regions used during folding.

This crease pattern enables biaxial compaction and was proposed as part of a study of packaging

schemes for solar sails. In addition to being a practical problem, there are several aspects that make

the GP92 crease pattern ideal for testing the packaging and deployment behavior when excluding

crease bending stiffness. Firstly, to accurately model the deployment of the sheet, both twisting

and bending of the facets need to be captured. Secondly, in the folded state the thin-film layers are

tightly packed together and any in-depth analysis of the structure must capture this self-contact

and the contact between the film and the hub.
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Figure 3.3: (a) Test case GP92 crease pattern that enables wrapping a thin-film around a polygonal
hub. Here there n = 8 major creases and m = 6 minor creases per radial sector. This corresponds
to six quadrilateral and one triangular facets per radial sector. (b) First three facets in radial sector
1, facets are labeled Fi,j and vertices Vi,j .

The folding of this crease pattern has been studied as a kinematic structure [18], where the crease

pattern was represented as a pin-jointed structure. The deployment behavior of this crease pattern

has also been studied experimentally [3] and can be compared against deployment simulations, as

covered in Section 3.8.2. In the experiments 50 µm thick polyamide film with Young’s modulus of

2.5 GPa and Poisson’s ratio of 0.3 was used. The octagonal film had a diameter of 244 mm and was

first perforated with a laser cutter to create preferential crease locations, then folded around a 20

mm radius polygonal hub. Finally the hub was suspended with string. Deployment was controlled

by linear actuators that pulled the tips of the tabs radially outwards.

The radial force required to deploy the wrapped GP92 fold pattern is plotted in Figure 3.4.

The deployed fraction df is defined as

df =
R−RPackaged

RDeployed −RPackaged
(3.2)

where R is the tab radius, RPackaged = 54 mm, corresponding to the hub radius plus the tab

length. RDeployed = 144 mm is the tab radius when the structure is fully deployed.

The experiments showed three broad force peaks with the force dropping to zero between these
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Figure 3.4: Average radial force required to deploy the folded GP92 creased film [3].

Figure 3.5: Top views of experiment at force equilibrium points. Snapshots taken at df = 0.24,
0.44, 0.62, 0.80 [3].

peaks. The regions where the force equals zero are caused by the structure over-deploying and

the tabs going slack. When the structure over deploys, it is jumping to a stable equilibrium

configuration with a larger radius. The tabs remain slack until df corresponds to the radius of the

equilibrium configuration. Three different equilibrium configurations can be clearly seen during

deployment, occurring at deployed fractions of 0.44, 0.62, and 0.8. Each configuration corresponds

to the unwrapping of another ring of facets. In the packaged state 2.5 facets are deployed, then 3.5,

followed by 4.5, and finally 5.5 as shown in Figure 3.5. After the deployment fraction exceeds 0.85,

the creases are opened beyond their neutral angle causing the deployment forces to significantly

increase.

3.4 Simulating Wrapping of a GP92 Creased Thin-Film Sheet

To package the GP92 crease pattern in Abaqus/Explicit and LS-Dyna software, two separate folding

approaches were investigated. In the first instance, the creases are formed as a row of pin-joints

created by connector elements in Abaqus and the sheet folded with boundary conditions. In the
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Figure 3.6: GP92 fold pattern showing local coordinate directions ξi, associated with vertices Vi,7.
To enforce symmetry these vertices are constrained to not move in ξi directions during folding.
During the deployment stage radial displacement boundary conditions are applied to D1 −D4.

second, creases were modeled with tied constraints in LS-Dyna, and the sheet folded with boundary

conditions and forces. The simulations were designed to match the experiments performed by

Arya [3], with thin-film sheet of 50 µm thick polyamide (Kapton) film, Young’s modulus of 2.5 GPa

and Poisson ratio of 0.3. The exact crease pattern simulated is shown in Figure 3.6. The gray

region in the center is the eight sided polygonal hub 20 mm in diameter. To enforce axi-symmetric

wrapping the nodes at the ends of the major creases, labeled V1,i are constrained against movement

in the ξi direction. D1 to D4 are tabs used to deploy the packaged sheet and validate the deployment

force and behavior against the experimental data.

3.5 Folding GP92 Crease Pattern with Zero-Stiffness Creases in

Abaqus/Explicit

The Abaqus model consists of a rigid eight-sided polygonal hub whose translational and rotational

degrees of freedom, except about Z, are fully constrained. The Kapton sheet is modeled as 56

separate parts, with connector elements representing the creases, as shown in Figures 3.7(a) and

3.7(b). Each Kapton part contains 100 S4 quadrilateral or S3 triangular shell elements, each with

five thickness integration points. The translational degrees of freedom of the facet nodes adjacent

35



(a) (b)

Figure 3.7: (a) Abaqus/Explicit FEA model of GP92 crease pattern with n = 8, m = 6. (a)
Isometric view, and (b) top view. Yellow triangles correspond to connector elements that model
the creases.

to the hub are tied to the hub itself.

Boundary conditions are applied smoothly with the Abaqus/Explicit command *Amplitude,

Definition = Smooth Step. This prescribes the boundary conditions to follow a fifth order time

dependent polynomial with the first and second time derivatives equal to zero at the beginning and

end of the time interval.

To reduce vibrations two types of damping were implemented. The first type of damping,

viscous damping, introduces a velocity-dependent normal pressure on the shell elements. The total

opposing force is

Fv = −γAv (3.3)

where A is the surface area, γ the viscous damping coefficient, and v the nodal velocity.

The second type of damping, bulk viscosity, introduces an in-plane strain-rate dependent pres-

sure

pb = ξρcdlε̇v (3.4)
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and an in-plane curvature-rate dependent moment [24].

m = ξ
t2

12
ρcdκ̇ (3.5)

where ξ, and l denote the fraction of critical damping in highest frequency mode and the element

length, respectively. ρ, t, and cd are the density, shell thickness, and wave speed, respectively. The

exact damping profile is shown in Appendix A.

To apply contact between the layers, general contact was applied to all surfaces, with the

elements adjacent to the creases excluded as specified in Section 3.2.4. To ensure numerical errors

do not disrupt the energy balance, Abaqus inputs artificial energy during contact and when elements

distort.

3.5.1 Folding with Hub and Facet Rotation

Folding is a four step process. This section provides an overview of the process, with additional

details in Appendix A. In the first step, boundary conditions are applied to rotate each triangular

facet 90◦ over a period of 0.07 s so each facet surface becomes parallel to the local hub surface. This

time was selected to ensure kinetic energy was < 5% of internal energy at the end of the folding

step. The boundary conditions are applied smoothly via Abaqus/Explicit’s Smooth Step command.

The hub is allowed to rotate freely about Z during this step. In step 2, the rotational boundary

conditions acting on the triangular facets are removed, and arbitrarily large peak viscous damping

of γ = 50, 000 Ns/m3 is applied to the Kapton to damp out all excess vibration and kinetic energy.

In step 3, the hub is rotated 150◦ over a period of 0.14 s to complete the wrapping process.

Throughout the simulation the outermost nodes of the major crease lines have boundary con-

ditions applied that enforce zero circumferential motion about Z, as specified in Figure 3.6.

The simulation was stopped after the hub rotated 80◦ due to excessive wrinkling. Snapshots of

the sheet at the end of the rest step and when the simulation was stopped are shown in Figure 3.9. As

shown in Figure 3.9(a) and 3.9(c), the resulting folded configuration was not completely rotationally

symmetric. Slight perturbations, due to vibrations, mean the major crease along two arms were

not sharp. As rotation continues dimples form along these arms and cause half of the wrapped

pattern to bunch up. At the end of the folding stages stress concentrations of 81 MPa form at

the vertices. Also, several geometric imperfections have formed in the partially folded state as
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Figure 3.8: (a) Schematic of rotational boundary conditions applied to the triangular facets during
step 1.

shown in Figure 3.9(d). Once in place, geometric imperfections continue to grow and act as stress

concentrations. These include vertex formation where a crease forms a saddle configuration. In

addition, since the creases have zero bending stiffness in the transverse direction they can lose a

crisp definition as Figure 3.9(a) shows. Once a kink in the meshed surface forms away from a crease

line, it becomes locked in position. As wrapping continues, the stress concentrations increase to

124 MPa at the vertices.

Figure 3.10 shows the energy in the simulation. The folding step occurs from 0 s to 0.07 s.

The non-kinematic nature of folding is clearly evident in the large change in internal energy during

folding. Artificial energy does build up to 0.0017 J, or 35% of the internal energy at the end of

the folding step. However, once the boundary conditions on the triangular facets are released and

viscous damping applied the ratio of artificial to internal energy drops to 5.8%.

3.5.2 Removing Vertices

Enforcing rotation of the triangular facets creates an over constrained problem that requires the

adjacent quadrilateral facets to deform. This creates a stress singularity near the vertices of the

quadrilateral facets adjacent to the hub. To reduce this stress, the elements surrounding these

vertices were removed as shown in Figure 3.11. By removing these elements the vertex no longer

acts as a stress singularity, and the sheet requires less energy to fold, as shown in Figure 3.13.

Removing the elements minimized the formation of geometric imperfections during the folding

and wrapping steps, depicted in Figure 3.12(c). The lack of geometric imperfections allowed the
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(a) (b)

(c) (d)

Figure 3.9: Von Mises stresses within the creased thin-film sheet during folding in Abaqus/Explicit.
(a), (c) the end of the rest period after folding, and (b), (d) 0.07 s through the wrapping step,
corresponding to hub rotation of 80◦.
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Figure 3.10: Energy in Abaqus/Explict wrapping simulation of the GP92 crease pattern.

Figure 3.11: Removing elements closest to the hub vertices, to reduce the stress concentration.
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(a) (b)

(c) (d)

Figure 3.12: Von Mises stresses within the creased thin-film sheet during folding for the
Abaqus/Explicit scenario where the vertices closest to the hub were removed. (a), (c) the end
of the rest period after folding, and (b), (d) 0.14 s through the wrapping step, respectively.
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Figure 3.13: Energy in Abaqus/Explict simulation of GP92 crease pattern for the case where
elements surrounding the vertices closest to the hub have been removed.

sheet to be more tightly wrapped, with the hub rotated through an angle of 150◦ and a final

wrapped configuration in Figure 3.12(b).

Despite wrapping to 150◦ instead of 80◦ the internal energy is only 62% as large as the previ-

ous simulation. This is due almost entirely to the lack of geometric imperfections causing stress

concentrations and crumpling.

(a) (b)

Figure 3.14: Minor crease between the triangular facet and an adjacent quadrilateral facet (a) end
of wrapping step, and (b) first increment into the following rest step. Other facets are hidden for
clarity.

The major impediment to applying Abaqus/Explicit to modeling the packaging of creased thin-

film sheets is detailed in Figures 3.14(a) and 3.14(b). At the end of the wrapping step shown in
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Figure 3.15: LS-Dyna FEA model of GP92 crease pattern.

Figure 3.12(b) the facets are tightly packaged against each other. Under these conditions when

Abaqus/Explicit changes from one step to another, some of the connector elements no longer con-

strain the nodes on adjacent facets to have the same translational degrees of freedom, even without

any additional external loads. Reducing this effect is possible but requires multiple iterations of

the wrapping step.

Due to both the artificial energy buildup and the connector element issues, folding initially

flat creased sheets in Abaqus/Explicit was not pursued further. The deployment of the GP92

crease pattern when starting from a folded configuration is still performed with Abaqus/Explicit

in Section 3.9.

3.6 Folding GP92 Crease Pattern with Zero-Stiffness Creases in

LS-Dyna

The implementation in LS-Dyna of the GP92 crease pattern, with zero-stiffness creases is shown

in Figure 3.15. Each triangular and quadrilateral facet was meshed with between 256 and 512

C0 triangular and quadrilateral Belytschko-Wong-Chiang shell elements. Details on LS-Dyna shell

elements can be found in Section 2.2. Mesh convergence studies and the effect of element type for

the unfolding is detailed later in Section 3.9.
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Figure 3.16: Self-contact surface implemented for the LS-Dyna simulation of GP92 crease pattern.
Self-contact surface not defined for the elements along one side of each crease to avoid conflict
between crease tie-constraint and self contact.

As specified in Section 3.2.3, creases are formed by tying the translational degrees of freedom

of the nodes on the edge of one facet to the elements of the adjacent facet. An overlap of 10 µm

between facets for elements of side length 2 mm or less was found to be acceptable for ensuring the

tied constraints initialized in the following simulations.

Self-contact of the Kapton sheet was implemented with the Automatic Single Surface command.

To avoid conflict between the tied constraints forming the creases, and the contact condition, the

self-contact surface is not defined along one side of the crease. The self-contact surface is shown

in Figure 3.16. Contact between the Kapton sheet and the rigid hub was implemented with the

Contact One Way Surface To Surface keyword.

Unlike Abaqus, LS-Dyna does not allow tied constraints between rigid and deformable bodies.

Since the hub was modeled as rigid, the thin-film nodes directly adjacent to the hub were instead

specified as part of the rigid body with the keyword *CONSTRAINED_EXTRA_NODES_SET. This only

constrained the nodes’ translational degrees of freedom.

For shell structures that undergo dynamic buckling or compressive deformation, including bulk

viscosity for shell formulations in LS-Dyna simulations is recommended [23] . This was achieved

by setting TYPE to 2 in the keyword *CONTROL_BULK_VISCOSITY. This improved the stability of

the model significantly.
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In LS-Dyna mass nodal damping is used instead of viscous damping. The force applied to each

node by mass nodal damping is

Fv = −βmv (3.6)

where β is the mass nodal damping coefficient, m is the mass of the node, v is the nodal

velocity. It differs from viscous damping in that it applies a force directly opposed to the nodal

motion, instead of perpendicular to the surface. The relationship between the coefficient of viscous

damping γ in Abaqus and the mass nodal damping coefficient β is

γ = tρβ (3.7)

assuming a film of constant thickness t and density ρ.

3.6.1 Folding with Forces

It was shown in Section 3.5.1 that folding by purely applying rotational boundary conditions to

facets can result in significant facet bending and twisting during folding. An alternative to folding

with boundary conditions is to fold by applying forces to the surface.

The two types of forces used here are pressure loads and line loads. Pressure loads are applied

to the triangular facets to replace the rotational boundary condition. Line loads are distributed

loads applied along the creases and are applied in the ±Z direction along the major crease lines.

These loads tension the creases and ensure a clear discontinuity in slope across the crease. The

exact magnitude and profile of these loads are detailed in Appendix A. These forces were applied

over a short time period of 0.016 s.

Figure 3.18 clearly shows two interesting features. The first is the major creases are crisp and

provide a sharp discontinuity between the facets, without geometric imperfections. The second is

that there are high stress concentrations in the triangular facet despite the removal of elements

surrounding the hub vertices. During folding the triangular facets are allowed to bend, as shown

in Figure 3.19(a). When folding purely with pressure and line loads however the major crease

line bordering the triangular facet is under compression loads of -5 MPa. This causes the facet to

crumple, as displayed in Figure 3.19(b).
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Pressure Loads

V1,1

V2,0

Figure 3.17: Schematic of a creased surface being folded by point, line and pressure loads.

Figure 3.18: (a) Von Mises stress distribution in the wrapped sheet 75% of the way through folding.
Stress concentrations up to 141 MPa are present at the vertices of the triangular facets. The hub
has been hidden for clarity.
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(a) (b)

Figure 3.19: Close up of the triangular facet crumpling during folding at (a) 23% and (b) 30%
of the way through the folding step. To clearly show the crease line between the triangular and
quadrilateral facets the individual facets are shown in separate colors, and the hub hidden for
clarity.

A further challenge is that, to fold rapidly, forces of up to 0.15 N are applied. When folding is

complete, the outermost facets end up moving at speeds up to 6 m/s. This results in significant

contact and vibration between the layers. In addition, the hub continues to rotate until the facets

are fully wrapped, and then there is a shock load at nodes Vi,7 since these nodes are constrained in

the circumferential direction. This shock load causes additional geometric defects to occur in the

packaged configuration.

3.6.2 Including Mass Nodal Damping and Vertex Forces

The packaged state obtained in the previous simulation had two key problems. First the triangular

facets crumpled during folding and second, at the end of the wrapping process, shock loads generate

geometric defects.

To remove the crumpling of the triangular facets, point loads in the ± Z direction were applied

to the triangular facet verticies. The exact load profiles can be found in Appendix A. These forces

tension the triangular facets and both minimize crumpling during folding as well as removing the

geometric defects caused by crumpling after they form. This prevents these defects from becoming

locked in place between multiple Kapton layers.

To remove the shock loads that occur at the end of the wrapping stage, arbitrarily large mass

nodal damping of up to β = 40, 000 s−1 was applied 0.016 s into wrapping. It was at this stage
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Figure 3.20: Internal and kinetic energy in final LS-Dyna packaging simulation. Packaging ends at
0.016 s, and viscous damping is applied for 0.016 s following that.

in the wrapping process that 2.5 facets remained unwrapped, which corresponded to the starting

configuration for the deployment experiments, as shown in Figure 3.5. This completely removed

the kinetic energy in the system, as shown in Figure 3.20. The non-uniform profile detailed in

Appendix A was used so the Kapton sheet could reach an equilibrium configuration.

The triangular facets experience significant compression during and after folding, as Figure 3.22

shows. Without sufficient tensioning forces during folding, this stress would cause many wrinkles

to be present in the folded configuration. The compression in the triangular facets and the large

tensile stresses in the first ring of quadrilateral facets are caused by the innermost facets being overly

constrained during folding. Simulations starting in the initially folded configuration completely

neglect these stresses.

Figures 3.21(a) and 3.21(b) show an axi-symmetric wrapped state with few geometric imper-

fections, distinct major crease lines and triangular facets that are not crumpled. Qualitatively

the packaged configuration is close to that experimentally observed in Figure 3.5. In Section 3.9

this model is validated by comparing the required deployment force in the simulation with the

experimental results in Figure 3.4.

3.7 MCFF Modeling Technique

The knowledge gained in the previous sections can be distilled into a standardized approach to

modeling the folding of creased thin-film sheets.
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(a) (b)

Figure 3.21: Von Mises stress distribution at end of wrapping stage for LS-Dyna simulation
incorporating pressure, line and point loads (a) Isometric view, and (b) top view.

The Momentless Crease Force Folding (MCFF) approach is detailed in Figure 3.23. The MCFF

approach starts with the crease pattern in the flat configuration. The facets are generated as

separate shell element parts with an overlap between the facets of up to 25 µm for elements with

edge length ≤ 2 mm. Tie constraints then constrain the nodes of the facets on one side of a

crease to the shell elements on the other side of the crease. At vertices where the folding process

is over-constrained, the surrounding elements are removed to reduce stress concentrations. Next,

a self-contact surface that excludes elements along one side of every crease is defined, to ensure

that the tie constraints do not conflict with the self-contact. These steps constitute the initial

configuration of the simulation.

To wrap or fold this crease pattern, three types of forces are applied. Pressure loads act

as follower forces that fold facets instead of using rotational boundary conditions. Line loads are

forces distributed along the length of the creases. Line loads ensure creases are sharp with a distinct

discontinuity in gradient across the creases. Vertex or point loads are applied at the vertices, and

serve to tension and straighten creases during folding. Point loads keep facets and creases under

tension to avoid crumpling or other geometric defects from either appearing, or becoming locked
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Figure 3.22: The minimum principle in-plane stress for the initially flat simulation, with close up
views of the inner rings of triangular and quadrilateral facets when (a) 20% folded and (b) fully
folded. The hub is not shown for clarity, and the viewing angle is the same in both (a) and (b).

into place between multiple sheet layers.

Towards the end of the wrapping step, artificially large viscous damping is applied to the creased

sheet. This removes excess kinetic energy and avoids multiple layers of the creased sheet vibrating

against each other at the end of the packaging process. A non-uniform damping profile, where the

system is repeatedly over-damped and under-damped, allows kinetic energy to build up and be

removed multiple times until the creased sheet reaches an equilibrium packaged configuration.

3.7.1 Advantages

The advantages of the MCFF technique include:

1. The moment-angle relationship of each crease does not need to be determined in advance of

modeling the packaged state.

2. Lack of rotational boundary conditions ensure exact rotation vectors and angles do not need

to be determined.

3. The effect of singularities is reduced by removing elements at over-constrained vertices.

4. Forces are more forgiving for folding over-constrained facets than boundary conditions.
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Figure 3.23: MCFF algorithmic approach to model the folding of creased sheets in LS-Dyna.
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5. Viscous / mass nodal damping removes shock loads at the end of folding.

3.7.2 Disadvantages

The disadvantages of the MCFF technique include:

1. Simulation does not include actual crease bending moment.

2. Iteration may be required to determine the forces and viscous damping required to achieve

the folded configuration.

3. Any geometric defects that appear during folding need to be actively dealt with by applying

vertex loads, and will not disappear otherwise.

3.8 Validation of Modeling Techniques

The previous section showed how to fold a creased thin-film sheet into a packaged configuration

when the creases have zero bending stiffness. The question remains: can removing crease bending

stiffness result in useful information about the deployment behavior, such as the forces required to

unwrap a creased thin-film structure?

To validate both the momentless-crease representation in general, and the MCFF technique in

particular, the folded GP92 crease pattern was deployed in LS-Dyna, and the deployment forces

compared to previous experimental work [3], detailed in Section 3.4. In addition, GP92 deploy-

ment simulations in LS-Dyna and Abaqus were performed starting from an approximated folded

configuration. This is to control for the effect of momentless creases, vs. the full MCFF approach.

3.8.1 Analytical Approximation of the Folded Configuration

In the GP92 case the folded form is analytically known only in the zero thickness case, where all

the radial sectors package on top of each other and w = 0 as in Figure 3.24. To accommodate

thickness in GP92, the vertex locations can be approximated by moving their position a radial

distance w = tj outwards in the folded configuration, for film thickness t and minor crease number

j [18]. The facet edges are then linearly interpolated from the vertex locations. With this approach

each facet is defined as slightly warped (non-planar), and the entire thin-film will no longer unfold

flat.
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Figure 3.24: Top view of a single GP92 major creaseline when starting in an initially folded con-
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Figure 3.25: Cross-section of crease. Minimum initial fold angle θ0 is constrained by Equation 3.8
so nodes adjacent to creases do not start the simulation with initial contact interference. In a
simulation moment M depends on initial crease angle θ0 and crease stiffness k(θ).

To avoid initial contact between tightly packaged layers in the FEA software, a non-zero initial

fold angle θ0 is required, as shown in Figure 3.25. The minimum θ0 depends on the film thickness

t and the length of the elements adjacent to the crease L

θ0 ≥ 2 sin−1

(
2t

L

)
(3.8)

The initially folded configuration as implemented in LS-Dyna is shown in Figure 3.26.

3.8.2 Deployment Simulations

Deployment (unfolding) can be carried out in two different ways - dynamic and quasi-static. For

purely dynamic simulations where exact accelerations are important, the sheet density, deployment

time, and applied damping must match reality as closely as possible.

Quasi-static deployment, however, is slow and controlled. For these simulations the build up
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(a) (b)

Figure 3.26: LS-Dyna model of the GP92 crease pattern when starting from an initially folded
configuration. (a) Isometric view, and (b) top view.

of spurious vibrations needs to be avoided in order to reduce numerically induced noise in the

force deployment. Excessive vibration can change the deployment profile by providing energy for

the system to jump from one configuration to a lower energy one. If damping is applied during

deployment it can, however, increase the force required to unfold the sheet.

The experiments from prior work and detailed in Section 3.3 on the GP92 crease pattern were

performed in a quasi-static manner, except for the naturally occurring dynamic jumps between

equilibrium configurations. The solution proposed here is to break the deployment simulation into

stages. After each deployment stage apply non-physical viscous damping (Abaqus) or mass nodal

damping (LS-Dyna) to remove excess kinetic energy, as shown in Figure 3.27. This damping reaches

a peak of βmax = 20 s−1 during the four rest periods between deployment. During the non-rest

periods β = 0.03 s−1. This corresponds to a γ of 0.002 Ns/m3 in the Abaqus simulations. This

value was chosen to minimize the effect of viscosity on the required deployment forces.

To match the experiments, deployment tabs were added to the GP92 crease pattern. Rather

than completely controlling the boundary conditions on the edge of the GP92 crease pattern,

the deployment tabs allow the structure to jump from one equilibrium configuration to another,

larger radius one. In this case, the tabs will go slack and the force drop to zero, as shown by the

experimental results in Figure 3.4.

To determine the effect of the MCFF approach, a deployment stage was added to the packaging
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Figure 3.27: Tab displacement (df ) during deployment and the corresponding mass nodal damping
(β) used to remove excess kinetic energy.

simulation in Section 3.6.2. During wrapping the nodes labeled Di in Figure 3.6 were moved radially

inwards with boundary conditions during wrapping to completely control their position and ensure

the tabs remained slack. The tabs were modeled as membranes to stop tab bending stiffness from

disrupting the rotational symmetry during folding.

3.9 GP92 Deployment Results

3.9.1 Mesh Convergence Study

A mesh convergence study was performed for an initially folded GP92 crease pattern utilizing

Belytschko-Wong-Chiang (BWC) quadrilateral shell elements. The resulting deployment force pro-

files are shown in Figure 3.28. Four cases were tested, n = 8, 12, 16, and 20. Here n signifies the

number of elements along each edge of the triangular facet. The number of elements throughout

the entire crease pattern were scaled accordingly. n = 16 and n = 20 have converged, with slight

differences only at df = 0.58 and df = 0.70. For the following simulations, n = 16 was used to

reduce the total run time.
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Figure 3.28: Deployment force results from LS-Dyna mesh convergence study. n corresponds to
the number of elements along the edge of every the triangular facet.

3.9.2 Comparison of Initially Folded and Initially Flat Results

The effect of meshes containing BWC quadrilateral and C0 triangular shell elements in LS-Dyna,

and S4 shell elements in Abaqus were investigated. The corresponding deployment force results

are shown in Figures 3.29(a), 3.29(b) and 3.29(c). The deployment forces plotted are the average

forces from the four tabs. Snapshots of the deployment configurations are shown in Figure 3.30.

Like the experiments, the simulations starting from an initially folded state show three broad

force peaks, each corresponding to the opening of another ring of facets, as shown in Figure 3.29(a).

The regions where the force equals zero are caused by the structure over-deploying and causing

the tabs to go slack. Three different equilibrium states can be clearly seen during deployment,

occurring at deployment fractions of 0.44, 0.62, and 0.8.

The reduced integration BWC quadrilateral shells capture the peak forces to within factors of

1.24, 1.85, and 1.54 for the three force peaks. The force peaks are broader than those observed

experimentally, potentially because the creases are not applying an opening moment. There is a

spurious force peak observed at df = 0.5. This corresponds to the hub rotating as a result of the

previous ring of facets opening, until tension in the deployment tabs halts rotation. Then the hub
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Figure 3.29: Comparing LS-Dyna deployment force profiles for BWC and C0 shell elements for (a)
the initially folded case and (b) packaged via MCFF technique, and comparing Abaqus/Explicit
deployment force profiles for S3 shell elements for the initially folded case.
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Figure 3.30: Top and isometric views of the initially folded LS-Dyna simulation at equilibrium
configurations corresponding to df = 0.23, 0.42, 0.62 and 0.80.

starts to rotate in the opposite direction. This process causes additional loads on the deployment

tabs, and generating a spurious peak.

The Abaqus simulation overestimates the force magnitudes by a factor of up to 4.5x, with the

three equilibrium configurations clearly visible. The force increases drastically at df = 0.8 due to

dimples appearing in the triangular facet mesh closest to the hub.

Both initially folded simulations show non-zero forces at df = 0.18. This corresponds to the

first ring of facets opening. The experimental results differs because, due to the crease opening

moment, the sheet starts with 2.5 rings of facets already unwrapped, as seen in Figure 3.5.

For the initially folded simulations the force drastically increases at the end of deployment.

Experimentally this is caused by creases opening beyond their neutral state. This does not apply in

the simulations as the creases are modeled with zero stiffness. For the initially folded simulations the

vertex positions have been changed to allow for thickness and contact effects. With these changes

the crease pattern no longer folds flat, and hence after df = 0.80 additional force is required to

stretch the thin-film into a flat, fully deployed configuration.

The LS-Dyna simulations where the creased sheet was packaged with the MCFF technique

in Figure 3.29(b) have similar force profiles to those starting in the initially folded configuration.
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Unlike the initially folded LS-Dyna simulation, the force reaches zero at df = 0.44, showing a true

equilibrium configuration. However, while a force minima can be seen at df = 0.6, unlike the

experimental results it does not reach zero. The first force peak matches the experimental data

force peak to within 31%, with the following two peaks a factor of 2 times greater.

The radial force on each tab required to deploy the wrapped GP92 fold pattern is plotted in

Figure 3.31 for the LS-Dyna and Abaqus simulations. This data was smoothed using a five-point

moving average to reduce noise. All the simulations showed significant variation in the force profiles

for each tab. Two factors determine this. First, each radial sector of facets can deploy independently

of each other. Second, each time the sheet jumps to a new equilibrium configuration, strain energy

is converted into kinetic energy, causing vibrations.

As expected, the minima in internal energy correspond to the equilibrium configuration. The

drops in kinetic energy correspond to where large viscous or mass nodal damping is applied to

damp out vibrations. For the Abaqus simulation, artificial energy builds up until it is 7% of the

internal energy at df = 0.8.

3.10 Discussion

To model the unfolding of creased thin-films in this chapter it has been necessary to use tools such

as the tied-contact condition in LS-Dyna, or connector element in Abaqus/Explicit, for purposes

for which they were not designed. In particular, determining the overlap between the nodes and

elements of the tied constraint that is sufficient for the constraint to activate at the start of the

simulation, while ensuring it is small enough not to affect the simulation results, can be time

consuming. To best capture the crease behavior, the development of a dedicated finite element,

similar to the connector element in Abaqus/Explicit, is needed. Ideally the rotational stiffness

(k(θ)) of this element would be specified initially, and vary non-linearly according to the difference

in crease angle from a given baseline value (θn), including allowing for a negative stiffness value.

There is potential for a user-defined connector element to perform this in Abaqus, however the

challenges identified in Section 3.5 would need to be solved first. In addition, the dedicated elements

would need allow for differences in mesh density on either side of the crease, and ensure the stiffness

of the whole crease is proportional to the length of the crease, regardless of mesh density.
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Figure 3.31: Smoothed radial force data (left) required to deploy crease pattern and the cor-
responding energy (right). (a), (b) are LS-Dyna results when starting from an initially folded
configuration. (c), (d) show Abaqus results starting from an initially folded configuration. (e), (f)
are LS-Dyna results when first folding from a flat state.
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3.11 Summary

Creases have been modeled as lines of momentless hinges in LS-Dyna as tied constraints, and in

Abaqus/Explicit with connector elements. Unlike simple kinks in a meshed, thin-shell surface the

crease opening angle and moment do not depend upon the baseline sheet stiffness or starting angle.

In addition, the momentless crease model allows creased sheets to start in a flat configuration and

be packaged in the simulation. It is important, however, to ensure sheet self-contact conditions do

not conflict with the tied constraints in LS-Dyna or connector elements in Abaqus/Explicit.

The benchmark problem chosen to test the effectiveness of the momentless crease model was a

creased thin-film sheet, whose GP92 crease pattern allowed bi-axial compaction, which is useful for

packaging solar and drag sails for space missions. During deployment, a sheet creased in this manner

experiences three separate equilibrium configurations, each corresponding to a ring of faces opening

away from the hub. LS-Dyna and Abaqus/Explicit simulations starting in an approximation of the

folded configuration were able to capture the equilibrium configurations. Simulations in LS-Dyna

utilizing BWC quadrilateral shell elements were best able to capture the force magnitudes

The momentless-crease force folded (MCFF) technique was developed. It utilizes pressure, line

and vertex loads to fold a creased sheet into a tightly packaged configuration. Pressure loads apply

follower forces, they are a replacement for rotational boundary conditions. Line and vertex loads

keep creases straight, to avoid crumpling. Rotational boundary conditions were tested for the ef-

fectiveness on the benchmark problem; however the facets were over-constrained during folding,

leading to significant twisting of the facets. At vertices which are over-constrained, removal of the

surrounding elements reduces stress concentrations and the force required for folding. Deployment

simulations in LS-Dyna starting from packaged configurations found using the MCFF approach

qualitatively matched the simulations starting from an initial approximation of the folded state. In

particular, the deployment force was zero at two of the three intermediate equilibrium configura-

tions. The force peaks were also within 27% of the initially folded simulations. This validates the

MCFF approach, compared to starting in an approximation of the folded configuration.

These results show that it is simpler to start from an approximation of the folded configuration

than a configuration found through MCFF. However, if the folded state is not known, folding a

creased sheet from a flat state via MCFF can provide a reasonable approximation of the packaged

configuration.
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Chapter 4

Dynamic Deployment of Tape Spring
Booms

Ultralight deployable space structures often require booms for deployment, and these booms need

to be lightweight with high packaging efficiency. Of particular interest are tape spring booms due

to the simplicity of their design, potential low cost, and use in existing satellite missions [19, 32, 16].

Analytical models already exist for the unfolding of a tape spring with a single localized fold,

and the uncoiling of a tape spring from around a hub Rhub ≈ Ri [45], refer to Sections 2.4.3 and

2.4.4 for details. These analytical approaches work well for simple cases. To capture more complex

behavior such as friction and the interplay of tape springs with other components, finite element

models have been developed in the present research.

To develop the numerical modeling approach for tape springs, including capturing the formation

and rolling behavior of localized folds, the analytical models are compared against LS-Dyna FEA

simulations in this chapter. In Section 4.1 the most suitable elements for modeling the dynamic

unfolding of a tape spring are determined, while in Section 4.2 different damping techniques are

applied to match experimentally observed energy absorbtion. Section 4.3 covers the simulation of

dynamic uncoiling of a tape spring from around a spool, and is compared with a previous analytical

model that contains no energy loss tuning factors.

4.1 Unfolding Dynamics of Tape Spring with a Single Fold

In 1999 Seffen & Pellegrino [45] developed two analytical models for the unfolding of tape springs

with one end clamped and a single localized fold, as described in Section 2.4.3. One of these

62



L (mm) 505
Rt (mm) 14.5
t (mm) 0.1
α(o) 108

E (GPa)* 128.7
ν * 0.275

Table 4.1: Properties of tape springs tested by Seffen & Pellegrino [45], * indicates values derived
from bending moment experiments.

Figure 4.1: Schematic of a clamped tape spring with a single localized fold.

models was the impulse-momentum approach, which was found to work well with experimental

data. As the tape deployed, the localized fold traveled down the tape spring until it reflected off

the clamped end. Energy was dissipated at the clamped region each time the fold reflected off

the boundary. The model was validated with physical experiments utilizing BeCu tape springs.

The tape springs were made from Beryllium Copper and had the properties specified in Table

4.1. The clamped boundary condition was obtained by mounting one end in an epoxy base. The

Young’s modulus (E) and Poisson’s ratio (ν) in Table 4.1 were back calculated from the bending

moment information in [45], assuming isotropic behavior. The following FEA simulations use these

properties when modeling the tape spring.

Figure 4.1 shows a schematic of the folded tape spring part way through deployment. Key

deployment variables are λ and θ, where λ is the ratio of deployed length to total length, and θ the
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deployed angle. y signifies the distance of the localized fold away from the clamped region, whilst

the difference between y and ξR is the transition region length. g indicates the direction of gravity.

4.1.1 Computation of Folded Configuration

The structure was simulated in LS-Dyna, and the model consisted of a 520 mm long tape spring,

with the bottom 15 mm subject to clamped boundary conditions. Two temporary cylinders 25 mm

in diameter were located either side of the middle of the tape spring, where the localized bend will

form. These cylinders aid in the folding process.

Four separate FEA models were created with identical boundary conditions but different shell

element types. The element types tested were quadrilateral Belytschko-Tsay shell elements, quadri-

lateral S/R Hughes-Liu elements, C0 triangular shell elements and fully integrated quadrilateral

shell elements. The elements were sized at the default provided by the LS-Dyna PrePost au-

tomesher, at 2 mm. This gave 14 elements transversely across the tape spring. Figure 4.2 shows

the Belytschko-Tsay quadrilateral mesh and the node sets used for applying the boundary condi-

tions during folding and deployment.

To fold the tape spring, first displacement boundary conditions were applied in the x direction

to the edge nodes, flattening the tape spring. After flattening, frictionless contact was applied

between the tape spring and cylinders through the keyword *AUTOMATIC_SURFACE_TO_SURFACE.

The flattening boundary conditions were released and the tip of the tape spring was displaced,

wrapping the tape spring around a cylinder. Once a localized fold in the tape spring was formed,

contact between the cylinders was removed and these cylinders ceased to be used in the rest of

the simulation. Once the tape spring was fully folded, displacement boundary conditions were

applied to all tape spring nodes to remove excess kinetic energy. Once this energy was removed,

the tip was constrained in all translational degrees of freedom, and the tape spring allowed to reach

an equilibrium folded state. A full description of the applied boundary and contact conditions is

detailed in Table 4.2. Gravity was applied through the *LOAD_BODY_Z keyword, which applies a

body force to the entire tape spring.

A schematic of the folding process is shown in Figure 4.3. The tip displacement during folding

was carefully calculated to stop the tape spring from either stretching or buckling. The x, z path
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Figure 4.2: Regions of the tape spring to which boundary conditions are applied during the folding
process.

Figure 4.3: Schematic of the folding process. The tape spring is first flattened in the middle, then
contact applied between the tape spring and the two cylinders of radius Rhub. Point P is displaced,
wrapping the tape spring through angle θ around a cylinder.
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Description Time (s) Node Set
Boundary Conditions
Activated

Restrain out of plane
displacement

0 - ∞ Midline Nodes uy = 0

Fix base to model clamped end
condition

0 - ∞ Clamped End Nodes ux = uz = 0

Constrain corners to minimize
tape spring twisting motion

0 - ∞ End corners uy = 0

Restrain twisting of midline
during folding

0 - 0.17 Midline nodes θx = θz = 0

Edges are displaced to flatten
tape-spring

0 - 0.04 Edge nodes ux = 5.7

Fix midline position as edges are
flattened

0 - 0.06 Midline nodes ux = uz = 0

End node displaced to fold tape
spring around cylinders

0.06 - 0.18 End node ux = f(t), uz = g(t)

Kinetic energy removed by
constraining tape spring X & Y
degrees of freedom

0.18 - 0.2 All nodes ux = uz = 0

End node held in place 0.20 - 0.21 End node ux = uz = 0

Table 4.2: Boundary conditions applied to the tape spring to obtain the folded configuration.
f1(t), f2(t), g1(t), g2(t) were calculated from Equation 4.2.
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Figure 4.4: Time derivative profile of θ applied to give a smooth folding process. The area under
the curve corresponds to θ = π

2 radians.

the tip, point P , was constrained to follow during folding is

x =x0 +Rhub(1− cos θ) + (l0 −Rhubθ) sin θ

z =(z0 − l0) +Rhub sin θ + (l0 −Rhubθ) cos θ
(4.1)

where x0, z0 are the initial coordinates of the end node at the tip, Rhub the cylinder radius the

tape spring is wrapped around, θ the wrapped angle and l0 the initial free length of tape spring

beyond the cylinder, as defined in Figure 4.3. The (l0−Rhubθ) term corresponds to the free length

of the tape spring that is not wrapped around the cylinder. The boundary condition displacement

profile applied to the end node is therefore

ux = x− x0 =Rhub(1− cos θ) + (l0 −Rhubθ) sin θ

uz = z − z0 =Rhub sin θ + (l0 −Rhubθ) cos θ − l0
(4.2)

In the folding stage θ was applied smoothly according to the time dependent profile shown in

Figure 4.4.

4.1.2 Unfolding Results

Snapshots of the unfolding results for simulations incorporating the Belytschko-Tsay quadrilateral

and C0 triangular shell elements are shown in Figures 4.6 and 4.7 respectively. The corresponding λ

and θ responses for all simulations are shown in Figure 4.8. λ was found by measuring the distance

from the top node to the edge of the localized fold, then adding half the fold arc length.
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Figure 4.5: Isometric view of the folding process (a) Flattening tape spring, (b) Adding contact
with folding cylinders to form localized fold, (c) Final folded configuration.

(a) 0.0 s (b) 0.09 s (c) 0.14 s

Figure 4.6: Snapshots during unfolding for a tape spring meshed with Belytschko-Tsay quadrilat-
eral shell elements. The red and blue arrows correspond to the direction the tip and localized fold
are moving at time of snapshot.
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(a) 0.0 s (b) 0.09 s (c) 0.10 s (d) 0.11 s

(e) 0.19 s (f) 0.24 s (g) 0.30 s

Figure 4.7: Snapshots during tape spring deployment for a tape spring meshed with C0 triangular
shell elements. The red and blue arrows correspond to the direction the tip and localized fold are
moving, respectively, at the time of the snapshot.
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(a) (b)

(c) (d)

Figure 4.8: λ and θ results from simulation using (a) quadrilateral Belytschko-Tsay shells, (b)
quadrilateral S/R Hughes-Liu shells, (c) C0 triangular shell elements, and (d) fully integrated
quadrilateral shell elements (Type -16). The black crosses and circles are the experimental data
points and the solid black lines are from the analytical model.
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(a) (b)

Figure 4.9: Kinetic and internal energy during unfolding for (a) C0 triangular shell elements , and
(b) fully integrated quadrilateral shell elements (Type -16).

For the Belytschko-Tsay simulation, the folded region did not propagate down the tape spring as

the free end rotated, but remained locked in position providing a flat λ profile. In the simulations

utilizing S/R Hughes-Liu shells, the localized fold traveled 60 mm down the tape spring before

stopping.

The localized fold in the tape spring modeled with C0 triangular elements traveled down the

tape spring, and reflected off the clamped end at 0.11 s. However, unlike the experiment no energy

was dissipated during the reflection and the system behaved like a perfect spring, with the localized

fold traveling back up the tape spring at the same speed as when it first came into contact with the

clamped end. At 0.2 s the tape spring almost returned to its original configuration, with λ = 0.55

and θ = 1.57 rad, compared to λ = 0.49 and θ = 1.58 rad at the start. The internal and kinetic

energy during unfolding is shown in Figure 4.9(a).

For the simulations incorporating fully integrated quadrilateral shells (Type -16), the localized

fold also travels down the tape spring and reflects off the clamped end. However, immediately

after the reflection the boom buckles, as indicated in Figure 4.10(b). The boom snaps back into an

unbuckled state 0.01 s later, however some of the kinetic energy has been converted into vibration

and torsional motion. The localized fold therefore travels up the tape spring at a lower velocity than

before the reflection. Figure 4.9(b) shows the internal and kinetic energy for the fully integrated

quadrilateral shells case. It is unknown if this was the effect observed in the initial experiments, or
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if energy was dissipated through a different mechanism.

(a) (b)

Figure 4.10: The tape spring configuration immediately after the localized fold has reflected off
the base for tape springs meshed with (a) C0 triangular shell elements , and (b) fully integrated
quadrilateral shell elements (Type -16). A close up of the region where the tape spring has buckled
when meshed with quadrilateral shell elements is also shown.

4.2 Effect of Energy Absorption on Unfolding Dynamics

In the experiments energy appeared to be dissipated each time the localized fold reflected off the

clamped end. To model this, two energy dissipation techniques were added to the fully integrated

quadrilateral and C0 triangular shell element simulations. The first was incorporating non-reflecting

boundary conditions, and the second was to apply mass nodal damping.

4.2.1 Non-Reflecting Boundary Conditions

Mallikarachchi & Pellegrino [24, 26] modeled the behavior of similar composite tape spring booms

in Abaqus/Explicit. There they used infinite elements to stop the clamped end from reflecting

stress waves back into the system. Infinite elements are designed to model the far-field region and
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act as remote dashpots that provide distributed damping along the boundary. In this simulation,

solid elements were required as an interface between the composite boom and the infinite elements.

(a) (b)

Figure 4.11: (a) Non-reflecting boundary conditions applied to bottom surface only. (b) Non-
reflecting boundary conditions applied to bottom surface, and sides of the solid element layer
nearest the tape spring.

LS-Dyna models far-field effects by providing non-reflective boundary conditions which can be

applied to a single face on given solid elements. In practice, these boundary conditions act similarly

to infinite elements in Abaqus/Explicit. Two different LS-Dyna simulations were performed with

non-reflecting boundary conditions. Figure 4.11(a) shows reflective boundary conditions applied to

the bottom only (RB1), and applied to both bottom and sides in Figure 4.11(b) (RB2). Figure 4.12

shows the effect of these boundary conditions. While energy is lost for the C0 case, and the second

θ peak is lower, it is still 50% higher than either the analytical model or the experimental results.

Non-reflecting boundary conditions have very little effect on the behavior of the tape spring meshed

with fully integrated quadrilateral shell elements.

4.2.2 Viscous Damping

An alternative energy dissipation method used by previous work [24, 26] utilizes viscous damping to

the system. While the damping mechanism itself is non-physical, viscosity can be tuned to remove

from the simulation the energy that in reality is lost at the root of the boom. Seffen & Pellegrino [45]

also added viscous damping terms of 8× 10−3λ̇ and 8× 10−3θ̇ to the energy formulation equations

to gradually remove energy from the system.
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(a) (b)

Figure 4.12: λ and θ results from implementing non-reflective boundary conditions for simulations
using (a) C0 triangular shell elements, and (b) fully integrated quadrilateral shell elements, (Type
-16). RB1 and RB2 correspond to setups in Figure 4.11(a) and 4.11(b).

Viscous / mass nodal damping was tuned so that for the C0 mesh the peak θ value following the

first reflection matched the experimental data to within 1%, as shown in Figure 4.13(a). Applying

viscous damping has two effects. First, it removes kinetic energy from the system and so reduces

the second θ peak value. The second effect is to increase the time it takes for the localized fold to

travel along the tape spring. The localized fold reaches the clamped region at 0.115 s, compared

with 0.1 s in the undamped simulation and 0.11 s experimentally. Potential future work could

involve applying viscous damping to the tape spring only when the localized fold is in the process

of being reflected.

4.3 Coiling and Dynamic Uncoiling of Tape Springs

In the previous section, the focus has been on comparing tape spring FEA unfolding models against

experimental data, and applying tuning factors to match the energy loss. This section focuses on a

direct comparison between the FEA and analytical models for a scenario that contains no energy

dissipation mechanisms.

In the following sections, the predictions from the equations for the uncoiling of a tape spring

in vacuum are compared against matching LS-Dyna models. The boom parameters used, listed

in Table 4.3, match those Seffen & Pellegrino used in their original experiments. Section 4.3.1
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(a) (b)

Figure 4.13: Viscous pressure of 0.75 s−1 applied to tape spring surface during deployment to
capture energy absorption. λ and θ results from simulation using (a) C0 triangular shell elements,
and (b) fully integrated quadrilateral shell elements (Type -16). The black crosses and circles are
the experimental data points and the solid black lines are from the analytical model.

L (mm) 500
Rt (mm) 15.1
t (mm) 0.1
α(o) 135
E (GPa)* 133
ν * 0.295
ρ (kg/m3) 3200

Table 4.3: Properties of tape spring tested in uncoiling experiments [45], * indicates values derived
from bending moment experiments.

covers the coiling of the tape spring around a hub of Rhub ≈ Ri in LS-Dyna. Section 4.3.2 covers

the uncoiling of the same tape spring and compares the results for equal-sense and opposite-sense

bending.

4.3.1 Coiling

The LS-Dyna model consists of four components: the tape spring, as per Figure 4.14(a), a central

hub comprised of two rigid cylinders, and a spool, shown in Figure 4.14(b). In the initial state

the tape spring intersects the spool. To initiate the process, the edge nodes are displaced in the

x direction whilst the midline is fixed in place. This flattens the tape spring. Contact is then

provided between the tape spring and the rigid blue cylinders which no longer intersect the tape
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spring.

(a) (b)

Figure 4.14: Isometric views of (a) tape spring, including node sets and regions where boundary
conditions are applied, and (b) the central hub. After flattening, the axis of rotation nodes are
coincident to the green hub axis. The tape spring slots between the blue cylinders and the whole
hub is rotated so that it wraps around the green arcs.

Once flattened, the nodes labeled ‘axis of rotation nodes’ in Figure 4.14(a) are fixed in the x and

z directions. These nodes are now in the direct center of the green cylindrical section that forms

the spool. The spool and two cylinders are now rotated through 28.4 radians, or 4.5 revolutions,

about the spool’s central y axis. During this step the corners of the free end of the tape spring are

constrained to only move tangentially to the spool. After 0.96 s the tape spring coiling process is

complete.

From 0.96 s to 1.16 s Region A is fully constrained in the x and z directions, while the boundary

conditions on the rotation axis nodes are removed. Contact between the tape spring and the cylin-

ders is also removed. This releases the tape spring end inside the spool as depicted in Figure 4.15(d).

The purpose of this step is to reduce the curvature of the tape spring where it enters the spool.

Finally, Region B, corresponding to the section of tape inside the spool is fully constrained in the

X and Z directions. This sets up the tape spring for the uncoiling simulation in the next section.

A complete description of the boundary conditions applied to produce the coiled configuration can

be found in Table 4.4.
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(a) 0 s (b) 0.16 s

(c) 0.28 s. (d) 1.16 s

Figure 4.15: Key stages in the coiling simulation. (a) Initial configuration, (b) Tape spring flattened
& contact with cylinders applied, (c) spool and cylinders rotated 28.4 radians, contact between tape
spring and spool applied, and (d) end of coiling simulation.
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Description Time (s) Node Set
Boundary Condition
Activated

Fix midline position to constrain
out-of-plane motion

0 - ∞ Midline uy = 0

Fix spools 0 - 0.16 Rigid bodies θy = 0

Edges are displaced to flatten
tape-spring

0 - 0.16 Edge Nodes ux = −8.321 mm

Fix midline position as edges are
flattened

0 - 0.16 Midline ux = uz = 0

Contact applied between cylinders and tape spring 0.16 - 0.96 All nodes

Contact applied between spool and tape spring 0.3 - ∞ All nodes

Rotate spool 0.16 - 0.96 Rigid bodies θy = −22.8 rad

Fix tape spring nodes at the center of
the spool, so tape rotates about these
nodes during coiling

0.16 - 0.96
Rotation axis
nodes

ux = uz = 0

Constrain tape-spring free end to move
tangent to spool during coiling

0.16 - 1.16
Free end
corners

Uξ = 0

Fix spools 0.96 - ∞ Rigid bodies θy = 0

Constrain node displacement to maintain
coiled state as axis nodes are released

0.96 - 1.16 Regions A & B ux = uz = 0

Clamp hub end nodes as tape-spring
dynamically uncoils

1.16 - ∞ Region B ux = uy = 0

Table 4.4: Boundary conditions applied to the tape spring to obtain a coiled configuration.
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Figure 4.16: Energy density in the tape spring at the start of the uncoiling simulation.

4.3.2 Dynamic Uncoiling

The equations governing the uncoiling dynamics, detailed in Section 2.4.4, Equation 2.21 provide

a closed form solution for γ̇ as a function of γ, γ0, and λ . These were used to generate a closed

function for λ(t), assuming the tape was fully coiled around the spool, i.e., λ0 = 0. However,

this assumption neglects the transition region in between the straight tape spring region where

the cross-section is undeformed, and the region coiled around the spool which has a transverse

curvature of κ = 0, as shown in Figure 4.16.

If λ0 = 0, then the transition region has zero length. As λ increases the transition region length

will also increase, until it reaches a constant length at λ ≈ λcrit. Therefore, if λ0 < λcrit not all the

stored strain energy will be converted into kinetic energy, a fraction will remain in the transition

region, and therefore the analytical equation will underestimate the deployment speed. To avoid

complications from this effect, the uncoiling simulations start with a non-zero λ0. For the case

studied here it was observed that λcrit ≈ 0.05.

An expression for λ̇ that includes a non-zero λ0 term can be derived by combining Equations 2.20

and 2.21 to give

(
−λ̇L
Rhub

)2 =
6µRtRhubα

ρ

(1− λ0) L
Rhub

− (1− λ) L
Rhub

(L−Rhub((1− λ) L
Rhub

))3
(4.3)

This can then be simplified to
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Figure 4.17: Snapshots of the uncoiling of tape spring wrapped in opposite sense, meshed with
fully integrated LS-Dyna (Type -16), quadrilateral shell elements from around a fixed spool. t
corresponds to the time from the start of deployment.

λ̇ =
Rhub
L

√
6µRtα

ρL2

λ− λ0
λ3

(4.4)

where for an isotropic material the energy areal density in the localized fold is

µ =
D(1± ν)

R2
t

(4.5)

where + corresponds to opposite-sense curvature, and − to equal-sense curvature.

For each of the following LS-Dyna uncoiling simulations, the initial λ0 was measured and in-

putted into Equation 4.4. MATLAB’s ODE solver, ‘ode45’, was then used to calculate the resulting

λ vs time profile for comparison.

Figure 4.17 shows the deployment of the tape spring over time. Figures 4.18(a) and 4.18(b) com-

pare the numerical and analytical models. After 0.4 s of deployment, the analytical and numerical

models match to within 1.2% and 0.9% for booms initially coiled in equal-sense and opposite-sense

respectively. The noise in the numerical simulations correspond to vibrations present in the coiled
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(a)

(b)

Figure 4.18: Comparison of the analytical model and the numerical model, utilizing fully integrated
quadrilateral shell elements when deploying from an (a) equal-sense, and (b) opposite-sense coiled
configuration.
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tape spring that were not fully damped out at the end of the previous coiling step.

4.4 Discussion

Modeling with high accuracy the folding, deployment and uncoiling behavior of tape springs in

LS-Dyna is achievable, with several caveats. The tape springs meshed with the reduced integration

quadrilateral shell elements did not capture the rolling of localized folds along a tape spring as

it deploys. In these simulations the fold remained fixed in place. The C0 triangular and fully

integrated quadrilateral shell elements were best able to capture this behavior, and when coupled

to mass nodal (viscous) damping as an energy dissipation technique, was able to accurately match

both experimental results and the analytical model.

The tape spring numerical model is also applicable to the dynamic uncoiling from around a hub

of Rhub ≈ Ri, with the analytical and numerical models matching to within 1.2%.

These results provide confidence that the tape spring numerical models accurately reflect reality,

and provide a valid starting point for the simulations in the following chapter, where Rhub 6= Rt.
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Chapter 5

Coiling of Tape Springs on Large
Hubs

In this chapter a simple energy-based prediction of the formation of localized bends when wrapping

a tape spring to a given radius is developed. The bifurcation of the localized bends, and the

corresponding forces and locations are accurately captured by FEA methods and an analysis of

the force required to fully wrap a steel tape spring around hubs of radii 0.4Ri < Rhub < 5.25Ri is

carried out, and a linear trend is observed for Rhub > 3.25Ri. The numerical analysis is extended

to ultra-light carbon fiber composite tape springs, with a focus on the effect of manufacturing

imperfections on the predicted wrapping forces.

5.1 Formulation of Localized Bends

As noted in Section 2.4.2, the bending energy in a tape spring can be calculated from [8, 45]

Ubending =
DαRtθRi

2

(
1

R2
t

+
2ν

RtRi
+

1

R2
i

)
(5.1)

where the flexural bending stiffness D = Et3

12(1−ν2) . Ri is the final longitudinal bend radius and

Rt is the initial transverse radius of the tape spring. For an isotropic material, the lowest energy

state occurs when Ri = Rt. The analysis below expands this work to cover tape springs that are

wrapped or coiled around a hub of radius Rhub ≥ Ri.

Consider a folded tape spring that is being wrapped around a hub of radius Rhub > Ri by

pulling one end so that the tape spring is forced to conform to the hub, as shown in Figure 5.1(a).

The tape spring starts with a single fold with subtended angle γ and localized bend radius Ri. As

83



the end of the tape spring is displaced by distance d, the length of the tape spring covering the

subtended arc angle γ of the hub decreases.

(a) Initial configuration (b) Case 1 (c) Case 2

Figure 5.1: Schematic of a tape spring folded around a cylindrical hub of radius Rh. (a) Initial
configuration, including localized bend radius of Ri. When displacement d applied to tape spring
end, either (b) the localized bend radius increases or (c) the localized fold bifurcates into two folds.

This can result in two separate scenarios. In the first, the localized bend increases in radius,

as shown in Figure 5.1(b). In the second, the localized bend bifurcates into two, forming two folds

of radius Ri, connected by a straight, flattened section, depicted in Figure 5.1(c). The radius Rs

and the length of straight section joining the two localized folds in case 2, l2, can be determined

geometrically as a function of d

Rs =
Ri(γ − 2 tan(γ2 ))− d

(γ − 2 tan(γ2 ))
(5.2)

l1 =
2Ri tan(γ2 )−Riγ

1− 1
cos( γ

2
)

l2 =(Rhub −Ri) tan(
γ

2
)− l1

cos(γ2 )

(5.3)

In actuality the straight section of tape spring between the two localized folds will not be

perfectly flat, but this is neglected in the analysis. It is also assumed that changes in the stretching

strain energy are negligible, and that the fold radius of curvature in case 2 is exactly Ri. The

bending strain energy of the two cases can be calculated for each value of d: for case 1 it is
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U1 =
DRsγRiα

2

(
1

R2
s

+
2ν

RsRi
+

1

R2
i

)
(5.4)

and for case 2 it is

U2 = Dγα(1 + ν) +
Dα

2

l2
Ri

(5.5)

In Equation 5.5 the first term is from the two localized folds each with radius Ri and subtended

angle γ
2 . The second term is from the flattened section of tape spring between the folds, of length

l2.

(a) (b)

Figure 5.2: (a) Case 1 and 2 superimposed for γ = π
2 at d = dmax, where the straight, flattened

region is in contact with the hub. (b) The energy present in a tape spring at dmax and γ = π
2 for

case 1 and 2.

Figure 5.2(a) shows a schematic for both cases when γ = π
2 . The blue line corresponds to the

hub and the red line to the starting configuration of the tape spring. The yellow and purple lines

correspond to case 1 and case 2 respectively, when the tape spring is displaced by dmax. dmax is

defined as the displacement of the tape spring that brings the flattened region, between the two

localized folds, in case 2, fully into contact with the hub. The energy in both cases at dmax is

plotted against Rhub
Ri

in Figure 5.2(b). There are three features in this plot of particular note. First,

at Rhub
Ri

= 1, the two cases contain equal amounts of energy as expected, because in case 2 the

straight region connecting the two folds would be infinitesimally long. For 1 < Rhub
Ri

< 3 the lowest

energy state is for a single fold. However, for Rhub
Ri

> 3 the lowest energy state is for two localized

folds of radius Ri connected by a straight, flattened region.
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Figure 5.3: Piece-wise curvilinear cross-section of tape spring.

This result implies for that for γ = π
2 , if Rhub

Ri
> 3 then as d increases the localized bend radius

will first increase in radius and then bifurcate into two folds before dmax is reached.

5.2 Opposite Sense Wrapping Experiment with Rhub = 4.125Ri

The bifurcation of tape spring hinges wrapped around hubs of radii Rhub >> Ri was investigated

in a wrapping experiment of an isotropic tape spring folded around a hub of radius Rhub = 4.125Ri.

5.2.1 Tape Spring Properties

The tape spring tested was a Craftsman 9-39530 E.Z.change locking tape replacement tape-measure

sold by Sears Roebuck and Co., with Poisson’s ratio ν = 0.3, Young’s modulus E = 210 GPa, and

density of 8050 kg/m3. The tape spring cross-section is piece-wise curvilinear, as depicted in

Figure 5.3.

To find the minimum energy bend radius for a tape spring with a curvilinear cross-section,

Equation 5.1 can be modified to include an arbitrary number of curved and flat components in the

cross section. The more general form of the equation is

Utot =
DRiθ

2

 n∑
j=1

Rjαj(
1

R2
j

± 2ν

RjRi
+

1

R2
i

) +

m∑
k=1

wk(
1

R2
i

)

 (5.6)

where Rj and αj are the radius and subtended angle of each curved section, and wk the length of

each straight section. The minimum energy bend radius is then found by first differentiating with
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respect to the bend radius Ri

dUtot
dRi

=
Dθ

2

 n∑
j=1

(
αj
Rj
− Rjαj

R2
i

)−
m∑
k=1

(
wk
R2
i

)

 (5.7)

Setting the derivative equal to zero, and solving for Ri, gives the minimum energy bend radius

Ri =

√√√√√√√√
m∑
k=1

wk +
n∑
j=1

Rjαj

n∑
j=1

αj
Rj

(5.8)

Using the cross-sectional properties from Figure 5.3, Ri = 19.2 mm for the tape spring used in the

wrapping experiment.

5.2.2 Experimental Setup

The experimental setup is shown in Figure 5.4. It consists of a tape spring bent around a steel

hub of diameter 165 mm. One end of the tape spring is bolted with 1
4 − 20 bolts to the hub.

The tape spring was folded around the hub by creating two localized folds, and the non-clamped

end attached to the loading beam of an Instron tensile testing machine. The hub was attached

to a wood mounting plate, which in turn was bolted to the base of the Instron machine. A white

background was placed behind the tape spring to provide a good background for photography.

5.2.3 Measuring the Friction Coefficient

Before performing the wrapping experiment, it was important to measure the kinetic friction coef-

ficient between the tape spring and the hub. To do this a 3 mm wide and 500 mm long strip was

cut from along the edge of the tape spring. As Figure 5.3 shows, this strip had zero transverse

curvature, and thus could be wrapped around the hub without the formation of localized bends.

The strip was wrapped around the hub once, and a mass M = 250 grams attached to one end, as

shown in Figure 5.5(a). The other end of the strip was clamped to the loading beam of the Instron

tensile testing machine. The experiment was displacement controlled at a rate of 22 mm/min, and

carried out nine times on the same strip.
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Figure 5.4: Experimental setup for wrapping a tape spring around a hub of radius Rhub = 4.125Ri.

The coefficient of friction was then calculated from the capstan equation [31]

Tload =Tholde
µγ

µ =
ln(TloadThold

)

γ

(5.9)

where Tload = F , Thold =Mg = 2.45 N, and γ = 2π rad is the total swept angle of the strip around

the hub. Figure 5.5(b) shows a significant variation, ranging from coefficients between 0.15 to 0.2,

with a mean of µ = 0.18 and standard deviation of ±0.012.

There are several potential causes for this variation. Firstly, this may be due to the static

coefficient of friction that is higher than the kinematic coefficient, causing stick-slip behavior.

Secondly, the hub is made from steel < 1 mm thick and the cross-section of the hub may not have

remained perfectly circular, leading to loss of contact between part of the tape spring and the hub.

Finally, as the strip was looped around the hub 360o, the strip edges slid against each other during

the experiment, potentially increasing the noise in the force output.
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(a) (b)

Figure 5.5: (a) Schematic of experimental setup for measuring the coefficient of friction between
the hub and the tape spring. (b) Kinetic friction coefficients (µ) obtained from nine experimental
runs.

5.2.4 Wrapping Experimental Results

The force profile measured in the wrapping experiment is shown in Figure 5.6, with snapshots of key

configurations in Figure 5.7. Once the straight section between the two localized folds came into

contact with the hub, the left localized fold increased in radius, see Figure 5.7(b). This corresponds

to a smooth increase in force, which can be seen in Figure 5.6. At d = 26.75 mm the force reached

a maximum of 2.4 N, before decreasing. At d = 29.5 mm the left localized fold bifurcated in two,

as seen in Figure 5.7(c), and the force dropped to 0.18 N. Each bifurcation corresponded to an

immediate sharp drop in the tension force. The process of smooth increases in force, corresponding

to the localized folds increasing in radius, and followed by a sharp bifurcation repeated for the

bifurcations to four, five, and six localized folds. These bifurcations occurred at d = 50.5 mm,

d = 56.5 mm, and d = 59.25 mm, respectively. In addition, the frequency of the bifurcation

increased. Once in the six fold configuration, the folds ceased to bifurcate further. Instead, they

slowly increased in radius until they completely conformed to the hub surface.

5.3 Comparison with LS-Dyna Simulation

The finite element model is shown in Figure 5.8. It consists of a fully deployed tape spring, four

temporary cylinders of radius Rcy = 20 mm used to create the initial two folds, and a hub of radius
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Figure 5.6: Force profile corresponding to the opposite-sense wrapping of a steel tape spring around
a steel hub, where Rhub = 4.125Ri. Average of three repeated experiments.

Rhub = 82.5 mm. The temporary cylinders and hub are modeled as rigid bodies, fully constrained

in all degrees of freedom.

Based on the results from Section 4.1.2 two tape spring models, meshed with C0 triangular shell

elements and fully integrated (Type -16) quadrilateral shell elements, were considered. The results

for simulations with C0 triangular shell elements are presented here. The results for simulations

utilizing fully integrated (Type -16) quadrilateral shell elements are presented in Appendix B.

Contact between the hub and tape spring uses the friction coefficient µ = 0.18 measured in

Section 5.2.3. Contact damping of 0.05% of critical viscous damping was applied to reduce the

noise in the force output due to vibration. Contact damping acts perpendicular to the contacting

surfaces. LS-Dyna calculates the critical damping ξcrit,contact−damping by [13]

ξcrit,contact−damping = 2mnodeω (5.10)

where m = min(mslave,mmaster), the minimum of the master and slave node masses during contact

and

ω =

√
k
mslave +mmaster

mslavemmaster
(5.11)
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Snapshots of the wrapping experiment, corresponding to the forces in Figure 5.6. (a)
Initial configuration and (b) immediately before bifurcation to three localized folds. Left localized
fold has increased in radius. (c) Immediately after bifurcation to three localized folds, (d) four
localized folds, (e) five localized folds, and (f) Six localized folds.
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Figure 5.8: (a) Initial configuration of coiling numerical simulation. (b) Tape spring folded with
two localized bends and temporary cylinders removed. Displacement dend applied to fully coil tape
spring.

where k is the interface stiffness.

5.3.1 Folding Steps

The simulation started with the tape spring in the fully deployed configuration, as shown in Fig-

ure 5.8(a). To fold the tape spring into the initial two-fold configuration, as in Figure 5.8(b),

boundary conditions were applied to flatten the tape spring at the two fold locations. After flatten-

ing, these boundary conditions were removed, and frictionless contact with the four cylinders was

enabled via the keyword *AUTOMATIC_SURFACE_TO_SURFACE. These cylinders constrained the tape

spring to remain flattened. Displacement boundary conditions were then applied to the ends of

the tape spring, completely constraining the motion of the ends as they were wrapped around two

temporary cylinders. Equation 4.2 was used to determine the displacement boundary conditions

required to fold the tape spring.

Contact with the temporary cylinders was then removed, and the tape spring allowed to find an

equilibrium configuration. Mass nodal damping was applied to remove excess kinetic energy. This

resulted in a two-fold configuration shown in Figure 5.8(b) that matches the initial configuration

used in the experiments, as shown in Figure 5.7(a). A full description of the applied boundary and

contact conditions is detailed in Table 5.1, with corresponding node sets defined in Appendix B.
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Description Time (s) Node Set
Boundary Conditions
Activated

Restrain out of plane
displacement

0 - 0.17 Midline Nodes uy = 0

Restrain out of plane displacement 0 - ∞ Top end node uy = 0

Restrain out of plane displacement 0 - ∞ Bottom end node uy = 0

Edges are displaced to flatten
tape-spring

0 - 0.04 Edge nodes ux = 3.7 mm

Fix midline position as edges are
flattened

0 - 0.06 Midline nodes ux = uz = 0

Contact applied between tape
spring and cylinders

0.04 - 0.16 All nodes

Fix central nodes in Z 0 - 0.20 Central nodes uz = 0

Fix central nodes in X 0.16 - 0.20 Central nodes ux = 0

+Z end node displaced to fold
tape spring around cylinders

0.06 - 0.21 Top end node ux = f1(t), uz = g1(t)

-Z end node displaced to fold
tape spring around cylinders

0.06 - 0.21 Bottom end node ux = f2(t), uz = g2(t)

Damping applied to remove
kinetic energy

0.17 - 0.21 All nodes β = 100

Fix hole region 0.2 - ∞ All nodes ux = uz = 0

End node held in place 0.20 - 0.21 End node ux = uz = 0

Table 5.1: Summary of simulation steps for wrapping an isotropic tape spring around a hub, where
Rhub > Ri.
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(a) (b)

(c) (d)

Figure 5.9: (a) Initial configuration, (b) 0.04 s tape spring edges are compress and contact with
temporary cylinders enabled, (c) 0.17 s tape spring ends displaced so boom wraps around cylin-
drical crushers, (d) 0.21 s contact with temporary cylinders removed, and tape spring equilibrium
configuration found.

5.3.2 Wrapping Simulation Mesh Sensitivity

As in the experiment, the tape spring was wrapped by applying a displacement boundary condition

of d to the non-clamped end. To remove noise from the force data, mass nodal damping of β = 10

s−1 was applied for the duration of the wrapping simulation. As described in Section 3.6, mass

nodal damping applies a force at each node opposite to that node’s velocity vector. This force is

governed by the velocity v, the node mass m, and the damping coefficient β

Fv = βmv (5.12)

The mesh sensitivity of the wrapping simulation was investigated by meshing the tape spring

with elements of edge length 3 mm, 2.5 mm, 2 mm, and 1.5 mm, then repeating the simulation.

The effect on tension force experienced during wrapping is shown in Figure 5.10.

For the coarse mesh simulation where element side lengths were 3 mm, no bifurcations of the
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Figure 5.10: Comparison of simulation tension force results during wrapping for tape springs
meshed with elements with side lengths = 3 mm, 2.5 mm, 2 mm, and 1.5 mm (dend = d). Mass
nodal damping was set to β = 10 s−1, and the data smoothed with a 5 point moving average to
remove noise.

Figure 5.11: Comparison of experimental results and simulation results with mass nodal damping
set to β = 1 s−1 and β = 10 s−1 for the entire wrapping simulation (dend = d). The data has been
smoothed with a 5 point moving average to remove noise.

95



localized folds were observed. Instead, the radius of the localized folds increased gradually, until

they conformed to the radius of the hub. For the mesh with 2.5 mm, the localized fold furthest from

the clamped end bifurcated at dend = 40.8 mm, followed by additional bifurcations as d increased.

The meshes utilizing elements with 2 mm and 1.5 mm edge lengths have converged for the

wrapping simulation for 0 ≤ dend ≤ 58 mm. The mesh incorporating 2 mm sized elements showed

higher force peaks than the 1.5 mm case in the region where 58 < dend ≤ 65 mm. Both simulations

experience the bifurcation of the localized fold closest to the clamped end at dend = 25.8 mm,

with additional bifurcations at dend = 52.9 mm, 58.4 mm, 60.4 mm, and 63.8 mm. Due to time

constraints, the simulations in the following sections utilize tape springs meshed with 2 mm long

elements.

5.3.3 Sensitivity to Mass Nodal Damping

To determine the maximum mass nodal damping to use in the wrapping simulations, simulations

with β = 0.1 s−1 to 1000 s−1 were performed. The force profiles for the wrapping of the tape spring

for β = 1 s−1 and 10 s−1, are compared against the experiment in Figure 5.11. Plots comparing the

results for β = 0.1, 1, 10, 100, and 1000 s−1 are in Appendix B. Also in Appendix B is a sensitivity

study on the effect of the friction coefficient µ on the tension force during wrapping.

For β ≤ 1 s−1, the simulation and experiment closely match until the four-fold configuration is

reached for an extension of d = 54.8 mm. This includes the force peaks at bifurcation of 2.2 N and

5.4 N, compared to 2.2 N and 5.1 N experimentally. At d = 54.8 mm the folds bifurcate early in

the simulation into the five-fold configuration, compared to d = 56.5 experimentally.

Note that when β ≥ 10 s−1 is used during wrapping, the force results differ substantially from

the experimentally observed behavior, as seen in Figure 5.11(b). In these simulations, the localized

bend opposite the clamped end bifurcates in two instead. This shows the bifurcation process is

sensitive to external conditions, including minor increases in damping. Once this change occurs,

the tape spring configuration never returns to the experimentally observed one. This result also

indicates that the wrapping problem is non-unique, and the force required to tension the boom

depends greatly on the configuration of the wrapped tape spring, not just on the displacement

applied to wrap the tape spring.
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(a) d = 0 (b) d = 14.2 mm

(c) d = 27.3 mm (d) d = 27.5 mm

Figure 5.12: Boom configurations in (a) initial configuration, (b) 14.2 mm displacement causes
bottom bend to increase in radius, (c) at 27.3 mm displacement bottom bend starts to bifurcate in
two, and (d) bottom bend has bifurcated at 27.5 mm displacement, giving three localized bends.

5.3.4 Localized Fold Bifurcation

Figure 5.12 shows the configurations of the tape spring as two localized folds bifurcate into three,

for the β = 1 s−1 case. In the initial configuration at d = 0 mm, the folds each have as expected

a radius of 19 - 20 mm. As d increased, the localized fold closest to the clamped end increased

in radius. At d = 27.3 mm the fold changed from a constant radius to one having two regions of

high curvature at each end of the fold, joined by a flattened, almost straight section in between.

At d = 27.5 mm the fold bifurcated into two distinct folds of radius R ≈ Ri.

The bending strain energy per unit length of tape spring, corresponding to the fold bifurcation,

is plotted in Figure 5.13. The bending energy is calculated by extracting the node locations from

LS-Dyna and calculating the longitudinal and transverse curvature at each node. This is inputted

into Equation 5.1 to give the areal energy density at each node, then integrated across the tape

spring’s transverse direction, to give the energy per unit length along the tape spring.

Figure 5.13(a) shows the initial configuration, where the energy in the localized bends is con-
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Figure 5.13: The bending energy per unit length along the booms corresponding to the boom
configurations in Figures 5.12 (a) to (d). Length = 0 corresponds to the clamped end, and the
total length of the boom is 420 mm.
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(a) d = 51.9 mm (b) d = 56.3 mm

(c) d = 59.8 mm (d) d = 62.6 mm

Figure 5.14: Boom configurations for the higher fidelity wrapping model in (a) four bends, (b)
five bends, (c) six barely visible localized bends, and (d) at d = 62.6 mm displacement three bends
have flattened and conform to the hub radius, leaving three remaining bends.

centrated near the edges of the transition region, with a slight dip in the middle. As d increases,

the length of the boom that covers the subtended arc angle of the hub decreases leading to one or

more folds increasing in radius. Once the bend radius grows sufficiently large, the majority of the

energy is concentrated where the bends interface with the transition regions, with lower energy in

the middle of the bend itself. At this point the bend with the largest radius bifurcates in two.

5.3.5 Higher Fidelity Wrapping Simulation

A higher fidelity simulation that more closely captures the experimentally observed behavior was

carried out by modifying the the wrapping model as follows. Up until d = 52.3 mm the β = 1

s−1 model was used. After this point β was increased to 1000 s−1 in order to reduce the kinetic

energy of the tape spring when d ≈ 54.8 mm and thus model more accurately the bifurcation to

four folds. This decreases the kinetic energy available to the tape spring to jump to different stable

configurations. As displayed in Figure 5.15, the tape spring force profile then matched well the

experiments until d = 59 mm.

The energy components present in this model are plotted in Figures 5.16(a) to (c). The internal
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Figure 5.15: Force profile obtained from the high fidelity model.

energy steadily increases throughout the wrapping process with small dips at each bifurcation. The

total change in internal energy from each bifurcation is ≤ 1% of the internal energy. Figure 5.16(c)

shows that this energy is converted into kinetic energy which subsequently decays due to the

imposed damping. The magnitude of the kinetic energy remains < 1% of the internal energy

throughout the simulation. In addition, the effect of increasing damping at d = 52.3 mm is clearly

evident in the kinetic energy plot.

5.3.6 Fully Wrapped Configuration

The fully wrapped configuration was defined as the point where the centerline of the tape spring

conformed to the hub surface to within 0.25 mm in the region γmin ≤ γ ≤ γmax, as defined in

Figure 5.17(a). The separation distance between the tape spring centerline and the hub surface

when fully wrapped is shown in Figure 5.17(c), and the corresponding longitudinal curvature (κl)

in Figure 5.17(d).

To remove the effect of the localized fold closest to the clamped end, the first 70 mm of the

tape spring (Lremove) was excluded from the region used to determine when the tape spring was

the fully wrapped. Since this length comprises a reduced arc length of the hub as the hub radius
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(a)

(b)

(c)

Figure 5.16: Energy components in the wrapping simulation after folding. (a) All energy, (b) close
up of internal energy, drops correspond to bifurcations, and (c) close up of kinetic energy, where
sudden build ups correspond to bifurcations.
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increases, the angle removed is calculated by:

γmin = 2 tan−1

(
Lremove
2Rhub

)
(5.13)

To remove the boundary condition effect due to the localized fold at γ = 180o, γmax was set

to 140o. The maximum allowed separation value of 0.25 mm was selected to minimize the effect

on wrapping force of the secondary fold near the clamped end; see Figure 5.17(b). The secondary

fold is a boundary condition effect caused by the clamped end, and it would require significantly

more tension force on the tape spring to remove this fold than for any other localized folds in the

γmin < γ < γmax region. Allowing a 0.25 mm separation gap allows for a secondary fold region in

the fully wrapped configuration. An equally valid approach would be to increase γmin.

5.4 Effect of Hub Radius on Tension Force

A key objective of this work is to determine the effect of the hub radius on the wrapping of tape

springs. To investigate the effect of the hub radius on the required tension force, the wrapping

simulation was run for hub ratios Rhub
Ri

= 0.2 to 5.25. The tape spring modeled has the same

material and mechanical properties as used in the simulations in Section 5.3. The length of tape

spring tested is consistent at 420 mm. To remove the contribution to the tension force from the

length of tape spring in contact with the hub, friction was removed. For the entire duration of the

wrapping simulations the damping coefficient was set as β = 1000 s−1 to reduce noise in the force

values. Although this choice of β affects the bifurcation locations and times, the force measurement

extracted from these simulations occurs at the end of the wrapping once all bifurcations have

occurred. The method for determining when the tape spring had become fully wrapped was the

same as used in Section 5.3.6.

For simulations with Rhub
Ri

> 1 the setup is the same as described in Section 5.3 with one end

of the tape spring clamped directly to the hub. However, for Rhub
Ri

< 1 the boundary condition

effects mentioned in Section 5.3.6 necessitate modifying the simulation, to avoid these effects from

dominating the wrapping simulation. Instead, for Rhub
Ri

< 1 the tape spring is folded symmetrically

around the hub, one end pinned, and then the other end displaced d as before. An example of the

simulation setup is in Figure 5.18.
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(a) (b)

(c) (d)

Figure 5.17: Tape spring at the end of the wrapping simulation (a) Top view. (b) Close up of
secondary fold. (c) Normal distance between the hub and tape spring. (d) Longitudinal curvature
of tape spring centerline in fully wrapped configuration

Figure 5.18: Simulation setup for Rhub
Ri

< 1.
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Obtaining direct experimental validation of the results was not feasible, as it would require

measuring the separation distance between the tape spring and the hub over an arc of 180o. Instead,

the validation of the model in Section 5.3.2 was taken to be sufficient validation of the simulation

accuracy.

5.4.1 Results

The force required to wrap a tape spring around a hub 0.4Ri ≤ Rhub ≤ 0.7Ri is shown in Figure 5.19.

For these simulations the tape spring started with a single fold of radius Ri. As tension was

applied the localized fold decreased in radius until it conformed to the hub surface. For ratios

0.7Ri ≤ Rhub ≤ Ri the exact tension force when the tape spring is fully wrapped required was

difficult to obtain from the force vs displacement profiles. Due to the very low wrapping forces as

the hub radius approaches the localized bend radius, the numerical noise in the force due to the

tape spring vibrating against the hub had a significant effect the force value when the tape spring

was fully wrapped.

For Rhub < Ri, the quadratic fit in Figure 5.19 can be explained by starting with the bending

energy in a wrapped tape spring. A schematic of the coiling simulation is shown in Figure 5.20.

First, start by replacing Ri with R in Equation 5.1. Then, differentiate this equation with respect

to R to get
dU

dR
=
DRtαγ

2
(

1

R2
t

− 1

R2
) (5.14)

The energy U can also be written in terms of the work performed by the tensioning force

∆U =F∆L

dU

dL
=F

(5.15)

By geometry

−γ∆R =∆L

dR

dL
=
−1

γ

(5.16)

Combining

F =
dU

dL
=
dU

dR

dR

dL
=
DRtα

2
(

1

R2
− 1

R2
t

) (5.17)
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(a)

(b)

Figure 5.19: (a) Tension force required to fully wrap the steel tape spring for 0.4Ri < Rhub < 0.65Ri
and 2.5Ri < Rhub < 5.25Ri. (b) Close up of 0.35Ri < Rhub < Ri region.

When the tape spring is fully coiled around the hub R = Rhub and

F =
DRtα

2
(

1

R2
hub

− 1

R2
t

) (5.18)

Remember, that for an isotropic material Ri = Rt, thus, for Rhub < Ri, F follows an inverse

square law. This derivation requires a key assumption, namely that the radius R is constant for

the entire localized fold. To account for this effect, a fitting parameter η is added, giving

F =
ηDRtα

2
(

1

R2
hub

− 1

R2
t

) (5.19)

This is plotted against the simulation results in Figure 5.19(b), for η = 2.
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Figure 5.20: Schematic of coiling simulation for Rhub < Ri.

The force required to wrap a tape spring around a hub for 2.5Ri ≤ Rhub ≤ 5.25 is shown in

Figure 5.19(b). There are two very clear features. The first being that for Rhub
R > 3.25 a clear linear

trend has developed.

F = 2.795
Rhub
Ri
− 8.465 Newtons (5.20)

Below Rhub
R = 3.25 the linear trend no longer holds true. In particular, RhubR = 3.5 is the smallest

ratio where the tape spring localized folds bifurcated. For 2.5Ri ≤ Rhub ≤ 3.25 the localized fold

furthest from the clamped end increased in radius, until that radius matched the hub.

5.5 Extension to Non-Isotropic Tape Springs

When scaling up to large space structures, steel tape springs are too heavy and their large coefficient

of thermal expansion is a severe limitation. For those reasons composite materials are of interest.

As detailed in Section 2.4.2, the localized bend radius for an orthotropic tape spring is [8]

Ri = Rt

√
D11

D22
(5.21)

Tape springs were manufactured by Caltech graduate student Christophe Leclerc using 17 GSM

uni-directional tape made of carbon fiber (T800 by Torayca) and epoxy resin (ThinPreg 120EPHTg-
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(a) (b)

Figure 5.21: (a) Point cloud of a carbon fiber tape spring specimen, generated from a FARO arm
laser scanner. (b) Center and radius of the tape spring cross-section along the boom length.

402 by North Thin Ply Technology). This material had a cured thickness of approximately 18 µm

per ply. When bonded into the chosen a four ply layup of [0/90]S , the total thickness was ≈71 µm.

The mold radius was Rt = 12.7 mm, and the initial subtended arc of the tape spring α = 90o.

With these parameters, D11 = 0.0034 Nm, D22 = 0.00065 Nm, and for these values, Equation 5.21

gives a nominal localized bend radius Ri = 29 mm.

To measure the post-cure shape, and capture and manufacturing imperfections, a laser scanner

on a FaroArm portable coordinate measuring machine was used to obtain a point cloud of the tape

spring surface. The results are shown in Figure 5.21(a). Of particular note is the tape spring is

initially bent in the Y direction by several millimeters along its length. The point cloud data was

split into 100 cross-sectional slices, corresponding to 5 mm increments along the tape spring length.

A circle fit in MATLAB was applied, to find the circle center and radius of the tape spring for each

cross-sectional slice as shown in Figure 5.21(b). Note that the radius decreased during the curing

phase, and varies between 10.5 and 12 mm along the length of the tape spring.

5.5.1 Wrapping Experiment with 3.3Ri = Rhub

The experimental setup used on the carbon fiber tape spring was the same as used in Section 5.2.2.

The cylindrical hub of diameter Rhub = 82.5 mm was rigidly attached to the base of an Instron

tensile testing machine. The hub has a radius 6.5 times the mold radius the tape spring was cured

on, however due to the orthotropic nature of the tape spring Rhub
Ri

= 3.3. One end of the composite
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tape spring was clamped to the side of the hub, and folded in opposite sense around the hub, as

shown in Figure 5.22(a). The other end was attached to the load cell of an Instron material testing

machine. The force was recorded as this end was displaced vertically at a rate of 22 mm/min.

(a) dend = 12.5 mm (b) dend = 38 mm (c) dend = 49 mm

(d) dend = 51 mm (e) dend = 66.5 mm (f) dend = 75 mm

Figure 5.22: Ultra-thin carbon fiber tape spring configurations during wrapping. (a) Initial con-
figuration, (b) fold radii increases, (c) configuration just before fold bifurcation, (d) fold bifurcates
into two, (e) four-fold configuration, and (f) fully wrapped configuration.

The results obtained over three separate tests are shown in Figure 5.23. At end displacement

dend = 12.5 mm, the tape spring region between the two folds comes into contact with the hub.

Between dend = 12.5 mm and 49 mm the fold radii gradually increase, until at 50 mm the fold

closest to the clamped end bifurcates into two folds. At 66.5 mm bifurcation again occurs to create

a four-fold configuration.

As dend increases in the two-fold configuration, the point of contact between the hub and the

tape spring moves around the hub. The force profile in Figure 5.23 clearly shows stick-slip behavior,

where the applied force increases until static friction is overcome. Then the point of contact between

the tape spring and hub slides along the hub surface. This explains the drops in force at dend = 38

mm, 41.2 mm, and 46.4 mm.

5.5.2 LS-Dyna Simulations

Two LS-Dyna simulations of the carbon fiber tape spring were performed. These simulations were

identical to the ones performed in Section 5.3.1, with the exception that the steel tape spring was
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Figure 5.23: Force profiles corresponding to opposite-sense wrapping experiments of an ultra-thin
carbon fiber tape spring around a steel hub.

replaced with carbon fiber. In the first simulation, it was assumed that the radius of the tape spring

is uniform and equal to the radius of the mold r = 12.7 mm. In the second simulation, the actual

cross-section dimensions were varied along the length of the tape spring as shown in Figure 5.21(b).

To generate the mesh for the second simulation, an initial mesh with constant cross-section

along the length was generated. This mesh was imported into MATLAB, and the node locations

scaled to match R, Cx, Cy along the length of the boom. The mesh was then exported back into

LS-Dyna.

The simulation results are shown in Figure 5.24. Both simulations quantitatively agree with

the experimental force results up to d = 50 mm. This corresponds to the localized fold increasing

in radius prior to bifurcation. However, for the constant cross-section simulation, the fold furthest

from the clamped end increased in radius, and bifurcated at d = 39 mm. As seen earlier in

Section 5.3.2 the wrapping process is highly path dependent, and if one bifurcation does not match

the experiments, the following bifurcations will then show increasing deviations. The bifurcation

from three to four folds occurs at d = 61 mm. The force then increases as each of the localized

folds increase in radius. The fold radii continue to increase until the localized folds fully conform

to the hub surface.

The simulation that incorporates the actual cross-section agrees a bit better with the experi-
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(a)

(b)

Figure 5.24: Comparison of force profiles required to tension an ultra-thin carbon fiber boom
around a hub of Rhub = 3.3Ri for (a) boom simulated with a constant cross-section, and (b) boom
simulated with cross-section varying along length to better match physical model.
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ment. Unlike the constant cross-section simulation, the localized fold closest to the clamped end

bifurcates first. From dend = 55 to dend = 75 the localized folds increase in radius, and the force

reaches a plateau of around 0.3 N. The bifurcation to four folds occurs at dend = 65 mm and only

results in a small change in force. This over-estimates the experimentally observed force plateau

by a factor of approximately 3. At dend = 75 the radii of all localized folds have increased to match

the hub radius.

5.6 Discussion

An analytical model developed to capture fold bifurcation closely matches the observed simulation

behavior when wrapping isotropic tape springs around hubs with Rhub > Ri. The model pre-

dicted that bifurcation would occur for Rhub > 3Ri. In the wrapping simulations, fold bifurcations

occurred for Rhub > 3.25Ri.

When modeling the wrapping behavior of isotropic tape springs, the order of fold bifurcation is

highly path dependent. Small changes in friction coefficient and viscous damping can significantly

change the wrapping force profile. When validating against experimental data, if a single fold

bifurcation does not match the experiment, the force profile will cease to match for the rest of the

wrapping process. In the LS-Dyna simulations, meshing the tape springs with C0 triangular shell

elements allowed the bifurcation order and force profile to accurately match the experimental data

until the third bifurcation. Tuning viscous damping ensured the results matched until after the

fourth bifurcation.

When coiling the steel tape spring around hubs of various radii and excluding friction, two

trends were observed. For Rhub > 3.25Ri the force required to fully wrap the tape spring follows

a linear trend. It is important to exclude boundary condition effects such as secondary folds when

determining the fully wrapped configuration for this linear trend to be apparent. For Rhub < 0.7Ri

the force matches the proposed theory and follow an inverse quadratic profile. For 0.7Ri < Rhub <

Ri determining the fully wrapped configuration and associated tension force is challenging as the

localized bend radius is very close to the hub radius.

When extending the wrapping of tape springs to ultra-thin carbon fiber, it is important to

capture the exact cross-section, including any manufacturing imperfections. As with friction and

viscosity, these can have a significant influence on the bifurcation order and wrapping force.
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Chapter 6

Packaging and Deployment of TRAC
Booms

Similar to tape springs, TRAC booms can be wrapped tightly around a cylindrical hub as depicted

in Figure 2.7. To wrap long booms, the case Rhub � Ri is of interest. In this case, a tension

force is required for the TRAC booms to conform to the wrapped radius Rhub, otherwise localized

bends will form instead [45]. These bends have the potential to cause problems during deployment,

including jamming, and may require higher deployment forces. The coiling of a TRAC boom was

simulated and investigated experimentally to capture both the qualitative behavior and the force

profile required to tightly wrap such a boom.

6.1 Wrapping Behavior

6.1.1 Localized Bend Radius

Equation 5.1 in Section 5.1 can be applied to find the localized bend radius of a TRAC boom,

as for a tape spring. For the flanges ∆κl = ± 1
Ri

, ∆κt = 1
Rt

and s = αRt. For the bond region,

∆κl = 1
R , ∆κt = 0 and s = w, the height of the bond region. Taken together, the total bending

energy in the localized bend equates to

Utotal =
RiγRtα

2

((
D11,f1

R2
i

+ 2
D12,f1

RiRt
+
D22,f1

R2
t

)
+

(
D11,f2

R2
i

− 2
D12,f2

RiRt
+
D22,f2

R2
t

))
+
D11,b

2R2
i

Riγw

(6.1)

where D11,i, D12,i, and D22,i correspond to the elements in the D matrix defined by Classical

Lamination Theory in Section 2.4.1 that relate curvature to the bending moment in a composite
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shell. Note that i = f1, f2 or B for the inner flange, outer flange, and bond region, respectively.

For equal and symmetric laminates, D11,f1 = D11,f2, D12,f1 = D12,f2, D22,f1 = D22,f2, and the

equation simplifies to

Utotal = RiγRtα

(
D11,f

R2
i

+
D22,f

R2
t

)
+
D11,b

2R2
i

Riγw (6.2)

Differentiating with respect to Ri and setting the derivative equal to zero gives the minimum

energy condition, which leads to an estimate of the localized bend radius for a TRAC boom made

entirely from symmetric layups

Ri =

√
2RtαD11,f + wD11,b

2D22,f

Rt
α

(6.3)

6.1.2 Simplified Version of Localized Bend Equation

Equation 6.3 contains three different material properties D11,f , D22,f and D11,b. Since the bond

region is a symmetric layup obtained by bonding the two flanges (neglecting any epoxy thickness

in the middle) it is possible to simplify Equation 6.3 such that it contains only flange material

properties. The flange D matrix is therefore

Dij,f =
1

3

n∑
k=1

Qkij,f
(
z3k − z3k−1

)
(6.4)

where Q and z are defined in Section 2.4.1

To convert Df into Db, first, the neutral axis is shifted by t
2 , with t the thickness of the flange.

Second, the whole equation is multiplied by 2, since the bond region consists of two flange layups

symmetric about the new neutral axis. This gives
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Dij,b =
2

3

n∑
k=1

Qkij,f

(
(zk −

t

2
)3 − (zk−1 −

t

2
)3
)

=
2

3

n∑
k=1

Qkij,f

(
(z2k − tzk +

t2

4
)(zk −

t

2
)− (z2k−1 − tzk−1 +

t2

4
)(zk−1 −

t

2
)

)

=
2

3

n∑
k=1

Qkij,f

(
(z3k −

3t

2
zk +

3t2

4
zk)− (z3k−1 −

3t

2
zk−1 +

3t2

4
zk−1)

)

=
2

3

n∑
k=1

Qkij,f (z3k − z3k−1)− t
n∑
k=1

Qij,f (z2k − z2k−1) +
t2

2

n∑
k=1

Qkij,f (zk − zk−1)

(6.5)

However, these terms correspond to the ABD matrix for the flange, where

A =
n∑
k=1

Qkij(zk − zk−1)

B =
1

2

n∑
k=1

Qkij(z
2
k − z2k−1)

(6.6)

Therefore, Equation 6.5 can be simplified further to

Db = 2Df − 2tBf +
t2

2
Af (6.7)

Since the flange is made from symmetric layups

Db = 2Df +
t2

2
Af (6.8)

So finally, the bend radius equation simplifies to

Ri =

√
2(R2

tα+Rtw)D11,f + t2Rtw
2 A11,f

2αD22,f
(6.9)

in terms of only flange properties.

6.1.3 Numerical Analysis of Coiling Behavior

The LS-Dyna FEA model is shown in Figure 6.1. It consists of a fully deployed TRAC boom, four

temporary cylinders of diameter Rcy = 20 mm used to create the initial two folds, and a rigid,
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Figure 6.1: (a) Initial configuration of coiling numerical simulation. (b) boom folded with two
localized bends and temporary cylinders removed. Displacement dend applied to fully coil boom.

cylindrical hub of diameter Rhub = 82.5 mm. The temporary cylinders and hub were modeled

as rigid bodies, fully constrained in all degrees of freedom. The TRAC boom was meshed with

C0 triangular shell elements. Contact is applied through LS-Dyna’s automatic surface-to-surface

and automatic single surface keywords. The friction coefficient obtained experimentally was set at

µ = 0.195. The carbon-fibre layup and ply properties were the same as detailed in Section 5.5.

The flange regions use 17 GSM uni-directional plies made of carbon fiber (T800 by Torayca) and

epoxy resin (ThinPreg 120EPHTg-402 by North Thin Ply Technology). This material had a cured

thickness of approximately 18 µm per ply. When bonded into the chosen flange four ply layup of

[0/90]S , the total thickness was ≈71 µm. The bond region consists of two flanges bonded together,

with a resulting eight ply layup of [0/90/90/0]S . The flange thickness was therefore modeled as

0.071 mm, and the bond region thickness double that at 0.142 mm.

The flange cross section has radius Rt = 10.8 mm and subtended angle α = 104◦. These

correspond to average values of the boom tested later in Section 6.1.4. With these parameters,

D11,f = 0.0033 Nm, D22,f = 0.00065 Nm, and D11,b = 0.019 Nm. For these values, Equation 6.3

predicts a localized bend radius Ri = 36 mm.
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Figure 6.2: Simulation results for a carbon-fibre TRAC longeron with constant cross-section and
bond region thickness of 0.142 mm.

6.1.3.1 Folding Step

The simulation started with the boom in the fully deployed configuration, shown in Figure 6.1(a).

To fold the boom into the initial two-fold configuration, shown in Figure 6.1(b), boundary conditions

were applied to the flange edges to flatten the flanges at the two fold locations. After flattening,

these boundary conditions were removed, and contact with the four cylinders enabled. These

cylinders force the TRAC boom to remain flattened. Displacement boundary conditions were then

applied to the ends of the boom to wrap the boom around two temporary cylinders. Contact with

the temporary cylinders was then removed, and the TRAC boom was allowed to find an equilibrium

configuration. Damping was applied to remove excess kinetic energy. This resulted in the two-fold

configuration shown in Figure 6.1(b). The exact boundary conditions and node set definitions can

be found in Appendix C.

6.1.3.2 Coiling Results

With one end of the boom held clamped as shown in Figure 6.1(b) displacement boundary conditions

were applied to the other end. A plot of the resulting tension force as a function of the end

displacement, dend, is shown in Figure 6.2. Key boom configurations obtained from the simulation

are displayed in Figure 6.3.

As expected, the initial boom equilibrium state has two localized bends as in Figure 6.3(a). As

the displacement of one side was increased, the localized bends increase in radius; see Figure 6.3(b).
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(a) dend = 0 mm (b) dend = 38.6 mm (c) dend = 41.7 mm

(d) dend = 48.5 mm (e) dend = 64.7 mm (f) dend = 71.8 mm

Figure 6.3: Localized fold configurations that develop during the coiling of boom with uniform
cross-section and bond region thickness of 0.142 mm. (a) Initial two-fold configuration, (b) config-
uration just before bottom fold bifurcates, (c) configuration when the bottom fold has bifurcated
into two, (d) configuration after bifurcation to five folds, (e) flanges start to flatten instead of the
localized folds bifurcating and, (f) fully coiled configuration

As the bend radii increase, the inner flange opens while the outer flange continues to conform to the

localized bend radius. At dend = 41.7 mm the bottom fold bifurcates in two. This trend continues,

with another bifurcation at dend = 48.5 mm. These bifurcations are reflected in the force plot

shown in Figure 6.2. The sharp jumps correspond to fold bifurcations.

The coordinates of the bond region nodes were extracted and used to calculate the localized

bend radius at dend = 0, corresponding to Figure 6.3(a). In the simulation, Ri ranged from 35.4 to

39 mm, which is practically identical to the analytical prediction of 36 mm. The radius of curvature

was lowest near the edges of the localized bend, and highest in the middle.
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6.1.4 Coiling Experiments

An experiment was carried out to validate the simulations in Section 6.1.3. A cylindrical hub of

diameter dhub = 165 mm was rigidly attached to the base of an Instron materials testing machine.

A composite TRAC boom with the same material properties as simulated in Section 6.1.3 was

manufactured by Caltech graduate student Christophe Leclerc. This boom was clamped to the

side of the hub, then folded around the hub, as per Figure 6.4. The other end was attached to the

load cell of the testing machine. The force was recorded as this end was displaced vertically at a

rate of 30 mm/min.

The experimental results highlight two aspects. First, the initial folded configuration is non-

unique, and depends exactly on how the fixed end is clamped, and second, upon the method of

folding. In Figure 6.4(a) there are initially four localized folds. In Figure 6.4(c) there are three

and in Figure 6.4(e) there are only two. In Figure 6.4(a) and 6.4(b) one localized bend at the

clamped end is obscured by the hub. The effect of the number of localized folds is evident in the

corresponding force plots.

For all initial configurations, the tension force required is almost zero until the inner flange, in

between the localized folds, comes into contact with the hub. At this point the tension force rapidly

increases, which corresponds to dend = 48.2 mm, 41.4 mm, and 38.8 mm for the four-fold, three-fold,

and two-fold initial configurations respectively. In the two and three-fold initial configurations, the

distance between localized folds is greatest, allowing the inner flange to open further and therefore

come into contact with the hub sooner than the four-fold initial configuration. In two-fold initial

configuration, the inner flange is compressed against the hub in only one place leading to a force

plateau at 0.08 N. In the three-fold initial configuration the inner flange is in contact with the hub

in two locations, and the resulting plateau is at 0.1 N.

The two-fold initial configuration is the closest to that modeled in LS-Dyna. Both the simulation

and the experiment exhibit a force plateau, although in the experiment the plateau was measured

at 0.08 N, compared with 0.1 N in the simulation. In addition, the simulation force increases from

zero at dend = 12.7 mm, much earlier than in the experiment at dend = 38.8 mm. Finally, at

dend = 0 mm the localized folds in the simulation are much smaller than in the experiments.
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(a) Four fold initial configura-
tion.

(b) Experiment forces corresponding to four fold
initial configuration.

(c) Three fold initial configura-
tion.

(d) Experiment forces corresponding to three fold
initial configuration.

(e) Two fold initial configuration.
(f) Experiment forces corresponding to two fold
initial configuration.

Figure 6.4: Left: Initial TRAC boom experimental folded configurations. The left end of the boom
is rigidly mounted to the cylindrical hub, and the right end to an Instron tensile testing machine.
Right: Corresponding force profiles obtained during coiling.
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6.1.5 Capturing Imperfections in Boom Geometry

One reason the simulation in Section 6.1.3.2 did not accurately capture the experimental behavior

is because the model did not account for the imperfections that exist in the boom that was tested.

The laser scanner on a FaroArm portable coordinate measuring machine was used to obtain a point

cloud of the TRAC boom surface. The point cloud data also captured that the boom is initially

bent out-of-plane in the Y-direction, as shown in Figure 6.5(a). Additional measurements were

taken with a micrometer to determine the thickness variation along the boom length. Figure 6.5(b)

shows the thickness of the bond region, with measurements taken by a micrometer at 2 mm and

6 mm away from the edge of the bond region. With this information a new mesh was generated

that included the initial Y displacement. In addition, the bond-region thickness was increased to

195 µm. The thicker bond region results in D11,b = 0.044 Nm and from Equation 6.3, a localized

bend of Ri = 47 mm. The flange radii and subtended angle were left unchanged and constant along

the boom length.

(a) (b)

Figure 6.5: Physical dimensions of the actual boom tested. (a) Height of bond region from a
reference surface when boom is resting on its flanges. Note that the flanges are only in contact with
the reference surface at Length = 0 and 535 mm. (b) Thickness of bond region along the boom
length.

Figure 6.6(b) is a plot of the force results from the modified simulations together with the

experimental data for the two-fold initial configuration. The inner flange between the two localized

folds comes into contact with the hub at dend = 28 mm, an improvement of 15 mm compared to

the previous simulation. Once the inner flange in the corresponding experiment comes into contact

with the hub at dend = 38 mm there is close agreement between the experiment and simulation. The

simulation saw-tooth force profile before dend = 28 mm is a direct result of friction causing stick-slip
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(a)

(b)

Figure 6.6: Comparison of experimental results with (a) nominal simulation with no imperfections
and a modeled bond region thickness of 142 µm and (b) simulation incorporating manufacturing
imperfections, including a bond region thickness of 195 µm.

behavior. The reason for the force plateau can be understood from Figure 6.7(b). The boom still

has two localized folds which just increase in radius. The jumps in force between dend = 28 mm

and dend = 52.4 mm correspond to both friction, and to the formation and bifurcation of smaller

localized bends in the inner flange. Finally, at dend = 0 the localized bend radius is Ri = 49 to 56

mm. This is larger than the estimate of 47 mm. The reason is that, even in the initial two-fold

configuration, the inner flange opens out along the localized bend, as seen in Figure 6.8(a), while

Figure 6.8(b) clearly shows the outer flange edge and bond region have almost identical curvatures.

The opening of the inner flange relieves some of the bending energy in this flange, and results in a

slightly larger radius of curvature in the bond region.
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(a) dend = 0 mm (b) dend = 38.8 mm (c) dend = 52.4 mm

Figure 6.7: Localized fold configurations that develop during coiling of boom with constant cross-
section and bond region thickness of 0.195 mm. (a) Initial folded configuration, (b) the two localized
folds have increased in radii, and (c) inner flange is in contact with the hub in multiple locations.

6.2 Unwrapping and Re-wrapping

The simulations in the previous section dealt exclusively with the tensioning of a TRAC boom

around a hub. The case where a coiled boom is unloaded, that is, reducing the tension force, is

also of interest since the force required to coil the boom may differ from the force required to keep

it in the coiled configuration. Of particular interest is if during unloading the boom forms a global

configuration of localized bends along the entire length of the boom.

6.2.1 Simulated Coiled Configuration

The simulation setup was based on the model in Section 6.1.3, and is shown in Figure 6.9. The

simulation started with the boom in the fully deployed configuration; see Figure 6.9(a). To fold

the boom into an initial single-fold configuration (Figure 6.9(b)) boundary conditions were applied

to the flange edges to flatten the flanges at the two-fold location and where the boom initially

touches the hub. After flattening, these boundary conditions were removed and contact with the

two cylinders and hub enabled. The cylinders force the boom to remain flattened. Displacement

boundary conditions were then applied to the left end of the boom, completely constraining the

motion of the end as it was wrapped around two temporary cylinders.

Contact with the temporary cylinders was then removed and the boom allowed to find an

equilibrium configuration. Damping was applied to remove excess kinetic energy. This resulted in
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(a) (b)

Figure 6.8: (a) Close up of the localized fold closest to the clamped end in the initial folded
configuration, corresponding to Figure 6.7(a). (b) Curvature of inner flange edge, outer flange edge
and bond region centerline in the localized fold. Fold ends at length = 130 mm.

the single-fold configuration in Figure 6.9(b). Tension force of Fmax was then applied to the boom

end, tightly coiling the boom about a 90o arc of the hub as shown in Figure 6.9(c). Finally, the hub

and pinned end of the TRAC boom rotated about the hub axis, resulting in the coiled configuration

of Figure 6.9(d). The exact boundary conditions, node sets and force loading curve is detailed in

Appendix C.

The effect on the uncoiling force of the simulation time, magnitude of Fmax, type of the end

boundary condition, length of uncoiled boom and wrapped angle were investigated. The length of

the uncoiled boom and wrapped angle were found to be the important factors.

6.2.2 Effect of Uncoiled Length on Unloading

To determine the effect of the uncoiled length on the unloading behavior of a coiled boom, booms

with lengths of 420 ≤ L ≤ 600 mm were coiled 225o around a hub with diameter 165 mm.

A schematic of the coiled configuration is shown in Figure 6.10(a), with the simulation results

in Figures 6.10(b) to 6.10(c). The key outcome is that the free length LF of the boom changes

the the unloading behavior of the boom. For relatively short LF , such as LF = 95 mm, the inner

flange opens and forms multiple localized bends in along the entire lenth of the boom once the force

drops below Fcrit ≈ 0.12 N as shown in Figure 6.10(c). For longer free length, of LF = 275 mm,

the localized bend at point B opens instead as shown in Figure 6.10(d).
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Figure 6.9: (a) Initial configuration of coiling simulation. (b) Boom folded with single localized
bends and temporary cylinders removed. (c) Tension force Fmax is applied, tightly wrapping boom
about 90o arc of the hub. (d) Hub and pinned end rotated about hub axis, coiling boom.
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This behavior is caused by the normal force on the hub from the inner flange at point A. As

the free length increases, the flange at point A can open further for a given tension force F . This

has the effect of opening the localized fold further at point B, and changing the overall unloading

behavior.

This effect is shown by the force profile in Figure 6.10(b). For LF = 275 mm, the tip sharply

deflects downwards at F = 0.36 N as the localized fold at point B opens. For the LF = 175 mm case

the localized fold opens slightly once the force drops below 0.36 N, but opens further at F = 0.25

N. For LF = 95 mm, tip deflection caused by the localized fold opening occurs until the force drops

to 0.12 N, then the sudden deflection change is caused by the inner flange opening in a global sense.

6.2.3 Unloading & Re-Loading Coiled Boom

The wrapping simulation was repeated for wrapped angles of 135o, 190o, and 225o while keeping the

free length fixed at FL = 95 mm, as shown in Figure 6.11. Above 0.1 N, changes in tip displacement

correspond to the localized fold at point B opening. When the force drops to Fcrit = 0.1 N, the

inner flange forms localized bends globally along the entire length of the boom, as illustrated in

Figure 6.12.

Once the tension force reaches zero, the load was linearly increased to 0.6 N over 0.5 s. The

reloading curve in Figure 6.11 differed for each simulation until F = 0.47 N. At this force the

localized bends along the boom inner flange have conformed to the hub surface, leaving only the

localized bend at point B. This force was consistent across the total wrapped angle.

6.3 Discussion

The localized bend radius of a carbon-fiber TRAC boom can be analytically determined when

using Equation 5.1 as a starting point, the energy equation traditionally used for calculating tape

spring localized bend radii. This radius can be calculated in terms of the flange and bond region

properties, or purely the flange properties.

When wrapping TRAC booms, there are multiple equilibrium starting conditions. During

wrapping, the localized folds increase in radius until they bifurcate in a manner similar to tape

springs. As the localized folds grow, the inner flange opens, forming its own independent localized

folds. These folds were experimentally observed in previous work, and were described as ‘triangular
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(a) (b)

(c) (d)

Figure 6.10: (a) Schematic of coiled boom, (b) Force vs tips deflection for unloading curve when
controlling γ and varying free length LF . (c) and (d) Boom configurations at F = 0.1 N for LF =
95 mm and 275 mm respectively.
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Figure 6.11: Unloading and loading force vs tip displacement when free length is fixed at FL = 95
mm.

(a) (b) (c)

Figure 6.12: Top views of a boom wrapped to γ = 225o and initial free length of LF = 95 mm,
during re-loading of the boom after tension force has reached zero. Tension force is (a) 0 N, (b) 0.3
N, and (c) 0.444 N.
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buckles’ [34].

Like the ultra-thin carbon fiber tape springs in Section 5.5, capturing the actual physical cross-

section is required to obtain the actual wrapping force profile. In addition, if the thickness of the

bond region is more than double the flange thickness the localized bend radii will increase according

to Equation 6.3.

Once fully wrapped, the TRAC boom can be unloaded and then reloaded. During unloading,

the localized bend where the free end meets the hub increases in size. Once the tension force drops

below a critical value, the small localized folds form in the inner flange along the entire length of

the boom. The free length of the boom changes the unloading behavior significantly. The longer

the free length, the larger the localized fold where the free end meets the hub is for a given tension

force.

Neglecting friction, the coiling angle does not affect the unloading behavior significantly, and the

critical unloading force remains constant for a given free length. Upon reloading, all the localized

folds that formed in the inner flange, close at a fixed force, independent of the wrapped angle.

For the carbon fiber TRAC boom simulated, this force was 4.5 times the magnitude of the critical

unloading force, where the inner flange forms localized folds along the entire length.
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Chapter 7

Conclusions and Future Work

Ultralight deployable structures are an important component of modern spacecraft. These include

creased thin-film sheets that are used in solar sails, drag sails, and deployable antennae, as well as

deployable booms such as tape springs and TRAC booms. Ground testing of these structures is

highly challenging. Gravity can cause sagging, and air resistance reduces deployment speed, both

of which change the deployment dynamics. The solution is to use computer modeling to predict the

deployment behavior of these ultralight structures, and validate these models with ground tests.

This thesis has two broad research objectives: firstly, to develop and validate a technique

for modeling creased thin-films in commercial FEA software, including packaging, and deployment

behavior and forces, and secondly, to use numerical analysis to understand and predict the wrapping

behavior of tape springs and TRAC booms.

7.1 Modeling Creased Thin-Film Structures

The modeling of thin-films containing multiple creases traditionally requires custom models de-

veloped for a particular application such as the IKAROS solar sail mission. This thesis shows

the deployment behavior of a creased sheet can be captured in commercial FEA packages when

modeling the creases as a row of pin joints with zero bending stiffness. In particular, the equilib-

rium configurations and peak forces experienced during deployment match experimental results.

In addition, the MCFF approach has been developed, which allows creased sheets to be folded

into a packaged configuration. The resulting deployment behavior has been compared with the

corresponding behavior of a simulation starting in an approximated folded configuration. The use

of folding forces in MCFF ensures the folded configuration contains straight, uncrumpled creases.
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7.2 Tape Springs and TRAC Booms

An analytical model to determine when the localized folds in a tape spring will bifurcate was

developed and validated against simulation results. Simulations and experiments of wrapping an

isotropic tape spring around a hub 4.125 times the localized fold radii were performed.

Fold bifurcation is highly path dependent. Which particular localized fold will bifurcate, and at

what point in the wrapping process, depends heavily on which previous localized fold bifurcated.

LS-Dyna simulations were able to accurately capture the first three bifurcations, including the

associated forces. Tuning the viscous damping allowed four bifurcations to accurately match the

experimentally observed behavior.

This model was extended to a range of hub radii that differed from the tape spring localized

bend radius. A linearly increasing trend in the force required to completely wrap the tape springs

was observed for wrapping tape springs around hubs where at least one bifurcation occurs.

These wrapping simulations were extended to ultra-thin composite tape springs and TRAC

booms. To obtain agreement with experiment, the exact cross-section was found via laser scanner

and mapped to the simulation meshes. Excluding the effect of manufacturing imperfections results

in a different bifurcation path during wrapping.

Simulations of loading and unloading of a coiled carbon fiber TRAC boom were performed. The

length of the uncoiled boom has a significant impact on the uncoiling behavior. Shorter lengths

result in the inner flange of the TRAC boom forming multiple localized folds along the entire length

of the boom and opening in a global sense. Longer lengths result in a single localized fold increasing

in size instead of the global response. Finally, when re-loading the TRAC boom, the force when

the inner flange fully closes is consistent across wrapped angles, and for the case simulated, 4.5

times higher than the unloading force when the inner flange opened.

This is important when using tape spring and TRAC booms in space applications. Firstly,

when wrapping long booms the coiled radii will be significantly longer than the natural bend

radius. Secondly, tension force is required to fully coil the boom, and the force linearly increases

with the coiled radius for tape springs. During deployment of the boom, either tension on the boom

is required or an external cage that moves inwards and keeps the boom tightly wrapped. Otherwise

the inner flange will open and form localized folds, potentially leading to the boom jamming during

deployment.
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7.3 Future Work

To further develop the work presented in this thesis, the next logical steps are:

1. Expand the problems tackled by the MCFF model to larger creased sheets

2. Validate the removal of crease bending moment on other crease patterns

3. Refine the magnitudes of the folding forces used in the MCFF approach so less iteration is

required

4. Perform TRAC boom simulations for uncoiling and re-loading for larger hub diameters

5. Determine if the linear trend in tension force required to fully wrap an isotropic boom extends

beyond Rhub > 6Ri, and confirm this relationship holds true for TRAC booms as well

6. Design and build mechanisms capable of applying sufficient tension on wrapped TRAC booms

during deployment, to avoid the inner flange from opening.
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Appendix A

GP92 MCFF Simulation Details

This appendix provides the details of the exact forces and damping loads used to fold the GP92

crease pattern according to the MCFF approach, as outlined in Chapter 3. The GP92 crease

pattern is shown in Figure A.1(a), and regions where loads are applied is shown in Figure A.1(b).

The final folding pressure, line and point loads applied to fold the GP92 crease pattern in

LS-Dyna is shown in Table A.1.

Figure A.4 shows the viscous damping profile applied to remove the kinetic energy once the

sheet was fully folded. Damping is applied four times, with rest periods without damping to allow

internal strain energy to be converted into kinetic energy. This ensures that at the end of the

damping step an equilibrium configuration has been found.

Region Location

A Crease Vi,0 − Vi,7
B Crease Vi,0 − Vi,1
C Crease Vi,1 − Vi,2
D Triangle Vi,0Vi,1Vi+1,0

E Trapezoid Vi,0P0P1Vi+1,0

F Vertex Vi,1

Table A.1: Regions corresponding to Figure 3.3. To generate the hill and valley folds, for i = even
forces are downwards (-z), for i = odd, forces are upwards (+z).
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During the deployment stage radial displacement boundary conditions are applied to D1 −D4.
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Figure A.3: Profiles of (a) line loads, (b) pressure loads and (c) point loads required to produce
the wrapped state. These forces correspond to the regions defined in Table A.1
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Figure A.4: Viscous damping profile applied after wrapping to remove kinetic energy and find an
equilibrium rest state
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Appendix B

Tape Spring Wrapping Simulation

Section B.1 contains the boundary conditions and corresponding figure showing the node sets for

the simulations detailed in Section 5.3. Sections B.2 and B.3 detail the effect on the wrapping force

profile when varying mass nodal damping and friction respectively. Section B.4 shows the effect

that using fully integrated quadrilateral shell elements (Type -16) in LS-Dyna has on the same

wrapping force profile.

B.1 Wrapping Simulation Details

The boundary conditions for the wrapping simulation in Section 5.3 are detailed in Table B.1 and

the corresponding node sets defined in Figure B.1.

B.2 Effect of Varying Mass Nodal Damping

The effect of mass nodal damping on the tape spring wrapping simulations performed in Sec-

tion 5.3.2 was investigated for a wider range of β values. Plots comparing the results for β = 0.1,

1, 10, 100, and 1000 s−1 against the experimental result are shown in Figures B.2(a) and B.2(b).

There is a clear change in behavior between β ≤ 1 s−1 and β ≥ 10 s−1. The friction coefficient for

both the static and kinetic friction was set to the experimentally observed mean of µ = 0.185.
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Description Time (s) Node Set
Boundary
Conditions
Activated

Fix midline position as edges are flattened 0 - 0.06 Midline Nodes ux = uy = uz = 0

Edges are displaced to flatten tape-spring 0 - 0.04 Edge Nodes ux = 3.7 mm

Contact with cylindrical crushers
enabled

0.04 - 0.06 All nodes

Fix central nodes 0.00 - 0.20 Central nodes uz = 0

Tape spring ends controlled to create
two localized bends

0.06 - 0.21 Tip 1 node uy = f1(t), uz = g2(t), uy = 0

Tape spring ends controlled to create
two localized bends

0.06 - 0.21 Tip 2 node uy = f1(t), uz = g2(t), uy = 0

Fix midline to constrain out-of-plane
motion

0.06 - 0.17 Midline Nodes uy = 0

Mass nodal damping applied to
remove kinetic energy

0.17 - 0.21 β = 100

Match clamped end conditions 0.20 - ∞ Hole Nodes ux = uz = 0

Match clamped end conditions 0.21 - ∞ Tip 2 node ux = uz = 0

Damping applied to reduce kinetic
energy during wrapping

0.21 - 11.5 β = 1

Top end displaced by 65 mm,
tensioning tape spring

0.21 - 14.21 Tip 1 node uy = 0, ux = 65 mm

Damping applied to reduce kinetic
energy during wrapping

11.5 - 14.21 β = 1000

Table B.1: Boundary conditions for the simulation in Section 5.3. f1(t), f2(t), g1(t), g2(t) were
calculated with Equation 4.2
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Figure B.1: (a) Initial setup of the tape spring wrapping simulations in Section 5.3. (b) Associated
dimensions and node sets.

B.3 Effect of Varying Friction Coefficient

The friction coefficient between the tape spring and hub that was measured in Section 5.2.3 varied

between 0.15 and 0.2, with a mean of 0.185 and a standard deviation of 0.016. While µ = 0.185

was used in the simulations in Section 5.3, the effect of friction on the simulation was also studied.

In particular, the wrapping simulation was repeated for µ = 0.15, 0.16, 0.17, 0.18, 0.19, and 0.20,

and the tension force results are shown in Figure B.3. For all simulations mass nodal damping was

set to β = 1 s−1.

As Figure B.3 shows, changes in µ do not lead to significant changes to the tension force magni-

tudes for a given configuration of localized folds. However, µ does have an effect on the bifurcation

order, including which localized fold bifurcates and at what extension, dend, the bifurcation occurs.

Regardless of the friction coefficient tested, the localized fold closest to the clamped region is

the first fold to bifurcate. For µ ≥ 0.18, the larger friction coefficients correspond to the bifurcation

occurring at large extensions.

Also for friction coefficients µ ≥ 0.18 the second bifurcation differs from that observed exper-

imentally. In particular, the localized fold closest to the clamped region bifurcates for a second
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(a)

(b)

Figure B.2: Comparison of experimental results and simulation results with mass nodal damping
set to (a) β = 0.1− 1 s−1 and (b) β = 10− 1000 s−1 for the entire wrapping simulation. The data
has been smoothed with a 5 point moving average to remove noise.
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(a) µ = 0.15 (b) µ = 0.16

(c) µ = 0.17 (d) µ = 0.18

(e) µ = 0.19 (f) µ = 0.20

Figure B.3: Wrapping simulation tension force results when the static and kinetic friction coeffi-
cients (µ) are varied, plotted against the observed experimental result.
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Figure B.4: Comparison of experimental results and simulation results with mass nodal damping
set to β = 0 − 1 s−1 for the entire wrapping simulation. The data has been smoothed with a 5
point moving average to remove noise.

time, instead of the middle localized fold which is the case for µ < 0.18. In addition, for µ ≥ 0.19

the third bifurcation occurs later, at dend = 55 mm, without the sharp drop in tension force at

df = 0.51 mm observed experimentally or for simulations with lower friction coefficients.

B.4 Effect of Meshing with Fully Integrated Quadrilateral Shells

The tape spring in Section 5.3 was also meshed with fully integrated quadrilateral shell elements

(Type -16). The force profile observed during wrapping is shown in Figure B.4. Unlike the sim-

ulations where the tape spring was meshed with C0 triangular shells, regardless of the viscous

damping applied the wrapping simulations always moved down a different bifurcation path to the

experiments when fully integrated quadrilaterals were used.
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Appendix C

TRAC Boom Simulation Details

C.1 Wrapping Simulation Details

The boundary conditions for the wrapping simulation in Section 6.1.3 are detailed in Table C.1.

and the corresponding node sets defined in Figure C.1.

C.2 Coiling, Uncoiling & Re-loading Simulation Details

The boundary conditions for the wrapping simulation in Section 6.2 are detailed in Table C.2 and

the corresponding node sets defined in Figure C.1.

The tension force profile applied to the TRAC boom during coiling, unloading, and re-loading

is shown in Figure C.2.
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Figure C.1: (a) Initial setup of the TRAC boom wrapping and coiling simulations in Sections 6.1.3
and 6.2. (b), (c) Associated dimensions and node sets.
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Description Time (s) Node Set
Boundary
Conditions
Activated

Fix midline position as edges are flattened 0 - 0.06 Midline Nodes ux = uy = uz = 0

X+ edges are displaced to flatten flanges 0 - 0.04 X+ Edge Nodes ux = −11.4558 mm

X- edges are displaced to flatten flanges 0 - 0.04 X- Edge Nodes ux = 11.4558 mm

Contact with cylindrical crushers
enabled

0.04 - 0.06 All nodes

Fix central nodes 0.00 - 0.20 Central nodes uz = 0

Fix central nodes 0.16 - 0.20 Central nodes ux = 0

Tape spring ends controlled to
create two localized bends

0.06 - 0.21 Tip 1 node uy = f1(t), uz = g1(t), uy = 0

Tape spring ends controlled to
create two localized bends

0.06 - 0.21 Tip 2 node uy = f2(t), uz = g2(t), uy = 0

Fix midline to constrain
out-of-plane motion

0.06 - 0.17 Midline Nodes uy = 0

Mass nodal damping applied to
remove kinetic energy

0.17 - 0.21 β = 100

Match clamped end conditions 0.20 - ∞ Hole Nodes ux = uz = 0

Match clamped end conditions 0.21 - ∞ Tip 2 node ux = uz = 0

Damping applied to reduce kinetic
energy during wrapping

0.21 - 14.21 β = 1

Top end displaced by 70 mm,
tensioning tape spring

0.21 - 14.21 Tip 1 node uy = 0, ux = 70 mm

Table C.1: Boundary conditions for the simulation in Section 6.1.3. f1(t), f2(t), g1(t), g2(t) were
calculated from Equation 4.2
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Description Time (s) Node Set
Boundary
Conditions
Activated

Fix midline position as edges are flattened 0 - 0.06 Midline Nodes ux = uy = uz = 0

X+ edges are displaced to flatten flanges 0 - 0.04 X+ Edge Nodes ux = −11.46 mm

X- edges are displaced to flatten flanges 0 - 0.04 X- Edge Nodes ux = 11.46 mm

Contact with cylindrical crushers
enabled

0.04 - 0.06 All nodes

Fix central nodes 0.00 - 0.20 Central nodes uz = 0

Fix central nodes 0.16 - 0.20 Central nodes ux = 0

Tape spring ends controlled to create two
localized bends

0.06 - 0.21 Tip 1 node
uy = f1(t), uz = g1(t),
uy = 0

Tape spring ends controlled to create two
localized bends

0.06 - 0.21 Tip 2 node
uy = f2(t), uz = g2(t),
uy = 0

Fix midline to constrain out-of-plane
motion

0.06 - 0.17 Midline Nodes uy = 0

Mass nodal damping applied to remove
kinetic energy

0.17 - 0.21 β = 100

Match clamped end conditions 0.20 - ∞ Hole Nodes ux = uz = 0

Match clamped end conditions 0.21 - ∞ Tip 2 node ux = uz = 0

Damping applied to reduce kinetic energy
during wrapping

0.21 - 14.21 β = 1

Top end displaced by 70 mm, tensioning
tape spring

0.21 - 14.21 Tip 1 node uy = 0, ux = 70 mm

Table C.2: Boundary conditions for the simulation in Section 6.2. f1(t), f2(t), g1(t), g2(t) were
calculated from Equation 4.2.
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Figure C.2: Tension force profile applied to TRAC boom during coiling simulation in Section 6.2.
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