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Abstract

On September 14 2015, the two Laser Interferometer Gravitational Observatory
(LIGO) detectors observed gravitational waves from the coalescence of two black
holes [250]. Known as GW150914, this first direct measurement of gravitational
waves was the start of the new era of gravitational wave astronomy. The observed
signals agree with the waveform predicted by general relativity (GR) for the merger
of a pair of black holes with masses 36M� and 29M� [20, 252, 263]. As there
is no analytic solution to the two-body problem in GR, the predicted waveforms
during the merger must be obtained through expensive numerical simulations on
supercomputers. The field of numerical relativity (NR) has made significant progress
since the first successful simulation of a black hole merger in 2005 [19], and NR
codes are robust and accurate enough to simulate binary black hole (BBH) mergers
for most black hole parameters that might result in gravitational waves detected in
LIGO.

In order to determine the black hole parameters leading to the best match with
the observed signal, as well as determining the parameter uncertainties, the signal
must be compared to predicted waveforms from many different BBH systems. Due
to the high dimensionality of the parameter space, current parameter estimation
methods [20] may require the waveforms from millions of physically different sys-
tems. A single BBH simulation can take days to months running on dozens of cores,
making it prohibitively expensive to do millions of NR simulations. The analysis of
GW150914 therefore resorted to using approximate waveform models [66, 70, 152,
265] which are calibrated to some NR simulations. Waveform modeling errors can
lead to systematic biases in the measured black hole and extrinsic parameters, as well
as false positives or negatives when testing GR. For low signal-to-noise ratio (SNR)
detections and in regions of the parameter space where the models are well calibrated,
this systematic error can be small compared to the statistical error due to detector
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noise [268]. But as gravitational wave detectors improve, SNRs will increase and
the accuracy requirements of waveform models will become increasingly stringent.

NR surrogate models [14, 15, 76, 269] make no underlying assumptions about
the structure of the waveform, and directly interpolate or fit NR data across the
parameter space. With sufficiently many NR simulations, NR surrogate models
become as accurate as the underlying NR waveforms. Additionally, improving the
surrogate model by including additional NR waveforms is a simple task, requiring
very little human effort. The 7d intrinsic parameter space of the black hole mass
ratio and two black hole spin vectors presents a tough challenge; naive waveform
interpolation methods would require O(107) NR simulations. We overcome this
challenge by interpolating not the waveform itself, but various physically-motivated
components which depend very weakly on most parameter dimensions, allowing
accurate models even with a sparse covering of the parameter space. This method was
built up in stages. We first built a surrogate model for the 1d parameter subspace of
non-spinning black holes [269]. Next we tackled a 4d parameter subspace including
precession [14]. Finally, we built a NR surrogate model including all 7 parameter
dimensions [15] using fewer than 1000 NR simulations.

Chapter 1 presents a general introduction to gravitational waves, their sources, and
detectors. Chapter 2 gives a brief technical overview of topics relevant to the work in
this thesis. Chapters 3-6 contain papers previously published in academic journals,
with introductory sections including the details of my own contributions appearing
before the chapter author list and abstract. Chapter 3 demonstrates how reduced
basis methods can be used to generate accurate representations of gravitational
waves in the full 7d parameter space using a very sparse catalog of gravitational
waveforms. Chapter 4 presents a 176 orbit NR simulation, which begins early enough
in the inspiral that it agrees with analytic approximations. The resulting waveform
is used to test the accuracy of approximate waveform models. Chapter 5 presents
the NR surrogate model for the 1d parameter subspace of non-spinning black holes.
Chapter 6 presents the NR surrogate model for the 4d parameter subspace including
precession. Chapter 7 contains a paper on the full 7d parameter space NR surrogate
model that has been submitted for publication. Chapter 8 details my contributions to
publications in which I did not play a major role. Appendix A provides a thorough
technical documentation of the method of building fast tensor spline surrogates used
in chapter 6.
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1 Introduction

1.1 Overview
Einstein’s general theory of relativity (GR) predicts the existence of gravitational
waves (GWs), which are small fluctuations in the curvature of spacetime propagating
at the speed of light [21]. As electromagnetic waves are sourced by accelerating
charges, GWs are sourced by changing mass-energy quadrupole moments and higher
order multipoles, such as in a binary neutron star or black hole (BH) system. In a
binary black hole (BBH) system, the two BHs orbit their center of mass while slowly
radiating energy and angular momentum in the form of GWs. As the system radiates
energy, the BH separation decreases and the orbital frequency increases, which leads
to GWs with higher amplitudes being emitted. This is known as the inspiral phase.
Eventually, the two BHs get close enough to merge into a single BH that is initially
highly deformed (merger phase). Once the deformities are small, it can be treated
as a deformed Kerr BH that radiates away its deformations as quasi-normal modes
(QNMs) [22] during the ringdown phase.

Before September 2015, we had only indirect evidence for the existence of GWs
from the gradual increase in the orbital frequencies of binary pulsars [23–25]. Over
the last decades, a network of ground-based interferometric GW detectors have
been built [26–30]. No confident detections of GWs were made with the initial
generation, and an advanced generation of ground-based detectors with increased
sensitivity is being built [31–35]. The two Laser Interferometer Gravitational-Wave
Observatory (LIGO) detectors [1, 36] were the first to be upgraded to the advanced
generation, and began recording data in September 2015. On September 14 2015,
the LIGO detectors made the first direct observation of GWs from the merger of a
BBH system [250] known as GW150914. A second confident GW detection [251]
called GW151226 was made on December 26 2015, which was also from a BBH
merger.
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As more advanced generation GW detectors come online, and as further improve-
ments are made bringing the detectors closer to their design sensitivities, the sensitiv-
ity of the GW detector network will increase. There should be many more detections
of GWs from BBH mergers and other systems in the near future. These detected
GW signals can be compared to the predictions of GR, offering a test of GR in the
strong field, highly dynamical limit. Other theories of gravity that agree with GR in
the weak field limit and agree with experiments to date can produce different GW
signals from BBHs and other strongly gravitating systems [37–40]. Many tests of
GR were performed with GW150914 [252], and no inconsistencies were found.

In addition to tests of GR, GW detectors open up a new form of astronomy; we
may determine certain GW source parameters through the structure of the detected
GWs. For example, in BBH systems, the orbital frequency at merger decreases as
the masses of the BHs increase, so by measuring the frequencies of the detected GW
signal, we can infer information about the masses of the progenitor BBH system.
This is known as GW parameter estimation [41–44]. For example, the masses of
the two black holes of GW150914 were found in this way to be about 36M� and
29M� [20, 263], where M� is the mass of our sun. As we detect more and more GW
signals, we can learn about the populations of GW sources. The population of BBHs
is fairly uncertain [45–49], but using GW150914 [2] and all current gravitational
wave detections [3] the BBH merger rate has been constrained. Compact binaries
consisting of binary neutron stars (BNS) or one black hole and one neutron star
(BHNS) are also strong sources of GWs. No detections of GWs from these systems
have been made so far, placing upper limits on the merger rate of these systems [4].

In order to accurately estimate source parameters from GWs and test GR, we must
have accurate knowledge of the GW signal predicted by GR given a set of source
parameters. There is currently no analytic solution for BBH systems, so we must
resort to approximations or numerical methods. In 2005, after decades of work, the
field of numerical relativity (NR) enabled us to integrate Einstein’s equations for
BBH systems on computers [19, 50–53]. While we can now obtain accurate NR
gravitational waveforms for most BH parameters [54–58], the computations are quite
expensive, requiring months of supercomputer time. Since parameter estimation
typically uses matched-filtering [59, 60] where the data stream containing both a
signal and noise is compared with many GW templates to maximize the match,
it may require determining the GW signal for millions of systems. NR is many
orders of magnitude too slow and expensive for this purpose. There are several fast
approximate waveform models:
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• Post-Newtonian (PN) expansions [61, 62] add GR corrections to Newtonian
orbital dynamics to obtain waveforms that are accurate for low orbital veloci-
ties.

• Phenomenological (“Phenom") models [63–66] assume some model for the
structure of the gravitational waveforms and calibrate numerical coefficients
in the model to a handful of NR waveforms.

• The effective one-body (EOB) model [67–70, 152] sets up a Hamiltonian for a
point particle in a background metric such that the GW solution agrees with
PN at low velocities (large separations) but also gives phenomenologically
reasonable solutions for high velocities (small separations) and when the BHs
merge. Additional coefficients can be added to the model and calibrated to NR
simulations to improve the model accuracy.

For GW detections from sources with low to moderate spins and mass ratios, and
with small to moderate signal-to-noise ratios (SNRs), Phenom and EOB models are
sufficiently accurate to give small or undetectable parameter biases for advanced-
generation ground-based GW detectors [16, 71, 72, 268]. As detector sensitivities
improve, however, we will encounter signals with large SNRs where model errors
can become noticeable. If the waveform from a model evaluated at the BBH source
parameters is observationally distinct from the observed signal, there are two pos-
sibilities. The first is that the waveform model can produce a waveform that does

agree with the observed signal using different source parameters. This would lead
to a biased measurement of the source parameters. The other case is that the wave-
form model differs from the observed signal for all source parameters, which, if
we neglect the model error, could be falsely interpreted as a violation of GR. We
therefore need waveform models that are accurate enough to produce waveforms
that are indistinguishable from GR for all expected SNRs.

Improving Phenom and EOB models can be very difficult and would require more
and more calibration to NR waveforms as waveform accuracy requirements become
more strict. A better method is to use a set of NR waveforms and build a model that
can quickly interpolate them over the BBH parameter space using reduced-order
modeling (ROM) techniques [73–76]. With sufficient NR waveforms, the model
can predict waveforms for new parameters with roughly the same accuracy as the
input waveforms, making the model a “surrogate model” of the code that produced
the NR waveforms. Improving this model is straightforward: if the interpolation
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is not sufficiently accurate, perform additional NR simulations. If any of the input
waveforms are below the desired output accuracy, redo them with greater resolution.
We have created several such surrogate models, which are presented in this thesis.

1.2 Sources of Gravitational Waves
To leading order in the velocities of matter compared to the speed of light, GWs are
sourced by the second time derivative of a mass quadrupole moment. In particular,
spherically symmetric systems do not emit GWs in GR, no matter how much they
oscillate in the radial direction. Even spinning systems such as a spinning star, BH,
or even a galaxy will not emit any GWs if they are axially symmetric and stationary.
The strongest sources will have some large mass asymmetry which changes rapidly.
Binary systems, where two objects orbit a common center of mass, are one of the
most well-understood sources of GWs [21, 77].

Since the emitted waves are strongest at and just before merger, a binary consisting
of compact objects such as neutron stars or BHs is a good candidate for emitting
detectable GWs. Since neutron stars emit beams of radiation which may be detected
on Earth as a pulsar (or a binary pulsar when the neutron star is in a binary system
with a companion), we have reasonably good estimates of populations of neutron
stars [78]. We have even observed a double pulsar [79], where both neutron stars in
a binary system are pulsars. Neutron star masses lie between about 1M� and 2M�
[80]. They also spin quite rapidly compared to other stars, with periods as small
as a millisecond [81, 82], although neutron stars in observed binaries have smaller
spins. The small range of masses of neutron stars means binary neutron star systems
will consistently merge at orbital frequencies on the order of 1 kHz. BHs, on the
other hand, are much harder to detect through electromagnetic astronomy, as we
must resort to indirect signals such as observing x-rays emitted from matter falling
into the BH [45] or gravitational lensing [83]. Their masses fall into two categories:
stellar-mass BHs with masses between ∼ 5M� and ∼ 40M� [47], and supermassive
black holes (SMBHs) which lie at the centers of galaxies, which have masses in
the 106M� to 1010M� range [84]. While we have observed SMBHs in binaries [85],
there has been no observation of a BBH system consisting of stellar-mass BHs other
than from the GWs they produce. Intermediate mass black holes (IMBHs) may
exist, with masses between these two ranges, although there is so far no definitive
observational evidence [86]. Evidence for IMBHs and determining their populations
would have a great impact on our understanding of galaxy formation and SMBH
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formation. The lack of IMBH merger signals in the first observing run of Advanced
LIGO has placed upper limits on the IMBH merger rate [5].

Core-collapse supernovae are another potential source of GWs, especially when the
core is rapidly rotating. These occur when the iron core of a large star with mass
& 8M� becomes unstable and collapses to form a proto-neutron star. At nuclear
densities, the nuclear equation of state is stiff, causing the core to “bounce,” which
sends out a shock wave towards the surface of the star. The GWs emitted from such
an event occurring in the Milky Way or a nearby galaxy may be detectable on Earth
with the advanced-generation of GW detectors [87].

1.3 Detecting Gravitational Waves
Laser interferometry is used in LIGO and other ground-based detectors. The method
makes use of small differences in the laser beam path length when a GW passes
through the detector. A simplified description consists of a laser beam that is sent
through a beam splitter and travels along one of two different directions. The beams
are then reflected back with mirrors, and combined into a single beam. The amplitude
of the final beam depends on the phase difference of the two beams. A GW passing
through the detector will alter the two path lengths in different ways, altering the
final phases of the beams and changing the interference pattern of the signal. While
the GW strain may be minuscule, the beam paths may be made very long such that
non-negligible phase differences are accumulated.

Ground-based interferometric GW detectors have already been built [26–30], and
an advanced generation of detectors with greater sensitivity is currently being built,
upgraded, and in the case of advanced LIGO (aLIGO), is already taking data [31–
35]. While the initial generation of detectors made no detections, their sensitivities
were such that a reasonable chance of making a detection would require extremely
optimistic rates of compact binary coalescences. Ground-based detectors are sensitive
to GW frequencies above ∼ 10 Hz, while lower frequencies are inaccessible due
to the vibrations of the Earth. They are typically sensitive up to frequencies of a
few kHz. This sensitivity band is ideal for coalescences of neutron stars and/or
stellar-mass BHs with total masses between ∼ 3M� and ∼ 300M�, which merge at
orbital frequencies ranging from ∼ 30 Hz to ∼ 3 kHz. They are also sensitive to GWs
emitted from core-collapse supernovae, which have frequencies around 100 Hz −
2 kHz. There are also proposals for third generation ground-based gravitational wave
detectors [88, 89]. The additional sensitivity at low frequencies would improve the
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detection rate for compact binary merger events, and greater sensitivities at high
frequencies would allow the investigation of the merger phase of binary neutron
stars. This could provide valuable information about the neutron star equation of
state [90]. Improved sensitivities at high frequencies would also improve detection
and parameter estimation for GWs from core-collapse supernovae.

Space-based interferometric GW detectors have also been proposed [91, 92]. A
detector in space would not be limited to frequencies above 10 Hz, and could be
sensitive from a fraction of a mHz up to ∼ 0.1Hz. The beam lengths can also be
made very long, increasing the sensitivity and allowing smaller laser powers. This
sensitivity band corresponds to the mergers of smaller SMBHs with masses around
106 M�, as well as the merger of a SMBH with stellar mass compact objects, known
as extreme mass-ratio inspirals (EMRIs). It also includes portions of the early inspiral
from galactic white dwarf binaries. The success of the LISA pathfinder mission [6]
makes a space-based GW detector a likely possibility in the coming decades.

The second method which may detect GWs in the near future uses pulsar timing
arrays (PTAs) [93]. By monitoring many stable millisecond pulsar signals and
looking for correlations in their timing residuals, we may detect the presence of
GWs emitted from the merger of two galaxies containing SMBHs. PTAs are most
sensitive to periods on the order of a few years [94], meaning we require many years
or decades of data to build up a strong signal.

1.4 Tests of General Relativity
Gravitational wave observations give us the opportunity to test GR in the strong-field,
highly dynamical regime. Solar system, binary pulsar, and cosmological tests of GR
have placed tight constraints on the weak-field, quasi-stationary regime [95, 96], but
there are alternative theories of gravity that pass these tests while giving different
predictions during, for example, the merger of two black holes. Even binary pulsar
constraints only test velocities up to v/c = O(10−3) [24, 25] where c is the speed of
light, whereas the merger of two compact objects has v/c = O(1). For overviews
of alternative theories of gravity, experimental constraints, and proposed tests using
gravitational wave observations, see Refs. [95–98].

Scalar tensor theories [99, 100] include a scalar field that couples to the metric.
While a scalar tensor no-hair theorem [101] means black holes radiate away any
scalar "hair", neutron stars can have non-trivial scalar profiles. These systems emit
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dipolar gravitational radiation which dominates the GR quadrupolar emission at low
velocities [102].

Some alternatives to GR have a massive graviton [103]. This would lead to a dis-
persion of the GWs, with high-frequency GWs traveling faster than low-frequency
GWs [104]. Graviton dispersion can also be obtained through Lorentz violations,
which can arise in theories of quantum gravity [105]. The dispersion can be con-
strained very well by LIGO observations of GWs from BBH mergers, since the
ditance between the source and Earth is very large. If the mass of the graviton
and the distance are large enough, the merger signal could even arrive at the Earth
before the inspiral signal. GW150914 was used to constrain the compton wavelength
λg = h/(mgc) better than solar system tests [252]. Here, h is Planck’s constant and
mg is the mass of the graviton.

Dynamical Chern-Simons modified gravity [106] and Einstein-Dilaton-Gauss-Bonnet
(EDGB) gravity [107] arise from string theory, and their actions include terms that
are quadratic in the curvature. These additional terms become small as the masses
of the objects become large, so the merger of stellar mass BBH, BNS, and BHNS
are better candidates than EMRIs or the merger of SMBHs. EDGB has already been
significantly constrained [108–110], while dynamical Chern-Simons is only loosely
constrained [111].

Testing particular theories of gravity using gravitational wave observations can be
difficult, as precise theoretical predictions of gravitational waves from merging
compact objects are not generally available. For some theories such as dynamical
Chern-Simons, it is not even clear if it can be formulated as a stable initial value
problem for numerical simulations, although perturbative methods can be used
to modify GR simulations. Additionally, it could be that neither GR or any of the
known alternatives are correct and that a complete description of gravity has yet to be
formulated. It is therefore desireable to use theory-independent tests of GR that don’t
rely on the predictions of one particular theory. One such test is to measure potential
modifications to PN coefficients [112, 113]. In the analysis of GW150914 [252], the
post-Newtonian coefficients were constrained and were found to be consistent with
GR. The inspiral and ringdown signals were also found to be mutually consistent
with GR, and the ringdown is consistent with the quasi-normal modes predicted by
GR.
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2 Technical Background

2.1 Gravitational Waves
For a more comprehensive description of GWs, see e.g. [21].

We will use units where G = c = 1, such that masses, lengths and times all have
the same dimensionality. If we look for perturbations to the flat-space metric which
solve the Einstein field equations in vacuum to linear order, i.e. take

gµν = ηµν + hµν (2.1)

and enforce Gµν = O( |h|2), we obtain linear wave solutions for hµν. For a point
source at the origin, after eliminating gauge degrees of freedom and choosing
spherical coordinates such that

ηµν =



−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2sin2θ



, (2.2)

we can write the general solution as

hµν =



0 0 0 0
0 0 0 0
0 0 h+(t,r, θ, φ) h×(t,r, θ, φ)
0 0 h×(t,r, θ, φ) −h+(t,r, θ, φ)



, (2.3)

where
h+(t,r, θ, φ) =

1
r

A+(t − r, θ, φ) (2.4)

and
h×(t,r, θ, φ) =

1
r

A×(t − r, θ, φ). (2.5)
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This linear approximation is good when |h| � 1, which will always be true in
the limit r → ∞. Since we are interested in detecting GWs from sources very far
away (r � GM/c2 for a source of mass M), non-linear corrections to the GWs are
negligible. We can compute the linear limit of the GWs by setting t = τ + r and
taking r → ∞, which corresponds to computing the GWs at future-null infinity,
denoted by I+. Of course, since h vanishes at I+, we instead compute rh. The two
polarizations of the GW, h+ and h×, have the effect of gently squeezing one direction
and stretching another, both of which are orthogonal to the direction of propagation
of the GW.

Suppose we have a GW source consisting of some matter moving slowly compared
to the speed of light. For an observer far away from the source in the ẑ direction at
some distance r , it can be shown [21, 62] that (to leading order in the velocities and
1/r)

h+(t) =
1
r

(
Ïxx (t − r) − Ïyy (t − r)

)
, (2.6)

h×(t) =
2
r

Ïxy (t − r) , (2.7)

where Ii j (t) is the mass quadrupole moment of the source

Ii j (t) =

∫
d3x′ρ(t,~x′)x′i x

′
j , (2.8)

and ρ is the density of the source. This is known as the quadrupole formula.

2.2 Binary Black Hole Systems
This work is primarily concerned with GW signals from BBH systems. However,
when one (or both) of the BHs is (are) replaced with a neutron star, the orbital
dynamics and GWs emitted are nearly unchanged during the inspiral phase. This
allows BBH waveforms to be used for the detection of GWs emitted from binary
neutron star inspirals, and for the estimation of the source parameters. During the
late inspiral, however, the neutron star(s) undergo tidal deformations which modify
the dynamics and GW emission [114]. The merger phase is then completely different
from that of a BBH system [115]. While two BHs merge smoothly into a single BH,
two neutron stars will form a single hypermassive neutron star which oscillates at a
characteristic frequency determined by the mass and neutron star equation of state.
The hypermassive neutron star may eventually collapse into a BH. Of course, if we
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wish to gain valuable information about the neutron star equation of state through
GW signals, we cannot use BBH waveforms to do the analysis.

Consider an isolated BBH system. When the two BHs are very far apart from each
other, they can be approximated as Kerr BHs which have a mass m and spin vector
~S. The dimensionless spin, ~χ = ~S/m2, is restricted to values | ~χ | ≤ 1, and there is
observational evidence for BHs with nearly extremal spins [116–118]. While BHs
may also be charged, astrophysically we expect their charge to be negligible. Large
electromagnetic forces would attract oppositely-charged particles, and spontaneous
pair-production near the horizon can discharge black holes [119]. We thus have 4
parameters for each BH in addition to the orbital period, eccentricity, and orientation
of the periastron in the orbital plane. While the separation is still large, the orbital
motion is well approximated by Newtonian gravity. Calculating post-Newtonian
corrections to the orbital dynamics shows that the eccentricity is radiated away as
GWs faster than the orbital separation [120]. This process is sufficiently fast that
all astrophysical stellar mass BBH orbits will circularize before the BHs merge,
except in globular clusters [121] where three body interactions can sometimes create
eccentric binaries in a state too close to merger to circularize.

Once we restrict to non-eccentric orbits, we may choose a fixed radius r0 and
investigate the BH parameters when their separation is r0. The unit normal to the
instantaneous orbital plane defines one direction, and the separation vector defines
another. Here, we are still assuming the BHs are far enough away that a coordinate
separation “vector" makes sense and isn’t obscured by the curvature of spacetime.
This fixes a coordinate system in which we may measure the spins of the BHs,
so for any non-eccentric BBH coalescence, we have 8 parameters. Since GR in
vacuum is scale-invariant, if we know the GW strain rh(t, θ, φ) at I+ from a BBH
system with some parameters (mA,mB, ~χA, ~χB), the corresponding GW strain for
a system with scaled parameters (αmA,αmB, ~χA, ~χB) is αrh(αt, θ, φ). We may
therefore restrict to systems with a fixed total mass M = mA + mB of 1 and determine
the dimensionless strain rh(t/M, θ, φ)/M . This leaves us with seven parameters: the
mass ratio q = mA/mB and the two spin vectors. Including eccentricity would require
two additional parameters: the eccentricity and orientation of the periastron in the
orbital plane, both measured at a particular value of the orbital angular momentum.

If the BH spins are aligned with the orbital angular momentum ~L, they will remain
as such and the orbital plane will be fixed. It is then useful to decompose the GWs
emitted in all directions into spin-weighted spherical harmonics (SWSHs) of spin
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weight −2. For a full description of SWSHs and why they are needed for describing
GWs, see [122]. If the BH spins are misaligned with the orbital angular momentum,
the spins and orbital plane will undergo precession. To lowest PN order, they precess
about the total angular momentum ~J = ~L + ~S1 + ~S2, which is conserved on the
precession timescale.

2.3 Spectral Einstein Code
The Spectral Einstein Code (SpEC) [123] is a numerical relativity code that can
perform BBH simulations. It presently can handle mass ratios up to 10, dimensionless
spin magnitudes of almost 1 [55], and is typically used for simulations lasting
dozens of orbits, although it is capable of performing hundreds of orbits given
enough computing time [16]. The singularities inside the BHs are excised from
the computational domain. The excised regions are chosen to lie within the BH
apparent horizons, which are gauge-dependent null surfaces guaranteed to lie inside
the event horizons. This ensures the outside physics are not affected. The remaining
domain, which extends out to some outer boundary, is decomposed into many
subdomains. Each subdomain is treated spectrally [124, 125] – all quantities are
decomposed into basis functions, and the basis function expansions are truncated
at some finite number of terms which determines the resolution. The advantage of
spectral methods is that for problems with smooth solutions, the numerical truncation
error decays exponentially with the number of basis functions. Subdomains are split
and merged, and their resolution is controlled automatically using adaptive mesh
refinement. The computational grid is fixed but mapped onto the physical domain
using rotations, translations, scalings and other maps. These maps are controlled
to ensure the excised regions remain inside the BH apparent horizons [126]. SpEC
uses a generalized harmonic evolution system [127] which chooses coordinates xµ

to satisfy an inhomogeneous wave equation,

gµν∇
ρ∇ρxν = −gαβΓµαβ = Hµ(x,g) , (2.9)

where Hµ(x,g) are arbitrary fixed algebraic functions of the coordinates xµ and the
metric gµν described in [125]. The evolved fields are the metric components gµν, the
spatial derivatives of the metric components Φiµν = ∂igµν, and fields related to the
time derivatives of the metric components NΠµν = −∂tgµν + γ1N iΦiµν, where N is
the lapse, N i is the shift, and γ1 is a constraint damping term. This puts the system
in first order differential form but introduces additional constraints. The generalized
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harmonic system is symmetric hyberbolic, which ensures that numerical errors do
not grow faster than exponentially (the problem is well-posed). The constraints may
grow exponentially in time, and without constraint damping they do. To remedy this,
various constraint terms are added to the evolution equations [128, 129]. For exact
solutions, the constraints are zero and the solutions are unaffected.

Since the total mass scales out of vacuum solutions of Einstein’s equations, the total
mass MA + MB is typically set to 1 in SpEC simulations. As initial parameters, we
then must choose the mass ratio q, the dimensionless spin vectors ~χA and ~χB, and
the initial BH positions and velocities. By choosing an initial orbital frequency Ω0

we can use PN to determine the corresponding separation D0 for a non-eccentric
BBH inspiral. By choosing the initial separation vector to be in the x-direction and
setting the center of mass to the origin, we fix the initial BH positions. By choosing
the initial BH velocities to be in the y-direction and achieve our desired Ω0 and
setting the initial linear momentum of the system to 0, we fix the initial velocities.
Initial data is constructed to solve the constraints by specifying a conformal metric in
one of two ways, creating an elliptic equation for the conformal factor. Conformally
flat data [130] uses a flat conformal metric, and superposed Kerr-Schild (SKS) [131]
uses a smoothly blended linear combination of a flat metric and two Kerr metrics
centered on either BH. The system is then evolved for a few orbits. Since the choice
of D0 was determined by PN and the BH velocities are chosen to be orthogonal
to the separation vector, the system will have some small eccentricity. The orbital
eccentricity is measured, and updates to the initial parameters are computed in order
to reduce the eccentricity [132, 133]. This now includes an initial rate of change of
the orbital separation, as this will be slightly negative for a non-eccentric inspiral.
While the eccentricity is above a threshold (typically a few 10−4) this process is
iterated. Once the eccentricity is sufficiently small, the evolution is continued through
merger and ringdown.

The computational domain is finite, and we are interested in the GWs much further
away. One way of obtaining this information is to extract the GWs at several finite
radii, and extrapolate this data to an infinite radius by fitting the data to inverse
powers of radius [134]. While this is computationally inexpensive, it is not gauge
invariant. Choosing spheres of fixed coordinate radius depends on the choice of
coordinates, and the extraction itself is not a fully gauge-invariant procedure [135].
A better but more computationally expensive method is to perform Cauchy char-
acteristic extraction (CCE) [136–138]. All the necessary metric data is read from
some worldtube, which is simply taken to be a surface of constant coordinate radius.
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The data is then evolved outward along null rays out to I+, where the GWs can be
extracted after determining the appropriate (Bondi) coordinates [139]. This method
has the advantage of being gauge-invariant up to the symmetry group of future
null infinity, which contains super translations in addition to boosts, rotations, and
translations [140].

2.4 Gravitational Wave Data Analysis
For a more comprehensive treatment of GW data analysis, see [141]. An interfero-
metric GW detector, such as advanced LIGO, outputs a data stream d(t) consisting
of noise from several sources ni (t), in addition to any strain s(t) due to GWs. The
noise sources are assumed to be additive, such that d(t) = n(t) + s(t), where n is the
sum of all noise sources. The assumption that n is a zero-mean stationary Gaussian
random process is often made. This implies that different Fourier components of the
detector noise are uncorrelated. Denoting the Fourier transform of a time-domain
quantity with a tilde, we have

E[ñ( f )ñ∗( f ′)] =
1
2

Sn( | f |)δ( f − f ′) . (2.10)

Here Sn( f ) is the noise power spectral density, and E[·] denotes the expected value.
Note that we have assumed that the time domain data is infinitely long, going from
−∞ to ∞, which is why E[|ñ( f ) |2] is infinite. From now on, we assume instead
a finite amount of data. Taking the noise to be Gaussian leads to a very simple
expression for likelihood of particular noise realizations once the noise spectral
density is known. Defining an inner product

(x |y) = 4 Re
[∫ ∞

0

x̃( f ) ỹ( f )∗

Sn( f )
df

]
, (2.11)

the probability density of obtaining a given noise configuration n is

logP[n] = −
1
2

(n|n) + C, (2.12)

where C is a normalization constant. We can see this by discretizing the frequency
domain into bins with uniform spacing df . We then treat ñ( fi) as an evaluation of a
Gaussian random variable with mean 0 and variance Sn( fi)/(2df ), so the probability
density of obtaining ñ( fi) is

P[ñi] =

√
df

πSn( fi)
e−df ñ( fi )ñ( fi )∗

Sn ( fi ) (2.13)
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and the probability density for obtaining ñ is the product of this quantity over all
frequency bins i, since they are independent. Taking the log of this product yields a
sum

logP[n] = C − df
∑

i

ñ( fi)ñ( fi)∗

Sn( fi)
, (2.14)

which becomes an integral, giving us the previous result in the limit df → 0, since
the integrand is an even function of frequency.

Suppose we want to check if the unknown signal s is the GW strain h. Then the
noise configuration would be n = d − h, and the log-likelihood for h is then

logL[h] = C −
1
2

(d − h|d − h) (2.15)

= C′ + (d |h) −
1
2

(h|h) , (2.16)

where we have moved the (d |d) term into the normalization constant since it is
independent of h. We could determine the likelihood of many different candidate
signals hλ (t) and determine the most likely signal(s). This should then be compared
to the likelihood of no signal (s(t) = 0), which is simply C′ above. We are projecting
the data onto expected signals, which is known as matched filtering [59, 60]. For
additive noise, matched filters are the optimal linear filters for maximizing the signal
to noise ratio (SNR)

ρ =
√

(h|h) . (2.17)

The SNR is an important quantity for discriminating the presence of a signal from
pure noise. Using a lower threshold for the SNR to determine when a data set should
be considered to contain a signal and be labeled as a “detection" will determine a
false alarm rate (FAR), or how often pure noise is incorrectly identified as containing
a signal. Higher SNR thresholds lead to lower FARs. Real noise in a detector is not
Gaussian and contains “glitches" [142, 143], which results in pure noise achieving
moderate and high SNRs more often than expected.

Related to the problem of detecting GWs is parameter estimation: once we establish
that the data contain a GW signal, we wish to know the type of source of the GW
and the related parameters. In other words, we wish to determine which parameters
λ give signals hλ (t) with high likelihoods. For a full Bayesian analysis, we should
take into account prior astrophysical distributions and use likelihoods to determine
the posterior distribution for the parameters of the source. For a non-eccentric BBH
system, the eight intrinsic parameters are the two component masses and spin vectors.
There are also extrinsic parameters: the time of coalescence, the distance between the
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source and the Earth, two parameters describing the direction of the Earth in a binary-
centered coordinate system (or the inclination angle and orbital phase at coalescence
in an Earth-centered coordinate system), and three angles describing the orientation
of the GW detector in a binary-centered coordinate system (or the sky-location and
polarization angle in an Earth/detector-centered coordinate system). All together, this
makes 15 parameters. A full analysis would evaluate the signal hλ (t) that would be
seen in the detector for all possible values of λ in the 15 dimensional parameter space,
and evaluate the likelihood as a function of this parameter space. Evaluating even
a computationally inexpensive function in a reasonably dense way is not feasible,
so in pracice [20], Markov chain Monte Carlo [7] methods or nested sampling [8]
methods are used. If hλ (t) can be expressed as a linear sum of coefficients depending
only on λ multiplying basis vectors depending only on t, faster methods that evaluate
inner products with the basis vectors can be used [9, 144, 145].

While checking for detections or performing parameter estimation, we must have
accurate templates h(t). In general, our template waveforms will have some error,
whether it is modeling error or due to finite resolution in a NR simulation. Suppose
h(t) is the waveform predicted by GR, and our waveform model predicts H (t) =

h(t) + εg(t) where we will consider the limit ε → 0. We can rewrite this as

H (t) = (1 + ε ‖)
(
h(t) +

ε

1 + ε ‖
g⊥(t)

)
, (2.18)

where we have

g⊥(t) = g(t) −
(g |h)
(h|h)

h(t) , (2.19)

ε ‖ = ε
(g |h)
(h|h)

. (2.20)

By allowing a small fractional bias of ε ‖ in the measured distance, we can simplify
the calculations by defining

ε̃ =
ε

1 + ε ‖
= ε + O(ε2) (2.21)

and instead considering

H̃ (t) = h(t) +
ε

1 + ε ‖
g⊥(t) = h(t) + ε̃g⊥(t) . (2.22)
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The difference in log-likelihoods when using H̃ (t) compared to using h(t) will then
be

logL[H̃] − logL[h] = (d |H̃) − (d |h) −
1
2

(
(H̃ |H̃) − (h|h)

)
(2.23)

= ε̃ (d |g⊥) −
1
2
ε̃2(g⊥ |g⊥) (2.24)

= ε̃ (n|g⊥) −
1
2
ε̃2(g⊥ |g⊥) . (2.25)

The noise term (n|g⊥) will depend on the particular noise realization, but its expected
value is 0. The expected decrease in the log-likelihood is then 1

2 ε̃
2(g⊥ |g⊥), which is

1
2ε

2(g⊥ |g⊥) up to order ε3 corrections. Defining the match, which is also called the
overlap, as

M (x, y) =
(x |y)√

(x |x)(y |y)
= ( x̂ | ŷ) , (2.26)

and the mismatch as 1 −M (x, y), we have

M (h,H) =M (h, H̃) = 1 −
1√

1 + ε̃2 (g |g)
(h|h)

(2.27)

= −
1
2
ε2 (g |g)

ρ2 + O(ε3) . (2.28)

We therefore have that the expected loss in log-likelihood is

E[δlogL] = ρ2(1 −M (h,H)) + O(ε3) . (2.29)

We can tolerate waveform errors with mismatches much less than ρ−2, as they will
not noticeably affect the results of parameter estimation. As the loudest SNR could
be ∼ 50 once 40 detections are made [146], mismatches of less than 4 × 10−4 might
be needed in order for waveform modeling to have a completely negligible effect
on parameter estimation. Detector calibration errors place a lower bound on the
mismatches we should strive to achieve in waveform models [147]. For GW150914,
these calibration errors are ∼ 5% in the amplitude A of the signal and ∼ 3◦ in the
phase ϕ of the signal [10]. The corresponding mismatches are roughly

1 −M ∼
(
δA
A

)2

+ (δφ)2 ∼ 0.005 , (2.30)

so waveform model mismatches below ∼ 0.002 should lead to a negligible contri-
bution to parameter estimation errors. If detector calibration improves in the future,
lower mismatches would be needed. Currently, typical waveform models have mis-
matches of up to a few percent with NR simulations, while NR resolution studies
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and comparisons between codes [148] estimate NR waveforms have mismatches
with GR of O(10−4) for typical resolutions.

It is possible to have a waveform model where mismatches when compared to the
GR prediction for the same parameters are large, but when we minimize the mis-
match with the GR prediction over the model waveform’s parameters we achieve
small mismatches. The match maximized over all parameters is called the effectual-
ness [149]. Using such a model would lead to a negligible loss in the detection rate,
and would not erronously identify a GR waveform as being inconsistent with GR,
but would yield biased parameter measurements. If mismatches can be made small
by optimizing over only some parameters which we are not interested in measuring,
such as the exact time of arrival or the orbital phase at some reference frequency,
we will still obtain unbiased measurements for the other parameters of interest such
as the black hole masses. This partially-minimized mismatch is often called the
unfaithfulness [149], with the maximized match called the faithfulness. An unfaithful
model could still yield reasonable results – if the modeling error somehow had the
effect of reducing all likelihoods by some constant factor, the most likely parameters
would still be correct. It is therefore useful to determine parameter biases explicitly –
for a given waveform hλ , find the model waveform Hλ̃ which maximizes the match,
and report the parameter differences λ − λ̃ [71]. If the model is sufficiently faithful,
this parameter difference will be less than the width of the likelihood peak by the
triangle inequality.

2.5 Waveform Models
Several methods of generating gravitational waveforms already exist. Numerical
relativity, which can be sufficiently accurate for use in advanced generation GW data
analysis, is far too slow to be used directly. Other models are very fast to evaluate -
some even produce waveforms in the frequency domain which eliminates the need to
perform a fast Fourier transform (FFT) on time-domain data before taking frequency
domain inner products with the detector signal. While some of these models are
sufficiently accurate for some subset of the parameter space, they all have significant
limitations. Waveform generation methods are summarized in Table 2.1.

Post-Newtonian (PN) [61, 62] waveforms are some of the most widely used. By
expanding both the orbital dynamics of the BBH system and the gravitational
strain emitted in powers of the orbital velocity divided by the speed of light, PN
is extremely accurate during the early inspiral when velocities are slow and the
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gravitational interactions are weak, but becomes increasingly inaccurate as the
coalescence progresses. The PN equations then fail catastrophically near merger,
and PN waveforms do not contain a merger or ringdown phase. Instead, the PN
GW amplitude becomes infinite at some finite time. Typically the waveforms are
truncated at some earlier time, for example at the inner-most stable circular orbit. The
time when PN stops being sufficiently accurate depends on the BH parameters. For
an equal-mass non-spinning BBH system, PN waveforms can be accurate to within
∼ 1 radian even 2 orbits before merger, while for other systems PN can become
inaccurate hundreds of orbits before merger [72, 150]. Several time-domain PN
approximants exist, which expand different quantities in terms of the PN expansion
parameter [151]. There is also the frequency-domain approximant TaylorF2 [150] for
non-precessing waveforms, which assumes that the waveform amplitudes and phase
time derivatives evolve slowly to make use of a stationary phase approximation
(SPA). The result is an expansion of the frequency-domain phases and amplitudes in
terms of powers of the frequency.

The effective-one-body (EOB) model [11, 67–70, 152] associates the BH dynamics
with the dynamics of a single particle in some external effective spacetime, expanding
the spacetime as in PN. It chooses the coefficients such that the resulting inspiral
waveforms agree with PN up to the chosen PN order. The dynamics terminate with a
plunge of the particle into a BH, onto which a ringdown phase consisting of decaying
quasi-normal modes is attached. EOB waveforms therefore have the advantage over
PN of having merger and ringdown phases, although they are somewhat more
computationally expensive to integrate. EOB has been shown to be more accurate
than pure PN when compared with NR waveforms [16, 72]. It has also been improved
by the inclusion of unknown PN coefficients, which are then calibrated using NR
waveforms. The transition from a plunge into a ringdown can also be calibrated to
NR waveforms. These calibrated models are called EOBNR or SEOBNR, where the
‘S’ indicates the model includes spin. Different particular calibrations are denoted
by EOBNRv1, EOBNRv2 etc. The most current calibrated non-precessing EOB is
SEOBNRv4 [11]. There is also a precessing EOB model SEOBNRv3 [70]. While
EOBNR models contain some subdominant modes [68], SEOBNR models only
include the dominant ` = 2, |m | = 2 modes. They can therefore become inaccurate
for certain directions of GW emission near merger where other modes are no longer
negligible [153]. This causes EOB waveforms to perform poorly for higher mass
systems which contain fewer cycles in the aLIGO sensitivity band, making the
merger phase the dominant contribution to the SNR [269].
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Waveform Method NR PN EOBNR SEOBNRv4
Domain Time Either Time Time

qmax 20 ∞ 100 (6) 100 (8)
Spins All All None Aligned
| ~χ)max ∼ 0.99 1 0 0.98
Modes ` ≤ 8 Any (2,1), (`,`), ` ≤ 5 (2,±2)
Merger Yes No Yes Yes

Cost Weeks ∼ 1 s ∼ 10 s ∼ 10 s
Typical Mismatch 10−4 0.1 0.01 < 0.01
Waveform Method SEOBNRv3 PhenomD PhenomP

Domain Time Freq. Freq.
qmax ∞ (8) ∞ (18) ∞ (18)
Spins All Aligned Some precession
| ~χ)max 1 (0.98) 1 (0.98) 1 (0.98)
Modes ` = 2 (2,±2) ` = 2
Merger Yes Yes Yes

Cost ∼ 10 s < 1 s < 1 s
Typical Mismatch 0.01 0.01 0.01

Table 2.1: Capabilities of different waveform generation methods. For the maximum
mass ratio qMax and spin | ~χ |Max, the maximum parameters used for calibration are in
parenthesis where applicable. Typical mismatches are order-of-magnitude estimates
for BBH waveforms from sources similar to GW150914, with detector noise similar
to GW150914.

Phenomenological waveform models [63–66] are designed with GW data analysis in
mind. They are evaluated in the frequency domain, and typically agree with TaylorF2
at small frequencies. After investigating the structure of NR waveforms, a model
is designed and its coefficients are fit to a set of NR calibration waveforms. As
they are very cheap to evaluate, they are suitable for detection searches as well as
rapid parameter estimation studies where a fast result is needed. The most recent
non-precessing Phenom model is PhenomD [65], which is calibrated using NR
waveforms up to mass ratio 18 and aligned spins up to 0.98. Instead of being exactly
TaylorF2 at small frequencies, it is designed to agree with uncalibrated SEOBNRv2
at small frequencies. Within its calibration range, it typically achieves mismatches
of the (`,m) = (2,2) mode of less than 3%. There is also the precessing waveform
model PhenomP [66], which uses aligned spin PhenomC or PhenomD waveforms
and “twists" them up using PN precession dynamics.
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2.6 Reduced Order Modeling
The field of reduced order modeling (ROM) [73–76] treats the space of all solutions
to a given difficult or computationally expensive problem as a (potentially non-linear)
subspace of a high dimensional linear space, and seeks to find a linear space of much
lower dimension which can represent all solutions up to some given tolerance. The
space of BBH waveforms can be thought of some 7-dimensional curved submanifold
of the space of all possible linear combinations of BBH waveforms. While this
linear space has a very high (or infinite) dimension, it can be well approximated by a
linear space of much lower dimension. We will construct a reduced basis [73, 75] to
represent the lower-dimensional linear space (compression in parameter space), build
the corresponding empirical interpolant [74, 76], which is an application-specific
time interpolant constructed from data (compression in time), and finally construct
a surrogate model, which rapidly generates solutions to the problem at arbitrary
parameters with a negligible loss in accuracy. These steps are all fairly simple, but
since there is a lot of jargon and notation we will step through a toy problem. A basic
flow chart of the steps is shown in Fig 2.1.

Suppose we seek time-dependent solutions f (t; λ) to a parametrized problem where
t ∈ T is time and λ ∈ Λ is one or more parameters. Suppose we have a method
of obtaining solutions for any given value of λ ∈ Λ, but that our method is com-
putationally expensive. For example, λ could consist of two BH masses and spin
vectors, and f (t; λ) could be the (`,m) = (2,2) mode of the GWs emitted from a
BBH system with masses and spins given by λ, aligned such that its peak amplitude
occurs at t = 0. For our toy problem, we will use leading order PN (`,m) = (2,2)
mode waveforms with a total mass of 1 parametrized by the symmetric mass ratio
ν = mAmB/M2. Setting t = 0 to be the “merger" when the PN expressions become
infinite, we will use T = [−5000,−100] and Λ = [0.1,0.25] with λ = ν. Our
solutions are then described analytically by

f (t; λ) = A(t; λ)eiϕ(t;λ) , (2.31)

A(t; λ) =

(
16π2λ3

−5t

)1/4

, (2.32)

ϕ(t; λ) =
2
5

(
5
λ

)3/8

(−t)5/8 . (2.33)

While this toy problem is not suitable for ROM since the known solution is com-
putationally cheap to evaluate, it is a useful example for demonstration purposes.
Evaluations of f are shown in Fig. 2.2.
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Figure 2.1: Basic flow chart for building a surrogate model.
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Figure 2.2: Evaluations of the toy problem at the extremal values of the parameter
λ = ν.

Our first step is to construct a reduced basis, which is an orthonormal basis for a
low-dimensional linear space which can represent all solutions up to some given
tolerance. The standard method of constructing a reduced basis is to first construct
a training set (TS) of solutions: we will use the uniformly spaced TS parameters
λi = 0.1+0.15i/(NT S−1), where i = 0,1, . . . ,NT S−1 and we will choose NT S = 500.
We must also choose an inner product and norm: we will use

〈u(t),v(t)〉 =

∫ −100

−5000
u(t)v(t)∗dt , (2.34)

which gives us the L2 norm ‖u‖2 = 〈u,u〉. We first evaluate and normalize all TS
solutions:

f̂i =
f (t; λi)
‖ f (t; λi)‖

. (2.35)

We must then initialize our reduced basis: we will seed it with the first solution,
f̂0, and denote the basis by B1 = {b̂1} = { f̂0} where the subscript of B indicates
the dimension of the basis and the subscript of b̂ indicates the ordering of the basis
vectors. We can determine how accurately our basis represents our normalized TS
solutions by computing projection errors. Denoting the projection operator for the
basis Bn = {b̂ j }

n
j=1 by Pn, the projection errors are

ε i
n = ‖ f̂i − Pn f̂i‖ = ‖ f̂i −

n∑
j=1

〈 f̂i, b̂ j〉b̂ j ‖ , (2.36)

and the maximum projection error is εn = maxi (ε i
n). The projection errors of our

seed basis, ε i
1, are shown in black in Fig. 2.3.
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Figure 2.3: Projection errors for reduced bases of sizes 1, 3, and 5. For small basis
sizes, we usually have maximum projection errors of 1 and the basis is only accurate
very close to the chosen greedy parameters.

We now run a greedy algorithm which iteratively increases the dimension and
accuracy of the reduced basis by adding the TS solution with the worst projection
error after orthonormalizing it with the current basis. Specifically, we set

i∗n = arg max
i

ε i
n , (2.37)

bn+1 = f̂i∗n − Pn f̂i∗n , (2.38)

b̂n+1 =
bn+1

‖bn+1‖
. (2.39)

We iterate this greedy step until either εn becomes small enough, we have used up
all TS solutions, or i∗n has already been used in a previous greedy step (indicating
we have reached numerical roundoff errors). Some resulting basis vectors for our
toy problem are shown in Fig. 2.4, and the projection errors as a function of basis
size are shown in black in Fig. 2.5. We see that once the reduced basis reaches a
certain size, the projection errors fall off exponentially with basis size until numerical
roundoff errors become relevant. This is true for all smooth problems. We wish to
use our reduced basis to represent not only TS solutions, but solutions with any
parameter λ ∈ Λ. To ensure our basis is sufficiently accurate, we perform a posteriori

verifications by sampling the parameter space more densely than our training set and
computing the maximum projection errors (shown in red and blue in Fig. 2.5 . Since
the errors do not change noticeably as we increase our sampling rate, we conclude
that the computed TS projection errors are a reliable estimate of the maximum error
over the whole parameter space and that 40 basis elements are sufficient to represent



24

5000 4000 3000 2000 1000 0
t[M]

0.06

0.04

0.02

0.00

0.02

0.04

b̂ n
 (r

ea
l p

ar
t)

n=1 n=15 n=25

Figure 2.4: Some reduced basis vectors are shown.
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Figure 2.5: Projection errors as a function of the reduced basis dimension n. The
maximum projection error over all training space parameters is shown in black. A
posteriori verifications are done using denser sampling to ensure the basis is accurate
for all parameters and not just the training space parameters (red and blue).

our solutions up to projection errors of less than 10−13. Note that to build our training
set and perform the a posteriori verification, we had to evaluate solutions f (t; λ)
many times. Typically this is done in an offline stage, and the basis is used in an
online stage where little computational time is available. For the case of BBH GWs,
computing solutions for a dense TS using NR would be prohibitively expensive,
even in an offline stage. We will therefore resort to other methods of determining the
greedy parameters {λi∗n } described later, and then we may evaluate the solutions for
the greedy parameters using numerical relativity to construct the reduced basis.

For our toy problem, we will choose to use the reduced basis with size N = 40,
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meaning we can write

f (t; λ) =

N∑
i=1

ci (λ)b̂i (t) , (2.40)

where the basis coefficients are given by

ci (λ) = 〈 f (t; λ), b̂i (t)〉 . (2.41)

We have omitted projection errors, under the assumption that they are negligible.
Once we have our reduced basis BN , we can construct an empirical interpolant.
This allows us to drastically downsample our solutions in time and then use the
interpolant to upsample with little or no loss in accuracy. We first note that if we
know the values of f (t; λ) at N times {t j }

N
j=1 (where this is the same N denoting

the size of the reduced basis, which is N = 40 for our toy problem), then we can
evaluate Eq. 2.40 at each time t j to obtain a linear system of N equations with N

unknown basis coefficients:
~f (λ) = V~c(λ) . (2.42)

Here ~f (λ) = { f (t j ; λ)}, ~c(λ) = {ci (λ)} and Vji = b̂i (t j ) is an N × N matrix.
Provided that V is not singular, we can invert it to determine the basis coefficients:

~c(λ) = V−1 ~f (λ) . (2.43)

This will be our empirical interpolant – determining ~f (λ) allows us to evaluate
f (t; λ) for any t ∈ T . Explicitly, denoting our interpolant by IN , we have

IN [ ~f (λ)](t) = ~b(t)V−1 ~f (λ) , (2.44)

where ~b(t) = {b̂i (t)}. More generally, we may attempt to interpolate any function
g(t) by first evaluating ~g = {g(t j )}Nj=1 and computing

IN [~g](t) = ~b(t)V−1~g . (2.45)

We note that the interpolant may be evaluated for any time t ∈ T . If g(t) lies in the
span of our basis BN , which is the case for all solutions f (t; λ), then IN [~g](t) = g(t)
for all times t. Otherwise, the interpolant is only guaranteed to be exact at the N

chosen times {t j }. Since the interpolant is linear, propagating the projection errors
through the interpolant is straightforward [76]. If we fix our desired time sampling for
the output of the interpolant so that ~b(t) = {b̂i (tk )}Lk=1 is a matrix, we can multiply it
with V−1 in advance to obtain an L × N matrix R, where L is the number of output
time samples. The empirical interpolant is then just

IN [~g](t) = R~g , (2.46)
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Figure 2.6: Some of the functions used in the empirical interpolant (columns of the
R matrix).

and interpolates N input times onto L output times. All that is left to do is to choose
the N input times {t j }, called empirical nodes, to avoid singular systems of equations
(ensure V is invertible). We will make use of another greedy algorithm to choose the
empirical nodes. We seed the algorithm by choosing t1 = arg maxt |b1(t) |. Once we
have chosen n times, we may construct an empirical interpolant In using Bn. Since
b̂n+1(t) does not lie in the span of Bn, In will not successfully interpolate b̂n+1(t)
and we may compute the interpolation error:

En(t) = b̂n+1(t) − In[{b̂n+1(t j )}nj=1](t) . (2.47)

We then choose tn+1 = arg maxt |En(t) |. Had we chosen tn+1 such that En(tn+1) = 0,
we would have obtained a singular system by increasing the dimensions of the V

matrix by one without increasing its rank.

Some of the 40 columns of R for our toy problem, which have length equal to the
number of output time samples (chosen to be 10000 in our case), are shown in Fig. 2.6.
The interpolant is application-specific, and performs poorly when interpolating
functions which have large projection errors with the reduced basis. In Fig. 2.7, we
attempt to use our empirical interpolant to interpolate a constant function. Since
a constant function does not lie in the span of the reduced basis, the interpolant
is unable to accurately reproduce the original function. In Fig. 2.8 we show that
the empirical interpolant can very accurately interpolate solutions f (t; λ) for all
λ ∈ [0.1,0.25]. It is interesting to note that all of our solutions with λ ∈ [0.1,0.25]
have between 36 and 50 GW cycles, yet we can accurately interpolate them with
just 40 points – this is fewer than the Nyquist rate of 2 points per cycle!
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Figure 2.7: Using the empirical interpolant to interpolate a constant function leads
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Figure 2.8: The interpolation errors | f (t; λ) − I40[ ~f (λ)](t) | are shown for several
values of λ. The errors in the interpolant for parameters in the training range originate
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included in the training set such as π/20, but not for those outside the training range
such as 0.252. Extending further beyond the training range of [0.1,0.25] would lead
to larger errors, eventually becoming order unity.
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Figure 2.9: Solution data at a few empirical nodes. The ‘x’ marks are located at
values of λ selected by the greedy algorithm for the reduced basis. In this case, the
nodes oscillate rapidly and would require additional data points to obtain an accurate
surrogate.
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Figure 2.10: Solution amplitudes at selected greedy parameters.

Our final step will be to build a surrogate model. If we can accurately model
the behavior of the solutions at the empirical nodes f (ti; λ), then we can predict
solutions for any λ ∈ Λ without computing it the “expensive" way (in the case
of our toy model, that would be evaluating it according to Eq. 2.31). In the case
of our toy model, the nodes oscillate rapidly as we vary λ, as shown in Fig. 2.9.
If we try to fit or interpolate the complex node data across the parameter space
Λ using only the 40 data points we have at the greedy parameters, we will obtain
large errors. However, if we take our 40 known solutions and decompose them
into an amplitude function and a phase function, after aligning the initial phases
(corresponding to a coordinate rotation of the BBH systems about the direction of
orbital angular momentum), we obtain non-oscillatory functions shown in Fig. 2.10
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Figure 2.11: Solution phases at selected greedy parameters. Each phase function is
shifted such that it begins at 0, which corresponds to rotating the coordinate system
of the BBH system about the orbital angular momentum axis.
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Figure 2.12: Amplitude at empirical nodes – solid curves are the analytic solutions,
and ‘x’ ticks are the greedy parameters chosen for the reduced basis. The amplitude
varies slowly across parameter space and a polynomial fit to the 40 known data
points should perform well.
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Figure 2.13: Phase at empirical nodes – solid curves are the analytic solutions, and
‘x’ ticks are the greedy parameters chosen for the reduced basis. The phase also
varies slowly across parameter space and a polynomial fit to the 40 known data
points should perform well.

and Fig. 2.11 with correspondingly simple node variation across parameter space
shown in Fig. 2.12 and Fig. 2.13. We can fit these node functions to polynomials
in λ using our 40 known data points at the greedy parameters λi∗n . We then have
a surrogate, with an accuracy determined by the accuracy of the fits, empirical
interpolant, and reduced basis. To evaluate the surrogate at a new parameter λ, we
first evaluate the 40 amplitude node fits and 40 phase node fits. We combine these to
obtain 40 complex node values. Finally, we use the empirical interpolant to obtain
the solution for all times t ∈ T . The surrogate method is shown schematically in
Fig. 2.14. Note that we could have decomposed our data into amplitudes and phases
from the beginning, building two separate reduced bases and two separate empirical
interpolants. The dimensionality of the reduced bases would not need to be as high
since the amplitudes and phases vary more slowly in time. The downside of this
approach is that we no longer have a linear basis for the solutions, preventing us
from building reduced-order quadratures [154, 155].

Using the standard method for constructing a reduced basis described above involves
many solution evaluations to form a training set. If we wish to build a surrogate for
SpEC waveforms, building a training set is currently computationally impossible.
What we do instead is to use a different GW model such as PN or EOB to determine
the greedy parameters, and then we perform SpEC simulations for only the greedy
parameters. This allows us to construct a reduced basis and empirical interpolant
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Figure 2.14: A schematic diagram of a surrogate model, with N = 9. In the
(λ, t) plane, a solution for a particular value of λ is a vertical line. First, N greedy
parameters are chosen and the solutions are obtained (vertical blue lines). Next, N
empirical time nodes are chosen (horizontal red lines) and an empirical interpolant
is generated. For a fixed λ, the empirical interpolant interpolates data from the time
nodes onto all times. Finally, the known data at the empirical nodes (red dots) is
fitted across parameter space. To evaluate the surrogate at a new value of λ, we first
evaluate the fits of the empirical nodes (magenta dots). Then we use the empirical
interpolant to obtain the solution for all times (magenta vertical line).

using SpEC waveforms, at which point there is no further need for input from PN or
EOB – they are only used to determine the relevant points in parameter space.
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3 A sparse representation of
gravitational waves from
precessing compact binaries

3.1 Background and Contributions
This chapter was published in Physical Review Letters on July 7 2014 [248], in
issue 2 of volume 113 which can be found at https://link.aps.org/doi/10.
1103/PhysRevLett.113.021101. A preprint can be found at https://arxiv.
org/abs/1401.7038.

This chapter represents the first step in the project of building a surrogate model of
numerical relativity waveforms in the full 7d non-eccentric parameter space of binary
black hole mergers. Building a surrogate model [76] begins with the construction of
a reduced linear basis spanning the space of all solutions, up to some error tolerance.
These reduced bases had been found to require over 1000 waveforms for parameter
dimensions 2 ≤ d ≤ 4 [156]. While the basis size increases only mildly as the
dimension increases for these non-precessing cases, it was unclear if this would
remain the case when precession is present and the waveforms have additional
phenomenology. Even if the increase in basis size remains mild, performing several
thousand numerical relativity simulations would be quite expensive. The key insight
for this project was to avoid constructing a reduced basis for the rapidly oscillating
waveform modes, and to instead construct bases for more slowly-varying functions
which describe the waveforms such as unit quaternions representing the precessional
dynamics. This allows an accurate representation of precessing waveforms using as
few as 50 judiciously selected waveforms.

Most of the insights and new methods in this paper were developed collaboratively
between all authors. I contributed to the random resampling method and using the

https://link.aps.org/doi/10.1103/PhysRevLett.113.021101
https://link.aps.org/doi/10.1103/PhysRevLett.113.021101
https://arxiv.org/abs/1401.7038
https://arxiv.org/abs/1401.7038
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coprecessing frame. I implemented the basis construction and determined the errors,
and contributed to the writing and editing of the manuscript.
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Many relevant applications in gravitational wave physics share a significant

common problem: the seven-dimensional parameter space of gravitational

waveforms from precessing compact binary inspirals and coalescences is large

enough to prohibit covering the space of waveforms with sufficient density. We

find that by using the reduced basis method together with a parametrization of

waveforms based on their phase and precession, we can construct ultra-compact

yet high-accuracy representations of this large space. As a demonstration, we

show that less than 100 judiciously chosen precessing inspiral waveforms are

needed for 200 cycles, mass ratios from 1 to 10 and spin magnitudes ≤ 0.9.

In fact, using only the first 10 reduced basis waveforms yields a maximum

mismatch of 0.016 over the whole range of considered parameters. We test

whether the parameters selected from the inspiral regime result in an accurate

reduced basis when including merger and ringdown; we find that this is indeed

the case in the context of a non-precessing effective-one-body model. This

evidence suggests that as few as ∼ 100 numerical simulations of binary black

hole coalescences may accurately represent the seven-dimensional parameter

space of precession waveforms for the considered ranges.
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3.2 Introduction
Gravitational radiation produced by stellar-mass compact binaries of neutron stars
and/or black holes are expected to be the main signals detected by the advanced
generation of gravitational wave detectors [35, 36, 157, 158]. Detecting these signals
and estimating the parameters of their sources require the ability to sufficiently
sample the space of precessing compact binary waveforms. A compact binary
intrinsically depends on its mass ratio and the spin angular momentum components
of each body, which forms a 7-dimensional space for gravitational waveforms 1.

Much progress has been made in sampling the subspace of non-spinning compact
binary waveforms over the last decade. However, many relevant applications, from
data analysis for gravitational wave searches and parameter estimation studies to
numerical relativity simulations of binary black hole coalescences, face a common
challenge. In particular, going from the non-spinning subspace to the full 7d space
naively requires prohibitively more samples for the same coverage simply because
the volume of the space grows exponentially with dimension. As a result, the general
consensus in the gravitational wave community is that the computational complexity
associated with building template banks for matched-filter searches, with making
parameter estimation studies, and with modeling precessing compact binaries by
expensive numerical simulations is intractable (e.g., see [159]). This phenomenon
entails what is called the curse of dimensionality [160].

In this paper, we show how to beat the curse of dimensionality for precessing
compact binary inspirals. We find that only 50 judiciously chosen waveforms are
needed to represent the entire 7d space with an accuracy better than 10−7 for 200
cycles, mass ratios q ∈ [1,10], dimensionless spin magnitudes ‖ ~χ1,2‖ ≤ 0.9, and
through ` = 8 spherical harmonic modes. Using only the first 10 of these select
waveforms yields a maximum representation error . 1%. The results of this paper
suggest that for any given parameter range a remarkably small number of numerical
relativity simulations of precessing binary black holes, if judiciously chosen, are
sufficient to accurately represent any other precession waveform in that range. We
expect these results to be useful also for gravitational wave matched-filter searches
and parameter estimation studies for compact binary coalescences.

1Gravitational wave detectors have a finite frequency bandwidth that introduces a total mass
scale, thus adding an 8th parameter that we will ignore. We also focus on quasi-circular inspirals.
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3.3 Beating the curse of dimensionality
Previous studies have shown that non-precession subspaces of the full 7d waveforms
spaceW can be represented by linear spaces spanned by a relatively compact set
of inspiral [75, 156], ringdown [161], and inspiral-merger-ringdown (IMR) [76]
waveforms, which form a reduced basis (RB). The reduced basis waveforms are
found by training a greedy algorithm [162, 163] to learn from a given discretization
of W which are the most relevant waveforms for representing elements of W
with regard to a given error measure. See [75] for more details. The number of RB
waveforms for non-precessing inspirals hardly grows from two to four parameter
dimensions thereby explicitly beating the curse of dimensionality [156]. Of further
interest is that precession subspaces of W carry significant redundancy and are
amenable to dimensional reduction as found in [164]. Those results strongly suggest
that one may beat the curse of dimensionality in the full 7d waveform space.

In this paper, we outline how to construct a very compact but highly accurate RB of
precession waveforms. We consider the following specifications on the 7d waveform
space:

q ∈ [1,10] , ‖ ~χ1,2‖ ∈ [0,0.9] , 200 cycles , (3.1)

where q = m1/m2 ≥ 1. These were chosen based partially on practical limitations of
binary black hole simulations. However, the general message of this paper does not
depend on our choice.

3.4 Key ingredients
Our construction of a very compact (or sparse) reduced basis representation of
precession waveforms depends on several key steps 2: (1) a randomized resampling
strategy [166] for training the greedy algorithm on the 7d waveform space; (2)
a frame that rotates with the binary’s precession; and (3) a physically motivated
parametrization of precession waveforms.

The first key ingredient is a modification of the standard greedy algorithm [75]. In
its simplest inception, the greedy algorithm learns which waveforms can linearly
span the space of interest in a nearly optimal way [162, 163], starting from a
sufficiently dense set of waveforms called a training set or space. However, the curse

2The last two ingredients can be viewed as aspects of nonlinear dimensional reduction and
manifold learning, which aim to reveal the intrinsic dimensionality of large amounts of data (e.g., see
[165]).
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of dimensionality prevents us from sampling the waveform space with sufficient
coverage to build a reliable training set. To overcome this, we randomly resample
the 7d space from a uniform distribution using a fixed number K of waveforms at
each iteration of the greedy algorithm. These waveforms constitute the training set at
the current iteration. Because the 7d space is resampled at each iteration by different
waveforms, the maximum error from projecting waveforms onto the current basis at
the j th step is actually measuring this error over an effective training set with j × K

randomly distributed waveforms. As more iterations are made, more of the 7d space
is sampled and the more accurate the RB becomes. This is a simple implementation
of more powerful techniques introduced in Ref. [166].

For our studies, we randomly and uniformly resampled K ≤ 36,000 waveforms
at each iteration of the greedy algorithm. We began our studies with small K and
increased each sample size up to K = 36,000, for which the total number of RB
waveforms was robust and independent of K . The largest training set used in our
studies included more than 3 × 106 randomly selected waveforms.

The second key ingredient is to work in the binary’s precessing frame instead of
the usual inertial one. Specifically, we generate post-Newtonian (PN) precession
waveforms in the time-domain using the minimally rotating frame of Refs. [167, 168].
In this frame, a precession waveform appears qualitatively similar to waveforms from
non-spinning binaries in their inertial frame [66, 159, 168–171]. In the minimally
rotating frame, waveforms have a weaker dependence on parameters than they do
in the inertial frame. The rotation involved in going from the minimally rotating
frame to the inertial one and vice versa can be accounted for by any convenient
representation of the SO(3) group.

The third key ingredient, and perhaps the most crucial, is that we choose to parametrize
precession waveforms by their phase instead of by time or frequency. To motivate
this choice we momentarily consider the frequency-domain waveform (in the sta-
tionary phase approximation) for a non-spinning binary inspiral at leading order
(“0PN”) in the PN approximation,

h( f ;M) = AM5/6 f −7/6eiΦ0( f ;M), (3.2)

whereM = Mν3/5 is the chirp mass, M is the total mass, ν is the symmetric mass
ratio, A is a constant independent of the binary’s intrinsic parameters, and

Φ0( f ;M) ≡
3

128
(
πM f

)−5/3. (3.3)
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Reparametrizing (3.2) by its phase, now taken as the independent variable, gives

H (ϕ;M) ≡ h(F (ϕ);M) = A′M2ϕ7/10eiϕ (3.4)

with A′ = Aπ7/6(128/3)7/10 and F (ϕ) from solving Φ0( f =F) = ϕ. In this phase-
domain, all waveforms are proportional to each other, thus constituting a 1d space.
In fact, performing the greedy algorithm analytically (versus numerically) returns a
single basis waveform that exactly represents all such waveforms in the continuum.
This is the intrinsic dimensionality of the problem as has long been known because
0PN waveforms only depend on the chirp mass. Therefore, a single reduced basis
waveform spans the whole 0PN waveform space. To close the system, we also need
to represent the mapping between the phase and frequency domains,

F (ϕ;M) =
1
πM

(
128ϕ

3

)−3/5

, (3.5)

using a separate basis. As we see again, the frequencies for different chirp masses
are all proportional to each other. Therefore, any 0PN waveform, as a function of
frequency, is represented by one reduced basis waveform through the non-linear
transformation in (3.3).

For the sake of comparison, we implemented a standard greedy algorithm following
[75] using 0PN waveforms parametrized by frequency (not phase) for binaries with
a fixed total mass and with mass ratios and number of cycles as listed in (3.1). We
found that 152 RB waveforms are required to reach numerical round-off errors in
representing any waveform in this 1d space. Even to reach an error of about 1%
requires 138 RB waveforms. Therefore, using the phase parametrization results in a
single RB waveform for exact representation whereas a frequency parametrization
can yield a much larger RB for approximate representation. Part of the reason why
using waveforms in the phase domain (or ϕ-domain) is advantageous is because the
oscillations in two waveforms always cancel in the scalar product used to measure
the projection error onto the RB in the greedy algorithm,〈

HM1 ,HM2

〉
ϕ ≡

∫ ϕmax

ϕmin

dϕ H (ϕ;M1)H∗(ϕ;M2). (3.6)

For 0PN waveforms this results in a very smooth dependence on the chirp masses
since (3.6) is ∝ M2

1M
2
2 . Similarly, the waveform frequency as a function of phase

(3.5) has a very smooth dependence on them as well.

Higher PN orders include more physics, such as the nonlinearity of general relativity
and spin-orbit, spin1-spin2, and self-spin interactions, that depend on all 7 intrinsic
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parameters. These contributions add more structure to the waveforms but only weakly
depend on the parameters. This is especially true in the ϕ-domain and, as discussed
below, we also find this holds through the merger and ringdown phases where the
PN expansion parameter is no longer small. Consequently, the inverse function F (ϕ)
(or T (ϕ) if in the time domain) retains the weak dependence on intrinsic parameters.
As there is thus only ever a weak parameter dependence, one may expect to find only
a relatively small number N of RB waveforms, possibly as few as N = O(d).

3.5 Method outline
In this paper, we use 3.5PN precessing inspiral waveforms. We solve the PN equa-
tions (see Ref. [172] and references therein) using the approach of Refs. [167,
168] where the waveforms themselves are solved in a frame that minimizes the
binary’s precession, along with a rotation operator represented by unit quaternions
to track this frame relative to the fiducial inertial frame. All waveforms in this
minimally rotating frame are normalized to unity, and the initial orbital phases are
aligned. It is convenient to decompose the waveform into spin-weighted spherical
harmonic modes [173] characterized by (`,m). We use the phase associated with the
(`,m) = (2,2) mode to parametrize the waveform but other choices are possible. A
precession waveform h(t) in the inertial frame is thus decomposed in the following
way,

h(t) →
(
{H`m(ϕ)},T (ϕ),Q(ϕ)

)
, (3.7)

where H`m is a spin-weighted spherical harmonic mode in the minimally rotating
frame, T (ϕ) is the function relating the (2,2) phase to the time coordinate, and Q

is the unit quaternion describing the rotation back to the inertial frame. We take
into account all modes up to ` = 8 and cut all waveforms off at a dimensionless
frequency of 0.2 in the (2,2) modes. Finally, all waveforms contain 200 wave cycles.
We build a RB for each component in the decomposition (3.7). It is natural to use
the scalar product in (3.6) for the T and Q functions but to integrate the minimally
rotating waveform over the 2-sphere so that, upon using the orthogonality of the
spin-weighted spherical harmonics,〈

Hλ1 ,Hλ2

〉
ϕ ≡

∑
`,m

∫ ϕmax

ϕmin

dϕ H`m(ϕ; λ1)H∗`m(ϕ; λ2) , (3.8)

where λi is a tuple of parameter values. Executing a greedy algorithm on each
component in (3.7) would result in a selection of parameter values that are different
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for each element. In order to choose the same parameters for all three reduced bases,
we define a total projection error εϕ through,

εϕ(λ) ≡ 8 × 10−6‖δTλ ‖2ϕ + 0.5‖δHλ ‖
2
ϕ + 0.0031‖δQλ ‖

2
ϕ (3.9)

so as to receive approximately equal contributions from each component. Here,
λ = (q, ~χ1, ~χ2) is a tuple of 7d parameter values, δXλ = Xλ − PX [Xλ] with X

one of the elements in (3.7), and PX is the projection operator onto the basis for
X . The numerical coefficients are fixed to give approximately equal contributions
to the mismatch in the time domain and inertial frame in the case of small random
perturbations. Binaries with periods near 200M lead to a small coefficient for the
time function.

3.6 Results for precessing binary inspirals
We implemented a greedy algorithm using the three key ingredients discussed above
to find RB representations for the space of precession waveforms for the ranges given
in (3.1). The left panel of Fig. 3.1 shows the maximum of the total projection error
(3.9) found at each iteration of the greedy algorithm. We observe a power-law decay
with exponent ≈ −8. The total error is not monotonically decreasing because of the
constant resampling at each iteration. We observe that the maximum normalized
projection error over the training set is 10−2 using 10 basis waveforms and ≈ 4×10−8

for 50. Also shown are the contributions to the total error from the projections onto
the basis of each component in (3.7).

To measure the error in the time-domain inertial frame between a waveform h and
its RB approximation happ we use the standard mismatch

Mismatch = 1 − Re 〈h,happ〉t , (3.10)

where for two functions A,B the time-domain complex scalar product is 〈A,B〉t ≡∫ tmax

tmin
dt A(t)B∗(t). In order to measure the quality of the RB approximation itself,

we do not extremize the mismatch with respect to the relative phase and time shift
between h and happ.

It is not obvious that the basis generated using (3.9) from the minimally rotating
frame and ϕ-domain will be accurate for inertial frame waveforms expressed in the
time-domain. Nevertheless, we find that the ϕ-domain, precessing basis is highly
accurate for representing time-domain, inertial-frame waveforms. The right panel in
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Figure 3.1: Left: Maximum ϕ-domain (ϕD) projection error (red) from (3.9) for
7d post-Newtonian precession waveforms versus basis size. The contributions from
the time function (dotted), waveform in the minimally rotating frame (dashed), and
quaternion (solid) are also shown. Right: Maximum time-domain, inertial frame
mismatches from (3.10) for 107 randomly selected waveforms (+) using the first 10,
20, and 50 reduced basis waveforms. Also plotted are ϕ-domain projection errors for
non-precessing PN waveforms (dashed) and the time-domain (TD) projection errors
from using the latter parameter values selected by the greedy algorithm to represent
EOB waveforms (solid black), which additionally include merger and ringdown
phases.

Fig. 3.1 shows the mismatch (+) from using the first 10, 20, and 50 basis functions to
represent more than 107 randomly chosen waveforms for the same specifications in
(3.1). Figure 3.2 shows the distribution count of waveforms with a given error using
the first 10, 20, and 50 RB functions. The latter distribution has median 3.5 × 10−9,
mean value 4.2× 10−9, and a maximum representation error of 4.1× 10−8. Using the
first 10 RB functions, the maximum mismatch is 0.016 over more than 107 randomly
selected waveforms.

Table 3.1 shows that we beat the curse of dimensionality since, for a given error, the
number of RB waveforms needed to accurately represent the subspace ofW with
the indicated dimension d grows approximately linearly with d, not exponentially.
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Figure 3.2: Distribution of mismatches from (3.10) for more than 107 randomly
selected waveforms in the time-domain and inertial frame using the first 10 (dashed),
20 (dotted), and 50 (solid) reduced basis waveforms. Distributions are normalized
by their total samples.

Error Basis size
1d 2d 3d 7d

. 10−2 4 6 7 13

. 10−4 4 7 8 20
. 3 × 10−8 6 15 23 50

Table 3.1: The number of basis waveforms required for a desired maximum mismatch
scales approximately linearly with the dimension thus beating the curse of dimension-
ality. The first three dimensions considered are from mass ratio q and z-components
of the spin vectors ~χ1,2 with 1d→ (q), 2d→ (q, χ1z), and 3d→ (q, χ1z, χ2z).

Figure 3.3 shows the first 90 parameters selected by our greedy algorithm and
presented according to which component – time, minimally rotating waveform,
quaternion – is the dominant contribution to the total representation error in the
left panel of Fig. 3.1. The spins’ components are taken at the initial time where
the inertial and minimally rotating frames are equal. The mass ratios are heavily
weighted towards the endpoints of the considered interval in (3.1). Both spins’
magnitudes tend to be in [0.8,0.9]. The projections of the spins onto the initial
orbital angular momentum seem to be anti-correlated, at least when the waveform
contribution to (3.9) is dominant. We also see that the x-y components of the spins
tend to lie on a circle for the smaller mass m2 while there is less clear structure for
the larger mass m1.
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Figure 3.3: Distribution of mass ratios (top), x-y components of both spins (second
row), projection of spins onto initial orbital angular momentum unit vector (bottom
left), and both spin magnitudes (bottom right) as selected by our greedy algorithm.
The spins’ components are given in the inertial frame at the initial time.
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3.7 From inspiral to coalescence
Next, we test whether the parameters selected from the inspiral regime result in
an accurate reduced basis when including merger and ringdown. This issue has
immediate relevance for building a RB for expensive numerical relativity simulations
of precessing binary black hole mergers that, in turn, has important ramifications
for data analysis applications with gravitational wave detectors and for modeling
expensive merger simulations with reduced-order/surrogate models [76].

Currently, we can answer the above question for spinning but non-precessing binary
black hole coalescences, which involves only the three parameters q, | ~χ1 |, and | ~χ2 |,
for which an effective-one-body (EOB) semi-analytical model of IMR is available
[67, 69]. We first used our greedy algorithm to find the parameters for building a
RB for the non-precessing inspiral PN waveforms using the ϕ-domain error in (3.9).
We then generated a basis using the EOB non-precessing coalescence waveforms
evaluated at those selected parameters. Lastly, we randomly generated more than
10d=3 EOB waveforms and computed the time-domain inertial frame mismatch from
(3.10). The results of this study are shown as the solid black curve in the right panel
of Fig. 3.1. For the first 20 inspiral RB waveforms, the maximum mismatch of the
EOB waveforms is about 3 × 10−5 while for the first 50 it is about 2 × 10−7.

3.8 Outlook
Based on traditional methods to sample the waveform space, which scale exponen-
tially with dimension [60, 174–176], it has been perceived that an intractable number
of numerical relativity simulations would be needed to represent the space of binary
black holes for any given number of orbits. However, we have found evidence that a
remarkably small number of numerical relativity binary black hole simulations may
actually be needed, if judiciously chosen, to build a high accuracy reduced basis to
represent the whole space of interest.

Based on the non-precessing EOB results presented above, performing numerical
simulations of binary black hole mergers for the first 50-90 parameters selected by
our greedy algorithm may be sufficient to represent the precession waveforms of
any other coalescences in the parameter ranges of (3.1). This constitutes less than
one tenth of the number of randomly chosen simulations performed over the last
few years by the numerical relativity community [171, 177–179]. In addition, this
work suggests that an unexpectedly small number of low-mass inspiral waveforms
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may represent the frequency and parameter ranges of interest to gravitational wave
detectors, which may also enable very compact reduced-order quadratures [144,
180] of overlap integrals for fast parameter estimation studies. Finally, this work
opens the door for building surrogate models [76] of precessing inspiral waveforms
that can be useful for multiple query applications in place of solving a large number
of parametrized ordinary differential equations.
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4 Numerical relativity reaching into
post-Newtonian territory: a
compact-object binary simulation
spanning 350 gravitational-wave
cycles

4.1 Background and Contributions
This chapter was published in Physical Review Letters on July 16 2015 [16], in
issue 3 of volume 115, which can be found at https://link.aps.org/doi/10.
1103/PhysRevLett.115.031102. A preprint can be found at https://arxiv.
org/abs/1401.7038.

This chapter presents a numerical relativity (NR) simulation of a binary black hole
merger which begins 176 orbits before merger, performed with the Spectral Einstein
Code (SpEC). The duration of the simulation is nearly an order of magnitude longer
than other simulations that had been performed at the time of publication, and it
begins in the early inspiral where post-Newtonian approximations are accurate. The
unprecedented length of the simulation exposed an instability in the outer boundary
conditions in SpEC, which leads to a slow unphysical exponential acceleration of
the center of mass towards the outer boundary. The timescale of this unwanted drift
was found to depend on the outer boundary radius of the simulation, such that it
can be made negligibly small by using a sufficiently large computational domain.
After hybridizing with a shorter NR simulation of the same physical system to fix
the merger which was corrupted by this drift, various waveform models were tested
across the whole frequency band of gravitational wave detectors.

https://link.aps.org/doi/10.1103/PhysRevLett.115.031102
https://link.aps.org/doi/10.1103/PhysRevLett.115.031102
https://arxiv.org/abs/1401.7038
https://arxiv.org/abs/1401.7038
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I performed the long simulation and helped debug the center of mass drift. I deter-
mined the exponential behavior of the drift, and performed the additional simulations
used to measure the dependence of the drift rate on the outer boundary radius of the
simulation. I also reproduced the mismatches calculated by Andrea Taracchini to
double check their validity, and assisted in editing the manuscript.
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We present the first numerical-relativity simulation of a compact-object binary

whose gravitational waveform is long enough to cover the entire frequency

band of advanced gravitational-wave detectors, such as LIGO, Virgo, and

KAGRA, for mass ratio 7 and total mass as low as 45.5 M�. We find that

effective-one-body models, either uncalibrated or calibrated against substan-

tially shorter numerical-relativity waveforms at smaller mass ratios, reproduce

our new waveform remarkably well, with a negligible loss in detection rate

due to modeling error. In contrast, post-Newtonian inspiral waveforms and

existing calibrated phenomenological inspiral-merger-ringdown waveforms

display greater disagreement with our new simulation. The disagreement varies

substantially depending on the specific post-Newtonian approximant used.
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4.2 Introduction
The upgraded ground-based interferometric gravitational-wave (GW) detectors
LIGO [31, 32] and Virgo [183] will begin scientific observations in mid 2015,
and are expected to reach design sensitivity by 2019 [184]. Furthermore, a new
Japanese detector, KAGRA [35], is under construction. Direct detection of GWs
by the end of this decade is therefore very likely. The most promising GW sources
are compact-object binaries, wherein each partner is either a stellar-mass black hole
(BH) or a neutron star (NS) [185]. The detection of GWs from compact-object
binaries, as well as the determination of source properties from detected GW sig-
nals, relies on the accurate knowledge of the expected gravitational waveforms via
matched-filtering [186] and Bayesian methods [187].

The need for accurate waveforms has motivated intense research. Early waveform
models, based on the post-Newtonian (PN) formalism [188], were limited to the early
inspiral. The effective-one-body (EOB) formalism [189, 190] extended waveform
models to the late inspiral, merger and ringdown. Since 2005 research has greatly
benefited from numerical-relativity (NR) simulations [191–193]1. Current inspiral-
merger-ringdown (IMR) waveform models [70, 199–201] combine information from
analytical-relativity (AR) calculations (best suited for the inspiral, when comparable-
mass binaries have characteristic velocities smaller than the speed of light) and direct
NR simulations (the best means to explore the late inspiral and the merger).

However, there is a gap between the portion of the binary evolution that is described
by analytical methods, and the portion that is accessible by NR. For example,
waveforms computed at the currently-known PN order become unreliable possibly
hundreds of orbits before merger for unequal-mass binaries [202, 203], and even
earlier when one of the objects is spinning [150] 2 yet NR simulations have been
able to cover only tens of orbits [56, 178, 204] until now. This gap has emerged
as one of the most important sources of uncertainty in present IMR waveform
models. It is possible to construct IMR models by extending analytical waveforms
across the gap [70, 199–201], in some cases obtaining IMR models that are faithful
to longer numerical waveforms when extrapolated beyond their limited range of

1Besides its importance for GW astronomy, NR has also deepened the understanding of general
relativity in topics such as binary BH recoil [194, 195], gravitational self force [196], high-energy
physics, and cosmology [197, 198].

2Several PN waveforms (or approximants) with different PN-truncation error are available in
the literature. These PN approximants can differ from each other during the last hundreds of cycles
before merger.
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Initial Data
D0/M 103MΩ0 106ȧ0M EADM/M JADM/M2

12.2 21.1541 −47.99 0.996211 0.4510
27 6.7930 0 0.998112 0.6123

Inspiral Remnant properties
m1/m2 105ε T/M N M f /M S f /M2

f
6.99997(2) < 6 4,100 20 0.98771(1) 0.32830(3)
7.00000(1) 34 106,000 176 0.98762(14) 0.32827(2)

Table 4.1: Properties of the two NR simulations: The first block lists initial separa-
tion D0, orbital frequency Ω0, radial velocity ȧ0, ADM energy EADM and angular
momentum JADM in units of total mass M = m1 + m2. The middle block lists mass
ratio m1/m2, eccentricity ε , time duration T and number of orbits N until merger.
The final block lists remnant mass M f and spin S f .

calibration [205]. However, so far these procedures have been tested using NR
simulations with only 30 orbits, too few to close the gap.

The time duration T of an inspiral waveform starting at initial GW frequency f ini

scales as T ∝ ν−1 f −8/3
ini , where ν = m1m2/M2 is the symmetric mass ratio of the

binary with component masses m1,2 and total mass M = m1 + m2. Therefore, reduc-
ing f ini by a factor of 2 increases T sevenfold. Halving the symmetric mass ratio ν
(e.g., from m1/m2 =2 to m1/m2 =7) doubles T . Increasing the simulation length T is
difficult: it becomes harder to preserve phase coherency, the outer boundary of a sim-
ulation is in causal contact for a larger fraction of the simulation, and existing codes
would require many months or even years of wall-clock time. Therefore progress
toward longer simulations has been sluggish, with T increasing by only about a factor
of 2 to 3 during the last five years [177, 178, 204, 206, 207]. The duration T needed
to close the gap depends on the binary parameters and the detector bandwidth. Here
we start addressing the issue of the gap by focusing on the nonspinning case and high
mass ratio, q = m1/m2 = 7, for which the PN approximants can greatly differ [203,
208]. We present a new NR simulation that extends T by a factor of 20 and reduces
the initial frequency f ini by a factor of 3. With its comparatively high mass ratio,
the new simulation probes an astrophysically relevant parameter regime for BH-BH
and NS-BH binaries and for certain total masses covers the entire frequency band of
advanced LIGO (aLIGO) and Virgo. We describe challenges involved in carrying
out this new simulation, most notably an unexpected motion of the binary center of
mass (CoM), and we suggest improvements for future long simulations. We then
compare the new simulation with existing analytical waveform models to assess the
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Figure 4.1: Overview of the new very long simulation. The main panel shows the
(2,2) spherical-harmonic mode of the GW strain, with enlargements in the lower
insets. The top inset shows the Fourier spectra of the new waveform in blue and the
NR-NR hybrid waveform (used for comparisons with analytical models) in yellow,
overlaid with noise power spectral densities of aLIGO at the early (dashed black)
and design (solid black) sensitivity [184]. The waveforms in the inset are scaled to
total mass M = 45.5 M� and luminosity distance DL ≈ 1.06 Gpc. For comparison,
an older q = 6 waveform [56] of representative length is shown in the main panel
(offset vertically for clarity) and in the power-spectrum inset.

impact of waveform model errors on the detection rate of advanced detectors.

4.3 Numerical-relativity waveforms
We report on two new simulations of a nonspinning BH binary with mass ratio
q = m1/m2 = 7. The short simulation is of typical length: 20 orbits, T = 4,100 M.
The long simulation, the main focus of this paper, is about 25 times longer. Both
simulations are computed using the Spectral Einstein Code (SpEC) [209]. The short
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simulation uses established computational techniques [204]. The speed-up needed
for the long simulation is the result of a series of code changes including task-based
adaptive parallel load-balancing, live timing-based selection of the most efficient
algorithm (when multiple implementations of the same function are available),
a modified memory layout to allow more efficient calls to low-level numerical
packages and a more efficient implementation of the Generalized Harmonic evolution
equations. The highest resolution of the long simulation required 265 days on 48
cores. Figure 4.1 shows the new long waveform and Table 4.1 presents additional
details about both simulations. Geometrized units G = c = 1 are used in Table 4.1
and throughout this paper. The top inset of Fig. 4.1 shows the spectra of the (2,2)
spherical harmonic waveform modes. The long simulation covers the entire design-
aLIGO frequency range for nonspinning BH-BH binaries with M & 45 M�, and
covers the early-aLIGO frequency range for M & 11 M�, including nonspinning
NS-BH binaries3. In contrast, the q = 6 simulation plotted in green, which is
representative of past simulations, starts at 3 times higher frequency, and covers a
much smaller portion of the aLIGO bandwidth for a given M . Thus, we present here
the first gravitational waveform covering the entire design-aLIGO frequency band
for a nonspinning, compact-object binary at mass ratio q = 7 with a total mass as
low as M = 45.5 M�.

The short simulation is run at three different numerical resolutions, and the long
one at four resolutions. The long simulation employs dynamical spectral adaptive
mesh refinement [211], so measured quantities (like BH masses or waveforms) do
not always converge in a regular, predictable manner with increasing resolution,
as is the case when each resolution is defined by a fixed number of grid points.
Furthermore, failure to resolve initial transients caused by imperfect initial data also
complicates convergence (see discussion in Sec. IIIB of Ref. [212]). Nevertheless,
we find that differences in measured quantities like waveforms, masses, and spins
decrease rapidly with resolution, and Table 4.1 displays a conservative error estimate
obtained by taking the difference between the two highest resolutions. After the
initial transients have decayed, we measure the mass ratio to be equal to 7 to within
five significant digits, and the dimensionless spins to be . 10−6. The remnant
mass and spin agree to within four significant digits between the short and long
simulations.

However, the long simulation encounters an unexpected problem. After a few
3For mass ratio 7, in absence of spin, we expect no observable differences in the merger signal

between a BH-BH and a NS-BH binary [210].
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Figure 4.2: Top left: displacement of the CoM from the origin, for three long
simulations with different outer boundary radii R. In each case, |~cCoM | increases
exponentially. Top right: growth rate σ of |~cCoM | as a function of R with a power-
law fit. Lower panels: GW (2,2) mode of the short and long simulations. The long
simulation still agrees very well with the short one at early times, but fails to produce
an accurate merger waveform.

10,000 M of evolution, the coordinate CoM begins to drift away from the origin.
Define the CoM as ~cCoM = ~c1m1/M + ~c2m2/M , where ~c1,2 are the coordinate centers
of the apparent horizons of the two BHs. Fig. 4.2 shows that |~cCoM | increases expo-

nentially with time. This drift is primarily a coordinate effect that only marginally
affects most measurable quantities. For example, the linear momentum radiated to
infinity, as computed from the waveform obtained by Cauchy-Characteristic extrac-
tion [213], is consistent with PN theory, and is too small to account for the motion
of the CoM. To explore the drift in more detail, we repeat the long simulation with
different values of R, the coordinate radius of the artificial outer boundary where we
impose an outgoing-wave boundary condition. The top left panel of Fig. 4.2 shows
the CoM drift for several values of R. Empirically, we find that the exponential
growth rate σ behaves like σ ∝ R−1.45, c.f. Fig. 4.2. For our standard choice of
R = 864 M, 1/σ = 26,000 M; this large timescale explains why the drift was not
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noticed in earlier, shorter simulations.

We conjecture that the drift is caused by a coupling with the outer boundary. Such a
coupling might arise through enhanced reflections of the outgoing GW at the outer
boundary. Our outgoing-wave boundary conditions [214] have the smallest reflection
coefficient for spherical harmonic modes with small `, and a reflection coefficient of
order unity when kR/` & 1 [214], where k is the radial wavevector. With increasing
|~cCoM | the emitted GW will have increasing high-` content when decomposed on
the outer boundary.

From the bottom panel in Fig. 4.2, we see that the effects of the drift on the long
waveform is confined to the last ∼ 10 orbits before merger. In the Fourier domain
(see Fig. 4.1) one can clearly see the unusual behavior of the long waveform at high
frequencies. Since these orbits are covered by the short waveform, we hybridize
the short waveform with the long one, thus replacing the final portion of the former.
We adopt the hybridization method of Ref. [215]. We construct 9 NR-NR hybrids
by combining three versions of the long simulation and three versions of the short
simulation. Each version may differ by the numerical resolution (which we label by
“LevN ", where the adaptive mesh refinement aims for truncation errors ∝ e−N ), or
by the degree of the polynomial used to extrapolate the waveform to infinity [213,
216] (which we label by “NM", whereM is the polynomial degree.) For example,
the Lev3 simulation uses ∼ 903 collocation points near merger. In particular, we
use (Lev3, N3), (Lev3, N2), and (Lev2, N3) for the long simulation, while we use
(Lev5, N3), (Lev5, N2), and (Lev4, N3) for the short simulation. The fiducial NR-NR
hybrid is built from the long (Lev3, N3) and the short (Lev5, N3) simulations; this
pair of waveforms is blended over the interval t − tpeak ∈ [−3252,−2252]M . In the
top panel of Fig. 4.1, we show in yellow the spectrum of the fiducial NR-NR hybrid.
This spectrum behaves as expected close to merger, and is devoid of oscillations,
just like the spectrum of the q = 6 simulation. Since we cannot estimate the impact
of the coordinate drift on the phase error of the long waveform, we cannot make
statements about the phase disagreement between the long waveform and analytical
waveform models. Nevertheless, we can compare the analytical models to the hybrid
NR-NR waveform, and investigate how the results change when we vary the blending
window where the hybridization is done.
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Figure 4.3: Unfaithfulness of the hybrid NR-NR waveform against analytical models.
Left: inspiral-only comparisons. Right: IMR comparisons. Also shown in the left
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The blue area indicates the NR error.
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4.4 Comparison to analytical-relativity waveforms
Figure 4.3 summarizes our comparisons between various analytical waveforms hAR

22

with the hybrid NR-NR waveform hNR
22 . Shown is the unfaithfulness F̄ , defined

as F̄ ≡ 1 −maxt0,φ0 〈h
AR
22 ,h

NR
22 〉/| |h

AR
22 | |/| |h

NR
22 | |. Here t0 and φ0 are the initial time

and phase, | |h| | ≡
√
〈h,h〉, and 〈h1,h2〉 ≡ 4 Re

∫ fmax

fmin
h̃1( f ) h̃∗2( f )/Sn( f ) d f , where

Sn( f ) is the zero-detuned, high-power noise power spectral density of aLIGO [217].
We consider the following analytical waveform models from the LIGO Algorithm
Library (LAL): the inspiral-only PN Taylor approximants [218] in the time domain
(Taylor-T1, T2, T4) and in the frequency domain (Taylor-F2), an inspiral EOB model
(obtained from Ref. [70] by dropping any NR information, thus uncalibrated), the
IMR EOBNR models that were obtained by calibrating the EOB model to NR simu-
lations [68, 70, 219] (denoted in LAL as EOBNRv2, SEOBNRv1, and SEOBNRv2),
and the IMR phenomenological models that were built combining PN and NR re-
sults [199, 200] (denoted in LAL as PhenomB and PhenomC). All the time-domain
IMR waveforms are tapered using a Planck windowing function [220], both at the
beginning and at the end. We generate the model waveforms from an initial GW
frequency of Mω22 = 0.01317, and use fmin = 12 Hz (45.5 M�/M). For inspiral-
only models, we set fmax = 52.5 Hz (45.5 M�/M), the minimum available final GW
frequency among the time-domain Taylor models, a value close to the innermost-
circular-orbit value in Schwarzschild spacetime (≈ 48.3 Hz (45.5 M�/M)), whereas
for the IMR comparisons fmax = ∞. Quite interestingly, the inspiral-only compar-
isons give similar results when employing directly the long simulation instead of the
NR-NR hybrid.

The blue shaded area in Fig. 4.3 represents the uncertainty in the NR waveforms,
estimated by computing F̄ between the fiducial hybrid NR-NR waveform and the
other 8 NR-NR hybrids. Because the inspiral-only and IMR curves are calculated
using different portions of the hybrid NR-NR waveform, the same model may have
different values in the two panels for the same total mass. We vary the prescriptions
used for the hybridization (namely, position and width of the blending window),
and we find changes O(10−4) in the unfaithfulness curves for low total masses.
Thus, we consider our results robust. If general relativity correctly describes the
GW signals found in nature, then the unfaithfulness F̄ plotted in Fig. 4.3 yields a
bound on the loss in detection rate due to modeling error. For sources uniformly
distributed in space, the relative loss in detection rate is ∼ 3(dMM + dE) (see Sec. VB
in Ref. [218]), where dMM is the minimal match of the template bank and dE=1 −
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max~λ 〈h
AR
22 ,h

NR
22 〉/| |h

AR
22 | |/| |h

NR
22 | | is the ineffectualness. Here ~λ describes all the

binary parameters, not just φ0 and t0, and therefore dE ≤ F̄ . Typically, dMM = 3%
in LIGO searches. Thus, to achieve . 10% loss in detection rate, it suffices that
F̄ . 1% [218].

Quite remarkably, we find that the unfaithfulness of the uncalibrated inspiral EOB
waveform is < 0.1%, with a negligible loss in detection rate due to modeling
error. The agreement is of course better for the inspiral EOBNR waveforms (i.e.,
EOBNRv2, SEOBNRv1, SEOBNRv2) (F̄ < 0.02%, left panel), and F̄ < 0.2% for
the IMR EOBNR waveforms (right panel). The closeness of all inspiral EOBNR
waveforms strongly suggests that the different calibrations and variations in the
dynamics and energy fluxes of those EOBNR models [68, 70, 219] do not impact the
low-frequency part of the waveforms, but affect (in a minor way) only the last stages
of the inspiral and the merger. The unfaithfulness of the time- and frequency-domain
inspiral-only PN Taylor approximants varies between 0.1% and 10% depending on
the binary’s total mass and the PN approximant used 4. In particular, Taylor-T4,
which has the best agreement with NR in the equal-mass case [207], has the largest
disagreement with the new long q = 7 NR waveform. (The approximants Taylor-T2
and Taylor-F2 are not displayed, but lie between Taylor-T1 and Taylor-T4). The
PhenomB and C models were fitted to hybrids built with Taylor PN approximants and
less accurate, short NR waveforms, which may in part explain the large disagreement
we find.

The new long NR waveform covers the entire design-aLIGO frequency band only for
total mass M ≥ 45.5M�; for smaller M , the unfaithfulness calculations in Fig. 4.3
neglect the lowest frequency portion of the waveform visible to aLIGO, down to ∼
10 Hz. To understand the significance of the missing GW cycles in the low-frequency
portion of the bandwidth, we compute the signal-to-noise ratio (SNR) accumulated
within the frequency range fmin ≤ f ≤ fmax (SNRinsp and SNRIM R for the left and
right panel of Fig. 4.3, respectively), and compare it with the SNR accumulated
over the entire inspiral (SNRfull−insp) and the entire IMR (SNRfull−I M R), i.e., down
to 10 Hz. To cover the entire design-aLIGO bandwidth we use the calibrated EOB
model of Ref. [70]. Suitable (squared) ratios of these quantities, which represent the
fraction of total SNR that is accessible to our comparisons, are plotted in Fig. 4.3.
These ratios are < 1 whenever GW cycles are missing in the range 10 Hz ≤ f ≤ fmin

or, in the case of SNR2
insp/SNR2

full−I M R, also when the merger-ringdown signal is in
4The large unfaithfulness of some of the PN Taylor approximants is due to differences in the

evolution of the frequency and its first time derivative during the late inspiral phase.
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band. We find that, even for total masses < 45.5 M�, the unfaithfulness can still be a
meaningful assessment of the quality of the analytical models, since a large fraction
of SNR is accumulated. Because the merger-ringdown portion of the waveforms
becomes increasingly important at higher masses, the inspiral-only comparisons at
high mass cover only a small fraction of the entire SNR, as illustrated by the steep
decline of SNR2

insp/SNR2
full−I M R in the left panel of Fig. 4.3.

4.5 Conclusions.
To detect and extract unique, astrophysical information from coalescing compact-
object binaries, GW instruments employ model waveforms built by combining
analytical and numerical-relativity predictions [70, 199–201]. Currently, the main
uncertainty of those waveform models is caused by the gap between the regimes of
applicability of those methods. This uncertainty can be addressed and, eventually,
solved by running much longer NR simulations. In this work we start to tackle this
issue by producing a BH-BH simulation 20 times longer than previous simulations.
Because of an unexpected drift of the CoM during the last 40 GW cycles, we con-
struct the full NR inspiral, merger and ringdown waveform by hybridizing the long
NR waveform with a new, short NR simulation. The hybrid NR-NR waveform covers
the entire band of advanced GW detectors for total mass ≥ 45.5 M�. Comparing
to analytical waveform models, we find strong evidence that — at least for non-
spinning binaries — the EOB formalism accurately describes the inspiral dynamics
in the so-far unexplored regime of 20 to 176 orbits before merger, and combined
with previous work [205] provides accurate waveforms beyond the limited range
of calibration. Quite remarkably, the excellent agreement of EOBNR waveforms
holds also for uncalibrated inspiral EOB waveforms. PN-approximants have larger
errors and more importantly the errors vary substantially depending on the specific
PN approximant used.

4.6 Acknowledgments.
We thank Alejandro Bohé for useful discussions. A.B. acknowledges partial support
from NSF Grant No. PHY-1208881 and NASA Grant NNX12AN10G. T.C. and
H.P. gratefully acknowledge support from NSERC of Canada, the Canada Chairs
Program, and the Canadian Institute for Advanced Research. L.K. gratefully ac-
knowledges support from the Sherman Fairchild Foundation, and from NSF grants



59

PHY-1306125 and AST-1333129 at Cornell. J.B. gratefully acknowledges support
from NSERC of Canada. M.S., B.Sz., and J.B. acknowledge support from the Sher-
man Fairchild Foundation and from NSF grants PHY-1440083 and AST-1333520 at
Caltech. Simulations used in this work were computed with the SpEC code [209].
Computations were performed on the Zwicky cluster at Caltech, which is supported
by the Sherman Fairchild Foundation and by NSF award PHY-0960291; on the
NSF XSEDE network under grant TG-PHY990007N; on the Orca cluster supported
by Cal State Fullerton; and on the GPC supercomputer at the SciNet HPC Con-
sortium [221]. SciNet is funded by the Canada Foundation for Innovation under
the auspices of Compute Canada, the Government of Ontario, Ontario Research
Fund–Research Excellence, and the University of Toronto.



60

5 Fast and accurate prediction of
numerical relativity waveforms
from binary black hole mergers
using surrogate models

5.1 Background and Contributions
This chapter was published in Physical Review Letters on September 18 2014 [269],
in issue 12 of volume 115 which can be found at https://link.aps.org/doi/10.
1103/PhysRevLett.115.121102. A preprint can be found at https://arxiv.
org/abs/1502.07758.

This chapter presents the first surrogate model of numerical relativity (NR) wave-
forms. The surrogate model covers the 1d parameter subspace of non-spinning black
holes, with mass ratios up to 10. While black hole spins have a significant impact
on the gravitational waveforms, making this model unsuitable for a full parameter
estimation of gravitational wave detections, it addresses some challenges of applying
surrogate modeling to NR waveforms. The surrogate model presented is also as
accurate as the underlying NR waveforms, demonstrating the ability of NR surrogate
models to be both very fast and very accurate.

I performed most of the 22 NR simulations used to build the model using the Spectral
Einstein Code (SpEC). I implemented and built the model that ended up being used
in the paper, although Scott Field and Chad Galley also built models with similar
accuracy and we collaborated to determine the best methods. I performed the error
calculations and generated the corresponding figures, and assisted in writing and
editing the manuscript.

https://link.aps.org/doi/10.1103/PhysRevLett.115.121102
https://link.aps.org/doi/10.1103/PhysRevLett.115.121102
https://arxiv.org/abs/1502.07758
https://arxiv.org/abs/1502.07758
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Simulating a binary black hole coalescence by solving Einstein’s equations is

computationally expensive, requiring days to months of supercomputing time.

In this paper, we construct an accurate and fast-to-evaluate surrogate model

for numerical relativity (NR) waveforms from non-spinning binary black hole

coalescences with mass ratios from 1 to 10 and durations corresponding to

about 15 orbits before merger. Our surrogate, which is built using reduced

order modeling techniques, is distinct from traditional modeling efforts. We

find that the full multi-mode surrogate model agrees with waveforms generated

by NR to within the numerical error of the NR code. In particular, we show

that our modeling strategy produces surrogates which can correctly predict NR

waveforms that were not used for the surrogate’s training. For all practical pur-

poses, then, the surrogate waveform model is equivalent to the high-accuracy,

large-scale simulation waveform but can be evaluated in a millisecond to a

second depending on the number of output modes and the sampling rate. Our

model includes all spherical-harmonic −2Ỳ m waveform modes that can be re-

solved by the NR code up to ` = 8, including modes that are typically difficult

to model with other approaches. We assess the model’s uncertainty, which

could be useful in parameter estimation studies seeking to incorporate model

error. We anticipate NR surrogate models to be useful for rapid NR waveform

generation in multiple-query applications like parameter estimation, template

bank construction, and testing the fidelity of other waveform models.
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Since the breakthroughs of 2005 [191–193], tremendous progress in numerical
relativity (NR) has led to hundreds of simulations of binary black hole (BBH)
coalescences [58, 171, 177, 178, 204, 206, 222]. This progress has been driven partly
by data analysis needs of advanced ground-based gravitational wave detectors like
LIGO [223] and Virgo [224]. Recent upgrades to these detectors are expected to
yield the first direct detections of gravitational waves (GWs) from compact binary
coalescences [225].

Despite the remarkable progress of the NR community, a single high-quality sim-
ulation typically requires days to months of supercomputing time. This high com-
putational cost makes it difficult to directly use NR waveforms for data analysis,
except for injection studies [206, 222], since detecting GWs and inferring their
source parameters may require thousands to millions of accurate gravitational wave-
forms. Nevertheless, a first template bank for nonspinning binaries in Advanced
LIGO has been recently constructed from NR waveforms [226]. Furthermore, NR
waveforms have been used successfully in calibrating inspiral-merger-ringdown
(IMR) effective-one-body (EOB) [68, 189, 201, 219, 227–229] and phenomenolog-
ical [66, 200, 230, 231] models. These models have free parameters that can be
set by matching to NR waveforms and are suitable for certain GW data analysis
studies [232]. However, these models can have systematic errors since they assume
a priori physical waveform structure and are calibrated and tested against a small set
of NR simulations.

In this Letter, we present an ab initio methodology based on surrogate [76, 233]
and reduced order modeling techniques [234–238] that is capable of accurately pre-
dicting the gravitational waveform outputs from NR without any phenomenological
assumptions or approximations to general relativity. From a small set of specially
selected non-spinning BBH simulations performed with the Spectral Einstein Code
(SpEC) [209, 211, 212], we build a surrogate model for SpEC waveforms that can be
used in place of performing SpEC simulations. The techniques are general, however,
and directly apply to other NR codes or even analytical waveform models. The sur-
rogate model constructed here generates non-spinning BBH waveforms with mass
ratios q in [1,10], contains 25–31 gravitational wave cycles before peak amplitude,
and includes many spherical-harmonic modes (see Table 5.2 and its caption). These
choices are made based on available NR waveforms and are not limitations of the
method. Our surrogate model has errors close to the estimated numerical error of
the input waveforms. An example comparison of the surrogate output to an NR
waveform can be seen in Fig. 5.1. This simulation took 9.3 days using 48 cores but



63

0.2

0.0

0.2
rh

2,
2

+

SpEC Surrogate

0.2

0.0

0.2

2500 1500 500
t/M

10-4
10-3
10-2
10-1
100

r|h 2,2
Lev4−h

2,2
Sur.|

r|h2,2 |

r|h 2,2
Lev4−h

2,2
Lev3|

δϕ2,2

50 0 50 100
10-4
10-3
10-2
10-1
100

Figure 5.1: Top: The + polarization (2,2) mode prediction for q = 2, the surrogate
model’s worst prediction over q from a “leave-one-out” surrogate that was not
trained with this waveform (see below). Our full surrogate, trained on the entire data
set, is more accurate. Bottom: Phase δϕ2,2 and waveform differences between the
surrogate and highest resolution (Lev4) SpEC waveforms. Also shown is the SpEC
numerical truncation error found by comparing the two highest resolution (Lev4 and
Lev3) waveforms.

only ∼ 0.01 sec for the surrogate evaluation of the (2,2) mode.

Previous work [76, 239] built surrogates for EOB waveforms; building and assessing
surrogate models of NR waveforms have unique challenges associated with input
waveforms that are expensive to compute. We summarize next the construction of
our model, focusing on steps that were not addressed in [76] but are required for NR
surrogates.

5.2 Parametric sampling
Typically, a surrogate model is trained on a dense set of waveforms known as
the training set. In the case of NR, however, we cannot afford to generate a large
number of waveforms. Instead, we generate a dense set of non-spinning wave-
forms using an EOB model [229], as implemented in [182], which contains the
(`,m) = {(2,2), (2,1), (3,3), (4,4), (5,5)} spin-weight −2 spherical-harmonic modes
and captures the robust features of NR waveforms. The EOB training set waveforms
are computed for times in [−2750,100]M , which is the interval over which we build
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our surrogates and where M is the total mass.

Next, on this training set we apply a greedy algorithm to expose the most relevant
mass ratio values [75, 162]. SpEC simulations of non-spinning BBH mergers are
then performed for these mass ratios. The resulting NR waveforms are used to build
our surrogates without any further input from the EOB model.

We seeded the greedy algorithm with 5 publicly available SpEC simulations of
non-spinning BBH mergers [58, 68] (see Table 5.1), and the next 17 (ordered)
mass ratio values are the algorithm’s output based on the EOB model. The final
≈ 10 mass ratios are included to improve the surrogate if necessary, since we can
assess the surrogate model’s accuracy only after it is built (cf. Fig. 5.6). Our method
for building surrogates is hierarchical [75, 76]; additional NR waveforms can be
included to improve the model’s accuracy.

5.3 Generating the NR waveforms
Table 5.1 summarizes the 22 SpEC simulations used in this paper. See, e.g., Ref. [212]
for the numerical techniques used in SpEC. The numerical resolution is denoted by
“Levi”, where i is an integer that controls the truncation error allowed by adaptive
mesh refinement in SpEC; larger numbers correspond to smaller errors and more
computationally-expensive simulations. Two to five levels of resolution are simulated
for each mass ratio. To achieve quasi-circular orbits, initial data is subject to an
iterative eccentricity reduction procedure resulting in eccentricities . 7 × 10−4 [132,
133, 240].

SpEC numerically solves an initial boundary value problem defined on a finite
computational domain. An observation in the radiation zone, however, is well ap-
proximated as taking place at future null infinity I +. To obtain waveforms at I +,
we use the Cauchy characteristic extraction (CCE) method [213, 241–244]. Using
the PittNull code [241–243], we compute the Newman-Penrose scalar Ψ4 at I +

and finally obtain the gravitational wave strain h through two temporal integrations.
We minimize the low-frequency, noise-induced “drifts" [244] by using frequency
cut-offs1

1We integrate Ψ4 twice in the (dimensionless) frequency domain by dividing −Ψ`,m4 ( f ) by
[2πmax( f ,2 f0/3)]2, where f0 is the initial GW mode frequency. For the (2,0) mode, which has
high power from low frequencies, we hybridize Ψ2,0

4 with a corresponding Taylor T4 post-Newtonian
inspiral waveform mode from 600M to 100M before merger where Ψ2,0

4 begins to rise above the
SpEC truncation error. Our surrogate is built from and compared to h2,0 stemming from hybridized
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Figure 5.2: The relative error, |h22
i − h22

i+1 |/|h
22
i+1 |, of successive resolutions SpEC

Levi for the (2,2) mode of simulation 19 in Table 5.1. Top:Waveform output as
directly given by SpEC (“Unaligned"). Middle: Peak-aligned waveforms where a
Lev-dependent time shift is applied to set all peaks to t = 0. Bottom: “Surrogate
aligned,” which involves a rotation of the binary around the z-axis to align the
waveform phases at the surrogate’s initial time ti = −2750M together with the peak
alignment scheme.
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# ID q e−5 T/M Orbs # ID q e−5 T/M Orbs
1 180 1.00 5.1 9867 28.2 12 191 2.51 65 6645 22.5
2 181 6.00 5.8 7056 26.5 13 192 6.58 4.0 5149 21.1
3 182 4.00 12 3840 15.6 14 193 3.50 3.0 5242 19.6
4 183 3.00 4.8 4008 15.6 15 194 1.52 74 5774 19.6
5 184 2.00 15 4201 15.6 16 195 7.76 22 5226 21.9
6 185 9.99 31 5817 24.9 17 196 9.66 23 5330 23.1
7 186 8.27 16 5687 23.7 18 197 5.52 25 5061 20.3
8 187 5.04 3.0 4807 19.2 19 198 1.20 17 6315 20.7
9 188 7.19 15 5439 22.3 20 199 8.73 8.5 5302 22.6

10 189 9.17 13 6019 25.2 21 200 3.27 36 5507 20.2
11 190 4.50 2.5 5199 20.1 22 201 2.32 15 5719 20.0

Table 5.1: Properties of the highest resolution SpEC simulations used for building
binary black hole waveform surrogates. The orbital eccentricity e−5/105 is measured
after initial transients have has left the computational grid. The duration T/M and
number of orbits (Orbs) are also given. The SpEC simulations are available in the
public waveform catalog [58] under the name “SXS:BBH:ID.”

Figure 5.2 shows the convergence typically observed in our simulations. Although
textbook convergence is difficult to achieve in production SpEC simulations (see the
discussion in Sec. IIIB of [212]), waveform differences typically decrease quickly
with increasing resolution. Let

δh`,m(q) ≡
‖h`,m1 (·; q) − h`,m2 (·; q)‖2∑

`,m ‖h
`,m
2 (·; q)‖2

(5.1)

be the disagreement between two waveform modes h`,m1 and h`,m2 where ‖h`,m(·; q)‖2 =∫
dt |h`,m(t; q) |2. We estimate the numerical truncation error of each mode when h1

and h2 are waveforms computed at the two highest resolutions. The full waveform
error for a given mass ratio is δh(q) =

∑
`,m δh`,m(q). We also report errors after

an overall simulation-dependent time shift and rotation (called “surrogate aligned",
described in the next section), which are physically unimportant coordinate changes.
The resulting estimated numerical truncation errors of the dominant (2,2) modes,
using our surrogate alignment scheme, are shown in Fig. 5.3 (black circles).

Additional error sources are non-zero eccentricity in the (intended to be circular)
NR initial data, and an imperfect procedure for integrating Ψ`,m4 to obtain h`,m ≡

A`,m exp(−iϕ`,m). These both cause small oscillations in the waveform amplitudes
A`,m(t) and phases ϕ`,m(t) [244, 245] that we model following [245]. We also

data Ψ2,0
4 .
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Figure 5.3: Numerical truncation errors (black) dominate all other sources of error
for the (2,2) mode, except for simulation 1 (q ≈ 1), where the truncation errors
are already very small. For some weaker modes, systematic amplitude oscillations
primarily due to eccentricity may become more relevant.

compute the error in the strain integration scheme by comparing Ψ`,m4 to two time
derivatives of h`,m, as well as estimates for numerical errors in the CCE method
[213]. For the (2,2) mode, these additional errors are negligibly small compared to
SpEC truncation errors (cf. Fig. 5.3).

5.4 Preparing NR waveforms for surrogate modeling
We apply a simulation-dependent time shift and physical rotation about the z-axis
so that all the modes’ phases are aligned. This reveals the underlying parametric
smoothness in q that will be useful for building a surrogate. Our time shifts set each
waveform’s total amplitude

A(t; q)2 ≡

∫
S2
dΩ |h(t, θ, φ; q) |2 =

∑
`,m

|h`,m(t; q) |2 , (5.2)

to be maximum at t = 0. After enforcing this alignment scheme we interpolate the
waveform mode amplitudes and phases onto an array of uniformly spaced times
in [−2750,100]M , with ∆t = 0.1M . Finally, we align the initial gravitational wave
mode phases by performing a simulation-dependent, constant (in time) physical
rotation about the z-axis so that ϕ2,2(ti) = ϕ2,−2(ti), which fixes a physical rotation
up to multiples of π. We resolve the ambiguity by requiring ϕ2,1(ti) ∈ (−π,0].
Waveform truncation errors, after performing this surrogate alignment scheme,
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are shown in Fig. 5.2. In what follows, we call “truncation error after surrogate
alignment" simply “truncation error."

5.5 Building the surrogate
Each m ≥ 0 mode, h`,m(t; q), is modeled separately while (due to reflection sym-
metry about the orbital plane) m < 0 modes are evaluated using h`,−m(t; q) =

(−1)`h`,m(t; q)∗. We do not model modes which do not improve the predictive
power of the surrogate. Table 5.2 lists our modeled modes and their errors.

Our complete surrogate waveform model is defined by

hS(t, θ, φ; q) =
∑
`,m

h`,mS (t; q)−2Ỳ m (θ,φ) , (5.3)

where

h`,mS (t; q) = A`,mS (t; q)e−iϕ`,mS (t;q) ,

X `,m
S (t; q) =

NX∑
i=1

B`,m
X,i (t)X `,m

i (q) , X = {A, ϕ}.
(5.4)

Unlike Ref. [76], we construct a reduced basis representation for the waveform
amplitudes and phases separately, instead of the waveforms themselves [239]. Here,
the {B`m

X,i }
NX

i=1 are computed off-line from the SpEC waveforms [76]. At a set of NX

specially selected times {T `m
X,i }

NX

i=1, which are the empirical interpolant nodes [76,
246], the functions X `m

i (q) ≈ X `m(T `m
X,i ; q) approximate the parametric variation

of the amplitudes and phases (via fitting, see below). A thorough discussion of
surrogate model building steps is presented in [76]. When evaluating the surrogate
at a particular mass ratio, the fits are evaluated first to determine the amplitudes and
phases at their respective interpolating times {T `m

X,i }
NX

i=1. The remaining operations
yield the surrogate model prediction, hS(t, θ, φ; q).

To find each X `m
i (q) we perform least-squares fits to the 22 data points

{X `m(T `m
X,i ; qj )}22

j=1. (5.5)

All fits except odd m mode amplitudes use 5th degree polynomials in the symmetric
mass ratio, ν = q/(1 + q)2. For odd m modes, the amplitude approaches 0 and its
derivative with respect to ν diverges as q → 1 (or ν → 1/4). Consequently, we use
A`m

i (ν) =
∑5

n=1/2,1 a`m
n (1 − 4ν)n to account for this behavior. The waveform phases

of odd m modes at q = 1, which are undefined, are excluded when fitting for each
ϕ`m

i (q).
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(`,m)
Surrogate NR

(`,m)
Surrogate NR

Max Mean Max Mean Max Mean Max Mean
(2,2) 0.36 0.07 0.36 0.08 (3,2) 100 17 1.7 0.43
(2,1) 29 3.4 4.1 0.54 (4,4) 7.4 2.2 20 2.1
(2,0) 2.1 0.27 0.04 0.01 (5,5) 5.4 3.1 1.0 0.33
(3,3) 53 4.1 11 0.94 All 0.41 0.12 0.40 0.10

Table 5.2: Relative mode errors, reported as 103 × ‖h`,mS (q) − h`,m(q)‖2/‖h`,m(q)‖2,
from the leave-one-out surrogates. Only those modes which contribute greater than
0.02% to the full waveform’s time-domain power are used in the computation of
the max and mean, except for ‘All’ which is just δh. Our surrogate also includes the
(3,1), (4, [2,3]), (5, [3,4]), (6, [4,5,6]), (7, [5,6,7]), and (8, [7,8]) modes. Weaker
modes typically have relative errors between 1% and 35%.

5.6 Assessing surrogate errors
We next assess the surrogate’s predictive quality. To quantify the error in the surrogate
model itself, as opposed to its usage in a data analysis study, we do not minimize the
errors over relative time and phase shifts for any of these studies.

A first test is a consistency check to reproduce the 22 input SpEC waveforms used
to build the surrogate. These errors are shown in Fig. 5.4 (red squares) and are
comparable to SpEC truncation errors (black circles).

A more stringent test is the leave-one-out cross-validation (LOOCV) study [247].
For each simulated mass ratio qi, we build a temporary trial surrogate using the
other 21 waveforms, evaluate the trial surrogate at qi, and compare the prediction
with the SpEC waveform for qi. Therefore, the trial surrogate’s error at qi should
serve as an upper bound for the full surrogate trained on all 22 waveforms. Repeating
this process for all possible 20 LOOCV tests2 results in Fig. 5.4 (blue triangles).
Despite the ith trial surrogate having no information about the waveform at qi, the
errors remain comparable to the SpEC truncation errors. The LOOCV errors are
typically twice as large as the full surrogate ones confirming the former as bounds for
the latter. Relative errors for selected modes are shown in Table 5.2. While weaker
modes have larger relative errors, their power contribution is small enough that the
error in the full surrogate waveform, δh, is nearly identical to the SpEC resolution
error.

A third test is to compare the surrogate waveforms to those of a second surrogate,
2We omit the smallest and largest mass ratios here as the corresponding trial surrogates would

extrapolate to their values.
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Figure 5.4: Waveform differences between the two highest SpEC resolutions (black
circles), the full surrogate and SpEC (red squares), and leave-one-out trial surrogates
and SpEC (blue triangles). The largest surrogate error is for q = 2, for which the
(2,2) mode is shown in Fig. 5.1.

built from the second highest resolution SpEC waveforms. The resulting comparison
(solid lines) is shown for the full waveform and several of its modes in Fig. 5.5.
These errors are comparable to SpEC waveform truncation errors (circles). We find
that the surrogate building process is robust to resolution differences. Furthermore,
the surrogate can be improved using NR waveforms of higher accuracy.

We perform a final test by constructing surrogates using the first N selected mass
ratios (from Table 5.1) as input waveforms. This leaves 22 − N mass ratios with
which to test. For these smaller surrogates, we use fits with min(N −1,6) coefficients
where N is the number of input waveforms. The resulting errors are shown in Fig. 5.6.
We see that the total waveform error becomes comparable to the SpEC truncation
error for surrogates using at least 7 waveforms. However, some modes (e.g., (3,3))
require more waveforms to be fully resolved.

5.7 Discussion
We have built a surrogate model for NR non-spinning BBH merger waveforms
generated by SpEC. On a standard 2015 single core computer, all 77 modes with
2 ≤ ` ≤ 8 are evaluated in ≈ 0.5 sec (≈ 0.01 sec for a single mode) providing a
factor of ∼ 106−8 speedup compared to SpEC. Importantly, this is achieved without
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Figure 5.6: Maximum errors over all 22 mass ratios for surrogates built from N SpEC
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sacrificing accuracy. Like other data-driven modeling strategies, our surrogate is
valid only within the training intervals, namely, q ∈ [1,10] and t/M ∈ [−2570,100].
Therefore, within the training intervals, our surrogate model generates BBH merger
waveforms that are equivalent to SpEC outputs within numerical error.

NR surrogates can be used for multiple-query applications in gravitational wave
data analysis such as detector-specific template-bank (re-)generation and parame-
ter estimation. Our surrogate, and more generally the results of this paper, open
up the exciting possibility of performing, for example, parameter estimation with
multi-modal NR waveforms (with hybridization, if needed). Parameter estimation
studies seeking to incorporate model error may benefit from the surrogate’s relatively
straightforward characterization and assessment of uncertainty from a combination
of the surrogate’s and SpEC’s systematic and numerical errors. We anticipate NR
surrogate modeling to complement traditional strategies [68, 189, 200, 201, 219,
227–232] by providing unlimited high-fidelity approximations of NR waveforms
with which to calibrate, refine and make comparisons. Building NR surrogates of
precessing BBH merger waveforms, which may be modeled from the parameters
specially selected in [248], offer a promising avenue for modeling the full 7 dimen-
sional BBH parameter space. The surrogate model described in this paper will be
available for download after peer review at [249]. We thank Mike Boyle, Alessandra
Buonanno, Jan Hesthaven, Jason Kaye, Geoffrey Lovelace, Lee Lindblom, Tom
Loredo, Christian Ott, Yi Pan, Harald Pfeiffer, Rory Smith, and Nicholas Taylor
for many useful discussions throughout this project. This work was supported in
part by NSF grants CAREER PHY-0956189, PHY-1068881, PHY-1005655, PHY-
1440083, PHY-1404569, and AST-1333520 to Caltech, NSF grants PHY-1306125
and AST-1333129 to Cornell University, NSF grant PHY-1500818 to the University
of California at San Diego, NSF grants PHY-1208861 and PHY-1316424 to the
University of Maryland (UMD), NSERC of Canada, and the Sherman Fairchild
Foundation. Computations were performed on the Zwicky cluster at Caltech, which
is supported by the Sherman Fairchild Foundation and by NSF award PHY-0960291.
Portions of this research were carried out at the Center for Scientific Computation
and Mathematical Modeling cluster at UMD.



73

6 A Surrogate Model of
Gravitational Waveforms from
Numerical Relativity Simulations
of Precessing Binary Black Hole
Mergers

6.1 Background and Contributions
This chapter was published in Physical Review D on May 17 2017 [14], in issue
10 of volume 95 which can be found at https://link.aps.org/doi/10.1103/
PhysRevD.95.104023. A preprint can be found at https://arxiv.org/abs/
1701.00550.

This chapter presents a numerical relativity (NR) surrogate model for a 4d parameter
subspace including precession. The methods of chapter 5 are significantly expanded
to accomodate the additional waveform phenomenology due to precession. Difficul-
ties in keeping the NR spin directions within this 4d parameter space lead to the
need for an analytic approximation and surrogate errors that are much larger than the
NR waveform errors. Nevertheless, our model is signifiantly better within its range
of validity than other waveform models.

I built the post-Newtonian surrogate models used to determine the parameters for
the NR simulations, and helped perform some of the simulations. I determined the
waveform decomposition to be used, implemented and built the surrogate models,
performed the error studies, and generated most of the figures. I wrote the intial draft
of the manuscript, and contributed to editing the manuscript.

https://link.aps.org/doi/10.1103/PhysRevD.95.104023
https://link.aps.org/doi/10.1103/PhysRevD.95.104023
https://arxiv.org/abs/1701.00550
https://arxiv.org/abs/1701.00550
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We present the first surrogate model for gravitational waveforms from the

coalescence of precessing binary black holes. We call this surrogate model NR-

Sur4d2s. Our methodology significantly extends recently introduced reduced-

order and surrogate modeling techniques, and is capable of directly modeling

numerical relativity waveforms without introducing phenomenological assump-

tions or approximations to general relativity. Motivated by GW150914, LIGO’s

first detection of gravitational waves from merging black holes, the model

is built from a set of 276 numerical relativity (NR) simulations with mass

ratios q ≤ 2, dimensionless spin magnitudes up to 0.8, and the restriction that

the initial spin of the smaller black hole lies along the axis of orbital angular

momentum. It produces waveforms which begin ∼ 30 gravitational wave cycles

before merger and continue through ringdown, and which contain the effects

of precession as well as all ` ∈ {2,3} spin-weighted spherical-harmonic modes.

We perform cross-validation studies to compare the model to NR waveforms

not used to build the model, and find a better agreement within the parameter

range of the model than other, state-of-the-art precessing waveform models,

with typical mismatches of 10−3. We also construct a frequency domain surro-

gate model (called NRSur4d2s_FDROM) which can be evaluated in 50 ms and

is suitable for performing parameter estimation studies on gravitational wave

detections similar to GW150914.
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6.2 Introduction
With two confident detections of gravitational waves (GWs) from binary black
hole (BBH) systems [250, 251], an exciting era of gravitational wave astronomy
has begun. Once a signal has been detected, the masses and spins of the black
holes (BHs), and their uncertainties, can be determined by comparing the signal to
waveforms predicted by general relativity (GR) [20]. Similarly, by comparing the
signal to predictions, tests of GR can now be performed in the regime of strong-field
dynamics with relativistic velocities [252].

Parameter estimation and tests of GR typically require the computation of predicted
gravitational waveforms for a large set of different source parameters (e.g. black hole
masses and spins). A typical Bayesian parameter estimation analysis, for example,
evaluates millions of waveforms [187]. Therefore, in order to obtain reliable results
on realistic timescales, the GW model must be fast to evaluate. Additionally, the
waveform model must be accurate not only during the weak-field perturbative
binary inspiral, but also in the strong-field, large-velocity regime. Otherwise the
model may introduce biases in parameter estimation and inaccuracies in tests of GR.
Waveform accuracy will become increasingly important in future GW measurements,
because higher signal-to-noise-ratio detections are anticipated as detector technology
improves.

Numerical relativity (NR) is now in a sufficiently mature state that there are a
number of codes [191, 209, 253–257] capable of accurately simulating the late
inspiral, merger and ringdown of a BBH system, and the resulting GWs, even for
somewhat extreme spins [212, 258] and high mass ratios [259, 260]. While the
resulting waveforms are quite accurate, the simulations can take weeks or months,
thereby precluding them from being directly used in most data analysis studies.
Therefore, data analysis studies currently use approximate NR-tuned waveform
models that are fast to evaluate [65, 66, 70, 152, 199, 200, 261, 262].

For the analysis of GW150914 [20, 263], the first GW detection by Advanced
LIGO [32], waveform models built within the effective-one-body (EOB) [70, 152,
227, 262, 264, 265] and the phenomenological (Phenom) [65, 66, 261] frameworks
were used [20, 263]. All models necessarily introduce some systematic error, however
small, which are often quantified either by comparing to NR simulations directly [65,
72, 266–268] or by performing parameter estimation with many different waveform
models and monitoring the discrepancies. In the case of GW150914, the systematic
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error for the black hole masses was estimated to be smaller than the statistical uncer-
tainty. However, estimating a model’s systematic error in this way is complicated by
the fact that the waveform models make similar simplifications. For example, the
models ignore spin-weighted spherical-harmonic (SWSH) modes with ` > 2, which
may be significant since the signal’s power is dominated by the late inspiral and
merger. Recent studies continue to investigate this systematic parameter estimation
bias through the use of newer waveform models including additional physics [263]
and by comparing to NR waveforms [268].

In this paper, we use a surrogate model, which we call NRSur4d2s, to compute
waveforms approaching the accuracy of NR simulations. A surrogate model [76, 239,
265, 269] is a way to substantially accelerate the evaluation of a slower but accurate
waveform model (in our case, NR), while largely retaining the accuracy of the
original model. This is done by through an expensive offline stage, where we perform
many accurate NR simulations for different input parameter values and subsequently
build and validate the surrogate model on this set of simulations. The waveforms
from these simulations are then “interpolated" in parameter space in an inexpensive
online stage. The resulting model can be used in place of performing additional NR
simulations. Surrogates can be used to accelerate other analytical models, and have
been used to successfully speed up non-spinning EOB models with multiple SWSH
modes [76], and spin-aligned EOB models that include only the ` = 2 modes [239,
265]. Most recently, surrogates have been used to speed up non-spinning BBH
waveforms from NR simulations including 40 SWSH modes [269].

The surrogate model we develop here is based on NR simulations using the Spectral
Einstein Code (SpEC) [209, 211, 270–274]. It extends previous NR surrogate mod-
els [269] to include precessing binaries. The number of NR simulations required to
build a surrogate model increases with parameter space size, and NR simulations
become more expensive as the mass ratio and spin magnitudes grow. To reduce
the computational cost, we restrict to a subspace of the full precessing parameter
space. The initial spin direction of the smaller black hole is restricted to be parallel
to the orbital angular momentum. We also restrict the mass ratio of the black holes
to 1 ≤ q ≤ 2 and the dimensionless spin magnitudes to be at most 0.8. The duration
of each NRSur4d2s waveform is equal to that of the NR simulations, which begin
4500M before merger, corresponding to ∼ 30 gravitational wave cycles.

It has been shown that waveforms from precessing systems closely resemble wave-
forms from non-precessing systems when viewed in a suitable non-inertial, co-
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precessing frame [169, 171]. We use this relationship to simplify the construction
of the surrogate model by decomposing each precessing waveform into a simpler
waveform measured in a coprecessing frame [167, 275, 276] plus a time-dependent
rotation that characterizes the precession. Additional simplification is achieved by
further decomposing each waveform into a set of functions that are slowly-varying
in parameter space and thus easier to model (cf. Fig. 6.6). The model is evaluated by
“interpolating” these slowly-varying functions to a desired point in parameter space,
and then using the interpolated functions to reconstruct the waveform in the inertial
source frame of the binary.

The NRSur4d2s surrogate model just described produces a waveform in the time
domain, and takes approximately one second to evaluate. While this is much faster
than computing a waveform using NR, it is still too slow for many applications;
furthermore many LIGO analyses are more easily performed in the frequency domain
rather than the time domain. Therefore, we build a second surrogate model in
the frequency domain, called NRSur4d2s_FDROM, using NRSur4d2s as input.
NRSur4d2s_FDROM does not employ complicated decompositions of its input
waveforms, so it requires significantly more waveforms to build (an offline cost),
but because of its simplicity it is significantly faster, and can be evaluated in about
50 ms.

We compute errors in both our time-domain and frequency-domain surrogate models
by comparing the resulting waveforms with selected NR waveforms that were not

used to build the models; see Section 6.7 for details. While these errors are larger
than the numerical truncation error of the underlying NR simulations, we find that
the agreement between NR and our surrogate models is better than that between NR
and other precessing waveform models. The accuracy of the surrogate models could
be further improved by incorporating additional NR waveforms.

Section 6.3 describes the surrogate modeling methods that have been used previously,
and our modifications to them for this work. The NR simulations, as well as their
parameters and waveforms, are described in Section 6.4. Section 6.5 describes how
the NR waveforms are decomposed into simple pieces, and surrogate models for each
piece are built in Section 6.6. The errors of NRSur4d2s are analyzed and compared
to other waveform models in Section 6.7. Section 6.8 describes the construction
of NRSur4d2s_FDROM from NRSur4d2s, which reduces the computational cost
by over an order of magnitude without sacrificing accuracy. Finally, Section 6.9
summarizes this work and discusses potential modifications and improvements.
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6.3 Surrogate modeling methods
Compared to previous work [76, 233, 239, 265, 269, 277, 278], which focused on
surrogates of analytical waveform models or on surrogates of simpler NR waveforms,
surrogate models of precessing numerical relativity (NR) waveforms pose a number
of new, unique challenges. First, the complicated waveform morphologies charac-
teristic of precessing systems [279, 280] suggest that a substantially larger training
set may be necessary for these systems than for simpler cases considered previously.
On the other hand, NR waveforms require the solution of computationally intensive
time-dependent partial differential equations; current hardware and binary black hole
evolution codes are capable of producing only roughly O(1 ,000) simulations in
about a year.

In this section we outline our method for the construction of precessing NR waveform
surrogates, briefly summarizing existing techniques while focusing on solutions to
the new challenges. A dimensionless, complex gravitational-wave strain1

h(t, θ, φ; λλλ) = h+(t, θ, φ; λλλ) − ih×(t, θ, φ; λλλ) , (6.1)

can be expressed in terms of its two fundamental polarizations h+ and h×. Here,
t denotes time, θ and φ are the polar and azimuthal angles for the direction of
gravitational wave propagation away from the source, and λλλ is a set of parameters
that characterize the waveform. For concreteness, the parameters λλλ we will use
in Sec 6.6 will be the initial mass ratio and spin vectors of the black holes, but
the discussion in this section applies to a general set of parameters. Gravitational
waveforms considered in this paper are parameterized through their dependence on
the initial data, and we shall focus on the the five-dimensional subspace described in
Sec. 6.4.

When numerically generating a waveform by solving partial differential equations,
one solves an initial-boundary value problem for a fixed λλλ, thereby generating a
waveform on a dense temporal grid. In this paper we seek to build an accurate and fast-
to-evaluate surrogate gravitational-wave strain model hS(t, θ, φ; λλλ) by numerically
solving the Einstein equations for judicious choices of λλλ. Surrogate evaluations
require only simple function evaluations, matrix-vector products, and coordinate

1More precisely, we work with the distance-independent dimensionless strain Rh/M, where
R is the distance from the binary’s center-of-mass and M is the total Christodoulou mass [281]
measured after the initial burst of junk radiation [206] has passed. In this paper we choose units so
that c = G = 1.
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transformations. In Sec. 6.8 we also build a frequency-domain surrogate model, using
our time-domain surrogate model as input data, with the purpose of accelerating the
evaluation of model waveforms. Evaluation of the frequency-domain model is about
20 times faster than the corresponding time-domain surrogate. Except for Sec. 6.8
our discussion will focus exclusively on time-domain surrogates.

The complex gravitational-wave strain can be written in terms of SWSHs −2Ỳ m (θ,φ)
via

h(t, θ, φ; λλλ) =

∞∑
`=2

∑̀
m=−`

h`m(t; λλλ)−2Ỳ m (θ,φ) , (6.2)

where the sum includes all SWSH modes h`m(t; λλλ). In many data analysis appli-
cations, however, one often requires only the most dominant SWSH modes. The
NRSur4d2s surrogate model will include all ` ≤ 3 modes, while our assessment
of the model’s error will compare to NR waveforms with all ` ≤ 5 modes. Includ-
ing modes in the NR waveforms which are not included in our model ensures our
error studies are sensitive to the effect of neglecting higher order modes. We find
that including ` = 4 and ` = 5 modes in our model does not significantly reduce
the surrogate errors, but it increases the evaluation cost of the model. As seen in
Table 6.3, however, neglecting all ` = 3 modes would significantly increase the
surrogate errors, which is why we include ` ≤ 3 modes. Other models with which
we compare have ` = 2 modes only. When comparing two waveforms with different
available modes, missing modes are simply treated as being zero.

The basic surrogate modeling approach

Problem statement

Our surrogate modeling methods build on those outlined in [76], which we briefly
describe here. Consider a physical system parameterized by λλλ ∈ T , where T is
a compact region in the space of possible parameters. We seek quick-to-evaluate
time-dependent functions X (t; λλλ) that describe this system for times t ∈ [tmin, tmax].
In our case, λλλ will be the black hole masses and spins for a single BBH system,
and T will extend to some maximum spin magnitude and maximum mass ratio for
which we choose to compute NR waveforms. The functions X (t; λλλ) will be obtained
from decomposing h`m(t; λλλ) as described in Sec. 6.5, but here we discuss building a
surrogate model for a single such function.
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Figure 6.1: A schematic of the method for building a surrogate model for a func-
tion X (t; λλλ). The red dotted lines show X (t) evaluated at a selected set of greedy
parameters ~Λi used to build a linear basis, and the blue dots show the associated
empirical nodes in time from which XS (t; λλλ) can be reconstructed by interpolation
with high accuracy. The blue lines indicate fits for X (t; λλλ) as a function of λλλ at each
of the empirical time nodes. The cyan dot shows a generic parameter λλλ0 that is not in
the set of greedy parameters. To compute XS (t; λλλ0), each fit is evaluated at λλλ0 (the
yellow diamonds), and then the empirical interpolant is used to construct XS (t; λλλ0)
at arbitrary times (the dotted black line).

We already have a slow method of generating X (t; λλλ), so we seek a faster surrogate

model, denoted as XS (t; λλλ), which approximates X (t; λλλ). The surrogate model
XS (t; λλλ), whose construction is summarized in this section culminating in Eq. (6.13),
is built to achieve small approximation errors ‖X (·; λλλ) − XS (·; λλλ)‖. In our case, the
slow method is performing a NR simulation, extracting h`,m(t; λλλ), and decomposing
it to obtain X (t; λλλ). A solution X (t; λλλ) for a fixed λλλ is represented as a single (dotted
red) vertical line in Fig. 6.1, which diagramatically represents the surrogate model.
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Discovering representative binary configurations

The first steps in building a surrogate model are to determine a finite set of greedy

parameters

G ≡ {ΛΛΛi ∈ T }
N
i=1 .

An NR simulation is then performed at each greedy parameter, yielding the greedy
solutions {X (t;ΛΛΛi)}Ni=1, shown as vertical dotted red lines in Fig. 6.1.

One strategy (described in more detail in [76]) to find the greedy parameters begins
by evaluating the slow method on a densely sampled training set, TTS ⊂ T . This
training set is input to a greedy algorithm (hence the name greedy parameters) that
works as follows. First, the greedy algorithm is initialized by arbitrarily selecting the
first few greedy parameters which are sometimes called the algorithm’s seed 2. The
set of greedy parameters is then extended iteratively by first building an orthonormal
linear basis Bn = {ei (t)}ni=1 spanning the n current greedy solutions, such that

X (t;ΛΛΛ j ) =

n∑
i=1

ci (ΛΛΛ j )ei (t) . (6.3)

The aim of the greedy algorithm is to extend this basis such that the approximation

X (t; λλλ) ≈
n∑

i=1

ci (λλλ)ei (t) , λλλ ∈ TTS (6.4)

is as accurate as possible and where the coefficient ci (λλλ) is the inner product of
X (t; λλλ) with ei (t). Coefficients found in this way define an orthogonal projection of
the function X (t; λλλ) onto the span of the basis. We compute the projection errors

En (λλλ) = ‖X (·; λλλ) −
n∑

i=1

ci (λλλ)ei (·)‖ (6.5)

for each λλλ ∈ TTS, and the next greedy parameter ΛΛΛn+1 is chosen to be the one
yielding the largest projection error. The next basis vector en+1(t) is then obtained by
orthonormalizing X (t;ΛΛΛn+1) against Bn, and the basis set is extended as Bn+1 = Bn∪

{en+1(t)}. The algorithm terminates once the basis achieves an accuracy requirement
EN (λλλ) ≤ ε , for some predetermined error tolerance ε , over the whole training set.
With a dense enough training set and assuming X varies smoothly over T , the
projection errors outside of the training set will be only mildly larger than ε .

2The final set of greedy parameters selected by the greedy algorithm will depend on that choice
of seed. However, the number and distribution of greedy parameters is expected to be robust to the
choice of seed [75, 282].
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This method unfortunately requires evaluating the slow method on each point in the
(large) training set, so we make modifications as described in sections 6.3 and 6.4.

Temporal compression

We have built a linear basis BN which can represent X (t; λλλ) for any λλλ ∈ T using
Eq. 6.4, up to some small projection error. This reduces the problem of determining
X (t; λλλ) to determining the basis coefficients {ci (λλλ)}Ni=1. The most straightforward
method of doing so would be to fit or interpolate the basis coefficients ci over the
parameter space T as is done in [239, 265]. We have more intuition for the behavior
over T of the solutions X (T ; ·) evaluated at a fixed time T than we do for the basis
coefficients. We will therefore pursue an empirical interpolation approach, described
in detail in [76], which enables us to avoid fitting the basis coefficients.

An empirical interpolant makes use of the orthogonal linear basis BN = {ei (t)}Ni=1

such that the errors given by Eq. (6.5) are small, so Eq. (6.4) continues to provide
a good approximation despite using a different method to compute the coefficients.
During the construction of the empirical interpolant, N empirical time nodes {Tj }

N
j=1

will be used. An algorithm to find these special time nodes will be described later on.

We denote an N-node empirical interpolant of a function f (t) by IN [ f ](t). A con-
ceptually helpful way to think of the empirical interpolant is that IN [ f ](t) lies in
the span of BN , passes through f (Tj ) at time Tj , and is nearly as accurate as the
orthogonal projection. To construct the interpolant, we expand it in terms of unknown
coefficients ci,

IN [ f ](t) =

N∑
i=1

ciei (t) . (6.6)

We then write a linear system of equations
N∑

i=1

ciei (Tj ) = f (Tj ) , j = 1, . . . ,N (6.7)

and we solve this system for all the coefficients ci. A good choice of empirical time
nodes will ensure that the matrix Vi j = ei (Tj ) is well-conditioned, thereby allowing
an accurate solution

ci = (V−1)i j f (Tj ) . (6.8)

We can then substitute the coefficients back into Eq. (6.6) to obtain

IN [ f ](t) =

N∑
i=1

(V−1)i j f (Tj )ei (t) . (6.9)
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If we then define

b j (t) =

N∑
i=1

(V−1)i jei (t) , (6.10)

we obtain

IN [ f ](t) =

N∑
j=1

f (Tj )b j (t) . (6.11)

Here b j
N (t) is computed before evaluating the surrogate, so evaluating the empirical

interpolant amounts to a matrix multiplication.

If f (t) lies in the span of BN , then IN [ f ](t) = f (t) for all times t. Otherwise, there
will be some interpolation error. In practice, the empirical time nodes are constructed
iteratively using bases Bn for n = 1, . . . ,N . If In is the nth iteration of the interpolant,
then the nth empirical time node Tn is chosen to be the time t yielding the largest
interpolation error when interpolating en(t) using the previous interpolant In−1. The
iteration begins with the initial interpolant chosen to be I0[ f ](t) = 0 for all f .

Note that since the empirical interpolant is linear and V is well-conditioned, if f (t)
has a deviation from the span of BN of order ε , then the empirical interpolation error
will also be of order ε . Since our basis BN is constructed such that the projection
errors of X (t; λλλ) onto BN are small for all λ ∈ T , we can use the empirical inter-
polant IN [X](t) to obtain X (t; λλλ) for all times t given the empirical node values
{X (Tj ; λλλ)}Nj=1. The remaining step is then to approximate the N functions

X j (λλλ) = X (Tj ; λλλ) (6.12)

by fitting the available data {X (Tj ;ΛΛΛ) : ΛΛΛ ∈ G} over the parameter space T . We call
these parametric fits, and denote the fitted approximation for X j (λλλ) by X jS (λλλ). The
parametric fits are represented by the blue horizontal lines in Fig. 6.1. The explicit
form of our surrogate model for X is then given by

XS (t; λλλ) =

N∑
j=1

X jS (λλλ)b j (t) . (6.13)

Modifications to the basic surrogate modeling approach

A drawback of the algorithm presented in § 6.3, and of many previous surrogate
modeling efforts, is the assumption that the original slow model can be evaluated an
arbitrary number of times to build a dense training set. Because of the significant
computational expense, this is not feasible for waveforms found by numerically
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FIG. 2. Surrogate workflow. A greedy “PN-sampler” selects the most informative parameter values {ΛΛΛi}Ni=1 for a fixed
parametric and temporal range. For each selected value ΛΛΛi, SpEC generates a gravitational waveform. A surrogate model
building algorithm (cf. Fig. 1) is applied to a set of suitably aligned and decomposed (cf. Fig. 6) numerical relativity waveforms
thereby producing a trial surrogate. A handful of validation tests are performed to assess the surrogate’s quality. If the
surrogate performs poorly for some parameter values, one could produce additional numerical relativity waveforms near those
values, and rebuild a more accurate surrogate.

i of the greedy algorithm uses an independent randomly-
sampled training set T iR. We extend this methodology by
also including in our training sets a fixed set of parame-
ters TB on the boundary of T (for example, the maximum
mass ratio allowed in T ). This is motivated by the fact
that the boundary of T carries significant weight both
when building a linear basis and when performing para-
metric fits. At the ith greedy iteration, we then have

T iTS = TB ∪ T iR (14)

as our training set of parameters at which we evaluate
PN waveforms.

Another issue with the standard greedy algorithm is
that it considers only a single function X. For modeling
waveforms, we will decompose each waveform h`m(t;λλλ)
into many such functions, which we call waveform data
pieces (cf. Sec. IV). Rather than generate a separate set
of greedy parameters GPNX for each X, we construct a
single set of greedy parameters GPN that can be used
for all waveform data pieces X. We do so by replacing
the projection errors for a single waveform data piece
given in Eq. 5 with a single error including contributions
from all waveform data pieces. This will be described
explicitly in Sec. III B after the waveform decomposition
and error measures have been introduced.

The standard greedy algorithm guarantees that the ba-
sis yields small projection errors given by Eq. 5. There-
fore, if we have perfect parametric fits (so that XjS(λλλ) =
Xj(λλλ) for all λλλ ∈ T ) then the surrogate model XS given
by Eq. 13 will agree with X in the sense that the L2

norm of XS(t;λλλ) − X(t;λλλ) will be small for all λλλ ∈ T .

There is, however, no corresponding guarantee that the
greedy points are sufficient for producing accurate para-
metric fits XjS . In the one-dimensional models built in
Refs. [34, 35], the parametric fits performed well using the
samples produced from the standard greedy algorithm.
As the dimensionality of the parameter space increases,
the number of greedy parameters required for an accu-
rate basis grows slowly [60], but the number of samples
required for accurate parametric fits can grow rapidly.
We therefore anticipate that the standard greedy algo-
rithm alone may lead to underresolved parametric fits in
problems with high dimensionality.

We overcome this problem by first performing a greedy
algorithm to obtain greedy parameters GPN

0 that ensure
small basis projection errors, and then performing a sec-
ond greedy algorithm, seeded with GPN

0 , that produces
the final set of PN greedy parameters GPN. In each itera-
tion of the second greedy algorithm, a mock PN surrogate
is constructed from PN waveforms evaluated at the cur-
rent set of greedy parameters, including the parametric
fits at each empirical node To select the next greedy pa-
rameter in this second greedy algorithm, for each λλλ ∈ T iTS
we compute an error between a PN waveform evaluated
at λλλ and the mock-PN surrogate evaluation at λλλ. Since
the basis is already accurate and in general λλλ will not
have already been selected as a greedy parameter, this
procedure selects points for which the parametric fits are
underresolved.

Figure 6.2: Surrogate workflow. A greedy “PN-sampler" selects the most informative
parameter values {ΛΛΛi}

N
i=1 for a fixed parametric and temporal range. For each selected

value ΛΛΛi, SpEC generates a gravitational waveform. A surrogate model building
algorithm (cf. Fig. 6.1) is applied to a set of suitably aligned and decomposed
(cf. Fig. 6.6) numerical relativity waveforms, thereby producing a trial surrogate.
A handful of validation tests are performed to assess the surrogate’s quality. If the
surrogate performs poorly for some parameter values, one could produce additional
numerical relativity waveforms near those values, and rebuild a more accurate
surrogate.

solving the Einstein equations. We can neither build NR surrogate models from dense
training data nor can we assess the surrogate’s quality at arbitrarily many randomly
chosen validation points. In previous work that used computationally inexpensive
waveform models [76], thousands of nonspinning waveforms comprised the training
set, yet the final surrogate required only a very small subset of greedy parameters
G. If we could have predicted G in advance then dense training sets would not be
required.

Since we cannot evaluate an arbitrarily large number of NR waveforms, we instead
first construct a temporary mock surrogate using a simpler waveform model that is
both fast to evaluate and is defined in the training region of interest. In this paper,
for the purpose of discovering the most relevant parameter values, we build a mock
surrogate using the precessing TaylorT4 Post-Newtonian (PN) waveform model as
implemented in GWFrames [168, 283]. We determine the PN greedy parameters GPN

using a training set containing many thousands of these PN waveforms, as described
in Sec. 6.4. If we then assume that the distribution of parameters selected using
PN waveforms roughly mimics the distribution we would have obtained had NR
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waveforms been available, then GPN should be a suitable set of greedy parameters
for building a NR surrogate. This was found to work well for the non-spinning
surrogates of Ref. [248] and, as judged by our validation studies, continues to remain
applicable to the precessing waveforms considered here. Instead of PN, we could
have used a different analytical waveform model [65, 66, 70, 152, 227, 261, 262,
264, 265] that contains merger and ringdown. However, these other models either
omit ` = 3 modes, omit precession, or yield waveforms that do not vary smoothly as
a function of λλλ. We find that these other considerations outweigh the inclusion of
merger and ringdown.

This entire process just described is shown in the first stage of the surrogate workflow
diagram (Figure 6.2) as the “PN-sampler". Once the points GPN have been selected,
the corresponding NR waveforms are generated, and the surrogate building proceeds
as in Fig. (6.2). We emphasize that no PN waveforms are used to build the resulting
NRSur4d2s surrogate; the PN model is used only to find the greedy parameters
G = GPN.

While the PN waveforms are much cheaper to evaluate than NR waveforms, build-
ing a dense training set remains costly for high dimensional parameter spaces.
In Ref. [248], it was found that an accurate basis can be achieved using small,
sparse training sets if each iteration i of the greedy algorithm uses an independent
randomly-sampled training set T i

R . We extend this methodology by also including
in our training sets a fixed set of parameters TB on the boundary of T (for exam-
ple, the maximum mass ratio allowed in T ). This is motivated by the fact that the
boundary of T carries significant weight both when building a linear basis and when
performing parametric fits. At the ith greedy iteration, we then have

T i
TS = TB ∪ T

i
R (6.14)

as our training set of parameters at which we evaluate PN waveforms.

Another issue with the standard greedy algorithm is that it considers only a single
function X . For modeling waveforms, we will decompose each waveform h`m(t; λλλ)
into many such functions, which we call waveform data pieces (cf. Sec. 6.5). Rather
than generate a separate set of greedy parameters GPN

X for each X , we construct a
single set of greedy parameters GPN that can be used for all waveform data pieces X .
We do so by replacing the projection errors for a single waveform data piece given
in Eq. 6.5 with a single error including contributions from all waveform data pieces.
This will be described explicitly in Sec. 6.4 after the waveform decomposition and
error measures have been introduced.
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The standard greedy algorithm guarantees that the basis yields small projection errors
given by Eq. 6.5. Therefore, if we have perfect parametric fits (so that X jS (λλλ) =

X j (λλλ) for all λλλ ∈ T ) then the surrogate model XS given by Eq. 6.13 will agree with
X in the sense that the L2 norm of XS (t; λλλ) − X (t; λλλ) will be small for all λλλ ∈ T .
There is, however, no corresponding guarantee that the greedy points are sufficient
for producing accurate parametric fits X jS. In the one-dimensional models built
in Refs. [76, 269], the parametric fits performed well using the samples produced
from the standard greedy algorithm. As the dimensionality of the parameter space
increases, the number of greedy parameters required for an accurate basis grows
slowly [284], but the number of samples required for accurate parametric fits can
grow rapidly. We therefore anticipate that the standard greedy algorithm alone may
lead to underresolved parametric fits in problems with high dimensionality.

We overcome this problem by first performing a greedy algorithm to obtain greedy
parameters GPN

0 that ensure small basis projection errors, and then performing a
second greedy algorithm, seeded with GPN

0 , that produces the final set of PN greedy
parameters GPN. In each iteration of the second greedy algorithm, a mock PN
surrogate is constructed from PN waveforms evaluated at the current set of greedy
parameters, including the parametric fits at each empirical node. To select the next
greedy parameter in this second greedy algorithm, for each λλλ ∈ T i

TS we compute an
error between a PN waveform evaluated at λλλ and the mock-PN surrogate evaluation
at λλλ. Since the basis is already accurate and in general λλλ will not have already been
selected as a greedy parameter, this procedure selects points for which the parametric
fits are underresolved.

Handling noise in the NR waveforms

The presence of numerical noise in the input NR waveforms complicates the con-
struction of surrogates. The situation is simpler when building a surrogate of a
waveform model that is mostly noise-free, such as post-Newtonian or EOB models
that require the solution of ODEs (which can be evaluated to almost arbitrary accu-
racy) but not PDEs. For example, Ref. [76] demonstrates in their Fig. 15 that EOB
surrogates can be made to have arbitrarily small errors, and Refs. [239, 265] use
interpolation across the parameter space without needing to avoid potential pitfalls
such as overfitting the noise. We do not expect this to be the case for numerical
relativity waveforms which are beset by numerous error sources, some of which
cannot be made arbitrarily small with current computing technology.
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Systematic as well as numerical errors can influence the quality of the NR waveform.
For example, when attempting to model non-eccentric binaries, the NR simulations
will always have some small but non-zero orbital eccentricity. In this paper we will
mostly focus on numerical truncation error. This is typically the dominant source
of error in SpEC waveforms [285], and the other sources of error are expected
to be significantly smaller than truncation error, and smaller than the surrogate
error (see Fig. 3 of Ref. [269]). The numerical error can be quantified through
standard convergence tests [285]. Following Ref. [269], we will (i) characterize
SpEC waveform error across the parameter space and, if necessary, remove poorly-
resolved waveforms (Sec. 6.5) (ii) avoid overfitting the noise sources (App. 6.11),
and (iii) set surrogate accuracy goals based on our answer to the first question. In
future work it would be interesting to study the impact of other noise sources.

Decomposing NR waveforms into simpler components

The detailed time dependence of an NR waveform is generally too complicated to
model directly with an acceptable degree of accuracy. Instead, each NR waveform
is decomposed into waveform data pieces (cf. Sec. 6.5), which are simpler, more
slowly-varying functions that can be modeled more easily. A surrogate model is
then built for each waveform data piece (cf Sec. 6.6), and then these models are
recombined to produce a full surrogate waveform. This process is shown in the
“Surrogate Build" step shown in Fig. 6.2.

Selecting the waveform data pieces is a critically important step. For example, in
nonspinning [76, 269] and spin-aligned [239, 265] surrogate models, the waveform
data pieces are either the real and imaginary parts of the SWSH modes, h`m, or the
amplitude and phase decompositions of these modes A`m and φ`m, where h`m =

A`m exp (−iφ`m). The idea is that it is easier to model every A`m and φ`m, which
are smooth and slowly-varying functions of time, than it is to directly model the
complicated waveform h(t, θ, φ; λλλ), Eq. (6.2).

Because of the complexity of precessing waveforms, we have needed to pursue a
somewhat more complicated decomposition scheme than in the nonprecessing case.
Fig. 6.6 summarizes the decomposition scheme used here. Briefly, each waveform
is transformed into a coordinate frame in which the binary is not precessing [167,
168, 275, 276, 286]; specifically, we use the minimal-rotation coprecessing frame of
Boyle [167]. The waveform modes in this frame have a simpler structure than their
inertial frame counterparts. Additional simplifications occur by applying further
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transformations (described in detail in Sec. 6.5) to the coprecessing-frame waveform
modes. The result of these steps is a set of waveform data pieces. If X (t,λλλ) is a single
waveform data piece, then for that piece we build a surrogate XS(t,λλλ) ≈ X (t,λλλ).
Here X can stand for any of the decomposed waveform data pieces depicted as cyan
ellipses in Fig. 6.6, for example A22

+ , φ32
− , ϕp, etc. The full NRSur4d2s surrogate

waveform model is defined by the individual data piece surrogates, XS(t,λλλ), and the
inverse transformations required to move back up the data decomposition diagram
(Fig. 6.6) and reconstruct the waveform from all of the XS(t,λλλ).

Tools for surrogate model validation

Here we describe a useful framework for assessing the surrogate’s predictive quality
when only a limited number of waveforms are available. This is a different setting
from the EOB surrogates of [239, 265] where out-of-sample validation studies could
be performed at arbitrarily many parameter values. The primary tool we shall use
is cross-validation [247], which was also used in [269]. Cross-validation happens
after the surrogate is built and determines whether or not more SpEC waveforms are
needed to improve the accuracy of the model (see Fig. 6.2).

We consider the case where our full dataset is composed of N SpEC waveforms. From
the full dataset, we select non-intersecting sets of trial and verification waveforms
with sizes Nt and Nv, such that Nt + Nv ≤ N . In the cross-validation step, a new
trial surrogate is built solely from Nt trial waveforms. The remaining Nv verification
waveforms serve as an exact and independent error measure of the trial surrogate’s
prediction. The key assumption, which we believe to be true in practice, is that
the surrogate built from all N waveforms will have an accuracy similar to the trial
surrogates, if not better. Indeed, each step of the surrogate building algorithm will
be more accurate so long as parametric overfitting is kept under control. Therefore,
the trial surrogate’s error should serve as a useful estimate of the error associated
with the full surrogate built from all N waveforms. We note, however, that when Nv

is small or the surrogate error is dominated by some systematic source of error, the
improved accuracy when including all N waveforms may not be enough to overcome
the variance in the accuracy of the parametric fits seen in Fig. 6.5. In that case the
full surrogate error may in fact be slightly larger than a trial surrogate error.

Two variants of cross-validation are considered. Random cross-validation proceeds
by selecting the verification waveform set randomly. When Nv = 1 this is known
as the leave-one-out strategy. In Ref. [269], all possible leave-one-out studies were
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performed. In our case, N is sufficiently large and surrogate-building is sufficiently
expensive that we opt to choose Nv = 10. We can perform many resamplings of the
validation subset to infer an error profile across the parameter space.

Deterministic cross-validation proceeds by selecting the verification waveforms
according to a rule. For example, the greedy bases are already ranked according to a
“most important" criterion. We select the first Nt greedy waveforms for our validation
set. These should contribute most heavily to the surrogate’s overall predictive ability,
while the last Nv verification ones are quite dissimilar from the trial waveforms
due to the greedy selection process. We fix Nv to have a consistent test of our trial
surrogates, and vary Nt ≤ N − Nv to estimate how the surrogate errors depend on N .

Waveform error measurements

This subsection summarizes the most commonly used tools to compare waveforms.
A typical scenario is to quantify differences between waveforms, for example to
compare a waveform model to NR waveforms or to estimate the numerical truncation
error associated with an NR waveform.

Let h1(t, θ, φ; λλλ1) and h2(t, θ, φ; λλλ2) denote waveforms from two different models
(or two NR simulations with different numerical resolution) potentially evaluated at
different parameter values λλλ1 and λλλ2. We assume the waveforms are already aligned
according to the procedure of Sec. 6.4. Decomposing these waveforms into SWSHs
we compute a time-dependent error

δh(t) =

√∑
`,m

��δh`m(t)��
2
, (6.15)

from the individual mode differences

δh`m(t) = h`m
1 (t; λλλ1) − h`m

2 (t; λλλ2) . (6.16)

We use the time-domain inner product

〈a,b〉t =
1
T

∫ tmax

tmin

a(t)b∗(t)dt , (6.17)

between any complex functions of time a and b, where T = tmax − tmin and ∗ denotes
complex conjugation. The associated norm ‖a‖2 = 〈a,a〉t can be used to compute
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mean-squared errors, and we compute the full time-domain waveform error

(δh)2 =

∫
S2
‖h1(t, θ, φ; λλλ1) − h2(t, θ, φ; λλλ2)‖2dΩ (6.18)

=
∑
`m

‖δh`,m‖2 (6.19)

=
1
T

∫ tmax

tmin

δh(t)2dt (6.20)

as a sum over individual mode errors ‖δh`,m‖. We note that we do not perform any
time or phase shifts to minimize this error. Since waveforms with different mass
ratios and spins will have different norms, the error we will use most often is defined
as

E[h1,h2] =
1
2
δh2

‖h1‖2
, (6.21)

where h1 is taken to be the more trusted waveform (usually the highest resolution NR
waveform). The factor of 1/2 is motivated in Appendix 6.13 and makes E similar
to a weighted average over the sphere of overlap errors between h1(t, θ, φ; λλλ1) and
h2(t, θ, φ; λλλ2), where the overlap error is 1 − O with

O =
〈h1,h2〉

√
〈h1,h1〉〈h2,h2〉

. (6.22)

We note, however, that while the overlap error vanishes if h1 and h2 are identical
up to a constant factor, E does not and vanishes only when h1 and h2 are identical.
This is important as a different normalization will lead to a bias when measuring the
distance to the source of a gravitational wave.

Overlap errors are often computed in the frequency domain with a noise-weighted
inner product [287]

〈a,b〉 f = 4Re
∫ fmax

fmin

ã( f )b̃∗( f )
Sn( f )

df , (6.23)

where Sn( f ) is the noise power spectral density of a gravitational wave detector
and tildes are used to represent a Fourier transform. We define the mismatch as the
overlap error, 1 − O, minimized over one or more extrinsic parameters such as an
overall time shift.
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6.4 Populating the Set of NR Waveforms

Parameter space

Non-eccentric BBH systems are parametrized by the mass ratio q = m1/m2 ≥ 1 as
well as the two dimensionless BH spin vectors ~χ1, ~χ2. The total mass M = m1 + m2

scales out of the problem, and can be used to restore appropriate dimensions to times
and distances. Because the spin vectors precess and are therefore time-dependent, to
use them as parameters one must specify them at a particular time or frequency. We
choose to specify parameters at a reference time of t0 = tpeak − 4500M , where tpeak

is the time at which the quadrature sum of the waveform modes,

Atot(t) =

√∑
`,m

|h`,m(t) |2, (6.24)

reaches its maximum value.

We restrict to a 5d subspace of the parameter space where ~χ2 is aligned with the
Newtonian orbital angular momentum L̂N at the reference time (in practice the NR
simulations give us small misalignments but ignore them; see Sec. 6.4). Let θ χ
and φχ be the polar and azimuthal angles of ~χ1 at the reference time. Then our
five parameters are q, | ~χ1 |, χz

2, θ χ, and φχ (see Fig. 6.3). While NR simulations
can be done for nearly extremal spins [212] and large mass ratios [259], they are
computationally expensive and so we restrict to | ~χ1 | ≤ 0.8, | χz

2 | ≤ 0.8 and q ≤ 2.
These bounds were also motivated by the parameters of GW150914, which was
close to equal mass and did not show strong evidence of large spin magnitudes [20].

To further simplify the surrogate, we attempted to reduce the parameter subspace
from 5d to 4d by restricting φχ = 0. While this can be done for analytic waveforms
(PN, EOB, etc), it is problematic for NR waveforms. This is because it is not possible
to accurately predict the amount of time between the start of an NR simulation and
the peak of Atot(t), without having carried out the simulation. Therefore, it is not
possible to precisely set initial conditions of the simulation so that φχ = 0 at the
reference time. Therefore, our NR simulations actually cover a 5d and not a 4d

subspace of the parameter space, and we must include φχ as one parameter. Since we
nevertheless attempt to obtain φχ = 0 when choosing the NR initial data parameters,
the actual distribution of φχ is highly correlated with other parameters. Since we
do not have full coverage of this 5d parameter space, we avoid including the extra
dimension φχ in the NRSur4d2s surrogate model by using an analytic approximation
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Figure 6.3: Diagram of the four spin components in the 5d parameter subspace. We
attempt to obtain φχ = 0 at t0 = 4500M before peak amplitude, but in practice the
NR simulations have arbitrary values of φχ.

for the φχ dependence of the model, as described in Sec. 6.5. The surrogate model
can then predict waveforms for parameters in the 5d subspace, but the φχ dimension
is entirely described by the analytic approximation.

Selection of greedy parameters

We use φχ = 0 while determining the greedy parameters G = {ΛΛΛi}, and we use PN
waveforms to identify the most relevant and distinct points in parameter space as
outlined in sections 6.3 and 6.3. We first seed G with the parameter space corner
cases: q ∈ {1,2}, | ~χA | ∈ {0,0.8}, θ χ ∈ {0, π} and χz

2 ∈ {−0.8,0.8}. As described in
Eq. (6.14), we compute training sets T i

TS = TB ∪ T
i

R consisting of a set of boundary
parameters TB as well as a set of randomly sampled parameters T i

R that is resampled
at each greedy iteration i. For TB, we use a set of 216 points where two components of
λλλ take on one of their extremal values and the other two are one of three intermediate
(non-boundary) values. This results in features that can be seen in Fig. 6.4, where the
two boundary values and three intermediate values occur frequently. For example,
because some 2d projections of these special points are selected multiple times, they
appear as darker points around the boundary of some of the subplots in Fig. 6.4. In
addition, subplots involving φχ show an uneven distribution of stripes that occur
at these special points. For T i

R , we randomly sample each parameter component
uniformly in its range.

Next, we add parameters to G using an initial greedy algorithm that uses basis pro-
jection errors to select greedy parameters. Given a point λλλ as a candidate that might
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be added to G, we compute a PN waveform h corresponding to λλλ, we decompose h

into waveform data pieces (see Sec. 6.5), and we project each waveform data piece
onto their respective bases. Then we recombine the projected waveform data pieces
to produce a waveform hpro j . We then compute an error E[h,hpro j] using Eq. (6.21).
The point in T i

TS with the largest such error is the next point added to G. This method
is different than that of [248], in which projection errors of each waveform data piece
were computed separately, and then these errors were combined in a weighted sum
with coefficients determined by hand. Our new method avoids the need to determine
these coefficients, and automatically ensures that the most significant waveform data
pieces are resolved accurately. We use this initial greedy algorithm until the error
is E ≤ 10−5. At this point, the number of greedy points is approximately |G | = 30.
Thus we have built a linear basis for each waveform data piece. For each iteration of
this initial greedy algorithm, we choose the number of randomly-sampled parameters
to be |T i

R | = 10 + 2|Gi |,where |Gi | is the number of greedy parameters at the start
of the ith iteration.

Finally, we add parameters to G using a second greedy algorithm that uses surrogate
errors to select greedy parameters. At each iteration i, we construct a new trial PN
waveform surrogate (as described in Appendix 6.15), using the greedy parameters
Gi, and then for each point λλλ ∈ T i

TS, we evalute this surrogate and compare it to the
corresponding PN waveform by computing E. The parameter λλλ that maximizes this
error is used as the next greedy parameter and is added to G. This error includes the
errors in the parametric fits for each empirical node of all waveform data pieces;
the parametric fits are shown as blue lines in Fig. 6.1 and are described in detail
in Sec. 6.6 and appendices 6.11 and 6.15. For this step, we use |T i

R | = 6|G |. The
maximum errors found in each iteration of this second greedy algorithm are shown
in Fig. 6.5 as a function of |G |. The noise is due to the random resampling of the
training set, as well as the possibility of the parametric fits becoming worse by
adding a data point. Because the parametric fits are restricted to a particular order,
the surrogate error in Fig. 6.5 does not go below 10−3. In principle one can reduce
this error floor by increasing the order of the fits, but here we simply keep only the
first 300 greedy parameters. We perform NR simulations for these 300 parameters,
except for those parameters that can be obtained from other parameters by symmetry,
for example by exchanging the black hole labels. These symmetry considerations
reduce the number of simulations to 276.
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Figure 6.4: A “triangle plot" showing all possible two-dimensional projections and
one-dimensional histograms of the greedy parameters G selected by the procedure
of Sec. 6.4. These are the parameters used for the numerical relativity simulations.
Made using the Python package corner.py [288].
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Figure 6.5: Maximum surrogate errors found during the second greedy algorithm
(see Sec. 6.4) for determiningΛΛΛi using trial PN surrogates. The noise is due to the
random resampling, as well as the possibility of the parameter space fits becoming
worse by adding a data point. The finite order of the fits leads to an error floor of 10−3,
so we keep and perform NR simulations for only the first 300 greedy parameters.

Numerical Relativity Simulations

To build our time-domain model, we use the 276 NR waveforms computed by the
SXS collaboration with the Spectral Einstein Code (SpEC) described in Ref. [285].
Each NR simulation is performed at three different numerical resolutions, labeled
’Lev1’, ’Lev2’, and ’Lev3’, in order of increasing resolution; Levi has an adaptive-
mesh-refinement (AMR) error tolerance that is a factor of 4 smaller than Levi − 1.
For each resolution, the waveform is extracted at multiple finite radii from the source,
and then the waveform is extrapolated to future null infinity [216]. The extrapolation
is done using an N-th order polynomial in 1/r, where r is a radial coordinate. To
estimate errors in extrapolation, we perform extrapolation with several values of
N [216]. Similarly, to estimate numerical truncation error, we compare simulations
that are identical except for resolution [285]. However, for building surrogates, we
always use the highest available resolution (Lev3) simulations, and use the N = 2
extrapolated waveforms. The simulations begin at a time of ∼ 5000M before merger
where M = m1 + m2 and mi are the Christodoulou masses of each black hole. We
ignore the small eccentricities present in the simulations, which have a median of
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0.00029 and a maximum of 0.00085 for the highest resolution simulations. The
masses we use are those measured after the initial burst of junk radiation [206] leaves
the computational domain.

The BH spin vectors are measured on the apparent horizons of the BHs during the
evolution of the NR simulation. The spin directions are therefore gauge-dependent
The potential concern is that when the surrogate model is evaluated, the spin di-
rections must be provided with the gauge used to build the model, so that the spin
directions obtained in gravitational wave parameter estimation can be interpreted
correctly. However, it has been found that the time-dependent spin and orbital an-
gular momentum vectors in the damped harmonic gauge used by SpEC agree very
well with the corresponding vectors in PN theory [57]. Therefore, this is of no more
concern than the interpretation of spin directions with PN-based gravitational wave
models.

For the purposes of surrogate modeling, we need to associate each gravitational
waveform with a single value of the parameter vector λλλ, even though some of the
parameters (in particular the spin directions) are time-dependent. To do this, we
measure the parameters at some fiducial time. To define this time, we (arbitrarily)
equate the time coordinate of the simulation with the time coordinate of the waveform
at future null infinity, offset so that the beginning of the simulation and the beginning
of the NR waveform correspond to the same coordinate t. We then set t = 0 at
the peak amplitude of the waveform, and we measure λλλ at a fiducial value of
t0 = −4500M. We emphasize that there is no unique way to map coordinates in
the near zone to coordinates at infinity. However, choosing a different map changes
nothing in the surrogate model other than the time at which λλλ is measured. Because
the spin directions change only on the precession timescale and not the orbital
timescale, any other choice that measures λλλ at a time near the beginning of the
simulation should yield similar results.

As described above, we selected the first 300 points in parameter space chosen by
the PN greedy algorithms, and we reduced this number to 276 points after removing
configurations that were equivalent because of symmetries. We therefore performed
276 NR simulations. However, the total number of NR waveforms represented by
these 276 simulations is greater than 276 if we use symmetry to restore additional
configurations. For example, for equal mass cases with θ χ ∈ {0, π}, exchanging the
two black holes yields another configuration in the parameter subspace. For each of
these cases, we produce the additional configuration by relabeling the black holes
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and rotating the coordinates by 180 degrees in the orbital plane; this results in a total
of 288 NR waveforms. In addition, configurations with | ~χ1 | = 0 are invariant under
changes in θ χ, so we might add additional such configurations that differ only in
θ χ. In principle, we could add an arbitrary number of such configurations, but it is
unclear how many to add. Also, | ~χ1 | is never exactly zero for NR simulations, so
we have an unambiguous choice of θ χ for each simulation. We therefore choose
not to restore these additional configurations, so we are left with a total of 288 NR
waveforms.

Waveform alignment

Our surrogate model is built assuming that the waveform has peak amplitude at t = 0,
and that the parameters λλλ (mass ratio and spin vectors) are measured at some fixed
time t = t0, which we choose to be t0 = −4500M . Furthermore, our surrogate model
assumes a coordinate system in the source frame such that at t = t0, black hole 1
lies along the positive x̂ axis, black hole 2 lies along the negative x̂ axis, and the
instantaneous Newtonian orbital angular momentum lies along the positive ẑ axis.

Ideally, all of the input NR waveforms used in the surrogate should also have
peak amplitude at t = 0, and each simulation’s black holes should have the same
orientation vector n̂ at t = t0, where n̂ is a unit vector pointing from the large black
hole to the small black hole. However, when setting up an NR simulation, the time
between the beginning of the simulation until merger is a priori unknown, and
depends on the mass ratio and the black hole spins. Furthermore, the orientation n̂ of
the black holes, and the mass and spin parameters, are chosen at the beginning of the
simulation, which (because the merger time is a priori unknown) is not at a fixed time
before merger. Therefore, for each of our 276 NR waveforms the peak amplitude
occurs at a different time, and the orientation of the black holes with respect to the
coordinates does not agree at any given time relative to the time of peak amplitude.
Therefore, it is necessary to align all the NR waveforms by time-shifting them so
that the maximum amplitude occurs at t = 0, rotating the coordinates so that the
black holes are oriented in the same way at t = t0, and then re-measuring the mass
and spin parameters at t = t0.

To align the waveforms, we shift them in time such that the peak of the total
waveform amplitude as given in Eq. 6.24 occurs at t = 0. We then use a cubic spline
to interpolate the real and imaginary parts of the waveform onto a uniformly-spaced
time series with dt = 0.1M . Next, we rotate the waveforms to align the orientation
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of the binary at t0 = −4500M in two steps: first we perform an approximate rotation
using the black hole trajectories, and then we perform a small correction using only
the waveform. For the initial approximate rotation, we use the horizon trajectory
to align the Newtonian orbital angular momentum with ẑ and rotate about ẑ such
that black hole 1 lies along the positive x̂ axis. We then use the waveform modes
to perform an additional rotation, aligning the principal eigenvector of the angular
momentum operator [167] with ẑ and equating the phases of h2,2 and h2,−2 at t = t0.
The first coarse alignment was used since the second alignment is ambiguous; we can
change the sign of the principal eigenvector and/or rotate by an additional π about
ẑ, which we resolve by choosing the smallest of the rotations, since the waveform
is already nearly aligned. We perform identical rotations on the spin directions and
then measure them at t0.

Post-alignment parameterization

While the initial orbital parameters were chosen using Post-Newtonian (PN) ap-
proximations such that ~χ2(t0) ∝ ẑ after this alignment, in practice we obtain small
misalignments leading to orthogonal components of ~χ2 less than 0.016 in magnitude.
We ignore these spin components, leading to a 5d parameter space:

• q =
m1
m2
∈ [0.9999,2.0005]

• | ~χ1 | ∈ [0,0.801]

• θ χ ≡ cos−1
(
χz1 (t0)
| ~χ1 |

)
∈ [0, π]

• φχ ≡ arctan2
(
χ
y
1 (t0), χx

1 (t0)
)
∈ (−π,π]

• χz
2(t0) ∈ [−0.8,0.800006],

as shown in Fig. 6.3. We will often omit the time dependence of the last parameter
and simply write χz

2.

6.5 Waveform Decomposition
This section describes how each input NR waveform is decomposed into a set of
“waveform data pieces”, which are simple functions that can be modeled easily
and can be recombined to produce the original waveform. This decomposition was
outlined briefly in § 6.3, and a flowchart of this process is shown in Fig. 6.6.
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FIG. 6. Waveform decomposition schematic. A series of decompositions are applied to a set of NR waveform modes {h`m}
yielding easier-to-approximate waveform data pieces (shown as cyan ellipses) for which we ultimately fit. Two types of objects
are shown: timeseries data as an ellipse and operators/maps as rectangles. A red outlining border identifies an object which uses
a modeling approximation which will not go away with additional NR waveforms. These decomposition errors are quantified
and shown to be smaller than other sources of error in Sec. VI. An additional source of error that will not converge away with
more NR waveforms results from the assumption that each data piece transform in a simplistic way with changes of φχ.
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FIG. 7. Waveform modes in the inertial frame for
SXS:BBH:0338 with q = 2, |~χ1| = 0.8, θχ = 1.505, φχ =
−1.041 and χz2 = 0.8. For precessing systems, all ` = 2
modes contain significant power in the inertial frame. The
NR waveform is aligned to have the canonical orientation at
t = t0.

In a frame instantaneously aligned with the coprecessing
frame, ϕd is the phase of the projection of ~u(t) into the
xy-plane.

We have thus decomposed the quaternion q(t) into two
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dominating, but small effects of precession are still present
in the mode amplitudes and phases. The amplitudes of the
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functions ϕp(t) and ϕd(t). These are the two functions
we will model in constructing the surrogate. We denote

Figure 6.6: Waveform decomposition schematic. A series of decompositions are
applied to a set of NR waveform modes {h`m} yielding easier-to-approximate wave-
form data pieces (shown as cyan ellipses) for which we ultimately fit. Two types of
objects are shown: timeseries data as an ellipse and operators/maps as rectangles.
A red outlining border identifies an object which uses a modeling approximation
which will not go away with additional NR waveforms. These decomposition errors
are quantified and shown to be smaller than other sources of error in Sec. 6.7. An
additional source of error that will not converge away with more NR waveforms
results from the assumption that each data piece transform in a simplistic way with
changes of φχ.

We write each input waveform as a set of modes H = {h`,m(t)}, with t ∈ [tmin, tmax].
Here tmin and tmax are chosen to be the same for all waveforms, and are selected in
the following way: Recall that each waveform is time-shifted so that the maximum
amplitude occurs at t = 0; this means that each time-shifted finite-length NR
waveform Hi has a different beginning time tbegin

i and a different ending time tend
i .

We choose tmin = maxi (t
begin
i ) + 150M and tmax = mini (tend

i ). The value 150M

is chosen to remove the worst of the “junk radiation” [206] that results from the
failure of NR initial data to precisely describe a quasiequilibrium inspiral. Although
the surrogate output will cover only the smaller time interval [t0, t f = 70M], we
use waveforms over the larger time interval [tmin, tmax] in order to mitigate edge
effects that can occur in later steps in the decomposition process (filtering and Hilbert
transforms, described below). Selected modes of H are shown in Fig. 6.7.
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Figure 6.7: Waveform modes in the inertial frame for SXS:BBH:0338 with q = 2,
| ~χ1 | = 0.8, θ χ = 1.505, φχ = −1.041 and χz

2 = 0.8. For precessing systems, all
` = 2 modes contain significant power in the inertial frame. The NR waveform is
aligned to have the canonical orientation at t = t0.

Transforming to a coprecessing frame

The first step in the waveform decomposition is transforming to a rotating coordinate
frame in which the binary is not precessing. Thus the original waveform is described
by a (much simpler) waveform in this coprecessing frame, plus functions that
describe the time-dependent rotation. We transform 3 H to the minimally rotating
coprecessing frame of Ref. [167], and thereby obtain the waveform modes H̃ =

{h̃`,m(t)} in this frame, as well as a time-dependent unit quaternion q(t) that describes
the rotation of the frame. Throughout this section we will use a tilde, i.e., h̃`,m(t), to
denote a time-domain waveform mode in the coprecessing frame, as opposed to the
Fourier transform of a waveform mode. Selected modes of H̃ are shown in Fig. 6.8.
We denote this transformation by

TC : H → (H̃ ,q), (6.25)

where the ’C’ stands for the coprecessing frame. If we also define a different trans-
formation

TQ : (H′,q) → H (6.26)
3Throughout this work we use GWFrames [168, 283] to enact our transformations.
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Figure 6.8: Waveform modes in the coprecessing frame for SXS:BBH:0338. The
mode power hierarchy is now the same as for a non-precessing waveform, with the
(2,±2) modes dominating, but small effects of precession are still present in the
mode amplitudes and phases. The amplitudes of the (2,±2) modes have small nearly
opposite oscillations.

that takes an arbitrary waveform H′(t) and rotates it by an arbitrary unit quaternion
q(t), then TQ is the left inverse of TC , that is, TQ (TC (H)) = H . However, an arbitrary
waveform H′(t) and an arbitrary unit quaternion q(t) do not necessarily represent
the decomposition of any inertial-frame waveform H into a coprecessing frame.
Therefore, for arbitrary H′(t) and q(t) we have in general TC (TQ (H′,q)) , (H′,q).
This property will be important in § 6.5 below.

The unit quaternion q(t) has four components shown as solid lines in Fig. 6.9. How-
ever, the minimally-rotating coprecessing frame constrains q(t) so as to minimize
the magnitude of the frame’s instantaneous angular velocity (the “minimal rotation
condition”) [167]. This condition, combined with the unit norm, imply that q(t) has
only two independent components.

Therefore, we will further decompose q(t) into these two independent components,
so that we have only two functions to model in order to describe the rotation. To do
this, consider first the relative instantaneous rotation of the frame

dq(t) = q−1(t)q(t + dt) = 1 + 2~ω(t)dt + O(dt2). (6.27)

The minimal rotation condition says that ωz = O(dt2), while ωx and ωy are O(1),
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so in the limit dt → 0 we find that ~ω(t) has only two independent components. The
precession angular frequency ωp(t) = |~ω(t) | describes the velocity of the path on
the unit sphere traced out by the z-axis of the coprecessing frame.

We approximate dq(t) using finite differences:

δq(t) = q−1(t)q(t + δt) = s(t) + δt ~u(t), (6.28)

where the scalar component s(t) is 1 + O(δt2). Thus, for a given δt, Eq. (6.28)
defines ~u(t) in terms of q(t), and furthermore, ~u(t) approaches 1

2 ~ω(t) as δt → 0. We
find that if we use δt = 0.1M, the ~u(t) we obtain is sufficiently close to this limit
that the error we make is negligible compared to other errors; this error is included
in the decomposition error discussed in § 6.7. Finally, instead of using ~u(t) directly
as independent components of q(t), we define ω̃p = 1

2 |~u(t) | and

ϕp(t) = δt
∑
τ<t

ω̃p(τ) (6.29)

ϕd (t) = arg
(
ux (t) + iuy (t)

)
. (6.30)

The length of the path on the unit sphere traced out by the z-axis of the coprecessing
frame is given by ϕp(t). In a frame instantaneously aligned with the coprecessing
frame, ϕd is the phase of the projection of ~u(t) into the xy-plane.

We have thus decomposed the quaternion q(t) into two functions ϕp(t) and ϕd (t).
These are the two functions we will model in constructing the surrogate. We denote
this transformation by

Tϕ : q → (ϕp, ϕd). (6.31)

To perform the inverse transformation, that is, to compute q(t) from ϕp and ϕd , we
compute

ω̃p(t) =
ϕp(t + dt) − ϕp(t)

δt
(6.32)

ux (t) = 2ω̃p(t)cos(ϕd (t)) (6.33)

uy (t) = 2ω̃p(t)sin(ϕd (t)) (6.34)

uz (t) = 0 (6.35)

s(t) =

√
1 −

(
2ω̃p(t)δt

)2
(6.36)

δq(t) = s(t) + ~u(t)δt . (6.37)
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Figure 6.9: Top: Quaternion q representing the time-dependent rotation from the
coprecessing frame to the inertial frame (solid lines) and the filtered quaternion
qmin−filt (dashed lines) for SXS:BBH:0338. Bottom: Differences between the filtered
and unfiltered quaternions. This difference results in an error when reconstructing
the waveform in the inertial frame, contributing to a “decomposition" error in the
surrogate model.

We include the (δt)2 term in Eq. (6.36) so that the reconstructed q(t) has unit norm.
Because we assume δqz = 0, the δq we compute in Eq. (6.37) is not exactly the δq

we started with in Eq. (6.28); however, the error we make is only O(δt3). Given q(t)
and δq, we can then compute q(t + δt) using

q(t + δt) = q(t)δq(t), (6.38)

which results in an O(δt2) error in q(t + δt). Because we have q(t0) = 1 at the
alignment time t0, we can use the recurrence relation Eq. (6.38) to construct q(t) at
all times, given ϕp(t) and ϕd (t).

A “filtered" coprecessing frame

The quaternion q(t) representing the coprecessing frame oscillates mostly on the
slow precession timescale, which makes it easier to model. However, it also has small
oscillations on the much faster orbital timescale, as shown by the purple curve in the
bottom plot of Fig. 6.10. These oscillations are due to the nutation of the rotation
axis of the coprecessing frame, relative to the inertial frame. These small oscillations
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can make it more difficult to fit ϕd across parameter space. Since the effect of the
nutation on the inertial frame waveform is small, we filter out the nutation in the
coprecessing frame. We use a Gaussian filter with a width of π radians of the orbital
phase, which is computed from the angular velocity of the waveform as described in
[289]. Near the edges of the domain, we truncate the filter on both sides to keep the
filter centered. Specifically, if the (monotonic) orbital phase is given by ϕorb(t), then
we can invert the relationship to find t(ϕorb). For a given time τ with corresponding
orbital phase ϕ∗ = ϕorb(τ) we then compute

ϕmin = ϕorb(tmin) (6.39)

ϕmax = ϕorb(tmax) (6.40)

∆ϕ = min(4π, |ϕ∗ − ϕmin |, |ϕ
∗ − ϕmax |) (6.41)

ϕ± = ϕ∗ ± ∆ϕ (6.42)

G(ϕ) = exp

−

(
ϕ − ϕ∗

π

)2
(6.43)

qinit−filt(τ) =

∫ ϕ+

ϕ−
q(t(ϕ))G(ϕ)dϕ∫ ϕ+

ϕ−
G(ϕ)dϕ

(6.44)

qfilt(τ) =
qinit−filt(τ)
|qinit−filt(τ) |

. (6.45)

This filtered frame corresponding to qfilt is no longer minimally rotating, but we can
compute

H̃′,qmin−filt = TC (TQ (H̃ ,qfilt)) (6.46)

and use the frame corresponding to qmin−filt, which is minimally rotating and has
much less nutation than the frame corresponding to q. The components of the filtered
quaternion qmin−filt are shown in Fig. 6.9 as dashed lines. We use H̃ , and not H̃′, as
the filtered coprecessing waveform, because H̃′ is not as slowly-varying as H̃ and
is therefore slightly more difficult to fit. We have verified that the error in the final
model caused by choosing H̃ instead of H̃′ is small compared to other errors. Note
that even if we choose H̃′, introducing a filter produces some information loss, and
therefore results in some error in the final surrogate model. This decomposition error

is discussed in section 6.7 and is plotted in Fig. 6.12 and 6.13. We thus denote the
filtering transformation by

Tfilt : (H̃ ,q) → (H̃ ,qmin−filt). (6.47)

Applying Tϕ to qmin−filt results in less oscillatory behavior in ϕd than when Tϕ is
applied to q, as seen in Fig. 6.10. When evaluating the surrogate and reconstructing
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Figure 6.10: Phases ϕp (top) and ϕd (middle) for SXS:BBH:0338. These phases
represent the total amount of precession and the instantaneous direction of precession
respectively. Shown are phases computed from the unfiltered coprecessing quater-
nion (thick orange lines) and the filtered quaternion (thin black lines). The orbital
timescale oscillation in ϕd is surpressed after filtering. Bottom: Differences between
the filtered and unfiltered phases.

the inertial frame waveform, we do not attempt to invert Tfilt, which contributes to
the decomposition errors shown in Fig. 6.13.

Decomposition of coprecessing-frame waveforms

Once we have computed waveform modes h̃`,m(t) in the coprecessing frame, we
decompose each of these modes (except for the m = 0 modes, which are discussed
separately below) into an amplitude and a phase. However, these amplitudes and
phases are difficult to model because they contain oscillations on the orbital timescale.
These oscillations are due to asymmetries of waveforms from precessing systems
and cannot be completely removed with a different choice of frame [286]. Fig. 6.8
shows an example of these oscillations. To better model the amplitudes and phases
of h̃`,m(t), we seek to further decompose them into simpler slowly-varying functions.
To do this, first note that the amplitudes of h̃2,2(t) and h̃2,−2(t) shown in Fig. 6.8
oscillate in opposite directions. The same is true for the phases, although it is not
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apparent in the figure, and it is also true for some (but not all) higher-order modes.
This motivates the use of symmetric and antisymmetric amplitudes and phases

A`,m± (t) =
1
2

(
| h̃`,m(t) | ± | h̃`,−m(t) |

)
(6.48)

ϕ`,m± (t) =
1
2

(
ϕ(h̃`,m(t)) ± ϕ(h̃`,−m(t))

)
(6.49)

for m > 0 where ϕ(x(t)) = arg(x(t)). The symmetric amplitude A2,±2
+ (t) and

the antisymmetric phase ϕ2,±2
− (t) contain almost no oscillations and are slowly-

varying, so we use these as waveform data pieces. However, the antisymmetric
amplitude A2,±2

− (t) and the symmetric phase ϕ2,±2
+ (t) of the (2,±2) mode are small

oscillatory real functions, so to model them we taper each of these functions in
the intervals [tmin, t0] and [t f , tmax] with a Planck window [220] and take a Hilbert
transform, thereby producing an amplitude and phase for each of these functions;
these amplitudes and phases are slowly-varying, so we use these as our waveform
data pieces.

For subdominant modes, we treat ϕ`,m+ differently than for the (2,±2) modes. We
model ϕ`,m+ directly instead of using a Hilbert transform, because for these modes
the Hilbert transform does not improve the model’s accuracy. Fortunately, errors in
ϕ`,m+ for ` > 2 contribute very little to the overall error of the final model waveform,
as seen in Table 6.3 below.

An additional difficulty is that subdominant modes can vanish at certain points in
parameter space, and this makes phases ill-defined. Consider a system with q = 1,
| ~χ1 | = 0, and some χz

2. For χz
2 = 0, the (2,1) mode vanishes. For small χz

2 , 0,
switching the sign of χz

2 will switch the sign of the (2,1) mode, meaning that the
phase of the (2,1) mode has a discontinuity of π as χz

2 passes through 0. We wish
to avoid such discontinuities when building surrogate models. In this particular
example, the discontinuity can be avoided by defining the amplitude of the (2,1)
mode to be negative and the phase to be increased by π when χz

2 ≤ 0.

Now consider the general case with arbitrary ~χ1. At the alignment time t0, the orbits
of all NR waveforms are aligned. Because of this, at time t0 the phase of a given
(`,m) mode with m > 0 and even will be approximately equal for all NR waveforms,
i.e. for all choices of parameters. Similarly, at time t0 the phase of a given (`,m)
mode with m odd will either be approximately equal or will differ by approximately
π for all choices of parameters. Therefore at t0, the phases of each non-vanishing
(`,m) mode, for all choices of parameters, are clustered around either one or two
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values, depending on the mode. Furthermore, when the phases of a given (`,m)
mode are clustered around two values instead of one, the clusters are separated by
π and the phases of the corresponding (`,−m) mode are also clustered around two
values and not one. For modes (`,m) with phases that are are clustered around one
value, there is no discontinuity in phase as a function of parameters, and nothing
more needs to be done. But for modes (`,m) with phases clustered around two
values, we remove the discontinuity. To do this, we arbitrarily choose one of the two
values as the reference phase ϕ`,m0 , and then compute the initial phase deviations
δϕ`,m = |ϕ(h̃`,m(t0)) − ϕ`,m0 |. Whenever δϕ`,m + δϕ`,−m > π we take the amplitudes
of the (`,±m) modes to be negative and increase the phases of these modes by π.
This causes the initial phase of either the +m or −m mode to be > π, so we subtract
2π from that phase. These transformations preserve the complex waveform mode
h̃`,m but transform A`,m± → −A`,m± and ϕ`,m− → ϕ`,m− + π, leaving ϕ`,m+ unmodified.

Now we discuss modes h̃`,0(t), with m = 0. As seen in Fig. 6.11, the (2,0) mode has
a non-oscillatory real part during the inspiral, while the imaginary part is small but
oscillatory. The (3,0) mode is similar, with the roles of the real and imaginary parts
reversed. Therefore, we do not decompose h̃`,0(t) according to Eq. (6.48) and (6.49).
Instead, we model the non-oscillatory component directly, and we take a Hilbert
transform of the oscillatory component to obtain an amplitude and phase, after
tapering that component in the intervals [tmin, t0] and [t f , tmax].

The decomposition of the NR waveforms is summarized in Fig. 6.6. The NR wave-
forms begin at the top of the diagram and are processed going downwards. Each
blue endpoint represents one of the slowly-varying waveform data pieces that we
fit as a function of parameters λλλ at each of the empirical time nodes. To evaluate
the surrogate, the fits and empirical interpolants are evaluated for each of the blue
endpoints, and the waveform is reconstructed by going upwards in the diagram and
undoing each decomposition, eventually yielding h`,m(t).

Removing the dependence on φχ

As discussed in § 6.4, we attempt to start all NR simulations so that at the reference
time t = t0 we have φχ = 0, where φχ is the azimuthal angle of the spin of the larger
black hole, as shown in Fig. 6.3. However, in practice we obtain NR simulations
with nonzero values of φχ at t = t0. In this section we describe how we analytically
approximate the dependence of the waveform on φχ. The surrogate model is then
built assuming φχ = 0, so that when the surrogate model predicts waveforms with
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Figure 6.11: For the real-valued oscillatory components X such as Im[h̃2,0], we
perform a hilbert transform to obtain a complex signal H (X ) and extract an amplitude
and phase. The dashed green line shows the imaginary part of H (X ).

φχ , 0, the φχ dependence is described fully by this analytical approximation. For
an orbit-averaged PN waveform of any order that is decomposed into waveform data
pieces as described above, it turns out that one can show from the equations (e.g. as
written in [57]) that none of the waveform data pieces depend on the parameter φχ
except for the phase ϕd (t). This phase has a particularly simple dependence:

ϕd (t; λλλ,φχ) = ϕd (t; λλλ,0) + φχ, (6.50)

where λλλ describes all of the parameters except φχ. So we will make the approxima-
tion that Eq. (6.50) applies not only to orbit-averaged PN waveforms, but also to NR
waveforms lying within the 5d parameter space. In addition, we find empirically for
NR waveforms that the phases of the Hilbert transforms of A`,m− and ϕ`,m+ also obey
Eq. (6.50), but with the opposite sign on the last term.

Therefore, given a point λλλ in 5d parameter space, we first decompose hNR(t; λλλ) into
waveform data pieces, and we then subtract φχ from ϕd and add φχ to the phases
of the Hilbert transforms of A`,m− and ϕ`,m+ . We then consider the waveform data
pieces as functions of only the 4 parameters (q, | ~χ1 |, χz

2, and θ χ), and we build a
4d model of each of these waveform data pieces. When evaluating the surrogate
model waveform at a point λλλ in the full 5d parameter space, we first evaluate the 4d
surrogate model expressions for the waveform data pieces at the parameters (q, | ~χ1 |,
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Figure 6.12: Top: waveform differences δh(t) investigating the removal of the φχ
dependence on the waveform. Each colored band includes waveforms compared
to SXS:BBH:0346 and SXS:BBH:0346 for several different values of φχ. Before
making any adjustment, the errors (φχ differences) are large. After adjusting, the
errors (φχ adjusted) are comparable to resolution errors during the inspiral but grow
large at merger. The decomposition errors are negligible. Bottom: differences in ϕ2,2

− .
Our analytic approximation to remove the effect of φχ on the waveform does not
affect ϕ2,2

− , but here we see that the orbital phase at merger can vary by nearly a
radian for different values of φχ, which is the most significant contribution to the φχ
adjusted errors in the top figure.

χz
2, and θ χ), we add φχ to ϕd , and we subtract φχ from the phases of the Hilbert

transforms of A`,m− and ϕ`,m+ . Then we combine the waveform data pieces to yield the
model waveform hsur(t; λλλ).

To verify how well this procedure removes the dependence on φχ, we performed
additional SpEC simulations with parameters identical to cases SXS:BBH:0346 and
SXS:BBH:0346 but with different values of φχ. We then analytically remove the φχ
dependence from all these waveforms, as described above, thereby generating φχ = 0
versions of these waveforms, which we compare with each other. The agreement
(or lack thereof) of these φχ = 0 waveforms is a measure of the effectiveness of
our analytical procedure for removing the φχ dependence. We find that while the
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dependence on φχ is removed well during the inspiral, ϕ2,2
− (t) varies by nearly a

radian during the merger as we vary φχ, which leads to errors significantly larger
than the SpEC resolution errors as shown in Fig. 6.12. Incidentally, we note that
for two waveforms for which φχ originally differs by π, the corresponding φχ = 0
waveforms are nearly identical. Before removing φχ, the largest difference in the
waveforms used in this test is E = 0.0285, while after removing φχ, the largest
difference is E = 0.00684. While our φχ-removal procedure successfully accounts
for most of the effect of φχ, the error associated with this procedure is larger than the
median surrogate error (see Fig. 6.13 and Sec. 6.7) and indicates this approximation
could be the dominant source of error in the surrogate model.

Handling undefined phases

Our waveform decomposition scheme results in many phases, which become un-
defined when their corresponding amplitudes vanish. For example, ϕd is undefined
for non-precessing systems, as are the phases of the Hilbert transforms of nutating
quantities. Additionally, the amplitudes of subdominant modes in the coprecessing
frame can briefly become 0, making the corresponding ϕ`,m± quantities undefined.
Since the NR waveforms contain numerical noise, in practice the phases become
poorly resolved when the corresponding amplitude becomes comparable to the noise
level.

When decomposing each NR waveform into waveform data pieces, if one of the
amplitudes A(t) falls below some threshold at any time t before the merger, then the
corresponding phase ϕ(t) is omitted from the model for that NR waveform. This
means that when building empirical interpolants or fitting across parameter space
at empirical nodes, we use fewer than our entire set of 288 waveforms to fit that
particular ϕ(t). The thresholds are described in table 6.1.

6.6 Building a surrogate model from decomposed
waveforms

We have decomposed each NR waveform into many functions X (t; λλλ) that are
smoothly varying as a function of parameters λλλ. Here, X represents one of the many
decomposed waveform data pieces such as ϕp or A2,2

+ . Note that while different
waveform data pieces X will have different linear basis sizes, empirical time nodes,
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Data Quantity used Tol N pass N reject
ϕd | ~χ1 |sin(θ χ) 10−3 192 96

ϕ[H[A2,2
− ]] |H[A2,2

− ]]| 10−6 192 96
ϕ[H[ϕ2,2

+ ]] |H[ϕ2,2
+ ]]| 10−4 169 119

ϕ2,1
− A2,1

+ 10−4 260 28
ϕ2,1

+ A2,1
+ ∞ 0 288

ϕ[H[A2,1
− ]] |H[A2,1

− ]]| 3 × 10−6 97 191
ϕ[H[Im[h̃2,0]]] |H[Im[h̃2,0]]| 2 × 10−6 190 98

ϕ3,3
± A3,3

+ 10−3 210 78
ϕ[H[A3,3

− ]] |H[A3,3
− ]]| 3 × 10−6 166 122

ϕ[H[A3,2
− ]] |H[A3,2

− ]]| 10−6 140 148
ϕ3,1
± A3,1

+ 10−4 137 151
ϕ[H[A3,1

− ]] |H[A3,1
− ]]| 2 × 10−6 135 153

ϕ[H[Im[h̃3,0]]] |H[Im[h̃3,0]]| 2 × 10−6 86 202

Table 6.1: Tolerances used to omit poorly resolved phases. Other than the tolerance
for ϕd , which is based on the amount of in-plane spin, the tolerances are based on
the minimum value of some amplitude before t = 0. If a tolerance is not listed for
a particular phase parameter, for example ϕ`,2± , then that phase parameter is always
included in the surrogate. The columns N pass and N reject describe the number of
waveforms for which a phase is included in the surrogate, and the number for which
it is not. Note that we have a total of 288 waveforms but only 276 NR simulations,
because a few of the NR simulations allow us to compute waveforms for more than
one set of parameters because of symmetry considerations (cf. § 6.4).

empirical interpolants, and parameter space fits, we will not always label the explicit
X dependence of these quantities. For each X we have several NR solutions with
different parameters {X (t; λλλ) : λλλ ∈ GX } where GX ⊂ G = {ΛΛΛi}

N
i=1. We note that

the only reason we might not have GX = G is due to omitting cases with undefined
phases discussed in Sec. 6.5. The next step is to model each of those functions X

with its own surrogate model XS by building an empirical interpolant and fitting
the empirical nodes across the parameter space T . The surrogate model for the
waveform h`,mS (t; λλλ) will then evaluate XS (t; λλλ) for each waveform data piece, from
which the inertial frame waveform modes {h`,mS (t; λλλ)} will be reconstructed. These
stages are discussed below.

Empirical Interpolation

For each waveform data piece X , we build an empirical interpolant using the available
solutions {X (t; λλλ) : λλλ ∈ GX }. Here we address modifications to the standard
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Data Tol Data Tol Data Tol Data Tol
ϕp 0.005 ϕ3,3

+ 10.0 ϕ[H[A2,2
− ]] 0.3 ϕ2,2

− 0.15
ϕd 0.03 ϕ3,2

+ 10.0 ϕ[H[A2,1
− ]] 1.0 ϕ2,1

− 1.0
ϕ[H[h̃2,0]] 0.5 ϕ3,1

+ 10.0 ϕ[H[A3,3
− ]] 10.0 ϕ3,3

− 0.3
ϕ[H[h̃3,0]] 0.5 A2,2

+ 0.001 ϕ[H[A3,2
− ]] 10.0 ϕ3,2

− 0.3
|H[ϕ2,2

+ ]| 0.15 A2,1
+ 0.001 ϕ[H[A3,1

− ]] 1.0 ϕ3,1
− 10

ϕ[H[ϕ2,2
+ ]] 10.0 A3,2

+ 0.0003

Table 6.2: Projection error RMS tolerances for each basis. Unlisted quantities have a
default tolerance of 0.003 for amplitudes and 0.03 for phases.

empirical interpolation method discussed in Sec. 6.3.

We require an orthonormal basis B spanning the space of solutions {X (t; λλλ) :
λ ∈ T }. While the standard method is to use a reduced basis that was previously
constructed when determining the greedy parameters G, in our case we used PN
waveforms to find the greedy parameters and have not yet built a basis for NR
solutions of X . Greedy and singular value decomposition (SVD) algorithms have
been used within the gravitational wave surrogate modelling community [76, 239,
265, 269], and will both provide an accurate basis provided any X (t,λλλ) can be
accurately approximated in the span of {X (t,λλλ) : λλλ ∈ GX }. A short discussion,
including advantages and disadvantages of SVD and greedy algorithms in the context
of surrogate waveform modeling, is given in Appendix 6.12. Despite using a greedy
sampling strategy to identify the set of greedy parameters, we use a SVD basis for
the NR solutions, primarily for its ability to average out uncorrelated noise sources
(see Appendix 6.12).

We truncate the orthonormal basis and use the first n singular values and vectors such
that all projection errors are below the tolerances given in Table 6.2. We note that n

will be different for different waveform data pieces. We then proceed according to
Sec. 6.3, finding empirical time nodes {Tj }

n
j=1 and building an empirical interpolant

In. If we are given XS at the empirical nodes Tj , we can now determine

XS (t; λλλ) = In[XS](t) (6.51)

for all times t ∈ [tmin, tmax].
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Parametric Fits

The next step is to model the dependence on λλλ of the waveform data pieces at the
empirical nodes

X j (λλλ) = X (Tj ; λλλ) . (6.52)

We build an approximate model for X j denoted by X jS by fitting it to the available
data {X j (λλλ) : λλλ ∈ GX }. We do so using a forward-stepwise least-squares fit [290]
described in Appendix 6.11, using products of univariate basis functions in q, | ~χ1 |,
θ χ and χz

2 as the fit features. For each fit, the number of fit coefficients is determined
through a cross validation study using 50 trials, each of which uses Nv = 5 randomly
chosen validation points. The number of fit coefficients used is the one minimizing
the sum in quadrature over the error in each trial, which is the maximum fit residual
for the validation points.

Complete Surrogate Waveform Model in inertial coordinates

Given parameters λλλ5 = (q, | ~χ1 |, θ χ, φχ, χ
z
2), we extract λλλ = (q, | ~χ1 |, θ χ, χ

z
2) and

evaluate the fits and empirical interpolants of each waveform data piece X , obtaining

XS (t; λλλ) =

n∑
j=1

X jS (λλλ)b j (t) . (6.53)

We then obtain the inertial frame waveform h`,mS (t) by combining the waveform data
pieces and flowing upwards in Fig. 6.6. Explicitly,

Q(t) = T−1
ϕ

(
ϕd (t; λλλ) + φχ, ϕp(t; λλλ)

)
(6.54)

ϕ2,0
I

(t) = ϕ(H (I h̃2,0))(t; λλλ) − φχ (6.55)

I h̃2,0(t) = A(H (I h̃2,0))(t; λλλ)cos(ϕ2,0
I

(t)) (6.56)

h̃2,0(t) = R h̃2,0(t; λλλ) + iI h̃2,0(t) (6.57)

ϕ3,0
R

(t) = ϕ(H (R h̃3,0))(t; λλλ) − φχ (6.58)

R h̃3,0(t) = A(H (R h̃3,0))(t; λλλ)cos(ϕ3,0
R

(t)) (6.59)

h̃3,0(t) = R h̃3,0(t) + iI h̃3,0(t; λλλ) (6.60)

ϕ`,±m(t) = ϕ`,m+ (t; λλλ) ± ϕ`,m− (t; λλλ), m > 0 (6.61)

A`,±m(t) = A`,m+ (t; λλλ) ± A`,m− (t; λλλ), m > 0 (6.62)

h̃`,±m(t) = A`,±m(t)cos(ϕ`,±m(t)), m > 0 (6.63)

{h`,m(t)} = TQ ({h̃`,m(t)},Q(t)) , (6.64)
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where we have included the dependence on λλλ explicitly for surrogate evaluations
of waveform data pieces XS. The full NRSur4d2s surrogate evaluation producing
all 2 ≤ ` ≤ 4 modes for an array of times between tmin and tmax with spacing
δt = 0.1 takes ∼ 1s on a single modern processor. Roughly half of this time is spent
computing the transformation TQ from the coprecessing frame to the inertial frame,
Eq. (6.26).

6.7 Assessing the Model Errors

Time Domain Errors

To determine how well the output of the NRSur4d2s surrogate matches a NR wave-
form with the same parameters, we compute

E[hNR,hSur] =
1
2

δh
‖hNR‖2

, (6.65)

where hNR and hSur are the NR and surrogate waveforms, and δh is given by
Eq. (6.19). This quantifies the surrogate error as a whole at one point in parameter
space. For NR waveforms that were used to build the surrogate, we call Eq. (6.65)
the training error. For NR waveforms that were not used to build the surrogate, but
are used to test the accuracy of the surrogate model versus NR, we call Eq. (6.65) the
validation error. Because we decompose each waveform into a set of slowly-varying
functions that are modeled independently (i.e., the waveform data pieces of § 6.5), it
is useful to consider the contribution to the surrogate error that arises from modeling
a single waveform data piece. If X denotes the waveform data piece in question,
then we compute this error contribution by decomposing the NR waveform hNR into
waveform data pieces, we replace the NR version of X with the surrogate model for
X while leaving all waveform data pieces other than X untouched, and we recom-
bine the waveform data pieces, thus producing a waveform we call hX. The error
contribution from X is then EX ≡ E[hNR,hX]. Values of EX for various waveform
data pieces X are listed in Table 6.3. Note that if we decompose hNR into waveform
data pieces and then recompose the waveform data pieces, we do not recover hNR

exactly, but instead we get a different waveform h∅ because there is error associated
with the decomposition. This error, E∅ ≡ E[hNR,h∅], is also shown in Table 6.3.

A first test is to verify that the NRSur4d2s surrogate can reproduce the set of NR
waveforms from which it was built. The errors for those parameters are shown as
the solid blue curve in Fig. 6.13. These errors are significantly larger than the NR
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Figure 6.13: Histograms of time domain waveform errors E relevant to the surrogate.
Equal areas under the curves correspond to equal numbers of cases, and the curves are
normalized such that the total area under each curve when integrated over log10(E)
is 1. Solid black: The resolution error comparing the highest and second highest
resolution NR waveforms. Dotted brown: The error intrinsic to the surrogate’s
waveform decomposition. Filtering out nutation in the quaternions and neglecting
the small but non-zero δqz due to discrete time sampling leads to errors in the
reconstructed waveforms. These errors are nearly zero for non-precessing cases,
and even for precessing cases they are smaller than the resolution errors. Thin solid
blue: The errors when the full surrogate attempts to reproduce the set of waveforms
from which it was built. Dashed purple: The errors when trial surrogates attempt to
reproduce NR waveforms that were omitted during the surrogate construction.

resolution errors (cyan curve), which compare the highest and second highest NR
resolutions. This indicates either that including additional NR waveforms when
building the surrogate model would reduce the training error, or that the error is
dominated by approximations made when building the model, such as the analytic
treatment of φχ. The median training error is 0.00136, and in Sec. 6.5 we found
that our approximation for the waveform’s dependence on φχ resulted in errors
up to 0.00684, indicating the model errors could be dominated by the error in this
approximation. While the maximum training error is 0.05212, we only investigated
the dependence on φχ for three cases and only for a few values of φχ. The parametric
dependence of the training errors is illustrated in Fig. 6.14. Perhaps unsurprisingly,
the largest errors occur at larger mass ratios and spin magnitudes, and for precessing
spin directions.
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X E0
X Emax

X Emedian
X X E0

X Emax
X Emedian

X
∅ 0.0006 0.0006 0.0003 q 0.2450 0.0089 0.0004
h 0.5 0.0521 0.0014 ϕp 0.2450 0.0095 0.0004
h̃ 0.5 0.0478 0.0013 ϕd 0.4171 0.0008 0.0003

h̃2,0 0.0006 0.0006 0.0003 h̃2,±2 0.4999 0.0461 0.0011
h̃2,±1 0.0044 0.0016 0.0004 A2,2

+ 0.4999 0.0007 0.0003
h̃3,0 0.0006 0.0006 0.0003 A2,2

− 0.0018 0.0010 0.0003
h̃3,±1 0.0006 0.0006 0.0003 ϕ2,2

+ 0.0027 0.0049 0.0004
h̃3,±2 0.0008 0.0007 0.0003 ϕ2,2

− 0.9959 0.0446 0.0009
h̃3,±3 0.0043 0.0020 0.0004

Table 6.3: Maximum and median errors when attempting to reproduce the set of
NR waveforms when a single waveform data piece is replaced X with its surrogate
evaluation XS and the waveforms are reconstructed. This can be compared with E0

X ,
which is the maximum error when replacing X with 0 (or the identity quaternion
when X = q) instead of with XS. When X = ∅ we replace no waveform data
piece, but there is still decomposition error due to the lack of ` > 3 modes in
the surrogate waveforms, filtering, and neglecting qz. Note that the errors for h̃`,±m

include replacing both the (`,m) and (`,−m) coprecessing modes. Some components
X (such as X = h̃3,0) have E0

X ∼ E
max
∅ , indicating the error associated with replacing

X with 0 is similar to or smaller than the decomposition errors. ϕ2,2
− is the biggest

source of error in the surrogate, although ϕp also contributes significantly.

To test the interpolation accuracy of the surrogate, we perform a cross-validation
study. For each of ten trials, we randomly select Nv = 10 waveforms which we call
validation waveforms, and we build a trial surrogate using the remaining Nt = N−Nv

waveforms. The trial surrogate is evaluated at the Nv validation parameters, and the
results are compared to the validation NR waveforms. These validation errors are
shown as the purple dashed curve in Fig. 6.13. The validation errors are quite similar
to the training errors, indicating we are not overfitting the data.

The maximum and median values of the training errors EX are listed in Table 6.3.
The decomposition errors E∅, also shown as the dotted brown curve in Fig. 6.13,
are similar or smaller to the NR resolution errors and are therefore negligible. All
component errors EX include the decomposition errors by construction, and we see
that X = h̃`,m leads to negligible errors except for the (2,2), (2,1), and (3,3) modes.
The (2,2) mode is the dominant contribution to the error, and its error is dominated
by the error in ϕ2,2

− . The precession phase ϕp is the dominant precession error, and
is the next most significant contribution to the total error in h. Fig. 6.15 shows
histograms of the dominant sources of error, and Fig. 6.16 shows the time-dependent
errors of these components for the case with the largest training error.
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Reference Case Ecc E

SXS:BBH:0534 0.000375 0.000007
SXS:BBH:0534 0.002272 0.000162
SXS:BBH:0546 0.000316 0.000004
SXS:BBH:0546 0.000381 0.000005
SXS:BBH:0546 0.002389 0.000106

Table 6.4: Errors E[h0,hecc] where h0 is the waveform from a reference case used to
build the surrogate and hecc is a waveform from a NR simulation with nearly identical
parameters but with a larger eccentricity. For SXS:BBH:0534, h0 has an eccentricity
of 0.000027, and for SXS:BBH:0534, h0 has an eccentricity of 0.000055.

We have constructed the surrogate models and computed E assuming zero orbital
eccentricity. However, it is not possible to construct NR simulations with exactly zero
eccentricity, and the simulations used to build the surrogate have eccentricities of up
to 0.00085. To estimate the effect that the eccentricity of the NR waveforms has on
our surrogate, we repeated two of our NR simulations changing nothing except the
eccentricity. The errors we found are listed in Table 6.4. The largest eccentricities in
these additional simulations are several times larger than the maximum eccentricity
in the NR simulations used to build the surrogate, yet the resulting waveform errors
are smaller than the surrogate errors and comparable to the NR resolution errors.
This suggests that the small eccentricities present in the NR waveforms used to build
the surrogate are negligible compared to the NR resolution errors.

Frequency-domain comparisons

In this section we compute mismatches in the frequency domain between surro-
gate waveforms and NR waveforms. To ascertain the significance of these mis-
matches, we also compute mismatches between two NR waveforms with the same
parameters but different resolutions. For comparison, we also compute mismatches
between NR waveforms and the phenomenological inspiral-merger-ringdown wave-
form model IMRPhenomPv2 (which follows the procedure outlined in [66] with
IMRPhenomD [65] as the aligned-spin model) and between the effective-one-body
model SEOBNRv3 [152], both of which include the effects of precession.

We minimize the frequency domain mismatches over time and polarization angle
shifts analytically as described in Appendix 6.14, and also minimize them over
orbital phase shifts numerically. When we compare two waveforms, we choose
one waveform as the reference waveform with fixed parameters, and optimize over
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Figure 6.15: Errors EX showing the error contribution of a single surrogate compo-
nent X .

the parameters of the other waveform. When comparing two NR waveforms, the
reference waveform is the one with the highest resolution; when comparing NR with
some model waveform, the NR waveform is chosen as the reference.

The SEOBNRv3 and IMRPhenomPv2 waveforms are generated with the lalsimula-
tion package [182]. Each SEOBNRv3 waveform is generated in the time domain;
the spin directions are specified at the start of the waveform, which is determined
by specifying a minimum frequency. We ensure the spin directions are consistent
with those of the NR waveforms by varying the minimum frequency in order to
obtain a waveform with a peak amplitude occuring 4500M after its initial time.
The IMRPhenomPv2 waveforms are generated in the frequency domain, and the
spin directions are specified at a reference frequency f ref that can be freely chosen.
For IMRPhenomPv2 it is not straightforward to determine f ref such that the spin
directions are specified at a time of 4500M before the peak amplitude. Therefore, we
instead choose f ref differently: we minimize the mismatches by varying f ref , with an
initial guess of twice the initial orbital frequency of the NR waveform.

To transform the time domain waveforms into the frequency domain, we first taper
them using Planck windows[220], rolling on for t ∈ [t0, t0 + 1000M] and rolling off

for t ∈ [50M,70M] where t0 = −4500M is the time at which the parameters are
measured, and t=0 is the time of peak waveform amplitude. We then pad them with
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Figure 6.16: Error contributions δh(t) of those waveform data pieces X that have
the largest error E[h,hX ] for a selected simulation: ID 79. To compute the error,
the NR waveform is decomposed into the surrogate components, and component X
is replaced with its surrogate evaluation. The waveform is then reconstructed, and
δh(t) is computed from Eq. (6.16). The solid black curve is given by Eq. (6.24).
The dashed curve is the error in ϕp, which is the dominant error in modeling the
precession, and the dominant error source during the inspiral. The dotted curve is
the error in a quantity similar to twice the orbital phase, and becomes the dominant
error source during the merger and ringdown. The contribution from errors in the
other waveform data pieces is smaller, as shown in Table 6.3.

zeros and compute the frequency domain waveforms via the fast Fourier transform
(FFT). For the reference NR waveform, we obtain 30 random samples of the direction
of gravitational wave propagation (θ,φ) from a distribution uniform in cos θ and in
φ, and we uniformly sample the polarization angle ψ between [0, π] to obtain

hψ (t) = h+(t)cos(2ψ) + h×(t)sin(2ψ). (6.66)

For the non-reference waveform, we use the same parameters except we add an
additional initial azimuthal rotation angle φ, a polarization angle ψ, and a time offset,
and we optimize over these three new parameters to yield a minimum mismatch.
Because the waveform models do not intrinsically depend on the total mass, we first
use a flat noise curve to evaluate the overlap integrals; this provides a raw comparison
between models. We evaluate Eq. 6.23 with fmin being twice the orbital frequency
of the NR waveform at t = −3500M .

The mismatches using a flat noise curve are shown in the top panel of Figure 6.17.
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We find that both the IMRPhenomPv2 (green dot-dashed curve) and SEOBNRv3
(solid curve) models have median mismatches of ∼ 10−2 with the NR waveforms.
The mismatches between our surrogate model and the NR waveforms are given
by the “Training” (solid blue) and “Validation” (dashed purple) curves and have
median mismatches of ∼ 10−3 with the NR waveforms; see § 6.7 for a discussion of
training and validation errors. Finally, NR waveforms of different resolution have
median mismatches (solid black curve) of ∼ 10−5. In the middle and bottom panels,
we repeat this study while restricting which coprecessing-frame modes are used.
IMRPhenomPv2 contains only the (2,±2) modes, while SEOBNRv3 also contains
the (2,±1) modes. Obtaining larger mismatches in the top panel when comparing
against all NR modes indicates these waveform models would benefit from additional
modes. We find that our surrogate performs roughly an order of magnitude better
than the other waveform models in its range of validity, but still has mismatches two
orders of magnitude larger than the intrinsic resolution error of the NR waveforms.
This suggests that the surrogate could be improved with additional waveforms and/or
improved model choices. However, we also note that neither IMRPhenomPv2 nor
SEOBNRv3 have been calibrated to precessing NR simulations.

Since a realistic noise curve will affect mismatches, we also compute mismatches
for total masses M between 20M� and 320M� using the advanced LIGO design
sensitivity [217]. In Fig. 7.4, the lower and upper curves for each waveform model
denote the median mismatch and 95th percentile mismatch. We note that for M <

114�, some NR and surrogate waveforms begin at fmin > 10 Hz and the noise-
weighted inner products will not cover the whole advanced LIGO design sensitivity
band. The surrogate model errors increase with total mass, indicating a larger amount
of error in the merger phase and less error in the inspiral phase. Note that our largest
systematic source of error, the approximate treatment of the waveform’s dependence
on the angle φχ, is much larger during the merger than during the inspiral, as
discussed in § 6.5 and plotted in Fig. 6.12. This error source arises from our attempt
to model a 5d parameter space with a 4d surrogate model, so it will not be relevant
for a full 7d surrogate model. Even with this error, our surrogate model performs
better than the other waveform models up to 320M� within the surrogate parameter
space.

To determine if the discrepancy between the surrogate errors and NR resolution
errors is due to an insufficient number of NR waveforms in the surrogate, we study
how the errors depend on the number of waveforms used to build the surrogate. We
construct trial surrogates using the first Ntrain NR waveforms for Ntrain ∈ [30,200];
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Figure 6.17: Mismatches, computed using a flat noise curve, versus the highest
resolution NR waveforms. Histograms are normalized to show the error fraction
per log-mismatch, such that the area under each curve is the same. A sufficient but
not necessary condition for a mismatch to have a negligible effect is that the signal-
to-noise ratio (SNR) lies below the limiting SNR ρ∗ = 1/

√
2Mismatch given on

the top axis [147]. Top: All modes available to each waveform model are included,
and the NR waveforms use all ` ≤ 5 modes. Middle: All coprecessing-frame
modes other than (2,±2) are set to zero in all waveforms. Bottom: All coprecessing-
frame modes other than (2,±1) and (2,±2) are set to zero in all waveforms. These
restricted mode studies are done to compare more directly with IMRPhenomPv2 and
SEOBNRv3, which retain the coprecessing-frame modes of the middle and bottom
panels respectively.
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for validating the surrogate, we use the N − 200 waveforms that are not used to build
any of these trial surrogates. By using the same N − 200 validation waveforms for
all choices of Ntrain, we ensure that any changes in the error distribution resulting
from changes in Ntrain are due to changes in the surrogate model and not in the set
of validation waveforms. The validation errors, shown in Fig. 6.19, decrease quite
slowly with additional waveforms when Ntrain > 100, suggesting that the number of
NR waveforms would have to increase dramatically to have a noticeable affect on
the predictive ability of the surrogate.

Representing arbitrary spin directions

One of the limitations of the NRSur4d2s surrogate model is that it only produces
waveforms for binaries with a restricted spin direction on the smaller black hole.
However, it is possible to make use of effective spin parameters to create a parameter
mapping

f : (q, ~χ1, ~χ2) → ~xmodel (6.67)

from the 7d space of binaries with arbitrary spin directions to a lower-dimensional
parameter subspace [199, 200, 291]. The use of a model with such a parameter space
mapping in gravitational wave source parameter estimation leads to equivalence
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Figure 6.19: Max, mean, and medians of the distributions of E when building a
surrogate using the first N waveforms and a validation set consisting the remaining
200 − N waveforms.

classes
{(q, ~χ1, ~χ2) : f (q, ~χ1, ~χ2) = ~xmodel} , (6.68)

where multiple values of the 7d parameters map to the same lower-dimensional
parameter vector ~xmodel. For parameter estimation, all members of the equivalence
class have the same likelihood, so distinguishing parameters within one equivalence
class can be done only using knowledge of the prior.

Here we investigate several possible mappings from the full 7d parameter space to
the 5d subspace covered by the NRSur4d2s surrogate model, and we investigate the
accuracy of these mappings using 3 SpEC simulations with parameters outside the
5d subspace. In our case, ~xmodel is the vector (q, ~χ1, χ

z
2) at t = t0. To construct a

parameter space mapping from (q, ~χ1, ~χ2) to ~xmodel, we use the values of ~χ1 and
~χ2 at t = t0 to form an effective spin ~χeff , and then construct ~xmodel using ~χeff

instead of ~χ1. This preserves the values of q and χz
2, while reducing the other 5 spin

components to 3.

The most simple mapping would be to ignore the x and y components of ~χ2 at t = t0

and take
~χ

Drop
eff

= ~χ1. (6.69)

A second possibility would be to use a similar parameter mapping as is used in
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SSX:BBH:ID q ~χ1 ~χ2
0607 1.5 (0.067,−0.199,0.212) (0.139,−0.374,0.202)
0608 1.7 (0.053,−0.085,0.001) (0.494,0.337,0.113)
0609 1.9 (0.094,−0.145,0.099) (−0.398,0.576,0.001)

Table 6.5: Parameters for three additional SpEC simulations with unrestricted spin
directions. The spins are measured at t = t0.

IMRPhenomP [66] with an effective precessing spin χp [291] and take

B1 =

(
2 +

3
2q

) (
q

1 + q

)2

, (6.70)

B2 =

(
2 +

3q
2

) (
1

1 + q

)2

, (6.71)

i∗ = arg max
i=1,2

Bi‖ ~χ
⊥
i ‖, (6.72)

~χ
χp

eff
=

Bi∗

B1
~χ⊥i∗ + χz

1 ẑ , (6.73)

where ~χ⊥i is the part of ~χi orthogonal to the Newtonian orbital angular momentum,
which is ( χx

i , χ
y
i ,0) at t = t0. This mapping uses the in-plane spin components

of whichever spin contributes the most to precession at leading PN order, scaled
appropriately and placed on the heavier black hole. This mapping is particularly
effective when the in-plane spins of the smaller BH are negligible, i.e., for high
mass ratios, and for long duration GWs. However, it has also been shown to prove
sufficient for binaries similar to GW150914 [20, 263].

In our case, we have a couple precession cycles at most, and we might consider
adding the effects of the in-plane components of the two spins. A further motivation
to add the spins is that for nearly equal masses, the precession rates of the two spins
will be nearly equal [279, 292]. When adding the dimensionless spins, we can either
do so directly,

~χAdd
eff = ~χ1 +

1
q2 ~χ⊥2 , (6.74)

or again using the leading order PN contribution to precession,

~χPN
eff = ~χ1 +

B2

B1
~χ⊥2 . (6.75)

We do a brief investigation of the quality of these parameter space mappings using
three additional SpEC simulations. The waveforms are aligned as described in
Sec. 6.4, and their parameters at t = t0 are measured and listed in Table 6.5. For each
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Map E Median Mismatch
0607 0608 0609 0607 0608 0609

Drop (Eq. 6.69) 0.016 0.007 0.008 0.0054 0.0026 0.0031
Add (Eq. 6.74) 0.007 0.009 0.013 0.0046 0.0051 0.0076
PN (Eq. 6.75) 0.008 0.019 0.021 0.0041 0.0075 0.0109
χp (Eq. 6.73) 0.014 0.018 0.044 0.0050 0.0074 0.0161

Table 6.6: Errors between the three NR waveforms and the surrogate evaluation for
a given parameter space mapping. Mismatches are optimized over time, polarization
angle, and orbital phase shifts. For each mapping, the largest error is in bold.

case and each parameter space mapping, we compute the mapped parameters and
compare the surrogate evaluation with the mapped parameters to the NR waveform.
The time-dependent waveform errors are shown in Fig. 6.20 and E values as well as
mismatches are given in Table 6.6. ∼ 0.01, which is larger than the median surrogate
errors but well within the possible range of surrogate errors, so we cannot rule out
that these errors are dominated by surrogate error. The “Drop" parameter space
mapping performs reasonably well since the cases investigated are far enough away
from equal mass that the spin of the smaller black hole has a small effect on the
waveform.

6.8 Building the Frequency Domain Surrogate
Evaluating the NRSur4d2s surrogate takes ∼ 1s on a single modern processor.
Evaluating all coprecessing modes takes ∼ 0.21s, evaluating the frame quaternions
q(t) takes ∼ 0.38s and is dominated by evaluating Eq. 6.38 sequentially for all
times, and rotating the modes into the inertial frame with the transformation TQ

takes ∼ 0.41s. Gravitational wave parameter estimation is typically done using
Markov-chain Monte Carlo [187] and can require O(108) waveform evaluations;
this motivates us to build a faster surrogate model. We also wish the faster surrogate
model to be in the frequency domain, where most parameter estimation is currently
done. Accelerated frequency-domain surrogates have been built in 3d [239, 265]
using cubic tensor-spline interpolation of the waveform amplitudes and phases at
some sparsely sampled frequency points.

To build the frequency-domain NRSur4d2s_FDROM surrogate, we first choose a
uniformly spaced grid of N = Nq × ... × Nχz2

points in our 5d parameter space and
evaluate the NRSur4d2s surrogate model at each point on the grid. We taper the
waveforms with Planck windows [220], rolling on for t ∈ [−4500M,−3500M] and
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Grid label Nq N| χ1 | Nθχ Nφχ Nχz2
5 5 4 7 4 6
6 6 4 8 4 7
7 7 5 9 4 8
8 8 6 11 4 9
9 9 6 13 5 11
10 10 7 14 6 12
11 11 8 15 7 14
12 12 9 17 8 16
13 13 10 19 9 19

Table 6.7: Grid sizes for tensor-spline interpolation in the frequency-domain surro-
gate. The size in each dimension is chosen such that surrogates for 1d slices in all
dimensions have comparable interpolation errors.

rolling off for t ∈ [50M,70M]. We then pad the waveform modes with zeros and
perform a fast Fourier transform to obtain the frequency domain modes h̃`,m( f ).
We then downsample the frequency domain waveforms to a non-uniformly spaced
set of frequencies, which are chosen to be the same for all waveforms and to be
uniformly spaced in gravitational-wave phase for an equal-mass zero-spin binary.
This significantly reduces the cost of evaluating the model, with a negligible loss
in accuracy. For each mode h̃`,m( f ), we build an empirical interpolant in frequency
using all N waveforms, and we keep the first 100 basis vectors. At each empirical
frequency node, we fit the real and imagniary parts of each mode across parameter
space using a cubic tensor-product spline; we use “not-a-knot” boundary conditions
that have a constant third derivative across the first and last knots [293]. Finding the
spline coefficients involves solving a sparse linear system of size (Nq+2)×...×(Nχz2

+

2), for which we used Suitesparse [294, 295] and/or SuperLU DIST [296, 297]. The
advantage of using a spline is that the evaluation cost is nearly independent of the
grid size N , and requires only 4d=5 coefficients and basis functions to be evaluated.

Implementing the NRSur4d2s_FDROM surrogate model in both C and Python, we
find it takes 50ms to evaluate a single waveform in either case. Empirical interpola-
tion accounts for roughly 10% of the cost, and the remaining 90% comes from to the
2400 spline evaluations. Assembling the waveform at a desired sky direction from
the modes and interpolating onto the desired frequencies have negligible cost.

To ensure that the empirical interpolants and parameter space splines are sufficiently
accurate, we construct many frequency-domain surrogates for increasingly large
parameter space grids. We monitor the differences between the frequency domain
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Figure 6.21: Cumulative error distributions of the frequency domain NR-
Sur4d2s_FDROM surrogate waveforms compared to the time domain NRSur4d2s
surrogate waveforms transformed to the frequency domain, evaluated for randomly
chosen uniformly distributed parameters. The curves indicate the fraction of errors
at least as large as the indicated error. The NRSur4d2s_FDROM output converges to
the FFT of the NRSur4d2s output as the grid size is increased.

surrogate waveforms and the FFT of the tapered NRSur4d2s waveforms, and we
demand that these differences decrease with increasing grid size. We use a different
number of grid points in each parameter-space dimension, since the waveforms
vary more in some dimensions than others. To determine the number of grid points
to use, we construct frequency-domain surrogates for 1d slices of the parameter
space, where the other parameters are fixed at a single intermediate value. We then
arbitrarily choose a value of Nq, the number of grid points covering the dimension of
mass ratio, and we determine the maximum error of the 1d surrogate in which only
the mass ratio q is varied. Call this error Eq. Then we find the number of points N| χ1 |

for which the 1d surrogate for | χ1 | has an error of approximately Eq, and similarly
for the other parameters. The resulting grid sizes are listed in table 6.7. In Fig. 6.21,
we see that the errors converge as the grid size increases.

6.9 Discussion
We have built the first NR surrogate model of BBH waveforms that covers a multi-
dimensional portion of the BBH parameter space. This extends the work in [269],
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where a 1-dimensional (i.e. zero spin) NR surrogate served as a proof of principle that
surrogate models of NR waveforms can be made highly accurate. The non-spinning
surrogate model is inappropriate for use in GW parameter estimation, as neglecting
all spin effects could lead to large parameter biases. Extending the parameter space
to include both aligned spin components and one precessing component makes the
new model presented here the first NR surrogate suitable for gravitational wave
parameter estimation. While two of the in-plane spin components are still neglected
by the NRSur4d2s surrogate model, IMRPhenomPv2 neglects similar information
but obtains parameters for GW150914 that are compatible with those obtained using
SEOBNRv3, which includes all spin components [263]. We note, however, that for
edge-on systems otherwise similar to GW150914 IMRPhenomPv2 can obtain biased
parameter estimates [268].

To reduce computational cost, the simulations used to build the NRSur4d2s surrogate
were restricted to mass ratios q ≤ 2 and spin magnitudes | ~χi | ≤ 0.8. This limits the
range of GW events for which the surrogate model could be used. GW150914 is
within this range, while the mass ratio posterior of GW151226 extends well beyond
q = 2. Ultimately, a NR surrogate model covering the fully precessing 7d parameter
space up to large mass ratios and spin magnitudes will be needed.

Use of the NRSur4d2s surrogate is also limited by the length (i.e. number of orbits)
of the waveforms used to build it. GW151226 enters the sensitive LIGO band ap-
proximately 55 cycles before merger [251], while the NRSur4d2s surrogate produces
waveforms with between 30 and 40 cycles before merger. Since these waveforms are
tapered before building the faster NRSur4d2s_FDROM surrogate, the latter includes
only 25 to 35 cycles before merger. There are a few ways to build an NR surrogate
with longer waveforms, so that the surrogate is applicable to GW events of lower
total mass. First, one could build a surrogate model using longer NR waveforms.
A less computational expensive option would be to hybridize [215, 298–300] the
NR waveforms with PN or EOB waveforms before building a surrogate model. A
final option would be to use a time domain surrogate which produces waveforms
of moderate length as done here, to hybridize the surrogate output with PN or EOB
waveforms before transforming them into the frequency domain, and finally to build
a frequency domain surrogate for the hybrid waveforms.

Phenomenological and semi-analytic waveform modeling approaches have already
led to precessing waveform models suitable for GW parameter estimation from a
large class of GW events. These models have an underlying structure, and are cali-
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brated by tuning a set of numerical coefficients such that the model waveforms have
good agreement with NR waveforms. NR surrogate models provide an independent
approach. NR surrogate models make no assumptions about the waveform structure,
although knowledge of the waveform structure may lead to a better decomposition
and smaller errors for a given number of input NR waveforms. We find our NR-
Sur4d2s surrogate model to have better agreement with NR waveforms than other
leading waveform models within the range of validity of the surrogate, although we
again note that these other models have not been calibrated to precessing NR simula-
tions. As gravitational wave detector sensitivities improve, this increased waveform
accuracy will become important for unbiased measurements of the parameters from
the loudest GW events, as well as when making astrophysical statements using many
GW events.

Since we have not performed Cauchy characteristic extraction [138, 241, 242, 301],
but instead have extracted waveforms from the simulations at a series of finite radii
and then extrapolated them to infinite radius [216], the (2,0) modes of the numerical
waveforms in the coprecessing frame may not be accurate [213]. In particular, we
do not see the expected gravitational wave memory in the real part of the (2,0)
mode [302, 303]. This should lead to negligible errors for most LIGO purposes,
since the memory signal is low frequency and has very little contribution within the
LIGO band. However, NRSur4d2s would not be suitable to detect a memory signal
with a method requiring templates that include memory. A direct measurement of
the memory signal using the method proposed in [319], however, could make use
of waveforms from NRSur4d2s, as they have the (2,±1) and (3,±3) modes in the
coprecessing frame necessary to determine the sign of the memory.

The errors in the NRSur4d2s surrogate are significantly larger than the resolution
of the NR waveforms used in its construction. An incomplete treatment of the spin
angle ϕχ (see Fig. 6.3) is one large source of error, and a complete 7d NR surrogate
model would not suffer from this issue. Aligning the rotation of the waveforms (see
§ 6.4) closer to merger might reduce the errors, since ϕ2,2

− at the empirical nodes
would have less variation across parameter space. Since the parameters of the NR
simulations were chosen such that ~χ2 is aligned with the orbital angular momentum
4500M before merger, it would be non-trivial to build a surrogate model from these
NR waveforms if the rotation alignment were performed at some other time. This
is another issue which will be resolved by including all 7 dimensions of parameter
space.
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Incorporating additional NR waveforms into the NRSur4d2s surrogate should also
reduce the surrogate errors, although Fig. 6.19 indicates that with the current surro-
gate choices a very large number of additional NR waveforms would be needed for a
significant reduction. Alternative methods of fitting empirical nodes could also help.
The training and validation errors in Fig. 6.17 and 6.13 are nearly identical, while in
[269] the validation errors were roughly a factor of 2 larger than the training errors.
This suggests we may be under fitting the data and could use tighter parameter space
fit tolerances.

In addition to model cross-validation, there is a variety of informative diagnostics
we could monitor to diagnose sources of surrogate error. Failing to meet one of these
diagnostics would indicate an unexpected source of surrogate error that could be
improved:

• Decay of the temporal basis error. Smooth models are expected to have an
exponentially decaying basis projection error and empirical interpolation error.
Numerical noise in the NR waveforms means the exponential decay will not
continue to arbitrarily small errors, but if the error curves do not display a
region of exponential decay there is reason to suspect the basis is not accurate
enough.

• Decay of the parametric fitting error. It is known that expanding (with orthogo-
nal projection) a smooth function with polynomials results in an exponentially
decaying approximation error. We believe the waveform data pieces evaluated
at empirical nodes can be described by a smooth function plus (relatively
small) noise. Thus, just as in the case of the basis projection error, the fitting
error is expected to decay exponentially before the noise sources dominate
the approximation. This can be seen in Fig. 6.22, where the exponential decay
only lasts for approximately 10 coefficients before noise sources cause the
validation errors to flatten and then slowly rise.

• Robustness to noise. We could build surrogates from waveforms with different
NR resolutions. In our case, since the surrogate errors are larger than the NR
resolution errors, we expect to obtain a surrogate of comparable quality using
slightly lower resolution NR waveforms. If we use really low resolution NR
waveforms, we would expect the surrogate errors to rise accordingly. In other
cases where we do achieve surrogate errors similar to the NR resolution errors,
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comparing surrogates built from NR waveforms of different resolutions should
yield similar differences to comparing the NR waveforms themselves.

• Residual structure. We could examine the parametric fit residuals and cross-
validation residuals as a function of parameters. If the surrogate model captures
the dominant features of NR waveforms then these residuals should appear
random. From Fig. 6.14 we see that the largest errors occur at large values
of | ~χ1 | and for intermediate values of θ χ, where precession has the largest
effect. This indicates additional highly-precessing NR simulations may help
significantly in reducing the surrogate errors.
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6.11 Forward-stepwise greedy fit algorithm
Here we describe in more detail the algorithm we use in section 6.6 used to fit the
waveform data pieces evaluated at the empirical time nodes. Given N numerical
reltivity simulations at parameters λλλNR = {λλλi}

N
i=1, where λλλ = (q, | χ1 |, θ χ, χ

z
2) =

(λ1, λ2, λ3, λ4), we obtain each waveform data piece X = {X (t,λλλi)}Ni=1. Evaluating
the surrogate model requires predicting Xm(λλλ) = X (Tm,λλλ) for each empirical time
node Tm and for λλλ < λλλNR. Denoting the model prediction as XmS (λλλ), we need
not restrict to an interpolation scheme where XmS (λλλi) = Xm(λλλi) because the data
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contain numerical noise. Instead, we use linear fits such that

XmS (λλλ) =

M∑
i=1

ci Bi (λλλ) (6.76)

for some set of basis functions {Bi}Mi=1.

For simplicity, we choose all multivariate basis functions to be products of one-
dimensional basis functions; that is, we choose Bi ∈ {B~α}, where

B~α (λλλ) =

d∏
l=1

Bαl

l (λl ). (6.77)

Here d = 4 is the dimension of the parameter space, ~α = (α1, . . . ,αd) labels which
univariate basis functions enter the product, and we choose

• Bk
1 (q) = Tk (2q − 3)

• Bk
2 (| χ1 |) =

(
| χ1 |

0.8

) k

• Bk
3 (θ χ) = cos(kθ χ)

• Bk
4 ( χz

2) = Tk (
χz2
0.8 ),

where the Tk are Chebyshev polynomials of the first kind. We restrict the maximum
order of the basis functions so that αl ≤ k l

max where ~kmax = (5,6,6,4). We also
restrict α3 ≤ α2 to ensure θ χ does not affect the surrogate output when | χ1 | = 0.

The above choices are made for all waveform data pieces X except for X = ϕp. If
the waveform data piece is ϕp we do the same as above except we instead choose

Bk
3 (θ χ) = sin((k + 1)θ χ), (6.78)

and we restrict 1 ≤ α2 ≤ 6 and allow all 0 ≤ α3 ≤ 6. We treat ϕp differently because
the amount of precession is approximately proportional to the spin component
orthogonal to the orbital angular momentum, while other waveform data pieces
depend more strongly on the parallel component.

The above choices yield 1008 possible basis functions (1512 for ϕp), which is more
than N ≤ 300, so we will use only a subset of the possible basis functions. We
determine elements Bi ∈ {B~α} of this subset in a greedy manner with a forward-
stepwise least-squares fit [290]. We proceed by iteratively updating two quantities:



135

rn
j , which is the jth fit residual at the nth iteration, and b~α,nj , which is the orthogonal

component of the basis function B~α at the nth iteration evaluated at parameters λλλ j .
For the zeroth iteration we begin with

r0
j = Xm(λλλ j ) (6.79)

b~α,0j = B~α (λλλ j ). (6.80)

At the nth iteration, we compute the inner product of the residuals with the basis
functions

d~α
n =

∑
j

rn
j b~α,nj . (6.81)

We then select the next most relevant basis function as the one with the largest
magnitude inner product with the residuals

~α∗n = arg max
~α

|d~α
n | (6.82)

and choose Bn = B~α∗n . We compute the new residuals by subtracting the projection
onto the newly chosen basis function

rn+1
j = rn

j − d~α∗n
n b~α

∗
n ,n

j (6.83)

and also orthogonalize the basis functions with respect to the new basis function

b~α,n+1
j = b~α,nj − e~α,nb~α

∗
n ,n

j (6.84)

e~α,n =
∑

j

b~α,nj b
~α∗n ,n
j . (6.85)

We continue until we have performed m ≤ N iterations. We can then perform a
least-squares fit using the m selected basis functions to find the coefficients ci. In
practice this is done during the greedy iteration by keeping track of the matrix of
transformations relating B~α (~x j ) and b~α,nj as well as the coefficients d~α∗n

n .

This procedure does not indicate which value of m (the number of fit coefficients)
to use. Using N fit coefficients would be overfitting the data, and setting individual
fit tolerances by hand for each empirical node of each data component would be
time consuming and error prone. So instead, we repeat the above procedure for
different values of m, we perform cross-validation studies on the resulting fits, we
find the value of m that leads to the smallest validation errors (call this value m∗),
and we choose m = m∗. For each trial k = 1, . . . ,K = 50 of this cross-validation
procedure, we randomly divide the N data points into Nv = 5 validation points and



136

0 50 100 150 200 250 300
Number of fit coefficients m

10-3

10-2

10-1

100

101

102

103

ϕ
2,

2
−

 n
o
d

e
 f

it
 r

e
si

d
u

a
l Validation max

j
rm, kj

Validation 

√
1
K

∑
k

max
j

(rm, kj )2

Training 

√
1
K

∑
k

max
j

(rm, kj )2

Final fit max
j
rmj

Figure 6.22: Fit residuals for the second empirical node of ϕ2,2
− at t = −806.5M.

Blue dashed: The maximum fit residual using all data. Thin grey lines: Maximum
validation residual for individual trials. Thick black line: The RMS of the validation
residuals for K = 50 trials. It takes its minimum value at m = 30, which determines
the number of fit coefficients to use for this node in the model. Red: The RMS of the
training residuals for K = 50 trials.

Nt = N − Nv training points. Using only the training data, we perform the above
greedy forward-stepwise fitting procedure. For values of m ∈ [0,Nt], we obtain
a least-squares fit with m coefficients using the training data and evaluate the fit
residuals rm,k

j for the validation data. We choose

m∗ = arg min
m

K∑
k=1

Nvmax
j=1

(
rm,k

j

)2
. (6.86)

We use the maximum over j because we seek to minimize the largest fit residuals,
and we sum in quadrature over k rather than maximize to account for cases where
data points with large errors or corner cases are selected as validation points, which
can lead to large fit residuals. The dependence of the residuals on m for one case is
shown in Fig. 6.22.

6.12 Comparing reduced basis constructions
We compare two commonly used methods to generate a reduced basis in gravitational
waveform reduced-order modeling. The first uses a singular value decomposition
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(SVD) of a data set whose output consists of a set of basis vectors ranked by their
“singular values”, which are eigenvalues when the input data is square. The SVD
reduced basis follows by truncating the output basis beyond a selected singular value.
The resulting basis is accurate up to that singular value as measured in a root-mean-
square norm. The second method uses a greedy algorithm, which is iterative and
nested, to expose the most relevant elements of the input (or training) data set [162,
304]. The greedy algorithm selects the element with the largest current projection
error (as measured by a specified norm), orthonormalizes the selected element with
respect to the current basis, and adds this orthonormalized element to the set of basis
vectors. In practice, one uses an iterated, modified Gram-Schmidt process [305]
for orthonormalization, which is robust to the accumulation of numerical round-off

effects from subtraction until very large basis sizes. The algorithm ends when the
largest projection error is below a specified tolerance; it also ends if a previously-
selected training data element is selected again, which, if it were allowed to occur,
would introduce a linearly dependent element to the basis. The output includes
a (greedy) reduced basis and a set of parameters or labels that indicate the most
relevant elements of the training data from which the basis is built.

Both SVD and greedy methods output a reduced basis that accurately represents the
training data to the requested singular value or tolerance. The output of the SVD
algorithm depends only on the training data. The greedy algorithm, on the other
hand, begins by choosing one of the training data elements as the first basis vector,
so its output depends also on that choice. How that choice is made is often arbitrary
and may depend on the application. For example, one may seed the greedy algorithm
with an arbitrary element from the training set or choose the element that has the
largest absolute value or norm. However, it has been shown that the choice of seed is
largely irrelevant as the greedy algorithm seeks to minimize the maximum projection
error across the entire training set, no matter what the seed. The resulting variations
in the size of the greedy reduced basis due to arbitrary seed choices are marginal
and typically span a few percent about the mean size [75, 282, 306].

Practical implementations of the SVD algorithm can be found rather easily because
of its broad use across many disciplines. Therefore, building an SVD reduced basis
for a training set of waveforms is as straightforward as calling the appropriate
programmed function. However, if the training data contains N waveforms with
L time or frequency samples then the SVD algorithm is O(N2L), which can be
intensive in both time and physical memory. For this reason, the authors in [307]
divide the full training space into narrow strips in one direction of the parameter
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space. Dividing the training space into smaller subsets results in a direct product of
reduced bases, one basis for each subset. Unfortunately, the total number of the basis
elements tends to be larger than if one had performed a SVD on the full training data
(if it can be done). Consequently, the reduction of the data is not maximized.

One often has considerable flexibility in designing a greedy algorithm for a specific
application. If the training set remains fixed throughout the course of the greedy
algorithm (see [248] for an example where this is not the case) then each iteration
step can be performed in constant time so that the totality scales as O(nN ) if n is the
number of reduced basis elements needed to reach the specified tolerance. Typically,
n � N so that greedy algorithms tend to terminate more quickly than an application
of SVD on the same training data, though there is some additional influence from
implementation details. The greedy algorithm can be parallelized to break up the
computation of expensive integrals across different processes [308]. In addition, the
size and memory requirements of a very large training set pose little problem for
greedy algorithms. The training space can be divided into subsets so that a reduced
basis is built for each with a tolerance up to numerical round-off as measured in the
L∞ norm (to have point-wise accuracy for the data). Then, one may apply a second
greedy algorithm on the full training data by using instead the basis data on each
subset to represent the original data of each subset. In this way, one can generate
a reduced basis that spans all the subsets and maximizes the reduction of the full
training set [309]. Combining this two-step greedy algorithm with the parallelization
of the projection integrals discussed above provides a viable and practical strategy
for building a reduced basis for training sets of virtually any size. Another strategy is
to randomly repopulate the training set at each iteration of the greedy algorithm [248,
310]. This approach requires that the training data can be generated at will for any
parameter values but also avoids storing prohibitively large amounts of data at any
step in the greedy algorithm.

Finally, greedy algorithms allow one to use any measure for determining the pro-
jection errors. This includes choosing among L2, L∞, and Ln error norms or any
combination thereof. In addition, computing the integrals for projecting the training
data onto the basis can be achieved with any quadrature rule one wishes. However,
implementations of the SVD algorithm are restricted to the L2 measure and the
reduced basis will depend on how the training data is sampled in time or frequency.

Let us next investigate a toy problem to facilitate a comparison of the outputs of a
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Figure 6.23: Plots of X (t; λ) for our toy problem evaluated at the smallest and
largest values of λ in the training set.

basic greedy algorithm and SVD. We consider a function

X (t; λ) = sin(λt) + 10−5 sin(10λt) + 10−10ξ (t) , (6.87)

where t ∈ [0,10] with a parameter λ ∈ [1,20]. There is a relatively high frequency
component with an amplitude of 10−5. The quantity ξ (t) is a random variable drawn
from a normal distribution with zero mean and variance of one. This stochastic term
has an amplitude of only 10−10.

Our training set will consist of N = 1000 uniformly spaced values of λ. Figure 6.23
shows training data for the smallest and largest parameter values considered here.
We sample the function in (6.87) at 10,000 uniformly spaced times.

We construct three reduced bases. The first is built from an SVD on the training data.
The second uses a greedy algorithm to generate a reduced basis and a corresponding
set of parameters; here we use the L2 norm to measure the difference between each
training set element and its projection onto the basis. The third is built in the same
greedy manner as the second but uses the L∞ norm to measure the projection error.
Recall that the L2 error constitutes a kind of average as it involves an integration
in time whereas the L∞ error measures the largest, point-wise, absolute difference
and is thus more stringent. Figure 6.24 shows the maximum projection errors, as
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Figure 6.24: Maximum projection errors of all three reduced bases (see text for a
description) versus the size of the basis.

measured with their respective norms, associated with these three methods as a
function of the size of the basis. The absolute tolerance on the greedy algorithm
bases is 10−14 while the smallest singular value kept is 10−14 relative to the largest.
We observe three plateaus for each of the cases, which can be attributed to each
algorithm trying to resolve the features at the O(1), O(10−5), and O(10−10) scales
in the data; see (6.87). In fact, none of the algorithms are able to completely resolve
the very low-amplitude stochastic features until the training set has been exhausted
and all data has been used to build the reduced bases. Notice that the error curve is
somewhat noisy for the L∞ case while the other two are smooth. Also, the maximum
projection error for the L2 case ends at about 10−7 due to a parameter being selected
a second time.

Figure 6.25 shows the projection errors (as measured in the L2 norm) onto each of
the three reduced bases for test data generated by randomly selecting 1000 values of
λ in the training interval [1,20]. The errors for “Greedy, L∞” and “SVD” lie nearly
on top of each other while those for “Greedy, L2” are relatively large because the
effective greedy algorithm tolerance for this basis is only 10−7 as discussed above.
In all cases, the small-amplitude stochastic noise in the data prevents the projection
errors of the test data from being less than a few times 10−10; see (6.87).
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Figure 6.25: Projection errors, measured in the L2 norm for the three reduced
bases described in the text, computed for test data generated from 1000 randomly
selected parameters λ in [1,20]. The corresponding colored lines indicate the smallest
projection errors on the training sets shown in Fig. 6.24. The errors for “Greedy, L∞”
and “SVD” lie nearly on top of each other. However, the maximum projection error
implied by SVD (purple line) underestimates the true errors (dots) by an order of
magnitude.

Finally, the SVD method is able to produce a reduced basis with elements that
smooth many uncorrelated features manifest in the training data. Such smoothing
is useful for surrogate model building because the resulting basis elements tend
to exhibit smoother variation in time or frequency; this translates into smoother
variations across parameters, thereby yielding more accurate fits for the parametric
variation at the empirical interpolation nodes. The reduced bases produced by greedy
methods tend to not to share this smoothing ability of the SVD method.

To demonstrate SVD’s smoothing abilities, we replace the function in (6.87) with a
smooth oscillating term plus a stochastic term with amplitude of 10% of the first so
that the noise is visible to the naked eye,

X (t; λ) = sin(λt) + 0.1 ξ (t). (6.88)

We build three reduced bases on the corresponding training sets (with the same t and
λ intervals and samples) using the same methods as before. Figure 6.26 shows the
tenth basis element as a function of t for each of the three reduced basis building
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strategies. The two bases built from a greedy method exhibit the noise found in the
training data. However, the SVD basis element in the bottom panel reveals a smooth
function with very low amplitude noise, much lower than appears in the training
data amplitudes.

In the case of the NRSur4d2s surrogate discussed here, note that data from each
of the NR simulations contains spurious oscillations on the orbital timescale; these
oscillations are caused by residual orbital eccentricity and by nutation effects that
we have not filtered out (§ 6.5), and because these oscillations are uncorrelated from
one simulation to another, they appear as stochastic noise. To smooth this noise, we
therefore use the SVD method to obtain basis vectors for emperical interpolation
when building NRSur4d2s (§ 6.6). This smoothing significantly improves the ac-
curacy of our fits of the waveform quantities at the empirical interpolation nodes.
However, note also that for NRSur4d2s we use the greedy method to expose the
BBH parameters for performing expensive NR simulations (§ 6.4). Therefore, we
use the benefits of both the greedy and SVD methods in building NRSur4d2s.

6.13 Motivating the use of E
A commonly used measure of the difference between waveforms h1(t, θ1, φ1; λλλ1)
and h2(t, θ2, φ2; λλλ2) is the overlap error

1 − O = 1 −
〈h1,h2〉

√
〈h1,h1〉〈h2,h2〉

, (6.89)

where 〈·, ·〉 is often chosen to be the frequency domain noise-weighted inner prod-
uct [287]

〈a,b〉 f = 4Re
∫ ∞

0

ã( f )b̃∗( f )
Sn( f )

df . (6.90)

Here Sn( f ) is the power spectral density of noise in a gravitational wave detector
and tildes are used to represent a Fourier transform.

If we use a flat (frequency-independent) power spectral density, we may instead
perform the integration in the time domain and use

〈a,b〉t = Re
∫ tmax

tmin

a(t)b∗(t)dt (6.91)

to obtain the same overlap error. While a completely flat power spectral density is
unphysical, the design sensitivity of aLIGO [311] varies only by a factor of ∼ 2
between 50Hz and 1000Hz. Putting rigorous limits on weighted frequency domain
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Figure 6.26: The tenth basis element as a function of t from the three reduced bases
elements described in the text. The training data used is given by the parameterized
function in (6.88) and exhibits relatively large amplitude fluctuations. Whereas the
top two plots show significant noise in the basis element, the SVD method smooths
away almost completely the uncorrelated stochastic features to generate a basis
element that is smooth in t.
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errors based on unweighted time domain errors is not straightforward [147, 312], but
the time domain errors are computationally cheap to compute, useful for quantifying
time domain waveform models, and (like NR waveforms and our surrogate model
NRSur4d2s) independent of the total binary mass M .

We can relate the time domain overlap error to δh by performing a weighted average
over the sphere and using∫

S2
a(θ,φ)b∗(θ,φ)dΩ =

∑
`,m

a`,mb`,m∗ (6.92)

due to the orthonormality of the SWSHs. Using ‖a‖2t = 〈a,a〉t , we have

δh2 =
1
T

∑
`,m

‖δh`,m‖2t (6.93)

=
1
T

∫
S2
‖h1(t, θ, φ; λλλ1) − h2(t, θ, φ; λλλ2)‖2t dΩ (6.94)

=
1
T

∫
S2

(
‖h1‖

2
t + ‖h2‖

2
t − 2〈h1h2〉t

)
dΩ , (6.95)

where in the last line we have omitted arguments to h1 and h2. If ‖h1(t, θ, φ; λλλ1)‖t =

‖h2(t, θ, φ; λλλ2)‖t for all θ,φ then we would have

δh2∑
`,m ‖h

`,m
1 ‖

2
t

=
2
∫

S2 w(θ,φ)(1 − O(θ,φ))dΩ∫
S2 w(θ,φ)dΩ

, (6.96)

where w(θ,φ) = ‖hi (t, θ, φ; λλλi)‖2t . Denoting ‖h‖2 ≡
∑
`,m ‖h`,m‖2t , this motivates the

use of the relative error measure

E ≡
1
2
δh2

‖h1‖2
(6.97)

as it is similar to a sphere-weighted average of overlap errors, where the weighting
emphasizes directions with a larger amount of gravitational wave emission. We note,
however, that while the overlap error vanishes if h1 and h2 are identical except for
normalization, E does not and vanishes only when h1 and h2 are identical. This
is important as a different normalization will lead to a bias when measuring the
distance to the source of a gravitational wave.

6.14 Mismatches optimized over time and
polarization shifts

Given gravitational waveform polarization signals h+(t) and h×(t), each gravitational
wave detector in a detector network will observe a linear combination of h+(t) and
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h×(t) depending on their orientation with respect to the direction of propagation and
polarization axes. For the purposes of building gravitational wave models, we are
interested in the best case scenario when both polarizations are measured. Including
“blind spots" in the detector network could lead to artificially large relative errors,
so we assume a network of two detectors where one measures h+(t) and the other
measures h×(t). Given model predictions hm

+ (t) and hm
× (t) for the two polarizations,

we compute the two-detector overlap

O =
〈h+,hm

+ 〉 + 〈h×,h
m
× 〉√

(〈h+,h+〉 + 〈h×,h×〉)
(
〈hm

+ ,h
m
+ 〉 + 〈h

m
× ,h

m
× 〉

)
with a real inner product given by

〈a,b〉 = Re [〈a,b〉C] (6.98)

〈a,b〉C =

∫
ã( f )b̃∗( f )

Sn(| f |)
df . (6.99)

As in Eq. 6.23, a tilde denotes a frequency domain signal, which is computed by
using an FFT after tapering the ends of the time domain signal. In this case, the
complex inner product 〈·, ·〉C is integrated over the negative and positive frequency
intervals [− fmax,− fmin] and [ fmin, fmax] for some positive fmin and fmax. Note that
for any two real functions a(t) and b(t), we have

ã(− f )b̃∗(− f ) =
(
ã( f )b̃∗( f )

)∗
(6.100)

and so 〈a,b〉C is real.

Defining complex gravitational wave signals

h(t) = h+(t) − ih×(t) (6.101)

hm(t) = hm
+ (t) − ihm

× (t), (6.102)

we can compute a complex overlap

OC =
〈h,hm〉C

√
〈h,h〉C〈hm,hm〉C

=
〈h+,hm

+ 〉 + 〈h×,h
m
× 〉 + i

(
〈h+,hm

× 〉 − 〈h×,h
m
+ 〉

)√
(〈h+,h+〉 + 〈h×,h×〉)

(
〈hm

+ ,h
m
+ 〉 + 〈h

m
× ,h

m
× 〉

) .
Since the time domain polarization signals are all real, we have

O = Re[OC]. (6.103)
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A polarization angle shift of ψ and time shift of δt in the model waveform results in
the transformations

hm(t) → hm
T (t) = hm(t + δt)e2iψ , (6.104)

h̃m( f ) → h̃m
T ( f ) = h̃m( f )e2iψe2πiδt , (6.105)

where hm
T is the transformed model waveform. The overlap of the signal waveform

with the transformed model waveform is then

O(ψ,δt) = Re



〈h,hm
T 〉C√

〈h,h〉C〈hm
T ,h

m
T 〉C



= Re
[

e−2iψ
√
〈h,h〉C〈hm,hm〉C

∫
h̃( f ) h̃m∗( f )

Sn( | f |)
e−2iπδt

]
.

The above integral can be evaluated efficiently for many values of δt using an FFT.
We can then compute the mismatch

mismatch = 1 −max
ψ,δt
O(ψ,δt) (6.106)

by taking the absolute value of the complex overlap for each δt to maximize over
ψ, and taking the maximum over all available values of δt. In practice, the true
maximum over δt will lie between available samples, so we fit the overlap peak
to a quadratic function in δt using the largest overlap sample and the neighboring
value on either side. We also pad with zeros before taking the FFT to obtain a finer
sampling in δt.

6.15 Post-Newtonian surrogate waveform
decomposition

The second greedy algorithm described in Sec. 6.4 makes use of surrogate models of
Post-Newtonian (PN) waveforms. At each greedy step, a new PN surrogate model
is built from PN waveforms evaluated at the currently known greedy parameters
G. This surrogate is evaluated for each training point λλλ ∈ T i

TS and the surrogate
waveform is compared to the actual PN waveform. Here, we describe the differences
between how the PN surrogates were built compared to the NR surrogate NRSur4d2s
described in the main body.

PN waveforms do not contain a merger phase, so we cannot use the peak amplitude
to align the waveforms in time. We instead choose t = 0 to correspond to an orbital
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Data Tol Data Tol Data Tol Data Tol
ϕp 0.01 ϕd 0.1 ϕ2,2

− 0.01 ϕ2,1
− 0.1

ϕ[H[X]] 0.1 |H[ϕ2,2
+ ]| 0.0001 |H[ϕ2,1

+ ]| 0.0001

Table 6.8: Fit tolerance for the empirical node parametric fits of PN surrogates. Fit
coefficients were added until the maximum fit residual fell below the tolerance. A
tolerance of 0.001 was used for unlisted waveform data pieces.

angular frequency of 0.09. This frequency is computed from the waveform [289].
We choose tmin = −5000M, t0 = −4500M, t f = −100M, and tmax = 0. The PN
waveforms used to build the PN surrogate then have domain t ∈ [−5000M,0], and
the PN surrogate waveforms have domain t ∈ [−4500M,−100M]. The parameters
of the PN waveforms are given at t = t0. The rotation alignment at t = t0 is the same
as for the NR waveforms, described in Sec. 6.4.

The waveform decomposition used for the PN surrogates was slightly different from
the one described in Sec. 6.5. We limited the PN waveforms to contain only the
` = 2 modes (with all 5 values of m). Additionally, since we were able to obtain the
desired values of φχ at t = t0 with PN waveforms, there was no need to make any
transformations related to φχ.

The number of coefficients used in the parametric fits of the empirical nodes was
determined differently for PN surrogates than for NRSur4d2s. Instead of the cross-
validation method described in Appendix 6.11, coefficients were added until the fit
residuals fell below a specified tolerance, given in Table 6.8. To prevent overfitting,
the number of fit coefficients was also limited to be at most 75% of the number of
data points used in the fit. The basis functions in | χ1 | used for the fits were also
different, with Bk

2 (| χ1 |) = Tk (2.5| χ1 | − 1). For the PN surrogates, we did not make
the restriction α3 ≤ α2 so θ χ affected the PN surrogate output when | ~χ1 | = 0.
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7 A Numerical Relativity Waveform
Surrogate Model for Generically
Precessing Binary Black Hole
Mergers

7.1 Background and Contributions
This chapter [15] has been submitted to Physical Review D for publication. A
preprint can be found at https://arxiv.org/abs/1705.07089.

This chapter presents the first surrogate model of numerical relativity (NR) wave-
forms that includes all 7 intrinsic parameters. The surrogate model covers mass
ratios up to q = 2 and dimensionless spin magnitudes up to 0.8, and is nearly as
accurate as performing new NR simulations within this parameter range.

I helped select the parameters for the new NR simulations, and performed some of
them. I determined the methods to use, implemented them, and built the surrogate
models. New methods include an ODE evolution of the spin, orbital, and precesion
dynamics, extending spins through merger and ringdown with post-Newtonian
equations, and using the spins at empirical time nodes rather than the initial spins for
improved parametric fit accuracy. I also performed the error studies. I generated the
figures and the first draft of the manuscript, and assisted in editing the manuscript.

https://arxiv.org/abs/1705.07089
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A generic, non-eccentric binary black hole (BBH) system emits gravitational

waves (GWs) that are completely described by 7 intrinsic parameters: the black

hole spin vectors and the ratio of their masses. Simulating a BBH coalescence

by solving Einstein’s equations numerically is computationally expensive,

requiring days to months of computing resources for a single set of parameter

values. Since theoretical predictions of the GWs are often needed for many

different source parameters, a fast and accurate model is essential. We present

the first surrogate model for GWs from the coalescence of BBHs including all 7

dimensions of the intrinsic non-eccentric parameter space. The surrogate model,

which we call NRSur7dq2, is built from the results of 744 numerical relativity

simulations. NRSur7dq2 covers spin magnitudes up to 0.8 and mass ratios up

to 2, includes all ` ≤ 4 modes, begins about 20 orbits before merger, and can be

evaluated in ∼ 50 ms. We find the largest NRSur7dq2 errors to be comparable

to the largest errors in the numerical relativity simulations, and more than an

order of magnitude smaller than the errors of other waveform models. Our

model, and more broadly the methods developed here, will enable studies that

require millions of numerical relativity waveforms, such as parameter inference

and tests of general relativity with GW observations.
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7.2 Introduction
With LIGO’s two confident detections of gravitational waves (GWs) from binary
black hole (BBH) systems [250, 251], we have entered the exciting new era of GW
astronomy. The source black hole (BH) masses and spins can be determined by
comparing the signal to waveforms predicted by general relativity (GR) [20], and
new strong-field tests of GR can be performed [252]. These measurements and tests
require GW models that are both accurate and fast to evaluate. The total mass of
the system M can be scaled out of the problem, leaving a 7-dimensional intrinsic
parameter space over which the waveform must be modeled, consisting of the mass
ratio and two BH spin vectors.

Numerical relativity (NR) simulations of BBH mergers [191, 209, 253–257] solve the
full Einstein equations and produce the most accurate waveforms. These simulations
are computationally expensive, requiring weeks to months on dozens of CPU cores
for a waveform beginning ∼ 20 orbits before the merger. Analytic and semi-analytic
waveform models [65, 66, 70, 152, 227, 261, 262, 264, 265] are quick to evaluate,
but they make approximations that can introduce differences with respect to the true
waveform predicted by GR. These differences could lead to parameter biases or
inaccurate tests of GR for some high signal-to-noise ratio detections that could be
made in the near future [147].

A surrogate waveform model [14, 76, 239, 265, 269] is a model that takes a set of
precomputed waveforms that were generated by some other model (e.g., NR or a
semianalytic model), and interpolates in parameter space between these waveforms
to quickly produce a waveform for any desired parameters. A surrogate waveform
can be evaluated much more quickly than the underlying model, and can be made
as accurate as the underlying model given a sufficiently large set of precomputed
waveforms that cover the parameter space. Previous surrogate models based on NR
waveforms were built for non-spinning BBH systems [269] and for a 4-dimensional
(4d) parameter subspace containing precession [14]. Here, we present the first NR
surrogate model including all 7 dimensions of the parameter space. The model,
which we call NRSur7dq2, produces waveforms nearly as accurate as those from NR
simulations, but can be evaluated in ∼ 50 ms on a single CPU core for a speedup of
more than 8 orders of magnitude compared to NR. Our method enables performing
high accuracy GW data analysis, including parameter inference for astrophysics and
tests of GR.
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7.3 Numerical Relativity Data
The NR simulations used to build the surrogate model are performed using the
Spectral Einstein Code (SpEC) [209, 211, 270–274]. The simulations begin at a
coordinate time τ = 0, where we specify the BH mass ratio q = m1/m2 ≥ 1 and
initial dimensionless spin vectors

~χi (τ = 0) = ~Si (τ = 0)/m2
i , i ∈ {1,2} . (7.1)

The system is evolved through merger and ringdown, and the GW is extracted at
multiple finite radii from the source. These are extrapolated to future null infin-
ity [216] using quadratic polynomials in 1/r, where r is a radial coordinate. The
effects of any drifts in the center of mass that are linear in time are removed from
the waveform [140, 286, 289, 313]. The waveforms at future null infinity use a time
coordinate τ̃, which is different from the simulation time τ, and begins approximately
at τ̃ = 0. The spins ~χi are also measured at each simulation time τ. To compare
spin and waveform features, we identify τ with τ̃. While this identification is not
gauge-independent, the spin directions are already gauge-dependent. We note that
the spin and orbital angular momentum vectors in the damped harmonic gauge used
by SpEC agree quite well with the corresponding vectors in post-Newtonian (PN)
theory [57].

Once we have the spins ~χi (τ) and spin-weighted spherical harmonic modes of
the waveform h`,m(τ), we perform the same alignment discussed in Sec. III.D
of Ref. [14]. Briefly, we first determine the time τpeak which maximizes the total
amplitude of the waveform

Atot(τ) =

√∑
`,m

|h`,m(τ) |2 . (7.2)

We choose a new time coordinate

t = τ − τpeak , (7.3)

which maximizes Atot at t = 0. We then rotate the waveform modes such that at our
reference time of t = t0 = −4500M, ẑ is the principal eigenvector of the angular
momentum operator [167] and the phases of h2,2(t0) and h2,−2(t0) are equal. We
sample the waveform and spins in steps of δt = 0.1M , from t0 to t f = 100M .

We first include all 276 NR simulations used in the NRSur4d2s surrogate model
and the 9 additional simulations used in Sec. IV.D and Table V of Ref. [14]. We
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perform 459 additional NR simulations. The first 361 of these are chosen based on
sparse grids [314] and include combinations of extremal parameter values (such as
q ∈ {1,2}) and intermediate values as detailed in Appendix 7.10. The parameters
for the remaining 98 simulations are chosen as follows. We randomly sample 1000
points in parameter space uniformly in mass ratio, spin magnitude, and spin direction
on the sphere. We compute the distance between points a and b using

ds2 = (0.3 (qa − qb))2 +
∑

i∈{1,2}

 ~χia − ~χib2 . (7.4)

For each sampled parameter we compute the minimum distance to all previously cho-
sen parameters. We then choose the sampled parameter maximizing this minimum
distance. We then resample the 1000 parameters for the next of the 98 iterations.
This results in a total of 744 NR simulations. For simulations with equal masses and
unequal spins, we use the results twice by reversing the labeling of the BHs and
rotating the waveform accordingly. There are 142 such simulations, leading to 886
NR waveforms.

7.4 Waveform Decomposition
The goal of a surrogate model is to take a precomputed set of waveform modes
{h`,mi (t)} at a fixed set of points in parameter space {~λi}, and to produce waveform
modes {h`,m(t)} at new desired parameter values. Because h`,m(t) is highly oscilla-
tory and changes in a complicated way as one varies the masses and spins, it is not
feasible to directly interpolate {h`,mi (t)} in parameter space with only 8861/7 ≈ 2.64
available points per dimension. Instead, we decompose each waveform h(t) into
many waveform data pieces. Each waveform data piece is a simpler function that
varies slowly over parameters. Once we have interpolated each waveform data
piece to a desired point in parameter space, we recombine them to form h(t). Our
decomposition is similar to but improves upon the one used in Ref. [14].

We first determine the unit quaternions q̂(t) that define the coprecessing frame, and
we determine the waveform modes {h`,mC (t)} in this frame. This is done using the
transformation TC given by Eq. 27 of Ref. [14]. The spins ~χi (t) are also transformed
to the coprecessing frame using

~χ
copr
i (t) = q̂−1(t) ~χi (t)q̂(t) . (7.5)

Note that quaternion multiplication is used here, and vectors are treated as quater-
nions with zero scalar component. We note that unlike in Ref. [14], here we do not
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filter q̂(t) and, as described below, the spins play an important role in the surrogate’s
construction.

The orbital phase

ϕ(t) =
1
4

(
arg

[
h2,−2

C (t)
]
− arg

[
h2,2

C (t)
] )

(7.6)

is computed from the coprecessing waveform modes. This is expected to be superior
to computing the orbital phase from the BH trajectories because unlike the coordinate-
dependent trajectories, the waveform can be made gauge invariant up to Bondi-
Metzner-Sachs transformations [140]. We then transform the spins and waveform
modes to a coorbital frame, in which the BHs are nearly on the x axis. The coorbital
frame is just the coprecessing frame rotated by ϕ(t) about the z axis. Specifically,
we have

q̂r(t) = cos
(
ϕ(t)

2

)
+ ẑ sin

(
ϕ(t)

2

)
, (7.7)

~χcoorb
i (t) = q̂−1

r (t) ~χcopr
i (t)q̂r(t) , (7.8)

h`,mcoorb(t) = h`,mC (t)eimϕ(t) , (7.9)

where q̂r(t) is a unit quaternion representing a rotation about the ẑ axis by ϕ. Finally,
using 4th order finite differences, we compute the orbital frequency

ω(t) =
d
dt
ϕ(t) (7.10)

and the spin time derivatives in the coprecessing frame, which we then transform to
the coorbital frame

~̇χcoorb
i (t) = q̂−1

r (t) ~̇χcopr
i (t)q̂r(t) , (7.11)

where a dot means d/dt. For the precession dynamics, we compute the angular
velocity of the coprecessing frame

1
2
~Ωcopr(t) = lim

dt→0

1
dt

(
q̂−1(t)q̂(t + dt) − 1

)
, (7.12)

= s(t)~̇v(t) − ṡ(t)~v(t) − ~v × ~̇v(t) , (7.13)

where s(t) and ~v(t) are the scalar and vector components of q̂(t). We also transform
~Ωcopr(t) to the coorbital frame to obtain ~Ωcoorb(t) as in Eq. (7.11). The minimal
rotation condition of the coprecessing frame ensures

Ω
coorb
z (t) = Ω

copr
z (t) = 0 (7.14)
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up to finite difference errors.

Given a waveform data piece X (t) evaluated at a set of parameters, one would be
tempted to parameterize X (t) at any fixed time ti by the mass ratio and the initial
spins, and then construct a fit to X (ti) as a function of these parameters. However,
we find much better fits if we instead parameterize X (ti) by the spins at time ti and
the mass ratio. While this is easy to do during the inspiral where we still have two
BHs with individual spins, we seek a way to extend this parameterization through
the merger and ringdown, where individual BH spins are no longer available. We
extend, unphysically, the spin evolution through the merger and ringdown using the
PN expressions

d
dt

~χi = ~Ω
Spin
i × ~χi , (7.15)

where ~χi is the spin in the inertial frame, and ~Ω
Spin
i is a PN expression given by

Eq. A32 of Ref. [57]. ~ΩSpin
i is a function of the orbital angular momentum vector

l̂ (t), a vector pointing from one BH to the other n̂(t), and the PN parameter x(t). In
PN theory, these quantities are typically computed from BH trajectories, but here
we instead compute them from the waveform. Evaluating ~Ω

Spin
i requires several

quantities that are typically computed from BH trajectories in PN theory. Since
the trajectories are also not available after the merger, we compute them from the
waveform. We take l̂ and n̂ to be the ẑ and x̂ axes of the coorbital frame, and we
take the PN parameter x to be ω2/3, where ω is defined in Eq. (7.10) (see Eq. 230 of
Ref. [315]). We choose tPN = −100M and begin the PN integrations from the spins at
tPN. The extended spins are somewhat robust to the choice of tPN as seen in Fig. 7.1.
We stress that these extended spins are not physically meaningful for t > tPN, but
provide a convenient parameterization of the system that leads to accurate parametric
fits.

7.5 Building the Model
In this section, we describe the quantities that are computed from the waveform data
pieces and stored when building the NRSur7dq2 surrogate model. The subsequent
section will then describe how the NRSur7dq2 surrogate model uses these stored
quantities to generate waveforms.

We first construct surrogate models for the waveform modes in the coorbital frame
h`,mcoorb(t). For m = 0 modes, we model the real and imaginary components. For
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Figure 7.1: The x-component of a spin extended through merger and ringdown
with PN expressions. These spins are not physically meaningful, but provide a
parameterization of the system leading to accurate fits. The thick solid blue curve
shows the spin from an NR simulation, and is not measured past t = −6M due to the
merger of the BHs. Each thin line is identical to the NR curve before some time tPN
indicated with a dot, after which the spins are evolved using Eq. (7.15). The spins
during the ringdown are affected somewhat by the choice of tPN, but the overall
phasing is quite similar.

m > 0, we compute

h`,m± =
1
2

(
h`,mcoorb ± h`,m ∗coorb

)
(7.16)

and model the real and imaginary parts of h`,m± . Each of these modeled components is
considered a waveform data piece. We proceed according to Sec. V of Ref. [14]: For
each waveform data piece, we construct a compact linear basis using singular value
decomposition with a RMS tolerance of 3 × 10−4. We then construct an empirical
interpolant and determine one empirical node time Tj for each basis vector. The
times Ti are chosen differently for each waveform data piece. Finally, for each Tj ,
we construct a parametric fit for the waveform data piece evaluated at Tj , which
is described below. The fits are functions of the mass ratio and the coorbital spin
components ~χcoorb

i (t) evaluated at Tj . Note that the x component of a vector in
the coorbital frame is roughly the component in the direction of a vector pointing
from one BH to the other, the z component is along the axis of orbital angular
momentum, and the y component is the remaining orthogonal direction. In addition
to the resulting fit data, the empirical interpolation matrix for each of these waveform
data pieces are stored in the NRSur7dq2 surrogate model.
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These parametric fits use the forward-stepwise greedy fitting method described in
Appendix A of Ref. [14]. We choose the basis functions to be monomials in the mass
ratio and spin components. We consider up to cubic functions in the mass ratio and
up to quadratic functions in the spin components. We perform K = 20 trials using
Nv = 50 validation points each. The fit coefficients and the basis functions selected
during the fitting procedure are stored in the NRSur7dq2 surrogate model.

We also construct parametric fits for ω(t), Ωcoorb
{x,y} (t), and χ̇coorb

j{x,y,z} (t) at selected time
nodes ti. These quantities describe the dynamics of the binary and the spins, so we
call these ti the dynamics time nodes. We attempt to choose the time nodes ti to
be approximately uniformly spaced in ϕ(t) with 10 nodes per orbit. Because ϕ(t)
is different for different simulations, and we choose the same time nodes for all
simulations, in practice our choice of 238 time nodes gives us between 8 and 15
nodes per orbit. We find that this is sufficient — including additional nodes per orbit
does not improve the accuracy of the surrogate model. Our time nodes are labeled
t0 < t1 < · · · < t234 = 100M plus three additional nodes t 1

2
, t 3

2
, and t 5

2
, which are

the midpoints of their adjacent integer time nodes. The reason for including the
fractional time nodes is for Runge-Kutta time integration at the beginning of the time
series, which will be made clear in the next section. In Appendix 7.11, we describe in
detail the algorithm for choosing ti, but any choice that is roughly uniformly-spaced
in ϕ(t) and sufficiently dense should yield a surrogate with comparable accuracy.

7.6 Evaluating the model
To evaluate the NRSur7dq2 surrogate model, we provide the mass ratio q and initial
spins ~χ j (t0) as inputs. The evaluation consists of three steps: we first integrate a
coupled ODE system for the spins, the orbital phase, and the coprecessing frame, then
we evaluate the coorbital waveform modes, and finally we transform the waveform
back to the coorbital frame. We describe each of these steps below.

We initialize the ODE system with

• ϕ(t0) = 0

• q̂(t0) = 1

• ~χ
copr
j (t0) = ~χ j (t0),
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and we evolve these variables forward in time as follows. At a given dynamics time
node ti, we first determine ~χcoorb

j (ti) by rotating the x and y components of ~χ
copr
j (ti)

by an angle ϕ(ti) as in Eq. (7.9). We then evaluate the fits for ω(ti), Ωcoorb
{x,y} (ti),

and χ̇coorb
j{x,y,z} (ti) using the mass ratio q and the current coprecessing spins ~χcoorb

j (ti).

We set Ωcoorb
z (ti) = 0, and obtain ~̇χ

copr
j (ti) and ~Ωcopr(ti) by rotating the x and y

components of the corresponding coorbital quantities by an angle of −ϕ(ti). We
evolve the coprecessing vectors instead of the coorbital vectors because the former
evolve on the longer precession timescale, allowing us to take large timesteps. Finally,
after computing

d
dt

q̂(t)
�����ti

= 2q̂(ti)~Ωcopr(ti) , (7.17)

we obtain the time derivatives of ϕ, q̂, and ~χ
copr
j at t = ti.

These time derivatives are then used to integrate ϕ, q̂, and ~χ
copr
j using an ODE

solver. We desire an ODE integration method that uses few evaluations of the time
derivatives to keep the computational cost of evaluating the model low. We use a
fourth-order Adams-Bashforth method [316, 317] detailed in Appendix 7.12, which
determines the solutions at the next node based on the time derivatives at the current
and three previous nodes. This allows us to reuse fit evaluations from the previous
nodes, and requires only one additional evaluation of the fits per node compared
to four evaluations for a fourth-order Runge-Kutta scheme. The Adams-Bashforth
integration is initialized by performing the first integration steps with fourth-order
Runge-Kutta. This is why we include the three additional time nodes t 1

2
, t 3

2
and t 5

2
;

they enable evaluating the midpoint increments of the initial Runge-Kutta scheme.
Once we have evaluated the solutions at the time nodes ti, we use cubic spline
interpolation to determine the solutions at all times.

Now that we have ϕ, q̂, and ~χ
copr
j for all t, we then evaluate each coorbital waveform

data piece. This is done by first evaluating the fits at the empirical nodes Ti using
the mass ratio q and the coorbital spins at the empirical nodes ~χcoorb

j (Ti), and then
evaluating the empirical interpolant to obtain the waveform data piece at all times.
Finally, we transform the coorbital frame waveform modes back to the coprecessing
frame using ϕ(t) and then to the inertial frame using q̂(t). The NRSur7dq2 surrogate
data and Python evaluation code can be found at [318].

To reduce the computational cost of transforming the coprecessing waveform modes
to the inertial frame using q̂(t), which takes ∼ 1 s using all ` ≤ 4 modes sampled
with δt = 0.1M , we reduce the number of time samples of the coorbital waveform



158

data pieces by using non-uniform time steps. We choose 2000 time samples that
are roughly uniformly spaced in the orbital phase, using the same method used to
choose the dynamics time nodes described in Appendix 7.11. This is sufficiently
many time samples to yield negligible errors when interpolating back to the dense
uniformly-spaced time array using cubic splines on the real and imaginary parts of
the waveform modes.

Integrating the ODE system takes ∼ 6 ms, where the numerical computations are
performed by a Python module written in C. Interpolating the results of the ODE
integration to the 2000 time samples described above takes ∼ 3 ms using cubic
splines. Evaluating the coorbital waveform surrogate takes ∼ 5 ms, and transforming
the modes to the inertial frame takes ∼ 25 ms, for a total of ∼ 40 ms. Variations
in the evaluation time can increase this up to ∼ 50 ms. Restricting to only ` = 2
modes can reduce this cost to ∼ 20 ms. If we wish to sample the surrogate waveform
at the same time nodes as the original numerical relativity simulations, which is
a uniformly-spaced time array with δt = 0.1M, the modes are interpolated to
these points using cubic splines. This costs ∼ 10 ms per mode, for a total cost of
∼ 300 ms when all ` ≤ 4 modes are interpolated in this way. We note, however,
that the original NR simulations are oversampled for typical gravitational wave data
analysis purposes. For example, a sampling rate of 4096 Hz for a M = 60M� binary
has δt ≈ 0.83M , leading to an evaluation cost of ∼ 100 ms.

7.7 Surrogate Errors
We use two error measures to quantify the accuracy of the surrogate model. Given
two sets of waveform modes h1 and h2, we first compute

E[h1,h2] =
1
2

∑
`,m

∫ t f
t0
|h`,m1 (t) − h`,m2 (t) |2dt∑

`,m
∫ t f

t0
|h`,m1 (t) |2dt

, (7.18)

which is introduced in Eq. 21 of [14]. Since we have aligned all the NR waveforms
at t = t0 and the surrogate model reproduces this alignment, we do not perform any
time or phase shifts when computing E.

For these comparisons, we use modes ` ≤ 5; if a mode is not included in a particular
waveform model, we assume this mode is zero for that model. Since the NRSur7dq2
model does not contain ` = 5 modes, this ensures that the errors discussed below
include the effect of neglecting ` = 5 and higher modes.
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Figure 7.2: Error histograms for E defined in Eq. (7.18), normalized such that the
area under each curve is 1 when integrated over log10(E). The largest surrogate
errors are comparable to the largest NR resolution errors, which compare high and
medium resolution NR simulations to estimate the error in the NR waveforms. The
error in the orbital phase ϕ is the dominant error contribution to the surrogate.

Histograms of E for all 886 NR waveforms are given in Fig. 7.2. For all curves in the
figure, h1 is the highest available resolution NR waveform. For the thick solid black
curve, h2 is the same NR waveform as h1, except computed at a lower numerical
resolution, so this curve represents an estimate of the numerical truncation error in
the NR waveforms used to build the surrogate model. For the solid blue curve, h2 is
the NRSur7dq2 surrogate waveform evaluated with the same mass ratio and initial
spins of h1. Note that since the surrogate was trained using all NR waveforms, this
is an in-sample error.

The remaining curves in Fig. 7.2 indicate the in-sample error contribution from each
of the three main waveform data pieces in the surrogate waveform: the orbital phase
ϕ (dash-dotted green curve), the quaternions q̂ representing the precession (dashed
orange curve), and the waveform modes in a coorbital frame hcoorb (thin solid red
curve). For these curves, h2 is computed by using the surrogate evaluation for one
waveform data piece and the NR evaluation of the other pieces. The orbital phase
errors give rise to the largest surrogate errors, indicating that efforts to improve the
surrogate model should be focused on improving the orbital phasing.

We then compute mismatches

1 −
〈h1,h2〉

√
〈h1,h1〉〈h2,h2〉

, (7.19)
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where 〈·, ·〉 is a noise-weighted inner product computed in the frequency domain, as
in Sec. VI.B of Ref. [14]. We use a flat power spectral density to avoid a dependence
on the total mass of the system. The mismatches are minimized over timeshifts,
polarization angle shifts, and shifts in the azimuthal angle of the direction of GW
propagation, where the system’s orbital angular momentum is initially aligned with
the ẑ axis.

Histograms of the mismatches are given in Fig. 7.3 and are comparable to the top
panel of Fig. 17 in Ref. [14]. To estimate the out-of-sample errors of the surrogate
model, we perform a 20-fold cross-validation test. This is done by first randomly
dividing the 886 NR waveforms into 20 sets of 44 or 45 waveforms. For each set,
we build a trial surrogate using the waveforms from the other 19 sets. The trial
surrogate is then evaluated at the parameters corresponding to the waveforms in
the chosen validation set, and the results are compared to the NR waveform. These
cross-validation mismatches are given by the dashed purple curve. They are quite
similar to the in-sample errors given by the solid blue curve, indicating that we are
not overfitting the data. We also compute mismatches for a fully precessing effec-
tive one-body model (SEOBNRv3 [152]), and for a phenomenological waveform
model that includes some, but not all, effects of precession (IMRPhenomPv2 [66]).
These models have mismatches more than an order of magnitude larger than our
NRSur7dq2 surrogate model. Both IMRPhenomPv2 and SEOBNRv3 depend on
a parameter f ref , which is a reference frequency at which the spin directions are
specified. For SEOBNRv3, which is a time-domain model, we choose f ref so that
the waveform begins at t = t0. For IMRPhenomPv2, which is a frequency-domain
model, we minimize the mismatches over f ref , using an initial guess of twice the
orbital frequency of the NR waveform at t = t0. While all of the mismatches can be
decreased by minimizing over additional parameters such as BH masses and spins,
this would result in biased parameters when measuring the source parameters of a
detected GW signal.

We then compute mismatches using the advanced LIGO design sensitivity noise
curve [217] using various total masses M . For each mass M , we obtain histograms
as in Fig. 7.3, and we show the median and 95th percentile mismatches from these
histograms in Fig. 7.4. We note that for M . 114M� some or all waveforms
begin above 10 Hz and do not cover the full design sensitivity frequency band. We
find that the 95th percentile mismatches of our surrogate model are similar to the
corresponding NR mismatches, except for total masses above 160M� where the NR
mismatches are slightly smaller. The NRSur7dq2 surrogate yields mismatches at
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Figure 7.3: Mismatch histograms computed in the frequency domain with a flat
power spectral density. The NR resolution mismatches compare waveforms from
high and medium resolution NR simulations. This can be an overestimate of the error
in the high resolution NR waveform, leading to some NR resolution mismatches
being larger than the surrogate mismatches. We note that the IMRPhenomPv2 model
does not contain all spin components.

least an order of magnitude smaller than the other waveform models for all total
masses investigated.

Figure 7.5 shows the real part of h2,2(t) for the cases leading to the largest mismatches
in Fig. 7.3. The top panel shows the case leading to the largest surrogate cross-
validation mismatch, and the bottom panel shows the case leading to the largest
SEOBNRv3 mismatch. The surrogate waveforms shown are evaluated using the
appropriate trial surrogate, so that they were not trained on the NR waveforms they
are compared with. All waveforms are aligned to have their peak amplitude at t = 0
and are rotated to have their orbital angular momentum aligned with the z axis at
t = t0 = −4500M . In the top panel, we see that both the SEOBNRv3 and surrogate
waveforms have a similar phasing error around t = −50M . The phasing error of the
surrogate does not grow significantly larger through merger and ringdown, so most of
this error can be removed with a time and phase shift. For the SEOBNRv3 waveforms
in both the upper and lower panels, the phasing error changes significantly during
the merger; therefore this error does not decrease significantly even after performing
a time and phase shift. In the top panel of Figure 7.5, the IMRPhenomPv2 waveform
does as well as the surrogate; in the bottom panel, the IMRPhenomPv2 waveform
has large errors in both phase and amplitude.
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Figure 7.4: Median (circles) and 95th percentile (triangles) mismatches of all 866
cases computed with the advanced LIGO design sensitivity curve. The surrogate
mismatches are computed using trial surrogates, as in the cross-validation curve of
Fig. 7.3.
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Figure 7.5: The real part of time domain waveforms for the case leading to the
largest surrogate mismatch (top) and the largest SEOBNRv3 mismatch (bottom).
The surrogate waveforms are evaluated using trial surrogates which were not trained
with the NR waveform shown. The top panel uses SXS:BBH:0922 with q ≈ 2,
~χ1(t0) ≈ 0.8ẑ, and ~χ2(t0) ≈ −0.8ŷ. The lower panel uses SXS:BBH:0900 with
q ≈ 2, ~χ1(t0) ≈ (0.29,−0.74,0.02) and ~χ2(t0) ≈ (0.43,−0.34,0.58).



163

7.8 Discussion and Conclusions
Within its range of validity, our NRSur7dq2 surrogate model is nearly as accurate as
performing new NR simulations. The surrogate model takes only ∼ 50 ms to evaluate
on a single CPU core, making it sufficiently fast for current gravitational wave data
analysis applications such as parameter estimation. This evaluation time can be
compared to O(weeks) on dozens of CPU cores to perform a new NR simulation,
decreasing the cost in CPU-hours by O(108). The NRSur7dq2 surrogate model data
along with Python evaluation code is publicly available for download at [318].

Our surrogate model is limited to mass ratios q ≤ 2 and spin magnitudes | ~χ1,2 | ≤ 0.8.
While in principle the parametric fits can be extrapolated to more extreme mass ratios
and spin magnitudes, we do not expect extrapolation to yield accurate waveforms.
However, these limits can be extended in future versions of our surrogate model by
performing NR simulations with larger mass ratios and spins.

Additionally, the waveforms produced by NRSur7dq2 are limited in duration to
4500M before the peak amplitude. This covers frequencies f ≥ 20 Hz for all
systems with M & 57M�. For systems with lower total masses, or for systems with
M . 114M� when including frequencies down to 10 Hz, longer waveforms are
needed. In future work, we plan to overcome this limitation by hybridizing with
either PN or SEOBNRv3 [215, 298–300], either by hybridizing the NR waveforms
before building the surrogate or by hybridizing the surrogate waveforms. Longer NR
waveforms would then be needed to test the accuracy of the hybridization step.
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7.10 Sparse grid parameters
We take the polar and azimuthal spin angles of ~χi to be θi and φi respectively, for
i ∈ {1,2}. We can then parametrize our 7-dimensional parameter space by

• q ∈ [1,2],

• | ~χi | ∈ [0,0.8],

• θi ∈ [0, π],

• φi ∈ [0,2π].

The range of each of these variables is some closed interval [a,b]. For a variable x

with range [a,b], we define a grid of N uniformly-spaced points

gN
x = {a +

n
N − 1

(b − a) : n = 0, . . . ,N − 1} (7.20)

where N ≥ 2. We then define a sequence of grids

Gx ≡ G0
x , G1

x , . . . (7.21)

where
Gn

x = g
f x (n)
x (7.22)

for some monotonically increasing function f x (n). We call Gn
x the level n grid for x.

We take

fq(n) = f | ~χi | (n) = 1 + 2n, (7.23)

fθi (n) = 1 + 2n+1, (7.24)

fφi (n) = 1 + 3 · 2n . (7.25)

These choices ensure that Gn
x ⊂ Gn+1

x , and that the level 0 grids already give a
description of the parameter space that doesn’t leave out any phenomenology; the
level 0 grids for θi contain the midpoint π/2 leading to precession, and the level
0 grids for φi contain 3 unique points (since φi = 0 and φi = 2π lead to the same
physical spin) in order to get at least some resolution of features that behave like
sin(φi + φ + 0).

We have already seen that φi = 0 and φi = 2π correspond to the same physical spin,
but we will have many other scenarios where two combinations of variables lead to
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the same physical configuration. For example, if | ~χ1 | = 0, all combinations of θ1

and φ1 lead to the same physical configuration. We will neglect these degenerate
combinations for now, and remove them later on.

Dense grids in parameter space could be constructed as

Gn
dense = Gn

q ×
∏
i=1,2

Gn
| ~χi |
× Gn

θi
× Gn

φi
(7.26)

where × and
∏

denote the cartesian product. While the 1-dimensional grids grow in
size as O(2n), these dense grids grow in size as O(27n) or as the seventh power of
the size of the 1-dimensional grids. This is known as the curse of dimensionality; the
amount of data needed often grows exponentially with the dimensionality. Sparse
grids [314] overcome the curse of dimensionality by using a sparse product such
that the grids grow in size as O(2n). If Gx and Gy are two sequences of grids, we
define the sparse product of Gx with Gy to be Gx,y = Gx • Gy where

Gn
x,y =

n⋃
k=0

Gk
x × Gn−k

y . (7.27)

We now define the sparse grids for our parameter space by the sequence of grids

G = Gq • G | ~χ1 | • Gθ1 • Gφ1 • G | ~χ2 | • Gθ2 • Gφ2 (7.28)

such that

Gn =
⋃

∑7
i=1 ki=n

Gk1
q × Gk2

| ~χ1 |
× Gk3

θ1
× Gk4

φ1

× Gk5
| ~χ2 |
× Gk6

θ2
× Gk7

φ2

We performed 361 new NR simulations based on parameters in G1. We removed
physically identical configurations. We also removed configurations with ~χ2 ∝ ẑ,
which are within the parameter space of the NRSur4d2s surrogate model which was
already covered by the 276 NRSur4d2s NR simulations.

7.11 Time sampling
We wish to choose time nodes t0 < t1 < . . . < t f that are roughly uniformly spaced
in the orbital phase ϕ(t) for all cases. Given some number N , we choose time nodes
yielding roughly N nodes per orbit. Since different NR waveforms have different
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orbital frequencies, they will have a different number of time nodes per orbit. Our
scheme for choosing the time nodes given N is based on the leading order PN
expression for ω(t) during the inspiral, smoothly transitioning to a maximum value
of ω = 2π/(20M) during the ringdown. We do this by computing a bounded time

t̃(t) = −1.7 +
1
2

(
(t + 5) −

√
(t + 5)2 + 25

)
(7.29)

and then choosing

ωref (t) = ω0PN(t̃(t)) =

(
64
5

(−t̃(t))
)− 3

8

. (7.30)

We then use spacings between nodes t j+1 − t j = ωref (t j ).

7.12 Fourth-order Adams-Bashforth method
We integrate the ODE system on a non-uniformly spaced grid of time nodes t0 <

t1 < . . . < t f using a fourth-order Adams-Bashforth scheme [316, 317]. We denote
the solution ~y(t), and at each time node ti we can evaluate fits to determine

d~y
dt

= ~f (t; ~y) . (7.31)

We first integrate up to t3 using a Runge-Kutta fourth-order scheme.

Once we have integrated up to ti for i >= 3, we have previously evaluated

~k j = ~f (t j ; ~y(t j )) (7.32)

for 0 ≤ j < i, and we now evaluate ~ki. We approximate ~g(t) = ~f (t; ~y(t)) by a cubic
function

~g(t) ≈ ~g3(t) = ~A + ~B(t − ti) + ~C(t − ti)2 + ~D(t − ti)3 . (7.33)

The coefficients are chosen such that ~g3(t j ) = ~g(t j ) = ~k j for i − 3 ≤ j ≤ i, giving
~A = ~ki, and



~B
~C
~D



=



δ−1,0δ−2,0
∆1

δ−1,0δ−3,0
∆2

δ−2,0δ−3,0
∆3

δ−2,0+δ−1,0
∆1

δ−1,0+δ−3,0
∆2

δ−2,0+δ−3,0
∆3

1
∆1

1
∆2

1
∆3





~ki − ~ki−3

~ki − ~ki−2

~ki − ~ki−1



.

Here, δn,m = ti+m − ti+n and

∆1 = δ−3,−2δ−3,−1δ−3,0 , (7.34)

∆2 = δ−3,−2δ−2,−1δ−2,0 , (7.35)

∆3 = δ−2,−1δ−3,−1δ−1,0 . (7.36)
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Finally, we approximate

~y(ti+1) = ~y(ti) +

∫ ti+1

ti
g(t)dt

≈ ~y(ti) +

∫ ti+1

ti
g3(t j )dt

= ~y(ti) + δ0,1 ~A +
1
2
δ2

0,1
~B +

1
3
δ3

0,1
~C +

1
4
δ4

0,1
~D .
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8 Other work

This chapter presents a brief summary of papers to which I had a minor contribution.

8.1 Detecting Gravitational-Wave Memory with LIGO:
Implications of GW150914

This section discusses a paper published in Physical Review Letters on August
5 2016 [319], in issue 6 of volume 117, which can be found at https://link.
aps.org/doi/10.1103/PhysRevLett.117.061102. A preprint can be found at
https://arxiv.org/abs/1605.01415.

We present a method of detecting gravitational wave memory by combining the
gravitational wave signals from multiple events. The memory signal is a small
permanent alteration of spacetime, which will alter the distance between test particles
in flat space as it passes through them. This can be seen in the top panel of Fig. 8.1,
where the blue waveform settles down to a non-zero strain after t = 0. It is found that
a confident detection of the memory could be obtained with fewer than 100 events
similar to GW150914. The method involves aligning the memory pulses seen in the
detectors (see the dashed curve in the inset of Fig. 8.1) in time, and adding up many
such signals such that they stack coherently.

For a waveform consisting only of (`,±2) modes there is a parameter degeneracy
involving a gravitational wave polarization shift and orbital phase shift of π/2, which
would flip the sign of the memory signal. With N detections and no knowledge
of the sign of the memory in the LIGO detectors, the signal-to-noise ratio of the
memory signal would only grow as 4√N with an excess-power search. Determining
the sign of the memory improves this to

√
N , and significantly decreases the number

of gravitational wave detections needed for a confident memory detection. We
therefore compute a degeneracy-breaking signal using odd m modes, using the
numerical relativity surrogate model [269] presented in chapter 5. Rather than do

https://link.aps.org/doi/10.1103/PhysRevLett.117.061102
https://link.aps.org/doi/10.1103/PhysRevLett.117.061102
https://arxiv.org/abs/1605.01415
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FIG. 2: Gravitational-wave strain time series using parame-
ters consistent with GW150914 [1, 18]. The top panel shows
the strain time series with gravitational-wave memory (blue
curve) and without (black). The bottom panel shows only the
memory-induced strain series, where the blue curve uses the
maximum likelihood parameters for GW150914 [1, 18]. The
red dotted and dashed curves are binaries at the same dis-
tance (410 Mpc) and with the same orientation (θ = 140◦),
but equal mass binaries with m1,2 = 20M� and 50M� re-
spectively (cf. 65M� for the blue curve). Inset: the solid
blue curve shows a zoomed-in version of the blue curve from
the bottom panel, while the dashed curve is after a high-pass
filter to show the signal visible in aLIGO.

cut-off of the gravitational-wave detector.
We calculate a matched-filter signal-to-noise ratio,

S/N. For a strain time series h(t) the S/N is

S/N = 〈h, u〉 /
√
〈u, u〉, (2)

where u(t) is the template waveform, and the inner prod-
uct is defined as

〈a, b〉 = 4Re

∫ ∞
0

ã(f)b̃?(f)

Sh(f)
df, (3)

where Sh(f) is the detector noise power spectral density.
The above mean S/N calculation assumes the oscilla-

tory component of the binary inspiral has been success-
fully removed from the strain time series and that our
knowledge of the memory waveform is complete. Relax-
ing this latter assumption allows us to test how sensitive
our S/N calculation is to our knowledge of the waveform.
We create memory signals with maximum-likelihood pa-
rameters of GW150914, and calculate the S/N we recover
using mismatched templates where we draw randomly
from a distribution of masses with m1 = 36±10M� and
m2 = 29±10M� (note these errors are much larger than
the 90% CL intervals of GW150914). We find the mean
S/N reduces to 〈S/N〉 = 0.28. That is, using the wrong
templates for the masses of the systems in this case only
costs us ≈ 15% of the S/N.

For multiple gravitational-wave events, we construct
an optimal estimator for the weighted-memory sum

ĥtot =

 N∑
i=1

NIFO∑
j=1

ĥi,j
σ2
i,j

/ N∑
i=1

NIFO∑
j=1

σ−2
i,j

 , (4)

σtot
i,j =

 N∑
i=1

NIFO∑
j=1

σ−2
i,j

−1/2

, (5)

where ĥi,j is the estimator for the memory amplitude of
the ith event detected in the jth interferometer, σi,j is the
associated uncertainty, and σtot

i,j is the uncertainty asso-

ciated with ĥtot. The variable, σi,j depends on the sky
location and the polarisation angle. Combining Eqns. (4)
and (5) we obtain an expression for the optimal, total
signal-to-noise ratio

Ŝ/Ntot =

 N∑
i=1

NIFO∑
j=1

Ŝ/Ni,j

σi,j

/ N∑
i=1

NIFO∑
j=1

σ−2
i,j

 , (6)

where Ŝ/Ni,j = ĥi,j/σi,j .
The total expectation value for the total S/N for N

events observed with NIFO interferometers is

〈S/Ntot〉 =

 N∑
i=1

NIFO∑
j=1

〈
S/Ni,j

〉2

1/2

, (7)

where 〈S/Ni,j〉 is the expectation value of the signal-to-

noise for the ith event detected in the jth interferometer.
In the limit where the signals from all mergers have the
same 〈S/N〉i, the total 〈S/Ntot〉 ∝

√
NNIFO. For this

analysis we assume a network consisting of LIGO Han-
ford and Livingston interferometers, i.e., NIFO = 2.

The above frequentist approach allows us to estimate
the total number of detected merger events required for
a detection of memory. We also develop a complemen-
tary method for determining the Bayesian evidence for a
gravitational-wave memory signal in the data. Consider
a single inspiral event detected by aLIGO. The Bayesian
evidence, Z =

∫
L(h|~ξ)p(~ξ)d~ξ, where ~ξ are the model pa-

rameters, L(h|~ξ) is the likelihood of the data h(t) given

the model, and p(~ξ) is the prior probability for each of
the parameters. The log-likelihood function is

lnL(h|~ξ) ∝ −1

2

M∑
k=1

∣∣∣h̃k − ũk/d∣∣∣2
σ(fk)2

, (8)

where we sum over frequency bins fk, and σ(fk) is the in-
terferometers noise spectrum. The variable ũk is the tem-
plate describing the full merger signal, including both the
oscillatory and memory components. The Bayes factor
BF = Z/Z0 is the evidence ratio where the denominator

Figure 8.1: Top panel: Gravitational-wave strain for parameters consistent with
GW150914 [20, 250]. The blue and black curves show the strain with and without
including the memory signal, respectively. Bottom panel: The memory signal alone
(blue). The red dotted and dashed curves show the memory signals for equal mass
binaries with total masses of 40M� and 100M�, compared to 65M� for the blue
curve. Inset: An enlarged version of the blue curve from the bottom panel, before
(solid) and after (dashed) a high-pass filter to show the signal visible in aLIGO
detectors.

a full parameter estimation study to determine the uncertainty of the sign of the
memory for each signal, we estimate our confidence in determining the sign of the
memory using the signal-to-noise ratio of this degeneracy-breaking signal.

8.2 An architecture for efficient multimodal
gravitational wave parameter estimation with
linear surrogate models

This section discusses a paper submitted to Classical and Quantum Gravity [17]. A
preprint can be found at https://arxiv.org/abs/1701.01137.

Gravitational wave parameter esimation [20] is a computationally expensive task. The
full 15-dimensional parameter space of extrinsic and intrinsic parameters consists

https://arxiv.org/abs/1701.01137
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of two black hole masses, two 3-dmensional dimensionless black hole spin vectors,
four spacetime coordinates describing the location and time of the merger, and three
angles describing the orientation of the binary. Brute-force sampling can require
O(107) samples or more, even when using sophisticated Markov chain Monte-
Carlo [7] or Nested sampling [8] techniques. Each sample consists of choosing a
point in parameter space, evaluating the corresponding signals we would expect to
see in the detectors for the given parameters using a waveform model, and comparing
this to the observed data.

Surrogate models, also called reduced-order models (ROM), reduce the cost of
parameter estimation by speeding up waveform models. Independently, a method
was developed [9] to reduce the number of waveform evaluations by separating the
parameter space into intrinsic and extrinsic parameters, and evaluating the likelihood
analytically over extrinsic parameters for a given set of intrinsic parameters. This
paper combines these approaches in a natural way for the case of linear surrogate
models, which express waveform modes as a sum over basis vectors multiplied with
analytic coefficients that depend on the intrinsic parameter space. The result is an
analytic likelihood function that can be computed from a handful of inner products
between basis vectors and detector data, as well as inner products between two basis
vectors.

In practice, most surrogate models are built for dimensionless waveforms by factoring
out the total mass M, so the basis vectors will depend on M. This means that for
each M we must compute some inner products, at which point we have an analytic
likelihood function valid for this particular total mass M. Additionally, the basis
coefficients of linear surrogates are typically either obtained through least-squares
fits or tensor-spline interpolation (as in Appendix A). In either case, while analytic,
the full likelihood function is impractical to express in closed form and will typically
be evaluated numerically. Nevertheless, these coefficients are fast to evaluate, which
leads to very rapid parameter estimation.

8.3 Black hole spectroscopy with coherent mode
stacking

This section discusses a paper published in Physical Review Letters on April 20
2017 [319], in issue 16 of volume 118, which can be found at https://journals.
aps.org/prl/abstract/10.1103/PhysRevLett.118.161101. A preprint can

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.161101
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.161101


171

be found at https://arxiv.org/abs/1701.05808.

This paper presents a method of measuring subdominant modes in the ringdown
phase of binary black hole mergers by coherently stacking the signals from many
detections. Such a measurement could be used to test General Relativity (GR),
as was done with the dominant quasinormal mode (QNM) of the ringdown of
GW150914 [252]. The method used is somewhat similar to that used to detect
gravitational wave memory [319], in that it involves aligning multiple detections
such that they can be stacked coherently.

For each detected signal, the results of parameter estimation will lead to knowl-
edge of the remnant black hole mass and spins, which fully determines the QNM
frequencies. Each signal can then be scaled in time such that the (3,3) QNM (for
example) has the same frequency f0 in all cases. The much larger (2,2) mode will
then have a frequency ≤ 2

3 f0 depending on the spin of the remnant, so it can be
distinguished from the (3,3) mode and will not contaminate the measurement. The
signals must also be phase-shifted such that the (3,3) modes are in phase with each
other. By investigating the waveform modes produced by the non-spinning [269]
and NRSur4d2s [14] surrogate models, we found that the phase of the (3,3) mode is
well-determined by knowledge of the phase of the (2,2) mode even when significant
parameter uncertainty (for example in the black hole masses) is present. While the
mass ratio and black hole spins do affect the phase difference between these modes
at merger, the difference is small. We find that the (3,3) QNM can be measured
confidently with ∼ 1 yr of aLIGO data at design sensitivity using a merger rate of
40 Gpc−3yr−1.

8.4 Gravitational Waves from Binary Black Hole
Mergers Inside of Stars

This section discusses a paper submitted to Physical Review Letters [18]. A preprint
can be found at https://arxiv.org/abs/1704.07383.

The Fermi satellite observed a γ − ray event [12] coincident with GW150914 [250].
Binary black hole (BBH) mergers are not expected to produce an electromagnetic
counterpart [13], so it would be surprising for these to be directly related. It has
been proposed that a BBH merger that occurs within a massive star undergoing
gravitational collapse could lead to such an electromagnetic counterpart [320]. We
rule out this scenario by evolving BBH systems within a gas of constant density,

https://arxiv.org/abs/1701.05808
https://arxiv.org/abs/1704.07383
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as the resulting waveforms are inconsistent with waveforms from BBH mergers in
vacuum even with densities lower than those that would be realistically expected
within such a star.

We performed numerical relativity simulations of two 30M� non-spinning black
holes in a gas environment with initially constant densities ρ0. Increasingly large
densities of gas lead to increasingly faster chirps of the gravitational wave (GW)
signal due to converting orbital energy into kinetic and internal energy of the gas.
For gas densities ρ0 ≥∼ 107 gcm−3, these GW signals are inconsistent with GWs
from any BBH merger occuring in vacuum, even after varying the black hole masses
and spins to improve the match. Typical densities in the core of a presupernova star
are ∼ 109 − −1010 gcm−3, and even at a radius of 1000 km densities remain above
∼ 107 gcm−3. Since GW150914 is consistent with a vacuum BBH GW signal, we
therefore conclude that GW150914 is inconsistent with the proposed scenario. Here,
we are making a mild assumption that BBH mergers within collapsing stars with
other masses and spins will also lead to GWs inconsistent with GW150914. Since
this particular system leads to GWs inconsistent with any vacuum GWs, and since
the inconsistency is due to an overly rapid chirp due to drag forces which should be
present in any BBH system within gas, we find this assumption to be justified.
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A Tensor Spline Surrogates

A.1 Introduction
When building surrogate models of waveforms from numerical relativity simulations
as done in chapters 5, 6 and 7, we often have very few waveforms per dimension
of the parameter space. For example, the surrogate model constructed in chapter 7
uses only 886 waveforms in a 7D parameter space, which is 886

1
7 ∼ 2.64 points

per dimension. The waveforms themselves are highly oscillatory and would require
many points per dimension for accurate direct interpolation, so the methods in these
chapters focus on transforming the waveforms into other simple functions that are
much easier to interpolate. There are at least two sacrifices made in using these
transformations.

First, the computational cost to evaluate the surrogate model can be larger than
when interpolating the waveform directly. The additional cost comes partially from
having to reconstruct the waveform from these simple functions. This can involve
rotating waveform modes from a coprecessing frame back to the inertial frame,
which involves evaluating a Wigner D matrix at each timestep and can take O(1 s).
Due to the very low number of points per dimension, efficient interpolation methods
such as cubic tensor-spline interpolation cannot be used and least-squares fits with
carefully chosen functional forms are used instead (see, for example, Sec. 6.10 of
chapter 6). These fits may use O(100) coefficients, each of which multiplies the
product of d basis functions for a d-dimensional parameter space, and evaluating
them can be more costly than cubic tensor-spline interpolation.

The second sacrifice is that the waveform modes are no longer expressed as the sum
over time-dependent basis functions with parameter-dependent coefficients. A linear

surrogate model of waveform modes {h`,m(x; ~λ)}`,m computes h`,m(x; ~λ) using

h`,m(x; ~λ) =

N∑
i=1

c`,mi (~λ)b`,mi (x) . (A.1)
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Here, ~λ is a parameter vector containing (for example) the black hole masses and
spins, and x can either time or frequency depending on whether the surrogate model is
for time-domain or frequency-domain waveforms. The advantages of having a linear
surrogate model include the ability to construct reduced-order quadratures [145,
155] or an analytic likelihood function [17], either of which can be used to speed up
gravitational wave parameter estimation. In either case, the gravitational wave data
observed in a detector is projected directly on to the basis {b`,mi (x)}Ni=1 once, and all
likelihoods are calculated from the coefficients c`,mi (~λ) without any further costly
inner products with detector data. Using a waveform decomposition as in chapters 6
and 7, or even building linear bases for the waveform mode amplitudes and phases
as done in chapter 5, leads to a non-linear surrogate model where the waveform
modes are not expressed in the form of Eq. A.1.

Fortunately, it is rather straight-forward to build a linear surrogate model of a non-
linear surrogate model. That is, if we have some underlying waveform model denoted
by A (for example, performing numerical relativity simulations) and build a non-
linear surrogate model B(A) from the results of a handful of evaluations of A, we
can then build a linear surrogate model C(B(A)) from many evaluations of B. Here,
the notation X (Y ) denotes that model X is a surrogate model of Y , and X attempts
to replicate the output of Y . In this case where A involves performing numerical
relativity simulations, constructing C(A) directly would be far too costly, as C(X )
will require many evaluations of X . On the other hand, constructing B(X ) can be
done with relatively few evaluations of X , and B is sufficiently fast that we can
evaluate it many times. This will allow us to construct C(B(A)).

In Sec. 6.8 we built a frequency domain linear surrogate model which we call
NRSur4d2s_FDROM by taking the fast fourier transform (FFT) of the time do-
main waveforms generated by a time domain non-linear surrogate model called
NRSur4d2s. In that case, C was NRSur4d2s_FDROM, and evaluating B consisted
of taking the FFT of the output of the NRSur4d2s surrogate model. Here we present
a generalization of the method used in Sec. 6.8 and include more detail. Building
surrogate models using cubic tensor-spline interpolation has also been done for
effective-one-body (EOB) models [239, 265]. The method presented here is very
similar, but uses empirical interpolation rather than interpolating basis coefficients,
and uses the waveform mode real and imaginary parts rather than amplitude and
phase in order to yield a linear surrogate model.

Suppose we already have a waveform model B which is computationally inexpensive
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enough that we can evaluate it O(10d) times, where d is the dimensionality of
the parameter space vectors ~λ. While in our case B has always been a numerical
relativity surrogate model B(A), this method applies to any waveform model B

meeting the above cost requirement. We will proceed by first constructing moderately
dense training and validation sets. Next we will choose an appropriate set of time
or frequency samples. We will then constructing a reduced basis and empirical
interpolant for each mode using the training set, and estimate the errors using the
validation set. Finally, we will generate cubic tensor-spline interpolants at each
empirical node from increasingly dense grids in parameter space, until our surrogate
error is sufficiently small.

A.2 Constructing a training set
The method presented in this chapter assumes a parameter space with topology Id ,
where I is the closed unit interval [0,1]. Each parameter dimension λ j lies in some
closed interval [a j ,b j], which can be mapped to the unit interval with the linear
transformation

Tj (λ j ) =
λ j − a j

b j − a j
. (A.2)

Here, j ∈ {1, . . . ,d} and d is the dimensionality of the parameter space. We will
denote the mapped parameters by ~µ = ~T (~λ), where µ j = Tj (λ j ). Given a positive
integer N ≥ 2, we can construct a 1D grid of N uniformly-spaced points

GN =

{ n
N − 1

: n = 0, . . . ,N − 1
}
. (A.3)

Given d such integers N1, . . . ,Nd , we define the d-dimensional grid by the cartesian
product of the corresponding 1-dimensional grids

GN1,...,Nd
= GN1 × . . . × GNd

. (A.4)

We will consider building a linear surrogate model for a single waveform mode
h`,m(x; ~λ), which we will denote h(x; ~λ) for notational simplicity. We note, however,
that in practice it is useful to build linear surrogate models for all (`,m) modes
simultaneously, using the same grids.

For simplicity we will restrict to d-dimensional grids GN1,...,Nd
where N1 = . . . =

Nd = N , and denote GN1,...,Nd
= Gd

N . Removing this restriction can be useful when
h varies more rapidly over some parameter dimensions than others. We construct
two sets of waveforms

H1,2 = {h(x; ~T−1(~µk ) : ~µk ∈ Gd
N1,2
} (A.5)
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by evaluating the waveform model B and storing the results, where N2 > N1. We
will use H1 as a training set and H2 as a validation set.

A.3 Determining the domain samples
The time to evaluate the linear surrogate model C(B) should be dominated by
tensor-spline interpolations and evaluating empirical interpolants. Evaluating an
empirical interpolant consists of multiplying a matrix of dimension L × n with a
vector of dimension n, where L is the number of time (or frequency, depending on
what x represents) samples and n is the number of basis vectors in the empirical
interpolation basis. It is therefore useful to have a sparse sampling of the waveforms
to keep L small, up to the point where either the cost of empirical interpolation
becomes negligible to the cost of tensor-spline interpolation or the error due to
undersampling the waveform becomes significant. We therefore wish to choose the
sparsest sampling strategy that yields negligible errors when interpolating back to a
dense set of times (or frequencies).

One strategy would be to use a fixed sampling rate, choosing L uniformly spaced
points between xmin and xmax with

δx =
1

L − 1
(xmax − xmin) . (A.6)

A second strategy which is likely to yield a lower L for a fixed interpolation error
tolerance would be to sample uniformly in the phase of h(x). Since h also depends
on ~λ and we must choose the same x samples for all ~λ, the sampling will be only
approximately uniform in the phase and the number of samples per cycle will vary
between waveforms. To make this strategy explicit, we can choose one reference

waveform h0(x) = h(x; ~λ0) where ~λ0 might be, for example, mass ratio q = 1 and
zero spins. We then choose L samples uniformly spaced in

ϕ0(x) = arg [h0(x)] . (A.7)

This can be problematic when |h0(x) | becomes very small and arg[h0(x)] becomes
poorly resolved, as |h(x; ~λ) | could still be large for some ~λ. To overcome this, we
choose a constant phase sampling rate δϕ and set minimum and maximum values of
δx. We then begin at x = xmin and compute

ω0(x) =
d
dx
ϕ0(x) . (A.8)
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We then choose
δx = min

(
δxmax,max

(
δxmin,

δϕ

ω0(x)

))
(A.9)

and advance to min(xmax, x + δx). We continue until we reach x = xmax.

Whatever strategy is chosen, we have a method of increasing or decreasing the
number of samples L. Given a densely sampled waveform h(x), we can determine the
interpolation error by first downsampling h to our L samples, then interpolating the
real and imaginary parts of h back to the dense sampling using (for example) cubic
splines. We increase L until this interpolation error is negligible for all waveforms in
our training set H1.

A.4 Constructing an empirical interpolant
Next, we construct an empirical interpolant for h(x) using our training set H1. For
details, see Ref. [76] or Sec. 6.3. We begin by constructing a linear basis

E = {ei (x)}Mi=1 (A.10)

for h(x) such that the projection errors are all below some tolerance ε . Specifically,
we choose M large enough such that

L∑
j=1

|h(x j ; ~T−1(~µk )) −
M∑

i=1

ci (~µk )ei (x j ) |2 < ε2 (A.11)

for all ~µk ∈ H1 where x j are our chosen time (or frequency) samples, and

ci (~µ) =

L∑
j=1

h(x j ; ~T−1(~µ))ei (x j ) . (A.12)

The particular basis can be constructed using a singular value decomposition (SVD)
of our whole training set H1 and keeping the first M vectors, or by constructing a
reduced basis (see [248] and Sec. 6.3). For large training sets, a reduced basis is
favorable due to the computational difficulty of the SVD method, which requires
loading the entire training set into memory.

From the basis E, we then determine M empirical nodes {x∗i }
M
i=1 and perform a linear

change of basis to obtain the empirical interpolation basis B = {bi (x)}Mi=1 through

bi (x) =

M∑
j=1

(
V−1

)
ji

e j (t) , (A.13)
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where V is a M × M matrix with Vji = e j (x∗i ). Again, see Ref. [76] or Sec. 6.3 for
details.

We will now estimate the error of the empirical interpolant and domain sampling
strategy over the whole parameter space using the validation set H2. For each
~µ ∈ Gd

N2
, we take the densely sampled waveform h(x; ~T−1(~µ)) and downsample

it using the sparse sampling stragegy selected in Sec. A.3. We then evaluate the
empirical interpolant, obtaining

g(x; ~µ) =

M∑
i=1

h
(
x∗i ; ~T−1(~µ)

)
bi (x) , (A.14)

and interpolate g(x; ~µ) back to a dense sampling of x using cubic splines. Finally,
we compute the error

ε(~µ) =

∫
dx ���h(x; ~T−1(~µ)) − g(x; ~µ)���

2
. (A.15)

We find the largest error over the validation set

ε∗ = max
~µ∈Gd

N2

ε(~µ) . (A.16)

If ε∗ is an acceptibly small error, we continue. Otherwise, we can attempt to reduce
the error by increasing the sampling rate with a larger L and/or by using a larger
linear basis by choosing a smaller ε . If ε∗ remains large, then the training set H1

does not adequately span the full parameter space, and we must increase N1 and N2

and start over at Sec. A.2.

A.5 Tensor spline interpolation
We now build cubic tensor-spline interpolants for the real and imaginary parts of the
waveform at the empirical nodes, which we denote

hi
R(~µ) = h(x∗i ; T−1(~µ)) (A.17)

hi
I (~µ) = h(x∗i ; T−1(~µ)) . (A.18)

We will consider a single hi
I,R(~µ), and simply denote it by y(~µ).

We first give the method for building a cubic tensor-spline interpolant for y given
grid data

YN = {y(~µ) : ~µ ∈ Gd
N } . (A.19)
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We label the grid points of Gd
N with d indices i1, . . . , id which take on values between

0 and N − 1 inclusive, with

~µi1,...,id =

(
i1

N − 1
, . . . ,

id

N − 1

)
(A.20)

and
y [i1, . . . , id] = y(~µi1,...,id . (A.21)

The cubic tensor-spline interpolant requires a grid of (N + 2)d coefficients. For a
general grid of dimensions N1 × . . .× Nd , we would obtain (N1 + 2) × . . .× (Nd + 2)
spline coefficients. Denoting the coefficients s[ j1, . . . , jd], where each j index takes
on values between 0 and N + 1 inclusive, the cubic tensor-spline interpolant T S is
evaluated as

T S(~µ) =

3∑
k1=0

. . .

3∑
kd=0

s
[
j∗1 (µ1) + k1, . . . , j∗d (µd)

] d∏
`=1

B j∗
`
(µ` )+k` (µ`) . (A.22)

Here, B j (µ`) is a cubic B-spline with knots u0
j , . . . ,u

4
j given by

ui
j = max

(
0,min

(
1,

i + j − 3
N − 1

))
, (A.23)

and
j∗` (µ`) = b(N − 1)µ`c (A.24)

identifies the first of 4 (potentially) nonzero B-splines in dimension `. See Ref. [293]
for details on B-splines. The cubic tensor-spline evaluation consists of a sum over
4d terms, each of which is a spline coefficient multiplied with the product of d

B-splines depending on ~µ. Since the B-splines are independent of which hi
R,I we are

considering, the 4d B-spline products can be evaluated a single time and stored in
memory, to be reused for other empirical nodes.

Determining the spline coefficients involves equating the spline evaluation with the
grid data at the N d grid points, and imposing two boundary conditions per dimension
in order to obtain (N + 2)d equations for the (N + 2)d unknown spline coefficients.
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We have

(B)i j ≡ B j

(
i

N − 1

)
=




1, ( j = 0 = i) or ( j = N + 1, i = N − 1) ,
1
4 , ( j = 1 = i) or ( j = N, i = N − 2) ,
7

12 , ( j = 2, i = 1) or ( j = N − 1, i = N − 2) ,
1
6 , ( j = 2, i = 2) or ( j = N − 1, i = N − 3) ,
1
6 , 3 ≤ j ≤ N − 2, i = j − 1 ± 1 ,
2
3 , 3 ≤ j ≤ N − 2, i = j − 1 ,

0, otherwise.

(A.25)

We augment B from a N× (N +2) matrix to a (N +2)× (N +2) matrix by prepending
one row and appending another, corresponding to the spline boundary conditions at
the start and end of the interval. We use ‘not-a-knot’ boundary conditions, which
give a constant derivative across the first and last non-boundary breakpoints. This
leads to the extended matrix

A =



1 −2 3
2 −2

3
1
6 0 0 0 0

1 0 0 0 0 0 0 0 0
0 1

4
7

12
1
6 0 0 0 0 0

0 0 1
6

2
3

1
6 0 0 0 0

0 0 0 1
6

2
3

1
6 0 0 0

0 0 0 0 1
6

2
3

1
6 0 0

0 0 0 0 0 1
6

7
12

1
4 0

0 0 0 0 0 0 0 0 1
0 0 0 0 1

6 −2
3

3
2 −2 1



, (A.26)

where for concreteness we fix N = 9. For other values of N , the tri-diagonal part of
A with diagonal 2

3 and sidebands 2
3 is extended. If we ignore the first and last rows

of A, each column of the the N × (N + 2) submatrix B gives B j evaluated at the N

grid points in one dimension.

To write down the system of (N + 2)d equations for the (N + 2)d unknowns, we need
to pad the grid data y[] with zeros in order to obtain not-a-knot boundary conditions.
Defining

ỹ
[
j1, . . . , jd

]
=




y
[
j1 − 1, . . . , jd − 1

]
, 1 ≤ j` ≤ N for all ` = 1, . . . ,d

0 otherwise ,
(A.27)
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the system of equations is

N+1∑
j1=0

. . .

N+1∑
jd=0

s
[
j1, . . . , jd

] d∏
`=1

Ai` j` = ỹ [i1, . . . , id] . (A.28)

For grids with different numbers of points in each dimension, the d copies of A will
have different sizes. Inverting this system can be done simply by inverting the matrix
(or matrices for non-uniform grids) A, obtaining

s
[
j1, . . . , jd

]
=

N+1∑
i1=0

. . .

N+1∑
id=0

ỹ [i1, . . . , id]
d∏
`=1

(
A−1

)
jl il

. (A.29)

We first determine the spline coefficients for all empirical nodes hi
R,I (~µ) using the

grid data from the training set H1. We can then evaluate the entire tensor-spline
surrogate for each ~µ ∈ G2, and compare that to the corresponding waveform in H2.
Typically, an accurate empirical interpolant can be obtained from a fairly sparse
grid. For example, in chapter 7, using N ∼ 5 gave empirical interpolants with small
validation errors. The spline interpolants, however, may require many more points
per dimension. We therefore typically need to build tensor-spline interpolants from
increasingly large grid sizes N until the validation errors become small. If N and d

are large enough that disk space usage becomes an issue, it can be useful to store
only the waveform at the empirical nodes. The tensor-spline interpolants can then
be constructed, and validation errors can be computed one at a time without ever
storing the full waveforms on disk.
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