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Mélanie Delapierre

All Rights Reserved

ii



To my family.

iii



Acknowledgments
The work presented herein could not have been done without the help of many people that I would like

to thank here. First and foremost I would like to thank my adviser, Prof. Pellegrino, for his support, and

advice during those past four years. I thank you for your guidance, encouragement, enthusiasm, availability

and the great work environment that you provide to the group. I would also like to thank the members of

my committee: Prof. Daraio, Prof. Kochmann, and Prof. Meiron.

I would like to acknowledge my past and present colleagues from the Space Structures Laboratory. In

particular I would like to thank you for the very insightful and useful comments you gave me during group

meetings and each time I had to prepare a public presentation. I thank Manan Arya, Miguel Bessa, Stephen

Bongiorno, Federico Bosi, Serena Ferraro, Terry Gdoutos, Ashish Goel, Christophe Leclerc, Ignacio Maqueda
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Abstract

Many future space missions require large structures subject to stringent shape accuracy requirements. Spin-

ning membrane-like structures are a cost effective solution for these applications. However, any small deflec-

tion of a spinning structure, due to maneuvers or solar radiation pressure, leads to geometrically nonlinear

effects on its stability and dynamics. Accurate experiments, simulation tools, and models are required to

ensure that buckling and vibrations will not affect mission objectives.

We first focus on the influence of transverse uniform loads on the dynamics and stability of spinning

isotropic uniform membranes. A transverse uniform load models the effect of a transverse light beam on

flat membranes with small deflections. We present experimental measurements of the angular velocities at

which various membranes become wrinkled, and of the wrinkling mode transitions that occur upon spin

down. A theoretical formulation to predict the critical angular velocities and critical transverse loads is also

presented. The transition between bending dominated and in-plane dominated behavior is identified, and the

wrinkling modes are obtained. Next, deflected, non-buckled membranes are further analyzed. Axisymmetric

nonlinear oscillations are studied analytically, and a reduced-order model is presented. This model predicts

that the deflection of the membrane introduces a hardening behavior at low angular velocities and a softening

behavior at high angular velocities. This model is validated through experiments and FEM simulations.

Then, we relax the assumption of uniform membranes loaded by transverse light beams. We present

an Abaqus model of foldable membranes and show that for particular types of hinges and at high angular

velocities, these structures behave like uniform membranes. Finally, we derive an FEM model for solar

radiation pressure for quadrilateral surface elements and 3D problems and present its implementation in

Abaqus. We show that this follower load introduces an unsymmetric stiffness matrix and that instabilities

known as solarelastic flutter can develop. This new FEM capability enables equilibrium and frequency-based

stability analyses for a wide range of spacecraft.
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Chapter 1

Introduction

1.1 Motivation

Membranes are widely used for deployable lightweight space structures as they can be packaged tightly

for launch. For example, Figures 1.1a and 1.1b respectively show IKAROS Solar Sail in its deployed and

packaged configurations. The 20 m diameter sails is packaged into a 1.6 m × 0.8 m cylinder to fit into a

launch vehicle. Due to the emergence of thinner material films, structural architectures and miniaturized

(a) IKAROS in its deployed configuration (20 m
diam. 7.5 µm thick) (JAXA, 2010)

(b) IKAROS in its packaged configuration 1.6 m
diam. 0.8 m height (Sawada et al., 2007)

Figure 1.1: Packaging of Membrane Structures.

electronics, membrane structures are becoming a new trend. For example, the Jet Propulsion Laboratory

(Moussessian et al., 2011) has been developing membrane active phased array radar (see Figure 1.2a), opening

the possibility for a new generation of large flexible antennas in space. Solar cells on large arrays such as the

ones on the International Space Station (Figure 1.3) is another example of technology compatible with thin
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structures. Finally, the Space Solar Power Initiative (SSPI) at Caltech is developing thin tiles that collect

solar energy using photovoltaic cells, and beam it to Earth as radio frequency energy using patch antennas.

Those tiles (Figure 1.2b) are very thin lightweight modular units attached to larger, flexible, and packageable

modules.

TR

Modules

Patch

Frame

(a) 16x16 element active membrane
array (Moussessian et al., 2011).

(b) SSPI tile mockup. A very light structure that integrates optical
concentrators, solar cells and antennas (Caltech, 2015).

Figure 1.2: Advanced flexible technologies for space application.

Figure 1.3: Solar array wing on the International Space Station (NASA, 2006).

Other applications simply require a membrane with special surface properties. The James Webb Space

Telescope includes tensioned reflective membranes forming a sunshield (Figure 1.4a) that protects the tele-

scope from external sources of light and heat. This is a necessary condition to detect faint and very distant
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objects. In addition, reflective membranes are widely considered for solar sailing. The principal of solar

sails (or light sails or photon sails) is to use the radiation pressure exerted by sunlight on large mirrors as a

propulsion system. Such a structure is illustrated in Figure 1.4b with the Sunjammer demonstrator led by

the company L’Garde Inc. and NASA. Another application is space reflectors. The Russian Federal Space

Agency has developed and tested the Znamya satellites (Figure 1.4c), a series of experimental orbital mirrors

made to beam solar energy from space to some remote places of Russia. The project was abandoned after

the failed deployment of the Znamya 2.5.

(a) Full-sized JWST sunshield post deployment test. Credit: Northrop
Grumman (NASA, 2015).

(b) Sunjammer ground demonstrator (Johnson et al.,
2010).

(c) Znamya concept (Melnikov and
Koshelev, 1998).

Figure 1.4: Example of reflective membrane structure applications.

The low bending stiffness of membranes, which is advantageous for packaging, also requires them to be

put into a state of prestress, after deployment, to stabilize their deployed shape. Pre-stressing can be done by

applying edge forces through a set of deployable booms as in the ATK (Johnson et al., 2010) and Sunjammer

(Figure 1.4b) Solar Sail concepts or the James Webb sunshield (Clampin, 2008). Nevertheless there is an
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increasing interest in a lighter and potentially simpler approach, in which prestressing is achieved through

the use of centrifugal action. This approach was recently demonstrated in the IKAROS solar sail (Sawada

et al., 2007), shown in Figure 1.1a, during which, however, unexpected shape deviations were observed (Satou

et al., 2015).

Several missions or mission concepts have used centrifugal force to prestress flexible structures. We

already have mentioned the IKAROS and Znamya satellites but it is also a popular idea in the area of

mesh reflectors. Kyser (1965) has studied a concept for an isotensional disk for space applications such as

a rotating wing for re-entry deceleration. Later, the Furoshiki was introduced (Nakasuka et al., 2006). The

Furoshiki concept (Figure 1.5b) is a large membrane or net in space extended by satellites that hold each

corner. In addition, ESA advanced concept team (Gunnar and Gärdsback, 2009) has studied the concept

of a large web in space. Another membrane example is Heliogyro (Figure 1.5a), a solar sailing mission that

was first introduced by MacNeal (1967). It is made of flexible spinning blades that can be actuated and

rotated for altitude control. The main advantage is the easy storage and deployment of the system. Other

examples of spinning spacecraft formed and deployed using centrifugal forces are reported on the book by

McInnes (1999) and Melnikov and Koshelev (1998). Figure 1.5c and Figure 1.5d show two other missions

where the spinning structure is curved. The applications are a parabolic concentrator (Nakasuka et al., 2006)

and large-aperture paraboloidal reflector low-frequency telescope, LOFT (Large low-frequency orbiting radio

telescope) (Schuerch and Hedgepeth, 1968).

Many research projects have focused on the deployment of such structures in space. In the context of spin

deployment of mesh structures we can refer to the previously introduced report (Gunnar and Gärdsback,

2009; Gärdsback and Tibert, 2009). When it comes to membrane structures there is extensive literature in

the context of IKAROS that includes (Tatematsu et al., 2017; Mori et al., 2012; Sakamoto et al., 2011; Zhao

et al., 2013; Yamazaki and Miyazaki, 2011). Although deployment is a key aspect to the success of a mission,

in this thesis we focus on the less studied post deployment behavior of spinning membrane structures.

For many of the previously cited applications shape accuracy is a key requirement. For phased array

antennas, for example, a flatness error of λ
30 (where λ is the wavelength) leads to a 5% loss in transmission

in the main beam (for very large arrays). A flat shape also increases the propulsive action for solar sailing

or the total absorption in photovoltaic membranes. Some of the disturbances that can alter the flatness

of the structure post deployment include gravity gradient, maneuvers, thermal gradient and solar radiation

pressure. In this thesis we focus on transverse translation maneuvers and solar radiation pressure.

Overall very flexible space structures are a recent promising development that necessitates new high

fidelity models, as well as experimental methods and simulations techniques with the aim of understanding

their dynamics and stability in space in order to ensure that they are able to provide the required performance.
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(a) Heliogyro concept (Wilkie et al., 2015). (b) Concept of Furoshiki Satellite (Nakasuka et al., 2006).

(c) Sketch of whirling-membrane solar
concentrator (Jerke and Heuth, 1968).

(d) The baseline design of the LOFT concept (Schuerch and
Hedgepeth, 1968).

Figure 1.5: Existing mission concepts using spinning, flexible structures.

1.2 Goals and Outline

The first goal of this thesis is to understand how a uniform load, such as the load imposed by a transverse

light beam and as approximated by gravity, affects the dynamics and stability of a spinning membrane. Two

fundamental problems were analyzed. First, the wrinkling of spinning membranes under transverse uniform

loads was studied. The objective was to determine the minimal angular velocity at which a flexible structure

needs to be spun up in order to maintain a flat or near flat axisymmetric shape. Then, the influence of

the axisymmetric, pre-buckled deflection on the membrane nonlinear dynamics was studied, focusing on

axisymmetric resonance. For both cases we have approximated a spinning space structure using a thin,

circular, clamped-free, isotropic, linear elastic annulus. An experimental setup was developed and will be
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presented in Chapters 2 and 3. In this setup the sample spins horizontally in vacuum, with two degrees of

freedom controlled at the hub: the rotation around the axis of revolution and the normal translation. Two

different data acquisition systems have been used. Digital image correlation (DIC) measures the shape of

the membrane while a scanning vibrometer acquires its vibration. Several analytical models based on the

von Kármán plate equations were developed. Nonlinear static and dynamic simulations in Abaqus/Standard

are presented and tested against analytical models and experiments. Additionally, the work performed here

help in understanding the effects of gravity on laboratory experiments on spinning membranes.

The second goal of this thesis is to implement generic simulation tools to study realistic space structures,

and to improve the current state-of-the-art of FEM modeling of solar radiation pressure. Origami is a

promising method for packaging large flat space structures for launch, but the use of this technique alters

the properties of the structure from those of a uniform sheet to those of hinged uniform plates. FEM models of

origami structures were used to study the influence of hinges on the linear dynamics of spinning structures and

how they compare to the behavior of uniform membranes. Then, we focused on solar radiation pressure and

its implementation in FEM. This load is often neglected when it comes to the deformation of stiff spacecraft.

As more flexible space structures are developing, solar radiation pressure can become the dominant load and

can affect the flatness or even stability of the structure through what is known as solarelastic flutter. When

the light beam is transverse to the spinning flat structure it is equivalent to a uniform pressure (for small

amplitude of deformation), and the previously discusses studies on wrinkling and nonlinear vibrations apply

to that case. When the beam is at an angle, however, the situation is very different and special treatment

is required. These conditions are difficult to reproduce on Earth, therefore reliable and efficient simulation

tools need to be developed. A finite element implementation of solar radiation pressure for the three types

a surface properties, reflective, absorbent, and diffuse is derived and implemented for 3D problems with

quadrilateral surface elements in Abaqus/Standard.

Several research projects have studied the dynamics of spinning thin annulus with stationary concentrated

force in the context of computer memory disks (Nayfeh et al., 2001; Benson and Bogy, 1978; Benson, 1983;

Cole and Benson, 1988; Raman and Mote, 1999; Renshaw, 1998; Renshaw and Mote, 1996). The present

analysis differs from this previous work for two reasons. First, the load is either uniformly distributed,

in the case of gravity, or deformation-dependent, in the case of solar pressure, as opposed to stationary

concentrated loads. Secondly, we consider very flexible disks. Even small loads create large deflections that

influence wrinkling and nonlinear vibrations. Several studies focused on the deformation and instabilities

induced by solar radiation pressure, especially in the context of solar sailing (McInnes, 1999; MacNeal, 1971).

However, most of that work focused on solving the exact PDEs, limiting their application to simple cases.

Little work exist on generic FEM formulations of solar radiation pressure that could be used for realistic

space structures.
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This thesis is composed of four independent chapters. Each chapter has its own introduction, literature

review, and conclusion. We present them here.

Chapter 2 presents a complete study of the wrinkling of spinning circular membranes under a transverse,

uniform load1. A clamped-free annular spinning membrane, subjected to a transverse uniform load, may

buckle due to the geometrically nonlinear generation of compressive circumferential stress along the edge of

the membrane, resulting from deflections that may be larger than the membrane thickness. Experimental

measurements of the angular velocities at which different membranes become wrinkled, and of the wrinkling

mode transitions that occur upon spin down, are presented. We experimentally measured the wavelength

of the wrinkling pattern of a variety of samples at different angular velocities. A theoretical formulation

of the problem is presented, in which pairs of critical angular velocity and critical transverse loads are

determined. We analyzed this problem using nonlinear von Kármán plate theory. The results are compared

to a previous theory that used a membrane approximation, to FEM simulations, and to experiments. The

present formulation is in terms of a dimensionless load and angular velocity, and the transition from bending

dominated behavior to in-plane dominated behavior depends on the ratio of the inner to outer radius of

the membrane. The wrinkling mode of the membrane can be determined by examining the variation of the

eigenvalues with the angular velocity, and the critical mode corresponds to the eigenvalue that reaches zero

first. Once the membrane has wrinkled, the wrinkling mode changes as the angular velocity is decreased.

The results from this chapter answer a fundamental question: at what minimum angular velocity should

spacecraft rotate in transverse solar radiation pressure to avoid wrinkling?

Chapter 3 studies the transverse vibrations of an annular isotropic, homogeneous membrane spinning

at constant angular velocity and deflected by uniform transverse loading2. The membrane is clamped at

the inner edge and free at the outer edge. The perturbation is axisymmetric. The equilibrium of the

membrane under normal load and its natural frequencies are first calculated using the von Kármán plate

equations. Next, the Galerkin procedure is used to determine the reduced order model describing the weakly

nonlinear vibrations of the axisymmetric modes. It is shown that the vibrations are represented by a single

degree of freedom Helmholtz-Duffing oscillator. A given membrane exhibits softening or hardening behavior,

jump phenomena or hysteresis depending on the angular velocity, transverse load amplitude, amplitude of

excitation, and damping ratio. The results are in excellent agreement with dynamic implicit finite element

simulations in Abaqus/Standard. To experimentally validate the results, a experimental apparatus was

built. Both digital image correlation and laser vibrometry are used to measure mode shapes and nonlinear

vibrations, and good agreement between theory and experiments is observed.

1The work in this chapter was performed in collaboration with Prof. John Elie Sader and Dr. Chakraborty from University
of Melbourne.

2The work in this chapter was performed in collaboration with S. Haegeli Lohaus visiting student from ETH Zurich.
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This chapter answers the fundamental question: what is the influence of membrane deflection caused by

a uniform load on the linear and nonlinear dynamics of spinning membranes? Generally, the results illustrate

how a small deflection of the structure can modify its nonlinear dynamics. This is a characteristic of the

novel very flexible structures that we consider in this research. In addition, the results from this chapter can

be used to scale experiments on Earth to limit the influence of gravity on nonlinear dynamics.

In Chapter 4, FEM models of creased structure in Abaqus/Standard are presented. We focus on the

implementation of the hinges or creases using distributed connector elements. Some origami packageable

IKAROS-like structures (Sawada et al., 2007) are analyzed further in terms of stress distribution and fre-

quency analysis. A wide range of results are presented for various plate thicknesses and properties, geome-

tries, topologies and angular velocities. We have considered two types of hinges between the plates, fixed

hinges with one degree of freedom and sliding hinges. We compare the linear behavior of those structure with

the one of uniform strictures and derived criteria at which the spinning membrane behavior is recovered.

Results from this chapter justify the membrane model for origami packageable structures for appropriate

angular velocities. It can also be used as a starting point to implement more realistic FEM models of

spacecraft including creases.

Chapter 5 presents a finite element derivation and implementation for solar radiation pressure. This

derivation and implementation was performed for the case of quadrilateral surface elements and 3D problems.

We used isoparametric mapping and derived explicit formulations of the nodal forces and element sub-

matrices for the three surface types: reflective, absorbent, and diffuse. It is shown that the external force

stiffness is unsymmetric. We introduce a method to implement such loads in Abaqus/Standard using an

UEL subroutine and a tie constraint. This subroutine was implemented for static (linear and nonlinear)

analysis and complex frequency evaluation. This model was tested on benchmark problem for which an

explicit PDE was formulated and solved for comparison. A perfect agreement between the two approaches

is shown.

This chapter introduces a practical and general way to study the influence of solar radiation pressure

on the shape and stability of very flexible structures. It also presents an example of implementation of

deformation-dependent load in Abaqus/Standard. This can be used as a generic method to study solar

radiation effects on complex space structures.

Finally, Chapter 6 presents the conclusion along with areas of future research.
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Chapter 2

Wrinkling of Spinning Membranes
Under Transverse Uniform Load

2.1 Introduction

Membranes are widely used in deployable space structures, as they allow tight packaging for launch. Their

low bending stiffness, which is so advantageous for efficient packaging, requires that the deployed shape

is stabilized by applying a state of prestress, which is often done by applying edge forces through a set of

deployable booms (as in the James Webb sunshield (Clampin, 2008)). There is increasing interest in a lighter

and potentially simpler approach, in which prestressing is achieved through the use of centrifugal action. It

was recently demonstrated in the IKAROS solar sail (Sawada et al., 2007), during which, however, unexpected

shape deviations were observed (Satou et al., 2015). Spinning membranes are also of interest for future,

ultralight space-based solar power satellites. Both solar sails and solar power satellites require ultralight

structures that can remain flat under the load of an incident light beam from the sun. Maintaining a flat

shape is important to increase the propulsive action for solar sailing or the total absorption of concentrated

photovoltaics.

It is known that thin membranes sheets, as they can carry very little compression, are susceptible to

wrinkling. Many wrinkling problem have been studied in the past. Wong and Pellegrino (1999a, 2006,

1999b) have considered the wrinkling of initially flat, linear-elastic and isotropic thin foils subject to in-plane

loads, and studied this problem experimentally, analytically, and numerically. Other wrinkling configurations

have been studied such as thin sheets under boundary confinement (Vandeparre et al., 2011) for example.

A transverse uniform loading on a spinning membrane can significantly alter the flatness of the structure,

causing it to deform into an axisymmetric shallow “cone” that, at sufficiently large transverse loads, buckles

into a wrinkled surface. Simmonds (1962a) first studied this transition from axisymmetric to wrinkled, using

a stress based wrinkling criterion that neglects the bending stiffness of the membrane. In a pure membrane,

i.e., a structure with zero bending stiffness, the onset of compression initiates wrinkling. Simmonds noted
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that circumferential compression first occurs on the outer edge of a spinning membrane loaded by gravity,

and thus evaluated the load at which the circumferential stress on the outer edge becomes negative. He

assumed this load to be equal to the critical buckling load of the membrane. Okuizumi (2007) has carried

out experiments in a vacuum chamber on thin, spinning membranes loaded by gravity and vibrating under

axisymmetric excitationOkuizumi (2009, 2014). He used the same stress criterion as Simmonds criterion to

predict buckling. Chen and Fang (2011) also studied this problem using the von Kármán plate equation

with bending and plate stress components in another context: to prove the existence of several equilibrium

solutions of a static heavy disk in gravity. They theoretically and experimentally found the equilibrium

shape of a rotating heavy disk for one level of dimensionless gravity load and observed wave numbers smaller

than 4. Benson and Bogy (1978); Benson (1983); Cole and Benson (1988) studied the deflection of a floppy

disk under a stationary, concentrated transverse load. Their solutions include the coupling effects of bending

stiffness and in-plane forces.

Here we present a complete study of the wrinkling of circular membranes under a transverse, uniform

load, without assuming any particular wrinkling criterion. We begin by measuring the angular velocities

and buckling (wrinkling) modes of membranes with different properties and geometries, and we also observe

buckling mode transitions that occur upon spin down. We then formulate the buckling problem analytically

and obtain a complete numerical solution that provides the critical angular velocities and critical loads, as well

the buckled shapes of a spinning membrane. This theory predicts that the shape of the wrinkled membrane

varies depending on the angular velocity; we study the link between this result and the experimentally

observed mode transitions. Comparison of our results to the previous theory for the buckling of spinning

membranes shows that neglecting the bending stiffness of the membrane is quite inaccurate for certain

regimes. Also, the buckling modes were not predicted by this theory.

In the first part of the paper we present our experimental setup for spinning membranes loaded by gravity,

and we present specific results for three test samples. Then, we introduce an analytical model to evaluate

the critical transverse loads and angular velocities, and the waviness, of a spinning membrane using the von

Kármán plate equations. We also report the theory developed by Simmonds. Next, we compare the results

from our theory with membrane theory, experiments, and finite element simulations. We then present some

results during spin down. Finally, we present an application to a spinning solar power collecting membrane

in space.
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2.2 Experiments

2.2.1 Setup

We developed a setup that horizontally spins a membrane in a transparent vacuum chamber, at controlled

angular velocities of up to 1200 rpm, as shown in Fig. 2.1. Digital image correlation (Vic 3D, by Correlated

Solutions) was used to measure the equilibrium shapes. The maximum edge velocity of the membrane was

25 m s−1; to avoid blurring, we set the cameras to an exposure time of 13 µs. A uniform transverse load on

the membrane was provided by Earth’s gravity. A closed loop motor with Hall sensors from Maxon, model

a

h

g

Motor

DIC

Cameras

Vacuum Chamber

DIC to Analyser

Vacuum Pump

Motor to Controller

Lights

Sample

Figure 2.1: Mechanical test setup.

EC 90, flat, brushless, 90 Watt was used. The controller is a ESCON 50/5, 4-Q Servocontroller. The motor

voltage profile is prescribed though NI Signal Express and a digital-to-analog converter is used to input the

profile to the controller. The rotation at the hub is measured and found to perfectly follow the imposed

profile as seen Fig. 2.3 despite the various component in rotation and the change in shape of the membrane.

It is necessary to use a vacuum chamber for those experiments for two reasons. First, it is difficult to spin up

the membrane in air as it tends to stick the the lower plate. Second, the surrounding air would perturb the

membrane equilibrium shape while the membrane in spinning, by dynamically exciting it or create flutter

instabilities. We have used a custom made acrylic jar of 125×103 cm−3. The fully transparent jar enables

to illuminate the sample from the outside and to image through the top lid. An aluminum rack holds the

cameras about 70 cm above the acrylic jar. This distance is prescribed by the required field of view (size of

the sample) and the optical lenses that were used. More details are provided in Section 2.2.2. The jar lies on
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a thick aluminum plate through which we run the connections to the motor. We used a roughing pump from

Welch. Overall we reached a steady vacuum level 0.06 atm. We show the global setup in Fig. 2.2 from the

input voltage to the motor controller in the lower right to the measured 3D shape of a spinning membrane

in the upper right.
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Correlation

Cameras
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Vacuum
Chamber

Sample
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Figure 2.2: Overall test setup.

2.2.2 Measurement Technique

Stereo Digital Image Correlation was used to measure the shapes of the sample (the displacement wasn’t

used). Our stereo DIC system consists of two Point Grey Grasshopper cameras (GRAS-50S5M-C) with a

resolution of 2448 × 2048, 3.45 µm pixel size and a gain range between 0 dB and 24 dB. We used lenses with

a focal length of 12 mm to image our sample. The stereo angle was about 25◦. We used the commercial
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software VIC-Snap and VIC-3D by Correlated Solutions to respectively acquire synchronized images at a

certain rate and to correlate them. The biggest membrane is 40 cm in diameter and the field of view is

about 50 cm which corresponds to a pixel size of 200 µm. We drew speckles about 2 mm wide (10 px) on

the membrane with black ink and a roller rubber stamp after spraying a very thin layer of white paint.

The parameters used for the correlation are a subset of 29 pixels (corresponding to a square side length

of 0.58 cm) and density of 7 pixels. Choosing a large subset decreases the noise but also decreases spatial

resolution by averaging the deformation linearly within a subset during matching. We overall obtained 51372

data points for a spatial resolution of about 5 mm. We have used the following parameters in the software:

the shape functions assume linear deformation within subset with Gaussian weights, the pixel interpolation

uses 8-tap splines, the minimization algorithm used a zero-normalized square difference (unaffected by offset

plus scale change is lighting). In

The membrane spins at an angular velocity up to 1200 rpm. To reduce the blur on the outer edge, we

used a short exposure time. The DIC system is able to achieve sub pixel resolution and the exposure time

should be chosen such as to keep motion below 0.01 px. We took images at 13 µs, which corresponds to a

motion of 160 µm (0.8 px) on the very edge. This explains that even if no blur is noticeable on the images,

the noise is higher at high angular velocity and towards the edges. In addition some optical distortion is

introduced by the lid of the vacuum chamber. More details on measurements noise and bias can be found

in Appendix B. Overall it is found that they will not affect our estimate of the waviness of the equilibrium

shape which is the main measure of the experiments.

2.2.3 Results

The membrane was attached at the center to a rigid hub connected to the axis of the motor. Under these

initial, static conditions, the membrane took up a smooth cylindrical shape resting on the plate supporting

the motor. The test procedure consisted in spinning up each membrane to the maximum angular velocity

(1200 rpm); at this speed all tested membranes had reached a fully axisymmetric shape. For the first two

test samples (aluminum plates Al-13 and Al-20, see Table 2.1), we decreased the angular velocity in steps

of 50 rpm, waited 1 min for any transient dynamic effects to dissipate, and then took pairs of images with

the DIC cameras. We repeated this sequence until the shape was no longer axisymmetric. For the third test

sample (Kapton membrane Ka-20, see Table 2.1) we decreased the angular velocity at a rate of 1 rpm s−1

and took a pair of images every 10 seconds (see Fig. 2.3).

After completing these tests, we used the Vic3D software to compute a set of shapes of the membrane

at each angular velocity with rigid body motion components removed. For the aluminum samples the wave

number is small and could be estimated directly from the images. For Ka-20, we decomposed each of these

experimentally obtained shapes using the computed vibration mode shapes of the membrane as a basis (as
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Sample Al-13 Al-20 Ka-20
Young’s modulus E (GPa) 69 69 2.5

Poisson’s ratio ν 0.34 0.34 0.34
Density ρ (kg m−3) 2700 2700 1420
Thickness h (µm ) 152 152 50

Outer radius b (cm) 13 20 20
Inner radius a (cm) 1.3 2 2

Table 2.1: Properties and dimensions of the three samples.
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Figure 2.3: Measured angular velocity at motor axis (Angular velocity at the hub is 2
3 because of gears).

explained Appendix A). At all angular velocities we measured a significant n = 0 component, corresponding

to the axisymmetric, gravity induced deformation. Components in the range n = 1, . . . 6 were considered

to be the effects of initial non-flatness of the membrane. The membrane was considered to have buckled

if a buckling mode shape with amplitude greater than h and n ≥ 6 could be observed, in which case the

membrane was assumed to have buckled into the corresponding mode shape.

An analysis of the membrane shapes at each angular velocity showed that at a critical angular velocity the

axisymmetric (pre-buckling) shape transitions to an n-fold symmetric buckled (wrinkled) wavy shape, where

the particular value of n depends on the specific properties of the membrane. At lower angular velocities

further transitions occur to buckled shapes with smaller values of n.

It will be shown in the next section (2.3.2) that, for given Poisson’s ratio and hub to outer radius ratio,

this buckling problem can be described by two non-dimensional parameters: the equivalent gravity and

the equivalent angular velocity. The three test samples in Table 2.1 span the parameter range by means

of different bending stiffnesses and membrane diameter. Their axisymmetric, pre-buckling shapes and their

buckled shapes are shown in Figure 2.4. We notice that the experimental pre-buckling shapes aren’t perfectly

axisymmetric. We attribute those discrepancies to material imperfections.

Figure 2.5 is a plot of the amplitude corresponding to each value of n for decreasing angular velocity, for
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(a) Al-13, ω=1200 rpm. (b) Al-13, ω=1050 rpm.
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(c) Al-13, ω=950 rpm.

(d) Al-20, ω=1200 rpm. (e) Al-20, ω=750 rpm.
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(f) Al-20, ω=700 rpm.

(g) Ka-20, ω=1200 rpm. (h) Ka-20, ω=793 rpm.
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(i) Ka-20, ω=783 rpm.

Figure 2.4: Axisymmetric shapes (a, d, g), pre-buckling (b, e, h), and buckled (c,f,i) equilibrium shapes of
tested membranes. Deflection units are mm.

the Kapton membranes. The critical velocities were found to be 1100 rpm for Al-13, 800 rpm for Al-20, and

793 rpm for Ka-20. The wrinkling wavelengths, just after buckling, were three waves for Al-13, 3 for Al-20,

and 12 for Ka-20.

Figure 2.5: Experimentally derived wave numbers for Ka-20 test sample, at ω = 855, 793 , and 783 rpm.
h=50 µm corresponds to the membrane thickness.
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2.3 Theory

In order to explain these interesting experimental observations theoretical models are proposed. We formulate

in this part the analytical formulation of the problem. First, we present Simmonds’s theory that neglects

the bending stiffness followed by the von Kármán plate formulation that includes both bending stiffness and

in plane stress due to centrifugal force. We will compare the two approaches in Section 2.4. Some results

in terms of buckling loads and buckling shapes are presented for a wide range of dimensionless parameters.

Finally we present FEM results in Abaqus/Standard and introduce a search algorithm to derive buckling

limits on nonlinear loading path in Abaqus/Standard. The geometry and loading parameters are presented

Figure 2.6.

a

b

weq
r + u( r )

h

ω

q0

Figure 2.6: Definition of geometry and loading parameters.

2.3.1 Membrane Theory

When the bending stiffness of the plate is neglected there is a simple relation between angular velocity and

transverse load. This model was first derived by Simmonds (1962a) and is summarized here for the case of

clamped-free boundary conditions. This theory uses the Föppl’s equations. The basic equations governing

this system are as follows:

In-plane equilibrium:

d

dr
(rσr)− σθ + ρr2ω2 = 0 (2.1)

with σr and σθ being the radial and hoop stresses. Out-of-plane equilibrium:

2hrσr
dW

dr
= −q0

(
b2 − r2

)
(2.2)
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where W is the equilibrium axisymmetric deflection.

Stress-Strain relation:

Eer = σr − νσθ (2.3)

Eeθ = σθ − νσr (2.4)

Compatibility equation:

dreθ
dr
− er +

1

2

(
dW

dr

)2

= 0 (2.5)

Then a stress function F is introduced:

rσr = F (2.6)

σθ =
dF

dr
+ ρr2ω2 (2.7)

Combining Equations 2.2 and 2.6, one obtains:

dW

dr
= −

q0

(
b2 − r2

)
2hF

(2.8)

Combining Equations 2.1, 2.6, and 2.7, the following nonlinear differential equation was derived:

d

dr

(
r
dF

dr

)
− F

r
+
Eq2

o

(
b2 − r2

)2
8h2F 2

+ (3 + ν) ρr2ω2 (2.9)

The outer edge of the membrane is stress free. The inner edge fixed restraint requires that eθ = 0. Using

Equations 2.4, 2.6, and 2.7 the boundary conditions in terms of the stress function F are:

F (b) = 0 (2.10)

dF

dr

∣∣∣
r=a

+ ρa2ω2 − νF (a)

a
= 0 (2.11)

A stress criterion is used to derive the buckling limits. The membrane buckles when the hoop stress on the

outer edge becomes negative:

σθ(b) = 0 (2.12)
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The following dimensionless parameters are introduced:

ξ =
(r
b

)2

(2.13)

f =
8rF

(3 + ν) ρb4ω2
(2.14)

(2.15)

and Equation 2.9 becomes:

d2f

dξ2
+

[
k (1− ξ)2

f2

]
+ 2 = 0 (2.16)

with k given by:

k =
16Eq2

0

(3 + ν)
3
h2ρ3b4ω6

(2.17)

We can derive the associated dimensionless boundary conditions:

f(1) = 0 (2.18)

f(
√
α)− 2α

1 + ν

(
df

dξ

∣∣∣
ξ=
√
α

+
4α

3 + ν

)
= 0 (2.19)

and rewrite the buckling criterion 2.12:

2
df

dr

∣∣∣
r=b

+
8

3 + ν
= 0 (2.20)

Purely by this dimensional analysis Simmonds found that the buckling criterion depends on three dimen-

sionless parameters k, α and ν. The buckling condition is:

k ≥ kcrit (α, ν) (2.21)

We can express this buckling condition according to the dimensionless parameters G, Ω, α and ν that are

going to be introduced in the next section (Equation 2.51). We find that G is proportional to the cube of Ω

as:

G =

√
kcrit (α, ν) (3 + ν)

3

192 (1− ν2)
Ω3 (2.22)

Estimating kcritic (α, ν) requires solving a boundary value problem of one second order ODE (Equation 2.16)
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with boundary conditions Equations 2.18 and 2.19 for many different k, up to the criterion Equation 2.20.

We will show some results using this theory in Section 2.4. In the next section we solve the same problem,

including the bending stiffness and using the von Kármán plate theory.

2.3.2 Thin Plate Theory

2.3.2.1 Nonlinear Equations for Spinning Plates

The theory presented here investigates the stability of the deflected membrane by analyzing the sign of the

eigenvalues of the stiffness operator. The membrane will buckle when at least one eigenvalue reaches zero and

the wrinkled configuration corresponds to the waviness of the unstable mode. We derive the geometrically

nonlinear axisymmetric equilibrium configuration of a spinning plate. Then, we derive the eigenvalue problem

and solve it at fixed angular velocities for a wide range of gravity amplitudes, for a wide range of eigenmodes,

until negative eigenvalues are obtained.

First we re-derive the equations governing the dynamics of spinning disks as summarized by Nayfeh (2000)

but originally derived by Nowinski (1964). The natural frequencies of the in-plane modes are assumed to

be large compared to the frequencies of the transverse modes so that we can neglect the radial and hoop

accelerations ∂2u
∂t2 and ∂2v

∂t2 . Nowinski derived the governing equations for spinning disks. Adding a forcing

term q0 we have:

∂Nr
∂r̄

+
1

r̄

∂Nrθ
∂θ

+
Nr −Nθ

r̄
+ ρhω2r̄ = 0 (2.23)

1

r̄

∂Nθ
∂θ

+
∂Nrθ
∂r̄

+
2Nrθ
r̄

= 0 (2.24)

ρh
∂2w̄

∂t̄2
+D∇4w̄ =

1

r̄

∂

∂r̄

(
r̄Nr

∂w̄

∂r̄

)
+

1

r̄2

∂

∂θ

(
Nθ

∂w̄

∂θ

)
+

1

r̄

∂

∂θ

(
Nrθ

∂w̄

∂r̄

)
+

1

r̄

∂

∂r̄

(
Nrθ

∂w̄

∂θ

)
+ q0 (r̄, θ, t̄) (2.25)

where ρ is the density (kg m−3), E the Young’s modulus (Pa), ν the Poisson’s ratio, and D = Eh3

12(1−ν2)

the bending stiffness of the membrane. Also, ω is the angular velocity (rad s−1), w̄ the vertical deflection

component (m) and q0(r, θ) the transverse load (Pa) applied to the membrane. The overbars correspond to

dimensional quantities, opposed to the non dimensional quantities that will be introduced Section 2.3.2.2.

We introduce the stress function Φ̄ (Nm) defined by Nr the radial force, Nθ the hoop force, and Nrθ the
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shear force and considering in-plane centrifugal body force as:

Nr =
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2
− 1

2
ρhω2r̄2 (2.26)

Nθ =
∂2Φ̄

∂r̄2
− 1

2
ρhω2r̄2 (2.27)

Nrθ = −1

r̄

∂2Φ̄

∂r̄∂θ
+

1

r̄2

∂Φ̄

∂θ
(2.28)

Substituting Equations 2.26, 2.27, and 2.28 into 2.25, one obtains:

ρh
∂2w̄

∂t̄2
+D∇4w̄ +

1

2
ρhω2r̄2∇2w̄ + ρhω2r̄

∂w̄

∂r̄
=

∂2w̄

∂r̄2

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2

)
+
∂2Φ̄

∂r̄2

(
1

r̄

∂w̄

∂r̄
+

1

r̄2

∂2w̄

∂θ2

)
− 2

(
1

r̄

∂2Φ̄

∂r̄∂θ
− 1

r̄2

∂Φ̄

∂θ

)(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2

∂w̄

∂θ

)
+ q0 (r̄, θ, t̄) (2.29)

The compatibility equation in polar coordinates is:

∂2er
∂θ2

− ∂2 (r̄erθ)

∂r̄∂θ
+

∂

∂r̄

(
r̄2 ∂eθ
∂r̄

)
− r̄ ∂er

∂r̄
=(

∂2w̄

∂r̄∂θ
− 1

r̄

∂w̄

∂θ

)2

− ∂2w̄

∂r̄2

(
r̄
∂w̄

∂r̄
+
∂2w̄

∂θ2

)
(2.30)

Assuming a Hookean isotropic material, the in-plane forces are related to the strains er, eθ, and erθ of the

midplane as:

Nr =
Eh

1− ν2
(er + νeθ) (2.31)

Nθ =
Eh

1− ν2
(eθ + νer) (2.32)

Nrθ =
Eh

2 (1 + ν)
erθ (2.33)

Using Equations 2.31, 2.32, 2.33, 2.26, 2.27, and 2.28 we can express the strain according to the stress

function.

er =
1

Eh

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2
− ν ∂

2Φ̄

∂r̄2
− 1

2
(1− ν)ρhω2r̄2

)
(2.34)

eθ =
1

Eh

(
∂2Φ̄

∂r̄2
− ν

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2

)
− 1

2
(1− ν)ρhω2r̄2

)
(2.35)

erθ =
2(1 + ν)

Eh

(
1

r̄2

∂Φ̄

∂θ
− 1

r̄

∂2Φ̄

∂r̄∂θ

)
(2.36)
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Using Equations 2.34, 2.35, and 2.36 with the compatibility Equation 2.30, we obtain:

∇4Φ̄− 2 (1− ν) ρhω2 = Eh

[(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2

∂w̄

∂θ

)2

− ∂2w̄

∂r̄2

(
1

r̄

∂w̄

∂r̄
+

1

r̄2

∂2w̄

∂θ2

)]
(2.37)

Let us now look into the boundary conditions:

At the clamped edge we have

w̄ = 0,
∂w̄

∂r̄
= 0, u = 0, and v = 0 (2.38)

The midplane strains are related to the transverse displacements w, the radial displacement u, and the hoop

displacement v by:

er =
∂u

∂r̄
+

1

2

(
∂w̄

∂r̄

)2

(2.39)

eθ =
u

r̄
+

1

r̄

∂v

∂θ
+

1

2r̄2

(
∂w̄

∂θ

)2

(2.40)

erθ =
1

r̄

∂u

∂θ
+
∂v

∂r̄
− v

r̄
+

1

r̄

∂w̄

∂r̄

∂w̄

∂θ
(2.41)

It follows that:

eθ = 0, and
∂

∂r̄
(r̄er)− er −

∂

∂θ
(erθ) = 0 (2.42)

Using Equations 2.34, 2.35, 2.36, and 2.42 we obtain conditions on the displacements u, v written in terms

of the stress function:

∂2Φ̄

∂r̄2
− ν

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2

)
− (1− ν)

2
ω2r̄2 = 0

∂3Φ̄

∂r̄3
+

1

r̄

∂2Φ̄

∂r̄2
− 1

r̄2

∂Φ̄

∂r̄
+

2 + ν

r̄2

∂3Φ̄

∂r̄∂θ2
−3 + ν

r̄3

∂2Φ̄

∂θ2

− (1− ν)ω2r̄ = 0 (2.43)

At the free edge we have:

Nr = 0, Nrθ = 0, Mr = 0, and Qr +
1

r̄

∂Mrθ

∂θ
= 0 (2.44)
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The moments and traverse shear forces are related to w by:

Mr = −D
(
∂2w̄

∂r̄2
+
ν

r̄

∂w̄

∂r̄
+

ν

r̄2

∂2w̄

∂θ2

)
(2.45)

Mθ = −D
(

1

r̄

∂w̄

∂r̄
+

1

r̄2

∂2w̄

∂θ2
+ ν

∂2w̄

∂r̄2

)
(2.46)

Mrθ = −D (1− ν)

(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2

∂w̄

∂θ

)
(2.47)

Qr = −D ∂

∂r̄

(
∇2w̄

)
(2.48)

Qθ = −D
r̄

∂

∂θ

(
∇2w̄

)
(2.49)

Thus combining Equations 2.26, 2.28, 2.45, 2.47, and 2.48 we obtain:

∂

∂r̄

(
∇2w̄

)
+

(1− ν)

r̄2

∂2

∂θ2

(
∂w̄

∂r̄
− w̄

r̄

)
= 0

∂2w̄

∂r̄2
+ ν

(
1

r̄

∂w̄

∂r̄
+

1

r̄2

∂2w̄

∂θ2

)
= 0

1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2
− 1

2
ω2r̄2 = 0

−1

r̄

∂2Φ̄

∂r̄∂θ
+

1

r̄2

∂Φ̄

∂θ
= 0 (2.50)

Equations 2.29 and 2.37 with the boundary conditions Equations 2.38, 2.43, and 2.50 are the starting point

of our analysis. They are equivalent to considering the leading term of the expansion of a three-dimensional,

nonlinear elastic solid (Ciarlet, 1980), for the case of large displacements and small strains.

2.3.2.2 Buckling Equations

The following dimensionless parameters, defined in terms of the geometry and loading parameters in Figure

2.6, are introduced:

r =
r̄

b
α =

a

b

weq =
w̄eq
h

Φeq =
Φ̄eq
D

Ω =

√
ρh

D
b2ω G =

b4

Dh
q0 (2.51)

The subscript eq denotes the pre-buckling equilibrium configuration.

Within the von Kármán’s plate theory, a solar pressure normal to the membrane is equivalent to a

uniformly distributed vertical force. In the first case q0 is the magnitude of the pressure and in the second

case q0 = ρgh with g the acceleration due to gravity.
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From Equations 2.29 and 2.37 we obtained the axisymmetric equilibrium equations in terms of the non-

dimensional deflection and non-dimensional stress function:

∇4weq + Ω2

(
1

2
r2∇2weq + r

∂weq
∂r

)
− L(weq,Φeq) = G

∇4Φeq + 6
(
1− ν2

)
L(weq, weq)− 2 (1− ν) Ω2 = 0 (2.52)

where the operator L is defined as:

L(w,Φ) =
∂2w

∂r2

(
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2

)
+
∂2Φ

∂r2

(
1

r

∂w

∂r
+

1

r2

∂2w

∂θ2

)
− 2

(
1

r

∂2Φ

∂r∂θ
− 1

r2

∂Φ

∂θ

)(
1

r

∂2w

∂r∂θ
− 1

r2

∂w

∂θ

)
(2.53)

The boundary conditions for this problem are free on the outer edge (r = 1) and clamped on the inner

edge (r = α). They are the same as Equations 2.38, 2.43, and 2.50 replacing ω by its dimensionless expression

Ω.

The axisymmetric equilibrium shape is obtained from a subset of these equations. The fourth Equation

2.50 is identically satisfied and can be neglected. The remaining Equations 2.52 - 2.50 define a boundary

value problem made of two coupled 4th order ODEs that we have solved in Matlab using the built in function

bvp4c.

We derived the eigenvalue problem by considering a small perturbation (buckling mode), w, from the

axisymmetric equilibrium configuration. We substituted this buckled configuration into Equation 2.52 and

linearized the equations. We then obtained the stiffness operator around the axisymmetric equilibrium. The

eigenvalues λ and eigenmodes (w,Φ) of the stiffness operator are the solutions of the following boundary

value problem:

−λw +∇4w + Ω2

(
1

2
r2∇2w + r

∂w

∂r

)
= L(w,Φeq(G,Ω)) + L(weq(G,Ω),Φ)

∇4Φ = −12
(
1− ν2

)
L(weq(G,Ω), w) (2.54)

The boundary conditions for the buckling mode are the same as the conditions on weq in Equations 2.38 - 2.50;

we only need to replace Ω by zero.

We look at the modes by separation of variables:

w(r, θ) = W (r) exp(inθ)

Φ(r, θ) = Φ(r) exp(inθ) (2.55)
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where n is an integer (due to periodicity in θ) and i the imaginary unit. The mode shapes end up being real

values.

2.3.3 Results

Figure 2.7a shows this nonlinear axisymmetric solution for Ω=200, and for increasing G up to buckling. We

also plot the relative deflection at buckling in Figure 2.7b. This curve doesn’t cross zero because static thick

plates can deform up to 80% of the thickness before buckling. This number becomes 5.5 ×103% at Ω=200.

0 50
0

0.5

1

1.5

2
106

Bifurcation
Point

Principal 
Solution

(a) Nonlinear loading path for Ω=200.

0 100 200
-60

-40

-20

0

(b) Deflection at buckling point.

Figure 2.7: Axisymmetric equilibrium of heavy rotating disk.

For a given Ω, α and ν we found the nondimensional critical buckling load, Gcrit, by computing the

eigenvalues for increasing G until the lowest eigenvalue became equal to zero. The corresponding value of G

is Gcrit. The buckling modes have one nodal circle and n radial wrinkles. In Figure 2.8 we have plotted the

values of λ for modes with one nodal circle and several values of n and for increasing values of G, keeping

Ω=200 throughout. The membrane geometry is defined by α=0.1 and the Poisson’s ratio is ν=0.34.

For the first two values n = 0, 1 the eigenvalue increases monotonically with Ω and hence it never becomes

zero. For all other modes, the eigenvalue reaches zero at some value of G, hence providing the buckling load

associated with each particular value of n. For each value of Ω, the critical value of G corresponds to the

lowest intersection with the axis λ = 0. As such, Gcrit = 1.66× 106 and ncrit = 22.

Figure 2.9a and Figure 2.9b show two additional cases at Ω=0 and Ω=64. We can notice the inversion

of the curves as we increase Ω. We find that the critical gravity level and wave numbers are 40 and 2 for

Ω=0 and 6.6×104 and 10 for Ω=64.

Finally the critical wave numbers for two different membrane geometries, α = 0.1 and α = 0.7, and
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Figure 2.8: Variation of eigenvalues with G, for Ω=200, α=0.1, and ν=0.34. Note that Gcrit = 1.66 × 106

and ncrit = 22.

ν = 0.34 have been plotted in Figure 2.10, and the buckling mode shape for each value of Ω is also shown.

The corresponding values of Ωcrit are not shown. Note that the waviness of the critical buckling mode

increases with increasing Ω.

2.3.4 Discussion

A physical interpretation of the buckling behavior of thin membranes can be obtained from simple energy

arguments. Consider a rigid bar pinned at the top and loaded by gravity. If the support starts rotating at

uniform angular velocity about a vertical axis, the bar is in equilibrium at an angle to the vertical. The

value of this angle is determined by the balance between gravity and centrifugal (D’Alembert) forces. Next,

consider a thin circular membrane, held at the center and spinning around a vertical axis through this

point. In analogy to the rigid bar, it wants to take up an axisymmetric, near-conical configuration, which

provides stationary potential energy due to centrifugal force and gravity. This configuration requires the

outer perimeter of the membrane to get shorter, and this shortening induces in-plane strain energy in the

membrane. When this energy is too high, the membrane can find an alternative equilibrium shape around the

cone, by creating a wavy configuration with lower energy. The waves in the buckled configuration increase

the bending energy of the membrane while releasing some of the in-plane energy. Because the bending energy

of the wrinkled membrane increases with both bending stiffness and wave number, membranes with higher

bending stiffness need fewer waves to achieve the same amount of internal energy, which explains why at

lower Ω the wave number is smaller.
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(b) Eigenvalues at Ω=64 and for increasing G.

Figure 2.9: Eigenvalues inversion.

In Figure 2.8 it is important to note that the eigenvalue vs. loading curves become tightly bunched and

hence there are many values of n close to Gcrit. It can be expected that it will be more difficult to identify

a single buckling mode shape experimentally.
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Figure 2.10: Variation of critical mode wave number and mode shapes with normalized angular velocity, for
ν = 0.34, and for α=0.1, and α = 0.7.

2.3.5 Parametric Analysis

We have presented so far results for a wide range of Ω and G but fixed α and ν. In this section, we present

results for various α and ν, to study the influence of these parameters on the stability of the spinning

membrane.

We wrote a Python script in Abaqus that computes the critical loads and wave numbers. A similar

technique can be used to estimate the buckling of many problems that requires a nonlinear loading path.

Abaqus has a built-in buckle option, but it is a linear perturbation analysis that doesn’t follow the nonlinear

loading path. We have used this script to develop results on a wide range of dimensionless G and Ω.

The membrane is simulated with a linear elastic material with the properties of Kapton film. The simu-

lation is carried out with S4R elements: 4-node doubly curved thin shell elements with reduced integration,

hourglass control, finite membrane strains, 5 thickness integration points elements. They are numerically

efficient elements based on the Kirchhoff shell theory. We simulate the central hub by rigidly constraining
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the nodes along the inner edge. As the wrinkling is triggered by to compression at the outer edge where the

wrinkles are localized at high angular velocity, it is important to have a fine mesh at that edge. A dense

mesh was used with 1000 nodes on the outer edge and 1000α on the inner edge. The simulation runs in

two steps. First, a nonlinear static step evaluates the axisymmetric equilibrium of the membrane under

centrifugal force and gravity. Then, a frequency analysis is performed. A secant method algorithm was used

to determine the gravity load that leads to the first zero eigenvalue for each Ω. The wrinkle wave number

is automatically computed using the Fourier transform of the outer edge deflection of the first mode. The

results from this script and the MATLAB code were compared for α=0.1 and ν=0.34 and gave the exact

same results for the full range Ω=[0...200].

With this script we evaluated the master curves shown in Figure 2.11. We have looked into the depen-
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Figure 2.11: Influence of α for ν=0.34, and of ν for α=0.1 on critical loads (G,Ω).

dence of the critical load on geometric parameters and material properties, using nonlinear finite element

simulations to compute the relationship between Gcrit, ncrit and Ωcrit. Figure 2.11a and Figure 2.11b plot

the influence of α (for ν=0.34) and ν for (α=0.1) on Gcrit. These plots show that ν has little influence on

the critical load, while increasing α has the effect of increasing Gcrit for given Ω, or decreasing Ωcrit for

given G. Figure 2.11d shows the influence of ν on critical wave number for α=0.1. Increasing Poisson’s ratio
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ν increases the wave number for a given Ω. Increasing α at constant ν (Figure 2.11c) increases the wave

number as well but at higher Ω the wave numbers converge to each other.

2.4 Comparison of Present Theory with Membrane Theory, Non-

linear Simulations, and Experiments

Figure 2.12 shows a comparison of results from the present theory with the membrane theory by Simmonds

(1962a), nonlinear finite element simulations, and the experimental results obtained in the present study.

According to the pure membrane wrinkling theory (Section 2.3.1) Gcrit is proportional to Ω3, and the

BUCKLED

AXISYMMETRIC

Figure 2.12: Comparison between buckling theory introduced in this paper, membrane theory derived by
Simmonds, finite element simulations and experiments.

coefficient of proportionality decreases with both α and ν. This theory does not resolve the waviness of

the buckled mode shape. Figure 2.12 shows that the two theories converge at high values of Ω, which was

expected since the effect of the bending stiffness of the membrane tend to become negligible.

Our collaborators, Prof. John Elie Sader and Dr. Debadi Chakraborty, have performed nonlinear static

finite element simulations using a COMSOL model consisting of three-dimensional elements. The full 3D

membrane was modeled in the finite element software COMSOL Multiphysics using its nonlinear static solver.

An incremental gravitational load is applied on a clamped-free membrane, which is rotating at a fixed speed.

Then the critical value of G as a function of Ω is calculated by monitoring the buckling point of the spinning

membrane. They use the same boundary conditions as used in the analytical model. The reported results
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for the spinning membrane consist of 6873 tetrahedral solid elements. The membrane was first loaded with a

centrifugal force field, then gravity was applied in small increments up to the loss of stability. They started

from different angular velocities and computed the corresponding gravity amplitudes that lead to instability.

The results of this analysis are plotted as black circles in Figure 2.12, and they practically coincide with

the results from the present theory, across the full range of Ω. It is interesting to note that even if the von

Kármán equations are an approximation to the three-dimensional nonlinear elastic model, and are normally

assumed to be valid for deflections on the order of the plate thickness, in the present case they give excellent

results for large deflections. For Ω = 10, 200 the edge deflections just before buckling are respectively 4.5h,

55 h.

We have also plotted, in green in Figure 2.12, the critical pairs (G,Ω) for our three experiments. There

is excellent agreement between the critical angular velocities from experiments and theory. However, the

theoretical buckling wave numbers are 3, 4, and 18 respectively for Al-13, Al-20, and Ka-20, whereas our

experiments gave the values 3, 3, and 12 (see Table 2.2). As noticed in Section 2.3.3 the buckling limits

tend to become quite close at higher values of Ω, and it is conjectured that this effect, in combination with

initial curvature of the Kapton membrane, may explain why the theoretically obtained wave number is less

accurate for the dimensions of the test sample Ka-20.

Sample Al-13 Al-20 Ka-20
n number exp. 3 3 12
n number theo. 3 4 18
ωcrit exp. (rpm) 1100 800 783
ωcrit simu. (rpm) 1050 921 730

Table 2.2: Comparison between experiments and theory.

2.5 Spin Down

Upon further spin down, each experiment showed additional shape transitions of the membranes, to lower

values of n. Select shapes are shown in Figure 2.13 for Ka-20, Figure 2.14 for Al-20, and Figure 2.15 for

Al-13.

A very interesting observation is that the buckling mode transitions seen in the experiments, upon spin

down, resemble the theoretical staircase pattern in Figure 2.10. Therefore, it is natural to ask if there

might be an exact correspondence between the angular velocities at which the mode transitions occur. To

investigate this point, we compared the experimentally observed velocities of the various transitions for Ka-20

to the theoretical. We can see Figure 2.16 a clear discrepancy between the two results.

To determine whether the discrepancy might be due to experimental errors, we also carried out a FEM
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Figure 2.13: Selected spin-down shapes of Ka-20 membrane. Deflection units are mm.
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Figure 2.14: Selected spin-down shapes of Al-20 membrane. Deflection units are mm.
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Figure 2.15: Selected spin-down shapes of Al-13 membrane. Deflection units are mm..

simulation of the spin-down process for a membrane with perfect geometry. The simulation was performed in

Abaqus/Standard and the membrane model is similar to the one Section 2.3.5. Nonlinear dynamic implicit

integrations was performed in a membrane-mounted (spinning) reference frame. In order to simulate the

slow spin down, we run a quasi-static simulation with centrifugal load. As the deceleration is slow we neglect

the rotary acceleration fictitious force. Finally as the material displacement is mainly out of plan and thus

parallel to the axis of rotation, Coriolis force is neglected as well. We used the Euler-Backward integration

scheme. The simulation is performed in three steps. First, we add centrifugal force corresponding to a spin

rate of 1000 rpm in a nonlinear static step. Once the structure is stiff enough to sustain gravity we add

a gravity load of amplitude 9.81 m.s−2 in another nonlinear static step. Finally we perform a quasi-static

simulation by linearly decreasing the centrifugal force up to 0 rpm with a maximum time increment of 0.5

rpm to have a small enough resolution in angular velocity. The results are presented in Figure 2.16.

The same qualitative dynamic behavior as the one observed experimentally is seen. It is characterized
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Figure 2.16: Comparison of mode shape wave number predicted by buckling theory, with mode transitions
from spin down experiments and numerical simulations.

by a series of successive shape instabilities, as the membrane surface is deformed into a wavy shape with an

increasing number of rotationally symmetric waves. We show some of the simulated equilibrium shapes in

Figure 2.17. We find a perfect match both in terms of critical wave number and critical buckling Ω between

theory and simulation for the first critical speed, which is the only one we intended to describe exactly. We

again found that the shape transitions upon spin down do not occur at the critical angular velocities. The

full spin down prediction requires some additional work to estimate the post-buckling equilibrium and its

successive bifurcations, that is not the purpose of this study. For example Chen and Fang (2011) has derived

such analytical solutions. In particular, the authors show that spin up and down exhibit some hysteresis and

overall the equilibrium shapes post buckling are path dependent.
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Figure 2.17: Selected post buckling equilibrium shapes. Deflection units are mm.

32



2.6 Application to Spinning Spacecraft

Our theory can be used to analyze novel designs of ultralight spacecraft. Consider a circular spinning

membrane in space with a perfectly absorbent surface that is pointed to the sun, in geostationary orbit. It

provides an ideal light-collecting surface to gather solar energy.

Let the radius be r = 10 m, the thickness h = 100 µm, and the Young’s modulus and Poisson’s ratio be

identical to Kapton (see Table 2.1). This choice is made for simplicity, since the photovoltaic material has

not been specified. The magnitude of the solar pressure in geostationary orbit is q0 = 4.57× 10−6 Pa.

For these properties, G = 1.2 × 105 and then the minimum non-dimensional rotation speed to avoid

buckling is Ωcrit=79 which corresponds to ω = 1.3 rpm.

2.7 Conclusion

Transverse uniform body forces acting on a spinning membrane induce deflections much greater than the

membrane thickness, and these deflections are associated with a compressive hoop stress around the edge of

the membrane. This hoop stress can buckle the membrane, resulting in a series of azimuthal wrinkles.

A general formulation of the problem has been presented, in terms of the dimensionless load G and

dimensionless angular velocity Ω, defined in Equation 2.51, and the critical values of G and Ω have been

plotted in Figure 2.12. For Ω < 1, Gcrit depends only on the bending stiffness of the membrane (bending

dominated behavior), and hence it is constant with G. For Ω > 10, we recover the results of the membrane

theory, namely, wrinkling depends only on the mid-plane stress, and hence G increases with the cube of Ω

(in-plane dominated behavior). Both of these specific numerical limits increase if the ratio between inner

and outer radius of the membrane, α, is increased.

The buckling eigenvalues and the corresponding eigenmodes of the spinning membrane have been plotted

for a specific value of Ω in Figure 2.8. The figure shows that all eigenvalues for n ≥ 2 decrease when Ω

increases. The wrinkling mode of the membrane is determined by which eigenvalues reaches zero first. The

variation of the azimuthal wave number of the critical buckling mode for a specific value of Ω has been

plotted in Figure 2.10. It has been observed, both in experiments and through numerical simulations, that

the wrinkling mode changes during spin down of the membrane. This behavior, plotted in Figure 2.16,

qualitatively resembles the critical mode variation corresponding to different Ω.
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Chapter 3

Nonlinear Vibration at Axisymmetric
Resonance of Deflected Spinning
Plates

3.1 Introduction

Membranes structures are a promising concept for large space structures, as they are light and allow for tight

packaging for launch. For many applications, surface flatness is a key design parameter and understanding

the dynamics of such very flexible structures is a prerogative to the success of a mission. In this chapter we

study the influence a transverse uniform load induced deflection of the spinning membrane on its dynamics.

In particular we focus on the nonlinear vibration at a resonance frequency of an axisymmetric mode.

Extensive work has been performed on the mathematical description of thin spinning disks. The linear

vibration modes have been studies by Eversman (1968); Simmonds (1962b); Barasch and Chen (1972).

Nowinski (1964) formulated the problem analytically using von Kármán plate equations. In the context

of spinning disks with a stationary concentrated transverse load (memory disk drives), Renshaw and Mote

(1996); Renshaw (1998) presented some results on the critical speed and the stability of spinning disks near

critical speeds. Additionally, Renshaw and Mote (1995) investigated the stability of the deflected flexible

disk due to a stationary concentrated transverse load and provided a mathematical derivation. The nonlinear

vibration of the structure excited by a concentrated stationary load were analyzed by Nayfeh (2000) as well

as Raman and Mote (1999); Torii and Yasuda (1998); Tobias and Arnold (1957) and a reduced order model

was proposed.

In the context of spinning heavy disks, some work has been performed on the equilibrium deflection and

buckling limits, as reported in the literature review of Chapter 2. To our knowledge there is no work on

the nonlinear vibration of deflected membranes under transverse uniform load and excited axisymmetrically.

This work studies the fundamentals of the influence of the deflection on the equivalent spinning membrane
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oscillator. It describes the response to the spinning system to a periodic excitation at a frequency matching

the natural axisymmetric frequencies of the structure.

Limited experimental studies have been performed on membrane-like structures for space applications.

Linear vibration measurements were performed by Okuizumi (2014). Most of the experimental work found

in the literature was performed on spinning memory disks by exciting them it a fixed point in space with

electromagnetic actuators, as presented by Raman and Mote (1999, 2001).

A circular isotropic clamped-free membrane stabilized by its spinning motion is studied here. Its response

to external excitations is analyzed using a reduced order model, simulations, and experiments. Deflections

have important effects on the nonlinear behavior of the membrane measured in the experiments. A reduced

order model that includes the effects of deflection is discussed in this chapter. The influence of a transverse

uniform load can be studied by spinning the membrane about a vertical axis at various angular velocities

in Earth gravity. A softening nonlinear behavior is observed at lower angular velocities, while hardening

appears at higher angular velocities. In the first part of this chapter, we derive the full theoretical model

and reduced order model, then present results for a wide range of parameters. In the second part we present

full finite element nonlinear dynamic simulations in Abaqus/Standard and compare with theory. Finally, we

present an experimental setup and some results on frequency sweep and compare with theory. Figure 3.1

introduces the notation used in this chapter and shows the studied configuration.

a

b

weq
r + u( r )

h

ω

q0

Figure 3.1: Notations

3.2 Theory

In this section we develop a reduced order model for the nonlinear vibration of lightly damped, lightly

excited spinning membranes deflected by a transverse uniform load, and excited at a resonant frequency of

an axisymmetric mode shape. To study the influence of the transverse uniform load induced deformation

on the dynamical behavior of the structure, we compare the behavior of the membrane with and without
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deflection, for a wide range of non-dimensional parameters. First we formulate the problem, describe the

hypothesis, and formulate the equilibrium and perturbation equations. Then we introduce a reduced order

model to describe the nonlinear oscillator due to excitations at axisymmetric resonance frequencies. We find

that in those conditions the spinning membrane behaves like a Helmholtz-Duffing oscillator.

3.2.1 Problem Formulation

Nowinski (1964) derived the von Kármán-type plate equations for axisymmetric circular rotating plates.

They assume an isotropic elastic plate and are based on the von Kármán plate theory that requires small

stretch and moderate rotation. The deflection w̄ and stress function Φ̄ must satisfy the following coupled

nonlinear equations:

ρh
∂2w̄

∂t̄2
+D∇4w̄ = L(w̄, Φ̄)− c̄ ∂w̄

∂t̄
− ω2ρh(

1

2
r̄2∇2w̄ + r̄

∂w̄

∂r̄
) + q̄(r̄, θ, t̄)

∇4Φ̄ = −1

2
EhL(w̄, w̄) + 2ρh(1− ν)ω2 (3.1)

where q̄(r̄, θ, t̄) is a transverse load, c̄ is the damping coefficient, ρ is the density, E is the Young’s modulus,

ν is Poisson’s ratio, and the rest of the quantities are defined Figure 3.1. The operator L is defined as:

(3.2)L(w̄, Φ̄) =
∂2w̄

∂r̄2
(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2

∂2Φ̄

∂θ2
) +

∂2Φ̄

∂r̄2
(
1

r̄

∂w̄

∂r̄
+

1

r̄2

∂2w̄

∂θ2
)− 2(

1

r̄

∂2Φ̄

∂r̄∂θ
− 1

r̄2

∂Φ̄

∂θ
)(

1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2

∂w̄

∂θ
)

The boundary conditions are free on the outer edge and clamped on the inner edge (written in nondimensional

form in Equations 3.6, 3.8, 3.9, and 3.10).

We are interested in studying the fundamental question: how will the axisymmetric deflection of the

membrane due to transverse uniform load affect the nonlinear axisymmetric oscillations of the structure?

We write the external load q̄(r̄, θ, t̄) as the sum of a uniform transverse load q̄0 = ρgh and a perturbation

q̄(r, θ, t) = q̄0 + p̄(r, θ, t). Let us consider a deflection and stress function
(
w̄eq + w̄, Φ̄eq + Φ̄

)
as the sum of the

equilibrium
(
w̄eq, Φ̄eq

)
, and a perturbation

(
w̄, Φ̄

)
due to a perturbation force p̄(r̄, θ, t̄). Then we introduce

the dimensionless parameters Equation 3.3. These differ from the ones introduced by Nayfeh (2000) as, in

our case of a very thin membrane, the prestress due to centrifugal force dominates over the bending stiffness.

For the equilibrium quantities we use the same dimensionless parameters as the ones introduced in Chapter

2.
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Equilibrium:

r =
r̄

b
α =

a

b

weq =
w̄eq
h

Φeq =
Φ̄eq
D

Ω =

√
ρh

D
b2ω G =

b4

Dh
q̄0

(3.3)

Perturbation:

c =
b3c̄

2
√
ρh3D

w =
w̄

hΩ

√
b

h

Φ =
Φ̄b

DhΩ2
p =

b4p̄

DhΩ3

(
b

h

)3/2

(3.4)

We are looking for solutions that approximate the exact solution for very thin plates and thus in the case

where h
b tends to zero. All the non dimensional parameters Equations 3.3 and 3.4 are assumed to be O (1).

This is going to be compared against experimental results in Section 3.4.4.2.

3.2.1.1 Equilibrium

The dimensionless equilibrium equations are:

∇4weq = L(weq,Φeq)− Ω2(
1

2
r2∇2weq + r

∂weq
∂r

) +G

∇4Φeq = −6
(
1− ν2

)
L(weq, weq) + 2(1− ν)Ω2 (3.5)

In non dimensional form, the boundary conditions leads to:

Clamped at r=α:

weq = 0
∂weq
∂r

= 0 (3.6)

u = 0 v = 0; (3.7)

The two last conditions on the displacement u and v can be written in terms of the stress function following
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Nayfeh (2000):

∂2Φeq
∂r2

− ν(
1

r

∂Φeq
∂r

+
1

r2

∂2Φeq
∂θ2

)− (1− ν)

2
Ω2r2 = 0

∂3Φeq
∂r3

+
1

r

∂2Φeq
∂r2

− 1

r2

∂Φeq
∂r

+
2 + ν

r2

∂3Φeq
∂r∂θ2

− 3 + ν

r3

∂2Φeq
∂θ2

− (1− ν)Ω2r = 0 (3.8)

Free at r=1:

∂

∂r
∇2weq +

(1− ν)

r2

∂2

∂θ2
(
∂weq
∂r
− weq

r
) = 0

∂2weq
∂r2

+ ν(
1

r

∂weq
∂r

+
1

r2

∂2weq
∂θ2

) = 0 (3.9)

1

r

∂Φeq
∂r

+
1

r2

∂2Φeq
∂θ2

− 1

2
Ω2r2 = 0 −1

r

∂2Φeq
∂r∂θ

+
1

r2

∂Φeq
∂θ

= 0 (3.10)

The equilibrium shape of spinning membranes under uniform normal load has been previously studied by

Simmonds (1962a), and Okuizumi (2007). Both the authors used the membrane approximation, whereas

we use the full nonlinear plate equations 3.1. We only consider here the vibration around axisymmetric

equilibrium shapes that do not hold when buckling occurs. As shown in Chapter 2, when the membrane

deflects due to gravity loading a compressing stress develops at the outer edge and leads to wrinkles. The

dimensionless critical load G depends on the dimensionless angular velocity Ω, the Poisson’s ratio ν, and

hub to membrane ratio α. The higher the Ω parameter, the higher the buckling load G. This imposes a

minimal angular velocity:

Ω > fb(G,α, ν) (3.11)

The other limit of the approach is plasticity. For high angular velocities some plastic deformation can occur.

If we consider the stress due to centrifugal load only and following the Von Mises criteria for plane stress,

the plasticity limits depend on the dimensionless yield strength, ν and α. This imposes an upper bound for

the angular velocity:

Ω <
√
σyf(α, ν) (3.12)

where σy is the dimensionless yield strength of the material.

3.2.1.2 Perturbation

We first derive the perturbation equations with dimensions. After introducing the perturbation in the

spinning plate dynamic Equations 3.1, taking into account that L is a bi-linear symmetric operator, and
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simplifying using the equilibrium Equation 3.5, we obtain:

ρh
∂2w̄

∂t̄2
+D∇4w̄ + ρhω2

(
1

2
r̄2∇2w̄ + r̄

∂w̄

∂r̄

)
− L(w̄, Φ̄eq) = L(w̄eq, Φ̄) + L(w̄, Φ̄)− c∂w̄

∂t̄
+ p̄(r̄, θ, t̄)

∇4Φ̄ = −1

2
Eh(2L (w̄eq, w̄) + L (w̄, w̄)) (3.13)

Using the dimensionless quantities Equations 3.3 and 3.4, we obtain:

∂2w

∂t2
+∇4w + Ω2

(
1

2
r2∇2w + r̄

∂w

∂r

)
− L(w,Φeq) =

Ω
√
εL(weq,Φ) + Ω2εL(w,Φ)− 2cε

∂w

∂t
+ Ω2εp(r, θ, t) (3.14)

∇4Φ = −
6
(
1− ν2

)
Ω

(
2√
ε
L (weq, w) + ΩL (w,w)

)
(3.15)

where ε naturally appears as a small perturbation parameter:

ε =
h

b
(3.16)

Let us write:

Φ = −
6
(
1− ν2

)
Ω

(
2√
ε
Φ1 + ΩΦ2

)
(3.17)

with:

∇4Φ1 = L (weq, w)

∇4Φ2 = L(w,w) (3.18)

then equation 3.14 simplifies to:

∂2w

∂t2
+∇4w + Ω2(

1

2
r2∇2w + r

∂w

∂r
)− L(w,Φeq) + 12

(
1− ν2

)
L(weq,Φ1) =

−6
(
1− ν2

)
Ω
√
ε (L(weq,Φ2) + 2L(w,Φ1))− 6

(
1− ν2

)
Ω2εL(w,Φ2)− 2εc

∂w

∂t
+ εΩ2p(r, θ, t) (3.19)

where the left hand side is the linear part, the term multiplied by
√
ε is the quadratic part, and the term

multiplied by ε is cubic. The boundary conditions for the perturbed deflection w are the same as before.

The boundary conditions for the perturbed stress function Φ are:
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in r=α

∂2Φ

∂r2
− ν(

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
) = 0

∂3Φ

∂r3
+

1

r

∂2Φ

∂r2
− 1

r2

∂Φ

∂r
+

2 + ν

r2

∂3Φ

∂r∂θ2
− 3 + ν

r3

∂2Φ

∂θ2
= 0 (3.20)

in r=1:

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
= 0

−1

r

∂2Φ

∂r∂θ
+

1

r2

∂Φ

∂θ
= 0 (3.21)

In the next part we apply a Galerkin procedure similar to that presented by Nayfeh et al. (2001);

Raman and Mote (1999) to derive the reduced order model of weakly nonlinear oscillations on axisymmetric

modes. In those references the authors consider a spatially fixed harmonic load. They find that the primary

resonance of the asymmetric modes follows two nonlinear coupled second-order equations with cubic stiffness.

They find that the long-term response is a traveling wave. Here we consider a deflected membrane and an

axisymmetric excitation where the response has one degree of freedom. We will show that the response

follows the Helmholtz-Duffing oscillator. We first write the perturbation equations around the equilibrium,

then solve the eigenvalue problem, and finally incorporate a one degree of freedom ansatz in the nonlinear

perturbation equations to derived the reduced order model of the membrane oscillations.

3.2.1.3 Nonlinear Behavior and Reduced Order Model

We consider a transverse perturbation at the hub:

p(r, θ, t) = p0cos(2πft) (3.22)

Assuming no internal resonance between the directly excited mode and any other mode (Nayfeh et al., 2001;

Raman and Mote, 1999), and in the presence of damping (material damping in space and remaining air in

the vacuum chamber during our experiments, for example), all the other modes will decay with time. The

long term response consists of the directly excited mode and takes the form:

w = η(t)W (r) (3.23)
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where W (r) is the principal mode shape that satisfies the following equations obtained from the linear part

of equations 3.19 and 3.15:

− (2πf0)
2
W +∇4W + Ω2(

1

2
r2∇2W + r

∂W

∂r
) = L(W,Φeq)− 12

(
1− ν2

)
L(weq,Ψ1)

∇4Ψ1 = L (weq,W ) (3.24)

where ω0 is the non dimensional natural frequency, W and Ψ1, respectively, satisfy the boundary conditions

3.6 , 3.9 and 3.20, 3.21, and W is normalized as:

∫ 1

α

rW 2dr = 1 (3.25)

Inserting 3.23 into 3.18, we obtain:

Φ1 = ηΨ1

Φ2 = η2Ψ2 (3.26)

with

∇4Ψ2 = L(W,W ) (3.27)

Inserting 3.23 into 3.19 and using the frequency equations 3.24 we obtain:

η̈W + η (2πf0)
2
W = −η26

(
1− ν2

)
Ω
√
ε (L (weq,Ψ2) + 2L (W,Ψ1))−

η36
(
1− ν2

)
Ω2εL (W,Ψ2)− 2εcη̇W + εΩ2p (r, θ, t) (3.28)

Then, we project this equation onto W and simplify using equation 3.25. We also rescale the time with 2πf0

such that t = 2πf0t and introduce the damping ratio ξ such that c = ξ2πf0. This leads to the following

second order ODE that corresponds to the Helmholtz-Duffing oscillator.

η̈ + 2ξεη̇ + η +
√
εc2η

2 + εc3η
3 = εφp0cos(Λt) (3.29)
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with the coefficients given by:

Λ =
f

f0

ξ =
c

2πf0

c2 =
6
(
1− ν2

)
Ω

(2πf0)
2

∫ 1

α

(L (weq,Ψ2) + 2L (W,Ψ1)) rWdr

c3 =
6
(
1− ν2

)
Ω2

(2πf0)
2

∫ 1

α

L(W,Ψ2)rWdr

φ =
Ω2

(2πf0)
2

∫ 1

α

rWdr (3.30)

Overall, these coefficients depend on four dimensionless parameters: Ω, G, ν and α. Here, we consider

α=0.1 and ν=0.34. In Figure 3.2 we show the influence of Ω on the coefficients c2, c3, φ and the frequency f0

without transverse load G=0 and for G=1.35×105 (corresponding to the experimental case). It shows that

the influence of gravity decreases with the angular velocity as the structure gets flatter. In addition, Figure

3.3 shows the influence of G ∈
[
0, 6.5× 105

]
and Ω ∈ [87, 400] for α=0.1 and ν=0.34. The blank region is

the buckled region (see Chapter 2). As mentioned earlier, at high angular velocity the coefficients are not

affected by gravity.
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Figure 3.2: Nonlinear coefficients according to Ω for G=0, G=1.35×105, α=0.1 and ν=0.34.
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Figure 3.3: Influence of G and Ω on the coefficients f0, φ, c2, and c3 for α=0.1 and ν=0.34. The white region
corresponds to the buckled region.

3.2.2 Results from the Reduced Order Model

The Helmholtz-Duffing oscillator 3.29 has a restoring force with linear, quadratic, and cubic terms. The

results from Nayfeh (2000), and Raman and Mote (1999) for a flat spinning plate, extended to the case of

axisymmetric excitation, predict a Duffing oscillator (analysed by Holmes and Rand (1976) for example) with

a linear and a quadratic term in the restoring form. Figure 3.2 shows that the coefficient of the quadratic term

c2 tends to zero as we increase the angular velocity and thus decreases deflection. The spinning membrane

oscillator discussed here converges toward a Duffing oscillator, which is in agreement with the extension of

the results of Nayfeh (2000), and Raman and Mote (1999).

Benedettini and Rega (1987); Rega et al. (1984) have extensively analyzed the solutions of the Helmholtz-

Duffing oscillator in the context of elastic deflected cables under planar excitation. Studies on these oscillators

are also reported by Kovacic and Brennan (2011). The equilibrium points of a general Helmholtz-Duffing

oscillator 3.29 are η=0, and η=
−c2±
√
c22−4c3√

ε2c3
. From the coefficients in the range shown in Figure 3.3 we find

that the only physical solution is η=0 as c22−4c3 < 0. The deflected spinning membrane around axisymmetric

resonance is thus described by a single-well potential and is referred to as a single-well Helmholtz-Duffing

(SWHD) oscillator.

In the next two subsections we present the general solutions for the free and forced vibration and apply
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them to a laboratory scale case. We then compare those results with FEM simulations (Section 3.3) and

experimental results (Section 3.4). We consider a thin Kapton membrane in Earth gravity with dimensions

and properties shown in Table 3.1, excited at the first axisymmetric frequency.

Young’s modulus E 2.5 GPa
Poisson’s ratio ν 0.34
Density ρ 1420 kg m−3

Thickness h 50 µm
Outer radius b 13 cm
Inner radius a 1.3 cm
Gravity g 9.81 m.s−2

Table 3.1: Membrane dimensions and material properties.

With these parameters, condition 3.11 becomes:

98 rad.s−1 < Ω < 4227 rad.s−1 (3.31)

3.2.2.1 Free Vibration

Benedettini and Rega (1987) derived the long term solutions of Helmholtz-Duffing oscillators using a fourth-

order multiple scale perturbation method in the case of primary resonance, i.e., excitation close to the

natural frequency. The steady state solution is characterized by an amplitude of vibration that depends

on the excitation frequency (along with the phase that is not discussed here). They obtained the following

equation for the backbone curve that describes the undamped free vibration at different initial amplitudes:

Λbc = 1− c4a2 − c7a4 (3.32)

where a is the amplitude of oscillation and c4 and c7 are defined as:

c4 =
5

12
c22 −

3

8
c3 (3.33)

c7 =
485

1728
c42 −

173

192
c22c3 +

15

156
c23 (3.34)

At low amplitude of vibration, two behaviors characterize the vibration: hardening and softening. For hard-

ening behavior the amplitude of vibration increases with increasing excitation frequency around resonance.

For softening behavior the amplitude of vibration decreases with increasing excitation frequency. In partic-

ular, from Equation 3.32, we can estimate that, at small amplitudes of vibration, softening is observed for

c4 > 0, and hardening otherwise. Figure 3.4 shows the hardening and softening domains for a wide range of

G and Ω, for α=0.1 and ν=0.34.
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Figure 3.4: Softening (red) and hardening (blue) regions according to Ω and G for α=0.1 and ν=0.34.

Figures 3.5 and 3.6 show numerical solutions for the dimensions of the experiment (Table 3.1) and

different angular velocities with and without deflection. Figure 3.5, corresponding to angular velocities close

to the buckling point, shows the transition between softening at low angular velocities and hardening at

high angular velocities. This effect is due to the quadratic stiffness term in the oscillator that comes from

the deflection and thus the transverse load. At higher angular velocities (Figure 3.6), and low amplitude

of deflection we notice that the transverse uniform load mainly influences the frequencies but the nonlinear

behaviors are similar.
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Figure 3.5: Backbone curves at “low angular velocities” (dashed line=without gravity, solid line=with grav-
ity)
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Figure 3.6: Backbone curves at “high angular velocities” (dashed line=without gravity, solid line=with
gravity)

3.2.2.2 Forced Vibration

Similarly, Benedettini and Rega (1987) evaluated the steady-state solutions to forced excitations and derived

the frequency-response relation:

Λ = 1− c4a2 ∓ 1

2

(
1 + c4a

2
)√F 2

a2
− 4c2 − c7a4 − c2

2
− F 2

8a2
±
√
c2F 2

4a2
+
c42F

2a2

81
− 4c6c2a4 (3.35)

where F = φp0 is the amplitude of excitation from Equation 3.22 and with c6 defined as:

c6 =
19

72
c22 −

3

16
c3 (3.36)

We now focus on a spinning membrane with dimensions shown in Table 3.1 at various angular velocities.

Figure 3.7 shows the frequency-response curves for increasing angular velocities. We notice a transition

between softening behavior at 1000 rpm and hardening behavior at 1650 rpm. We also notice that, for

a given frequency of excitation, several amplitudes of vibration can exist. The stability of each branch is

also represented (unstable branches are dashed). Figure 3.8 shows more details of the frequency-response

curves at 1000 rpm, 1300 rpm and 1650 rpm. At 1000 rpm there are up to three steady state solutions

with different amplitudes of oscillation, two are stable (solid lines) and one is unstable (dashed line). In

addition during forward frequency sweeps (green arrows), the amplitude of oscillation is characterized by

a jump at about 21.6 Hz and a sudden increase of amplitude of vibration. During backward sweeps (red

arrows) the jump occurs at about 20.7 Hz. The vibration is thus path dependent and will depend on the

initial conditions for a given frequency of excitation. At 1650 rpm the opposite happens and the membrane

presents an hardening behavior. At 1300 rpm and for a frequency of excitation of about 21.8 Hz, we notice

five steady state solutions, three stable and two unstable. Overall the solutions will depend on the initial

conditions.
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Figure 3.7: Frequency-response curves for increasing angular velocities for an amplitude of excitation A=50
mm.s−2 and a damping ratio of 0.12%.

= 1000 rpm = 1300 rpm = 1650 rpm

Figure 3.8: Jump phenomena for an amplitude of excitation A=50 mm.s−2 and a damping ratio of 0.12%

Finally, the influence of damping and amplitude of excitation at two different angular velocities, 1000

rpm and 5000 rpm, are presented. In Figure 3.9a the damping ratio is fixed at 0.3% and the transverse
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acceleration amplitude increases from 5 mm.s−2 to 150 mm.s−2. In Figure 3.9b, the transverse acceleration

amplitude is fixed at 150 mm.s−2 and the damping ratio increases from 0% to 1%.

(a) Frequency-response curves (0.3 % damping) at
different acceleration amplitudes (solid=1000 rpm,
dashed=5000 rpm).

(b) Frequency-response curves (150 mm.s−2 acceleration
amplitude) at different damping ratios (solid=1000 rpm,
dashed=5000 rpm).

Figure 3.9: Frequency-response curves for increasing damping and amplitude of excitation.

We notice that the higher the damping the lower the response and that for high enough damping, the

jump phenomenon and hysteresis disappear. In both cases we notice that the amplitude of the response for

a given hub acceleration level decreases with the angular velocity and thus the amount of stretching in the

structure.

3.3 Nonlinear Dynamic Simulation using Finite Element Method

We compare the analytical backbone curves with results from finite element simulations using Abaqus to

estimate the validity of the reduced order model. There are several techniques to simulate the geometrically

nonlinear vibrations of spinning membranes and estimate their characteristic parameters. One can run a

dynamic simulation with a forcing term that sweeps in increasing and decreasing frequencies that would

estimate all the coefficients that describe the nonlinear behavior: w0, c2, c3, and φ. However, as we are only

interested in the nonlinear coefficients c2 and c3, we can estimate these directly from the backbone curves

that are independent of amplitude of excitation and damping.

3.3.1 Implementation in Abaqus/Standard

We use Abaqus/Standard to simulate the backbone curves of the oscillator. The simulations are performed in

the rotating frame of reference such that the hub is fixed. As this frame rotates at constant angular velocity,
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the centrifugal force and the Coriolis force are added to the simulations. First, we find the equilibrium of

a spinning membrane deflected by gravity is calculated. Then, the membrane is deformed according to the

first axisymmetric mode of vibration. Finally, a nonlinear dynamic simulation of the free vibration of the

membrane with little stiffness proportional damping is performed. This is similar to the technique described

by Soares and Gonçalves (2012).

We consider a linear elastic material. The membrane is modeled with S4R shell elements: 4-node doubly

curved thin shell elements with reduced integration, hourglass control, finite membrane strains, and 5 thick-

ness integration points elements. The mesh contains 2,151 nodes. We follow the steps summarized in Figure

3.10. We first apply a centrifugal and Coriolis loads (step 1) with angular velocity ω to stiffen the membrane.

Then gravity g is added (step 2) to obtain the equilibrium deflected shape. For those two steps we use a

linear “static” step (Newton’s method). From this equilibrium we can evaluate the mode shapes and natural

frequencies in a linear perturbation step (step 2’) and introduce this as an initial perturbation in a “static”

step (step 3). To introduce this initial perturbation we impose the appropriate displacement as boundary

conditions to each node of the membrane using a Python script. As Abaqus imposes boundary conditions

relative to the initial shape (flat and unstressed) the imposed displacements are the equilibrium plus a chosen

amplitude A multiplied by the mode shape. Finally we run a nonlinear dynamic implicit simulation (step 4)

with small stiffness proportional damping. This damping is necessary to decrease the amplitude of oscillation

and to be able to monitor the associated change in frequency. Too high damping damps the oscillations too

fast to precisely estimate the backbone curve, whereas too little damping unnecessarily increases the time of

the simulation.

Figure 3.10: Steps of FEM simulation.

We ran simulations at two angular velocities: 1200 rpm and 4000 rpm. 1200 rpm is close to the buckling

angular velocity and 4000 rpm to the maximum speed of the motor in the experimental setup detailed in part

3.4. In this step we use the Hilber-Hughes-Taylor integration scheme with no numerical damping (α=0) and

small time step (half increment residual). A small time step is necessary to obtain accurate results. Large

time steps would for example change the apparent resonant frequency of oscillation of the membrane. A
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convergence analysis was carried out to estimate a proper time step and a maximum time step was imposed.

The time step was tuned to obtain accurate natural frequency at low amplitude of oscillation (linear system).

We found that the parameters shown in Table 3.2 give accurate results. Figures 3.11 and 3.11a show the

time response at a point on the outer edge for the two simulations.

ω (rpm) 1200 4000
g (m.s−2) 9.81 9.81
β (s) 4 ×10−5 5 ×10−5

A (mm) 0.5 1
δtmax (s) 0.01 0.002
T (s) 22 35
Total CPU time (s) 4.3 ×105 1.4 ×106

Table 3.2: Dynamic simulations parameters.
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Figure 3.11: FEM results.

3.3.2 Post Processing

We use a method similar to the one introduced by Londoño et al. (2015). It consists of estimating the

instantaneous frequencies and envelope amplitudes based on the decaying response. First, the zeros of the

response are found. In order to minimize noise, due to the imprecise estimation of the zeros for example,

we don’t estimate the frequency and amplitude between each of those zeros, but base on 10 periods. The

instantaneous frequencies are defined as ten times the inverse of the time between 10 periods. As the damping

ratio is very small in these decay curves, it doesn’t affect the instantaneous frequency. The instantaneous

amplitude is the maximum amplitude within each ten periods.

Figure 3.12a and 3.12b show the instantaneous frequency and amplitude, respectively, at 1200 rpm and

4000rpm. First, we notice that the data are more sparse at 1200 rpm than 400 rpm. Even if the signal
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runs for the same amount of time, as the frequency is higher at 4000 rpm, we have more periods to process.

One could run a longer simulation with less damping at 12000 rpm to obtain more results. We notice that

the frequency increases with amplitude at 1200 rpm, characteristic of softening behavior. Conversely, the

frequency decreases with amplitude at 4000 rpm, characteristic of hardening behavior.
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Figure 3.12: Instantaneous frequencies and amplitudes.

3.3.3 Comparison Between Reduced Order Model and FEM Simulations

In Figures 3.13a and 3.13b we compare the reduced order model and FEM backbone curves at 1200 rpm

and 4000 rpm, respectively. We notice an excellent agreement between the reduced order model and the

nonlinear FEM simulations. This confirms the validity of the reduced order model.

3.4 Experiments

3.4.1 Experimental Setup

To characterize the dynamics of the membrane experimentally, the circular membrane is spun horizontally

inside a vacuum chamber and is measured using two high speed DIC cameras as well as a laser vibrometer.

This experimental setup is shown in Figures 3.14a and 3.14b. The Kapton membrane is clamped on a

central hub, which is connected to a motor (brushless 5 Watt by Maxon Motor) through a shaft. The

shaft is supported by two low friction sleeve bearings that allow for axial motions. The membrane and

the entire system ’motor-shaft-hub’ are excited vertically with an electromagnetic shaker (ET 132 Labworks

Inc.) attached to the bottom of the motor. General experimental methods for modal analysis can be found

in (Ewins, 2000). Since the membrane is excited symmetrically, this setup is restricted to the study of

symmetric modes of the membrane. The motor has internal sensors that are used for closed loop control
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Figure 3.13: Backbone curves from simulations compared to theoretical ones.

of its angular velocity. To provide a stiffness to the system while allowing a vertical motion, a spring is

attached between the motor and the fixed base. The oscillation of the hub does not correspond exactly to

the excitation signal from the function generator, but rather there is a coupled motion of the membrane with

the ’motor-shaft-hub system’. A study of this coupled motion was performed and the stiffness of the spring

was chosen to minimize the coupling while maintaining high enough amplitudes of oscillation at the shaft,

such that a constant amplitude sinusoidal sweep voltage profile input at the shakers leads to a constant

amplitude sinusoidal sweep displacement at the hub. To further monitor the excitation, the oscillation of

the hub is measured.

The achievable vacuum inside the chamber is 28.9 in Hg which corresponds to 96.6% of vacuum. The

bearings allow minor lateral motion of the rotating shaft, which introduce undesired vibration in the mem-

brane. To quantify the noise due to the bearings and to the remaining air inside the setup, the vibration

of the edge of the membrane spinning at 1800 rpm was measured using the laser vibrometer (see 3.4.2.2).

The displacements of the membrane edge and the corresponding Fourier transform are shown in figure 3.15.

The amplitude of the noise is approximately 30 µm, which is smaller than the thickness of the membrane.

Some narrow peaks highlighted by the orange dotted line can be observed in the Fourier transform of the

measurement. The frequency of these peaks correspond to the frequency of the rotation (1800 rpm = 30

Hz) and its higher harmonics. Since the frequencies of these peaks are known, they do not introduce noise

in the measurement as long as the frequency range of interest does not coincide with one of them.
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Figure 3.14: Experimental setup.
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Figure 3.15: Noise in the setup: time measurement (top) and Fourier transform (bottom).
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3.4.2 Measurement Techniques

Two different measuring methods were used to characterize the dynamic behavior of the membrane. The

modal shapes are measured by a Digital Image Correlation system, while the transverse vibration is analyzed

using a laser vibrometer.

3.4.2.1 Stereo DIC

Digital Image Correlation is an image based method that matches points of the measured sample in different

images, and uses triangulation techniques to estimate 3D displacements. By defining a reference image, the

displacement of the sample with respect to this reference image can be measured for each frame and the

resulting deformations and strains can be calculated. The software applies an optimization algorithm to

track speckles that are printed on the surface of the membrane and correlates the position of the speckles

with their position on the reference image. The membrane with speckles is shown in Figure 3.16b.

By using two synchronized high speed cameras, the vertical motion of the membrane can be captured.

Two Fastcam Mini UX100 high speed cameras from Photron with 18 mm f/3.5 Distagon T* lenses from

Zeiss and a DIC software from Correlated Solutions are used in the experiments. The membrane is imaged

1250 times per second with an exposure time of 25 µs. The exposure time is limited by the illumination

of the membrane, which is realized by four halogen lamps. Our samples are made of Kapton which is a

transparent, reflective material. To avoid direct reflections into the camera and shadows, the membrane is

lighted from below using a white reflective surface placed beneath the membrane. The experimental setup

is schematically shown in Figure 3.16a.
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(a) Experimental scheme with the DIC cameras.
(b) Membrane used in DIC
measurements.

Figure 3.16: Setup and membrane for DIC measurements.

The main advantage of the DIC system is that the membrane is analyzed in a local frame of reference since

each image is correlated to the reference image. The images are stored first in the internal camer storage,

which is limited and puts a constraint on the measurement length. The longest possible measurement with

the resolution and frame rates chosen is approximately 15 seconds, which is not enough to characterize the

54



nonlinear behavior of the membrane. This technique was used to estimate the modes of vibration and the

equilibrium shapes. The results will be presented in Sections 3.4.3.2 and 3.4.4.1.

3.4.2.2 Laser Vibrometer

A PSV-500 Polytec scanning laser vibrometer was used to measure the transverse vibration of the membrane

(see Figure 3.17a). A single point on the membrane and a point at the hub are measured. Since the force

is not directly measured, the acceleration measured at the hub is used instead as the input. The laser is

stationary, so a ring on the rotating membrane rather than a single point is measured. This is adequate as

we are interested in the symmetric modes. In order to get a good reflection of the laser beam, two rings were

painted on the surface of the membrane (see figure 3.17b). In contrast to the DIC measurements, very long

measurements are achievable with the laser. This was used to measure edge deflection during slow frequency

sweeps.
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(a) Experimental scheme with laser vibrometer.
(b) Membrane used with
laser vibrometer.

Figure 3.17: Setup and membrane for laser vibrometer measurements.

Signal Processing: Instead of performing a spectral analysis using a Fourier transform, the ampli-

tude of the response is plotted against the corresponding excitation frequency. The envelope amplitude is

calculated by computing the RMS value for subsequent intervals of the response (RMS(x) = A/
√

2). This

method achieves better results than a Fourier transform. We are looking to compare the displacement am-

plitude of the response, whereas the laser measures the velocities. To overcome this, the Fourier transform

of the velocity signal is calculated, the displacements (and accelerations) are easily computed in the Fourier

domain, and finally the inverse transform is carried out. The Fourier domain is also well suited to filter the

noise from the signal. This entire process is illustrated in Figure 3.18.
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Figure 3.18: Laser data processing.

3.4.3 Experimental Results

We experimentally measured equilibrium shapes, mode shapes, and nonlinear vibration of the spinning

membrane under gravity. To observe the nonlinear effects of the membrane, the system is excited with a

slow frequency sweep with a typical bandwidth of 2Hz around the resonance, over 400 seconds. The response

is then measured at the half radius of the membrane with the laser vibrometer. Once the resonance frequency

is known, the membrane is excited with a constant frequency at its resonance and the DIC cameras are used

to measure the modal shapes to assess the validity of ansatz 3.23 (i.e., the mode shape remains constant

even at high amplitude of excitation).

3.4.3.1 Equilibrium

The equilibrium shapes of the membrane for three different angular velocities are first measured using DIC.

Figure 3.19 shows the average axisymmetric deflections for three angular velocities: 2200 rpm, 2700 rpm,

and 3500 rpm. As expected, as the angular velocity increases, the overall deflection decreases. Figure 3.20

shows the 2D equilibrium shapes. We notice that the equilibrium shapes are not perfectly symmetric; the

edges of two opposite sides are deflected in all shapes shown. This can be explained by the prestress in the

membrane, which becomes significant especially at the edges, since the in-plane stresses due to the centrifugal

load become smaller at the edges.

3.4.3.2 Mode Shapes

The first and second symmetric mode shapes were measured for several different excitation amplitudes at

the resonances using the DIC cameras. The full 2D mode shapes at the maximum deflection are shown in

Figure 3.21.

To compare the modal shapes at different amplitudes, the deflections along eight radial slices around the

membrane are averaged. The resulting radial shapes of both modes are presented in Figures 3.22a and 3.22b.

In both cases, the modal shapes at the three lower amplitudes are close to proportional. This indicates a
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Figure 3.19: Equilibrium shapes at increasing angular velocities.
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(a) Equilibrium at 2200 rpm.
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(b) Equilibrium at 2700 rpm.
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(c) Equilibrium at 3500 rpm.

Figure 3.20: Equilibrium at increasing angular velocities.

linear behavior of the modal shapes at these amplitudes. At the largest excitation the membrane starts

to wrinkle and the shapes differ from the linear case. The modal shape of the membrane can therefore be

considered linear for small enough amplitudes, which correspond to the assumption of ansatz 3.23.

3.4.3.3 Nonlinear Vibration

The vibration at the half radius of the membrane were measured with the laser vibrometer. The first mode

of the membrane was excited with forward and backward frequency sweeps (400 s duration) at different

amplitudes. The filtered time response are presented in Figure 3.23 for the membrane spinning at 3500

rpm and increasing hub acceleration from 45 mm.s−2 to 170 mm.s−2. The filtering technique consisted in

removing all the components of frequencies outside the range of the sweep. The membrane exhibits different

nonlinear behavior for different rotational speeds. The response at 3500 rpm and 1800 rpm are presented

in Figures 3.24b and 3.24a. The forward and backward frequency-response curves should match away from
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1st Mode:
25 Hz

2nd Mode:
69.9 Hz

Figure 3.21: Modal shapes of first and second symmetric modes at 1800 rpm.

(a) Radial modal shape of the first symmetric mode
(lower (solid line) and bigger (dotted lines) amplitudes).

(b) Radial modal shape of the second symmetric mode
(lower (solid line) and bigger (dotted lines) amplitudes).

Figure 3.22: Measurements of first two axisymmetric mode shapes at 1800 rpm and increasing amplitude of
deflections.

the jump. We notice on those plots that it is not exactly the case. This is because for a given input voltage

to the shaker the amplitude of excitation at the hub is slightly different from one sweep to another. The

membrane exhibits a hardening behavior at 3500 rpm, whereas softening is observed at 1800 rpm. We notice

in the case of 3500 rpm that the membrane behaves linearly at the lowest amplitudes of excitation; the

resonance peaks are symmetric and the response is the same for forward and backward excitations. At larger
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Figure 3.23: Filtered time response at 3500 rpm and increasing hub accelerations.

(a) Frequency-response curves at 1800 rpm (solid
lines=Backward, dashed lines=Forward) and hub accel-
eration of 71 mm.s−2.

170 mm.s
-2

45 mm.s
-2

82 mm.s
-2

(b) Frequency-response curves at 3500 rpm and in-
creasing hub accelerations (solid lines=Forward, dashed
lines=Backward).

Figure 3.24: Experimental frequency-response curves at low (1800 rpm) and high (3500 rpm) angular veloc-
ities.

amplitudes, nonlinear effects such as softening/hardening, bifurcations, and jumps in the amplitude of the

response are observed.
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The transition between softening and hardening regimes at increasing angular velocities is predicted by

the mathematical model presented previously. The importance of gravity decreases for increasing speeds of

rotation, as shown in Section 3.4.3.1.

3.4.4 Comparison Between Reduced Order Model and Experiments

3.4.4.1 Mode Shapes

The measured modal shapes are in good agreement with the finite element simulations and with theory.

The normalized modal shapes of the first and second symmetric modes were determined by the theoretical

model with and without gravity, by the finite element simulations, and were experimentally observed. The

resulting modal shapes at 1800 rpm can be compared in Figure 3.25.
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(a) Shape of first symmetric mode.
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(b) Shape of second symmetric mode.

Figure 3.25: Comparison of the experimental and theoretical radial mode shapes

3.4.4.2 Nonlinear Behavior

The reduced order model developed to describe the transverse vibration of the membrane is compared here

with the experimental measures. First we estimate the experimental dimensionless quantities w, p and

c in order to justify our scaling analysis (Section 3.2.1). In particular those quantities were assumed to

be O (1) as h
b tends to zero. Table 3.3 shows the estimated dimensional quantities and their associated

dimensionless values for ω=3500 rpm. We can see that w and p are indeed O (1). The damping coefficient

in the experiments is higher but overall, the dimensionless terms are in agreement with the scaling analysis.

Let us now compare the response of the oscillator. The hardening behavior at 3500 rpm is well described

by the model, but the resonance frequency predicted with the model is 40.7 Hz, whereas the experiments
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Estimated dimensional values Dimensionless values
Deflection w̄ ≤ 0.35 mm w ≤ 1
Pressure p̄ ≤ 0.0121 Pa p ≤ 6
Damping coefficient c̄ ≈0.007 c ≤ 106

Table 3.3: Scaling parameters at 3500 rpm.

observe the resonance at 37.3 Hz. To make the comparison of these responses easier, the frequency of

excitation is normalized here by the corresponding resonance frequency. The damping used in the models

was extracted from the width of the experimentally measured resonance peaks and are reported in Table 3.4.

The average amplitude of the acceleration measured at the hub (d̈h) is used as the excitation in the model

(p0 = ρd̈hh from Equation 3.22). The model is compared to the measurements for three different amplitudes

at 3500 rpm in Figure 3.26b. The amplitudes and the corresponding acceleration values are shown in Table

3.4. It can be observed that the reduced order model captures the nonlinear hardening behavior as well as

the vibration amplitudes, with exception of the lowest amplitude, which could be explained by experimental

uncertainties at these low amplitudes.

(a) Experiments and theoretical model at lower speeds
(1800 rpm & 1200 rpm) for 71 mm.s−2 acceleration at
the hub.

170 mm.s
-2

45 mm.s
-2

82 mm.s
-2

Backbone

(b) Experiments and theoretical model at 3500 rpm (solid
lines=experiment forward, dashed lines=experiments
backward, dotted lines=theory).

Figure 3.26: Comparison of experimental and theoretical frequency-response curves at 1800 rpm and 3500
rpm.

The experiments measure softening at 1800 rpm, but the model predicts softening only at lower speeds

of rotation. This can be explained by the initial curvature of the sample. In fact, the overall deflection

under gravity is higher because of this initial downward curvature. This is similar to a membrane sagging

under a higher gravity load, or a lower angular velocity, and thus is more likely to present an softening

behavior. The measurement at 1800 rpm is compared in Figure 3.26a with the results of the model at 1800
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Amplitude Hub Acceleration (mm/s2) Exp. Damping Ratio (%)
3500 rpm: 1 45.5 0.3

(figure 3.26b) 2 82.4 0.3
3 169.6 0.3

1800 rpm: 1 71.0 0.27
(figure 3.26a)

Table 3.4: Acceleration measured at the hub and estimated damping in the experiments.

rpm and 1200 rpm for a single amplitude of excitation. It can be concluded that the nonlinear behavior of

the membrane measured in the experiments matches the predictions from the mathematical model developed

in this chapter.

3.5 Conclusion

We have studied the axysymmetric nonlinear vibration of an axisymmetrically deflected spinning membrane.

A reduced order model using von Kármán plate equations has been derived. The nonlinear coefficients of

the equivalent oscillator have been explicitly formulated. It is shown that these coefficients depend on four

dimensionless parameters: the dimensionless angular velocity Ω, dimensionless gravity load G, the Poisson’s

ratio ν, and the inner to outer radius ratio α. We find that the oscillator is a single well Helmholtz-Duffing

oscillator, while results from the literature on axisymmetric nonlinear vibration of flat spinning annulus

predict a Duffing oscillator. Thus the deflection of the membrane fundamentally alters its nonlinear behavior

and introduces a quadratic term in the restoring force. The general steady-state solutions of such oscillators

have been reported. It is shown that at high angular velocities and for small amplitudes of excitation

the membrane exhibits a hardening behavior while a softening behavior characterizes the oscillations at

high angular velocities. A threshold between hardening and softening at low amplitudes of excitations was

numerically computed for a wide range of dimensionless parameters.

A finite element simulation in Abaqus/Standard that simulates the nonlinear oscillations of deflected

spinning membranes is presented. We find that such simulations require a fine time step and appropriate

damping coefficients to obtain accurate results while decreasing the simulation time. The tuned values

corresponding to the experimental sample are reported. A post-processing technique on the decay response

of the oscillator is used to estimate the backbone curve from the simulations. An excellent agreement between

simulations and analytical results is found.

Finally, an experimental setup that decouples translational and rotational motions has been presented

and laser vibrometry was used the measure the deflection of the membrane during slow frequency sweeps.

The experiments show a very good agreement with the theory and the discrepancies have been attributed

to the initial curvature of the sample.

62



We have presented a general formulation including the bending stiffness of the thin plate. A formulation

neglecting the bending stiffness could also be derived. The general method would be the same, but singular

second order boundary value problems are expected to be found instead of the fourth order equations.

The results from this chapter can be used to design experimental setups to limit the influence of gravity on

the nonlinear behavior of spinning disks. They can also be used to estimate the influence of a perturbation

at the hub of a spacecraft (reaction wheels for example) that occurs at an axisymmetric resonance (first

resonance of spinning thin disks). As an extension to this work, one could study the dynamic response of a

spinning membrane at an angle relative to gravity. In that case the membrane would be dynamically excited

by the stationary gravity load. Some critical angular velocities can occur. The nonlinear vibration at those

angular velocities could be studied.
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Chapter 4

Parametric Analysis of Spinning
Origami Packageable Structures

4.1 Introduction

In this chapter we study more realistic structures made of hinged panels following an origami pattern that

enables packaging. The aim of this chapter is to estimate the influence of those hinges on the behavior of

the spacecraft and, in particular, to estimate the speed at which those hinges do not influence the behavior

of the spacecraft. We focused on the origami pattern presented in Figure 4.1 (Arya, 2016). This pattern is

(a) Folding

(b) Wrapping

Figure 4.1: Folding concept (Arya, 2016)

a common choice for solar sailing missions (IKAROS, Sunjammer, ATK) or the space solar power satellite

mission (Caltech SSPI). The associated packaging concept is also represented in Figure 4.1 and consists of
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two main steps: folding and wrapping. Traditionally, the connections between panels are hinges with one

degree of freedom: the rotation along the hinge line. As the structure gets bigger and the panel thicker,

some shear would develop at the fold lines, which is incompatible with those hinges. Instead sliding hinges

were introduced by Arya et al. (2017), and Arya et al. (2015). Those hinges have two degrees of freedom,

rotation and translation along to the direction of the edge, and accommodate sliding of the panels. Some

analysis of the behavior of such structures, prestressed using booms have been performed (Arya et al., 2016).

Here we focus on spinning origami packageable structures and prestressing using centrifugal force.

Those origami packageable structures are characterized by discrete changes in bending stiffness at the

fold lines. Such hinges are difficult to reproduce at small scales for lab experiments and they complicate the

analytical formulation of the problem. We thus implemented this model in FEM using Abaqus/Standard.

An Abaqus model of “flexible hinges” has been developed using Abaqus connector elements. Two kinds of

connector were considered: revolute joints and cylindrical joints. The degrees of freedom of each of those

joints are shown Figures 4.2a and 4.2b. They respectively model fixed hinges with one d.o.f. and sliding

hinges with two d.o.f. We are interested in the influence of those hinges on in-plane stress distribution

and frequencies since those quantities characterize the linear behavior of the structure. The geometry and

dimensions of the considered structure are shown in Figure 4.3. In this model the plate is isotropic with

constant thickness and the inner edge of the structure is clamped.

(a) Revolute joints kinematics. (b) Cylindrical joints kinematics.

Figure 4.2: Joints degrees of freedom.

The next section describes the Abaqus/Standard FEM model. The following section presents results in

terms of in-plane stress fields. Then the natural frequencies are compared to isotropic structures. Finally

some examples are presented.

4.2 Abaqus Model

These origami structures are approximated by connected isotropic, homogeneous plates. When the structure

is wrapped, shear mainly focuses on the horizontal and vertical edges (Arya, 2016). Figure 4.4 shows the

different hinge locations based on this observation.
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b

a

Figure 4.3: Schematic and notation of spinning origami packageable structure for 5 panels per quadrant
(n=5).

Spherical Joints

Spherical Joints

or Revolute Joints

Figure 4.4: Schematic of the structure’s hinges definitions. The sliding directions of the revolute joints are
parallel to the edges.

By analogy with isotropic plates, for a given α = a
b (hub to membrane ratio), ν (Poisson’s ratio), and n

(number of panel per quadrant) the stress field is proportional to ρb2ω2 and the dimensionless frequencies

2πf
ω only depend on one parameter Ω (Equation 4.1). We are interested by the influence of the angular

velocity (effectively Ω) and the topology of the structure (n) on its stress field and frequencies. Through this

study we only consider α=0.1 and ν=0.34. In the Abaqus simulation we implemented a modular structure

with the properties and dimensions shown in Table 4.1. A wide range of Ω was considered by changing ω.

Ω =

√
ρh

D
b2ω (4.1)

We considered a linear elastic material with the properties of Kapton. The plates are modeled with

S4R shell elements. The structure is clamped along the inner edge. The simulations were run in two steps.
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Young’s modulus E 2.5 GPa
Poisson’s ratio ν 0.34
Density ρ 1420 kg m−3

Thickness h 100 µm
Outer radius b 1 m
Inner radius a 10 cm

Table 4.1: Panel properties and structure dimensions.

First, a nonlinear static simulation prescribed the state of prestress due to centrifugal force. Then, a linear

perturbation and frequency extraction was performed. The main novelty of this model is the implementation

of the “flexible hinges”. We detail this model in the next section.

4.2.1 Hinge Model

A particularity of these types of structure are the distributed hinges between the panels. Physically, this

corresponds to many small ligaments on the edges of the panels or a thin “tape”, weak in bending. We

implemented a connector element between each opposite nodes on adjacent panels. In Abaqus, connector

elements provide a versatile way to model physical mechanisms whose geometry is discrete (i.e., node-to-

node) but with complex connections. Classically such elements are used in Abaqus to model physical hinges

in a discrete way. We use those in a distributed manner. To do so we mesh each panel such that the nodes

on two adjacent edges are collocated (see Figure 4.5a). We then add a “wire” with zero length between

each of those collocated nodes. This process was automated with a script such that any number of panel

n with any dimension b, geometry α, properties or mesh density can be quickly implemented. To avoid

over-constraining the four nodes that meet at the corners we only implement three connectors, as shown in

Figure 4.5b.

We have considered two kinds of connector element: spherical joints to model the fixed hinges between

panels and cylindrical joints to model the sliding hinges. The first connector only constrains the translation

degrees of freedom whereas the second one has two degrees of freedom: a rotation and a translation along

to a defined axis. We focus here on zero stiffness hinges, but properties such as stiffness or damping can be

easily added with this setup.
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(a) Schematic of the hinge implementation.
Each red dot corresponds to two nodes
linked by a connector element.

(b) Exploded view of corner connector elements
convention. Only three connections between the
four nodes. Each dotted line is a connector.

Figure 4.5: Example hinged model in Abaqus/Standard (coarse mesh for illustration purposes).

4.3 Stress Distribution

The stress in such structures is proportional to ρb2ω2. Figures 4.6 and 4.7 show the components σ11

ρb2ω2 , σ12

ρb2ω2

of the in-plane stress for spherical and cylindrical joints, respectively, for n=5 and n=10. As the structure

is symmetric, the component σ22 is the same as σ11 but rotated 90◦.

With spherical joints the stress distribution is the same as homogeneous membranes as all the in-plane

degrees of freedom except normal rotation are constrained. The case of sliding hinges is more interesting.

The panels slide relative to each other when centrifugal force is applied and the stress field is discontinuous

around the hinges. The black and gray colors in Figure 4.6 and Figure 4.7 are, respectively, values higher

and below the range that is shown and are points of stress concentration. Overall the minimum in-plane

principal stress component is positive everywhere (zero at the free edge) so no buckling due to centrifugal

load is expected.

4.4 Frequencies

In this part we focus on the frequencies of spinning spacecraft with increasing angular velocities. We studied

each hinge type separately and in each case we compared the results to the isotropic (hinge-less) case.

68



Figure 4.6: Dimensionless in-plane stress components for α=0.1, ν=0.34, and n=5. The components 1 and
2 are, respectively, horizontal and vertical.

4.4.1 Spherical Joints

A linear frequency analysis of such a spacecraft is performed for α=0.1 and ν=0.34 and increasing Ω from

0.08 to 400. Figure 4.8 shows the results for n=2 (solid line) compared to a uniform membrane (dashed

line).

The results are in log scale to highlight three behaviors delimited by the red lines. At low Ω (meaning low

angular velocity or thick panels) except for the lowest frequency, the slope of the frequency curve is -1. This

is characteristic of the behavior of a static plate whose dimensional natural frequencies is independent of the

angular velocity. At high angular velocity the slope is zero. This is characteristic of a spinning membrane’s

behavior whose dimensional frequency is proportional to the angular velocity. The mode with zero slope at
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Figure 4.7: Dimensionless in-plane stress components for α=0.1, ν=0.34, and n=10.

low angular velocity thus exhibits a “membrane behavior”. This corresponds to the unconstrained degree of

freedom Figure 4.9a due to the hinge with zero stiffness. As angular velocity is increased there is a transition

and overall the coefficient of proportionality decreases (lower curve). The lowest mode shapes for low and

high Ω are shown in Figure 4.9.

Let us now study the influence of n on these results. Figure 4.10 shows the results for n=2, 5, 10, 20,

and homogeneous membranes. As n increases there are more degrees of freedom in the unconstrained case,

and n-1 horizontal asymptotes at low angular velocities. Overall the membrane behavior is reached for the

same Ω=50 limit (considering only the first few modes). Overall the transition between hinged plate and

uniform membrane occurs at the same time as the transition between uniform plate and uniform membrane.
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Figure 4.8: Frequency (in the rotating frame) for increasing Ω for a uniform spacecraft and a modular one
with n=2.

(a) Ω ≤1. (b) Ω ≥50.

Figure 4.9: Mode shapes at increasing Ω.

4.4.2 Revolute Joints

Figure 4.11 shows the same graph but with sliding hinges. Overall we see the same behavior, but this time

at high Ω we do not recover the membrane behavior. In fact, the asymptotes for uniform and modular

structures are different and even more so as the number of n increases. This is due to the observation in
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Figure 4.10: Influence of Ω on the frequencies (in the rotating frame) of spinning spacecraft with hinged
panels for different topologies (n) for α=0.1 and ν=0.34 and compared to uniform membranes.

Section 4.3. The in-plane stress, which is dominant in this range of low bending stiffness, is modified in the

case of sliding hinges compared to a uniform structure.
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Figure 4.11: Influence of Ω on the frequencies (in the rotating frame) of spinning spacecraft with sliding
hinged panels for different topologies (n), α=0.1 and ν=0.34 and compared to uniform membranes.
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4.4.3 Potential Application

These results could be applied to a simplified model of the IKAROS solar sail by JAXA shown in Figure

4.12. IKAROS is a 20 m diagonal thin spacecraft with n=18 polyimide film panels (whose properties are

suppose equal to Kapton) that is spinning at about 1 rpm. The hub to membrane ratio is assumed to be

α=0.1. This spacecraft also has stiffening elements and tip masses but those component are ignored here.

Figure 4.12: IKAROS solar sail concept (Okuizumi et al., 2017).

The hinges between the panels are spherical hinges. We find that the spacecraft would have to be at least

0.5 mm thick for the bending stiffness and the panels to influence the natural frequencies. The thickness

of the polyimide film panels is 7.5 µm (Sawada et al., 2007), and therefore the linear mechanics of this

spacecraft is that of a uniform membrane.

4.5 Conclusion

In this chapter a generic FEM model and its implementation in Abaqus/Standard of hinged membranes or

origami packageable structures has been presented. A preliminary analysis of such structures in terms of

stress distribution and out-of-plane frequencies confirms physical intuitions: fixed hinges do not influence

the stress distribution while sliding hinges do. The consequence of this observation is that at high angular

velocity, the hinged plates behave like a uniform membrane if the hinges are fixed, and the behavior is slightly

different if the hinges are sliding.
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In the case of fixed hinges we find that for dimensionless angular velocity Ω above 50, the uniform

membrane behavior is recovered. For sliding hinges, the same criterion holds but the effective properties of

the “uniform membrane”’ are slightly different.

Finally, one advantage of this analysis method is the possibility of implementing various kinds of hinge

with properties such as linear or nonlinear elastic stiffness. As a example, one could study the influence of

hinge imperfections or damping on the behavior of the structure.
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Chapter 5

Finite Element Formulation of Solar
Radiation Pressure and its
Implementation in Abaqus/Standard

5.1 Introduction and Background

Solar radiation pressure can become the dominant load for thin structures in space depending on the orbit

and the maneuvers. This load can potentially deform the structure up to buckling (see Chapter 2) or even

create flutter instabilities (Dowell, 2011). Solar radiation action on a body is classically modeled as a force

with a component parallel to the local normal to the surface and one parallel to the direction of the incoming

beam from the sun. The amplitude of the also force depends on the slope at the surface and the properties

at the surface. Overall, solar radiation pressure is a deformation-dependent, non-conservative, follower load.

This load has been included in many solar sailing studies, for example when considering orbital mechanics

and attitude control. McInnes (1999) summarizes the solar sail equations of motion and presents some sun-

centered or planet-centered orbits taking into account the influence of solar radiation pressure on the sail.

Very often it is modeled as a uniform pressure when studying its influence on the shape of a structure. This is

a good approximation when the light beam is transversely to a flat structure. When the beam is at an angle,

the situation is very different and special treatment is required. Some studies have been performed in the

context of the Heliogyro solar sails (Figure 1.5a), a long (3 km) spinning thin membrane. MacNeal (1971)

has studied this concept extensively (MacNeal, 1967) and mentioned the possibility of flutter instability

without providing further results. Later this work was expanded by Natori et al. (1989); this was, to our

knowledge, the first to calculate solarelastic flutter in the context of spinning beams. More recently Dowell

(2011) derived some general equations in the context of plates and drew a parallelism with aerodynamic

pressure. Later, Gibbs (2014) studied an additional case of a static tensioned membrane clamped on the

edges. In all those examples results were found based on numerical solutions of the PDEs describing each
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problem.

As solar radiation pressure conditions are difficult to reproduce on Earth, reliable and efficient simulation

tools need to be developed. To our knowledge the only FEM works that simulate solar radiation pressure

are from Sakamoto et al. (2007), and Wilkie et al. (2015). Both author only consider perfectly reflective

surfaces. In addition in the first reference, the authors express the nodal force but neglect the variation of

the amplitude of the load in the expression of the load stiffness, and instead only focuses on equilibrium

deflections. The method in the second reference is specifically applied in Abaqus/Standard and relies on

dynamic simulations and a combination of subroutines that monitor the local deformation and update the

external load accordingly at each increment. This method is reported to be computationally expensive and

does not enable fast frequency based estimation of flutter for example. Additionally, in all those examples,

only perfectly reflective surfaces are considered. Other examples of applications consider thin solar cells in

space for solar power satellites, which would require the analysis of absorbent surfaces as well. In this chapter

we derived the FEM formulation of full solar radiation pressure on reflective but also absorbent and diffuse

surfaces. We implemented this method in Abaqus/Standard for 3D problems with quadrilateral surface

elements on solid or continuum shell mechanical elements. This method enables rapid frequency-based

prediction of flutter or buckling among other applications.

Follower load elements have been extensively studied in the finite element method. In this chapter we used

the notation and theoretical framework from Wriggers (2008). For the case of solar radiation pressure both

the amplitude and the direction of the load depend on the local normal that depends on the deformations. A

classical example of this kind of load is fluid-structure interaction, as discussed by multiple authors. Hassler

and Schweizerhof (2008) considered the case where internal pressure depends on structural deformations.

Scheizerhof and Ekkehard (1984) provided a general discretization of deformation dependent loads.

The aim of this chapter is twofold. First, present the FEM derivation of the solar radiation pressure com-

ponents on the three types of surfaces: reflective, absorbent and diffuse. Second, derive and test a systematic

method to implement deformation-dependent traction in Abaqus/Standard using an UEL subroutine and tie

constraints. Each of these methods can be used independently to implement solar radiation pressure load in

a different FEM code and to implement different types of deformation-dependent loads in Abaqus/Standard.

We first provide additional details on solar radiation pressure. Then, we recall some aspects of the

FEM derivation of external traction force as described by Wriggers (2008). Next, we explicitly derive the

discretization of solar radiation pressure on quadrilateral surface elements for the three surface types and

report the nodal forces and stiffness sub-matrices. Finally, we introduce a general method to integrate surface

load elements in Abaqus/Standard and present a test case on perfectly reflective spinning plate.
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5.2 Solar Radiation Pressure Overview

Solar radiation pressure comes from the radiative energy from the sun. It is difficult to model and accurately

predict the solar cycle and variation, and thus the intensity of the solar flux. But the changes of sun irradiance

are relatively slow. The biggest variation follows the solar cycle which is an 11-year change in the sun activity.

Nonetheless, the intensity from the sun at 1 AU is generally estimated at a value of 1361 W.m−2, and is

inversely proportional to the distance from the sun. The force that it exerts on a spacecraft depends on the

properties at the surface and overall is a non-conservative perturbation (McInnes, 1999; Vallado, 2004). The

general model for solar force can be expressed based on the normal n, the surface area da, the direction of

the incoming beam s, the properties of the surface and the force of solar pressure PSR. Figure 5.1 introduces

the notation. The solar radiation force is reported in Equations 5.1, 5.2, and 5.3 respectively for absorbent,

reflective, and diffuse surfaces.

Figure 5.1: Solar pressure diagram and sign convention.

dFa = −PSRcRa (s · n) s da (5.1)

dFrs = −2PSRcRs (s · n)
2
n da (5.2)

dFrd = −PSRcRd (s · n)

(
2

3
n+ s

)
da (5.3)

where cRa is the coefficient of absorption and cRs and cRd are respectively the diffuse and specular reflectiv-

ities, such that:

cRa + cRs + cRd = 1.0 (5.4)

The solar radiation force is the sum of those three components:

dFSP = dFa + dFrs + dFrd (5.5)
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We rewrite the solar radiation pressure the following way to capture the three specific deformation-dependent

load components to be implemented in FEM:

dFSP = p1 (s · n)
2
nda+ p2 (s · n) sda+ p3 (s · n)nda (5.6)

where:

p1 = −2PSRcRs (5.7)

p2 = −PSR (cRa + cRd) (5.8)

p3 = −2

3
PSRcRd (5.9)

5.3 Surface Loading in FEM

In this section we describe the main steps in deriving surface loading in FEM as explained by Wriggers

(2008) and we introduce the notations and interpolation functions. We restrict ourselves to 3D problems

with quadrilateral surface elements and continuum elements whose degrees of freedom at each node are the

displacements. We also consider that the traction only depends on the first derivative of the nodal position,

in particular, local normal, and thus use bilinear interpolation functions. The results in the particular case

of solar radiation pressure will be presented in the Section 5.4. In order to characterize a load element, the

nodal force and stiffness sub-matrices are defined. First, the virtual external work due to traction loading is

discretized. From this the nodal force rA expression is derived. Then, the virtual external work is linearized

and discretized to express the nodal stiffness sub-matrix kAB.

Let us introduce the following kinematic notation:

x = ϕ (X, t) (5.10)

where X is the position in the initial configuration and x is the position in the current configuration.

After inserting the finite element approximation for the virtual displacements or test function η, the

contribution of the surface traction t which describes the surface loading (Figure 5.2) to the weak form in

its current configuration (g(ϕ,η)) is:

g (ϕ,η) =

∫
ϕ(Γσ)

η · tda

(5.11)

where Γσ is the initial surface subjected to the traction. The surface load shape functions have to be defined
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for d − 1 dimensions, where d is the dimension of the problem (in our case d=3). The ansatz function can

t
Γr

Ω

Ωe

Figure 5.2: Surface loads (Wriggers, 2008) in 2D.

now be used to discretize the weak form:

g (ϕ,η) =

∫
ϕ(Γσ)

η · tda

=

nr⋃
r=1

m∑
A=1

ηA
T

∫
ϕ(Γr)

NAtdΓ

=

nr⋃
r=1

m∑
A=1

ηA
TrA (xe) (5.12)

with

rA (xe) =

∫
ϕ(Γr)

NAtdΓ (5.13)

where nr is the number of element boundaries where loads are applied, Γr is the initial surface of an element

subjected to a traction vector t, m is the number of nodes per element (in our case m=4), {NA}A∈[1..4] are

the interpolation functions and {ηA}A∈[1..4] are the nodal positions.

To numerically compute the nodal force (Equation 5.13) we use the classical isoparametric mapping.

Figure 5.3 illustrates the mapping from isoparametric reference configuration to initial configuration to

current configuration for quadrilateral elements. The highest derivative in this weak form comes from the

normal vector n and is order 1. We thus use bilinear interpolation functions to approximate the solutions:

NA(ξ, η) =
1

2
(1 + ξAξ)

1

2
(1 + ηAη) (5.14)
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Figure 5.3: Mappping for a 4 nodes element (Wriggers, 2008).

where ξA and ηA are the corner coordinates in the reference configuration:

(ξ1, η1) = (−1,−1)

(ξ2, η2) = (1,−1)

(ξ3, η3) = (1, 1)

(ξ4, η4) = (−1, 1)

(5.15)

Each node has 3 degrees of freedom in displacement xA = (x1,A, x2,A, x3,A), where A ∈ [1...4]. Using the

isoparametric shape functions we have:

ϕe = xe =

4∑
A=1

NA (ξ, η)xA (5.16)

and the derivative of the components of the position vector xi,α (where α is either ξ or η):

xi,α =

4∑
A=1

NA (ξ, η),α xi,A (5.17)

Let us now express the normal vector according to the nodal degrees of freedom. It is shown (Wriggers,
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2008) that the current normal can be expressed according the reference coordinates as:

n =
ϕ,ξ ×ϕ,η
||ϕ,ξ ×ϕ,η||

(5.18)

And the current volume element dΓ can be expressed as:

dΓ = ||ϕ,ξ ×ϕ,η||dξdη (5.19)

The cross product ne can now be computed:

ϕ,ξ ×ϕ,η =


x2,ξx3,η − x3,ξx2,η

x3,ξx1,η − x1,ξx3,η

x1,ξx2,η − x2,ξx1,η


= ne (5.20)

Thus

rA =

∫ 1

−1

∫ 1

−1

NAt||ϕ,ξ ×ϕ,η||dξdη (5.21)

Let us now linearize the virtual external work (Equation 5.11) to define kAB:

lim
ε→0

d

dε
g (ϕ+ ε4u,η) = Dgp (ϕ,η) · 4u (5.22)

After discretization we obtain:

Dgp (ϕ,η) ·4u =

nr⋃
r=1

m∑
A=1

m∑
B=1

ηA
TkAB4uB (5.23)

In the following section we derive rA and kAB for the three types of surface properties independently.

5.4 Solar Radiation Pressure Element

To simplify the notation we are first going to differentiate three quantities. The choice of these quantities

will become apparent later in the derivation.

The first quantity was differentiated by Wriggers (2008) in the context of uniform pressure:

lim
ε→0

d

dε
ne (ϕ+ ε4u) = 4u,ξ ×ϕ,η −4u,η ×ϕ,ξ (5.24)
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with ne defined in Equation 5.20. This quantity is then discretized using the following ansatz, with 4uB
the column vector with the degrees of freedom at node B:

4u =

4∑
B=1

NB (ξ, η)4uB (5.25)

After discretization we obtain:

lim
ε→0

d

dε
ne (ϕ+ ε4u) =

4∑
B=1

(NB,ξN1,η −NB,ηN1,ξ)4uB (5.26)

with

N1,α =


0 x3,α −x2,α

−x3,α 0 x1,α

x2,α −x1,α 0

 (5.27)

Secondly:

lim
ε→0

d

dε
(s · ne (ϕ+ ε4u)) = s · (4u,ξ ×ϕ,η −4u,η ×ϕ,ξ) (5.28)

After discretization we obtain:

lim
ε→0

d

dε
(s · ne (ϕ+ ε4u)) =

4∑
B=1

(
NB,ξΦ

T
1,η −NB,ηΦ

T
1,ξ

)
4uB (5.29)

and

Φ1,α =


s3ϕ2,α − s2ϕ3,α

s1ϕ3,α − s3ϕ1,α

s2ϕ1,α − s1ϕ2,α

 (5.30)

Finally:

lim
ε→0

d

dε
(ne (ϕ+ ε4u) · ne (ϕ+ ε4u)) = 2ne (ϕ) · (4u,ξ ×ϕ,η −4u,η ×ϕ,ξ) (5.31)

After discretization we obtain:

lim
ε→0

d

dε
(ne (ϕ+ ε4u) · ne (ϕ+ ε4u)) =

4∑
B=1

(
NB,ξΦ

T
2,η −NB,ηΦ

T
2,ξ

)
4uB (5.32)
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with

Φ2,α = 2


ne3ϕ2,α − ne2ϕ3,α

ne1ϕ3,α − ne3ϕ1,α

ne2ϕ1,α − ne1ϕ2,α

 (5.33)

We have now defined all the quantities necessary to express the nodal forces and sub-stiffness matrices of

the solar radiation pressure element for the three types of surfaces.

5.4.1 Reflective Surface

In the case of a perfectly reflective surface the traction is:

t = p1 (s · n)
2
n (5.34)

with s = (s1, s2, s3) the incoming light beam direction. Using Equations 5.18 and 5.19 we can write:

tdΓ = p1
(s · ne)2

ne · ne
nedξdη (5.35)

Using Equations 5.35 and 5.21 we obtain:

rA (ϕe) =

∫ 1

−1

∫ 1

−1

NA (ξ, η) p1
(s · ne)2

ne · ne
nedξdη (5.36)

This can be expressed according to the current coordinates. We did not find a closed form expression for the

integral for a general quadrilateral element, so we computed it numerically. We will describe this numerical

integration in part 5.4.4.

In order to use iterative solvers to solve the nonlinear problem we need to express the linearization of the

virtual work and in particular estimate the element sub-stiffness matrices kAB. We recognize in Equation

5.36 the quantities that we have introduced in Equations 5.26, 5.29, and 5.32. We can thus directly state:

kAB =

∫ 1

−1

∫ 1

−1

NA (NB,ξ (paN1,η + pbN2,η + pcN3,η)−NB,η (paN1,ξ + pbN2,ξ + pcN3,ξ)) dξdη (5.37)
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with

pa = p1
(s · ne)2

ne · ne
(5.38)

pb = 2p1
s · ne
ne · ne

(5.39)

pc = −p1
(s · ne)2

(ne · ne)2 (5.40)

and

N2,α = neΦ
T
1,α (5.41)

N3,α = neΦ
T
2,α (5.42)

with Φ1,α and Φ2,α respectively expressed in Equations 5.30 and 5.33.

5.4.2 Absorbent Surface

The case of a perfectly absorbent surface is simpler, as now the traction can be written as:

tdΓ = p2 (s · ne) sdξdη (5.43)

The nodal force becomes:

rA (ϕe) =

∫ 1

−1

∫ 1

−1

p2NA (s · ne) sdξdη (5.44)

and the stiffness sub-matrix is:

kAB =

∫ 1

−1

∫ 1

−1

p2NA (NB,ξN4,η −NB,ηN4,ξ) dξdη (5.45)

with

N4,α = sΦT1,α (5.46)

and Φ1,α expressed in Equation 5.30.

5.4.3 Diffuse Surface

There are two terms for the diffuse surface. One component is parallel to the normal to the surface and the

other is parallel to the beam direction. The second one is derived exactly the same way as shown in the case
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of perfectly absorbent surface, with p2 = −PSRcRd (see Equation 5.8). We therefore focus on the first term:

tdΓ = p3
s · ne
||ne||

nedξdη (5.47)

This is similar to the case of a perfectly reflective surface.

The nodal force is:

rA (ϕe) =

∫ 1

−1

∫ 1

−1

p3NA
s · ne
||ne||

nedξdη (5.48)

The sub stiffness matrix is:

kAB =

∫ 1

−1

∫ 1

−1

p3NA (NB,ξN5,η −NB,ηN5,ξ) dξdη (5.49)

N5,α = pdN1,α + peN2,α + pfN3,α (5.50)

with

pd = p3
s · ne
||ne||

pe = p3
1

||ne||

pf = −1

2
p3
s · ne
||ne||3

(5.51)

and N1,α, N2,α, and N3,α respectively in Equations 5.27, 5.41 and 5.42.

5.4.4 Numerical Integration

We did not find a closed form solution for the element integrals rA and kAB . Instead, we implement a

numerical integration based on Simpson 2D integration scheme that we briefly summarize here. Let’s call

f (ξ, η) the integrand and Ω2 = {(ξ, η) : −1 ≤ ξ ≤ 1,−1 ≤ η ≤ 1} the domain of integration. The interval

[-1,1] is subdivided into N (even number) sub intervals of equal width h = 2
N by using equally spaced sample

ξi = −1 + ih and ηi = −1 + ih for i=1,2,...N. The composite Simpson’s rule is:

∫ 1

−1

∫ 1

−1

f (ξ, η) dξdη ≈ 4

9N2

m+1∑
i=1

n+1∑
j=1

Wijf (ξi, ηj) (5.52)
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where

W =



1 4 2 4 . . . 2 4 1

4 16 8 16 . . . 8 16 4

2 8 4 8 . . . 4 8 2

4 16 8 16 . . . 8 16 4
...

...
...

... . . .
...

...
...

2 8 4 8 . . . 4 8 2

4 16 8 16 . . . 8 16 4

1 4 2 4 . . . 2 4 1



(5.53)

Higher N lead to more precise results and smaller N to faster computations. We have compared the

numerical results and the approximated results for different quadrilateral element geometries and N=10

provided good approximations for each case.

5.5 Implementation in Abaqus/Standard

In this section a method to integrate load elements into Abaqus/Standard is presented. This method com-

bines a user defined element subroutine and a tie constraint between “load elements” and “mechanical

elements”. An UEL subroutine is used to implement the solar pressure element or “load element” as derived

in part 5.4. Details are provided in Section 5.5.1. One of the challenges in implementing load elements in

Abaqus/Standard was to add stiffness and nodal force to existing elements without having to implement our

own mechanical elements. This effectively means decoupling load elements and mechanical elements to be

able to access Abaqus libraries. We explain this method in Section 5.5.2. The objective is to perform static

and complex frequency analysis for buckling and flutter estimations. We explain how to conduct such an

analysis in Section 5.5.3. The Fortran subroutine files and a typical input file can be found in Appendix D.

5.5.1 UEL Subroutine

We used a UEL user subroutine to define the solar pressure load elements (Simulia, 2013b). This subroutine

is called for each element defined by this UEL subroutine and each time some element calculations are

required. Within this subroutine we evaluate the nodal force and stiffness matrices. As we use quadrilateral

element in 3D we have 12 degrees of freedom within an element. The nodal force is a vector of size 12 and the

matrix size is 12×12. The only two variables we need to define for our purpose are RHS which is effectively

rA and AMATRX, which corresponds to kAB. The variables passed to the subroutine are COORDS, an

array containing the original coordinates of the nodes of the element, U, an array containing the current
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estimates of the basic solution variables (displacements in our case) and some flags defining the procedure

type (see part 5.5.3).

We have implemented three subroutines: for perfectly reflective, perfectly absorbent, and perfectly diffuse

surfaces separately. In each case the solar pressure is characterized by three constants, the solar pressure

modulated by the properties of the surface pi (with i=1,2 or 3 depending on the surface type as in Equations

5.7, 5.8, 5.9), and the direction s = (s1, s2, s3) of the incoming light beam with s2
1 + s2

2 + s2
3 = 1. The

subroutine properties are three positive or negative float numbers: pi, s1 and s2.

Effectively, the following parameters are used in the UEL subroutine: MCRD (number of d.o.f. per

node)=3, NNODE (number of nodes per element)=4, and NDOFEL (total number of d.o.f. in an ele-

ment)=12. The relation between rA and RHS and kAB and AMATRX are:
RHS(k1) = rA (ii)

A = floor((k1 − 1)/3) + 1

ii = mod(k1 − 1, 3) + 1

and 

AMATRX(k1, k2) = −kAB (ii, jj)

A = floor((k1 − 1)/3) + 1

B = floor((k2 − 1)/3) + 1

ii = mod(k1 − 1, 3) + 1

jj = mod(k2 − 1, 3) + 1

The properties of the element are defined in the input file. We specified that the subroutine element has 4

nodes, unsymmetric stiffness matrix (use the option UNSYMM) and 3 properties to be defined. The degrees

of freedom we use are the displacements which correspond to the components 1, 2, and 3. This corresponds to

the following lines in the input file (a full input file can be found in Appendix D Section D.3 as an example).

*USER ELEMENT, NODES=4, UNSYMM, TYPE=U1, I PROPERTIES=0,PROPERTIES=3

1, 2, 3

The element properties are specified in the order (pi, s1, s2) as follows:

*UEL PROPERTY, ELSET=Set-2

0.01, 0.7071, 0.0

5.5.2 Tie Constraint

Now that we have developed an UEL subroutine we need to integrate it into Abaqus mechanical models.

We used tie constraints to add stiffness and nodal force from solar pressure element to an existing Abaqus
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model. The idea is to create a new 3D surface part that matches the surface of the object on which the load

is applied both in geometry and mesh. As we have implemented the subroutine for quadrilateral elements

the surface of the object needs to be meshed accordingly. One can use for example hexahedral continuum

shell elements for thin objects or hexahedral elements for 3D objects. This is illustrated Figure 5.4a for thin

continuum shell elements and Figure 5.4b for solid elements. The load elements are in red and mechanical

elements from Abaqus libraries in green.

Load Elements

Mechanical Elements

Tie Constraint

at Every Node

(a) Thin continuum shell mechanical elements.

Load Elements

Mechanical Elements

Tie Constraint

at Every Node

(b) Solid mechanical elements.

Figure 5.4: The red elements are the load elements whose geometry and mesh match the object (in green)
surface. There is effectively no separation between red and green surfaces. The thin dotted lines represent
the tie constraint at every node.

Since the load elements are surface elements, a convention on the positive normal direction needs to be

introduced. Abaqus by default uses the convention in Figure 5.5. Since the normal Equation 5.20 might

not be in the proper direction (relative to the object these surface elements are attached to), the direction

s must be chosen such that the overall force on the object is in the modeled direction.

Z

Y

X

n

1 2

34

Figure 5.5: Abaqus surface elements convention.

The load and mechanical parts are then connected using a surface based tie constraint: the mesh tie

constraint (Simulia, 2013a). Each node on the slave (load) surface is constrained to have the same motion
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as the point on the master (mechanical) surface to which it is closest (spot on in our case). We use a nodal

region and only constrain the translational degrees of freedom. We implement all boundary conditions and

loads (except solar pressure) on the mechanical (master) surface only.

5.5.3 Abaqus Analysis

We want to use this method to estimate equilibria and run frequency-based stability analyses. The subroutine

was thus implemented and tested for static and complex frequency analyses. In particular, the amplitude of

the pressure is implemented differently for each case and we use flags to differentiate the type of analysis at

each step.

5.5.3.1 Static Analysis

For the static analysis and in particular in the nonlinear case the amplitude of the load pi is linearly increased

within the step in order to improve the convergence of the Newton-Raphson algorithm. To this end the target

amplitude is multiplied by the current time of the step and the step total time is 1. The flag to be used to

identify this analysis is LFLAGS(1).

With this convention, by default solar radiation pressure is incrementally increased at every static step.

The static step at which solar pressure is not required or is maintained constant should be identified in the

subroutine (using KSTEP identifier) and pi should respectively be set to 0 and 1. Additionally, by default

Abaqus makes the stiffness matrix of the system symmetric. We need to specify an unsymmetric stiffness

matrix during the static step using the option unsymm=YES.

5.5.3.2 Complex Frequency Analysis

As the load stiffness can be unsymmetric, the frequency and mode shapes of the structure can be complex.

Abaqus can evaluate complex frequency and this analysis type is compatible with UEL subroutines (but does

not account for damping from the subroutine, which is not a restriction for our application). In this case,

the amplitude of the load pi is directly specified and not incrementally increased. The flags for frequency

and complex frequency analysis are respectively 41 and 47.

The procedure to obtain the complex frequencies is a subspace projection method. First the eigenmodes

of the symmetric stiffness matrix are extracted in a frequency analysis. Then the complex eigenfrequency

extraction is performed. In order to obtain accurate results, a large enough set of eigenmodes needs to be

extracted prior to the complex frequency step and a convergence analysis needs to be carried out.

We have tested this implementation in Abaqus/Standard in the case of a perfectly reflective surface as

shown next.
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5.6 Test Case: Linear Spinning Clamped Plate

In this section we compare the results from Abaqus using the subroutine to results from exact PDE solutions.

The case tested does not represent an actual physical system but offers a benchmark.

A square clamped plate with perfectly reflective surface spinning around the normal axis at its center

with incoming light on one side from various directions was considered (Figure 5.6). This problem was solved

quasi-statically, i.e., we consider the prestress due to the centrifugal force but assume that the solar radiation

pressure does not depend on time (φ is fixed).

Figure 5.6: Square spinning plate geometry and notations.

First, the linear deflection of the spinning plate with incoming light from various angles was considered.

The linear equilibrium equation governing this system (adapted from Dowell (2011)) is:

−λ2ρhw +D∇4w +
1

2
ρhω2r2∇2w + ρhω2r

∂w

∂r

− p1 sin(2γ)

(
cos(φ)

∂w

∂x
+ sin(φ)

∂w

∂y

)
= −p1 cos(γ)2 (5.54)

where D is the bending stiffness, h is the thickness of the plate, w is the deflection, and σc the in-plane stress

due to centrifugal force. The boundary conditions are clamped on the outer edge:

w = 0

∇w · n = 0 (5.55)

This type of linear problem can be solved in Matlab using the PDE toolbox as shown in Appendix C.

We focus here on the frequency analysis to compare the implementation of the solar pressure load stiffness

and test the complex frequency procedure. We only consider the frequency around the flat surface by

neglecting the deflection due to the right hand side of Equation 5.54. The associated eigenvalue problem is:

−λ2w +D∇4w +
1

2
ρhω2r2∇2w̄ + ρhω2r

∂w

∂r
− p1 sin(2γ)

(
cos(φ)

∂w

∂x
+ sin(φ)

∂w

∂y

)
= 0
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This stiffness in the case of perfectly reflective surface consists of two parts, one due to the “uniform

pressure” (paN1,η in Equation 5.37), and one from the amplitude variation (pbN2,η + pcN3,η in Equation

5.37). Since we have neglected the right hand side in Equation 5.54 in the Matlab model and consider the

eigenvalue problem of a flat surface we removed the “uniform load” stiffness in the subroutine.

E 2.5 GPa
ν 0.34
ρ 1420 kg.m−3

h 0.1 mm
b 0.2121 m
γ π

4

φ 0
ω 500 rpm
p1 [0 · · · 100] Pa

Table 5.1: Dimensions and properties of spinning square plate.

The Abaqus model is a plate with SC8R continuum shell elements. We considered a 0.1 mm thick

Kapton plate. The properties and dimensions are reported in Table 5.1. Fifty modes were extracted in a

frequency step before the complex frequency evaluation. Figure 5.7 shows the frequency evolution while p1

is increased from 0 Pa to 100 Pa obtained with Abaqus and Matlab. Figure 5.8 presents the nine first mode

shapes at p1=100 Pa obtained with Abaqus Figure 5.8b and Matlab Figure 5.8a. There is perfect agreement

between the simulations and the PDE solutions. To test the implementation further and verify that the

implementation was independent of the coordinate system, the same problem in different orientations of

{plate+incoming light} were solved and the same solutions were found in each case. In addition, several

meshes and angles of incidence γ and φ have been considered. In each case a perfect agreement between

Abaqus and Matlab solutions was found. This confirms the validity of our approach.
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FEM Solution

Exact Solution

Figure 5.7: Eigenvalue comparison.

(a) Exact Solution. (b) FEM Solution.

Figure 5.8: Comparison of the nine first modes of vibration for ω=500 rpm and p1=100 (Modes are ordered
by increasing eigenvalue imaginary part).

5.7 Conclusion

The finite element formulation of solar radiation pressure element has been derived for the cases of perfectly

reflective, perfectly absorbent, and perfectly diffuse surfaces for 3D problems and quadrilateral surface ele-

ments. The nodal force and the sub-matrices were explicitly written in terms of the nodal displacements and

a method to implement this load in Abaqus/Standard was introduced. This method relies on the combina-
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tion of user element subroutine and a tie constraint method that decouples the implementation of the load

elements and mechanical elements. The general FEM derivation of solar radiation pressure can be imple-

mented in any FEM code. The technique to integrate deformation-dependent loads in Abaqus can be used

with different external load element subroutines. In this regard, those two parts could be treated indepen-

dently. The external load element stiffness is found to be unsymmetric. Details on the Abaqus analysis for

unsymmetrical stiffness matrices including the deformation-dependent external load methods were presented

for the cases of static linear and nonlinear analyses and complex frequencies analyses. Finally this method

was compared against PDE solutions. We found an excellent match between the two results confirming the

validity of our approach.

Unlike previous implementations of solar radiation pressure in Abaqus, this method enables quick flutter

or buckling estimations based on frequency analysis. This method was only tested for static and complex

frequency analysis but it is expected that minor modifications would enable dynamic analysis as well. This

work could be extended for a shell formulation of the pressure load by using the same tie constraint (with

adding constraints on the rotational degrees of freedom). A different implementation of the load element

taking into account all the degrees of freedom at the nodes would need to be derived. Additional future

work could be to develop techniques to deal with shadows. A first extension to the subroutine would be to

monitor the sign of the normal relative to the incoming beam to locally differentiate between sides exposed

to the sun and those in the shadow. More advanced extensions could include ray-tracing techniques.

This new capability can be used in the design of large structures in space with incoming solar radiation

pressure for which simple PDE solutions cannot be found (structures with multiple components, anisotropy,

and complex geometries).
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Chapter 6

Conclusion

6.1 Summary

Chapter 2 of this thesis has focused on the buckling of spinning membranes under transverse uniform loading.

Transverse uniform body forces acting on a spinning membrane induce deflections much greater than the

membrane thickness, and these deflections are associated with a compressive hoop stress around the edge of

the membrane. This hoop stress can buckle the membrane, resulting in a series of azimuthal wrinkles. A

general formulation of the problem has been presented in terms of the dimensionless load G and dimensionless

angular velocity Ω, and the critical values of G and Ω have been numerically estimated. For Ω < 1, Gcrit

depends only on the bending stiffness of the membrane (bending dominated behavior), and hence it is

constant with G. For Ω > 10, we recover the results of the membrane theory, namely, that wrinkling depends

only on the mid-plane stress, and hence G increases with the cube of Ω (in-plane dominated behavior). Both

of these specific numerical limits increase if the ratio between inner and outer radius of the membrane, α,

is increased. A generic FEM algorithm based on the steps of the analytical methods has been implemented

and the results match perfectly with the analytical results. This algorithm has then been used to derive a

wide range of results with different dimensionless parameters. An experimental setup has been described and

digital image correlation was used to measure the equilibrium shapes of the structure pre and post-buckling.

A good match has been found between experimental data and analytical predictions.

Chapter 3 has focused on the axysymmetric nonlinear vibration of a symmetrically deflected spinning

membrane. A reduced order model using von Kármán plate equations was derived. The nonlinear coefficients

of the equivalent oscillator have been explicitly formulated. It is shown that these coefficients depend on

four dimensionless parameters: the dimensionless angular velocity Ω, dimensionless gravity load G, the

Poisson’s ratio ν, and the inner to outer radius ratio α. We find that the oscillator is a single well Helmholtz-

Duffing oscillator, while results from the literature on axisymmetric nonlinear vibrations of flat spinning

annulus predict a Duffing oscillator. Thus the deflection of the membrane fundamentally alters its nonlinear
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behavior and introduces a quadratic term in the restoring force. The general steady-state solutions of

such oscillators have been reported. It is shown that at high angular velocities and for small amplitudes

of excitation the membrane exhibits a hardening behavior while a softening behavior characterizes the

oscillations at high angular velocities. A threshold between hardening and softening at low amplitudes of

excitations was numerically computed for a wide range of dimensionless parameters. A generic finite element

method in Abaqus/Standard that simulates the nonlinear oscillations of deflected spinning membranes has

been presented. We find that such simulations require a fine time step and appropriate damping coefficients.

The tuned values corresponding to the experimental sample are reported. A post-processing technique on

the decay response of the oscillator has been used to estimate the backbone curve from the simulations. An

excellent agreement between simulations and analytical results has been found. Finally, an experimental

setup that decoupled translational and rotational motions has been presented and laser vibrometry has been

used the measure the deflection of the membrane during slow frequency sweeps. The experiments show a

very good agreement with the theory and the discrepancies were attributed to initial curvature of the sample.

Chapter 4 has presented a short parametric analysis for one type of origami packageable structure. Such

structures are characterized by a series of hinged panels. A FEM model in Abaqus/Standard of hinges

between plates with various properties has been presented. Two particular hinges have been studied further:

fixed hinges with one degree of freedom and sliding hinges. Several intuitive results have been described in

terms of stress distribution and natural frequencies of vibration. The hinged structures stress and frequencies

are then compared against results for uniform membranes with the same geometry. It is shown that when

all the in-plane degrees of freedom at the hinges are constrained, the hinges do not affect the in-plane stress

distribution. It is found that for dimensionless angular velocities Ω higher than 50, the hinges don’t affect

the frequencies of the structure that then behaves like a uniform membrane. It is also shown that in the case

of sliding hinges (one in-plane degree of freedom unconstrained), the in-plane stress distribution is modified

and consequently the natural frequencies are different from those of a uniform plate even at high angular

velocities. At high angular velocities it is shown that the linear behavior of the structure is the same as the

one on a uniform membrane with different effective properties.

Finally, in Chapter 5, the Finite Element formulation of solar radiation pressure in the case of perfectly

reflective, perfectly absorbent, and perfectly diffuse surfaces, for 3D problems, and quadrilateral surface

elements has been derived. We have formulated, for each case, the load element nodal forces and the sub-

matrices. We show that this follower load leads to an unsymmetric external load stiffness. We then have

introduced a method to implement this load in Abaqus/Standard. This method relies on a UEL subroutine

and tie constraints. We have explained how to deal with the unsymmetric matrix and, in particular, how

to run static and complex frequency analysis in this case. Finally we have compared Abaqus results with
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Matlab solutions on a benchmark case of spinning plates and for a wide range of parameters. We found a

perfect match between the two results, thus validating our approach.

6.2 Contribution

Unique contributions to the field of space structures have been made.

• We have derived master curves on the wrinkling of spinning membranes under transverse uniform load

that span a wide range of design parameters and can be used to define the minimum angular velocity

of spinning thin spacecraft required to avoid wrinkling under solar radiation pressure or transverse

maneuvers. In addition, we show that pre-buckled, axisymmetric deflections alter the dynamics of the

structure. In particular, a spinning spacecraft excited at axisymmetric resonance and large amplitude

present hardening behavior at low angular velocity due to the deflection of the structure. In addition,

we show that increasing the angular velocity can limit jump phenomena or multiplicity of the steady

state solutions, making the behavior more predictable.

• Generic FEM methods applicable to different geometries and material properties have been presented

to compute the nonlinear buckling limits and the coefficients of nonlinear vibrations.

• An experimental setup for studying spinning membrane-like space structures has been presented and

two measuring techniques, Stereo Digital Image Correlation and laser vibrometry, have been used

and compared. The resulting setup and measuring techniques can be used to study and characterize

arbitrary spinning space structure designs.

• Generic FEM methods to implement origami packageable structures have been developed in Abaqus.

Several types of hinges with different degrees of freedom and properties can be implemented using the

same approach. We show that at high angular velocities perfect hinges don’t alter the linear behavior

of the structures. Sliding hinges also present a uniform membrane behavior at high angular velocities

but with different effective properties.

• Finally, we have derived and implemented a general approach to deal with deformation-dependent solar

radiation pressure. This implementation enables equilibrium analysis and frequency-based stability

analysis of complex space structures. This new capability enables rapid solarelastic flutter predictions

for future classes of large membrane-like space structures.
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6.3 Follow-On Work

There are many potential avenues in terms of future work to understand, model, and control the dynamics

and stability of spinning flexible membranes.

• The new FEM capability could be used to further study the influence of solar pressure on thin spinning

disks in more realistic structures, and could be extended to shell elements and dynamic simulations.

• In addition, more realistic hinges with various stiffness and imperfections and damping could be studied

with the Abaqus hinges model, as many properties can be added to the connector elements. In addition

to the frequency analysis, some nonlinear deflection or buckling analysis could be performed.

• Using the experimental setup presented in this thesis, both the deployment and dynamics of spinning

origami membrane structures could be studied.

• The nonlinear vibrations of spinning membranes under oblique solar radiation pressure at critical speed

could be studied further. Some reduced order models similar to those introduced Chapter 3 could be

developed and tested against FEM simulations using the new solar radiation pressure elements.

• Going further, one could study the coupling between orbital mechanics and structure deformation.
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Appendix A

Wave Number Estimation and
Filtering

In order to estimate the wavelength of the equilibrium shapes at different angular velocities in Chapter 2,

we project the shape onto the first modes of a static plate, clamped at the hub and free on the outer edge,

defined on the same annulus geometry (same α). Let us call Wn,m the mode with n nodal diameters and m

nodal circles and normalized such that:

∫ 2π

0

∫ b

a

W 2
n,m rdr dθ = 1 (A.1)

Those shapes form an orthonormal basis for the 2D functions defined on those annulus and that satisfy

the same clamped-free boundary conditions. In particular, they are an orthonormal basis for the transverse

component of deflection w of the spinning membranes for small amplitudes of deflection. This is the range

where the wave number is difficult to estimate. This projection method is also used to filter out the random

noise that we discus in Appendix B.

The projection on each mode defines cn,m as:

cn,m =

∫ 2π

0

∫ b

a

weqWn,m rdr dθ (A.2)

with weq is the measured equilibrium shape.

In order to remove the noise we only consider the shapes with n ∈ [0 . . . 20] and m ∈ [1 . . . 8]. This

enables us to estimate n = 18 (the theoretical maximum wave number to be observed with our sample choice

Table 2.1).

We define the projected shape for a given n as:

Weq,n =

8∑
m=1

cn,mWn,m (A.3)
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and the associated amplitude as:

Ampn = max(Weq,n) (A.4)

As the DIC system doesn’t correlate up the edges, we choose to extrapolate the data by rescaling the outer

edge and filling by zeros close to the inner edge. We illustrate this extrapolation/filtering on two different

data sets: one at 1283 rpm (Figure A.1a, Figure A.1b and Figure A.1c) and one at 434 rpm (Figure A.1d,

Figure A.1e and Figure A.1f). The data at high speed are noisier for two reasons. First, as the membrane

gets flatter at high angular velocity, the noise gets relatively higher. Also, as we spin faster there is more

blur, mainly on the outer edge.

(a) Raw data at ω=855 rpm.
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(b) Extrapolated data at ω=855 rpm.
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(c) Filtered data at ω=855 rpm.

(d) Raw data at ω=289 rpm.
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(e) Extrapolated data at ω=289 rpm.
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(f) Filtered data at ω=289 rpm.

Figure A.1: Filtering results at high and low angular velocities. Deflection units are mm.
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Appendix B

Measurement Precision and Accuracy
in Stereo Digital Image Correlation

We performed a “stationary images” test to estimate the errors due to lighting, speckles, and contrast. To this

end we took two successive images of the same stationary sample and ran a correlation. Any displacement

field between these two images corresponds to an error. This error does not include the blurring due to

rotation of the membrane. We obtained a random error with zero mean and a maximum amplitude of about

20 µm on the out-of-plane displacement component. This is set to be our noise level.

A challenge with this setup was to deal with the optical distortions created by the thick (2.54 cm) acrylic

lid of the vacuum box. Each camera is looking through the lid at a different angle and at a different location.

Each camera thus sees a different rigid body motion and a different optical distortion of the membrane. We

corrected for the different rigid body motions by correcting the calibration of the DIC system. The steps to

follow within VIC-3D are:

1. Calibration with membrane placed below the acrylic lid.

2. Take images of the membrane from two points at a known distance.

3. The software uses these two points to optimize the camera angles for the lowest projection error from

an epipolar line.

4. Run the correlation.

This doesn’t correct the optical distortion but reduces the projection error (epipolar error). Next we estimate

the error introduced by the lid.

The main source of bias comes from the optical distortion due to the acrylic lid. When a camera takes

images through a window with a different refractive index than air, it can produce distorted images. Each

camera in the stereo system is looking through a different portion of the lid and at a different angle. They

each see a slightly different, slightly distorted membrane. The correlation software estimates the best 3D
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shape from those images of slightly different objects. We estimated the error due to distortion plus software

by correlating the images of a rigid plate with and without the lid. We show in Figure B.1 the different

components of distortion after removing the rigid body motions (meaning 3D displacement of each point

from the results with and without lid, minus overall rigid body motion).

200

U (mm)

-200 0
-200

0

200

Y
 (

m
m

)

X (mm)

0

-0.2

0.2

0.4

(a) First in plane component.

200

-0.2

0.2

0

0.4

0.6

V (mm)

-0.4

-200 0
-200

0

200

Y
 (

m
m

)

X (mm)

(b) Second in plane component.

200

W (mm)

-200 0
-200

0

200

Y
 (

m
m

)

X (mm)

-0.2

0

0.6

0.4

0.2

(c) Out of plane component.

Figure B.1: Measured distortion components.

The bias level in each component is about 0.8 mm. This value is quite high but in this study we are

interested in the waviness of the surface and as the distortion is smooth, we consider that it will not affect

our results. Figure B.2 shows the different wave numbers of the transverse component of the distortion

(Figure B.1c) obtained using the method presented in the next section.

Figure B.2: Dominant wave numbers contained in the lid-induced distortion estimate. The horizontal line
gives a reference as h = 50µm (smallest membrane thickness considered in this study).
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Appendix C

Matlab Solution of Benchmark
Problem for Abaqus Subroutine

In this appendix, we present the implementation in Matlab of the equilibrium and frequency problems of a

spinning reflective square plate under solar radiation pressure and clamped on the edge. This corresponds

to the benchmark problem in Chapter 5 Section 5.6.

C.1 Problem Formulation

The equilibrium equation 5.54 can be written as:

D∇4w −∇ · ((σc + σP )⊗∇w) = −p1 cos(γ)2 (C.1)

where σc is the in-plane stress due to centrifugal force such that:

∇ · σc = −ρhω2r (C.2)

and σP comes from the deformation-dependent part of solar radiation pressure:

σP = p1 sin(2γ)

 0 sin (φ)x− cos (φ) y

cos (φ) y − sin (φ)x 0


The boundary conditions are clamped on the outer edge:

u = 0

w = 0

∇w · n = 0 (C.3)
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The frequencies and mode shapes of the flat plate (neglecting the deflection due to the right hand side)

are described by the following equation:

−ρhλ2w +D∇4w −∇ · ((σc + σP )⊗∇w) = 0

C.2 Matlab PDE Toolbok

This type of linear problem can be solved in Matlab using the PDE toolbox (Matlab Documentation). This

toolbox solves the following general boundary value problem:

m
∂2v

∂t2
+ d

∂v

∂t
−∇ · (c⊗∇v) + av = f (C.4)

and eigenvalue problems of the form:

−∇ · (c⊗∇v) + av = λdv

with either Dirichlet or Neumann boundary conditions:

Dirichlet:

hv = r

Generalize Neumann:

n · (c∇v) + qv = g

C.3 In-Plane Equilibrium

First the in-plane equilibrium is solved. The unknown is the in-plane displacement v = u. We rewrite

Equation C.2 into its Matlab form:

m = d = a = 0

c =


2G+ µ 0 0 G

0 G µ 0

0 µ G 0

G 0 0 2G+ µ
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and

f =

ρhω2x

ρhω2y


where G is the shear modulus and µ = 2Gν

1−ν . The boundary conditions are Dirichlet boundary conditions,

such that:

r =

0

0

 , h =

1 0

0 1


From the displacement solution u, the stress components can be calculated:

σc,xx

σc,yy

σc,xy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




u1,x

u2,y

u1,y + u2,x


C.4 Out-of-Plane Equilibrium

In order to solve the fourth order problem describing the deflection we use:

v = (w,∇2w)

The following coefficients for the equilibrium equation are used:

c =


1 0 0 0

0 1 0 0

−σc,xx −p1 sin(2γ) (sin(φ)x− cos(φ)y)− σc,xy D 0

−p1 sin(2γ) (cos(φ)y − sin(φ)x)− σc,xy −σc,yy 0 D



a =

0 1

0 0

 , m = 0, d = 0, f =

 0

p1 cos(φ)2


We use Neumann boundary conditions to express the condition at the clamped edge. The following coeffi-

cients are used:

g =

0

0

 , q =

0 k

0 0


with k=1×107.

110



C.5 Eigenvalue Problem

Finally the egeinvalue problem can be written the same way as the out-of-plane equilibrium but using f=0

and changing d to:

d =

 0 0

ρh 0
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Appendix D

UEL Abaqus Subroutine for Solar
Radiation Pressure and Generic Input
File

We attach here the UEL subroutine of the solar radiation pressure element for reflective and absorbent

surfaces as described in Chapter 5 Section 5.4. Those Fortran files can be copied and used directly in

Abaqus/Standard. We also show a generic input as described in Chapter 5 Section 5.5.

D.1 Fortran Subroutine for Reflective Surface

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,

1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,

2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,

3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

C

INCLUDE ’ABA_PARAM.INC’

PARAMETER ( ZERO = 0.D0, HALF = 0.5D0, ONE = 1.D0 )

C

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),

1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),

2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),

3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),

4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*),

5 XI_I(4), Eta_I(4), s(3), ne(3), P_mat(2,6),

6 Coord_mat(3,4), CW(2), WW(2,2),Vect_ne(3),

7 S_mat(3,3), dphi_xi(3), dphi_eta(3)

C

IF (LFLAGS(1)==1) THEN

p1=PROPS(1)*TIME(1)

ELSE IF (LFLAGS(1)==41.OR.LFLAGS(1)==47) THEN
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p1=PROPS(1)

END IF

s1=PROPS(2)

s2=PROPS(3)

s3=sqrt(1-s1*s1-s2*s2)

s=(/ s1, s2, s3/)

C

DO K1 = 1, NDOFEL

DO KRHS = 1, NRHS

RHS(K1,KRHS) = ZERO

END DO

DO K2 = 1, NDOFEL

AMATRX(K2,K1) = ZERO

END DO

END DO

C

C Current Nodal Coordinates

x1=COORDS(1,1)+U(1)

y1=COORDS(2,1)+U(2)

z1=COORDS(3,1)+U(3)

x2=COORDS(1,2)+U(4)

y2=COORDS(2,2)+U(5)

z2=COORDS(3,2)+U(6)

x3=COORDS(1,3)+U(7)

y3=COORDS(2,3)+U(8)

z3=COORDS(3,3)+U(9)

x4=COORDS(1,4)+U(10)

y4=COORDS(2,4)+U(11)

z4=COORDS(3,4)+U(12)

C

Xi_I=(/ -1, 1, 1, -1 /)

Eta_I=(/ -1, -1, 1, 1 /)

Coord_mat=reshape ( (/ x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4,

& z4 /), (/ 3, 4 /) )

P_mat=reshape ( (/ 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3/),

&(/ 2, 6 /) )

S_mat=reshape ( (/ 0, -1, 1, 1, 0, -1, -1, 1, 0/),

&(/ 3, 3 /) )

C Integration Constants

Korder=10

CW=(/ 4, 2 /)

WW=reshape ( (/ 16, 8, 8, 4 /), (/ 2, 2 /) )

C

IF (JELEM==50.AND.KSTEP==1.AND.KINC==1) THEN

PRINT *,’Using SolarPressure.for’

END IF
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C

C Nodal Force

C

DO K1=1,NDOFEL

Ka=(K1-1)/3+1

Kk=mod(K1-1,3)+1

ETA_A=Eta_I(Ka)

XI_A=Xi_I(Ka)

C

rA=0

DO KI=0,Korder

DO KJ=0,Korder

xi=-1+KI*2.0/Korder

eta=-1+KJ*2.0/Korder

IF ((KI==0.AND.KJ==0).OR.(KI==0.AND.KJ==Korder).OR.

&(KI==Korder.AND.KJ==0).OR.(KI==Korder.AND.KJ==Korder)) THEN

W=1

ELSE IF (KI==0.OR.KI==Korder) THEN

W=CW(mod(KJ-1,2)+1)

ELSE IF (KJ==0.OR.KJ==Korder) THEN

W=CW(mod(KI-1,2)+1)

ELSE

W=WW(mod(KI-1,2)+1,mod(KJ-1,2)+1)

END IF

C Define vector Vect_n_e=(Vect_ne_1,Vect_ne_2,Vect_ne_3)

Vect_ne_1=(z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) +

& z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25))*(0.25*y1*(

&eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*(eta + 1.0) - 0

&.25*y4*(eta + 1.0)) - 1.0*(y1*(0.25*xi - 0.25) - 1.0*y2*(0

&.25*xi + 0.25) + y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0

&.25))*(0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3

&*(eta + 1.0) - 0.25*z4*(eta + 1.0))

Vect_ne_2=(x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) +

& x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25))*(0.25*z1*(

&eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*(eta + 1.0) - 0

&.25*z4*(eta + 1.0)) - 1.0*(z1*(0.25*xi - 0.25) - 1.0*z2*(0

&.25*xi + 0.25) + z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0

&.25))*(0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3

&*(eta + 1.0) - 0.25*x4*(eta + 1.0))

Vect_ne_3=(y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) +

& y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25))*(0.25*x1*(

&eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*(eta + 1.0) - 0

&.25*x4*(eta + 1.0)) - 1.0*(x1*(0.25*xi - 0.25) - 1.0*x2*(0

&.25*xi + 0.25) + x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0

&.25))*(0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3

&*(eta + 1.0) - 0.25*y4*(eta + 1.0))
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Vect_ne=(/ Vect_ne_1, Vect_ne_2, Vect_ne_3/)

rA=rA+W*(ETA_A*eta + 1.0)*((XI_A*xi)/4.0 + 0.25)*p1*(s1*

&Vect_ne_1+s2*Vect_ne_2+s3*Vect_ne_3)**2/(Vect_ne_1**2+Vect_ne_2

&**2+Vect_ne_3**2)*Vect_ne(Kk)

END DO

END DO

RHS(K1,1)=4.0/9.0/Korder/Korder*rA

END DO

C

C Stiffness Sub-Matrix

C

DO K1=1,NDOFEL

DO K2=1,NDOFEL

Ka=(K1-1)/3+1

Kb=(K2-1)/3+1

Kk=mod(K1-1,3)+1

Kl=mod(K2-1,3)+1

ETA_A=Eta_I(Ka)

ETA_B=Eta_I(Kb)

XI_A=Xi_I(Ka)

XI_B=Xi_I(Kb)

Kalpha=P_mat(1,Kl+1)

Kbeta=P_mat(1,Kl+2)

Kgamma=P_mat(2,Kl+Kk)

rK=0

DO KI=0,Korder

DO KJ=0,Korder

xi=-1+KI*2.0/Korder

eta=-1+KJ*2.0/Korder

IF ((KI==0.AND.KJ==0).OR.(KI==0.AND.KJ==Korder).OR.

&(KI==Korder.AND.KJ==0).OR.(KI==Korder.AND.KJ==Korder)) THEN

W=1

ELSE IF (KI==0.OR.KI==Korder) THEN

W=CW(mod(KJ-1,2)+1)

ELSE IF (KJ==0.OR.KJ==Korder) THEN

W=CW(mod(KI-1,2)+1)

ELSE

W=WW(mod(KI-1,2)+1,mod(KJ-1,2)+1)

END IF

Vect_ne_1=(z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) +

& z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25))*(0.25*y1*(

&eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*(eta + 1.0) - 0

&.25*y4*(eta + 1.0)) - 1.0*(y1*(0.25*xi - 0.25) - 1.0*y2*(0

&.25*xi + 0.25) + y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0

&.25))*(0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3

&*(eta + 1.0) - 0.25*z4*(eta + 1.0))
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Vect_ne_2=(x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) +

& x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25))*(0.25*z1*(

&eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*(eta + 1.0) - 0

&.25*z4*(eta + 1.0)) - 1.0*(z1*(0.25*xi - 0.25) - 1.0*z2*(0

&.25*xi + 0.25) + z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0

&.25))*(0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3

&*(eta + 1.0) - 0.25*x4*(eta + 1.0))

Vect_ne_3=(y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) +

& y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25))*(0.25*x1*(

&eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*(eta + 1.0) - 0

&.25*x4*(eta + 1.0)) - 1.0*(x1*(0.25*xi - 0.25) - 1.0*x2*(0

&.25*xi + 0.25) + x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0

&.25))*(0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3

&*(eta + 1.0) - 0.25*y4*(eta + 1.0))

dx_xi=0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*

&(eta + 1.0) - 0.25*x4*(eta + 1.0)

dx_eta=x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) + x3*

&(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25)

dy_xi=0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*

&(eta + 1.0) - 0.25*y4*(eta + 1.0)

dy_eta=y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) + y3*

&(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25)

dz_xi=0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*

&(eta + 1.0) - 0.25*z4*(eta + 1.0)

dz_eta=z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) + z3*

&(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25)

dphi_xi=(/dx_xi, dy_xi, dz_xi/)

dphi_eta=(/dx_eta, dy_eta, dz_eta/)

Vect_ne=(/Vect_ne_1, Vect_ne_2, Vect_ne_3/)

C

v_N1_xi=S_mat(Kk,Kl)*dphi_xi(Kgamma)

v_N1_eta=S_mat(Kk,Kl)*dphi_eta(Kgamma)

pa=p1*(s(1)*Vect_ne(1)+s(2)*Vect_ne(2)+s(3)*Vect_ne(3))**2/

&(Vect_ne(1)**2+Vect_ne(2)**2+Vect_ne(3)**2)

v_NN1=pa*(0.25*XI_B*(ETA_B*eta + 1.0)*v_N1_eta-ETA_B*(0.25

&*XI_B*xi + 0.25)*v_N1_xi)

C

PHI1_xi=s(Kbeta)*dphi_xi(Kalpha)-s(Kalpha)*dphi_xi(Kbeta)

PHI1_eta=s(Kbeta)*dphi_eta(Kalpha)-s(Kalpha)*dphi_eta(Kbeta)

v_N2_xi=Vect_ne(Kk)*PHI1_xi

v_N2_eta=Vect_ne(Kk)*PHI1_eta

pb=2*p1*(s(1)*Vect_ne(1)+s(2)*Vect_ne(2)+s(3)*Vect_ne(3))/

&(Vect_ne(1)**2+Vect_ne(2)**2+Vect_ne(3)**2)

v_NN2=pb*(0.25*XI_B*(ETA_B*eta + 1.0)*v_N2_eta-ETA_B*(0.25

&*XI_B*xi + 0.25)*v_N2_xi)

C
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PHI2_xi=2*(Vect_ne(Kbeta)*dphi_xi(Kalpha)

&-Vect_ne(Kalpha)*dphi_xi(Kbeta))

PHI2_eta=2*(Vect_ne(Kbeta)*dphi_eta(Kalpha)

&-Vect_ne(Kalpha)*dphi_eta(Kbeta))

v_N3_xi=Vect_ne(Kk)*PHI2_xi

v_N3_eta=Vect_ne(Kk)*PHI2_eta

pc=-p1*(s(1)*Vect_ne(1)+s(2)*Vect_ne(2)+s(3)*Vect_ne(3))**2/

&(Vect_ne(1)**2+Vect_ne(2)**2+Vect_ne(3)**2)**2

v_NN3=pc*(0.25*XI_B*(ETA_B*eta + 1.0)*v_N3_eta-ETA_B*(0.25

&*XI_B*xi + 0.25)*v_N3_xi)

C

v_NN=v_NN1+v_NN2+v_NN3

C

rK=rK+W*(ETA_A*eta + 1.0)*(XI_A*xi/4.0 + 1.0/4.0)*v_NN

END DO

END DO

AMATRX(K1,K2)=-4.0/9.0/Korder/Korder*rK

END DO

END DO

C

RETURN

END

D.2 Fortran Subroutine for Absorbent Surface

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS,

1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,

2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,

3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

C

INCLUDE ’ABA_PARAM.INC’

PARAMETER ( ZERO = 0.D0, HALF = 0.5D0, ONE = 1.D0 )

C

DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*),

1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),

2 DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*),

3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*),

4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*),

5 XI_I(4), Eta_I(4), s(3), ne(3), P_mat(2,6),

6 Coord_mat(3,4), CW(2), WW(2,2),Vect_ne(3),

7 S_mat(3,3), dphi_xi(3), dphi_eta(3)

C

IF (LFLAGS(1)==1) THEN

p2=PROPS(1)*TIME(1)

ELSE IF (LFLAGS(1)==41.OR.LFLAGS(1)==47) THEN
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p2=PROPS(1)

END IF

s1=PROPS(2)

s2=PROPS(3)

s3=sqrt(1-s1*s1-s2*s2)

s=(/ s1, s2, s3/)

C

DO K1 = 1, NDOFEL

DO KRHS = 1, NRHS

RHS(K1,KRHS) = ZERO

END DO

DO K2 = 1, NDOFEL

AMATRX(K2,K1) = ZERO

END DO

END DO

C

C Current Nodal Coordinates

x1=COORDS(1,1)+U(1)

y1=COORDS(2,1)+U(2)

z1=COORDS(3,1)+U(3)

x2=COORDS(1,2)+U(4)

y2=COORDS(2,2)+U(5)

z2=COORDS(3,2)+U(6)

x3=COORDS(1,3)+U(7)

y3=COORDS(2,3)+U(8)

z3=COORDS(3,3)+U(9)

x4=COORDS(1,4)+U(10)

y4=COORDS(2,4)+U(11)

z4=COORDS(3,4)+U(12)

C

Xi_I=(/ -1, 1, 1, -1 /)

Eta_I=(/ -1, -1, 1, 1 /)

Coord_mat=reshape ( (/ x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4,

& z4 /), (/ 3, 4 /) )

P_mat=reshape ( (/ 1, 2, 2, 1, 3, 3, 1, 2, 2, 1, 3, 3/),

&(/ 2, 6 /) )

S_mat=reshape ( (/ 0, -1, 1, 1, 0, -1, -1, 1, 0/),

&(/ 3, 3 /) )

C Integration Constants

Korder=10

CW=(/ 4, 2 /)

WW=reshape ( (/ 16, 8, 8, 4 /), (/ 2, 2 /) )

C

IF (JELEM==50.AND.KSTEP==1.AND.KINC==1) THEN

PRINT *,’Using SolarPressure.for’

END IF
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C

C Nodal Force

C

DO K1=1,NDOFEL

Ka=(K1-1)/3+1

Kk=mod(K1-1,3)+1

ETA_A=Eta_I(Ka)

XI_A=Xi_I(Ka)

C

rA=0

DO KI=0,Korder

DO KJ=0,Korder

xi=-1+KI*2.0/Korder

eta=-1+KJ*2.0/Korder

IF ((KI==0.AND.KJ==0).OR.(KI==0.AND.KJ==Korder).OR.

&(KI==Korder.AND.KJ==0).OR.(KI==Korder.AND.KJ==Korder)) THEN

W=1

ELSE IF (KI==0.OR.KI==Korder) THEN

W=CW(mod(KJ-1,2)+1)

ELSE IF (KJ==0.OR.KJ==Korder) THEN

W=CW(mod(KI-1,2)+1)

ELSE

W=WW(mod(KI-1,2)+1,mod(KJ-1,2)+1)

END IF

C Define vector Vect_n_e=(Vect_ne_1,Vect_ne_2,Vect_ne_3)

Vect_ne_1=(z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) +

& z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25))*(0.25*y1*(

&eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*(eta + 1.0) - 0

&.25*y4*(eta + 1.0)) - 1.0*(y1*(0.25*xi - 0.25) - 1.0*y2*(0

&.25*xi + 0.25) + y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0

&.25))*(0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3

&*(eta + 1.0) - 0.25*z4*(eta + 1.0))

Vect_ne_2=(x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) +

& x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25))*(0.25*z1*(

&eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*(eta + 1.0) - 0

&.25*z4*(eta + 1.0)) - 1.0*(z1*(0.25*xi - 0.25) - 1.0*z2*(0

&.25*xi + 0.25) + z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0

&.25))*(0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3

&*(eta + 1.0) - 0.25*x4*(eta + 1.0))

Vect_ne_3=(y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) +

& y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25))*(0.25*x1*(

&eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*(eta + 1.0) - 0

&.25*x4*(eta + 1.0)) - 1.0*(x1*(0.25*xi - 0.25) - 1.0*x2*(0

&.25*xi + 0.25) + x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0

&.25))*(0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3

&*(eta + 1.0) - 0.25*y4*(eta + 1.0))
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Vect_ne=(/ Vect_ne_1, Vect_ne_2, Vect_ne_3/)

rA=rA+W*(ETA_A*eta + 1.0)*((XI_A*xi)/4.0 + 0.25)*p2*(s(1)*

&Vect_ne(1)+s(2)*Vect_ne(2)+s(3)*Vect_ne(3))*s(Kk)

END DO

END DO

RHS(K1,1)=4.0/9.0/Korder/Korder*rA

END DO

C

C Stiffness Sub-Matrix

C

DO K1=1,NDOFEL

DO K2=1,NDOFEL

Ka=(K1-1)/3+1

Kb=(K2-1)/3+1

Kk=mod(K1-1,3)+1

Kl=mod(K2-1,3)+1

ETA_A=Eta_I(Ka)

ETA_B=Eta_I(Kb)

XI_A=Xi_I(Ka)

XI_B=Xi_I(Kb)

Kalpha=P_mat(1,Kl+1)

Kbeta=P_mat(1,Kl+2)

rK=0

DO KI=0,Korder

DO KJ=0,Korder

xi=-1+KI*2.0/Korder

eta=-1+KJ*2.0/Korder

IF ((KI==0.AND.KJ==0).OR.(KI==0.AND.KJ==Korder).OR.

&(KI==Korder.AND.KJ==0).OR.(KI==Korder.AND.KJ==Korder)) THEN

W=1

ELSE IF (KI==0.OR.KI==Korder) THEN

W=CW(mod(KJ-1,2)+1)

ELSE IF (KJ==0.OR.KJ==Korder) THEN

W=CW(mod(KI-1,2)+1)

ELSE

W=WW(mod(KI-1,2)+1,mod(KJ-1,2)+1)

END IF

Vect_ne_1=(z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) +

& z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25))*(0.25*y1*(

&eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*(eta + 1.0) - 0

&.25*y4*(eta + 1.0)) - 1.0*(y1*(0.25*xi - 0.25) - 1.0*y2*(0

&.25*xi + 0.25) + y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0

&.25))*(0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3

&*(eta + 1.0) - 0.25*z4*(eta + 1.0))

Vect_ne_2=(x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) +

& x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25))*(0.25*z1*(
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&eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*(eta + 1.0) - 0

&.25*z4*(eta + 1.0)) - 1.0*(z1*(0.25*xi - 0.25) - 1.0*z2*(0

&.25*xi + 0.25) + z3*(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0

&.25))*(0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3

&*(eta + 1.0) - 0.25*x4*(eta + 1.0))

Vect_ne_3=(y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) +

& y3*(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25))*(0.25*x1*(

&eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*(eta + 1.0) - 0

&.25*x4*(eta + 1.0)) - 1.0*(x1*(0.25*xi - 0.25) - 1.0*x2*(0

&.25*xi + 0.25) + x3*(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0

&.25))*(0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3

&*(eta + 1.0) - 0.25*y4*(eta + 1.0))

dx_xi=0.25*x1*(eta - 1.0) - 0.25*x2*(eta - 1.0) + 0.25*x3*

&(eta + 1.0) - 0.25*x4*(eta + 1.0)

dx_eta=x1*(0.25*xi - 0.25) - 1.0*x2*(0.25*xi + 0.25) + x3*

&(0.25*xi + 0.25) - 1.0*x4*(0.25*xi - 0.25)

dy_xi=0.25*y1*(eta - 1.0) - 0.25*y2*(eta - 1.0) + 0.25*y3*

&(eta + 1.0) - 0.25*y4*(eta + 1.0)

dy_eta=y1*(0.25*xi - 0.25) - 1.0*y2*(0.25*xi + 0.25) + y3*

&(0.25*xi + 0.25) - 1.0*y4*(0.25*xi - 0.25)

dz_xi=0.25*z1*(eta - 1.0) - 0.25*z2*(eta - 1.0) + 0.25*z3*

&(eta + 1.0) - 0.25*z4*(eta + 1.0)

dz_eta=z1*(0.25*xi - 0.25) - 1.0*z2*(0.25*xi + 0.25) + z3*

&(0.25*xi + 0.25) - 1.0*z4*(0.25*xi - 0.25)

dphi_xi=(/dx_xi, dy_xi, dz_xi/)

dphi_eta=(/dx_eta, dy_eta, dz_eta/)

Vect_ne=(/Vect_ne_1, Vect_ne_2, Vect_ne_3/)

C

PHI1_xi=s(Kbeta)*dphi_xi(Kalpha)-s(Kalpha)*dphi_xi(Kbeta)

PHI1_eta=s(Kbeta)*dphi_eta(Kalpha)-s(Kalpha)*dphi_eta(Kbeta)

v_N4_xi=s(Kk)*PHI1_xi

v_N4_eta=s(Kk)*PHI1_eta

v_NN4=p2*(0.25*XI_B*(ETA_B*eta + 1.0)*v_N4_eta-ETA_B*(0.25

&*XI_B*xi + 0.25)*v_N4_xi)

C

v_NN=v_NN4

C

rK=rK+W*(ETA_A*eta + 1.0)*(XI_A*xi/4.0 + 1.0/4.0)*v_NN

END DO

END DO

AMATRX(K1,K2)=-4.0/9.0/Korder/Korder*rK

END DO

END DO

C

RETURN

END
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D.3 Generic Input File

The option sim=NO in the frequency step does not provide accurate results. It is important to remove this

option in the input file.

*Heading

** Job name: Plate_SP Model name: Model-1

** Generated by: Abaqus/CAE 2016

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Load_Elements

*Node

1, 0.1061, 0.1061, 0.

...

2601, -0.1061, -0.1061, 0.

*USER ELEMENT, NODES=4, UNSYMM, TYPE=U1, I PROPERTIES=0,PROPERTIES=3

1, 2, 3

*Element, type=U1

1, 1, 2, 53, 52

...

2500, 2549, 2550, 2601, 2600

*Nset, nset=Set-4, generate

1, 2601, 1

*Elset, elset=Set-4, generate

1, 2500, 1

**

*UEL PROPERTY, ELSET=Set-4

-50.0, 0.7071, 0.0

*End Part

**

*Part, name=Mechanical_Elements

*Node

1, -0.1061, -0.1061, 9.99999975e-05

...

5202, 0.1061, 0.1061, 0.

*Element, type=SC8R

1, 154, 155, 53, 52, 103, 104, 2, 1

...

2500, 5201, 5202, 5100, 5099, 5150, 5151, 5049, 5048

*Nset, nset=Set-3, generate

1, 5202, 1

*Elset, elset=Set-3, generate

1, 2500, 1

** Section: Section-1

*Shell Section, elset=Set-3, material=Kapton
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0.0001, 5

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Mechanical_1, part=Mechanical_Elements

0., 0., -0.0001

*End Instance

**

*Instance, name=Load-1, part=Load_Elements

*End Instance

**

*Nset, nset=Set-1, instance=Mechanical_1

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

...

5187, 5188, 5189, 5190, 5191, 5192, 5193, 5194, 5195, 5196, 5197, 5198, 5199, 5200, 5201, 5202

*Elset, elset=Set-1, instance=Mechanical_1

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

...

2497, 2498, 2499, 2500

*Nset, nset=m_Set-3, instance=Mechanical_1

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

...

5143, 5144, 5145, 5146, 5147, 5148, 5149, 5150, 5151

*Elset, elset=m_Set-3, instance=Mechanical_1, generate

1, 2500, 1

*Nset, nset=s_Set-3, instance=Load-1, generate

1, 2601, 1

*Elset, elset=s_Set-3, instance=Load-1, generate

1, 2500, 1

*Surface, type=NODE, name=m_Set-3_CNS_, internal

m_Set-3, 1.

*Surface, type=NODE, name=s_Set-3_CNS_, internal

s_Set-3, 1.

** Constraint: Constraint-1

*Tie, name=Constraint-1, adjust=no, no rotation, no thickness

s_Set-3_CNS_, m_Set-3_CNS_

*End Assembly

**

** MATERIALS

**

*Material, name=Kapton

*Density
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1420.,

*Elastic

2.5e+09, 0.34

** ----------------------------------------------------------------

**

** STEP: Spin

**

*Step, name=Spin, nlgeom=YES

*Static

1., 1., 1e-05, 1.

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Set-1, ENCASTRE

**

** LOADS

**

** Name: Centrifugal Type: Rotational body force

*Dload

Mechanical_1.Set-3, CENTRIF, 2741.56,0.,0.,0.,0.,0.,1.

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0

**

** FIELD OUTPUT: F-Output-3

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

**

** STEP: Frequency

**

*Step, name=Frequency, nlgeom=NO, perturbation

*Frequency, eigensolver=Lanczos, acoustic coupling=on, normalization=displacement

50, , , , ,

**

** OUTPUT REQUESTS

**

*Restart, write, frequency=0
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**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

**

** STEP: ComplexFrequency

**

*Step, name=ComplexFrequency, nlgeom=NO, perturbation, unsymm=YES

*Complex Frequency, friction damping=NO

10, , ,

**

** OUTPUT REQUESTS

**

**

** FIELD OUTPUT: F-Output-2

**

*Output, field, variable=PRESELECT

*End Step
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