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ABSTRACT

This dissertation addresses the problem of modeling electromagnetic fields
in and about the brain-skull-scalp system that are generated by active neural
populations. Specifically, frequency dependence of Maxwell's fields is explored
for the case of a dipole-like current source embedded in a spherical conductor
surrounded by a vacuum. Frequency dependence was found to be small
Loosely, the difference between frequency dependent and frequency indepen-
dent fields reached approximately 1% at 10°Hz and reached up to 16% at 10*Hz.
Frequency dependence was found to be highly dependent on conductivity, the
size of the conductor, and on the phase of generated fields. These findings
indicate that the degree to which the magnetic field is coupled to the electric
field depends on interference patterns occuring within the conductor. Several
highly distinguishable exceptions to general trends in the data were found to

be consistent with this view.
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1. Introduction

In this dissertation I concern myself with modeling electromagnetic fields in
and about the brain that arise from neurological activity. I am particularly
interested in modeling electromagnetic fields observed at the human scalp-air
interface. Maxwell's equations are taken to be the best available model'™.
Difficulties in applying the full equations to the situation dealt with here neces-
sitate further abstractions. From among the possible formulations, I chose to
compare a model where fields are assumed frequency independent with a com-

parable model containing frequency dependence.
1.1 Theoretical motivations

In order to clarify how the comparison pertains to modeling electromag-
netic measurements, I would like to make the following digression. Optimally,
one would like to ascertain the consequences of making modeling abstractions
on the predictive power of the resultant model, There are two ways to do this.
One way is to compare theoretical predictions with electromagnetic recordings
from the system of interest. The other way is to assess the extent to which the
introduction of a modeling simpliﬁcation perturbs theoretical predictions from
those given by the best available model. The work done here falls under the
second category: the difference between predictions of frequency independent
models and frequency dependent models is calculated where the model with
frequency dependence is deemed a closer approximation to the best available

model.

—

For the electromagnetic situation of interest here, the relevance of a

theoretical approach is illustrated by the following two points. Experiments

1-1 I use awailable model to refer to models wherein all parameters of the model are not necessarl(y
specifiable in practice.



showing the predictive power of Maxwell's equations are well known. Consider-
ing this evidence, it is very likely that inadequacies in modeling electromag-
netic fields in and about the brain are a result of simplifications in the applica-
tion of Maxwell's model rather than inadequacies of this model. My second
point stems from considering one of the major goals behind finding a descrip-
tion for electromagnetic fields observed at the scalp. This goal is to character-
ize the sources of the observed fields. Unfortunately, at present, there is no
way to characterize these sources independent of Maxwell's model. Further-
more, characterizing these sources based on the best computable Maxwell's
model requires techniques that would result in damaging the brain. This
means there is, at present, no way to assess the predictive power of theoretical
models. The consequence is that we are not afforded the luxury of minimizing
the complexity of theoretical models using cross-validation between theory and
experiment. At best, predictive power can be assessed with respect to best
computable models; at worst, we must maximize model complexity within
domains of computability and have faith that they adequately approximate
best available models. Between these two extremes, we can try to isolate the
effects of certain simplifying assumptions by comparing simple models to
models at a higher order of complexity. In this way, we can give support to the
use of sirﬁple models. As we have seen above, this is the route pursued here
with the simplifying assumption under question being frequency independence

of the electromagnetic flelds.

Choosing to focus on frequency dependence issues was motivated by noting
that there seemed to be no simple way to assess the significance of magnetic
induction when space was not assumed electromagnetically homogeneous.
Making this assessment was motivated by noting that ignoring magnetic induc-

tion would significantly simplify Maxwell's model. A simple assessment with



respect to a model that uses magnetic permeability, u, electric permitivity, g,
and conductivity, o, to model charges and currents that would otherwise be
impossible to specify has been obtained for the case of electromagnetically
homogeneous media [B8], i.e., where u, & and ¢ are assumed constants
independent of space and take on values appropriate for biological tissues.
Unfortunately, the head system, consisting of the brain, skull, scalp, interven-
ing tissues, and the surrounding air, is far from being electromagnetically
homogeneous. Thus, the frequency dependence issue seems basic to inhomo-
geneous u, &, and ¢ models since it surfaces at the first stages of analysis. In
contrast, at this time, all x4, &, and ¢ models used to describe electric potential
measurements in and about neurons [56, 57, 94], magnetic measurements
about neurons [112], gross electric potentials at the surface and within the
body [19, 22, 50, 51, 82, 88], and gross magnetic flelds at the surface of the

body [30, 52] have assumed frequency independence.

1.2 Experimental motivations

In the opening section of this dissertation, I have motivated, on theoretical
grounds, investigating frequency independent models with respect to models
that account for this dependence. The major question at this point is whether

or not there are experimental reasons for such an investigation.
1.2.1 Frperimental sufficiency of frequency independent models

Is there any evidence indicating the sufficiency of frequency independent
models for describing electromagnetic data recorded at the scalp? I will briefly

mention several relevant experiments.

1.2.1.1 For electric potential measurements Many investigators have used core

conductor theory to successfully model electric potentials occurring within
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neurons and at neural surfaces, most notably [56, 57, 91, 94]. The theory is
based on Ohm's law. The theory does account for frequency dependence in the
sense that capacitor/resistor circuits can exhibit frequency dependent
behavior; however, magnetic induction is explicitly ignored since no inductors
are used. Neuron models based on core conductor theory have been used to
successfully model extracellular intracranial electric potential measurements
of electric fields arising from stimulation of the olfactory bulb in rabbits [92,
93] and stimulating the medullary pyramid of cats [80, 61]: several theoretical
neurons were superposed in special geometric configurations and zero fre-
quency field equations, wherein it was assumed that the neurons were embed-
ded in a conductor of infinite extent, were then used to make predictions. In
the following list, I tabulate investigations wherein Maxwell's field equations for
zero frequency and conductors of finite extent were used to model experimen-

tal observations.

1. [97] modeled electric potential measurements gathered from the surface
of a half skull in an electrolytic case where electrodes had been placed on
the edge and operated from 50Hz to SkHz. He used a three-shell model for
the head system: four concentric regions of constant conductivity where
conductivity had only radial dependence. This model was also used to
'modei electric potential measurements gathered from the cortical surface
of humans and spider monkeys where current sources had been imposed

at the surface.

2. [18] modeled electric potential measurements gathered from an electro-
lytic tank model of the human torso with embedded electric dipoles. This
device accounted for conductivity inhomogenaities and anisotropies similar
to those found in humans. They used numerical integration to solve an

electric potential boundary integral equation for a torse-shaped conductor.



Source parameters were adjusted to minimize the discrepancy between

theoretical predictions and potential measurements.

3. [68] compared predictions of a four-shell model to electric potential meas-
urements gathered from the scalp and cortical surface of monkeys. These
monkeys had electric dipole sources implanted within their brains. The

dipoles were operated at sub-stimulation levels from 10Hz to 500Hz.

4. [103] compared predictions of a one-shell model to electric potential meas-
urements gathered from within the brains of humans where current dipole
sources had been inplanted. Dipoles were operated at substimulation levels

using a square wave. (The fundamental frequency was not reported.)

5. [114] compared predictions of a finite element model of a brain, which util-
ized a sophisticated conductivity topology, to intracranial electric potential
measurements taken from a cat brain. Electric dipoles had been
implanted and activated with a damped 500Hz sine wave.

With theoretical predictions falling within estimates of experimental error,
these experiments indicate the sufficiency of frequency independent meodels
for describing electric potential measurements. An exception is data of [58]
where theoretical predictions were poor along sagittal contours of the scalp.
The sphericity of the head in the sagittal direction is lower than in the coronal
direction; thus, inaccuracies of theoretical predictions probably stem from
difficulties in mapping data from a non-spherical surface to a spherical one. In
conclusion, the indications are that it is safe to assume the electric field fre-

quency independent, other aspects of modeling being more important.

1.2.1.2 For magnetic measurements Though frequency independent meodeis of
the electric field may be sufficient to model electric field observations, does

this imply sufficiency of magnetic field models based on the same assumption?



Examining Maxwell's equations reveals that the answer is no. (We would need

- 2 -
to assume [[V®]|>>] gt—All implies | -aa—t-VfIJ]!»ﬁ :%E-All,) Thus, we need experimental

evidence. Two studies wherein comparisons between theoretical and experi-

mentally observed magnetic fields are reported will be discussed below.

Electrolytic tank experiments were done ([30], Cohn and Hosaka) to observe
whether or not the magnetic field component normal to the conductor surface
was independent of currents induced in the conductor by an implanted
current source. This hypothesis is predicted for several conductor geometries
by frequency independent w, &, and o models [32, 52]. The conductor used did

have one of these shapes. I compare two of Cohen and Hosaka's experiments .

0B
Referring to figure 1-1, Ef—was measured along the line z=h, y=0 for a dipole

current source (2ma, 0.5-1.5¢cmlength, 3kHz) in air and submerged in a cubical
electrolytic tank with the saline solution (conductivity, 3.3 mho/m) coming up
3em above the dipole. (Other experimental manipulations involved putting
insulators into the tank and using a dipole source oriented along the z axis.)
Graph 1-1 shows a plot of the data where theoretical solutions for the case of a
homogeneous medium, applicable for both frequency dependent and frequency
independent electromagnetic fields, are drawn in to indicate data reliablility.

Theoretical curves (dotted) have been normalized by setting

Fol _ |2%10° :h=10cm
4m  |2.3x10*:h=8em (1-1)

where J is the magnitude of the current dipole and ug is the permeability of

free space.
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Comparing dashed and solid curves, one gathers that the imposition of the

OB
conducting medium does not result in changing -55— It is unclear whether or

not these observations would be predicted by frequency dependent equations.
It can be said that, for this experiment, the frequency independent equations

appear to be a sufficient model.

An effort was made to model electromagnetic fields at the scalp produced by
one of the sources evoked by stimulation of the median nerve ([31], Cohn and
Cuffin). The source was modeled by a current dipole. Contributions to the
observed fields by, presumably, sources other than the one of interest were
removed. Then, modeling parameters such as conductivity values and dipole
parameters were adjusted so that theoretical predictions based on frequency
independent equations optimally matched the processed data. The validity of
these procedures rested on the observation that the model's dipole location
did approximate the location expected for neural sources speculated to be
responsible for the observed fields. Unfortunately, this experimental design
does not allow one to draw conclusions about whether or not discrepancies

between theory and experiment fall within experimental error.

In summary, it can be observed that no experiments have been performed
where, for electromagnetic fields associated with naturally occurring sources,
the accuracy of theoretical models could be assessed. However, evidence has
been presented that suggests the sufficiency of frequency independent equa-
tions for modeling bioelectromagnetism as is measured by present experimen-

tal techniques.
1.2.2 Fxperiments of the future

With the conclusion made above, one is left wondering whether or not

present technology has the sensitivity required to detect frequency



dependence in fields produced by the brain. The following discussion suggests
that simultaneous measurement of both magnetic and electric fields may pro-

vide this sensitivity.

Here, I further examine results reported by Cohn and Cuffin. Consider
figure 1-2. The figure illustrates electric potential contours and contours for
the signed magnitude of the magnetic field's radial component that would be

observable at the surface of a conductor if a current dipole existed within.

Figure 1-2

If the conductor were spherical, frequency independent equations would
predict E,E_1B,B_ at point p; however, in Cohen and Cuffin's experiment, map-
ping observed flelds at the scalp onto the surface of a sphere reveals that
E,E_¥B,B_. Deviation from perpendicular is on the order of 10°. There is no

reason to believe frequency dependence is solely responsible for the observed
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discrepancy. Two additional aspects of modeling must be considered: source
models and the specification of wu, £, and o. If we can assume that source
models associated with biextrema surface fields can be effectively modeled by
superpositions of current dipeles, from linearity of Maxwell's equations, source
models more complex than a simple current dipole would still have E,E_LB,B_;
such models are explored in [34, 36]. This is the extent of current knowledge
about the dependence of the fields on source models. Effects of parameters u
and ¢ have not been explored; in fact, for frequency independent models, ¢ is
excluded. For g, a study in modeling the torso by [54] shows that E,E_ in
sophisticated inhomogeneous models is rotated relative to its orientation for
simpler inhomogeneous models, the simplest being a torso shaped conductor
of uniform conductivity. If we take into consideration the observation that the
normal component of magnetic surface fields are, based on frequency indepen-
dent models, independent of conduction currents for several conductor
shapes, relative rotations resulting from conductivity inhomogenaities may be
indicated. It is very likely that conductor shape has something to do with
observed relative rotations: to obtain comparisons of Cohen and Cuffin, note
that experimental data from a nonspherical geometry had to be mapped onto
a spherical geometry. The effects of doing this have not been systematically
examined. Finally, observed discrepancies may exist because magnetic and
electric fields were not observed simultaneously. In addition, magnetic fields
were constructed from observations at single locations. It can be concluded
that Cohen and Cuffin's study does not exhibit the ability to detect effects

resulting from frequency dependence.

In spite of this conclusion, the study does point the way toward developing
the technology that would have the sensitivity required for detecting frequency

dependence in neurologically generated fields. Suppose theoretical
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calculations reveal peculiarities in the relationship between magnetic and elec-
tric fields resulting from frequency dependence. Given we can surmount the
problems associated with modeling o, we may be able to detect these effects
through simultaneous observation of electric and magnetic fields. Just as a
balance provides the sensitivity required to weigh large and small loads, the
ability to observe the relationship between the two fields may be exactly the

capability that is needed.
1.3 Previous work on frequency dependent equations

Obviously, most work done on frequency dependent equations focuses on
frequencies at which electromagnetic radiation occurs. However, | am strictly
interested in non-radiating electromagnetic fields in and about conducting
media. The area of inquiry where I have found frequency dependent equations
dealt with under the appropriate conditions is eddy current analysis. Some

recent work in this field has included
A. representing Maxwell's equations in terms of
1. various potential fuctions [28, 83, 90],

2. circuit elements where network theory is used to develop models [17,

27, 38], and
3. current and electric or magnetic charge densities [87, 78],
B. applying finite element methods to volumn integral formulations [23, 96]

and to differential equation formulations [78], both in the potential func-

tion domain, and

C. applying boundary integration methods to integral formulations in the

potential domain [21, 37].

In most of these studies, the source was external to the conducting medium in
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which one wishes to know the currents and magnetic field, In a few, the mag-
netic field at the conductor surface had to be specified. | stumbled across one
study wherein the source was inside the conductor ([21, 37], Barnes and
Davey). Barnes and Davey calculated the magnetic field strength arising from
a dipole current source embedded 5m below the surface of a semi-infinite
medium with a planar boundary. They reported values for magnetic field
strength in the conductor at the depth of the dipole and in the air a height
10m above the conductor surface. They examined frequencies 1, 103 and 10°Hz
and conductivities 4 and 10°mhosm. Unfortunately, they did not report data
that would allow making a comparison between the near OHz cases and higher
frequency cases. One more point is worth mentioning: they assumed that the
tangential component of B was continuous across the conductor boundary.
Given a boundary condition approach to solving Maxwell's equations, this
means E must be normal or 0 at the boundary. If this were true for the situa-
tion of interest here, the scalp would be an equipotential surface. In conclu-
sion, as far as [ know, there have been no previous studies on electromagnetic

frequency dependence under the conditions addressed in this dissertation.
1.4 Final introductory remarks

The chapters that follow will be introduced by stating, in general terms, the
stages of abstraction I will use in model development. Doing this will provide a
context with which to view this work. The data to be modeled comes from elec-
trode and magnetometer or gradiometer readings at the scalp-air interface. At
certain points in the modeling process, choices will be made that cannot be
traced back to their effects on answers obtained. These points separate levels
of a hierarchy of models. In this context, a choice cannot be justified by claim-
ing the resultant model produces solutions differing negligibly from those pro-

duced by the model one level up. The first model I will use associates
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measurements to be modeled with the sampling of electromagnetic fields
described by Maxwell's free space equations, E and B. Here is the subsequent

hierarchy of modeling choices:

LEVEL 2: Charges and charge movements will be separated into types and
some of these will be accounted for using the functions u, &, and o.
This step is where characteristics of media to be dealt with will be
defined such as media geometry, homogeneity, and directional
dependence of properties {isotropic or anisotropic). This step is
unavoidable since, in principle, it is impossible to explicitly

account for all charges and their movements.
At this point, model 2 will be transformed into a domain of electromagnetic
potentials: the scalar potential  and the vector potential A. These potentials
are determined by the functions u, & and o and jr(emmder); 3, represents

currents unaccounted for by u, ¢, and o.

LEVEL 3: :fr will be separated into current types. Models will be chosen for
current components thought mainly responsible for the dipole-like
fields. The models will be used in place of 3,.. Significance of
changes in solutions to the level 2 model resulting from this choice
cannot be assessed since some jr components are impossible to
model. For example, in specifying w, &, and o, the currents
presumably accounted for cannot be completely represented for
two reasons: 1) it is impossible to know ideal u, ¢, and ¢ appropri-
ate for the model at level 1, and 2) u, &, and ¢ must be experimen-
tally determined which implies they are known at finite precision.
The component of current left in 3, associated with this incom-

pleteness cannot be modeled. Other remainders ignored by level 3

decisions include physical processes too difficult to model and
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those that are unknown.

LEVEL 4. Spacial averages will be taken which convert volumn integrals
involving derivatives of u, ¢, and ¢ into surface integrals. This pro-
cedure is required as a result of the methodology used to define u,

g, and o.

LEVEL 5: Model 4 is simplified by ignoring several terms based on the experi-
mental precision at which g, £, and ¢ are known and an assessment
of relative magnitudes between terms of the equations. For some
terms, the consequence of doing this can be assessed; for other
terms, there is no way to predict how ignoring them will effect the
model. This procedure is necessary for practical reasons. Keeping
some terms would mean numerical metheds could not be used to
solve the equations. Ignoring other terms significantly simplifies

the task of implementing numerical procedures.

LEVEL 6: Quantities will be represented by a finite number of digits. For
some quantities such as surface normal vectors and distances
between surface points, the effect of doing this cannot be assessed.
The procedure could be viewed as another form of ignoring terms.

This list is not to be viewed as the order by which model development proceeds.
It is to be used as the context with which to perceive the measures taken in the

following chapters.



2. Applying Maxwell’s model to the problem
2.1 Simplifying Maxwell’s model

Starting with the free-space equations

Ve g0 =p (2-1a)
1 > a =
me =J+ -é-t—eoE (2-1b)
vB=0 (2-1¢)
vxi = - 23 (2-14)
Bt

the initial step toward finding solutions is to specify the functions p (charge
density) and J (current density). This will be done by distinguishing several
forms of charge and charge movement then hypothesizing how each form con-
tributes to p and J. At this stage, I will attend to charges and currents that
must be accounted for in terms of macroscopic properties of matter. The fol-

lowing discussion is based on the work of [Feynman, Hayt, Elliot, Jackson].

A distinction is made for charge and current arising from mutually bound
pairs of Qpposite charges. Since charges of each pair move in opposite direc-
tions in response to an electric field not associated with them, each pair con-
tributes a dipolar electric field to the imposed field and a magnetic field associ-
ated with a current filament. Examples include electrons and nuclei of atoms
and macromolecules with ionic sites. 1 will use the labels pp(clarization) and
:fp(o]amaﬁon). Another distinction is made for current arising from nuclei and

electron spins and relative motion of electrons about nuclei. These currents

effect a net dipolar magnetic field that can be modulated, in direction and
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magnitude, by a magnetic field not associated with them. This works mainly by
modulating the dipolar field contributed by orbital electron motion. I will use

the label ja(tomjc).

-

Obviously, it is unreasonable to try to explicitly model py, 3,,, and J,. To
resolve this problem, a set of macroscopic properties can be defined such that
resultant parameterized equations only have explicit dependence on current
and charge densities that can be, presumably, accounted for explicitly. The
consequence of doing this is that equations will no longer express relationships
between quantities evaluated at a mathematical peint but will express the rela-
tionship between quantities that are spacial averages; the spacial resolution
defined by this average will be referred to with the label dv. Writing solutions

to equations 2-1 as the superposition of solutions from the two systems

Ve g0k = pp (2-2a)
Vx—l——ﬁ =.T+3+—a-—*af! (2-2b
Lo 1 a P At 01 -2b)
Ve B1 = (2"2C)

fo} = -——@——-ﬁ
1 30! (2-243)

and

V gokip = Pr(emainder) (2-3a)

1 = - ) >
Vx “#:Bz =dpt 'é‘{'EOEE (2-3b)
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B =0 (2-3¢)
sl = -2
2 = ~ppte (2-3d)

where p, represents charge densities unaccounted for by p, and :fr» is associ-
ated with current densities unaccounted for by L and J,, the parameteriza-
tion we need is found by investigating how electromagnetic fields of equations
2-2 depend on flelds of equations 2-3. If the media of concern are non-
ferromagnetic, non-ferroelectric, isotropic, and do not exhibit hysteresis, it
turns out that, in the frequency domain, the dependence can be expressed as a
scalar proportionality. There have been no reports indicating that media of
concern here fail to met these requirements. Before writing down the relation-
ships sought, here is the notation that will be used: <>y y(xy) implies the aver-
age over subset v, a function of variables x and parameters y, of domain u.
General function notation is this: F(independent variables; parameters) where
parameters may depend on independent variables. | implies evaluation under
the important conditions ¢ or evaluation at point c¢. The condition, vac{uum)
will be used to emphasize that a function is one at the modeling level of equa-
tions 2-1. The label for the modeling level being described at this time will be
mat(ter). “F is used to notate F(w), coefficients of the frequency domain. Con-

tinuing, in terms of the net flelds of equations 1, the conventicnal notation is

-+ “’8 ..o
<“Eg> R.Av(®) I vac ~— '8—0'"<0E > 2.4v(R) | vac (2-4)

and
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<u]§2>2,Av(i) lvac = %"’é&mm | vac (2-5)
where ¢ is the electric permittivity and wx is the magnetic permeability. It fol-
lows that the equations sought are derived by taking spacial averages of equa-
tions 2-3a and 2-3b at resolution dv, writing these expressions in terms of the
net flelds, and combining resulting expressions with spacial averages, at reso-

lution dv, of equations 2-1c and 2-1d.

Before arriving at the flnal system of equations to be solved, I must deal
with two more issues. First, I would like to distinguish one other type of
current that can be accounted for in terms of electromagnetic fields. Distin-
guish jc(onducﬁmy) where 3,-=3,+jc. fc is associated with charges that can move
indefinite distances in response to an electric field distinct from its own. When
this charge movement is spacially averaged, in the frequency domain it is
expressable as a tensor proportionality to the imposed electric field. At the
spacial resolution required to consider the brain an electromagnetically homo-
geneous medium, an accurate brain model should be anisotropic in conduc-
tivity. However, at this time, I will assume all media of interest are sufficiently
modeled by assuming isotropy; this simplifies the modeling process consider-
ably since the tensor reduces to a scalar. 30 is handled by defining a parame-

ter ¢ such that it can be expressed in terms of the net field:

<QJ¢>§.AV(§) ] mat = Yg <QE>3AV(§) lmat. (2_6)

Secondly, there is a problem with choosing a uniform spacial resolution for the
equations. The discussion above indicates that the size of the region over
which averages are taken is dependent on p and J component types, ie.,

Av=Av(%; g):g<€lu, £, 0]. Since all components appear at once in one of the equa-

tions, to make all equations consistent, a volume function that is single valued
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at all X must be used. Avp.(X) = MAX Av(X;g) seems a reasonable choice since,
g

clearly, using a smaller volume would render at least one of the parameters y,
¢, and o ill defined. In the frequency domain, the transformed equations are as

follows:

Ve “e<“E>3 pv @) | mat = <Progav @) (2-7a)

<®J r>3 Aay @) +%g<¥E >§. AVppay(®) 1 mat
1 —»
Ux “u :QB>‘x'.Avm(‘x’) I mat =

+9iw<E>y AVpay®) | mat (
Ve <UB>3,Avm“('x') |mat =0 (2-7¢)
VX<E>p pv @) mat = —10<B>g ) [ mat (2-7d)

In subsequent text, the averaging notation and evaluation specifications
used at this modeling level will be dropped. In addition, all expressions will be
written in terms of the frequency domain coefficients of electromagnetic
parameters and fields unless the time domain counterpart is to be emphasized
where F(t) will be notated ‘F. As a final note, py, 31,. J.. and J, are associated
with actual charges in the sense that they model a specific behavicr of the
specified charges. Thus, these labels do not account for the actual charges
though we wish this to be so for L and, to a large extent, p, and fp. But, as will
be seen in the last section of this chapter, there are behaviors of unbound

charges of great interest not accounted for by 30.
2.2 Conversion to potential equations

It is known from vector calculus that equation 2-7c¢ implies
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‘B =Vx'A (2-8a)

and with equation 2-8a, equation 2-7d implies

- 8 -
t -
B+ RtA = ~Vtd (Z—Sb)
where 'A and '® are arbitrary vector and scalar fields respectively. Thus, in
solving for these quantities, we are insured equations 2-7c¢ and 2-7d are
satisfied. Application of equations 2-8a and 2-8b to equation 2-7b with expan-

sion leads to

1:%4

A =-1.+v i—xfoul- i—V(V- R) + (V8 +iwh) (2-9a)

where o = g+iwe. Taking the divergence of transformed equation 2-7b, using

equations 2-8, and expanding leads to

Ve OVE = Vo Jo—ico(VGe A+5Ve &) (2-9b)

Equation 2-7a converts to

Ve £(Vd +iwA) = —p, (2-9¢)

One more quantity needs specification. From Helmholtz's decomposition
theorem, we are free to specify Ve A having only specified V X A. There are two

common choices:

Ve A = —u(o +iwe)d (2-10a)

and
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VeA=0 (2-10D)

Equations 2-9 with one of equations 2-10 summarize the complete conversion

of equations 2-7 to the potential domain.

A few steps can be taken to simplify this system of equations. First, note
that equation 2-8¢ need not be dealt with further if, in the system of interest
and spacial resolution assumed, the component of average charge density
invariant with time is zZero everywhere. In terms of equations 2-7, the reason-
ing behind this point is as follows: satisfying the time derivative of equation 2-
7a (which is the divergence of equation 2-7b through charge conservation)
implies equation 2-7a is satisfled since the constant of integration is known to
be zero. The application to the system of potentiai equations is obvious.
Another step of simplification involves the choice of gauge, equations 2-10. It
would be best to use Coulomb's gauge (eq. 2-10b) since irrotational and rota-
tional components of E would be nicely separated; this would simplify assessing
the degree to which E depends on B. Unfortunately, using this gauge would
lead to equations with volume integrals involving . In contrast, the Lorentz
gauge {eq 2-10a) results in integral equations depending only on A and & values
at the interfaces between regions of constant u, &, and o; this simplifies deter-

mining values for the potentials. With this gauge, the system of equations to be

solved is
V2R = —ud, —®VuF + uv i—xVxK +iwudk (2-11a)
Ve BV = Vo Jp —iwVae A +icoud?d (2-11b)

In the next section, formulas needed to convert these equations to integral

equations will be derived by examining the equation which is representative of
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both of equations 2-11.

Ve BV, = g2+ 0B, (2-12)

2.3 Conversion to integral equations

A common trick to obtain implicit integral equations for ¢; at some point

Xige) from equation 2-12 is to apply the divergence theorem to the diver-

gence of
g ®
G(®, %) = B(e, Vo — 5 V1) (2-13)
R R
where R = —3%, and ¥ = etVaR (The sign will be specified shortly.) The volume

over which we apply the divergence theorem is taken to be all space. This

~VaPr

choice and choosing € = e allows us to merely assume ¢; bounded at

infinity in the following sense:

1 Jov_Bp1sinededp | <= (2-14)

Choosing any finite volume would require stronger assumptions about the
nature of ¢, at the boundary. Choosing the (+) sign would do the same thing
since, for equations 2-11, Va® does have a non-zero real part. Proceeding with

applying the divergence theorem to function G, equation 2-15 is obtained.

—an(B.p)ntlim [ CvepVe, —po P e vgev e [
(ﬂ gol) 6"04-76{;!)1? ﬂ #1 ﬂgal )3 1 ﬂ R Vn‘[zf ‘sz
r o~
- f E‘w[ﬂ(vza—i!VazFR—zcha-m+Vﬁ-Va+1—<cx+—l—wﬂ-‘ (2-15)
Va—=2; K R
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where the definition

1 .
(B.#1)= = 7— [,y Bvisinededy (2-16)
41 =

has been used, a §—ball about %;, V5(X;), has been excluded, and equation 2-12

has been used to substitute for W AVy,. Vs(¥;) is excluded because upon

differentiation, ﬂ,Vz é—- is evaluated incorrectly near the singularity: equation 2-

17 illustrates this point where the case X#X; corresponds to points where

differentiation performs correctly.

. lim —To [d3=0 : 2%
lim [ ¥&=lim [ Vaedsn(®® K
6-»0"v,(if) R 6—»o+ev5(if) lirq - -52— = -4 =%
§~0

(2-17)

How are the integrations over V4(¥;) in equation 2-15 done? Noting that
o®=iwud, B=%, and given that w, £, and ¢ are experimentally determined quanti-
ties, I must clarify how electromagnetic aspects of the head system are
modeled by these parameters in order to know how integrations over Vg(%;)
should be interpreted. The initial step is to assume the head system can be
partitioned into P+1 regions, Vp(artition), constant in u, £, and ¢ over the spacial
domain. -’I'his mathematical abstraction results in discontinuities and infinite
gradients at dV. Dealing with these characteristics requires further considera-
tion of the modeling process used in assigning values to i, £, and . In order to
reasonably consider u, £, and g spacially constant throughout V,, sample sizes
on which measurements are taken must be sufficiently greater than the fine
structure of the associated matter. How do we know what size is sufficient?
First, a measure of sammple size must be defined. Maybe a reasonable choice is

the modal linear dimension through the centroid of the sample. Using this
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definition, the answer is to find the minimum length, dl;, where measurements
on an arbitrary sample from V; satisfying this resolution requirement is equal
to u, &, and o observed using a sample as large as V,. Note that this means
OVp2AVnax(X):XEV,. The definition also implies 6V, geometry would be an ellip-
soid reducing to a spheroid for the case of isotropic w, &, and ¢. This leads to
the conclusion that at a given point of V},, any 6V containing the point can be
used to determine y, ¢, and o at that point except if the point is near dV,. At
points near 8V, some choices of 6V, would encompass matter from ajacent

media. If we assume the radius of curvature of 9V, is larger than the max-

61p . 5lp .
—— a surface a distance —— from 8V, can be ima-

imum radius of 6V, ie., 5 5

gined where, for points on the side away from 8V,, u, &, and ¢ can be taken to
be spacially constant. For points on the side toward 8V, it is not obvious how
M, &, and o should be assigned nor is it obvious whether there is any experimen-
tal way to check the wvalidity of a model. Because of this uncertainty,
mathematical points where more than two media intersect would be extremely
difficult to deal with; it is unclear how the gradient of u,&,0org can be specified
at such points. Consequently, equations will be developed for u, & and o
models were the set of points lying on more than two V; is the null set. In con-
trast, at interfaces between two media, we know gradients must be normally
directed. Without assumptions about how the electromagnetic parameters

vary within interfaces, using 8 for an example, we know that

Vg =0 :}.EEVP—'aﬂPVP (2-18a)
Ve#0 :)?Eaglp_)\p‘pvp (2-18b)

for some unknown positive indefinite constant Ag, where 8,B is used to denote

the part of volume B bound by its boundary, 8B, and the surface within B a
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distance A from 8B.

Continuing with calculating the left side of equation 2-15, the integrations
will be different depending on whether if€661p—>\pvp or ?cgféa,np_,‘PVpuiﬁVp or

v Co A '
%£V, where A, denotes gg/{‘lg\;lkg_p (which is equivalent to gel\g‘li\,lo])\g‘p) Note that

just as in defining Avp.g, A, must be used because integrals involve « and #
simultaneously and cannot be separated into integrals depending on only one
of these parameters. Examining equation 2-15 with equations 2-18 in mind

reveal that ¢1]2f can be expressed as a sum of ¢, within V, interfaces only;

thus, since we are interested in electromagnetic flelds at the scalp-air inter-

face, only the case, ifeaalp_APVp. need be considered. The d-ball integrations

can be done if we can assume the quantities ¢;, 8, a, and Vo are not singular at
X1, the assumption implies there exists a 6 such that the quantities are con-
stant over the § ball. Assesing the validity of the assumption requires formu-
lating it in terms of the specific quantities we are interested in: assume A & 3,,
Ve Jp. u, ¥, and V¥ are not singular at %. The assumption for all of these can be
rationalized by saying there are no infinite forces on charged particles in the
system of interest. Using this assumption, three integral types need to be cal-

culated. They are displayed below.

. -3 . 41 1 1
lim £ lim -0 e 05+ — ——] =0 _
"*"*Va(j;o ot Q& [ 6+ )4 (2-19a)
: e | 47V 25 2 2 ) 1
lim Ve = |im | 0% Jgab(ge 4 20 4 =y _ = | _ R=a+ =
(2-19b)
= —4r (2-19¢)

lim W% = lim —[e“"“’Va- f R + 4me8(ad + 1)
8~0*v,(3y) 60t [ Vi)
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Integrals involving R are zero since antiparallel vectors with the same weight-
ing are summed. Using these results and equations 2-18, equation 2-15 is
transformed to

4m(Bp1lz,— (B ¢1)w = —f%oa—i] S Zoilless (2-20)

) i=1v,-3;

where 1 is the number of non-null 8V, NaVy: {p', p€[1-+P+1];p'#p} and

Vi(ntersection) cOrresponds to dVy (JadVy : {8V, Mavy: # O, P'#py.

It is apparent from the equation that a major difficulty is the need to know
8%, when the variation of g in V; is unknownable. This might be dealt with by
converting equation 2-20 into an equation relating average values of ¢, aver-
aged in a direction normal to 8V,. In using this idea, volume integrals over V;

are converted to surface integrals; e.g., suppose vy, = 6% Ay Vo, Uaﬂp A, S
1 1 2 F2

: 0Vp MYy, #0, using f to denote some function,

vf N 5[ <L>pn (2-21a)
4

1

where Zl; =51p1—)\p1+61p2—)\p2, S;i, is parallel to the surface 8Vp,MBVp,, and

iy
<f>zn2) denotes the spacial average of f taken over a subset of points within V;
and along a line normal to 5; at X. It seems reasonable to project ¥; onto the

appropriate S;. Taking <R>i‘,n1('x’) and <§>§’n1(§) places S; half way between the

two boundaries of V;. To complete specifying the results of averaging, values
for « and B, their gradients, and their laplacians must be proposed. If the

averaging process is taken to be
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1
W’?f (2-21b)

and the gradient is assumed constant along I" {the linear approximation), using

B and 5; as an example, equations 2-23 are obtained.

Bp, + 5 _
Boyn@ = — 5 =F (2-22)
ﬂpl _ﬂpz -~ Aﬁil -~
<IB>3n@ = T By, (%) = 0, Py (2-23)
2 6pcv+ﬁpcc
<VEB> = 2-24
g 2n(R) chql 21i1 ( )

where 1  lsa unit vector normal to S;, directed from V; to Vi, le denotes the
local radius of curvature of 5;, o, , is the conductivity associated with the local
concave side of 5;, and oy is that for the local convex side. The expression for

the laplacian was derived by assuming, locally, <Vﬁ>i’,ni could be described as a
1
vector of constant magnitude varying in orientation as if on a sphere.

How shall A, be specified? Unfortunately, this parameter is not canceled out
of the equations because of squared gradient magnitudes in []Jo-;5 and because
the location of S; depends on it. So, to settle the issue, the previously dis-
cussed process to define the functions u, &, and ¢ must be examined. Instead
of choosing one 6§V, for u, £, and o assignments at some point in Vj, the process
could be taken to assign average values where the average is derived from
measurements on all possible 6V, containing the point. At an interface
Vy' M8V, this method seems very reasonable if 6ly = 8ly; but, if dly # dly.

there could be discontinuities at VM8V, In spite of this difficulty, we might
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assume the method is reasonable at least for points just inside the boundaries
of 651 Vo U66] o its validity getting worse for points closer to 8V,'MdVy. From
this view, it follows that non-zero gradients occur just inside the boundaries of

Balp. vaﬂpr" and thus, A, can be taken to be zero.

2.4 Summary of the model

The mathematical model developed thus far is summarized by equations 2-
25. These equations are the result of applying the integral equation formula-

tion just developed to equations 2-11.

(Aigf (1,4).) éslfif {(pAo +0A,u,)<b—+ %R —XVXA — A[]z.,s}

= f RS (2-25a)
v.o-z, B

4m(9 |z, — (0. 9)=) - }I:lsfi{g{w/laFA &[], 15} = - f %‘ ved. (2-25b)
=15
[
_=l1 o |AGAL |, 2 e iw [ 1
(Je-1s = o'lz \/— T E:{oA;Lﬁu,Ao)] — [\/;)_E_E +R

P— \/_I—E’_—AU(MAU +TAw) g
{1 for eq. 2-25a

(BAT + FAw)?

Avfie R

T, 1
lWlEg + 4

~F for eq. 2-25b

fi;=f;,_  i* interface from side in to out

n
At = fout —fin

It is important to clarify the transition between the model initially suggested
for u, £, and o and the model for these functions required by equations 2-25.

This is done by considering equations 2-25 for w=0:
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-+ -+ 1 of f; e -
an(lg,~(1D)+Y) [ (Hho+atu)e rl_i,—’— %—L-ELXVXA = f ) L], (2-262)
=Ry

i=1g, - % R
fie R Ve d
4n(@8]y ~(0.8)) + Y, [ Aol = - r (2-26b)
i=15-3, R vo-z, F

It will be shown that certain requirements on the functions u, & and o are
needed in order that a solution to homogeneous differential equations 2-11, at
=0, is also a solution to homogeneous equations 2-26. Solutions must have
this property since solutions to integral equations constructed from Green's
functions must be solutions to the parent boundary value problem [32]. (This
does not seem an obvious property of the transformation used to obtain equa-
tions 2-25. Replacing Ve fV¢, in equation 2-15 with equation 2-12 constrains
solutions of equation 2-15 to be solutions of equation 2-12; it does not seem
the differential equation is similarly constrained. I would also like to note that
though boundary conditions have not been assumed, they are impliéitly
specified in the formulations presented here by specifying the electromagnetic

parameters and assuming & and & bounded at infinity. )

Continuing, note that we can add on a vector fleld, Kﬁrb(mary), to A and a

scalar field, ®,p, to ¢ without changing solutions found for E and B so long as

UxAarp = 0 (2-27a)
Vo Koty = —0®ar, (2-27b)
iwhary = —VOam (2-27¢)

For w=0, equation 2-27c requires that &, be a spacially independent constant.

We seek vector potential solutions of the form
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A = CAR :CA = CAr) (2-28)

This form satisfies equation 2-27a. Nontrivial solutions of this form exist for
homogeneous equations 2-26 for the following example. Using four regions of
constant u, £, and o, where the three inner regions have spherical geometry,

and acknowledging that equation 2-28 gives

(1. Aarb)= = 0, (2-29)
I obtain
Ul+02 _ ol ® =0
m(—5 —04)8arp + | (02—01)27 + (03—02)4T +(04—03) 47| Parp
for #€5;; : N ~ amo o (2-30a)
4m<C >i_n1=1n§f+¢arbmal TRclnif =0
' +
{ 02203 —0)Parp t+ [(0’3—0'2)2774-(0'4-03)411']@”1, =0
%€ S : (2-30b)
forfa& e Ao Al 48 pe02(RE,RE) + RS, 4
47<C >§.n1=2n§f+ arb REE 4’3 1.121
’ O's+0'4 _
4rr{ 5 —04)®arp + (04—03)RT 0, = 0
' : 2-30c
or&eSimif T oy(RYRE)  waoa(RE RV HITIRE 4r o)
4n<C >i’-ni=sn"}f+q)afb R§3 3 N,

which verify that, indeed, a non-trivial solution to homogeneous equations 2-26

exists,

To obtain solutions from the differential equations, the divergence theorem
can be applied to equation 2-27b along with using the general forms for Kﬂrb
and ®,.1, specified above. It turns out that if 61,=0%p is assumed, this process

gives solutions for C* that are exactly those found for <CA>§.n1 above. Thus, it
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is observed that, with respect to the forms asssumed for ;&aﬂ, and ®,4, contrac-
tions of V; to 5; have resulted in an integral equation model that is equivalent
to the differential model with the functions u, &, and o satisfying 61,=0vp.
Furthermore, when we take 61,#20¥p and use a linear model for x and o within

Vi, calculating averages <3gn on the resulting solutions does not give answers

equivalent to the integral equation seclutions. In conclusion, given the neces-
sary equivalence of integral and differential formulations, it can be inferred
that contraction of V; to S; forces the discontinuous model for u, & and o.
However, for w#0, it is clear that continuous models for u, £, and o need to be
considered in order to estimate gradients of these quantities. In this context, I
would not say that contraction to S; results in a purely discontinuous model
for u, &, and ¢, whereupon gradients would have singularities, but the deriva-
tions above lead to a discontinuous model for u, & and ¢ having nonsingular
derivatives. Though these conclusions are drawn from analyzing a special case,
I suspect this is the correct way to perceive equations 2-25. Figures 2-1 and 2-
2 summarize the transformation from the initial model for u, &, and o to that

assumed to underlie equations 2-25.
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the union ofy
“. these two
volumes

— boarder
intersection X
volumes Vi Voo

- e ' i ' 2 .
Are vy Mavy p'#p Figure 2-1 Using a spheroidal model for example,

this is a slice of it showing the
model before applying equation 2-21a
to equation 2-20.
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Figure 2-2

After contraction to the S;, and
using equation 2-21b to compute
quantities of equations 2-22 to
2-24, this discontinuous model
with finite gradients is obtained.
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3. Modeling J,

In this section, modeling I is completed. First I will explore the physical
processes that may contribute to 3,. From there, [ identify the most important
currents produced by the processes and then go on to speculate how these
currents might be distributed. A short discussion on how neural activity might
actualize such distributions follows after which mathematical models are
presented. These models will lead to a way of dealing with 3, integrals. Previ-

ous work is then discussed in the context of formulations for the integrals.
3.1 Physical processes associated with 3,

In order to generate reasonable models, it is of primary importance to
clarify what kind of physical processes are represented by fr. The problem is
to figure out which components of :fr have been left unspecified. We would like
to have accounted for charge movements within atomic systems (atoms con-
sidered at rest), partially accounted for displacements of charged sites in
molecular systems (molecular structures considered at rest), and partially
accounted for other types of ionic movement {movement in the reference
frame of the head system) through using the functions u, £, and o respectively.
Recalling{ that the reason for using u, £, and o was to account for charges and
currents that would be difficult to account for explicitly, contributions to 3,
resulting from inaccuracies in &, £, and ¢ modeling will be dismissed from

further consideration.

I will acknowledge three types of physical processes in the brain that may
give rise to ionic currents unaccounted for by £ and o. Currents generated by
these processes will be given the names gating current, ion pump current, and
electrodiffusive ion currents. Gating currents are associated with the opening

and closing of ion channels in neuro-membrane. They are thought to consist
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of spiraling H* movement resulting from acid-base H* exchanges ascending
protein chains in a-helix conformation [29]. Consequent changes in protein
conformations could effect movements of ionic residues which would result in
a net charge flux. Ion pump currents are associated with chemical reactions
transporting ions through cell membranes against concentration gradients.
For squid axons and snail neurons, a net charge movement results: roughly
three Na* are extruded per two K taken in [70]. Electrodiffusive currents are
associated with ion permeability changes allowing electrodiffusion of select ion
species through neural membranes. This ion movement results in concentra-
tion gradients inside neurons and in intercellular clefts Differential membrane
permeability for oppositely charged ionic species indicates the possibility of

net current flow.

1t is clear that none of these three current types can be associated with pro-
ducing a dipolar electric field proportional to B and, thus, could not be
modeled by £. For o, note that the dependence of these currents on local elec-
tric fields is non-linear. All are driven by electrical forces nontrivially coupled
to other determining factors: for gating and ion pump currents it is chemical
stability (highly specific local electric field dependence and quantum mechani-
cal stability), for electrodiffusive currents it is diffusion (statistical movement
of mobil particles). Thus, these currents cannot be totally accounted for by

-

oK.

One final note-- if any of the three current types have components describ-
able by a scalar proportionality to the local electric or magnetic field, it could
still be true that these components are not accounted for by u, g, or 0. This
would be true if, upon averaging over the region containing the currents with
resolution Avga.y, it is found that there are net currents described by a propor-

tionality constant significantly different from u, &, or o. In this sense, some
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current sources can be viewed as large inaccuracies of the y, ¢, and 0 model in
local regions containing non-zero current flow. Contributions to 3r resulting
from inaccuracies of the u, &, and o model were mentioned previously in this
section. At that point of my discussion I was referring to global inaccuracies
whereas in the present context, I am referring to inaccuracies over a region of

space much smaller than the size of the medium of interest.
3.2 Identifying the important processes

Having distinguished the processes assumed to account for most of ],
assessing the importance of a particular process or component of the associ-
ated current involves recognizing that, for application to evoked potential
research, J represents two types of averages. One of these stems from the
need for signal averaging to obtain electromagnetic scalp field data that have
the characteristic dipolar structure. Thus, i represents an average over
sources occurring during each experimental trial. This means we are only
interested in those currents that would survive this averaging process. In each
trial, presumably a particular subset of neural activity is brought into being.
It follows that gating and electrodiffusive currents are of interest, both being
completely coupled to neural activity. However, ionic pump currents are
loosely coupled to neural activity so their contribution to Iis expected to be
partially attenuated by signal averaging. The other average has been
expressed in equations 2-7; Jisa spacial average. For my purposes, an average
over regions at least large enough to contain a neuron and many surrounding
glial cells is required. Thus, gating currents can be assumed to make no net
contribution if, perceiving a neuron as a network of tubes, ionic channels are
assumed to be distributed symetrically about tube axes. In case there are gat-
ing currents associated with chemically mediated channels at synapses, this

also means active synapses are assumed to have an axially symetric
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distribution about a neuron. The reasoning used to eliminate gating currents
from further consideration is another reason to assume ion pump currents
make no net contribution since neuron and glial cell membranes are geometri-
cally closed surfaces with uniform pump distributions [70, 2]. It is concluded

that electrodiffusive currents are the only significant contributors to 3,.
3.2.1 On electrodiffusive currents

Three types are distinguished: neural membrane currents (purely
radial), intraneural (mainly axial), and extraneural currents. Arguments simi-
lar to those for gating currents eliminate the first of these from further con-
sideration. For the other two, I will first discuss the possibility of axial contri-

butions then will consider the possibility of radial contributions.

3.2.1.1 Arial coniribulions In considering axial contributions, note that
extraneural and intraneural electrodiffusive currents derive from membrane
electrodiffusive current; thus, if currents are confined to neuron-glial clefts,
their contributions to 3, cancel upon averaging assuming diffusion coefficients
are the same for extra and intraneural media. In addition, under certain cir-
cumstances, axial components of these two currents may not exist even
though membrane currents do. This would happen when the propagation of an
action potential quickly elirninates axial concentration gradients over the
length of a neuron or when the space-time distribution of synaptic activity
effects the same. However, there are reasons to believe the two currents do
make a net axial current contribution. Of extraneural K* currents, 75% flows
through glial cells [44, 45, 46, 47] and other ions, which are mainly confined to
extracellular spaces [88, 89, B0], can flow through glial-glial clefts intersecting
neuron-glial clefts. This means extraneural currents could have a substantial

radial component from which it follows that intraneural axial flows would only
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be partially canceled. Summarizing, because neurons are closed volumns in
comparison to neuron-glial clefts, it seems net axial contributions could exist
along any of the constituent tubes of a neuron except axons where action
potential propagation mitigates against the build up of axial concentration
gradients. It seems reasonable to say that an active neuron associated with a
source contributes a component of current to 3, that is oriented in the direc-
tion of an average over the directions of its constituent tubes excluding action

potential producing axons.

3.2.1.2 FRadial contributions For the radial component of electrodiffusive
currents, the existence of a net contribution is dependent on ion concentra-
tion distributions at a scale larger than the single neuron system analysed
above. For a single neuron system with a homogeneous extraneural ion con-
centration environment, the radial component would be expected to have axial
symetry. Thus, if significant radial currents occurred only within grain size
AVex, o net contribution to 3, would result. But with other neurons contri-
buting to the extraneural ion distribution along with the existence of anisotro-
pic ion mobility, radial components could be biased such that they have a net

contribution to 3,. despite averaging.
3.3 Current distributions for dipolar fields

Now that the important currents have been identified, we need to know
what distributions of these currents are responsible for observed dipole-like
electromagnetic fields at the scalp. Examining intracranial measurements of
electric potentials supports hypothesizing standard charge and current dipole
models. Potential measurements within the superior olivary nucleus of cats
have been made during the application of auditory stimuli [43]. This data is

reproduced in figure 3-1.
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mm _l_V__ microvolts
3.5 100 26
4.4 20 137
4.5 20 87

46 /__\j/\/\ 20 66
4.7 20 too
4.8 20 3
4.9

20 154
5.0
- 20 180

20 87
6.0 *“\/k_,_____

20 40
70 h/\______,\_

50 18

10 msec

FiG. 3= ¥ Click-evoked potentiais recorded from various points in the superior olivary
complex of the cat
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The variation of potentials with electrode depth certainly have the form
expected of a dipole source. The amplitude of extrema as a function of dis-
tance for the deepest four points is compared with an inverse square law in

table 3-1, giving further support to the dipole model.

TABLE 3-1
depth (mm) peak height r%— prediction
5 180 177
5.5 87 78
6 L0 43
7 18 19
% #

Several intracranial studies where current source density analysis [81] has
been applied to potential measurements in visual cortex of cats [77] and mon-
keys [79, 109] also support the dipole model. Current source density analysis
is the name given to estimating Ve 3r from numerically estimating V*®: for w=0,
taking the divergence of equation 2-7b, combining this with equation 2-8b, and

attending to regions where o is a locally spacially independent quantity,

oVed = Ve J, (3-1)
Using a smoothed gate function for a crude model of 3,..

i (Lﬂ )? , (3-2)

j= -Lz2 {970 4= L/

S
]

&
R i Amp
we get Vel =~ (3-3)
Jj= -L/2 5 Jj= L/2



41

and this form is observed in the literature.

What about the size of the source? Since equation 3-2 is the simplest form
for 3, that will account for the data, we will adopt it as a model. With this
model, current source density analysis data cited above suggest that L is on
the order of 0.5mm, five times the length of a typical cortical pyramidal cell. It
is important to note that these data were generated by estimating V*$ using
one-dimensional data. Thus, with respect to the model expressed by equation

3-8, the estimate of L is a minimum.
3.3.1 Actualization of dipoles

From the size estimates above, it is obvious that the dipole sources must
result from small populations of neurons. 1 can imagine two mechanisms that
would give rise to 3, of the general form expressed by equation 3-2. One possi-
bility follows directly from ideas of the section on identifying important
currents. It was mentioned that each active neuron could make a net contri-
bution to 3, in a direction parallel to the neuron axis. Thus, the dipole source
can be considered to be the net contribution of a population of similarly
oriented neurons. Many people have postulated this model [92, 93, 115]. The
other possibility I will propose does not depend so much on the anatomy of the
relevant neuro-population and can result in a source orthogonol to neuro-axes.
Consider a region of high neuro-activity a distance L from a region of low
activity, both regions flanked by moderate activity. This distribution of neuro-
activity would result in an asymmetric electrodiffusion of extracellular Na*
toward the very active region, mainly coming from the region of low activity
(assuming there is a dense matrix of randomly oriented extracellular clefts
such that significant flows orthogonol to neuron axes can exist). Certainly,

this mechanism can also account for dipole sources that are parallel to neuro-
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axes: a column of neurons in series where, at one end of the column, neurons
are excited that result in inhibition of neurons further down in the series
could result in the required topology of neurcactivity. This mechanism is prob-
ably more likely to result in observable sources than that which would result in

dipoles orthogonol to neuro-axes since ion conductivities along neuro-axes are

much higher [81].
3.4 The mathematical model

The remaining task is to come up with mathematical models for f,. The
discussion in the previous sections support approximating the source with a

tube of current density:

. itive indefinite je[-1L/2,1/2]
T ) - posi j
1= ri{inear) d(ensnty)(.] ) ,] . Jrld= tE[tg.tf]

r-—

Acr(osssection) 0 elsewhere

(3-4)

where the coordinate system is defined in figure 3-2 below.

!’ Jj= L/2

figure 3-2



There are problems with specifying the spacial distribution of 3, in more detail
and specifying how 3,. changes in time. We see that because the sources have a
diffusional component, the spacial distribution of a source is tightly coupled to
its time course. This time course depends on membrane currents. Modeling
these currents is a very involved process [B4, 85, 86]. It seems that dealing
with this complexity would be fruitless for our purposes since the space-time
distribution of membrane current is tightly coupled to the space-time distribu-
tion of local neural activity; certainly, this dependence suggests a wide range of
time characteristics for membrane current. This means that in the fourier
domain, we are obliged to study all possible phases at several frequencies. In
conclusion, the time dependence of 3,. is dealt with by writing each fourier

coeflficient as

u“]!rz lJrltii'w)l laFT? (3__5)

and then examining seolutions for various choices of &pr at each .

The spacial dependence of 3, can be dealt with by using the Taylor expansion

e-(Re +ilm)R
R

/2
terms of- ‘{ |Jgal. The required ability to integrate 3, and Vs 3, with various
2

for in terms of j of figure 3-2 and then expressing integrations in

powers of j restricts us to a zeroth order expansion for integrating 3,. and a
first order expansion for integrating Ve 3,. Before writing down integrations of
the source integrals of equations 2-25, preliminary results requiring special
details are presented for the purpose of clarifying key underlying assertions.
Two factors underlie the integrations involving Ve J.: first, there is no net

charge in the head system so for any source,



44

S wtd.=0 wt (3-6)
region
containing

source

When this is combined with the orthogonality of fourier basis functions, e, we

have

% o,=0 Vo (3-7)
region

containing
source

Second, the source model of equation 3-2 asserts

Yelwz-12=0 Wt (3-8)

at the tube ends. Again, with the orthogonality of €!“* we obtain

“Sle-s2=0 Vo (3-9)
Using the above relations,
L/2 /2
JZJV‘ (nali) = - L/;2|Jr1df (3-10)
e e
JJ'ZV‘ (19nalj) = R Z;ajiJrld (3-11)
—_ 2 ]

This last equation is needed in order to obtain estimates of the uncertainty
arising from neglecting terms of the Taylor series. Acknowledging that

| Jra | =0, other expressions for this purpose are

e . L2
JJ'ZV' (1dnali) SLL//- [Jria | (3-12)
X2 ts2

and
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|L“‘

/2 L2
_L//-zj”rldf = ~£21Jrld; (3-13)

[AY]

since the integrals on the left are maximal if |J;q| is zero over half the tube.
These inequalities, along with Lagrange's form for the remainder of Taylor
series, are used to specify uncertainties. Magnitudes of first and éecond order
remainders are maximized at j= L/2. In summary, equations 3-14 are

obtained. Considering integral equations for A and $ and the formulas above,

/2
the term L/; |Jnal is observed to be simply a scaling factor.
]

/2 R L2 -
e 4 ~_ - emje ™ L e (RR-L), 1
e, J - ] { -

-Jz Rj [dnali =] {zlJrldl € [ Rj tz ) 2 \\/_+77) (3-14a)

Aj':l'\ -nRy, 1
Lz Ry o |we ey ‘ﬁj—'e Rj(-RTH?)
Jz R, Ve(|dnalj) =] {2“1'1:1‘ € 3(2R,—L)?
B B RN (ed bt B AN

Lo [T )[ v 1]

2 V* (RR-L)? ,
M VaR
A )
Vv~ = VR#+(L/2)*-RL (3-14b)

n= \/Q—E{f-mﬁ\/ Fuf+at | 1J§m+\/§2w2+62]
, 2 2 J

To close this section, I would like to compare equations 3-14 with sources

other workers have used. Previous investigators have used point charge
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dipoles in studies of electric fields alone [25, 38, 42, 51] and point current
dipoles in studies of both magnetic fields alone [30, 52, 53, 113] and combined
fields [R1, 31, 35, 37, 98]. With ip(oint) Symbolizing current density for these

point sources, point charge dipoles give

Ve J o
{ L= %FL (3-15)

Point current dipoles give

) (3-16a)
I xR,
N —A L (3-16b)
R}
oLy
YRR (3-16c)

These are to be compared with the magnitudes of the corresponding =0

fourier coefficients: ignoring uncertainties,

Ve jrlu=0 _ ‘R{'II le,
,'4‘ Rj - Rf —L//-zlJrldi (3-17)

‘Tr‘u=0 1L/2
= = Js (3~-18
I =52 = 5 ) )

Thus, we see that i is defined such that

e
_leJrldl = ipL (3-19)
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4. Simplifying the model

I choose to examine the simplest head model: space is divided into a spheri-
cal region, wherein w, &, and ¢ take on values appropriate for gray matter,
white matter, cerebral spinal fluid, bone, or scalp, and the region external to
the sphere is air. This reduces equations 2-25 by setting I=1 and making Si=; a
sphere. Simplifying the equations further involves defining criteria with which
the importance of each term of the equations can be assessed and then

neglecting terms judged unimpeortant.
4.1 Simplification of multiplicative constants

Spacially independent constants that can be move outside integrals can be
simplified using criteria based on uncertainties ™! in calculated solutions.

Three sources of uncertainty are distinguished:
« Uncertainties in parameters u, £, ¢, Zl, and R,.

= Uncertainties resulting from numerical methods used to scolve the equa-

tions.

« Uncertainties associated with source modeling.
The first of these is the type of uncertainty used to justify neglecting terms in

space-independent factors multiplying integrals of equations 2-25. Considering

A = Amain + 04 (4~1a)

Amein = Amain+Amain? (4-1b)

and the form

4-1 Of course this is not absolute uncertainty but is uncertainty with respect to the accuracy of
the model defined by equations 2-25 with [=1 and S,=; a sphere. In this section, this is to be the
view of uncertainty.
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Fisiylg, = ZAifKi(i X)Fi(X) (4-2)

obviously, the contribution to Fi [i’z resulting from &, can be neglected if

|64l < Amain2 (4-3)

Using this reasconing and I=1 in equations 2-25,

[ A | < T Bino + Oputo)

— ol +rv N —_— Lo l _ -
HAG + Dl ~ Ao | B | <TeEims +Eours) (4-42)
1 2\~ 2
A5 o R RTIAK < Oz +Ore)
_@&4. E“(FAM*”,U:AE) ~ SHAT : . (4-4b)
Il R, K Fe = —
, (2 %l +1)8 | b | <fi{Binz +Eoutr)
— =2,.2
Viops~\/ 912*5(1%) L + 82; <O ino +0outo (4-4c)
1 FR..2
\/1 — ] -\/2:)[_[5 (l""'b) C e+ 82?)_ L Oin? 0t (4-“4(:1)
TWHT ¢
2.2
\/L;—P‘E-N \/22—5 (1+'L) CEw+ 82; < Oine +0gy0 (4—'4—6)
%z _;lﬁ)—c:r_( %‘—’--&-i) L BR0R < 20(0ipmr +Tguen) (4-4f)
on T
— Ein
FoRa+
Aﬁ :,uo obuvious criteria (4-4g)
O N =0,
ASN_Em‘
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leaving

VoZy
4"[“2“‘1’ #,— (o ‘M} N [ b 8T Ao~ [ 2Vl (45D)
S_}'.f V. ﬂif
where, after using the criterion
Fa)2
&?L‘* REw < é—("m? + Ogutr) (4-6)
7] .

in addition to those above,

_ 1 1 . 1
Fx=swd; —Vougopm( RT+ a——) +1[am51 - Vougop{ =+ Zﬁ———)] (4-5¢)

R,
Oin V&UoOin , 1 1

Fp = gppe0d; — = -0y
$ = EinWo; S \Rc 31 ) ~0Oin

.| Gi OinV&UeTiy , 1 1
_ in + 0%in, 1 _
z™ z ‘R, aum >} (4-5)
Wilo
0= ——
T

Note that equations 4-4 are not applied to all terms of equations 2-25 in which
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the left hand sides of equations 4-4 are invelved but are applied only when the
reasoning for neglect summarized by equations 4-1 to 4-3 is applicable. Table
4-1 displays the data on which criteria are evaluated. Graph 4-1 displays
curves used to estimated some values of table 4-1. Calculations of the most

stringent criteria for various frequencies are shown in table 4-2.
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TABLE 4-§I%lectromagnetic parameter data for biological tissues

media tw (farad/m/sec) Hz o(Qm)™! Hz 14(Qsec/m)
aiﬁz) 5.57(=11)xHz 0 -
3 417x10

brain 2.5(-3) white } 10§J

1.1(=3) gray 1R-.22 0108 Mo (4)

;ggzgg +30% 11%2 > 174507 210 (%1079

: : 1.53+1.56 |
CSF 1.6{—4 3 "
(4 107 oo sse1.2% 0-10°

scalp 7.8(-3) +297® ibﬂ‘ 34-.43+£30% - 0-108 "
skull 5.6(-5) 10°  1,3(-2) £21% 10° "

1.3(=3) | +50% 10° 1.7(=2) +19% 108

4,8(-3) 108 .

1 [49, 66, 100, 101, 104, 105]

air values assumed approximately those for a vacuum.

10% w2 values extrapolated from values at higher frequencies, see graph 4-1.
the only value available for media of the head, human blood.

using blood data for an estimate.

using liver values for and estimate. Liver has higher permittivities
than all other tissues for which there is data. Using this value would
be a conservative estimate of. sw neglegibility.

[oAR S R —RUN V]
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Graph 4-1
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dog brain [105]

dog liver [100, 101, 105]

rabbit blood [104]

dog muscle [100, 101, 105]

dog fatty tissue [100, 101, 104]
dog/cow/pig plasma [104]

rat bone [66]
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TABLE 4-2 Additional neglect criteria

criterion numerical estimate
[ at highest frequency
. i’;’{l_g'.suj. _ where criterion is
c __[Yin?TOout? fulfilled
((Zﬁls{lm l)!AMI EintEout <#[8in?+sout?
2
loy, )
) <“°l8in 7{(25%) 1.3(-14) < 1.2(~6)
Re
(-————rgmsmrn 1)2]8u] < po (Ro= .12m, 6lgy,= +0001m)
(~ 22
2_ + tw < 0. 1 4 3017("3) < 3025(-3) (Skull)
Bt A <o 3 {(25%) 029 < .042 (brain)

10°
Bx10*
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4.2 Neglecting some space-dependent terms

Justifying further simplification is difficult. Remaining terms that might be
assumed to result in negligible contributions to solutions are space-dependent,
integrands are indefinite with respect to sign, and assessment of significance
requires calculating integrals of unknown functions. The first two problems
can be circumvented by using the triangle inequality. For the second problem,
as far as I can see, we must resort to estimating integrals using w=0 solutions

for A and @; this means negligibility cannot be shown but can only be sup-
ported. This restriction is somewhat lifted in dealing with the term %—XVXK. 1

will attend to this term first.

Ignoring the term -rRl—xfo& can be supported by comparing it with the smal-

lest term involving g—@ Measurements of electromagnetic fields at the scalp
suggest
- Al .=
| 7 Rl = 155 Bllas < 12 aversge() o (4-7)

where p is assumed independent of time and (ew) |, is, by definition, indepen-

dent of time. With |B.,] on the order of 10 '3tesla at the scalp surface [113],

I -ﬁ%-ﬁﬂm is on the order of 107 8Amp/m. In scalp potential studies, where
el

MIN [ Be d’*® is measured, ®,rg is on the order of 107%olts under the

s P17Pz
7

assumption that the contribution of A to E is not dominant [386, 39]. In order

4-2 Scalp potential experiments measure, between points Py and po, MIN f B & which is
7 py?pe

7
proportional to the minimum energy necessary to move a charge between py 8nd py where 7 is
a path in the medium (E may be non-conservative). The principle of least action [41] is an
explanation for measuring devices determining this and is the basis for specifying minimization
over 7.
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to make the comparison of equation 4-7, a minimum value for (aw)tuo must be
found. The minimum is at w,=0 but this minimum does not do us any good.
Table 4-4, presented later in this section, shows that gw is a monotonic increas-
ing function of w for the frequencies of interest here (certainly < 108Hz); given
this, I choose to examine frequencies at or above 10Hz since this is the lowest
frequency for which I have found data for biological media. For frog muscle,
(2w) ] 10mz~1.4x1073Amp/ Voli—meter and it can be seen that the two terms of equa-
tion 4-7 differ by nine orders of magnitude. Then, from Parseval's relation, for,
at worst, most frequencies within the bandwidth observed in the experiments,

we can assert

uﬁég—vw&um & [°® ] average(E®) |u, o (4-8)

Finally, to suppeort ignoring the term involving VXA, we must assume that

f%‘b > 107 ® | sverage (4=9)

for most #. This is certainly true for w=0 solutions.

To proceed with simplification from this point, neglecting a term must be

based on the following reasoning: considering equation 4-2,

K& ) =K (X %) +6g (%, %) (4-10)
and
Ki 5{.5{ Fi %) = K'Fj:f: KjFi -
Numericel ( f) ( ) A&(;l ' [ (4 1D

terms involving the 61‘1 can be neglected if
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| !
1;Ajf5KLFiISZiHAiI[KiFi (4-12)

where the f, represent some of the uncertainties introduced by numerical
methods and uncertainties introduced by source modeling. Another way to

justify neglecting terms involving the &y, is to show that

<< MIN

l};Ai S ok F;

}Fizio Iz,}: }AifKimmFil} (4-13)

for most X. Since we can only evaluate these criteria for w=0 solutions, it

seerns that under these conditions, the criteria are untenable. To see this,
suppose we wish to test neglecting the term f@, l.e. Kpain=0, dg=1 for this

integral. The observation that f@[u,_o:() while f!@i(.,:o‘ is large compared to

other integrations in equation 2-25b indicates that small perturbations from
w=0 selutions could result in f ® |0 becoming a significant factor in the equa-
tions. This means evaluating criterion 4-12 or 4-13 based on w=0 solutions
could justify neglecting f $| o erroneously. Given this analysis of the situa-

tion, it would be more convincing to neglect terms under the criterion

PN idmmflnlsgmiif?&n (4-14)

where the triangle inequality has been applied to equation 4-12. It will be
cbserved that under this criterion, given the accuracy of the best numerical
integrators in integrating w=0 solutions and the interval of frequencies I wish

to study, not much simplification can be achieved. So, in order to examine the

1
significance of terms in the equations, the absolute integrations f EKiFii will be

examined. Such an examination does not show which terms are most impor-
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tant in determining Fi:jolff since some integrals could be identically O for all %;,

e.g,f@ for w=0 solutions mentioned above and f& for w=0 solutions with cen-
tric source, but we will use the measure as an indicator. To give a bit of sup-
port for this, I refer back to the example used in support of the claim that cri-

teria expressed by equations 4-12 and 4-13 were untenable. let us suppose the
converse of the example, i.e,suppose f!@ I“’:OI was insignificant with respect to
other terms of the equations while f $ | ,-0=0; obviously, small perturbations

from w=0 solutions would still result in an insignificant contribution to the

equalions.

To simplify equations using the measure just discussed, we must choose a
way of breaking up the equations into a series of sums. Equations 4-18 sum-
marize the current state of the equations and serve to display how I have sub-

divided the terms; with writing

T=1~€re +i€im (4-15)

I hope to have separated the minor from the major terms.
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/%‘M ® re(Emweim—(1+ere)Om) — —é:em (Uineim‘*'(l‘*'ere)sinw)]
+N/ligom| =t e — E A""(1+ +em)+A (1-ere—€im)
@HoTin R, 2ol ||| Are Cretej re m

-+

[
) +R4fgﬁ~ {A (0inEim=(1+ere)Eime) = {ii:! (2inteim+(1+ere)Oim)

S -2,

1 [ (1+epe)COSOPT+€imSindpr
ﬁ?l (1+€pe)SINOPT—€4 M COSOPT
I//-Urldl ——?'-E-—L-)—e—w [cos ] 1 R [—sin \/_)]I
4 2 lsin(V) ('\/"—" €)+| cos ¢ m
(4-16a)
f _| fi(epr-Imx)
f;(x) =[ lfz(GF.rr_I_lI):nx)

AN ==
Res\rw—ﬁ{ g+ zam+a Im=Voi Fw+ Zco+o

V™= VR (L/R)*-RL
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Simplification of these equations will be carried out through couiaung avsu
lute integrations averaged over ¥%; and magnitudes of terms not involving

integration also averaged over %;. These estimates will be used in

z average for average for
minor terms 2 major term 4 =2
= : 0 -
MAX (average) MAX (average) > 1 (4-17)
allterms allterms

l.e, the sum of the estimates for terms judged minor must be two orders of
magnitude smaller than the largest estimate where all estimates for terms

judged major are individually larger than 1% of the maximurm.

Here are some details | need in order to carry out calculations. Anticipating
that terms involving e and e;, will be neglectable, I choose to take an upper

limit of these quantities using

f|f1f2|slf1!maxf|f2l (4-18)

For the frequencies of interest, e, and e, are increasing functions of R,, o, ¢,
and . 1 will take Re,=0-12m, Omax=1.56(Qm)™ (CSF), and ¢ appropriate for

various w. It turns out that, for w=0 solutions,

-

bre: Bim =A’rezgim=3re:‘]im= cos@pr : Sinépr (4-19)
so that with a neglect scheme based on these solutions, under the case épp= %—

several terms could be judged ignorable that could not be so judged if

epr=0 or —g— Given that the full range of epy is [0,27), a consideration of equa-

tions 4-16 shows that examining the case @pr=0 is sufficient to reveal the terms

/e
that must be retained. The choice of value for [ |Jpq) is unimportant since
e

this simply sets a multiplicative constant embedded in both A and ®. The value
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5 Amp-m is used. For 8lg.e the value 107*m is used so the values reported for

absolute integrations associated with ftI) and fK can be smaller by an order of
magnitude since  E£1€[10™*m,1073m] for the head system. Table 4-3 shows cal-
culations for radial sources (tf along the z axis) at eccentricity 0.8. For lower
eccentricities and tangentially oriented sources (T normal to z axis) the
numbers are of the same order except for the integration errors. These errors

are approximately two orders of magnitude lower for eccentricities 0.4 and 0.0.



TABLE 4-3

term
involving:

e
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Average magnitudes of terms of equations 1}-16
using absoclute integrations, gpr=0 , radial

Source at eccentricity 0.8, Tl =.0001m ,
and W2 .
{ |Jra] =DAmpm
12
maghitude estimate integration error

or source uncertainty

{coordinates reai)
x1.9(~5

y1.9(~5 8in@Cim —Uin ~Oinere 7.5(—
23'8 54 10inBim+EipW HE e, 7.5(—8

' max 4.3(~7

i}naginary
g9 2{—7; —e—1 91(<11
9.2(~7 €im ~€re { ) E ;}
1+ej,+ 9.3(-11 Oz

2.1(-8 im T €re max ) V

Oin€im—Einw(1+ere)

EnWeim+Tin(1 +epe)
X
8 1:ere 8 }H 8 } 6
5.2(~2 im 7= Hz=10
=2) max R1(=7) 2.6(~7)
50 —gj [ +ere
3.2{~5)! €im
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TABLE 4-3 continued for equation 4-16b.

term
involving:

310

.33

200

f%g 1.2(-5)

> ?‘AJ
Ve, RE 217
L JeRy 0035
iR
195
®

magnitude estimate

6.0(—2)

integration error
or source uncertainty

1+ere

€im 2.0

mex

1+ere Tz

&im |nax

Einw(l+ere)+eim 032 H
a. . Z
'an"(l t+ere) ~EinWeim Hz
max
1+ere=eim| o 16vHzZ
1+e,e+eim Hz
max
(1+em)8m&)+0'meim
1.8(—9)Hz

Enweim—(1+ere)Oy | 12 (-9)
1+ere W

€im

max
2.9 Hz=o 3.8 \ Hz=10°

l+ere—€im VvHz

1+ereteim mex

Oin
EinWw

max
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Suppose we wish to neglect all terms involving e and ey,

reported integration errors, source term uncertainties, and ep and g, shown
in table 4-4, this cannot be justified based on equation 4-14 unless frequencies
fall below approximately 100Hz. Using the criteria expressed by equation 4-17,
larger neglect intervals can be obtained. Table 4-5 lists several terms and the

frequency intervals within which they can be neglected. Obviously, some of

these intervals are absurd, specifically the unbounded ones.

TABLE 4-4 Magimum estimates for quantities shown
using g, =156(0m)™!

Hz

1
5
10
50
100
500
108
10*

T 10°
Bx10*%

€re

4.2(-4)
1.3(-3)
209(-3)
4,2(-3)
9.4(-~3)
b.2(-2)
1.2(-1)
103(-1)

Sim

4.2(-4)
904("“)
1.3(-3)
2.9(-3)
4.1(-3)
9.3(-3)
1.3(=2)
4,0(-2)
1.0(-1)
1.2(-1)

1 using & appropriate for brain tissue, lower
frequencies extrapolated from values at higher
frequencies, see graph 4-1,

Considering
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TABLE 4-5 Frequency domains for justifiable
neglect using equation 4-17.

term(s) frequency
involving: domain (Hz)
€re: Cim 0-»500
f
Sinwf'é_@ 0 - cal
fR;& - 0-10*
Jr 6.2x108 » o
A 2.3x10% »
fﬁ-‘_ﬁ_q: 2.4x10% » e
RE
fﬁ‘R ) 0o
R

Oin_ R® 0-»80

2

1

ginw f R® 0-10°

ﬁ -

~—e 000
JiA
o 1.1x10% > e

-+ ﬁJ.A 5

. 0-»5x10
Ved, R
Tin® 2.4%10% » o

1 thus,%n®mis limiting factor for this term,
i.e., 500Hz limit.
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Assuming the intervals valid up to 800Hz, equations 4-20 are obtained.

re 2~ f
am(R1z,~ (L D))y ~ mol [ 18) E00T

[y -1

+ f v mlf'Oaln("l’_‘" ’—_1"—)1 1 ]Are ""ﬁ_f-"OUm‘I’re (4-20a)
&g R, 4 %l 1 m I im

At

[0 -1 e A'ﬁrCOSeF']’
(Brond —4n(o, @).;)"‘271'5111@[1 0 ]‘blr; ~ _(_.l-zlJrldl)%a—'[sinm

+RIGr 2L 0

s |
) 190 3
+ —-éé—O'mlO 1 @é4 ZOb)

+ Voo, 1 1 )[1 -1
) 2 'R 41zl ll 1

Before closing this section, I would like to present an alternative view of jus-

tifying negligibility. It is easiest to do this by example. Consider the terms
ol A 2 : oo .
t:wfﬁ—fb and f}—i‘ A. Using the criterion expressed by equation 4-17 meant

that these terms were neglected based on a comparison between integrals
involving A and integrals involving ® respectively. Doing this might be ques-
tioned since we do not know how the relationship between A and @ evolves as
increases from 0. This serves to illustrate one assumption that underlies the
neglect analysis: for frequencies of interest, the relationship between
J Ve §.& and®, as defined by criteria for neglect, remains approximately the

same as that for sclutions at ©=0. If this assumption is not made, there are
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still some terms that can be neglected without relying on cross-function com-
parisons. Under this restriction, these would be the equations for a peak fre-

guency of 500Hz:

r2 ~ I' .
» » T |c0sSOpr + ey Sinépr
am(&]3, = (1,K))ze # i { |04 2 siner — emcoser

1 -1 - —O1n€im—Em®
R 1 - & ‘m€im —E1n
./iv O'm( 421 ){1 LI; ‘Rwlameim"'tm&) Tin ‘bir; (4'21&)
~Xg
[ - coseFT+e1msinen
(Rropd —4n(o, ‘i’)m)re+2ﬂ€mwll O A —( [ Urld') RF Sinéyr — ey COSOFT

I — o g ho
\/_—— 1 1 1 Wy Tm ] ﬁ'
+s[ = ;M%‘E%c b 1 tRaE e ll o]t R m[o 1

[ + g R
. m:n_. Tmeim+Emw in A (4_2 1b)
YR —Oin Oineim+&inWw

im
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5. Alternative formulations

Before describing the methods used to find scolutions to equations 4-20 or 4-
21, alternative methods to obtain an assessment of the degree of electromag-

netic coupling will be discussed.
5.1 Alternative potentials
I start with alternatives to compressing Maxwell's equations. One alterna-

tive is to use an electric vector potential and a magnetic scalar potential [28]

i—ﬁzﬂvn . (5-1)

This formulation has proven useful for solving eddy current problems where

quasi-static approximations are assumed (£w=0,8=1) along with assuming the
continuity of i—é at conductor/air interfaces ([21, 37] Davey and Barnes). |

too have made the quasi-static approximation in equation 4-20 and 4-21 but
incompletely so. In addition, I have not assumed the boundary condition. In

these circumstances, T and equations are implicitly coupled:

veT —iwpfc?’f‘ = —fo, —VExE + iQVau (5-2a)
Vo uV0Q) - i = -V T (S—Zbl)

(Implicit coupling is independent of gauge choosen for T.) In contrast, the
problem solved by Davey and Barnes {obtaining the magnetic field for an elec-
tric dipole source embedded in a semi-infinite conductor for frequencies less

than 10%Hz) the term VoxE disappears. This happens because the continuity of

%}:—ﬁ is derivable from equation 2-7b, with w=0, only if E is normal to the

conductor/air interface since there are no J, contributions there. In
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conclusion, there would be no advantage in using the potentials T and Q for the
problem with which we are concerned. Though there are an infinite number of
ways to define potentials, the potentials T, Q, K and ¢ are those that I have
observed to be used in practice. Suffice it to say that with respect to this set, I

have chosen the more convenient formulation.
5.2 Numerical differentiation

The next major methodological alternative is to use numerical
differentiation instead of converting to integral equations. I decided against
this alternative on the assumption that boundary integral methods would be
more economical since I only wished to study fields at the scalp/air interface.
However, it is not clear that this is true. I have observed that an overwhelm-
ingly large proportion of time is spent setting up the discretized equations in
comparison to finding solutions to them. A comparison between boundary
integral methods {projection method) and finite element methods magnetos-
tatic problems [102] reports setup cost for integral formulations to be the
square of the cost for differential equation formulations. Thus, though the
order of the discretized formulation is much larger for differential methods, it

is unclear which of the two methods is best.

Integral and differential methods have been compared for the solution of
the w=0 scalar potential equation [B87]. Computational expense was not
reported. However, with respect to the average deviation of computed from
actual solutions (they examined a spherical conductor for which there are
analytical solutions), differential methods performed slightly better than
integral methods. Keeping in mind that computational cost and the accuracy
of numerical solutions are functions that depend both on the particular prob-

lem being solved and the particular numerical integral and differential
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methods used, it would be foolish to conclude from their data that numerical
integration methods were inferior. In further support of this, it will be seen
below that the numerical integration methods they used perform poorly with
respect to techniques used in this dissertation. Similar comments can be
made of a similar study [55] wherein potentials on the surface of an infinite
cylindrical conductor with an embedded centrally located dipole were sought.
Computational cost assessments did not include setup costs and the simplicity
of the problem undermines generalization of results. I conclude that there is,

at present, insufficient data to suggest which method is to be preferred.
5.3 Alternative solutions to integral equations

In this section, I will explore alternative methods of finding solutions to

Fredholm equations of the second kind.
5.8.1 Analytical solutions

Equations 4-20 or 4-21 can be converted into a Fredholm integral equa-
tion of the second kind for which there is a series solution [89]. 1will detail the
conversion of equations 4-21 since all subsequent developments can be easily
reduced to forms appropriate for equations 4-20. The goal is to reduce the sys-

tem to the form

F(%) = J() + {K(ﬁr- X) F(X) d% (5-3)

This can be done by taking Q to consist of a collection of nested surfaces
infinitesimally close together [95]. In addition, equation 4-21b must be solved

for $. tif- The solution is summarized by equations 5-4. Simplifications simi-
im

lar to those of section 4 have been used and w#0 has been assurmned.
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For the record, 1 have displayed equations appropriate for equations 4-20 in

equations 5—4ag and 5—4byg.

/2 A .
_ Mo T |coseyr + emSinérr
le;‘it = anm (_’L-z”rldl) R, [sineﬂ—elmcoseﬂ
V @LoTin 1 1 [1 -1, B Mo [ Tin “Om€m—Enw
+ 5+ )1 1 |Are =57 ) ¢ (5-4a)
s 4m R, 4%l im R 47 [fnemtenw Tin Bt
~Xt
/ N
6l =L [ gy F3] O 209 fcoser +ergsiner
m Xt 2rod —l[a rid Rjz [—Emw Tin | |SIN6pT — €,mCOSBpT
VRO , 1 1 fl -1 Wiy 1 [Emcd —Ci ﬁ'ﬁ[ Jym  Ep@
+£ 4n :E"z;zl )[1 1 R42l 4770111[0111 &m0 T RE ["'Emw Oin || fm
t
I A jom 1 1 (5-4b)
> 2r R l“l eim| i
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2 [
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VWO 1 N —1]* B o0
— R -0 g -4
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—EpW  Oin ||Sindpp
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+ —tp -
2 3 re (B 4b0)



For the problem at hand, we need eight surfaces, Sy, k€[1-8]. In cartesian

coordinates,

F() =1,

2
I(%) = (_leJﬂdI)

AP (%) %€,

. (5-5a)
A(Xy) %r€5s
ore(%y) RreSy
IM(Ry) XreSe

po Te, .
T R, \SIDOrT ~emCosOr) %,€Ss
1 ReJ

- T [Um(COSGFr""emelnGrr)+8m&)(smem-—e,mcosem)] % €S,
Znam R

1 R-J

\

2mol Rj2 [_E"’“"’(C"SQF'P*eimsmeﬁ'r)+Uin(sin9rr~eimcosem)] %< Sg

(5-5b)
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giving us the form 5-3 where
. 8
€l Q= USk (5-6)
k=1
and Sy are nested infinitesimally close to S of equations 5-4. The applicability

of Fredholm's solutions depend on the behavior of J and K The following

integrals must be bounded:

{ Jdy (5-7a)
{Kdi{ (5-7b)
{{;K]Edidi, (5-7¢)

The first of these is obviously bounded since the sources are within the sur-

faces Sy. The second integral is bounded since, for Sy having spherical

geometry,
. ff.’."_gr 5_g
Sphere—ifR 3 (5-82)
and for any closed surface S,
S ER oo (5-8b)
S-%

The third integral is not bounded since we have

fie B

R®

(5—800)

R—a

? = 2nin(1 —cose) .

Sphere~3,
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and

3
2
J (D=2 (5-8c,)
Sphere-%,; S x
In(1-cose) | -2
8=0
4
—Xpyr —XpZy
r r
Z .-—
0 r—f —}Zf— r=vVzf+yf r#0
) X Y Zr
R=eitherof § | 7 —xq
r r
_X —"
s A r=Vzf+xf r#0
r r
X Vi 2y

Although these integrals are unbounded, it is still possible to apply Fredholm's
solution if we can construct a kernel that has the mentioned properties pro-

vided that it is related to the original kernel by the following algorithm:

K(%9) = [Ka(ZHKE DS : Koy =K, i€[, ) (5-9)

Kernels so constructed are called iterated kernels. Unfortunately, for our ker-

nels, the required integrations are horrendous; for example, finding the first

iterated kernel for Xy, %r,€Ss requires finding
kZ(&flvﬁfz) =

ff cosesinededy
1 1

(-4 . . . =
¢ [(x,1 —sinecosg)?+ (v, ~sine sing)® + (2, —cose)al 2 [(xfz——sinecow)a + (yfa--sinesirw)2 + (213‘0059)2] 2

(5-10)

Further integrations would be required in order to construct Ky(%,¥) such that
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f |Ko(%.7) |°d%dy can be evaluated for boundedness. It is obvious that the
amount of algebraic manipulation required is formidable. Symbolic manipula-
tion programs (MACSYMA, SMP) were unable to give a usable form for equation
5-10; required iterated kernels may be impossible to find. Without bounded
iterated kernels, we can proceed no further in the application of Fredholm's

solutions to our preblem.
5.3.2 Numerical methods

Here, numerical methods to solve equations of the form 5-3 are dis-

cussed. There are three major catagories which have been widely investigated

(9}

» Projection methods involve linearly expanding the unknown function in
terms of a set of basis functions, integrating these basis functions with the
kernel, and solving the resulting linear system of equations for the

coeffecients.

» Nystrom methods involve choosing a set of points at which the unknown
function is to be evaluated and discretizing integrals in terms of these func-
tion values. The resulting linear system of equations is solved for this vec-

tor.

. i’roduct integration methods are similar to the Nystrom method. The
difference is that the chosen set of points is used only to construct the
linear system of equations; they are not used as points at which integrands
are evaluated in numerical integrations. Optimal integration rules, i.e,
points of evaluation and associated weights determined by a class of
integrating functions, are used to approximate integrations. A set of inter-
polating functions are used to transform the numerical integration rule

back into the point location domain for variables of the linear system.
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Nystrom methods are known to perform poorly for integrations involving
singular integrands. However, of the three methods, this method is the sim-
plest to implement. The particular implementation used by all biopotential

researchers was tried. 1 discuss my findings in the next section.

It is unclear which of the two other methods is best. I will present an
analysis of computational cost for each of these methods. In doing this, details
enabling a comprehensive comparisen will be brought out. Using the notation

of equation 5-3, for projection methods, let

L
£(%n) & Yauln) (5-11)
=1

Inserting this into equation 5-3 gives

L L ‘
lzatuz(ir) = J(Xr) +lz;a¢_£K(§f- Ru(X)dx (5-12)
=1 =

To construct a square system matrix for coefficients a;, we must choose L ¥;'s.
For our problem, the integration must be done nurﬁerically [13, 14, 15]. Let
this integration be
N,
J= Sw()t) (5-13)
Q n=l
Estimate LZ(N(p,.o)j(ecﬁon)+1)+LxL+Ej to be proportional to the computational
cost of solution where, at L %'s, L integrations involving N; terms must be done,
L terms must be summed to obtain f at each %, a LxL linear system of equa-

tions must be solved, and E; represents the costs involved in evaluating func-

tions u; at various %;'s. For product integration let the interpolator be
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In
f(in) = Zwi.n“ii.n) (5“14)
i=1

and the integration rule be expressed by equation 5-13 with N; replaced by
N(pro)d(uctintegration). TakKing T to be the number of distinct %, estimate
TNd<I,~A>n +IxT + Eq4 to be proportional to the computation cost; T integrations of
order Ng must be performed through the use of an interpolator of average
order <I;>,, an TxI linear system of equations must be solved, and E4
represents the computational costs involved in evaluating weights for interpo-
lation. Before discussing the computational cost comparison, note that it is
clear from equations 5-11 and 5-14 that the two methods end up providing the
same amount of information about the unknown function. Thus, it is sufficient
to compare the two by making extimates of implementation costs. However,
making this comparison is not possible in general since terms of the expres-
sions for computational cost are dependent on the specific methods chosen

and integrations involved:

« L depends on how well the u; approximate the unknown function. A major
factor involved is whether or not functions u; satisfy the parent differential

equation and boundary condition.
» Ejis u specific.
« Njdepends on the kernels, functions u;, and Q.

. Tand <Ip>, depend on the spacial frequencies of the unknown function over
(0 and on how well interpolating functions locally fit the unknown function

respectively.
» Eq4isinterpolator specific.

» Ng depends on kernels, the unknown function, and (.
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For N; and Ny, I speculate that they should be approximately equal since, on 2,
the unknown function is expected to be smoother than the singular kernels.
Efficient u,; should also have this degree of smoothness. For L and T it might
be expected that L is less than T since, for product integration, there must be a
set of distinct X; large enough to cover () at a reasonable density whereas the
projection method is not similarly constrained. However, for irregular conduc-
tor shapes such as those encountered in biological applications, L and T may
move closer to equality since there are no basis fuctions, y;, specifically appli-
cable for such shapes and interpolation requires only a local fit of interpolat-
ing functions to the unknown function. In addition, it may be desirable to
solve an over determined system of equations for coefficients a;. There are two

reasons for this:

1. Suppose L is small in the sense that L points would cover () sparsely. Con-
straining solutions with only L equations may be insufficient to have equa-

tion 5-11 yield good approximations for solutions at other points of ).

2. Again, suppose L is small. If only L equations were used to constrain solu-
tions, it may be that the number of basis functions required to achieve
convergence would be deceptively small because of sparse sampling.

In conclusion, it is not at all obvious which method is best. Since product
integration was a natural extension of the simple Nystrom methods I imple-

mented first, the decision was to give this method a go.

5.3.2.1 Experience with Nystrom methods [ will now discuss my experience
with integration schemes constructed by, typically, representing the surface of
integration with a set of triangles; this type of scheme will be referrd to as

(TR). These methods can be characterized as follows: assurmne F constant over
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N, subregions of A}, and estimate wy(X,) of equation 5-13 by J KX, X)dX.
n

My particular implementation of the method involved selecting a set of points

nearly uniformly distributed over a sphere, using these points to define nearly

equilateral triangles, using a solid angle formula [108] to compute m[ d#% and
n

5{ —I}éa—ﬁdi and assigning to each point, X,the weight
n
M
—1-—‘2 dX , {AQm: %; is a vertex of triangle AQy} (5-15)
3 m=1A0,,

The point locations were determined as follows: The sphere was divided into
latitudinal bands symetric about the equator with each band equidistant from
its two neighbors. Points were placed on each band with a constant arc length
between points. This arc length was choosen to be as close as possible to the

arc length between bands. In summary,

-7 . N=number of bands
®=1IN+1|™ ‘nell, N]indexs bands (5-16a)
¢ = ZT"{ 11€[0,L-1] (5-16b)
_ 2rsin® .
L = s~ rounded to nearest integer (5-16¢)
v
N+1

Pole points were also included.

The performance and convergence of this method was evaluated by integrat-

ing the various kernels of equations 5-4 combined with w=0 sclutions for
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$ and A under source conditions where the integrations could be performed

analytically, i.e, %=(0,0,0)>7", 7=(1,0°0°), and #=(R..0°0°). The analytical

integrations are tabulated below in section 8.1.1. When kernels were singular,

the singular point was omitted from the sums and singularity subtraction [5,

16, 26], described in the following section, was used. The performance of the

method changed irratically as the order of integration was increased (see table

5-1). It was concluded that it would be difficult to support convergence to solu-

tions if this method were used.

TABLE 5~1 Convergence of TR integrations

% = (1,0°,0%)

% =(1,0°0°

j=(5.0°0%

term

Refi 214 562 288 460 156
[f‘gz‘-‘? —N(umemn]- .003 .009 .012 .021 .03
A, 214 562 156 460 106
g2 -1 “o12 Jo13 .019 .o21 .023
if-f}k—A - 562 460 214 156 288
= R7E 4 L0116 .025 047 .052 .05T7

number of pointjr:)

106 368 674
,078 .22 1
288 368 674
023 .32 1

- 106 368 674
.1 19 1

relative magnitude
of deviation with
respect to worst
integrator

5-1 All coordinates will be reported in spherical coordinates: (r, 7, ¢) with T and ¢ in degrees, T=0 is

the positive z-axis, and @=0 is the positive x-axis.
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6. Quick overview of numerical method used

The purpose of the next two sections is to present and justify the methodol-
ogy used to estimate solutions of equations 5-4. The purpose of this section is

to present a brief overview of the numerical methods used.

6.1 Method of cubature

The major determing factor in choosing a cubature method is the singular-
ity of some of our kernels. Since these kernels are integrable, the first stra-
tegy is to introduce the following conversion (singularity subtraction) into

equations 5-4 [5, 18, 26]:

JKREE) = J KG 2 16)~tG +130 fs y R0 (6-1)

The point is to lessen the severity of the singularities. The next strategy is to
use sets of integration points that take advantage of the axial symmetry of the
singularities and do not include points at the singularities [4, 8, 8]. The follow-

ing choice was suggested by [11]:

2n w -
f f{e, ¢) sinededy = —%A iwif(ei, ;) (6-2a)
$=06=0 m =) i=
w; = Gauss—Legendre weights where (6-2b)
cos®; = Gauss—Legendre nodes on [~1,1] for an m node integrator (6-2c)

o= T (6-2d)

This Gauss-Legendre method will be referred to as (GL).

The need to use these integration point locations for each ¥ and the need to
construct a closed linear system of equations requires choosing a set of points

(%;) from which values of  and A at the integration points are found by inter-
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polation. An interpolation based on splines specific for interpolation on a

sphere was used [110, 111]:

1 )¢
B(%g &r L A) = ;f(xfp) ‘;[R(xg, %y, m)Dp,p] —dp] (6-3a)
. Jt{renspose) — A
dp :d T (6-3b)
[
=] A=R+ny (6-3c)
1
R Rl = R(i\;f —X;fm) = "}—r_l—"‘“q(f(f‘ f(f 2m—2) - ‘-""“é—‘—"'
. vy em [ (2m —-2)! oy (Rm —1)!
(6-34d)
1
q(xim) = f(1-h)™(1-2hx+h?)dh me[0,x) (6-3e)
()
I = identity matrix
n, = number of interpolation points
m,A are free parameters to be determined
ig = location vector of an integration point
D: Dy =4y +d3§(A_’)ik (6-3£)

It will be referred to as the Wahba interpolator. Note that index g is for
integration point and index p is for interpolation point. On choosing %; loca-

tions, the decision was to use the same points used for TR methods; all points
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tions, the decision was to use the same points used for TR methods; all points
were used to obtain interpolation estimates of function values at the integra-
tion points. Parameters m and A were choosen by finding parameter values

that maximized interpolator accuracy in interpolating w=0 solutions of equa-

tions 5-4:
cosOprp

- Ho| sinepr . e

A(X) [Q:O'ij=(0.0,0) = 207TRC (J"'S . XX) (6—4)
[COSGFI‘

Sinérr|. (23 1 g+d
(2 = o |-+ ——= 6-5
Do = gt [ " T Trm 2 (6-5)

o=0

figure 6-1

For A it was also required that the source be centrally located; only for this

source case could [ integrate f%@
S

6.2 The discretized equations

Fquations 5-4 are discretized as follows. Combining the integrator,
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N,
S 1= Ywt(%) (6-6)
s-%, g
with the interpolator,
N,
1(%) = Riwpf(%,) (6-7)
P
and equation 6-1 gives
Kf = K(f —St,,) +St, K (6-8a)
S=%, s‘—[@ P TR
N, N N
AT + + -
pgf pgpj; Y2y, e, peVep, ¥ Ie| K :L':(wp'gpf SV epp:Vep, | (6-8b)
_]1 ksingular
S = {O k bounded
K,= K
=,

Equation 6-8Bb is then applied to equations 5-4 to obtain a finite system of

equations for the variables &, Ii’z and f\re ]-xpf This system is displayed in equa-
: im im

tions 8-9.
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Voo [ 1 1 ][1 -1
Argxl%ﬂf— 4m lfi’:ﬂk 4 31 Jl ZQH Xp, Xp*p,)Arefip
(6-9a)
3, [0 ~{Oin€im+&inw)
Z (Zp, X Xp_Pf [ome,m+smc.; Oin re igp
1 ﬁj"j |-o'il’l amw i
27\'0’51 Rjz l,_sinw Oin 1m ip-p.I
| r
wol0 2, | Vomm(i s i
ll O} 15" 4 lﬁc—_ 4 1] Jll 1 ZQ Xp'Xp-pr)‘I’refg
W 1 fsmw —Oin . e 1]
1 fgin 8'
- R0 | ~Cin® Oin EQ Zp. Xp‘pf)ére i-xvp (6-9b)
Lz COSG[:T + €jmSinépr

Qu(’_"P' Xp=p,) = ‘L—:Wp.gp,""gpf

Or(¥%p, Xp=p,) = zp:,wp'gpr | Y, Fomn, " p;
Z R-n .
g ey R Ii *p=pewgpf PP
> Pt i
Wl T = DB L
& P&y, isp +Xp=p, Bpy ‘P=P1
jal :
pr'gpf R I iﬂpf’ xp=pfwgpf P#Pr
W Ko=) = 4 A

—RKp=p, + —-1) = -
q etp=ps § Wp, &g, )R ‘zspf’xpﬂ’fwgpf 0=t
b4
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6.3 Solving the system of equations

I chose Cimmino's process [24, 48] to solve equations 6-9. For the equation

A%=b, the algorithm I used was

Rnow = Rota — —o—A'Diag(JA | 2) (g =) (6-10)
where n is the order of the linear system and Ki- is the i*" row of A Iteration
was terminated when average residuals for both equation 6-9a and 8-9b were
below values for residuals calculated using w=0 solutions in discretized equa-
tions appropriate for w=0. Before applying the algorithm, the system was
scaled in such a way that in the scaled system, A%’ =b', the coefficients of A' and
b were optimally equalized with respect to order of magnitude. Since the
order of magnitude of coefficients associated with & can differ sigmﬁcantly

from coefficients of A in each of equations 6-9, a scaling involving four multipli-

cative factors was used:

P reQIGNp 0
0 Prellsz

PStoIsz 0

0 Pstyly,

“, PreoISNp
X = (6-11)

0 Preky, b

where Preg, Pre;, Psty, and Pst; are the factors, I, is the identity matrix of

order m, and

,_ [Pstoley, g
X= 0 Pstilw,

e 4]

X (6-12)

The four factors were determined by minimizing the function
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1 PreOPStoao ? PreOPstoao ?
g PregPsta; PrelPstoag

o PregPst;a, ?; o PregPstlaI]Z

& Pre Pstpag J € Pre Pst;ag J
+1io Pre,Pstpaz 2

& Pre,Pstjaz )
+ ( Preobo 2

g Pre,b,

PreoPstgaG ¥

PrelPstlaSJ

(6-13)

where ag is the average absolute value of coefficients for Ain equation 6-9a, a,

is the analogous quantity for ¢ coefficients of 6-9a, a, for A coefficients in 6-9b,

ag for & coefficients in 6-9b, by is the average absolute value of source terms of

6-9a, and b, is the analogous quantity for source terms of 6-9b. When averages

could involve diagonal elements of the system matrix, diagonal elements were

included or excluded from averages depending on which choice would maxim-

ize diagonal dominance of the scaled system matrix. The first six terms are a

measure of the difference between order of magnitudes of A’ elements, the last

"
term is the analogous measure for b'. The solution is

Preg afagb,

Pre,

log og

CNJ:*

aégalzbo

PStg 1 ;23
Pst, 2 g agaz

I

log

(6-14a)

(6-14b)

This completes the description of numerical techniques used to find solutions

of equations 5-4.

6.4 Final measures

The following measure was used to assessthe degree of dependence on fre-

[ |
B0

im

quency for each component of denoted by f's
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(6-15)

where f is representative of solutions to equations 5-4 and fgy, is representa-
tive of solutions to the w=0 equations. The numerical techniques used to esti-
mate solutions of equations 5-4 provides an estimate of this measure. To

assess the error in this estimator, the substitution
tn=1f+eg (6‘16)

is made in equation 8-15. With estimates of the magnitude of &, |eg|, the inter-

val estimate

0 D | In—fomz | = &1
% tn—fomzt 21| |En—fonz| >|&r|, In—fomz <0 l-x'P
Plltn—tomz— €]  |En—fomz] >] &1, In—for>0

N
= g(f—for{z)i ~ %(fN—fonz)i (6-17)
3

2
Ni[{fN—fOHz leg] : Ey—fon,<C ‘
=ty —fomat [ &1] : In—fos>0f'%

can be written. Regarding estimation of the |ers |, note that the & are the result

P

of errors in calculating integrals of equations 5-4 and errors in solving the

linear system of equations, 8-9. This suggests a way to obtain estimates of
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the &, consider the following process applied to an equation analogous to equa-

tions 5-4:

f§+S&KIf+Kzg = hg, (6-18a)
X Kt = Kt +51181tegrauonerror) (6-18b)

Actual N(umerical)

K1
f-x»t+ﬁfi.fK1f+Kzg =hy —6r" |if"'5IK2g|§f (6-18c)
f = fy+£;7, ¥r notation subsequently dropped : (6-18d)

f

fN+Ef+.£-KlfN+Klsf+K2gN+K28g = h—(ﬁKl "5IKeg (6-18e)
1 fn +{K1fN+Kng = h+96(inearequatjonerror) ' (6-18£)

1
£ + { Kyer+Keeg = —eL— 61" =61 (6-18g)

1
leg] = 8£+5IK1 +5IKZE+{K181+K28g (6-18h)
| Kt

< lafl + 100+ 160 + [ Kuerl + [ Koeg| (6-181)
-5 <[allB| 6-181)

< lefl 1 + 6%+ N/ Ll /TR TP/ TR

(6-18k)
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To obtain an equation solvable for the | &/, by the mean value theorem, I make

the approximation

2 13
'3 = 2
Julml* = 1081 =X el ], = losi<er®> (6-19)

where 83| is the surface area of the region of integration. Then, averaging

equation 6-18g over the N, points,

<g> <

<ef> + <61> + <61 2> + <6 >VIFT]<~ /{!K,i"‘>+<sg>\/ 23 <~ /{EKEE%

(6-20)
Finally, an estimate of the §; must be found in order to obtain a set of equa-

tions solvable for <gp > and <§Km>' 1 could only calculate integration error
im im

bounds using w=0 solutions. Consequently, using & to denote these errors, I

assume, for scalar integrations,

SR Sl D B G G Wi

<@I?e+¢i%n>u#0 <®1?e+(pi%n>u=0 (6_21)
and for vector integrations,
K Ke Ke K&
<8 IR +I8 RS <l R+ P>
(6-22)

<q’1?e + q’izm>u »0 <(pr2e+ (pi%n>u=0

Analogous assumptions are made for integrals involving A where the normaliz-
ing factor is taken to be <A rel? + [Aml®>. 1 go on from these assumptions to

assert the following estimates: for scalar integrands,
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Ko feter e s (ot
<6I >= 2 <Pre2u»0
4 <@Rtehou=e VR

>

fhy (o P (o5 By

< > = [L R \/W
S [ S Vi -l

and for vector integrands, using the x coordinate for example,

oy = EI "”2*'131 1m112> 5T
4 3<OZ + 02>, V 790

A:g 2+ g%
B+ BerPamo V Sy Zomo

Applying the above to equations 5-4 give

(6-23a)

(6-23b)

(6-24a)

(6-24b)
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Solving this system of 8 equations could give maximum estimates for |&| of
equation 6-17. However, I obtained first order estimates by, effectively, setting
[8S]=0 in equations 6-25. The reason for this extreme measure is discussed in

the next section. One final note, analytical formulas for the integrals
ol e iz . ,
fR%Hz. f—R—%HZ, fAOHZ, and f§- Agp, could only be derived for special cases

of source parameters and X;. Integrals involving ey, could not be done at all.
Consequently, for integrations that could not be done analytically, the g were
based on values given by a high order numerical integrator. The numerical

integration technique used to do this is described by the following equations:

N even N odd
( -ﬁz—i——l .
+1
) ic[1- X 1. Nr
Lf et e <1~ 3] el1-550]
6 = I"Nin N . (6-26a)
m 1-2) .
T ‘—[1 e(1-#) gg 1€[.;l+1..N] 1(—:[———1'{;"1 +N]
= Ly
# =N ori-3y (6-26Db)
{
2i .
9 Z_T__Sln ‘ 6—4/[1—(N—+11——1)2] 16[1"2-'] le[l..N;"l 1]
N+1 & "
Wl- - —4/[1-(1_—}_—)2 (6-26(:)
L T e N+ N .1 N+1
N+1 ;f-sme, € i€[5+1+¥] ie[=5=-N]
1 4
7Efe(l+sz)ds (6*26d)

It was suggested by Iri Morguti and Takasawa [10] and has been extended to be
appropriate for integration on the sphere by [12]. This method will be referred

to as (IMT). This completes the description of numerical methods used.
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7. Justification and further details

In this section, I discuss further justifications for methodological choices
and describe details of implementation in depth. The sequence of topics fol-

lows the order used above.
7.1 Choosing integration nodes and weights

Here, I will compare the three methods, TR, GL, and IMT, of defining nodes
and weights for numerical integration. The three methods are compared in
table 7-1. There I have tabulated the deviations of numerical integrations from
analytical values normalized by absolute integrals (integration of absolute
values of the integrands). For ¥; and source cases where analytical formulas
are not avalible, high order IMT integration (1152 points) were used in place of
analytical values.

TABLE 7-1_ Deviations of numerical from actual integrations
normalized by absolute integrations; ¥ = (1,0°0°).

integranct1 %=(0,0°0° T =(1,45° —135° %, = (.5,72°,-132°)
number of “ 7 -~ j = (1,105°,95%)
integration D¢g _5 Dk oy _ AR g
points-, A R e T (el ———(r’“R ®-%|g)
106 3.2(=3) 3.4(~3) 9.4(-4) 2.6(-6)
TR 156 3.2(=3) 1.8(=3) 8.7(-4) 1.5(=3)
214 1.6(=3) 6.6(~1) 1.9(=3) 8.0(=2)
288 1.2(=3) 1.2(=3) 2.8(-1) 3.0(=5)
{8 1.3 9.4(-2) 5.5(-1) 3.3(=1)
IMT {72 1.0(=2) 4,3(-2) 7.2(=8) 2.0(=2)
200 1.8(=-5) 2.2(-4) 4,1(-6) 7.2(=3)
512 2.7(-8) 1.3(<9) 1.6(=8) 1.9(=4)
{8 2.2(=2) 7.8(=2) 9.5(-3) 5.6(=2)
GL 72 1.0(=3) 3.2(=3) 5.0(~4) 4,2(-4)
200 2.3(=4) 7.3(-4) 1.2(=-4) 1.0(=-4)
512 5.9(-5) 1.9(~4) 3.0(=5) 2.7(~5)
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It can be observed that the convergence of the TR scheme is unreliable. We
also see that, for the most part, it performs worse than the other two. It can
be observed that the IMT method performs relatively poorly at low integrator

orders but converges faster than the GL method for all integrands but

%—f—ﬂ@ | non—central source- Table 7-2 shows that the IMT method does indeed con-

verge faster than the GL method for this integrand. We see that both IMT and

GL methods appear to converge uniformly.

TABLE 7 (@ ®lz)
with 7 =(1,50°50%. .
eccentricity
of source
along z-axis — 0.0 0.4 0.8
integration
order
l' (32 1.4(=3) 8.7(=3) 9.1(=3)
[ 4,7(-4) 2.4(=3) 6.4(=3)
GL 200 1.1(=4) 5.2(-4) 6.5(=3)
512 2.8(-5) 1.3(=4) 2.1(=3)
2048 3.7(=6) 1.7(=5) 2.2(=4)
(32 2.0(=2) 2.4(=-2) 7.7(~3)
12 6.8(-4) 5.4(=3) 5.4(=3)
IMT ¢ 200 3.8(=6) 1.6(=5) 1.7(=3)
512 1.5(-8) 2.4(-7) 1.1(=4)
1152 1.6(=10) 1.7(-}0) 1.5(=6)
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7.2 On interpolation
7.2.1 Choosing an interpolator

Before implementing the Wahba interpolator, a simpler scheme sug-
gested by Kel'zon [65] was tried. For this scheme, interpolation point locations

were constrained by the equations

_ Ri+l

1= 5= i<[0n] (7-1a)
2j .

¢y= L je[0.m] (7-1b)

m+1 = 2(n+1) (7-1c)

Equation 7-1c¢ is included because the distribution of spacial frequencies of the
functions being interpolated cannot be legitimately anticipated. This con-
straint would result in the most even sampling over the surface given equa-
tions 7-1a,b. As a test of interpolator performance, the deviation between
interpolated and actual w=0 solutions for ¢ and A at point locations specified
by a 6 node (72 point) GL integrator were calculated for 5 different ¥;. It was
assumed that these 72 integration points provided a representative sampling
of interpolator behavior over the sphere. Calculations were done for only & %
because results from doing the calculations for all interpolation points indi-
cated that a handful of points were sufficient to indicate interpolator behavior.
Computing time was the main deterrent to using more points. Table 7-3
displays these deviations for & averaged over GL points and the 5 ¥; for several
interpolator orders. Deviations were normalized by the average magnitude of

$.
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TABLE T7-3 Average deviation between Kel'zon interpolated ¢
and actual values normalized by the average
magnitude of & ; % =(.3,0°0%,

source case :f = (1'00'0u) 'j - (1.900'00)

interpolation
point distri-

bution ﬁ@

10/20 .082 .078
12724 .12 .15
14/28 11 .15
20/40 .08y .04y
25/50 .09 12
30/60 .076 1
40/80 .02 .02

Maximum deviations of a 156 point Wahba interpolator,
% = (.5,0°0°).
' .0023 .0020
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It can be observed that the method seems unreliable. However, reliable con-
vergence has been achieved with n+1=50 for interpolating ¢ corresponding to a
radial source. For this function, m+1 is irrelevant since ¢ depends only on @ so
n+1=50 can be considered a lower bound of the domain within which the
method is reliably convergent. In conclusion, to interpclate unknown func-
tions within the domain of reliable interpolator convergence, Kel'zon interpola-

tion would require impractically high order interpolators.

Table 7-3 also contains comparable data from a Wahba interpolator. Obvi-
ously, this method is much more efficient. In fact, Kel'zon interpolation of &
for radial sources at an eccentricity of 0.3 does not achieve the same level of
accuracy even at n+1=200. This was the main justification for using Wahba
interpolation. The domain for reliable convergence of Wahba interpolation was
not found because of computational costs involved. However, the sparse data
that was generated does indicate convergence. Table 7-4 displays, for Wahba
interpolation, the average magnitude of deviations between actual and interpo-

lated values for & and A normalized by the average of their actual magnitudes.

TABLE 7-4 Average magnitude of the deviation between
Wahba interpolated values and actual values
normalized by the average magnitude of the
funtion being interpolated; m=3.

source case —» 7 =1(1,0°0°) T = (1,90°, 0%
order of
interpolator - 156 106 64 156 106 6u
source
function loc?tion
¥
® .0014  .0033 .0099 .00099 .0023 .010 ¥;=(5,0°0%

A .0011  .0013  .0063 L0011 .0012 .0058 % =(0,0°0%
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To clarify the nature of the average, recall that to each interpolation poeint is
assigned a set of integration points (in the case of a GL integrator, this is done
by rotation of integrator point locations defined by 6-2b,d) at which function
values are to be estimated. The average is over all integration points and inter-
polation points. Convergence is also indicated by graphs 7-2 and 7-3 in section
7.2.3 which display the average unnormalized deviation for & with %=(.3, 0°, 0°)
and j=(1, 50°, 50°) at an interpolation point near the positive pole. Further
explaination of these graphs can be found in section 7.2.3; for our purpose
here, simply note that the curves for interpolators based on higher point den-

sities are shifted below those corresponding to lower point densities.
7.2.2 Point distribution for Wahba interpolator

Equations 6-3 indicate that Wahba interpolation does not require the use
of all interpolation points to determine function values at integration peints.
Choosing to use all interpolation points was based on the view that forcing the
characteristics of the interpolating function to depend on all known data
would result in higher accuracy interpolations. It turns out that this is true
only if A! could be computed for all m of q{x;m) and A combinations. In prac-
tice, the success rate in finding A™! decreased as interpolator order increased
and/or as m increased. In addition, interpolator accuracy was observed to
increase with increasing m. This means using fewer interpolation points may
become advantageous at high m values. However, using small subsets of inter-
polation points for each integration point introduces many complexities in

implementation.

Given that all interpolation points are used for each integration point, how
should the interpolation pecints be distributed? Both Kel'zon point distribu-

tions and the semi-uniform density points were tried. It was observed that A™
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was much harder to find for Kel'zon points than for the semi-uniform points,
i.e., when Kel'zon points were used, fewer m and X combinations resulted in
successful inversions. In addition, when inversions were successful, the result-
ing interpolators based on Kel'zon points were usually not as accurate as inter-
polators based on the semi-uniform peints. It is clear that maximizing inter-
polation point distribution uniformity is optimal: since interpolation accuracy
increases with sampling density and we do not know the distribution of spacial
frequencies for functions being interpolated, it follows that it would be judi-

cious to use uniform point distributions.
7.2.8 Choosing A and m of g(x.;m)

The task of choosing smoothing order, m, and A involves finding an
extremum of the surface defined by the point (m, A) and a performance meas-
ure of the associated interpolator. The performance measure used was the
same as that for examing Kel'zon interpolators. Observing interpolator perfor-
mance for several choices of source and ¥; suggested that each point in this
domain defined a performance surface approximately parallel to that for other
combinations of source and ¥;. Consequently, for computational expedience, I
chose the source to be characterized by %;=(.3,0°,0°) and J=(1,50,50°). 1
assumed this source would be representative of all possible cases reasoning
that because of spherical symmetry, only radial and tangential sources on the
positive z-axis need be considered. X; was chosen to be a point near the posi-
tive pole point; interpolator performance was poorest at points close to the

positive pole.

I systematized the examination of points (m, A) by chosing m from the set

[1->4] and used the function
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N
% Repl
Tgle = 1 ~ 52— (7-2)
%, [ Rppl +NEA
P
to help specify a reasonable range of A to consider. This function (percent
smoothing least squares) can be loosely considered a measure of the degree
(percentage) to which the interpolation depends on the smoothness of the
interpolating function and 1-%gs can be loosely considered the degree to which
the interpolation depends on minimizing the least squares deviation between
the interpolating function and actual function values at interpolation points

[33]. Specifically, Wahba's interpolator minimizes

N [(a™#)? m even
LS W) 1@ + N
N P P (A(m—-l)/z'f')z
PP f ST, (Am-10/3)2| m odd
S sin’e
=~ —~ (7-3)

least squares

part smoothing part

where T is the interpolating function and A is the lLaplace-Betrami operator,
and (), denotes differentiation with respect to a. Thus, with a little algebra, it
can be seen that %gs=0 implies A=0 and as %gs approaches unity, A approaches
infinity.

Results of the grid search can be observed in graphs 7-1 to 7-3. Smoothing
order, m, greater than 3 could not be sufficiently explored because for most of
the %ge A could not be inverted; for those where inversion was successful,
interpolator performance was miserable. I am confident that maxima found for
interpolator accuracy are global maxima; %gs in the range [0-0.9] were exam-
ined. Here is a summary of general trends observed as smoothing order was

increased, two of which have been mentioned previously:
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1. Fewer successful A inversions could be obtained.

2. The Zge interval within which reasonable interpolators could be found

shrunk.

3. Interpolator performance maxima became larger.
I would like to note that trends 1 and 2 are independent: trend 1 was observed

with %gs within the interval where reasonable interpolators were found.
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graph 7-3 Wahba interpolator performance;
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7.3 On the linear equation solver
7.3.1 Choosing Cimmino's process

Standard techniques to solve linear systems could not be used because
of the possible singularity of the system matrix. To show that solutions to
equations 5-4 may not be unique, note that arbitrary functions can be added

to A and & without changing the solutions found for E and B so long as

qugarb(itrary) =0 (7-4a)
Ve “Aorp = —u09®,p, (7-4b)
ico";‘:arb = —qu)arb (7_40)

Equation 7-4a is satisfied by 7-4c. Combining 7-4b with 7-4c, I obtain

Vec’q)e.rb _m’ﬂ*ﬁo@arb =0 (7-5)

which has at least one non-trivial solution,

i
CE—  re[Re—6lmag Re+6lmag]

“Borb = | o - (7-6a)
? r€[Re—0lmax, Ret+6lmax]

k? = iwud (7-6b)

C = some arbitrary constant (7-6¢)

r = distance from the origin (7-6d)

Thus, we know that solutions to the system of differential equations 2-11 are

non-unique. I had stated in section 2.4 that this means solutions to the
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integral equations obtained from 2-11 are non-unique. However, are solutions
to simplified forms non-unique? To investigate this, let us find solutions to

homogeneous equations 5-4 of the form

® | s(urtace) = Pa +1Qs (7-7a)
Als = (P +iQph (7-7b)

for real constants Py, Qg Pz, and Qg where fi is the outward normal to S. With
these forms and equations 5-4, a non-trivial seclution to the homogeneous

equations can be found if the following matrix is non-singular:

1 0o R 3 lemew —o;
- 1 1 WHoRs  (®in in
N vy IS S _WHoTte
10 1| tRe wﬂoom[Rc 7 1l hl 1t S0y Il 10“1 £t
1 [0 ~emw ot [oin(er+es) +einw e (oimetens) 8
;m—lé‘inw On | 6m lel(ainez+8inw)_ain Oin(e1tez) +einw (7-8)
o, = [Sm
"4 R

2 = | [ ol

Non-singularity can be shown for the special case represented by equations 4-

20 where the matrix above reduces to

P2 : 1 1 -1 1 wueRS |0 —1
Rc\/uowam{——4 - Rc] R T 2l 0 [
. 1—a 1
[—a a-b| | a® a(b—a)
= lb-—a _, | inverse is 1 -1

a(a-b) (b-a)?
(7-9)
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Thus, non-singularity is shown if it can be shown that b—a#0. For the head sys-

tem, this is approximately equivalent to examining

VOin 2 4
R, # 3 vHo¥ (7-10)
For parameters of interest here,
\/a'.
95 ¢ ——%25 (7-11)
R,
L o =95 :w=2n6.4x10% (7-12).

3

So, unless we only wish to examine solutions in the vicinity of 6.4x10%z, solu-

tions of equations 4-20 will be, in general, non-unique.

There are several techniques to deal with singular systems. Wielandt
deflation techniques [24, 74, 75], the methods used by biopotential people [20,
B7], require finding a basis for the homogeneous integral equations. I have just
revealed one of the basis vectors for equations 4-20; however, I am not sure
whether or not there are others. Atkinson's technique [7] to convert singular
Fredholm equations of the second kind to an equation with unique solutions
could not be used for the same reason. A technique by [99], a method sug-
gested for biopotential research, turns out to be a primitive version of
Atkinson's technique. Generalized inverse techniques [63, 106] seemed much
more difficult to implement than Cimmino's process. In conclusion, it seemed
judicious to use Cimmine’s process since it is guaranteed to converge to one of

the possible solutions [24].



111

7.3.2 A minor detail in Cimmino’s algorithm

The factor n-lz—l was changed from r21_ reported in texts describing the

method. In order to understand the motivation behind this, one needs to know
how Cimmino's process predicts the intersection of the planes corresponding
to each equation of the linear system to be solved. The process finds the
center of mass for a set of points defined by reflecting an initial peint through
each plane. The denominator n is appropriate if the initial point is excluded
from this set; using n+1 includes it. This change is shown to improve conver-

gence in the example below:

[5 -13] I1 [-39
[2 0 1} = |-5| with solution % = | 23 (7-13a)
3 2 1 2 73
2
2= | -1
100

With n as the denominator, one iteration of Cimminoe's process gives

[—75.14
%, =1|-746| |% —%|=48B.62 (7-13b)
—61.57

With n+1 as the denominator, one iteration of Cimmino’s process gives
[ 558

%, =| -5.84| [% %] =233.486 (7-13¢)
-71.17



112

7.3.3 Determining termination of iteration

This was a difficult problem because it was observed that, starting from
exact solutions for the case w=0 (equation 6-5 which also determines K}Wo)
and seeking to find solutions to the w=0 equations, Cimmino's process still pro-
ceeded to change the solution vector. Yet, indeed, the magnitude of the resi-
dual, |A%-b| (where A is a system matrix, % is a proposed solution, and b is the
constraint vector), was decreasing steadily. This behavior illustrates that
exact solutions are not necessarily sclutions to the dicreetized equations.
Another factor that may be at the root of this behavior is the possible non-
uniqueness of solutions. Cimmino's process may be converging to a solution
that has a better fit to the discretized equations. This is a serious problem
since the goal of this investigation must be achieved by finding, for a given set
of parameters other than @, the minimurm distance between the w=0 solution
space and the w#0 solution space. ] have made the assumption that finding
the minimum distance between the w#0 solution space and the point in w=0
solution space represented by equation 6-5 would be a good estimate of the
global minimum. Proceeding from this assumption, I need to substantiate the
assertion that the criterion used for halting iteration results in finding the w#0

solution that is closest to the w=0 solution expressed by equation 6-5.

I will begin my effort to substantiate the criterion used by saying that, for
all parameter cases studied, convergence rate was similar to that for seeking
solutions to w=0 equations starting from =0 solutions: a linear reduction in
the magnitude of the residual vector was observed. This observation indicates
the difficulty of basing halt criterion on some measure of convergence rate.
This is a reason for choosing a criterion based on the value of the residual vec-
tor. Toward evaluating the particular criterion 1 used, consider the five solu-

tions that are involved:
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1. the solution to the discretized w=0 equations, id(iscreet) | w=0,

2. the solution to the continuous w=0 equations evaluated at the %,
Xc(ontinuous) i w=0:

3. the solution to the dicreetized w#0 equations that Cimmino’'s process will

2 §
converge to given a huge number of iterations, Xg|u=0.

4. the solution to the continuous w#0 equations closest to iclw:O evaluated at

the %Xy, i.e.,

Xeluvo = M}N( X | w=o —X{ti) : X{E solution space for w#0 solutions,
(7-14)

and

5. the solution that is found under the convergence criterion used,

Xa(ctualized) ] w#0-

I will use the X to denote either Km or ®,., not the whole solution vector. Iwill
im im

denote residuals corresponding to these scolutions by Ab where dezo. The
correspondence between residuals for A and & equations and solutions for A
and ¢ can be made since I solved equations 4-20. Using this notation, the cri-

terion I used assumes that

if [Ab, | weol & [Abe | uzo] then X, | yuo & Xe | umo (7-15)

Here are two lines of reasoning that suggest the validity of equation 7-15.

1. Suppose the relationship between &IWO and Xd]u:() is the same as that
between &[Wo and Xg|u=o in the sense that Abe ] wro A Abe | u=o.

Then the criterion would be based on the assumption that
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Xalmto m).icic.:aao when AB&}:.;#O MA.BCIG#O- (7-16)

Some sort of support for the supposition comes from noting that the con-

tribution to residuals of A equations by integration errors, based on

integrating w=0 solutions, is dominated by the integral f %@ for frequen-

cies up to about 5kHz (see table 4-3). For A|,=o equations, this is the only
integration. So, if it is assumed that, for the w#0 case, this integration also
dominates contributions to residuals by integration errors, we can venture
the guess that contributions to residuals by integration errors for the case
w#0 approximate those for the case w=0. This supports the supposition

because non-zero A*bc arises only because non-zero integration errors exist.
For ¢ equations, the same reasoning cannot be applied: with f ﬁ—éz&@ being

the only integration in |, equations, it can be observed from table 4-3
that error in this integration would be dominant only up to about 10Hz.
Reguardless, using this line of reasoning, equation 7-16 can finally be sub-
stantiated by claiming that Cimmino's process is initiated at a point close
enough to X.|,.o such that Ab(X) is a single valued function of X. This
élaim is exactly that required by the second line of reasoning to justify

equation 7-15.

. If it can be assumed that X, |, and X4 o are very close to the respective
solution for the case w=0, equation 7-15 can be justified. The point is made
by noting that Cimmino's process is initiated at )?c{u___o and claiming that if
Xc!u:(l is in close proximity to )—chu;to’ Ab would be a single valued function
of X. To support these claims, I refer to table 7-5 and tables B-7. It will be
seen that ialg,o are very close to Xclu:() for all parameter cases studied; a

measure of the deviation between the two solutions is shown in tables 8-7.
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Table 7-5 shows residuals for & and A equations averaged over magnitudes

of real, imaginary, and spacial components and normalized by a similar

average taken over elements of the constraint vector (the source terms)

corresponding to each equation type. The cases reported are those for

which the difference between residuals for f(c}u=o in w#0 equations and resi-

duals for Xc’e.;:o in w=0 equations are usually the largest compared to other

choices for parameters. Medium types will be explained in detail in section

8. The point here is to note that residuals for )*(cffﬁo in w#0 equations

hardly differ from those for )?CI w=0 in w=0 equations.

0.4

1.999
2.024

- 1.951

1.972

1;936
1.965

1.936
1.952

1.936
1.994

.2010
2011

.2010
.2010

.2010
.2010

.2010
.2010

.2010
201

TABLE 7-5 Normalized residuals for w=0 solutions in10%Hz
equations compared to mormalized residuals for
w=0 Solutions in w=0 equations.

T =(1,0°0%
épr =0
_ Source

eccentrcity —— 0.0

medium type equation -

cerebral OHz 1.999 2.889(-4)

spinal 10%*Hz 2.025 3.499(-4)

fluid

(4
skull 1.951  2.889(-4)
1.972 2.898(-4)

small 1.936 2.889(-4)

brain 1.965 2.937(-4)

medium 1.936 2.889(-4)

large 1.936 2.889(-4)

2.001
2.013

1.953
1.976

1.938
1.969

1.938
1.968

1.938
1.993

0.8

C el

L4ou1
L4050

L4041
L4041

L4041
L4041

.4041
JLouy

L4041
L4049
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Note that equations 4-20 and 4-21 remain valid up to 10%Hz if a 10% cri-
terion is used in equation 4-17. In summary, I have revealed the difficulties
in selecting a criterion with which to halt Cimmino's process. 1 believe that,
given the behavior of Cimmino’s process in the application pursued here,

the best of the possible criteria was selected.

Before moving on, | would like to mention that the discussion above
makes it clear that, if convergence is achieved, using residuals in error
estimates would be inappropriate. At convergence, we have
Abg | uso ™ Ab|y=o. With the claim that Ab, | wo ™ Abe|uuo, it is obvious that

the residual has little to do with the uncertainty in )?aiwg with respect to

-

Xc } w0
7.4 On scaling
7.4.1 The need for scaling

It turns out that, for some parameter cases, the top 6n rows of the sys-
tem represented by equations 6-9 can differ from the bottom 2n rows by six
orders of magnitude. A 4x4 example, based on a 10Hz system matrix, compares

scaled and unscaled implementations of Cimmino's process.

5 =3 .9 -7(-9) -7 1.258(~7)

-8 6 -1 -5(-9)| _|-6(-7) . ~8.166(-8)

-1 =2 4 —4(-9)F 7|2~ solutionis % = £.38(-8) (7-17a)
60 —40 50 1 ] )

Iterative history when no scaling is used:

o] [6.817(-8)| [7.443(-8)] [7.726(-8)] |7.901(-8)
0| |-2971(-8)| |-5.333(-8)| |-5.434(-8)| |-5.459(-8)
0| |2.487(-8) |' | 1.544(~8) |' | 1.132(~8) | | 9.009(—9) | (7-17P)
1

1 1 1 1



117

Comparable iterative history when the scaling

[0t 1

10% 1
Pre = Pst = 1 (7-17¢)

4

is used:

o] [8940(-8) ] [1.137(=m ] [1212(-7)| [1.238(-7)
o| |-6.387(-8)| |-7.834(-8)| |-8.140(-8)| |-B.191(-8)
ol | 4.256(-8) | | 4.730(-8) | | 4.626(-8) |' | 4.509(-8)
{1 1 1 1 1

(7-174)

It is obvious that without scaling, convergence is slower or Cimmino's process

is divergent.
7.4.2 The choice of scaling

From the findings above, it was concluded that an effective scaling would
be one which minimized the difference, in order of magnitude, between all non-
zero elements of the system matrix. Scaling so defined was compared with a
scaling that minimized the difference in order of magnitude between all non-
zero elements of the system matrix separately from effecting the same for the
constraint vector. The two methods were compared by comparing rates of
residual reduction for several parameter cases. The chosen method was only

slightly better.

I compared two methods of excluding or including diagonal elements of the
system matrix in averages from which scaling was calculated: the scheme
which resulted in maximizing the diagonal dominance of the scaled system

matrix and the complement of this scheme. It was thought that there could be
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a difference in performance between the two schemes since diagonal domi-
nance is a sufficient condition for convergence of Gauss-Seidel iteration. By
observing the rate at which Cimmino’'s process reduced the residual, scaling
that maximized diagonal dominance performed better for parameter cases
where residuals of w=0 solutions in w#0 equations were larger than residuals
for w=0 solutions in w=0 equations. In contrast, when numerical methods
could not resolve the difference between w=0 and w#0 sclutions, i.e., residuals
of w=0 solutions in w#0 equations were less than residuals for w=0 solutions in

w=0 equations, scaling that minimized diagonal dominance performed better.

7.5 On the measure for frequency dependence

Note that this measure does not allow assessing the significance of mag-
netic induction. The following shows that it is not possible to make such an
assessment given the methods of solving Maxwell's equations used here. In
order to assess the degree of electromagnetic coupling, optimally, we would
like to compare the magnitude of the rotational component of E with the mag-

nitude of the irrotational component. Considering equation 2-8b and writing

A = Vair(rotationa]) + vxéro(ta’u‘onal) (7-18)

we see that this would mean comparing [V® +iwVay| to w|Vx3,] Making this

comparison would mean solving, from equation 2-10a,

VRa; = —uo'd (7-19)

Unfortunately, this cannot be done unless we solve for ® throughout space,
exactly the problem with using Coulomb's gauge. A further problem is the

need to calculate V®. A look at the ©=0 equation for $ suffices to reveal the
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problem. Taking the gradient of equation 2-26b with respect to ¥, setting I=1,

and using equation 3-14b evaluated at w=0 gives

rCOSGFT]
4'7TO'V§ @re !}t - _'4'7T¢ ;%VQ{U “—v(BR .JR —J) + f aln%m
S-%, im
(7-20)

where Vg is used to denote the gradient operator that takes derivatives with

L2
respect to ¥ and I have written i for ELI/- |Juaal . For a central source and
Xr2

%=(R0°,0°),
Srcosepr [cosem
~ | sinépr . lsm
47\'ch-,»1<1>,31«,‘»f ———————ni»-JVQfa —————{ZJZ IR = I59)
[COSG}:T
Sinérr| 5 3 2 T sS4l S
+ —Eé——{ ZJzz— z m}e:onz +2J,% +2J;9) (7-21a)
COSOpT
= @;it[afv;fm = Dz 1+ T COSG)1,3..(,)]+———(Jxx+Jyy)

(7-21b)

Note that one term is singular. For the w=0 case, we know this singular term

must cancel V}f‘o‘. This is because Vi’,@ cannot have a component normal to the

conductor surface by conservation of charge since in the vicinity of the sur-
face, there is only conduction current and we have E=-vé. On the other

hand, theoretical developments of section 2 allowed us to define a finite V37 at
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the conductor surface. It can be concluded that the term ng i,——q} must

A

not be handled properly by simply integrating fs ‘Wif but for w=0 solu-

tions, other constraints allow the correct specification of this integral. For the
general case, the obvious route to take is to expand the surface back to the

volumn 8¢, Vin UBe1 Vour in the vicinity of %;. Integrating over a small cylinder
about ¥; proves the attempt futile. The size of the cylinder depends on J,
Olip+6lyyt, and . This dependence is indicated by terms invelving components
of J and the expanded form for Vi’x f ——‘I’ both terms make a contribution to
the % component (the ﬁ;f component). In conclusion, it is unclear how

integrals in the gradient of equation 5-4b should be calculated for w#0 solu-

tions.



121

7.6 Error computations
7.6.1 Published error estimales

A search for computable error bounds applicable to the numerical
methods used here was unsuccessful. The best candidate was found in [3].

Writing Fredholm's integral equation of the second kind as

(I-Kf =17 (7-22)

the error estimate is

N umericay) — Fa(etuan] = 1(1-Ky) 1 — (1K) 1) X
oy I I+ (KK K (1K) 23
= 10807 = (o) T Kl (7-23)

where K, is a compact operator. The bounds are for one dimensional Fredholm
equations over the interval [0-1]. These bounds can be extended to the
dimensionality and region of integration we require, (1 of equation 5-3.
Required conditions on the integral operator K, have been shown to be
satisfied by one dimensional analogs of our kernels [6, 8]. Unfortunately, to
evaluate the bounds, the first iterated kernel must be computed in a form

sufficient to estimate

N,
MAX [ 33 WKk )KL, ) ~ [K(x, OK(L y)dt [dy (7-24)
Xe n=1

where N, is the order of the numerical integration, w, are the integration

weights, and t; index the corresponding integration point locations. We have
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seen that this involves very difficult integrations. In addition, an equation with

unique solutions must be constructed.

Other published error bounds offered less with respect to applicability or
computability. Several authors have given error bounds for numerical integra-
tion of singular integrands [4, 11, 40, 62, 71, 72, 73]. Most bounds presented
depended on the ability to evaluate certain properties of the integrand such as
the size of higher order derivatives; this makes them useless for our purposes.
Others were not meant to be computed and served only to compare the accu-
racy of the method with other methods or to show convergence. There have
been error bounds derived for numerical methods used to solve Fredholm
integral equations similar to those of interest here [3, 8, 8, 59, 84, 72, 107]
Some of these were for numerical methods differing in principie from those
used here, e.g., projection methods. Others were not meant to be calculated

and served to compare the methods with others or show convergence.
7.6.2 On error estimales used here

7.6.2.1 A possible alternafive From an examination of equation 6-18d, it
appears that we can simply solve this equation to obtain estimates for the g 1
will point out some problems with using this method to show that the method
used is indeed preferable. Of course, fundamentally, we cannot solve for the
exact values of the g since integration errors are not known; but, if estimates
of this error are used, will solving the resulting equation produce first order
estimates of the &? These estimates would be meaningful only if we could be
assured that estimates of integration error were accurate not only in order of
magnitude but also in sign. Possible non-uniqueness of the equation requires
further assumptions. The component of found seclutions that is a solution to

the homogeneous equation must be removed since we are only interested in
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the solution component that strictly depends on the constraint vector and we
are not assured that contributions from soluticns to the homogeneous equa-
tions will combine with the solution component of interest in such a way as to
give conservative error estimates. Removal is achievable if it can be assumed
that the homogeneous component existing upon using Cimmino's process on
the inhomogeneous equation is equal to the solution found by applying
Cimmino's process to the corresponding homogeneous equation. In view of

these necessary assumptions, it seemed that the approach used was prudent.

7.6.2.2 On assumptions underlying equations 625 The crucial assumptions
underlying equations 6-25 are expressed by equations 8-19, and equations 6-21

to 8-24. For equation 6-19, note that to the extent

2 ! 2
-&ctua]'sf‘ lellumeﬁcal}sf[ (7_25)

we also have

1
Wflsffz 1 (812> (7-26)

Thus, it appears that equation 6-19 is reasonable. For equations 8-21 and 6-22,
I will say that I cannot think of a more reasonable way to estimate absolute
magnitudes of integration errors: a distinction between real and imaginary
parts for ¢ and A and the spacial compeonents of A is not made since the rela-
tionship between these constituents may change from that for ©=0 solutions.
For equations 6-23 and 6-24, | reasoned that the magnitude of the integration
error must be proportional to the magnitude of the integrand; the equations
shown seerned a reasonable way to express this dependence. This choice is
consistent in the following sense: if equations 6-23 and 6-24 are squared (both

sides of the equality squared), imaginary and real equations are summed,



equations are summed over spacial components, and |6;|®<6> is assumed,
identities analogous to equations 6-21 and 6-22 result. In equation 6-24a, the
same integration error is assumed for all spacial components; averages over all
% should be the same for each spacial component since ¥; are approximately

uniformly distributed over the sphere.

7.6.2.3 Motivations behind simple error estimator used I conclude this section
on error estimates with a discussion of the reasons behind assuming an iden-
tity matrix in place of the system matrix of equation 6-25. It can be observed

from equation 6-20 that if

V]as]< leKlt2>21 (7-27)

equality in equation 6-20 can never be achieved. This means that if equation 7-
27 were the case, analogously, in equations 6-25, there would be no positive
definite solutions to the system. It turns out that indeed, this was always the
case for at least one constituent of equations 6-25. Writing equations 6-25 in

the analogous form

I =8 +K& (7-28)

1 reasoned that since it was impossible to achieve equality with positive definite
£, a legitimate maximum estimate of error would be obtained by finding the

following maximum.

M%X(I—?K)“g . ¥€unithypercube (7-29)

The hope was that a maximum would be found in a small locus about '™

spose = (1 1, ..., 1). Unfortunately, I found that (I1-3K)~!4 was positive definite

for only a very small locus about the origin (%4 <.15Vi) and in addition, a
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singularity existed in this locus. In desperation, I tried K with all diagonal

entries set to zero with no success. It seemed no reasonable error estimate

could be obtained using this method.

Taking the hint from the exploration of error estimates as a function of ¥,
taking 7=0 seemed the best that could be done. This error estimate would be
conservative if we were assured that errors supei*posed constructively; other-

wise, perhaps it is an estimate of average error.
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8. Results

In this section, I discuss how convergence of the discretized model to the
continuous model is to be shown. Convergence results are then presented.
The section is concluded with a presentation of estimates for the degree of fre-

quency dependence with error estimates.

8.1 Showing convergence

I propose that convergence of equations 6-9 to solutions of equations 5-4 is
strongly supported if it is found that upon increasing interpolated integrator

order,

1. interpolated integrators applied to w=0 solutions are observed to be uni-

formly convergent,
2. each successive linear system is not ill conditicned, and

3. the derivative of the numerical solutions with respect to interpolated

integrator order tends to zero.
8.1.1 Requirement 1

Table B-1 tabulates integrals for which analytical formulas or semi-
analytical formulas are available. The one dimensional integrations that could
not be done analytically were estimated using Gauss-Legendre integration,
Table 8-2 displays the performance of several interpolated integrators for the
case %=(R,, 0°,0°), 7=(1,0°,0°), %;=(0,0,0). Only for this case could I calculate
integration errors normalized by absolute integrals using only analytical or
semi-analytical formula. For terms involving the kernel R, the kernel was
interpolated because computations for interpolated integration weights, a very
expensive computation, had been completed before terms involving the kernel

R were included in the equations.
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TABLE 8-1a Integrations of u=0 solutions over a sphere of radius Rc.

Je=0

cOSOpr
sinepr| ( —24R.|. - . _/n ne na
JRe = S |5 JPatd 1 %=(0.0%0%
CcoSOpr
AeR SO ( —am) Ryeds
Tt e el
{cosem
~ sinérr| 4R, . o
n = c 'A jal . S + U‘Oa
f ﬁ@ 4O, _?—(4JT+BJ’ nizni'f) % =(0.0%0%
. o
Ji= [o % = (0,0°,0°)
0
COSOpr -
Ho|sinor | ( _gr - % = (0.0°,0°),
o _ OFr [—Len]Jr.ﬁi[ . . % = (1,0°0°), (1,180°,0°),
R 4m | 175 14/3 ke[x.y.z]
[cosem
“ﬁlsinep-p
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TABLE 8-1b Absolute integrations of =0 solutions over a sphere of‘=

radius Rc.
lcoseml
ls enl
lcosep-rl
| sinépr| BRc
—-— { - o no
JIRrg| . (1+VB) % =(0,0°0°)
Icosep-p}
fieR _ Isinépr| | 4m, ' % = (0,0°,0°),
TA=at: ‘I’if)}‘ anom  RE % =(1,0°0%, (1,180°,0°)
z .
”COSBF'H if\/l-&-cosucosZudu— V1+cosv cos2vdv
o —
Jma [Isinorr| | 155, :
R AT 04 Rc 12‘; "
. F f V1+cosvcos2v dv— | V1+cosv cos2vdy
’ T
7
15

upper sign, ¥ = (1,0°0%)
lower sign, % = (1, 180°,0°)

[ coserr |
f.R |Isinerr| 15;] 06437902832094915
——{¢- = 0.8437902832994915
mf R? $ @if)) P RCI 4{;_71
15

% =(0,0°,0%),
Jr = (3, 0°,0°%,

g, =(1,0°,0°, (1,180°,0°)
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TABLE 8-1b continued.

Isinepr|| RS, | 1
rd = C l . = a a
N — 5 4 1% =(0,0°,0°)
3v3
3(—%—2)
10| 0S8 3(i-2)
Ny Ay Ho| |sinepr| | By, V2
S R yye 555 2\/1+—‘7_—11323—7_5-)+2\/ —f(lszslr\/_)
' -2 ‘
V2
% =(0,0°,0%),
: 3 = (3, 0,0,
% = (1,0°0°), (1,180°,0°)
tcosep-p! 3 o
- Ho| | sinepr| % = (0.0% )
e CuBPRNE) Jr = (3,007,
R 4m 15V2 =(1,0°0°, (1,180°0°)
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TABLE 8-2 Deviation of interpolated integrators from analytical
integrations normalized by the absolute integration.

For vector integrands, the largest deviation taken over
all spacial components is reported.

For R kernel, the kernel was interpolated, other kernels

were not.

%=(00°0° I =(J,0°0°
Part A Variation with integrator order.

& =(1,0°0°)

Interpolator is 106 point Wahba with g=2.

number of
GL points — 32 72 200 512
integrand

/ )

& <1074 <1074 <107M <1014
R® 6.28(-3) 1.30(=3) 4,17(=3) 8.30(-1)
-’11;—2&(@—%)' 1.94(-3) 4,11(-4) 1.67(=4) 5.08(=5)
%@ 3.13(-3) 5,40(~4) 2.77(-4) 1,16(-4)
A 8.27(-1) 3.83(=4) 1.02(=3) 1.85(-1)
P 1.28(-2)  3.64(-3) 1.06(-3) 3.50(=4)
ﬁéﬁ 1.05(=3) 6.54(=1) 2.54(-L) 2.85(=4)
Part B Variation with interpolator order.

Integrator is 288 point GL.
number of
Wahba q=3
points ——_, 64 106 156
integrand
/

é <1074 <107 <1074

R® S 1.T8(=3) 7.29(-1) 2.76(-4)

feR

%) 200(a4)  5.23(-5) 2.96(-5)

%@ 4,31(-4) 5.91(=5) 1.32(-5)

A 2.03(-4) 1.66(=5) 1.19(-4)

A
S 1.36(-3)  5.69(-4) 6.73(-4)
fied 9.80(-4) 1.06(-4)

2.61(-4)
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We would like to know whether or not we can assume that convergence
would be similar for untested circumstances. For cases where ¥%#(R., 0°,0°),
%1#(R., 180°,0°), and/or %,#(0,0,0), the convergence of interpolated integration
can be tested with respect to high order GL or IMT integrators. Considering the
observation that the IMT method converges faster than the GL method, doing
this would indicate convergence since Atkinsen has proven convergence of the
GL method for continuously differentiable functions on the demain of integra-

tion. Specifically, using the terminology of equation 6-2a, he showed that

—mth _1y-k
I_/;ctual m*" order Numen'ca]l < C(2m—1) (8-1)

where () is k times continuously differentiable on the unit sphere for some
constant C. The usefulness of using high order numerical integration to subsi-
tute for analytical formula is supported by noting, from data of table 7-2, that
high order integrators are quite accurate compared to lower integration ord-
ers. This procedure was used to generate the data of table 8-3 which reports

interpolated integrator performance averaged over all interpolation points.
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TABLE 8-3 Normalized interpolated integrator errors averaged
over all interpolation points.

Comments of table 8-2 apply. Interpolated integrators
are also exactly the same.

%=(0,0°0)  J=(I.0°0°

Part A Variation with integrator order.

number of
GL points —s 32 T2 200 512
integrand
£ A
8 <1074 <10-14 <1074 <10714
R® 2.65(=3) 4.89(-4) 3,85(-1) 5.,48(-4)
i;_ég'(@’@i). 1.08(-3) 2.80(-4) 1.18(-1) 5.65(~6)
1s 4.79(=3)  1.70(-3) 6.33(~4) 2.09(-4)
R 1.59(-3) 1.44(=3) 1.12(=3) 1.85(-4)
A
s 1.28(-2) 3.69(-3) 1.16(-3) 3.50(~4)
A 2.83(-4) 3.15(-4) 2.03(-4) B.41(=5)

Part B Variation with interpolator order.

number of

Wahba g=3 ‘

points —— 64 106 156

integrand
& 2.96(-6) <1071 2.52(=6)
R® 1.22(-3) 5.49(-4) 2.85(~4)
"-ﬁ
%) g gaca) 4,17(-5) 1.99(-5)
%@ 4.62(=4) 2.40( 1) 3.33(-4)
A 2.03(-4) 5.27(=5) 1.19(=4)
nkAk

R 1.64(=3) 5.69(-4) 6.78(~4)

fieA 7.94(=4) 1.79(-5) 1.46(-1)

|



133

Before exploring cases where the source is not centrally located, I would like
to discuss convergence results presented thus far. Several cases of table 8-2a,
exhibit divergence of the interpolated integrators at the highest order integra-
tor. This observation might be explained by noting that when using a fixed
interpolator order, at high enough integrator orders, enough interpolation
errors could accumulate to cause interpolated integrator divergence. However,
an examination of table 8-3a indicates that for the integrator orders used, this
may only happen for the R$ integrand, note the divergence at integration
order 512. How can the sporadic occurrence of poor interpolated integrator
performance in table 8-2a be explained given that we have observed smooth
convergence of integrators and interpolators? Poor performance observed in
tables 8-2b and B-3b may be a clue. It can be seen that for several integrands,
given interpolator order 158, performance is poorer than when using an inter-
polator order of 106. Yet, we have seen that interpolator accuracy increases

with interpolator order. I can think of two effects that may be responsible for

this divergence:

« Perhaps opportune cancellation of integrator and interpolator errors occur-
ring at interpolator order 108 do not occur when function values at integra-

.tion points are estimated more accurately.

» With the understanding that relative positions of integrator points remain
fixed but their positions relative to interpolation points changes for
integrating at each interpolation point, it could be that for some combina-
tion of integration and interpolation points, interpolations, for some
integrands, are exceptionally poor or exceptionally godd on the average.

A comparison of table B-4 with table 7-1 indicates that there may be some vali-

dity to these two hypotheses. It can be observed that interpolated integrators
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actually perform better than straight integrators for low order integrations.
This can only happen as a result of opportune cancellation of errors. These
cancellations certainly depend on the relative position between interpolation

and integration points.

TABLE 8-4 Normalized interpolated integrator errors for the
circumstances of table 6-1,

: ﬁ n . A-A “.A
integrands ={8-%3) T_{h( A g) _I}Rz_R( -5;) nRzR (8-85)
souree % =(0,0°0°)  J, =(J45° 135" % = (.5, 72°, —132°)
q=3 Wahba
. /“\v,,/\\\.“‘_——/\ T
interpolator 7 Jr = (Jr, 105°,95°)
order
- 64 4,0(-4) 1.1(-3) 1.9(-4) 3.5(-4)
point {106 1.6(-4) 4,1(-4) 4.6(=5) 5.9(=5)
GL i
L156 2.2(=4) 4.9(-4) 2.6(=5) 6.5(-6)
GL order
s rl)
/8 2.9(-3) 1.1(=2) 1.7(=3) 2.5(=3)
106 | 72 1.0(-3) 2.6(-3) 3.6(-4) 2.9(-3)
point <
q=2 1 200 4,1(=4) 8.9(-4) 1.5(=14) 1.2(=4)
Wahba |
1512 1.3(=4) 2.5(-14) 4,5(-5) 6.1(=5)

In conclusion, tables 8-2 and B-3 show that interpolated integrators do not
exhibit uniform convergence for all integrands; however, data presented does
support convergence. Comparison of tables 8-4 and 7-1 shows that, though

uniform convergence is not achieved, interpolated integration should still be
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the method of choice with respect to TR integrators.

In order to examine integrator performance for non-centrally located
sources, a tremendous amount of computation is required since no analytical
formula is available for A. 1 have done the computations for one set of interpo-
lation points for the purpose of estimating errors g of equations 6-21 to 6-25.
Results are shown in table B-5. Though performance measures for several
integrands were not based on analytical formula, the reasoning which follows
supports the assertion that performance estimates are reasonable. Consider-

ing data of tables B-2 to B-4, it is observed that the performance of all
integrands differ from that of n;—zﬁ(@—fb,r) by at most an order of magnitude.
It can be observed that this is exactly the case for data of table 8-5. The point
is made by noting that I—%f—(@—@;f) is an integrand for which analytical solu-

tions are known for all source cases.
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TABLE 8-5 Performance profile of interpolated integrator finally used.
Integration performance is averaged over all interpolation
points, comments of table 8-2 apply.

Interpolator is 156 point Wahba with g=3.
Integrator is 288 point GL.

%~ (0,0°,0°) (0.4,0°,0°) (0.8,0°,0°)
3o r t r t r t
integrand
/ r(adial) = (J;,0°,0°) t(angential) = (J;,90°,0°)
® 2.52(=6) 1.30(-6) . 2.63(=5) 1.53(-5) 4,97(-3) T7.09(-4)
RQA 2.85(-4) 2.87(-4) 3.12(-8) 2,98(-4) 6.67(-3) 6.67(=-3)
:,;a——(‘f’-@ih.gg(-s) 1.86(~-5)  4.68(-5) 3.14(-5)  6.73(=3) 9.25(-4)
Be 3.33(-4) 3.44(-8)  8.13(-8) B8.68(-4)  3.19(-2) 1.88(-2)
A 1.19(-8) 1.36(-4) 9.42(-5) 8.75(-5) 2.00(-3) 8.2u(-4)
E%?ﬁ‘ 6.78(-4) 6.94(-4) 9.u48(-4) 7.69(-4) 4,56(-3) 6.07(-3)

=]

-%fh 1.46(=8) 1.49(-4) 1.50(-4) 1.54(-4) 7.41(=3) 5.10(-4)



137

8.1.2 Requirements €and 3

The fulfillment of these two requirements was supported by first, increas-
ing integrator order with interpolator order fixed and calculating the average
magnitude of the difference between successive solutions and second, increasing
interpolator order with integrator order fixed and calculating the average mag-
nitude of the difference between successive solutions at the pele points. Only
these two points were common to all interpolators. Table 8-6 displays these
differences normalized by the number of points by which the interpolated
integrator was increased and the largest of the values resulting from the first
normalization. Thus, values reported estimate the magnitude of the first
derivative of solutions with repect to interpolated integrator order normalized
by the largest value. Note that I have reported values for increasing integrator
order with the average taken only over the 2 pole points. The purpose of this is
to indicate that such an average does indeed exhibit requirement 3 giving sup-
port to trends observed in the sparse data generated by increasing interpola-

tor order. I conclude that fulfillment of requirement 3 has been observed.
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TABLE 8-6 Normalized estimates of derivatives of calculated solutions
with respect to interpolated integrator order.

function —

interpolated
integrator

order
/*NN ;

106 point 32/72
Wahba with

q=2,

derivative 1§ 72/200
estimates
averaged
over all
106 points

200/512

derivative (32/72
estimates :
averaged 72/200
over the
two pole L200/512
points

288 point
GL

average
taken over
the two
pole , | 106/156
points i

~

| 647106

] T x/y = changing from order x to order y.

.13

Are
e m————.
X y z
1 1 1
081 .093 .05
.0081 .0087 .0019
- - 1
- - .00
- - 014
1 - 1
.0083 - .23

i the difference between successive solutions was below the
resolution of the computer rendering the calculation
meaningless.

Aim
T TN
X y z
1 1 1
.086 .091 .049
.0079 .0081 .015
- - 1
- - 0043
- - ¢O16
1 - 1
0008’4 - 023
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Would these results say anything about the condition of the successive
linear systems? Perceiving the increase of interpolated integrator order as
adding a small perturbation to the system matrix corresponding to a lower

order interpolated integrator, consider

Anfn =b (8-2a)
Ari1%mi1 = Ap¥me1 +0a%me (8-2Db)
Anfmer = b =6pfman (8-2¢)

where m denotes the order of the lower order interpolated integrator and m+1
that of the higher order interpolated integrator. Then, we see that increasing
interpolated integrator order can be perceived as introducing slight perturba-
tions in the constraint vector b. From this we can say that the resuits
specified above do indicate that successive linear systems are not ill condi-
tioned. There is a bit of a problem with applying this reasoning when increas-
ing the interpolated integrator order results in changing the set of points over
which the linear system is constructed; ie., when interpolator order is
increased. This problem can be circumvented by assuming there is a subset of
the new set of points that are close or equal to points utilized by the lower
order interpolated integrator. Then, there is a submatrix of Ay, to which we
can apply the reasoning above. In conclusion, fulfillment of requirement 2 is

supported by data of table 8-6.
8.2 Final measure results

Tables B-7, located at the end of this section, show a measure similar to
equation 6-15 but protected against the possibility of a real, imaginary, or spa-

cial commponent being identically 0 at all %, Le,
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o M2

{(q’re [ Wl _q)re ' u=0)2 + (éim f w0~ ‘I’im i w=0)2} i‘x’

B

N (8-3a)
i{(ére l u=0)2 + (‘bim | u=0)2} 1§p
P
is used for ¢ (Scalar potential) and

N .

S[i [(Ak [0#0 —Ak Iu=0)2 + (Ak. IU#O _Ak‘ !w=0)2]] ! 2

P LK e e im HN P
. (8-3b)
S{HKM [ u=0”2 + ”}:n'nt u=0“2} I ip
P

is used for A (Vector potential). I also report these measures predicted by two
unbounded conductor models with respect to the unbounded conductor model
that is frequency independent. For equations 4-21, the corresponding

unbounded conductor model is

> Mo 1 COSOpT + € SinGpr
Ay, = JZ?FE; SiNGpT — ;mCOSOFT (8-4a)
| Red| om  emw|[coserr +epsinep

= - 2nof Rf [‘sin“ Oin 13111917'1' — €jmCOSepT (8-4b)

For equations 4-20, the model is that above with e;, =0 Measures B8-3 for

unbounded conductors are, for &,

IR SR,
Re
's[[ 112,2 T[(sin”)ngei%x(Uii*'(Einw)z)—ZSmwomeim
J Pe 112 (8-5a)
f 2| Re d
g
s | Rf ]

and for f\,
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(8-5b)

These were calculated with a high order IMT integrator.

Figure B-1 provides a guide to reading the tables. Error intervals were cal-
culated with omission of g terms from equations 6-25 as suggested by the dis-
cussion in section 7.3.3. Parameters R, ¢, &, and Il were chosen appropri-
ate for modeling a small brain (SML, table 8-7a), a brain of typical size (MED,
table 8-7b), a large brain (LRG, table 8-7c¢), a typical brain sized cavity filled
with cerebral spinal fluid (CSF, table 8-7d), and a typical brain sized conductor

consisting of bone (SKL, table B-7e).

The choices of epr were sufficient to investigate the entire possible range [0,

2] since @pre[m, 2nw) simply introduces an overall (-) sign in épr<[0, ) equa-

tions and, for &p€| g— ), consider the following: w=0 solutions suggest
Kreieﬂ+g_= Aim oy (8-6a)
;&imzew%:ﬁrei% (8-6b)
@,el%+% = —Oim [ op (8-6¢)
rbimiewg_:@re!ew (8-64)

Inserting these guesses into equations 5-4 appropriate for equations 4-20
evaluated at (—)m+g— give, using representative notation for source terms and

kernels,
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-1 01, | 4 —Sinépr
0 lAi’:,'eFr»ile COSOpT
v ~1]-1 o], . lioll-1 0
+fK3111 lhO 1Airr;ien.i"'K'A’2[o 1 [0 14’;51‘%1 (B-7a)
I'--1 0 £ine|[—sinepr] -
[0 re!onif J[—E W O [COSGF'I'
0 -1 1 0jlj-1 0
+f 1 1 L[+ Ky o |+Kalo 1”[0 1}‘1’31%3 (8-7b)

showing that, indeed, equations 8-8 are solutions to the ep1~+12T- equations. Thus

only épr€|0, —g—) need be considered.
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Figure 8-1, below, is a guide to reading tables 8-7.

source
orientation —. radial tangential
source
eccentricity /I)\\
0.0 TABLE??
0.4
0.8

Within each block, the format is

W
Rc Tin Eip@ =l ’é‘;r—

-~ -»
X Jr

-
q)measure.unbounded‘ €, #0 Ameasure.unbounded ) € *0
(equation 8—5a) {equation 8-5b)

-

q)measure. unbounded 1 €,,=0 Ameasure, unbounded i €im=0
(equation 8-5a) (equation 8-5b)

&

Pmeasure, bounded: 7 g :
{equatiime-aa) ~ower estimate upper
bound bound

gmeasure, bounded: s
e T lower estimate upper
bound bound

pr

etc.
figure 8-1
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0.04 2.17 0,00044 0.00815 50
000 50880
8.002820 Vp 2.000232

§B 0.002588 Vp 0.060000

lwrest errest upr errest
Sp 9.001421 0.001646 ©.801882
Vp 0.001925 0.002419 0.003009
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.300266
Vb 0.000000 0.000000 0.900762
45

lvrest errest upr errest
Sp 0.000000 0.000000 ©.000266
Vp 0.000000 06.000000 9©.000762
68

lwrest - errest upr errest
sp 0.000000 0,000002 0.000267
vp 0.080709 0.801176 0.901808
.64 0.17 0.00044 0.,00015 50
p.4006 500
Sp 0.002772 vp 0.808225
Sp £.002588 Vp 9.000009
8

lwrest errest upr errest
Sp 0.001740 0.001895 ©.882065
Vp 2.001759 0.002167 6,.002720
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.000232
VP 9.000000 @.000000 0©.900915
45

lwrest errest upr errest
Sp 0.000000 0.000000 ©0.800232
Vp 0.000000 ©.000000 0.8008915
68

lwrest errest upr errest
Sp 0.000000 ©,000003 0.800233
Vp 0.000699 ©.001082 0.001715
#.04 0.17 0.00044 0,00015 50
p.8080 50¢0
Sp 9.902669 Vp 6.000200
Sp 9.902588 Vp 0.000000
a

lwrest errest upr errest
Sp 0.002552 0,.002842 0,.803830
Vp 0.000000 ©.8000011 0.038207
22

lwrest errest upr errest
sp f.000000 ©.000000 ©.001887
Vp p.000000 0.000088 0.038414
45

lwrest errest upr errest
Sp 0.000000 ©.000000 ©.001887
Vp 0.080000 ©.000000 0.038414
68

lwrest errest upr errest
Sp 0.000000 ©.000004 8.,001888
vp 0.000000 0.000006 0.038318

TABLE 8—7aO

.04 8.17 0.00044 8.80015
8.4806 59 ¢

Sp 8.802798 Vb 0.000225
Sp 8.802588 Vp 0,000008

lwrest errest
8.001663 0,001837
0.000782 0.081149

[\~

g8

lwrest
8 .000000
6 .900000

errest
¢ .000000
0 .080008

558

lwrest
0 .000000
g .000000

errest
@ .,000000
@ .0000800

a8

lwrest
2 .000000
0 .000900

errest
0 .080002
¢ .000008

L]

4 0.17 0.00044 9.00015
88 599

8.002695 Vp 0.800200
9.002588 Vp @.990000

[~ R~

.0
8

=88

lwrest
9.801994
0.000001

errest
8.092593
8.900012

I8

lwrest
2.000000
0 .000000

errest
9.000000
¢.000801

&g B

lwrest
2 .000000
2.000000

errest
0 .0000008
0.000801

oY

lwrest
2 .000000
2 .800000

errest
¢ .060003
¢ .800006

I8

50

upr errest
8.002023
9.001732

upr errest
0.808240
2.9008864

upr errest
?.000240
2.000864

upr errest
2.008241
0.000867

50

upr errest
2.003825
8.619448

upr errest
8.001931
£.819539

upr errest
8.001931
8,819539

upr errest
0.091932
0.0819493
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8.04 6,17 0.8011 0.00015 500
098 500
Sp 0.007285 vp 2.000735
Sp 0.886471 vp 0.800680
g

lwrest errest upr errest

0.004676 0.804935 0.085198

0.0041990 0.0047090 0.805265
22

lwrest errest upr errest
Sp 0.000000 0.000006 9.000301
VP 0.000000 0.000001 ©.900764
45

lwrest errest upr errest
Sp 0.000000 0.000000 0©,000301
Vo 2.000000 0.000000 ©.000764
68

lwrest errest upr errest
Sp 0.061392 0.9001646 ©.801914
Vp 0.001845 0.002341 0.002934
0.04 0,17 2.0011 6.00015 500
2,480 500
Sp 9.807052 Vp 8.000714
Sp 0.006471 Vp 9.000000
2

lwrest errest upr errest
Sp 2.985495 0.905679 0.0085870
vp 9.003933 0.004349 0©.004847
22

lwrest errest upr errest
sp 0.000000 0.000000 ©.000268
Vp 2.000080 0.000001 0.800916
45

lwrest errest upr errest
Sp 7.000000 0.000000 0©.000268
Vp 0.000000 0.000001 ©.000916
68

lwrest errest upr errest
Sp 2.001717 06.891895 0.202092
vp .061760 0.002169 0.002723
0.04 9,17 0.0011 0.00015 500
#8606 5840
Sp 0.006728 Vp 8.000632
Sp 8.006471 Vp 0.000000
0

lwrest errest upr errest
Sp .005299 0.005680 0.806681
Vo 0.000000 2.001526 0.038709
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.802269
Vp p.000000 ©.000001 ©.838429
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.062269
v p.000008 0.008001 0.838429
68

lwrest errest upr errest
Sp 0.002506 ©0.002843 0.804104
Y~ 8.000008 9.000012 £.838221

TABLE 8—7.21l

8.64 0.17 0.0011 0.90015 500
8,400 59 0
Sp 0.807109 Vb 0.900714

Sp 9.006471 Vp 0.060000
[

lwrest errest upr errest
Sp 0.0053062 ©.005585 @.005714
vp 0.061917 ©.002303 0.002814
22

lwrest errest upr errest
Sp #.000000 ©.000000 @.000276
P 0.000000 ©.000001 ©.900865
45

lvwrest errest upr errest
sp 0.000000 ©.000000 0€.000276
vp 0.000000 0,.000001 @.000865
68

lwrest errest upr errest
Sp 0.001638 0.901837 8.0020852
vp 0.000783 0.001150 0.681734
¢.04 8,17 0.0011 9.00015 500
p.800 59%890
Sp 0.0068186 Vp 0.000632
Sp 9.806471 Vp 0.900000
2

lwrest errest upr errest
Sp 0.006889 @.007769 0.809108
1) 8.000048 ©,.901862 0.020116
22

lwrest errest upr errest
Sp 0.000000 0.000000 @,002522
Vo 0.00000¢ 0.000002 0.819547
45

lwrest errest upr errest
Sp 0.000000 0.,000000 0,002522
vp P.000000 ©.000002 0.019547
68

lwrest errest upr errest
Sp 9.001851 @,002593 0.804305
VP ¢.000000 ©,000011 0.,019455
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0.04 6,17 0.9018 0.80015 1000
pog 500
Sp 0.011629 Vp @.001041
Sp 8.8190588 Vp 6.000000
)

lwrest errest upr errest
Sp 2.009581 0@.009857 0.810136
Vp 0.097448 0.00795 0.8085086
22

lwrest errest upr errest
sp 0.000000 0.000000 0.000322
Vp 0.000000 ©.000001 ©.008765
45

lwrest errest upr errest
Sp 0.000000 ©.000000 0©.000322
Vp 0.000000 0.000001 0.000765
68

lwrest errest upr errest
Sp 9.003016 0.803291 ©.883574
Vp 0.002952 ©.003457 0.004034

#.04 9.17 0.0018 0,.00815 1960

P.4060 5009
Sp 0.011412 vp 9.861611
Sp 9.0198588 Vp 9.000000
g

lwrest errest upr errest
Sp 8.011141 ©.811341 0.011545
vp 0.008311 0.908727 0.009192
22

" lwrest errest upr errest

Sp 0.900000 0.000000 ©.000299
vp 0.000000 0.008001 0,800917
45

lwrest errest upr errest
Sp 0.000000 0.000000 0O .000299
P 8.000080 0.000001 0.600917
68

lwrest errest upr errest
Sp 0.003599 ©.003788 ©.093997
vp 0.002844 ©,003258 ©.003778

8.04 8.17 0.0018 0.00015 1000
P8 08 5009

Sp 8.010953 Vvp 6.800895

Sp 8.018588 Vp 0.000000

lwrest
9.018868
8.800554

errest
8.011344
0.004578

upc errest
8.012277
2.939853

R B

lwrest
0 .060000
6 .000000

errest
2 .000000
0 .000002

upr errest
8.002561
9.038438

5S8

lwrest
0 .000000
g.000000

errest
#.000000
2.0008002

upr errest
0.002581
9.038438

upr errest
9.804278
0.838230

oS 8

lwrest
8.002479
0.000000

errest
0.002843
0.900012

IS

TABLE 8—7a2

6.04 8.17 9.0018 .00015 1000
8,400 59 @

Sp 0.011493 vp 2.881011

Sp 0.818588 Vp 8.,300000

g

lwrest errest upr errest
Sp P.008946 0.009166 0.009389
Vp 0.004216 0.804608 0,.005071
22

lwrest errest urr errest
Sp 9.000000 ©.000000 0,008298
vp 0.000008 ©.00000)1 ©.800866
45

lvwrest errest upr errest
Sp 2.000000 0.000000 ©.000298
P 2.000000 ©.000001 0.000866
68

lwrest errest upr errest
Sp 0.003454 0.003672 ©.003899
Vo 9.001912 ©.00238¢ ©.062813

B.84 6.17 0.0018 9,00015 1809
6,868 59989

Sp 0.611069 Vp #.900895
Sp 0.818588 Vp 0.000000
g

lwrest errest upr errest
Sp 0.011887 ©.912929 @.914358
Vp g.061621 ©.683725 0.820929
22

lwrest errest upr errest
Sp 0.000000 ©.000000 0.002880
P 0.000000 0.000003 @.019552
45

lwrest errest upr errest
Sp 0.000600 ©.006000 0.002880
w 0.000000 ©.000003 0,819552
68

lwrest errest upr errest
Sp 0.004247 0©.605182 0.006895
P 0.000000 ©.000017 0.919413
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.04 8.17 9.005% 0.06015 10000
P08 500
Sp 8.836262 vp 6.063321
Sp 0.032941 vp 0.000000
g

lwrest errest upr errest
Sp 8.827371 0.827774 ©0.828179
Vp 0.016066 0.916562 0.017076
22

lwrest errest upr errest
Sp 0.000008 0©.000000 ©.000477
Vp 9.000000 0.000005 0.900774
45

lwrest errest upr errest
Sp 0.000000 ©.000000 0.000477
vp 0.000000 0.000003 0.000773
68

lwrest errest upr errest
Sp 0.01197¢ ©.0911483 0.011896
VP 0.007366 ©0.007881 0.008431
8.84 8.17 8.005 0.000615 10000
P4 00 508
Sp 0.835576 Vp 08.803226
Sp 8.832941 Vp 0.500000
8

lwrest errest upr errest
Sp 0.031617 ©.831924 0.932234
Vp 0.023955 0.824371 ¢.924811
22

lwrest errest upr errest
Sp 2.000000 ©.000000 0.000452
Vp 9.000000 0.000003 ©.000924
45

Jwrest errest upr errest
Sp 0.000000 0.000000 0.900452
vp 0.000008 0.900003 0.000924
68

lwrest errest upr errest
Sp 0.012900 9.913219 0.813528
vp 0.90834¢ 0,.008761 0.009231
6.04 2.17 0,005 0.88015 19000
08060 500
Sp 9.034166 Vp 0.002855
Sp 8.832941 Vp 9,000000
9

lwrest errest upr errest
Sp 0,038455 0.039394 0.048716
Vp 2.814963 0.023185 0.050453
22

lwrest errest upr errest
Sp 0.000000 ©.000008 0.004225
Vp 0.000000 0©.000005 ©.038585
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.004225
P 0.000000 0.000005 8.838505
68

lwrest errest errest
Sp #.013421 0.014163 @.815837
P #.001331 9.006121 ©.048571

TABLE 8-733

9.04 8.17 9.6656 0.06015 10000

0400 59290
Sp 0.035829 Vp 8.003226
Sp 0.832941 Vp 0.000000

lwrest
0.030618
8.826121

errest
0.930958
8.826520

NS Y

lwrest
0 .000000
2.000000

errest
¢ .009000
0 .000003

558

lwrest
0 .800000
0 .000000

errest
0.900000
2.0000083

o3 8

lwrest
0.012468
8.0085383

errest
8.812885
9.,805778

g8

20 m

00 5990
8.034476 Vp 0.002855
9.032941 Vp 0.000000

=gY

lwrest
0.836446
2.020553

errest
6.838479
0.026038

NS Y

lwrest
8.000000
0 .000000

lwrest
2 ,000000
0 .000000

errest
0.000000
0 .900009

errest
9 ,000000
2 ,.000009

538

T8

lwrest
8.013592
0.002411

errest
7.015486
6.005594

38

upr errest
0.03128%
8.826936

upr errest
9.000458
0.00087]

upr errest
0.000458
6.080871

upxr errest
9.013148
0.606234

04 8,17 2.0056 0.000615 10000
8

upr errest
9.641005
0.837427

upr errest
0.0085531
9.819589

upr errest
P .995531
8.819588

upr errest
2.018450
2.821952



f.08 8.17 0.80044 0.00015
606086 50680
Sp 8.003052 Vp 0.000464
Sp 0.002588 Vp 0.800000
"]

lwrest errest
Sp 0.001381 ©.901646
vp 0.001817 0.002312
22

lwrest errest
Sp 0.000000 0.000000
Vp 2.000000 0.000001
45

lwrest errest
Sp 0.000000 0.000000
vp 0.000000 0 .000000
68

lwrest errest
Sp 0.000000 0,000002
vp 0.000662 0.901127

8.08 6.17 0.00044 9,.00015
6400 500
Sp 9.8082956 Vp £.899451

Sp 9.002588 Vp 9.000000
g

lwrest errest
Sp 0.001708 0.091895
vp 0.081760 ©.902169
22

lwrest errest
Sp 000000 0.000000
vp £.000000 0,.900001
45

lwrest errest
Sp 0.000000 0O,.000000
Vp 0.000000 0,000001
68

lwrest errest
Sp 0.000000 0,.000003
Vp 0.000699 0,.001084
0.08 98,17 0.00044 0.00015
6.8 006 50890
Sp 0.002752 Vvp 0.908399
Sp 0.082588 Vp 0.900000
0.

lwrest errest
Sp 0.002488 0,.002843
Vp 0.000000 6 .000012
22

lwrest errest
Sp 0.000000 02.000000
Vp 0.000008 0.000002
45

lwrest errest
Sp 0.000000 0.000000
Vp ¢ .000000 0.000082
68

lwrest errest
Sp §.000000 0.000009
vp 0.080000 0.000007

148
50

upxr errest
0.061926
0.002907

upr errest
2.800315
0 .000765

upr errest
0.000315
2.000764

upr errest
008316
0.001764

5@

upr errest
9.902103
0.002724

upr errest
0.000283
0.800917

upr errest
0.000283
0.080917

upr errest
0.000285
0.001719

50

upr errest
8.004218
0.038227

upr errest
0.002422
0.938435

upr errest
0.002422
0.038435

upr errest
¥.802428
9.038331

TABLE 8-7b

0.8 0,17 0.00844 0.006015
.480 5989
Sp 9.892992 Vp 0.000451

Sp 0.082588 Vp 0.800000
)

lwrest errest
sp 8.901628 §.801837
vp ¢.000783 9,001151
22

lwrest errest
Sp 0.000000 0,.900000
Vp 0.000000 0 .000001
45

lwrest errest
Sp 0.000000 0,000000
P 0.000000 0.000061
68

lwrest errest
Sp 0.000000 ©.000003
VP 0.080000 0.000008

B.08 9,17 6.00044 0.00015
28060 590

Sp 0.002803 Vp 0,000399
Sp 0.002588 Vp 9,000000
]

lwrest errest
Sp 2.00179% 0.882593
p 0.000002 0.000011
22

lwrest errest
Sp 0.000000 0,.000000
vp 0.000000 ©.000003
45

lwrest errest
Sp f.000000 0.000000
v 0.000000 0.000003
68

lwrest errest
Sp 0.000000 0©.000003
Vp 0.000000 0.000006

50

upr errest
8.002063
8.801735

upr errest
9.00029%
0.000865

upr errest
0.000290
0.000865

upr errest
0.008292
0.000868

50

upr errest
0.004504
0.019457

upr errest
8.002758
0.819550

upx errest
2.082758
8.019558

upr errest
0.002760
£.019503
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.08 8,17 6.8011 9.09015 500
pee 5090
Sp 0.807939 Vp 2.861468
Sp 8.006471 Vp 9,.000000
@

lwrest errest upr errest TABLE 8—7bl
sp 0.004540 ©.004929 0.805328
Vp 2.003604 0.004096 0.004656
22

lwrest errest upr errest
Sp 0.000000 0.000000 0©.000455
o 0.000000 0.000004 0.000773
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.900455
Y 0.000000 0.000003 ©.000772
68

lwrest errest upt errest
Sp 9.001267 ©.001643 8.002051
Vb 0.001562 ©0.002047 0.082648
2.08 6.17 8.0011 9,00015 500 ¢.68 0,17 0.0011 0.906015 500
0400 5020 P4 00 590
Sp 0.807637 Vp 8.001426 Sp 8.807749 Vp 0.801426
Sp 9.006471 Vp 0.000000 Sp 0.866471 Vp 06.800000
) )

Jwrest errest upr errest lwrest errest upr errest
Sp 0.005381 0.80573 0.805980 Sp 0.005180 0.005498 ©.005830
A 0.003937 0.884357 0.004860 Vb 9.001920 ©.002368 0.802823
22 22

lwrest errest upr errest lwrest errest upr errest
Sp 0.000000 0.000000 0.000429 Sp 0.000000 0.900000 0,.800435
Vp 0.000000 ©.900003 6.000923 Vb 0.000000 0.000083 0.000870
45 45

lwrest errest upr errest lwrest errest upr errest
Sp 0.000000 ©.000000 0.000429 Sp 0.000000 ©.900000 ©.000435
P 0.000000 0.000003 0.000923 P 0.000000 0.800003 0,000870
68 68

lwrest errest upr errest lwrest errest Upr errest
Sp ¢.0081618 0,001892 0,002213 Sp 9.601527 0.001833 0,062178
Vo 2.601761 0.002174 0.002734 VP 0.600784 0.801154 0.001741
0.08 6,17 ¢.0011 8,00015 500 ¢.08 0,17 60,0011 0,00015 500
p.8806 50609 p.8808 599
Sp 0.006994 Vp 8.001263 Sp 8.607152 Vp £.801263
Sp 8.006471 Vp 0.000000 Sp 0.006471 Vp 0.9080000
g 2

lwrest errest upc errest lwrest errest upr errest
Sp g.005682 0.005678 0.807760 Sp #.003671 0,6085175 0.808672
\zlp 0.000002 0.801531 ©.038775 Vb 0.000009 0,000017 0.019439
2 22

lwrest errest upr errest lwrest errest Urr errest
Sp 0.000000 0.000000 ©.003967 Sp 0.000000 0.000000 ©,005142
Vp 0.000000 0.000004 0.038494 vp 9.000000 0.0900008 ©,.819583
45 45

lwrest errest upr errest lwrest errest upr errest
Sp 9.000000 0.000000 0.003967 Sp 0.000000 0©.000000 0.005142
Vp 0.000000 0.000004 0.038494 A o) 0.000000 0.000008 ©.819582
68 68

lwrest errest upr errest lwrest errest upr errest
Sp 0.000000 0©,000027 ©.803996 Sp @.091319 0.002588 @.806645
Vp 0.000000 0.000008 ©.038389 Yo 0.0000060 0.000013 0.019487
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8 8.17 0.0018 2.00015 1000
8 5090
8.012667
#.010588

0.8
28

Sp Vp 6.002079
Sp Vp 0.000000
@

lwrest
0.006100
0.004385

errest
0.806561
0.004845

upr errest
0.007033
0.0853708

N

lwrest
¢ .000000
0.008900

errest
0 .000000
0 .600007

upr errest
0 .000540
0.000778

538

lwrest
¢.000000
¢ .000000

errest
9 .,090000
2.0000085

upr errest
0.000540
0.600777

aFd

lwrest
2.002825
g.002413

errest
8.003282
0.002926

upr errest
9.0083760
€.003523

LY

6.08 9.17 0.0018 0.00015 1600
400 5080

Sp 0.612239 Vvp 0.002020
Sp 9.916588 Vp 0.000000
g

lwrest errest upr errest
Sp 0.009982 ©.009435 06.909801
v§ 0.006131 0.006555 0.9070639
2

lwrest errest upr errest
Sp 0.000000 0.000000 ©.008517
v 0.000000 ©.000004 0.000926
45

lwrest errest upr errest
sp 0.000000 ©.000000 0.000517
vp 0.000000 ©.000004 0.000926
68

lwrest errest upr errest
Sp 0.003435 0.063777 0.004155
vp 0.002845 0.003266 @.803793

8.08 0.17 0.0018 0.00015 1000
0888 500
Sp 0.811323 Vp 0.001788

Sp 0.018588 Vp ¢.000000
0

lwrest errest upr errest
Sp $.010534 ©.811329 0.013498
vp 0.000548 ©,004588 ©.039954
22

lwrest errest upr errest
Sp 2.000000 @,.000000 ©.064906
vp 0.0000008 0.000005 0.038538
45

lwrest errest upr errest
Sp 0.000000 ©.000000 ©.004906
vp 0.000000 ©.008005 ©,.038530
68

lwrest errest errest
Sp #.002232 0.002837 @.006282
vp p.000000 0.000014 ©.838320

2.08 6,17 0.0018 0.00015 1960
0,400 598

Sp 8.812399 Vp 0.002020

Sp 8.818588 Vp 0.086000

lwrest
2 .006936
2.003068

errest
.807318
0.003462

upr errest
9.807715
8.803949

g8

lwrest
8 .000000
g .000008

errest
0 .000000
9.0008004

urr errest
0.008523
0.000873

55E

lwrest
0.000000
.000000

errest
0.000080
0 .000084

upr errest
0.900523
¢.080873

oY

lwrest
P.001466
2.000783

errest
0.001829
8.881155

upr errest
0.802248
2.091744

S8

0.08 8,17 0,0818 8,00015 1000
0800 5990
Sp 8.811553 Vvp 9.001788

Sp #.016588 Vp 0.000000
@

lwrest errest upr errest
Sp 0.008239 0,016325 9.014343
e 8.001013 0.003729 0.821629
22

lwrest errest upr errest
Sp 9.000000 ©.000000 0.006588
;) ¢.000000 0.900011 0.019603
45

lwrest errest upr errest
Sp 0.000000 0.000000 ©.006588
p 0.000000 ©0.000011 @.019602
68

lwrest errest upr errest
Sp 0.001099 @.002583 ©.008007
Vp 0.000000 ©0.000015 0.819506
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8 8.17 0.865 @.80015 10000
8 580
8.039562
8.832941

')
)
Sp
Sp
)

)
)
Vb 6.006620
Vp 2.200000

lwrest

0.003840
@ .805506

errest

9.804808
0.0805657

upr errest

8.085847
9.005933

lwrest
2 .000000
2 .000000

errest
2 .000000
0 .000022

upr errest
8.001167
¢.900812

53¢ RIQ

lwrest
¢ .000000
0 .000000

errest
0 .000000
0.000015

upr errest
0.881167
¢ .000808

eFd

lwrest
9,080697
8.082511

errest
8.801584
8.002805

upr errest
0.002660
0.903247

38

8.08 9.17 8.0056 0.80015 18000
p400 50890

Sp 9.638201 Vp 0.986430
Sp 8.032041 Vp 0.000000
8

Jwrest errest upr errest
Sp 0.017684 0.018469 0.019299
vg 2.014837 ©.815284 0.915763
2

lwrest errest upr errest
Sp 0.000000 0.000000 ©,.001172
vp 0.000000 0.000007 ©.000951
45

lwrest errest upr errest
Sp 0.000000 0.000000 ©.001172
P p.000000 0.000007 ©.000951
68

lwrest errest upr errest
Sp 0.002973 0.003688 0.004570
/2] 9.002797 0.803235 0.083785

p.88 8.17 9.8056 0,.00015 19060
p.8868 5080
Sp 9.835286 Vp 0.005688

Sp 9.032941 Vvp 0.060000
g

lwrest errest upe errest
Sp 0.044971 £.,9469%1 0.051477
Vo #.824185 0.233819 0.958883
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.011920
VP 0.000000 0.000815 9.2338795
45

lwrest errest upr errest
Sp 0.000000 0.000000 ©.811920
Vp 0.000000 0.000015 0.038794
68

lwrest errest upr errest
Sp 0.006887 0.908339 Mhl6082
Vp 2.000000 ©.003023 0.039619

TABLE 8- 7b3

6.08 8,17 0,005 0.00815 10000
P.400 5990

Sp 8.838708 Vp 0.006430

Sp 8,032941 Vp 8.000000

)

lwrest
0.013473
0.008762

lwrest
0.0080000
0.000000

errest
8.014322
9.909175

upr errest
015208
8.009632

S8

errest
0 .080000
¢.000008

upr errest
8.601171
0.000891

558

lwrest
0 .000000
4 .000000

errest
000000
@ .0008008

upr errest
8.001171
2.0060891

oY

lwrest
¢.001028
2.060758

errest
8.881766
2.0801139

upr errest
8.802753
001746

S8

#.08 0,17 2.005 0.00015 10000
68060 59920

Sp 8.036018 Vp 8.805688
Sp £.032941 Vp 6.000000
g

lwrest errest upr errest
Sp 8.824733 9.836221 ©.848289
A/ 0.014985 0.020369 ©.032779
22

lwrest errest upr err
Sp 0.000600 0,000000 ©,.917317
Vp 0.000000 0.000032 0,019747
45

lwrest errest upr errest
Sp g.000000 ¢©.000000 ©.917317
vp 9.000000 0.800032 0.019744
68

lwrest errest upr errest
Sp 9.001574 @.005028 6.819875
vp 0.000000 0.000048 ©0.019603



¢.12 0,17 0,00044 0,00015
600 5080
Sp 9.003284 Vp 0.800696
Sp 0.002588 Vp 0.000800
4]

lwrest errest
Sp 9.801315 ©.001645
Vp 0.001661 0,882148
22

lvwrest errest
Sp 0.000000 ©.000000
Vp 2.000008 0.000003
45

lwrest errest
Sp 0.000000 9 .000000
Vp 0.000000 0,000002
68

lwrest errest
Sp 0.000000 0.000003
vp 0.000597 0.9010851

0.12 8.17 0.00644 0.00015
6.400 508

Sp 0.093142 Vp 0.008676
Sp 0.002588 Vp 0.000000
)

lwrest
2.081655
9.001761

lwrest
0.900000
2 .000000

errest
2.801893
0.862172

S8

errest
0 .000000
0 .000002

5§ 8

lwrest
2 .000000
0.000000

errest
0 .000000
0,.800002

oFY

lwrest
2.0008000
¢ .000699

errest
0.000005
2.901086

I8

.12 6.17 9.80044 0.86015
0800 5080

0.802835 Vp #,.000598
0.002588 Vp 2.000000

=88

lwrest
0.0082387
0.000001

errest
0.092842
8.001523

NS

lwrest
9 .000000
2 .000000

errest
¢ .000000
2 .000003

5F8

lwrest
2 .000000
0.000000

errest
2 .000000
¢ .000003

aFQ

lwrest
0 .000000
0 .000000

errest
g .0000818
¢ .000008

G

152
50

upr errest
9.0081999
0.802745

upr errest
0.00039%
g.000778

upr errest
9 .00639
9 .000769

upr errest
2.000398
8.001692

50

upr errest
9.002167
2.802736

upr errest
0.000368
2.000920

upr errest
0.098368
0.000920

upr errest
9.080371
9.001723

50

upr errest
2.004924
9.038854

upr errest
0.003317
0.838469

upr errest
0.0083317
8.938469

errest
g§§a333n
2.0838364

TABLE 8~7cO

9.12 8.17 9.00044 0.00015
0,400 5980
Sp 9.803194 Vp 0.000676

Sp 6.002588 Vp 0.000000
"]

lwrest errest
Sp 9.001579 0.861835
gg 0.000784 0.001153

lwrest errest
Sp 0.000000 0.000000
vp 0.000000 ©,.800002
45

lwrest errest
Sp 2.000000 0,000000
Vp 0 .000000 0.900002
68

lwrest errest
Sp 0.000000 0.900003
Vp 0.000000 0O.800007
8.12 6,17 0,80044 0,06015
2,800 59280
Sp 8.9082912 Vp 6.080598
Sp 9.002588 Vp 0.000000
2

lwrest errest
Sp 9.901503 @.802591
vp 0.000005 0,000012
22

lwrest errest
Sp 0.000000 0,000000
vp 2.000000 0O.000006
45

lwrest errest
Sp 0.000000 0.000000
Vp 0.000000 0.000006
68

lwrest errest
Sp 9.000000 ¢ .000004
Vp 0.000000 0 ,000007

50

upr errest
0.002130
9.881739

upr errest
6.000374
9.000868

upr errest
2.800374
2.000868

upr errest
8.000376
2.000878

58

upr errest
0.005724
0.019473

upr errest
0.004141
6.819569

upr errest
2.004141
9.619569

upr errest
9.004143
#.819521
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@.,12 9,17 0.0011 9.08815 580
geo 5080
.008671

Sp @ Vp 0.002261
Sp 8.006471
0

Vp ©.000000

lwrest

0.681056
9.801689

errest

0.001629
9.881955

upr errest
2.002276
0.002427

lwrest
0.000000
2.000080

errest
0 .0000800
0.000013

upr errest
2.000712
0.000788

538 RId

errest
0 .000000
¢.000008

lwrest
0,.000000
9 .000000

upr errest
¢.000712
2.008786

ER

lwrest
0.0000080
0.000519

errest
0.000013
0.000962

upr errest
8.000724
0.001622

g

8.12 8,17 6.0011 0.000615 500

0400 500
Sp 9.808225 Vvp 9.002138
Sp 0.806471 Vp 0.000000
9

lwrest errest upr errest
Sp 0.003308 0.003759 §.004275
gg 9.002839 0.003265 0.003798

lwrest errest upr errest
Sp 0.000000 ©.060000 0.000697
Vb 0.000000 0.000004 ©,.000933
45

lwrest errest upr errest
sp 0.000000 0.000000 0.000697
') 0.000000 0.000004 ©.0008933
68

lwrest errest upr errest
Sp 0.000000 0.000019 0.000712
vp P.000693 0.001088 @.001737

0.12 8,17 9.0011 9,00015 560

08088 5080
Sp 0.067257 Vp 9.001892
Sp 0.006471 Vp 0.000000
8.

lwrest errest upr errest
Sp 0.804734 0.005651 0.009985
vp 0.000009 0.003046 ©.039533
22

lwrest errest upr errest
Sp 0.000000 0¢.000000 0.006810
vp 0.000000 0.00€007 0.838601
45

lwrest errest upr errest
Sp 0.000000 ©0.000000 0.006810
vp 0.000000 0.000007 0.838601
68

lwrest errest upr errest
Sp 0.000000 ©.8000859 ©.006854
Vp P.000000 0.000009 @.838496

TABLE 8~7c1

6.12 6.17 0.8011 9.00015 500
.400 5990

Sp 6.908389 Vp 9.082138
Sp 0.006471 Vp 0.900000

2

lwrest
0.001343
0.909780

errest
0.801817
9.001154

upr errest
0.002388
0.001748

RS

lwrest
2 .000000
0.800000

errest
¢ .000000
¢.000004

upe errest
0.000701
@.00e877

538

lwrest
2 .000000
0 .000000

errest
0 .000000
@ .900004

upr errest
0.080701
2.000877

R

lwrest
¢ .,000000
2 .000000

errest
0.000014
¢ .0000809

upr errest
0.000711
6.000879

FY

#.12 0.17 0.0011 0.00015 500
8.8068 5929
Sp 8.007497 Vp 0.801892

Sp 6.896471 Vp 0.000000
2

lwrest errest upr errest
Sp 0.002742 ©.085141 0.812535
w 0.000019 ©.006025 ©0.91949%
22

lwrest errest upr errest
Sp 0.080000 0.000000 0.809522
A 0.000000 0.000016 0.819642
45

lwrest errest upr errest
Sp 0.000000 ©.000000 0.809522
Ve 0.000000 0.000016 0.019648
68

lwrest errest upr errest
Sp 0.000000 0.000017 ©.009531
1Y) 0.000000 0.000018 90.019592
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0.17 2.0018 8.00015 1000
6 500
Sp 0.613704
Sp 0.010588

8.12
00

Vb 8.803116
Vb 6.000008

lwrest
0.0000816
¢ .800993

errest
0.000024
8.001097

upr errest
0.008919
#.081551

RS

lwrest
2 .000000
2.000000

errest
¢ .000000
9 .000018

ur errest
9.0009%04
2.0800799

539

lwrest
0.000000
2 .000000

errest
0 .800000
0.000012

upr errest
0.000994
2.00079%

ER

lwrest
9.800000
0.000750

errest
0.000024
2.001097

upr errest
2.000925
0.001793

S

.12 6.17 0.0018 0.00015 1000
8408 S080

Sp 6.613869 Vp 0.083027

Sp 8.610588 Vp 0.088990

(]

lwrest
0.005018
0.803916

errest
£.005602
9.004349

upr errest
0.096258
9.004869

lwrest
0 .000000
0 .000000

errest
0,000000
0.000004

upr errest
0 .000897
2.000940

5F8 RBIE

lwrest
6 .000000
0.000000

lwrest
0.900000
0.000685

errest
0.0008000
0.000004

upr errest
2 .000897
0 .000940

o33

errest
0.000031
0.001084

upr errest
0.800923
8.801741

G

8.12 .17 9.8018 ¢.00015 1000

P800 5060
Sp 0.911698 Vp 6.002679
Sp 0.018588 Vp #.900000
g .

lwrest errest upr errest
Sp 9.012789 0.014037 0.018429
gp 6.002117 0.807622 0.041540
2

lwrest errest upr errest
Sp .000000 ©.000000 0.808937
\Y o) .00000€¢ 0.000009 0.038682
45

lwrest errest upr errest
Sp 0.000000 ©.000080 0,.008937
vp 0.000000 0.000009 0,038681
68

lwrest errest upr errest
Sp 000000 ©.000086 0.909003
vp 8.000000 ©.000008 0.838576

6.12 9.17 0.0018 ¢,00015 1800
P40 5%¢@
Sp 8.613304 Vp 8.903027

Sp €.010588 Vp 0.000000
0

lwrest errest upr errest
Sp 0.002985 0.003614 ©,.004327
\273 0.001902 0.002299 @,.902826

lwrest errest upr errest
Sp 0.000000 ©.00000¢ 0,.090899
) 0.000000 ¢.000004 0.000882
45

lwrest errest upr errest
Sp 0.000000 0.000000 0O.000899
o) 0.000000 ©,.000004 0.0008682
68

lwrest errest upr errest
Sp 9.000000 0.000025 ©.900919
p 0.000000 0©.000010 ©.000884

8.12 8,17 8.0018 0.80015 1000
P8GO 590

Sp ¢.012048 Vp 9.802679

Sp 0.810588 Vp 0,000000

lvwrest errest upr errest
Sp 0.006673 0.810214 0.619323
w 0.000899% 0.003717 0.021189
22

lwrest errest upr errest
Sp 0.800000 ©.000000 ©.012790
;) 0.000000 0.000022 ©.819686
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.012790
Vp 0.000000 ©.800022 0.019683
68

lwrest errest upr errest
Sp 0.000000 ©,000032 0.812806
Yo 9.000000 0.000025 &.019634



.12 8,17 0.00% 0.08015 10000
g@0 5029
?.042840

2.832941

lwrest
8.054286
0.052074

Vb 6.009898
Vb 0.000000

errest
8.656178
9.852365

upr errest
0.858089]
8.852667

Rgd =8¢

lwrest
9.021832
2.823809

errest
8.023770
8.024332

upr errest
0.025761
0.824870

558

lwrest
?.000000
4 .000000

errest
2.000000
0.000021

errest
0.000000
6.8000815

upr errest
9.802319
£.0060853

EE

lwrest
0.800000
2.000000

upr errest
0.882319
.0006848

L

.12 0.17 0.005 0.00015 18880
6.4060 50860

Sp 9.040836 Vp 9.809612
Sp 8.032941 Vp 0.000000
0

lwrest errest upr errest
Sp 9.064537 ©6.066859 0.967621
vp 9.893368 0.093777 0.994253
22

lwrest errest upr errest
Sp 0.622343 0.023885 8.025543
v 2.021774 ©0.022261 0.022773
45

lwrest errest upr errest
Sp 2.000000 0.800800 ©.002375
vp 0.000000 0©.000067 6.801025
68 '

lwrest errest upr errest
Sp g.000000 ©.000000 ©.802375
vp 7.000000 ©.000067 0,001025

.12 2,17 9.085 0.00015 10000
6800 500

Sp 9.836478 Vp 0.908498
Sp £.032941 Vp 0.060800
8

lwrest errest upr errest
Sp 6.160508 0.164469 0.170706
vp 8.156775 ©0.169119 6,185217
22

lwrest errest upr errest
Sp 0.000000 ©0.000000 ©.024909
vp 0.000000 0.000099 @.839306
45

lwrest errest upr errest
Sp 9.000000 ©.000000 ©.024999
A 0.000000 ©.000899 ©.039306
68 .

lwrest errest up; errest
Sp 0.000000 0.000000 0.824969
Vp 0.000000 0.000099 0.039306

TABLE 8—703

.12 9.17 0.0056 8.96015 10000
04060 5920

Sp 9.041576 Vp 0,.809612
Sp 6.832941 Vp 0.000000
9

lwrest errest upr errest
Sp 9.852617 0.954281 B6.855983
vp 9.871359 0.071791 ©.872229
22

lwrest errest upe errest
Sp 0.021440 0.,023129 0.024911
vp 0.016336 0.816779 0.017249
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.002364
vp 0.000000 @.800072 ©.800953
68

lwrest errest upr errest
Sp 0.080000 0.000000 0.002364
vp 9.000000 0.000072 0.900953

p.12 2,17 6,0056 0.00015 10000
888 5920

Sp 9.837566 Vp £.088498
Sp 9.032941 Vp 0.000000
9

lwrest errest upr errest
Sp P.857661 ©.969173 0.089466
‘z’g B.071616 0.878585 ©.987877

lwrest errest upr errest
Sp 0.007529 6.016194 @.045751
P 9.003267 0.00689¢ @.823219
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.037092
P 0.000000 ©.000133 0.020021
68

lwrest errest upr errest
Sp 0.000000 @.000000 0.837092
vp 0.000000 0.000133 @.820019
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=gY

538 RIY

g8 53

[~ .~
e o
[« -0~

88

538 RIQ

&5 S

I

=g

500
901378
200003

-

lwrest
¢.000001
¢.001400

lwrest
0.000000
0.001400

lwrest
0.000000
0.00J6080

lwrest
0.000000
0.000000

8 1.5 4,406

68 5860

8 1.5 4,406 9.80015 50

Vb 0.801375
Vp 0.000600

errest
0.000002
0.001878

errest
0.000002
0.801878

errest
0.000000
2.608233

errest
0.000000
0.000001

156

upr errest
0.000444
0.002484

upr errest
0.008444
6.002484

upr errest
0.000442
8.000771

upr errest
B .000442
0.000770

2.00015 50

0.001141 Vp £.0801336

@.800003

lwrest
0.000004
2.008699

lwrest
0 .000000
?.000699

lwrest
0 .000000
0 .000000

lwrest
2 .000000
¢.900000

[+ ]

60 500
2 .800591
9 .000083

lwrest
0.000017
0.008001

lwrest
0 .000000
0.900000

lwrest
g.000000
2.200000

lwrest
0.800000
2.000000

1.5 4.4e-06

Vb 0.800000

errest
2 .000006
0.801087

errest
2 .000006
¢.801087

errest
0 .800000
0.0600083

errest
0 .000000
0 .000003

upr errest
2.000420
8.001726

upr errest
2.000421
2.001726

upr errest
2.009416
8.000922

upr errest
0.000416
0.800922

0.00015 50

Vp .891182
vp 8.800000

errest
2.000024
0.000008

errest
0 .000000
0.000004

errest
0 .008800
9 .,000004

errest
0 .000009
9 .000004

upr errest
0.003841
9.838384

upr errest
0.003824
0.038489

upr errest
0.003824
0.038489

upr errest
7.903824
9.038489

TABLE 8—7dO

0.88 1.5 4.4e-06 0.000615 50
4080 590

Sp 9.801218 Vp 0.801336
Sp 6.000003 Vp 0.000000
("]

lwrest errest
Sp 0.000001 0.000002
2] 0.000003 0.000007
22

lwrest errest
Sp 0.000000 0 .000002
vp 0 .000000 ©.000007
45

lwrest errest
Sp 0.000000 0,000000
P 0.000000 ©,000003
68

lwrest errest
Sp 0.000000 0,.900000
Vb 0 .000008 0©,000003

upr errest
0.000424
9.000871

upr errest
9.008424
2.006871

upr errest
0.000422
9.800870

upr errest
0 .000422
0.00087¢

0.08 1,5 4.,4e-06 0,000815 50
b.880 5980

Sp 6.800698 Vp 6.981182
gp 0.000003 Vp 0.000000

lwrest errest
Sp 0.000001 0O,000003
gg 0.000006 ©,000009

lwrest errest
Sp 0.000000 ©,.000003
Vb 8.000000 ©.008009
45

lwrest errest
Sp 0.000000 0,.000000
VE 0.0000008 ©.000008
6

lwrest errest
Sp 0 .000000 0.000000
vp 0.000000 0,000008

upr errest
8.004928
#.819531

upr errest
9.004928
2.019532

upr errest
?.004926
p.019580

upr errest
7.0084926
@.819579
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8 1.5 4.4e05 6.00015 500
599
04364
80029

[~

D)

[~ ]
e« s =
0

vp 0.804334
vp 0.000000

=88

lwrest
8:089%%3

lwrest
¢.800000
9.0801613

errest
2.000016
9.801946

upe errest
0.000872
9.802339

N
N

errest
0.000016
8.001946

upr errest
0.000873
0.002465

558

lwrest
2.000000
0.000000

errest
0 .000000
0.000012

upr errest
¢.000859
0.0080794

a8

lwrest
9 .000000
0.008000

errest
9 .000000
0.0808006

upr errest
9.000859
0.800789

S0

[>]

1.5 4.4e-95 0,000815 500
68 5080
#03616
.8000829

& s
=

Vb 8.004211
Vp 8.000000

=88

errest
0.900025
g.0801085

lwrest
0.000013
0.000688

upr errest
0.080869
¢.801740

errest
0.988025
6.0081085

lwrest
¢ .000000
g.008687

upr errest
8.800871
0.001740

558 RS

errest
0.000000
0 .800004

lwrest
0.800000
0.090000

upr errest
2.000849
9.000938

o8

errest
9 .0000800
0 .000004

lwrest
0 .000000
2 .000000

upr errest
9.000849
0.000938

&Y

1,5 4.4e-05 0.00015 500
g 5080

.001881 Vvp 0.003726

.500029 Vp ¢.000000

“3922

lwrest
¢ .000052
g .600002

errest
2.000080
9.000009

upr errest
2.008459
9.638558

errest
0.000000
7 .000008

lwrest
¢ .000000
g .0000008

ux errest
0.008400
8.938664

&5@ RSP

errest
0.000000
¢ .000008

errest
0 .000000
¢ .000008

lwrest
@ 090000
¢ ,000000

upr errest
0.008400
2.038664

upr errest
9.908400
#.838663

E

lwrest
9 .000000
@.000000

S

TABLE 8—7dl

0.08 1.5 4.4e-05 8.00015 500

6.408 59089

Sp 0.003861 Vp 0.004211
Sp 0.888029 Vp 0.800000
@

lwrest errest
sp 0.000003 0.900018
W 0.000009 ©.09000180
22

lwrest errest
Sp 2.000000 0©.000018
vp 0.000000 0.000010
45

lwrest errest
sp 0.000000 ©.000000
vp 0.000000 0.000004
68

lwrest errest
Sp 6.000000 0.000000
Vp 0.000000 ©,000004

upr errest
6.000865
0.000881

upr errest
2.0000865
¢.000883

upr errest
¢.900852
2.000881

upx errest
0.0008852
6 .000881

9.08 1.5 4.4e-05 §,.00015 500

8.800 59 0
Sp 0.662221 Vp 8.803726
Sp 8.800629 Vp 0.006600

errest
9.000025
9.000823

lwrest
0.000803
0.000018

R

lwrest
9.000000
9.000000

errest
2.0800025
0.0060823

558

lwrest
9.000000
0.000000

lwrest
2.000000
7.000000

errest
0.000000
2.00002]1

errest
¢ .800000
¢.800021

o258

TY

upr errest
2.912009
0.819625

upr errest
8.012009
8.019630

upr errest
8.811997
0.019673

upr errest
9.811997
8.019673
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.88 1.5 8.8e~05 0,00015 1000
)

5060
. Vp @.086119

006177
000859 Vp 0.800000

as

2
g

=ge

lwrest
2.000730
0.004494

errest
8.001585
0.004659

upr errest
0.802608
9.804939

RS 3

lwrest
7.000000
2.000940

errest
0.000032
9.001382

upc errest
8.901138
8.001893

538

errest
0 .000000
0.808815

lwrest
9.000000
9.000000

upr errest
2.001111
0 .008806

&g8

errest
2 .080000
8.080009

upr errest
g.001111
0 .000800

lwrest
2 .000000
¢ .000000

I8

.88 1.5 8.8e~05 3.00015 1900
6,400 5080

Sp 0.005121 Vp 0.885943

Sp 6.000659 VP 0.00098

errest
9.001826
8.902157

lwrest
0.001268
0.001726

upr errest
8.082716
0.082741

errest
8.000043
0.801875

lwrest
¢ .090000
8.000673

upr errest
0.001149
6.001741

538 RFY

lwrest
0 .000000
0 .000800

errest
0 .000000
0 .000006

upr errest
9.001112
0.000949

&FY

lwrest
2 .000000
¢.000000

errest
0 .000000
9 .000006

upC errest
0.001112
0.000948

I

#8 1,5 8.8e~85 0,00015 1000
800 50680
0.802670
9 .000859

[~ -]
P

Vb 0.805257
Vo 0.000000

=98

lwrest
2.000073
2 .0000083

errest
0.906119
2.000009

upr errest
9.011264
0.038664

lwrest
2 .000000
6 .000000

errest
9 .800000
0.800013

upr errest
8.611175
2.038771

558 RI¥

lwrest
¢.0000080
0 .000000

errest
0 .000000
0.0000813

upx errest
f.611175
8.838779

upr errest
0711175
2.038770

o8

lwrest
0.000000
¢ .000000

errest
8 .000000
0.008813

G

TABLE 8—7d2

.88 1.5 8.8e-05 0.00015 1000
8.408 59 0

Sp 0.805468 Vp 9.805943

s 9.000059 Vp 0.990000

lwrest errest
0.001060 0.801768
0.000762 0.001142

ur errest
2.802702
0.001747

RNg 8

lwrest
8.000000
0.000000

errest
0 .000035
0.000014

upr errest
8.801139
9.000892

558

lwrest
0 .000000
0 .900000

errest
0.000000
6 .6e0007

upr errest
p.601112
#.000889

oY

lwrest
g .000000
0.0800000

errest
0.000000
2 .000007

ux errest
f.001112
0.000889

g8

.88 1.5 8,8e-05 0.,00615 1000
8.880 59 0
Sp 0.083153 Vp 8.885257

Sp 0.0000859 Vp 0.000000
g

lwrest errest upr errest
Sp 0.800004 0.000050 0.016306
Vp 9.000025 0.900034 ©.819683
22

lwrest errest upr errest
Ssp 0.000000 ©.000050 ©.016306
P 0.000000 ©.000034 0.019690
45

lwrest errest upr errest
Sp 0.000000 0.000090 0.016283
kY o 0.000000 ©.000030 6.619731
68

lwrest errest upr errest
Sp 0.000000 0,000000 0.016283
Y 0.000000 ©.000030 0,.919730
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1.5 0.00088 ¢.00015 10000
5080

9684 Vp £.819097

0587 vp 0.000000

S

lwrest
2.022022
8.019741

errest

0.024500
0.020105

upr errest
2.827062
8.920495

lwrest
0.008346
0.009018

errest
8.810781
0.099584

upr errest
0.613419
0.010187

&S

lwrest
9 .000000
2.000000

errest
9 .000000
0.000026

upr errest
2.882972
9.000881

L

lwrest
2 .960000
0.800000

errest
9 .000000
2.000015

upr errest
¢.802972
¢.008873

G

.88 1,5 0,000688 ©.90015 10000
400 508

.016378 Vp 8.818537
0.000587 Vp 0.060000

v

=88

errest
8.029766
p.841081

lwrest
8.027803
0.048580

upr errest
2.831883
0.841597

errest
2.010837
0,818665

lwrest
0 .0090080
0.010160

upr errest
@.013092
9.011215

538 RII

lwrest
d .980000
0.900000

errest
¢ .000000
0.900125

upr errest
g.083051
0.001882

T8

errest
0.000000
9.800125

lwrest
0.000000
¢ .900000

upr errest
¢.883051
g .061082

&L

0.08 1.5 9.00988 0.00015 19060
800 500

0.008679 Vp 8.816362
0.000587 Vp 0.080000

g8 o

=

lwrest
8.130142
g.131819

errest
8.134823
8.144626

upr errest
2.143799
0.161981

lwrest
2.000000
2,.000000

lwrest
0 .000000
2,.000000

errest
0.000000
0.000180

errest
¢ .000000
0.000188

upr errest
9.831744
9.039618

upr errest
9.031744
9.039%617

o8 &I¥ RBII

lwrest
9 .000000
0 .000000

errest
¢ .000000
0 .000180

upr errest
g 31744
#.63918

g

TABLE 8-7d3

9.08 1.5 .00088 0.00015 18000
8.400 59 0

Sp 0.017488 Vp 0.018537

Sp 0.000587 Vp 8.960090

lvrest
9.023685
0,027195

errest
8.025760
9.827642

upr errest
2.828051
8.02819)

errest
8.010478
8.0867157

lwrest
0.098388
0.0086708

upr errest
9 .812887
9.007661

538 RI®

lwrest
0 .000000
0.000000

errest
9 .080000
9.000133

upr errest
2.0083034
2.081005

aTY

lwrest
0.090000
9 .000000

errest
0 .000000
2.080133

ux errest
8.093034
8.0610605

38

.88 1.5 0,.00088 0.00015 10000
800 59%8

9.01025¢ Vp 9,.816362
0.800587 Vp 0.0000080

lwrest
9.011817
8.08139%47

=88

errest
0.823389
8.819609

upr errest
2.960565
0.032803

o8

lwrest
?.008489
2.868593

Jwrest
9 .090000
0.900000

errest
8.008275
8.00309

errest
2 .000000
0.900230

upr errest
9.951619
0.021348

538

upr errest
9.047975
9.0826193

T

lwrest
2 .990000
0.000000

errest
0 .0000060
0.008230

upr errest
0.047975
0.820195

g8



[~
-
[Vl ]

8
g 500
g.0ﬂ1383

Vp 0.008133
.06125@

Vp 0.000000

88

lwrest
g.0008001
2.000723

errest
2.000001
2.881191

lwrest
0.000000
2 .000000

errest
0 .000000
¢ .000000

538 RIQ

lwrest
0 .000000
0 .000000

errest
#.800000
0.000000

aF8

lwrest
0.000000
6.600723

errest
2 .000001
8.001191

&Y

.88 6.614 1,75¢-05 6.001
AB8 598

Sp 8.801355 Vp 0.800129
Sp 8.801256 Vp 8.000060

[~

Jwrest
9.000001
0.000698

errest
0.000081
f.001082

lwrest
0.000000
¢.000000

errest
? .000000
9.000080

538 RBII

lwrest
0.000000
0.000000

errest
0.000000
8 .800000

&Y

lwrest
0.000000
2.000698

errest
0.000001
g.0010882

&Ly

8.014 1,75e-95 0.001
g8 50¢90

[~
L]
o0 ®m

801297 Vp 0.000114
891250 Vp ©.000000

lwrest
6.000002
0,.000000

=88

errest
0 .000002
9 .800006

lwrest
¢ .000000
2 .000000

errest
0 .000000
2 .000000

538 RBIE

lwrest
9.000000
8.000000

errest
2 .000000
2.000000

&8

lwrest
0.000000
0.000000

errest
7 .0080082
P .080006

I8

160

#.814 1.75¢-05 0.001 50

upr errest
0.0900253
6.001821

upr errest
0.600253
¢.008762

upr errest
9.880253
2.800762

upr errest
0.008253
7.001821

58

upr errest
0.900218
9.001714

upr errest
9.000218
7.000914

upr errest
¢.008218
2.000914

upr errest
0.000219
2.081714

58

upr errest
0.001748
£.838385

upr errest
@.081739
£.038409

upr errest
9.801739
£.0838409

upr errest
7001749
0.838305

TABLE 8—7e0

.88 8.614 1,75e-05 8.801
9.408 509 0

Sp 6.801366 Vp 0.000129
Sp 9.861258 Vp 0.000000

lwrest
0 .000001
0 .800000

errest
2.000001
0 .000008

lwrest
7 .000000
9 .000000

errest
0 .,0080000
0 .000000

558 REY

lwrest
@ .000000
0.000000

errest
0 .000000
0 .000000

a3 8

lwrest
0.000000
g .0000006

errest
?.000001
0 .000008

LY

6.8 9,014 1.75e-05 0,001
p.808 5929

Sp 9.601311 Vp 0.900114
Sp 8.601256 Vp 0.000000
(']

lwrest errest
Sp ¢.000002 0.000002
vp 0.000000 0.000006
22

lwrest errest
Sp 0.000008 0.000000
P 2.000000 0.000000
45

lwrest errest
Sp 0 .000000 0 ,900000
vp g.000000 @,000000
68

lwrest errest
Sp 0.000000 0 ,000002
Vp 0.000000 0.200086

50

upr errest
2.000226
0.800867

upr errest
0.800226
9.900863

upr errest
0.000226
0.000863

upr errest
9.008227
2.800867

50

upr errest
2.0017@3
0.019499

upr errest
2.001703
9.819536

upr errest
9.0017063
8.0819536

upr errest
0.001704
0.01949¢0
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2.08 6.914 4,4e-05 0,001 500
00606 500
Sp 6.083564 Vp 6.0008421
Sp 8.003143 Vvp 0.000000
g

lwrest errest upr errest

0.001427 0.001646 0.801875

0.001941 0.002435 0.003024
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.000258
Y] 0.000000 ©.000000 0.000762
45

lwrest errest upxr errest
Sp 0.0000008 0.000000 0.000258
vp 0.000000 0.000000 0.000762
68

lwrest errest upr errest
Sp 9.000000 0.000003 0.000260
Vp 0.000716 0.001184 0.001815
0.88 0,014 4.4e-05 0,001 500
6,400 58290
Sp 6.003476¢ Vp 9.000489
Sp 0.803143 Vvp 9.090000
g

lwrest errest upr errest
Sp 0.001745 ©.001895 0.802859
A< 8.801759 0.082167 0.002728
22

lwrest errest upr errest
Sp 0.000000 0.000000 ©.000224
Vb 0.000000 0.000000 0.080914
45

lwrest errest upr errest
Sp 0.000000 0.000000 0.000224
vp 0.000000 0.000000 0,.000914
68

lwrest errest upr errest
Sp 0.000000 0.000003 0.000226
vp 0.000699 0.001082 0.001715
0.08 8.014 4.4e-05 0,001 500
p.8060 500

0.003291 Vp 9.000362
2.003143 Vp 0,000000

g8

lwrest
8.062563
g.000000

errest
0.002842
0.008011

upr errest
8.003773
0.938204

lwrest
2.000000
d.000008

lwrest
0 .800000
0 .000000

errest
0 ,000000
0 .000000

errest
0 .000000
0 .000000

upr errest
0.001884
9.038411

upr errest
2.001804
09.038411

e3¥ &IF RNFY

lwrest
¢ .000000
2.008000

errest
0.000005
2 .000006

upr errest
6801885
B.838307

L

TABLE 8-—7e1

0.08 8.014 4,405 0,001 500
6.400 5920

Sp 0.083589 Vp 0.000409
Sp 0.803143 Vvp 0.000000
2

lwrest errest upr errest
Sp 0.601669 0.801837 ©.002017
wp 0.000782 0.061145 0.081732
22

lwrest errest upr errest
Sp 000000 ¢ .00000¢ 0.000232
Vp 0.000000 0.000000 ©,.000863
45

lwrest errest upr errest
Sp 8.000000 0.000000 0.000232
Vp 0.000000 0.000000 0.900863
68

lwrest errest upr errest
Sp 0.000000 ©.000003 0.000234
vp 0.000000 @©,.000008 0 .099867

0.08 #.014 4.4e-05 0,801 500
p.8690 5980

Sp 9.803338 vp 0.0008362
Sp 0.003143 Vp 0.900000
P

lwrest errest upr errest
Sp 0.002028 @.002593 0.003724
vp 0.000000 0.000012 0.019446
22

lwrest errest upr errest
Sp 0.000000 0.000000 0.801802
<] 0.0000080 0.000000 ©.019537
45

lwrest errest upr errest
sp 0.000000 ¢.000000 0.001882
vp 0.000000 ©.000000 ©.019537
68

lwrest errest upr errest
Sp 0.000006 ¢.000004 ©.001803
v 6.000000 ©.000006 0.019492



.08 6.0814 5.,56e-05 8,001
600 500
Sp 0.004567 Vp 9.000596
Sp 0.803971 Vp 8,000080
@

lwrest errest
Sp 8.003067 0.003291
P 9.803156 0,003660
22

lwrest errest
Sp 9.000000 0.000000
A} 2.900000 ©.000000
45

lwrest errest
Sp 0.000000 0O.000008
vp 0.000000 0.000000
68

lwrest errest
Sp 0.000000 0.000004
v 0.600712 0.001180
f.08 6.014 5.56e-95 0,001
04808 580
Sp 0.084444 Vp 6.000579
gp 9.003971 Vp 0.000000

lwrest errest
Sp 0.003632 ©.003788
vp 0.002842 ©,003255
22

lwrest errest
Sp 0.000000 0.000000
P 0.000000 0.890000
45

lwrest errest
Sp 0.000000 0.000000
vp 0.000000 0.000000
68

lwrest errest
Sp 0.000000 0.000004
vp 0.000699 @.001082
¢.08 9,014 5.56e-05 0.001
6,800 5080
Sp 6.004181 vp 8.800512
Sp 6.003971 Vp 8,000000
]

lwrest errest
Sp 0.002558 £,002842
vp 0.000000 0.000011
22

lwrest errest
Sp 0.000000 0©.080000
) 0.000000 ©,.000000
45

lwrest errest
Sp g .000000 ©,000000
vp 0.000000 ¢©.900000
68

lwrest errest
Sp 0.000000 0.000006
Vp ¢.000000 0.000006
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1900

upr errest
9.083521
9.9084231

upr errest
8.000262
2.000762

upr errest
2.000262
0.000762

upr errest
0.000264
2.001811

1000

ux errest
#.003951
0.903772

upr errest
0.000228
0.008914

upr errest
0.000228
9.000914

upr errest
2.9080230
8.801715

1g00

upr errest
9.003800
0.838205

upr errest
£.001843
6.938413

upr errest
0.001843
2.838413

upr errest
0.001845
0.038309

TABLE 8‘782

8.08 0.014 5.56e-05 0.001 1060

p.400 599
Sp 8.00449% Vp 0.800579
gp 0.063971 Vp 0.900000

lwrest
6.8083499
2.891911

errest
8.883672
0.002297

N

lwrest
g .008000
2.000000

errest
0.000000
2.000000

&5 Y

lwrest
g.000000
0 .000008

errest
2 .880000
8.800000

o3 Y

Jwrest
g .000000
2.000000

errest
0.000004
0.009008

g8

8.88 8.014 5.56e-05 8.801
2,808 5920
Sp 0.004247 Vp 0,800512

Sp 8.003971 Vp 8.000000
]

lwrest errest
Sp 9.002012 06.902593
Vo 0.000000 0.000012
22

lwrest errest
Sp 2.000800 0,.000000
VP 0.000000 ©.000001
45

lwrest errest
Sp 2.000008 0.000000
vp 9.000000 0.000001
68

lwrest errest
Sp g.000000 0,000085
vp 0.000000 0.000006

upr errest
9.003852
0.002088

ur errest
0.800236
0.800063

upr errest
?.080236
9.000863

ur errest
0.000238
0 .000867

1000

upr errest
9.003771
0.019447

upr errest
2.801862
0.819538

upr errest
9.001862
0.819538

upr errest
0.001864
0.819492



#.014 2.800351 9.901

500
826972
825071

= ®
-
[~

Vb 0.901901
Vp 0,0006000

am o
« » W=

=8y

lwrest
0.019424
2.614181

errest

0.019669
9.0814697

lwrest
0.000800
6 .8808000

errest
0 .0000800
0 .000000

errest
¢.000000
0.000000

558 RSE

lwrest
0 .0089000
¢ .000000

R

lwrest
8.007972
0 .806556

errest
9.008219
0.007070

I8

.08 0,014 8.000351 0.001

ABD 500
Vp 9.801847

0.026575
0.825071 Vp 0.000009

lwrest
0.822442
6.016892

errest
8.022617
9.816582

RSB

lwrest
¢ .000000
9.000000

errest
0 .000008
0 .000001

&S

lwrest
0 .000000
0.000000

errest
0 .000000
0 .0000801

R

lwrest
2.009281
0.006125

errest
2.009457
0.0066540

33

0.08 8.014 0.800351 9.901
6800 5090

Sp 8.025737 Vp 6.861635
Sp 9.025071 Vp 2.000000

[~

lwrest
2.827711
9,.008232

errest
9.028234
8.815351

lwrest
0 .000000
2 .000000

lwrest
0 .000000
@ .000000

errest
0 .000000
p.000001

errest
0.000000
0 .000001

538 RIQ

oG

errest
0.011344
0 .884575

lwrest
8.016910
0.08008554

IS
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10000

upr errest

8.019915
8.815231

upr errest
2.900288
0.000763

upr errest
0.000288
0.006763

upr errest
0.008469
8.807622

10000

upr errest
8.022793
9.016943

upr errest
2.088255
0.0008916

upr errest
0 .900255
0.008916

upr errest
8.009637
0.807015

10000

upr errest
7.028899
8.045312

upr errest
0.002147
9.038425

upr errest
P.002147
0.938425

upr errest
g .12
9.839838

TABLE 8—783

9.08 0,814 9,.008351 9.80]
6,408 5980

Sp 9.026724 Vp 0.001847
Sp 9.925071 Vp 0.800000
"]

lwrest errest
Sp 0.921735 0.821927
vp 0.013465 0,.013857
22

lurest errest
Sp 0.000000 @.000000
vp ¢.000000 0O.000001
45

: lwrest errest

Sp 0.000000 0©.900000
vp 0.000000 ©,.000001
68

lwrest errest
Sp 9.998973 @.009168
VP 0.004214 0.904606
0.08 0.014 2.000351 9.00]1
0,808 59286
Sp 9.825949 Vp 0.001635
Sp 6.62507)1 Vp 0.000000
]

lwrest errest
Sp 8.024887 8.025774
vp 0.010329 0.014862
22

lwrest errest
Sp 0.,000000 0©.000000
Zp 0.000000 ©.000002
S

lwrest errest
Sp 0.000000 0,000000
A ] 0.000000 0,.008002
68

lwrest errest
Sp 8.009514 ¢6.618353
vp 0.000051 0,001865

10000

ur errest
8.022121
9.014279

upe errest
0.000263
0.000864

upr errest
0.0008263
0.000864

upr errest
0.809365
2.005068

10000

upr errest
0.0268081
8.028156

upr errest
0.002314
8.019545

upr errest
0.002314
8.819545

upr errest
0.011504
0.820067



164

9. Discussion

In order to examine the data in a coherent manner, I would like to restate
the goals of this dissertation suggested in the introduction. One goal is to
assess whether or not it is important to consider frequency dependence in
investigations of electromagnetic fields generated by the brain. Another goal is
to find peculiarities in electromagnetic field characteristics that would not be
predicted by frequency independent models. I will now represent the data in a

form suitable for achieving these goals.
9.1 The first goal

Achievement of the first goal is accomplished by considering table 9-1. This
table shows maxima extracted from tables 8-7. Notice that all values are from
the case epp=0°. Is this case physically realizable? epr=0° for all fourier com-
ponents dictates symmetric or antisymmetric time behavior for the source
where the point of symmetry is arbitrary. (The antisymmetric case is included
since the same deviations would have been obtained with epr=90°.) Even if
such time behavior never arises, it seems very likely that at least some fourier
components could have épr=0 or 90°. Regardless, since most of the important
fourier components of electromagnetic fields recorded at the scalp are below
50Hz, it can be observed that with repect to the frequency dependent model
investigated here, frequency independent models are quite adequate. Data for
unbounded conductor models is included to show that, indeed, unbounded
conductor models provide conservative estimates for frequency dependence in

$ for frequencies below 10%Hz.
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TABLE 9-1 Maxima of tables 8-7 taken over ép; and source
parameters. Values are reported as percentages;
i.e., deviations are multiplied by 10%2.
frequency-— 50Hz 500 108 104

medium function

{

/CSF @ 0024 .008 .18 13.5
i .M 1 .22 14,5
SKL .002 .28 .38 2.8
.11 22 33 1.6
bounded
conductors SML .28 .78 1.3 3.9
22 .43 .87 2.7
MED .28 5T 1.1 4,7
.22 U4 94 3.4
LRG .28 5T 1.4 16.4
.22 .33 .76 16.9
/CSF .14 (0) 44 (0) .62 (0) 2.0 (.06)
/ .14 (0) 43 (0) .61 (0) 1.9 (0)
|
SKL L4 (.12) .36 (.31) L6 (.40) 2.7 (2.5)
unbounded .01 (0) .04 (0) .06 (0) 1.9 (0)
conductors
SML .28 (.26) 72 (.65) 1.2 (1.1) 3.6 (3.3)
entry .02 (0) .07 (0) .10 (0) .33 (0)
format:
40 [e.=0)] MED .31 (.26) .79 (.65) 1.3 (1.1) 4.0 (3.3)
valze |value .05 (0) A5 (0) .21 (0) .66 (0)

LRG .33 (.26) 87 (.65) 1.4 (1.1) 4.3 (3.3)
.07 (0) .22 (0) .31 (0) 1.0 (0)
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9.2 The second goal

It can be observed from table 9.1 that there are curious differences
between the bounded and unbounded data. These differences are clues that
there are important peculiarities in frequency dependent fields that cannot be
anticipated by frequency independent models nor by comparing frequency
dependent and frequency independent solutions of unbounded conductor
models. In this section, 1 will examine how deviations depend on frequency,
source location, source orientation, 6pr, R, and media type for both
unbounded and bounded conductor models. This will clarify the differences
between bounded and unbounded conductor models and will lead to achieving
the second goal. For trends in deviations associated with A, central source
data is only taken seriously for comparisons within the central source context.
This was done because even after 150 iterations of Cimmino's process, it was

observed that deviations were still increasing.
8.2.1 Lists of trends in data of tables 87
The list for bounded conductor data follows.
1. Deviation dependence on 8pr:

a. Opp=R2° and 45° are not resolved®! for all cases of SML, MED, and SKL

and for cases 50 to 10%Hz for LRG.

b. epr=45° and 68° are not resolved for all cases of CSF and the 10*Hz case

of LRG.
c. largest deviations occur, invariably, at epp=0°.

2. Deviation dependence on source location: deviation increases with eccentri-

city.

9-1 A deviation will be labeled unresolvable if the lower bound does not exceed 0.001.
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December 28, 1985 leong

For &, of 52 testable cases® %, 15 cases contradict the trend where only 1 is
significant®®. In contrast, 14 cases consistent with the trend are
significant. Contradictions show no obvious dependence on frequency, 6pr,
nor source orientation.

For A, of 43 testable cases, 34 contradict the trend; however, none are
significant. In contrast, of the 9 cases consistent with the trend, 5 are
significant. The trend is not observed for the SML case and is observed only
for opr=0° at 10% and 10%*Hz. Taking this into consideration and including

central source data in the analysis, source location dependence for A might

be restated as follows:

a. for epr=0°, deviations decrease with increases in eccentricity at low fre-
quencies. The trend gradually changes to deviation increase with

eccentricity as frequency is increased.
b. for epr=R22° and 45°, deviation decreases with increases in eccentricity.

3. Deviation dependence on source orientation: deviations for radial sources
are larger than these for tangential sources.
For &, of 50 testable cases, 7 cases contradict the trend with 1 being
significant. In contrast, 15 cases consistent with the trend are significant.
Contradictions occur, invariably, at eccentricity 0.8.
For A, of 36 testable cases, 3 cases contradict the trend with 1 being
significant. In contrast, 25 cases consistent with the trend are significant.

Contradictory cases occur at 10*Hz.

4, Deviation dependence on frequency: deviations increase with frequency.

For &, of 4B testable cases, b cases contradict the trend where 3 of these

9-2 | define a testable case to be one where at least one element of the of the set over which
comparisons are to be made is resolvable.

8-3 A trend will be called significant if it is still observed when conservative estimates of the
values involved are used, i.e.,using one of the two error bounds.
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are significant. In contrast, all cases following the trend are significant.
Significant contradictions occur when 6pr=0°, sources are centrally located,
and media are MED or LRG.

For A, of 32 testable cases, 1 case contradicts the trend and it is not

significant. In contrast, 22 cases consistent with the trend are significant.
5. Deviation dependence on head size: For both ¢ and re

a. epr=0°, at low frequencies, there is no dependence. As frequency is
increased, deviations at lower R, begin to exceed those at higher R..
With further increases in frequency, this trend reverses with deviations
at larger R; beginning to exceed those at lower R,. As eccentricity of
the source is increased, the frequency at which this final stage becomes
realized is lower. These trends are significant for eccentricities 0 and
0.4 at and above 500Hz. For eccentricity 0.8, significance is achieved

only at 10*Hz.

b. epr=22°, deviations increase with R the trend is resolvable only at
10%*Hz. In addition, at eccentricity 0.8, deviations are resolvable only for

A but significance is not achieved.

c. &pp=68°, at low frequencies there is no dependence. As frequency is
increased, deviations at lower R, begin to exceed those at higher R,. At
lower eccentricities, this stage is achieved at lower frequencies.
Significance is achieved for eccentricities 0 and 0.4.

There are no contradictions to these trends.
8. Deviation dependence on media type: For both ¢ and A,

a. Up to 10%Hz, the trend MED>SKL>CSF is significant. Among testable

cases, there are no contradictions.
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b. At 10%Hz, CSF is largest at epr=0° and 22° and SKL is largest at 6pp=68°.
Both trends are significant. One contradiction occurs at eccentricity
0.8, epr=0°, where MED>SKI>CSF. For this case, the trend is not

significant.

7. Relationship between ¢ and A deviations: deviations for A are smaller.
Of 106 cases, there are 14 contradictions, 3 of which are significant. In
contrast, 26 cases consistent with the trend are significant. Contradictions
typically occur at eccentricity 0.4, epp=0°. A closer examination reveals
that all significant contradictions occur at 10%*Hz in media CSF and LRG.
For CSF, of 8 testable cases, 4 contradict the trend with 1 significant case.
Of the cases consistent with the trend, 1 is significant. For LRG at 10%*Hz, of
7 testable cases, 4 contradicted the trend with 2 significant cases while of
the cases consistent with the trend, 1 is significant. Thus, for these media,

it may be that at high frequencies, deviations for A exceed those for .
In contrast, here is an analogous list of trends predicted by the unbounded

conductor model, e, #0:
1. There is no dependence on @pr.
2. Deviation decreases as source eccentricity increases.

3. For $, deviations for radial sources are less than that for tangential

sources. For A, the relationship is an equality.
4. Deviations increase with frequency.
5. Deviations increase with head size.

8. For &, deviations for MED are always the largest. For the most part, the
order SKL>CSF holds; however, for 500Hz and 10%Hz at eccentricity 0 and

0.4 and for 10*Hz at eccentricity 0, the opposite is true.
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For A, the trend CSF>MED>SKL always holds.

7. Deviations for & exceed those for A for all cases of SML, MED, LRG, and SKL.
For CSF, this trend holds for centrally located sources but the converse is

true for all other eccentricities.
8.2.2 Discussion of trends

I would like to point out that trends for bounded conductors almost
invariably contradict those for unbounded conductors. Only item 4 is in com-
plete agreement although, for bounded conductors, exceptions to the trend
that achieve significance do exist. Items 2, 6, and 7 are in partial agreement.
1t is very difficult to find an explanation for each of these discrepancies. The
reason for this is best indicated by this general view of the situation: by com-
paring the two lists, it can be concluded that both ¢ and A deviations must
turn out to depend on the topology of electromagnetic interference patterns
set up in the conductor in addition to depending on properties of fields that
would exist in unbounded media (unadulterated fields). In other words, I am
claiming that deviations depend not only on the nature of the generated elec-
tromagnetic fields but also on how these fields superpose with their reflections
at the conductor/insulator interface. Characterizing the net fields is certainly
a formidable task and would be a prerequisite for explaining observed trends
item by item and making sense of the discrepancies between deviation predic-

tions of bounded and unbounded conductors.
To substantiate the proposed general view, consider the following observa-
tions:

1. Deviations for bounded conductors {bounded deviations) strongly depend

on 8pr whereas this is not true for unbounded conductors.
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2. For LRG, deviations at 6pp=22° suddenly become resolvable at 10*Hz at all
source eccentricities and orientations except for radial sources at eccentri-
city 0.8. In addition, deviations at épr =68° suddenly become unresolvable in

the same circumstances.

Item 1 can be seen to support the conclusion by noting that epr is the phase in
fourier sine and cosine transforms. From this, it is clear that if each fourier
component of bounded deviations depend on 6pr, each component must
depend on the self-superposition of the corresponding fourier component of
the electromagnetic field. But then, if this were the case, why would the same
phases be unresolvable at each of the frequencies examined? Shouldn't phase
dependence be dependent on frequency? A possible explaination is that,
because all frequencies examined are low, the effective wavelengths of the elec-
tromagnetic fields in question are much longer than the size of the media con-
sidered. In other words, for a given medium, if the generated electremagnetic
fields have a wave length much larger than the size of the medium, the initial
topology of all frequencies studied should be approximately the same. Indeed,
wavelength estimates shown in table 9-2 are much larger than the head sizes

used.

TABLE 9-2 Wavelength, in meters, predicted by unbounded medium models.
Values are to be compared with 0.12m, the largest head size

. used.
medium — vacuum skull brain cerebral
spinal
frequency . fluid

9.0(16) 8.4(3) 2.4(3) 8.1(2)
1.8(15) 3.8(3) 1.1(3) 3.6(2)
500 1.8(14) 1.2(3) 3.4(2) 1.2(2)
9.0(13) 8.4(3) 2.4(2) 8.2(1)
9.0(12) 2.7(2) 7.6(1) 2.6(1)
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These estimates of wavelength were found by considering the solutions to equa-
tions 2-25b for the case of unbounded media with the source developed in sec-
tion 3. In final support of the hypothesis, note that only for LRG dces a
dramatic change in phase dependence occur as frequency is changed (item 2
above). Furthermore, this change occurs only in increasing frequency from
10%Hz to 10*Hz. From this, a possible conclusion is that only for LRG is there a
large enough change, as frequency is increased, in the ratio between the
effective wavelength of the electromagnetic fields and the size of the conduc-
tor. The observation seems quite peculiar since, given estimates of table 9-2,

the change in the ratio seems trivial.

Another observation I would like to discuss is the distinct difference between
CSF and all other media with respect to dependence on phase. A possible
explaination comes from considering the mechanical analogy of a string bound
to a post. We all know that the phase of a wave reflected at the post depends
on whether the string is tightly bound to the post or is allowed to slip along the
post. Using stiffness of the conductor/insulator interface to refer to, analo-
gously, how tightly the string is bound to the post, SKL, SML, MED, and LRG
must have similar degrees of stiffness with respect to the stiffness of C3F.
Considering the conductivity gradients CSF =~ 10% SML, MED, and LRG =~ 103,
and SKL ® 14, the observation in question seems to be inconsistent with the
proposed view. However, considering the unnormalized conductivity values for
each medium type (tables 8-7), if the measure of stiffness is more dependent
on the absolute difference in conductivity between the medium and the sur-
rounding space than on the conductivity gradient, consistency would be
achieved. This would be true if generated electromagnetic fields had effective
wavelengths much larger than 3l for each medium type; I have already sub-

stantiated this stipulation. In this regard, the observation being discussed is
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another item showing that the proposed general view of the situation has some

interpretive power.
9.3 Concluding discussion

It is important to clarify what deviation trends can tell us about the elec-
tric and magnetic fields themselves. Note that for frequency independent
Maxwell's equations, B is independent of B but the converse is not true. With
this observation, it seems reasonable to interpret the deviation measure as the
extent to which E depends on B; we cannot make the corresponding statement
for B. Taking another view of the situation, because of spacial derivatives in
equations 2-8, a non-zero deviation for A definitely means Eis perturbed from
the =0 solution but does not necessarily imply B is perturbed. In addition,
taking equation 2-10a into consideration, a non-zero deviation for & would
mean E is perturbed from the w=0 solution. This supports the proposed

interpretation and qualification.

With this interpretation in mind, I will now summarize the major results and

findings of this dissertation.

1. The relationship between cerebral currents and source terms of Maxwell's

model has been clarified.

2. It has oeen shown that for frequency dependent fields and media con-
sidered here, boundary condition techniques cannot be used to derive

boundary integral formulations of Maxwell’'s model.

3. It has been shown that simple continuous models for electromagnetic
parameters can be successfully applied to obtain boundary integral formu-

lations.

4. In the circumstances studied, the magnitude of the dependence of E on B
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has been found to be small.

5. Evidence has been found to support this hypothesis: the coupling of BtoE
depends on electromagnetic interference phenomena within spacially finite

conductors even for extremely low frequency fields.

1 would like to make a few remarks about item 5. Considering, from table 9-2,
that head sizes are much smaller than the estimated wavelength of all fre-
quency components studied, the interpretation summarized in item 5 seems a
bit strange. According to estimates of wavelength, superposition effects would
have to arise from very small spacial variations in the fields. The estimates
also predict that attenuation of the electric field with distance would be dom-
inated by an inverse cubed law. This is to be compared to the attenuation at
large distances from the source where exponential attenuation, on the order of
a wavelength, is dominant. Comparing the two situations emphasizes that, for
frequencies examined here, the size of a typical head occurs within a region
about internal sources where reflected energy should make an insignificant
contribution to the net field. On the other side of the argument, observations
indicating the role of superposition are expected since large differences
between wavelengths in a vacuum and wavelengths in the conductors of table
9-2 indicate that most of the electromagnetic energy is internally reflected. 1
would also like to say that one of the main observations indicating the role of
superposition, phase dependence, does not seem to be simply an artifact of
applying Cimmino's process; the observed patterns of phase dependence can
be observed without using this stage in estimating solutions to equations 5-4.
The patterns can be found by examining residuals calculated from using w=0
solutions in equations 6-9 where w#0. The observations are made based on
assuming that large residuals indicate that larger deviations between w=0 and

w#0 solutions exist. The assumption is substantiated by noting that residuals
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were observed to increase with frequency as expected. Finally, 1 would like to
note that though reflected electromagnetic energy may be insignificant at
most points in the conductors, this may not be so in a locus of points about
the conductor/insulator interface. Recall that it is at this interface where

deviation measures are evaluated.

What are the implications of these results? Item 4 suggests that frequency
dependence can be ignored when modeling bioelectromagnetism. On the other
hand, item 5 suggests that there may be special circumstances wherein fre-
quency dependence has an important role in determining the topology of elec-
tromagnetic fields in the brain. Might the difference between frequency depen-
dent and frequency independent fields be behaviorally significant? There have
been experiments demonstrating that low frequency, low power, externally gen-
erated electromagnetic fields can influence behavior [1]. For example, 7-10Hz
fields, estimated to result in 10 %Volts/meter electric potential gradients with the
brain, have been found to effect the ability of monkeys to estimate duration. It
is possible that the strengh of frequency dependent fields differ from that of
frequency independent fields on this scale. If deviations of tables B-7 were
assumed to estimate the degree V®|,,q differs from V®|, =0 at the scalp, for a

typical auditory evoked source where V&|, (imentally) 1S on the order of
’ measured)

2x10™%/m, 107%/m is achieved with a deviation of approximately 10%. At the
cortex, for a typical visually evoked source where V| is on the order of
7x107%v/m, 107%v/m is achieved with a deviation below 1%. Given this analysis,
data of tables B-7 indicate a slight chance for behavioral significance. Theoret-
ical results should be generally applicable to model electromagnetic fields in
bounded conductors with internal sources. Experimental results for the brain
may suggest how to efficiently explore these equations f{or other cir-

cumstances.
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Regarding future investigations suggested by this work, electrolytic tank
experiments must be performed to test the validity of the calculations
presented. The major problem for future investigation suggested by this work
is the problem of finding a simple model for ¢ and A that would be consistent
with the experimental data. Only with such a model will we be able to under-
stand how spacial frequencies of E and B depend on w, source parameters, and
parameters of the conductor. Given a model with an explicit parameter for
spacial frequency, we must derive predictions for interference patterns that
would arise within the conductor. Only then could we begin to understand how
interference phenomena can force E to have a large or negligible dependence

-

on B.
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