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C h a p t e r 5

IMAGING MOVING TARGETS THROUGH SCATTERING
MEDIA

This chapter is adapted from the manuscript Cua, M., Zhou, E.H. & Yang, C.
"Imaging moving targets through scattering media". Optics Express 25, 3935
(2017). The contributions of authors are as follows: EHZ and CY conceived the
initial idea. MC and EHZ developed the idea and scheme demonstration. The
experiments were designed and performed by MC and EHZ. The data analyses were
performed by MC and EHZ.

Optical microscopy in complex, inhomogeneous media is challenging due to the
presence ofmultiply scattered light that limits the depths at which diffraction-limited
resolution can be achieved. One way to circumvent the degradation in resolution is
to use speckle- correlation-based imaging (SCI) techniques, which permit imaging
of objects inside scattering media at diffraction-limited resolution. However, SCI
methods are currently limited to imaging sparsely tagged objects in a dark-field
scenario. In this work, we demonstrate the ability to image hidden, moving objects
in a bright-field scenario. By using a deterministic phase modulator to generate a
spatially incoherent light source, the background contribution can be kept constant
between acquisitions and subtracted out. In this way, the signal arising from the
object can be isolated, and the object can be reconstructed with high fidelity. With
the ability to effectively isolate the object signal, our work is not limited to imaging
bright objects in the dark-field case, but also works in bright-field scenarios, with
non-emitting objects.

5.1 Introduction
Optical imaging is challenging in turbid media, where multiple scattering of light
causes a degradation of resolution and limits the depths at which we can reliably
image (< 1 mm in biological tissue) without having to resort to destructive optical
clearing or sectioning techniques [1]. Many approaches currently exist to filter out
the multiply scattered light and detect only the unscattered (ballistic) or minimally
scattered photons. These include methods such as time and coherence gating, which
separate the ballistic photons from the scattered photons based on their transit time
to the detector [2, 3]; methods that rely on preserving the initial angular momentum
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or polarizationmodulation [4–7]; andmethods that rely on spatial confinement, such
as confocal and multi-photon microscopy [1, 8]. An issue with methods that rely on
detecting only the minimally scattered photons is the maximum achievable depth
of penetration, since the chance of detecting a quasi-ballistic photons decreases
exponentially with increasing depth.

Instead of rejecting the scattered photons, other approaches have aimed to take
advantage of the information inherent within the detected speckle field that arises
from multiply scattered light. Wavefront shaping (WFS) techniques exploit the
principles of time-reversal to undo the effect of scattering and enable focusing
of light in thick, scattering media [9–12]. However, WFS usually requires long
acquisition times to measure the transmission matrix, and/or the presence of a
guide star. On the other hand, speckle-correlation-based imaging (SCI) approaches
exploit the angular correlations inherent within the scattering process to reconstruct
the hidden object and do not need long acquisition times or a guide star [13, 14].
However, SCI methods are limited to working in dark-field scenarios, with sparsely-
tagged objects [14], since the detected light must consist solely of light arising from
the object.

In this work, we demonstrate imaging of hidden moving objects in a bright-field
scenario by leveraging the temporal correlations inherent in the scattering process to
separate and remove the dominating contribution from the background [15, 16]. To
create a spatially incoherent light source, a spatial lightmodulator (SLM)was used to
apply the same set of random phase patterns during different acquisitions. The use of
a deterministic phase modulator ensured that the background contribution remained
constant across the detected images. By removing the background component,
the speckle pattern from the object was isolated, and the object was reconstructed
with high fidelity. Using this technique, we experimentally demonstrate successful
recovery of moving objects that would otherwise be obscured by scattering media.

5.2 Principle
Fig. 5.1 presents an overview of our system. A moving object, hidden at a distance u

behind a scattering media, is illuminated using a spatially incoherent, narrow-band
light source. The scattered light is detected by a high-resolution camera that is
placed at a distance v from the scattering media.

In the absence of any correlations in the scattering pattern, the detected image is
merely a speckle intensity field. However, by exploiting the deterministic nature of
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Figure 5.1: Principle behind non-invasive imaging of obscured moving objects.
A) A spatially incoherent light source illuminates a moving object hidden behind a
visually opaque turbid media. The resultant speckle field is captured by a camera
sensor. B) Speckle images are acquired by the camera sensor at different times, with
the object moving between the captures. The scattering media prevents us from
resolving the object. C) The hidden object can be retrieved from the seemingly
random speckle images by taking advantage of inherent angular correlations in the
scattering pattern. i) Each captured image In consists of a background, B, subtracted
by the imaged object, where the imaged object is the convolution of the PSF of the
scattering media, S, and the object pattern, O. ii) Although the background signal
dominates over the object, it can be subtracted out by taking the difference between
the two captured images∆I. iii) The object autocorrelationO?O is approximated by
autocorrelating the difference image ∆I. iv) The hidden object can be reconstructed
from the object autocorrelation by using phase retrieval techniques.

scattering, the hidden object can be recovered (Fig. 5.1(c)). Let us first consider
the case where light is confined to emit solely within an isoplanatic range, as
defined by the angular memory effect (ME). In this case, the detected light can be
mathematically represented as

I = S ∗O, (5.2.1)

where S is the point spread function (PSF) of the light scattering process, or equiv-
alently the speckle intensity distribution at the camera arising from a single point
source at the object plane, and O is the object, defined as the collection of points
through which light can be transmitted [14]. For this paper, we use the operator ∗
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to denote convolution. The memory effect region can be approximated as δx = uλ
πL ,

where L is the thickness of the scattering media, λ is the wavelength of light, and u

is the distance between the scattering media and the object.

If we now consider the case of an absorptive object in a bright-field scenario, then
the majority of the detected light arises from the background. Using superposition,
the detected intensity image I can be mathematically described as

I = B − S ∗O, (5.2.2)

where B is the speckle intensity image arising from the scattered light transmitted
through the medium, and S ∗O is the portion that the object would have contributed
if it were transmitting, as opposed to blocking, light [Fig. 5.1(c,i)]. Due to the
dominating contribution from the background B, we cannot retrieve O from I alone.
By acquiring multiple intensity images with the background, but not the object,
constant between acquisitions, we can remove the background signal and thereby
retrieve the object.

One strategy to achieve this is to use a moving object. If the object dimensions falls
within theME region, the contribution of the object in each image can be represented
as the convolution of the object pattern with an acquisition-dependent PSF. As long
as the rest of the sample is static, the speckle field arising from the background
will remain unchanged and can be subtracted out by taking the difference between
captures. That is,

In = B − Sn ∗O, n = 1, 2, ...N (5.2.3)

and ∆In = In+1 − In = (Sn − Sn+1) ∗O, (5.2.4)

where In denotes the nth captured image. Since the scattering PSF is a delta-
correlated process (Sn(x) ? Sn(x) ≈ δ(x)), taking the autocorrelation (AC) of
the image ∆I yields the object autocorrelation (OAC), plus additional noise terms
[Fig. 5.1(c,iii)]. That is,

∆In?∆In ≈ 2× (O?O)− (Sn?Sn+1+ Sn+1?Sn) ∗O = 2× (O?O)−noise, (5.2.5)

where ? denotes autocorrelation. We shall refer to ∆In ? ∆In as the speckle auto-
correlation (SAC).

The object can be recovered from the SAC by using phase retrieval techniques,
such as the Fienup iterative phase retrieval methods, to recover the Fourier phase
(Fig. 5.1(c,iv)) [17]. The resultant object will have an image size dictated by the
magnification of the system, M = − v

u .
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Effect of travel distance
Depending on the distance traveled by the object, the PSFs Sn, n = 1, 2, ... may or
may not be correlated. Figure 5.2 illustrates the effect of travel distance, relative to
theME range, on the SAC. The speckle intensity images I1, I2 were determined using
simulation. For comparison, the autocorrelation of the object/target, A = O?O has
also been provided [Fig. 5.2(A, "Object AC")]. For simplicity, only the case of two
image captures (n = 1, 2) has been considered.

For a moving object, the associated PSFs S1, S2 will have a degree of correlation
C(∆x) based on the object travel distance ∆x. For scattering media with thicknesses
L greater than the mean free path, the degree of correlation can be approximated
using the angular correlation function

C(∆x) =
[

kΘL
sinh(kΘL)

]2
, (5.2.6)

where k = 2π
λ , L is the thickness of the scattering medium, and Θ ≈ ∆x

u [18–
20]. When C(∆x) > 0.5, the object is considered to have traveled within the ME
field of view. The following sections describe three possible cases in more detail:
C(∆x) ≈ 1, C(∆x) > 0.5, and C(∆x) → 0.

Case 1: Object travels distance where C(∆x) ≈ 1

In the case where the object travels a small distance (such that C(∆x) ≈ 1), we have

S2(xi) ≈ S1(xi + ∆xi), (5.2.7)

where x = (x, y), xi = (xi, yi) are coordinates in the object plane and image plane
respectively, ∆x is the distance the object traveled in the object plane, and ∆xi =

M∆x. We can equivalently consider the PSF to be the same in both captures and
have the object travel between captures. That is,

O2 = O(xi + ∆xi), (5.2.8)

∆I = S ∗ [O(xi) −O(xi + ∆xi)] , (5.2.9)

and ∆I ?∆I = 2A(xi) − A(xi + ∆xi) − A(xi − ∆xi), (5.2.10)

where A = O ? O is the object autocorrelation (OAC). The SAC contains three
copies of the OAC: a positive copy centered at x = (0, 0), and two negative copies
shifted by an amount commensurate with the object travel distance (as shown in
Fig. 5.2(B, "Speckle AC")).
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Figure 5.2: Impact of object travel distance on the computed speckle autocorre-
lation (SAC).A) The scattering PSFs experienced by an object have a degree of cor-
relation C(∆x) that depends on the distance the object traveled. When C(∆x) ≥ 0.5
(shown in red), the object is considered to have traveled within the memory effect
(ME) region. For comparison, the object and its autocorrelation (AC) are displayed.
B) When the object travels inside the ME region, the SAC contains three copies of
the object autocorrelation (OAC): a centered, positive copy and two negative copies
shifted by an amount proportional to the object travel distance. The OAC can be
determined by either deconvolving the SAC or by thresholding out the negative
portions (negative with reference to the mean, background level). The object can be
reconstructed from the estimated OAC using phase retrieval techniques. C) When
the object travels a distance where C(∆x) ≈ 0, only a single copy of the OAC is
seen, with additional noise from the cross-correlation between uncorrelated PSFs.
The normalized colormap used to display the AC and reconstructed object, with 0
corresponding to the mean background level.

Since C(∆x) ≈ 1 when ∆x ≈ 0, the object may travel a distance shorter than the
extent of its autocorrelation. In this case, the SAC will yield positive and negative
copies of the OAC that overlap (as shown in Fig. 5.2(i)). The OAC can be recovered
using deconvolution (as shown in Fig. 5.2(i, ”Deconv. SAC.”)). Using thresholding
to remove the negative portions will adversely impact the positive copy and result
in an incomplete estimation of the OAC (Fig. 5.2(i,”SAC>0”)). For the results
presented in Fig. 5.2, the objects were reconstructed by applying an iterative phase
retrieval algorithm on the deconvolved SAC [13, 14, 17].
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Case 2: Object travels distance where C(∆x) > 0.5

In the regime where the object travels within the angular ME range (C(∆x) > 0.5),
S1 and S2 are correlated. To highlight the impact of the degree of correlation C(∆x)
on the SAC, we can mathematically represent S2 as

S2 = C(∆x)S1(xi + ∆xi) +
√

1 − [C(∆x)]2S, (5.2.11)

where S is a speckle intensity pattern that is uncorrelated with S1.The scatter PSFs
in the equation above are mean-subtracted speckle intensities. Representing S2 in
the form above allows us to preserve speckle intensity statistics (that is, the speckle
intensity variance and mean satisfy V[S1] = V[S2] and E[S1] = E[S2] respectively.)

Using Eq. 5.2.11, Eqs. 5.2.4 and 5.2.5 become

∆I =
(
S1 − C(∆x)S1(xi + ∆xi) −

√
1 − [C(∆x)]2S

)
∗O (5.2.12)

and ∆I ?∆I ≈ 2A(xi) − C(∆x)A(xi ± ∆xi) +
√

1 − [C(∆x)]2 × noise, (5.2.13)

where the last equation follows from noting that the speckle fields are a delta-
correlated process and that the cross-correlation of two uncorrelated speckle inten-
sities yields noise.

The SAC still contains three copies of the OAC. However, the ratio of the intensity of
the positive and negative OAC copies is determined by the ME correlation function
C(∆x). Moreover, since S2 , S1, there is an additional noise term that increases
with decreasing C(∆x). Since there is no overlap between the positive and negative
OAC copies, the OAC can be retrieved by either thresholding out the portions of the
SAC that are smaller than the background value (as shown in Fig. 5.2(ii, "SAC>0”)),
or by deconvolving the image (as shown in Fig. 5.2(ii, "Deconv. SAC.")). Appendix
provides more details on the deconvolution algorithm.

Case 3: Object travels distance where C(∆x) ≈ 0

In the case where the object travels outside the memory effect region between
captures, S1 and S2 are uncorrelated, and Eq. 5.2.13 can be simplified as Eq. 5.2.5.
Comparing the SAC in Fig. 5.2(iii) with those in Fig. 5.2(i-ii), we see that the SAC
in the case where the object travels farther than the ME region exhibits more noise.
This is expected due to the additional noise term caused by S1?S2 that is not present
in Case 1.
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From above, in all cases (for C(∆x) ∈ [0, 1)), we can successfully retrieve the
object autocorrelation from the acquired speckle images, S1, S2. From the estimated
OAC, phase retrieval techniques can then be applied to reconstruct the object at
diffraction-limited resolution.

5.3 Results
For the experimental demonstration, a laser light beam (CrystaLaser CS532-150-S;
λ = 532 nm) was expanded (1/e2 diameter of 20 cm) and reflected off a phase-
only spatial light modulator (SLM; Holoeye PLUTO-VIS) to generate a spatially
incoherent light source (Fig. 5.3). An SLMwas used in place of a rotating diffuser in
order to generate a deterministic, temporally variant set of 50 to 100 random phase
patterns. This set of patterns was used for all the acquisitions to ensure that the
background light captured remained constant. The object and camera (pco.edge 5.5,
PCO-Tech, USA) were placed at a distance u = 20−30 cm and v = 10−15 cm from
the scattering media (DG10-120 diffuser; Thorlabs, USA) respectively (Fig. 5.3).

SLM

Scatterer
Camera

Moving Object 

Aperture

Lens

Figure 5.3: Experimental setup for imaging hidden moving objects. A spatially
incoherent source is generated by reflecting an expanded laser beam (λ= 532 nm;
1/e2 diameter of 20 cm) off a spatial light modulator (SLM), which applies a
temporally varying set of random phase patterns. The light source is transmitted
through the moving object and scattered by the turbid media. The emitted scattered
light is collected by a camera. An aperture controls the final object resolution and
the speckle size at the camera. Lens focal length = 400 mm.

To ensure that only the object moved between successive image captures, a trans-
missive SLM (tSLM; Holoeye LC2002 with polarizer) coupled with a polarizer
(Thorlabs, LPVISE200-A) was used for amplitude modulation, and served as the
object (Fig. 5.4). For each object, a set of n=4 images, I1, ....I4 were acquired,
with the object moving 1.5mm between each acquisition. The raw camera images
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Figure 5.4: Experimental imaging of moving targets hidden behind a diffuser.
A) The "object" is hidden behind a scattering medium and attenuates light transmis-
sion. The object was moved 1.5 mm between acquisitions. B) Due to the presence of
the scattering medium, the object is obscured, and the camera image I1 is dominated
by the scattered light from the background. C) The ideal object autocorrelation
(AC). D) The speckle autocorrelation ∆I ? ∆I ≈ O ? O. E) By applying phase
retrieval on the speckle autocorrelation, the hidden object was reconstructed with
high fidelity. Scale bar = 500 µm.

(Fig. 5.4(b)) display a seemingly random light pattern that is similar for different
objects. This is due to the dominant contribution of the background.

From each successive pair of acquired images, the OAC (Fig. 5.4(d)) was estimated
by deconvolving the SAC. The deconvolved SAC images were then averaged to
reduce noise and yield a better estimate of the OAC. A Fienup-type iterative phase
retrieval method was applied to reconstruct the hidden object with high fidelity
(Fig. 5.4(e)) [13, 14, 17]. One modification that was made to the algorithm was to
add an object support to the object constraints; this object support was determined
from the OAC support [21, 22]. In all cases, the obscured object was successfully
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reconstructed (Fig. 5.4(e)).

To experimentally demonstrate the effect of object travel distance, we moved an
object a distance of 0.5, 1, and 3 mm between image acquisitions, and looked at
the corresponding SAC and reconstructed object (Fig. 5.5). As expected, the SAC
contained three copies of the OAC. We also compared the effect of processing the
SAC using deconvolution (Fig. 5.5(b)) vs. thresholding (Fig. 5.5(c)).

For Case i, the object traveled a distance ∆x < δx, and both the object and SAC
overlapped in space between successive acquisitions. In the case of object overlap,
only the non-overlapping portion of the object can be retrieved (Fig. 5.5(i)). Com-
paring the result of deconvolution vs thresholding, the reconstructed image from the
deconvolved SAC more closely resembles the original object (Fig. 5.5(i,b)). How-
ever, in both cases, what we are left with is an incomplete OAC and reonstructed
object.

Fig4 - ME

A. Original B. Deconvolved Result C. Thresholded Result

Object Autocorrelation Autocorrelation Reconstruction Autocorrelation Reconstruction

i.

ii.

iii.

Figure 5.5: Experimental results showing the effect of object motion distance
on the speckle autocorrelation (SAC) and object reconstruction. A) A diagram
showing the position and shape of the object at both time captures, and the SAC,
showing three shifted copies of the object autocorrelation (OAC). The effect of
applying B) deconvolution and C) thresholding to retain the positive portion (with
respect to the mean level) for estimating the OAC from the SAC was compared in
three cases (i-iii). The hidden object was reconstructed by applying Fienup phase
retrieval on the estimated OAC. Colormap: green is positive, blue is negative (with
respect to the mean value, in black). Scale bar: 500 µm.

For Case ii, the object traveled a distance δx < ∆x ≤ 2δx. Since the OAC support
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is approximately twice the object support, the positive and negative copies of the
OAC overlapped (Fig. 5.5(ii)) [21]. Due to the overlap, thresholding resulted in an
imperfect object reconstruction (Fig. 5.5(ii,c)). In contrast, by deconvolving, the
signal from the negative copies can be used to gain a better estimate of the OAC,
from which the object can be reconstructed (Fig. 5.5(ii,b)).

For Case iii, the object traveled a distance ∆x >> 2δx, and there was no overlap
in the SAC. Due to the large ∆x, C(∆x) decreased, and correspondingly, the noise
increased. Since the signal-to-noise ratio (SNR) of the negative copies decreased,
the entire OAC cannot be seen in the negative copies (Fig. 5.5(iii,a)); thus, per-
forming a deconvolution results in a noisy, imperfect OAC (Fig. 5.5(iii,b)), and it
is more advisable to use thresholding to retain only the positive portion of the SAC
(Fig. 5.5(iii,c). If we compare the reconstructed objects in both cases, we see that
the object from the thresholded result more closely resembles the original object.

Imaging moving objects hidden between scattering media
To further demonstrate our imaging technique, we placed a moving object be-
tween two diffusers (Newport 10o Light Shaping Diffuser, Thorlabs DG10-220-MD)
(Fig. 5.6(A)). A moving object (a bent black wire) was flipped in and out of the
light path between image captures, such that I2 = B. We blocked the partially-
developed speckle field (from the propagation of the SLM phase pattern) and used
only the fully-developed speckle pattern [23]. This fully-developed speckled pattern
was transmitted through both scattering media and the moving object. The emitted
scattered light was detected by a camera.

The background halo from each detected speckle intensity image was estimated and
removed by performing Gaussian filtering (500x500 kernel, σ = 100), and then
dividing each image by the background halo [14]. The SAC was then computed to
estimate the OAC, from which phase retrieval was applied to reconstruct the hidden
object. Although the object is fully obscured from both sides by scattering media
and cannot be resolved from the camera image alone, using our technique, we were
able to successfully reconstruct the hidden object with high fidelity (Fig. 5.6(B)).

5.4 Discussion and Conclusion
In this paper, we demonstrated successful reconstruction of moving targets that
were hidden behind an optically turbid media. Although the angular memory effect
has already been used to demonstrate imaging of hidden targets, to the best of our
knowledge, these prior systems were limited to imaging dark-field, sparsely-tagged
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Figure 5.6: Experimental retrieval of moving targets hidden within a scattering
object. A) Schematic of the experimental setup. A spatially incoherent light source
is generated by reflecting an expanded laser beam off a spatial lightmodulator (SLM)
that applied a temporally variant random phase pattern. The partially developed
speckle field component is blocked, and only the fully-developed speckle field
transmits through themoving object and two scattering layers. The emitted scattered
light is collected by a camera. An aperture controls the resolution and the speckle
size at the camera. B) Experimental result of a moving target. Two speckle intensity
images , I1, I2, were captured, with the target present for the first capture, and
absent for the second. The background halo from I1 and I2 were removed prior to
computing the difference ∆I = I2− I1 ≈ S1 ∗O. The speckle autocorrelation yielded
an estimate of the object autocorrelation, from which the target was retrieved by
applying Fienup phase retrieval. Lens focal length = 400 mm.

objects [13, 14, 24]. We extended this work to imaging in the bright-field scenario
by exploiting the temporal correlations inherent in the scattering process to remove
the dominating contribution from the background and isolate the signal arising from
the object [15, 16]. Although we demonstrated our results on non-emitting objects
in the bright-field scenario, our technique works equally well with transmissive or
reflective objects. A cursory examination reveals that, when In = B + Sn ∗ O and
∆I = In − In+1, the speckle autocorrelation is still given by Eq. 5.2.5, similar to
imaging absorptive objects in the bright-field scenario. In the remainder of this
section, we discuss some of the factors that impact system performance.
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Firstly, our method depends on the angular correlations inherent in the scattering
process. Thus, the object dimension should fall within the angular memory effect
field of view (FOV), approximated using the full-width-half-maximum (FWHM)
of the correlation function, uλ

πL . The axial extent of the object, δz, should also

fall within the axial decorrelation length 2λ
π

(
u
D

)2
[25]. Since the ME FOV is

inversely proportional to L, our technique works best with thin scattering media,
or through more anisotropically scattering media, since anisotropy enhances the
angular memory effect range [20]. Strongly anisotropic media, such as biological
tissue, also exhibit the translational memory effect, which may be exploited to
further the fidelity of imaging through scattering layers [26].

Secondly, to maximize SNR and minimize overlap, the object travel distance should
be such that δx < ∆x and C(∆x) ≥ 0.5, since smaller values of C(∆x) results in
higher levels of noise. However, if the object moves such a large distance as to not
fall within the laser light beam, then I2 = B, and∆I = S1∗O, andwe can also retrieve
the object with high fidelity. In all these cases, successful retrieval of the object is
dependent on the background light pattern remaining constant between successive
image captures. Thus, the illuminated portion of the tissue should remain constant
between image captures, and the time between image captures should fall well within
the temporal decorrelation time of the scattering sample. For biological samples, the
temporal decorrelation time is related to the motion of scatterers embedded within
[27].

Imaging through biological samples can be achieved using a faster system. The
imaging speed in our current design was limited by the refresh rate of the SLM(≈
8 Hz) and by the exposure time required to capture an image (50-200ms). With
a more powerful laser, or a faster deterministic random phase modulator, it would
be possible to shorten our imaging time, and extend our work to imaging within
non-static samples, such as biological tissue.

A third factor in the fidelity of the reconstruction is the complexity of the object and
the size of the background relative to the object. The dynamic range of the camera
should be large enough to resolve the equivalent speckle signal from the object.
Since the signal contrast is inversely related to the object complexity [14], the
dynamic range of the camera limits the maximum object complexity. To maximize
the SNR, the camera exposure and laser power should be adjusted such that the full
well depth of the camera is utilized. A camera with a larger well depth and dynamic
range would provide higher SNR and the capability to image more complex objects.
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The diameter of the aperture in the system can be adjusted to fine-tune the image
resolution and control the object complexity.

Lastly, each speckle grain at the camera should satisfy theNyquist sampling criterion
and be easily resolvable. At the same time, the number of speckle grains that are
captured in each image should also be maximized in order to maximize SNR.
Although the scattering PSFs are ideally a delta-correlated process, in practice, we
are only sampling a finite extent of the PSF. Thus, the PSF autocorrelation yields a
delta function plus some background noise which can be minimized by increasing
the number of captured speckle grains [14]. Due to Nyquist requirements, the
maximum number of speckle grains is a function of the camera resolution; thus, a
high resolution camera would provide lower noise. Another method to reduce this
speckle noise is to take multiple acquisitions and compute the average of the speckle
autocorrelation images.

In conclusion, we demonstrated successful imaging of hiddenmoving targets through
scattering samples. The temporal and angular correlations inherent in the scattered
light pattern allowed us to reconstruct the hidden object in cases where multiply
scattered light dominates over ballistic light. This paper presented a first proof
of concept. Although we demonstrated imaging of binary-amplitude targets, our
system can also be extended to imaging gray-scale targets [28]. Since our imaging
technique utilizes the angular memory effect, it is scalable. Moreover, our method
does not require access inside the scattering media, and can therefore be used as
a black box imaging system. With appropriate optimization, this opens up po-
tential for use in applications involving the tracking of moving object in turbulent
atmospheres, such as fog or underwater.
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Appendix
Deconvolving the Speckle Autocorrelation
To deconvolve the speckle autocorrelation (SAC), ∆I ? ∆I, Weiner deconvolution
was applied to reduce the deconvolution noise. We briefly describe the process here.
We can rewrite Eq. 5.2.13 as

g = ∆I ?∆I ≈ A ∗ h + n = y + n,

where h(xi) = 2δ(xi) − C(∆x)δ(xi ± ∆xi), A = O ?O, and n is the noise term. In
this case, Weiner deconvolution estimates A by applying

F (A) = F (g)
F (h)

|F (h) |2 + k
≈
F (y)
F (h)

,

where F is the Fourier transform operator, and k = F (n)
F (g) ≈

1
SN R estimates the SNR

level of your signal [29]. Since all object ACs have a peak value of A(xi = (0, 0)) =∑
x O2, to determine h from the SAC, we estimated the value of C(∆x) by taking the

negative/positive peak values in the SAC. The locations of the negative peaks, with
respect to the centered, positive peak, provided the value of the shift ∆xi.

Object Complexity and SNR
In this section, we analyze the relation between the object complexity, full well depth,
and signal to noise ratio. Let us consider the light beam incident upon the object
plane. Let the area the light beam covers be denoted a = Nδx , where δx is the area
of a resolution cell area (RCA). Let No be the number of RCAs the object occupies;
then, the number of light-emitting RCAs from the background is Nb = N − No. The
detected image intensity, I = B − S ∗ O, is composed of Nb speckle patterns and
will have a mean and standard deviation µb ∝ Nb and σb ∝

√
Nb respectively. The

signal from the object, S ∗O is composed of the sum of No speckle intensities, and
will have a mean and standard deviation of µo ∝ No and σo ∝

√
No. Since the object

signal is carried by the background light, we need µb > µo =⇒ Nb > No (1).

Nb and No are also limited by the specifications of the camera. Let F denote the
full well depth, η the quantum efficiency of the detector, and b denote the number
of quantization bits in the analog-to-digital converter. For ease of discussion, let
the mean detected speckle intensity arising from a single RCA be ηE[S] = 1. Since
each image we captured has a mean intensity of µB = Nb, we need Nb ≤ F in order
to prevent saturation. Since the majority of the information about the object comes
from the fluctuations in the speckle pattern, we can approximate themagnitude of the
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signal to be σo. Thus, in order to resolve the object signal, we have the requirement
that σo

µo
= 1√

No
> F

2b (2). However, at the same time, increasing image complexity,
No, decreases signal contrast, since C � σo

µo
= 1√

No
.

Let us now consider the effect of shot noise. Each detected image can be mathemat-
ically represented as Ii = B − Si ∗ O + ni where n is the shot noise. The detected
shot noise would have a mean and standard deviation of µSN = ηE[I] = Nb and
σSN =

√
ηE[I] =

√
Nb. For each detected image, the relative signal magnitude is

C = 1√
No

> σSN

µSN
= 1√

Nb
which leads to Nb > No (3). For each detected image,

the limit on the shot noise is when µSN = Nb ≈ F, in which case we would need
1√
No

> 1√
F
, or F > No. Thus, we have the requirement that F ≥ Nb > No (2). This,

in conjunction with (1), shows that the full well depth and number of quantization
bits of the camera are the ultimate limiting factor on the allowable object complexity.

This analysis only includes the effect of shot noise, and not any other sources of
noise, such as decorrelation noise. From the above analysis, we have the object
signal contrast, C = 1√

No
. In order to successfully retrieve more complex objects,

we need to decrease other sources of noise as much as possible.
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