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Abstract

In Part 1 of the thesis the behavior of a diffusion flame in an unbounded flow
with an imposed pressure gradient is analysed. The problem is formulated using the
compressible boundary layer equations, and the assumption of infinite reaction kinetics is
employed. The equations are transformed to the equivalent incompressible equations by
the application of the Howarth transformation. Solutions to these equations are obtained
for a functional form of the pressure gradient which admits similarity solutions. Two
stoichiometric fuel-air ratios are considered, ¢ = 1 which yields a symmetric flow field
about the flame, and ¢ = 0.058 which corresponds to the combustion of methane in air

and yields an unsymmetric flow field.

For favorable pressure gradients the fluid in the vicinity of the flame is accelerated
more than the fluid in the free stream. The acceleration of the fluid as it is convected
downstream causes an augmentation in the fuel mass consumption rate, the mechanism
of which is similar to that of a strained diffusion flame in an unbounded counterflow.
For adverse pressure gradients a reverse flow develops in the vicinity of the lame which
severely affects the mass consumption rate of fuel. For a flame with unit stoichiometry,
recirculation zones develop on either side of the flame which eventually lead to extinction.
For the stoichiometric ratio corresponding to the combustion of methane in air, the
recirculation zones are situated on the fuel side of the flame and no tendency toward

extinction 1s shown.

In Part 2 a numerical study is done to investigate the formation of large vortex
structures observed in the combustion chambers of air breathing engines under certain
conditions. It has been proposed that these vortex structures are formed by a surging flow
over the flameholding device which exists when longitudinal modes of the combustion
system are excited. In the present study the surging flow is generated by passing a

weak shock wave over a rearward facing step. The fluid entering the chamber is of high
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density (representing the cold fuel-air mixture) whereas the fluid in the chamber has a
low density (the combustion products). The vortex formed by the surging flow induces
a downward velocity in the high density fluid toward the lower wall. It is found that
larger surge velocities result in the formation of stronger vortices (which induce higher
downward velocities), whereas an increase in the mean velocity causes no significant
change in the flow field. The time taken for the high density fluid to reach the lower wall
is therefore decreased as the surge velocity is increased. By considering these results, a

possible model for the sustenance of the vortex shedding mechanism is proposed.
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Chapter 1

Introduction

The analytical study of combusting flow fields is complicated by the complex interaction
which exists between the fluid mechanics of the flow field under consideration, and the
chemistry of the reaction in the combustion zones of the flow field. For a certain class
of combusting flow fields, one in which the reactants are initially unmixed, Burke and
Schumann (1928) recognized the important fact that the diffusion of reactants toward
the combustion zone is much more important than the chemical reaction in determining
the rate of the combustion process and hence its effect on the flow field. This implies
that the reaction rate can be assumed infinite, the rate of combustion of the reactants
being determined entirely by their transport towards the reaction zone by the diffusion
process. A further implication is that the reaction zone is limited to a zone of infinitesmal
thickness. By employing this assumption in the formulation of combustion problems
in which the reactants are initially unmixed, the details of the chemical reaction are
effectively decoupled from the fluid mechanics. The details of the chemical reaction
become important only when the time scale associated with the transport of reactants
toward the flame zone is of the same order of magnitude as that associated with the

chemical reaction.

By utilizing the thin flame, infinite reaction rate model, relatively complex flow
fields involving combustion can be studied. An example is the buoyant diffusion flame
which has been extensively studied. A brief literature survey on this problem appears
in Chapter 2. Most of the analytical effort, however, has gone into the study of the
time dependent, strained diffusion flame in an unbounded counterflow. This problem
has been studied extensively, not only in the limit of infinite reaction rates, but also in
cases where reaction rates are important (eg. high straining rates). Apart from being

of interest as a combustion problem in its own right, it forms a building block for more
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for more complicated, turbulent combusting flow fields. This has resulted from the
experimental observation that turbulent flames consist of a collection of laminar flame
surfaces in which the laminar flame structure retains its identity, but is severely strained
and distorted by the turbulent fluid motion. This idea is employed, and the results of the
strained diffusion flame analysis utilized in the studies of turbulent diffusion flames by
Carrier, Fendell and Marble (1975), Bush, Feldman and Fendell (1976) and Marble and
Broadwell (1977). The results of the strained diffusion flame are also used by Karagozian
(1982) in the analysis of combustion in vortex structures. In these studies the effects of

pressure gradients which exist in the flow field are not taken into account.

In the present study an attempt is made to gain some insight into the effect that
pressure gradients, aligned with the flame zone, have on the behavior of diffusion flames.
Because the density gradient (resulting from the temperature gradient) is perpendicular
to the flame and therefore to the pressure gradient, a powerful mechanism for the pro-
duction of vorticity exists in the flow field. This mechanism, described by the Helmholtz
vorticity equation, results in a rate of vorticity production within an element of fluid
proportional to Vp x Vp. The vorticity created in this manner can be a major contribut-
ing factor to the transition of a flow field from laminar to turbulent, or, in a turbulent

combusting flow field, can lead to an augmentation in the degree of turbulence existing

in the flow field.

In Chapter 2 the problem is formulated utilizing the thin flame, infinite reaction
rate model. The partial differential equations describing the flow field are reduced to
ordinary differential equations by using a functional form for the pressure gradient that
yields similarity solutions. The numerical method used to solved the ordinary differential
equations generated by the analysis is also outlined in this chapter. Two stoichiometric
fuel-air ratios are considered; a ratio of 1 which generates a symmetric flow field about

the flame, and a ratio of 0.058, corresponding to the combustion of methane in air, which



yields an unsymmetric flow field.

The solutions to the equations can be divided into two classes, those which corre-
spond to favorable pressure gradients (and therefore accelerating flow fields) and those
which correspond to adverse pressure gradients (decelerating flow fields). The solutions
corresponding to favorable pressure gradients are discussed in Chapter 3. Because the
solutions show a similarity to those produced by the analysis of the strained diffusion
flame in an unbounded counterflow, a comparative study of the results produced by the
two situations is done. In Chapter 4 the results corresponding to adverse pressure gradi-
ents are discussed. In this case the two stoichiometric ratios considered produce results
which differ markedly, and yield fuel mass consumption rates which show a qualitative

difference in behavior as the pressure gradient is varied.
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Chapter 2

Mathematical Formulation

The bouyant diffusion flame, a problem related qualitatively to the diffusion flame in
a pressure gradient, has been the subject of intensive study. Kosdon, Williams and
Buman (1969) initiated these studies with their investigation of the combustion of vertical
cellulosic cylinders in air. Kim, De Ris and Kroesser (1971) followed up on this analysis

with their treatment of vertical, inclined and horizontal burning fuel surfaces.

Various other aspects of bouyant diffusion flames were considered in subsequent
studies. The overfire region above burning surfaces was studied by Pagni and Shih
(1977), Ahmad and Faeth (1978), and Groff and Faeth (1978) using various methods of
solution for the field equations. Kinoshita and Pagni (1980) studied forced, free, and
mixed mode diffusion flames adjacent to finite fuel slabs. The structure and stability
of bouyant diffusion flames was studied for various fuel-air combinations by Fleming

(1982).

All of the above analyses utilized the assumption of infinite chemical reaction rates
introduced by Burke and Schumann (1928). Unit Lewis number and transport proper-
ties independent of composition were also assumed in these calculations. Despite these
assumptions the analyses produced results that compared favorably with experiments.
The above assumptions led to significant simplifications in the mathematical formulation

of the field equations and are thus employed in the present analysis.

As in the study of buoyant flames, the present analysis follows three steps. The
boundary layer field equations are transformed to a set of equivalent constant density
equations by the use of the Howarth transformation (1948). The equations obtained
admit similarity solutions for a certain functional form of the pressure gradient. The
equations are then transformed using a similarity transformation which, in this case,

resembles that of Falkner and Skan (1931) in their treatment of boundary layers sub-
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Ject to pressure gradients. The similarity transformation yields two coupled, nonlinear
differential equations with boundary conditions specified at three points. This three
point boundary value problem is solved using a shooting method which has been used

extensively for the solution of boundary layer problems.
2.1 The Governing Field Equations

Consider a flow nearly parallel to the horizontal z-axis, the upper half-plane consisting
of a fuel, the lower of oxidizer. Further, let the gas velocity in the far field of each stream
be u;(z), and the density constant, uniform, and equal to py. Because the undisturbed

far field flow is assumed to be irrotational, the Bernoulli equation
P+ zoour’(z) =c (2.1)

holds. The pressure in the far field is therefore dependent only on z and the pressure
gradient is given by

dp duq
5, = ~Pou1 e (2.2)

Now let the two streams interact at the interface between the fuel and oxidizer
(located at y = 0) as a diffusion flame with infinitely fast kinetics. The chemical reactions
are therefore confined to a sheet of negligible thickness. If we assume that the effect of
the chemical reaction is confined to a thin region around the flame, the flow field is well

described using the boundary layer approximation and is governed by the field equations:

dpu  dpv
55 T 5y O (2.3)
du dv. dp O du
P TPy~ "oz T oy ("?95) (2.4)

)
where ﬁ is given by (2.2).

The chemical reaction is given by:

F+60 - xP+Q (2.5)
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where F', O, and P represent one mole each of fuel, oxidizer and product. ¢ Represents
the number of moles of oxidizer consumed by one mole of fuel and x represents the
number of moles of product generated by the reaction. @ represents the amount of heat

produced by the reaction.

In cases of non-unit stoichiometry, the flame sheet will be situated in the lower half
plane for the stoichiometric fuel-air ratio ¢ < 1, and in the upper half plane for ¢ > 1.
In order to make the problem more tractable mathematically, we locate the flame sheet

along the z—axis, effectively imposing an artificial vertical velocity on the flow field.

Because of the infinitely fast chemistry, the two reactants cannot coexist and, more-
over, must both vanish at the flame front. It is also, therefore, not possible for the
reactants to cross the flame front. As a result, the fuel, of mass fraction K71, is contained
in the upper half plane whereas the oxidizer, of mass fraction Kj, is contained in the
lower half plane. The entire region of chemical reaction is confined to the horizontal axis
so that species concentrations in both the upper and lower half planes are described by

concentration relations with no production terms:

K, IK d 0K
pu—=2 4 gyt o 2 (pD-—1£> (2.6)

Oz dy dy
where D is the molecular diffusivity.

In each region the remaining gas mass fraction consists of combustion products.

Similarly the conservation of enthalpy:

2T s e 2T (00 -
Pz T PUBy T 3y \ "3y (2.

holds everywhere except at the flame on the horizontal axis where a heat source due to
the chemical reaction exists. In the above equation k is the thermal conductivity and ¢,

is the specific heat at constant pressure which is assumed to be constant.

The conditions in the far field for the reactant concentrations and the gas temper-



atures are

Ki(z,00) = Ko(z,—00) = (2.8)

and

T(z,00) = T(x,—~0) =Ty . (2.9)

The species and temperature functions are analytic in the upper and lower half planes,
but discontinuities may occur in the slopes of these functions at the flame sheet due to
the consumption of reactants and the subsequent heat release. The chemical reaction
provides the conditions for matching the analytic functions for temperature and species

at the flame sheet. In addition to the conditions
Kl(x,O):Kz(CL‘,O)ZO 3 (210)

it is required that the two reactants be transported to the flame zone in the stoichiometric
ratio . The bulk velocity through the flame cannot contribute to the net transport of
reactants because the concentrations of both reactants must vanish at the flame, and
therefore the species transport to the flame is due entirely to diffusion. This condition

gives
0K,
dy

(z,07) = —p (z,07) . (2.11)

Ay

The sensible heat released by the chemical reaction has to be conducted into the
upper and lower gas regions, the bulk velocity through the flame again making no con-

tribution because the temperature is continuous at the flame. This gives

orT aT dK
—k— + —_ = L +
k 39 (z,07)+ k 3y (z,0_)=¢ [pD 39 (z,0 )} (2.12)

where ¢ is the heat of reaction per unit mass of fuel.

Because the pressure variations in the z-direction are assumed to be small, the
equation of state for the gas is

T = poTo . (2.13)



2.2 The Howarth Transformation

Due to the heat release at the flame, large density variations are expected in the vicinity
of the flame. Since the incompressible boundary layer equations are easier to solve, it
is desirable to relate the equations in 2.1 to the equivalent incompressible boundary
layer equations. This is accomplished by the use of the Howarth transformation which

introduces a new vertical length scale

y= /Oy (;%) dy (2.14)

while retaining the original horizontal scale

8|
Il
]

(2.15)

Under this transformation the horizontal velocity component remains unchanged

]
Il
e

(2.16)

but the vertical velocity component is transformed to

v=<p£0>v+u/0y%<pﬁo) dy . (2.17)

As is common in combustion analyses, the following approximations for the variation of
viscosity, thermal conductivity, and molecular diffusivity are made when applying the

Howarth transformation to the boundary layer equations:

PE = poto pk = poko p*D = po’Dy? . (2.18)

After application of the Howarth transformation and the incorporation of the equa-
tion of state (2.13) into the momentum equation, equations (2.3),(2.4),(2.7), and (2.8)
reduce to:

du 07

95 T a5 =0 (2.19)



ué-; ay T—Oul _d Vo 6@2 (220)
0K, 0K 0%K; »

2= p 21

oz e EE (2.21)

U= +T— = - — (2.22)

where

c
pr=2ko (2.23)
ko

The above equations are identical to the constant density boundary layer equations

except for the coupling that exists between the momentum and temperature equations,

which is responsible for the vorticity generation in the flow field.

It will be shown that the flame temperature is constant, which makes convenient to

introduce a dimensionless temperature variable

T -To
d = }
T, — Ty (2.24)
which satisfies the differential equation
_d¢ 99 _ vo 8219
Yozt T Prog (2.25)
with boundary conditions
¥(Z,00) = 9¥(T,-0) =0 ¥(Z,0) =1 . (2.26)

After the application of the Howarth transformation, the matching conditions (2.11)

bl

(2.12) become

3K1 — A+Y 8K2 —_ A
35 (Z,07) = —p 3% (z,07) (2.27)
q pocp Do\ 0Ky _ |
L o <c,,To) ( ko ) ag &07)

(% - > : (2.28)
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In the subsequent calculations it will be assumed that

Le=Er_y (2.29)

=5, =
which holds for most gases. This leads to a significant simplification in the solution of
the problem since the species and normalized temperature variables are described by the

same differential equation. Because K; and K are defined in different planes, a single

function

_ K, y>0
K_{K2 y (2.30)

can be used to describe the gas composition over the entire plane. The functions ¥ and
(1 — K) satisfy the same differential equation and have the same boundary conditions,
so they must have the same solution. This reduces the number of differential equations

to be solved from four to three. The matching conditions (2.27) and (2.28) thus become

v oy
—(z.0MY= —r-(7 0
55 (2.0) = —p 52 (2,07) (2.31)
and
q a}'{1 — N+
0
(L) =yl 28 @07
To a9, a9, _
—(%,07) - —(z,0
By( ) By( ) (2.32)
I
. CpTo
14
which is constant.
The system of equations to be solved is therefore
du Jv
4+ 20 .
Pr + 77 (2.33)
_du  _dv Ty du, %y
it —=|({=ZL-1)9 hubet 3 el
= + vay [(To 1) + 1] uy Iz + vy 7 (2.34)
_dd n 09wy, 9% 2.35
u— —_— = .
oz ' "9y Pr oy’ (2:35)
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K=(1-9) (2.36)

with boundary conditions

¥(Z,0) = ¥, —00) =0 (2.37)
¥(z,0) =1
and matching condition
%(E,O"’) = —<p%g(f,o—) (2.38)
with
T c ?Z’o hd
<T_§ - ) “Tie (239)

2.3 The Similarity Transformation
If the undisturbed gas velocity in the far field is
z B

ul(f) ) <X> , (240)
a similarity solution similar to the Falkner-Skan solution for boundary layers exists for
the equations describing the flow field. In (2.40) X is a suitable length scale and ug is a
constant. The pressure gradient parameter 8 is positive for accelerating flows (favorable
pressure gradient) and negative for decelerating flows (adverse pressure gradient). The

solution of the equations is made possible by the introduction of the similarity variable

4

n= W (2.41)

and the stream function
¥ = VvouiZ f(n) (2.42)

where

ay _
= -a—y and T = —85 . (2.43)

iy
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Expressed in terms of the similarity variables, the horizontal and vertical velocities are

a=uf
— 2.44
7= 1/0—1—1.1 I:ﬁ+1f+ﬂ 1nf'] ’ ( )
T 2 2
and the governing equations are transformed to
T
M+ IB+0)ff"+8 K(T—f - 1) 9+ 1) - (f')z} =0
0
9"+ 1B+ 1)Prfo' =0 (2.45)
K=(1-9)
with boundary and matching conditions
f'{o0) = f'(-o0) =1
¥(oo0) = ¥ (—00) =0
(2.46)
9(0) =1
PO = —p#(07)
with
1,
Tf c To
—=-1) = 2.47
(To ) 1+ ¢ (2.47)

Because the differential equations are highly nonlinear and a closed form solution is not

known, a numerical scheme has to be employed for their solution.

2.4 The Numerical Method

Because the boundary conditions are specified at three different locations, n = —oo,
0, and oo, a shooting method is employed for the solution of the field equations. The

method of solution follows the scheme described by Cebeci and Keller (1971).

For favorable pressure gradients (8 > 0) the so called “simple shooting” method is
used. For adverse pressure gradients (8 < 0), two solution branches exist, which, for
some values of 3, necessitates the use of the “nonlinear eigenvalue” shooting method

outlined by Cebeci and Keller.
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The simple shooting method involves the following. n = 0 Is used as the starting
point for the integration of the differential equations. Because only one boundary condi-
tion, ¥(0) = 0, is known at this point, estimates for the values of f(0), £'(0), £"(0), and
1¥'(0) have to be made to start the integration procedure. The equations are integrated
outwards in either direction to sufficiently large positive and negative values of n, n = Moo
and 7 = n_o respectively. The calculated values for f’ and ¥ are compared with the
boundary values for these variables at the respective limit points. New values for the
initial estimates are calculated if the error is not within a specified tolerance. Newton’s
method, or any nonlinear algebraic equation solver can be used to calculate improved
values for the initial estimates. This process is repeated until the solution converges.
The differential equations were integrated using an Adams-Moulton predictor-corrector
method with an initial Runge-Kutta step. A nonlinear algebraic equation solver was

used to calculate new iterates for the initial conditions.

For the “nonlinear eigenvalue” problem #'(0) is fixed and 8, together with f (0),
f'(0), and f"(0) are taken as parameters which are varied until the far field boundary
conditions are satisfied. New iterates for the variable parameters are calculated by the

same method that was used for the simple shooting procedure.
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Chapter 3

The Structure of a Diffusion Flame in a Favorable Pressure Gradient

The transformed field equations (2.45) were solved for % = T and Pr = 0.72. Two
stoichiometric fuel-air ratios were considered, ¢ = 1 which yields a symmetric flow field
about the flame, and ¢ = 0.058 which corresponds to the combustion of methane in air.
The latter yields an asymmetric flow field which is characteristic of the combustion of

hydrocarbons in air. The pressure gradient parameter 8 was varied from zero to four for

each of the two stoichiometric fuel-air ratios.

Figs(3.1)-(3.5) (¢ = 1) and (3.6)-(3.10) (¢ = 0.058) show all the significant flow
field properties ; the distribution of fuel and oxidizer mass fractions, K; and K, ,nor-

malized temperature 9, streamwise velocity ratio f' = %, cross stream velocity ¥ and
the similarity streamfunction f plotted against the similarity variable . From these
figures it can be seen that the hot, low density fluid produced by the combustion process
responds more readily to the imposed pressure gradient, resulting in higher streamwise
fluid velocities in the vicinity of the flame. For the symmetric flame n = 0 is the cen-

ter of the high temperature, low density region so the highest streamwise velocities are

encountered here. For the case ¢ = 0.058 the flame moves into the oxidizer, steepening

the oxidizer concentration gradient 2 and decreasing the fuel concentration gradient

%K# in such a way that the reactants diffuse to the flame in the correct stoichiometric
fuel-air ratio. Because we have chosen a coordinate system in which the fame is fixed
along the horizontal axis, this phenomenon manifests itself as a cross stream velocity
through the flame. Combustion products are thus transported from the flame into the
fuel stream in the upper half plane, in effect diluting the fuel and hence decreasing its
concentration gradient. In the oxidizer the opposite is true. Fresh oxidizer from the far

; o . 9dK
field is transported toward the flame by the cross stream velocity, increasing -8“2 The
n

decreased fuel and enhanced oxidizer gradients cause diffusion of the reactants towards
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the flame in the correct ratio.

As the pressure gradient parameter f is increased, the maximum value of f’ (the
ratio of streamwise velocity to the free stream streamwise velocity) increases, at first
rapidly between 8 = 0 and 0.5, and then at a slower rate between 8 = 0.5 and 4
(fig(3.21)). One expects the maximum horizontal velocity to increase as the pressure
gradient is increased, but applying the pressure gradient on the flow field has other effects
which account for the observed behavior of the maximum horizontal velocity. Increasing
the value of # has the effect of increasing the entrainment velocities of both the fuel
and oxidizer towards the flame. This effect can be seen clearly for p = 1, 8 = 0 — 4
(figs(3.1)-(3.5)). This has the effect of narrowing the diffusion zones of both fuel and
oxidizer and thus creating steeper concentration gradients. This has two opposing effects
on the maximum streamwise velocity. Narrowing the width of the thermal layer has the
effect of decreasing the maximum streamwise velocity for a fixed pressure gradient (it
will be seen that adverse pressure gradients widen the thermal layer with the result
that small pressure gradients have a large effect on the streamwise velocity). However,
the increased heat release caused by the enhanced fuel mass consumption has the effect
of increasing the streamwise velocity. Close to 8 = O the thermal layer is relatively
wide, so increasing the value of § has a significant effect on the streamwise velocity.
However, between # = 0 and 8 = 0.5 the width of the thermal layer decreases rapidly,
with the result that, for values of 8 larger than 0.5, an increase in the pressure gradient
does not cause the equivalent expected rise in the maximum horizontal velocity. For
values of 3 larger than 0.5 the width of the layer decreases slowly, but this is more than
compensated for by the increasing pressure gradient and the enhanced heat release at
the flame. The effect of the applied pressure gradient on the entrainment of fuel and
oxidizer towards the flame is depicted more clearly in the figures showing the streamlines

of the flowfields (figs(3.11)-(3.20)). The dark lines are the streamlines, the lighter lines
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are constant values of the similarity variable n in increments of 1.0; = 0 corresponds
to the horizontal axis where the flame is located, positive values of  are in the upper
half plane and negative values in the lower half plane. Since the flow is steady, the
streamlines correspond to particle paths in the flow field. In the absence of a pressure
gradient (8 = 0, fig(3.11)), the reactants in the far field move parallel to the lame. When

the pressure gradient is applied, however, fluid particles that are far from the flame for
z

A
(figs(3.11)-(3.15)).

small values of + are entrained towards the flame as they are convected downstream

The fuel mass consumption rate per unit area at a location z along the horizontal

axis is
) 0K,
ms = pD——(z,0" 3.1
7= D% 1(2,0%) (3.1
or, in terms of the similarity variable
1
) ui(z)\* 0Ky, .
= poD 0 3.2
g = poDo (S22} 2oy (32)
The normalized mass consumption rate
ms

1
ulr 2
poDo (‘——( ))
VW
is plotted against 8 for ¢ = 1 and ¢ = 0.058 in figs(3.22) and (3.23) respectively.
In order to acquire a better understanding of the mass consumption augmentation
for increasing #, it is useful to compare the problem under consideration to the time

dependent, strained diffusion flame which has been the subject of intensive study and is

therefore well understood. Because the streamwise velocity at the flame
AN

1s an increasing function of 3 for positive §, a flame element moving along the horizontal

axis encounters a strain field

=G = (5) (34
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A diffusion flame undergoing a steady strain rate e, attains a steady mass consump-

tion rate

2Doeo\ ¥ (1
m,u = poDo (‘—73‘59) < —;(P> e_'”2 . (35)

where

-9
erfnf = — <1——+—;> (36)

(See Carrier, Fendell and Marble (1975) or Karagozian (1982)). Utilizing (3.4) and (3.5)

one obtains, in terms of the flow field variables:

fre. = poDo <m(z))% (wf’(o) sc>% (1?0) . (37)

Vo 1

which has the same functional form as (3.2). The mass consumption rates for the above
approximate calculation are compared to the actual mass consumption rates for ¢ = 1
and ¢ = 0.058 in tables (3.1) and (3.2) respectively. Agreement between the two is
not good, except for the case 8 = 1 which corresponds to a constant strain rate. This
suggests that non-steady effects are probably important (ie. that the mass consumption

probably does not reach the steady value corresponding to the applied strain rate).

By integrating (3.3), the position of a flame element z, can be found:

G- ()7 - B sy

where z is the initial position of the flame element. Now since both the position as a

function of time of the flame element and the strain as a function of position are known,

the strain rate of the flame element as a function of time can be obtained:

e(t) = 3 (zo)l—ﬂ SR (3.9)

The mass consumption rate as a function of time for a diffusion flame undergoing this

strain rate is obtained in Appendix A. After converting back to the spatial coordinate,
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the mass consumption rate is given by the expression

Matr () :poDo< hd >— ((Hﬁ) 1'(0) SC>% <1+‘0> e” (3.10)

W s 2

Case 1: =1

The mass consumption rates for the strained flame approximations are compared to
the actual mass consumption rates for ¢ = 1 in table (3.1). Agreement is good, the
actual value being consistently between 93% and 96% of the approximate value. The

approximate calculation is expected to yield higher mass consumption rates since the

!
0
strain field is assumed to be independent of y and equal to Ef—'(—)y—l In the actual flow
z
(0 1
field the strain field has a maximum of M at the flame and it drops off to fT(O_)
z

of this value in the far field. The approximate calculation therefore generates higher
entrainment velocities than are present in the actual flow field. The diffusion zones are
therefore thinner and the mass consumption rates consequently higher. This effect can
clearly be seen in table (3.1). As g increases, so does the value of f/(0). The value of
f'(0) is a measure of the ratio of the strain rate at the lame to that in the far field. For
B = 0.1, the value of f'(0) is 1.481 and the mass consumption is 96% of the approximate
value. As f is increased to 4 from 0.1, the value of f/(0) increases to 2.177 and the
value of the mass consumption rate falls from 96% to 93% of the approximate value.
If an appropriately averaged value for the the strain rate is used in the approximate

calculation, better results would be obtained.

Case 2: ¢ =0.058

Table (3.2) shows the comparison of the strained flame approximation to the actual mass
consumption for ¢ = 0.058. Here the actual value of the fuel mass consumption rate is
between 87% and 89% of the approximate value. The difference can again be ascribed

to the assumption of a strain field independent of y in the approximate calculation.

Because the results for the diffusion flame in a pressure gradient compare favorably
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with those for the strained diffusion flame for infinite reaction rates, we can expect the
two cases to exhibit a similar behavior for finite reaction rates. The strained flame
with finite reaction rates has been widely studied. Carrier, Fendell and Marble (1976)
studied the structure of the reaction zone for diffusion flames subject to both steady
and unsteady strain rates. Lifidn (1974) studied the structure and stability {with an
emphasis on ignition and extinction phenomena) of diffusion flames subject to constant

strain rates.

The Damkohler number for the flow field (the ratio of characteristic flow time to
chemical reaction time which ~ é for the strained diffusion flame) is an important
parameter determining the structure of the reaction zone. With infinite reaction rates
the fuel mass consumption rate is enhanced by an increase in the strain rate because
of the increased entrainment of reactants towards the flame zone. With finite reaction
rates, however, the rapid inflow of cool reactants towards the flame might quench the
flame and cause extinction at a certain, critical Damkaohler number (corresponding to a

critical strain rate).

Consider now the expression for the strain rate of a flame element travelling along

the diffusion flame in a pressure gradient

e(t) = ) (@) = Et . (3.9)
Bf(0)ug \ A s

For B < 1 the strain rate decreases for increasing time and ¢ — 0 as ¢ — co. This implies
that, if a flame exists at some position %, a flame element moving in the direction of
increasing ; will not show a tendency towards extinction. For 8 > 1, however, the strain
rate increases for increasing time and becomes unbounded after a certain critical time
(corresponding to the flame element moving to infinite values of ;) A flame element
starting off at position % therefore experiences an increasing strain rate as it moves

downstream. As it approaches the point corresponding to the limiting Damkdhler num-
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ber (and hence limiting strain rate) at which extinction occurs, finite reaction rate effects
become important and extinction eventually occurs. The similarity solution therefore be-
comes invalid. However, since the boundary layer equations are parabolic in nature (and
it is assumed that the thin combustion boundary layer has little effect on the outer flow
which is described by elliptic equations), it is expected that the similarity solution would
hold up to the point where finite reaction rates become important, since information

about the flow field downstream of this point cannot be propagated upstream.
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Figure (3.21) Maximum Value of the Dimensionless

/

Streamwise Velocity (£, 0z

) as a

Function of the Velocity Index, 3.
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Figure (3.22) Dimensionless Fuel Mass Consumption

Rate as a Function of the Velocity
Index, 8 (¢ = 1.0).
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Index, 8 (p = 0.058).
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Mg,

po Do /2=

0.587

0.670

0.764

0.840

0.907

1.026

1.130

1.225

1.313

1.396

1.473

Comparison of the Fuel Mass Consumption Rate of a

Diffusion Flame in a Favorable Pressure Gradient with

Vp T

po Do /2

Vo &

0.261
0.446
0.662
0.811
0.968
1.201
1.397
1.569
1.724
1.866

1.998

my

me,

2.25
1.50
1.15
1.04
0.94
0.85
0.81
0.78
0.76
0.75

0.74

po Do /72

0.611
0.706
0.811
0.895
0.968
1.097
1.210
1.313
1.407
1.496

1.580

that of the Strained Flame Approximation, ¢ = 1.0.

my

Mgty

0.96
0.95
0.94
0.94
0.94
0.94
0.93
0.93
0.93
0.93

0.93
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po Do /2=

0.098

0.113

0.124

0.134

0.152

0.168

0.182

0.195

0.208

0.219

Comparison of the Fuel Mass Consumption Rate of a
Diffusion Flame in a Favorable Pressure Gradient with

that of the Strained Flame Approximation, ¢ = 0.058.

vy T

e, my
po Do ;u;%, YOS
0.070 1.40
0.103 1.10
0.130 0.95
0.152 0.88
0.189 0.80
0.221 0.76
0.248 0.73
0.273 0.71
0.296 0.70
0.317 0.69

LT my
po Do \/V—"ULZ Mgty
0.110 0.89
0.127 0.89
0.140 0.89
0.152 0.88
0.173 0.88
0.191 0.88
0.208 0.88
0.223 0.88
0.237 0.88
0.251 0.87
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Chapter 4

The Structure of a Diffusion Flame in an Adverse Pressure Gradient

The diffusion flame in an adverse pressure gradient exhibits features qualitatively similar
to other, related boundary layer flows which have been studied before. Hartree (1937)
found that the incompressible boundary layer equations have no solutions for the pressure
gradient parameter § < —0.0904, this value corresponding to the point at which the shear
stress at the surface vanishes (which is an indication of separation of the boundary layer

for steady flows).

Stewartson (1954) found a second branch of solutions to the equations for —0.0904 <
B < 0, these solutions corresponding to separated flows for which the shear stress at the
surface is negative (implying that the velocity of the fluid close to the surface is opposite
in direction to that of the free stream). Cohen and Reshotko (1955) found a similar
situation in their studies of compressible boundary layers with heat transfer. They found
that, with heat addition, separation occurred sooner (ie. for values of 8 > —0.0904) than
in boundary layers without heat addition. This happens because, as in boundary layers
with combustion, the high temperature, low density fluid in the vicinity of the surface
responds more readily to the applied pressure gradient. The opposite effect is true when

heat is transfered from the fluid into the surface.

As for the diffusion flame in a favorable pressure gradient, solutions to the field

. . . T
equations for adverse pressure gradients were obtained for R Pr=072, p=1

0
and 0.058. Plots for all the significant flow field variables are shown in figs(4.1)-(4.6) for

© =1 and figs(4.7)-(4.14) for ¢ = 0.058.

Now even though the flow field being considered extends from y = —o0 to y = +oo,
it is more convenient to think of the pressure gradient as being imposed on the flow field
by a channel of increasing area. The flow field consists of a viscous/thermal layer in the

vicinity of the flame, and outer, irrotational fuel and oxidizer fields. Streamlines for the
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flow fields are shown in figs(4.15)—(4.28), the dark lines being the streamlines and the
lighter lines constant values of the similarity variable . The line n = 0 corresponds to
the horizontal axis (where the flame is located), positive values of 7 in increments of
2 are located in the upper half plane and negative values in the lower half plane. The
channel walls would correspond to streamlines, the lower wall corresponding to a free
streamline in the outer oxidizer field and the upper corresponding to a free streamline in
the outer fuel flow field (eg. streamlines A and U in figs(4.15)—(4.19)). If the flame were
absent, the entire flow field would be irrotational and of constant density so that the
channel area needed to produce the required pressure gradient could be obtained from
mass conservation

m

Alg) = — (4.1)

pouo (3

Both the velocity deficit and the high temperature in the vicinity of the flame tend
to increase the channel area required to contain the flow field for a specified pressure
gradient. The viscous/thermal layer can be replaced by an equivalent body of thickness
§*, the displacement thickness, where

5 (z) = /yyb (1 - ;%) dy' (4.2)

a

(where y, and y, are the channel boundaries or any two points, one in the oxidizer free
stream, the other in the fuel free stream, since the integrand is zero here) or in terms of

the similarity variables

con (B [((E Do) e

The total channel area required to contain the flow field with chemical reaction is there-

fore
Ai(z) = A(z) + 6% (=) (4.4)
where A(z) is now the equivalent channel area “felt” by the outer, irrotational flow field

(see fig(4.29)). This equivalent representation of the flow field will be used in an attempt
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to explain its behavior as the pressure gradient parameter 3 (or the channel area A;(z))

1s varied.

Fig(4.2) (¢ = 1, B = —0.0248) shows that the high temperature, low density fluid
in the vicinity of the flame is retarded more than the high density fluid in the free
stream. Because Pr = Sc¢ = 0.72 (which is close to 1.0) the viscous, diffusion and
thermal zones have similar thicknesses. An increase in the width of the viscous layer
is therefore accompanied by increases in the widths of the diffusion zones, decreasing
the concentration gradients of both fuel and oxidizer and hence decreasing the fuel mass

consumption rate at the flame. The non-dimensional mass consumption rate of fuel

s 9Ky, .,
=500 (43)

u 2
po Do <——1 )
Vo

is plotted against the pressure gradient parameter § for ¢ = 1 in fig(4.30). Here it can

clearly be seen that as 3 is decreased from 0.0 to —0.0248, a decrease in fuel consumption

occurs.

The displacement thickness of the layer

o* bt T
—;:/ (((—T—f— >0+1>—f’> dn’ (4.6)

Vg T\? — 00 0

u;

is plotted against 8 for ¢ = 1 in fig(4.32). Decreasing the value of 4 from 0.0 to —0.0248
has the effect of increasing the widths of both the viscous and thermal layers, both of
which have the effect of increasing the displacement thickness. Because the value of @ has
decreased from 0.0 to —0.0248, the area A(z) “felt” by the outer, irrotational fluid has
increased. This implies that the increase in the total area A;(z) more than compensates

for the increase in the displacement thickness §*.

Because the curve of 6* agianst 8 has a vertical tangent in the vicinity of 8 =

—0.0283, an increase in the channel area A;(z) is accompanied by an increase of equal
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magnitude in the displacement thickness, leaving A(z) unchanged. The irrotational outer
flow field therefore remains unchanged and the value of # remains constant. The curve of
the normalized fuel mass consumption rate against 3 also has a vertical tangent since the
widths of the diffusion zones are increasing but the value of 8 remains constant. As §*
increases above its value at # = —0.0283, the graph of §* against @ curves back toward
larger values of #. This implies that the increase in the displacement thickness is larger
than the increase in the total channel area, resulting in a smaller equivalent channel
area for the outer, irrotational flow field and hence the increased value for . This trend
continues as 6" increases and 4 eventually tends to zero as §* becomes large. Each
value of the pressure gradient parameter 3 therefore has two solutions to the equations
associated with it. One solution (the lower branch of the §* vs. 8 curve) corresponds to a
flow field with a narrow viscous/thermal layer and therefore high mass consumption rate
(and therefore corresponds to the upper branch of the mass consumption vs. 8 curve).
The other corresponds to a wider viscous/thermal layer and therefore has a lower fuel

mass consumption associated with it (the lower branch of the mass consumption curve).

Consider now the behavior of the viscous layer on the upper and lower branches
of the mass consumption vs. g curve. Fig(4.2) shows a typical solution of the flow
field variables on the upper branch. As is expected, the minimum streamwise velocity
decreases as the strength of the adverse pressure gradient is increased to its limiting
value. However, even when the adverse pressure gradient has increased to its limiting
strength, the minimum streamwise velocity is still significantly positive. This is different
from the incompressible boundary layer in which the point of minimum £ corresponds
to the point of separation. The reason for this is probably that significant growth of
the incompressible boundary layer occurs only close to the point of separation. It is
therefore only close to this critical point that the boundary layer can affect the external

stream. In the case of the the diffusion flame, significant boundary layer growth occurs
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long before separation, and this has the observed effect on 3.

On the lower branch, the minimum streamwise velocity continues to decrease even
though the strength of the adverse pressure gradient is decreasing (i.e. 4 is increasing).
This happens because the layer of hot gas is increasing in width, so it responds more
readily to the applied pressure gradient. The effect of the increase in width of the layer
more than compensates for the decrease in strength of the pressure gradient. It should
also remembered that on the lower branch, even though B is increasing, the channel
walls are being opened up (i.e. A:(z) is increasing). This can clearly be seen from the
behavior of the outer streamlines in the flowfield as the value of § is increased. The
value of the minimum streamwise velocity continues to decrease until the fluid at the
flame stagnates at a value of # = —0.0209 (fig(4.4)). If 3 is increased above —0.0209,

the fluid at the flame reverses in direction (fig(4.5),8 = —0.0197). Increasing 3 increases

the width of the region of reversed flow; fig(4.6), 8 = —0.00014 is a typical solution.

Fig(4.30) shows that the fuel mass consumption rate drops to zero as 8 goes to
zero on the lower branch. This is due to two effects. The first is the expected drop in
mass consumption as the width of the diffusion zone is increased. The second becomes
clear when one considers the formation and development of the two reciculation zones

surrounding the flame.

In order to understand the formation of the two recirculation zones, it is useful
to consider simultaneously the behavior of the similarity stream function f(n) depicted
in figs(4.1)~(4.6) as B is increased. When the fluid at the flame stagnates (fig(4.4),
B = —0.0209), the similarity stream function has a horizontal slope at = 0. As B is
increased above this value and the region of backflow is formed, the slope of f (n) goes
negative at 7 = 0. As one therefore goes through the point of “internal separation”,
the nature of the curve of f(7) changes. Before separation f(7) has one zero but after

separation the function has three zeroes, the two additional zeroes located on either side
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of n = 0. Now since the stream function for the flow field is given by the formula

B41

¥ :<§> ? f(n) (4.7)

(vo uo \)?

the two additional zero streamlines resulting from the additional zeroes of f(n) will be
located along the constant values of the similarity variable corresponding to the location
of the zeroes of f(n). The two additional zero streamlines formed are the boundaries

which separate the recirculation zones from the outer, forward moving fluid (streamlines

M in fig (4.20)).

Now, in order to understand the second mechanism of fuel mass consumption reduc-
tion mentioned earlier, it is useful to consider a fluid particle close to the flame entering
the flow field depicted in fig(4.20) from a value of § downstream of § = 20, say along
streamline L. As the fluid particle moves along the streamline towards the origin, it
encounters increasing values of 7, the similarity variable. From the similarity plot cor-
responding to this flow field (fig(4.6)), it can be observed that increasing values of 5
correspond to larger vertical and smaller horizontal velocities. The particle continues to
move in the direction of decreasing % until it encounters the value of n corresponding
to zero horizontal velocity. At this point, however, the vertical velocity is still positive,
so the particle is carried into the the upper shear layer (where the horizontal velocity is
positive) and convected downstream. The recirculation zone therefore convects partially
reacted fluid outward, in opposition to the diffusion of reactants from the free stream
toward the flame, resulting in the fuel mass consumption being driven to zero as the

recirculation zone grows in size.

The presence of the recirculation zone has a different effect on the mass consumption
rate for values of the stoichiometric fuel-air ratio other than unity (which are of more
practical significance). Consider the graph of fuel mass consumption rate against the

pressure gradient parameter for ¢ = 0.058 depicted in fig(4.31). The upper branch of
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the curve resembles that for the case ¢ = 1 since the mechanism of mass consumption
reduction is the same for the two cases (ie. the decrease in the species concentration
gradients due to the widening of the viscous/diffusion zones). After separation on the
lower branch the two curves exhibit different features. Whereas the curve for ¢ = 1 tends
to zero as # goes to zero, the curve for ¢ = 0.058 reaches a minimum value at 8 = —0.01

and then increases as B goes to zero. By using the graphs showing the streamlines for

the flow field (figs(4.21)—-(4.28)) this behavior of the curve will be explained.

First consider fig(4.23) (8 = Bmin = —0.025) which is a solution typical of the lower
branch of the mass consumption curve before separation occurs. A particle starting off
close to § = 0 in the lower half plane (say on streamline F) moves toward the flame as
it is convected downstream, reacts at the flame and moves into the upper half plane into
the region of low streamwise velocity signified, in this diagram, by the region in which
the streamlines are widely separated. Fig(4.10) shows the equivalent streamline diagram
corresponding to a value of 4 slightly larger than that at which the streamwise velocity
goes to zero. As in the previous case, consider a particle starting off close to z =0in
the lower half plane. Again the particle is convected through the flame into the upper
half plane. The particle continues to move forward and upward, encountering increasing
values of the similarity variable 5. It continues moving in this fashion until it encounters
the value of n at which the horizontal velocity goes to zero (n ~ 4). At this point the
vertical velocity is still positive, so the particle is transported into the the region of
reversed flow between n = 4 and n = 5. The streamline along which the particle moves
therefore curves backward until it encounters the value of 7 at which the streamwise
velocity again goes to zero. Since the vertical velocity is still positive, the particle
is transported into the region of positive streamwise velocity and is then convected

downstream in the shear layer furthest from the flame. Fig(4.11) shows the streamline

plot for a case in which the reversed flow region is wider than in the case described
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before. The streamlines show the same behavior as before, the effects of stagnation and
reversed flow being more exagerated. If one now considers the similarity streamfunction
corresponding to these flow fields, one observes that even though the streamwise velocity
has gone to zero, the similarity streamfunction still has only one zero, unlike the case
@ = 1. However, as § is increased and the region of backflow increases, the portion
of the similarity streamfunction curve between n = 3 and 6 moves upward until a new
zero of f(n) is generated when the curve touches the horizontal axis. By considering, in
sequence, the streamline plots fig(4.24)—(4.28) for increasing 3, the effect of the above
mentioned behavior of the similarity streamfunction on the flowfield can be observed.
The point at which a particular streamline curves backward into the region of reversed
flow moves downstream as # is increased. In fig(4.26) this distance has increased to such
an extent that a particle on streamline I moves downstream to values of z > 20 (and
therefore out of the range of the graph) before it eventually curves back. At a critical
value of § corresponding to the point at which the function f(#) touches the horizontal
axis and a new zero of f(n) is generated, a particle moving along streamline I continues
to move downstream and does not change direction at all. The new zero streamline
generated separates the lower, forward moving stream from the upper, single region of
recirculation. Now, as f is increased , this single new zero streamline bifurcates, the two
new streamlines forming the boundaries of a second recirculation zone, the initiation of
which can be observed in fig(4.27) (8 = —0.01). As § is increased above this value, the

second recirculation zone grows in size until it is fully developed as depicted in fig(4.28).

The formation of the second recirculation zone accounts for the observed increase in
the mass consumption rate for values of # between —0.01 and 0.0 on the lower branch.
Consider fig(4.28) which shows the lower recirculation zone in fully developed form.
This recirculation zone convects fluid from a region corresponding to a large value of

the similarity variable (at which the fluid has a high concentration of fuel) toward the
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flame, aiding the diffusion process in transporting fuel toward the flame, and therefore
increasing the mass consumption of fuel at the flame. Even though the width of the
diffusion zone for the fuel is increasing, the augmentation of the mass consumption rate
by convection in the recirculation zone more than compensates for the loss due to the
former. The asymmetric orientation of the recirculation zones therefore has an effect
opposite to that of the symmetric recirculation zones for ¢ = 1. In the symmetric case
it is the upper recirculation zone that causes the outward convection of partially reacted
gases. In the asymmetric case this is still true, but the vertical velocity through the lame
1s large enough to displace the lower recirculation zone into the fuel side of the flow field.
This location of the lower recirculation zone counteracts the effect of the upper zone on

the mass consumption rate.
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/— Diffusion Flame
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S~ [ uB

Figure (4.29) (a) Schematic Diagram of a Diffusion

Flame in a Diverging Channel.

]
Aq(z) zzz/////////////////////?///////// T §*(z) I A(z)
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Figure (4.29) (b) Equivalent Channel Area for the
Outer Flow Field.
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Chapter 5

Concluding Remarks

The interaction of the diffusion flame zone with the imposed pressure gradient generates
a flow field rich in structure which shows significant changes as the pressure gradient
and stoichiometric fuel-air ratios are varied. For favorable pressure gradients the flow
field resembles that of the buoyant diffusion flame, the analysis of which produces re-
sults reasonably’ close to those obtained from experiments. Because the present analysis
utilizes assumptions similar to those used in the analysis of buoyant diffusion flames, it
is expected that the results that have been presented show a corresponding agreement

with the physical situations which they model.

The favorable pressure gradient produces a flow field in which fluid accelerates as
it moves downstream. The flame is strained along its length and an augmentation in
the mass consumption rate of fuel results, the mechanism of which is similar to that of
the strained diffusion flame in an unbounded counterflow. Because the fluid mechanics
associated with the unbounded counterflow is relatively simple, the structure of the
reaction zone and its role in extinction phenomena has been widely studied and is well
understood. Because of the close agreement which exists between the results of the
present analysis and those of the strained diffusion flame in an unbounded counterflow
for infinite reaction rates, the relevance of extinction phenomena to the present problem
can be deduced without getting involved in the complex mathematical details that would
result from the interaction of the flow field with the chemical reaction. It is deduced that
the diffusion flame would show a tendency towards extinction for values of the pressure
gradient parameter 3 greater than one, while the flame associated with values of 3 less

than one would show no such tendency.

The diffusion flame in an adverse pressure gradient has a complex structure which

exhibits significant differences for the two fuel-air ratios considered. For both cases the
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mass consumption rate is a double valued function of the pressure gradient parameter,
but the symmetric flame shows a tendency toward extinction on the lower branch of the
solution curve whereas the case corresponding to ¢ = 0.058 does not. Two different
flow fields are possible for the same value of the pressure gradient parameter B. The
suggestion arises that a question of stability is involved in determining which branch of
solutions the flow field would tend to for a given pressure gradient. In the case where
the pressure gradient is imposed on the flow field by a channel of increasing area, this
question does not arise. Two different area programs can produce the same pressure
gradient, the nature of the flow field in the viqinity of the flame being different in the
two cases. The channel area therefore determines to which branch of solutions the flow
field tends. On the other hand, if the flame is embedded in a flow field in which the
pressure gradient is imposed on the flame zone by some other fluid mechanic phenomenon
(e.g. a diffusion flame embedded in a vortex structure) the branch of solutions to which
the flow field would tend is uncertain. It is probably determined by the way in which
the flow field evolves in time or, more likely, on the nature of the external flow field

producing the pressure gradient.
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Appendix A: The Strained Flame Approximation

A1 Casel g#1

It was shown in Chapter 3 that the position of a flame element z, as a function of time

is given by the expression

()=(()7 - ey ™

where zg is the initial position of the flame element at time ¢ = 0. From (a.1) and the

strain as a function of position

duj _ B f'(0) up (E)ﬂ—l ,

e(z) = T 3 3 (a.2)

the strain rate as a function of time of a flame element starting off at a position zg can

be calculated:

1
e(t) = 3 (1‘_0) e t (a.3)
B f'(0)uo \ A B
A flame element undergoing an arbitrary strain rate €(t) has a mass consumption rate
Sc \* ot 1+
2
Metr(t) = po Do ( ) el et (__cp_) e” " (a.4)
VomT 2
where
t tg
T = / (e2 fo z(tl)dtl> dtz (8.5)
0
and

erfn; = - (1—‘1’2) (a.6)

1+p

(see Carrier, Fendell and Marble (1975) or Karagozian (1982)).

The analysis that yields these results has initial conditions
KI(O,y>0):1, K1(0,y<0):0 (8.7)

K;(0,y>0)=0, K,(0,y<0)=1 . (a.8)
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Now in order to draw an analogy between the strained flame and the strained flame
element approximation for the flame in a pressure gradient, the two situations have to
satisfy the same initial conditions. The flame in the pressure gradient satisfies these

conditions at = 0 but, since this is a stagnation point in the flow field, we cannot let

ﬂj\_o =0 at t = 0. In the following calculation it will therefore be assumed that the initial

‘s T
conditions apply at —

A

then the limit as a:)‘_o — 0 will be found as a final step in the calculation.

z . . .
= —/\2, the mass consumption for this case will be calculated and

(a.3) And (a.4) yield

ranlt) = po Do (fg)"‘ (Ltﬁ) (—*ﬁ £'(0) vo (%ﬂ)ﬂ*) : .9)

Vo 2 h(t) — h(t) 5

where

h(t) = (1 - ? £(0) uo (ff-)ﬁ'l t) (.10)

or, converting back to the spatial variable

et (2)' (52) v (L2A08) L
(a.11)

and

Vg T vy 2

A.2 Case 2: =1

For B =1 the strain rate is constant and given by the expression

€g = f,((j\) Yo _ fl((i) ! (a.13)

and the steady state mass consumption rate for a flame subject to a constant strain rate

is

. i
. 269 8c\? (1
metr = po Do < = c) ( + p) e_,”?

T Vg 2

. 1 1
—_—poDo< et )2 <2fl(0)5‘3)2 <1+S0) =’
Vo Z i 2

(a.14)
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which is the same as (a.11) for # = 1. The expression

((1+m £(0) s> (1+_w> e (als)

T 2

W=

fate(z) = P0D0< =1 )

Vo T

is therefore uniformly valid for all 7 > 0.
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Part 2

A Computational Model for Combustion Instabilities Behind

a Rearward Facing Step Flameholder.
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Chapter 1

Introduction

Combustion instabilities generated in the combustion chambers of air breathing engines
can be divided into two classes according to their origin. The first class comprises of the
instabilities generated by the interaction of the combustion zone behind the flame hold-
ing device with pressure and velocity fluctuations corresponding to transverse modes
of the combustion chamber. This mode of combustion instability is generally of high
frequency (because of the compact transverse dimensions of combustion chambers) and
is referred to as screeching combustion. Rogers and Marble (1956) conducted an exper-
imental investigation into the mechanism of screeching combustion. They found that
the transverse oscillations in the combustion chamber caused vortices to be shed alter-
nately from the flameholder edges. The unsteady combustion in these vortices, in turn,
reinforced the pressure oscillations, making the instability mechanism self sustaining.
Because of the relative ease with which transverse pressure oscillations can be damped
out, screeching combustion does not constitute a problem in combustion chambers of

modern air breathing engines.

The second class of combustion instability comprises of those excited by the pressure
oscillations corresponding to longitudinal modes of the combustion system. In ramjet
engines these longitudinal pressure oscillations can interact with the shock structure at
the inlet to such an extent that the shock moves out of the inlet, in effect causing a
failure of the propulsion system. The excitation of the longitudinal modes of oscillation
involves a complex interaction between the pressure waves, the flame holding device,
and the combustion zone behind this device which, at present, is not well understood.
Numerous experimental studies have been conducted in an effort to gain some insight
into the interaction mechanism. Gangi and Sawyer (1980) conducted an experimental

investigation on the effect of fuel-air equivalence ratio on pollutant formation for lean
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mixtures. For low equivalence ratios the combustion zone downstream of their rearward
facing step flameholder resembled the mixing zone of non-reacting fluids which is char-
acterized by the presence of coherent vortical structures. As the equivalence ratio of
the fuel-air mixture was increased toward stoichiometric, the nature of the combustion
zone downstream of the step changed dramatically. Instead of a mixing layer forming
downstream of the step, large scale vortical structures (much larger than those present in
the mixing layer) were periodically shed from the edge of the flame holder. Keller (1982)
and Vaneveld (1984) studied the unstable mode of combustion in more detail but little
insight into the fundamental mechanism of formation of the large vortical structures was

gained from these studies.

Smith and Zukoski (1985) followed up on these studies with an experimental in-
vestigation of the unstable combustion mode in a combustion facility similar to the one
used by the previous workers in the field. They made the important discovery that the
frequencies at which at which the large vortical structures were shed from the flame-
holder corresponded to longitudinal acoustic modes of the system. It was found that
the velocity fluctuations associated with the longitudinal pressure oscillations were of
the same order of magnitude as the mean flow of the reactants, causing a surging flow

over the step which, they proposed, could account for the shedding of the large vortical

structures.

The experimental apparatus used by Smith and Zukoski is shown schematically in
fig(1.1). A flow control system delivers a premixed methane-air mixture in any equiv-
alence ratio over a wide variety of flow rates. The flow control system delivers the
combustible mixture to a cylindrical plenum chamber where the flow is straightened by
a porous core section and a series of mesh screens. The mixture then flows through a
contraction section which changes the axisymmetric flow field in the plenum chamber

to a two dimensional field compatible with the combustion chamber. The combustible
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mixture Bows from the contraction section into an inlet section which feeds the reactants

into the combustion chamber over a rearward facing step flameholder.

A linearized, one dimensional acoustic analysis was done to determine the resonant
frequencies of oscillation corresponding to longitudinal modes of the combustion system.
The system displayed several resonant modes, each corresponding to the resonant mode
of oscillation of a different component, or a combination of components, of the system.
Even though the pressure fluctuations encountered in the experiment were large (between
1% and 10% of ambient), which would imply that nonlinear effects would be important,
the linearized model produced results that compared well with the resonant frequencies
deduced from the experimental study. This, however, is expected since nonlinear effects
cause small changes in the resonant frequencies of a system away from those produced

by a linear analysis.

A feature of the apparatus was that the resonant frequencies of the system could
be varied by changing the length of the plenum chamber. Experiments were conducted
for various fuel-air equivalence ratios and three different configurations. In all cases it
was found that when the unstable mode of combustion was excited, the large vortical

structures were shed at frequencies associated with the resonant modes of the system.

Fig(1.2) shows the structure of the flow field when the large vortical structures are
shed at 188 Hz, this frequency corresponding to the resonant mode of oscillation of the
plenum chamber. The value of the pressure perturbation at the edge of the flameholder
is shown alongside the sequence of shadowgraphs. In the first frame of the shadowgraph
sequence the fluid above the step is nearly stagnant, indicating that the magnitude of
the velocity fluctuation is close to the mean fluid velocity. As the pressure at the edge of
the step falls, the fluid above the step is exposed to a pressure gradient which causes it to
surge forward, forcing a jet of the cold unreacted mixture into the combustion chamber

which is filled with hot combustion products. As the jet of reactants moves into the
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chamber, the vortex sheet formed at the boundary between the hot and cold fluid rolls
up into a large vortex, causing the bulk of the cold mixture above it to move downward
toward the lower wall. This continues until the downward moving tongue of reactants
formed by the vortex impinges against the lower wall, causing the reactants to spread,
mix with the hot combustion products, and react vigorously. The intense combustion
which results is thought to have a major effect on the driving of the pressure oscillations
and therefore the sustenace of the unstable combustion phenomenon. By changing the
equivalence ratio of the fuel-air mixture and its mass flow rate into the combustion

chamber, large vortex shedding at other resonant modes of the system was excited.

The experimental study also indicated that once a stable mode of vortex shedding
was excited, changes in the velocity of the mean flow did not cause significant changes in
the structure of the flow field. This was true up to a certain critical mean flow velocity
at which another frequency of vortex shedding was excited intermittently. Increasing the

fluid velocity above this critical value would change the frequency of vortex shedding.

In the present study a first attempt is made to investigate, computationally, the
behavior of a surging flow of a high density fluid (corresponding to the cold combustible
mixture in the experiment) over a rearward facing step into a chamber containing low
density fluid (the combustion products). The proportions of the computational domain
are chosen equivalent to the combustor used by Smith and Zukoski. The surging flow is
generated by passing a weak shock wave over the step, the constant velocity induced be-
hind the shock wave representing the surging fluid. By passing the weak shock wave over
the step, the slug of fluid above the step is accelerated impulsively. This is different from
the sinusoidal acceleration that the fluid in the experiment experiences, but the behavior
of the fluid is qualitatively the same. The flow to be modelled is shown schematically in
fig(1.3). Three effects are investigated in the study. The first is the effect of the presence

of the low density fluid in the chamber on the motion of the high density fluid entering



- 100~

the chamber. Parametric studies are also done to determine the effects of changing the
mean flow velocity (ug) and the surge velocity (u;) on the motion of the fluid entering

the chamber.
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VORTEX EVOLUTION

Figure (1.2)  Vortex Evolution in the Combustion Chamber

with Rearward IFacing Step I'lamcholder.
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Chapter 2

Numerical Formulation

The computational code used in the study is a modification of one that was developed by

Dr E. Baum at the TRW Space and Technology Group for the study of the interaction

of shock waves with density stratified fluids. The code solves the Euler equations;

continuity:

z-momentum:

y—momentum:

energy conservation:

where

9p , Opu , Ipv

ot oz Jy =0

dpu v dpu* dpuv OP .

ot " oz T oy "oz
0 a dpv: 3P
pv , dpuv pv’ 9P _
at Oz dy dy

0 0 P d P

Oe . (e+ )u+ (e + )v:O

ot oz Jy

P 1 2 2
C:ry—_—i+5p(u +U)

for a polytropic gas, with boundary condition

u, =0

(u,, =velocity normal to a solid boundary).

(2.6)

The equations are non-dimensionalized by the initial conditions in the cold gas pog,

Py, co, and I, a reference length in the chamber. The non—dimensional variables are

— P

PZ_: ﬁ:'&y E:}i
Py Po co

_ T _ Y : t co

Tr= — = — _ —
o YE I

(2.7)

(2.8)
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and
B
€= —— + 15 (u? + v° 2.9
The non-dimensionalized equations are
9p dpu 9pv
ot oz dy (2.10)
dpu Odpu® O9puv I (P
= —|—]=0 .
5t " oz T ey Taz\~ (2.11)
dpv Opuv Opv: 0 "15>
—(—}]=0 12
ot oz oy Tay\~ (2.12)
P\ A
ge Ole+Z)u Jdle+-)v
A ( _’) + ( _"> =0 (2.13)
ot oz 0y
with
u,=0 . (2.14)

2.1 The Numerical Method

The non-dimensionalized equations are solved using the Flux-Corrected Transport (FCT)
algorithm developed by Boris, Book and Hain (1973), (1975). A problem with standard
numerical schemes is that they produce oscillations in the vicinity of large gradients in
the flow variables (eg. in the vicinity of shock waves). The FCT algorithm overcomes
this problem by employing a diffusive differencing scheme which prevents the formation
of oscillations. This, however, has a smearing effect in the vicinity of large gradients
in the solution variables. This problem is solved by employing a second “antidiffision”
stage which corrects for the diffusive effects of the differencing scheme. In this way shock
structures and contact surfaces between fluids of different density remain highly resolved
and the problem of oscillation formation is not encountered. Details of the method can

be found in the references given.

The code developed by Baum employs alternate direction splitting. For each time

step all the terms in the differential equations involving z-derivatives are integrated first
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along rows of constant y, followed by an integration of the y-derivative terms along
columns of constant z. The problem at each time step therefore involves the solution of
a succession of ordinary differential equations which leads to a significant simplification

in the programming effort.

The computational grid is shown schematically in fig(2.1). The ratio of step height to
channel height was kept constant and equal to % for all the runs, this value corresponding
to the step used by Smith and Zukoski in their experimental study. The computational
grid consists of two sections. A one dimensional section extends from the inflow boundary
to a certain location upstream of the step edge up to where the flow is assumed to be
essentlally one dimensional, since the effects of the step and the low density gas are not
felt. A two dimensional section extends from the end of the one dimensional section to
the outflow boundary as shown in fig(2.1). Because the flow structures of interest are

fairly large, a rather course grid is used, 40 by 16 in the two dimensional section.

2.2 Boundary Conditions

The flow field generated in the geometry under consideration (represented in fig(2.2a))
would be exactly the same as that produced in fig(2.2b). The walls A and B of the
channel are therefore reflecting boundaries. Simple reflecting boundary conditions are
therefore used at these walls. Walls D and E, however, are not reflecting so a special
treatment of the FCT algorithm using the zero normal velocity boundary condition was

derived and employed in the code.

As an outflow boundary condition along boundary C, the slopes of the flow vari-
ables are assumed to be zero (Roache (1972)). This boundary condition, although not
mathematically correct, worked well for small disturbances and caused the pressure wave
to move out of the computational domain without any significant reflections. The same
boundary condition was used at inflow, but the inflow boundary was chosen to be lo-

cated sufficiently for upstream that, even if non-physical reflections were generated, they
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would not reach the the field of interest in the computational run time.

2.3 Initial Conditions

For each computation the following parameters are specified; the density ratio of the high
to low density fluid, the mean velocity of the high density fluid, and the static pressure
ratio across the shock wave. The density ratio across the shock wave and the velocity

induced behind the shock wave are calculated using the shock relations

1—
, 1+7+1P1
— 1 -
plz_:ﬂ_ll...? , (2.15)
po 1T_4 P,
-1
1
_ Uy — 2 2
ul._:__:pl_l( — ) 2.16
Co ( )7(7+1)P1+7(7~1) (2.16)
where
— P1
P,=— 2.
= (2.17)

(see Liepmann and Roshko (1957)). The zero subscripts refer to the initial conditions in
the high density fluid ahead of the shock wave, the subscript 1 to the conditions behind
the shock wave, and the subscript 2 to the conditions in the low density fluid. At the
start of the computation the shock wave is located at the start of the two dimensional

grid. The following initial conditions are therefore used;

for the fluid behind the shock wave

T =1y + Uy (2.18)
P=P, (2.19)
P =" (2.20)
e= 7—(—5_—1) + 17, (W0 + W) (2.21)

for the high density fluid ahead of the shock wave



- 108

P=1 (2.23)
v=1 (2.24)
e= 1 + 17,? (2.25)
vv-1) 2
and for the fluid in the low density region
T=0 (2.26)
P=1 (2.27)
R p
p=Py= (2.28)
Pao
1
e= —— 2.29
TG -1 (229)

The shock wave is released at dimensionless time ¢ = 0, and the position of the
interface between the high and low density fluid is updated after each time step by
utilizing the fluid velocities induced by the flow field at the interface. Graphical output

of the position of the interface and the values of the flow variables is obtained after

specified numbers of time steps.
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B

Figure (2.2) (a) Boundaries of the Computational Domain.
(b) Boundaries of the Equivalent Domain.
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Chapter 3

Results and Discussion

In an effort to accomplish the objectives of the study outlined at the end of Chapter 1, the
following program is followed. First, in order to determine the effect of the presence of
the low density fluid in the chamber on the motion of the high density fluid entering the
chamber, a comparative study is done in which the initial conditions (the surge velocity
and the mean velocity of the high density fluid) are kept constant, but the density of the
fluid in the chamber is changed. The flow field generated when the fluid in the chamber
has the same density as the fluid entering the chamber is compared with the case in
which the dehsity ratio is 7 (approximately the ratio of the density of the combustion

products to the fuel-air mixture in the experiment).

Second, in order to determine the effect of the mean velocity of the high density
fluid entering the chamber on the flow field, the results of three computational runs in
which the surge velocity is kept constant but the mean velocity varied, are presented.
For this parametric study the ratio of the densities of the high to low density fluid is kept
constant at 7. Third, in order to determine the effect of a change in the surge velocity
on the flow field, the strength of the shock wave is varied while the other parameters are

kept constant.

Before the results of the parametric studies are given, the behavior of the flow field
for a particular set of initial conditions (mean flow velocity uy = 0.125, surge velocity
u; = 0.0686 , density ratio p, = %) will be considered in some detail. The sequence
of figures 3.1-3.7 represents the behavior of the flow field and flow field variables at
selected dimensionless times. The chamber was seeded with particles located, at the
dimensionless time t = 0, at the positions shown in fig(3.1a). Here, and in all subsequent
figures, particles that are adjacent initially are connected by straight lines. Particles

m the low density fluid are not connected to adjacent particles in the high density
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fluid. Fig(3.1b) shows the important flow variables on the lower wall. Fig(3.1c) shows
the channel geometry with a line representing the boundary between the high and low
density fluid. Fig(3.1d) shows the values of the flow variables along the upper wall of
the chamber. In the figures representing the flow variables, the curves are normalized by
the maximum value of each particular variable in the domain of interest. The maximum
value for each of the variables is given at the right hand side of each graph. It should also
be noted that the horizontal scales of the figures representing the channel geometry have
been compressed. The scale length | defined in Chapter 2 corresponds to the height of
the inlet section to the chamber. The step is three units high and the total length of the
section represented in the figures is twenty units. Figure (3.2) shows the flow field and
flow field variables at t = 2.303. This figure depicts the time at which the shock wave
has reached the edge of the step. This is apparent from the graph representing the flow
variables along the top wall. In fig(3.2a) the particle that was at the edge of the step at
¢t = 0 is marked with an asterisk. The displacement of this particle away from the edge
of the step is due to the mean velocity that was given to the upper, high density fluid

as an initial condition, since the shock wave has not reached this position yet.

Now as the shock wave moves into the chamber, the fluid behind it surges over
the step, shedding a sheet of vorticity into the chamber. Studies (both analytical and
experimental) on the start up flows over wedges (eg. the analytical study by Pullin
(1978)) have shown that the vortex sheets of finite extent shed from such bodies tend
to roll up at their leading edges. The effect of the discrete vortex formed by the rolling
up of the vortex sheet shed from the step is noticeable in fig(3.3) from the deformation
of the interface between the high and low density fluid. In this figure the shock wave,
considerably weakened by its expansion into the large channel area, is located at Z ~ 37
on the lower wall and 7 ~ 32 on the upper wall. The difference in the propagation speeds

of the pressure waves is due to the fact that the sound speed is much higher in the low
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density fluid in the vicinity of the lower wall than in the high density fluid in the vicinity

of the upper wall.

Subsequent figures show the deformation of the interface between the high and
low density fluid for increasing dimensionless times. Fig(3.4) for ¢ = 12.564 shows the
flow field and flow field variables for a time after which the pressure wave has left the
computational domain. The flow variables at the outflow boundary go to the conditions
behind the pressure wave without any significant reflections, which is an indication that
the simple outflow boundary conditions used work fairly well. In fig(3.5) (t = 21.534)
the clockwise rotational velocity induced by the vortex shed from the edge of the step
is starting to be felt at the lower wall. This is apparent from the negative horizontal
velocity at the wall in the vicinity of the foot of the step, which is in opposition to
the positive horizontal velocity induced behind the pressure wave. This is even more
apparent in fig(3.6) (¢ = 28.259). The motion of the tongue of high density fluid induced
by the vortex is shown more clearly in this figure. This tongue of high density fluid
moves into the low density fluid and approaches the lower wall at large times (fig(3.7),

¢ = 51.813).

The effect of the presence of the low density fluid on the flow field will now be
examined. Fig(3.8) shows the flow field generated by a surging flow with initial conditions
up = 0.125 and u; = 0.240. In this case the fluid in the chamber has the same density
as the fluid entering it. Fig(3.9) shows the flow field generated with the same initial
conditions, but with low density fluid present in the chamber. By examining the figures it
1s clear that a significant difference exists in the motion of the fluid entering the chamber.
The fluid in fig(3.8) tends to roll up in an elliptical structure (which appears to be circular
because of the compressed horizontal scale). When the low density fluid is present,
however, a tongue of high density fluid from the upper stream moves downward toward

the lower wall with a small degree of rolling around the vortex. A possible explanation
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for the observed difference in the structure of the flow field is the following. The fluid
that the vortex is tending to rotate is subject to a centrifugal acceleration. When the
high density fluid moves into the low density medium, it experiences a buoyancy force
directed away from the center of the vortex. This fluid, instead of moving in an elliptical
path, moves around the vortex in a path of increasing distance away from the center of
the vortex. It therefore appears to move toward the lower wall instead of around the
center of the vortex. In the constant density case, however, the buoyancy force is absent
so the fluid moves in the the elliptical path (which is elliptical rather than circular due to
the presence of the walls) prescribed by the vortex. The motion of the high density fluid

in the numerical computation is similar to that observed in the combustion experiment

of Smith and Zukoski.

To determine the effect of variations in the mean velocity, the surge velocity is kept
constant at 0.247 and the results of three different computations for values of the mean
velocity equal to 0.250, 0.125 and 0.0625 are presented in figs(3.10), (3.9) and (3.11)
respectively. From these figures it is clear that the generated flow fields are fundamentally
the same, the high density fluid reaching the lower wall at approximately the same
dimensionless time. However, because of the different magnitudes of the mean velocity,
the position downstream of the step at which the high density fluid reaches the lower
wall 1s different in the three cases. The time taken for the fluid to reach the lower wall,
however, is the most important result since, in the combustion experiment, it represents

the delay time after which significant mixing and therefore significant combustion occurs.

To study the effect of varying the surge velocity, computations were done in which
the mean flow velocity was kept constant at 0.125 and different surge velocities were
used (u; = 0.247-the surge velocity for the previous case, %; = 0.132, and 4, = 0.06886).
The results are show in figs(3.9),(3.12) and (3.13). As expected, because the strength of

the vortex sheet and therefore the strength of the vortex formed at its apex is increased
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with increasing surge velocity, the downward velocity induced by the vortex on the high
density fluid is much larger. The high density fluid therefore reaches the lower wall in
much shorter times for higher surge velocities. The position of the lower extremity of
the tongue of high density fluid is plotted against dimensionless time for the different
surge velocities in fig(3.14). From this plot it is apparent that the lower extremity of the
high density fluid moves toward the wall at constant velocity. These constant vertical

velocities are plotted against the surge velocity in fig(3.15).

The results of the computational study are now compared to the experiment for
two different vortex shedding frequencies, 188Hz and 446Hz. The surge velocities for the
188Hz and 446Hz cases are 42m/s and 24m/s respectively. For a sound speed of 340m/s
in the fuel-air mixture entering the chamber (the reference state in the calculation) these
correspond to uwy = 0.124 for the 188Hz case and %; = 0.071 for the 466Hz case. From
fig(3.15) the non-dimensional vertical velocities corresponding to these surge velocities
are ¥ = 0.08 (188Hz) and ¥ = 0.05 (446Hz). For the step height of 19mm the times
taken for the high density fluid to reach the lower wall in the two cases are f = 0.7ms

(188Hz) and ¢t = 1.1ms (446Hz).

Now from figs(3.16) and (3.17) the actual times taken for the high density fuid to
reach the lower wall are approximately 2.6ms (188Hz) and 1.5ms (446Hz). The calcu-
lation therefore yields a time fairly close to the experimental result in the 446Hz case
but agreement is poor in the 188Hz case. By examining figs(3.16) and (3.17) carefully
the reason for this is clear. Because the fluid above the step is accelerated sinusoidally
in the experiment, the leading edge of the vortex sheet shed from the step is not as
strong as that in the calculation where the fluid is accelerated impulsively. The edge of
the vortex sheet will therefore have less of a tendency to roll up in the experiment than
in the calculation, and the discrete vortex formed will also be weaker. This vortex will

induce lower vertical velocities in the high density fluid and the time taken for the fluid
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in the experiment to reach the lower wall will therefore be larger. Now in the 188Hz case
the surge velocity at the edge of the step reaches its maximum value (corresponding to
the minimum of the pressure fluctuation curve) at the time that the high density fluid
impinges on the bottom wall. In the 446Hz case, however, the velocity of the fluid above
the step reaches its maximum value (frame three of the shadowgraph sequence) before a
significant amount of the high density fluid has moved away from the edge of the step.
This case therefore corresponds more closely to the calculation. This is evident from the

close agreement between the results of the experiment and the calculation for this case.
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Figure (3.1) (a) Positions of Particles at = 0.000 for a Flow Field with

Initial Conditions g = 0.125, ; = 0.0686 and Py = %

(b) Flow Field Variables along the Lower Wall.



-118~

= RO/RO(REF)
I.OOS

— BIC(REF )
-12%

— PngNl/P(REFI
0.011

$.0_ p

-9.00

‘0.0 2187 £3.33  fM.00  £8.67 8.3 :xb.oo 387 3.3 ».00 n.6 W3 eb.00
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(d) Flow Field Variables along the Upper Wall.
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Figure (3.2) (a) Positions of Particles at f = 2.303 for a Flow Field with
Initial Conditions %o = 0.125, ¥; = 0.0686 and Py = %

(b) Flow Field Variables along the Lower Wall.
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(b) Flow Field Variables along the Lower Wall.
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(b) Flow Field Variables along the Lower Wall.
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(d) Flow Field Variables along the Upper Wall.
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(b) Flow Field Variables along the Lower Wall.
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(d) Flow Field Variables along the Upper Wall.
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Figure (3.8) Flow Field Induced By the Surging Flow over the
Rearward Facing Step for ©p = 0.125, u; = 0.247

and p, = 1.
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Figure (3.9) Flow Field Induced By the Surging Flow over the

Rearward Facing Step for wp = 0.125, w; = 0.247

and p, = %
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Figure (3.10) Flow Field Induced By the Surging Flow over the

Rearward Facing Step for g = 0.250, u; = 0.247
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Figure (3.11) Flow Field Induced By the Surging Flow over the

Rearward Facing Step for %o = 0.0625, @; = 0.247

a«nd p-z = %.
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Figure (3.12) Flow Field Induced By the Surging Flow over the

Rearward Facing Step for @y = 0.125, u; = 0.182

and p, = %
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Figure (3.13) Flow Field Induced By the Surging Flow over the
Rearward Facing Step for %y = 0.125, &; = 0.0686

and p, = 1.
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VORTEX EVOLUTION

Figure (3.16) Vortex Evolution in the Combustion
Chamber (188Hz).
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Figure (3.17) Vortex Evolution in the Combustion
Chamber (446Hz).
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Chapter 4

Concluding Remarks

Instabilities in combustion systems are sustained when the largest proportion of the
heat release associated with the fluctuating combustion process occurs at a time close
to the maximum of the pressure oscillation. A certain, appropriate phase difference
therefore has to exist between the pressure oscillation and the fluctuating heat release.
In the combustion system under consideration, the velocity fluctuation associated with
the pressure oscillation causes a surging flow over the rearward facing step flameholder.
The present study confirms that this surging flow causes the formation of a large vortex
structure in the combustion chamber. The vortex induces a motion of the reactant
toward the lower wall of the chamber. After the reactant impinges against the lower
wall, it mixes vigorously with the hot combustion products present in the chamber,
and reacts violently after a certain delay time associated with the chemical reaction
kinetics. The heat release associated with the violent reaction reinforces the pressure
oscillation if the two have the appropriate phase relationship. Very little combustion
occurs before the reactant impinges against the lower wall. The time delay causing the
phase difference between the pressure and combustion fluctuations is therefore derived
from two processes; the motion of the reactant toward the lower wall, and the chemical
reaction. The time delay associated with the chemical reaction kinetics is a function of
the fuel-air equivalence ratio and is independent of the fluid mechanics of the flow field.

It will therefore be assumed constant in the present discussion.

Results of the experimental study suggest that a certain vortex shedding frequency
has a certain, constant pressure fluctuation magnitude associated with it. The magnitude
is different for different shedding frequencies, higher frequencies generally corresponding
to larger magnitudes. At present, the way in which these magnitudes are determined

is not well understood, but the results of the present study suggest a possible mecha-
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nism. The study has shown that the time delay associated with the motion of the vortex
toward the lower wall decreases as the surge velocity (and therefore the magnitude of
the pressure oscillation) is increased. Now if an acoustic analysis is done on the system,
the heat release associated with the chemical reaction could be represented by a forcing
function in the acoustic equations. Because the delay time associated with the heat
release is determined, in part, by the magnitude of the pressure oscillation, a non-linear
coupling exists between the pressure oscillation and the forcing function. This coupling
could cause the pressure oscillation to reach a limit cycle in the following way. If the
pressure oscillation starts off with a magnitude too large for a particular frequency, the
time delay would be too small for the forcing function to have the appropriate phase
relationship with the pressure oscillation for the oscillation to be sustained at that par-
ticular magnitude. The pressure fluctuation would therefore decrease in magnitude, and
the delay time would show a corresponding increase until the forcing function and the
pressure oscillation have the appropriate phase relationship for pressure oscillations of
constant magnitude to be sustained. On the other hand, if the magnitude of the fluctu-
ating pressure drops below this critical value, the time delay would increase. This would
cause a phase relationship between the forcing function and the pressure oscillation that
would feed energy into the system, increasing the magnitude of the pressure oscillation,
and forcing it back to the limit cycle associated with that particular frequency. Because
a higher instability frequency would need a shorter delay time for oscillations of constant
magnitude to be sustained, the magnitude of the pressure oscillation associated with that

limit cycle would be larger. This is in agreement with experimental observations.
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