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ABSTRACT 

 

Insulin is a protein hormone that is crucial for maintaining the concentration of blood glucose in 

vivo and is used clinically as a drug for the treatment of diabetes.   

Chapter I provides for an overview and background on the state of the art in insulin treatment of 

diabetes and the many attempts, over 95 years, to improve the pharmaceutically relevant properties 

of insulin and improve our understanding of the model globular protein.  

Chapter II demonstrates the incorporation of hydroxyproline analogs into insulin and shares the 

discovery of insulin with enhanced stability and an accelerated kinetic rate of dissociation. We also 

provide the highest resolution structure deposited in the PDB of insulin in the T2 state and the 3rd 

highest of any insulin to date.  

Chapter III extends the incorporation of proline analogs in insulin to include fluorinated insulins.  

We also provide, for the first time, high-resolution structures of a single globular protein 

systematically mutated with all possible stereoisomers of fluorination at the 4-position on a single 

proline residue (4S, 4R, di-substituted).  

Chapter IV extends the incorporation of proline analogs in insulin to include ring variant analogs. 

We also provide, for the first time, high-resolution structures of globular proteins containing 

pipecolic acid, azetidine-2-carboxylic acid and 3,4 dehydroproline in the polypeptide chain.  

Chapter V discusses the significance of the findings described herein and discusses future directions 

to undertake in further engineering insulin for improved characteristics.  

This thesis describes a systematic approach, akin to medicinal chemistry, of altering a particular 

protein side chain by atomistic changes. I hope that the breadth of different amino acids 

incorporated into a single globular protein combined with the structural, functional, thermodynamic 

and kinetic information contained within this set of mutants will provide future protein engineers, 

computational protein designers and proline enthusiasts with a wealth of new information to be used 

to improve our understanding of proteins and predictive power.   
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CHAPTER I 
 

95 years of insulin in the treatment of diabetes 
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Diabetes  
 

Diabetes mellitus is a chronic disease characterized by a dysregulation in the 

homeostasis in the concentration of blood glucose. In healthy individuals, the 

concentration of blood glucose is tightly regulated through the action of several hormones 

to lie between 3.3 mM and 5 mM 1. The most important of these hormones is insulin; 

insulin secretion lowers the concentration of blood glucose primarily by up-regulating 

glucose uptake into peripheral tissues and down regulating hepatic secretion of glucose. 

Insulin also has a number of secondary effects such as modulating weight gain, altering 

cell cycle regulation, and regulating neuronal and vascular processes 2-6. Insulin is 

especially important in the post-prandial response to food consumption. The pancreas is 

responsible for secreting insulin from β-cells. Insulin binds to the insulin receptor, 

through which most of its primary effects are mediated 7. In healthy patients, the release 

of insulin in response to food consumption can be divided into 3 phases 8-10.  The first 

phase has an initial burst of insulin to rapidly respond to glucose entering the blood 

stream. The second phase is characterized by a prolonged release of insulin at 

progressively lower levels concurrent with gastric emptying. The third phase, termed the 

basal phase, is essentially upkeep between meals and is characterized by a release profile 

of insulin that is constant. Diabetes mellitus occurs when insulin secretion, or the 

response of tissues to insulin, are perturbed resulting in persistently high concentrations 

of blood glucose (hyperglycemia). Diabetes can be divided into 2 forms on the basis of 

the underlying cause: type 1 and type 2. In type 1 diabetes, the cells responsible for 

insulin production are destroyed via an inappropriate autoimmune reaction that occurs 

typically in early adulthood or adolescents 11. In type 2 diabetes, both the production of 

insulin and response to insulin are compromised due to a variety of factors 12, 13. 

Pancreatic β-cells fail to produce healthy levels of insulin in response to glucose spikes 

and peripheral tissues fail to respond with sufficient strength to a given insulin 

concentration. Over time, beta-cells’ increased demand for insulin and peripheral tissue’s 

failure to respond create a feedback loop that worsens β-cell function and, at an advanced 

disease state, resembles type 1 diabetes 12, 13.  
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Impact of diabetes on the world 

 

Diabetes is a major disease throughout the world and causes significant 

degradation in patient quality of life, reduces overall life expectancy and imposes 

substantial economic burdens. As diabetes is a chronic disease with no known cure these 

negative impacts are incurred over a patient’s lifetime.. As of 2011, over 14% of the 

United States population is afflicted with a form of diabetes, with around 5% 

undiagnosed 14. This rate represents a 10-fold increase in prevalence since 1958 and 

reflects the United States’, rapid evolution into a modern economy with modern 

consumption patterns 15, 16. This rate further represents a 1.5-fold increase since 1991; 

notably, the increase in diabetes prevalence has plateaued in recent years 15. As a result of 

this prevalence in the US, diabetes now represents the 7th leading cause of death, killing 

over 75,000 people each year 17. Recent analysis indicates that the true number of 

diabetes deaths may even exceed 250,000 per year when all deaths attributable to 

diabetes are accounted for 18. These deaths are also premature. Diabetes on average 

decreases life expectancy between 3 and 18 years 19. Women are disproportionately 

affected by the loss in life expectancy, with a loss 3 years greater than similar men. In a 

matched cohort study, the diabetes mortality hazard ratio was found to be 1.86, and 

represented a median loss of 10.5 years in life expectancy 20. For individuals below the 

age of 20, and who are presumably type 1 diabetics, 20 years in life expectancy was lost 

with an associated hazard ratio of 3 20. The lifetime risk for a child born in the US during 

the 2000s is 33% for men and 39% for women, rising to 53% for Hispanic women 21, 

staggeringly, this means that more than a third of the US population is expected to 

contract some form of diabetes in the future. Diabetes is also the 9th leading cause of 

death worldwide 22 killing 1.3 million individuals in 2010. Expectations are that diabetes 

will only further rise as incidence rates globally are rising to levels potentially the same 

as the US. In 2010 6.4% of the world population was afflicted with diabetes, particularly 

concentrated in the UAE (18.7% in 2010) 23. It is predicted that by 2030, 7.7% of the 

world will suffer from diabetes with up to 87 million diabetics in India 23. Diabetes is also 

associated with a wide variety of comorbid conditions. Comorbidities such as dementia, 
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heart disease, cognitive decline and others 18, 24, 25 are widely prevalent in diabetics with 

nearly all diabetics having at least 1 comorbid condition 24.  

 

Diabetes’s widespread prevalence and comorbidities also account for a large 

fraction of overall medical spending. Diabetes is responsible for nearly 20% of medical 

spending and diabetics spend about 2-fold more than their non-diabetic peers on medical 

expenses 17, 26. Diabetes is also characterized by a high rate of complication and inpatient 

hospitalization and results in 3-fold higher spending on inpatient hospitalization and 2-

fold higher spending on ER visits. Overall the economic cost of diabetes is $245 billion 

with $69 billion resulting from losses in productivity and sick days away from work 17. 

Compared to peers, over $120 thousand more in medical spending is spent on diabetics 

over their lifetime 27. Diabetics spend nearly 3 times more on in-patient expenses and 2 

times more in emergency room expenses than their non-diabetic peers 26. Over $16 

billion is spent on potentially avoidable complications in diabetics, predominantly these 

complications arising from poor control of blood glucose concentration or insulin 

concentrations 28. Approximately 65% to 80% of patients have 1 or more avoidable 

complications each per year 28. Complications from diabetes are also responsible for 31% 

of all hospitalizations 29. The vast majority of diabetes patients do not meet their diabetes 

care goals, with only 14% of all patients meeting all desired care goals 30. Primarily these 

goals are not met due to non-adherence of the patients to medication regimes. Over half 

of diabetes patients are non-adherent to their prescribed regime, which can be ascribed to 

combination of normal patient non-adherence as well as the complicated nature of 

diabetes treatment requiring daily or sometimes hourly monitoring of glucose and dosing 
31.  

 

The history of insulin and its usage in diabetes treatment 

 

Insulin has a 95-year history in the treatment of diabetes. To date, over 180 forms 

of insulin have been discovered and produced for the amelioration of diabetes 32. 

Diabetes itself has been known since ancient times; however, no highly effective 

treatment was available prior to the early 1900’s 33. Without insulin, diabetics lived short 
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lives characterized by horrific wasting and comorbidities before death 33. In 1910 Edward 

Sharpey-Schater was the first to name insulin, naming it for the specific cells responsible 

for production in humans; namely the pancreatic islet cells of Langerhans 33. In the midst 

of much interest in insulin and diabetes, by 1921, Frederick Banting and Charles Best 

isolated insulin from the pancreas of dogs 34, 35. They were subsequently the first to treat 

diabetes in human patients using insulin. Patients, who previously were given but months 

to live, were able to live years. Further refinement over the many decades since 1921 

have enabled patients to lead lives into old age. Eli Lilly began the first large scale 

productions and purifications of insulin and was able to improve the variability of insulin 

batches by a substantial amount 36. August Krogh later founded Novo laboratories as a 

non-profit to produce insulin in Denmark 34. Later Hagedorn discovered protamine 

insulin 37. Protamine insulin was the first improvement in the formulation of insulin. 

Protamine, and subsequently zinc, were utilized in order to generate crystalline 

suspensions of insulin that provided prolonged action after injection through the lack of 

solubility and depoting at the injection site 34. Between the 1940s and 1990s nearly all 

insulins relied on the crystalline state for formulation and were prepared from either 

bovine or porcine sources 38. While a vast improvement over no insulin, these crystalline 

formulations of insulin would not be considered today to recapitulate the prandial or 

basal response. Moreover, these formulations are of limited stability 38.    

 

By 1949 Frederick Sanger determined the amino acid sequence of insulin, 

allowing the first primary sequence analysis of insulin and its homologs 39, 40. By 1967, 

Donald Steiner began elucidating pancreatic production of insulin and understanding the 

precursor protein, termed proinsulin. Proinsulin gives rise to insulin after proteolytic 

processing 41. In 1969 Dorothy Hodgkin first revealed the 3-D atomic structure of insulin 

through the usage of x-ray crystallography 42. Originally deposited as 1INS in the pdb, 

and updated to 4INS later, this first crystal structure illuminated the T-state of the insulin 

hexamer that is the natural pancreatic storage configuration. By 1978 Dave Goeddel and 

others at Genentech produced the first recombinant form of insulin through expression in 

Escherichia coli followed by subsequent purification and refolding in vitro 34 43.  This 

recombinant insulin was shown to work identically to insulin sourced directly from 
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mammals 44 through an ingenious assay wherein insulin is labeled with I125 and the 

displacement of I125 insulin from the insulin receptor by a different insulin is measured.  

Eli Lilly subsequently commercialized the Genentech discovery and was the first to offer 

a recombinantly sourced insulin on the market. Modern production of insulin occurs 

primarily in E. coli or yeast strains 45-48. A separate track for the chemical synthesis of 

insulin has been pursued for many decades as an alternative source to recombinant 

production. However, the percentage yields of chemically synthesized insulin remain in 

the single digits and provide only milligram quantities 49-52. Chemical strategies are 

therefore insufficient to meet the world’s need for insulin and are orders of magnitude 

less efficient than microbial systems, which  are able to produce multigram quantities of 

insulin per hour 53.  

 

Later work on insulin, in the 1990’s and early 2000’s, has focused on discovering 

insulins that are better able to recapitulate the post-prandial and basal responses in 

humans. The rapid acting insulins (RAIs) LisPro (in 1996), Aspart (in 2000) and 

Glulisine (in 2004) were approved for use in humans to better approximate the prandial 

response 34.  These RAIs were a substantial improvement over prior insulin as they were 

better able to recapitulate the first and second phases of normal insulin release. RAIs 

have a 2-fold increase in max concentration and require half of the time to reach peak 

activity when compared to wild-type human insulin 54, 55. This translates into a 100-

minute lag time until peak glucose response for RAIs vs 180 minutes for wild-type 

insulin 54, 55. However glycemic control is still imperfect with RAIs as they do not 

completely recapitulate post-prandial response and better mealtime control is likely to 

further help patients 56. RAIs help to lower the risk of hypoglycemia by as much as 12% 

due to their shorter lag time, and less insulin remains within the patient and reduces the 

likelihood of accidental overdosing 56-60. The approved RAIs are created by promoting 

rapid disassociation of the insulin hexamer after subcutaneous injection through 

mutations that destabilize the hexameric complex found in pharmaceutical formulations 
61-64. The insulin monomer then diffuses into the bloodstream and it is the rate of the 

dissociation of hexamers that is the rate limiting step for the onset of glucose lowering 

action from insulin 65, 66.  
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The long acting insulins Glargine (in 2000), Detemir (in 2004) 34 and Degludec 

(in 2016) 67 were approved to better approximate the basal response in humans. The long 

duration of these insulins serves to lower the variance in insulin activity during the day 

and reduces the risk of hypoglycima overnight when compared to crystalline insulins 68, 

69. In order to create the long acting insulins, diffusion of the insulin monomer into the 

bloodstream was slowed by depoting the insulin after injection into either subcutaneous 

tissues or blood proteins 70.  

 

Modern insulin treatments can faithfully recapitulate only the basal phase of 

insulin in a patient without disease 8. Currently available RAIs span both the first and 

second phases of normal insulin release while being unable to properly recapitulate either 

phase.  

 

Other discoveries would alter the treatment of diabetes through the use of insulin 

focused on monitoring methods and automated pumps. In particular the discovery of 

glycosylated hemoglobin (A1c) as a long term measure of diabetic treatment was critical 

in improving the benefits of novel treatments 71. The usage of glucose self-monitoring 

was also shown to have substantial benefits in helping patients choose the correct insulin-

dosing regime. Self-monitoring improved the A1c measure by almost 7% in adults 72 and 

continuous monitoring is now recommended for all type 1 diabetic patients 73. The 

introduction of automated insulin pumps has also proven beneficial to patients 74. Further 

refinements using closed loop systems are increasingly a focus of both R&D as well as 

treatment 75 and great hope has been placed on insulin pumps 76, 77 as the future of the 

amelioration of diabetes 78. However in the world of insulin many challenges remain 79, 

primarily those focused on improving the rapidity of insulin activity to better 

approximate prandial insulin release, improving the stability of insulin to better guard 

against aggregation and injection site intolerance and enable usage in long-term 

implantable pumps, and developing an insulin variant that is responsive to glucose 

concentration in real-time without patient involvement 7. These issues arise from the 

narrow therapeutic index of insulin, the 30 minutes required for the RAIs to begin taking 
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effect, the 100 minutes required for peak activity of the RAIs and the fibrillation of 

insulin as patients carry a supply on their person rather than in a controlled environment 

with refrigeration. Further the peripheral and non-glucose effects of insulin are 

exaggerated relative to the glucose lowering effects due to the subcutaneous injection as 

the route of administration, leading to side effects such as weight gain 2.   

 

 

The structure and function of insulin 

 

Insulin’s globular structure 

 

Insulin itself is a 51-amino acid protein composed of 2 covalently linked peptide 

chains. The 2 chains are termed the A-chain and the B-chain, and have separate N- and 

C-termini. Throughout this work, residues shall be designated by the letter of the chain 

and residue number (i.e. the first residue of the A-chain is A1). An insulin monomer 

contains 2 disulfide bonds between these chains. Residues CysA7-CysB7 and CysA20-

CysB19 are the covalent links between the A-chain and the B-chain. An additional 

disulfide bond exists between CysA6-CysA11. These three disulfide bonds are conserved 

in all insulins of mammalian origin 80. Insulin is thought to have evolved sometime 

around 500 million years ago 80-82 (Figure 1.1a). The secondary structure of insulin can be 

characterized as predominantly helical. Insulin has 3 helices and a single beta strand in its 

monomeric state 42 (Figure 1.1b).  The helices consist of residues A2-A8, A13-A19 and 

B9-B19, while the beta strand consists of B9-B19. The 2 helices in the A-chain lie 

antiparallel to each other and are connected via a turn in residues A9-A12. The presence 

of the A6-A11 disulfide serves to secure a short turn between the two helices 42, 83, 84. The 

single beta strand lies antiparellel to the helix in the B-chain (B9-B19) and abuts both 

termini on the A-chain 85. This orientation is held in place by a variety of non-covalent 

interactions as well as the two interchain disulfide bonds. The hydrophobic core of 

insulin is held together by a series of leucine residues (A13, A16, B6, B11, B15) and a 

single valine (B18) that come together in close contact with each other 42, 83, 84, 86 (Figure 

1.1b). Residues B1-B8 can be found in three or more different conformations, two of 
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which are termed the R and T states 87, a reference to Monod’s naming convention for 

conformations with allosteric control 88. In the T state, B1-B8 form a turn hanging off of 

the B-chain helix. In the R state, B1-B8 form an extension of the B-chain helix, 

effectively lengthening the helix to comprise B1-B19 (Figure 1.1c). The switch between 

these states is modulated by both higher order oligomer assembly as well as the 

mutational identity of residues B1-B5 that comprise the switch region 89-91. The 

movement of B1-B8 pivots around GlyB8. GlyB8 undergoes a change in psi angle from 

59o to -67o between the T and R conformations 87.  

 

Insulin oligomerization 

 

Insulin monomers can occupy a classical equilibrium of oligomer states. Insulin 

monomers dimerize 92 at a Kd of between 5-20 uM (depending on the method used to 

characterize Kd, typically spectroscopic measures yield lower values and centrifugation 

measurements yield higher values). Residues B8, B9, B13, B16 as well as B23-B28 play 

key roles in building the dimer interface 83, 89.  Residues B20-23 form a turn leading into 

the dimer interface and serve to position the beta strand for self-association. B9, B13 and 

B23-B26 form multiple hydrogen bonds across the dimer interface. These hydrogen 

bonds displace solvent interactions present in the monomer 61. Throughout this work I 

will refer to dimer related residues with the notation of ‘ (i.e. SerB9 forms a hydrogen 

bond, across the dimer interface, with GluB13’). Residues B23-B26 (a span of three 

highly hydrophobic residues Phe, Phe, Tyr) and B28 also form substantial hydrophobic 

packing between the dimers. Disruptions in, or deletions from the C-terminus of the B-

chain lead to substantial losses in the Kd of the dimer. For example, DesB23-30 insulin 

exhibits no tendency towards dimerization 93. The dimerization of insulin can be 

conveniently monitored by inspection of the circular dichroism (CD) spectra. The insulin 

monomer is associated with a deep minimum at 208nm and a shallow minimum at 

222nm. Upon dimerization, the minimum at 222nm is deepened, likely due to the 

association of the single beta strands from each monomer into a 2-stranded beta sheet. 

Concurrently the minimum at 208nm is attenuated. This change in CD spectra can be 

seen in variants with the loss of dimerization as well as changes in the concentration of 
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the insulin solution near the Kd 93. Changes in CD spectra also correlate closely with 

other biophysical methods for determining the Kd of dimerization (for example: 

analytical ultracentrifugation) 61 (Figure 1.2a) 

 

In the presence of zinc, the dimers can further oligomerize into hexamers with 2 

zincs bound per hexamer 93. One histidine residue from each monomer contributes to 

coordinating the 2 zinc atoms (3 histidines per zinc). Typically throughout these oligomer 

states insulin maintains its T-conformation. In this T-conformation the zinc is bound in 

octahedral geometry with 3 histidines and 3 water molecules 83. Key residues that form 

interactions on the interface of hexamer are A13, A14, A17, B1, B2, B4, B13, B14, B17-

B20 81, 83, 94. It is only in the presence of phenolic ligands, in addition to zinc, that the 

insulin hexamer can occupy the R-state. The presence of phenolic ligands can be thought 

of as driving a conformational switch from T to R states in an allosteric manner. Binding 

of the phenolic ligand also serves to occlude solvent access to the zinc binding sites 95-97. 

In the R-state, the geometry around the zinc changes, zinc becomes bound in tetrahedral 

geometry with 3 histidines and an anion (typically chloride) 98, 99. In addition to zinc other 

divalent metal cations, such as cobalt, can bind to the metal binding sites in the insulin 

hexamer. Cobalt, in particular, serves as a useful measure of T to R transitions as the d-d 

adsorption line changes between hexameric conformations 98, 100. Chelation of cobalt, 

from R6 insulin hexamers, showed that in the absence of phenolic ligands the hexamers 

disassociate in just 1.25 seconds. However in the presence of 30mM phenol this 

disassociation time jumps to 100 seconds, and jumps to well over 100 seconds with 

80mM phenol 98. Another useful measure of hexamer disassociation is the chelating 

ligand 2,2',2"-terpyridine (terpy). Upon binding to divalent metal cations, terpy 

undergoes a spectroscopic change which can be tracked to monitor the disassociation of 

the insulin hexamer and release of zinc 98, 101.  

 

The hexamer can occupy both full T6 and full R6 states as well as the intermediate 

T3R3 state. The transition from T to R occurs in the order: T6 to T3R3 to R6
100, 102. This 

order is reversed during dissociation of the complex driven by chelation of zinc ions. In 

the presence of EDTA, the T6 hexamer first loses a single zinc and a T2 dimer, forming a 
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short-lived intermediate 1-zinc and 4-insulin complex. Further chelation of the last zinc 

releases two more T2 dimers 103. Increasing concentrations of either the phenolic ligand 

or the coordinating anion serve to stabilize the R6 hexamer against disassociation in the 

presence of chelating agents 98 (figure 1.3 a,b). Although the two zinc sites in the insulin 

are nominally identical, two different Kd’s can be measured. The binding of the first zinc 

has a Kd of 0.5 uM and the second has a Kd of 14uM 93, 104, 105. Isothermal titration 

calorimetery (ITC) measures indicated that the two zinc binding sites are associated with 

a deltaG of -14.0 kcal/mol and -12 kcal/mol respectively 103. Two complexes of a binding 

site for zinc with 3-hisitindes would normally be associated with a deltaG of -32 kcal/mol 
106. The 6 kcal/mol difference between the expected value and measured value was 

attributed by Carpenter and Wilcox to be lost in the T to R transition 103. The R6 hexamer 

is itself inactive in binding and activation of the insulin receptor (IR) 87.  

 

As might be expected, loss of the coordinating histidines (HisB10 to Asp) 

prevents formation of the hexamer and binding of zinc 107. Strangely this mutation also 

seems to confer carcinogenic properties to insulin through a mechanism that is not yet 

fully understood. AspB10 has an enhanced affinity for binding insulin like growth factor 

receptor 1, and it is thought that through this interaction the carcinogenic character is 

imparted 108, 109.  

 

 

Insulin binding to the insulin receptor (IR) 

 

The IR is a homodimer, ab2 transmembrane tyrosine receptor kinase through 

which insulin’s primary effects are mediated 110, 111. Binding of insulin to the IR occurs 

though a 2-site binding mechanism where 2 insulin monomers bind to the IR 

sequentially. Recent work from the Weiss group has enhanced our understanding of this 

binding through crystallographic visualization of the insulin-IR binding interface 112. 

Many of the observations from the crystal structure were predictable on the basis of 

earlier mutational studies (figure 1.4a). 
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Almost half of the insulin molecule is sensitive to alanine scanning mutations 

(22/51 amino acids) resulting in either substantial decreases in binding affinity to the IR 

(11/51) or over 10-fold loss in IR binding affinity (11/51) 113. 16 of these 22 amino acids 

are also highly conserved across multiple mammalian species 86. GlyB8, LeuB11, and 

GluB13 are some of the residues critical for binding to IR. Mutating any of these residues 

to alanine decreases IR binding affinity by 10-fold or greater, but not all mutations result 

in such dramatic losses to IR binding affinity 113. For some residues (examples GlyA1, 

IleA2, ValA3, TyrA19), any mutation, including alanine, serves to drastically reduce IR 

binding affinity 86, 114. These four positions are generally regarded as hotspot interactions 
87, 115, 116. ValB12 and TyrB16 are also exquisitely sensitive to mutation, most amino 

acids mutations at these positions degrade the binding of inulin to the IR117. ValB12 is 

critical not only for binding of insulin to the IR but also for stability 113. Other mutations, 

such as most to LeuA16, do not impair binding, 113. It is thought that B27-B30 must be 

displaced upon binding to the IR, and mutations in or deletions of B27-B30 do not impact 

binding affinity in vitro or in vivo 112, 118, 119. FDA approved products exist for a desB30 

insulin 120 as well as an insulin with extensive conjugation to the sidechain of B29 121, 

further highlighting the lack of importance for B27-B30 for insulin binding to the IR 117. 

Evident from both mutational studies and co-crystal structures PheB24 and PheB25 form 

a hydrophobic interaction that is interactions for receptor binding 122. Mutations to B24 

can increase or decrease IR binding affinity; mutations to B25 are only tolerated by 

substitution with large hydrophobic residues with rings 64, 109, 112, 118, 123, 124. In a co-crystal 

structure, residues B26-B30 of insulin are displaced by an alpha helix (The C-terminal 

segment of the human insulin receptor a-chain or aCT) from the IR. The aCT helix packs 

against the alpha helix of the B-chain and the termini of the A-chain and the aCT is 

anchored by interactions with B24-B25 112, 115, 118.  From the co-crystal structure residues 

A1-A4, A19, B3, B8, B9, B11, B12 and B15 are seen to engage in direct contact with the 

IR 115 (figure 1.4a). 

 

ProB28 is a common site of mutation for fast-acting analogs and LysB29 is a 

common site of modification for long-acting analogs, highlighting their unimportance 

with regards to IR binding but strong importance for control of oligomerization 86. The 
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common rapid-acting insulin mutations break up the beta strand to beta strand interaction 

of the dimer through the introduction of charged residues that disturb backbone trajectory 

at residues B28-B30 but do not alter IR binding 125 (figure 1.5a). It seems that both a 

combination of charge and backbone perturbations are responsible for breakup of the 

dimer. ProB28 to Asp results in a 3 order of magnitude loss to the Kd of insulin 

dimerization while mutation to Ala, or mutation of LysB29 to Pro lead only to a 2-order 

magnitude loss to the Kd of dimerization 61. The ProB28 to Asp mutation also increased 

the disorder of the B-chain C-terminus 101. Insulin binding to the IR is only related insofar 

as insulin is able to achieve a monomeric state prior to binding. An insulin analogue that 

is covalently locked into the dimer state (B25-B25’ disulfide bond) is completely inactive 

and does not bind the IR, but maintains the ability to form insulin hexamers 126. It is not 

clear whether it is truly the dimeric nature of this insulin or inability for the C-terminus of 

the B-chain to swing away from the core IR binding residues that results in lack of 

detectable IR binding. Unfortunately the impact of the covalent link between dimers upon 

the rate of hexamer disassembly was not studied.  

 

Fibrillation and dynamics  

 

Molecular dynamics (MD) simulations have revealed that the insulin dimer is a 

relatively stable protein that does not undergo any substantial movements. Conversely, 

MD studies have shown that the insulin monomer undergoes substantial movements at 

both the N- and C-termini of the B-chain127. For example, in one simulation, overall 

RMSD of the dimer structure was 1.4 angstroms whereas the monomer had an RMSD of 

3 angstroms during the simulation time 127. MD simulations indicated that, in particular, 

the B-chain C-terminus swings out away from the core of insulin pivoting around 

PheB24 128. This observation is in line with conformational changes observed in the 

crystal structure of the T to R transition (N-terminus) and co-crystal structures showing 

movement of the C-terminus upon binding to the IR 83, 97, 129.   
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Insulin can undergo aggregation, termed fibrillation, into amyloidogic fibers 

under circumstances of high heat, time, or agitation. It is thought that the partial 

unfolding and aggregation of insulin monomers leads to formation of fibrils 130.  

Insulin fibrillation is undesirable from a therapeutic standpoint, but few mutations to 

insulin show enhanced lag time to fibrillate. Currently the primary methods for 

stabilizing insulin against fibrillation focus almost exclusively on the contents of the 

formulation through the inclusion of zinc, phenolic ligands, salts, sugars, or other 

excipients 7. For mutants with increased lag time, there does not seem to be a correlation 

with the thermostability of the insulin monomer or dimer and there seems to be a reverse 

correlation with kinetic disassociation rates of the hexamer 122, 131, 132. For example, 

iodination of TyrB26 results in a 4-fold increase in fibrillation resistance but slows the 

rate of disassociation of the hexamer by 8-fold 61. Alternative mutations at TyrB26 (such 

as Glu) can enhance the rate of hexamer disassembly, but impair the stability of the 

analog 133.  

 

Fibrillation seems to highly correlate to the degree with which the B-chain C-

terminus separates from the protein core. Mutants in and near the hinge region (B20-B26) 

of the B-chain, which promote fraying of residues B26-B30, also promote faster 

fibrillation 122, 129, 134. Conversely mutations that reduce fraying promote slower 

fibrillation 126, 129.  Other attempts to enhance the resistance to fibrillation have focused 

on helix capping 135, single chain variants 136and additional disulfide bonds 137.  

 

The ideal combination of traits, from a therapeutic perspective, would be an 

insulin analog with increased resistance to fibrillation and faster rates of disassociation 

from the hexamer. However, it has proven difficult to fully optimize insulin because so 

many residues on the protein play a substantial role in IR binding and further mediate 

insulin oligomerization or protection against fibrillation.  
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The general mechanism of oligomerization and activity in insulin  

 

On the basis of multiple lines of evidence the general mechanism for insulin 

biophysical and biochemical function upon subcutaneous injection is as follows. R6 

insulin hexamers containing phenol and zinc are injected into the subcutaneous tissue. 

Phenol diffuses into surrounding tissue and the R6 hexamer undergoes a conformational 

shift to the T6 hexamer. Zinc carrier proteins (i.e. albumin) chelate zinc from the hexamer 

and T2 dimers are released into the subcutaneous space 138, 139. T2 dimers disassociate and 

diffuse to the blood as monomer, the accumulation of monomers in the subcutaneous 

space is the rate-limiting step for diffusion into the blood 65, 66. In the monomer, the C-

terminus of the B-chain undergoes a conformational change swinging residues B27-B30 

away from the core of the protein. Insulin subsequently binds to the IR and induces the 

reduction in blood glucose.  

 

Most importantly to the work herein, B28 has proven to be a position of minimal 

importance for IR binding while of utmost importance for oligomerization control 7, 54, 61, 

62, 70. Previous work has explored canonical mutations at B28; however, none of these 

mutations could replicate the unique properties, detailed below, which proline imparts on 

a polypeptide chain because these mutants lacked a pyrrolidine ring linked to the 

polypeptide backbone. Below I will detail attempts to improve the pharmaceutically 

relevant properties and enhance our understanding of insulin.  

 

Non-canonical amino acids for protein engineering 

 

In order to replace proline with a similar amino acid it is necessary to mutate B28 

to alternative amino acids that maintain a ring structure connected to the backbone chain. 

Fortuitously for the work described herein, the method of non-canonical mutagenesis 

(ncAAM) has been discovered and improved over the past decade. ncAAM allows for the 

substitution of non-canonical amino acids into proteins. This method has been discovered 

and extensively reviewed by our lab and others 140-144. Generally two main methods for 

ncAAM have been discovered; residue replacement and nonsense suppression. The 
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nonsense suppression methods, discovered by Schultz and others 144, focus on placement 

of a stop codon into a protein. This stop codon is then recoded, through the introduction 

of novel tRNA/synthetase pairs, to code for a new amino acid. This method, while 

powerful, suffers from several drawbacks; termination at the activity stop codon cannot 

be completely suppressed. Incomplete suppression results in truncated protein products 

and read through with substitution of, sometimes multiple different, unintended amino 

acids into the stop codon location. The residue replacement methods, discovered by 

Tirrell and others 140, focus on replacing a residue in the proteome with a complexly 

different amino acid, effectively overwriting the entire incorporation of that amino acid 

throughout the proteome. This method, while powerful, also suffers from several 

drawbacks; chiefly it only replaces one amino acid with another and does not add a 21st 

amino acid to the proteome. The Tirrell method is also frequently contaminated with 

background incorporation of the original amino acid that was intended to be over written. 

Luckily, insulin itself contains only a single proline residue at B28. So for our purposes, 

residue specific replacement is site specific and only affects B28. For proteins with only a 

single residue to be replaced, the Tirrell method is superior as the potential cross-

contaminating residues are limited to only the wild-type amino acid and in optimal cases 

incorporation levels can be quantitative (approaching 100%) 145. Truncated proteins as 

well as the range of amino acid read-though present in the Schultz method can be 

avoided. Previous work by Conticello and others demonstrated the incorporation of 

proline analogs with a range of side chain functionalities in collagen using the Tirrell 

method 146 and this same range of prolines is utilized in this work to probe insulin (Figure 

1.6a).  

 

The structure and conformations of proline 

 

Proline itself is a rich amino acid for replacement with a non-canonical version. 

Proline is the only canonical amino acid where the amino group is in a pyrrolidine ring 

with the side chain linked back upon the backbone atoms. This connection means that the 

phi angles of proline are limited to 65 +- 25 degrees 147, 148. As a result of this angular 

limitation proline finds itself in proteins primarily as a helix breaker, in poly proline 
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helices, in loops, or anchoring turns. The covalent hindrance of proline’s backbone 

conformation means it has a unique set of allowed Ramachandran angles 149. The 

backbone coupling to the sidechain also means that the amide bond can adopt a cis 

conformation much more easily in proline. The position of the backbone carbonyl by the 

sidechain of proline also predisposes proline to participate in an n to π* interaction 148. 

The n to π* interaction occurs when the lone pair of the carbonyl oxygen interacts with 

the π* orbital of the next amino acid in the sequence 150. The proline ring can also 

participate in an aromatic interaction. A C-H/ π interaction has been observed both 

thermodynamically and by frequent co-occurrence of proline with aromatic rings in the 

PDB 151, 152. The interaction between proline and an aromatic ring is on the order of 

typical aromatic stacking interactions 147, approaching energies of 1.5 kcal/mol 153. The 

C-H/ π interaction is also in addition to proline’s more typical hydrophobic contributions 

to the energetics of protein folding 152-154.  

 

The proline ring itself can adopt three different conformations: endo, exo or 

planar 155, 156 (figure 1.5 b-d). The endo conformation is characterized by the ring 

puckering up and towards the carbonyl oxygen of proline. Endo prolines are more 

common in protein structural elements of the extended types. The exo conformation is 

characterized by the opposite ring pucker of endo; namely the ring puckers down and 

away from the carbonyl oxygen. Exo prolines are more common in helical and 

polyproline elements in proteins. The exo and endo conformations are roughly equally 

represented in PDB structures, but from computational measurements proline is thought 

to prefer the endo conformation by a 2:1 ratio with an energy difference of only 0.5 

kcal/mol 157, 158. The planar conformation is observed in a minority of protein structures 

in the PDB (<5%) 159.  

 

The endo and exo conformations also have consequences on the strength of 

proline’s typical interactions. Endo prolines weaken the n to π* interaction while exo 

prolines enhance it 160. By biasing prolines towards or away from a particular 

conformation the C-H/ π interaction can also be tuned by improving packing so as to 

better stack the proline ring against an aromatic 153, 154. 
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The 9 prolines discussed throughout this work represent a set of proline with 

altered endo/exo preferences as well as other subtle changes to the interactions that a 

proline-like residue can form (figure 1.6a). By ncAA mutagenesis at B28 we have shown 

substantial ability to modulate important properties of insulin without compromising IR 

binding and activity. The set of prolines, and their insulins, examined here provides for a 

basis of onging insulin engineering as well as enhances our understanding of ring 

constrained amino acid residues in protein engineering.  

 

I will discuss the 4-substituted variants (hydroxylated and fluorinated) in chapters 

2 and 3 followed by the pseudoproline and ring size variants in chapter 4.  
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Figure 1.1 | Insulin sequence and structure.  
A) Insulin primary sequence, helices are highlighted in yellow and the triple hydrophobic 

patch on the B-chain is highlighted in green. The A-chain of insulin comprises 21 amino 
acids and is listed on top of the B-chain. The B-chain of insulin comprises 30 amino acids 
and is listed second. 

B) Insulin (PDB: 3T2A). Closest to the reader on the right is the alpha helix of the B-chain. 
Behind the alpha helix and still to the right is the beta-strand of the B-chain. Closest to the 
reader, and on the left, is the N-terminal turn segment of the B-chain. Behind the B-chain 
and on the left are the two helices of the A-chain.  

C) Alignment of T2 (Tan) and R6 insulins (Blue) (PDB IDs: 3T2A and 1EV6) highlighting the 
R vs T state. Residues GlyA8 and CysA7 are colored red. Closest to the reader on the right 
is the alpha helix of the B-chain. Behind the alpha helix and still to the right is the beta-
strand of the B-chain. Closest to the reader, and on the left, is the N-terminal turn segment 
of the B-chain. This turn is not present in the R6 monomer, instead the residues lengthen the 
B-chain helix on the right. Behind the B-chain and on the left are the two helices of the A-
chain. 
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Figure 1.2 | Circular dichroism spectra of representative monomeric and 
dimeric insulins 

A) CD spectra of 60uM insulin in 10mM Phosphate pH 8.0. In dotted gray, 
Wt-insulin (ProI) and in red, a representative monomeric insulin 
(Aspart or AspI).  
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Figure 1.3 | The insulin hexamer and its disassociation 
 

A) The R6 insulin hexamer (PDB: 1EV6) viewed down the threefold 
axis around the bound zinc and chloride ions. Each chain is colored 
by a different color.   

 
B) The general scheme of insulin hexamer disassociation from the R6 

state to the free monomer and later fibrillation from the monomer. 
R-state insulin monomers are dark gray, T-state monomers are in 
light gray. Figure adapted from: Freeman, J. S. (2009). J Am 
Osteopath Assoc 109(1): 26-36. and Birnbaum, D. T., et al. (1997). 
Pharm Res 14(1): 25-36.  
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Figure 1.4 | The interaction between insulin and the insulin receptor 
A) The complex between insulin and the insulin receptor (PDB: 4OGA). The two insulin 

chains are depicted in light blue and dark blue. Residues B26-B30 of the B-chain of 
insulin (not visualized in the structure) are displaced by a helix originating from the 
insulin receptor (Red). Other portions of the receptor are colored green, cyan and 
yellow.  
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Figure 1.5 | Position B28 and proline structures 
A) The contrast between ProI and AspI as seen at the C-terminus of the B-chain (PDB 

IDS: 3T2A and 1ZEH) 
B) Proline in an endo pucker  
C) Proline in an exo pucker 
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Figure 1.6 | Position B28 and proline structures 
A) Proline and the nine analogs discussed in this work and incorporated 

into insulin. Short amino acid abbreviations are listed below the full 
IUPAC name for each analog.  

 24 



References 

 
 
1 Stephen L. Aronoff, Kathy Berkowitz, Barb Shreiner, and Laura Want, 'Glucose 

Metabolism and Regulation: Beyond Insulin and Glucagon', Diabetes Spectrum, 
17 (2004), 183-90. 

2 R. J. Brown, R. C. Wijewickrama, D. M. Harlan, and K. I. Rother, 'Uncoupling 
Intensive Insulin Therapy from Weight Gain and Hypoglycemia in Type 1 
Diabetes', Diabetes Technol Ther, 13 (2011), 457-60. 

3 Z. G. Hua, L. J. Xiong, C. Yan, D. H. Wei, Z. YingPai, Z. Y. Qing, Q. Z. Lin, F. 
R. Fei, W. Y. Ling, and M. Z. Ren, 'Glucose and Insulin Stimulate Lipogenesis in 
Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key 
Transcription Factors', Mol Cells, 39 (2016), 797-806. 

4 R. Herring, R. H. Jones, and D. L. Russell-Jones, 'Hepatoselectivity and the 
Evolution of Insulin', Diabetes Obes Metab, 16 (2014), 1-8. 

5 S. M. Gray, R. I. Meijer, and E. J. Barrett, 'Insulin Regulates Brain Function, but 
How Does It Get There?', Diabetes, 63 (2014), 3992-7. 

6 J. M. Gregory, G. Kraft, M. F. Scott, D. W. Neal, B. Farmer, M. S. Smith, J. R. 
Hastings, E. J. Allen, E. P. Donahue, N. Rivera, J. J. Winnick, D. S. Edgerton, E. 
Nishimura, C. Fledelius, C. L. Brand, and A. D. Cherrington, 'Insulin Delivery 
into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 
Diabetes', Diabetes, 64 (2015), 3439-51. 

7 A. N. Zaykov, J. P. Mayer, and R. D. DiMarchi, 'Pursuit of a Perfect Insulin', Nat 
Rev Drug Discov, 15 (2016), 425-39. 

8 I. B. Hirsch, 'Insulin Analogues', N Engl J Med, 352 (2005), 174-83. 
9 W. K. Ward, D. C. Bolgiano, B. McKnight, J. B. Halter, and D. Porte, Jr., 

'Diminished B Cell Secretory Capacity in Patients with Noninsulin-Dependent 
Diabetes Mellitus', J Clin Invest, 74 (1984), 1318-28. 

10 K. Rave, P. N. Sidharta, J. Dingemanse, L. Heinemann, and K. Roggen, 'First-
Phase Insulin Secretion Has Limited Impact on Postprandial Glycemia in Subjects 
with Type 2 Diabetes: Correlations between Hyperglycemic Glucose Clamp and 
Meal Test', Diabetes Technol Ther, 12 (2010), 117-23. 

11 M. A. Atkinson, and N. K. Maclaren, 'The Pathogenesis of Insulin-Dependent 
Diabetes Mellitus', N Engl J Med, 331 (1994), 1428-36. 

12 S. E. Kahn, M. E. Cooper, and S. Del Prato, 'Pathophysiology and Treatment of 
Type 2 Diabetes: Perspectives on the Past, Present, and Future', Lancet, 383 
(2014), 1068-83. 

13 R. N. Bergman, D. T. Finegood, and S. E. Kahn, 'The Evolution of Beta-Cell 
Dysfunction and Insulin Resistance in Type 2 Diabetes', Eur J Clin Invest, 32 
Suppl 3 (2002), 35-45. 

14 A. Menke, S. Casagrande, L. Geiss, and C. C. Cowie, 'Prevalence of and Trends 
in Diabetes among Adults in the United States, 1988-2012', Jama, 314 (2015), 
1021-9. 

15 Center for Disease Control and Prevention, 'Long-Term Trends in Diabetes', ed. 
by Health and Human Services Center for Disease Control and Prevention, 
(2016). 

 25 



16 Center for Disease Control And Prevention, 'Crude and Age-Adjusted Rates of 
Diagnosed Diabetes Per 100 Civilian, Non-Institutionalized Adult Population, 
United States, 1980–2014', ed. by Health and Human ServicesCenters for Disease 
Control and Prevention, (2016). 

17 'Economic Costs of Diabetes in the U.S. In 2012', Diabetes Care, 36 (2013), 
1033-46. 

18 A. Stokes, and S. H. Preston, 'Deaths Attributable to Diabetes in the United 
States: Comparison of Data Sources and Estimation Approaches', PLoS One, 12 
(2017), e0170219. 

19 M. Y. Leung, L. M. Pollack, G. A. Colditz, and S. H. Chang, 'Life Years Lost and 
Lifetime Health Care Expenditures Associated with Diabetes in the U.S., National 
Health Interview Survey, 1997-2000', Diabetes Care, 38 (2015), 460-8. 

20 Z. Wang, and M. Liu, 'Life Years Lost Associated with Diabetes: An Individually 
Matched Cohort Study Using the U.S. National Health Interview Survey Data', 
Diabetes Res Clin Pract, 118 (2016), 69-76. 

21 K. M. Narayan, J. P. Boyle, T. J. Thompson, S. W. Sorensen, and D. F. 
Williamson, 'Lifetime Risk for Diabetes Mellitus in the United States', Jama, 290 
(2003), 1884-90. 

22 R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. 
Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. Alvarado, H. R. Anderson, L. M. 
Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, S. Barker-Collo, D. H. 
Bartels, M. L. Bell, E. J. Benjamin, D. Bennett, K. Bhalla, B. Bikbov, A. Bin 
Abdulhak, G. Birbeck, F. Blyth, I. Bolliger, S. Boufous, C. Bucello, M. Burch, P. 
Burney, J. Carapetis, H. Chen, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, 
S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, 
M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. 
Cross, K. C. Dabhadkar, N. Dahodwala, D. De Leo, L. Degenhardt, A. 
Delossantos, J. Denenberg, D. C. Des Jarlais, S. D. Dharmaratne, E. R. Dorsey, T. 
Driscoll, H. Duber, B. Ebel, P. J. Erwin, P. Espindola, M. Ezzati, V. Feigin, A. D. 
Flaxman, M. H. Forouzanfar, F. G. Fowkes, R. Franklin, M. Fransen, M. K. 
Freeman, S. E. Gabriel, E. Gakidou, F. Gaspari, R. F. Gillum, D. Gonzalez-
Medina, Y. A. Halasa, D. Haring, J. E. Harrison, R. Havmoeller, R. J. Hay, B. 
Hoen, P. J. Hotez, D. Hoy, K. H. Jacobsen, S. L. James, R. Jasrasaria, S. 
Jayaraman, N. Johns, G. Karthikeyan, N. Kassebaum, A. Keren, J. P. Khoo, L. M. 
Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, M. Lipnick, S. E. 
Lipshultz, S. L. Ohno, J. Mabweijano, M. F. MacIntyre, L. Mallinger, L. March, 
G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. 
McAnulty, M. M. McDermott, J. McGrath, G. A. Mensah, T. R. Merriman, C. 
Michaud, M. Miller, T. R. Miller, C. Mock, A. O. Mocumbi, A. A. Mokdad, A. 
Moran, K. Mulholland, M. N. Nair, L. Naldi, K. M. Narayan, K. Nasseri, P. 
Norman, M. O'Donnell, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, B. 
Pahari, J. D. Pandian, A. P. Rivero, R. P. Padilla, F. Perez-Ruiz, N. Perico, D. 
Phillips, K. Pierce, C. A. Pope, 3rd, E. Porrini, F. Pourmalek, M. Raju, D. 
Ranganathan, J. T. Rehm, D. B. Rein, G. Remuzzi, F. P. Rivara, T. Roberts, F. R. 
De Leon, L. C. Rosenfeld, L. Rushton, R. L. Sacco, J. A. Salomon, U. Sampson, 
E. Sanman, D. C. Schwebel, M. Segui-Gomez, D. S. Shepard, D. Singh, J. 

 26 



Singleton, K. Sliwa, E. Smith, A. Steer, J. A. Taylor, B. Thomas, I. M. Tleyjeh, J. 
A. Towbin, T. Truelsen, E. A. Undurraga, N. Venketasubramanian, L. 
Vijayakumar, T. Vos, G. R. Wagner, M. Wang, W. Wang, K. Watt, M. A. 
Weinstock, R. Weintraub, J. D. Wilkinson, A. D. Woolf, S. Wulf, P. H. Yeh, P. 
Yip, A. Zabetian, Z. J. Zheng, A. D. Lopez, C. J. Murray, M. A. AlMazroa, and Z. 
A. Memish, 'Global and Regional Mortality from 235 Causes of Death for 20 Age 
Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of 
Disease Study 2010', Lancet, 380 (2012), 2095-128. 

23 J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, 'Global Estimates of the Prevalence of 
Diabetes for 2010 and 2030', Diabetes Res Clin Pract, 87 (2010), 4-14. 

24 A. M. Rawlings, A. R. Sharrett, A. L. Schneider, J. Coresh, M. Albert, D. Couper, 
M. Griswold, R. F. Gottesman, L. E. Wagenknecht, B. G. Windham, and E. 
Selvin, 'Diabetes in Midlife and Cognitive Change over 20 Years: A Cohort 
Study', Ann Intern Med, 161 (2014), 785-93. 

25 J. D. Piette, and E. A. Kerr, 'The Impact of Comorbid Chronic Conditions on 
Diabetes Care', Diabetes Care, 29 (2006), 725-31. 

26 M. N. Ozieh, K. G. Bishu, C. E. Dismuke, and L. E. Egede, 'Trends in Health 
Care Expenditure in U.S. Adults with Diabetes: 2002-2011', Diabetes Care, 38 
(2015), 1844-51. 

27 X. Zhuo, P. Zhang, L. Barker, A. Albright, T. J. Thompson, and E. Gregg, 'The 
Lifetime Cost of Diabetes and Its Implications for Diabetes Prevention', Diabetes 
Care, 37 (2014), 2557-64. 

28 F. B. Bailey, A. Wilson, 'Identifying Sources of Variation in Diabetes Episodes of 
Care with Prometheus Analytics',  (Health Care Incentives Improvement Institute: 
Health Care Incentives Improvement Institute, 2016), p. 15. 

29 Y. Y. Meng, M. C. Pickett, S. H. Babey, A. C. Davis, and H. Goldstein, 'Diabetes 
Tied to a Third of California Hospital Stays, Driving Health Care Costs Higher', 
Policy Brief UCLA Cent Health Policy Res (2014), 1-7. 

30 M. K. Ali, K. M. Bullard, and E. W. Gregg, 'Achievement of Goals in U.S. 
Diabetes Care, 1999-2010', N Engl J Med, 369 (2013), 287-8. 

31 L. E. Egede, M. Gebregziabher, C. E. Dismuke, C. P. Lynch, R. N. Axon, Y. 
Zhao, and P. D. Mauldin, 'Medication Nonadherence in Diabetes: Longitudinal 
Effects on Costs and Potential Cost Savings from Improvement', Diabetes Care, 
35 (2012), 2533-9. 

32 D. R. Owens, 'New Horizons--Alternative Routes for Insulin Therapy', Nat Rev 
Drug Discov, 1 (2002), 529-40. 

33 K. S. Polonsky, 'The Past 200 Years in Diabetes', N Engl J Med, 367 (2012), 
1332-40. 

34 C. C. Quianzon, and I. Cheikh, 'History of Insulin', J Community Hosp Intern Med 
Perspect, 2 (2012). 

35 D. T. Karamitsos, 'The Story of Insulin Discovery', Diabetes Res Clin Pract, 93 
Suppl 1 (2011), S2-8. 

36 L. Rosenfeld, 'Insulin: Discovery and Controversy', Clin Chem, 48 (2002), 2270-
88. 

 27 



37 H. C. Hagedorn, B. N. Jensen, N. B. Krarup, and I. Wodstrup, 'Landmark Article 
Jan 18, 1936: Protamine Insulinate. By H.C. Hagedorn, B.N. Jensen, N.B. Krarup, 
and I. Wodstrup', Jama, 251 (1984), 389-92. 

38 J. R. White, Jr., 'A Brief History of the Development of Diabetes Medications', 
Diabetes Spectr, 27 (2014), 82-6. 

39 F. Sanger, 'The Terminal Peptides of Insulin', Biochem J, 45 (1949), 563-74. 
40 F. Sanger, 'Species Differences in Insulins', Nature, 164 (1949), 529. 
41 D. F. Steiner, 'On the Discovery of Precursor Processing', Methods Mol Biol, 768 

(2011), 3-11. 
42 T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. C. 

Hodgkin, D. A. Mercola, and M. Vijayan, 'Atomic Positions in Rhombohedral 2-
Zinc Insulin Crystals', Nature, 231 (1971), 506-11. 

43 D. V. Goeddel, D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, 
T. Hirose, A. Kraszewski, K. Itakura, and A. D. Riggs, 'Expression in Escherichia 
Coli of Chemically Synthesized Genes for Human Insulin', Proc Natl Acad Sci U 
S A, 76 (1979), 106-10. 

44 L. M. Keefer, M. A. Piron, and P. De Meyts, 'Human Insulin Prepared by 
Recombinant DNA Techniques and Native Human Insulin Interact Identically 
with Insulin Receptors', Proc Natl Acad Sci U S A, 78 (1981), 1391-5. 

45 I. S. Johnson, 'Human Insulin from Recombinant DNA Technology', Science, 219 
(1983), 632-7. 

46 L. Thim, M. T. Hansen, K. Norris, I. Hoegh, E. Boel, J. Forstrom, G. Ammerer, 
and N. P. Fiil, 'Secretion and Processing of Insulin Precursors in Yeast', Proc Natl 
Acad Sci U S A, 83 (1986), 6766-70. 

47 T. Kjeldsen, 'Yeast Secretory Expression of Insulin Precursors', Appl Microbiol 
Biotechnol, 54 (2000), 277-86. 

48 C. K. Min, Y. J. Son, C. K. Kim, S. J. Park, and J. W. Lee, 'Increased Expression, 
Folding and Enzyme Reaction Rate of Recombinant Human Insulin by Selecting 
Appropriate Leader Peptide', J Biotechnol, 151 (2011), 350-6. 

49 P. G. Katsoyannis, A. M. Tometsko, J. Z. Ginos, and M. A. Tilak, 'Insulin 
Peptides. Xi. The Synthesis of the B Chain of Human Insulin and Its Combination 
with the Natural a Chain of Bovine Insulin to Generate Insulin Activity', J Am 
Chem Soc, 88 (1966), 164-6. 

50 Y. T. Kung, Y. C. Du, W. T. Huang, C. C. Chen, and L. T. Ke, 'Total Synthesis of 
Crystalline Bovine Insulin', Sci Sin, 14 (1965), 1710-6. 

51 J. G. Menting, J. Gajewiak, C. A. MacRaild, D. H. Chou, M. M. Disotuar, N. A. 
Smith, C. Miller, J. Erchegyi, J. E. Rivier, B. M. Olivera, B. E. Forbes, B. J. 
Smith, R. S. Norton, H. Safavi-Hemami, and M. C. Lawrence, 'A Minimized 
Human Insulin-Receptor-Binding Motif Revealed in a Conus Geographus Venom 
Insulin', Nat Struct Mol Biol, 23 (2016), 916-20. 

52 F. Liu, A. N. Zaykov, J. J. Levy, R. D. DiMarchi, and J. P. Mayer, 'Chemical 
Synthesis of Peptides within the Insulin Superfamily', J Pept Sci, 22 (2016), 260-
70. 

53 N. A. Baeshen, M. N. Baeshen, A. Sheikh, R. S. Bora, M. M. Ahmed, H. A. 
Ramadan, K. S. Saini, and E. M. Redwan, 'Cell Factories for Insulin Production', 
Microb Cell Fact, 13 (2014), 141. 

 28 



54 D. C. Howey, R. R. Bowsher, R. L. Brunelle, and J. R. Woodworth, '[Lys(B28), 
Pro(B29)]-Human Insulin. A Rapidly Absorbed Analogue of Human Insulin', 
Diabetes, 43 (1994), 396-402. 

55 D. C. Howey, R. R. Bowsher, R. L. Brunelle, H. M. Rowe, P. F. Santa, J. 
Downing-Shelton, and J. R. Woodworth, '[Lys(B28), Pro(B29)]-Human Insulin: 
Effect of Injection Time on Postprandial Glycemia', Clin Pharmacol Ther, 58 
(1995), 459-69. 

56 L. Quagliaro, L. Piconi, R. Assaloni, L. Martinelli, E. Motz, and A. Ceriello, 
'Intermittent High Glucose Enhances Apoptosis Related to Oxidative Stress in 
Human Umbilical Vein Endothelial Cells: The Role of Protein Kinase C and 
Nad(P)H-Oxidase Activation', Diabetes, 52 (2003), 2795-804. 

57 J. H. Anderson, Jr., R. L. Brunelle, V. A. Koivisto, A. Pfutzner, M. E. Trautmann, 
L. Vignati, and R. DiMarchi, 'Reduction of Postprandial Hyperglycemia and 
Frequency of Hypoglycemia in Iddm Patients on Insulin-Analog Treatment. 
Multicenter Insulin Lispro Study Group', Diabetes, 46 (1997), 265-70. 

58 A. Pfutzner, E. Kustner, T. Forst, B. Schulze-Schleppinghoff, M. E. Trautmann, 
M. Haslbeck, H. Schatz, and J. Beyer, 'Intensive Insulin Therapy with Insulin 
Lispro in Patients with Type 1 Diabetes Reduces the Frequency of Hypoglycemic 
Episodes', Exp Clin Endocrinol Diabetes, 104 (1996), 25-30. 

59 A. Siebenhofer, J. Plank, A. Berghold, K. Jeitler, K. Horvath, M. Narath, R. 
Gfrerer, and T. R. Pieber, 'Short Acting Insulin Analogues Versus Regular Human 
Insulin in Patients with Diabetes Mellitus', Cochrane Database Syst Rev (2006), 
Cd003287. 

60 B. Fullerton, A. Siebenhofer, K. Jeitler, K. Horvath, T. Semlitsch, A. Berghold, J. 
Plank, T. R. Pieber, and F. M. Gerlach, 'Short-Acting Insulin Analogues Versus 
Regular Human Insulin for Adults with Type 1 Diabetes Mellitus', Cochrane 
Database Syst Rev (2016), Cd012161. 

61 D. N. Brems, L. A. Alter, M. J. Beckage, R. E. Chance, R. D. DiMarchi, L. K. 
Green, H. B. Long, A. H. Pekar, J. E. Shields, and B. H. Frank, 'Altering the 
Association Properties of Insulin by Amino Acid Replacement', Protein Eng, 5 
(1992), 527-33. 

62 S. R. Mudaliar, F. A. Lindberg, M. Joyce, P. Beerdsen, P. Strange, A. Lin, and R. 
R. Henry, 'Insulin Aspart (B28 Asp-Insulin): A Fast-Acting Analog of Human 
Insulin: Absorption Kinetics and Action Profile Compared with Regular Human 
Insulin in Healthy Nondiabetic Subjects', Diabetes Care, 22 (1999), 1501-6. 

63 A. Plum, H. Agerso, and L. Andersen, 'Pharmacokinetics of the Rapid-Acting 
Insulin Analog, Insulin Aspart, in Rats, Dogs, and Pigs, and Pharmacodynamics 
of Insulin Aspart in Pigs', Drug Metab Dispos, 28 (2000), 155-60. 

64 S. E. Shoelson, Z. X. Lu, L. Parlautan, C. S. Lynch, and M. A. Weiss, 'Mutations 
at the Dimer, Hexamer, and Receptor-Binding Surfaces of Insulin Independently 
Affect Insulin-Insulin and Insulin-Receptor Interactions', Biochemistry, 31 (1992), 
1757-67. 

65 T. Lauritzen, S. Pramming, T. Deckert, and C. Binder, 'Pharmacokinetics of 
Continuous Subcutaneous Insulin Infusion', Diabetologia, 24 (1983), 326-9. 

66 D. L. Bakaysa, J. Radziuk, H. A. Havel, M. L. Brader, S. Li, S. W. Dodd, J. M. 
Beals, A. H. Pekar, and D. N. Brems, 'Physicochemical Basis for the Rapid Time-

 29 



Action of Lysb28prob29-Insulin: Dissociation of a Protein-Ligand Complex', 
Protein Sci, 5 (1996), 2521-31. 

67 L. Meadowcraft, G. Mospan, T. Morrisette, K. Smart, and M. Janis, 'Drug 
Updates and Approvals: 2016 in Review', Nurse Pract, 41 (2016), 20-27. 

68 C. Sorli, M. Warren, D. Oyer, H. Mersebach, T. Johansen, and S. C. L. Gough, 
'Elderly Patients with Diabetes Experience a Lower Rate of Nocturnal 
Hypoglycaemia with Insulin Degludec Than with Insulin Glargine: A Meta-
Analysis of Phase Iiia Trials', Drugs Aging, 30 (2013), 1009-18. 

69 J. Rosenstock, V. Fonseca, S. Schinzel, M. P. Dain, P. Mullins, and M. Riddle, 
'Reduced Risk of Hypoglycemia with Once-Daily Glargine Versus Twice-Daily 
Nph and Number Needed to Harm with Nph to Demonstrate the Risk of One 
Additional Hypoglycemic Event in Type 2 Diabetes: Evidence from a Long-Term 
Controlled Trial', J Diabetes Complications, 28 (2014), 742-9. 

70 V. Pandyarajan, and M. A. Weiss, 'Design of Non-Standard Insulin Analogs for 
the Treatment of Diabetes Mellitus', Curr Diab Rep, 12 (2012), 697-704. 

71 D. M. Nathan, D. E. Singer, K. Hurxthal, and J. D. Goodson, 'The Clinical 
Information Value of the Glycosylated Hemoglobin Assay', N Engl J Med, 310 
(1984), 341-6. 

72 W. V. Tamborlane, R. W. Beck, B. W. Bode, B. Buckingham, H. P. Chase, R. 
Clemons, R. Fiallo-Scharer, L. A. Fox, L. K. Gilliam, I. B. Hirsch, E. S. Huang, 
C. Kollman, A. J. Kowalski, L. Laffel, J. M. Lawrence, J. Lee, N. Mauras, M. 
O'Grady, K. J. Ruedy, M. Tansey, E. Tsalikian, S. Weinzimer, D. M. Wilson, H. 
Wolpert, T. Wysocki, and D. Xing, 'Continuous Glucose Monitoring and 
Intensive Treatment of Type 1 Diabetes', N Engl J Med, 359 (2008), 1464-76. 

73 M. Langendam, Y. M. Luijf, L. Hooft, J. H. Devries, A. H. Mudde, and R. J. 
Scholten, 'Continuous Glucose Monitoring Systems for Type 1 Diabetes Mellitus', 
Cochrane Database Syst Rev, 1 (2012), Cd008101. 

74 W. V. Tamborlane, R. S. Sherwin, M. Genel, and P. Felig, 'Reduction to Normal 
of Plasma Glucose in Juvenile Diabetes by Subcutaneous Administration of 
Insulin with a Portable Infusion Pump', N Engl J Med, 300 (1979), 573-8. 

75 H. Thabit, and R. Hovorka, 'Coming of Age: The Artificial Pancreas for Type 1 
Diabetes', Diabetologia, 59 (2016), 1795-805. 

76 J. C. Pickup, 'Diabetes: Insulin Pump Therapy for Type 2 Diabetes Mellitus', Nat 
Rev Endocrinol, 10 (2014), 647-9. 

77 J. C. Pickup, and E. Renard, 'Long-Acting Insulin Analogs Versus Insulin Pump 
Therapy for the Treatment of Type 1 and Type 2 Diabetes', Diabetes Care, 31 
Suppl 2 (2008), S140-5. 

78 F. M. Alsaleh, F. J. Smith, S. Keady, and K. M. Taylor, 'Insulin Pumps: From 
Inception to the Present and toward the Future', J Clin Pharm Ther, 35 (2010), 
127-38. 

79 P. Home, M. Riddle, W. T. Cefalu, C. J. Bailey, R. G. Bretzel, S. Del Prato, D. 
Leroith, G. Schernthaner, L. van Gaal, and I. Raz, 'Insulin Therapy in People with 
Type 2 Diabetes: Opportunities and Challenges?', Diabetes Care, 37 (2014), 
1499-508. 

80 D. F. Steiner, S. J. Chan, J. M. Welsh, and S. C. Kwok, 'Structure and Evolution 
of the Insulin Gene', Annu Rev Genet, 19 (1985), 463-84. 

 30 



81 T. N. Vinther, T. B. Kjeldsen, K. J. Jensen, and F. Hubalek, 'The Road to the 
First, Fully Active and More Stable Human Insulin Variant with an Additional 
Disulfide Bond', J Pept Sci, 21 (2015), 797-806. 

82 J. D. Peterson, and D. F. Steiner, 'The Amino Acid Sequence of the Insulin from a 
Primitive Vertebrate, the Atlantic Hagfish (Myxine Glutinosa)', J Biol Chem, 250 
(1975), 5183-91. 

83 E. N. Baker, T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. 
Dodson, D. M. Hodgkin, R. E. Hubbard, N. W. Isaacs, C. D. Reynolds, and et al., 
'The Structure of 2zn Pig Insulin Crystals at 1.5 a Resolution', Philos Trans R Soc 
Lond B Biol Sci, 319 (1988), 369-456. 

84 J. L. Whittingham, D. J. Edwards, A. A. Antson, J. M. Clarkson, and G. G. 
Dodson, 'Interactions of Phenol and M-Cresol in the Insulin Hexamer, and Their 
Effect on the Association Properties of B28 Pro --> Asp Insulin Analogues', 
Biochemistry, 37 (1998), 11516-23. 

85 H. Marshall, M. Venkat, N. S. Seng, J. Cahn, and D. H. Juers, 'The Use of 
Trimethylamine N-Oxide as a Primary Precipitating Agent and Related 
Methylamine Osmolytes as Cryoprotective Agents for Macromolecular 
Crystallography', Acta Crystallogr D Biol Crystallogr, 68 (2012), 69-81. 

86 J. P. Mayer, F. Zhang, and R. D. DiMarchi, 'Insulin Structure and Function', 
Biopolymers, 88 (2007), 687-713. 

87 L. Kosinova, V. Veverka, P. Novotna, M. Collinsova, M. Urbanova, N. R. 
Moody, J. P. Turkenburg, J. Jiracek, A. M. Brzozowski, and L. Zakova, 'Insight 
into the Structural and Biological Relevance of the T/R Transition of the N-
Terminus of the B-Chain in Human Insulin', Biochemistry, 53 (2014), 3392-402. 

88 J. Monod, J. Wyman, and J. P. Changeux, 'On the Nature of Allosteric 
Transitions: A Plausible Model', J Mol Biol, 12 (1965), 88-118. 

89 M. A. Weiss, 'The Structure and Function of Insulin: Decoding the Tr Transition', 
Vitam Horm, 80 (2009), 33-49. 

90 G. D. Smith, W. A. Pangborn, and R. H. Blessing, 'The Structure of T6 Human 
Insulin at 1.0 a Resolution', Acta Crystallogr D Biol Crystallogr, 59 (2003), 474-
82. 

91 G. D. Smith, W. A. Pangborn, R. H. Blessing. 'The Structure of T6 Bovine 
Insulin', Acta Crystallogr D Biol Crystallogr, 61 (2005), 1476-82. 

92 P. T. Grant, T. L. Coombs, and B. H. Frank, 'Differences in the Nature of the 
Interaction of Insulin and Proinsulin with Zinc', Biochem J, 126 (1972), 433-40. 

93 J. Goldman, and F. H. Carpenter, 'Zinc Binding, Circular Dichroism, and 
Equilibrium Sedimentation Studies on Insulin (Bovine) and Several of Its 
Derivatives', Biochemistry, 13 (1974), 4566-74. 

94 G. D. Smith, E. Ciszak, L. A. Magrum, W. A. Pangborn, and R. H. Blessing, 'R6 
Hexameric Insulin Complexed with M-Cresol or Resorcinol', Acta Crystallogr D 
Biol Crystallogr, 56 (2000), 1541-8. 

95 D. T. Birnbaum, S. W. Dodd, B. E. Saxberg, A. D. Varshavsky, and J. M. Beals, 
'Hierarchical Modeling of Phenolic Ligand Binding to 2zn--Insulin Hexamers', 
Biochemistry, 35 (1996), 5366-78. 

 31 



96 K. Huus, S. Havelund, H. B. Olsen, B. W. Sigurskjold, M. van de Weert, and S. 
Frokjaer, 'Ligand Binding and Thermostability of Different Allosteric States of 
the Insulin Zinc-Hexamer', Biochemistry, 45 (2006), 4014-24. 

97 C. G. Frankaer, M. V. Knudsen, K. Noren, E. Nazarenko, K. Stahl, and P. Harris, 
'The Structures of T6, T3r3 and R6 Bovine Insulin: Combining X-Ray Diffraction 
and Absorption Spectroscopy', Acta Crystallogr D Biol Crystallogr, 68 (2012), 
1259-71. 

98 S. Rahuel-Clermont, C. A. French, N. C. Kaarsholm, M. F. Dunn, and C. I. Chou, 
'Mechanisms of Stabilization of the Insulin Hexamer through Allosteric Ligand 
Interactions', Biochemistry, 36 (1997), 5837-45. 

99 P. S. Brzovic, W. E. Choi, D. Borchardt, N. C. Kaarsholm, and M. F. Dunn, 
'Structural Asymmetry and Half-Site Reactivity in the T to R Allosteric Transition 
of the Insulin Hexamer', Biochemistry, 33 (1994), 13057-69. 

100 M. Roy, M. L. Brader, R. W. Lee, N. C. Kaarsholm, J. F. Hansen, and M. F. 
Dunn, 'Spectroscopic Signatures of the T to R Conformational Transition in the 
Insulin Hexamer', J Biol Chem, 264 (1989), 19081-5. 

101 N. C. Kaarsholm, H. C. Ko, and M. F. Dunn, 'Comparison of Solution Structural 
Flexibility and Zinc Binding Domains for Insulin, Proinsulin, and Miniproinsulin', 
Biochemistry, 28 (1989), 4427-35. 

102 M. F. Dunn, 'Zinc-Ligand Interactions Modulate Assembly and Stability of the 
Insulin Hexamer -- a Review', Biometals, 18 (2005), 295-303. 

103 M. C. Carpenter, and D. E. Wilcox, 'Thermodynamics of Formation of the Insulin 
Hexamer: Metal-Stabilized Proton-Coupled Assembly of Quaternary Structure', 
Biochemistry, 53 (2014), 1296-301. 

104 A. H. Pekar, and B. H. Frank, 'Conformation of Proinsulin. A Comparison of 
Insulin and Proinsulin Self-Association at Neutral Ph', Biochemistry, 11 (1972), 
4013-6. 

105 B. H. Frank, A. H. Pekar, and A. J. Veros, 'Insulin and Proinsulin Conformation 
in Solution', Diabetes, 21 (1972), 486-91. 

106 S. M. Liao, Q. S. Du, J. Z. Meng, Z. W. Pang, and R. B. Huang, 'The Multiple 
Roles of Histidine in Protein Interactions', Chem Cent J, 7 (2013), 44. 

107 J. Brange, U. Ribel, J. F. Hansen, G. Dodson, M. T. Hansen, S. Havelund, S. G. 
Melberg, F. Norris, K. Norris, L. Snel, and et al., 'Monomeric Insulins Obtained 
by Protein Engineering and Their Medical Implications', Nature, 333 (1988), 679-
82. 

108 G. Milazzo, L. Sciacca, V. Papa, I. D. Goldfine, and R. Vigneri, 'Aspb10 Insulin 
Induction of Increased Mitogenic Responses and Phenotypic Changes in Human 
Breast Epithelial Cells: Evidence for Enhanced Interactions with the Insulin-Like 
Growth Factor-I Receptor', Mol Carcinog, 18 (1997), 19-25. 

109 K. E. Bornfeldt, R. A. Gidlof, A. Wasteson, M. Lake, A. Skottner, and H. J. 
Arnqvist, 'Binding and Biological Effects of Insulin, Insulin Analogues and 
Insulin-Like Growth Factors in Rat Aortic Smooth Muscle Cells. Comparison of 
Maximal Growth Promoting Activities', Diabetologia, 34 (1991), 307-13. 

110 C. W. Ward, and M. C. Lawrence, 'Ligand-Induced Activation of the Insulin 
Receptor: A Multi-Step Process Involving Structural Changes in Both the Ligand 
and the Receptor', Bioessays, 31 (2009), 422-34. 

 32 



111 A. Papaioannou, S. Kuyucak, and Z. Kuncic, 'Elucidating the Activation 
Mechanism of the Insulin-Family Proteins with Molecular Dynamics 
Simulations', PLoS One, 11 (2016), e0161459. 

112 T. I. Croll, B. J. Smith, M. B. Margetts, J. Whittaker, M. A. Weiss, C. W. Ward, 
and M. C. Lawrence, 'Higher-Resolution Structure of the Human Insulin Receptor 
Ectodomain: Multi-Modal Inclusion of the Insert Domain', Structure, 24 (2016), 
469-76. 

113 C. Kristensen, T. Kjeldsen, F. C. Wiberg, L. Schaffer, M. Hach, S. Havelund, J. 
Bass, D. F. Steiner, and A. S. Andersen, 'Alanine Scanning Mutagenesis of 
Insulin', J Biol Chem, 272 (1997), 12978-83. 

114 S. H. Nakagawa, and H. S. Tager, 'Importance of Aliphatic Side-Chain Structure 
at Positions 2 and 3 of the Insulin a Chain in Insulin-Receptor Interactions', 
Biochemistry, 31 (1992), 3204-14. 

115 J. G. Menting, J. Whittaker, M. B. Margetts, L. J. Whittaker, G. K. Kong, B. J. 
Smith, C. J. Watson, L. Zakova, E. Kletvikova, J. Jiracek, S. J. Chan, D. F. 
Steiner, G. G. Dodson, A. M. Brzozowski, M. A. Weiss, C. W. Ward, and M. C. 
Lawrence, 'How Insulin Engages Its Primary Binding Site on the Insulin 
Receptor', Nature, 493 (2013), 241-5. 

116 P. De Meyts, and J. Whittaker, 'Structural Biology of Insulin and Igf1 Receptors: 
Implications for Drug Design', Nat Rev Drug Discov, 1 (2002), 769-83. 

117 T. Glendorf, A. R. Sorensen, E. Nishimura, I. Pettersson, and T. Kjeldsen, 
'Importance of the Solvent-Exposed Residues of the Insulin B Chain Alpha-Helix 
for Receptor Binding', Biochemistry, 47 (2008), 4743-51. 

118 M. A. Weiss, '169 How Insulin Binds: Structure of a Micro-Receptor Complex 
and Implications for Analog Design', J Biomol Struct Dyn, 33 Suppl 1 (2015), 
110-1. 

119 P. G. Katsoyannis, J. Ginos, G. P. Schwartz, and A. Cosmatos, 'Synthesis of a 
Biologically Active Truncated Insulin. Des(Pentapeptide B23-30) Human 
(Porcine) Insulin', J Chem Soc Perkin 1, 11 (1974), 1311-7. 

120 I. Jonassen, S. Havelund, T. Hoeg-Jensen, D. B. Steensgaard, P. O. Wahlund, and 
U. Ribel, 'Design of the Novel Protraction Mechanism of Insulin Degludec, an 
Ultra-Long-Acting Basal Insulin', Pharm Res, 29 (2012), 2104-14. 

121 S. Havelund, A. Plum, U. Ribel, I. Jonassen, A. Volund, J. Markussen, and P. 
Kurtzhals, 'The Mechanism of Protraction of Insulin Detemir, a Long-Acting, 
Acylated Analog of Human Insulin', Pharm Res, 21 (2004), 1498-504. 

122 J. G. Menting, Y. Yang, S. J. Chan, N. B. Phillips, B. J. Smith, J. Whittaker, N. P. 
Wickramasinghe, L. J. Whittaker, V. Pandyarajan, Z. L. Wan, S. P. Yadav, J. M. 
Carroll, N. Strokes, C. T. Roberts, Jr., F. Ismail-Beigi, W. Milewski, D. F. 
Steiner, V. S. Chauhan, C. W. Ward, M. A. Weiss, and M. C. Lawrence, 
'Protective Hinge in Insulin Opens to Enable Its Receptor Engagement', Proc Natl 
Acad Sci U S A, 111 (2014), E3395-404. 

123 S. H. Nakagawa, and H. S. Tager, 'Role of the Phenylalanine B25 Side Chain in 
Directing Insulin Interaction with Its Receptor. Steric and Conformational 
Effects', J Biol Chem, 261 (1986), 7332-41. 

124 V. Pandyarajan, B. J. Smith, N. B. Phillips, L. Whittaker, G. P. Cox, N. 
Wickramasinghe, J. G. Menting, Z. L. Wan, J. Whittaker, F. Ismail-Beigi, M. C. 

 33 



Lawrence, and M. A. Weiss, 'Aromatic Anchor at an Invariant Hormone-Receptor 
Interface: Function of Insulin Residue B24 with Application to Protein Design', J 
Biol Chem, 289 (2014), 34709-27. 

125 E. Ciszak, J. M. Beals, B. H. Frank, J. C. Baker, N. D. Carter, and G. D. Smith, 
'Role of C-Terminal B-Chain Residues in Insulin Assembly: The Structure of 
Hexameric Lysb28prob29-Human Insulin', Structure, 3 (1995), 615-22. 

126 T. N. Vinther, M. Norrman, H. M. Strauss, K. Huus, M. Schlein, T. A. Pedersen, 
T. Kjeldsen, K. J. Jensen, and F. Hubalek, 'Novel Covalently Linked Insulin 
Dimer Engineered to Investigate the Function of Insulin Dimerization', PLoS One, 
7 (2012), e30882. 

127 V. Zoete, M. Meuwly, and M. Karplus, 'A Comparison of the Dynamic Behavior 
of Monomeric and Dimeric Insulin Shows Structural Rearrangements in the 
Active Monomer', J Mol Biol, 342 (2004), 913-29. 

128 A. Papaioannou, S. Kuyucak, and Z. Kuncic, 'Molecular Dynamics Simulations of 
Insulin: Elucidating the Conformational Changes That Enable Its Binding', PLoS 
One, 10 (2015), e0144058. 

129 Q. X. Hua, B. Xu, K. Huang, S. Q. Hu, S. Nakagawa, W. Jia, S. Wang, J. 
Whittaker, P. G. Katsoyannis, and M. A. Weiss, 'Enhancing the Activity of a 
Protein by Stereospecific Unfolding: Conformational Life Cycle of Insulin and Its 
Evolutionary Origins', J Biol Chem, 284 (2009), 14586-96. 

130 J. Brange, L. Andersen, E. D. Laursen, G. Meyn, and E. Rasmussen, 'Toward 
Understanding Insulin Fibrillation', J Pharm Sci, 86 (1997), 517-25. 

131 Y. Yang, A. Petkova, K. Huang, B. Xu, Q. X. Hua, I. J. Ye, Y. C. Chu, S. Q. Hu, 
N. B. Phillips, J. Whittaker, F. Ismail-Beigi, R. B. Mackin, P. G. Katsoyannis, R. 
Tycko, and M. A. Weiss, 'An Achilles' Heel in an Amyloidogenic Protein and Its 
Repair: Insulin Fibrillation and Therapeutic Design', J Biol Chem, 285 (2010), 
10806-21. 

132 L. Nielsen, S. Frokjaer, J. Brange, V. N. Uversky, and A. L. Fink, 'Probing the 
Mechanism of Insulin Fibril Formation with Insulin Mutants', Biochemistry, 40 
(2001), 8397-409. 

133 V. Pandyarajan, N. B. Phillips, N. Rege, M. C. Lawrence, J. Whittaker, and M. A. 
Weiss, 'Contribution of Tyrb26 to the Function and Stability of Insulin: Structure-
Activity Relationships at a Conserved Hormone-Receptor Interface', J Biol Chem, 
291 (2016), 12978-90. 

134 K. Krizkova, V. Veverka, L. Maletinska, R. Hexnerova, A. M. Brzozowski, J. 
Jiracek, and L. Zakova, 'Structural and Functional Study of the Glnb22-Insulin 
Mutant Responsible for Maturity-Onset Diabetes of the Young', PLoS One, 9 
(2014), e112883. 

135 N. C. Kaarsholm, K. Norris, R. J. Jorgensen, J. Mikkelsen, S. Ludvigsen, O. H. 
Olsen, A. R. Sorensen, and S. Havelund, 'Engineering Stability of the Insulin 
Monomer Fold with Application to Structure-Activity Relationships', 
Biochemistry, 32 (1993), 10773-8. 

136 N. B. Phillips, J. Whittaker, F. Ismail-Beigi, and M. A. Weiss, 'Insulin Fibrillation 
and Protein Design: Topological Resistance of Single-Chain Analogs to Thermal 
Degradation with Application to a Pump Reservoir', J Diabetes Sci Technol, 6 
(2012), 277-88. 

 34 



137 T. N. Vinther, M. Norrman, U. Ribel, K. Huus, M. Schlein, D. B. Steensgaard, T. 
A. Pedersen, I. Pettersson, S. Ludvigsen, T. Kjeldsen, K. J. Jensen, and F. 
Hubalek, 'Insulin Analog with Additional Disulfide Bond Has Increased Stability 
and Preserved Activity', Protein Sci, 22 (2013), 296-305. 

138 M. R. DeFelippis, R. E. Chance, and B. H. Frank, 'Insulin Self-Association and 
the Relationship to Pharmacokinetics and Pharmacodynamics', Crit Rev Ther 
Drug Carrier Syst, 18 (2001), 201-64. 

139 D. F. Berenson, A. R. Weiss, Z. L. Wan, and M. A. Weiss, 'Insulin Analogs for 
the Treatment of Diabetes Mellitus: Therapeutic Applications of Protein 
Engineering', Ann N Y Acad Sci, 1243 (2011), E40-e54. 

140 J. A. Johnson, Y. Y. Lu, J. A. Van Deventer, and D. A. Tirrell, 'Residue-Specific 
Incorporation of Non-Canonical Amino Acids into Proteins: Recent 
Developments and Applications', Curr Opin Chem Biol, 14 (2010), 774-80. 

141 L. Leisle, F. Valiyaveetil, R. A. Mehl, and C. A. Ahern, 'Incorporation of Non-
Canonical Amino Acids', Adv Exp Med Biol, 869 (2015), 119-51. 

142 V. E. Cox, and E. A. Gaucher, 'Molecular Evolution Directs Protein Translation 
Using Unnatural Amino Acids', Curr Protoc Chem Biol, 7 (2015), 223-8. 

143 J. W. Chin, 'Expanding and Reprogramming the Genetic Code of Cells and 
Animals', Annu Rev Biochem, 83 (2014), 379-408. 

144 C. C. Liu, and P. G. Schultz, 'Adding New Chemistries to the Genetic Code', 
Annu Rev Biochem, 79 (2010), 413-44. 

145 F. Truong, T. H. Yoo, T. J. Lampo, and D. A. Tirrell, 'Two-Strain, Cell-Selective 
Protein Labeling in Mixed Bacterial Cultures', J Am Chem Soc, 134 (2012), 8551-
6. 

146 W. Kim, A. George, M. Evans, and V. P. Conticello, 'Cotranslational 
Incorporation of a Structurally Diverse Series of Proline Analogues in an 
Escherichia Coli Expression System', Chembiochem, 5 (2004), 928-36. 

147 K. Madhusudan Makwana, and R. Mahalakshmi, 'Implications of Aromatic-
Aromatic Interactions: From Protein Structures to Peptide Models', Protein Sci, 
24 (2015), 1920-33. 

148 Robert W. Newberry, and Ronald T. Raines, '4-Fluoroprolines: Conformational 
Analysis and Effects on the Stability and Folding of Peptides and Proteins',  
(Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-25. 

149 C. M. Venkatachalam, and G. N. Ramachandran, 'Conformation of Polypeptide 
Chains', Annu Rev Biochem, 38 (1969), 45-82. 

150 R. W. Newberry, G. J. Bartlett, B. VanVeller, D. N. Woolfson, and R. T. Raines, 
'Signatures of N→Π* Interactions in Proteins', Protein Sci, 23 (2014), 284-8. 

151 R. Bhattacharyya, and P. Chakrabarti, 'Stereospecific Interactions of Proline 
Residues in Protein Structures and Complexes', J Mol Biol, 331 (2003), 925-40. 

152 N. J. Zondlo, 'Aromatic-Proline Interactions: Electronically Tunable Ch/Pi 
Interactions', Acc Chem Res, 46 (2013), 1039-49. 

153 A. K. Pandey, K. M. Thomas, C. R. Forbes, and N. J. Zondlo, 'Tunable Control of 
Polyproline Helix (Ppii) Structure Via Aromatic Electronic Effects: An Electronic 
Switch of Polyproline Helix', Biochemistry, 53 (2014), 5307-14. 

154 A. K. Pandey, D. Naduthambi, K. M. Thomas, and N. J. Zondlo, 'Proline Editing: 
A General and Practical Approach to the Synthesis of Functionally and 

 35 



Structurally Diverse Peptides. Analysis of Steric Versus Stereoelectronic Effects 
of 4-Substituted Prolines on Conformation within Peptides', J Am Chem Soc, 135 
(2013), 4333-63. 

155 S. Donnini, G. Groenhof, R. K. Wierenga, and A. H. Juffer, 'The Planar 
Conformation of a Strained Proline Ring: A Qm/Mm Study', Proteins, 64 (2006), 
700-10. 

156 E. J. Milner-White, L. H. Bell, and P. H. Maccallum, 'Pyrrolidine Ring Puckering 
in Cis and Trans-Proline Residues in Proteins and Polypeptides. Different Puckers 
Are Favoured in Certain Situations', J Mol Biol, 228 (1992), 725-34. 

157 R. Improta, C. Benzi, and V. Barone, 'Understanding the Role of Stereoelectronic 
Effects in Determining Collagen Stability. 1. A Quantum Mechanical Study of 
Proline, Hydroxyproline, and Fluoroproline Dipeptide Analogues in Aqueous 
Solution', J Am Chem Soc, 123 (2001), 12568-77. 

158 M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. 
Raines, and J. L. Markley, 'Collagen Stability: Insights from Nmr Spectroscopic 
and Hybrid Density Functional Computational Investigations of the Effect of 
Electronegative Substituents on Prolyl Ring Conformations', J Am Chem Soc, 124 
(2002), 2497-505. 

159 B. K. Ho, E. A. Coutsias, C. Seok, and K. A. Dill, 'The Flexibility in the Proline 
Ring Couples to the Protein Backbone', Protein Sci, 14 (2005), 1011-8. 

160 A. Choudhary, D. Gandla, G. R. Krow, and R. T. Raines, 'Nature of Amide 
Carbonyl--Carbonyl Interactions in Proteins', J Am Chem Soc, 131 (2009), 7244-
6. 

 

 36 



 

 

CHAPTER II 

 

Hydroxylation of insulin at ProB28 accelerates 

hexamer dissociation and delays fibrillation 
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This chapter was adapted from a manuscript in submission at the Journal of the 

American Chemical Society. 

 

Abstract 

 

Daily injections of insulin provide lifesaving benefits to millions of diabetics. But 

currently available prandial insulins are suboptimal: The onset of action is delayed by 

slow dissociation of the insulin hexamer in the subcutaneous space, and insulin forms 

amyloid fibrils upon storage in solution. Here we show, through the use of non-canonical 

amino acid mutagenesis, that replacement of the proline residue at position 28 of the 

insulin B-chain (ProB28) by (4S)-hydroxyproline (Hzp) yields an active form of insulin 

that dissociates more rapidly, and fibrillates more slowly, than the wild-type protein. 

Crystal structures of dimeric and hexameric insulin preparations suggest that a hydrogen 

bond between the hydroxyl group of Hzp and a backbone amide carbonyl positioned 

across the dimer interface may be responsible for the altered behavior. The effects of 

hydroxylation are stereospecific; replacement of ProB28 by (4R)-hydroxyproline (Hyp) 

causes little change in the rates of fibrillation and hexamer disassociation. These results 

demonstrate a new approach that fuses the concepts of medicinal chemistry and protein 

design, and paves the way to further engineering of insulin and other therapeutic proteins. 

 

Introduction 

 

Blood glucose levels are tightly controlled in mammals through a sensitive 

regulatory system mediated by insulin, a 51-amino acid endocrine hormone composed of 

two disulfide-linked polypeptide chains (designated A and B). Upon binding to its 

receptor, insulin initiates a signaling cascade that accelerates glucose uptake and 

glycogen production. In diabetic patients, this system malfunctions, and glucose levels 

must be controlled through subcutaneous injections of insulin1. The C-terminus of the B-

chain is important in mediating dimerization of the hormone2,3, and the flexibility of the 
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B-chain C-terminus is believed to contribute to aggregation through formation of amyloid 

fibrils4-6. Pharmaceutical formulations of insulin are stabilized with respect to fibrillation 

by addition of zinc and phenolic preservatives, which drive assembly of the R6 hexamer 

(Figure  2.1a)7-9.  The R6 form of insulin is inactive and dissociates slowly to its active 

monomeric form after subcutaneous injection; the lag time for dissociation delays the 

onset of action10. Mutation of ProB28 yields rapid-acting insulins (RAIs) by disrupting 

contacts that are critical for dimer formation8, but replacement of Pro through 

conventional mutagenesis also increases the flexibility and perturbs the trajectory of the 

protein backbone (Figure 2.1b). We sought a means to disrupt the dimer interface without 

releasing the conformational constraints characteristic of proline by using non-canonical 

amino acid (ncAA) mutagenesis11-13. Specifically, we introduced hydroxyl groups at the 

4-position of ProB28 (Figure 2.1 b,c) by replacing Pro with Hzp or Hyp. In addition to 

introducing a polar functional group and the capacity for hydrogen-bonding, 

hydroxylation at the 4-position is known to alter the endo/exo preference of the 

pyrrolidine ring and the cis/trans equilibrium of the amide backbone14. 

 

Materials and methods 

 

Materials.  All canonical amino acids and (4R)-hydroxy-L-proline (Hyp) were 

purchased from Sigma.  (4S)-hydroxy-L-proline (Hzp) was purchased from Bachem 

Americas.  All solutions and buffers were made using double-distilled water (ddH2O). 

 

Strains and plasmids.  The proinsulin (PI) gene with an N-terminal hexa-

histidine tag (6xHIS), and flanked by EcoR1 and BamH1 cut sites was ordered as a 

gBlock (Integrated DNA Technologies).  Both the gBlock and vector pQE80L for IPTG-

inducible expression were digested with EcoRI and BamHI.  Linearized vector pQE80L 

was dephosphorylated by alkaline phosphatase (NEB).  Ligation of the digested PI gene 

and linearized vector yielded plasmid pQE80PI (to produce ProI). To make plasmid 

pQE80PI-proS (to produce HzpI and HypI): Genomic DNA was extracted from E. coli 

strain DH10β using DNeasy Blood and Tissue Kit (Qiagen).  Primers (Integrated DNA 

Technologies) were designed to amplify the E. coli proS gene, encoding prolyl-tRNA 
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synthetase, under constitutive control of its endogenous promoter, from purified genomic 

DNA, and to append NheI and NcoI sites.  The digested proS gene was then inserted into 

pQE80PI between transcription termination sites by ligation at NheI and NcoI restriction 

sites. Proline-auxotrophic E. coli strain CAG18515 was obtained from the Coli Genetic 

Stock Center at Yale University.  Prototrophic E. coli strain BL-21 was used for rich 

media expression of canonical insulins (ProI, AspI). Site-directed mutagenesis of 

pQE80PI at B28 was performed to make plasmid pQE80PI-asp, which differs from 

pQE80PI by three nucleotides that specify a single amino acid mutation to aspartic acid. 

All genes and plasmids were confirmed by DNA sequencing.   

Protein expression. Plasmids pQE80PI and pQE80PI-asp were transformed into 

BL21 cells and grown on ampicillin-selective agar plates.  A single colony was used to 

inoculate 5 mL of Luria-Bertani (LB) medium and grown overnight; the resulting 

saturated culture was used to inoculate another 1 L of LB medium.  All expression 

experiments were conducted at 37°C, 200 RPM in shake flasks (Fernbach 2.8 L flasks, 

Pyrex®). Each culture was induced with 1 mM IPTG at mid-exponential phase (OD600 

~0.8).  For incorporation of Hyp and Hzp, pQE80PI-proS was transformed into 

CAG18515 cells, which were grown on ampicillin-selective agar plates. To facilitate 

growth, a single colony was used to inoculate 25 mL of LB medium and the culture was 

grown overnight prior to dilution into 1 L of 1X M9, 20 amino acids (8.5 mM NaCl, 18.7 

mM NH4Cl, 22 mM KH2PO4, 47.8 mM Na2HPO4, 0.1 mM CaCl2, 1 mM MgSO4, 3 

mg/L FeSO4, 1 μg/L of trace metals (Cu2+, Mn2+, Zn2+, MoO4
2-), 35 mg/L thiamine 

hydrochloride, 10 mg/L biotin, 20 mM D-glucose, 200 mg/L ampicillin with 50 mg/L of 

L-amino acids, each).  At an appropriate cell density (OD600 ~0.8), the culture was 

subjected to a medium shift; briefly, cells were centrifuged and washed with saline prior 

to resuspension into 0.8 L of 1.25X M9, 19 aa (M9, 20 aa medium without L-proline).  

After cells were further incubated for 30 min to deplete intracellular proline, 200 mL of 

5X additives (1.5 M NaCl, 2.5 mM Hyp or Hzp) was added to the culture.  After another 

15 min of incubation at 37°C to allow amino acid uptake prior to induction, IPTG was 

added to a final concentration of 1 mM.  At the end of 2 h, cells were harvested by 

centrifugation and stored at -80°C until further use.  
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Cell lysis and refolding from inclusion bodies.  Cells were thawed on the 

benchtop for 15 min prior to resuspension in lysis buffer (B-PER®, 0.5 mg/mL 

lysozyme, 50 U/mL benzonase nuclease).  Cells were gently agitated at RT for 1 h prior 

to centrifugation (10 000 g, 10 min, RT); supernatant was discarded and the pellet was 

washed thrice: once with wash buffer (2 M urea, 20 mM Tris, 1% Triton X-100, pH 8.0) 

and twice with sterile ddH2O; centrifugation followed each wash and the supernatant was 

discarded.  The final washed pellet containing inclusion bodies (IBs, ~50% PI) was re-

suspended in Ni-NTA binding buffer (8 M urea, 300 mM NaCl, 50 mM NaH2PO4, pH 

8.0) overnight at 4°C or at RT for 2 h, both with gentle agitation.  The suspension was 

centrifuged to remove insoluble debris; the remaining pellet was discarded and the 

supernatant was mixed with pre-equilibrated Ni-NTA resin (Qiagen) at RT for 1 h in 

order to purify PI from the IB fraction.  Unbound proteins in the IB fraction were 

collected in the flow-through (FT), and the resin was washed with Ni-NTA wash buffer 

(8 M urea, 20 mM Tris base, 5 mM imidazole, pH 8.0) and Ni-NTA rinse buffer (8 M 

urea, 20 mM Tris base, pH 8.0) prior to stripping PI from the resin with Ni-NTA elution 

buffer (8 M urea, 20 mM Tris base, pH 3.0).  Fractions (IBs, FT, W, elution) were 

collected and run under reducing conditions on SDS-PAGE (Bis/Tris gels, Novex®); 

elution fractions containing PI were pooled and solution pH was adjusted to 9.6 with 6 N 

NaOH in preparation for oxidative sulfitolysis. Oxidative sulfitolysis was performed at 

RT for 4 h, with the addition of sodium sulfite and sodium tetrathionate (0.2 M Na2SO3, 

0.02 M Na2S4O6); the reaction was quenched by 10-fold dilution with ddH2O.  To 

isolate PI from the quenched solution, the pH was adjusted to between 3.5 and 4.5 by 

adding 6 N HCl dropwise; the solution became cloudy.  The solution was centrifuged (10 

000 g, 10 min, RT) and supernatant discarded.  The PI pellet was then re-suspended in 

refolding buffer (0.3 M urea, 50 mM glycine, pH 10.6) and protein concentration was 

estimated by the bicinchoninic acid assay (BCA assay, Pierce®).  The concentration of PI 

was adjusted to 0.5 mg/mL.  Refolding was initiated by addition of β-mercaptoethanol to 

a final concentration of 0.5 mM and allowed to proceed at 12°C overnight with gentle 

agitation (New Brunswick® shaker, 100 RPM).  Post-refolding, soluble PI was harvested 

by adjusting the pH of the solution to 4-5 by dropwise addition of 6 N HCl and by high 

speed centrifugation to remove insoluble proteins.  The supernatant was adjusted to pH 8-
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8.5 by dropwise addition of 6 N NaOH and dialyzed against fresh PI dialysis buffer (7.5 

mM sodium phosphate buffer, pH 8.0) at 4°C with five buffer changes to remove urea. 

The retentate (PI in dialysis buffer) was then lyophilized and subsequently stored at -

80°C until further processing.  Typical yields were 25-50 mg PI per L of culture (25-30 

mg/L for non-canonical PI, 40-50 mg/L for canonical PI expression in rich media) 

Proteolysis and chromatographic (HPLC) purification. The dry PI powder was 

re-dissolved in water to a final concentration of 5 mg/mL PI (final concentration of 

sodium phosphate buffer is 100 mM, pH 8.0). Trypsin (Sigma-Aldrich) and 

carboxypeptidase-B (Worthington Biochemical) were added to final concentrations of 20 

U/mL and 10 U/mL, respectively to initiate proteolytic cleavage. The PI/protease solution 

was incubated at 37°C for 2.5 h; proteolysis was quenched by addition of 0.1% 

trifluoroacetic acid (TFA) and dilute HCl to adjust the pH to 4. Matured insulin was 

purified by reversed phase high-performance liquid chromatography (HPLC) on a C18 

column using a gradient mobile phase of 0.1% TFA in water (solvent, A) and 0.1% TFA 

in acetonitrile (ACN; solvent, B). Elution was carried from 0% B to 39% B with a 

gradient of 0.25% B per minute during peak elution. Fractions were collected and 

lyophilized, and the dry powder was re-suspended into 10 mM sodium phosphate, pH 

8.0. Insulin-containing fractions were verified by matrix-assisted laser 

desorption/ionization-mass spectrometry (MALDI-MS; Voyager MALDI-TOF, Applied 

Biosystems) and SDS-PAGE to ensure identify and purity. Typical yields were 5-10 mg 

insulin per 100 mg PI. Fractions were stored at -80°C in 10 mM phosphate buffer, pH 8.0 

until further use. 

Verification of Hyp and Hzp incorporation levels and maturation.  A 30 μL 

aliquot of PI solution (8 M urea, 20 mM Tris, pH 8) was subjected to cysteine reduction 

and alkylation (5 mM DTT, 55°C, 20 min; 15 mM iodoacetamide, RT, 15 min, dark) 

prior to 10-fold dilution into 100 mM NH4HCO3, pH 8.0 (100 μL final volume).  Peptide 

digestion was initiated with 0.6 μL of gluC stock solution (reconstituted at 0.5 μg/μL with 

ddH2O, Promega) at 37°C for 2.5 h.  The reaction was quenched by adding 10 μL of 5% 

TFA and immediately subjected to C18 ZipTip (Millipore) peptide purification and 

desalting according to the manufacturer’s protocol.  Peptides were eluted in 50% ACN, 

0.1% TFA; the eluent was then diluted three-fold into matrix solution (saturated α-
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cyanohydroxycinnamic acid in 50% ACN, 0.1% TFA) and analyzed by mass 

spectrometry (Voyager MALDI-TOF, Applied Biosystems).  Hyp and Hzp incorporation 

levels were analyzed prior to and after refolding; incorporation percentage was calculated 

by comparing total AUC (area under the curve, arbitrary units) of the non-canonical peak 

(1573 Da for the proinsulin peptide containing B28Hzp or B28Hyp, ~5824 Da for intact 

HzpI and HypI) with total AUC of its wild-type counterpart (1557 Da and 5808 Da, 

respectively). Maturation of HypI and HzpI was analyzed after HPLC purification. TFA 

(1.6 μL, 5%) was added to 15 μL mature insulin solution (10 mM phosphate buffer pH 

8.0) and subjected to C18 ZipTip (Millipore) peptide purification and desalting according 

to the manufacturer’s protocol. MALDI-MS conditions described above were used to 

confirm insulin maturation.   

Insulin receptor (IR) phosphorylation immunoblot. In vitro analysis of insulin 

receptor (IR) phosphorylation was performed using HEK293 cells according to a 

previous report15.  Briefly, HEK293 cells were maintained in a 37°C, 5% CO2 humidified 

incubator chamber using Dulbecco’s modified Eagle’s medium with 4.5 g/L glucose, 2 

mM L-glutamine and phenol red (DMEM, Life Technologies) supplemented with 10% 

fetal bovine serum (FBS, Life Technologies), 5% penicillin/streptomycin (P/S, Life 

Technologies).  Every 3 days, at approximately 80% confluency, cells were subcultured 

and seeded in a 6-well plate at a cell density of 8x103 cells / cm2 (or 8x104 cells per well) 

for 24 h prior to insulin addition.  Insulins or vehicle were added directly to the medium 

at 200 nM (10 μL of a 50 μM solution in vehicle PBS) and incubated for 10 min prior to 

PBS washes to remove excess medium.  HEK293 cells were lysed on-plate using IP 

Lysis Buffer (ThermoFisher, Pierce) with 50 U/mL benzonase nuclease (Sigma-Aldrich) 

for 20 min at 4°C; lysates were precipitated using ice cold acetone and re-suspended in 8 

M urea, 20 mM Tris, pH 10.0. The protein concentration in the lysate was quantified by 

the BCA assay (ThermoFisher, Pierce) according to the manufacturer’s protocol and 

normalized for even protein loading across lanes. Lysates were separated by SDS-PAGE 

(4-12% Novex Bis/Tris SDS-PAGE gels, Life Technologies) in duplicate and transferred 

to a nitrocellulose membrane (Hybond ECL, GE Healthcare) using a wet transfer system.  

The membrane was blocked at RT in 5% nonfat milk in Tris-buffer saline with 0.1% 

Tween 20 (TBS/Tween) and washed with TBS/Tween prior to blotting with antibodies. 
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Primary antibodies for insulin receptor, phosphorylated insulin receptor (from Cell 

Signaling Technologies) and β-actin (as loading control, from Invitrogen) were added at 

1:1000 dilution in TBS/Tween with gentle agitation either at RT for 4 h or overnight at 

4°C. Blots were washed and secondary antibodies (Invitrogen) were added at 1:2000 

dilution in TBS/Tween.  Blots were washed again prior to fluorescence imaging on a 

Typhoon Trio (GE Healthcare). 

Reduction of blood glucose in diabetic animals. NODscid (NOD.CB17-

Prkdcscid/J) mice were obtained from Jax Mice (Bar Harbor, Maine). Mice were 

maintained under specific pathogen-free conditions, and experiments were conducted 

according to procedures approved by the Institutional Animal Care and Use Committee at 

the City of Hope. Adult (8-12 week old) male NODscid mice were injected 

intraperitoneally (50 mg/kg/day for 3 consecutive days) with freshly prepared 

streptozotocin (STZ) in 0.05 M citrate buffer, pH 4.5 to induce diabetes. Diabetes was 

confirmed 3 weeks after the last dose of STZ by detection of high glucose levels (defined 

as >200 mg/dL), measured by using a glucomonitor (FreeStyle; Abbott Diabetes Care, 

Alameda, CA) in blood (10 μL) sampled from the lateral tail vein. Insulin analogs 

concentrations were determined from A280 measurements using a molar extinction 

coefficient of 6080 M-1 cm-1 and diluted to 100 µg/mL into a formulation buffer 

according to a previous report 16. Insulin analogs in solution were injected 

subcutaneously at the scruff and blood glucose was measured at the indicated time points. 

 

Hexamer dissociation assay. Insulins were quantified by both UV absorbance 

(NanoDrop Lite, ThermoFisher) and BCA assay, and normalized to 125 μM insulin prior 

to dialysis against 50 mM Tris/perchlorate, 25 μM zinc sulfate, pH 8.0 overnight at 4°C 

using a D-tube dialyzer (Millipore Corp.) with MWCO of 3.5 kDa.  Aliquots of dialyzed 

insulin solution were mixed with phenol to yield samples of the following composition: 

100 μM insulin, 20 μM zinc sulfate, 100 mM phenol. Dissociation was initiated by 

addition of terpyridine (Sigma-Aldrich) to a final concentration of 0.3 mM from a 0.75 

mM stock solution. A Varioskan multimode plate reader (Thermo Scientific) was used to 

monitor absorbance at 334 nm. Kinetic runs were done at least in triplicate, and the data 
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were fit to a mono-exponential function using Origin software.  Post assay insulin 

samples were pooled and sample quality was determined by SDS-PAGE. 

Fibrillation assay.  Insulin samples (60 μM in 10 mM phosphate, pH 8.0) were 

centrifuged at 22 000 g for 1 h immediately after addition of thioflavin T (ThT) (EMD 

Millipore) to a final concentration of 1 μM.  Samples were continuously shaken at 960 

rpm on a Varioskan multimode plate reader at 37°C, and fluorescence readings were 

recorded every 15 min for 48 h (excitation 444 nm, emission 485 nm).  Assays were run 

in quadruplicate, in volumes of 200 μL in sealed (Perkin-Elmer), black, clear-bottom 96 

well plates (Grenier BioOne). 

Circular dichroism. Spectra were collected in a 1 cm quartz cuvette at an insulin 

concentration of 60 μM in 50 mM sodium phosphate buffer pH 8.0. Data were collected 

from 185 nm to 250 nm, with step size of 0.25 nm and averaging time of 1 s on a Model 

410 Aviv Circular Dichroism Spectrophotometer; spectra were averaged over 3 repeat 

scans. A reference buffer spectrum was subtracted from the sample spectra for 

conversion to mean residue ellipticity.  

Analytical ultracentrifugation. Sedimentation velocity (SV) and sedimentation 

equilibrium (SE) experiments were carried out on an XL-1 AUC (BeckmanCoulter). SV 

experiments were conducted with insulin samples dialyzed against 50 mM Tris, 0.1 mM 

EDTA, pH 8.0, which also served as the reference buffer. Two sector cells with sapphire 

windows were filled with sample and reference buffer. These cells were centrifuged at 

50,000 rpm with absorbance data collected at 280 nm, or for concentrations above 1 

mg/mL, 281 nm or 287 nm. SV data were analyzed in SEDFIT with the c(s) algorithm for 

a continuous distribution17. Buffer density and viscosity were calculated from 

SEDNTERP; the partial specific insulin volume used was 0.73518. SE experiments were 

conducted with insulin samples dialyzed against 50 mM Tris, 0.1 mM EDTA, pH 8.0, 

which also served as the reference buffer. Two sector cells with sapphire windows were 

filled with sample and reference buffer and centrifuged at 15,000, 24,000, 36,000 and 

50,000 rpm with absorbance data collected at 280 nm. Equilibrium was ascertained by 

analysis in SEDFIT and non-equilibrated scan speeds were excluded from data analysis. 

SE and SV data from multiple concentrations were fitted to a monomer-dimer-hexamer 

reversible self-association model in SEDPHAT with best model chosen by inspection of 
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residuals as well as critical χ value deviation19. Radial dependent baselines were 

computationally determined using TI noise. Figures were generated using GUSSI20. 

Crystallographic studies. Insulin crystals were obtained from sitting drop trays 

set using a Mosquito robot (TTP Labtech). Drops were set by mixing 0.4 μL insulin 

solution with 0.4 μL well solution. Well solution conditions were as follows: 462.5 mM 

sodium citrate, 100 mM HEPES, pH 8.25 for 5HQI; 300 mM Tris, 0.5 mM zinc acetate, 

8.5% acetone, 0.5 M sodium citrate pH 8.0 for 5HPR; 300 mM Tris, 17 mM zinc acetate, 

1% phenol, 7.5% acetone, 2.675 M sodium citrate pH 8.0 for 5HRQ; 300 mM Tris, 17 

mM zinc acetate, 1% phenol, 7.5% acetone, 1.95 M sodium citrate pH 8.0 for 5HPU. 

Cells were cryoprotected in a mother liquor containing 30% glycerol prior to looping and 

flash freezing in liquid nitrogen. Data were collected at SSRL beamline BL12-2 using a 

DECTRIS PILATUS 6M pixel detector. Initial indexing and scaling was performed with 

XDS; for some structures, data were re-scaled in alternative space groups using 

Aimless21. Initial phases were generated by molecular replacement in PHASER with 

3T2A (5HQI and 5HPR) or 1EV3 (5HRQ and 5HPU)22. Structure refinement was carried 

out in Coot and Refmac523,24. Data were deposited in the PDB with the following codes: 

5HQI (T2-HzpI), 5HPR (T2-HypI), 5HRQ (R6-HzpI), 5HPU (R6-HypI).  

Results and discussion 

We expressed modified proinsulins (PIs) in the proline-auxotrophic E. coli strain 

CAG18515 in M9 minimal media supplemented with Hyp or Hzp. The extent of 

replacement of Pro by either Hyp or Hzp was approximately 90% 25,26 as determined by 

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS; figure S2.1). 

Denatured PIs were purified by Ni-NTA affinity chromatography in yields of 32 mg/L for 

Hzp-PI and 29 mg/L for Hyp-PI (table S1) from the inclusion body fraction. The PIs were 

refolded and cleaved with trypsin and carboxypeptidase B27.  The resulting mature 

insulins were purified by reversed phase HPLC 26,27, and proper proteolytic processing of 

each variant was verified by MALDI-MS (table S2.1). Wild-type insulin (ProI) and RAI 

Aspart (AspI, in which ProB28 is replaced by aspartic acid) were produced similarly. All 

of the variants caused similar reductions in blood glucose upon subcutaneous injection 

into diabetic mice (Figure 2.1d) 2,28-30.  RAIs cannot be distinguished from ProI in rodent 

models31. 
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In the absence of Zn2+ and phenolic preservatives, insulins dimerize with a 

dissociation constant (KD) of approximately 10 µM.  In contrast, KD for RAIs is typically 

>500 µM, and it is believed that destabilization of the dimer interface causes the 

accelerated onset of insulin action after subcutaneous injection28,32,33. Monomeric forms 

of insulin give rise to characteristic circular dichroism (CD) spectra with distinct minima 

at 208 and 222 nm (e.g., AspI; Figure 2.2a). Dimerization causes a loss of  negative 

ellipticity at 208 nm (e.g., ProI; Figure 2.2a). At a concentration of 60 µM, HypI appears 

to be monomeric (with a CD spectrum nearly identical to that of AspI; Figure 2.2a) while 

the spectrum of HzpI suggests a dimeric insulin (Figure 2.2a). Sedimentation velocity 

(SV) and sedimentation equilibrium (SE) experiments were consistent with the results of 

the CD analysis (figure S2.3). SE data were fitted to a model of monomer-dimer-hexamer 

self-association (SEDPHAT) 34,35, and yielded monomer-dimer dissociation constants 

(KD) of >200 µM and 25 µM for HypI and HzpI, respectively. 

Previous studies of RAIs have shown that destabilization of the dimer interface 

correlates with accelerated dissociation of the hexamer and rapid onset of insulin 

action8,13.  Triggered dissociation of Zn2+-hexamers by addition of terpyridine36 revealed 

nearly identical rates of dissociation for HypI and ProI, (𝜏𝜏 1/2 = 87.0 ± 10 s and 90.4 ± 4.2 

s, respectively; Figure 2.2b S2.4) while HzpI exhibited kinetics similar to those of AspI 

(𝜏𝜏 1/2 = 53.6 ± 3.7 s and 42.7 ± 3.0 s, respectively; Figure 2.2b and S2.4).  We found these 

results surprising – replacement of Pro by Hyp destabilizes the dimer but has essentially 

no effect on hexamer dissociation, while introduction of Hzp causes little change in dimer 

stability but a substantial increase in the rate of hexamer disassembly. 

Each of the insulin variants was subjected to fibrillation lag time analysis (Figure 

2.2c)37. We found similar times to onset of fibrillation for HypI, ProI and AspI; in 

contrast, HzpI is markedly more resistant to aggregation, with a mean time to onset more 

than three-fold longer than that observed for ProI. The behavior of HzpI is especially 

striking, in that it combines fast hexamer dissociation with enhanced stability toward 

fibrillation. 

Each subunit in the insulin hexamer adopts one of two conformational states (T or 

R), depending on the concentration of phenolic ligand (Figure 2.1a) 13. Pharmaceutical 

formulations are prepared in the more stable R6 form, whereas the T-state is observed in 
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the absence of phenolic ligands, most commonly in the form of T2-dimers38. To elucidate 

the molecular origins of the dissociation and fibrillation behavior of HypI and HzpI, we 

examined crystal structures of both states. 

Hydroxylation at ProB28 does not cause substantial perturbation of the overall 

insulin structure (Figure 2.3 and S2.5).  In comparison with ProI, the backbone RMSD 

values of HypI and HzpI are 0.31 Å (T2- HypI), 0.44 Å (T2- HypI), 0.35 Å (R6- HypI) 

and 0.68 Å (R6- HypI)39. The ring puckers for HzpI are endo in both the T2 and R6 forms 

(Table S2.3). For HypI, surprisingly, the T2 form adopts an endo pucker while the R6 

form adopts a close to planar pucker (Table S2.3). Hyp in free solution has preference for 

an exo pucker but the local structural environment dissuades the Hyp from adopting this 

conformer in HypI. The most notable feature of the HzpI structures is the proximity of 

the hydroxyl group of Hzp to the backbone carbonyl oxygen atom of GluB21′, which lies 

across the dimer interface (denoted by prime; figure 2.3 b,e). The inter-oxygen distances 

(2.8 Å in the T2 structure, 2.7 Å in R6), are consistent with the formation of strong 

hydrogen bonds between the hydroxyl group of HzpB28 and the backbone carbonyl of 

GluB21′ in both structures. An analogous hydrogen bond has been observed in a structure 

(PDB ID: 1ZEH) of R6-AspI co-crystallized with m-cresol40; here the phenolic ligand 

serves as the hydrogen-bond donor (figure S2.6). Although the significance of this 

hydrogen bond has not been discussed in the literature, we suggest that it may play an 

important role in determining the relative stabilities of the insulin species involved in 

dissociation and fibrillation.  In contrast to the (4S)-hydroxyl group of Hzp, the (4R)-

hydroxyl of HypB28 does not contact any crystallographically resolved hydrogen bond 

acceptor in the T2-structure (figure 2.3c), and appears to bond to an ordered water 

molecule in the R6-hexamer (figure 2.3f). The absence of new hydrogen-bonding 

interactions is consistent with the unaltered dissociation and fibrillation kinetics of HypI.  

Conclusion 

Taken together, the results of CD, sedimentation and crystallographic analyses 

show that replacement of Pro by Hzp at position 28 of the insulin B-chain introduces a 

new hydrogen bond across the inter-subunit interface, accelerates hexamer dissociation 

and delays the onset of fibrillation (Table 2.1). We suggest that the hydrogen bond 

between Hzp and Glu21′ may stabilize the dimer relative to the hexamer, or perhaps 
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reduce the energy of the transition state for the conformational change from the R-state to 

T-state, and thereby speed disassembly. In addition, we propose that this hydrogen bond 

may prevent the C-terminus of the B chain from fraying and initiating fibril formation. 

Whether or not these hypotheses are correct, the results described here demonstrate the 

power of ncAA mutagenesis to control functionally relevant biophysical properties of 

therapeutic proteins. We anticipate that this approach will find increasing application in 

the design of antibody-drug conjugates, bispecific antibodies, and other novel protein 

therapeutics.  

The work described in this chapter was completed by multiple individuals. 

Katharine Fang completed the fibrillation, kinetics and immunoblot experiments as well 

as jointly expressed and purified the insulins described here. Mouse injection assays were 

conducted by Teressa Ku, Jeanne LeBon and Jeffery Rawson.   

I would also like to thank J. T. Kaiser, P. Nikolovski, S. Russi, S. Virgil, M. 

Shahgholi, A. Lakshmanan and the scientific staff of Beamline 12-2 at the Stanford 

Synchrotron Radiation Laboratory for assistance. 
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Figure 2.1 | Hydroxyinsulins retain activity 

A) Schematic of hexamer disassembly (adapted from mechanism previously described 8). 

Phenolic ligand (Ph), zinc ion (Zn2+), insulin monomer (triangle). Darker shading 

indicates the R-state of the hexamer.  

B) Structures of the B-chain C-termini of wild-type insulin (ProI) and RAI Aspart (AspI).  

C) Chemical structures of L-proline (1), (2S,4S)-hydroxyproline (Hzp; 2), (2S,4R)-

hydroxyproline (Hyp; 3) 

D) Reduction of blood glucose following subcutaneous injection of 35 μg/kg insulins into 

streptozotocin-induced diabetic mice. Glucose levels were measured post-injection via 

tail vein sampling. ProI, AspI, HzpI, HypI or vector were formulated as described 20. 

Error bars denote one standard deviation (n = 3). 
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Figure 2.2 | Hydroxylation at ProB28 modulates insulin dimerization, dissociation 
kinetics, and stability.  

 

A) Far UV CD spectra collected on 60 μM insulins in 10 mM phosphate buffer, pH 8.0 at 
25°C.  

B) Insulin hexamer dissociation following sequestration of Zn2+ by terpyridine.  Zn2+-
(terpy) signal was monitored at 334 nm and fitted to a mono-exponential decay. HzpI and 
HypI contain 10% ProI. The curves for HypI and ProI are indistinguishable in this plot.  

C) Representative fibrillation curves for 60 µM insulins (37°C, 960 RPM; n=4). Insulin 
fibrils were detected by the rise in Thioflavin T (ThT) fluorescence that accompanies 
binding to fibrillar aggregates. 
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Figure 2.3 | Crystal structures of HzpI and HypI.  

In tan (left), wt insulins from PDB (3T2A, 1ZNJ) highlighting the distance between the 
carbon atom at the 4th position of ProB28 and its closest neighbors, backbone carbonyl 

oxygen atoms of GlyB20’ and GluB21 in the T2 dimer (A) and R6 hexamer (D) forms.  In 
grey (middle), HzpI in the T2 dimer (B) and R6 hexamer (E) forms. In blue (right), HypI 

in the T2 dimer (D) and R6 hexamer (G) forms. 
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Table 2.1 | Biophysical Characteristics of Insulin Variants 
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Figure S2.1 | Insulin expression and incorporation of hydroxyprolines.  

A, B) SDS-PAGE of cell lysates with lanes labeled for pre-induction (PRE) and post-induction 
in minimal media supplemented with either nothing (19aa), Hyp (A), Hzp (B), or Pro at 
0.5 mM.  

C-E)  MALDI-MS traces of isolated proinsulin peptide fragment 46RGFFYTPKTRRE57 obtained 
by gluC digestion. Peptide fragment masses correspond to either wild type mass (1558 
Da) (C) or shifted mass (1574 Da) if Hyp (D) or Hzp (E) is incorporated. Inset is whole 
protein MALDI-MS. All MALDI-MS spectra contain ion counts >103. 
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Figure S2.2 | Immunoblot detection of insulin receptor activation.  

 HEK293 cells treated with insulin (200 nM in PBS, pH 7.4) or vehicle. Whole cell lysates 
were then run on an SDS-PAGE gel and transferred to nitrocellulose membrane to detect 
insulin receptor (IR) and IR phosphorylation. β-actin immunoblot shown as loading 
control.  Lane 1: Vehicle (PBS); Lane 2: 10% ProI serving as a second negative control 
due to presence of 10% wt in HzpI and HypI preparations; Lane 3: HzpI; Lane 4: HypI; 
Lane 5: ProI 
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Figure S2.3 | Example fits from sedimentation analysis.  

 

Insulin samples in 50 mM Tris pH 8.0.  

A) c(s) curves overlaid for ProI, AspI, HzpI and HypI at 60 μM.  

B, C) c(s) curves for HzpI (B) and HypI (C) at indicated concentrations.   

D-F) Example fits for 60 μM ProI (D), 34 μM HzpI (E), and 60 μM HypI (F), overlaid on top of 
noise corrected velocity (D, F) or equilibrium data (E). The SEDPHAT monomer-dimer-
hexamer model was utilized over a range of velocity and equilibrium experiments. Global 
multi-method analysis residuals for the dataset are displayed below each plot.  
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Figure S2.4 | Example fits for analysis of dissociation kinetics.  

A) Representative dissociation kinetic traces for Zn2+ sequestration. Raw data shown and used to 
fit to a mono-exponential using Origin Software (y-y0 = Ae(-t/τ)), where fitted value τ is 
the characteristic dissociation time constant.  

B, C) Fitted mono-exponential decay traces for dissociation kinetics, corresponding to (A) 
shown in (B). Fitted values for y0, A used to convert raw data (A) to mono-exponential 
decay representation shown in (C).  

D) Overlay of (B) and (C) show fitted and raw data to demonstrate quality of fits.  *Denotes 
fitted curves  
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Figure S2.5 | Alignment at position B28.  

A, D) Alignment of T2 ProI (tan, PDB:3T2A), and T2-HzpI (grey) or T2-HypI (blue) centered on 
position B28.  

B, E) Alignment of R6-ProI (tan) and R6-HzpI (grey) or R6-HypI (blue) highlighting the overlap 
of the backbone at the C-terminus.  B29 not shown in (E) due to lack of electron density.  

C, F) Alignment of R6 insulins (ProI, and HzpI or HypI), and AspI (orange, PDB: 1ZEG) 
centered on position B28 illustrates the similarity of the polypeptide backbones of ProI, 
HzpI and HypI, and the distinct backbone trajectory of AspI. B29 (C, F) and B30 (A-F) 
amino acids not shown for clarify. Arrows denote the N-to-C terminal direction of the 
backbone originating from carbonyl carbon. 
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Figure S2.6 | Alignment of R6-AspI and T2-HzpI at position B28.  

A) R6-AspI (dark orange; PDB: 1ZEH) does not maintain the backbone trajectory of ProI at 
position B28. The C-terminus of the AspI B-chain is shifted, and a m-cresol ligand (light 
orange) fills the site occupied by B28Pro in ProI. The hydroxyl group of m-cresol forms 
hydrogen bonds with the backbone carbonyl of Glu21′ and a nearby water molecule.  

B) The same representation of R6-AspI overlaid with R6-HzpI (dark grey). Interatomic distances 
were determined using Chimera. Amino acid B30 is not shown. 
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Table S2.1 | Expression Yields and Incorporation Levels of Hydroxyinsulins. 

 1Quantified by MALDI-MS from shake flask expressions (n≥4) using proinsulin peptide 

(46RGFFYTPKTRRE57) obtained by gluC digestion. 2Yield quantified by BCA assay post-

refolding at the proinsulin level 

  

B28 Amino Acid Incorporation
1
 Yield

2
 

L-proline (Pro) -- 50 mg/L 

(2S,4S)-4-hydroxy-L-proline 
(Hzp) 91.3 ± 1.8 % 32 mg/L 

(2S,4R)-4-hydroxy-L-proline 
(Hyp) 88.2 ± 1.2 % 29 mg/L 
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Table S2.2. | Data Tables and Refinement Values. 
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Table S2.3 | RMSD and proline angles  
A) HypI and HzpI T2 insulins were aligned against T2 ProI (PDB:3T2A) and R6 insulins were 
aligned against R6-ProI (PDB: 1EV6) RMSD was calculated over backbone atoms.  
  
B) Ring conformation was determined on the basis of the Chi1 angles. Where more than one B28 
residue is present in the asymmetric unit the predominant conformation is listed. The fraction in 
parentheses denotes the number of B28 residues in one asymmetric unit with the predominant 
conformation.  
 
C) Chi 1 and Phi angles are reported as an average over all B28 residues present in the asymmetric 
unit for each crystal structure. For T2 insulins only a single B28 is averaged as there is only a single 
insulin monomer in the asymmetric unit, for R6 insulins the average value is calculated over 
multiple prolines as there are 2 (HypI) or 6 (HzpI) prolines present in the asymmetric unit. 
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Figure S2.7 | Alignment at position B28 highlighting key contacts in the dimer.  
 
A) Alignment of T2 ProI (tan, PDB:3T2A) and T2-HzpI (grey) centered on position B28 
highlighting the important interactions made between B28 and surrounding residues in the dimer. 
Interaction distances are listed in angstroms.  
 
B) Alignment of T2 ProI (tan, PDB:3T2A) and T2-HypI (blue) centered on position B28 
highlighting the important interactions made between B28 and surrounding residues in the dimer. 
Interaction distances are listed in angstroms.  
 
C) T2 ProI (tan, PDB:3T2A) centered on position B28 highlighting the important interactions made 
between B28 and surrounding residues in the dimer. Interaction distances are listed in angstroms 
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Table S2.4 | Key B28 contacts in hydroxyproline insulins 
 

a) VDW overlap was calculated in Chimera as the distance between the van der waals radii of each 
participating atom. Positive values indicate VDW radii overlapping. Negative values indicate the 
distance between VDW radii. The strongest interactions are bolded.  
 

b) Distances are measured as the linear distance between the center point of the two atoms listed in 
each row. Nomenclature of the atoms in the residues follows standard protein atomic naming as 
utilized in the PDB. Below the table is a guide to the proline ring atoms nomenclature.  
 
 

  

CD CB

CA

N
H

CG C

OH

O

OD1
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fluorinated proline analogs modulates hexamer dissociation 
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Abstract 

Fluorination is a common modification to enhance pharmacokinetics and stability 

in drug-like molecules. Here we show that non-canonical amino acid mutagenesis can be 

used to introduce flourine into insulin at position B28. The monoflouro 4R analog (FypI) 

yielded a severely destabilized insulin with fast dissociation kinetics. Crystallographic 

analysis suggests that the C-F bond of FypI clashes with an adjacent tyrosine and 

destabilizes the oligomeric complexes of insulin. This destabilization is stereospecific, 

the 4S (FzpI) and difluoro 4,4 (DfpI) analogs were not similarly destabilized. Our results 

highlight the potential importance of a TyrB26-ProB28 stacking interaction and further 

extend ncAA mutagenesis of insulin with fluorinated analogs complementing our earlier 

hydroxylation study.  
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Introduction 

Fluorination has a long history in medicinal chemistry and, sometimes, confers 

surprising properties to molecules 1. Fluoroprolines, for example, have been used to 

elucidate the nature of the triple helix in collagen and to explore protein structure more 

broadly 2-5. (2S, 4S)-Fluoroproline (Fzp), (2S, 4R)-Fluoroproline (Fyp), and (2S)-

difluoroproline (Dfp) have been used most widely and here we utilize these same amino 

acids in insulin to explore the structure and activity of insulin more fully (figure 3.1).  

 

Replacement of the hydrogen with alternative substituents on the 4-position of 

proline provides for a potential steric overlap when in a gauche orientation. In the gauche 

orientation the steric overlap positions a σ C-H to overlap with the σ* orbital of the 4-

substituent (figure 3.2) 3-5. This effect is dramatic in fluoroprolines. Fzp favors the endo 

conformation by 20:1, an order of magnitude increase compared to Pro 6. In contrast, Fyp 

favors the endo conformation by 1:6, reversing the preference of Pro 6. The exo 

preference of Fyp also enhances both the trans preference of the residue as well as the n 

to π* interaction by enforcing a trans orientation which allows for better overlap of the n 

to π* involved orbitals 4, 5, 7. Dfp does not alter the preference for either ring pucker, 

however it does enhance the interconversion rate between the endo and exo states. 

Modifying the proline ring with fluorines both enhances the hydrophobicity of the residue 

and introduces a dipole 8, 9.  

 

The C-F bond can participate in a wealth of interactions in protein structures, 

including halogen bonding (akin to hydrogen bonding), aliphatic interactions and aryl 

interactions. Aromatic interactions with fluorine have a strong positional and angular 

dependence 10. C-F bonds oriented in the plane of the aromatic must be shifted away from 

the aromatic centroid while C-F bonds oriented perpendicular to the aromatic plane 

approach at a closest distance of 2.6 Å. 

 

Fluororolines have been incorporated into a small range of proteins with varied 

effect. Introduction of Fyp and Fzp in collagen can stabilize or destabilize the triple helix 
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through stereoelectronic effects that depend on the position of introduction for the 

fluoroproline 9. In the villin headpiece protein, mutation of Pro to Fzp improved packing 

efficiency and stabilized the protein. Conversely, Fyp destabilized a Pro-Tyr interaction 

in the villin headpiece by enforcing an exo pucker 11. Introduction of Fyp into elastins 

stabilized an exo conformation and thereby stabilized the overall polymer 12. Mutating 

ubiquitin with Fyp similarly stabilized the protein by enforcing an exo conformation 13. 

Fyp has also been used to stabilize mRFP and taq via its exo preference 14, 15. Only Fyp 

stabilized the protein when both Fyp and Fzp were incorporated into scfvs, 16. 

Introducing Fzp into gfp and thioredoxin resulted in the only known and correctly folded 

globular proteins with Fzp 17, 18. Crystallographic analysis of thioredoxin revealed that 

both Fyp and Fzp adopted the endo conformation due to local structural constraints. Fyp, 

Fzp and Dfp were all introduced into beta-2 microglobin. Dfp enhanced fibrillation by 

lowering the barrier for the cis/trans isomerization through enhanced fraying of the beta-2 

microglobin 19. To date, no structures deposited in the PDB include Dfp in the 

polypeptide chain of a globular protein.  

 

Fyp, Fzp and Dfp all allow for a robust test of several theories that arise out of 

earlier work on insulin. It seems clear that the enhancement in fibrillation resistance and 

kinetic disassociation rates seen in HzpI arises, at least in part, from the hydrogen bond 

across the dimer interface. However, HypI, while monomerized, does not exhibit any of 

the more typical RAI characteristics. Luckily the fluoroprolines allow for such a test. Fyp 

strongly favors exo puckers, Fzp favors endo and Dfp favors neither, while most 

hydrogen bonding interactions should remain unavailable to the C-F bond in the insulin 

dimer interface.  

 

Results and Discussion  

Towards this end, modified prolinsulins were expressed with Fyp (FypI), Fzp 

(FzpI), or Dfp (DfpI) in proline auxotrophic E. coli. PI was refolded, matured and 

purified as described in chapter 2. Maldi-MS analysis revealed that replacement levels 

were similarly high for all 3 fluoroinsulins (figure 3.3a, Table 3.1). All 3 fluoro insulins 
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were also active in rodent models and the onset of action as well as glucose lowering 

potentials were within error of ProI (figure 3.3b).  

 

Insulin dimers and monomers exhibit characteristic and different CD spectra with 

minima at both 208 nm and 222 nm. The insulin monomer has a deepening of the 208 nm 

minimum relative to the dimer 20. At a concentration of 60 µM FypI and DfpI exhibit 

spectra consistent with a monomerized insulin while FzpI exhibits a spectrum consistent 

with a dimerized insulin (figure 3.4a). 

 

The change in minima between insulin dimer and monomer forms can also be 

expressed as the ratio of ellipticies at 208 nm and 222 nm. Monomeric insulins approach 

a ratio of 1.6 while dimeric insulins approach 1.3 21. A series of CD spectra were 

collected at concentrations both above and below the typical Kd for ProI with the 

objective of collecting multiple concentrations for each insulin variant in both monomer 

and dimer form (figure 3.4b-j). The 208:222 ratios arising out of these experiments are 

shown in a dot plot (figure 3.4k). Both FypI and DfpI show clear monomer forms until 

concentrations of around 150 µM, implying the Kd for these variants is similar to that of 

HypI (figure 3.4b-k). Unfortunately, FzpI never reached a ratio of 1.6 even at 

concentrations as low as 3 µM, implying that both FzpI and ProI have similar Kd‘s 

around 5 µM. 

 

The rate of onset of action for insulin after subcutaneous injection has been shown 

to be related to the disassociation rate of the R6 hexamer 22-27. In order to measure this 

disassociation rate, the fluoroinsulins were subjected to Terpy-driven disassociation as 

described in chapter 2. FypI had a disassociation rate (τ½ = 40s ± 4) indistinguishable 

from AspI (a model RAI with τ½ = 43s ±4), while FzpI had a disassociation rate (τ½ = 

98s ± 5) indistinguishable from ProI (τ½ = 90s ±4). DfpI had a disassociation rate (τ½ = 

67s ± 4) intermediate between that or ProI and AspI (table 3.1).These results are 

consistent with the approximate Kd s derived from the CD dilution experiments. The 

monomerized insulins (DfpI, FypI, AspI) all dissociated at a rate faster than that of ProI. 

FzpI retains a ProI-like rate of hexamer dissociation and ProI-like dimer Kd.  
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Fibrillation lag time of the fluoroinsulins was also assessed via the THT assay as 

described in chapter 2. FzpI and DfpI exhibited lag times that were 1.5-2X longer (8.4 

h ±1.2 and 9.0 h ± 0.5 respectively) compared with the lag times for ProI and AspI (5.1 

h ±1.5 and 5.3 h ± 1.0 respectively). FypI exhibited a dramatically faster fibrillation rate 

(2.6 h ± 0.3) with a lag time one-half that of ProI or AspI (table 3.1). 

 

In sum, these 3 fluoroinsulins present an intriguing array of insulin-like behavior. 

FypI represents a monomerized insulin with RAI-like dissociation rates of the hexamer 

and rapid aggregation, strongly implying a structural destabilization underlies these RAI-

like characteristics. In contrast DfpI is a monomerized insulin with an intermediate rate of 

hexamer disassociation and slight enhancement of resistance against fibrillation. In order 

to further our understanding of the structural and stereoelectronic rationales underpinning 

these behaviors, the x-ray structure of each variant was determined.  

 

FypI crystals were obtained of the T2 state to a resolution of 1.17 Å while crystals 

of DfpI and FzpI were obtained in the R6 state to a resolution of 2.25 Å and 1.31 Å 

respectively (table 3.4). All three crystal structures were compared to representative ProI 

structures (PDB:3T2A for the T2 state and PDB:1EV6 for the R6  state) and found to have 

low overall RMSDs values (table 3.2) and strong visual overlap with ProI dimers (figure 

3.4a). Examining the proline rings directly, it is observed that FypI occurs in an exo 

pucker, FzpI is in an endo pucker and DfpI can be seen in both endo and exo puckers 

with endo predominating 2:1 (figure 3.6, table 3.2). These endo/exo preferences track 

with the known pucker preferences of fluoroprolines and are consistent with the 

observation that fluorine, as a strongly electronegative substituent, typically overrides 

local structural preferences in favor of its intrinsic stereoelectronic endo/exo preferences 
5, 9, 28.  DfpI and FzpI also appear to be displaced slightly from the ProI position whereas 

FypI overlays near perfectly to B28 in ProI (figure 3.6).  

 

By examining key residues in close proximity to B28 we see a striking picture of 

subtle structural changes underlying the observed oligomeric and kinetic behaviors.  
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In ProI TyrB26 sits in close contact with ProB28 and is likely participating in an 

aromatic-proline C-H/ π interaction 29. The exo pucker of FypI forces the 4R fluorine into 

proximity (3 Å) with the aromatic ring (figure 3.7, table 3.3). However, the angle of the 

C-F bond for close contact of the FypI is poor for a close contacting C-F to an aromatic. 

Relative to the plane of the tyrosine ring, the C-F of FypI is 31 degrees, not the ideal 

perpendicular angles seen in beneficial C-F/aromatic interactions in close proximity to an 

aromatic ring. ProB28 in ProI can also been seen to be in close packing with Gly23’ with 

just 3.6 Å separating the residues. FypI also seems to pack subtly worse as the distance 

between FypB28 and Gly23’ is increased to 4.0 Å (figure 3.7, table 3.3). 

 

The endo pucker of FzpI closely resembles ProI structures and maintains close 

contact with TyrB26 similar to ProI (figure 3.7, table 3.3). FzpI also subtly overlaps 

GluB21’ with 0.26 Å of overlap. In FzpI the C-F seems to pack efficiently into the dimer 

interface without any strong negative interactions.  

 

In contrast the enhanced hydrophobic bulk of DfpI does not seem capable of 

packing without negative interactions. The C-F on DfpI is in close contact with several 

atoms on Glu21’ and Gly20’, interactions that are not canonically considered beneficial. 

A very large separation of DfpB28 and ValB3 as well as separation from TyrB26 is also 

apparent in the structure, depriving B28 of close packing internal to the monomer.  

 

In conjunction with the hydroxyinsulins, the fluoroinsulins present intriguing 

trends relating packing and conformation of B28 with kinetic and oligomeric activities.  

 

All insulins with lower barriers to entering the exo pucker conformation (HypI, 

FypI, DfpI) are observed to have increased Kd’s of dimerization. Similarly all insulins 

(HzpI, FzpI, ProI) with endo preferences (or higher barriers to entering exo puckers), are 

observed to maintain WT-like dimerization constants. FypI is the only insulin with a 

faster rate of fibrillation, implying destabilization or fraying of the B-chain in solution. 

The structure of FypI provides an explanation for this behavior, the exo pucker of FypI 
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brings the C-F into a rare orientation that is expected to be destabilizing. Presumably this 

destabilization also results in faster hexamer disassociation by destabilizing all forms of 

insulin with the B-chain packed against TyrB26. The B-chain in the monomer may be 

able to swing out in a more extended conformation that relaxes this clash. Frayed B-chain 

in monomers may even be favored to swing out prematurely as the exo preference leads 

to n to π* stabilization. Finally the fast disassociation of DfpI can be explained on the 

basis of minor clashes between the flourines against atoms on the opposing monomer 

(Glu21’ and Gly20’). Overlaps of only 0.2Å - 0.4Å are at most minor clashes 30, and may 

drive monomerization and kinetic disassociation away from higher order oligomers but 

would not impact the organization of the B-chain in the monomer state. This overlap for 

DfpI is seen in the R6 structure, one can speculate that the T2 structure may not contain a 

similar overlap and that such a difference would lead to all the observed behaviors of 

DfpI. Unfortunately all attempts to obtain a T2 crystal of DfpI have, so far, failed to yield 

a diffracting crystal.  

 

 

 

Conclusions 

 In sum, the fluoroinsulins demonstrate the importance of local structural contacts 

influencing overall protein behavior.  Insulin itself is a model system for structural and 

biochemical analysis of 4-substituted prolines. High-resolution crystal structures have 

been obtained for all variants herein regardless of the stabilization or destabilization that 

may be present in these insulin analogs. Future interest in 4-substituted prolines, for both 

improving insulin as well as basic biochemical exploration, might be complemented by 

further systematic introduction into insulin. Indeed the Tirrell group is continuing these 

efforts by looking into a range of further substituent groups (amino, azido etc) on the 4-

position. The results from this and future proline studies will inform ncAA mutagenesis 

for a wide range of potential applications where local structural control around prolines 

would be of maximum utility (for example; proline in the loop of an antibody paratope). 

Medicinal chemistry operates on the general principle that atomic interactions can be 

tuned to improve binding, pharmacokinetics or other important pharmaceutical 
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properties. We anticipate that such tuning of proteins down to an atomic level, akin to 

medicinal chemistry, will become commonplace.  
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Figure 3.1 | Fluorinated proline analogs 
The structures of the fluoroproline analogs discussed in this 

chapter. 
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Figure 3.2 | Orientation of mono-flouroprolines in confomers 
 
Visualization of the bond orientations in the preferred conformations of fluoroprolines. 
Carbon (grey), fluorine (yellow), and hydrogen (white, black) are shown with the 4-position 
carbon closet to the reader. Hydrogen atoms which are colored black are bonded to the 3-
position (A) or 5-position (B) and are the potential orbital partners for the C-F antibonding 
orbital. 
 
 
A) Fyp with an exo pucker.  
 
B) Fzp with an endo pucker 
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  Figure 3.3| Fluoroprolines incorporate into insulin and do no perturb the glucose lowering activity of 

insulin in a mouse model of diabetes 
 
A) Maldi mass spectra showing successful incorporation and maturation of the fluoroinsulins. The WT mass 
of 5799 is visible in ProI and the monofluoro or difluoro masses are visible in FzpI (+18 expected), FypI (+18 
expected) or DfpI (+36 expected). 
 
B) Reduction of blood glucose following subcutaneous injection of 35 μg/kg insulins into streptozotocin-
induced diabetic mice. Glucose levels were measured post-injection via tail vein sampling. ProI, dFpI, FzpI, 
FypI or vector were formulated as described in chapter 2. Error bars denote one standard deviation (n = 3). 
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Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
(A)  Far UV CD spectra collected on 60 μM insulins in 10 mM phosphate buffer, pH 8.0 at 25°C. 
(B)  Far UV CD spectra collected on multiple concentrations of FypI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
(C)  Far UV CD spectra collected on multiple concentrations of FypI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
(D)  Far UV CD spectra collected on multiple concentrations of FypI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
(E)  Far UV CD spectra collected on multiple concentrations of FzpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
(F)  Far UV CD spectra collected on multiple concentrations of FzpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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  Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
(G)  Far UV CD spectra collected on multiple concentrations of FzpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C.  
(H)  Far UV CD spectra collected on multiple concentrations of dFpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
(I)   Far UV CD spectra collected on multiple concentrations of dFpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
(J)   Far UV CD spectra collected on multiple concentrations of dFpI as indicated in the legend. 

CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 3.4 Circular Dichroism Spectra of Fluoroinsulins 
 
 (K)  Ratio of the Far UV CD spectra 208nm minima to 222nm minima for fluoroinsulin variants 

over a range of concentrations. Ratios were calculated from the 208nm and 222nm data 
points on the preceding Far UV spectra in this figure.  
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Figure 3.5 | The dimer in the R6 hexamer of the fluoroinsulins.  
A) Alignment of R6 ProI (tan, PDB:1EV6), R6-FzpI (light green), and R6-
dFpI (Gold) showing a single dimer in the hexamer. 
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Figure 3.6 | Alignment at position B28. 
A)  Alignment of T2-ProI (tan, PDB ID: 3T2A) and T2-FypI (dark Green) highlighting the pucker 
of the proline ring.  
B)  Alignment of R6-ProI (tan, PDB ID: 1EV6) and R6-FzpI (light green) highlighting the pucker 
of the proline ring. 
C) Alignment of R6-ProI (tan, PDB ID: 1EV6) and R6-dFpI (gold) highlighting the pucker of the 
proline ring. 
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  Figure 3.7 | B28 highlighting key contacts in the dimer interface.  
A) Alignment of T2 ProI (tan, PDB:3T2A), and T2-FypI (dark green) centered on 
position B28 highlighting the important interactions made between B28 and 
surrounding residues in the dimer. Interaction distances are listed in angstroms and are 
averages where more than one monomer is present in the asymmetric unit.  
B,C) R6-FzpI (light green) and R6-dFpI (gold) centered on position B28 highlighting 
the important interactions made between B28 and surrounding residues in the dimer. 
Interaction distances are listed in angstroms.  
D) Alignment of T2 ProI (tan, PDB:3T2A), and T2-FypI (dark green) centered on the 
interaction between the fluorine from FypB28 and the phenyl ring of TyrB26. The 
centroid of the phenyl ring on B26 is offset 1.4 Å from the fluorine. The angle of the 
C-F in B28 relative to the phenyl ring in B26 is 31 degrees.  
E) T2 ProI (tan, PDB:3T2A) centered on position B28 highlighting the important 
interactions made between B28 and surrounding residues in the dimer. Interaction 
distances are listed in angstroms 
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Table 3.1| Key properties of Fluoroinsulins 
 
Errors are given as one s.d. (n ≥ 4) unless otherwise noted 
‡Incorporation error <2% and quantified using MALDI-MS on gluC 
digested peptide containing B28 
*Active in vivo (n≥3) 
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Table 3.2| RMSD and proline angles  
 
a Fluoroproline T2 insulins were aligned against T2 ProI (PDB:3T2A) and R6 insulins were 
aligned against R6-ProI (PDB: 1EV6). RMSD was calculated over backbone atoms.  
  
b Ring conformation was determined on the basis of the Chi1 angles. Where more than 
one B28 residue is present in the asymmetric unit the predominant conformation is listed. 
The fraction in parentheses denotes the number of B28 residues in one asymmetric unit 
with the predominant conformation.  
 
c Chi1 and Phi angles are reported as an average over all B28 residues present in the 
asymmetric unit for each crystal structure. For T2 insulins only a single B28 is averaged, 
for R6 insulins there are 6 or 12 prolines present in the asymmetric unit and the value 
reported is the average value over all prolines in the asymmetric unit. 
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Table 3.3 | Key B28 contacts in fluoroproline insulins 
a VDW overlap was calculated in Chimera as the distance between the van der waals radii of each 
participating atom. Where more than one monomer is present in the asymmetric unit of the crystal 
structure, the overlap value listed in the table is an average over all B28-contact overlaps. Positive 
values indicate VDW radii overlapping. Negative values indicate the distance between VDW radii. 
Distances are measured as the linear distance between the center point of the two atoms listed in 
each row. Nomenclature of the atoms in the residues follows standard protein atomic naming as 
utilized in the PDB.  
 
b Atomic interaction indicates the closest pairing of atoms involved in the B28 to other residue 
contact. The first atom listed is the atomic identity from B28. The second atom listed is located on 
the residue listed in the other residue column.  
 
c The strongest interactions are bolded. 
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Table 3.4 | Data Table and Refinement Values for Fluoroinsulins 
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CHAPTER IV 
 

Replacement of ProB28 in insulin by proline analogs with 
ring size variation modulates hexamer dissociation and rate 

of fibrillation   

 95 



Abstract 

Here we show that non-canonical amino acid mutagenesis can be used to 

introduce variation into the ring composition of position ProB28 in insulin. Addition or 

removal of a methylene from the proline ring was associated with an overall increase or 

decrease in stability, respectively. Crystallographic analysis suggests that the packing of 

these rings against an adjacent tyrosine and in a hydrophobic pocket influences the 

kinetic dissociation and resistance to fibrillation in insulin. Thiazolidine and dehydro-

variants subtly altered packing and also influenced kinetic dissociation and resistance to 

fibrillation. Our results highlight the potential importance of a TyrB26-ProB28 stacking 

interaction and further extend ncAA mutagenesis of insulin with ring 

variants demonstrating a complete range of medicinal chemistry-like manipulations on a 

globular protein. 
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Introduction 

In the work detailed in the previous chapters, we investigated the effects of 4-

substituted prolines on insulin structure and function. We found that that these altered 

proline rings modulate the kinetic disassociation of the insulin hexamer as well as 

oligomerization and aggregation. We sought to further understand the role of residue 

ProB28 by replacing ProB28 with prolines containing altered rings. Pipecolic acid (Pip), 

azetidine-2-carboxcylic acid (Aze), 3,4 Dehydroproline (Dhp) and Thiazolidine-4-

carboxylic acid (Thia) are all analogs of proline with alterations to the ring (figure 4.1). 

Pip and Aze increase and decrease the size of the proline ring by a single carbon, 

respectively, while Thia replaces the 4-position carbon with a sulfur atom. Thia 

effectively replaces the gamma hydrogens with lone pairs of electrons from the sulfur 

atom. Dhp introduces a double bond in the proline ring.  

 

Together these 4 proline variants have been lightly studied in peptides and all but 

unstudied in proteins. Only a single protein structure, 1SAV with Thia, has been 

deposited for any of these proline analogs1.  

 

Accordingly, Thia has been the most studied of all the variants. The carbon-sulfur 

bond in Thia is elongated relative to Pro and the angles of the ring are slightly reduced to 

accommodate this elongation 2. Thia’s conformational preferences are strikingly similar 

to the parent proline 2, 3. Thia prefers the endo pucker as well as trans-peptide 

conformation, although the degree to which Thia can isomerize to the cis-peptide 

depends on the system of analysis used. Simulations and polyproline test peptides 

disagree as to the tendency of Thia to cis/trans isomerize 2-5. Thia seems to decrease the n 

to π* interaction energy by 0.2 kcal/mol relative to Pro 2, 3. Replacement of Thia in 

polyproline peptides lead to a disruption in the polyproline conformation, and a single 

substitution lead to a 160C loss in Tm 
4. Replacement of 5 Pro residues by Thia in annexin 

V leads to a loss of Tm by 4.50C, although functionality of the protein was not 

compromised 1. In the crystal structure, Thia was modeled as a mixture of endo and exo 

preferences 1. In an elastin-like-polypeptide model, replacement of Pro by Thia leads to a 

decrease of 600C in the transition temperature 6.  
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 Pip has been studied primarily in the contexts of peptides 7, ion channel activation 
8 and in silico models 9. The 6-membered ring of Pip can orient itself into the common 

chair and boat conformations. From quantum mechanical calculations, the chair 

conformation is several kcal/mol favored over the boat conformation 9. Notably, an ion 

channel with Pip incorporated in place of an important Pro retained functionality, 

demonstrating that incorporation of Pip and loss of the 5-membered proline ring is not 

inherently detrimental to protein folding 8. 

 

 Aze has been studied in the contexts of protein degradation 10, growth inhibition 11, 

in silico models 9, 12, 13, ion channel activation 8, collagen formation 14 and elastin function 
6. Aze can orient itself into both an endo and exo pucker, although planar displacement is 

constrained by the smaller ring size and the endo pucker is preferred over the exo 9, 13. 

Aze also has an enhanced propensity to isomerize the peptide bond from trans to cis 

conformations 9, 13. C-terminal Aze can influence tagging of a protein (i.e., YbeL) for 

degradation 10. Proteome wide incorporation of aze typically leads to growth defects 11, 15. 

An ion channel with Aze incorporated in place of an important Pro retained functionality 
8. In an elastin-like-polypeptide model, replacement of Pro by Aze leads to a loss of 100C 

in the transition temperature 6. 

 

 Dhp has been studied in the contexts of protein degradation 10, elastins 6 and in 

silico models 12, 16. Dhp is a planar version of proline with little to no pucker present on 

the ring. Chi1 angles are limited to between 11o and 3o 16.  In an elastin-like-polypeptide 

model, replacement of pro by Dhp leads to a loss of 200C in the transition temperature 6. 

 

 

Results and discussion 

Modified Proinsulins were expressed with Aze, Dhp, Pip or Thia in proline 

auxotrophic E. coli. PI was refolded, matured and purified as described in chapter 2. 

MALDI-MS analysis revealed that replacement levels were similarly high (>90%) for all 

4 ring variant insulins (figure 4.2, table 4.1).  
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 Analysis to assess the extent of dimerization for the insulin variants was carried 

out as described in chapter 3. At 60 µM, all 4 ring variants (AzeI, PipI, DhpI, ThiaI) 

exhibit CD spectra more similar to ProI than AspI, indicating dimerization at 60uM 

(figure 4.3a). CD dilution experiments were also carried out as described in chapter 3 to 

obtain 208:222nm ratios. (figure 4.3 b-m). Both ThiaI, AzeI and DhpI show substantially 

similar ratios as ProI, indicating substantially unperturbed Kd’s of dimerization. PipI 

shows substantially lower ratios relative to ProI ratios at similar concentrations, 

indicating that PipI forms a slightly tighter dimer and thus has a lower Kd than ProI. 

None of the variants appeared to be in fully monomeric forms even at the lowest 

concentrations tested.  

 

To measure the rate of disassociation from the hexameric form, the ring variants 

were subjected to Terpy-driven disassociation as described in chapter 2 (table 4.1). ThiaI 

had a disassociation rate (τ½ = 83.9s ± 1.3) essentially identical to ProI (τ½ = 90.4s ±4.2). 

AzeI and DhpI had disassociation rates (τ½ = 64.5s ± 4.5 and τ½ = 72.3s ± 1.3 

respectively) between those measured for ProI and AspI (τ½ = 90.4s ± 4.2 and τ½ = 

42.7s ± 4.3 respectively). PipI had a dissociation rate (τ½ = 117s ± 19) slower than ProI. 

The PipI result, in particular, is consistent with the approximate Kd‘s derived from CD 

dilution experiments. A tighter binding dimer might be expected to stabilize formation of 

the higher order hexamers and retard exit from the hexameric states.  

 

Fibrillation lag time of the ring variant insulins was also measured via the THT 

assay as described in chapter 2 (table 4.1). ThiaI and PipI exhibited lag times that were 

more than 2X longer (12.8 h ± 1.3 and 18.8 h ± 3.6, respectively) compared with the lag 

times for ProI and AspI (5.1 h ±1.5 and 5.3 h ± 1.0, respectively). AzeI exhibited a faster 

fibrillation rate (4.5 h ± 1.5) with a lag time slightly faster than that of ProI or AspI. DhpI 

exhibited a fibrillation rate (10.7 h ± 3.5) closer to ProI.  

 

PipI represents the only known mutation at B28 on insulin to clearly slow the 

dissociation rate out of the hexamer from the R6 state. Other mutations throughout insulin 
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(e.g.,iodination at TyrB26) have been known to decrease hexamer disassociation rate but 

no other tested B28 mutation. Similar to iodoTyrB26, PipI also enhances resistance to 

fibrillation. AzeI and DhpI both represent intermediate enhancement to the disassociation 

rate of the insulin hexamer. Intriguingly, AzeI and DhpI likely generate this enhancement 

through different mechanisms, as DhpI retains closer to WT-like fibrillation rates while 

AzeI accelerates fibrillation. ThiaI behaves similarly to ProI in both kinetic and dimeric 

respects, but also enhances resistance to fibrillation. In order to further our understanding 

of the structural rationales underpinning these behaviors, the x-ray structure of 

each variant was determined. 

 

AzeI crystals of the T2 state were obtained to a resolution of 1.30 Å while crystals 

of DhpI, PipI and ThiaI were obtained in both the T2 and R6 states to resolutions of 1.17 

Å (DhpI T2), 2.4 Å (DhpI R6), 1.17 Å (PipI T2), 2.06 Å (PipI R6), 1.22 Å (ThiaI T2), and 

1.96 Å (ThiaI R6) (figure 4.4). AzeI crystals were also obtained in conditions (phenol and 

zinc) expected to yield an R6 structure. Although crystals diffracted to 2.4 Å, the structure 

was unable to be phased and thus was not solved.  

 

All T2 structures were compared to a representative ProI structure (PDB: 3T2a) 

and all R6 structures were compared to a representative ProI structure (PDB: 1EV6). In 

all cases, the ring variant insulin structures closely resemble WT insulin structures (figure 

4.5). Backbone RMSDs measured against ProI range from 0.27 to 0.53 indicating strong 

overall overlap (table 4.2).  

 

The position of B28 is essentially unchanged between any of the mutants and/or 

oligomer states visually (figure 4.6 a-g). AzeI adopts a planar conformation for its pucker 

in the T2structure (table 2, figure 6a). PipI adopts the expected conformation of chair for 

its pucker in the T2 structure and adopts a mixture of chair and boat in the R6structure 

(table 4.2, figure 4.6 b,e).  DhpI adopts the expected conformation of planar for its pucker 

in both T2 and R6 structures (table 4.2, figure 4.6 c,f).  ThiaI adopts the expected 

conformation of endo for its pucker in both T2 and R6 structures (table 4.2, figure 4.6 d,g). 

The pucker conformations of AzeI, DhpI and ThiaI all conform to the predicted 
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conformations from computational modeling. For PipI, given the several kcal/mol 

difference between chair and boat predicted by computational modeling, we expected an 

all chair set of pucker conformations. The mixture of states in the structure may indicate 

that local steric or electronic considerations are lowering the difference in energies 

between the chair and boat conformations in the R6 hexamer.  

  

 ProB28 makes a series of local contacts in ProI that are primarily hydrophobic in 

nature. In the T2 dimer, the closest contacts of B28 are to GlyB23’, Tyr26 and ValA3 

(table 4.3, figure 4.7a). In the R6 hexamer the closest contacts are gain GlyB23’, TyrB26, 

ValA3 as well as GluB21’ and GlyB20’ (table 4.4, figure 4.8e).  The TyrB26 contact is 

oriented and positioned such that a C-H/ π aromatic interaction is likely present. The ring 

variants have a set of important variation on this constellation of contacts that helps to 

explain their altered behaviors.  

 

Overall ThiaI maintains nearly all the interactions present in ProI with minimal 

changes. In both the T2 and R6 structures the GlyB23’ and TyrB26 are all maintained 

within 0.2 Å of the ProI distances (tables 4.3, 4.4, figures 4.7d, 4.8d). The ValA3 contact 

is 0.3 Å closer for ThiaI in the T2 structure, a small but meaningful difference. The 

distance for the Glu21’ contact in in the R6 structure is also indistinguishable. The largest 

difference lies in the GlyB20’ contact, in Thia it is approximately 0.4 Å farther away than 

the same contact distance in ProI. Given that the GlyB20’ contact is between the carbonyl 

oxygen of GlyB20’ and the sulfur (or Cδ in ProI), this difference is expected to be more 

favorable. ThiaI’s WT-like kinetics and dimerization behavior can be easily explained by 

the lack of substantial changes to the contacts that the pseudoproline participates in 

relative to the WT-protein. The two-fold increase in fibrillation resistance might be 

ascribed to a combination of improvements in hydrophobic packing (ValA3 closer) and 

reduction in nonproductive interactions (Gly20’ distance lengthened). Even though the 

TyrB26 contact does not change relative distance to B28, there exists the possibility that 

the lone pairs of the sulfur produce a positive interaction via a lone pair- π aromatic 

interaction 17 that is greater than the C-H/ π aromatic interaction. 
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DhpI is another insulin analog where the interactions present around B28 are 

generally not perturbed by the mutation (tables 4.3, 4.4, figures 4.7c, 4.8c). In the T2 

structure all three close contacts are all maintained within 0.2 Å of the interaction 

distances seen in ProI. In the R6 the close contact at TyrB26 is maintained at a similar 

interaction distance seen in ProI. The GlyB23’ distance has contracted by almost 0.6 Å 

while the ValA3 contact has lengthened by almost 1 Å. DhpI’s Wt-like dimerization and 

close to Wt-like fibrillation can be explained by the T2 contacts made by B28 remaining 

essentially unchanged relative to those of WT. Fibrillation is thought to be initiated from 

an unfolded monomer; maintenance of the normal T2 contacts would neither perturb the 

existing fibrillation tendencies nor the Kd of dimerization. The slightly faster kinetic 

disassociation of DhpI might be explained by the improved GlyB23’ contact and worse 

ValA3 contact. In particular the loss of the ValA3 contact is only seen in the R6 structure 

and might serve to destabilize the R6 state but not the T2 state.  

 

In contrast to ThiaI and DhpI, AzeI fibrillates slightly faster than ProI. It is 

apparent that the key TyrB26 interaction is lost in AzeI (table 4.3, figure 4.7a).  Further 

the distances for the other T2 contacts, GlyB23’ and ValA3, are also lengthened from 

3.6 Å and 3.9 Å in ProI to 4.0 Å and over 4 Å in AzeI. It is hardly surprising that the 

smaller azetidine ring does not fully occupy the packing space previously occupied by the 

pyrrolidine ring. However, there does not seem to be compensatory moves by any other 

residue in the region to fill up the void volume left by removal of the methylene group. 

One might expect that this destabilizes all states of the protein and leads to faster 

disassociation, faster fibrillation and loss in the Kd for dimerization; which are the 

observed data for AzeI.  

 

Similar to AzeI, the constellation of residues around PipI remains unperturbed 

relative to Wt (tables 4.3, 4.4, figures 4.7b, 4.8b). However, PipI has an additional 

methylene group leading to improved packing and closer interactions. The ValA3 

interaction in the T2 structure is 0.3 Å closer than the same interaction in ProI. In the R6 

structure the TyrB26, GlyB23’ and the GluB21’ are all slightly closer in distance relative 

to the same distances measured in ProI. Improving the hydrophobic packing in a globular 
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protein can be expected to stabilize the protein. Most globular proteins contain some 

cavities that are not filled, either as a result of steric or evolutionary/functional constraints 
18-21. The improved packing and filling of any void volume in the folded state of insulin 

manifests by seemingly stabilizing PipI across the range of oligomeric states, which 

causes greater association of dimers, enhancement against fibrillation and slow 

disassociation of the hexamer. One can also speculate that the closer packing present 

around B28 in PipI helps to equalize the position ring conformations. Both the chair and 

boat conformers are present in the R6 structure and possible interchange between these 

states in solution might allow for improved average packing distances while mitigating 

any potential for clashes.  

 

Conclusions 

The work described herein demonstrates the capabilities of ncAA mutagenesis to 

manipulate structure and function on atomistic levels. Subtle structural manipulations on 

the order of ± 1 carbon in a ring can be exploited to improve or harm overall packing in 

insulin. As might be expected, altering packing efficiency, even at the C-terminus can 

have profound consequences on stability, kinetics and thermodynamics of oligomeric 

assembly. The work also completes and extends earlier work performed on insulin 

through ncAA mutagenesis at ProB28, demonstrating a complete range of medicinal 

chemistry-like manipulations on a globular protein.  

 

The work described in this chapter was completed by multiple individuals. 

Katharine Fang completed the fibrillation and kinetics experiments as well as jointly 

expressed and purified the insulins described here. 
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Figure 4.1| Ring proline analogs 
The structures of the ring analogs discussed in this chapter. 
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Figure 4.2| Ring variant prolines incorporate into insulin  
Maldi mass spectra showing successful incorporation and maturation of the ring variant prolines 
in mature insulin. The WT mass of 5799 is visible in ProI and the expected mass increases or 
decreases are visible in PipI (+14 expected), AzeI (-14 expected), DhpI (-2 expected) or ThiaI 
(+18 expected). 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 
(A) Far UV CD spectra collected on 60 μM insulins in 10 mM phosphate buffer, pH 8.0 at 25°C. 
 
(B) Far UV CD spectra collected on multiple concentrations of AzeI as indicated in the legend. CD 
spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(C) Far UV CD spectra collected on multiple concentrations of AzeI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 

(D) Far UV CD spectra collected on multiple concentrations of AzeI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(E) Far UV CD spectra collected on multiple concentrations of PipI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 

(F) Far UV CD spectra collected on multiple concentrations of PipI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(G) Far UV CD spectra collected on multiple concentrations of PipI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 

(H) Far UV CD spectra collected on multiple concentrations of DhpI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(I) Far UV CD spectra collected on multiple concentrations of DhpI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 

(J) Far UV CD spectra collected on multiple concentrations of DhpI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(K) Far UV CD spectra collected on multiple concentrations of ThiaI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 

(L) Far UV CD spectra collected on multiple concentrations of ThiaI as indicated in the 
legend. CD spectra collected in 10 mM phosphate buffer, pH 8.0 at 25°C. 
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Figure 4.3 Circular Dichroism Spectra of Ring Variant insulins 

(M) Ratio of the Far UV CD spectra 208nm minima to 222nm minima for ring size variants 
over a range of concentrations. Ratios were calculated from the 208nm and 222nm data 
points on the preceding Far UV spectra in this figure. 
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  Figure 4.4 | Data Table and Refinement Values for Ring Variant Insulins 
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Figure 4.5 | The dimer in the R6 hexamer of the ring variant insulins.  
A) Alignment of R6 ProI (tan, PDB:1EV6), R6-PipI (Purple), R6-DhpI 
(Pink) and R6-ThiaI (Yellow) showing a single dimer in the hexamer. 
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Figure 4.6 | Alignment at position B28. 
 
A,B,C,D) Alignment of T2-ProI (tan, PDB ID: 3T2A) and T2-AzeI (Cyan) highlighting the pucker 
of the proline ring.  
B) Alignment of T2-ProI (tan, PDB ID: 3T2A) and T2-PipI (Purple) highlighting the pucker of the 
proline ring.  
C) Alignment of T2-ProI (tan, PDB ID: 3T2A) and T2-DhpI (Pink) highlighting the pucker of the 
proline ring.  
D) Alignment of T2-ProI (tan, PDB ID: 3T2A) and T2-ThiaI (Yellow) highlighting the pucker of the 
proline ring.  
 
E) Alignment of R6-ProI (tan, PDB ID: 1EV6) and R6-PipI (Purple) highlighting the pucker of the 
proline ring. 
F) Alignment of R6-ProI (tan, PDB ID: 1EV6) and R6-DhpI (Pink) highlighting the pucker of the 
proline ring. 
G) Alignment of R6-ProI (tan, PDB ID: 1EV6) and R6-ThiaI (yellow) highlighting the pucker of 
the proline ring. 
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Figure 4.7 | B28 highlighting key contacts in the dimer interface.  
A, B, C, D) Alignment of T2 ProI (tan, PDB:3T2A), and T2-AzeI (Cyan) or T2-PipI (Purple) 
or T2-DhpI (Pink) or T2-ThiaI (Yellow) centered on position B28 highlighting the important 
interactions made between B28 and surrounding residues in the dimer. Interaction distances 
are listed in angstroms.  
 
E) T2 ProI (tan, PDB:3T2A) centered on position B28 highlighting the important 
interactions made between B28 and surrounding residues in the dimer. Interaction distances 
are listed in angstroms 
 
F) Alignment of T2 ProI (tan, PDB:3T2A), and T2-AzeI (Cyan) highlighting the lateral shift 
of 1.4 Å in the position of B28 in AzeI vs ProI. The preceding TyrB26 has no shift in 
position between AzeI and ProI. 
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Figure 4.8 | B28 highlighting key contacts in the dimer interface.  
 
A) R6 ProI (tan, PDB:1EV6) centered on position B28 highlighting the 
important interactions made between B28 and surrounding residues in the 
dimer. Interaction distances are listed in angstroms 
 
B, C, D) R6-PipI (Purple) or R6-DhpI (Pink) or R6-ThiaI (Yellow) 
centered on position B28 highlighting the important interactions made 
between B28 and surrounding residues in the dimer. Interaction distances 
are listed in angstroms.  
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Table 4.1| Key properties of Ring Variant insulins 
  
Errors are given as one s.d. (n ≥ 4) unless otherwise noted 
‡Incorporation error <2% and quantified using MALDI-MS on gluC 
digested peptide containing B28 
*Active in vivo (n≥3) 
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  Table 4.2 | RMSD and proline angles  

a Ring variant T2 insulins were aligned against T2 ProI (PDB:3T2A) and R6 insulins were aligned 
against R6-ProI (PDB: 1EV6) RMSD was calculated over backbone atoms.  
  
b Ring conformation was determined on the basis of the Chi1 angles. Where more than one B28 
residue is present in the asymmetric unit the predominant conformation is listed. The fraction in 
parentheses denotes the number of B28 residues in one asymmetric unit with the predominant 
conformation.  
 
c Chi1 and Phi angles are reported as an average over all B28 residues present in the asymmetric 
unit for each crystal structure. For T2 insulins only a single B28 is averaged as there is only a single 
insulin monomer in the asymmetric unit, for R6 insulins the average value is calculated over 
multiple prolines as there are 2 (HypI) or 6 (HzpI) prolines present in the asymmetric unit. 
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Table 4.3 | Key B28 contacts in the T2 structures of the ring-variant insulins 
a VDW overlap was calculated in Chimera as the distance between the Van der Waals radii 
of each participating atom. Positive values indicate VDW radii overlapping. Negative 
values indicate the distance between VDW radii. Distances are measured as the linear 
distance between the center point of the two atoms listed in each row. Nomenclature of 
the atoms in the residues follows standard protein atomic naming as utilized in the PDB. 
Below the table is a guide to the proline ring atoms nomenclature. 
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Table 4.4 | Key B28 contacts in the R6 structures of the ring-variant insulins 
 
a VDW overlap was calculated in Chimera as the distance between the van der waals radii of each 
participating atom. Where more than one monomer is present in the asymmetric unit of the crystal 
structure, the overlap value listed in the table is an average over all B28-contact overlaps. Positive 
values indicate VDW radii overlapping. Negative values indicate the distance between VDW radii. 
Where more than one monomer is present in the asymmetric unit of the crystal structure, the 
distance value listed in the table is an average over all B28-contact overlaps.  
 
b Atomic interaction indicates the closest pairing of atoms involved in the B28 to other residue 
contact. The first atom listed is the atom from B28. The second atom listed is located on the residue 
listed in the other residue column.   
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Discussion 

 

 

The work described herein is, to the author’s knowledge, the most through 

analysis of proline analogs in a globular protein to date. Nine proline analogs were 

incorporated into insulin at position B28. Detailed structural, biochemical and 

biophysical data was collected for each of these analogs and can be found in this thesis as 

well as the complementary work in the thesis of Katharine Fang (Caltech, 2017). Insulin 

is a model protein system for computational chemistry and molecular dynamics 

simulations due to its small size (5.8 kDa) and wealth of model protein interactions (zinc 

coordination, disulfides, hydrophobic core). Few proline analogs have been crystalized in 

globular proteins and in no case is systematic data available for the same position with 

more than two analogs. The structures and data herein should provide for a robust starting 

point for any future computational studies on proline analogs and their effects on protein 

structure and function.  

 

We can also draw several conclusions about the C-terminus of the B-chain in 

insulin from our collective set of proline analogs. First, the efficiency of protein 

hydrophobic packing at C-terminus of the B-chain can be improved. Second, the rates of 

fibrillation, hexamer dissociation and dimer binding affinity can be uncoupled. Third, the 

importance of CH/pi packing between ProB28 and TyrB26 may have been historically 

underestimated. Finally, one can speculate that systematic application of ncAA 

mutagenesis to most positions in insulin (or more broadly any therapeutic protein) has the 

potential to discover new and improved variants. 

 

 

 Substitution of proline with several analogs (FzpI, DfpI, PipI, HypI, HzpI, ThiaI) 

of increased bulk did not seem to destabilize the protein. Indeed, out of all the proline 

analogs tested here, the bulkier replacements represent the insulins with the greatest 

enhancement to fibrillation resistance. One must draw the conclusion that insulin can 

readily accept at least small increases in bulk at B28 and so must have either the unfilled 
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cavity space or reorganization capacities to accommodate the additional atomic space. 

One can easily glean from the alignments of the high-resolution structures that no 

systematic or obvious reorganizations occurred. Therefore a substantial amount of the 

increased bulk must have been accommodated by unfilled and pre-existing void volume. 

It seems likely that filling this void volume improves hydrophobic packing and thus tends 

to lead to enhanced protection against fibrillation/aggregation by stabilizing the folded 

native state. It is not always the case that bulk aids against fibrillation. HypI and FypI 

both add bulk, but, for either electrostatic or steric reasons, the sum total of their 

interactions does not protect against fibrillation.  

 

 

 Previous attempts to stabilize insulin against fibrillation have run into the 

roadblock that stabilized insulins could not be made fast-acting. It seemed that the only 

way to protect against fibrillation was to alter the distribution of oligomeric states present 

in solution by proportionally increasing the amount of hexamer or stability of the 

hexamer. The work herein shows conclusively that the binding affinity of the dimer and 

rates of kinetic disassociation as well as rates of fibrillation need not be linked. The 

canonical form of insulin might be thought of as Pareto optimal by balancing the rates of 

dissociation with the rate of fibrillation. By using ncAA prolines we can break through 

the canonical amino acid Pareto limit. We observed insulins with fast dissociation and 

fast fibrillation (AzeI, FypI) and others with slow dissociation and slow fibrillation (PipI), 

which are typical for other canonical mutants. But we also observed monomerized 

insulins with WT-like fibrillation and kinetics (HypI), WT-like dimerizing insulins with 

slow fibrillation and fast dissociation (HzpI, dFpI) and WT-like insulins with slow 

fibrillation (ThiaI). Single atomic differences, even as small as the presence of a single or 

double bond (DhpI), are sufficient to alter the association and aggregation behavior of 

insulin. We can only speculate that future studies, through further ncAA mutagenesis at 

B28 or other positions in insulin, will unlock insulins with further enhanced 

characteristics. Perhaps replacement at B28 with an azepane, an azocane or methylated 

piperidines would result in further resistance to fibrillation. Or perhaps strengthening the 

hydrogen bond between HzpI and Glu21’, by ncAA replacement with an aminoproline or 
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several hydroxyl groups would results in yet faster dissociating and fibrillation resistant 

insulins. The Tirrell lab has already begun explorations amongst some of these 

derivatives. Diabetics worldwide and I await the results with baited breath.  

 

 

 It has long been known that ProB28 sits in a hydrophobic pocket, but the 

appreciation that TyrB26 and ProB28 may interact via a specific CH/π interaction above 

and beyond the normal hydrophobic interaction has not been previously addressed. Any 

substantial disruption to this interaction (FypI, AzeI) leads to dramatically more 

fibrillation prone variants. Conversely this interaction was preferentially maintained over 

other contacts even as substitutions lead to perturbations in the constellation of 

interactions around B28 (DhpI, dFpI, FzpI). A CH/ π interaction would also help to 

explain the observation that non-aromatic mutations at B26 lead to faster fibrillation.   

 

 

 Finally the work described here is a landmark as protein-engineering techniques 

continue to improve. Small molecules are regularly subjected to atom-by-atom testing in 

order to achieve the best ligand for medicinal purposes. Proteins are merely large 

molecules, and so in theory atom-by-atom testing would also provide us with the best 

protein molecule for medicinal purposes. Nature has provided scientists with rapid means 

to screen a wide range of chemical species through the application of directed evolution 

and related techniques (pioneered by Frances Arnold and Pim Stemmer amongst others). 

However, existing directed evolution and protein engineering methods are limited by the 

chemical diversity present in the canonical 20 amino acids. The work here demonstrates 

that even for a protein like insulin, which is heavily studied and optimized, non-canonical 

amino acids can provide for further improvements through atom-by-atom testing. One 

can only hope that protein engineers will discover rapid methods to screen ncAA protein 

variants. Nine mutants were screened in this thesis over the course of several years, a rate 

that might be compared to the rate of single site mutagenesis techniques used at the dawn 

of protein engineering in the 1980’s. If similar advancements in screening occur as 
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occurred for protein engineering, we will be screening hundreds or thousands of ncAAs 

by the 2050s. 
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