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ABSTRACT 

Embryonic development of the fruit fly Drosophila melanogaster is unique among model 

organisms and animals in general, as rapid and syncytial nuclear divisions characterize the 

early stages before cell membranes form. These nuclear divisions occur every eight to 

fifteen minutes, culminating with a 45-minute cell cycle where cell membranes form and 

the 6000 nuclei become 6000 cells before the embryo undergoes gastrulation. At the 

beginning of development, maternally deposited transcripts define the major axes of the 

embryo and control all processes that occur. As the syncytial nuclear cycles slow and 

nuclei migrate to the periphery of the embryo, maternal transcripts are degraded and the 

zygotic genome is first activated. The rapid pace of nuclear divisions concurrent with the 

activation of the zygotic genome presents unique challenges to the developing embryo, as 

the constraints imposed by mitosis limit the ability to transcribe new genes. This switch of 

control, the Maternal to Zygotic Transition, has been the subject of studies at the molecular 

and genetic level for almost 30 years. Here, we use new tools and approaches to study the 

developing embryo at a time scale not previously achieved. We show how the gene 

regulatory network (GRN) along the dorsal-ventral axis, including entire signaling 

pathways, is activated using time point intervals of 10 minutes. While GRNs compress a 4-

Dimensional time course into a 2-Dimensional space to describe gene interactions, we use 

tools to preserve the 4-D information. Using mutants, we show the contribution of 

individual genes in the process of development and the resulting changes in expression 

levels for the entire network. Finally, we examine the transcription of long genes during the 

rapid syncytial nuclear cycles, when time constraints limit the ability to transcribe the entire 

gene. We show how an RNA binding protein regulates the truncation of the transcripts into 



 vii 
short isoforms with novel coding sequences, and how these short gene products code for 

functional proteins that regulate the spatiotemporal activation of key signaling pathways in 

the embryo. 
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C h a p t e r  1  

STEPWISE PROGRESSION OF EMBRYO PATTERNING 

ABSTRACT 

It is long established that the graded distribution of Dorsal transcription factor 

influences spatial domains of gene expression along the dorsal-ventral axis of Drosophila 

melanogaster embryos. However, the more recent realization that Dorsal levels also 

change in time raises the question of whether these temporal dynamics are instructive. 

Here, an overview of dorsoventral axis patterning is provided focusing on new insights 

into this patterning process identified recently through careful, quantitative analysis of 

temporal changes in Dorsal target gene expression that result from one nuclear cycle to 

the next (‘steps’). Possible roles for the step-wise progression of this gene expression 

program are discussed including (i) tight, temporal regulation of signaling pathway 

activation, (ii) control of gene expression cohorts, and (iii) to ensure irreversibility of the 

patterning and cell fate specification process.  

 

DISCUSSION 

Transcription factor dynamics regulate target gene expression 

Subdividing the embryo into distinct domains of gene expression by 

combinatorial control of transcription factors is an important function of regulatory 

networks acting in early embryos including those of Drosophila (CARMENA et al. 1998); 

STATHOPOULOS AND LEVINE (2005); (DAVIDSON AND LEVINE 2008; ZINZEN et al. 2009); 



 

 

2 
BRISCOE AND SMALL (2015). These early patterning events influence the activation of 

signaling pathways to support tissue differentiation and also control cell movements 

required for the generation of a multilayered embryo; the developmental actions that 

encompass gastrulation (STATHOPOULOS AND LEVINE 2004; LEE et al. 2006). To study 

these events at the transcriptional level in Drosophila embryos, previous studies of early 

zygotic gene expression have considered one or two time-points spanning the first four 

hours of early embryo development (ZEITLINGER et al. 2007; MACARTHUR et al. 2009; 

GRAVELEY et al. 2011; OZDEMIR et al. 2011), and yet recent studies suggest gene 

expression patterns change on the order of minutes rather than hours (e.g. LOTT et al. 

2011; REEVES et al. 2012; ALI-MURTHY et al. 2013). Furthermore, only recently has it 

come to light that tr anscription factors in the early embryo exhibit changes in levels over 

time (GREGOR et al. 2007; SHVARTSMAN et al. 2008; KANODIA et al. 2009; LIBERMAN et 

al. 2009). At least in part these dynamics relate to the fast nuclear divisions that 

encompass Drosophila early embryonic development and result in oscillatory inputs to 

target genes. Transcription factor dynamics appear to be a general mechanism of 

regulating gene expression (LEVINE et al. 2013; PURVIS AND LAHAV 2013) and highlight 

the need to study temporal regulation of developmental gene expression as a complement 

to previous studies of embryonic patterning in Drosophila, which have focused on spatial 

control of gene expression (STATHOPOULOS AND LEVINE 2002; CHEN et al. 2012; 

WOLPERT 2016).  
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The Dorsal transcription factor is dynamic as are its target genes 

In the Drosophila embryo, the pivotal transcription factor, Dorsal, is present in a 

nuclear-cytoplasmic gradient along the dorsoventral (DV) axis that instructs differential 

gene expression, yet the establishment of this morphogen gradient is atypical (MOUSSIAN 

AND ROTH 2005; ROGERS AND SCHIER 2011; STEIN AND STEVENS 2014). dl transcripts are 

maternally deposited and uniformly distributed (SIMPSON 1983; ANDERSON AND 

NUSSLEIN-VOLHARD 1984). The protein, however, is present in a nuclear gradient 

through differential activation of the upstream receptor, Toll (ANDERSON et al. 1985). 

Thereby, this gradient does not result from localized expression of Dorsal protein but, 

instead, involves a nuclear-cytoplasmic shift in levels of this factor along the DV axis as 

regulated by Toll receptor signaling (ROTH et al. 1989; RUSHLOW et al. 1989; STEWARD 

1989). Dorsal acts as activator of transcription to support the expression of target genes in 

ventral and lateral regions of the embryo as well as repressor of transcription to limit the 

expression of a subset of target genes to dorsal regions (RAY et al. 1991; JIANG et al. 

1992; STATHOPOULOS AND LEVINE 2002). In this manner, more than fifty genes are 

differentially expressed along the DV axis (STATHOPOULOS AND LEVINE 2002; BIEMAR et 

al. 2006). High levels of nuclear-localized Dorsal in ventral regions specify the 

mesoderm, whereas lower levels of nuclear Dorsal in lateral regions specify the 

neurogenic ectoderm (CHOPRA AND LEVINE 2009; REEVES AND STATHOPOULOS 2009). 

The prevailing model in the field had been that the changes in levels of Dorsal in space, 

along the DV axis, is important for establishing different domains of gene expression. 

However, more recent studies have identified that Dorsal levels also change in 

time (LIBERMAN et al. 2009; RUSHLOW AND SHVARTSMAN 2012), raising the question of 
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whether and how temporal changes of this factor impact gene expression. How the 

nuclear distribution of Dorsal gives rise to precise gene expression patterns was recently 

investigated using live in vivo imaging and quantitative analysis. It was revealed that the 

Dorsal transcription factor gradient is highly dynamic, increasing in levels over time, and 

not achieving steady state until Dorsal levels plummet at gastrulation (REEVES et al. 

2012). Up to this point during the first three hours of development, levels of this factor 

build within nuclei, from one nuclear cycle to the next such that by cellularization a ~3-

fold increase is realized compared to previous nuclear cycles. In addition, Dorsal levels 

oscillate with each and every nuclear cycle, dropping rapidly as nuclei divide and Dorsal 

escapes into the cytoplasm. Following nuclear division, import of Dorsal back into the 

nucleus is relatively slow leading to a gradual increase. This relatively slow import of 

Dorsal into the nucleus compared with other transcription factors acting at this time such 

as Bicoid, for example, likely relates to the requirement of Toll-mediated signaling to 

mediate entry of Dorsal to the nuclei and explains why levels of Dorsal increase as the 

length of nuclear cycles increases (Figure 1.1) (BELVIN AND ANDERSON 1996). In 

contrast, the nuclear distribution of the Bicoid transcription factor stabilizes relatively 

quickly within every nuclear cycle and, moreover, stays relatively constant from one 

nuclear cycle to the next (GREGOR et al. 2007). The observation that the Dorsal 

morphogen gradient changes in time, within as well as between nuclear cycles, suggests 

time impacts gene regulatory network activation.  

The levels of Dorsal transcription factor almost double from one nuclear cycle to 

the next, approximately every 10 minutes (REEVES et al. 2012). How might a factor act as 

morphogen, to control spatial patterning, if its levels constantly change? One possibility is 
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that these transcription factor dynamics also induce unappreciated gene expression 

dynamics. By close analysis of the expression associated with four Dorsal target genes 

within precisely-staged, fixed embryos, two distinct temporal trends were found associated 

with targets (REEVES et al. 2012). Expression of the gene short-gastrulation (sog) 

(FRANCOIS et al. 1994) was found to be ‘plastic’ (dynamic), with levels changing 

constantly both upwards and downwards in time. For sog, it appears possible to turn gene 

expression on/off in time, presumably, in response to changing levels of Dorsal 

above/below an activation threshold when nuclear concentration oscillates between 

syncytial divisions. In contrast, other genes expressed along the DV axis, also Dorsal 

targets, such as snail (sna) (KOSMAN et al. 1991; IP et al. 1992) exhibit more of a ‘ratchet’ 

(monotonic) effect in that levels continue to steadily increase and expression domains never 

refine to narrower patterns once established despite changes in Dorsal. This “ratchet effect” 

is similar to the target response of another morphogen, Activin, important for patterning in 

Xenopus (GURDON et al. 1998). Thus, this preliminary analysis of four genes expressed 

along the DV axis in the Drosophila embryo identified two different temporal responses: 

dynamic (e.g. sog) versus monotonic (e.g. sna) (REEVES et al. 2012). However, as only a 

small number of targets were examined, it was not possible to distinguish whether these 

temporal changes were gene-specific responses or general network-wide trends. 

Furthermore, these dynamics may relate to differences in mRNA stability of transcripts or 

other post-transcriptional effects that have been little studied in the early embryo in relation 

to zygotic transcripts. 
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Case Studies in Transcription Factor Localization and Concentration 

Two prominent transcription factors active early in Drosophila development are 

Dorsal and Bicoid. The nuclear concentration, gradients, and embryonic localization of 

both transcription factors have been characterized, and present a contrast in nuclear import 

strategies (GREGOR et al. 2007; REEVES et al. 2012). Both are imported into nuclei during 

syncytial nuclear cycles, but the dynamics and import rate are different between the two 

(Figure 1.1).  

 

Figure 1.1. Bicoid and Dorsal Dynamics - Comparison of Nuclear Levels. A conceptual 
representation of the concentration of transcription factors Bicoid (blue) and Dorsal (Dl; red) in 
nuclei during late nuclear cycles based on data from previous studies (GREGOR et al. 2007; 
REEVES et al. 2012).  Measurements were obtained by monitoring live fluorescent intensity of a 
bcd-GFP or dl-Venus fusion molecules from a single nucleus at 10% along the AP axis for Bicoid 
or ventral most position for Dorsal. Nuclear intensity is normalized to the maximum for each 
transcription factor and overlaid. Inset is an illustration of a Drosophila embryo with transcription 
factor concentration gradients for Bicoid and Dorsal.  
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While Bicoid undergoes a rapid uptake, it also undergoes a decrease in concentration 

before nuclear division, indicating an overshoot and reduction in concentration to a lower 

steady state. Nuclear cycles 10-12 are too short to reach this overshoot and reduction, but 

nuclear cycles 13 and 14 show this characteristic, with the concentration of Bicoid 

stabilizing before mitosis, when it then drops to low levels before being imported again. 

Dorsal, on the other hand, undergoes a slower increase to maximum levels at each nuclear 

cycle, with no overshoot. While Dorsal never reaches a steady state during early nuclear 

cycles, the concentration of Dorsal begins to level off during nuclear cycle 13 and finally 

achieves a steady state during nuclear cycle 14, demonstrating a different import 

mechanism than that of Bicoid. Both Bicoid and Dorsal leave nuclei at very similar rates 

and times between nuclear cycles, indicating that export is likely due to rapid diffusion of 

the transcription factors when the nuclear envelope breaks down during mitosis.  

 

A temporally fine-scale, quantitative assay of gene expression provides insights into 

step-wise activation of Drosophila embryogenesis 

An assay of gene expression dynamics was performed recently using NanoString 

nCounter technology (Figure 1.2) to measure the levels of expression for ~70 genes in the 

early Drosophila embryo, focusing on those expressed along the DV axis and providing 

further insight into the dynamics of genes expressed in the early embryo (GEISS et al. 2008; 

SANDLER AND STATHOPOULOS 2016). Ten time points spanning nuclear cycles (NC) 10 

through 14 and also including gastrulation were investigated through assay of gene 

expression within individual, carefully-staged Drosophila embryos (Figure 1.2 A-C). 

Nuclear cycle 14 was divided into four time points, 14A-14D, providing data from before 
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(14A), during (14B and 14C), and after (14D) cellularization. In this analysis, the data 

suggested that tight temporal regulation of gene expression is key in the activation of the 

zygotic gene regulatory network and important for a properly developing embryo.  

 

Figure 1.2. Timeline of Embryonic Development and Dynamic Range of Gene Expression (A) 
A timeline of early embryonic development in Drosophila. Maternal transcripts deposited during 
oogenesis are degraded while zygotic transcripts increase in abundance as the genome is first 
activated. The embryo age in minutes after egg laying (grey text) and corresponding nuclear cycle 
(black text) are aligned. (B) Nuclear density increases as nuclear cycles progress until nuclear cycle 
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14, then nuclei elongate until gastrulation, as shown in expanded images. Microfuge tube: 
individual embryos were selected at specific time points for analysis and to create a developmental 
time course. (C) A representation of NanoString probes hybridized to a target mRNA molecule. 
Both probes anneal to contiguous 50bp regions of the mRNA molecule.  The reporter probe 
contains a target-specific fluorescent barcode, and the capture probe is conjugated to biotin for 
binding to a streptavidin-coated imaging cartridge. (D) mRNA abundance is highly variable and 
dynamic between different genes at the same time point and for the same gene at different time 
points. Different gene counts can vary by over four orders of magnitude simultaneously (dhd vs. 
pnr NC 10) or the same gene can vary by over 200-fold in around an hour (dhd, twi, and pnr). 
 

In particular, it was found that not all time points during early embryonic development are 

equal in terms of changing gene expression. While maternal genes are constantly being 

degraded and zygotic genes are constantly being expressed during the blastoderm stage 

(Figure 1.2 D), the average fold-change in expression between various time points can 

differ greatly. Both the greatest increase in transcription and decrease in abundance occur 

during the first part of NC 14 (i.e. the transition from NC 14A to 14B). In fact, the rapid 

increase in transcription seen at this stage is over four times higher than the increase later in 

NC 14 (i.e. between NC 14C and 14D) less than 30 minutes later. This drastic difference 

may relate to Dorsal transcription factor dynamics. Prior to NC 14, nuclei divide too 

rapidly to allow Dorsal to build to high levels. Also, some active transcription may be 

aborted at every division due to the limited time available (SHERMOEN AND O'FARRELL 

1991; O'FARRELL 1992; LEE et al. 2014).  

This transition at the beginning of NC 14 is the first time in development that both 

Dorsal nuclear import and transcription can proceed uninterrupted for over 15 minutes. 

There are also more zygotic transcription factors present at the start of NC 14 as the result 

of their transcription and translation into functioning proteins during the previous nuclear 

cycles. These factors combine to make the short time period of around 15 minutes the most 

transcriptionally active during the blastoderm stage. By mid NC 14 (i.e. NC 14C), many 
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genes have reached a steady state of abundance, and while there are more transcripts 

present than 30 minutes before during the period of rapid transcription, the overall change 

is the lowest of any time point studied. This steady state and period of relatively little 

change occurs just after Dorsal reaches its own maximum concentration in nuclei and 

ceases increasing. It is not coincidental, therefore, that the expression rate of genes that rely 

so closely on Dorsal match the nuclear concentration dynamics of Dorsal itself.  

Another benefit of the fine time scale quantitative profile provided by NanoString 

experiments is the ability to observe and dissect sub-circuits within the overall 

developmental Gene Regulatory Network (GRN). One of the most common sub-circuits 

found in GRN topologies is the feed forward loop, where an initial activator works 

cooperatively with one of its own targets to further activate more genes (DAVIDSON et al. 

2002; MANGAN AND ALON 2003). A key property of feed forward loops is that the 

activating effects of individual components are additive or synergistic, and that each input 

alone is unable to activate target genes at full strength (DE-LEON AND DAVIDSON 2009). An 

example of a feed forward loop in the Drosophila developmental GRN is found in the 

mesoderm, where Dorsal first activates Twist, and then Dorsal and Twist together activate 

many other mesoderm genes (Figure 1.3 A) (IP et al. 1992; STATHOPOULOS AND LEVINE 

2005). Since Twist has been shown to also activate mesoderm genes in the Drosophila 

embryo, it is a prime candidate for investigation and use in dissecting such network 

circuitry (KOSMAN et al. 1991; SANDMANN et al. 2007; SEHER et al. 2007; OZDEMIR et al. 

2011).  

 The additive nature of feed forward loops can be observed by comparing the 

dynamics of Dorsal-Twist cooperative activation in wild type embryos to the activating 
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ability of Dorsal alone in twi- flies. Using NanoString, it can be observed that during the 

blastoderm stage between NCs 10 and 13, the expression of mesoderm genes slowly and 

steadily increases at every nuclear cycle, but then undergoes a very rapid increase starting 

at NC 14 until a steady state in transcript levels is reached. This bimodal profile may relate 

to temporal increases in Dorsal levels and/or to the additive effect of a second factor 

joining a feed forward loop (Figure 1.3 B).  

Figure 1.3. Dynamics of the Maternal to Zygotic Transition: Dorsal/Twist Feed Forward 
Loop. (A) A schematic of the early gene regulatory network architecture of the mesoderm showing 
the feed forward loop between Dorsal, Twist, and the rest of the mesoderm genes. Length of line for 
each network component corresponds to the nuclear cycle of activation and detectable presence on 
the plot below. (B) Transcriptional activity of twi (blue) and downstream mesoderm gene NetA 
(green) overlaid with a representation of the Dorsal concentration (red) in ventral nuclei.  
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When twi is mutated so it can no longer bind to DNA and mutant embryos are 

assayed by NanoString, the rapid increase in transcription usually observed in NC 14 does 

not occur, and the slower rate of transcription observed in NCs 10-13 is maintained 

(SANDLER AND STATHOPOULOS 2016). This difference in transcription rate demonstrates 

the additive nature of feed forward loops; at NC 14, Dorsal alone is able to activate its 

targets at a moderate level, but the input of Twist is able to provide an additional boost 

transcription that is added to the input of Dorsal to support high level expression. While a 

role for Twist in supporting expression of genes in the early embryo has been appreciated, 

using the NanoString to quantify levels of expression in individual, staged embryos 

illuminated the temporal role for Twist in supporting expression of genes, specifically, at 

NC 14 (SANDMANN et al. 2007). 

 

Possible roles for step-wise progression of embryonic gene expression programs 

Moving forward, an important goal in the field is to understand the role of 

dynamics of gene expression in supporting proper embryonic development (MANU et al. 

2009; LOTT et al. 2011; RUSHLOW AND SHVARTSMAN 2012; ALI-MURTHY et al. 2013; 

WU et al. 2015). The recent quantitative analysis of gene expression in Drosophila 

embryos has highlighted activation of genes expressed along the DV axis occurs in a 

step-wise manner (REEVES et al. 2012; SANDLER AND STATHOPOULOS 2016). We contend 

this step-wise activation program is instrumental for DV patterning and suggest three 

ideas regarding its roles, below. 
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Activation of signaling pathways 

Cell-cell signaling is not thought to broadly impact DV patterning until 

cellularization at the 14th nuclear cycle, when cells form, as before this point the embryo 

develops as a syncytium in which nuclei are not separated from each other by cell 

membranes (STATHOPOULOS AND LEVINE 2005; PERRIMON et al. 2012). It is, presumably, 

for this reason that genes requiring input from Notch or EGFR signaling such as single-

minded (sim) and intermediate neuroblasts defective (ind), respectively, exhibit delayed 

expression that coincides with cellularization (MOREL AND SCHWEISGUTH 2000; LIM et 

al. 2013). However, recent studies have found that nuclei become compartmentalized 

before cellularization is complete (MAVRAKIS et al. 2009), suggesting that cell-cell 

signaling may be possible earlier.  

The progressive activation of the DV patterning GRN in the early Drosophila 

embryo may promote activation of signaling pathways in a step-wise manner. It is 

appreciated that subdivision of the embryo into distinct domains of expression, through 

patterning, is necessary to set-up activation of signaling pathways through differential 

expression of receptors and ligands. However, findings that signaling pathway 

components are expressed before NC14, some as early as NC10, suggest that activation 

of signaling may occur as a step-wise progression influenced by the gene network 

program to impact activation and/or levels of signaling. Studies in other systems have 

provided evidence that “fold-change” may trigger signaling activation rather than a 

particular threshold level of ligand; arguing that step-wise activation of signaling may be 

important (GOENTORO et al. 2009; SHOVAL et al. 2010). Furthermore, in such a system, 

the temporal presentation of ligands may be more influential than absolute levels in 
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supporting signaling pathway activation, supporting the recent view that concentration-

dependence is not pivotal to the action of morphogens (BRISCOE AND SMALL 2015; 

WOLPERT 2016). 

 

Control of gene expression cohorts 

Another finding from the NanoString study is that, while early embryogenesis is a 

dynamic time in general, there are stages of rapid coordinated changes in gene expression. 

For example, a gene cohort of Dorsal targets expressed in the mesoderm exhibit a gradual 

increase in abundance between NC 10 and 13, but then all exhibit a rapid and coordinated 

increase in transcription rate as NC14 begins (Figure 1.4 A). This coordinated increase 

occurs at the same time for all six mesoderm genes included in the NanoString study (twi, 

mes3, sna, hbr, NetA, and htl), and coincides with the time of high dynamic change 

between NCs 14A and 14B. In contrast, target genes of Bicoid expressed along the 

anterior-posterior (AP) axis, such as hb and otd, show no signs of a coordinated increase in 

expression between NCs 14A and 14B, or any other time point (SANDLER AND 

STATHOPOULOS 2016). The AP targets of Bicoid increase gradually during the time course 

without a rapid change in expression strength. This is likely due to the relatively stable 

levels of Bicoid found along the AP axis during early embryogenesis.  

A second group of six genes expressed in the dorsal ectoderm as targets of the 

TGF-β pathway (ASHE et al. 2000) behaved in a somewhat different way compared to the 

mesoderm genes (Figure 1.4 B). Like the group of mesoderm genes, the transcription of all 

six TGF-β target genes is also coordinated temporally. Unlike the mesoderm genes that all 

behave similarly, two classes of TGF-β target genes were uncovered based on different 
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kinetics of expression at the onset of NC14. One set exhibited slow and steady 

transcription whereas the other exhibited rapid expression. Despite these differences 

between mesoderm genes and TGF-β targets, the temporal coregulation of different groups 

of genes reinforces the idea that coordinated and precise timing of transcription is a key 

feature of the early GRN and has been observed in other systems (DUBRULLE et al. 2015).  

Figure 1.4. Timing of Gene Cohort Expression. (A) Genes expressed in the mesoderm are 
regulated as a cohort, with two coordinated phases of activation. Early coordinated activation begins 
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at NC 12, while robust coordinated activation begins at NC 14A for all genes examined (mes3, 
sna, NetA, hbr, htl) except for twi that is upregulated much faster and likely serves as input to other 
mesodermally-expressed genes together with Dorsal. (B) A cohort of genes expressed at NC 14A as 
targets of the TGF-β pathway in the dorsal ectoderm. The genes are temporally co-regulated, but 
diverge in their transcription rates. Genes ush, tup, and Race are transcribed quickly and reach a 
steady state, while genes pnr, hnt, and Doc1 are transcribed moderately. 
 

Furthermore, identification of additional gene expression cohorts such as these will 

facilitate approaches aimed to identify shared regulatory motifs in enhancers and promoters 

that support shared dynamics.  

An additional difference is uncovered between the mesoderm and TGF-β target 

genes when the number of transcripts per cell is calculated instead of overall number of 

transcripts per embryo. When the overall number of transcripts for each group is divided by 

the number of cells expressing each gene, the mesoderm genes are maintained in a rank-

order of abundance through the entire time course, while TGF-β target genes are expressed 

in a very similar number of transcripts per cell. A possible explanation for the persistent 

differences in expression per cell for mesoderm genes compared to the similar levels of 

expression for TGF-β targets is their position in the GRN. The mesoderm genes are some 

of the first zygotic genes to be activated in the network, while the TGF-β target genes are at 

the output level of a signaling pathway at the end of the pre-gastrulation network. It may be 

important to maintain different levels of gene expression early in developmental pathways 

in order to activate or repress targets in varying ways, while genes at the output level of 

signaling pathways are programmed to be expressed in similar levels to each other as the 

signaling pathway integrates changing inputs into a stable output.  
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Irreversibility of the embryonic patterning process 

Another factor contributing to the irreversible nature of the step-wise activation of 

the GRN is syncytial nuclear division leading to increasingly stronger pulses of nuclear 

Dorsal. Beginning at NC 10, when nuclei migrate to the periphery of the embryo, nuclei 

in the ventral portions of the embryo are exposed to the highest concentrations of Dorsal 

and begin transcribing early mesoderm-determining transcription factors such as twist 

(twi) and sna (ALBERGA et al. 1991; KOSMAN et al. 1991; LEPTIN 1991). Although the 

first few nuclear cycles during the syncytial blastoderm stage are brief, around 10 

minutes each, the short length of many early transcription factors allows them to be fully 

transcribed before nuclear division aborts active transcription. This brief pulse of 

transcription supplies mature transcripts to allow for the translation of full-length and 

functional proteins, able to either activate additional mesoderm genes in the case of twi or 

repress the expression of neurogenic ectoderm genes in the case of sna. The first active 

transcription factors set into motion cascades of activation and repression, with each 

subsequent nuclear cycle being accompanied by higher concentrations of Dorsal leading 

to the presence of even more early transcription factor gene products.  

Each nuclear cycle can be thought of as a developmental step, leading nuclei or 

cells down a one-way trajectory towards their ultimate fate. GRN activation is a natural 

consequence of early Dorsal-mediated expression of the first transcription factors. The 

rapid nature of syncytial nuclear divisions combined with ever-increasing concentrations 

of Dorsal ensures that regulatory states established early in development are robustly 

transmitted and engrained in nuclei during subsequent nuclear divisions. By the time 

cellularization occurs in the middle of NC 14, the previous rounds of nuclear division 
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have set up a situation where the cells have no choice but to follow the path laid out for 

them, and the rapid onset of intracellular signaling pathways only serves to further 

cement these fates. On the other hand, Bicoid levels do not change as dramatically. It is 

possible that Bicoid is required only early in the AP patterning GRN, to set a chain of 

events in motion that relies more heavily on duration of Bicoid signal than absolute 

concentration in nuclei. Dorsal may remain continuously necessary as its concentration 

increases, supporting early patterning as well as late patterning events, up to when its 

levels plummet at gastrulation. 

 

Key challenges in studying spatiotemporal regulation of gene expression programs 

As discussed above, dynamic gene expression likely relates to proper timing of 

signaling pathway activation and also the step-wise progression of gene expression 

programs helps support irreversibility of the process. However, we have only scratched 

the surface in understanding how dynamic gene expression within this gene network is 

controlled at a mechanistic level. Below we comment on three areas of future research 

that will provide insight and better understanding.  

 

Roles of additional transcription factors, both ubiquitous and spatially localized, in 

controlling temporal gene expression programs 

It is clear that the ubiquitous zinc-finger transcription factor Zelda is very 

important for supporting early zygotic expression in the early Drosophila embryo (LIANG 

et al. 2008; NIEN et al. 2011). However, other factors also contribute to timing of gene 

expression. STAT92E, another ubiquitous factor, broadly influences early zygotic 



 

 

19 
transcription, as does the Grainy head transcriptional activator, exemplified by its 

support of ind expression (HARRISON et al. 2010; GARCIA AND STATHOPOULOS 2011; 

TSURUMI et al. 2011). It is likely that a number of ubiquitous activators including Zelda, 

STAT92E, and Grainy head impact patterning and that these factors may exhibit different 

timing of action. Also, as discussed above for Dorsal, transcription factors known 

primarily for their roles in supporting spatial patterning may also regulate timing of gene 

expression. Lastly, globally-acting repressors likely function to counterbalance this 

activation, to regulate spatial (OZDEMIR et al. 2014) as well as temporal expression. 

Understanding how these factors, ubiquitous or spatially-localized, collectively influence 

timing of gene expression programs is an important area of future research. Additionally, 

synthetic reporter constructs combining transcription factor binding sites [e.g. Dorsal, 

Zelda, and the early transcriptional repressor Suppressor of Hairless, Su(H)] have begun 

to examine the relationship between number and organization of binding sites, ‘cis-

regulatory logic’ or ‘grammar’, to spatial regulation of expression (JIANG AND LEVINE 

1993; LIBERMAN AND STATHOPOULOS 2009; OZDEMIR et al. 2014). Another promising 

future direction is to study how combinatorial control and organization of sites relates to 

timing and levels of gene expression (ERIVES AND LEVINE 2004; CROCKER et al. 2008; 

FARLEY et al. 2015). 

 

Coordinate action of cis-regulatory modules and role in supporting gene expression 

dynamics  

Transcription factors, for the most part, act on cis-regulatory modules (CRMs), 

and to understand how timing of gene expression is regulated a better understanding of 
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how CRMs cooperate to support gene expression must be acquired. Recent studies 

have found that multiple cis-regulatory modules are often associated with genes and are 

co-acting (HONG et al. 2008; PERRY et al. 2009; BAROLO 2012; STALLER et al. 2015). 

Some CRMs work concurrently to control spatial domains and levels of expression 

(PERRY et al. 2010; DUNIPACE et al. 2011), whereas others work sequentially to control 

the changing expression of genes in time (DUNIPACE et al. 2013). These insights lead 

directly to the question of how multiple CRMs coordinate in space and time. Recent 

studies have identified autoregulatory feedback as the mechanism regulating the switch 

from an early-acting CRM to a later-acting CRM at the brinker gene locus, which 

regulates the spatiotemporal expression of this gene (DUNIPACE et al. 2013). Therefore, 

understanding of both (i) spatiotemporal inputs (i.e. transcription factor dynamics) as 

well as (ii) CRMs acting and their coordinate action is required to understand how 

temporal gene expression is controlled. 

 

Role of post-transcriptional regulation in temporal gene expression and gene functions 

In an analysis of spatiotemporal profiles for the genes sog and sna, evidence was 

obtained that sog transcripts are degraded at the transition from NC 13 to NC 14 whereas 

sna transcripts are retained (REEVES et al. 2012). A simple explanation is that the short 

timeframe of NC 13, under 15 minutes, is not long enough to support transcription of 

long genes and therefore nascent transcripts that do not reach maturity are degraded 

(SHERMOEN AND O'FARRELL 1991; LEE et al. 2014). However, an alternate possibility 

(not mutually exclusive) is that post-transcriptional mechanisms influence the abundance 

and stability of zygotic transcripts present in the embryo (KUERSTEN AND GOODWIN 
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2003; SEMOTOK AND LIPSHITZ 2007; LASKO 2011). An exciting future direction would 

be to uncover how post-transcriptional regulation factors into the timing of 

developmental progression and, specifically, to uncover how it influences DV patterning 

and signaling pathway activation. 

 

Concluding remarks 

In summary, recent studies highlight the need to consider the dorsal-ventral gene 

regulatory network as a step-wise process in which the status of the system (i.e. gene 

expression) is assayed with fine temporal resolution. Use of the NanoString technology 

has supported generation of a time-series from carefully staged, individual Drosophila 

embryo fixed samples (SANDLER AND STATHOPOULOS 2016). From these data, dynamic 

trends within gene regulatory networks can be inferred such as identification of gene 

expression cohorts and specific, temporal roles for transcription factors (DUBRULLE et al. 

2015). Furthermore, imaging transcripts directly and dynamically in living embryos over 

time is a complementary approach that is also able to assay dynamics of nascent 

transcripts associated with a single gene (GARCIA et al. 2013; LUCAS et al. 2013; 

BOTHMA et al. 2014). Identifying technologies that make it possible to assay expression 

levels for tens of genes in vivo live would be an exciting future frontier (DEAN AND 

PALMER 2014). The ultimate goal is to attain a complete understanding of the control of 

spatiotemporal gene expression, how it results from the action of transcription factors on 

one or more cis-regulatory modules. Model organisms are an excellent choice for such 

system level analyses aimed at deciphering regulatory logic that can help us better 

understand GRNs acting in humans. As more GRN studies emerge, it is becoming clear 
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that a common set of subcircuit designs is used (ALON 2007; DAVIDSON 2010). 

Additional trends, or even differences, may emerge from more comparative studies.  
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C h a p t e r  2  

QUANTITATIVE	SINGLE-EMBRYO	PROFILE	OF	DROSOPHILA	GENOME	

ACTIVATION	AND	THE	DORSAL–VENTRAL	PATTERNING	NETWORK	

ABSTRACT 

During embryonic development of Drosophila melanogaster, the Maternal to 

Zygotic Transition (MZT) marks a significant and rapid turning point when zygotic 

transcription begins and control of development is transferred from maternally deposited 

transcripts. Characterizing the sequential activation of the genome during the MZT requires 

precise timing and a sensitive assay to measure changes in expression. We utilized the 

NanoString nCounter instrument, which directly counts mRNA transcripts without reverse 

transcription or amplification, to study over 70 genes expressed along the dorsal-ventral 

(DV) axis of early Drosophila embryos, dividing the MZT into 10 time points. Transcripts 

were quantified for every gene studied at all time points, providing the first data set of 

absolute numbers of transcripts during Drosophila development. We found that gene 

expression changes quickly during the MZT, with early Nuclear Cycle (NC) 14 the most 

dynamic time for the embryo. twist is one of the most abundant genes in the entire embryo 

and we use mutants to quantitatively demonstrate how it cooperates with Dorsal to activate 

transcription and is responsible for some of the rapid changes in transcription observed 

during early NC14. We also uncovered elements within the gene regulatory network that 

maintain precise transcript levels for sets of genes that are spatiotemporally co-transcribed 

within the presumptive mesoderm or dorsal ectoderm. Using this new data, we show that a 

fine-scale, quantitative analysis of temporal gene expression can provide new insights into 
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developmental biology by uncovering trends in gene networks, including coregulation of 

target genes and specific temporal input by transcription factors. 

 

INTRODUCTION 

The Maternal to Zygotic Transition (MZT) is a key step in animal embryonic 

development, when maternally deposited transcripts are degraded in the embryo, and the 

embryonic genome is first activated. In Drosophila melanogaster, the MZT takes place 

within the first three hours of development, during the late syncytial nuclear divisions and 

ending at the cellular blastoderm stage with gastrulation (FOE AND ALBERTS 1983; 

PRITCHARD AND SCHUBIGER 1996; TADROS AND LIPSHITZ 2009). Gene expression during 

the MZT is highly dynamic, with patterns of zygotic genes first being established and 

changing between and within nuclear cycles (STATHOPOULOS AND LEVINE 2005; REEVES et 

al. 2012). It is clear therefore that each syncytial nuclear cycle can be treated as a single, or 

even multiple developmental time points. A few recent RNA-seq based studies have in fact 

divided embryonic development into time points based on syncytial nuclear divisions for 

this very reason (LOTT et al. 2011; ALI-MURTHY et al. 2013). In previous studies, however, 

the syncytial nuclear stage, especially nuclear cycles 10-14, has been grouped together in a 

small number of developmental stages or time points (BOWNES 1975; BATE AND MARTINEZ 

ARIAS 1993; GRAVELEY et al. 2011). These pioneering studies provided the basis for 

studying embryonic development of Drosophila, and the modENCODE transcriptome 

provided a depth of sequencing data never before achieved for Drosophila.  We choose, 

however, to focus on a fine time scale approach and fewer genes to provide a detailed 

analysis of a specific period in development (REEVES et al. 2012).  
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The top-level network inputs appear to be more dynamic on the DV axis than on 

the Anterior-Posterior (AP) axis. An activator of AP transcription is maternally deposited 

bicoid, which is transported to the anterior pole and forms a concentration gradient. The 

nuclear concentration of Bicoid during the final five nuclear cycles remains mostly constant 

during each nuclear cycle, indicating that Bicoid itself activates transcription of AP genes 

at a constant rate through these nuclear cycles (GREGOR et al. 2007). In contrast the protein 

product of the maternal gene dorsal, found in a DV gradient, increases in concentration 

within nuclei during each of the final five nuclear cycles (REEVES et al. 2012). This 

increase in nuclear Dorsal concentration suggests that the DV network is activated 

differently at each nuclear cycle, both by Dorsal itself, and by a network of transcription 

factors that respond to different levels of Dorsal. The combination of the rapidly changing 

transcriptional landscape during the MZT, the increasing nuclear concentration of Dorsal 

on the DV axis, and the small number of studies that have examined embryogenesis at the 

single nuclear cycle level present an opportunity to use emerging technologies to provide 

additional insight into this gene patterning network.  

In this study, we examine the MZT and gene expression dynamics of the DV 

network at 10 time points during Drosophila embryonic development between NC10 and 

gastrulation at a 10-15 minute resolution. We utilize the NanoString nCounter instrument to 

directly detect and quantify 68 early embryonic genes from single embryos, and we 

calculate the absolute number of transcripts per embryo for every gene at every time point 

in the study (GEISS et al. 2008b). The NanoString system is able to precisely quantify 

transcripts across five orders of magnitude from a single embryo without the need to 

fragment, amplify, or reverse transcribe the RNA (GEISS et al. 2008a). The direct detection 
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of mRNA molecules minimizes steps between sample collection and data acquisition, 

reducing error, sample loss, or contamination. RNA-seq has been used in past studies of the 

Drosophila MZT to quantify the number of transcripts for a gene in the early embryo, and 

while these studies provide an abundance of data for all genes transcribed, the methods 

used have been shown to introduce bias in transcript count and read coverage that can 

hamper absolute quantification of transcripts (HANSEN et al. 2010; LOTT et al. 2011; 

ROBERTS et al. 2011; ALI-MURTHY et al. 2013; PETKOVA et al. 2014).  

 

MATERIALS & METHODS 
 
Fly stocks. Embryo collection and live imaging was done on flies with a His2Av-RFP 

fusion [Bloomington Drosophila Stock Center (BDSC) 23650]. twist- (twi) embryos were 

obtained using a twi1/CyO stock (BDSC 2381). PCR for LacZ was done on all mutant 

embryos to confirm the absence of the balancer chromosome and the presence of 

homozygous twi- mutant chromosomes.  

 

Live imaging and embryo collection. Flies with the His2Av-RFP fusion were allowed to 

lay eggs for four hours at 25°C. Individual embryos were hand de-chorionated and 

mounted on a microscope slide using a modified version of the hanging-drop method 

(REED et al. 2009). Nuclear divisions were monitored using epifluorescence, and confocal 

images of individual embryos were captured when embryos reached a desired 

developmental stage (Figs. 1A and B). NC13 was broken into two stages based on number 

of minutes into interphase, with early NC13 at five minutes into interphase, and NC late 

13 at 12 minutes into interphase. NC14 was divided into four stages, 14A, 14B, 14C, and 
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14D, with embryo stage determined by three criteria: time elapsed in interphase, 

nuclear elongation, and progression of cellularization. NC14A was staged at 10-15 

minutes into interphase, with a 1:1 ratio of nuclear length to width, and before the start of 

cellularization. NC14B was staged at 25-30 minutes with a nuclear elongation ratio of 2:1 

and cellularization progressed less than 33%. NC14C was staged at 40-45 minutes with 

a nuclear elongation ratio of 3:1 and cellularization progressed less than 66%. NC14D was 

staged at 55-60 minutes with a nuclear elongation ratio greater than 3:1 and 

cellularization progressed greater than 66%. Selected embryos were placed in 100uL 

Trizol Reagent and snap-frozen in liquid nitrogen within one minute of imaging and stored 

at -80°C. Confocal images of collected embryos were analyzed and the precise nuclear 

cycle determined by calculating nuclear density.  

 

RNA extraction and NanoString analysis. Embryos of desired developmental stage were 

selected based on confocal image analysis, thawed and crushed, and 900uL Trizol Reagent 

was added. Additionally, 1ul of Affymetrix GeneChip Poly-A RNA Control was added at a 

dilution of 1:10000. RNA was extracted from Trizol Reagent according to the standard 

protocol, except an additional chloroform extraction and an additional 70% Ethanol wash 

were preformed to increase the purity of RNA for hybridization. Purified RNA was 

resuspended in 10uL RNAse free dH2O and 1uL was analyzed on a NanoDrop 2000 UV-

Vis Spectrophotometer to determine RNA purity and concentration. 5uL of RNA from a 

single embryo was hybridized with NanoString probes at 65°C for 18 hours and transcripts 

were quantified on the NanoString Digital Analyzer using the high sensitivity protocol and 

1155 fields of view. Three single embryos were analyzed for each time point and the 
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average transcript count was used after normalization with GeneChip Poly-A RNA 

Controls and NanoString positive controls. Any NanoString experiments with abnormally 

high or low RNA spike-in counts were excluded from final data analysis and additional 

embryos were used to generate data.  

A NanoString bioinformatics team carried out probe design so that all probes had 

similar binding properties and bound to one single exon that covered as many isoforms as 

possible for each gene. NanoString specifications indicate that hybridization efficiencies 

may vary by up to two-fold. After data was collected from the NanoString nCounter, 

background was removed by averaging three RNA negative runs on the nCounter, 

averaging the count for each probe, and subtracting probe specific background from 

each gene. For 75 probes, the background count was in the single digits, with the 

background count of a single probe giving 250 counts. This probe was deemed 

defective by the manufacturer and excluded from the study. Figure S1 shows the raw 

background counts for all probes. Table S2.1 lists probe sequences used for NanoString 

code set. Table S2.2 provides quantified counts for all Drosophila genes in the code set. 

 

RESULTS 

Creation of a Developmental Time Series.  

We selected nuclear cycle 10 through gastrulation as the extent of the time series in 

order to focus on the beginning of the syncytial blastoderm stage when maternal transcripts 

are abundant and zygotic transcription is beginning, until gastrulation, when zygotic 

transcription is robust and many signaling pathways are functioning (Figure 1.2 A). We 

staged individual embryos at each time point using a transgenic line of flies carrying a 



 

 

36 
Histone-RFP fusion, using fluorescence to visually inspect and capture an image of each 

embryo immediately before collection. Nuclear cycle was confirmed by calculating nuclear 

density using confocal images. Immediately after imaging, embryos were immersed in 

Trizol and snap-frozen in liquid nitrogen (Figure 1.2 B).  

Control mRNA spike-ins were added during extraction to determine NanoString 

efficiency and calculate absolute number of transcripts per embryo in a manner not biased 

by number of cells or other measures that rely on embryonic transcription (LOVEN et al. 

2012). RNA was hybridized with NanoString probes according to standard protocols, and 

the RNA-Probe hybrid molecules were bound to slides using the nCounter Prep Station and 

counted using the nCounter Digital Analyzer. Raw counts were normalized using both 

NanoString positive controls added to the probe mix during synthesis and mRNA spike in 

controls added during extraction.  

 

Quantification of Transcripts and Dynamic Range of Transcription.  

To compute the absolute number of transcripts for genes included in the data set, 

we calculated a linear regression (R2=0.966) for the mRNA spike-ins comparing input to 

NanoString counts, and fit counts for all other genes to this regression line. Using this fit, 

we calculated a scaling factor of 232.84 ± 11.52 (confidence interval p≤0.001) between 

NanoString counts and number of RNA molecules in the sample. Linear regressions for 

control mRNA input and NanoString positive controls are displayed in Figure 2.1 C.  
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Figure 2.1. Quantification of NanoString counts and comparison to previously quantified 
genes. (A) Linear regression of RNA spike in controls (blue) and NanoString positive controls 
(orange). The graph displays both absolute number of control molecules added and number counted 
per sample for four foreign RNA spike-ins added to embryonic RNA during extraction and positive 
controls added to the NanoString probe mix during manufacture. (B) The dynamic range of 
transcription varies over four orders of magnitude between the least abundant (pnr) and most 
abundant (dhd) gene in the code set, but still completely within the six log dynamic range detection 
limit of the NanoString instrument. Error bars represent confidence interval p≤0.001. In this and 
other figures, number of transcripts refers to counts measured from single embryos, done in 
triplicate and averaged. (C) The genes bcd and sna have previously been quantified in the embryo 
during a single time point or subset of time points within the time course covered by this study. 
Their expression profiles calculated using NanoString, as measured in number of transcripts per 
embryo, are plotted. Error bars represent confidence interval p≤0.001. (F,G) qPCR comparing the 
abundance of bcd (D) and sna (E) to spike-in RNA controls shows that the ratio between bcd and 
sna transcripts and the controls is highly similar to the ratio calculated using NanoString. Error bars 
represent SEM. 
 

We found that the temporal variation in transcript abundance for individual genes 

was large, with some genes changing by over three orders of magnitude in under an hour 

(Fig. 1D). In addition, the difference between the most and least abundant transcript within 
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a single time point was four orders of magnitude. In NC10, there were 7.97x10^7 copies 

of dhd and 2.63x10^3 copies of pnr, a fold-difference of over 30,000 (Figure 2.1D). The 

change in expression for single genes and the differences in expression between various 

genes further reinforce our division of the MZT into 10 time points to capture rapid 

changes and highlight the dynamic nature of embryonic development during this time 

period.   

In order to validate the accuracy of the NanoString instrument, we performed qPCR 

on two embryonic genes included in the study. We selected snail at peak expression during 

NC14C as a representative of expression level of many genes during this time, and bicoid 

during NC14D when the majority of transcripts have been degraded, to validate the ability 

of NanoString to detect rare transcripts. We extracted total RNA from single embryos using 

the same method as NanoString experiments and the same exogenous mRNA spikes to 

quantify the number of transcripts. Using qPCR, we calculated 6,566±72 bcd transcripts 

present at NC14D, and 6458±320 using NanoString, a difference of 1.68% (Fig. 2.1 D). 

For sna, we calculated 1,472,568±3,681 transcripts in the embryo during NC14C using 

qPCR, and 1,442,597±71,409 transcripts using NanoString, a difference of 2.04% between 

qPCR and NanoString (Figure 2.1 E). Because of the essentially identical values calculated 

with qPCR and NanoString, we concluded that our use of external mRNAs with 

NanoString to quantify all genes in the dataset is accurate.  

Dynamic Change Between Nuclear Cycles is Highly Variable.  

When measuring the overall positive and negative change in transcript abundance 

from one nuclear cycle to the next, we noticed that the transition from NC14A to 14B is the 

most dynamic in the time course. Between NC14A and 14B, the greatest increase in 
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transcription and greatest amount of degradation both occur, measured as positive or 

negative relative change for all genes from the previous nuclear cycle (Figure 2.2 A,B). 

The average fold-increase for genes between NC14A and 14B was 5.6±1.2, while the 

average fold-increase between all other NCs was 1.9±0.2. The decrease from NCs 14A to 

14B was slightly less pronounced, at 3.0±0.8 fold, compared to 1.6±0.1 for all other NCs.  

Of the genes with the greatest increase from NC14A to 14B, the majority are 

Dorsal targets expressed in the mesoderm or neurogenic ectoderm, as well as genes also 

expressed in the dorsal ectoderm as part of the TGF-β pathway (Figure 2.2 C). Genes that 

rapidly decrease between NCs 14A and 14B are maternally deposited transcripts or are 

zygotic genes refined from broad to narrow patterns (Figure 2.2 D). Purely maternal genes 

dhd and yl were among the most reduced transcripts, as well as zygotically refined genes 

zen, scw, and hb.  

Interestingly, the genes bcd and spz, both commonly thought of as purely maternal, 

showed evidence both of degradation of maternal products and zygotic transcription. 

Transcript counts for both bcd and spz first increased, then declined sharply between NCs 

14A and 14B, indicating a quick burst of zygotic transcription as maternal products were 

being degraded (Figure 2.3 A). The number of transcripts remains at a higher level than the 

minimum counted at the maternal to zygotic switch point for three or four additional time 

points, adding more weight to the finding that there is new embryonic transcription of these 

genes.  
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Figure 2.2. Figure 2. Dynamic change between nuclear cycles. (A, B) Average fold-increase or 
decrease for genes changing between each nuclear cycle. The transition from nuclear cycle 14A to 
nuclear cycle 14B is the most dynamic in the entire time course, both in terms of the overall 
increase and decrease in number of transcripts detected for genes. Between these two time points, 
the amount of transcripts for some genes increases more than 50-fold in around 15 minutes. Error 
bars represent SEM. (C) There are 17 genes with a 5-fold or greater increase between nuclear cycle 
14A and 14B, most of which are direct Dorsal targets in the mesoderm and ventral ectoderm, or 
targets of the TGF-b pathway. (D) There are seven genes with a 2-fold or greater decrease in this 
period, with genes maternally deposited and being degraded (blue), broadly expressed and being 
spatially refined (orange), or both maternally deposited and zygotically transcribed before being 
degraded (purple).  

 

In situ hybridizations using intronic probes show that there is in fact zygotic 

transcription of bcd detected as early NC11 (Figure S2.2), with dots of nascent nuclear 
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signal visible in many nuclei throughout the embryo. Since maternal bcd is spliced and 

mature before the egg is laid, signal from intronic probes must indicate new zygotic 

transcription.  

Figure 2.3. Diversity in Maternal to Zygotic Switch Points. (A) AP axis genes hb and bcd and 
(B) DV axis genes shn, neu3, and pnt are both maternally deposited and zygotically transcribed. (C) 
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The broadly acting transcription factors zld and Su(H) are both maternally deposited and 
zygotically expressed, with the zygotic activation occurring early at NC11 and 12 for zld and Su(H), 
respectively. (D) Despite the overall increase in number of transcripts for both zld and Su(H), the 
highest number of copies per nucleus occurs at NC10, before the maternal transcripts are 
completely degraded and zygotic transcription takes place. Transcription of both genes is strong 
enough, however, to cause a slight increase in number of transcripts per cell during NC14. (E) A 
timeline of maternal to zygotic switch points, with the number of each class of gene that switches at 
every time point. All error bars represent confidence interval p≤0.001. 

 

It is possible that embryonic transcription is needed to maintain the correct level of 

protein if mRNA degradation occurs too quickly. This finding provides a new insight into 

the transcription and regulation of two genes and shows the strength of the NanoString 

system to acquire highly sensitive data that can be validated by other traditional 

experimental methods. 

In addition to the change between nuclear cycles being highly variable, the switch 

from maternal to zygotic control is variable for genes that are both maternally deposited 

and zygotically transcribed. We define the maternal to zygotic switch point as the time 

when degradation of maternal input is overwhelmed by zygotic transcription, and counts 

increase. We included 19 dual maternal and zygotic genes in the study, and found that the 

maternal switch points occur as early as NC11 and as late as NC14A (Figure 2.3 A-C). 

Both dual switching AP genes included, bcd and hb, switch at NC12 (Figure 2.3 A) along 

with seven other DV genes; however DV genes med, E(spl)m8, and sax switch at NC11, 

spi and cic switch at early NC13, and Neu3 and pnt switch at NC14A. The ubiquitous 

transcription factors zld and Su(H) have switch points at NCs 11 and 12 respectively. 

Because they are ubiquitous, we calculated the number of transcripts per nucleus or cell 

(for pre-cellularized or post-cellularized embryos, depending on nuclear cycle) in addition 

to the number of transcripts per embryo. Overall, maximum expression for zld and Su(H) 
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occurs at NCs 14D and 14B respectively, but when number of transcripts are divided by 

number of nuclei or cells present, transcripts are most abundant at NC10. This is consistent 

with studies showing that zld acts as an early activator of expression, with effects from lack 

of zld transcripts observed much earlier than NC14 (NIEN et al. 2011). Robust transcription 

late in the time course is able to compensate for nuclear division and dilution of transcripts, 

and the number of transcripts per cell for both zld and Su(H) increase during NC14.  

The relative rate of transcript degradation between each nuclear cycle follows the 

pattern of diversity observed in maternal to zygotic switch points, in that there is a wide 

range of rates at which maternal transcripts are degraded. We computed relative 

degradation between maternal genes by calculating the percentage of transcript decrease for 

each gene at nuclear cycle transitions, and then comparing rates between genes.  

Degradation rates differ by up to 31.9% between genes, and degradation occurs until 

NC14A for some genes.  

 

Zygotic Genome Activation and Mesoderm Gene Network Properties.  

The mesoderm presents an opportunity to study a set of genes that are 

spatiotemporally co-activated. We selected the genes twi, sna, htl, hbr, NetA, and mes3, 

which are all dependent on the binding of the transcription factor Dorsal for their 

expression. When the transcripts per embryo for the mesoderm genes are compared, it is 

clear that there is a specific rank-order of abundance maintained throughout the time series 

(Figure 2.4A). twi is more than twice as abundant as the next gene, mes3, and more than 

seven times as abundant as the weakest gene, htl. All six mesoderm genes have similar 

boundaries on the DV axis (Figure 2.4 C’-F’), but have different boundaries on the AP axis 
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(Figure 2.4 C-F). The twi domain extends to the anterior and posterior poles of the 

embryo, while the htl domain is found in the middle ~75% of the AP axis. We counted the 

number of nuclei expressing all six mesoderm genes and determined the number of 

transcripts per nucleus.  

Figure 2.4. Mesoderm gene expression and transcription rates. (A) Expression profiles of the 
mesoderm genes twi, htl, mes3, sna, NetA, and hbr. (B) Number of transcripts per cell was 
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calculated by dividing the absolute number of transcripts by number of cells expressing each 
gene. (C-F) In situ hybridization using riboprobes against mesoderm genes twi, sna, htl, and NetA, 
showing their respective expression domains laterally and dorsally. (G-J) Expression of twi, sna, htl 
and NetA in twi- embryos, with mutant expression data collected at late NC13, NC14C, and 
gastrulation. Dashed linear regression trend lines show trajectory of expression without twi. (K-N) 
In situ hybridizations of twi, sna, htl, and NetA in twi- embryos. All error bars represent confidence 
interval p≤0.001. Embryos are staged to NC14C.   

 

Even after normalizing for number of nuclei, the rank-order of abundance remains 

the same for all six genes throughout the time series, although several genes that were 

differentially expressed in whole-embryo counts are more similarly expressed in individual 

nucleus counts. In late NC13, there are ~25% more twi than sna transcripts in the whole-

embryo count, and the difference between the two genes drops to less than 1% in per-

nucleus counts for a short time, however the order is established again in NC14 (Figure 2.4 

A, B). A similar change of 20% more hbr than htl in NC14 for the entire embryo drops to 

less than 3% per cell. Still, the rank order remains the same even when transcripts per cell 

are calculated. NCs 10 and 11 were difficult to estimate, since robust patterns do not appear 

until NC12, and therefore we did not include the earliest two time points in the per nucleus 

calculations.  

It is also clear that transcription of mesoderm genes is biphasic. In NCs 10-13, there 

is a moderate and steady increase for each of the six genes. In NC14, the increase in 

number of transcripts becomes much more rapid. Since all six mesoderm genes depend on 

Dorsal and Twist for activation, and Dorsal is maternally deposited, we analyzed embryos 

from twi- flies in an attempt to explain the rapid increase in transcription observed in NC14. 

We selected late NC13, 14C, and gastrulation for the twi- analysis, which cover early, peak, 

and declining Twist activation. We found that in late NC13 twi- embryos, the average 
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expression of mesoderm genes was 76.4% ±11.6% of wild type, indicating that Dorsal 

activation accounts for around 76% of transcription at that time point, with some variability 

between genes, while Twist supports the rest of the activating input. At NC14C, the 

average expression level of mesoderm genes in twi- embryos was 22.5% ± 8.5% that of 

wild type. This drastic drop suggests that Twist is responsible for over 77% of the 

expression of mesoderm genes at this time. During gastrulation, the average expression of 

mesoderm genes slightly recovered to 55.9% ±3.7% of wild type levels, implying that 

Twist is responsible for less than half of the activation. When the data from twi- embryos is 

plotted with wild type data, it is evident that without Twist activation, the transcription rate 

of the mesoderm genes matches the early transcription rate, when Dorsal is the 

predominant activating transcription factor (Figure 2.4 G-J). When in situ staining is 

performed for all four mesoderm genes in twi- embryos, it is clear that both the expression 

domain and level of expression are both reduced without activation from Twist (Figure 2.4 

K-N). Therefore, the input of Twist is responsible for the rapid increase in transcription 

observed for the mesoderm genes during nuclear cycle 14.  

 

Sequential Activation of the TGF-β Signaling Pathway and Compensatory 

Transcription.  

The TGF-β signaling pathway is one of the best-studied signaling pathways in 

Drosophila, and model organisms in general, and because the components are well known, 

presents an opportunity to observe how the MZT activates a complete signaling pathway 

(WU AND HILL 2009; AKHURST AND PADGETT 2015). We included 18 members of the 

TGF-β pathway, as well as others peripherally related. The two primary ligands are Dpp 
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and Scw, both purely zygotically transcribed. While peak TGF-β signaling takes place in 

the dorsal ectoderm, both scw and dpp are initially expressed in broader regions of the 

embryo. The expression of dpp extends to the ventral midline during NC13 and the 

expression of scw is ubiquitous starting as early as NC11, and both genes refine to the 

dorsal ectoderm during NC14. Our NanoString data confirms this initial broad expression 

and subsequent refinement of both dpp and scw (Figure 2.5 A). Furthermore, both scw and 

dpp decrease at very similar rates from NC14B onwards, including a pause in decreasing 

from NC14C to 14D, when they are both in the last stage of refining to their final 

expression domain. We included six TGF-β targets in the study, and found that they are all 

strongly activated beginning in NC14. We separated TGF-β targets into two classes, based 

on how they are activated in NC14. Genes pnr, hnt, and Doc1 are expressed in a gradually 

increasing manner throughout NC14, until gastrulation when the rate of transcription levels 

off (Figure 2.5B). In contrast, Race, tup, and ush increase very quickly at the beginning of 

NC14 and reach a plateau as early as NC14B or 14C (Figure 2.5 B).  

The TGF-β targets are expressed in the same general domain of the embryo, but the 

exact patterns differ between the genes. We counted the number of cells expressing the 

genes ush, Race, and hnt for NCs 14C, 14D, and at the onset of gastrulation. We focused 

on these three genes because they are expressed purely along the DV axis, unlike the other 

three that are expressed in AP-modulated patterns as well, and these time points because 

they fall during the peak of TGF-β signaling, when the genes are expressed in their final 

domains. TGF-β target expression during earlier time points is still developing and final 

patterns are not yet established. When the whole embryo transcript levels for the three 
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genes are compared, ush is always the most abundant, with Race at around 60% of the 

ush levels and hnt at around 22% of ush levels (Figure 2.5 F).  

 
Figure 2.5. Activation and properties of the TGF-β signaling pathway and targets. (A, B) 
Expression profiles TGF-β ligands scw and dpp (A) and TGF-β target genes ush, tup, Race, pnr, 
hnt, and Doc1 (B) showing number of transcripts per embryo. (C-E) In situ hybridizations showing 
expression patterns for ush, Race, and hnt, both laterally and dorsally. (F) Total number of 
transcripts per embryo during peak expression for ush, Race, and hnt. (G) Number of transcripts per 
cell for ush, Race, and hnt. All error bars represent confidence interval p≤0.001. 

 

However when the number of transcripts per each cell is calculated based on 

expression domain (Figure 2.5 C-E), the results change drastically. The difference between 

0 

400000 

800000 

1200000 

10 11 12 13e 13l 14a 14b 14c 14d G 

N
um

be
r o

f T
ra

ns
cr

ip
ts

 

Nuclear Cycle 

TGF-Beta Ligands 

0 

400000 

800000 

1200000 

10 11 12 13e 13l 14a 14b 14c 14d G 

N
um

be
r o

f T
ra

ns
cr

ip
ts

 

Nuclear Cycle 

TGF-Beta Targets 

0 

500 

1000 

1500 

2000 

14c 14d G 

N
um

be
r o

f T
ra

ns
cr

ip
ts

 p
er

 C
el

l 

Nuclear Cycle 

TGF Beta Targets per Cell 

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

14c 14d G 

N
um

be
r o

f T
ra

ns
cr

ip
ts

 

Nuclear Cycle 

A 

C’ 

B 

D’ 

ush 

Race 

hnt 

ush Race 

hnt 

G F 

scw 

dpp 

C D E 

E’ 

ush 

tup 
Race 
pnr 
hnt 
Doc1 

Race 

Race 

ush 

ush 

hnt 

hnt 



 

 

49 
Race and ush drops to 1%-4% depending on the time point, and the difference between 

hnt and Race and ush drops to 6%-15% depending on time point (Figure 2.5 G). The 

similarity in number of transcripts expressed in each cell for Race, ush, and hnt suggests 

that the genes respond in a comparable way to common transcriptional activators. There 

may be repressors that define the extent of each gene’s patterns, but in the cells where each 

of the genes is active, the genes are transcribed at similar levels. 

 

DISCUSSION 

Our use of NanoString technology combined with our fine time scale 

developmental window has provided a novel way to examine transcription during the MZT 

in Drosophila. The dynamic change between NCs reveals new insights into the 

development of Drosophila embryos. The transition from NC14A to 14B is the most 

dynamic in the study, and is unique for three reasons. First, the concentration of Dorsal in 

cells is at its highest level at this time point, allowing activation of genes on the dorsal 

edges of Dorsal gradient that were not activated by lower levels in previous NCs. Second, 

this is the first time that transcription proceeds uninterrupted for longer than 15 minutes, 

allowing a greater ramp-up time for highly expressed genes to accumulate to levels not 

reached before. Lastly, the combination of increased Dorsal concentrations and more time 

available for transcription allows novel gene interactions and cell signaling to take place 

within the DV gene network that were not possible before, further increasing the number of 

genes expressed and the levels at which they are expressed.  

One exception to the biphasic transcription modes for mesoderm genes is twi, 

which begins its increase in expression rate at the end of NC13, slightly earlier than the 
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other genes. The combination of this earlier increase in transcription rate for twi, the 

overall highest abundance of twi, and the role of Twist as a master co-activator with Dorsal 

in the mesoderm lead us to hypothesize that the biphasic transcription for mesoderm genes 

is due to the input of twi in the gene network. In twi- embryos, when there would usually be 

the lowest endogenous abundance of twi, other genes change the least, and where there 

would usually be the highest endogenous level of twi, other genes are affected to the 

greatest degree observed. We therefore conclude that the moderate expression observed 

from NCs 10 to 13 is due to the input of Dorsal, while the exponential increase in 

expression in NC14 is due to the input of Twist and a combinatorial effect of the Dorsal-

Twist feed forward loop. With twi as a top-level activator in the mesoderm and early target 

of Dorsal, high levels of twi are needed so Twist can robustly bind its targets in every cell 

where it is needed (SANDMANN et al. 2007). It is inline with this prevailing view, therefore, 

that twi is consistently the most abundant mesoderm gene quantified.  

Two studies have quantified the number of transcripts for two genes included in this 

study, using FISH to estimate the number of transcripts (BOETTIGER AND LEVINE 2013; 

PETKOVA et al. 2014). One study of bcd transcripts prior to the syncytial blastoderm stage 

and NC10 found 890,000 transcripts. Our study found 824,064 transcripts during NC10, at 

the closest stage to the embryos used in the previous study; however significant transcript 

degradation occurs between the time point in the previous study and NC10. A second 

previous study quantified sna transcripts and found a maximum of around 250 transcripts 

per nucleus during NC13 and 200 transcripts per cell during NC14, while our data shows a 

maximum of around 550 transcripts per nucleus in NC13 and around 1000 transcripts per 

cell during peak expression at NC14C, a 2-fold to 5-fold difference.  
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Using FISH to count single points of fluorescence can be challenging, with probe 

design and microscopy techniques affecting the counts (FEMINO et al. 1998; RAJ et al. 

2008; LUBECK AND CAI 2012). In addition, the combination of dense points of fluorescence 

signal making it difficult to distinguish individual spots, and the use of a threshold to 

exclude fluorescent signal, may reduce the number of transcripts counted and account for 

the differences between our quantification and the numbers calculated for bcd and sna. The 

authors of the sna study counted only cytoplasmic signal, excluding nuclear transcripts, 

which might have reduced the count and, by design, did not account for active 

transcription. One factor that could slightly inflate the number of sna transcripts per cell we 

calculated is a low level of background transcription in non-mesoderm cells. If sna is 

expressed at a very low level in cells outside the mesoderm, our calculations would 

attribute these transcripts to mesoderm cells and slightly increase our quantification. This 

would lead to a negligible increase, since the transcriptional activity of cells expressing sna 

is so much stronger than non-mesoderm cells that sna transcripts are undetectable using 

standard in situ hybridization. 

Furthermore, our qPCR data reinforce the accuracy of our quantification method 

and post-collection data analysis and processing. Previous foundational studies have 

compared changes in gene expression using NanoString and qPCR for different time points 

in the development of sea urchin embryos, and found that the relative fold-changes 

calculated between time points were highly correlated between NanoString and qPCR data 

(GEISS et al. 2008a; MATERNA et al. 2010).  

The diversity observed for both the maternal to zygotic switch point and the 

degradation rate for can be explained by the increasing concentration of Dorsal in nuclei 
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during successive NCs. As the concentration of Dorsal increases, the activation of target 

genes occurs at different rates and times, depending on whether genes depend directly on 

Dorsal, the concentration of Dorsal required, or the necessity of an intermediate gene. It is 

possible that degradation rates alone for genes are much more similar than we have 

observed, but since genes are activated at different rates and times, the varying influx of 

embryonic transcripts may cause the observed degradation rate to differ from the basal 

level.  

Although NanoString technology does not provide spatial information on gene 

expression a priori, interesting trends or new insights from this data can be validated using 

other methods. In the case of mesoderm genes, using NanoString we determined that a 

rank-order of abundance is established early in development and is maintained robustly 

through the time series. The rank-order of genes was first observed for the entire embryo, 

meaning that spatial variations were not originally taken into account, but remained the 

same after transcripts were normalized for number of cells, indicating that the order is 

established and maintained at the level of gene regulation (e.g. enhancer and gene network 

properties). This combination of NanoString data and spatial information strengthens the 

finding and provides an example of how NanoString can be used to investigate multiple 

genes simultaneously and integrate with other methods.  

Of the six TGF-β targets studied, Race, ush, and hnt are expressed only in the 

dorsal ectoderm, while pnr, tup, and Doc1 are also regulated along the AP axis, expressed 

in stripes or laterally towards the midline of the embryo. The TGF-β targets respond to 

activation in two distinct ways, with half of the genes rapidly transcribed between NCs 14A 

and 14B and quickly reaching a steady state, and half of the genes being continuously 
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transcribed at moderate rates until gastrulation. The different modes of transcriptional 

activation do not appear to correlate with the genes based on expression patterns, indicating 

that there could be an unknown factor involved in rapidly activating one set of genes, just 

as we have shown that twi rapidly activates mesoderm genes. Once the TGF-β targets are 

activated and reach their peak expression, the maintenance of final levels might no longer 

depend on this initial activating signal, just as the mesoderm genes depend on twi the least 

at gastrulation, after peak expression. While these TGF-β target genes are diverse in terms 

of function, the convergence of transcript abundance in each cell, we propose, may 

demonstrate a unique property of the signalling pathway to integrate changing levels of 

input to maintain stable and reliable transcription of target genes. This property can be 

contrasted with the six mesoderm genes, where even after normalizing for number of nuclei 

expressing each gene, many differences in expression remained present throughout the time 

course. This difference may exist because the six mesoderm genes are at the top level of 

signaling pathways (e.g. htl FGF receptor) while the TGF-β targets are at the output level.  

Varying levels of top-level input signal may be integrated (i.e. coordinated) in order to 

provide a similar output level of many downstream target genes within a tissue.   

We have demonstrated the use of NanoString as a new technology to precisely 

quantify transcripts and create a fine scale time course of Drosophila embryonic 

development. In addition to being the first large-scale quantification during Drosophila 

development, this study has provided new insights into the sequential activation of gene 

regulatory networks and suggested that network properties regulate levels of transcription 

for clades of genes. We believe the most promising future use of NanoString is in the 
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characterization of mutant phenotypes and accurately measuring changes in expression 

of large numbers of genes in mutant backgrounds, as we show with twi mutant data. 

 

SUPPLEMENTAL MATERIAL 

 
Supplemental Figure 2.1. In situ hybridization with proves for bcd introns, showing an embryo in 
NC 11. 

 

Supplemental Figure 2.2. Background hybridization rate for all NanoString probes. Raw 
background counts are an average of three RNA-negative runs and sorted from lowest to highest 
counts. Probe for LacZ as a control had a high background rate and was removed from analysis. 
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Supplemental Table 2.1. NanoString probe sequences. 
 
 

Symbol Probe sequence 
ASPP GTCGGCATCGACTGCTAATAAGACGCAAACGGCCACCTTTGGACTGCAATCCCTTAACATCAACGACAATTTACCCATCAAAGCGAAGCCACTGACCATC 
CIAPIN1 CTGCATTTGGTGTCCTACATCGGTCCGGCGGCTAGTTTGCTGCAGGAGATCAAGCTATCCGGATTCATAAACTGTCGCGAGGACTCTCCAGATGCTTTGA 
Dl CTGGCAGCAACAGCGGTCTCACCTTCGATGGCGGCAACCCGAATATCATCAAAAACACCTGGGACAAGTCGGTCAACAACATTTGTGCCTCAGCAGCAGC 
Doc1 CAGCGCCAGGATTTTGAGCAGGACTCAACGGGTAGTGTTTCGCCAGCTTACTATGGAGCAACTCATCCAGTTGCCAATCCTATGTCGCCGTATCTCCGCC 
Egfr AAACTACAAATCATTCGCGGACGCACGCTGTTCAGCTTATCCGTGGAGGAGGAGAAGTATGCCTTGTTCGTCACTTATTCCAAAATGTACACGCTGGAGA 
LacZ CATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATAC 
Mhs/Dr CCCTTCGGACCGCCTGGCATGTTTCCGGGAGCAGGATTCGGTGGAGATGCCAACGAACCGCCGCGGATCAAGTGCAACCTGCGGAAGCACAAGCCCAACC 
N GATGGAACTTGCCACGACAAGATCAATGGCTTTAAATGCAGTTGTGCCCTGGGCTTTACGGGCGCACGATGTCAAATCAATATAGACGACTGTCAGTCGC 
NetA (probe 1) TCCTGTCAGCCCAGTTTAAGCATTTGTGAACAATTTACGTACTAGGGCCGTCTCGAAATCAAACAGAGCGCCAGTAAGCAATAATTTATGTGTAAGAAGC 
NetA (probe 2) CGCGCCTGCATTCCGGACTTTGTGAACGCCGCCTACGATGCTCCAGTGGTGGCCAGTTCCACGTGCGGATCGTCGGGTGCGCAGCGATATTGCGAGTACC 
Neu3/Meltrin ACGAGATGGGGCACAACTTTGGCATGGAGCACGATACATCGGATTGTCATTGTCGGGATGAGAAGTGTGTGATGGCTGCCTCGAGTACCTCGTTTATTCC 
Race/Acne TCTACGACAAGGCCGGAACCGCCGTGCGATCTCAATTCGAACGCTACGTGGAGCTCAACACCAAGGCAGCCAAACTGAATAACTTTACTTCTGGTGCCGA 
RpL32 TGCCCACCGGATTCAAGAAGTTCCTGGTGCACAACGTGCGCGAGCTGGAGGTCCTGCTCATGCAGAACCGCGTTTACTGCGGCGAGATCGCCCACGGCGT 
RpL7-like GTGTCATCTGTCTGGAGGATATAATCCACGAAATTTGCACAGTGGGTCCAAACTTCGCCGCTGTAAATGAGTTTCTGTGCGCCTTCACGTTGTCCAGTCC 
SoxN TGGGCCAGTCGCACCTGACCCACTCGCAGCTGAGCCATCACAACCACCATCATCACCACATGAGCGCCCATATCGCGGCCAGCCAGAGTCCCAATCCGCT 
Su(H) GAAGCCGACGATCCCGTTTCTCAGCTGCACAAATGCGCCTTCTACATGAAGGATACGGATCGGATGTATCTCTGTTTGTCGCAGGAGAAAATCATACAGT 
Tl GGGCAACCTTGTGACCCTCGTCATGAGCAGGAATCGACTGCGTACCATCGATTCCAGAGCCTTTGTAAGCACAAATGGACTGCGACATTTGCATTTGGAT 
wntD GCGGTACTAAAGCCATTCGAAGCCATTGCCCAGGATCTCCTCCAAATGTACGACGATGCCATCCAACTAGAAGGAGCCAGTAGCAATCTAAAGATTATGT 
YFP GAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGCCACAAGCTGGAGTACAACTACAACAGCCACAACGTGTATATCACC 
aos ATGTCGTTGTCCTGAATCGAATCGCATGCCCAACAATGTGATCATCCATCATCACAGTCATTCCTCGGGATCGGTGGATTCCCTGAAGTACAGGAACTAC 
bcd TGAAGGGTCTGGACAAGAGCTGCGACGATGGCAGTAGCGACGACATGAGCACCGGAATAAGAGCCTTAGCAGGAACCGGAAATCGTGGAGCGGCATTTGC 
brk CCGCCGTCAAATGCAGTTGCACGAAAAGGATCCATCTGGTGTGGATCTCACTTTCCGCAAACGTAAGGTCATCACTAGTCCGATGCAGCCGGATAAGATT 
cic GGCAGCTGCGGTGGCCAGGGCATATCATCCGATTTGCAGGGCGATATTATACCGCTGACAATTGACAACTACAATAGCACCTGTGATGAGGCGCCAACTA 
dhd ATACTCCAGCAAGGCGGTGGTGCTCAAGATCGATGTGGACAAATTCGAGGAGCTGACGGAGCGCTACAAGGTGCGCAGCATGCCAACGTTTGTCTTTTTG 
dpp CAGCGAGCCCGCCTCGTTCAGTGATAGTGATAAAAGCCATCGGAGTAAAACAAACAAAAAACCTAGCAAAAGTGACGCGAACCGACAGTTCAACGAAGTG 
eve AGACGCCGCCGCTGGATCTGCAGTCGTCGTCATCGCCGCACTCCTCCACGCTGTCGCTCTCGCCAGTGGGATCCGATCACGCCAAGGTGTTCGACCGCAG 
fdy CAACAACAACCAACGCTACGGAAACAAGGAGTCGATCGGAGAATTCGGAAACGAGTTGCCGCAGCGTCAATTCAACAATCGTGACAACAGGGGACCACCA 
grh AGATCAACATTGCGGTTCAGTGCTTGAGCACGGATTTCAGCAGTCAAAAGGGAGTTAAGGGCCTGCCGCTGCACGTACAAATCGACACATTTGAGGACCC 
hb CACCGCAAGTCGCACAGTTCTGTGTATCAGTACCGTTGTGCGGATTGTGATTACGCCACCAAGTATTGCCACAGCTTCAAGCTGCATCTGCGCAAGTATG 
hnt/peb CCATTACGGCGCCCAGTACTAATCCCAGCAGTTTGAAAACGATGATCGCTCAAGCCGAATATGTGGGAAAATCCCTCAAAGAAGTGGCCAGTTCACCGTT 
htl TAATCAATCGAGCACATCCAGTGCGGATTTGGATGATGGCGCCGCAGATGATGATGATAACAAGGCCGATTTGCCGGTGAATGTCAGTTCGAAACCCTAC 
if GTGCCAGCGTTCACATCGAGAAGGCTCGCGGTGAAGGTTTCGTTCGAGGAGTCTTGGTCAGCAATAGCACCGATGCGGGTGACAAATTAAGTCCCAAACA 
ind CCATCCATACGCCCAGCTGTTCGCCAGCAAGAGGAAGTCCAGTGGATTCAGCAACTACGAAGGATGTTATCCATCGCCACCGCTCTCGGCCAATCCCAAC 
m8/E(spl)m8-HLH CTCCACACCTGGCATGAGCGTCGACCTGGGCAAATCGGTGATGACTCACCTGGGACGCGTCTACAAGAACTTGCAGCAATTCCACGAAGCACAGTCCGCC 
mad GAACAGTGGATTCAACTCGCACAGCTTGAGCACCAGCAACACATCGGTGGGCAGTCCGAGTTCCGTCAACTCCAATCCCAATTCGCCGTACGACAGCTTG 
med CCATCGCATACTTCGAGTTGGACACGCAAGTGGGCGAGACCTTCAAGGTGCCGTCAGCGAAACCGAACGTAATCATCGACGGCTATGTGGATCCCTCTGG 
mes3/Ilp4 CGCCGAAAGATGTGCGGCGAGGCTCTGATCCAGGCACTGGATGTGATTTGTGTTAATGGATTTACACGCCGTGTCAGGCGGAGCAGTGCGTCTAAGGATG 
otd/oc TTTAGCAATCAGAATCAGGTCAACTACAACATGGGCCATTCGGGCTACACGGCCTCCAATTTTGGTCTGTCGCCATCGCCATCCTTCACGGGCACCGTGT 
phm CCTACCAGGCGCCGCCACAGTTCATCCCATTCTCGTCCGGCTATCGAATGTGTCCCGGCGAAGAGATGGCTCGCATGATACTCACGCTCTTTACGGGTCG 
pnr AACAATGCTTTCCCCTTTACGGACAGACGACGACGCAACAGCAGCACCAGCAACATGGCCACAGCATGACATCATCCTCTGGACAGGCACATCTGAGTGC 
pnt GACAAGACGTGTCAGAGTTTCATTTCGTGGACCGGCGATGGCTGGGAGTTCAAGCTAACAGATCCTGATGAGGTGGCTCGTCGTTGGGGAATTCGCAAAA 
put CGCCATCCGAACATCCTCGAATTCCTGGGCGTTGAGAAGCACATGGACAAGCCGGAATATTGGCTGATATCCACCTACCAGCATAACGGATCACTATGCG 
pyr AAAGCCAAGTTGAGACAACAGCGAACCCCGAAGGTGAGACAGAGACAGTTACTACCGAAACTGTAATGCAGAATCGCAATCATATTGATGCTAATAATAT 
rho ATCCTAGTGATCTCCATCATTGAGATTGCCATCTTCGCCTACGACCGCTACACAATGCCCGCCCAGAATTTCGGGCTACCCGTTCCGATTCCGTCGGATT 
sax GTTCTGGGTCCTTTTCTGGTCATCGCTCTGCTGGGCGCCGTGACCATCTTCTTCATTCGTCGTAGCCATCGCAAGCGTCTGGCTGCCTCGCGAACCAAAC 
scw CAATAATCACATCGAGATGCCCATATACCAGAAGCGTCCTTTGAGCGAGCAAATGGAGATGATTGATATCCTGGATTTGGGTGACCGTCCGAGACGACAG 
shn CAGTCCTGCAAACAGCATTGGCTCTTCGGGTTCGCAACCTAAAAGATTAGTGTGCTCCTTTACATCGCCGAAGCCGCCTTTCGACTACCAAAAGCAGGAA 
sim CGTGCATTTGGGCCTCAGTCAGGTTGAGCTGACGGGCAACTCGATATTCGAGTACATACACAACTACGATCAGGACGAGATGAATGCCATTTTGTCGCTG 
sli ATAGTCTTCAGTAGCGCGGAGCAGAATGGAATTCTCATGTACGACGGCCAGGATGCTCATCTTGCAGTGGAACTGTTTAATGGGCGTATTCGGGTTAGCT 
sna TTGCCGCCAATCATGCCAAAAACTACCGCTTCAAGTGCGACGAGTGCCAGAAGATGTACTCCACCTCGATGGGCCTGTCCAAGCACCGTCAGTTCCACTG 
sog (probe 1) TGCTCATCATCGCCGGACTGCTGATCGTCTGCTTGGCGGGCGTGACGGAGGGCCGCCGGCATGCGCCGCTCATGTTCGAGGAGTCCGACACGGGCAGGCG 
sog (probe 2) GCAGTGCCCAGGATTCCTGTCAGATGTGCGCCTGTTTGCGTGGCCAATCCAGTTGCGAGGTGATCAAGTGTCCGGCTCTCAAGTGCAAGTCCACGGAGCA 
spi AAACCTTCGATGCCTGGTACTGTTTGAACGATGCCCATTGCTTTGCGGTGAAGATAGCCGATCTACCGGTTTACAGCTGCGAGTGCGCGATTGGCTTTAT 
spz TCAGACGAGCGATTCCTTTGCAGGAGCATCAGGAAGCTGGTGTACCCAAAAAAGGGCTTGAGGGCGGACGACACCTGGCAGTTAATTGTCAATAACGATG 
star/S GCTGCCAGAAGTCCACGGGCATGGAGTCCCGGGCGAGAACATCTCCGCAACAGATCCAGCATCCGCACAGACAGCACCACCAGCAGCAGCACCATCACCA 
stumps TACTGGCCATTTTGTTGGATGTCAGCGAGGAGAAGGTGAAGGAGATGCACAAGTCGGCACTGCCCAGTTACTACAAGTGGCGTCGTTGTGTGGTGCGCGA 
ths CAACCTGAACAACACACTAACGGAGGCTTCTCCCACGGCAACATCAACATCCAGCATCACGTCCGCAACAACCATGAAGAGACCCATACGGAAGTTCACC 
tin GGAGCATCTACGGTTCAGATGAGGGCGCCAAAAAAAAGGATAACAGCCAGGTGACCTCCTCGCGTTCCGAGCTGCGAAAAAACAGCATCAGTGGGAACAG 
tkv CAACCTGAACAACACACTAACGGAGGCTTCTCCCACGGCAACATCAACATCCAGCATCACGTCCGCAACAACCATGAAGAGACCCATACGGAAGTTCACC 
tld GAACTGGATGTCATTCACATTGCACAGAATCCACGTGTCGGCACTCGACGCTACATGGCTCCAGAAGTATTGAGTCAGCAGCTGGATCCCAAGCAGTTTG 
tsg CCATGAAAATGAAAGCGAAATTAGTTGTTCTCTCTGTGGGAGCTCTCTGGATGATGATGTTTTTTCTGGTGGATTACGCCGAGGGCAGGCGACTGAGTCA 
tup AGCCGTCGTATCGCGAACATCGACCGTCTTAGCTCGATAGCCGTCGGATTTGCCTTTTCGGATGCGAGAGACTCTTAAATCCCTCACCATAGATCCAAAT 
twi GATGCACTTCCAAAACGCCTACAGACAAAGTTTCGAGGGCTACGAGCCGGCCAACTCGCTGAACGGCAGTGCTTACTCCAGCTCGGATCGGGATGACATG 
ush TAAAACCAGCCAGATTTATGTGCCTGCCCTGTGGGATTGCATTCAGTTCGCCCTCAACTCTGGAGGCCCATCAAGCCTACTATTGCTCTCATAGAATTAA 
vn (probe 1) GGCTTATTCGATGCAAAGGTGCCGTCGTCCCAACGCTCTGGCTTCCATATATCGGACATCTTGAATTTGGAGGGCTCTGAGCTGAAGAATGCAGCAGCTG 
vn (probe 2) AATATCTTAAGTAGGCTGCTCAGCCTCAACAGCAATAGTCTTAGTAGCCGTAGCAATGTTAAGTTAAAGCCAGCAACAGTATTCGACGCCGGCAGCAGTA 
vnd GGCTTATTCGATGCAAAGGTGCCGTCGTCCCAACGCTCTGGCTTCCATATATCGGACATCTTGAATTTGGAGGGCTCTGAGCTGAAGAATGCAGCAGCTG 
yl AGTTTCAGCCAGAGTCGCACGAGAGCAACGTCCTGGTCCGCTCCAATTTGGGCAATGTGAGTGCCCTGGCCTTCGATCATTTGAGCAGGAATCTATACTG 
zen TGAGATTGCTCAGCGCTTGTCCCTGTGCGAACGCCAGGTGAAGATCTGGTTCCAGAACCGACGAATGAAGTTCAAGAAGGACATACAAGGTCACCGCGAG 
zld/vfl GGCACTGATTACGCCTTTGGCACCGTGGGCGTTGACTATGGCAAGAGCGCCGGTGTTCGCTATCATCCCTACCTGCAGACGCCAACCTCCGGACTGGGAG 
Rm62 TTTGGGCAACTACATCCAGATCAACATTGGATCGCTGGAGCTGTCCGCCAATCACAACATCCGCCAGGTGGTGGACGTTTGTGACGAGTTCAGCAAGGAG 
dap AATTAGTCATTGCGGGACCGCGTGGAAGAATGGGGCAGGAAGCTGTTAAATTGGCAGAACGAACACCACATTTTGACCTTGTAGGGGCCATAGACCATAC 
lys TATGCGAGCAAAGCATTCTCATCAGTCGCAATGATTCAGCTCGCTGAGGAAGAGGGACTTTCTTTAGATGTCGTATCCGGAGAGAGCTATATACGGCTGT 
phe AAAGCGTTTGATGATGTATTGATTCCAGGGGCCATGCAGGAGCTTGAAGCACTCGGCTGCAAAGTGAGGCTTCTGGGTGCATACCAGTCTTACCAATTAT 
thr CAGCAAGGTCGTAGCTGTGTTAACAGGAAACGGACTGAAAGATCCGAACACAGCGGTCGACATTTCAGAAATCAAGCCTGTCACATTGCCGACTGATGAA 
Table S2. NanoString probe sequences. Genes NetA, sog, and vn have two probes each.  
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Supplemental Table 2.2. Transcript counts for all Drosophila genes included in the NanoString 
code set. 

Gene NC10 NC11 NC12 NC13 early NC13 late NC14A NC14B NC14C NC14D Gastrulation twi-NC13 late twi- NC14C twi- G 
ASPP 8288 6688 7916 8155 10422 112335 450505 551935 876282 563944 
CIAPIN1 761129 542467 830513 734745 661469 467461 823911 695686 956214 430563 
Dl 935709 663601 518982 585214 888970 875290 1660717 1731491 2372444 1801880 
Doc1 37712 24320 35864 53056 48315 75013 152344 183487 214242 125614 
Egfr 16083 17321 61660 592139 669584 1868709 2109015 1957941 3003563 1421675 
LacZ 182186 293310 583454 232979 129289 547485 316991 409355 525149 287243 
Msh 7162 8986 11232 11402 15824 22560 50759 109471 165301 258317 
N 1558777 1189694 1111618 1211288 1546959 1167607 995446 1132822 1686271 866623 
NetA 6724 3591 18350 50983 123138 217278 752457 978334 996502 565661 96717 269647 382261 
NetA 7842 2870 4869 4856 21973 60994 415134 430662 900211 324375 5090 124160 226021 
Neu3 435331 139034 157481 56727 52197 27079 431172 724790 870291 934613 
Race 5129 7538 22196 100307 95235 245341 634014 531354 575584 549055 
RpL32 16905105 13720549 23781430 20722641 13362584 15668506 20545028 19085664 16268679 15827045 
RpL7-like 1326432 787879 753764 1092939 999343 938951 1615813 1393553 1402098 1120626 
SoxN 5309 5502 5098 15390 60970 220887 455703 664135 1123229 816014 
Su(H) 862571 572156 518462 847601 819821 1018784 1253770 1195990 1094373 1053576 
Tl 4389119 2970065 2936472 3842825 3701868 2677429 3675885 2532735 2410680 601151 
Wnt8 9774 6597 20135 21129 29529 9309 52747 191934 180746 248468 
YFP 11384 16091 54591 92940 9106 35942 37433 97376 52526 170385 
argos 31026 14868 15948 18819 25707 13444 168035 184339 180897 107737 
bcd 824064 593817 383500 972066 547987 490086 26033 10922 6458 5122 
brk 8398 5245 8674 32586 97685 344800 354206 422148 645661 283417 
cic 957247 673918 497843 436273 781548 612413 403992 360468 435226 263707 
dhd 79674243 21449661 14059531 8572801 2660381 1685924 595044 307924 486971 235065 
dpp 8632 14373 23964 86638 204534 304993 257196 187936 191752 119736 
eve 45060 103559 335322 458662 358758 810429 2109262 1718719 1451811 1093716 
fdy 8190983 2562347 2854680 1258724 814592 273225 763763 881542 809285 950438 
grh 5160 7656 6322 12892 46858 166102 982027 1135535 1440205 731692 
hb 1914781 955723 745552 1349177 1716938 2389012 1003582 713784 640024 332298 
hnt 23844 15592 18270 19535 20618 24522 43901 160272 247744 220214 
htl 13707 8416 9961 16187 36252 31042 424855 578598 746791 456443 15257 18281 284297 
if 7483 5567 9669 9148 13287 8248 126433 250528 374144 242609 
ind 9782 6833 12585 13634 29097 9643 123908 242090 184619 180276 
m8 49895 30608 36453 119173 85588 61094 77560 148526 226797 147635 
mad 2320229 1606187 1499279 2120802 1992640 1775663 1566217 955707 1015417 364573 
med 769012 515610 744110 710495 585845 483242 514247 441612 410031 351410 
mes3 14145 13770 69304 229645 442062 712089 1663073 1633260 1616914 1138062 
otd 7397 4204 9937 65295 177593 479657 813160 746499 1064261 537093 
phm 2799 2375 7769 12665 47528 114560 651684 956336 792661 647817 
pnr 2627 1837 2797 6243 17618 11523 87999 202723 270344 373276 
pnt 247152 208096 282070 215594 179415 34791 156893 189810 235059 399086 
put 1225353 744442 525653 773866 956389 954800 706486 580462 542102 253371 
pyr 3800 5535 11320 9898 16944 36753 220649 230789 360600 188092 
rho 13199 6920 8970 23837 31396 167800 143865 130785 174815 64487 
sax 327269 236816 405846 361637 213050 156841 134686 124414 154724 104473 
scw 48284 110085 434630 913014 925065 422228 162527 73058 76205 12681 
shn 480283 298802 218485 313696 389072 641353 717375 658500 915969 370918 
sim 19353 11501 17189 11473 10200 13827 23298 60815 124627 145286 
sli 41021 29031 29068 109052 208056 557530 1890349 2128538 3005397 1938660 
sna 48743 39533 80456 174096 416652 481341 1196169 1442597 1341323 967958 473406 274218 527574 
sog 8108 7109 7152 81861 160970 699008 2203870 1668058 2108290 1548549 
sog 23511 26939 163448 193414 147083 888861 1483394 897275 1235709 797801 
spi 301687 171465 141912 113561 174344 174985 1330121 1741162 2377326 1828567 
spz 1774940 1582678 3340007 2240101 829977 190455 73095 52781 70276 53562 
star 1494056 686253 536176 631415 756432 748682 775022 844008 1107001 775543 
stumps 8053 3612 3017 7669 7195 10694 540227 714826 848024 843642 
ths 5129 5136 5727 9809 18330 22865 270168 359123 663613 517465 
tin 5012 4259 7211 4327 15468 4852 24035 81743 117617 234121 
tkv 798740 487457 401224 561750 606528 539503 641227 481711 728126 512325 
tld 71046 126383 287898 661702 636138 1197603 1004434 827969 818131 319511 
tsg 78961 184946 956782 874300 657930 740006 723239 503869 412145 197618 
tup 3542 3689 7538 17393 49082 80574 580765 702873 714659 510458 
twi 13573 20122 116034 370665 557544 1164521 3974135 3884520 3257041 2854478 325489 944528 1187181 
ush 82242 27256 29118 15126 43747 15505 561491 842846 977968 907121 
vn 26053 22694 14342 31297 25129 29354 96505 81081 87258 74668 
vn 6779 8620 10006 15198 23184 99396 145492 108087 201069 137041 
vnd 10048 4296 8142 18357 68824 191621 267890 306959 406459 209536 
yl 11487866 5404336 5176009 5078951 1382270 410441 190539 134058 146212 94954 
zen 117039 190098 444769 1375704 1091425 2617444 389283 341477 311618 194090 
zld 5522624 4260426 5020075 5357893 5900820 6979035 8844677 9350096 9438153 5305075 
Rm62 7297964 5060832 9263082 7311270 5693838 3719954 6563911 6556429 5546910 4898260       
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C h a p t e r  3  

UNCOVERING	GENETIC	INTERACTIONS	AND	PLACING	GENES	IN	THE	
REGULATORY	NETWORK	USING	NANOSTRING	

 

ABSTRACT 

Gene Regulatory Networks (GRNs) describe the interactions between genes, 

transcription factors, and signaling pathways that establish the transcriptional landscape of 

cells or tissues. They are compiled using a variety of methods, including manipulation of 

individual genes, studies of the physical interactions of proteins, and obtaining evidence of 

transcription factors binding to DNA. Data used to build GRNs has traditionally been 

gathered in experiments for single genes or small numbers of genes, using techniques such 

as in situ hybridization, Real-Time Quantitative Polymerase Chain Reaction (qPCR), and 

various proteomic approaches. More recently, high-throughput RNA-seq has allowed the 

entire transcriptome to be observed simultaneously. The gap between single-gene studies 

with few data points at a time and ~15,000-gene studies with millions of individual 

sequencing reads is quite disparaging in terms of type of data produced and the skills 

needed to analyze the data. Recently, NanoString technology has bridged this gap and 

allowed quantitative studies of tens to hundreds of genes in parallel. We describe how 

NanoString technology can be used to study an entire GRN to uncover new genetic 

interactions, as is the case with the gene twi, or place unknown genes in the GRN, with the 

gene neu2.  
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INTRODUCTION 

The process of patterning the early Drosophila melanogaster embryo has been the 

subject of much study, as many signaling pathways characterized in Drosophila 

development are conserved among vertebrate and human disease models (BELVIN AND 

ANDERSON 1996; ROCK et al. 1998; MEDZHITOV 2001; CRIPPS AND OLSON 2002; OLSON 

2006; KLAUS AND BIRCHMEIER 2008; GRAVELEY et al. 2011b; PANDEY AND NICHOLS 

2011). Understanding how many genes work together in patterning tissues, specifying cell 

fate, or contributing to disease states is aided by the creation of a Gene Regulatory Network 

(GRN) to map the complex interactions between tens to hundreds of individual genes 

(DAVIDSON et al. 2002). In Drosophila, the early embryo is arranged on two major axes: 

anterior-posterior (AP), specifying head to tail; and dorsal-ventral (DV), specifying back to 

belly. Maternally deposited signals determine the basic polarities of both axes, with the 

transcription factors Bicoid (Bcd) and Dorsal (Dl) on the AP and DV axes, respectively, 

activating the expression of many downstream genes in the early embryo that control 

development (DRIEVER AND NUSSLEINVOLHARD 1988; ROTH et al. 1989). The early 

embryonic GRN for the DV axis has been well characterized, with the interactions of ~75 

genes described in a network model (LEVINE AND DAVIDSON 2005; LONGABAUGH et al. 

2005; STATHOPOULOS AND LEVINE 2005).  

The construction of the DV GRN took many years of research, with most 

contributions coming from mutating or ectopically expressing single genes and observing 

the behavior of small numbers of genes in response to the changes. Sequencing the 

Drosophila genome allowed the widespread computational exploration of genes and their 

regulatory sequences to predict and test more interactions taking place in the GRN and add 
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additional connections (ADAMS et al. 2000; MARKSTEIN AND LEVINE 2002). 

Additionally, microarray experiments allowed data to be gathered on the expression 

changes of thousands of genes in parallel in different mutant backgrounds affecting the 

activity of Dl in activating the DV GRN (STATHOPOULOS AND LEVINE 2002). Following 

the trend of microarray experiments, high throughput RNA-seq allowed the entire 

developmental transcriptome to be observed simultaneously, with hundreds of millions of 

individual sequence reads providing data depth never before achieved (GRAVELEY et al. 

2011a). RNA-seq has also been used in experiments similar to microarray experiments, by 

changing the activating input of a signaling pathway and observing gene changes in 

response (DEIGNAN et al. 2016).  

There exists a large disparity in the types of data collected from different methods 

used to build a GRN. While microarrays and RNA-seq can give an overview of how the 

entire organism or network reacts to a perturbation, they do not focus on the effects to 

single genes in terms of expression domain or other specific functions. In situ 

hybridizations, qPCR, and analyses of protein interactions give a very detailed view on a 

small number of genes, but scaling up to the whole GRN level, let alone the whole genome 

level is a daunting task. In this study, we expand upon our previous work using NanoString 

technology to address experimental gaps in probing GRNs and identify new GRN members 

and connections (SANDLER AND STATHOPOULOS 2016).  

NanoString uses fluorescent mRNA barcodes that are designed to bind to mRNAs 

of specific genes and provide a count of transcripts in a sample (GEISS et al. 2008). The 

technology achieves this without using reverse transcription, library amplification, or 

library fragmentation, which are used in RNA-seq and qPCR and can introduce bias and 
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reduce reliability of quantitative data (HANSEN et al. 2010; ROBERTS et al. 2011). In 

addition, NanoString can provide this quantitative data for up to 800 genes in parallel from 

a single sample, drastically reducing the number of experiments needed to obtain the same 

results with qPCR, and without the computational analysis required of RNA-seq. 

 

MATERIALS & METHODS 
 
Fly stocks. Embryo collection and live imaging was done on flies with a His2Av-RFP 

fusion [Bloomington Drosophila Stock Center (BDSC) 23650]. twi- embryos were 

obtained using a twi1/CyO stock (BDSC 2381). Neu2- embryos were obtained using 

a  PBac{SAstopDsRed}LL06458 P{FRT(whs)}2A P{neoFRT}82B P{Car20y}96E/TM3, 

Hb LacZ stock (DGRC 141806). For both mutant lines, PCR for LacZ was done on 

embryos to confirm the absence of the balancer chromosome and the presence of 

homozygous twi- or Neu2- mutant chromosomes. 

 

NanoString. NanoString and RNA extraction methods are described in chapter 2. 

 

RESULTS 

twist modulates TGF-β signaling at different GRN levels 

To test our approach of using NanoString to make new connections and place 

previously uncharacterized genes in the GRN, we analyzed twi- embryos to confirm 

changes in expression of known target genes. As expected, genes expressed in the 

mesoderm exhibited greatly reduced expression in the pre-gastrulation blastoderm (see 

Chapter 2, figure 2.4, (SANDLER AND STATHOPOULOS 2016)). In addition, we noticed that 
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there were a number of changes in the expression of members of the TGF-β signaling 

pathway, ranging from pathway inputs to output genes (Figure 3.1 A-E).  

All five TGF-β output genes were significantly decreased in twi- mutant embryos, 

expressed at 55%, 54%, and 64% of wild type levels in nuclear cycles 13L, 14C, and 

gastrulation respectively (Figure 3.1 A, B).  

 

Figure 3.1. TGF-β pathway members in twi- embryos. (A-E) Plots comparing number of 
transcripts counted in yw embryos to twi- embryos, with yw in blue and twi- in red. Expression of 
TGF-β output genes race (A) and pnr (B) is decreased. TGF-β ligand interacting genes show 
diverging expression: sog (C) is increased, while tld (D) is decreased. TGF-β ligand scw shows no 
change. 
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This drastic change for every output gene signifies that the activity of the entire signaling 

pathway is repressed. It is interesting though, that expression of the TGF-β ligands 

themselves, dpp and scw, is not changed (Figure 3.1 E), indicating that genes involved in 

processing of ligands or signal transduction are responsible for the differences observed. In 

fact, sog, which binds and sequesters Dpp and Scw, is expressed at 176%, 148%, and 115% 

of endogenous levels at nuclear cycles 13L, 14C, and gastrulation, respectively (Figure 3.1 

C). Finally, tld, which cleaves Sog and releases Dpp and Scw to activate TGF-β signaling 

is expressed at 70%, 65%, and 74% of wild type levels for the same time points listed 

above (Figure 3.1 D).  

Fig 3.2. race expression domain in twi- embryos. Fluorescent In Situ Hybridization staining for 
race (red) and LacZ (blue) in twi-/TM3 Hb-LacZ embryos. (A) Heterozygotes with functional twi 
and (B) mutants lacking twi. Embryos were chopped at the cephalic furrow to control for narrowing 
width of expression along the AP axis. (C) Quantification of race expression width showing a 
narrowing of expression in twi- embryos. P<0.0001, two-tailed Student’s T-Test. 
 

Together, these data paint a clear picture. Twist is an activating transcription factor 
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to an overall repression of TGF-β signaling, as Dpp and Scw are sequestered by more 

Sog and released to signal at a lower rate due to lack of Tld to cleave sog. When an in situ 

hybridization is done with a riboprobe against race in twi- embryos at gastrulation, it is 

clear that the expression of race is greatly reduced from its normal width of 7-8 cells in the 

dorsal ectoderm to a restricted 3 cells wide (Fig. 3.2 A-C). 

 

Placing a gene in the GRN 

The gene Neu2 was identified as one of several expressed along the DV axis in a 

screen comparing expression of genes in embryos with varying levels of Dl 

(STATHOPOULOS AND LEVINE 2002). Neu2 expression is increased in Tollrm9/Tollrm10 

mutants, which have a low-level concentration of Dl in all nuclei, but no gradient. Neu2 is 

normally expressed in narrow ventral-lateral stripes on either side of the embryo, and 

excluded from the mesoderm. When Neu2- embryos were analyzed using NanoString at 

five time points (NC 13L, NC 14A, NC 14B, NC 14D, and gastrulation), several changes 

were observed. The expression of many mesoderm genes increased, especially that of sna, 

which is especially sensitive to the width of the Dl nuclear gradient (GARCIA et al. 2013), 

while the expression of other genes, including sog, decreased (Figure 3.3 A, B). When 

FISH is performed in Neu2- embryos using a sna probe, it is clear that the width of sna 

expression expands signcantly, from a very consistent 20 cells wide in yw embryos to over 

26 cells wide in Neu2- embryos (Figure 3.3 F-H). Interestingly, the expression of TGF-β 

output genes initially decreased, but recovered to wild type levels by gastrulation (Figure. 

3.3 D, E).  
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These changes are consistent with an expansion of the Dl nuclear gradient. As 

sna is especially responsive to changes in the width of the Dl nuclear gradient, its increased 

expression is consistent with this expansion. Likewise, htl, another mesoderm gene is also 

transcribed in greater numbers (Figure 3.3 C). In contrast, sog expression is decreased from 

its wild type levels, consistent with an expanded sna domain repressing what are usually 

sog-expressing cells.  

Figure 3.3. Gene expression changes in Neu2- embryos. (A-E) Plots comparing number of 

0 

500000 

1000000 

1500000 

2000000 

2500000 

13L 14A 14B 14D G 

Tr
an
sc
rip

ts
*C
ou

nt
ed

*

Nuclear*Cycle*

sna 

0*

500000*

1000000*

1500000*

2000000*

2500000*

13L 14A 14B 14D G 
Tr
an
sc
rip

ts
*C
ou

nt
ed

*
Nuclear*Cycle*

sog 

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

1400000 

13L 14A 14B 14D G 

Tr
an
sc
rip

ts
*C
ou

nt
ed

*

Nuclear*Cycle*

htl$

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

13L 14A 14B 14D G 

N
uc
le
ar
*C
yc
le
*

Nuclear*Cycle*

ush 

0 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

800000 

13L 14A 14B 14D G 

Tr
an
sc
rip

ts
*C
ou

nt
ed

*

Nuclear*Cycle*

race 

A B

C D

E

0*

5*

10*

15*

20*

25*

30*

1*

W
id

th
 o

f E
xp

re
ss

io
n 

(#
 o

f C
el

ls
) 

sna width 

yw- Neu2- 

F G H

sna sna yw Neu2- 



 

 

68 
transcripts counted in yw embryos to Neu2- embryos, with yw in blue and Neu2- in red. 
Expression of mesoderm genes sna (A) and htl (C) is increased, while sog (B) expression is 
decreased. TGF-β output genes ush (D) and race (E) are originally expressed lower than in 
yw embryos, but recover at gastrulation. (F, G) FISH staining shows the expression width 
of sna in yw (F) and Neu2- (G) embryos. Width is quantified in (H), with error bars 
representing SEM.  

 

The initial decrease in TGF-β output genes could be caused by a narrower dorsal ectoderm 

caused by the general dorsal expansion genes. The recovery of these TGF-β genes could be 

due to a switch in signaling input. At gastrulation, the TGF-β pathway could switch from 

relying purely on the DV genes to instead being activated by genes not affected by the loss 

of Neu2. 

 

DISCUSSION 

We have demonstrated the use of NanoString technology to provide quantitative 

data on the expression of dozens of genes in parallel and monitor an entire GRN for 

changes when perturbed. This combination of highly quantitative data and information on 

dozens of genes is made especially more powerful considering that it was obtained using 

single embryos. RNA-seq protocols require up to 10µg of RNA input (LIANOGLOU et al. 

2013), while RNA input to NanoString can be 100ng or less, a 100-fold decrease in starting 

material and less total RNA than is extracted from one Drosophila embryo. The 

customizable NanoString probe sets also allow for flexible experiments, where the same 

initial input can yield a wide variety of results based on user directed specifications with no 

additional experimental effort. 

In the case of twi, although the function of the gene had been well characterized for 

many years, NanoString analysis still yielded new insights into how twi acts when the 
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entire GRN is taken into account. Although the connection between twi, sna, and sog is 

understood, the involvement of tld and race is novel. NanoString does not provide 

positional information, as samples are homologized before RNA extraction, so there were 

two possibilities for how race expression changed. Either the expression domain could 

have remained unchanged and overall transcription level decreased, or the expression level 

in cells where race was transcribed could have remained unchanged while the expression 

domain was restricted. A single in situ experiment was able to confirm the later possibility 

and provide the spatial information not evident with NanoString alone. This combination of 

quantification of an entire GRN with experiments targeting genes with unexpected 

behavior is a powerful tool to provide new data on the procession of embryonic 

development. 

The use of Neu2 as a first attempt at placing an unknown gene into the GRN using 

NanoString has yielded a testable model that can be used to design specific experiments to 

fill in gaps in data and answer questions that arise from the analysis. When other data is 

incorporated with the NanoString results, a clearer picture emerges. As with twi- embryos, a 

target FISH experiment for sna confirms NanoString data and provides clarity on the level 

versus expression domain question.  

It ha been suggested that Neu2 binds to the cell membrane bound protein Weckle 

(Wek) through a global two-hybrid screen (GIOT et al. 2003). A Neu2 immunopercipitation 

and western blot for Wek are necessary to conform this preliminary observation. Wek has 

been shown to facilitate the Toll/Tube complex, which facilitates transport of Dl into nuclei 

and drives activation of the DV GRN (CHEN et al. 2006). It is possible that Neu2 binding to 

Wek can disrupt the nuclear localization of Dl by disrupting the Wek/Toll/Tube complex. 
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The expression domain of Neu2 in two stripes in the neurogenic ectoderm further points 

to this role, it is expressed in a location where the Dl nuclear gradient rapidly drops off in 

concentration and many genes are sensitive to very small changes in Dl concentration 

(REEVES et al. 2012). It is possible that Neu2 balances the action of Wek in this critical 

region to refine the Dl gradient. In neu2- embryos, this action of balancing Wek is absent, 

and Wek may be overactive in facilitating the import of Dl, leading to a widening of the 

gradient. The NanoString results support this model and help place Neu2 in the GRN, 

demonstrating the usefulness of the technique and providing a new path of experiments to 

design and carry out.  
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C h a p t e r  4  

A	DEVELOPMENTAL	PROGRAM	TRUNCATES	LONG	TRANSCRIPTS	TO	
TEMPORALLY	REGULATE	CELL	SIGNALING	

	
ABSTRACT 

During development, rapid mitotic divisions and a fixed transcription rate limit 

the maximal length of transcripts. In Drosophila embryos, previous studies suggested that 

transcription of long genes is initiated but aborted in early divisions with short 

interphases of 15 minutes or less. Here we identify that long genes are expressed during 

short nuclear cycles but as truncated transcripts. The RNA binding protein Sex-lethal is 

required to specifically support transcription termination of these short transcripts as it 

associates with truncated but not full-length forms. Furthermore, one short product of a 

truncated transcript for the gene short-gastrulation relates closely to a previously 

characterized dominant negative form that retains TGF-β signaling in the off-state. In 

summary, our results reveal a developmental program of short transcripts and 

concomitant protein products that helps prime the Drosophila embryo, keeping signaling 

at earlier stages to a minimum to support proper timing of cell signaling initiation at 

cellularization. 

 

INTRODUCTION 

Early embryonic development of the fruit fly Drosophila melanogaster has 14 

rapid and syncytial mitotic nuclear cycles (NCs) as the fertilized egg divides into ~6000 

nuclei before cell membranes form and gastrulation occurs (FOE AND ALBERTS 1983). 
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These NCs occur within three hours of egg laying, and vary in length from ~10 

minutes to about an hour, gradually lengthening as the embryo nears gastrulation 

(PRITCHARD AND SCHUBIGER 1996; TADROS AND LIPSHITZ 2009). This rapid pace of 

nuclear divisions leads to a dynamic transcriptional environment, where patterns and 

levels of gene expression change between and within NCs (REEVES et al. 2012; SANDLER 

AND STATHOPOULOS 2016). Transcription is aborted during mitosis between NCs, and 

nascent transcripts are degraded, with transcription restarting at interphase of the 

following NC (SHERMOEN AND OFARRELL 1991).  

As the rate of transcription in Drosophila has been measured at ~1.1-1.5kb per 

minute of interphase, including in recent studies using MS2-MCP live imaging of nascent 

transcripts (ARDEHALI AND LIS 2009; GARCIA et al. 2013), transcription of zygotic genes 

during syncytial NCs is likely time constrained. In support of this view, zygotic genes 

have an average length of 2.2kb, while the overall average length of coding genes in 

Drosophila is 6.1kb (ARTIERI AND FRASER 2014; HOSKINS et al. 2015). It was thought 

that long genes, those over 20kb, are either not transcribed before NC14 or aborted mid-

transcript, and no protein products were present (OFARRELL 1992). This observation is 

exemplified in the pair of duplicated adjacent genes knirps (kni) and knirps-like (knrl). 

kni is 3kb long, while knrl is over 23kb long and has introns totaling over 19kb, yet the 

functional domains of the two proteins are almost identical. While kni is expressed as 

early as NC 11, with an interphase of around 10 minutes, knrl is expressed only in late 

NC 14, with an interphase of over 45 minutes that permits the presence of the full-length 

transcript (ROTHE et al. 1992).  
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Recently, studies have produced evidence that some long genes are transcribed 

during early NCs (LOTT et al. 2011; ALI-MURTHY et al. 2013; SANDLER AND 

STATHOPOULOS 2016). To explore such questions, we examined transcription of long 

genes during short syncytial NCs, specifically NC13, with an interphase of 15 minutes, 

and compared the transcription of these same genes during the longer interphase 

associated with NC14, which is over 45 minutes (Figure 1B). 

 

RESULTS 

Long Transcripts Are Truncated During Short Nuclear Cycles 

Using an available RNA-seq dataset of Drosophila development, we selected four 

long genes, short gastrulation (sog), Netrin-A (NetA), scabrous (sca), and Protein kinase 

cAMP-dependent catalytic subunit 3 (Pka-C3), with evidence of transcription during NC13 

(LOTT et al. 2011). 5’ and 3’ rapid amplification of cDNA ends (RACE) was performed on 

RNA from embryos aged 1-3 hours, which includes NCs 13 and 14, to search for alternate 

transcript isoforms. Only the previously defined 5’ transcription start sites were recovered 

(GRAVELEY et al. 2011b), leading us to conclude that alternate start sites are not used for 

these genes, whereas 3’ RACE products identified truncations in these four transcripts 

(Figure 4.1A). The short forms aligned to annotated transcripts at the beginning of the full-

length genes, but ended with an alternate exon, including coding sequence and a 3’ UTR, in 

what is usually an endogenous intron. The RACE products were all poly-adenylated, with 

no poly-A sequence in the genome at the locus of alignment.  

To distinguish between full-length transcripts and short forms, we designed 

fluorescence in situ hybridization (FISH) riboprobes at the 5’ and 3’ ends of sog, NetA, sca, 
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and Pka-C3, with 3’ probes covering full-length forms only (Figure 4.1A). In all cases, 

there was no observable signal from the 3’ probes during NC13, while signal from the 5’ 

probes was present, indicating that transcription did not reach the 3’ ends of genes assayed 

(Figure 4.1 C, D, G, I, K-N). In contrast, full-length transcripts were present in NC14 when 

the duration of interphase was permissive (Figure 1 E, F, H, J, K-N). 

Figure 4.1. Long genes are transcribed as short forms in NC13. (A) Full-length transcripts 
(black) and mapped 3’ RACE identified shorter transcripts (red) for each of the long genes 
investigated. Locations of 5’ and 3’ FISH riboprobes shown in green and blue, respectively. (B) 
A timeline of the syncytial blastoderm development, showing age of embryo, nuclear cycle, and 
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interphase length for the last three syncytial nuclear cycles. Embryo images illustrate rapid 
division of nuclei using a Histone H2Av-RFP fusion line. (C-J) FISH using 5’ and 3’ riboprobes 
for the genes sog, NetA, sca, and Pka-C3 showing full-length transcript is present in NC14, but 
not NC13. Images depict manually chopped embryo cross-sections, as described in the methods. 
(K-N) Normalization of 5’ and 3’ FISH riboprobe stainings of genes sog, NetA, sca, and Pka-C3 
to immunostained Histone H3 to compare signal intensity.  Differences are present for all genes 
in NC13 (Data are presented as means ± SEM. *** p<0.0001, * p<.01, two-tailed Student’s T-
Test). (See also Figure S4.3) 
 

The RNA Binding Protein Sex-Lethal Controls Transcript Truncation 

Since the short transcripts uncovered included intron-derived coding sequence, it 

is likely that transcriptional regulation by RNA binding proteins (RBPs) is a cause of 

truncation, as opposed to post-translational cleavage. We used two search algorithms to 

find RBP recognition sites in introns within 1kb downstream of truncations identified by 

3’ RACE (RAY et al. 2013; PAZ et al. 2014). A list of binding sites was compiled with 

the criteria that sites must be found within 1kb of the truncation point for all four genes 

and, the RBPs must be present in the early embryo or maternally deposited in the 

developing oocyte. Using Gal4-mediated RNAi to knockdown transcript levels 

specifically during late stages of oogenesis and in the early embryo (STALLER et al. 

2013), we assayed a role for the RBP Sex-lethal (Sxl) based on presence of putative 

binding sites (Figure 4.2G; (PENALVA AND SANCHEZ 2003) in all four long genes, and 

PPS and U1 snRNP (70k subunit) based on evidence of physical association with Sxl 

(PENALVA AND SANCHEZ 2003; JOHNSON et al. 2010). To characterize RNAi phenotypes, 

riboprobes were used to assay transcription of intronic sequences 3’ of the initially 

defined truncation sites. In embryos with RNAi against sxl, PPS, and U1 snRNP, intronic 

FISH signal past the truncation point was observed during NC13 for sog, NetA, sca, and 

Pka-C3, indicating that transcriptional read-through past the truncation point occurs 
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(Figures 4.2A and S4.1A-K). There was no intronic signal detected for the same probes 

in wildtype or UAS-RNAi negative controls (Figures 4.2B and S4.1L), indicating that 

transcription does not normally reach this point during NC 13.  

Figure 4.2. Sxl binds to truncated transcripts of long genes. (A) RNAi against sxl, showing 
signals for 5’ FISH riboprobe in green, intronic FISH riboprobe in white, and anti-Histone H3 in 
red used for embryo staging. 5’ Probe location shown in (Figure 1A), 3’ probe location shown in 
(H) as orange box. (B) sxl RNAi negative control, probes as in (A). (C) FISH riboprobe for the 
sog intron downstream of Sxl binding sites shows transcriptional read-through when Sxl site 
cluster is deleted using CRISPR-Cas9 system. (D,E) qPCR using primer pairs along the sog locus 
comparing NC13 with NC14, respectively. Location of primers within sog locus are shown in 
(H). Data are presented as means ± SEM. (F) Quantification of enrichment of transcripts 
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immunoprecipitated with Sxl compared to mock IP, with previously known Sxl-bound genes 
sxl, msl-2, and tra, long genes sog (including intronic primer set In2 past truncation point), NetA, 
sca, and Pka-C3, and dedicated short genes twi and sna. Data are presented as means ± SEM. (G) 
Consensus Sxl binding site (PENALVA AND SANCHEZ 2003) found in the introns of known Sxl-
bound genes and long genes. (H) A schematic of the sog locus, showing the locations of qPCR 
primer sets, intronic FISH probe, and Sxl binding site cluster. All images are chopped embryo 
sections as described in supplemental methods. (See also Figure S4.1) 
 

Furthermore, within the sog intron, a Sxl binding site cluster composed of four 

sites is located ~100-250 bp downstream of the truncation point identified by 3’ RACE 

(Figure 4.2H). When this sequence was deleted using CRISPR-Cas9, transcriptional read-

through past the truncation point was observed (Figure 4.2C), providing further evidence 

that Sxl plays a key role in truncation. In addition, Sxl, PPS, and U1 snRNP have been 

shown to form a protein complex that regulates splicing (JOHNSON et al. 2010), and a 

subunit of the U1 snRNP complex physically binds to RNA Polymerase II (MORRIS AND 

GREENLEAF 2000). Together these observations suggest a transcriptional and/or splicing-

coupled mechanism involving the modulation of RNA polymerase dynamics with protein 

complexes assembled at the Sxl sites in nascent mRNA.  

 

Sex-Lethal Directly Binds to Truncated Transcripts 

If Sxl binds to RNA, the clusters of Sxl consensus binding sites (Figure 4.2H) 

must be transcribed for Sxl to act. Using qPCR primer sets spaced along the sog locus 

(Figure 4.2H, blue markers), we found that during NC14, the 5’ and 3’ exons of sog 

(probes Ex1 and Ex5) were expressed at approximately equivalent levels, while intronic 

probes were expressed an average of ~65-fold lower than the coding exons (Figure 4.2E), 

likely representing rapid excision of introns. During NC13, Ex1 is expressed ~600-fold 
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higher than Ex5, indicating that Ex5 is not transcribed, consistent with FISH 

observations (Figure 4.2D). Also during NC13, the novel coding region of truncated sog 

(probe NewEx) and the Sxl binding site cluster (probe In1) were expressed ~2-fold and 

~10-fold lower than the Ex1 respectively, compared to a ~65-fold decrease for the same 

sequences during NC14 (Figure 4.2E), providing evidence that this section of the intron 

is retained during NC13 instead of being spliced out (Figure 4.2D). There was a marked 

difference between the three intronic probes during NC13; transcript abundance for probe 

In2 compared to NewEx decreased ~500-fold, even though they were equivalently 

transcribed during NC 14 (Figures 4.2D, E). This decrease is similar to the difference 

between Ex1 and Ex5 during NC13, suggesting a true truncation or absence of transcript 

after the Sxl binding sites (Figure 4.2D).  

To assess a physical Sxl association with truncated transcripts, we 

immunoprecipitated Sxl protein and performed qPCR on eluted RNA. We found that 

mRNAs of the positive control genes sxl, msl-2, and tra, which are known to be bound 

and spliced by Sxl (PENALVA AND SANCHEZ 2003), were enriched an average of ~56-fold 

compared to a mock IP (Figure 4.2F). Transcripts of sog, NetA, sca, and Pka-C3 were 

enriched an average of ~42-fold over mock IP (Figure 4.2F). This result, in combination 

with the presence of Sxl binding sites in the transcripts for these genes, strongly indicates 

that Sxl binds to all four mRNAs found to be truncated. The negative control genes twi 

and sna (short genes without long forms) and sog In2 (qPCR probe 3’ of the cluster of 

Sxl binding sites; Figure 4.2H) were not significantly enriched in Sxl IP compared to Ubx 

mock IP (Figure 2F), indicating no Sxl binding to mRNA. 
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Protein Products of Short Transcripts Are Functional in Signaling Pathways 

Next we investigated whether short products code for peptides that are functional 

in their normal signaling pathways. Of particular interest is that the short form of Sog 

contains the entire first cysteine-rich domain, which binds and sequesters TGF-β ligands 

Decapentaplegic (Dpp) and Screw (Scw) (Figure 4.3A,B) (MARQUES et al. 1997). This 

short form closely resembles a Sog fragment known as Supersog, both in structure and 

function (see below). However, Supersog was hypothesized to arise from proteolytic 

cleavage of full-length Sog (YU et al. 2000), which is not likely the case during NC13 

because the majority of sog transcripts are expressed as truncated forms. While full-

length Sog is cleaved by the protease Tolloid (Tld) to release the ligands for signaling, 

short Sog does not contain Tld cleavage sites (PELUSO et al. 2011), and may bind Dpp-

Scw irreversibly (Figure 4.3B). To test this idea, we assayed the effect of ectopic 

expression of short Sog on the TGF-β signaling target gene race [Figure 4.3C,C’; (RUSCH 

AND LEVINE 1997)]. We placed the short sog cDNA under control of the even-skipped 

(eve) stripe 2 enhancer as has previously been done for full-length sog (ASHE AND LEVINE 

1999), producing a stripe of expression along the anterior-posterior axis in addition to 

endogenous full-length expression present in a broad lateral domain (Figure 3F). In these 

embryos, expression of the TGF-β target gene race is lost within the trunk and retained 

only in a small patch at the anterior end of the dorsal ectoderm (Figure 4.3D,D’ compare 

with C,C’), similar to embryos lacking functional Dpp, since only the trunk expression, 

but not anterior domain, is TGF-β signaling-dependent (XU et al. 2005). This indicates 

that the short Sog peptide acts as a dominant negative repressor unable to release Dpp 

and Scw to signal once bound.   
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Figure 4.3.  Short Sog is a functional dominant negative protein. (A) Full-length and short 
Sog proteins, showing functional domains (SP= Signal Peptide, CR= Cysteine Repeat, CHRD= 
Chordin) encoded by long and short transcripts, respectively. New intron-derived amino acids 
(short Sog only) in blue. (B) A model of full-length Sog and short Sog function. Tld cleavage 
sites in red are absent in short Sog protein. (C, D, E, F, H, J, and K) are lateral images, (C’, D’, 
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E’, G, and I) are dorsal images of embryos at NC14.(C) race expression in wildtype embryos. 
(D) race expression in embryos expressing short sog cDNA under the control of eve stripe 2 
enhancer. (E) Same as in (D), except in a gd7 mutant background, lacking a Dorsal gradient 
concomitant with expanded Dpp domain throughout the embryo.(F) Expression of short sog 
cDNA (“s. sog”) under the control of eve stripe 2 enhancer as well as endogenous sog. (G) race 
expression in embryos with full-length sog cDNA (“full sog”) under the control of eve stripe 2 
enhancer in a gd7 mutant background. (H and I) In situ staining for race in a P-element insertion 
line that mimics the short sog truncation (“sogΔ3’”). (J and K) In situ staining of separate 
embryos for race in a line where the novel coding sequence of short sog (NewEx) was deleted 
using CRISPR (“sogΔNewEx”). Stage of embryo in (J) is early NC14 before dorsal race 
expression appears in wildtype. Embryo in (K) is in mid NC14, when full-length sog can support 
race expression. (See also Figures S4.2, S4.4) 
 

We also expressed eve stripe 2-short sog in a gastrulation-defective (gd) 

background, which lacks a Dorsal nuclear gradient due to defective Toll signaling and 

expresses expanded domains of the TGF-β ligand Dpp throughout the embryo (KONRAD 

et al. 1998). In these embryos, as shown previously (ASHE AND LEVINE 1999), when the 

full-length cleavable Sog peptide is expressed in the eve stripe 2 domain, robust race 

expression is observed as stripes both in the anterior and mid-trunk regions (Figure 

4.3G). In the case of short sog expressed in the eve stripe 2 domain, race expression in 

most embryos was limited to a broad anterior patch, the expression domain that is TGF-β 

independent (Figure 4.3E,E’), but was absent from the trunk. Tld cleavage of full-length 

Sog is concomitant with release of ligands at a distance from the source of Sog ectopic 

expression and expression of race in the trunk stripe (ASHE AND LEVINE 1999). In 

contrast, the local inhibition and lack of race activation at a distance in eve stripe 2- short 

sog embryos (Figure 4.3E,E’) suggests short Sog cannot be cleaved by Tld to support 

activation of signaling, and that binding of short Sog to Dpp and Scw is irreversible.  

In mutant backgrounds affecting the sog locus by P-element insertion, which 

causes loss of full-length Sog but retention of short Sog (effectively “short Sog only”), 
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we detected expansion of race (Figure 4.3 H and I), presumably because of an inability 

of short Sog to concentrate ligands at the dorsal-most position, which is usually 

facilitated by Tld cleavage of full Sog in the dorsal ectoderm (ASHE AND LEVINE 1999). 

On the other hand, precocious and sporadic activation of race throughout the embryo is 

associated with deletion via CRISPR specifically of the novel short Sog coding sequence 

in the sog intron (effectively “long Sog only”), suggesting expression of this dominant 

negative version is important to keep cell signaling in check before cellularization, when 

the ligands Dpp and Scw are widely expressed throughout the embryo and free from 

Short Sog sequestration to activate signaling in the mutant (Figure 4.3 J and K).  

When the short peptides for NetA, Sca, and Pka-C3 were compared with full-

length forms, only a subset of functional domains were encoded in a similar fashion to 

short Sog, suggesting the short forms of these genes, also, correspond to functional 

truncated proteins, as identified for Sog (HU et al. 1995; YU et al. 2000; SCHNEIDERS et 

al. 2007; MILOUDI et al. 2016) (Figure 4.3A, Figure S4.2). We hypothesize that short 

forms made at NC13 correspond to dominant negative (or possibly constitutively active) 

forms of signaling molecules that generally impact signaling, and investigated a possible 

programmatic truncation of long genes during NC13 using a global approach to map 3’ 

ends of transcripts. 

 

Global 3’ RNA-Seq Identifies Additional Truncated Transcripts 

To provide insight, RNA-seq was performed on Drosophila embryos from NC13 

and NC14 separately, targeting the 100bp at the 3’ end of transcripts [i.e. 3’ RNA-seq; 
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(LIANOGLOU et al. 2013b)]. When comparing both short and long genes, there is a 

marked difference between the two classes. While there is little difference in 3’ transcript 

ends between NCs 13 and 14 for short genes, such as knirps (kni) (Figure 4.4A), long 

genes show large differences in 3’ transcript abundances between the two NCs (Figure 

4.4A). Our previous study using NanoString to quantify transcripts in the early embryo 

(SANDLER AND STATHOPOULOS 2016), including sog and NetA, also showed a difference 

in 5’ vs 3’ transcript abundance before NC14, confirming the results from 3’ RNA-seq 

(Figure S4.3). In addition to confirming the lack of full-length NC13 expression for long 

genes already characterized, 3’ RNA-seq provides evidence for additional long genes 

with truncations during NC13. For example, the embryonic gene grainy head (grh) is 

38kb long, but has a peak of mapped reads less than 15kb from the transcription start site 

during NC13, with proximal Sxl binding sites located just downstream (Figure 4.4A and 

B).  

A kni 

sog 

grh 

2.5kb 

A 

B 

grh 

500bp 

sog 
C 

Pol II 

Sxl 
PPS U1 

mRNA 5’ 

mRNA 3’ ? 

Pause 



 

 

86 
Figure 4.4. 3’ RNA-seq and model for transcript truncation. (A) 3’ RNA-seq showing 
NC13 (blue) and NC14 (red) for genes kni (3kb), sog (23kb), and grh (38kb). (B) Detailed 
browser tracks showing 3’ RNA-seq short forms for sog and grh, from boxed regions in (A). 
Black arrows indicate novel truncated 3’ transcript ends, and orange arrows indicate location of 
Sxl binding sites, defined as stretches of eight Us in a row in the resulting transcript. (C) A model 
of the Sxl-PPS-U1 snRNP complex bound to an actively transcribed mRNA and closely 
associated with RNA Pol II.  Sxl binds directly to its RNA binding site, U8, and is joined by U1 
snRNP, which has been shown to also bind RNA Pol II, and PPS. This spliceosome-Pol II 
interaction may cause a short pause that allows truncation of mRNA. RNAi against any one 
member of this complex may break this interaction and allow for read-through of a transcript, 
now bound to be degraded. 
 

DISCUSSION 

The need to temporally regulate the initiation of signaling pathways in the embryo 

is critical for proper development; when members of signaling pathways are either 

ectopically expressed or knocked out, there are serious and often fatal developmental 

defects in the embryo (DECOTTO AND FERGUSON 2001). Rapid nuclear divisions limit 

transcript length of key signaling pathway members, but the truncation of these 

transcripts to produce short proteins is a mechanism used to resolve this temporal 

challenge. Sxl, which we demonstrated is essential for the truncation of short transcripts, 

is an RNA splicing factor and the master gender regulator in Drosophila (CLINE 1979; 

BELL et al. 1988). It is differentially expressed in males and females, and is gender-

specifically spliced in females to begin a cascade of alternate splicing that determines the 

gender of the embryo (BOPP et al. 1991). Sxl has an ancestral splicing function that is not 

involved in gender determination, but this is overshadowed by its gender determination 

function (CLINE et al. 2010; EVANS AND CLINE 2013). This ancestral role may be further 

masked by the fact that sxl mutations are lethal or give rise to sterile females (BERNSTEIN 

AND CLINE 1994), making the observation of early embryonic phenotypes very difficult. 
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Furthermore, the shortening of transcripts and 3’ UTRs has been implicated in the 

activation of oncogenes and the progression of cancer (MAYR AND BARTEL 2009). Our 

study provides new insights into these processes and suggests targets for future research 

in the understanding of alternate transcript truncations.  

Even with the recently published fastest rate for RNA Pol II in Drosophila 

embryos of 2.4 kb/min from an analysis of heterologous reporter genes of ~5kb in length 

(FUKAYA et al. 2017), transcription of a 38kb gene during NC13 within 15 min would be 

challenging, while expression of the short transcripts (<15kb) we have identified would 

be easily achievable. Our study elucidates a short transcript program that is regulated by 

Sxl during early NCs, and these short transcripts likely support important developmental 

roles, which are even more important if they still function in the presence of full-length 

counterparts to balance cell signaling pathway activation. Targeted PCR results support 

the view that both short and long forms of genes may be co-expressed in the early 

embryo at NC14 (Figure S4); however, the predominant transcript formed corresponds to 

long form at this later stage. The presence and function of short forms when long forms 

are also expressed and not time-restricted provides more evidence that the balance of 

short and long forms is important for proper regulation of cell signaling. 

In conclusion, this study provides evidence for two previously unidentified 

processes taking place during development of Drosophila embryos: first, the expression 

of short transcripts that produce functional proteins during short nuclear cycles; second, 

Sxl functions more broadly than previously understood in the regulation, and importantly, 

termination of transcription and production of short transcripts. We suggest that this 

program of short transcripts and resulting proteins is essential for the timing and 



 

 

88 
coordination of signaling pathways during development, forming an additional 

regulatory level incorporated into the maternal to zygotic transition during 

embryogenesis. As an example, truncated Sog serves to regulate both spatial and 

temporal activation of the TGF-β signaling pathway when the broad expression of ligands 

cannot achieve this task. Furthermore, our data show that Sxl has an additional, general 

role outside of specifying gender in the early embryo. This can be thought of as rescuing 

or protecting essential short transcripts from degradation to ensure the presence of short 

proteins. Since Sxl’s role in supporting sex determination is not conserved outside of the 

Drosophila genus (CLINE et al. 2010), it is possible that the role we have defined here 

resembles an ancestral one that subsequently evolved to balance fast development with 

proper activation of cell signaling. 
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MATERIALS AND METHODS 

Fly stocks and husbandry 

Fly stocks used in this study are: P{His2Av-mRFP1}III.1 [Bloomington 

Drosophila Stock Center (BDSC)#23650], sxl RNAi P{TRiP.GL00634}attP40 (BDSC 

#38195), U1 snRNP 70k RNAi P{TRiP.HMS00274}attP2 (BDSC#33396), PPS RNAi 

P{TRiP.GL00684}attP40 (BDSC#38912), sog P-element disruption w67c23 

P{GSV2}GS51273 (Kyoto Stock Center#207284), gd7 (BDSC #3109), and eve Stripe 2: 

sog, a gift from Hilary Ashe (ASHE AND LEVINE 1999). For CRISPR-Cas9 mediated 

genome editing flies are described in the sections below. All flies were reared under 

standard conditions at 23°C. yw background was used as wildtype unless otherwise 

noted. 

 

RNA extraction from embryos 

All RNA used for RACE, NanoString, qPCR, and 3’ RNA-seq was extracted 

from either a 2-3 hour timed collection of embryos (RACE) or individually collected and 

staged embryos (NanoString, qPCR, 3’ RNA-seq) using Trizol reagent (Ambion).  Timed 

pools of embryos were collected from apple juice plates and washed into a 1.5 ml 

microcentrifuge tube, excess water removed, and crushed in Trizol. A Histone H2Av-

RFP fusion was used to stage individual embryos by nuclear cycle using an 

epifluorescence microscope (SANDLER AND STATHOPOULOS 2016). Individual embryos 
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were imaged to confirm correct nuclear cycle, snap-frozen in Trizol using liquid 

nitrogen, and stored at -80° C until RNA extraction. The standard Trizol protocol was 

followed, with the addition of a second chloroform extraction and second 70% EtOH 

wash. 

 

Rapid amplification of cDNA ends (RACE) to map transcripts 

RACE cDNA libraries were created using the GeneRacer kit (ThermoFisher). 

Standard protocol was followed, and reverse transcription was done using Protoscript II 

(NEB). Extracted RNA was treated with DNase I (NEB) prior to library construction. 

Nested 5’ and 3’ RACE primers were designed to capture alternate start sites or 

truncations of the genes sog, NetA, sca, Pka-C3, and vn. Both 5’ and 3’ primers were 

designed to multiple exons of each gene to capture as much diversity as possible. RACE 

experiments were performed on RNA extracted from embryos aged 2-3 hours, which 

includes both NC13 and NC14. We recovered a single short isoform for each of the 

genes, using two separately prepared RACE libraries and sequencing eight individual 

RACE products per gene for both libraries. This repeated validation recovering the same 

short sequences for all four genes further verifies that the RACE products recovered were 

mature transcripts.   

  

NanoString assay to quantify levels of 5’ and 3’ ends of sog and NetA transcripts 

We used NanoString technology, which directly counts mRNA transcripts using 

gene-specific fluorescent barcodes, without reverse transcription, fragmentation, or 

amplification, to observe the expression of 5’ and 3’ ends of the genes sog and NetA 
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(GEISS et al. 2008; SANDLER AND STATHOPOULOS 2016). Once extracted from 

individually staged embryos, total RNA was hybridized with NanoString probes at 65°C 

for 18 hours and then loaded onto the NanoString nCounter instrument for automated 

imaging and barcode counting. To normalize between embryos and allow for absolute 

quantification, 1µl of Affymetrix GeneChip Poly-A RNA Control was spiked into each 

embryo before extraction at a dilution of 1:10000. A linear regression was made for RNA 

spike-in input versus counted transcripts, and all other genes were fit to the regression 

and quantified. 

 

Fluorescence in situ hybridization staining and signal quantification 

Embryos aged 1-4 hours were collected and fixed using standard protocols, and 

Fluorescence In Situ Hybridization (FISH) was performed following published methods 

(KOSMAN et al. 2004) but omitting Proteinase K treatment. Riboprobes were synthesized 

using T7 RNA Polymerase and digoxigenin or biotin labeled NTP nucleotides (Roche) 

and a primary antibody to Histone H3 (Rabbit anti-H3, 1:10000; Abcam) was used to 

label histones for precise embryo staging by nuclear cycle. Embryos were sectioned 

along the anterior-posterior axis manually using a razor blade, and cylindrical mid-

embryo sections were imaged face-on. FISH signal was quantified by normalizing signal 

intensity from probes to 5’ and 3’ ends of genes compared to signal intensity from 

histones in individual embryos.  
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RNA binding protein site search 

We used two search algorithms to find RNA binding protein (RBP) recognition 

sites in introns downstream of truncations identified by 3’ RACE (RAY et al. 2013; PAZ 

et al. 2014). A list of binding sites was compiled with the criteria that sites must be found 

within 1kb of the truncation point for all four genes and the RBPs must be present in the 

early embryo, by presence of maternally deposited transcripts (GRAVELEY et al. 2011a).  

 

RNAi experiments using a heat-shock Gal4 approach to knock-down maternal 

transcripts midway through oogenesis 

In most cases, the use of RNAi against or mutation of the selected RPBs causes 

sterility or is lethal (SCHUPBACH AND WIESCHAUS 1991; JOHNSON et al. 2010). Therefore, 

we employed combined heat-shock Gal4 driver with UAS-RNAi lines to generate female 

flies primed for RNAi (STALLER et al. 2013). Once a stock with both components was 

generated, flies were allowed to mate, then females were heat-shocked three days in a 

row at 37°C for one hour, and embryos collected on the three subsequent days. Flies from 

the same cross were kept without heat shock and embryos collected in parallel, as a 

control to confirm any phenotypes seen were due to RNAi and not non-specific effects of 

the constructs. 

 

RNA IP and qPCR to assay Sxl association with transcripts 

Nuclear extract preparation was based on a previously described method 

(KAMAKAKA et al. 1991). Approximately 0.4g of 2-4 hour O-R embryos were collected 

and dechorionated for 3 minutes according to standard protocols in 50% bleach, washed 
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with water, followed by a Triton-NaCl embryo wash, then rinsed briefly with water. 

All following steps were performed on ice or at 4°C. Embryos were homogenized in a 

2ml dounce (10 passes with pestle A, 3 passes with pestle B) in NE I (15mM HEPES pH 

7.4, 10mM KCl, 5mM MgCl2, 0.2mM EDTA, and 350mM sucrose supplemented with 

1x Complete protease inhibitors and PhosStop (Roche)), at a ratio of 2ml buffer to 1g 

embryos. Extract was filtered through miracloth to remove debris. Nuclei were collected 

at 3000xg for 10 minutes, then washed 2X with NE I with gentle resuspension of nuclei, 

while avoiding yolk and other embryonic debris with each wash. Nuclei were then 

resuspended and disrupted in 150ul of NE II (50mM HEPES pH 7.4, 300mM NaCl, 0.1% 

Tween-20, 10% glycerol, and 0.1mM EDTA supplemented with inhibitors as in NE I) 

and incubated on ice for 12 minutes. The extract was spun in a microfuge at top speed for 

30 minutes to remove debris. 

For IP, the extract was diluted 1:1 with binding buffer (25mM HEPES pH 7.4, 

10% glycerol, 1mM EDTA, 5mM KCl, and 1mg/ml BSA), using 150ul of diluted extract 

for each IP. Antibody-Protein G complexes were prepared by incubating 50ul of 

supernatants of ɑ-Sxl (DSHB M114) or ɑ-Ubx (DSHB Ubx/ABD-A FP6.87) in binding 

buffer with 30ul of Protein G beads for 1.5 hours in a total volume of 400ul, washed 2X 

with binding buffer, 2X with wash buffer (40mM HEPES pH 7.4, 300mM NaCl, 10% 

glycerol, and 0.2% NP-40), and then 2X with binding buffer. Diluted nuclear extract was 

incubated with prepared beads with agitation for 1.5 hours, and washed 4X with wash 

buffer. Immunoprecipitated material was eluted with 100ul of 50mM HEPES pH 7.4, 2% 

Sarkosyl, and 10mM DTT for 30 minutes at 50°C. Proteinase K was added to the eluted 

material to a final concentration of 1mg/ml and incubated at 50°C for 30 minutes. 
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RNA was extracted from eluate using acid phenol:chloroform, pH 4.5 

(Ambion), followed by chloroform extraction, isopropanol precipitation, and wash in 

70% EtOH. RNA was treated with DNase I (NEB) and reverse transcribed using 

Protoscript II (NEB). qPCR was performed on cDNA using SYBR Green I Master Mix 

(Roche) on a StepOnePlus Real-Time PCR System (Applied Biosciences). Relative 

quantification performed using the 2-ΔΔCt
 method (LIVAK AND SCHMITTGEN 2001). 

 

3’ RNA-seq to detect global 3’ ends of genes in the embryo 

RNA from pools of 50 embryos each from NCs 13 and 14 was extracted as 

described above. A sequencing library was created using a previously described method 

(LIANOGLOU et al. 2013a) with modifications. The concentration of ligated sequencing 

adapters was lowered two-fold to decrease unincorporated adapters sequenced, and final 

library was size-selected from a 2% Ultra Pure LMP Agarose (Invitrogen), extracted 

from gel slices using β-Agarase I (NEB), and purified with a phenol:chloform extraction 

as described above. Libraries were sequenced on an Illumina HiSeq2500 and sequenced 

aligned to the FlyBase (April, 2006) annotation using Tophat version 2.0.13 and Bowtie 

1.1.1 as the aligner (KIM et al. 2013).  

Internally primed reads were filtered out of the aligned reads using python to 

build a BED file of Poly-A and Poly-T islands of at least eight bases in length, depending 

on sequence orientation. BEDTools was then used to intersect the BED file with the 

aligned reads to filter the reads within 10 bases of a Poly-A or Poly-T island (QUINLAN 

2014). 
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CRISPR-Cas9 mediated genome modification 

To target a deletion of the new exon or Sxl binding sites located downstream of 

the sog truncated transcript 3’ end, a transgenic line was generated expressing two guide 

RNAs (gRNAs) targeting the region that includes the new exon or Sxl binding sites at 

sog locus. First, the unique PAM recognition sites were identified flanking this region 

using the flyCRISPR optimal target finder 

(http://tools.flycrispr.molbio.wisc.edu/targetFinder). Subsequently, these two sites were 

cloned into the plasmid pCFD4-U6:1_U6:3tandemgRNAs (Addgene plasmid#49411). 

The plasmid including these two PAM sites was injected into y2cho2v1; P {nos-

phiC31\int.NLS}6X; attP2 (III)  (NIG-Fly #TBX-0003), resulting in phiC31-mediated 

site-integrated transgenesis at landing site attP2 (Chr. III) (GRATZ et al. 2014). 

Integration in the genome at this position was confirmed by PCR/sequencing. 

To delete the new exon, non-homologous end joining (NHEJ) mediated by the 

CRISPR-Cas9 genome editing system was utilized (BASSETT AND LIU 2014). 

y2cho2v1;sp/CyO;P {nos-Cas9,y+,v +} 2A (NIG-Fly #Cas-0004) virgin flies were collected 

and crossed with gRNA transgenic male flies. The individual progeny were screened by 

PCR and sequencing for the deletion.  

To delete the region including Sxl binding sites at the sog locus, homology 

directed repair (HDR) mediated CRISPR-Cas9 system was utilized (BASSETT AND LIU 

2014), A donor construct was generated using pHD-DsRed vector (Addgene plasmid 

#51434). An ~1kb 5’ or 3’ homology arm to the regions either upstream or downstream 
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of the Sxl binding sites at the sog locus was cloned with SmaI/NheI or AscI/XhoI, 

respectively. 

y2cho2v1;sp/CyO;P {nos-Cas9,y+,v +} 2A (NIG-Fly #Cas-0004) virgin flies were 

collected and crossed with gRNA transgenic male flies. Embryos were collected and 

injected with 300ng/λ of the donor vector. By HDR mediated CRISPR-Cas9, an ~1.1kb 

region including four Sxl binding sites was replaced by a ~1.3kb fragment, which induces 

RFP expression in eyes (3xP3-DsRed), essentially retaining similar organization at the 

locus save for the presence of the Sxl binding sites/associated sequence. The deletion of 

the region including Sxl binding sites was confirmed by expression of RFP in adult fly 

eyes and by sequencing. 
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SUPPLEMENTAL MATERIAL 

 

Supplemental Table 4.1. Primer list 

 

FISH Probe Primers   
Sog 5' F TCAGGTTCAGTCGCTCTTGA 
Sog 5' R GTGTCGGACTCCTCGAACA 
sog In 3 F ACAACAGCAGCAACAATGCGAGTAC 
sog In 3 R ACAATCTTCACTCGGGCAACGAAAATTC 
Sog 3' F GATGCACAGAATCCACATGCCGTC 
Sog 3' R GCCGTTCTCGTACACCTTGTTGAC 
NetA 5' F ATGATCCGTGGAATCTTGCTCCTGC 
NetA 5' R CTTTGCACTCATTGGCTTCCTTGGC 
NetA 3' F CCTGCGATTGCCATCCGATCG 
NetA 3' R ACACATAAATTATTGCTTACTGGCGCTCTG 
sca 5' F TTCAGTCCTTCGAAGAACGCCGC 
sca 5' R CTGAGTTGGTTCAGTTCGCTGCG 
sca 3' F CAAACCGGACTTGAAACCACTGCTG 
sca 3' R TTACGCCTGCCCGGCGGCC 
Pka-C3 5' F GAAAAGCGACAGGAGACAACGGG 
Pka-C3 5' R CGCACTCCCTTCGCGGTC 
Pka-C3 3' F GCACGGGCACCTTTGGAC 
Pka-C3 3' R CTTCATGTTGCCCAGTCGTTTGGT 

qPCR Primers   
sog Ex1 F GGAGCCCCAAGCGAGCAAAA 
sog Ex1 R CGCCAAGCAGACGATCAGCA 
sog NewEx F TGTGATGCCCCCAAACACCG 
sog NewEx R GCGCTGACCTTCATTTCGGG 
sog In1 F TGCTGCCTTGTTGCCAGTTG 
sog In1 R ATTCCGCCCGCCCATCAC 
sog In2 F GGTGGAAGCGAGAGGTGGAAAT 
sog In2 R CTGAATGGACGAATGCCAGGGG 
sog Ex 5 F CGGTTTGGCGTGGGTCTACT 
sog Ex5 R CGCTTGCCCTGCTCCTCAA 
NetA F GGACTTTGTGAACGCCGCCTA 
NetA R GTCGCAGGTGTGGCAGGAG 
sca F CGAGGATAGCGAGGACATCAGC 
sca R CGCAGCATCAGGGCGTTG 
Pka-C3 F GCCTCAAGCGAGTCATCCGA 
Pka-C3 R GTGGTGGTGGTGGCGGTG 
sxl F AACAACGACAGCAGCAGGC 
sxl R AGGATGATGAGGTGAGTTGCAGT 
msl-2 F TTCGCAGGATTCGGGGCAAG 
msl-2 R CGGCAGGTGGTGAGGGTATT 
msl-2 3' F GCTTCGGTTCCCTTCCCCAG 
msl-2 3' R CGGTGGCTCGATGACTTCCC 
tra F GCCTCAAGCGAGTCATCCGA 
tra R TGCGTCTGGTGGATTGGTGC 
twi F AGACGGAGGAGACGGACGAG 
twi R GGGCAGCGTGGGGATGAT 
sna F GCGACGAGGAGACCCAGGA 
sna R GCTCCAACTCCTGCCTGCTG 

CRISPR Primers   
gRNA sog.del.sxl f TATATAGGAAAGATATCCGGGTGAACTTCgatagttagaaggcacgggcgGTTTTAGAGCTAGAAATAGCAAG 
gRNA sog.del.sxl r ATTTTAACTTGCTATTTCTAGCTCTAAAACtggtccactacttcggataacGACGTTAAATTGAAAATAGGTC 
conf gRNA GACACAGCGCGTACGTCCTTCG 
HDR.LA.sog.del.sxl f GTACGTCCCGGGAGCAGCCACCAAAGTGTTCT 
HDR.LA.sog.del.sxl r CTAGCGGCTAGCCGATTTGGATTCGGAATAGG 
HDR.RA.sog.del.sxl f GTACGTGGCGCGCCGCGCGGCTTTTCCAG 
HDR.RA.sog.del.sxl r CTAGCGCTCGAGCGAGTCGATGGAATCGAAA 
sog.del.newexon.conf f  GCGGCGACAGACATAAAAAC 
sog.del.newexon.conf r CCAATGGGGCATAAATCAGT 
gRNA.sog.del.newexon f TATATATAGGAAAGATATCCGGGTGAACTTCGGCATTTGTTGGTATCGATAGTTTTAGAGCTAGAAATAGCAAG 
gRNA.sog.del.newexon r GACCTATTTTCAATTTAACGTCGTAATTATGCGTAGCGTCCAGTTTTAGAGCTAGAAATAGCAAGTTAAAAT 
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Figure S4.1. Transcriptional read-through in RNAi. Relates to Figure 2. (A-C) RNAi against 
sxl for genes NetA, sca, and Pka-C3 leads to transcriptional read-through past truncation point. 
(D-G) RNAi against U1 snRNP for genes sog, NetA, sca, and Pka-C3 leads to transcriptional 
read-through past truncation point. (H-K) RNAi against PPS for genes sog, NetA, sca, and Pka-
C3 leads to transcriptional read-through past truncation point. All images are chopped embryo 
sections as described in supplemental methods. (L) Heat shock negative RNAi control for sog 
using 5’ exon and intronic probes. Images are chopped embryo sections as described in 
supplemental methods. 
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Figure S4.2. Protein products of short transcripts. Relates to Figure 3. (A) Full-length 
proteins and proteins resulting from truncated transcripts. SP= Signal Peptide, NTR= Netrin 1, 
CYT= Cytoplasmic, TM= Transmembrane, Rab Bind= Rab GTPase binding, FRed= Fibrinogen-
related Domain. (B-E) Plots showing amino acid properties for short form proteins Sog, NetA, 
sca, and Pka-C3 respectively, with novel amino acids after the dashed line.  Novel amino acids 
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retain the same or highly similar properties of preceding canonical sequence.  Plots were 
generated using the Phobius tool for amino acid property prediction (KALL et al. 2004). 
 
 

 

Figure S3. NanoString quantification of long transcripts. Relates to Figure 1. (A-C) 
Quantification of transcripts (y-axis individual transcript counts) within single Drosophila 
embryos of the indicated stages (x-axis) using NanoString (see supplemental methods, (SANDLER 
AND STATHOPOULOS 2016)). Levels of expression for long genes sog (A) and NetA (B) were 
probed at the 5’ (blue) and 3’ (green) end of genes. grh was identified as truncated only after 3’ 
RNA-seq data was obtained, and therefore had only been probed by NanoString using a 3’ probe 
(blue). Nevertheless, all three long genes show vast upregulation of expression of 3’ ends from 
NC 13 late (13l) to early-mid NC 14 (14a and 14b, respectively). The trajectories of short genes, 
5’ probes for sog and NetA, as well as sna, are more similar. (See also Star Methods) 
 

 

Figure S4. Truncated sog is present in NC14. Relates to Figure 3.  
(A) RT-PCR using cDNA from eight individual NC14 embryos transcribed with an 
oligo-dT primer showing the short sog transcript is present. Reverse primer located in 
novel coding region of short sog. (B) Reverse Transcriptase negative control on RNA 
from the same embryos, demonstrating that signal is cDNA-dependent. DNA Ladder is 
1kb Plus Ladder (ThermoFisher). 
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C h a p t e r  5  

DISCUSSION	
	

The experiments and analysis described in this thesis all revolve around a unique 

developmental strategy found in the Drosophila genus: a rapidly dividing syncytium of 

nuclei that reaches gastrulation in around 3 hours (FOE AND ALBERTS 1983). While many 

insects, and even vertebrates (CARVALHO AND HEISENBERG 2010), include a complete or 

partial syncytial phase in development, Drosophila is unique in the speed and dynamic 

changes that occur during this time. The mosquitoes Aedes aegypti and Anopheles 

gambiae, which diverged from Drosophila ~250 million years ago (MYA) (BOLSHAKOV et 

al. 2002; SEVERSON et al. 2004), also undergo a syncytial blastoderm stage in early 

embryogenesis, but nuclear divisions are slower and cellularization occurs at ~8 hours after 

egg laying (GOLTSEV et al. 2004; CLEMONS et al. 2010), compared to ~2.5 in Drosophila. 

When comparing the time delay between cellularization and gastrulation, Drosophila again 

exhibit very rapid development, with the two events occurring less than 30 minutes apart, 

while the delay in mosquitoes is ~4 hours, gastrulation finally occurring ~12 hours after 

egg laying.  

The flour beetle Tribolium castaneum, which diverged from Drosophila ~300 

MYA, is also a syncytium during early embryogenesis (BROWN et al. 1994), and has 

developmental timing similar to mosquitoes, with cellularization occurring at ~8 hours after 

egg laying and gastrulation at ~12 hours (HANDEL et al. 2000). Lastly, the honeybee Apis 

millifera, ~300 MYA, diverged from Drosophila (SAVARD et al. 2006), has a syncytial stage 
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with timing of cellularization and gastrulation matching Tribolium and mosquitoes 

(PIRES et al. 2016). All three insects, mosquitoes, Tribolium, and Apis, are common genetic 

outgroups used in comparison to Drosophila, and provide good points of reference for 

examining evolution after divergence. 

On the other hand, the rapid program is common to Drosophila species, with 

development uniformly rapid across the 12 commonly studied Drosophila species, 

especially in the early stages before gastrulation (KUNTZ AND EISEN 2014). The many 

Drosophila species vary in their time of divergence from each other, but some of the most 

distantly diverged species, melanogaster and virilis, are almost 40 million years apart 

(RUSSO et al. 1995). Based on the lack of rapid syncytial nuclear divisions and progression 

to cellularization and gastrulation in mosquitoes, Tribolium, and Apis, and its commonality 

among Drosophila species, it appears that this development program is a derived trait in 

Drosophila.  

The question is then raised: How has Drosophila addressed the challenges 

associated with rapid embryonic development, namely, the time constraints on transcript 

length in the early embryo before cellularization? We took a multi-layered approach to 

address this question, first creating a fine time scale profile of the activation of the DV 

GRN in the embryo. This analysis allowed us to monitor the transcriptional dynamics of 

~70 genes at a 10-15 minute resolution, giving insight into how the genome is rapidly 

activated and how the GRN is able to pattern the entire embryo and prime it for gastrulation 

in ~2.5 hours. Next, we focused on the presence of long transcripts during the short NC 13, 

when transcript length is limited by interphase time before mitosis. We identified truncated 

transcripts of several genes in these time points, characterized a mechanism responsible for 
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their truncation, and showed that the short transcripts produce functional proteins to 

regulate the spatiotemporal activation of signaling pathways in the early embryo. With the 

data and insights gained from these approaches, a picture has emerged that describes the 

evolution of a unique developmental program and strategies needed to address challenges 

along the way. 

The developmental time course created using NanoString provides the highest 

temporal resolution data to date describing Drosophila development, and the first highly 

quantitative data of ~70 genes in parallel from a single sample. The genes we analyzed 

were all chosen from the previously characterized DV GRN (LEVINE AND DAVIDSON 2005; 

STATHOPOULOS AND LEVINE 2005) (Figure 5.1).  

Figure 5.1 Drosophila DV GRN. The GRN describing genes action on the DV axis of the embryo. 
Genes in purple are maternally deposited. Blue domain indicates mesoderm, orange indicated 
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neurogenic ectoderm, and green indicates dorsal ectoderm. Lighter shades are genes acting 
before cellularization, and darker shades after cellularization. Horizontal lines above gene symbols 
represent enhancers, with inputs from other genes as arrows (activating) or blocks (repressing). 
Signaling nodes are represented by black circles. Figure from (LEVINE AND DAVIDSON 2005). 
 

The GRN represents a compilation of years of experimental observations, from 

mutating, overexpressing and, ectopically expressing genes, and observing the changes in 

expression of known and hypothesized interacting genes. GRNs can be displayed in a 

variety of ways, but a commonly used tool to input network information and create a 

graphical representation of genetic interactions is through the use of the software package 

BioTapestry (LONGABAUGH et al. 2005). The information contained in the graphical GRN 

shows many aspects of cis-regulatory circuitry, with enhancers of constituent genes 

depicted and transcriptional inputs from other network genes (transcription factors) directly 

contacting enhancers (DAVIDSON et al. 2002) (Figure 5.1). Secreted signaling molecules, 

cell membrane receptors, and signaling transducers are represented as nodes of interaction 

that then connect to enhancers (Figure 5.1). The network view of a developing embryo 

provides a new way of thinking about development itself, shifting from studying single 

genes that are used to make individual network connections, to a view that incorporates all 

the genes at once to describe the progression of development. 

The combined transcriptional inputs present in any tissue or cell type, represented 

by presence in a GRN model, can be thought of as the regulatory state, which controls the 

overall output of the GRN. The regulatory state is responsible for an instantaneous 

snapshot of GRN activity, but the regulatory state also is constantly in flux as genes are 

turned on or off (DAVIDSON 2006). Because the regulatory state changes every time a new 

gene is expressed or a gene stops being expressed, the GRN model can provide a prediction 
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of the new resulting regulatory state, but the GRN model itself must also be revised. 

Even highly detailed GRNs compress a 4-dimensional embryo (three spatial dimensions 

plus time) into a two-dimensional depiction. This compression results in a loss of data from 

the time dimension, which in some cases was never included in the GRN in the first place. 

Single gene perturbation experiments also provide a snapshot of gene interactions at a 

specific developmental stage, rather than in a dynamic and developing embryo where 

regulatory state is in constant flux. To answer questions and provide insight into the GRN 

details that are are lost in temporal compression, we used NanoString to create a dynamic 

GRN, with details on gene expression at high time resolution through development. 

One question that often arises with the use of NanoString is whether or not the data 

can give spatial information on gene expression in the embryo. As the embryos are 

homogenized during RNA extraction, spatial information is lost. That is why targeted in 

situ hybridizations have become a powerful tool to investigate changes in expression. 

NanoString Technologies is developing a method to address this question and provide 

spatially resolved information about gene expression. This method uses UV-cleavable 

probes and microcapillaries to sample transcripts from single cells in fixed tissues 

(DUNAWAY et al. 2016). Different cell types to be sampled are stained with cell type 

specific markers, and UV light is used to cleave the NanoString probes from specific cells. 

Cleaved probes representing transcripts present in specific cells are collected in a 

microcapillary and quantified using the NanoString instrument. Currently, the method has 

only been tested on FFPE tissue slides, but NanoString is developing a method for 

sampling 3D tissues which will allow transcript quantification using fixed Drosophila 

embryos.  
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Figure 5.2. Sampling the embryo along the DV axis for NanoString. An illustration of an 
embryo labeled with antibodies for Sna (blue), Sog (green), and Race (red), providing positional 
information for the DV axis and used to orient the embryo for sampling.  Yellow arrows indicate 10 
points along the DV axis where focused UV light would free NanoString probes bound to RNA for 
sampling and transcriptional profiling. 

 

For example, an antibody against Snail could be used to mark the mesoderm, an 

antibody against Sog could be used to mark the neurogenic ectoderm, and an antibody 

against Race could mark the dorsal ectoderm, providing coordinates and embryo 

orientation so a tissue-specific transcriptional profile for multiple sampling points along the 

DV axis can be created (Figure 5.2). With the dorsal and ventral midpoints marked, the 

same absolute position along the embryo could be sampled in wild type and mutant 

embryos, allowing the Dorsal gradient along the DV axis to be measured and providing a 

look at how regulatory states change in mutants. Some genes, such as Neu2, have no place 

in the DV GRN despite evidence that they are in fact expressed and regulated long the DV 
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axis (STATHOPOULOS et al. 2002). Using NanoString, Neu2- embryos can be compared 

to WT, precisely quantifying the expansion of the Dl nuclear gradient along fixed points 

using UV-linked probes (Figure 5.2).  

An additional experiment that would shed light on the role of Neu2 would be to 

overexpress Neu2 throughout the embryo, using a UAS-Neu2 construct with a ubiquitous 

Gal4 driver. If the model of Neu2 binding to Weckle to balance or titrate the concentration 

of Dl is accurate, then an overexpression should have a mostly opposite effect on gene 

expression compared to the Neu2- embryos observed with NanoString. Genes that rely on 

high concentrations of Dl, such as sna and twi, would likely be expressed in a narrower 

domain, while genes that rely on a lower concentration, such as brinker (brk) or 

intermediate neuroblasts defective (ind), would be shifted ventrally. There may be a ventral 

expansion of sog or brk as the sna domain shrinks, but lower concentration of Dl in lateral 

regions may shift the dorsal boundaries of those genes towards the ventral pole.  

The effect of ubiquitous Neu2 expression on the TGF-β signaling pathway is 

slightly more complicated to predict, as there is no direct Dl binding to the enhancers of 

TGF-β output genes. If brk and sog shift ventrally and overall expression decreases, the 

expression of race could expand, due to an expansion of zerknullt (zen), dpp, and tld 

(JAZWINSKA et al. 1999; RUSHLOW et al. 2001), all three of which are directly repressed by 

brk and have an activating input into the domain of TGF-β target genes. On the other hand, 

with less sog present, its ability to transport Dpp and Scw dorsally to initiate TGF-β 

signaling may be reduced, leading to a weaker expression of TGF-β target genes. As has 

been noted before, while NanoString provides very accurate quantification of transcription, 
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follow-up in situ hybridizations can help clarify changes in expression and determine if 

they are due to changes in domain or expression level.  

In the case of twi- embryos, even though over 25 years of molecular research has 

been done on interactions of the transcription factor, it is difficult to find any studies 

measuring change in race expression in twi mutant backgrounds. This lack of experiments 

could be due to two major factors: the fact that twi and race are expressed in opposite sides 

of the DV axis and Twist does not diffuse extracellularly (LEPTIN 1991), and that there are 

no twi binding sites in the race enhancer (RUSCH AND LEVINE 1997). For these reasons, 

single gene twi perturbation experiments did not include race as a target gene with 

expected changes in expression. Only when the network view of development was used 

and the entire DV GRN was assayed in parallel did all of the changes needed to alter race 

expression become evident. This is the true strength of the NanoString data: the ability to 

monitor dynamic changes in GRN regulatory state and precisely quantify the expression of 

an entire netwrok to see how all the genes react to perturbation. Relatively simple follow-

up experiments can fill in the gap of the missing spatial information and complete the 

picture. 

The more difficult question to address is that of the seemingly contradictory 

presence of long transcripts observed during NC 13 of the syncytial blastoderm stage. The 

problem of limited time available for transcription has been understood for over 25 years 

(SHERMOEN AND OFARRELL 1991; OFARRELL 1992; ROTHE et al. 1992), with the prevailing 

assumption that if transcription was started on long genes during NC 13, mitosis would 

occur before the mRNA could be completed, and the transcript would be degraded during 

nuclear division. Even recently, researchers dismissed the presence of long transcripts from 
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Drosophila embryos staged prior to NC 14 as sequencing error due to this limitation, 

and dismissed the reads (ALI-MURTHY et al. 2013).  

We took the approach that recent evidence for transcription of long genes during 

NC 13 might represent a meaningful biological process, not nascent transcription destined 

to be degraded or an experimental error (REEVES et al. 2012; SANDLER AND 

STATHOPOULOS 2016), and investigated the phenomenon further. In brief, we uncovered a 

developmental program to truncate the transcripts of long genes during the short NC 13 so 

they produce functional proteins that regulate the timing and spatial activation of signaling 

pathways. The RBP Sxl binds directly to these transcripts and is responsible for their 

truncation, working with the proteins PPS and U1 snRNP. The findings of the investigation 

are discussed in detail in chapter 4, but there are unanswered questions and several lines of 

research that warrant further investigation.  

The area of research with several unanswered questions is that of the protein 

interactions responsible for truncation of the short transcripts. Results from RNAi 

experiments and immunoprecipitations (IPs) show that Sxl, PPS, and U1 snRNP are all 

critical for the truncation of the transcripts, and that Sxl binds directly to the RNA. The 

nature of the interactions of PPS and U1 snRNP, however, both with the RNA transcript 

and RNA Polymerase II (RNA Pol II) and the rest of the transcriptional complex is unclear. 

PPS has been described in one previous study (JOHNSON et al. 2010), and has been shown 

to physically interact with Sxl and U1 snRNP to participate in Sxl-mediated alternative 

splicing. This interaction is partially dependent on the RNA being spliced itself, as PPS-Sxl 

binding decreases with the addition of RNase to the reaction. An unexplored avenue of the 

role of PPS is predicated on the presence of several plant homeodomain (PHD finger) 
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motifs, which have been shown to bind to methylated H3K4 (H3K4me3), an epigenetic 

marker of active transcription (LIANG et al. 2004; SHI et al. 2007). It should be noted that 

H3K4me3 is enriched primarily at the promoter, so possible PPS-H3K4me3 interactions 

downstream of the promoter at truncation points may be a rare occurrence or may not be as 

relevant as other interactions with the Sxl splicing complex. In addition, Prp40, a 

component of the U1 snRNP complex, has been shown to bind to RNA Pol II itself 

(MORRIS AND GREENLEAF 2000).  

The binding interactions described above paint a picture of a possible mechanism 

for transcript truncation. First, Sxl binds to its RNA binding site, U8. Next, PPS and U1 

snRNP are recruited to bind to Sxl. Lastly, the PHD fingers of PPS bind to H3K4me3 and 

Prp40 binds to RNA Pol II. This complex bound to the nascent RNA strand, RNA Pol II, 

and H3K4me3 may be strong enough to pause or stall RNA Pol II so the polyadenylation 

complex can terminate transcription and polyadenylate the transcript.  

Much investigation is needed to confirm or refute this model, and it centers around 

exploring the protein-protein interactions between the Sxl-PPS-U1 snRNP complex and 

transcriptional machinery and chromatin proteins. These experiments would involve an IP 

of Sxl and a western blot to confirm the binding of PPS and U1 snRNP. A previously 

described antibody against PPS no longer exists, so assaying interactions may be difficult. 

There are other options, since PPS is an ortholog of the human protein DIDO1, and shares 

regions of very close homology, and antibodies against DIDO1 can be tested for 

recognition of PPS.  

Next, the hypothetical PPS-H3K4me3 interaction and U1 snRNP-RNA Pol II 

interaction need to be tested. These experiments will be similar to the Sxl IPs, with PPS and 
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U1 snRNP pulled down and western blots performed using H3K4me3 and RNA Pol II 

antibodies. If one or both of these interactions is confirmed, a further Sxl IP or western blot 

would provide evidence that Sxl is also acting, especially since U1 snRNP is a general 

splicing factor, and the U1 snRNP-RNA Pol II interaction may be common without Sxl.  

A series of Chromatin IP sequencing (ChIP-seq) experiments would also shed light 

on Sxl binding to long genes and a possible stalled RNA Pol II. Sxl ChIP-seq would be 

relatively straightforward, with well-characterized target genes such as sxl, msl-2, and tra 

serving as positive controls for Sxl binding to RNA. Furthermore, RNA Pol II ChIP-seq 

could identify pause points in long genes that correlate to truncation points (FUSBY et al. 

2016). This method has identified ChIP-seq signatures of paused RNA Pol II specifically 

associated with alternative polyadenylation, which would be very helpful to future 

experiments.  

While rapid nuclear cycles and progression to gastrulation are derived and unique 

to Drosophila, trandscript truncation is common among many organisms and model 

systems. The alternate truncation of transcripts and shortening of 3’ UTRs has been 

identified as an important change that leads to the activation of oncogenes and the 

progression of cancer (MAYR AND BARTEL 2009), and is observed in activated immune and 

neuronal cells, and stem cells (BERG et al. 2012). The shortening of 3’ UTRs in particular 

can lead to rapid de-regulation of transcripts, since most miRNAs bind to 3’ UTRs of 

transcripts (GRIMSON et al. 2007). With new short 3’ UTRs, oncogenes are free from 

repression and can lead to progression of cancer. In addition, poly-U sequences are 

enriched in close proximity to alternate polyadenylation sites (PROUDFOOT 1991; 
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KUERSTEN AND GOODWIN 2003; LEGENDRE AND GAUTHERET 2003; PROUDFOOT 2011), 

just as was found in the binding site search of truncated Drosophila genes.  

The human orthologs of Sxl are found in the ELAV-like gene family, comprised of 

four genes. ELAVL1 is enriched in blood and immune cells and germ cells, while 

ELAVL2, ELAVL3, and ELAVL4 are enriched in neuronal cells (SU et al. 2004), 

consistent with previous observations about cell types with frequent alternative 

polyadenylation (BERG et al. 2012). ELAVL1 is a target for study in the well-characterized 

system of activated B cells. When B cells are activated, an alternative splicing event takes 

place in immunoglobulin genes where membrane-bound regions are swapped for regions 

promoting the secretion of immunoglobulin (EARLY et al. 1980; ROGERS et al. 1980; 

PETERSON et al. 1991). Experiments in cell cultures of B cells could provide insight into the 

action of ELAVL1, alternative splicing, and possibly the function of Sxl in Drosophila, 

with the alternate splicing of genes or secretion state of immunoglobulin as an assay. 

Drosophila Sxl could also be expressed in B cell lines lacking ELAVL1 (through RNAi or 

in specific cell lines that do not express the gene) to assay the ability of Sxl to alternatively 

splice and rescue immunoglobulin secretion, and the expression of ELAVL1 in Drosophila 

to attempt a rescue of sxl mutations could also be done. 

Another research direction stemming from the truncation of transcripts involves the 

evolutionary aspects of the program itself. Since the rapid nuclear cycles are a derived trait 

in Drosophila, there were likely some challenges that the embryos faced when the rapid 

nuclear cycles evolved. First, as has been previously shown, mitosis between nuclear cycles 

truncates active transcription and nascent transcripts are degraded. The loss of transcripts 

from long genes probably resulted in the deregulation of signaling pathways, as was shown 
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for the TGF-β signaling pathway with the sog mutants and resulting changes in race 

expression. How did the embryos adapt to this change and possible loss of signaling 

regulation? The truncation of long transcripts is a solution to the problem, but how was this 

solution reached? Is the sxl-mediated truncation an ancestral or derived function?  

A possible answer lies in the duplication of ancestral Sxl and evolution of new 

functions for the gene. The Mediterranean fruit fly, Ceratitis capitata, diverged from 

Drosophila ~100 Mya (AYALA et al. 1996), much more recently than mosquitoes, 

Tribolium, and Apis. Ceratitis shares the same developmental timing as mosquitoes, 

Tribolium, and Apis, with syncytial nuclear cycles lasting for about 10 hours before 

cellularization (GABRIELI et al. 2010). Also, Ceratitis relies on the gene transformer (tra) 

as the master regulator of sex determination (GABRIELI et al. 2010), unlike in Drosophila, 

where tra can not splice itself and is downstream of sxl. Based on the timing of the 

Ceratitis-Drosophila divergence and the appearance of the duplication of sxl to create sister 

of sxl (ssx) in Drosophila, the gender-determining role of sxl must have evolved in a time 

span of around 10 million years, a relatively short amount of time in evolutionary terms 

(CLINE et al. 2010).  

Two distantly related Drosophila species, melanogaster and virilis, can be 

compared, and it is evident that the role of sxl evolved before their divergence ~40 Mya, as 

the gene maintains the same gender determining functions in both species (CLINE et al. 

2010). Furthermore, when ssx is deleted, there is no observable phenotype or effect on 

fitness, even in the presence of sxl mutations, suggesting that sxl did not merely evolve new 

functions and leave ssx as a functional ancestral form, but sxl must still maintain its 

ancestral function in some capacity (CLINE et al. 2010). Another piece of evidence 
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supporting sxl maintaining an ancestral non-gender determining function in Drosophila 

is that flies make an almost full-length and non-gender specific sxl transcript and protein at 

20-40 fold less than the female-specific form, contrary to the popular perception that the 

male form of the transcript is short and non-functional (BOPP et al. 1991; CLINE et al. 

2010). This non-gender dependent sxl isoform is transcribed starting with a small exon 

termed “exon Z” (CLINE et al. 2010), which is upstream of the gender-spliced exon 3 that 

contains the male stop codon (Figure 5.3).  

 

Figure 5.3. Sxl splicing. A schematic of the sxl locus showing gender-based splicing. 
Female only splicing is shown blue, male only splicing in red, and non-gender specific 
splicing in purple. Exon 3. The stop codon in exon 3 is represented by a red mark. Exon 1 
splices to exon 2 in gender-based splicing, but exon 1 splices directly to exon Z in gender-
independent splicing. Adapted from (CLINE et al. 2010). 
 
Exon Z splices directly to exon 4, and produces an almost full-length sxl transcript and Sxl 

protein. In addition, when full-length sxl is ectopically expressed in neurons of adult 

Drosophila, it exhibits a subtle non-gender specific alternative splicing function, suggesting 

it can still function in an ancestral role (EVANS AND CLINE 2013). 

When these observations about the function and evolution of sxl are combined with 

the observations of sxl-mediated truncation of short transcripts made in chapter 4, many 

questions can be answered. It appears likely that the action of Sxl truncating transcripts 

during NC 13 is a function of the non-gender specific full-length sxl observed in low levels, 

and is in fact separate from the gender-determining role. One major roadblock to studying 

Male and female splice 
Male only splice 
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sxl is that sxl mutants are either sterile, the mutation itself is lethal, or mutants produce 

only male offspring (BERNSTEIN AND CLINE 1994). All three of these cases make studying 

sxl in the early embryo a challenge, as sterile females, dead flies, and males cannot produce 

embryos. It is likely that these challenges have masked the novel function of sxl we 

describe in chapter 4, and the strong and obvious gender-determining mutant phenotypes 

have overshadowed the subtle function we describe.  

Taking into account the aforementioned challenges, we used a different approach to 

studying the loss of sxl in the early embryo. We used a precisely timed heat shock Gal4 

driver to deliver RNAi against sxl in the female ovaries, after ovaries developed, while the 

developing oocytes were being loaded with maternal RNAs (STALLER et al. 2013). This 

allowed us to remove sxl transcripts from early embryos while still maintaining fertile 

females to produce the embryos. Only using this approach were we able to collect sxl- 

embryos to study the effects resulting from the loss of the gene.  

With the perspective of the of evolutionary insights into the origin and function of 

sxl, we can examine the four long genes shown to be truncated and search for conserved sxl 

binding sites, both among Drosophila species and in the outgroup insects mosquitoes, 

Tribolium, and Apis. In the genes sog and NetA, and grh, the Sxl binding sites are highly 

conserved among Drosophila species, but not the outgroups (Figure 5.4), with the 

exception of a singe Sxl binding site in the intron of Apis grh (Figure 5.4 C). In fact, intron 

sequences of the outgroups are divergent, while the coding sequence is still highly 

conserved, strengthening the observation that the intronic Sxl binding sites evolved only 

when the short nuclear cycles presented a challenge in Drosophila, while Sxl binding sites 

in outgroup introns evolved after the divergence and independently of Drosophila short 
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nuclear cycles. Interestingly, Ceratitis has a single Sxl binding site in the intron 

corresponding to the sog intron with Sxl binding sites, although slightly closer to the end of 

the coding exon than in Drosophila sog.  

 

Figure 5.4. Conserved Sxl binding sites among Drosophila species. Conservation tracks for the 
genes sog (A), NetA (B), and grh (C) with genome sequences of 12 commonly studied Drosophila 
species and Anopheles, Apis, and Tribolium. Sxl binding sites, boxed in red, are conserved among 
the vast majority of Drosophila species, but not in the outgroups. Sxl binding sites in the genes are 
highlighted in black text. 
 

The recent identification of exon Z in sxl (CLINE et al. 2010) (Figure 5.3) will lead to 

interesting and insightful studies of its action in the early embryo. A fly stock exists that 
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ACGTCGGCAAG--------GGA-------------------------------------------------ATTTTT-------TTTTT--GGCTTTTTTTTGGACTACTTTTGATTGTTTTGCTCTAACTGCCGCTCGAGACGTGTTTT
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deletes sxl exon Z, along with exons 1 and 2, the male promoter, and the promoter 

responsible for the first burst of sxl expression, but leaves the female promoter whole 

(EVANS AND CLINE 2013). This stock may provide interesting results when sog, NetA, sca, 

and Pka-C3 are evaluated for transcriptional read-through, just as in sxl RNAi or CRISPR 

deletion of the Sxl binding sites. An alternative experiment would be to use CRISPR/Cas9 

to delete only exon Z, leaving exons 1, 2, and the earlier promoters intact so sxl can be 

transcribed early without interference. This more precise method would allow for greater 

confidence in results.  

The experiments on sxl in relation to its truncating role in the early embryo, 

combined with the evolutionary analysis and conservation of binding sites across 

Drosophila, paints a picture of how a species can adapt to and overcome a radical change 

in its developmental program. In the case of Drosophila, the rapid nuclear cycles presented 

a need to truncate essential transcripts in order to maintain the proper timing of signaling 

pathways. The near concurrent duplication of sxl and its cooption as a master gender 

regulator provided a means to solve the time constraint problem. The conservation of Sxl 

binding sites across many Drosophila species points to the rapid evolution of these binding 

sites as a solution, as they exist across ~40 million years of divergence and evolution, along 

with the novel function of Sxl. The recent discovery of exon Z now provides a specific 

hypothesis to test about the previously undescribed developmental program described in 

this thesis.  
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