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Abstract

We study the motion of electrons in an ionized plasma of electrons and ions
in an external electric field. A probability distribution function describes the
electron motion and is a solution of a Fokker-Planck equation. In zero field,
the solution approaches an equilibrium Maxwellian. For arbitrarily small field,
electrons overcome the diffusive effects and are freely accelerated by the field.
This is the electron runaway phenomenon.

We treat the electric field as a small perturbation. We consider various dif-
fusion coefficients for the one-dimensional problem and determine the runaway
current as a function of the field strength. Diffusion coefficients, non-zero on a fi-
nite interval are examined. Some non-trivial cases of these can be solved exactly in
terms of known special functions. The more realistic case where the diffusion coef-
ficient decays with velocity is then considered. To determine the runaway current,
the equivalent Schrodinger eigenvalue problem is analyzed. The smallest eigen-
value is shown to be equal to the runaway current. Using asymptotic matching a
solution can be constructed which is then used to evaluate the runaway current.
The runaway current is exponentially small as a function of field strength. This

method is used to extract results from the three-dimensional problem.
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CHAPTER 1

Introduction to the Runaway Problem

1.1 Introduction

We wish to describe the motion of electrons in an ionized plasma consisting of
electrons and ions. The mathematical model should yield the distribution function
f(r,v,t) for the electrons. f(r,v,t) d’r d*v is the probability of finding an electron
with velocity v at position r and time ¢ in an infinitesimal volume element d®r d3v.
The distribution function will be a solution of a Fokker-Planck equation. This dif-
ferential equation resembles the heat equation with velocity-dependent coefficients.
A diffusion tensor represents mathematically the scattering of an electron due to
collisions with the ions and other electrons. The diffusion tensor components are
such that electrons with large speeds are decelerated by a small amount while
those with small speeds are decelerated by a large amount. The solution of the
equation is the probability per unit volume of an electron having a specific velocity
at a particular time. Without any external forces acting the large-time behavior
of the solution will approach an equilibrium state.

The inclusion of a term in the differential equation proportional to the electric
field gives rise to the phenomenon of electron runaway. This added force makes
an equilibrium state impossible, no matter how small the field. The force due to
the electric field is enough to overcome the collisional forces, which act to push

the distribution of velocities toward an equilibrium, and to allow essentially free

acceleration. Hence the name, runaway current. This effect makes the problem
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a singular perturbation problem. It is this problem that we address in this pa-
per. Reasonable choices for the diffusion coeflicients are taken and the resulting

problems analyzed.

1.2 The Fokker-Planck Equation

The Fokker-Planck equation to be studied here results from considering the
interaction of ions and electrons under Coulomb forces. In general, the diffusion
tensor can be chosen such that collisions between an electron with ions and other
electrons are included. The general case leads to an equation with the same form
as we consider and so we choose to neglect electron-electron interactions.

We now restrict ourselves to the case of no spatial dependence. Then the

function f(v,t) is defined such that
f(v,t)d®v

is the probability of finding a particle with velocity v at time ¢ in an infinitesimal
volume element d3v.

The probability distribution f(v,t) will satisfy the partial differential equation

%f(v,t) _v. (D(v) : (Vf + icg-lfvf)) : (1.2.1)

Derivations of such an equation have been done and can be found in, for exam-
ple, [20] or [21]. D(v) is the diffusion tensor. The constants m, kg and T are,
respectively, the electron mass, the Boltzmann constant and the temperature.

The diffusion tensor can be defined in the compact form
D(v) = Dy(v)¥V + (I-¥¥) D.(v)

with I the identity tensor. The Dj(v) part causes energy relaxation due to changes
in the velocity magnitude. The D, (v) part causes angle relaxation by changes in

the velocity direction.
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Proposition 1.2.2 D(v) is a positive definite tensor for Dj(v) and D, (v) positive

for all v.

Proof. The result follows from examining u’-D(v) - u for u an arbitrary non-
zero vector. u can be written as a linear combination of the basis vectors in

spherical coordinates as

Then

Dy(v) and D (v) are also taken to decay to zero for large v. An example of

typical coefficients is

as given in [7]. The thermal velocity vp is defined by the energy equivalence

relation %mv% = kgT. On setting % = 0, the equilibrium solution is found to be
f(v) = 7r“°‘/2v§3 exp —v?/v},

a Maxwellian distribution. The general solution of (1.2.1) will approach tlis steady
state for ¢t — oo.

A special case of equation (1.2.1) is the Lorentz model. In this case Dy(v) is
assumed to be zero and D, (v) is taken to be a simple function of v. In this model
there will be only directional changes in velocity.

In the presence of an external electric field E (1.2.1) becomes

_a‘?t_ (v,t) = V. (D(v) : <Vf + E:l—va) - %Ef)i (1.2.3)
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with ¢ the electron charge. Specifically, E will be taken in the Z direction. Equiv-

alently (1.2.3) can be written in the conservation form

2 L
af(v,t) + V. j(v,t)=0

where j(v,t) is called the current in velocity space and is given by

i(v,t) = %f(v,t) ~D(v)- (v + é’%) F(v,1). (1.2.4)

This current is the interesting quantity when studying the runaway phenomenon.
The current j(v,t) is a density with units of acceleration per velocity cubed.

Equation (1.2.3) describes test particles of charge ¢ and mass m which are
distributed uniformly in space diffusing through a medium that has constant tem-
perature T and is subject to a uniform, static electric field E.

The current j(v,t) will be used in describing the runaway phenomenon. When
E = 0, the solution to (123) will approach the equilibrium for ¢t — oo, and
the current will approach zero. For E # 0, essentially free acceleration for large
enough v will give a non-zero current. Again we expect the large-time behavior of
the solution can be used to determine the current. If we consider (1.2.3) after the
time dependence has been separated, the spectrum of the resulting operator would
give insight into the large-time behavior of f(v,t). If the spectrum is discrete then
the smallest eigenvalue, Ag will be of utmost importance. Ag as a function of E
will then be a measure of the runaway current. This will be seen to be the case in
the following chapters.

Also of interest is the current that one might measure in a laboratory due to

the motion of the test particles. This is given by

J(¢t) = noq/va(v,t) d*v. (1.2.5)
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It is just the first moment of the velocity distribution. The quantity no is the
number density of test particles.

Another instructive form is to write (1.2.3) as

"{%f(V,t) +V. (F(v)f(v,t)) =V- (V . (D(V)f(v,t))) (1.2.6)

where F(v) is the mean force
F(v) =¢E+ m(V —2v) -D(v). (1.2.7)

This form follows from (1.2.3) by multiplication by mv and integration with re-

spect to v to obtain the form

%/mvf(v,t) Py = /F(v)f(v,t) &y,

For small |[v| the dominant force when ~ is small is due to the diffusion and takes
the form of a Stokes’ drag. Because of the form of D(v) the electric force becomes
dominant for large |v|.

Also of interest in this paper is what will be called the partial high-temperature
model. In this model, the v f term in (1.2.4) is not present. It is high temperature
in the sense that the limit of T — oo eliminates the v f term. The appropriate

current j(v,t) is then

iv,8) = %f(v,t) — D) - Vi,b). (1.2.8)

The equilibrium in now a constant distribution instead of a Maxwellian. The
model is only partial in the sense that D(v) is not altered even though D(v) is
normally temperature dependent.

In this paper, we consider the Fokker-Planck equation (1.2.3) for our model
of an ionized plasma in a uniform electric field. The three-dimensional equation

presents great difficulty as suggested by previous researchers. A summary of past
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work on this problem is given in §1.4. Since the diffusion coefficients vanish for
large velocities, the problem is singular. The electric field term is a singular per-
turbation with the magnitude of E being the small parameter. Also, the equation
is not separable in any standard coordinate system for D(v) non-trivial. For this
reason the one-dimensional problem is studied in detail. One approach is given
to extending the one-dimensional results to the three-dimensional case. We hope
that future research will give more insight into the three-dimensional problem.

The one-dimensional problem to be considered is

U =2 (v (g + ) 1) - Lrwnn).

The diffusion coefficient D(v) is taken to be positive, even and vanishingly small
for large velocities.

We first consider a diffusion coefficient which is non-zero on a finite interval.
In the special case when D(v) is linear or quadratic in v, exact solutions can be
given in terms of special functions. For a general D(v) of this form, saddle-point
calculations give the runaway current in various time regimes.

We then consider the more realistic case when D(v) decays as a power for large
velocities. The one-dimensional equation is analyzed in its equivalent Schrédinger
form. In this form all the usual asymptotic ideas about constructing solutions and
eigenvalues can be exploited. The runaw~ay current is shown to be proportional to
the smallest eigenvalue. This is the perturbation correction to the zero eigenvalue
steady-state solution. The smallest eigenvalue is calculated and is exponentially
small as a function of the field strength. This calculation is in agreement with
those of [19] without making the assumptions used there. We then use the one-
dimensional method to estimate the runaway current in the three dimensional

problem. We find agreement in the leading behavior with those in the literature.
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1.3 Some Properties of the Equation

Some properties of the Fokker-Planck equation will now be examined before
proceeding to the analysis of the next chapters.

The variables in equation (1.2.3) or (1.2.6) can be made dimensionless by scal-
ing with the following characteristic quantities. Each velocity component scales
with the Boltzmann velocity determined from the relation %mv% = kgT. The
scaled velocity will be denoted u. The time scales with 7y, a characteristic colli-
sional relaxation time controlled by the form of D(v). The diffusion tensor has
units of velocity squared per time and is scaled with v%7; . The acceleration due

to the electric field scales with vgry!. We will define the parameter

970
muvp

2y = |E|

which is the ratio of the electrical to collisional forces. In runaway problems 2+ is
taken to be small but in some cases the problem will be examined for 2y > 1.
The following properties follow from the form of the differential equation

(1.2.3) or (1.2.6). It is convenient to use the notation
Lf(u,t) =V - (D(u) (Vf +2uf) - 2qu). (1.3.1)

Property 1.3.2 The integral

/f(u,t) d*u

is constant for all time, provided f(u,t) falls off faster than u®. This is a statement

of conservation of probability.

Proof. Integrating (1.3.1) over a sphere of radius u, gives

d
% an(u,t)d3u:/an(u,t)dsu.
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f(u,t) is assumed to be positive everywhere. Then use Gauss’ theorem and the

definition of L to integrate to give

% v f(u,t) d*u= /SO (D“(u) <g{—z +2uf) —2’7cos€f> u?sin 8 df.

For the surface integral to vanish the integrand must be smaller than some ¢(uo)
with € — 0 for |ug| — co. The quantity w?Dj(v) — 0 for « — oco. Then for f(u,t)

falling off faster than u? for all {2 the result follows. I
Property 1.3.3 L as defined in (1.3.1) is invariant under the transformation
N — —~,and u — —u.

The proof is obvious and just requires making the transformation. This allows

one to consider ~ to be positive only.

Property 1.3.4 For the one-dimensional case, L is semi-negative definite with

respect to the weight function

w(u) = exp <u2 — 27 /Ou D™ Y(v) dv> . (1.3.5)

Proof. Consider the inner product

(f,Lf) =/. w(u) f(u)Lf(u) du.
Integration by parts using the definition of L gives
3 * 00 3 2
(f,Lf) = f(u)D(u)é—;(wf)}_oo - /_oo D(w)w™(u) (é—d(wf)) du.

The integrated terms vanish since f(u) and D(u) vanish at infinity provided the
derivative of wf is bounded. The integrand of remaining integral is positive;

therefore,

(f,Lf) <O0.

Hence the elements in the spectrum of L are non-positive.
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It should be noted that the condition on the integrated terms vanishing at
the endpoints is stronger than that for conservation to hold. That is, an f(u,t)
satisfying the requirements of this proof also satisfies those of Property 1.3.2 but

the converse is false. 1
Property 1.3.6 If f(u,t) is non-negative initially, then f cannot become nega-
tive.

Proof. Suppose f(u,t) = 0 at a single point uy and is positive otherwise, then

V f is zero there also. It follows from geometric considerations that

flu,t) =3(u—wo) - VVSf| -(u—up)>0

Ugp
for sufficiently small ju — ug|. Therefore, VV f must be positive definite at u,.

Now consider the differential equation (1.2.3) at u = ug. It becomes

%{ — D(w):VVf| >0

g Uy

recalling that D(u) is positive definite. Therefore, f must return to being positive

at ug. |

Property 1.3.7 For v # O there is no steady-state integrable solution in the

one-dimensional case.

Proof. Setting 3f = 0 and solving (1.2.6) gives
0) = e () [T w()D ) do + e tw)
with w(u) as in (1.3.5). When this is expanded for large u one gets
fw) ~ ~3 + <c1 /Ooow(v)D'l(v) dv + cz> exp (2'7 /OHD"I(U) dv) U — 0.

Clearly, neither is integrable on (0,00} and hence is not a possible probability

distribution. 1
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1.4 Historical Background

In this section the history of the electron runaway problem will be given from
the early Dreicer papers of 1959 through to the recent papers of 1980. The past
work will be briefly described along with some criticisms.

In H. Dreicer’s papers [9] through [11], the author examines the Lorentz model
by taking Dj(v) = 0 and D (v) = v~! in (1.2.3). He makes two assumptions in
tackling the problem. First, the electron velocity distribution function is assumed

to have the simple angular dependence
f(u,t) = folu,t) + pfilu,t)

where u = cos 8. 8 is the usual spherical coordinate when E is in the Z direction.
The second assumption is that f; is much smaller than f, in the usual perturbation
sense. The time dependence is removed by assuming a e~*! time dependence. The
resulting time-independent problem becomes an eigenvalue problem for A when a
boundary condition is added. This extra condition is that f(u) vanishes at the

1/2, yp is the thermal velocity. This is the velocity at

critical velocity u, = ugy™
which electric forces balance those due to diffusion. The lowest eigenvalue is the
important quantity. Dreicer in [10] illustrates how it decreases with decreasing
field strength but does not get an explicit analytic form for the runaway current.
The major problem with this procedure is that the angular dependence in the

/4 when f, becomes comparable with fo.

expansion fails for u > v~
Gurevich in [12] and [13] considers a quasi-steady approach to runaway prob-

lems. In the first [12], he considers the slightly different problem

0 10 3}
- (eI

The choice a(u) = apu gives the problem an accelerating mechanism which does

not allow a steady-state solution. The quantity og is assumed to be a small
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parameter. This problem is like taking Dj(u) = a(u) + w2 and D, (u) = 0
in (1.2.1). Perturbation theory is then used to calculate the solution in various

velocity regimes. In the second paper [13] he considers (1.2.3) with Dy(u) = v~

and Dy (u) =u"!— %u‘e'. The runaway rate is found by integrating out velocities
perpendicular to the field. The resulting equation is then analyzed. A steady state
solution is assumed. Gurevich assumes an expansion in powers of (1 — ) of the

form
flu,p) = Cexp ) pn(u)(1 - p)™ (1.4.1)

This expansion is only valid when vy < v < u. and in fact diverges at u = u,.
This is to be expected because ¢; becomes comparable with 3. This divergence
suggests the calculation is not valid.

Lebedev in [18] improved on Gurevich’s work by using two expansions instead
of one for log f(u,u). One expansion is valid in the regime v < u, and the other
for u > u.. Again the expansion is of the form (1.4.1). A truncation type iteration
is used to generate the ©,(u). The procedure is to set ¢, equal to zero at the n*h
step and solve for v, and so on. This presents difficulties because ¢, (u) becomes
comparable to ©,_1(u) and therefore should not have been neglected in the first
place.

M. Kruskal and I. Bernstein consider the Lorentz plasma in [16] and then the
non-Lorentz model in [15]. The Lorentz problem with D, (u) = u~! was analyzed
by considering three regions in velocity space. Two of the regions correspond to
where collisional or electrical effects dominate. The third is the connection region.
Asymptotic matching is then used to connect the solutions. The electron current

density is then found. In [15] the authors begin with the model problem

% + %E-Vf =V. (KD(V) Vf+ / dPu(f'Vf-fVf) -Du- u’)) (1.4.2)
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with

D(v) = v 3(v?*I — vv).

The integral term in the equation represents the electron-electron scattering.
When (1.4.2) is simplified via an expansion of the integral term for large velocity
one gets (1.2.3). The static version is then analyzed. It is implicitly assumed
that a source of particles is present. One needs to consider five regions in velocity
space, each assumed to be independent of the theta coordinate. Scaling in the
theta coordinate should be important since one expects some type of boundary
layer near 8 = 0, the direction of the field. The radial velocity variable is scaled
with various powers of the field strength. Expansions of f(u,8) or log f(u,8) are
then found and asymptotically matched. From three of these solutions, the flux

of particles could be calculated. The runaway rate was found to be
3B exp — ((29)" '+ 2'7‘1/2)

to within a constant of order unity. Two questions remain with this procedure:
Can the time dependence be dropped and is there a uniform expansion in theta?

E. Lifshitz and L. Pitaevskii in [19] calculate the runaway rate for the one-
dimensional case. They assume there is a steady state and use the divergent
solutions illustrated in Property 1.3.7 to asymptotically find an expression for the
runaway rate. The details of this are shown in Appendix 3. The main difficulty
with this approach is neglecting time dependence and using these divergent solu-
tions to find the probability distribution function.

Kulsrud et al. in [14] numerically integrated the Fokker-Planck equation
(1.4.2) for electrons. The integration was done on a uniform mesh in the two
spherical coordinates, © and 8. The u ranged from 0 to some un,; taken to be
sufficiently large. The runaway rate was calculated by finding the flux through a

sphere in velocity space and dividing by the density. Integrations were done for
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several values of field strength and several values of effective ionic charge. The
resulting runaway rate agreed with those calculated analytically by Kruskal and
Bernstein to within the O(1) term.

J. C. Wiley et al. [24] also investigated (1.4.2) numerically. An initial value
code was used to solve the two dimensional problem numerically. The time evolu-
tion was followed from an initial Maxwellian distribution to the quasi-steady-state
solution. The runaway rate is calculated in the same way as in [14]. The results
are in agreement with the other numerical calculations.

R. H. Cohen [5] extended the problem (1.4.2) to theories of multiple-ionized,
multiple-species plasmas. Of course, this is closer to what an actual plasma is like
due to the presence of impurities. The problem is reduced to the simple problem
by defining an effective charge. Analytic results are found using Kruskal and
Bernstein’s method as well as Lebedev’s. The results agreed with those found by
Kulsrud et al. for multiple ion plasmas.

In this report, we discuss the initial value problem. Instead of assuming there
are static solutions as some researchers have, we examine the time dependence
of the problem by showing how the eigenvalue spectrum changes for non-zero
field. Information about the eigenvalues will give information for characterizing the
runaway current. First we considered the case when D(v) is strictly zero outside a
finite interval, hoping to see how this case might give insight into the case of a more
general D(v) which decays to zero at co. This case led only to currents analytic in
the field strength, but allowed some exact solutions in terms of known functions.
We approach the problem for general D(v) using asymptotic methods similar to
those used to calculate the exponentially small imaginary correction to eigenvalues
in the radioactive decay problem of quantum mechanics. Throughout our analysis
we see the analogy to this quantum mechanical problem. The shift in the zero

eigenvalue for zero field case gives to the exponentially small runaway current for
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non-zero field. Following the approach used to study the one-dimensional problem,
we can then apply this to the three-dimensional problem and get similar results

to those of other researchers.
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CHAPTER 2

Diffusion Coefficients Non-Zero On a Finite Interval

2.1 Introduction

For a model of test-particle motion in an ionized plasma, we consider a specific
class of diffusion coefficients. This choice of coefficient lends itself to analysis. The
models are one-dimensional and the diffusion coefficients are non-zero in a finite
interval. This choice reduces the problem to solving equations in three regimes.
Two of the equations are simple wave equations. The other is an eigenvalue prob-
lem on a finite interval. Without completely specifying the diffusion coefficient,
much can be said about the runaway current. There are two non-trivial cases
when exact solutions can be given in terms of known, special functions.

We start by displaying the problem with its associated equations. We then
give the general solution by constructing it from a Green’s function. This requires
examining the boundary conditions for the eigenvalue problem. The nature of the
spectrum is also examined. For the large field limit, general results can be obtained
for runaway current using a saddle point integration. A slightly simpler model
for two different diffusion coefficients gives solutions in terms of known special
functions. One gives Bessel functions and the other Gegenbauer polynomials.

The restriction of having the drag force vanish outside a finite interval limits
the physical relevance of the problem. The more general case in which the diffusion
coefficient vanishes in the limit of large velocity will be considered in the next

chapter.
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2.2 Equations for the Model Problem

The Fokker-Planck equation in conservation form is

4 (u,t) =0 (2.2.1)

ad

where the current, j(u,t), in velocity space is given by

j(u,t) = —D(u) (g—g + 2uf> +24f. (2.2.2)

Another convenient notation is to define the operator L by

Lf = -aij (F(urt). (2.2.3)

u

f(u,t) is thought of as a distribution function so we would like it to satisfy the

integral condition
/ f(u,t) du < co.

The distribution function will in general be normalized to unity. It also satisfies
all the properties of §1.3.

The diffusion coefficient, D(u), will be chosen to be positive, even, non-zero on
a finite interval and decreasing to zero at the end-points. The general case where
D(u) ~ u™™ as |u| — oo will be examined in the next chapter. The diffusion

coefficient will be of the form:

Do(£)(1— %), if [u| < uo;
D(u) = Ua uy ! 2.24
(v) {0, otherwise. ( )

The function Dg(:) in (2.2.4) is an even, positive and smooth function of its ar-

gument. A typical diffusion coefficient of this form is shown in Figure (2.1). The
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Figure 2.1 A typical diffusion coefficient that vanishes outside |uy].

quantity Do(+1) will be denoted by D, in subsequent calculations. The drag force
at the end-points is 2D /v using the definition (1.2.7).

To solve the kinetic equation on the finite interval u < |up| subject to ini-
tial and boundary conditions, we look for separable solutions of (2.2.1).The time

dependence will be exponential. Thus

flu,t) = e f(u).
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The resulting ordinary differential equation for f(u) is

d df df

(L+ A)f =-—D(u) (——+2uf> —2’7%+/\f=0. (2.2.5)

du du

The eigenvalues, A, are positive in this notation. Equation (2.2.5) will be examined
later.

When |u| > uo, Equation (2.2.1) reduces to the first-order wave equation
5; T 25, =0 (2.2.6)

This is also considered as an initial value problem. If u < —uo the wave solution
imposes a current at u = —ug and so is coupled to the solution on [—ug,uo]. For
u > ug the solution on the finite interval provides a signal at u = ug for the wave

equation in (2.2.6).

2.3 The Green’s Function Solution
The general solution for (2.2.1) will now be constructed. Equation (2.2.1) is

considered to be an initial value problem in velocity space. That is,
f(u,O) = FO(“)

with Fo(u) prescibed on (—oo,00). The general solution for an arbitrary initial
condition can be given using the Green’s function for the problem on [—ug, ug).
For |u| > uy the wave equation (2.2.6) will be solved directly.

The problem on the finite interval will be examined first. To calculate the
general solution it is necessary to define and examine the adjoint equation as well.

The companion adjoint equation to (2.2.3) is

%g(u,t) = Lg(u,2) (2.3.1)
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with
a dg
tg = - =
LTg = {(8u 2u> D(u)+2'7} 3a
and initial condition g(u,0) = go(u). The addition of (2.2.3) and (2.3.1) give the

identity
oLf - fLg= -2 <g(u,t)j (f(wt)) + f(u,tw(u)g-g) - (2.3.2)

The Laplace transformed versions of (2.2.1) and (2.3.1) are

(s — L) f(u,8) = fo(w) (2.3.3a)

(s = L")§(u,s) = go(u). (2.3.3b)

We will now consider the problem (2.3.3) on the interval [—uo,u]. Boundary
conditions for the two endpoints will be needed. Since the current in velocity
space is of particular interest, we would like it to be bounded and continuous at
the end-points. If % is bounded, the definition of the current in (2.2.2) along
with the choice of D(u) implies j(tuo,t) = 2vf(£uo,t). Since 2 is a constant,
f(£uo,t) should be bounded and continuous at the end-points.

Consider the homogeneous version of (2.3.3). For D(u) of the form (2.2.4),
the end-points are regular singular points. The indicial exponents for (2.3.3a)
are (0,—p) at v = uy and (0,p) at v = —uy. The adjoint problem has indicial
exponents (0,p) at u = uy and (0, —p) at u = —ug. The quantity p is "D—"; which is
the ratio of the force due to the electric field to the drag force.

The boundary conditions for ](u,s) and §(u,s) can be determined directly
from the indicial exponents. For the solution }(u,s) to be bounded for u — ug
the negative exponent is rejected. If we consider the problem for zero imposed
current at u = —ug then we reject the O(1) solution valid near u = —ug. Other-

wise, it would describe a spontaneous current even when the initial condition was
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identically zero for u < —ug. Therefore, we take indicial exponent p at u = —uy.
Then the solution and the current vanish at u = —u,.
If we denote the solution that satisfies the boundary condition at v = —ug

as ho(u,s) and the solution that satisfies the boundary condition at u = uo as

hi(u,s), then the Green’s function is

o oty 8)ha(us, )
Gl w5 8) = 50 W (ho )

(2.3.4)

W (ho, h;) is the Wronskian of the two solutions. The general solution for }'(u,s)
is then

flu,8) = Glu,u';8) fo(u') du'.

—Uo

It should be noted that }(——uo,s) = 0 since é(—-uo,u’;s) = 0. So this solution
‘holds only when there is no imposed current at v = —ug. To consider the general
case the adjoint problem has to be analyzed.

Solutions of the adjoint equation can be connected to those of the original
equation using a corollary of the identity (2.3.2). Using the Laplace transformed
equations of (2.3.3) with (2.3.2) one gets the identity

/—uu (g}(u,S)fo(u) - }"(u,s)go(u)) du = |

Ug

Uo

(2.3.5)

(800905 (F0s5)) + F0,6)D(0) i (009))

- Uy

This holds for any pair of solutions of (2.3.3). If we take }"(u,s) to be the Green’s

function (2.3.4) in (2.3.5), then

Uo

~

g}(u,s)—/_u” & (u, ' 5)g0(u) du = <g(u,s)j(}(u,s)) + f(u,s)D(u)—a%é(u,s))

Up

—~Ug

(2.3.6)
For boundary conditions of the adjoint equation we require that §(u, s) vanish

at v = up and be O(1) at u = —ug. This corresponds to indicial exponents p and
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0, respectively. Then the integrated terms vanish at fuq. If go(u) = 6(u — w) for
the forcing term of (2.3.3b), then the solution is the Green’s function G* (u', w; s)

of the adjoint problem. Equation (2.3.6) then becomes
Gt (v, w;s) — G(w,u';s) = 0. (2.3.7)

Hence the Green’s functions are just transposes of each other.
To solve the general problem for an imposed current at v = —ug and an

arbitrary initial fo(u), take go(u) = é6(v — w) and §(u,s) = G*(u,w;s) in the

identity (2.3.5). This gives

Flu,s) = /‘u“ G(u,u'; s) fo(u') du’ + G(u, —ug; s)s (}(—uo,s))

Uo

with the property (2.3.7) being used. Laplace inversion gives the result

flu,t) = /_w G(u,u';t) fo(u') du' +/0 G(u, —ug;t — 7)5 (f(~wuo,7)) dr.

Uy

Using the definition of j(f) in (2.2.2) this simplifies to

flu,t) = /:m G(u,u';t) fo(u') du' + 2'7/0 G(u,—uo;t — 7) f(—uo,7)dr. (2.3.8)

Un

The time evolution of the distribution is due to two effects. One is due to the initial
condition and the other due to the imposed current at the endpoint v = —u,.

To complete the picture for the general solution, the regions with |u| > u
have to be considered. Then f(—wuo,t) can be given in (2.3.8). For u < —ug the
wave equation (2.2.6) is to be solved subject to an initial condition. The solution
is

f(u,t) = folu — 24¢) u < —Ug.
Then f(—uo,t) = fo(—uo —27t) gives the imposed distribution function in (2.3.8).
For u > uo the solution in (2.3.8) evaluated at u = ug provides the signal for the

wave. The solution is then

fluo,t — *522), if u — up < 27t
folu — 29t), otherwise.
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This completes the solution for the general case.

For the remainder of the discussion in this chapter we will restrict fo(u) to be
non-zero only on [—ug, ug]. Then for u < —ug, f(u,t) =0 for all time. This is the
case of zero-imposed current. This simplifies (2.3.8) to

f(u,t) = /— n G(u,u';t) fo(u') du'.

Uo

The solution for u > ug is then due to the signal only and simplifies to

flug,t — 42, if u — ug < 27
t — 9 2,7 3
f(w,t) {0, otherwise.

2.4 Other Properties of the Equation
Another approach to specifying the boundary conditions for (2.2.5) is to con-
sider the Weyl theory for the cases of limit circle and limit point. When (2.2.5) is

multiplied by

w(u) = exp <u2 -2y /; %) | (2.4.1)

the equation (2.2.5) can be brought to self-adjoint form

< (D(u)w(u)g{;) " (% (2uD(w)) + A) w(u) () = 0 (2.4.2)

with w(u) the weight function. We look for square integrable solutions with
/ w(u)f*(u) du < oco. (2.4.3)

The weight function has the following behaviors near the end-points:
u —-f
w(u) ~ (1 + ——) U — —Uug

u 4
w(u) ~ (1 - u—o) U — Ug.

For 0 < p < 1, all solutions of (2.2.5) are square integrable with respect to the

weight function w(u). This is the limit circle case and an additional condition
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will be needed to specify the solution. This extra condition is the final boundary
condition that is needed for the right end-point. It should also be noted that the

more physical requirement that f(u) be integrable, that is, satisfy

" f(u) du < oo,

—Uq

is also satisfied for any of the solutions when 0 < p < 1. But those solutions with

~p
f~<1~—5~> u — Ug
0

may not be wanted because f(u) is unbounded at u = u,.

The final condition follows from the definiteness of the operator L. To deter-
mine the condition, the proof of Property (1.3.4) is followed but now integration
is on the interval (—ug,uq). Using (1.3.4) one now gets

/\/ wfidu=wfy

o

U

Because the operator L is semi-positive definite, the integrated terms must vanish
at fuo. It follows from the properties of w(u) and j(u,t) that the solutions of

(2.2.5) should have the following behaviors,

f(u) ~ <1 + —5(—)—)0 U — —ug (2.4.5a)
f(u) =0(1) U — Ug. (2.4.5Db)

When p > 1 the limit point case is in effect since only one of the two solutions
at u = uo satisfies the square integrability condition (2.4.3). This case requires

that

This corresponds to indicial exponent O.
The special case when p = N, a positive integer, doesn’t present a problem as

the Frobenius theory guarantees a solution of the Frobenius form for the larger of
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the two indicial exponents. Hence the conditions of (2.4.5) apply in this case as
well.

The problem (2.2.5) on [—ug, uo| is now set with boundary conditions at the
end-points specified.

Using the self-adjoint form of the equation (2.4.2), one can show by the usual
multiply and subtract method that the eigenfunctions associated with different
eigenvalues are orthogonal with respect to the weight function.

Additional information about the solution can be found by examining the
equivalent Schrédinger equation for the problem. The choice of D(u) determines
the features of the potential. Potentials for diffusion coefficients of the form (2.2.4)
all have basically the same shape as that shown in the Figure (2.2). The trans-

formation of dependent variables by

h(u) = v/ D(u)w(u) f(u)
brings (2.4.2) into the equatién:

d*h A e &
an a2 e\
dut (D(u) T dur? ) h=0

with ¢(u) = D**(u)w~'/%(u). Further simplification to eliminate the multiplying

factor from the A term can be achieved with the transformation:

Z-ff =D V() (2.4.6a)
H(z) = D" Y4(u)h(u), (2.4.6b)

to give the resulting Schrédinger equation

d*H g d*
o’ _ a1z % a2 _
proa (/\ el ) H(z)=0
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Figure 2.2 The equivalent potential for D(u) of the form (2.2.4).

with §(z) = D~Y%(u)q(u).

The change of independent variables in (2.4.6a) determines z as a monotonic,

increasing and odd function of « which maps the interval [—uo, %] onto [—z, Z].

This can be seen by noting that the derivative z, is strictly positive on [—ug, ug)

and changes sign under reflection of u. The potential can be written in terms of

D(u) and its derivatives as

Dy, — ——% — (uD), + u*D - 2qyu +4*D"L.

(2.4.7)
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Figure (2.2) shows a typical case. As noted in the figure or by examining
(2.4.7), one sees that the potential becomes unbounded at the end-points and
hence by [22] the spectrum is an infinity of discrete eigenvalues.
If the current in (2.2.2) is defined without the 2uf term the potential takes

the simpler form

1 1 D2
14 = ~Dyy — ——2 +~*D7!
(2(w)) = § oD T

In this case V(z) is an even function of = and the solutions H,_ (z) will alternate
with either even or odd eigenfunctions of z. The eigenfunctions of the original
problem, f(u), will also have parity to within a common multiplying function;
that is,

fr(u) = g(u)Fy, (u) (2.4.8)

with Fj,(u) having parity. This simpler case holds in the examples of §2.6. It

corresponds to a partial high-temperature version of the problem.

2.5 Runaway Current

When the electric field v is small an initial distribution will evolve in time in
the following way. On a time scale, t = O(1), the distribution will approach a
Maxwellian distribution which is the equilibrium solution when v = 0. But since
this is not an equilibrium solution for 4 # 0, the solution will decay on [—ug,uo)-
The particles then propagate out from uo on a time scale t = O(y™!) and are
accelerated to unbounded speeds with their distribution being a travelling wave.

The eigenvalues of the problem (2.2.5) are all O(1) except the smallest which
is O(v). The field dependence of Ay can be shown by integrating (2.2.5) when
A = )Xo and f(u) = fo(u), the corresponding eigenfunction, from —ug to ue. The

calculation gives
U

Ao “ fo(u) du = j{ug) = 27 fo(uo).

—Un
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A first approximation to fo(u) is to take fo{u) = M(u), the Maxwellian distribu-

tion which is the eigenfunction for Ay = 0. Therefore,

M('LLO)
A ~ 2 U a rs N T
0T AT M(u) du

—Ugy

(2.5.1)

So Ag is O(7) and this appears to be independent of the shape of this cut-off D(u).
Also the coefficient of v in (2.5.1) vanishes for ug — 0o, suggesting that something
interesting occurs when D(u) — 0 for v — oo.

The results of this calculation allow one to calculate the laboratory current J(t)
as defined in (1.2.5). After the exponentially decaying transients have died away,
the resulting current is due to f(u,t) for u > ug. In this region particles experience
a constant acceleration 2+, so one expects the current to be proportional to 2~¢.

To show this we calculate the integral

u(t)
/ uf(g;(ult) —u))du  u(t) = uo + 27, (2.5.2)

which is the dominant contribution to the current as defined in (1.2.5). It is

sufficient to let
fu,t) = cofo(u)e™! (2.5.3)

as this is the mode that gives the largest contribution to (2.5.2). The solution
fo(v) is assumed normalized on [—1,1] and ¢, is its projection onto the initial

distribution. Integration of (2.5.2) using (2.5.3) gives

(27)°

Ao

J(t) ~ nogeo foluo) L. (2.5.4)

Then use the fact that Ay = 27 fo(uo) to get the desired result that J(¢) ~ 2nyqgcont.
The current pulse in velocity space satisfies a simple conservation law. In-
tegration of the differential equation (2.2.1) with respect to u over [—ug,ug] and

then with respect to time gives

[ stwtydi= [ s(w,0)du.
0

— Uy
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If initially the distribution is zero outside the interval [—uo,uo], and its integral is

normalized to unity, then
o
/ J(uo,t) dt = 1.
0

This is a statement that the total current at © = ug over all time is constant.

2.6 The Large Field Limit for the General Problem

The general class of diffusion coefficients with D(u) given by (2.2.4) can be
examined in some detail. For large electric field (v > 1), asymptotic analysis using
a WKB expansion can be done. In this limiting case the effects due to diffusion
which relax the solutions to a Maxwellian are small compared to the electric field
effect. From these approximations one can find expressions for the shape of the
current pulse j(ug,t). These expressions are given in terms of the properties of
the diffusion coefficent, e.g., the area of D(u) and the drag force at the right end-
point. Expressions for the current are found by finding the Green’s function for
the original Fokker-Planck equation in the limit of large field.

We look for solutions of the Laplace transformed equation (2.2.1) of the form

~

f(u;€6;0) = exp(——p(u; € 0)) (2.6.1a)

mo|

e(u;e0) = Zgo(u; o)e" (2.6.1b)

n=0

with small parameter ¢ = (27)~! and o is the scaled Laplace transform variable
defined by ¢ = €*s (since we’re interested in the slow time scale) of the electric
field. The initial distribution will be a delta function at the origin; f(u,0) = §(u).
We construct the Green’s function for (2.2.5) in terms of the solutions of the

homogeneous problem. Substitution of (2.6.1) into (2.2.5) gives

(L — e %) f(u;6;0) =0
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and grouping of powers of ¢ give the following two equations

dpo 2 dpo .
D(u) <E—u—> + E c=20 (2.6.,28,)
dpo\ dp1  d dpo dpo

Equations (2.6.2a) and (2.6.2b) determine @ and ¢,, respectively. Solving (2.6.2)

gives the solutions

u 20
u;€;0) = dv 2.6.3a
polu 69) /o V1+4D(v)o +1 (2.6.32)
1+4D(u)o “ 1
i60) = 1lo ———i—/ V| 1l— ——————] dv. 2.6.3b
Prlwi60) = 48 b0y T, 1+ 4D(v)o (2.6.3)
The distribution function f(u;¢; o) at u = ug is then found to be

o 1 o 20,
Up; €;0) = €A(ug,0) ex ——/ dv 2.6.4
I luos€i0) = ed{o, o) p( ¢Jo 1+4D(v)o +1 ) (2.64)

where

A(ug,0) = (1 +4D(0)o) Y4 exp (— /Ou” v (1 - ——1—:-%1—)—(—1)—);) dv) .

The approximate solution in (2.6.4) satisfies 7 (uo,0) = 2 (to; €;0) = 1, the con-
servation relation for the Laplace transform of j(uo,t).
The current can be written as a Laplace inversion along a Bromwich contour

as
1

7(to,) = 2€mi

/C A(uo, 0) exp % (o7 — po(0)) do

with pq(0) = po(ug;€;0) as in (2.6.3a) and t = er. The dominant contribution
to j(uo,t) for large field can be found by a saddle point calculation. The saddle

point o = o(r) is found from the solution of

(2.6.5)

r= I(o_)_\/uU dv
ol o \/1+4D(v)o,
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For o, real and positive the integrand is bounded by 1 and hence a solution exists
for 0 < 7 < 75 with 7 = uy. As 7 increases, oy becomes negative until the
denominator vanishes at 4D(0)o = —1. Any further analysis of the saddle point
would require examining the function (2.6.5) on another sheet of the Riemann
surface. The second derivative is negative on the interval 0 < 7 < 73 since

“ 2D(v)d
b [ 2D
o

1+ 4D(v)o)3/?

This has positive integrand on [0, uo]. The integration is along a contour parallel
to the imaginary axis and through the saddle point and gives the following result:

372 Alu0,00)

1
exp = (007 — ©o(00)) . (2.6.6)
2rlpg(oo)] €

3 (uo,7) ~ (27)

The 7 dependence is from the saddle point og = oo(7).
We shall examine two limiting cases of this saddle-point formula. First we

consider (2.6.6) for 7 ~ 5. In that case ¢¢ is small, so (2.6.5) can be approximated
by
r = / (1 = 20,D(v)) dv + O(c2). (2.6.7)
0
Therefore,
T —Ty = ~20’0D1 + O(O’g),
where the constant

D, E/ D(u) du.
0

Evaluation of (o) at oy determined from (2.6.7) gives
(Po(Uo) = 0gTo — Ung + O(Ug)
when (2.6.3a) is evaluated. The saddle-point formula (2.6.6) gives the current

2~ (r — 70)*

](uO,T) - vV 47T€D1 P 4€D1
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which is a Gaussian about 7 = 75. This expression can be written in the more

2
: 29 (t B gg)

which shows that the current peaks at ¢t = ‘2‘—; with a very narrow width of \/4e3D;.

transparent form

(2.6.8)

This peak occurs in the time required for a particle to accelerate in a constant
field of strength 2+ to a speed u,.

To calculate the small time behavior requires knowing the expansion of (o)
in (2.6.5) for large ¢. This requires more subtle analysis than in the previous
case since pg(o) cannot be expanded uniformly for large o, since D(u) is small
for v — ug. This boundary layer within an integral requires the type of analysis
as illustrated in, for example [2]. The calculation requires splitting the integral
at an intermediate point and then using appropriate expansions of the integrand
valid in each interval. The final result is found by asymptotic matching with
the intermediate point dropping out. It is convenient to find pg(o) as 0 — oo
since this is needed for the saddle-point formula and then p{(o) can be found by
differentiation. The details of this calculation will be left to Appendix 1. The

result of this calculation is

vo(0) ~ D,o™* — Llog ao — L 17+ 0(c%% o — 00 (2.6.9)
with
D, = / D~Y%(4) du,
0

a = —D,(’LLO)

1= ] (o e

To determine the saddle point for given 7 small, differentiate (2.6.9) with respect

to o and solve (2.6.5) perturbatively. This gives the saddle point

D.N\* 1
oo~<27> - —+0(1) T — 0.
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Using the formula for the saddle point, (2.6.6), gives the resulting current

2 3/2 D, 1+29/a D2
J(uo,t) ~ B Co) e (ﬂ) exp <—4—£ + A) (2.6.10)
rD,.\/D(0) \*7
with
A= gloga — 221 +~J — :}u% = constant

for 7 — 0. The form of j(uo,t) is typical of what would be expected for a diffusion
process.

For the partial high-temperature version of the problem the only change is in
the form of A. The ju2 term which is due to the Maxwellian equilibrium is not

present.

2.7 Examples of Exact Solutions

There are two examples which can be solved exactly for the partial high tem-
perature version of the problem. For this version, the 2uf term is dropped from
(2.2.2). The boundary conditions of §2.3 still apply. The solutions f,(u,t) =
e * £, (u) are of the form f,(u) = g(u)F,(u) with F,(u) either even or odd. This
follows because (2.4.8) applies. It is convenient to scale the velocity variable by
u = uoz so that |z| < 1. Then D(u) = Do(x)(1 — z*). Also in the scaling of D(u)

and the definition of 2v, vp is replaced by uy. The resulting equation is

%f(u,t) = ;9% <D0(x)(1 - xz)g% —2'yf) .

In the first example Dy(z) is taken to be unity which leads to Gegenbauer
polynomials. The second has Do(z) = 2(1 + |z|)~! which has Bessel functions
for solutions. The general solutions are exhibited. From the Green’s function
representation, saddle-point integration gives short and intermediate time behavior

for the current.
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Example 1: Dy(z) =1

The Fokker-Planck equation in this case is

d N df
_ - — = <1 ..
d:z:(l x)dz 2’7d$+>\f 0 lz] <1 (2.7.1)

A change of independent variables y = %(1 + z) gives the hypergeometric equation
in standard form:

2

d d
y(l——y)#-&-(l—?y—’y)é%—)\f:& (2.7.2)

The eigenvalues can be found by finding the Green’s function for (2.7.2) with
its boundary conditions, and locating the poles and calculating their associated
residues which are the eigenvalues and eigenfunctions, respectively. They can also

be found in a simple way by first making the change of dependent variable
f(z) = (1 + z)"h(z)

in (2.7.1). Then h(z) satisfies the equation
d*h

dh
pa— 2 —_— et =
(1-z )d:c2 (1+ 27)xdx + Ah =0.

This can be recognized with the help of [1] to be the Gegenbauer equation when
A= (r+A)(n+v+1)

and the eigenfunctions are
fulz) = (1 + 2)7¢ 3 (2) (2.7.3)

with the C{*) being the Gegenbauer polynomial of order n. The solutions in (2.7.3)
clearly satisfy the boundary conditions of §2.3 at the end-points.
As predicted in §2.3 the solutions have parity to within a fixed function since

the C{*)(z) alternate being even and odd in z. Of passing interest is that when
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~ = 0 the solutions reduce to Legendre polynomials and when v = % the solutions
are to within a fixed function the Chebyshev polynomials of the second kind. The
Gegenbauer polynomials are complete and orthogonal on [—1,1] with a weight

function of (1 — z?)7. The general solution is given by
flz,t) = (1 + )" E: ZCUF) gyt (2.7.4)
with the coefficients determined from

1 1
anly, = / (1- x)"C,(;H;)(x)F(a:) dz

1
where F(z) is the given initial distribution. The normalization constant is given

by
27T (n + 1 4 2v)

nl(n+~+3) (I‘(’y+%))2p

The current is given by

0

J(z,t) =24(1 + z) Z anC,(:ﬁ%)(:c)e"\”t (2.7.5)

n=0

and at z =1 1is

(1,8) =727 Y an G (1)

n=0
with
" nIT(2y+1)

The series for the distribution function in (2.7.4) shows explicitly the results
of the general discussion. The distribution function does not reach a final steady
state. The modes with n > 0 decay on a fast time scale since A, = O(1) and the
lowest mode with n = 0 decays on the slow time scale since Ay = v(y+1) = O(%).
The important contribution to the leakage current is due to this lowest mode and
is given by

§(1,t) ~ 427 lgpe 1011 t — oo
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where the fact that C’((,a)(:c) = 1 has been used. The laboratory current computed

from (1.2.5) for the lowest mode is

4t Aot
J) ~ —— 4+ ~vye ™
(t) Pl

with the dominant contribution for large time being

4t
J(@) ~ —— +olt t — oo.
() ~ 25 +ol0)

The laboratory current for large times is due only to particles moving in a constant
field and agrees with the general result (2.5.4).

With initial condition F(z) = é(z) the odd modes drop from the sum (2.7.4)
and solutions have some interesting properties. The current in (2.7.5) takes the

form

J(1L,8) =421 6,0l P (0) Cint ) (1)e 2 (2.7.6)

n=0

Using the identity

ol gy = )Tt +3)
n!T(y+3)
(2.7.6) simplifies to
. ’727+2 2 (=) —4(n 3
J(L,t) = ————-———et/‘*z (nz (n + B)T(n + 28)e~n+A)% (2.7.7)

V7L (v +1)

where 8 = (v + 3).

n=0

It is interesting to note that (2.7.7) resembles the type of expansion that
appears in the theory of theta functions. When v = % the sum is just the derivative
of ¥, in the notation of Whittaker and Watson [23|. That is, when v = % the
current is

d
J(1,8) = m123/ett <@01(y,e—4t)> (2.7.8)

y=0
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Using the Jacobi transformation for theta functions we can get an expansion for the

current which gives the small time behavior. The transformation for the derivative

of ¥, is
d T\ [ d x?
— i (y, e ¥ ) = <— (——19 y, e« ) 2.7.9
(Zree) =@ (Grwed) - e
One gets the following expansion
00 1\2,2
. _ ~3/2 t/4 _yn _(n+ i)'
J(1,8) = /7 (2t) "2 ;( )" (2n + 1) exp ———2—

when (2.7.9) is applied to (2.7.8). The dominant term for small time is
7(1,8) ~ /m(2t) "2 ™1t 0T

This confirms the general theory that was shown in §2.6 concerning the small time
behavior. For this choice of diffusion coefficient, D, = 7, D(0) =1 and a = 2 in
(2.6.10).

The current can also be written in terms of the ¥; function for # any integer
or half-integer. For these [ the current can also be written as a finite sum of
the time derivatives of the ¥; function. This follows from the properties of the
gamma function. This method becomes cumbersome for obtaining representations
of the solution useful for small time. It is best to write the Green’s function for the
problem and manipulate that to get the short time behavior as well as intermediate
times.

The Laplace transformed equation is (2.7.1) with A = —s with the Green’s

function in terms of hypergeometric functions. The Green’s function is given by

9(y,y'58) = g‘(y<;z)(i2)(y>;3)

where g1 (y; s) satisfies the left end-point boundary condition and g;(y; s) the right.

The appropriate solutions to (2.7.1) are

g1(y;8) =y (1 —y)" F(a,1 —a;1 +~;y)



37~
g2(yis) = Fla,1 —a;14+ 1 —y)
with s = a(1 — a) and y = (1 + z).
The Wronskian w(s) is found to be

(C(L+1))?
P(y+a)T{v+1—a)

w(s) =

The zeros of w(s) are simple as expected for a discrete spectrum. They are deter-

mined from the location of the poles of the gamma function, that is, when
a=—-n—=
with n a non-negative integer which corresponds to
s=—(n+7)(n -li~‘7 + 1).
The residues of the Green’s function at these poles give the relation
F(-n—vn+~v+1514+y1-y)=(1+ m)"C,&ﬁ%)(z).

A simple Laplace inversion will reproduce (2.7.4).

The current is given by the integral

~

1
J(1;8) = 27/ Fo(y)g(y,y';s) dy'
4]

and if Fo(y) = 6(y — 3) the current is ziven by

i(1;8) = %T)F(ﬂ +1Vs)T(8 — iVs') (2.7.10)

with s' = }(s —3). The fact that probability is conserved requires that 5'(1; 0) =1.
In the context of (2.7.10) this is just a restatement of the duplication formula for
the gamma function .

The case when § = % gives the simplification of (2.7.10) to

;’(1;{5) = 7sechmv/s,
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which is the Laplace transform of the derivative of the ¢, function. The short time
expansion can be found by expanding (2.7.10) for large s. Using the asymptotic

relation

(B +1Vs)T (8 —ivs) ~ 2m(s)* 3™ 5= oo,

then (2.7.10) can be inverted to give

- 8 1 (m\™H
J(t)~\/;m (5) e oo (2.7.11)

(2.7.11) gives the short time behavior on both the slow and the fast time scales.
It exhibits a rise for short time, then reaches a maximum and then decreases.
(2.7.11) agrees exactly in form with the general expression (2.6.10).

The behavior of the current at longer times can be found from a saddle-point
calculation for large field. First, scale the Laplace transform variable by s' = §%0.

Then (2.7.10) becomes

(1i0) = —E S T(B6,)0 (8¢-) (27.12)

with ¢+ = 1+i4/0. Applying Stirling’s asymptotic formula for the gamma function

gives
(T(8)*
V1i+o

where ¢ = ¢, log ¢, +¢_ log $_. Since we are interested in ¢t ~ (27)~! we introduce

[(86+)T(B¢-) ~ exp(B¢+O(87Y)) B — oo

a scaling of the time variable

T = 40t.

The Laplace inversion of (2.7.12) for large (3 is then

4ﬂ2 eﬁ(a‘r+¢(a))

(¢ - d
(t) oni ). ice
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Figure 2.3 Comparison of the asymptotics and the exact current for short time.

The dashed line is the asymptotic expression.

The saddle point o¢(7) is determined by solving

dp 1 | 1+i/o
e N

(2.7.13)

or equivalently
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Equation (2.7.13) has real solutions for r real and maps 7 € [0,00) onto op €

[—1,00). The contribution to the current from the saddle point is

J(t) =2+

B exp(B(oor + ¢(00)))
2m¢"(00) V1 + o )

This gives excellent representation of the current for short times, intermediate and

(2.7.14)

long times. The saddle points in these three cases are:

2
gy ~ (—;L) —2r71+0(1) T — 0t (2.7.15a)
T
oo~3r-1)-Z(r-1"+0(r-1)°) oO0<r-1x1 (2.7.15b)
op~ —1+4e”¥ T — o0. (2.7.15c¢)

When the saddle-point formula (2.7.14) is applied to (2.7.15a), the short time of
(2.7.11) is obtained. Figure (2.3) shows how well the asymptotics agree with the

exact current of (2.7.7). When (2.7.14) is evaluated for (2.7.15b) we get a Gaussian

3 2
J(t) = 2vy/ —2-26_33(1_7) & Ir—-1| < 1.

This is precisely (2.6.8) with D; = 2 and ¢ = (46)7'. Finally, the saddle-point

of the form

formula when applied to (2.7.15¢) gives the long time exponential fall-off due to

the lowest eigenvalue.
Example 2: Do(z) = 2(1 + |z])~*

Now the Fokker-Planck equation is reduced to Bessel’s equation. Because one
of the coefficients in the differential equation
d 2 df df
————]=29—+Af=0
dr <1+|x]da:> T " !

is an absolute value function, the derivative of a solution is required to be contin-

uous at the origin.
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For z > O the solution satisfying the boundary condition at £ =1 is

fl) =1 -2, (V2M1~-12)) 0<z<1 (2.7.16)

and for z < O the solution satisfying the boundary condition at £ = —1 is

flz) = (1 + 2)"2J, (V221 + 1)) -1<z<0. (2.7.17)
Matching the derivatives of (2.7.16) and (2.7.17) gives the eigenvalue condition
JL(V2)) = 0; (2.7.18)
thus the eigenvalues are
A = L(rm)? (2.7.19)

where 7 is the n'* zero of J!(z). The eigenfunctions are

(1-z)7%J,(V2x(1-12)) 0<z<1
(1+2)"2J,(v/22.(1+2)) -1<z<0,

fule) = {

(2.7.20)

which are orthogonal with respect to the weight function

wie) = { (173

The normalization is given by

T 0<

z <
T —1<z¢

IN =

0,

| w@fia) de =201 - ) 2(VER).

1

Again the general solution is given by a series and in this case is

[e.e]

fn(x) = Z anfn(z)e_)\"t

n=0

with fn(z) as in (2.7.20) and the A, as in (2.7.19). The lowest mode gives the
description of the runaway current for v < 0. An approximation for Ay can be
found by solving (2.7.18) approximately. Since 7'2 — 0 for v — 0 we can find r2

by expanding J)(z) for small argument. The expansion is

,72—”11;7—1 (,7 + 2)2—7“21:’7'“
Ji(z) =0= - O(z™*?
A TS B | ) R
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and when set equal to zero implies that

z? = 27 + o(z?).
Then use the definition of = to obtain

Xo =7+ 0(7Y).

This confirms the prediction of §2.5.

The Green’s function for the problem is given by

91(y<; $)g2(y>; )
w(s)

9(y, ¥ s) =

with
g1(y;s) = (1 - 2)"*J,(vV/-2s(1 — 7))
ga(y;s) = (1 + x)”/an,(\/ —2s(1 + z))

and the Wronskian is

w(s) = 3V —2sJ,(V—2s)J. (V-2s).

The Wronskian when set equal to zero contains the eigenvalue condition (2.7.18)
as well as the extra condition J,(v/—2s) = 0. This extra condition only leads
to solutions whose derivative at the origin is discontinuous and so need not be
considered.

As before with the previous example, consider a delta function for the initial

distribution function. The current is given by
J(1;s) = 279(0,1;5) (2.7.21)
with

n?!
274101 + ) J5(n)

g9(0,1;s) = (2.7.22)
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and n = +/—2s. Conservation of probability holds since j(1;0) = 1.
The short time behavior is found by considering the large s behavior of (2.7.22),

which is

(0,1;9) \/; e (2.7.23)
18} ~ g = o § — 00 .
g 4is 227T(L +7)

with € = v/2s. The Bessel function relation
Ja(n) = ™2 (€)

has been used in calculating the large s behavior of (2.7.22). Equation (2.7.23) is
then inverted to give

i(t) ~ %ﬂ)(zt)‘“"le*/” t —0*. (2.7.24)

Again there is agreement with the general result (2.6.10).
To consider the behavior of the current for large electric field, v > 1, rewrite

J(1;s) in (2.7.21) using the scaled Laplace transform variable s = 4%¢0 and v =

v/ —20. The equations (2.7.21) and (2.7.22) become

3059 = (3)' S oy

-1

(2.7.25)

To express (2.7.25) asymptotically for large ~, write the Bessel function in terms

of the Airy function of the first kind using [1]

, 2 [1-—ur\' o5
Y
J,T(qu) ~ ~u'72/3 ( ” ) Ai'(y / ¢) N — 00 (2.7.26)

where the function ¢(u) is defined by
14+ /1 —u?
%§3/2:10g(m+ ¢ )—Vl—uz.
u

Since we are interested in the case where o is real and ¢ is bounded away from 0

we can further expand the Airy function in the usual way using

. 1 - 3/2
Ai'(z) ~ ——ﬁzl/“e 2=/ t — o0 largz| < 7. (2.7.27)
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Then using (2.7.27) in (2.7.26) gives

1 3/2
Hw) ~ o (1= oo,
The current j(1;¢) is then
i(1;t) = (2)7 ——j/—i*/ h™'*(u) expy (vot + log(1 + h(u)) —
2/ V2mT(1+7) Je

h(u)) do
(2.7.28)

with C the usual Bromwich contour and h(u) = /1 — u2. The change of variables

y=1+20

T =2

allows one to write (2.7.28) in the simpler form

itin =(3) ==

2v/2miT(1 + 7)

with p(y) = log(1 + /%) — \/¥.
The saddle point yo(7) for (2.7.29) is determined by solving

5/2

/C v expry (r(y — 1)/4 + p(y)) dy

T = —4¢'(y)

or equivalently
(T+Vy)r=2

When (2.7.29) is evaluated at this saddle point one gets

g ’l)”y51/4equ(r(yo —1)/4 + (o))

J(,r) ~
2L () |" (o) (2
When 7 < 1, (2.7.31) reduces to

2
J(1,t) ~ ——(2t)" 7" e Y2 ¢ ot

I'(v)

(2.7.29)

(2.7.30)

Ny — 0.

(2.7.31)

(2.7.32)
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which surprisingly agrees with (2.7.24) as well as the general theory of §2.6. For
this choice of D(v), D, = v/2, D(0) = 2 and & = 2. The maximum value of this
current in (2.7.32) occurs at 2(y + 1) = t and since 4 > 1, this corresponds to
7 =1+ O(y7!). Thus (2.7.32) holds for small time as well as times on the ¢ scale
through O(y~!) as (2.7.32) shows an increase to a peak and then a decrease.

To find the behavior for 7 = O(1), let ¢ = 7 — 1 and then use the saddle-point

formula (2.7.30) to evaluate (2.7.31). This gives the following result

. v
J(1,7) = 1/é—;exp—%(7 - 1)2

which is precisely (2.6.8) with D; = 1.

In this example it is interesting to note that there are simplifications when the
field is half-integral. This is analogous to the previous example when f(t) can be
written in terms of the theta function and its derivatives. When ~ is half-integral
the Bessel function can be written as a finite sum of trigonometric functions and
powers. The eigenvalue condition is just a trigonometric equation, but in this case
the eigenvalues do not have a simple closed form.

This completes the analysis for those examples which have exact solutions in

terms of known special functions.
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CHAPTER 3

General Diffusion Coefficient

3.1 Introduction

Here, the runaway problem is considered for the more general case when the
diffusion coefficient is such that for large velocities it decays to zero. The runaway
current is calculated as a function of the field strength. It is found to be non-
analytic in the field strength, in comparison to the cut-off problems where it is
analytic.

In the analysis, first the time dependence of the Fokker-Planck equation is
separated out. The resulting ordinary differential equation is then transformed
via changes of independent and dependent variables into a Schrédinger equation
which is more amenable to analysis. The properties of the original Fokker-Planck
equation are now contained in the potential for this Schrodinger equation. The
potential depends explicitly on the diffusion coefficient, its derivatives and the
electric field parameter. The fact that the perturbation due to tue field is of
the singular variety is seen immediately from the form of the potential. From
examining this potential using standard theorems for the spectrum of an operator,
one can deduce how the spectrum changes for the electric field increasing from zero.
The spectrum for zero field is a continuum plus a single discrete value at zero. This
zero eigenvalue corresponds to the steady-state solution. For an arbitrarily small
field the spectrum is an infinity of discrete values with zero not included. There

is no steady state.
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The smallest eigenvalue, which is shifted from the zero eigenvalue of the unper-
turbed problem, characterizes the runaway. It is s'hown to be exponentially small
as a function of the electric field. This is analogous to the problem in quantum
mechanics of radioactive decay where eigenvalues are shifted by an exponentially
small imaginary part. The associated eigenfunction can be considered a quasi-
steady state since it will linger for a time proportional to the reciprocal of the
smallest eigenvalue. This will be very large for small field.

To calculate this function the Schrodinger equation is solved for small field
in two regions of velocity space. In one region a uniformly valid solution for this
eigenfunction is obtained using Langer’s method of mapping one potential onto
a simpler one for which the solution is known. In the other region the fact that
the perturbation terms are small compared to the unperturbed potential is used
to find a solution. To zeroth order, the solution is the steady-state solution for
zero field. These two solutions are then matched in an overlap region. Using this
calculated eigenfunction an expression for the smallest eigenvalue as a function of
field is found. As expected it is exponentially small. It has the standard form of
a transmission through a barrier due to tunnelling in quantum mechanics. The
explicit dependence of the smallest eigenvalue on the electric field can be found
by expanding the resulting integral asymptotically for small field strength. These
calculations are shown in Appendix 2. This method of calculating the runaway

current is also applied to the three-dimensional problem.

3.2 The Equivalent Schrodinger Problem
For the one-dimensional problem, the distribution function, f(u,t), satisfies

the Fokker-Planck equation

%tff = % (D(u) (g% + 2uf) - 2'7f> (3.2.1)
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for t > 0 and —oo0 < u < co. An initial condition

f(u,0) = folu)

is specified with fo(u) non-negative and integrable. The solution will satisfy

/w Flu,t) du < oo (3.2.2)

for all time ¢. This is just the conservation relation (1.3.2). The diffusion coefficent
has the property that
lim D(u) =0.

u|—o00
A typical diffusion coefficient is shown in Figure (3.1). Without loss of generality
one can take the electric field parameter, v, to be positive which was noted in
proposition (1.3.3).
For the analysis it is convenient to rewrite (3.2.1) as a Schrédinger equation.

To remove the time dependence we seek separable solutions of the form
flu,t) = e f(u)

where A is positive since the operator is semi-negative definite. Equation (3.2.1)

is then the homogeneous, ordinary differential equation

3% (D(u) (%+2uf> —27)") +Af=0. (3.2.3)

When this equation (3.2.3) is written as a Schrodinger equation, the potential
is determined by the particular choice of diffusion coefficent, D(u), and depends
explicitly on the small parameter v. When the electric field is increased from zero
one can see how the spectrum of the operator in (3.2.3) changes by examining the
behavior of the potential. To make the correspondence to a Schrédinger equation,

let

h(u)’ = DY?(u) exp (%u2 - /OuD—l(v) dv) f(u). (3.2.4)
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Figure 3.1 A typical diffusion coefficient.

Then (3.2.3) takes the form

dh A d%

where
q(u;7) = D*(u) exp (—%uz + "y/ D Y(v) dv) .
0
The equation (3.2.5) can be put in standard Schrédinger form by a further

change of variables to multiply out the D(u). This is accomplished by a Schwarz
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transformation via the change of independent variable

dx i _1/2
= = D) (3.2.6)

and dependent variable
dz\ V2

Equation (3.2.5) then becomes the Schrédinger equation

d*H . d% B
dz " (/\ 1 d:z:2> A=) =5, 5:27)
where
i(z:7) = 2 (u();)
Q) = duq ') .

The equivalent potential in (3.2.7) is given by

L4
1&;5(1(38’7)-

V(ziv) =4¢
The change of independent variables defined by (3.2.6) is well defined every-

where and is differentiable on u € (—o0, 00) with

z(u) = /0" D—l/z(v) dv. (3.2.8)

Proposition 3.2.9 The transformation z(u) is a monotonic, odd function of u

mapping the interval u € (—00,00) onto z € (—o0, 00).

Proof. Since D(u) is positive everywhere, z(u) is strictly increasing. D(u) is
an even function of u, so z(u) is odd in u. (The positive square root has been
assumed in the integrand.) Also since D™Y/*(«) becomes unbounded for large u,

z(u) must also become unbounded. 1
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The proposition shows that the transformation is no more than a stretching
of the u coordinates.
It is more illustrative to write the potential in the old coordinates u remem-

bering that u is a function of z as in (3.2.8). The potential is

V(v) = V(z(u);v) = 1Duu— 5(Du)*D7! — (uD)y +u*D — 2yu+~°D71, (3.2.10)

with the u subscripts denoting differentiation with respect to u. The first two
terms, 1D, and 5(D,)*D™!, are due to diffusion effects only. The (uD), and
u?D terms are due to the thermal effects (the 2uD(u) term in (3.2.1)). The
remaining terms, 2yu and 4*D ™1, are due to the perturbation of the electric field.
The first of these is a thermal-field term and the other a diffusion-field term. The
thermal terms were not present in the cut-off model as examined in the examples
of §2.6 and shown in Figure (2.1).

It is also convenient notation to write the potential as
V(z) = Vo(z) + vVi(z; 7).

The figures show a typical potential when

1

D(u) = ——.

(u) (1+ u?)?
Then the potential is given by

‘7( ) ut -1 + 4u? — 1 . 5u?
Uy =
it (1+u?)?  (1+u?)®  (1+u?)?

— 27u + (1 + u?)?.

The cases of zero electric field and non-zero electric field are shown in Figures (3.2)
and (3.3), respectively. The plot is of V(u;v). The potential V(z;~) will have

the same general shape as V'(u;'y) but with the u coordinate axis appropriately
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Figure 3.2 Equivalent potential for v = 0.

stretched. The distinguishing feature of Figure (3.3) as compared to Figure (3.2)
is the behavior of the potential for large u.

For later calculations, the critical points of the potential will have to be ex-
amined. In this regard we note two points on the u axis on the graphs of Figures
(3.2) and (3.3). One occurs at the intersection of the potential and the u axis
and is denoted up. The other, denoted u;, occurs when the potential for non-zero
field reaches a minimum in value. The potential reaches its minimum when the

diffusion and thermal terms of the equivalent potential just balance the electric
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Figure 3.3 Equivalent potential for 4 # 0.
field perturbation terms. The value of this minimum as a function of v wil' be

needed to determine if there are turning points in its vicinity. Equivalently z, and

r; are the corresponds points for V(z;7).

The point ug or equivalently z; is determined from
V(z;7) =0

and is given by

To = ¢o + Ye1 + O(7F) (3.2.12)
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where ¢; and c; are constants dependent on the explicit form of D(u). The cor-
rections to the unperturbed z, are of order ~ because the perturbation |4V;| < 1
in a neighborhood of ¢¢ for v <« 1.

The point z; or u; is determined from

d dV du
— M = — :O
d:z:V(x’fY) du dzx

For ~ decreasing to zero, the point z; moves out to infinity. This follows from the
continuity of V' (z;~) as a function of v and from the fact that the minimum does
not exist when v = 0. The details of z; as a function of v are given in the next
sectiomn.
It can be noted from (3.2.10) by examining each term and using the evenness
of D(u) that
V(z;0) = V(-z;0),

but for non-zero =
V(ziy) # V(-;7).

The term 2+u(z) is the only term in (3.2.10) that is an odd function of x and it
is also responsible for the simple invariance property that was noted in Property
(1.3.3).

The spectrum for this Schrodinger eigenvalue problem can be found by ex-
amining (3.2.10) or the figures and then applying the theorems of for example,
Titchmarsh [22]. When v = 0, V(z;0) — 0 for |z| — co and for V (z;0) integrable
on (—o0,0), the spectrum is continuous in (0,00) with a possible discrete spec-
trum in (—o0,0|. Because the operator in (3.2.3) is semi-positive definite, negative
discrete values must be ruled out. In fact, A = 0 is the only element of the discrete
specfrum and corresponds to the Maxwellian solution. This problem was studied

in detail in Corngold [6] and [7]. When ~ # 0, V(z;7) — oo for |z| — oo, so
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the spectrum is an infinity of discrete values. The elements of the discrete spec-
trum are strictly greater than zero. Zero cannot be included since there are no
steady-state solutions as was noted already in §1.3.

It should be noted that this analysis of the spectrum only holds in the case
where D(u) decays to zero faster than u~?. This guarantees that the u?D(u) term
in (3.2.10) goes to zero for large values of u. When D(u) does decay as u~2, the
spectrum is changed for v = 0 with continuous spectrum now (1, c0).

The nature of the perturbation can be seen as the spectrum for the operator
(3.2.3) or (3.2.7) changes dramatically from the v = 0 case to one of arbitrarily
small 4. The spectrum has changed from continuous plus a single discrete state
to an infinity of discrete states. This can be expected since Vi(z;7) becomes
unbounded for large z while Vp(z) decays to zero no matter how small v is. Thus
the perturbation is a singular one.

Since we are seeking solutions of the Schrodinger equation corresponding to

the discrete eigenvalues, the condition on the solutions is that
[o¢]
/ H*(z) dz < co. (3.2.12)

Equivalently when the potential is an even function, we could seek solutions that
are square integrable on [0,00) and satisfy a boundary condition at 0. We will
show later that solutions of (3.2.7) satisfying this boundary condition also give
the correct asymptotic behavior for f(u) when transformed back. From (3.2.3)
the asymptotic behavior of f(u) for large, positive u can be found. The leading
term is

Au

f(u) ~ exp = u — +00. (3.2.13)

Note that for A > 0 solutions with this asymptotic behavior are not integrable on
(u,00). This asymptotic behavior also follows from an intuitive understanding of

the Fokker-Planck equation (3.2.1). Consider (3.2.1) for fixed 4. Then there is a
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velocity u such that, loosely speaking, the 2vf term dominates the D(u) terms.

The equation is then essentially a wave equation with solutions behaving like
fu,t) ~expA(u/2y—t).

A few remarks should be made concerning a representation of the solution as

an infinite sum: One expects to write the solution as

flu,t) = Z ane” " fo(u).

The f.(u) are the transformed eigenfunctions of the Schrédinger problem. The
a,’s are determined from the initial condition. Usually one finds that the lowest
mode describes the solution uniformly in u for ¢ — co. This is not the case here.
For a given large time, the contribution from the terms n # 0 is comparable to the
term n = O for sufficiently large w. This is due to the f;(u)’s having the asymptotic
behavior of (3.2.13). Therefore, for increasing u, more and more terms of the sum
are needed to accurately represent the solution. Physically, this also makes sense.
Since electrons are uniformly accelerated by the field when diffusion effects are
small, the distribution function becomes more weighted at large velocites as time
increases. We do not have uniform convergence to fo(u) for arbitrarily large time.

This non-uniformity is illustrated when one considers whether the conservation
principle holds. Since the spectrum is discrete with each eigenvalue’s magnitude
strictly greater than zero one would expect that the conservation property might
be violated. The exponential time dependence of f(u,t) seems to imply this. This
anomaly is resolved by noting that interchanging integration with the limit ¢t — oo
in (3.2.2) is not valid. The ¢ — oo limit cannot be interchanged with the v — oo
limit of the integration.

For fixed a and 3 the integral decays to zero with

B
/ f(u,t)du - 0  t — oo.
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But for a fixed, arbitrarily large ¢, the integral relation

/00 flu,to)du =1

holds if the initial distribution function was normalized. This can be expected
because for large u the equation (3.2.1) looks like a wave equation with profile
moving off to the right. It would not be accurate to replace f(u,t) in these

integrals by the lowest mode due to the aforementioned non-uniformity.

3.3 Calculation of Smallest Eigenvalue with Its Solution

In this section an approximate eigenfunction will be constructed along with
its corresponding eigenvalue for the smallest eigenvalue. The smallest eigenvalue,
which will be seen later, is exponentially small and requires special care to find it.
It characterizes the runaway current.

This dominating effect can be shown if one integrates (3.2.3) for A = Ao with
respect to u from —oo to u. Then

o [* sty = [ 2L (olw) d' = (ow)) = (al-o0)

oo

fo(u) is the eigenfunction for Ag. The smallest eigenvalue is then given by

3, = 1 o(w) = 7 (fo(=00))
f_“oo fo(u') du!

(3.3.1)

for arbitrary u. Evaluation of this quotient at a particular u will give Ay. This
corresponds roughly to the 7(1,t) of Chapter 2. Therefore, it is important to find
Ao as a function of 4. The expression for Ag is analogous to the expression for the
imaginary correction to the eigenvalues of the anharmonic oscillator given in [8].

In both cases we have a quotient of a current to a probability integral.
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We expect Ap(7) to be non-analytic at v = 0 because any power series expan-

sion of the form
[0 ¢]

M) =) an" (3.3.2)

n=0

is doomed to fail. If it did converge for positive «, then it will converge in a disc
about the origin in the complex « plane. This would imply that the perturbation
due to the field in non-singular. This is a contradiction and is seen by examining
the following slightly simpler problem. If we consider the simpler potential that
occurs for the partial high temperature model we can see what happens. In this
model] the 2yu term in not present in the potential and the perturbation only
enters in the v2D~!(u) term. Now apply the spectral theorems of [22] to see how
the spectrum changes with « in the complex plane. When + is real the spectrum
is purely discrete. When ~ is purely imaginary, the specrum is continuous with
spectrum (—o00,00). Therefore (3.3.2) couldn’t possibly converge in a disc. So at
most, any expansion of the form (3.3.2) would be asymptotic for v — 0. Hence the
standard method of expanding the solution, H(z), by a complete set of solutions
of the unperturbed problem would fail.

We can expect Ag(~) to have some type of singularity at ¥ = 0. A pole can be
ruled out because Ay goes to zero with the field strength ~. Thus, Ag(7) will have
an algebraic or essential singularity at the origin. A rough idea of what can be
expected for Ag(y) can be found by considering a quantum mechanical analog. The
potential in (3.2.10) is the quantum mechanical problem of a particle in a well onto
which barriers have been added at a very large distance from the well. Recall that
the barrier’s position in (3.2.10) occurs when the perturbation becomes important
and thus is large for small 7. Various potentials which mimic the potential of
interest lead to Schrodinger equations which can be solved exactly in terms of

elementary functions. A particularly simple example can illustrate this. Consider
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the potential that consists of a delta function with negative strength at the origin
with infinite barriers located at z = ¢~ ! with € < 1. This is illustrated in Figure
(3.4). There is a single discrete eigenvalue plus a continuous spectrum when ¢ = 0.
For € # O the spectrum is all discrete with the exact eigenvalue condition known
in terms of elementary functions. Hence, the analogy to the problem of interest.
When this condition is solved approximately when € < 1, the perturbation of

—k/¢ with &k a constant.

the smallest eigenvalue is found to be proportional to e
So we see that the correction is exponentially small. This shift is related to the
transmission coefficient of the potential barrier with the constant & related to the
area of the barrier. We then will expect this also to be the case for the more
general potential in (3.2.10) with Ao(7) being exponentially small. This is by no
means a rigorous proof that the smallest eigenvalue is shifted by an exponentially
small amount but this will be shown to be the case when the calculations of this
section unfold.

This problem is also analogous to the problem of radioactive decay in quantum
mechanics. The purely imaginary correction to a bound state eigenvalue is propor-
tional to this transmission coefficient, with the lifetime of a state being inversely
proportional to the eigenvalue shift. The anharmonic oscillator with potential
z* +ez* is an example of such a problem. It has been analyzed in Bender and Wu,
(3] and [4], and Corngold, Harrell and Simon [8] and as well in other references. In
each of the references the exponentially small imaginary correction is calculated
differently. In this runaway problem we then expect that the transmission due to
the bump between z, and z; will be important. We can think of this in terms of
particles exiting from the collision region on a time scale of the lifetime defined by

some transmission coeflicient and then becoming accelerated only by the electric

field as it enters the region where this is the dominant effect.
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Figure 3.4 The delta function potential.

The standard method used to calculate approximate eigenfunctions requires
matching WKB solutions, each valid in a certain region, asymptotically, in an
overlap region. Bender and Wu’s analysis of the anharmonic oscillator in [4] is
typical of this procedure. The domain is divided into regions corresponding to
being close and far from the turning points. Then WKB solutions are matched
in overlap regions. The correction to the eigenvalue was also found through this
matching. A similar approach can be don.e here but due to the shape of the

potential (Figure (3.3)) it would require examining five different regions for positive
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z. Matching between regions would then give one information for obtaining a
formula for the exponentially small correction. (It is enough to consider positive =
with similar analysis applying for negative values.) Corngold, Harrell and Simon
[8] showed that the analysis of the anharmonic oscillator can also be done by
using an idea of R. Langer [17]. This simplifies the calculations of [4]. Langer’s
approach will be used here. Langer showed that one could get uniform asymptotic
approximations to the solution of a Schrédinger equation with a potential having
a turning point of order v. The idea is to map one Schrodinger equation into
another via a change of variables for which the solution is known exactly. The
potential in the new coordinates will be referred to as the comparison potential.
Of course, the gross features of the potential like the number of turning points
should be conserved under such a transformation. The Schwarz transformation is
such that it maps one Schrodinger equation into another. With the use of this idea
it will be possible to write down two expressions instead of five for the solution in
the regime z > 0. When these two solutions are matched we have an approximate
eigenfunction. One expression will be constructed via the Schwarz mapping. The
other will be found by exploiting the smallness of v and Aq. The extension of this
approximation for u < 0 can easily be found. This will be given near the end of

this section.

3.3.1 Turning Points
To use the Langer procedure we need to know the location of the turning
points of the potential. We now examine the potential V(z;v) in more detail.

The turning points for the problem are determined by solving

V (zo(7);7) = Ao(7). (3.3.3)

We will now show that there is only one turning point for z > 0.
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To a first approximation, the turning point is the solution of (3.3.3) when
~ = 0. Therefore, the turning point is the same constant ¢ of (3.2.11) to O(x)

since it satisfies

‘f(zo;O) =0.

Since the perturbation terms in (3.2.10) are O(y) for ¢ <« z;, the next order

correction to the turning point is
To = ¢o + ¢17 + O(¥%). (3.3.4)

The constant ¢; can be determined by substituting (3.3.4) into (3.3.3), expanding
in powers of 4 and setting the coefficient of the ¥ power equal to zero. The actual
numerical values of ¢y and ¢; are not needed in further calculations since all that
is really important is the v dependence of the turning point.

Letting A = V(z;v) — A, the sign of A will determine whether there is a
turning point near z; or not. z; is the location of the minimum of V(z;4). To
determine the sign of A we need to know the value of V(z;;4). It will then be
neccessary to calculate z; as a function of 4. The details will also be needed in
later calculations involving the comparison potential. To do this the asymptotic
behavior of the diffusion coefficient will have to be specified. Assume D(u) has

the following asymptotic behavior for large u:
[o,0]
D(u) ~u™™ + Z au™™™" w400 (3.3.5)
n=1
with m > 2. The point u, (or z,) is determined from
av 1 1

1
o _ 2 _ ip-t 2 (p-1p \2
7u 4Dwu 8D D.,D,, + 16(D D,)*D,

—(uD)yy + (v*D)y — 2y —¥*D7*D, = 0. (3.3.6)
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We are interested in the point z; > z¢, so we consider (3.3.6) asymptotically for

large u using (3.3.5). Equation (3.3.6) then takes the form

—— ~ U™ m = ay(m - 1)u"t + (@ - ag)u? + O(u?)) — 27

—u!"™((m = 2) + ar(m — Dut + m(m + az — 1)u"? + O(u™%)). (3.3.7)

To solve (3.3.7) when set equal to zero, we solve perturbatively, exploiting the

smallness of . First, it can be noted that a first approximation to the solution of
(3.3.6) is

uy =0, (3.3.8)

or in z coordinates

zy = Loy (mFAAm), (3.3.9)

This approximation is found by scaling v with a power of « to find the dominant
balance when the perturbation terms of the potential balance the other terms.
Then we let

€Uy = U = Z o, €" (3.3.10)
n=0

where € = 4¥/(m~1) and substitute (3.3.10) into (3.3.7) and solve for the u, by
gathering powers of e. The first three «; are needed in later calculations and

are

Qpn = 1 (3.3.11&)

51

o = (303011b)

m—1
m? + (2a; — @ — 1)m + 2a;
2(m—1)2

oy = (3.3.11¢)
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Now we can evaluate V (z,;7). The asymptotic expansion for I7(u;'y) for u —

oo is given by

V(u;'y) ~ 2y™ (1 —aut + (a? —az)u"? + O(u"?’)) — 2yu

+u? ™ (1 + au™ + (m— 1+ ax)u™? + O(u™?)) (3.3.12)
and the similar expansion for the second derivative of V' (u;~) is

.
o~ (m=1)(m—2)u™™ £ m{m — 17?7 + O(u™™) + O(y7u™?). (3.3.13)
u

Evaluation of (3.3.12) at u = u; in (3.3.10) and (3.3.11) gives

V(ug;€) ~ (m —1)e™ + O(e™?) (3.3.14)
and the second derivative at the same point is

d* -

T3V (wi€e) ~ 2(m - 1)%e™ + O(e™!) (3.3.15)

when (3.3.13) is evaluated. For future calculations the second derivative with

respect to x coordinates will be needed so it will noted here. Using

d*vV d*V  1dDdV
P GG s e

and then using (3.3.15) gives the result that

d2 m m
EV(xl;e) ~ 2(m — 1)%"™ + O(*™1).

The minimum value of the potential is seen to vanish with ¢ and hence v as shown
in (3.3.14). Also from (3.3.8) the point u; increases to infinity with decreasing ~.
It can now be noted that for Ay = o(+%), which will be the case for Ay expo-

nentially small, A > 0 for £ > ;. This holds because the ratio of A to V(a:l;e)
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vanishes with «. Therefore, no turning points occur for £ > z,. The only turning
point for positive z is at z,.

Now that we know the location of the turning point, we need to consider
what comparison potential the known potential should be mapped onto. At first
thought, we might expect a mapping of the interval [0,00) onto a linear poten-
tial would be adequate because this corresponds to a single turning point. Even
though such a mapping conserves the number of turning points, this method is not
satisfactory. This method gives a good representation of the solution for = > =z,
but for 0 < z < zg, the solution is not as good as is possible. It is much better for
calculating A to use the 4 = 0 solution for 0 < £ < zo. The fact that the v =0
solution can be used will be seen later. Thus the calculation of the eigenfunction
will require two regions.

In standard WKB analysis one would examine the following five regions: 0 <
u < Ug, |u — ug| = O(1),up < u < %y, |u — u1] = O(1) and u >> u;. The region
|u — uo| = O(1) is at the turning point and the region |u — u,| = O(1) is near the
point where perturbation terms balance the unperturbed potential. The solutions
for each of the five regions would then be matched in an overlap region to construct
an approximation. This procedure has been done as well to check the following
calculations.

Our procedure will be to use Langer’s mapping idea to cover the out.r three
regions, u > 1, and then match onto an solution which will be good on the two
inner regions, 0 < u < ¢, To find a solution for the inner two regions we can use
the fact that the perturbation and the eigenvalue Aq are small in those regions.
Hence the number of regions has been reduced from five to two. The regions of
interest are shown in Figure (3.5).

Because z; corresponds to a minimum point of the potential, the potential is

locally quadratic about z = z;. Hence a mapping onto a shifted quadratic is a
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Figure 3.5 The regions of interest for calculating solution.

reasonable choice for the comparison potential. Parabolic cylinder functions, the

solution of such a Schrédinger equation, can then to used for the solution.

3.3.2 Solution in the Outer Region

In the region z > 1 the equation of interest is

Ji
%;2_ —QrH=0 z>1 (3.3.16)
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where Q(z;¢) = V(z;€) — Ao. V(z;€) dominates Ay for small €, so Q(z;¢) is
strictly positive on the domain of interest. Because the minimum point is field-
1

dependent we will normalize it to unity by the scaling £ = z,y, where z; = v~

with v = L(m + 2)e(™*8/? < 1 from (3.3.9). Then (3.3.16) is

d*H .
I/2d—y2 - Q(y;e)H(y) =0 (3.3.17)

with Q(y;€) = Q(z1y;¢€).
To motivate the choice of mapping function, note that by expanding @(y; €)

about y = 1 in a Taylor series

4(m—1) _, 16(m —1)*

[CFT)Eh (m T 2)8 ety —1)%+0(e 4y - 1)%. (3.3.18)

viQ(yie) =

Therefore, for |y — 1| < €*/3, the approximate equation is

*H <4(m~ 1) 5 16(m—1)"
¥ \(m+2" " (mr2)

(v - 1)2> H=0
with solutions in term of the parabolic cylinder functions

aZ(y _ 1)2

H(y;e) =c1D_1(a(y — 1)) + czexp (3.3.19)

with the constant a given by

2vV2m — 26_1

m+ 2

a

This argument suggests taking the comparison potential to be the quadratic in
(3.3.18). The transformation will then be the identity near y = 1 and a stretching
as y moves away from 1. The solution in the new coordinates will be the same
parabolic cylinder functions of (3.3.19).

The transformation
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takes the equation (3.3.17) into the a new Schrédinger equation given by

d*H

o (m) * (v *Q(ys €) — (ny)‘/zd—z(ny)‘”z)ﬂ(n) = 0. (3.3.20)

dy?

Equation (3.3.20) will be a parabolic cylinder equation with the identification:

. d?
L2 (n,) (n? +2) = Q(y;€) — vz(ny)‘/zd—y;(ny)””. (3.3.21)

Note that the point » = 0 maps to y = 1.

In general (3.3.21) is a non-linear equation in n, and to make it tractable the
last term on the right, the so-called Schwarzian derivative, will be neglected. This
is reasonable because the comparison potential does not deviate much from the
original potential Q(y; €) in analytic behavior. This implies that n, will be approx-
imately constant. Also the Schwarzian derivative is approximately independent
of the absolute magnitude of 7, by its very form. It will be shown in §3.4 that
the Schwarzian derivative is uniformly bounded for all # and y and also uniformly
small due to multiplication by v2. After dropping this term (3.3.21) can be solved

exactly to give n as an implicit function of y. The solution is

y -
Invnt+2+log(n+/nt+2) =1 / QY (y'5€) dy'. (3.3.22)
1

The solution in these new coordinates is

A

H(n) = ¢1D_«(n) + cyexp int

The second solution can be eliminated because it grows exponentially for n — oo

which violates the boundary condition (3.2.12), and the solution to (3.3.17) is

H(n(y)) = K(n,)"/*D_1(n) (3.3.23)

with the constant K to be determined later when matching.
We can immediately note that when 7 is near 0, then y =~ 1 and the solution

reduces to (3.3.19) as expected.
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It will now be shown that (3.3.23) is equivalent to the standard WKB expres-

sions one might use. First, expand (3.3.22) for large positive n to get

y -~
n®+2logn + O(1) = 3/ QY (yse)dy', n>1 (3.3.24)
1

and when (3.3.24) is differentiated with respect to y gives
ny = 2(vn) QY (y) + O(n7Y), n>1. (3.3.25)

Now use the asymptotics of the parabolic cylinder function for large n to write
(3.3.23) as
H(n) ~ K(n,)"*n~te /4, (3.3.26)

and then use the results of (3.3.24) and (3.3.25) to write (3.3.26) as

Hn) ~ K(5/PQ 4 (w)exp -1 [ Q¥2(y') ay (3.3.27)
1

which is the standard WKB formula for n — oo.

Then similarly, for large negative n (3.3.22) becomes

n® + 2log(—n) +0(1) = %/1 QY (' e) dy', n< -1 (3.3.28)
¥
and its derivative is
ny =2(-vn) Q2 (y) + O(n7Y), n< -1 (3.3.29)
Then the asymptotic expansion of (3.3.23) for large negative n gives
H(n) ~ (27)'*K(n,)"?em /", (3.3.30)

and then use (3.3.28) and (3.3.29) to write (3.3.30) as

1
H(n) ~ (vm) P KQ™"4(y) exp L [ QY (y') dy' (3.3.31)
y
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which is in WKB form for  — —oco. It will be convenient for later matching to

write the integrals in (3.3.31) as

1 1 v
/ Q1/2(yl) dy' = / Ql/?(yl) dyl __/ Q1/2(y1) dyl (3.3.32)
¥ Yo Yo

where yo is the turning point in the y coordinates.
The solution (3.3.23) will now be written in a form that is suitable for matching
to the inner region. The solution will be approximated in the region 1 < u < ¢~ 1.

When v < €' the potential can be approximated by

~ ~

Q(u;7) = Vo(u) + O()

since the next term in the expansion of V{u;~) is 2yu. Therefore, when the

asymptotic expansion of (3.3.12) is used when ~ = 0, one gets

~

Vo(u) ~u?> ™1+ O(u™h))

and then

Q‘l/“(u) ~ ulm—2)/4 (1 + O(u‘l)) (3-3'33)

which holds in the region 1 <« u < €”!. In the integrals of (3.3.32) change

coordinates back to u via the relations z = z;y and (3.2.6) to get

/Q”Z(z’w)dx':/ QY (u's7) D7 (u!) du. (3.3.34)

The integrand of (3.3.34) when expanded for 1 < u < ¢! gives

Q(WO) ~ultm— w?
——_—_D(u) + 1+0(u™").

Then the integral of (3.3.34) is

~ 1/2
“ 0 '
J. (nguq)) d' ~ jut +4(m—1) +{(m—Dlogu—c,  (3.3.35)
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where

Uo / - 1
Cm = / Vut+m—1du+ 3(m —1)log (——T—né—) (3.3.36)
0

which is valid for u > (m—1)Y/%. The overlap region is then (m—1)/2 <« u < €1

Using the results of (3.3.33), (3.3.35) and (3.3.36) in (3.3.31) give the result
1
H(u) ~ (vm)YV?Krlu™™* exp <—“2—2 + %/ QY? dy) (3.3.37)
Yo

with

Km = exp (—cm + 2(m — 1)) .

3.3.3 Solution in the Inner Region

In t}he inner region where 0 < u < €7!, the Vy(z) part of the potential is
much larger than 4Vi(z). That is, |yVi(z)| < 1 while Vo(z) = O(1) on the region
of interest. So we will be able to neglect vV; in the differential equation. A

perturbation expansion about v = 0 of the form

H(z;v) = ) 7 "Ha()

can be used to find the solution. To zeroth order Hy(z) satisfies

d*H,
dz?

— Vo(z) Ho(z) = 0. (3.3.38)

The Ao term has been neglected since Ag = o(~") for all n. The potential V(z) is an
even function; therefore, the solution to (3.3.38) satisfies the boundary condition
H'(0) = 0. This equation is just the unperturbed problem for v = 0. The solution

is the Maxwellian in the transformed coordinates. The solution is
H (z(uw)) = 7~ Y2 DY4(u)e™v'/? (3.3.39)

in v coordinates. Its integral on (—oco,00) has been normalized to unity. This

solution is a decaying exponential so it will match the outer solution in (3.3.23).
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Further corrections to H(u) will be O(~) and will account for the asymmetry of
the potential. Therefore, we are justified in only considering the interval v > 0.
To match with the outer region expand (3.3.39) for large u. The large u
behavior of (3.3.39) is
H(u) ~ n Y3y —m/4g=v?/2, (3.3.40)

The first term in the asymptotic expansion of D(u) has been used here. Equation
(8-3.40) has the correct form for matching with (3.3.37). Comparing (3.3.37) with
(3.3.40) requires that
1
K(v) = n7'v Y2k, exp —%/ Q' (y; €) dy. (3.3.41)
Yo
The overlap region for the two solutions is (m — 1)/? <« u < ¢ !. We note
that a transmission integral is already present in this constant, suggesting an
exponentially small value for Ag.

In summary, the approximate eigenfunction for the smallest eigenvalue is

H(u) = n~1/2DY4(y) e/ u< el (3.3.42a)

H(n(y)) = K(n,)"Y*D_y(an) u>1 (3.3.42Db)

with y = y(u) determined via (3.2.6) and n = n(y) determined via (3.3.22) and
the constant K from (3.3.41).

We will now sketch the details of the solution for u < 0. Equation (3.3.42a) still
holds for a certain regime of negative u. The only turning point of the potential

@ for negative u is at
~ 2
—Ug = —Co + €17 + O("Y ) < 0.

The approximate solution for u < —ugq is

H(u,) = K.z@'l/‘!(y) exp —‘% /—y“ @1/2 (y’) dy’

14
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This solution is non-singular since @(y) does not vanish on this region. Matching

this with (3.3.42a) to first order gives
Ky =17k,

Km is the same functionally as before with ug replaced by #o. The overlap region
for the matching is as before, (m — 1)}/? < —u < €!. When the solution for

u < —1g is transformed back to f(u) one gets

) i u
) = KD () exp (=2 [ @) a1 [TD o - ).
Y
(3.3.43)
The asymptotic behavior of (3.3.43) is

f(u) ~ Cexp <2’y /Ou D™ (v)dv — u2> U — —00 (3.3.44)

with C a constant. Since D(u) is even in u, the solution decays exponentially for
u — —00.

Now we can immediately write down the solution for fo(u) via the transfor-
mations (3.2.4) and (3.2.6). The distribution function corresponding to the lowest

eigenvalue is

fo(u) = 7Y% exp (-u2 + '7/ D™ (v) dv> (3.3.45a)
0
fo(u) = K(7)D™*(u)(n,) Y2 D_,(an) exp <—~§u2 + ’y/ D7(v) dv) . (3.3.45Db)
0
Equation (3.3.45a) is valid for 0 < u < u; and (3.3.45b) for uo < u. Note that
for v — 0, (3.3.45) reduces to the exact Maxwellian solution because Ao(Y) — O
and u; — oo making (3.3.45a) valid for all w > 0. It should now be checked that

(8.3.45) does, in fact, give the correct asymptotic behavior of (3.2.13). To check

this, use the asymptotic relation (3.3.27) derived earlier which is

~ y A
H(n) ~ K(2)/20~4(y) exp — L / O3 (y') dy'.
1
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Substitute for @(y) and evaluate this for y > 1. One gets

A
H(n) "‘K(’Y)(%)l/z"/_l/le/“exp( / D7 (v)dv + u + 22‘)

for y — oo. Therefore, the proper terms in (3.3.45b) cancel and the asymptotic

behavior of (3.2.13) is found.

3.3.4 Calculation of A

Recall that the smallest eigenvalue is given by the relation (3.3.1)

_ J(v) = j(~o0)
Ao = ffw fo(us€) du’

The current is evaluated using the eigenfunction (3.3.45a) constructed. The sim-
plification j{—oco) = 0 follows from the asymptotic behavior of fo(u) given in
(3.3.44). Because (3.3.1) is an exact relationship, we are free to choose the point
u at which to evaluate it. Clearly, we should take © > uq since the solution for
u < ug is the Maxwellian to zeroth order which gives zero current. This would
be too crude an estimate. The choice that simplifies the calculation is the point
v = u; = €~'. Then we will evaluate the outer part of fo(u) at ¢?

Substituting the outer solution (3.3.45a) into the expression for the current

i) =297 = D(w) (3L + 207

gives on evaluation at u = ¢!

i) = (%Du(e—l) + D ) Wow(e—ng{iggg) fole™).
(3.3.46)

The constant v is as before. Simplification of (3.3.46) gives

m—1

jleh) =2 e fole™) (14 O(€)) (3.3.47)
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with
fole™!) = Ke‘m/“n;l/z(O)D_l(O) exp (—%6_2 + e"‘"l/ D™ (u) du) . (3.3.48)
0
The denominator in (3.3.1) is

/j_ fo(u;€) du =1+ O(e).

This follows from the properties of fy(u;€). For ¢ — 0 (no electric field), fo(u;0) =
M (u). The zeroth order approximation is found just by setting € = 0 and the result
follows.

The smallest eigenvalue is then
Ao~ J(e™h) € — 0.

It is exponentially small as claimed. The constant K in Ao has the standard form
of a tunnelling integral which occurs in numerous quantum mechanical problems
where transmission through a barrier is important. K can be evaluated asymptot-
ically for 0 < 7 < 1. The analysis requires subtle treatment since the integrand
cannot be expanded uniformly in ~. The result of this calculation for a diffusion

coefficient of a form that behaves as in (3.3.5) is

K(e) ~ 17wV e™exp {—%6‘2 - ‘:n—‘e“l} (3.3.49)

for € — 0. The details of this calculation are left to Appendix 2. Combining

(3.3.49) with (3.3.47) and (3.3.48) gives the relation

Xo(€) ~ 2V4(m — 1)Y4r 1k, e™ exp {-—’;’:—:;%6“2 —Zae-1]
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for the smallest eigenvalue. Using v = €™ ! we can write the eigenvalue in terms

of the field parameter as
Xo(7) ~ 2Y4(m — 1)V 47 Ky ™ (M) exp { — ety 2/ (mm1) _ 28141/ (m-1)}

for v — 0.

Comparisons with the current calculation done by Lifshitz and Pitaevskii in
[19] and displayed in Appendix 3 show the only difference is the multiplying con-
stant. This could be expected considering the two different approaches. In [19],
the authors assume a steady-state distribution is possible and proceed to construct

a solution based on that assumption.

3.4 Error Estimates
In §3.3 it was noted that in computing the change of coordinates for the map-

ping to the simpler potential the Schwarzian derivative term

(m)* <= (n,)~/* (3.4.1)

in (3.3.21) was neglected. It will now be shown that this was a reasonable action
to take, as its effect is small.

We will show that the Schwarzian hderivative is uniformly bounded for y > yo
or n > no with no = n(yo). And since it is multiplied by a small parameter in
the differential equation for n(y), it is uniformly small and hence reasonable to
neglect.

To show this we substitute the solution

y ~
iVt + 2+ log(n + /n? +2) = ‘2&/ QYA (y's¢) dy'
1

of the linearized equation (3.3.21) into (3.4.1). The notation

g(n) = Vi n* +2)
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will be used for the comparison potential. Letting n, = Ql/z(y; €)g~'%(n) in (3.4.1)

gives the result

N 2 N
. Q Q z
g =5 () o (-4 (5))

We will examine each term and show that it is uniformly bounded on [y, c0).

! and (g,97!)?, is a rational smooth function

First, note that each term g,,9~
of n. These terms go to zero for large n and the denominators have no real zeros.
Hence the terms are bounded by some constant M; for all . The choice of M; is
independent of  and hence a uniform bound on |7, o).

Since (ny)? = @(y; €)g~'(n) is also a rational function with no poles for real 7,

then if n, falls off for large y, it is bounded uniformly. To determine the large y

behavior of 7, solve the equation

sty =7"D7 (u(y)) .-

This is just equation (3.3.21) explicitly for large n and y. The solution of this is

n = Cy(m+1)/(m+2)

with C a constant independent of v. Hence n, ~ y~Y(m+2) for y — co. Therefore,
nj is also uniformly bounded.

The same argument applies to the final two terms, Q3Q“2 and Q,,Q~!. They
are both rational functions of y with no real poles. And because Q) grows as a
power of y, both behave as y~? for large y. Therefore, they too are uniformly
bounded by some constant M; on [yo, 00).

If we take M = maz(My, M;), then this gives a bound on the Schwarzian

derivative. Multiplication by v? gives v*(y)M for the bound. We can now see
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that the ratio of the Schwarzian derivative term to the retained term can be made
arbitrarily small for a sufficiently small field, . The ratio is

v:M < M
Qy;e)| (m—-1)

This argument gives the justification for neglecting the Schwarzian derivative

in solving the equation (3.3.21).

3.5 Three-Dimensional Problem

The three-dimensional problem can be treated in the manner of §3.2 through
§3.4. A single approximation is made to reduce the problem to a one-dimensional
equation. The equivalent potential in the Schrédinger description is found and an
identical analysis is done. Calculation of the lowest eigenvalue gives a description
of the runaway current in three dimensions.

The three-dimensional problem is
2 .
Ef(u’ t)+V:j(u,t) =0 (3.5.1)

with

i(u,t) = (202 = D(w) - (V + zu)) f(u,t). (3.5.2)
The gradients are with respect to u coordinates. The calculation will be done in
spherical coor'inates. The distribution function is assumed to be independent of
the  coordinate, which reduces the problem to two dimensions. Equation (3.5.1)
in spherical coordinates is

g 1
f + 35, sind j,) = 0.

9 1
Fr el G o]

Multiplication by sind and integration over the range of 8 gives

a [7 g B 1 [" 9
a7 t) — AU’ u(u, ) si = =
8t/0 f(u,t) sm0d0+ e / Ju(u,t) 51n0d0+u/0 BT (76(u,t)sin ) dd = 0.

(3.5.3)
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For js(u,t) bounded at 0 and =, the last of the three integrals vanishes. Using

(3.5.2) and the properties of the diffusion tensor D(u), the radial part of j(u,t) is

Ju(u,t) = 2vcos8f(u,t) — Dy(u) (% + 2u> f(u,t).

Defining
fo(u,t) = / f(u,m,t)dn
-1

with 7 = cos § and using the radial component in (3.5.3) gives the equation

8fo a , ! )
3{:— + ;136~uu {27 /_1 nf(u,n,t)dn — Dy(u) (51; + ZU> fo(u,t)} . (3.5.4)

So far the result is exact. The approximation is to take n = 1 in the integrand
of (3.5.4). This is a reasonable approximation for large time because the distri-
bution function will become concentrated along the direction of the electric field,
i.e., about n = 1. This approach is due to Lifshitz and Pitaevskii in [19].

Equation (3.5.4) becomes with this simplification the one-dimensional problem
%ftﬂ = %;—uzﬁ (D"(u) (% + 2ufo> - 2'7f0)
on the interval [0,00). In this one-dimensional form we can apply all the tech-
niques used in this chapter to evaluate the runaway current and the smallest eigen-
value. The equivalent potential corresponding to this three-dimensional problem
is slightly different but the analysis will still apply. In following the derivation of
(3.3.1) the smallest eigenvalue is now given by

J(u)

= Fr s o
Jo utfo(u) du

(3.5.5)

with
i) = u? {27f0(u) - D(w) (%—ff + 2ufo>} .

Since j(0) = 0, the other boundary term vanishes in the derivation of (3.5.5).
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After the time dependence is separated out, the radial equation can be trans-
formed into an equivalent Schrédinger equation. The transformation of indepen-

dent variable defined by

and dependent variable
H(z) = u*Dy"(w)q ™ (z;7) f (u)
gives the equation

dx?
The quantity §(z;~) is given by

i(z;n) = uD,l,“(u) exp (—%uz + '7/ Du‘l(v) dv) .
0

The equivalent potential is given in terms of Dj(u) and is

2 2 A
o (A - q*‘é—f’-> H(z) = 0.

V(7)) = §Djuw = 16(Dya) (D)) ™ + (62 = 3) Dy = (Dyu + 27) (u — w™t) +43(Dy) L.
The u subscripts denote differentiation with respect to u. This potential is almost
identical to the potential (3.2.10) examined earlier in the chapter. The point where
the minimum of V (z;~) occurs is at u; = ¢! as before.

The exact same analysis goes through in calculating the eigenfunction and
eigenvalue of the lowest mode. An inner and an outer solution are found and
matched. The outer solution, valid for u > ug, with u, the turning point, is found

by mapping the potential onto the simple quadratic
g(n) = il/“’(n2 + 2).
The inner solution is just the transformed Maxwellian solution. The solutions will

be analogs of equations (3.3.42) and (3.3.45) with D(u) replaced by Dj(u). The

solution is
uD*(w)e? o<y <€ (3.5.6a)
K(n,) Y*D_i(an) u>1 (3.5.6b)

H(u) =
H(n(y))

SR

i
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with y = y(u) and n = n(y) as before. To match (3.5.6a) to (3.5.6b) we expand the
first for v > 1 and the second for uy < u < €', Expanding (3.5.6) accordingly
gives

2

H(u) ~ ([ il

1
H(u) ~ (I/7r)1/2K/¢,;t1u1—m/4 exp (-—-':";. + ‘%/ @1/2 dy) )
Yo

2 L
K:'ir‘l\/;fcmexp—%/ Ql/zdy.
Yo

Now (3.5.5) can be applied to the solution. The choice of point to evaluate

Matching requires that

(3.5.5) is again at u = e”!. The smallest eigenvalue is then given by

m—1

Ao(€) = 2 e"‘"zfo(e"l)

™
with
fo(e7') = K(e) D™Y4(e ), /2(0) D1 (0) exp (~%e'2 + ™! /e‘ Dy (u) du) .
Jo

K (€) is calculated in the same way as is done in the previous example. The final

result is

Aol€) ~ 2Y4(m — 1)Y47r 1k, e™ 3 exp {-—-g—ﬁe"z — 2l

for € — 0. Again v = €™ '. Of particular interest is the case m = 3. This is the

case of references [15] and [24], e.g.. Then the result is
Ao(7) ~ 2k3m~lexp {—%7*1 _ Z_gL,y—l/Z} .

The exponential part is in agreement with the work of Kruskal and Bernstein [15]

whose result is

Ao(7) ~ Cy P exp {—jy71 + 2712}



—82-

10 p—7—
= KULSRUD
1L DREICER a3
E (1959,1960) E
3 BERNSTEIN 3
y [ (1962) -
- GUREVITCH ]
'k 1961) " _
CURRENT F .
0%k 3
- LEBEDEV -
- {1965) .
10°k 3
l0'7 i ] |

I

0 02 04 06, 08 10 1

Figure 3.6 The current as a function of vy = 2E. The dotted line is Ao(7).

The multiplying power of v does not match. Further analysis might give a further
correction to the power term in the expression for Ag(e). Figure (3.6) compares
our result, the dotted line, and the results of other researchers.

In summary, we have shown the connection between the runaway current and
the spectral properties of the Fokker-Planck equation. The smallest eigenvalue,

exponentially small as a function of field strength, characterizes the current.
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APPENDIX 1

Details of an Asymptotic Expansion

In this appendix a derivation of the integral in result (2.6.9) of Chapter 2 will

be given. The integral to be analyzed for large o is

1 dv
(o) = 20/ . (A1.1.1)
o 1+ +/1+40D(v)
A scaling of integration variable onto the interval [0,1] is done first to simplify
the calculation. A multiplication by vy is then needed for the general case. One
cannot simply expand the integrand of (A1.1.1) for large o as the quantity o D(v)
is not uniformly large on [0,1]. This is due to D(v) vanishing at v = 1.

For the analysis let ¢ = (40)™' < 1 and £ = 1 — v and then (A1.1.1) becomes

\f/ o (A1.1.2)

with D(z) = D(1 — z). Now split the integral in (A1.1.2) into two parts, one

integration over an interval where ab(:z:) is uniformly small and the other where

it is not. This gives

1 dzx
o = Al.1.3
f/ ) + ¢€) 1/2+El/2 \/_/a (D(z) + €)V/2 + €l/2 ( )

where 6 = 6(¢) and € < §(¢) < 1. Each of the two integrals will be considered

separately and then asymptotic matching will be used to eliminate any dependence

on the matching parameter 6.
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For the second integral in (A1.1.3), eD~! is uniformly small on [6,1] so one can
integrate term by term after expanding the integral in powers of ¢. The second

integral is then

1 1 1
/ _dz 61/2/ ~d—$+ %e/ _dz + O(e¥?).
s DV*(z) s D(z) s D3%(z)

Further simplification can be done by extending the limits of integration and using

the property that D(z) vanishes linearly at £ = 1. This gives the following:

/1 dzx — /1 dr _ 2a__1/261/2
* YDz 7 \/D(z)

1 1 _
/-:df—z—-glogfer/ ez = D@) 4+ 0(s),
s D(z) 0

azD(z)

v de B -1/2
/6 B = O™

Adding these three results gives
D, + a '/ log§ — €'/2J + —2a71/26Y% + O(€/26) + O(e/267Y?)  (Al.1.4)

where D., o and J are as defined in §2.6.
To evaluate the first integral in (A1.1.3) requires rewriting the integrand in a

form that can be expanded. On the interval [0,6], D(z) can be expanded in its

Taylor series about 0. The denominator of the integrand is then
~ V3 ym g 1/2 1/2
€ + D(z) +e/ ="+ (e+az)’* (1+0(z))'".
Further expansion gives
~ Ve 1/2 1/2 2
(e—i—D(z)) + et = (e + (e + az)'?) (1 + Bz (z;€) + O(z?))

with ¥ (z;€) given by
(€ + az)'/?
€l/2 + (e + azx)l/?

b(zie) =
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and B a constant. The integral then becomes

g dzx ﬂ/é z(z;€) dz +
o €%+ (e+ azx)l/? o €Y%+ (e+ ax)l/?

where the ellipses denote higher order terms in €. In the first of these two integrals

let 2 = € + ax to get

(e+as)t/?
2 / dt el/2 4e  26Y% 2812

+ 5 +0(e67VH) + O(¥/%671Y). (A1.1.5)

a t+€el?)  a Cab a @ all

/3
The change of variables ey? = ¢ + az in the second of the two integrals gives

(1+ade—1)H/3

3/2 y*(y - 1) _ 3/2 3/2 3/2 -1
€ Vo1 dy = O(6%%) + O(€”*) + O(e* log €67 7).
y
1

This shows that the second integral of the two does not make a contribution to
the order we need.

Now we combine the results of (A1.1.4) and (A1.1.5) to get

D. + f—lg log 4-af —¢l/? (% - J> +O(e26) + O(e*267%) + O (e67Y2) + O(*/%67Y)

(A1.1.6)

for 6 — 0% and €¢/6 — 0T. It can be noted that the log 6 and 6'/? terms cancelled

on addition as expected. To assure that the error terms are smaller than those
retained, §(¢) is restricted such that ¢3/2 < §(¢) < 1.

For the final result mutiply (A1.1.6) by ¢!/ and use the definition of € to get

the asymptotic expansion

po(0) ~ Dot — Llogao — L —LJ + O(6™**) o — oo.
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APPENDIX 2

Asymptotic Expansion for Calculating Smallest Eigenvalue

In this appendix, some of the details for showing the behavior of the smallest
eigenvalue as a function of the electric field parameter are given. The calculation
shown is the evaluation of the constant K of (3.3.52). The constant K contains
an integral which depends on the small parameter v. Its integrand cannot be
expanded in a power series in vy and so asymptotic matching is used to evaluate
the integral.

The constant K is given by

1
K(e) = 77w V%, exp {—%/ (V(ys€) — /\o)l/zdy}
#o
with v(€) = }(m+2)e(™*?)/2, A first approximation to the solution of this equation
is

K(&) = (7v) Y%k pm exp {—5 /1 V2(y;e) dy} : (A2.1.1)

Yo

The error made is exponentially small in the quantity A,.

The change of variables defined by

€ dy
& %Y _ p-yzzy
v(e) dt (€7°0)

simplifies the analysis of the integral in (A2.1.1). This is just a scaling of the
velocity variable u with € = 4Y(™~1), Then the argument of the exponential in

(A2.1.1) becomes
1/2

e ? /tl (ezv(e_lt)D"l(e_lt)> dt (A2.1.2)
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with the limits of integration being to = eco + O(€™) and t; = 1 — aje. These
limits follow from §3.3 where they were derived. The potential V (¢~t) cannot be
expanded uniformly in its argument due to the singular nature of the perturbation.
Near the point t, the argument e 't can no longer be considered to be large.
Because of this the integral is split in two at some intermediate point é(e) which
vanishes as ¢ — 0. The point §(¢) is such that € < 6(¢) < 1. Thus (A2.1.2)
becomes
5, 1/2 t . 1/2
6_2/ (62V(e‘lt)D‘1(e_1t)> dt—f—e_z/ (ezV(e_lt)D“l(e_lt)) dt. (A2.1.3)
to 5
Asymptotic matching between these two integrals will be used to remove any
dependence on the matching parameter 6(¢).
The second of these integrals will be considered first. As the argument of V
and D! are large on the interval [6,¢;] for some range of §(¢), the integrand can be
expanded using the asymptotics of V' (u) and D(u). From (3.3.8), the asymptotic

expansion of D(u), and (3.2.17), the definition of V (u), one gets
eV (e71) D7 (e M) ~ t3(1 — t™ 1) + 2ayet™(1 — t™1)

+e¥ (m -1+ alt™ ' + (2a; — 3a2)t™ (1 - t™ 1) + O(€)

as €71t — oo. The square root of this is then taken and a power series in € results

which is

ty . 1/2 £y t
/ (ezV(E_lt)D"l(e'lt)> dt~/ t(1—t™1) dt—i—ale/ t™ 1 dt
§ 5 §

21 -1 ty 1 m—2
+-€ ((az - af)/‘s t™ 2 dt + :n-—z—-— (Z + ‘f:"t—m) dt) + 0(63), (A2.1.4)

)

all of which are simple integrals. In the first integral let

/;lt(l—t"“l)dt :N{/Ol—/oé—/tll}m—tm“‘)dt
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and then evaluation of the integrals in (A2.1.4) gives

t: . 1/2
/5 (ezV(e_lt)D‘l(e"lt)> dt ~ 525y — 162 + “e— et loge — 2=le?log 6
+0(e?) + O(6™F) + O(€%6) + O(e?6™1). (A2.1.5)

To evaluate the first integral in (A2.1.3) asymptotically for small €, let w =

¢~ 1t. Then the integral becomes

/ g (7o) ta=e / " (VD) dw. (4216

The integrand has to be expanded near ¢, in the t coordinates or ¢y in the w
coordinates. In this domain the perturbation part of V(w) is of O(«) or in terms

of €, O(e™~1/2), To evaluate (A2.1.6) define the function

I(z) = / (7 (w) D ()~ V2dw

where £ = 6/¢ > 1. Then an asymptotic expansion for I'(z) for £ — oo can be

found by using the properties of V(w) and D(w) from (3.2.17) and (3.3.8). This
gives

I'z) ~z+ Ym - 1)z7!' + O(z7%) + O(elm-1)/2) T — oo.
On integration and using z = §/¢ this becomes
I(z) ~ 2 + Y(m — 1) log 67 + O(e6 1) + O(elm-112), (A2.1.7)
When (A2.1.5) is added to €* times (A2.1.7), the result is that

t . 1/2
/t <52V(e'1t)D‘1(e'1t)) dt ~ 2t e — Zelloge

2(m+1)

+0(€2) + O(e26) + O(e6™ 1) + O(2671) + 0(6™+Y)
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for 6 — 0" and €¢/6 — 0*. It can be noted that the log é and 6 terms cancelled.
To ensure that the error terms are smaller than those retained, 6(¢) must be such
that € < 6 < €'/2.

The constant K is then given by

K(e) ~ 77w Y2k,e™ % exp {— mel =2 i‘"lte“l}

for e —» 0.
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APPENDIX 3

Lifshitz and Pitaevskii Calculation Of Runaway Rate

It is instructive to consider the following approach to finding the runaway
current rate. The calculation is due to E. M. Lifshitz and L. P. Pitaevskii and
appears in [19].

The assumption made in the calculation is that there is a steady-state solution.

of

In the Fokker-Planck equation (3.2.1), 57 is set equal to zero. The resulting

equation
i d df . .
is then solved. This assumption implies j is constant for all time, but we know

that is not the case for very large time. Solving (A3.1.1) gives

flu) = wl(u) (cl /Ou D Y (v)w(v) dv + c2> (A3.1.2)

with
u
w(u) = exp <u2 - 2'7/ D™ (v) dv) .
0

These two solutions are divergent for large u due to the presence of the F(u) term.
The constant value of j is —¢;. Without loss of generality we take f (0) = 1 since
the solution w™*(u) corresponds to zero current. This implies ¢; = 1.

The constant c; is determined by requiring that the expressions in the paren-

theses in (A3.1.2) vanish to leading order for u — oco. Therefore,

= /O°° D™ (u)w(u) du. (A3.1.3)
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Equation (A3.1.2) still will be non-integrable on [0,00) since this choice of ¢;
removes only part of the large u behavior. This approach is inconsistent since
it is not possible for any choice of constants to make this steady state solution
integrable.

A simple saddle point calculation for (A3.1.3) is done for v — 0. The saddle

point occurs at u = y~1/(m-1)

which is the same as where the minimum point of
the potential occurs in the calculations of Chapter 3. The resulting calculation

gives
m-—1

. -1 -1,.-2 -1
j o~ - A™/(m=1) exp ~moly /(m—1)
This gives the identical power and exponential factor as in the calculation of

Chapter 3 for the one-dimensional problem.
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