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ABSTRACT 

The synthesis of quaternary stereocenters has been a longstanding challenge to 

organic chemists.  These motifs are of paramount importance in the synthesis of natural 

products and other biologically active molecules.  The Stoltz group has pursued the 

asymmetric decarboxylative allylic alkylation reaction using the Pd(PHOX) catalytic 

system as a methodology to this end for over two decades.  More recently, the lactam 

substrate class has been found to proceed with exceptional enantiomeric excess as 

compared to their carbocyclic counterparts.  Herein, we describe a body of work 

furthering the study of this reaction.  We first sought to elucidate the origin of the 

increased selectivity seen in lactams by investigation of novel carbocyclic substrates.  

These studies culminated in the discovery of a novel substrate class, enaminones, which 

match the enantioselectivity of the lactam substrates and have the highest 

enantioselectivity seen in general carbocyclic substrates found with our catalytic system 

to date. 

Applying synthetic methods for the synthesis of quaternary stereocenters of linear 

compounds further adds to the complexity and challenge, due to the lack of rigidity in 

most acyclic systems.  We disclose a development for the formation of de novo 

quaternary stereocenters in acyclic systems applying C2-symmetric biphosphine ligands 

in the palladium-catalyzed decarboxylative allylic alkylation reaction of amide enolates 

with well-defined olefin stereochemistry.  This methodology allowed us to access a 

variety of acyclic compounds bearing quaternary stereocenters with good selectivity. 
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CHAPTER 1

Expanding Insight into the Asymmetric Palladium-Catalyzed

Allylic Alkylation of N-Heterocyclic Molecules and Cyclic Ketones†

1.1 INTRODUCTION AND BACKGROUND

The asymmetric construction of quaternary stereocenters is a topic of great

interest in the organic chemistry community.  Among the available methods that afford

this motif,1 palladium-catalyzed decarboxylative allylic alkylation2,3 has proven

particularly effective and, over the last decade, our group has pursued this strategy

employing chiral phosphinooxazoline (PHOX) ligands.4,5  Our initial efforts in this area

led to the preparation of enantioenriched !-quaternary ketones (e.g., 2a) in good yields

and enantioselectivities using (S)-t-BuPHOX (3)5a–b as a chiral ligand (Scheme 1.1A).6

Since these early results, we have considerably expanded the scope,7 demonstrated

multiple applications,8 and performed mechanistic investigations9 of this powerful

† This research was performed in collaboration with Drs. Nathan Bennett, Jimin Kim, Wen-Bo Liu 
Alexander N. Marziale, Douglas C. Behenna and Scott C. Virgil and has been published.  See: Bennett, N. 
B.‡; Duquette, D. C.‡; Kim, J.; Liu, W.-B.; Marziale, A. N.; Behenna, D. C.; Virgil, S. C.; Stoltz, B. M. 
Chem.—Eur. J. 2013, 19, 4414–4418. ‡N.B.B. and D.C.D contributed equally to this article.
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transformation.  Recently, we discovered that the allylic alkylation of lactams (4a to 5a)

and imides (6a  to 7a) with (S) - (CF3)3-t-BuPHOX (8)5c consistently proceeds with

enantioselectivities substantially higher than any other substrate class previously

examined in this system (Scheme 1.1B and C).10 This observation prompted us to

investigate which characteristics distinguish these molecules as superior alkylation

substrates.  The basic distinctions between these ketone and N-heterocyclic molecules are

the deviation in electronic nature of the enolate and the identity of the !'-functionality

(i.e., the group flanking the carbonyl at the site opposite of alkylation).  Thus, we have

designed several new alkylation substrates to examine the relative contribution of each

effect.  We have found that the exceptional enantioselectivities observed in the

lactam/imide series are likely not a result of a purely electronic effect, but a combination

of stereoelectronic and steric factors associated with the ! '-substituent.  To provide a

more complete perspective on allylic alkylation selectivity, this chapter also discusses

related research efforts performed by other groups.
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Scheme 1.1.  Comparison of allylic alkylation of ketones, lactams, and imides.
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1.1.1 Pd-Catalyzed Asymmetric Allylic Alkylation Background

Our entry into asymmetric allylic alkylation methodology began in 2004, when

we reported the preparation of !-quaternary cyclic ketones from allyl enol carbonates (9)

and silyl enol ethers (10).6a  Twenty years prior, Tsuji performed the regioselective

allylation of these and other unstabilized enolate precursors under essentially neutral

conditions with Pd(0) catalysts (Scheme 1.2).11  Inspired by Tsuji’s approach, we

screened a series of chiral P,P-, P,O-, and P,N-ligands in the allylic alkylation of allyl

enol carbonate 9a with Pd2(dba)3 as a Pd(0) source.  Gratifyingly, P,N-ligands generate

the desired enantioenriched ketone product in good yield and ee, with (S)-t-BuPHOX (3)

providing the greatest enhancement in selectivity (Scheme 1.3).  Silyl enol ethers (10)
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necessitate the addition of a fluoride source and allyl carbonate, but provide similar

results.6a  We later found that racemic "-ketoesters (1) are also excellent substrates under

the standard enol carbonate conditions.  Notably, "-ketoesters are easy to prepare, are

often more stable than the corresponding allyl enol carbonates, and avoid regioselectivity

issues in enolate formation with ! ,"-unsaturated substrates.  Following our initial

publication, Trost disclosed allylic alkylation conditions for allyl enol carbonates with

their C2-symmetric P,P-ligands (e.g., (R,R)-12, Scheme 1.3).2a,12 These initial publications

by Stoltz and Trost represent the first examples of the regioselective and enantioselective

alkylation of ketones with multiple acidic sites.  Although not discussed in this chapter,

Hayashi,13 Ito,14 Trost,2a,15 and Hou and Dai16 have also performed asymmetric alkylation

of ketones, however, their approaches require the substrate to possess an occluded !'-

position (i.e., one deprotonation site) or a stabilizing !-group (i.e., favored deprotonation

site).

Scheme 1.2.  Various enolate precursors investigated in the Tsuji reaction.

10a

OAc
O O

O

OTMSO

O

O

Pd(0)
Bu3SnOMe

Pd(0)

–CO2

Pd(0)

–CO2

1a

9a
11a

O

+ PdIILn

, Pd(0), F—RO

O

O

O

2a

allylation
OR

O

O

–CO2

–CO2
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Scheme 1.3.  Pd-catalyzed asymmetric allylic alkylations performed by Stoltz and Trost.

O O

O

O

O

O

9a

1a

10a

OTMS

Pd2(dba)3 (2.5 mol %)
(S)-3 (6.25 mol %)

THF, 25 °C

90% yield, 89% ee

Pd2(dba)3 (2.5 mol %)
(S)-3 (6.25 mol %)

diallyl carbonate, TBAT

THF, 25 °C

95% yield, 87% ee

Pd2(dba)3 (2.5 mol %)
(S)-3 (6.25 mol %)

THF, 25 °C

89% yield, 88% ee

(S)

O

2a

!-quaternary

ketones

O O

O

9a

Pd2(dba)3 (2.5 mol %)
(R,R)-12 (5.5 mol %)

toluene, 23 °C

88% yield, 85% ee (R)-2a

H
N

H
N

O
O

PPh2

Ph2P

(R,R)-12

Ph2P N

O

t-Bu

(S)-t-BuPHOX

3

Stoltz

Trost

As part of our efforts to expand the reaction scope, we explored nitrogen-

containing substrates including lactams.10  Early efforts indicated the N-substituent plays

a significant role in conversion and enantioselectivity.  Notably, electron-rich lactams (N-

group = Me or Bn) exhibit little to no conversion to the desired products and, as such, are

poor alkylation substrates.  We consequently prepared a variety of lactams with electron-

withdrawing functionality (4a–h) and screened these molecules against two electronically

differentiated chiral ligands, (S)-3 and (S)-8, and four solvents of varying polarity:

tetrahydrofuran (THF), tert-butyl methyl ether (TBME), toluene, and 2:1 hexane–toluene

(Table 1.1).  In general, higher enantioselectivities are observed in less polar solvents

with (S)-8 as a ligand.  Among the N-substituent, benzoyl is optimal and provides nearly

perfect selectivity.  The transformation is also tolerant of various !-groups and ring sizes

and additionally provides high ee for cyclic imides.  By comparison, !-quaternary

ketones are formed with approximately 10% lower ee, prompting us to question what

characteristics distinguish lactams and imides as better substrates.
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Table 1.1.  Lactam allylic alkylation screen.a

Ph2P N

O

t-Bu

(4-CF3C6H4)2P N

O

t-Bu

CF3

! (S)-t-BuPHOX ! (S)-(CF3)3-t-BuPHOX

3 8

N

O

O

O
Pd2(dba)3 (5 mol %)

(S)-t-BuPHOX (3) or 
(S)-(CF3)3-t-BuPHOX (8)

(12.5 mol %)

solvent (0.033 M), 40 oC

N

O

4 5

R R

THF TBME Toluene 2:1 Hex–Tol

5d

5f

5h

5g

42
95

86
99

83
99

96
99

57
70

75
72

74
73

77
71

36
80

75
84

75
87

72
83

4
35

26
57

7
37

31
44

46
79

65
85

38
87

45
85

Enantiomeric Excess (% ee)b

5a
52
96

88
99

86
99

96
99

product 5

5c
60
97

91
98

87
99

97
99

5e

5b
20
75

64
91

62
90

83
91

ligand

3
8

3
8

3
8

3
8

3
8

3
8

3
8

3
8

entry

7
8

9
10

11
12

15
16

13
14

3
4

5
6

1
2

4d

4f

4h

4g

4a

substrate 4

4c

4e

4b

Cbz

Tsc

Fmoc

Bz

R

4-MeO-Bz

Bocc

Ac

a Conditions: lactam 4 (1.0 equiv), Pd2(dba)3 (5 mol %), and (S)-t-BuPHOX (3) or (S)-(CF3)3-t-BuPHOX

(8) (12.5 mol %) in solvent (0.033 M) at 40 °C. b!Determined by GC, HPLC, or SFC analysis. Red = with 

(S)-(3) as ligand and blue = with (S)-(8) as ligand. c Reaction performed with Pd2(pmdba)3 at 50 °C. d

Reaction performed at 60 °C.

4-F-Bz

d d d
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1.2 RESULTS AND DISCUSSION

1.2.1 Electronically Variable Substrates

Initially, we hypothesized that the divergence in enolate electronics between the

substrate classes depicted in Scheme 1.1 could be the major determining factor of the

observed enantioselectivities.  Insight from our previous work9,10 suggested that

selectivity in the alkylation of electron-poor and -rich molecules could be considerably

different.  To investigate the electronic effect of the nitrogen atom on alkylation

selectivity without the influence of !'-functionality, we examined variably functionalized

enaminones (16, i.e., vinylogous amides)17 as electronic analogues of lactams (4, Figure

1.1).  We were particularly drawn to this new class of compounds as our past experience

with vinylogous esters (14)18 and thioesters (15)18b,19 would provide a foundation and

comparison point.20

Figure 1.1. Ketone and lactam enantioselectivity divergence as inspiration for investigation of enolate

electronics using vinylogous systems.

O

O

O

N
R

Bn

enaminones (16)

O

O

O

ketones (1)

N

O

O

O

lactams (4)

role of nitrogen in 
enolate electronics

R

O

O

O

enones (13, R = H)
vinylogous esters (14, R = OR')

and thioesters (15, R = SR')

R
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To this end, we prepared a number of racemic enaminone alkylation precursors 

from vinylogous ester 14a (Scheme 1.4A).  Treatment of vinylogous ester 14a with 

hydrochloric acid in THF selectively removes the vinylogous group without hydrolyzing 

the carboxylic ester, as reported by Desmaële.21  The resulting dione (17) can be 

condensed with an amine under dehydrative conditions to generate enaminones 16a–c, 

which bear electron-donating groups.22,23,24  To prepare substrates with electron-

withdrawing functionality, we explored derivatization of enaminone 16c to acetyl (16d), 

benzoyl (16e), tosyl (16g), and Boc (16f) accessorized products (Scheme 1.4B).  The 

acylation of secondary enaminones using an amine base has previously been 

reported;23a,25 however, exposure of intermediate 16c to diisopropylethylamine (i-Pr2NEt) 

and benzoyl chloride surprisingly produces diene 18 in 90% yield.  We also examined 

other amine bases (e.g., pyridine and Et3N), reagent stoichiometry, and the order of 

reagent addition, but in each case isolated a mixture of over acylated product and 

desired enaminone 16e.26  Similar results were obtained with acetyl chloride.  The use of 

sodium hydride27 eliminates over acylation, but provides enaminone 16e with insufficient 

purity. Nevertheless, these conditions are amenable to the synthesis of tosyl enaminone 

16g, albeit in low yield.28  The acylated and benzoylated enaminones (16d and e) can 

ultimately be obtained from iodoenone 1929 through a Buchwald coupling30 and 

alkylation sequence (Scheme 1.4C).  Boc functionalized enaminone 16f is prepared 

without complication following the precedent of Hiemstra (Scheme 1.4B).31
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Scheme 1.4.  Preparation of enaminone alkylation precursors.

R

N
Bn

O

i-BuO

O

O

HCl (1 M)

THF, 23 °C

78% yield14a 17

O

R

R1NHR2

p-TsOH•H2O

toluene, reflux
Dean–Stark

70% yield16a (R = Me)

31% yield16b (R = Ph)

92% yield16c (R = H)

EDG
substrates

O

O O

O

O

O

O

N

O

O

Bn

H

O

N
Bn

O

O

Ts

45% yield

i. NaH
 THF, 23 °C

ii. TsCl
16c

16g

O

N
Bn

O

O

Boc

90% yield

Boc2O, DMAP

CH2Cl2
0!23 °C

16f

BzO

N
Bn

Bz

90% yield

i. i-Pr2NEt
CH2Cl2, 0 °C

ii. BzCl
0!23 °C

18

O

O

O

N
Bn

Bz

O

O

EWG
substrates

16c
(R = H)

A.

B.

I I

O O

1. LDA, THF
–78 °C; then

18% yield
2 steps

19 20

CuI (10 mol %)
RNH2, Cs2CO3

H
N

N
H

O

N
H

86% yield16h (R = Ac)

70% yield16i (R = Bz)

NaH
DMF, 0 °C

then BnBr
0!23 °C

O

N
Bn

R

71% yield16d (R = Ac)

60% yield16e (R = Bz)

(20 mol%)

H2O/THF, 60 °C

O

O

O

O

O

O

C.

16e not isolated

NC O

O

2. NaH, MeI
THF, 23 °C

With a number of enaminones in hand, we screened a series of palladium-

catalyzed decarboxylative allylic alkylation conditions (Table 1.2).  Enaminone

substrates that possess a hydrogen on the nitrogen (e.g., 16c and i) generate a number of

alkylation products with a Pd(PHOX) system and were consequently excluded from this

study.  The enaminone screen was performed in a manner similar to the previous

investigation of lactams,10,32 employing the ligands (S)-3 and (S)-8 and the same four

solvents: tetrahydrofuran (THF), tert-butyl methyl ether (TBME), toluene, and 2:1

hexane–toluene.
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Table 1.2.  Enaminone allylic alkylation screen.a

Ph2P N

O

t-Bu

(4-CF3C6H4)2P N

O

t-Bu

CF3

! (S)-t-BuPHOX ! (S)-(CF3)3-t-BuPHOX

3 8

O

O

O
Pd2(dba)3 (5 mol %)

(S)-t-BuPHOX (3) or 

(S)-(CF3)3-t-BuPHOX (8)
(12.5 mol %)

solvent (0.033 M), 40 oC
R

O

R

13, 14, or 16 21, 22, or 23

THF TBME Toluene 2:1 Hex–Tol

23b

23e

23g

23f

81
76

87
74

85
82

83
83

89
83

90
85

88
88

88
86

86
80

87
83

88
82

87
83

84
82

83
83

83
83

82
83

87
84

86
84

87
81

82
83

Enantiomeric Excess (% ee)b

22a
85
86

85
86

86
86

87
88

product

23a
61
79

60
78

55
84

52
83

23d

21a
87
85

88
86

87
88

87
85

ligand

3
8

3
8

3
8

3
8

3
8

3
8

3
8

3
8

entry

7
8

9
10

11
12

15
16

13
14

3
4

5
6

1
2

16b

16e

16g

16f

14a

substrate

16a

16d

13a

NPh(Bn)

NBz(Bn)

NTs(Bn)

NBoc(Bn)

Oi-Bu

R

NMe(Bn)

NAc(Bn)

H

a Conditions: enone 13a, vinylogous ester 14a, or enaminone 16a, b, d–g (1.0 equiv), Pd2(dba)3 (5 mol

%), and (S)-t-BuPHOX (3) or (S)-(CF3)3-t-BuPHOX (8) (12.5 mol %) in solvent (0.033 M) at 40 °C.
b
!Determined by GC, HPLC, or SFC analysis. Red = with (S)-(3) as ligand and blue = with (S)-(8) as ligand.
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We made several observations upon analysis of the ligand, solvent, and substrate

trends that distinguished this substrate class considerably from the previously examined

lactams.  First, enaminones are obtained in modestly better selectivity with (S)-3 as a

ligand in most solvents (entries 7–16), with the exception of methyl enaminone 23a,

which significantly favors (S)-8 (entries 5–6).  Second, no significant solvent trend is

observed for enaminones overall.  Third, electron-rich enaminones (i.e., 16a and b)

display decreased enantioselectivities and also require extended reaction times for

completion,33 while enaminones bearing electron-withdrawing substituents (23d–g) are

all generated in 80–90% ee.  By comparison, lactam substrates perform with much higher

enantioselectivity with ligand (S)-8 in non-polar solvents.10,34  Furthermore, the modest

distinction in enantioselectivity for the electron-withdrawing enaminones sharply

contrasts with the corresponding lactam series, where the N-substituent plays a

considerable role, producing significant variation in selectivity.10,35  These differences

suggest that the N-functional group does not contribute to enantioselectivity solely

through a perturbation of enolate electronics.

Beyond these considerations, the most striking feature of the screen is that

enantioselectivities observed for enaminones 23d–g are approximately equivalent to

results obtained for enone 21a,36 vinylogous ester 22a, previously investigated

vinylogous molecules (Table 1.3),18b,19 and even more general ketone substrates.  Of all

the enaminones screened, acetyl variant 23d provides the highest selectivity at 90% ee in

TBME, which is only marginally better than the optimal values for the related vinylogous

systems.  The modest differences between these vinylogous molecules (i.e., 21–23)
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further suggest that the electronic nature of the enolate is not likely the predominant

factor in providing high enantioselectivity for lactams and imides.

Table 1.3.  Alkylation of other vinylogous esters and thioesters.a

R1

O

R2

O

O

n

R1

O

R2
n

yield (%) ee (%)bn

1 86 75

solvent

toluene

entry R1

Me

product

22b

R2

Oi-Bu

substrate

14b1

a Conditions: vinylogous ester 14/24 or vinylogous thioester 15/25, Pd2(pmdba)3 (2.5 mol %), and (S)-t-BuPHOX (3) 

(6.25 mol %) in solvent at temp. b!Determined by HPLC or SFC analysis. c !-Ketoester 15a recovered in 26% yield.

1 85 92tolueneMe 26aSPh15a2

Pd2(pmdba)3 (2.5 mol %)

(S)-t-BuPHOX (3)
(6.25 mol %)

solvent, temp

14/24 and 15/25 22/27 and 26/28

temp (°C)

80

50

1 61c 92benzeneMe 26aSPh15a3 50

1 88 92Me 26aSPh15a4 50THF

1 88 92Me 26aSPh15a5 501,4-dioxane

2 93 8627aOi-Bu24a6

2 86 8928aSPh25a7

30

30

Et2O

Et2O

H

H

ref.

19a

19a

19a

19a

19a

18b

18b

While pursuing enaminones, we also briefly examined the related 2,3-

dihydropyridin-4-ones, which possess the nitrogen within the ring (Table 1.4).  Acylation

and alkylation (or vice versa) of known dihydropyridinones37,38,39 allows preparation of

the reaction precursors 29a–d.  Under our standard palladium-catalyzed conditions, N-

carboxybenzyl substituted product 30a is formed with enantioselectivities similar to

electronically related enaminones.  Electron-rich 2,3-dihydropyridin-4-ones 30b and c are

curiously also generated in the same range.  Even 2,3-dihydropyridin-4-one 30d is

produced in excellent enantioselectivity, despite the highly electron-rich nature of the
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enolate.  These results again allude to other factors beyond enolate electronics that direct

alkylation selectivity.

Table 1.4.  Allylic alkylation of 2,3-dihydropyridin-4-ones.a

N

O
R1

R2

30

Pd2(dba)3 (5 mol %)

(S)-t-BuPHOX (3) or 
(S)-(CF3)3-t-BuPHOX (8)

(12.5 mol %)

toluene, 40 °CN

O
R1

R2

N

O

CO2allyl

MeO

MeO

O

O

29

R3 R3

yield (%) ee (%)bR1

Me
80
98

86
84

ligand

3
8

entry R2

Cbz

product 30

30a

Me
82
94

88
86

3
8Bn 30b

i-Bu
85
81

84
88

3
8Bn 30c

81 9187 30d

R3

H

H

H

substrate 29

29a

29b

29c

29d

1
2

3
4

5
6

a Conditions: 2,3-dihydropyridin-4-ones 29, Pd2(dba)3 (5 mol %), and (S)-t-BuPHOX (3) or (S)-(CF3)3-t-

BuPHOX (8) (12.5 mol %) in toluene (0.033 M) at 40 °C. b!Determined by HPLC or SFC analysis. Red

= with (S)-3 as ligand and blue = with (S)-8 as ligand.

1.2.1.1 Other Reports of Allylic Alkylation on Vinylogous Molecules

Trost has also reported the palladium-catalyzed allylic alkylation of vinylogous

esters and thioesters employing their C2-symmetric P,P-ligands.  In particular, their 2006

study prepares a range of related !-quaternary vinylogous products using (R,R)-12.20a

This effort first focused on the transformation of vinylogous esters into allyl enol

carbonate alkylation precursors.  However, enolate regioselectivity (!  vs. #

deprotonation) is poor for a number of vinylogous alkoxy groups, except benzyl (32b),
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although this carbonate product is formed in low yield (Scheme 1.5A).  Several "-

ketoesters were alternatively examined, but lower conversions were observed with these

substrates than with enol carbonate 32b (Scheme 1.5B).  The best results were obtained

with phenyl and Boc substituted "-ketoesters (14e and f), which have decreased electron-

donating contribution from the vinylogous oxygen.  Trost consequently investigated the

analogous thioesters, reasoning that sulfur would have less orbital overlap.  Vinylogous

thioester 14b performs with good yield and perfect enantioselectivity (Scheme 1.6), and a

variety of other thioesters are also produced with good to excellent ee.  Trost has also

examined exocyclic vinylogous esters and carried the enantioenriched products onto the

natural products hamigeran B20b,c and allocyathin B2.20d

Scheme 1.5.  Asymmetric allylic alkylation of vinylogous esters performed by Trost.

Pd2(dba)3•CHCl3
(2.5 mol %)

(R,R)-12 (6 mol %)

THF or 1,4-dioxane

23 °C

yield (%)b ee (%)cR1

Et 26 94

entry product 14

14c

Bn 51 9114b

t-Bu 29 9714d

substrate 31

31c

31b

31d

2

1

3

a Conditions: vinylogous ester 16, Pd2(dba)3 (5 mol %), and (R,R)-12 (6 mol %) in solvent (0.1 M) at 23 

°C. b!Isolated yield. c Determined by HPLC analysis. d 1,4-dioxane as solvent. e THF as solvent.

yield (%)b

85

87

85

product 22

22c

22b

22d

Ph 70 9614e31e4 91 22e

Boc 66 9414f31f5 32 22f

d

e

d

d

e

14
RO

O

RO

O

O

O

31

LDA 
THF, –78 °C

then allyl 
chloroformate RO

O

22

Pd2(dba)3•CHCl3
(2.5 mol %)

(R,R)-12 (6 mol %)

THF or 1,4-dioxane

23 °C

32b
BnO

O

BnO

O

31b

LDA, TMEDA
THF, –78 °C

then allyl 
chloroformate

BnO

O

22b

O

O

87% yield, 85% ee

A.

B.

!

"

31% yield
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Scheme 1.6.  Asymmetric allylic alkylation of vinylogous thioesters performed by Trost.

Pd2(dba)3•CHCl3
(2.5 mol %)

(R,R)-12 (6 mol %)

1,4-dioxane, 23 °C

14b
PhS

O

PhS

O

O

O

33

LDA, toluene
–78 °C

then allyl 
chloroformate

–78!23 °C

PhS

O

22b
14 other examples

75% yield, 100% ee

Concurrent with our efforts on enaminones, Lupton40 and Shao41 independently

published sequential reports on the Pd-catalyzed allylic alkylation of two other

vinylogous amide classes, carbazolones (33) and indolones (34) (Scheme 1.7).  The

reaction parameters between the two papers are almost identical (Lupton: 5 mol% ligand,

50 °C; Shao: 6.25 mol % ligand, 70 °C)42 and many of the substrates are also related.  In

these efforts, Lupton selects a Boc N-protecting group, while Shao employs a benzyl

substituent.  The enantioselectivities of the methyl/allyl !-quaternary carbazolones (35a

and b) and indolones (36a) are comparable to our results with enaminones that possess

electron-withdrawing functionality.  Even the N-benzyl carbazolones are produced in

good to excellent ee, unlike the enaminones that bear electron-rich groups (23a and b).

In addition to screening several alkylation precursors, both laboratories advance their

enriched cyanide alkylation products (35g and h) onto (+)-kopsihainanine A (37) through

total and formal synthetic routes, and Shao also completes the alkaloid (–)-

aspidospermidine (38, Scheme 1.8).
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Scheme 1.7.  Alkylation of carbazolone (Lupton, R1 = Boc; Shao, R1 = Bn) and indolone (Lupton)

substrates reported in 2013.

N

R1

O
R2

O

O

carbazolones (33)
and indolones (34)

Pd2(dba)3 (2.5 mol %)

(S)-t-BuPHOX (3) (5–6.25 mol %)

toluene, temp N

R1

O
R2

carbazolones (35)
and indolones (36)

N

R1

O

CN

N

R1

O

CO2Et

N

R1

O

N

R1

O

35a (R1 = Boc)

72% yield, 83% ee

35b (R1 = Bn)

82% yield, 88% ee

CO2Et

N

Boc

O

CN

36f
98% yield, 86% ee

N

Boc

O

CO2Et

36e
73% yield, 85% ee

N

Boc

O

36d
97% yield, 83% ee

N

Boc

O
R2

36a–c

R2 = Me

R2 = Et

R2 = Bn

73% yield, 80% ee

69% yield, 87% ee

79% yield, 82% ee

CO2Et

R1 = Boc: 5 mol % (S)-3, 50 °C

R1 = Bn: 6.25 mol % (S)-3, 70 °C

35c (R1 = Boc)

80% yield, 87% ee

35d (R1 = Bn)

83% yield, 92% ee

35g (R1 = Boc)

90% yield, 94% ee

35h (R1 = Bn)

93% yield, 92% ee

35e (R1 = Boc)

87% yield, 91% ee

35f (R1 = Bn)

80% yield, 85% ee

Scheme 1.8.  Derivatization of cyanides 35g and h to alkaloid natural products.

N

R1

O

CN

35g (R1 = Boc)

35h (R1 = Bn)

N
H

N

H

(–)-aspidospermidine (38)

Shao (R1 = Bn)

10 steps

Lupton (R1 = Boc)

3 steps to 

formal synthesis

Shao (R1 = Bn)

7 steps

N
H

N

(+)-kopsihainanine A (37)

HO

O

H
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1.2.2 !'-Functionalized Substrates

Having investigated the impact of enolate electronics, we diverted our efforts to

study the influence of ! '-functionality on alkylation selectivity (Scheme 1.9).  Our

previous lactam screen identified the benzoyl moiety as the optimal protecting group,10

providing high to nearly perfect enantioselectivities for a variety of lactams (e.g., 5a).

Interestingly, both electron-rich and electron-poor benzoyl lactams (5b–d) as well as

naphthoyl lactams (5e and f) display excellent ee, whereas acetyl lactams (e.g., 5g and h)

provide lower selectivity.  This prompted us to question whether these results are due to a

hybridization or steric effect.  Consequently, we synthesized the bulky sp3 hybridized

cyclohexoyl lactam 4i  and pivaloyl lactam 4j , which proceed in improved

enantioselectivities compared to analogous acetyl lactam 4g, supporting a steric effect.43

Scheme 1.9.  Impact of various sp3 and sp2 acyl groups on allylic alkylation enantioselectivity for

lactams.

N

O

N

OO
5a (R = H)
85% yield

99% ee

5f (2-naphthyl)
82% yield

97% ee

N

O O

O

Pd2(pmdba)3 (5 mol %)

(S)-(CF3)3-t-BuPHOX (8)
(12.5 mol %)

toluene, 40 °C

N

O

N

OO

5i
63% yield

95% ee

N

O

5j
46% yield

96% ee

N

O
R

5g (R = Me)

47% yield

91% ee

4 5

O O

5e (1-naphthyl)
86% yield

99% ee

A.  sp2 hybridized

B.  sp3 hybridized

R

O

R

5c (R = F)
89% yield

99% ee

5b (R = OMe)
93% yield

99% ee

5d (R = Ph)
85% yield

99% ee

O O

5h (R = Bn)
90% yield

88% ee
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In conjunction with our investigation of the asymmetric allylic alkylation of

lactams, we found that N-benzoyl cyclic imides 7a and b are furnished in excellent ee

(Scheme 1.10).  However, we observed that formation of N-methyl imide 7c proceeds

with moderate enantioselectivity and is hampered by low reactivity.43  As this substrate

also generates an intermediate imido enolate (as do lactams 5a–j, Scheme 1.9), this result

further supports our conclusion that enolate electronics do not play a major role in the

enhanced enantioselectivities observed for N-benzoyl lactams.  As such, we examined the

influence of alternate N-substituents in the context of the allylic alkylation with imides.

Scheme 1.10.  Allylic alkylation of cyclic imides.

N

O

O

Me
N

O

O

Bz
N

O

O

BnO

7c
32% yield

76% ee

7a
81% yield

94% ee

7d
99% yield

96% ee

N

O
Et

O

Bz

7b
86% yield

96% ee

N

O
Et

O

BnO

7e
80% yield

98% ee

N
R1

O
R2

O

O N
R1

O
R2

O O

Pd2(pmdba)3 (5 mol %)

(S)-(CF3)3-t-BuPHOX (8)
(12.5 mol %)

toluene, 40 °C

6 7

Gratifyingly, we identified N-benzyloxy imides as excellent substrates for this

methodology, generating imides 7d and e in yields and enantioselectivities comparable to

their N-benzoyl counterparts.  In conjunction with the results obtained for substituted N-

acyl lactams 5g–j, we reason that the nature of the !'-substituent leads to the observed

enhancements in enantioselectivity, though enolate electronics have been shown to

dramatically affect the reaction rate.
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We sought to further probe the ! '-group contribution without the influence of

nitrogen and consequently focused on a series of !'-functionalized enones, including

benzoyl enone 13b  (Scheme 1.11).  Previous research suggested enolization

regioselectivity issues may arise in acylating/alkylating enone 39 (! vs. #, path A),6b

prompting us to pursue approaches to enone 13b through retrosynthetic disconnection of

the benzoyl substituent (path B).  Unfortunately, attempts to acylate and oxidize "-

ketoester 1 a  proved unsuccessful.  Both lithium halogen exchange and

Nozaki–Hiyama–Kishi coupling on iodoenone 41 also failed to install the benzoyl group.

The synthesis of enone 13b is ultimately possible via a Baylis–Hillman44 reaction and

oxidation sequence (Scheme 1.11B).  A number of oxidants were examined in the latter

transformation, but only Dess–Martin periodinane (DMP) proved successful.  Benzoyl

enone 13b is very sensitive to alkene isomerization, and thus the addition of potassium

carbonate as a buffer and the use of triethylamine deactivated silica gel for purification

are necessary.  Although we were able to prepare enone 13b, stability issues make this

molecule a poor alkylation substrate and prohibit the isolation of the desired methyl/allyl

!-quaternary enone under our standard palladium-catalyzed conditions.
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Scheme 1.11.  Retrosynthetic approaches and successful route to benzoyl enone 13b.
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O
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b
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OO

Ph O

O
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very unstable

O

O

O

13a

OOH

Ph O

O

44
1:1 d.r.

TMPDA (43)
benzaldehyde

THF/H2O, 23 °C

N N

32% yield
63% recovered 13a

69% yield

DMP, K2CO3

CH2Cl2, 23 °C

Baylis-Hillman

B.

A.

Despite the complications with benzoyl enone 13b, we were able to synthesize

enones 13c and d and diosphenol ethers 45a and b under standard acylation/alkylation

conditions.  To examine the relative merit of the steric and stereoelectronic effects

associated with the ! '-substituent, we subjected these substrates to the palladium-

catalyzed alkylation parameters employed with lactams and imides (Scheme 1.12).  In

this transformation, enones 21c and d are formed in low enantioselectivity.  By contrast,

benzyl diosphenol ether 46a, which differs from 21d only in the substitution of oxygen

for a methylene group, is generated in 92% yield and 94% ee.  This suggests that purely

steric or $-stacking interactions are not the sole contributing factors to enantioselectivity.

Rather, electronic effects of the ! '-substituent exert an important influence on the

stereoselectivity of the reaction.  However, a certain amount of steric bulk appears critical
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in obtaining high enantioselectivity as methyl diosphenol ether 46b is produced in 85%

ee.  In comparison, analogous enone 21a, which bears no !'-functionality, proceeds under

the same conditions to afford enone 21a in 88% ee,36 with vinylogous amides and esters

also in the ~80–90% ee range (vide supra).  Overall, our studies on the role of the !'-

substituent have culminated in the discovery of substrate 45a, which proceeds with the

greatest enantioselectivity observed in a Pd(PHOX) catalyst system for a carbocyclic

substrate bearing an !-methyl and unsubstituted allyl moiety.

Scheme1.12.  Allylic alkylation of !'-functionalized enones and diosphenol ethers.

O
21a

78% yield
88% ee

O O

O

O
Pd2(dba)3 (5 mol %)

(S)-(CF3)3-t-BuPHOX (8)
(12.5 mol %)

toluene, 40 °C

enones (13)
diosphenol ethers (45)

enones (21)
diosphenol ethers (46)

O

RO

46a (R = Bn)
92% yield

94% ee

O

Ph

n

46b (R = Me)
80% yield

85% ee

21c (n = 1)
77% yield

53% ee

21d (n = 2)
50% yield

65% ee

1.3 CONCLUDING REMARKS

In summary, we have designed and evaluated a number of novel substrates to

probe the influence of enolate electronics and the role of !'-functionality on selectivity in

the palladium-catalyzed decarboxylative allylic alkylation.  Based on these results, we

reason that the high enantioselectivities observed with lactams and imides are a

consequence of both electronic and steric effects associated with !'-substituents, and that

enolate electronics alone contribute relatively little to the stereochemical outcome of the



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 22

reaction.  These results led to further investigations in our group to determine the nature

and origin of the effect of α'-substitution on this transformation and to use this insight

to improve and expand our methods as described in the following chapter.
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1.4 EXPERIMENTAL SECTION

1.1.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under

an argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried

by passage through an activated alumina column under argon.45  Acetone was used

directly from a Sigma-Aldrich ACS reagent grade bottle.  Brine solutions are saturated

aqueous solutions of sodium chloride.  Reagents were purchased from Sigma-Aldrich,

Acros Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.  (S)-t-

BuPHOX (3),
5ab

 (S)-(CF3)3-t-BuPHOX (8),
5c

 and allyl cyanoformate
46

 were prepared by

known methods.
  Reaction temperatures were controlled by an IKAmag temperature

modulator.  Reaction progress was monitored by thin-layer chromatography (TLC).  TLC

was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and

visualized by UV fluorescence quenching, p-anisaldehyde, or KMnO4 staining.  ICN

silica gel (particle size 0.032-0.0653 mm) was used for flash column chromatography.

Preparative HPLC purification was performed on an Agilent 1200 Series HPLC using an

Agilent Prep-SIL column (5 µm, 30 x 250 mm) at ambient temperature with a flow rate

of 50 mL/min.  Separation was monitored by UV (% = 254 nm) and fractions were

collected at the valleys between peaks.  1H NMR spectra were recorded on a Varian

Mercury 300 MHz or Varian Inova 500 MHz spectrometer and are reported relative to

residual CHCl3 (& 7.26 ppm) or benzene-d6 (& 7.16 ppm).  13C NMR spectra are recorded

on a Varian Mercury 300 MHz or Varian Inova 500 MHz spectrometer (75 or 125 MHz

respectively) and are reported relative to CDCl3 (&  77.16 ppm) or benzene-d6 (&  128.06
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ppm).  Variable temperature NMR experiments were performed on a Varian Inova 500

MHz spectrometer and are reported relative to residual DMSO (& 2.50 ppm).  Data for 1H

NMR are reported as follows: chemical shift (&  ppm) (multiplicity, coupling constant

(Hz), integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t =

triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, dm = doublet of multiplets,

br s = broad singlet, br d = broad doublet, app = apparent. Data for 13C are reported in

terms of chemical shifts (& ppm).  IR spectra were obtained by use of a Perkin Elmer

Spectrum BXII spectrometer using thin films deposited on NaCl plates and reported in

frequency of absorption (cm-1).  Optical rotations were measured with a Jasco P-2000

polarimeter operating on the sodium D-line (589 nm), using a 100 mm path-length cell

and are reported as: [!]D
T (concentration in g/100 mL, solvent, ee).  Analytical chiral

HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD, AD-

H, or AS) or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from

Daicel Chemical Industries, Ltd.  Analytical chiral SFC was performed with a JASCO

2000 series instrument or a Thar SFC utilizing Chiralpak (AD-H or AS-H) or Chiralcel

(OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm), or a Chiralpak IC column (4.6 mm

x 10 cm) obtained from Daicel Chemical Industries, Ltd.  High resolution mass spectra

(HRMS) were obtained from the Caltech Mass Spectral Facility (GC-EI+, EI+, or FAB+)

or Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray

ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or mixed

ionization mode (MM: ESI-APCI+).
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1.4.2 PREPARTIVE PROCEDURES

1.4.2.2 Preparation of Compounds Related to Enaminone Screen

1.4.2.2.1 Enaminone Allylic Alkylation Precursors

O

i-BuO

O

O O

O

O

O

HCl (1 M)

THF, 23 °C

78% yield14a 17

Dione 17.  Procedure adapted from report by Desmaële.21  A 100 mL round-bottom flask

equipped with a magnetic stir bar was charged with vinylogous ester 14a18c (3.08 g, 11.58

mmol, 1.00 equiv), THF (30 mL, 0.39 M), and aq HCl (1 M in H2O, 14.00 mL, 14.00

mmol, 1.21 equiv).  The reaction mixture was initially a suspension that developed into a

solution over time.  After 7 h of vigorous stirring at ambient temperature, the reaction

was diluted with EtOAc (30 mL) and transferred to a separatory funnel where the

aqueous layer was extracted seven times with EtOAc.  The combined organics (400 mL)

were dried over MgSO4, filtered, and concentrated under reduced pressure.  The crude oil

was purified by flash column chromatography (SiO2, 31 x 5 cm, 100%

hexanes'20%'50% EtOAc in hexanes) to afford dione 17 (1.89 g, 11.58 mmol, 78%

yield) as a pale yellow oil; Rf = 0.17 (30% EtOAc in hexanes); 1H NMR (500 MHz,

CDCl3) and 13C NMR (125 MHz, CDCl3) mixture of keto-enol tautomers, see spectra

section; IR (Neat Film NaCl) 3500–2500 (broad stretch), 3088, 2983, 2939, 2657, 2591,

1734, 1595, 1457, 1413, 1383, 1358, 1343, 1309, 1272, 1249, 1190, 1114, 986, 932, 853

cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C11H15O4 [M+H]
+: 211.0965, found

211.0966.
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O

O

O

O O

N

O

O

Bn

Me

BnHNMe, p-TsOH•H2O

toluene, reflux, Dean–Stark

70% yield17 16a

Enaminone 16a.  A 50 mL round-bottom flask containing a magnetic stir bar was

charged with dione 17 (465.4 mg, 2.21 mmol, 1.00 equiv), toluene (24 mL, 0.09 M),

benzylmethylamine (320 µL, 2.48 mmol, 1.12 equiv), and p-toluenesulfonic acid

monohydrate (42.3 mg, 0.22 mmol, 10 mol %).  The flask was equipped with a Dean-

–Stark trap and water condenser and was lowered into a preheated oil bath (135 °C).

After 2 h of refluxing, the solution was removed from the oil bath and allowed to cool to

room temperature.  The solution was quenched with a sat. Na2CO3 solution (20 mL) and

transferred to a separatory funnel where the aqueous layer was extracted four times with

CH2Cl2.  The combined organics (200 mL) were dried over MgSO4, filtered, and

concentrated under reduced pressure.  The crude oil was purified by flash column

chromatography (SiO2, 27 x 3 cm, 100% hexanes'20%'50%'60%'70% EtOAc in

hexanes) to afford enaminone 16a (484.8 mg, 1.55 mmol, 70% yield) as a yellow/orange

oil; Rf = 0.24 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.37–7.33 (m, 2H),

7.32–7.27 (m, 1H), 7.09 (d, J = 7.4 Hz, 2H), 5.93–5.83 (m, 1H), 5.29 (dq, J = 17.3, 1.5

Hz, 1H), 5.26 (s, 1H), 5.18 (dq, J = 10.5, 1.4 Hz, 1H), 4.66–4.56 (m, 2H), 4.51 (s, 2H),

2.96 (s, 3H), 2.74–2.63 (m, 1H), 2.56–2.45 (m, 2H), 1.95–1.84 (m, 1H), 1.43 (s, 3H); 13C

NMR (125 MHz, CDCl3) & 193.9, 173.7, 164.3, 132.2, 129.1, 127.8, 126.7, 118.0, 98.1,

65.6, 55.2, 51.1, 38.5, 32.6, 24.4, 21.0; IR (Neat Film NaCl) 3063, 3028, 2933, 2873,

1733, 1615, 1585, 1563, 1557, 1495, 1455, 1415, 1377, 1352, 1332, 1295, 1258, 1222,
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1203, 1174, 1113, 1028, 989, 929, 821, 735 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d

for C19H24NO3 [M+H]
+: 314.1751, found 314.1754.

O

O

O

O O

N

O

O

Bn

Ph

BnHNPh, p-TsOH•H2O

toluene, reflux, Dean–Stark

31% yield17 16b

Enaminone 16b. A 50 mL round-bottom flask containing a magnetic stir bar was

charged with dione 17 (500.3 mg, 2.38 mmol, 1.00 equiv), toluene (24 mL, 0.10 M),

benzylphenylamine (480.0 mg, 2.62 mmol, 1.10 equiv), and p-toluenesulfonic acid

monohydrate (45.6 mg, 0.24 mmol, 10 mol %).  The flask was equipped with a Dean-

–Stark trap and water condenser and was lowered into a preheated oil bath (135 °C).

After 8 h of refluxing, the solution was removed from the oil bath and allowed to cool to

room temperature.  The solution was quenched with a sat. Na2CO3 solution (20 mL) and

transferred to a separatory funnel where the aqueous layer was extracted four times with

CH2Cl2.  The combined organics (200 mL) were dried over MgSO4, filtered, and

concentrated under reduced pressure.  The crude oil was purified twice by flash column

chromatography (SiO2, 26 x 3 cm, 100% hexanes'10%'15%'20%'30%'40%

EtOAc in hexanes then  SiO2, 26.5 x 3 cm, 100% hexanes' 5%'10%'15%

'20%'30%'  50% EtOAc in hexanes) to afford enaminone 16b (276.6 mg, 0.74

mmol, 31% yield) as a yellow oil; Rf = 0.50 (50% EtOAc in hexanes); 1H NMR (500

MHz, CDCl3) & 7.38–7.33 (m, 2H), 7.33–7.24 (m, 4H), 7.21–7.18 (m, 2H), 7.13–7.10 (m,

2H), 5.90 (dddd, J = 17.2, 10.7, 5.4, 5.4 Hz, 1H), 5.39 (s, 1H), 5.31 (dq, J = 17.2, 1.6 Hz,

1H), 5.21 (dq, J = 10.5, 1.4 Hz, 1H), 4.83 (s, 2H), 4.68–4.63 (m, 1H), 4.62–4.57 (m, 1H),
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2.55–2.47 (m, 1H), 2.42 (ddd, J = 13.3, 6.1, 4.9 Hz, 1H), 2.33–2.27 (m, 1H), 1.84 (ddd, J

= 13.5, 8.7, 4.9 Hz, 1H), 1.42 (s, 3H); 13C NMR (125 MHz, CDCl3) & 194.6, 173.3, 163.9,

144.3, 136.4, 132.2, 129.9, 128.9, 128.0, 127.9, 127.7, 127.1, 118.0, 100.4, 65.6, 56.8,

51.6, 32.9, 25.9, 21.0; IR (Neat Film NaCl) 3061, 3031, 2975, 2933, 2872, 1734, 1623,

1560, 1494, 1453, 1426, 1408, 1377, 1346, 1327, 1293, 1255, 1210, 1174, 1112, 1080,

1061, 1022, 989, 929, 885, 825, 779, 733, 702 cm-1; HRMS (MM: ESI-APCI+) m/z

calc’d for C24H26NO3 [M+H]
+: 376.1907, found 376.1903.

O

O

O

O O

N

O

O

Bn

H

H2NBn, p-TsOH•H2O

toluene, reflux, Dean–Stark

92% yield17 16c

Enaminone 16c.  A 250 mL round-bottom flask containing a magnetic stir bar was

charged with dione 17 (1.89 g, 8.98 mmol, 1.00 equiv), toluene (90 mL, 0.10 M),

benzylamine (1.1 mL, 10.04 mmol, 1.12 equiv), and p-toluenesulfonic acid monohydrate

(169.0 mg, 0.89 mmol, 10 mol %).  The flask was equipped with a Dean–Stark trap and

water condenser and was lowered into a preheated oil bath (135 °C).  After 5.5 h of

refluxing, the solution was removed from the oil bath and allowed to cool to room

temperature.  The solution was quenched with a sat. Na2CO3 solution (50 mL) and

transferred to a separatory funnel where the aqueous layer was extracted once with Et2O

and three times with dichloromethane.  The combined organics were dried over MgSO4,

filtered, and concentrated under reduced pressure.  The crude oil was purified by flash

column chromatography (SiO2, 31 x 5 cm, 100% hexanes'20%'50% EtOAc in

hexanes) to afford enaminone 16c (2.48 g, 8.28 mmol, 92% yield) as a yellow solid; Rf =
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0.27 (30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.40–7.30 (m, 3H), 7.29 (s,

2H), 5.95–5.82 (m, 1H), 5.30 (dq, J = 17.2, 1.6 Hz, 1H), 5.22 (s, 1H), 5.20 (dq, J = 10.5,

1.4 Hz, 1H), 4.62 (tt, J = 5.6, 1.5 Hz, 2H), 4.56 (br s, 1H), 4.24 (d, J = 5.0 Hz, 2H), 2.59

(ddd, J = 16.5, 8.8, 4.9 Hz, 1H), 2.50 (ddd, J = 13.3, 6.2, 4.9 Hz, 1H), 2.33 (dt, J = 16.6,

5.3 Hz, 1H), 1.91 (ddd, J = 13.6, 8.8, 5.0 Hz, 1H), 1.44 (s, 3H); 13C NMR (125 MHz,

CDCl3) & 194.4, 173.4, 162.6, 136.7, 132.2, 129.1, 128.2, 128.0, 118.0, 96.7, 65.6, 52.1,

47.5, 32.4, 26.7, 21.1; IR (Neat Film NaCl) 3260, 3064, 2978, 2933, 2868, 1730, 1576,

1545, 1452, 1427, 1375, 1359, 1297, 1253, 1218, 1199, 1172, 1107, 1028, 987, 929, 822,

735 cm-1; HRMS (GC-EI+) m/z calc’d for C18H21NO3 [M+•]
+: 299.1521, found 299.1522.

O

N

O

O

Bn

H

BzO

N

O

O

Bn

Bz

90% yield

i. i-Pr2NEt

   CH2Cl2, 0 °C

ii. BzCl

    0!23 °C
16c 18

Diene 18.  A 1 dram (4 mL) vial equipped with a stir bar and Teflon septa was charged

with enaminone 16c (49.9 mg, 0.167 mmol, 1.00 equiv) and lowered into a 0 °C bath

(ice/water).  Dichloromethane (1.7 mL, 0.10 M), i-Pr2NEt (150 µL, 0.861 mmol, 5.17

equiv), and benzoyl chloride (40 µL, 0.345 mmol, 2.07 equiv) were added and the

reaction was allowed to warm to room temperature over time.  After 13 h, TLC analysis

indicated consumption of starting material.  The reaction was subsequently quenched

with water (5 mL) and the aqueous layer was extracted four times with dichloromethane.

The combined organics (50 mL) were dried over MgSO4, filtered, and concentrated under

reduced pressure.  The resulting crude oil was purified by flash chromatography (SiO2, 26

x 1 cm, 5%'10%'15% EtOAc in hexanes) to afford diene 18 (75.8 mg, 0.149 mmol,
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90% yield) as a yellow oil; Rf = 0.77 (50% EtOAc in hexanes); 1H NMR (500 MHz,

CDCl3) & 8.07–8.02 (m, 2H), 7.65–7.59 (m, 1H), 7.56–7.51 (m, 2H), 7.50–7.45 (m, 2H),

7.39 (s, 2H), 7.37–7.32 (m, 3H), 7.32–7.30 (m, 2H), 7.28–7.24 (m, 1H), 6.20 (s, 1H),

5.81–5.72 (m, 1H), 5.22 (dt, J = 17.2, 1.4 Hz, 1H), 5.13 (dt, J = 10.3, 1.3 Hz, 1H),

4.97–4.79 (m, 3H), 4.56–4.43 (m, 2H), 2.75 (dd, J = 17.4, 4.6 Hz, 1H), 2.03 (dd, J = 17.4,

4.7 Hz, 1H), 1.21 (s, 3H); 13C NMR (125 MHz, CDCl3) & 173.6, 170.7, 164.0, 150.5,

137.2, 136.2, 136.1, 133.9, 131.7, 130.2, 130.0, 129.4, 129.0, 128.8, 128.5, 128.3, 128.1,

127.5, 120.2, 118.6, 113.4, 66.1, 50.6, 46.4, 35.1, 20.4; IR (Neat Film NaCl) 3062, 3030,

2981, 2934, 1740, 1646, 1600, 1577, 1495, 1451, 1400, 1349, 1326, 1244, 1176, 1145,

1112, 1077, 1050, 1023, 1001, 980, 935, 824, 797, 755 cm-1; HRMS (MM: ESI-APCI+)

calc’d for C32H30O5N [M+H]
+: 508.2118, found 508.2122.

O

N

O

O

Bn

H

O

N

O

O

Bn

Boc

90% yield

Boc2O, DMAP

CH2Cl2, 0!23 °C

16c 16f

Enaminone 16f.  A flame-dried 25 mL round-bottom flask containing a magnetic stir bar

was loaded with enaminone 16c  (300.1 mg, 1.00 mmol, 1.00 equiv) and 4-

dimethylaminopyridine (9.5 mg, 0.078 mmol, 7.8 mol %).  The flask was charged with

dichloromethane (10 mL, 0.10 M) and lowered into a 0 °C bath (ice/water).  Di-tert-butyl

dicarbonate (252.7 mg, 1.16 mmol, 1.15 equiv) was added, and the solution transitioned

from yellow to clear.  The ice bath was allowed to expire as the reaction was stirred

overnight.  After 22 h, the stir bar was removed from the flask, the reaction contents were

concentrated under reduced pressure, and the resulting crude oil was purified by flash
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column chromatography (SiO2, 26.5 x 3 cm, 100% hexanes'5%'10%'15%'20%

EtOAc in hexanes) to afford enaminone 16f (360.0 mg, 0.90 mmol, 90% yield) as a pale

yellow oil; Rf = 0.79 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.34–7.28

(m, 2H), 7.26–7.21 (m, 1H), 7.16–7.12 (m, 2H), 5.85 (dddd, J = 17.2, 10.5, 5.5, 5.5 Hz,

1H), 5.73 (t, J = 0.9 Hz, 1H), 5.27 (dq, J = 17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.5, 1.3 Hz,

1H), 4.80 (s, 2H), 4.58 (dddd, J = 5.6, 2.8, 1.5, 1.5 Hz, 2H), 2.92–2.77 (m, 2H), 2.45 (dt,

J = 13.5, 5.3 Hz, 1H), 1.86 (ddd, J = 13.5, 7.7, 5.7 Hz, 1H), 1.42 (s, 9H), 1.38 (s, 3H); 13C

NMR (125 MHz, CDCl3) & 196.8, 172.6, 162.2, 152.9, 137.2, 131.9, 128.8, 127.5, 126.3,

118.3, 114.8, 83.0, 65.8, 53.0, 52.5, 33.6, 28.1, 27.5, 20.4; IR (Neat Film NaCl) 3090,

3064, 3034, 2978, 2935, 2873, 1718, 1662, 1654, 1595, 1497, 1453, 1425, 1369, 1344,

1317, 1300, 1248, 1210, 1150, 1113, 1029, 989, 937, 856, 815, 769, 737 cm-1; HRMS

(MM: ESI-APCI+) m/z calc’d for C23H30NO5 [M+H]
+: 400.2118, found 400.2127.

O

N

O

O

Bn

H

O

N

O

O

Bn

Ts

45% yield

i. NaH, THF, 23 °C

ii. TsCl

16c 16g

Enaminone 16g.  A flame-dried 25 mL round-bottom flask containing a magnetic stir bar

was cycled into a glove box and loaded with sodium hydride (95% by weight, 32.6 mg,

1.29 mmol, 1.29 equiv).  The flask was removed from the glove box, reconnected to an

Ar-filled manifold, and charged with THF (6 mL).  Enaminone 16c (300.3 mg, 1.00

mmol, 1.00 equiv) was added in one portion and the grey suspension bubbled and became

a yellow solution over time.  The flask was rinsed with additional THF (4 mL, 10 mL

total, 0.10 M).  The reaction was stirred vigorously for 70 min before p-toluenesulfonyl
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chloride (287.6 mg, 1.51 mmol, 1.50 equiv) was added in one portion.  After 6 h, the

flask was lowered into a 0 °C bath (ice/water) and quenched with water (reaction mixture

bubbled).  The mixture was transferred to a separatory funnel where the aqueous layer

was extracted four times with CH2Cl2.  The combined organics (100 mL) were dried over

MgSO4, filtered, and concentrated under reduced pressure.  The crude oil was purified by

flash column chromatography (SiO2, 27 x 3 cm, 100% hexanes'5%'10%'15%'

50% EtOAc in hexanes) to afford enaminone 16g (203.8 mg, 0.45 mmol, 45% yield) as a

yellow oil; Rf = 0.68 (30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.69 (d, J =

8.3 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.33–7.25 (m, 3H), 7.23 (d, J = 6.6 Hz, 2H), 5.75

(dddd, J = 17.3, 10.8, 5.6, 5.6 Hz, 1H), 5.68 (t, J = 1.1 Hz, 1H), 5.24–5.15 (m, 2H),

4.81–4.69 (m, 2H), 4.48 (dddd, J = 13.5, 5.6, 1.4, 1.4 Hz, 1H), 4.40 (dddd, J = 13.2, 5.6,

1.4, 1.4 Hz, 1H), 2.67–2.55 (m, 2H), 2.46 (s, 3H), 2.32 (dt, J = 13.9, 5.2 Hz, 1H), 1.69

(ddd, J = 13.8, 8.0, 5.9 Hz, 1H), 1.22 (s, 3H); 13C NMR (125 MHz, CDCl3) & 196.0,

171.9, 158.4, 144.8, 135.6, 135.3, 131.7, 130.2, 128.9, 128.1, 127.6, 127.5, 119.5, 118.5,

65.9, 53.0, 52.2, 32.4, 27.9, 21.8, 20.0; IR (Neat Film NaCl) 3064, 3032, 2981, 2935,

2873, 1735, 1669, 1596, 1496, 1454, 1424, 1359, 1321, 1292, 1255, 1164, 1115, 1089,

1058, 1028, 984, 910, 883, 816, 773, 743 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for

C25H28NSO5 [M+H]
+: 454.1683, found 454.1691.
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I I

O O

O

O1. LDA, THF, –78 °C
then allyl cyanoformate

2. NaH, MeI, THF, 23 °C

18% yield, 2 steps
19 20

"-Iodoenone 20.  A 200 mL round-bottom flask equipped with a magnetic stir bar was

charged with diisopropyl amine (1.52 mL, 10.85 mmol, 1.19 equiv) and THF (36 mL).

The flask was lowered into a 0 °C bath (ice/water) and n-BuLi (4.5 mL, 2.3 M in

hexanes, 10.35 mmol, 1.14 equiv) was added dropwise over several minutes.  The

reaction was stirred for 15 min before the ice bath was removed and replaced with a –78

°C bath (dry ice/acetone).  "-Iodoenone 1929 (2.00 g, 9.09 mmol, 1.00 equiv) was

transferred via cannula to the flask using several THF rinses (1 x 14 mL and 2 x 5 mL

rinses, total added = 60 mL, 0.15 M), producing a yellow solution that transitioned to red

over time.  The reaction was stirred for 1 h before allyl cyanoformate (1.12 mL, 10.38

mmol, 1.14 equiv) was added dropwise.  After 2.25 h, the reaction was quenched with

sat. NH4Cl solution and allowed to warm to room temperature.  The reaction contents

were transferred to a separatory funnel where the aqueous phase was extracted four times

with Et2O.  The combined organics were dried over MgSO4, filtered, and concentrated

under reduced pressure.  The resulting crude oil was filtered through a short silica gel

plug to afford an orange oil.

A 50 mL round-bottom flask equipped with a magnetic stir bar was cycled into a

glove box and loaded with sodium hydride (161.0 mg, 95% by weight, 6.37 mmol, 1.21

equiv).  The flask was removed from the glove box, reconnected to an Ar-filled manifold,

and charged with THF (6 mL).  The crude orange oil from the previous step (1.61 g, 5.27

mmol, 1.00 equiv) was transferred via cannula to the flask using several THF rinses (1 x



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 34

5 mL + 3 x 2 mL, total added = 21.0 mL, 0.25 M).  The grey suspension bubbled and

became a yellow solution that transitioned to red over time.  The reaction was stirred for

30 min before methyl iodide (400 µL, 6.43 mmol, 1.22 equiv) was added dropwise.

After 3.5 h, the reaction was quenched with water and extracted four times with

dichloromethane.  The combined organics were dried over MgSO4, filtered, and

concentrated under reduced pressure.  The resulting crude oil was purified by flash

column chromatography (SiO2, 28.5 x 4 cm, 100% hexanes'5% EtOAc in hexanes) to

afford "-Iodoenone 20 (536.3 mg, 1.68 mmol, 18% yield over two steps) as a yellow oil;

Rf = 0.72 (30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 6.81 (dd, J = 2.2, 1.2

Hz, 1H), 5.94–5.79 (m, 1H), 5.32–5.26 (m, 1H), 5.24 (dt, J = 10.5, 1.1 Hz, 1H),

4.67–4.56 (m, 2H), 3.05–2.96 (m, 1H), 2.93–2.85 (m, 1H), 2.43 (dt, J = 13.8, 4.9 Hz,

1H), 1.95 (ddd, J = 14.0, 9.0, 5.3 Hz, 1H), 1.39 (s, 3H); 13C NMR (125 MHz, CDCl3) &

192.6, 171.7, 139.6, 131.6, 125.5, 118.8, 66.1, 52.7, 38.6, 35.0, 20.3; IR (Neat Film

NaCl) 3084, 2982, 2936, 2868, 1732, 1682, 1597, 1455, 1424, 1378, 1333, 1295, 1246,

1169, 1098, 1033, 986, 926, 852, 770, 737 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for

C11H14O3I [M+H]
+: 320.9982, found 320.9981.

O O

O

CuI (10 mol %)
AcNH2, Cs2CO3, H2O

THF, 60 °C

86% yield20

I

H
N

N
H

(20 mol %) O O

O

N
H

16h

Ac

Enaminone 16h.  Adapted from procedure by Buchwald.30  CuI (24 mg, 0.13 mmol, 0.10

equiv), Cs2CO3 (624 mg, 1.92  mmol, 1.50 equiv)  and acetamide (91 mg, 1.5  mmol, 1.2
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equiv) were added to a 25 mL Schlenck bomb equipped with a stir bar under argon

atmosphere. The Schlenck bomb was evacuated and backfilled with argon three times.  A

solution of vinyl iodide 2 0  (409 mg, 1.28 mmol, 1.00 equiv), N , N ' -

dimethylethylenediamine (23 mg, 0.26 mmol, 0.20 equiv) and nanopure water (23 mg,

1.3 mmol, 1.0 equiv) in THF (2.6 mL, 0.5 M) was added via syringe.  The reaction flask

was lowered into a 60 °C oil bath.  After 12 h of stirring, TLC analysis indicated

complete conversion of starting material.  The reaction was subsequently diluted with 15

mL CH2Cl2, transferred to a separatory funnel and washed twice with 5% aqueous

NH4OH (10 mL).  The combined aqueous layers were extracted twice with CH2Cl2 (15

mL).  The combined organics were washed with brine (20 mL), dried over Na2SO4,

filtered, and concentrated under reduced pressure.  The resulting crude oil was purified

by flash chromatography (SiO2, 12 x 3 cm, 20'33'50'67% EtOAc in hexanes) to

afford enaminone 16h (276 mg, 1.10 mmol, 86% yield) as a pale yellow oil; Rf = 0.10

(50% EtOAc in hexanes); 1
H NMR (500 MHz, CDCl3) & 8.30 (s, 1H), 6.60 (s, 1H),

5.90–5.77 (m, 1H), 5.27 (dq, J = 17.2, 1.5 Hz, 1H), 5.19 (dq, J = 10.5, 1.2 Hz, 1H), 4.58

(dq, J = 5.6, 1.3 Hz, 2H), 2.78 – 2.64 (m, 1H), 2.62–2.43 (m, 1H), 2.54–2.45 (m, 1H),

2.11 (s, 3H), 2.02–1.83 (m, 1H), 1.39 (s, 3H); 
13

C NMR (125 MHz, CDCl3) & 197.8,

172.5, 169.9, 155.9, 131.7, 118.5, 110.1, 65.9, 52.3, 31.9, 25.7, 25.0, 20.6; IR (Neat Film

NaCl) 3299, 3135, 2937, 1728, 1626, 1520, 1456, 1426, 1370, 1259, 1220, 1184, 1114,

999, 939, 877 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C13H18NO4 [M+H]+:

252.1230, found 252.1219.
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NaH, DMF, 0 °C

then BnBr, 0!23 °C

71% yield

O O

O

N
Ac

O O

O

N
H

16h

Ac

Bn

16d

Enaminone 16d.  In a 5 mL round bottom flask equipped with a stir bar under nitrogen

atmosphere, enaminone 16h (63 mg, 0.25 mmol, 1.0 equiv) was taken up in dry DMF

(2.8 mL, 0.089 M) and cooled to 0 °C with an ice/water bath.  Sodium hydride (60%

suspension in mineral oil, 12 mg, 0.30 mmol, 1.2 equiv) was added to the mixture,

accompanied by the formation of bubbles.  The reaction was stirred for 1 h before the

dropwise addition of benzyl bromide (36 µL, 0.30 mmol, 1.2 equiv) by syringe.  The

reaction temperature was maintained at 0 °C for 5 h before allowing the ice bath to

gradually expire.  After an additional 6 h at 23 °C, TLC analysis indicated complete

conversion of starting material.  The reaction was subsequently diluted with EtOAc (10

mL) and sat. NH4Cl sol. (10 mL) and transferred to a separatory funnel.  The organic

layer was separated from the aqueous layer, and the aqueous layer was extracted twice

with EtOAc (2 x 10 mL).  The combined organics were washed with brine (15 mL), dried

over MgSO4, filtered, and concentrated under reduced pressure.  The resulting crude oil

was purified by flash chromatography (SiO2, 15 x 3 cm, 20% acetone in hexanes) to

afford enaminone 16d (61 mg, 0.18 mmol, 71% yield) as a yellow oil; 1H NMR (500

MHz, CDCl3) & 7.34–7.29 (m, 2H), 7.29–7.24 (m, 1H), 7.19–7.16 (m, 2H), 5.87–5.79 (m,

1H), 5.78 (s, 1H), 5.27 (dt, J = 17.2, 1.4 Hz, 1H), 5.21 (dt, J = 10.5, 1.3 Hz, 1H),

4.89–4.84 (m, 1H), 4.78–4.72 (m, 1H), 4.56 (dt, J = 5.7, 1.3 Hz, 2H), 2.58 (ddd, J = 9.3,

4.9, 1.6 Hz, 1H), 2.56–2.48 (m, 1H), 2.44 (dtd, J = 13.8, 4.8, 1.2 Hz, 1H), 2.16 (s, 3H),

1.87–1.78 (m, 1H), 1.36 (s, 3H); 13C NMR (125 MHz, CDCl3) & 196.2, 172.0, 170.0,
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160.8, 136.5, 131.6, 129.0, 127.9, 127.5, 123.8, 1190, 66.1, 52.6, 50.8, 32.8, 27.3, 23.2,

20.2; IR (Neat Film NaCl) 3063, 3030, 2981, 2937, 2873, 1731, 1667, 1624, 1496, 1454,

1424, 1387, 1375, 1344, 1312, 1250, 1190, 1113, 1029, 986, 948, 882, 738 cm-1; HRMS

(MM: ESI-APCI+) m/z calc’d for C20H24O4N [M+H]
+: 342.1700, found 342.1705.

O O

O

CuI (10 mol %)
BzNH2, Cs2CO3, H2O

THF, 60 °C

70% yield20

I

H
N

N
H

(20 mol %) O O

O

N
H

Bz

16i

Enaminone 16i.  Adapted from procedure by Buchwald.30  Prepared from 20 in an

analogous manner to 16h.  Purified by flash chromatography (SiO2, 12 x 3 cm,

20'33'50% EtOAc in hexanes) to afford enaminone 16i (220 mg, 0.702 mmol, 70%

yield) as a pale yellow oil that solidified to a pale yellow amorphous solid upon standing

at –20 °C; Rf = 0.10 (50% EtOAc in hexanes); 1
H NMR (500 MHz, CDCl3) & 8.31 (s,

1H), 7.83 – 7.74 (m, 2H), 7.56–7.47 (m, 1H), 7.47–7.40 (m, 2H), 6.70 (s, 1H), 5.88–5.75

(m, 1H), 5.25 (dq, J = 17.2, 1.6 Hz, 1H), 5.17 (dq, J = 10.5, 1.4 Hz, 1H), 4.55 (dq, J =

5.5, 1.5 Hz, 2H), 2.92–2.82 (m, 1H), 2.79–2.69 (m, 1H), 2.53 (dt, J = 13.7, 5.4 Hz, 1H),

1.99–1.87 (m, 1H), 1.38 (s, 3H); 13
C NMR (125 MHz, CDCl3) & 197.2, 172.5, 166.5,

155.6, 133.8, 132.7, 131.7, 128.9, 127.5, 118.4, 111.1, 65.8, 52.3, 32.0, 25.9, 20.5; IR

(Neat Film NaCl) 3334, 2936, 1732, 1694, 1621, 1514, 1492, 1376, 1258, 1185, 1115,

1071, 1023, 931, 710 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C18H20NO4 [M+H]+:

314.1387, found 314.1381.
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NaH, DMF, 0 °C

then BnBr, 0!23 °C

60% yield

O O

O

N
Bz

O O

O

N
H

16i

Bz

Bn

16e

Enaminone 16e.  Prepared from 16i in an analogous manner to 16d.  Purified by flash

chromatography (SiO2, 15 x 3 cm, 20% acetone in hexanes) to afford enaminone 16e

(134 mg, 0.332 mmol, 60% yield) as a yellow oil; Rf = 0.63 (50% EtOAc in hexanes); 1H

NMR (500 MHz, CDCl3) & 7.65–7.55 (m, 2H), 7.52–7.43 (m, 1H), 7.43–7.37 (m, 2H),

7.36–7.26 (m, 5H), 5.84 (s, 1H), 5.83–5.71 (m, 1H), 5.28–5.15 (m, 2H), 5.10–4.98 (m,

2H), 4.58–4.38 (m, 2H), 2.38–2.26 (m, 1H), 2.26–2.13 (m, 2H), 1.56 (s, 6H), 1.24 (s,

3H); 13
C NMR (125 MHz, CDCl3) & 195.9, 171.8, 161.8, 136.8, 136.0, 131.8, 131.6,

128.9, 128.8, 128.2, 127.9, 127.7, 127.7, 121.4, 118.5, 65.9, 52.8, 52.4, 32.6, 28.8, 20.2;

IR (Neat Film NaCl) 2936, 1733, 1661, 1601, 1496, 1447, 1377, 1344, 1300, 1253, 1174,

1111, 974, 794, 724 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C25H26NO4 [M+H]+:

404.1856, found 404.1850.

O

O

O

O O

H2N

O

O

85% yield

NH4OAc

MeOH/CH3CN, 45 °C

17 16j

Enaminone 16j.  A flame-dried 50 mL round-bottom flask containing a stir bar was

cycled into a glove box and loaded with ammonium acetate (185.3 mg, 2.40 mmol, 1.16

equiv).  The flask was removed from the glove box, reconnected to an Ar-filled manifold,

and charged with MeOH (1.5 mL).  Dione 17 (437.5 mg, 2.08 mmol, 1.00 equiv) was

transferred to the flask via cannula using MeOH (5 mL, total added = 6.5 mL, 0.32 M)

and CH3CN (6.5 mL, 0.32 M) rinses.  The flask was lowered into a preheated oil bath (45
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°C) and the reaction was heated for five days before TLC analysis indicated consumption

of starting material.  The reaction was cooled to room temperature and the contents were

concentrated under reduced pressure.  The resulting crude material was recrystallized

twice with toluene to produce enaminone 16j (369.0 mg, 1.76 mmol, 85% yield) as a

white crystal; Rf = 0.18 (EtOAc); 1H NMR (500 MHz, CDCl3) & 5.88 (dddd, J = 17.2,

10.4, 5.5, 5.5 Hz, 1H), 5.29 (dq, J = 17.2, 1.6 Hz, 1H), 5.25 (d, J = 0.8 Hz, 1H), 5.20 (dq,

J = 10.5, 1.4 Hz, 1H), 4.61 (dddd, J = 5.4, 3.9, 1.5, 1.5 Hz, 2H), 4.53 (broad s, 2H),

2.60–2.52 (m, 1H), 2.49 (ddd, J = 13.3, 5.8, 5.0 Hz, 1H), 2.35–2.28 (m, 1H), 1.93–1.86

(m, 1H), 1.42 (s, 3H); 13C NMR (125 MHz, CDCl3) & 194.7, 173.3, 163.7, 132.1, 118.1,

99.9, 65.7, 51.6, 32.3, 26.0, 21.0; IR (Neat Film NaCl) 3338, 3189, 3064, 2983, 2934,

2873, 1735, 1654, 1551, 1437, 1383, 1358, 1291, 1253, 1216, 1194, 1175, 1103, 989,

930, 841, 824 cm-1; HRMS (MM: ESI-APCI+) calc’d for C11H16O3N [M+H]
+: 210.1125,

found 210.1119.
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1.4.2.2.2 General Procedure for Screening Reactions

THF TBME Toluene 2:1 Hex–Tol

23b

23e

23g

23f

81
76

87
74

85
82

83
83

89
83

90
85

88
88

88
86

86
80

87
83

88
82

87
83

84
82

83
83

83
83

82
83

87
84

86
84

87
81

82
83

Enantiomeric Excess (% ee)b

22a
85
86

85
86

86
86

87
88

product

23a
61
79

60
78

55
84

52
83

23d

21a
87
85

88
86

87
88

87
85

ligand

3
8

3
8

3
8

3
8

3
8

3
8

3
8

3
8

entry

7
8

9
10

11
12

15
16

13
14

3
4

5
6

1
2

16b

16e

16g

16f

14a

substrate

16a

16d

13a

NPh(Bn)

NBz(Bn)

NTs(Bn)

NBoc(Bn)

Oi-Bu

R

NMe(Bn)

NAc(Bn)

H

a Conditions: enone 13a, vinylogous ester 14a, or enaminone 16a, b, d–g (1.0 equiv), Pd2(dba)3 (5 mol

%), and (S)-t-BuPHOX (3) or (S)-(CF3)3-t-BuPHOX (8) (12.5 mol %) in solvent (0.033 M) at 40 °C.
b
!Determined by GC, HPLC, or SFC analysis. Red = with (S)-(3) as ligand and blue = with (S)-(8) as ligand.

Ph2P N

O

t-Bu

(4-CF3C6H4)2P N

O

t-Bu

CF3

! (S)-t-BuPHOX ! (S)-(CF3)3-t-BuPHOX

3 8

O

O

O
Pd2(dba)3 (5 mol %)

(S)-t-BuPHOX (3) or 

(S)-(CF3)3-t-BuPHOX (8)
(12.5 mol %)

solvent (0.033 M), 40 oC
R

O

R

13, 14, or 16 21, 22, or 23

Enone 13a Screen Procedure.  Pd2(dba)3 (2.4 mg, 0.00262 mmol, 0.05 equiv) and the

appropriate PHOX ligand ((S)-t-BuPHOX (3): 2.5 mg, 0.00645 mmol, 0.125 equiv or

(S)-(CF3)3-t-BuPHOX (8): 3.8 mg, 0.00643 mmol, 0.125 equiv) were added to an oven-

dried 1 dram vial equipped with a magnetic stir bar.  A separate oven-dried 1 dram vial

was charged with enone 13a6 (10.0 mg, 0.0515 mmol, 1.00 equiv) and both vials were

cycled into a nitrogen-filled glove box.  The palladium/ligand vial was charged with
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solvent (THF, TBME, toluene: 360 µL or 2:1 hexanes/toluene: 120 µL toluene and 340

µL hexanes) and stirred at ambient glove box temperature.  After 30 min, enone 9a was

transferred to the reaction vial with several solvent rinses (THF, TBME, toluene: 3 x 400

µL, 1.56 mL total, 0.033 M or 2:1 hexanes/toluene: 400 µL toluene and 400 µL + 300 µL

hexanes, 1.56 mL solvent total, 0.033 M).  The vials were tightly sealed with a teflon

lined cap and electrical tape, removed from the glove box, and lowered into a heating

block set to 40 °C.  After 2 days, the reaction were either loaded directly onto a column

(toluene and 2:1 hexanes/toluene) or filtered through a celite plug and concentrated prior

to chromatography (THF and TBME).  All reactions were purified by flash column

chromatography (SiO2, ~22 x 1 cm, 2%'3% Et2O in pentane), resuspended in Et2O for

analysis, and analyzed for enantiomeric excess with chiral GC.  Characterization data for

enone 21a matches that previously reported.6  As part of the screen, the yield was

determined for enone 21a with (S)-8 in toluene (6.0 mg, 0.040 mmol, 78% yield).

Vinylogous Ester 14a and Enaminone Symyx Core Module Screen Procedure.  All

reagents were dispensed as solutions using a Symyx Core Module within a nitrogen-filled

glovebox.  Oven-dried half-dram vials were charged with a solution of the palladium

source (Pd2(dba)3, 1.65 µmol, 0.05 equiv) in THF (400 µL).  The palladium solutions

were evaporated to dryness under reduced pressure using a Genevac centrifugal

evaporator within the glovebox, and stirbars were added to the vials.  The reaction vials

were then charged with a solution of the PHOX ligand (4.13 µmol, 0.125 equiv) in the

reaction solvent (300 µL) and stirred at 20 °C.  After 30 min, a solution of vinylogous
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ester 14a or the enaminone substrate (16, 33.0 µmol, 1.0 equiv) in the reaction solvent

(700 µL) were added.  The reaction vials were tightly capped and heated to the desired 

temperature (40 °C).  The consumption of the starting material was observed by 

colorimetric change (from light yellow/green to red/orange) and after 5 days, the 

reactions were removed from the glovebox, filtered through a short silica gel plug 

(rinsing with EtOAc), concentrated under reduced pressure, resuspended in an 

appropriate solvent for analysis (HPLC: hexanes or SFC: MeOH), and analyzed for 

enantiomeric excess (see Methods for the Determination of Enantiomeric Excess). 

Characterization data for vinylogous ester 22a matches that previously reported.18c 

Experimental procedures and characterization data for enaminones 23a, b, d–g follow.

1.4.2.2.3 Enaminone Allylic Alkylation Products

O

N

O

O O

N

Bn

Me

(S)-t-BuPHOX (12.5 mol %)

Pd2(dba)3 (5.0 mol %)

toluene, 40!60 °C

68% yield

16a 23a
81% ee

Me

Bn

Ph2P N

O

t-Bu3

Enaminone 23a.  Pd2(dba)3 (14.6 mg, 0.0159 mmol, 5.0 mol %) and (S)-t-BuPHOX (3,

15.5 mg, 0.0400 mmol, 12.5 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (2 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16a (1 M in toluene, 320 µL, 0.320 mmol, 1.00 equiv) and

additional toluene (7.35 mL, total added = 9.67 mL, 0.033 M) were added, producing a
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green solution.  The vial was sealed with a Teflon-lined cap, removed from the glove

box, and lowered into a heating block (40 °C).  After 5 days, the temperature was raised

to 60 °C and heated for an additional day before the reaction mixture transitioned back to

a red/orange solution.  The reaction was filtered through a silica gel plug, rinsed with

EtOAc, and concentrated under reduced pressure.  The crude oil was purified twice by

flash column chromatography (SiO2, 27.5 x 2 cm, 100% hexanes'20%'30%'50%

EtOAc in hexanes' 100% EtOAc then  SiO2, 26.5 x 1.5 cm, 100%

hexanes'20%'30%'40% EtOAc in hexanes) to afford enaminone 23a (58.9 mg,

0.219 mmol, 68% yield) as a pale yellow oil; Rf = 0.12 (50% EtOAc in hexanes); 1H

NMR (500 MHz, CDCl3) & 7.38–7.33 (m, 2H), 7.31–7.26 (m, 1H), 7.10 (d, J = 7.2 Hz,

2H), 5.84–5.74 (m, 1H), 5.17 (s, 1H), 5.07–5.00 (m, 2H), 4.51 (s, 2H), 2.95 (s, 3H),

2.58–2.44 (m, 2H), 2.38 (dddd, J = 13.7, 7.1, 1.2, 1.2 Hz, 1H), 2.23–2.18 (m, 1H), 1.93

(ddd, J = 13.2, 7.5, 5.5 Hz, 1H), 1.71 (ddd, J = 13.7, 6.9, 5.4 Hz, 1H), 1.09 (s, 3H); 13C

NMR (125 MHz, CDCl3) & 201.2, 163.7, 136.9, 135.2, 129.1, 127.7, 126.3, 117.5, 98.1,

55.0, 42.1, 41.8, 38.5, 32.8, 24.0, 22.6; IR (Neat Film NaCl) 3066, 3029, 2958, 2926,

2867, 1728, 1615, 1557, 1495, 1451, 1412, 1373, 1354, 1333, 1315, 1297, 1276, 1253,

1204, 1156, 1103, 1077, 1029, 1001, 924, 823, 792, 733 cm-1; HRMS (EI+) m/z calc’d for

C18H23ON [M+•]
+: 269.1780, found 269.1782; [!]D

25.0 –24.18 (c 1.04, CHCl3, 81% ee);

JASCO SFC conditions: 5% MeOH in CO2, 5 mL/min, Chiralcel OD-H column, % = 210

nm, tR (min): major = 10.45, minor = 9.60.
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O

N

O

O O

N

Bn

Ph

(S)-t-BuPHOX (12.9 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

78% yield

16b 23b
83% ee

Ph

Bn

Ph2P N

O

t-Bu3

Enaminone 23b.  Pd2(dba)3 (3.5 mg, 0.00382 mmol, 5.0 mol %) and (S)-t-BuPHOX (3,

3.8 mg, 0.00981 mmol, 12.9 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (0.5 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16b (28.6 mg, 0.0762 mmol, 1.00 equiv) was transferred to the

flask with several toluene rinses (1 x 0.81 mL + 2 x 0.5 mL, total added = 2.31 mL, 0.033

M), producing a green solution.  The vial was sealed with a Teflon-lined cap, removed

from the glove box, and lowered into a heating block (40 °C).  After 4 days, the reaction

mixture transitioned back to an orange solution.  Subsequently, the reaction was filtered

through a silica gel plug, rinsed with EtOAc, and concentrated under reduced pressure.

The crude oil was purified twice by flash column chromatography (SiO2, 19.5 x 1.5 cm,

100% hexanes'50% EtOAc in hexanes'100% EtOAc then SiO2, 23.5 x 1 cm, 100%

hexanes'10%'20%'30%'40% EtOAc in hexanes) to afford enaminone 23b (19.7

mg, 0.0594 mmol, 78% yield) as a frosty colorless oil; Rf = 0.63 (50% EtOAc in

hexanes); 1H NMR (500 MHz, CDCl3) & 7.37–7.33 (m, 2H), 7.33–7.29 (m, 2H),

7.29–7.22 (m, 2H), 7.22–7.18 (m, 2H), 7.15–7.11 (m, 2H), 5.76 (dddd, J = 15.8, 11.3,

7.8, 7.0 Hz, 1H), 5.29 (s, 1H), 5.05–5.00 (m, 2H), 4.83 (s, 2H), 2.38 (dddd, J = 13.8, 7.1,

1.3, 1.3 Hz, 1H), 2.35–2.31 (m, 2H), 2.19 (dddd, J = 13.7, 7.8, 1.1, 1.1 Hz, 1H),
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1.90–1.83 (m, 1H), 1.65 (ddd, J = 13.5, 6.5, 5.6 Hz, 1H), 1.08 (s, 3H); 13C NMR (125

MHz, CDCl3) & 201.8, 163.3, 144.6, 136.7, 135.0, 129.8, 128.8, 128.0, 127.6, 127.5,

127.0, 117.6, 100.5, 56.7, 42.2, 42.0, 33.0, 25.5, 22.6; IR (Neat Film NaCl) 3063, 3031,

2959, 2926, 2863, 1622, 1563, 1494, 1453, 1426, 1404, 1374, 1351, 1329, 1275, 1204,

1156, 1078, 1060, 1028, 1002, 911, 830, 730 cm-1; HRMS (EI+) m/z calc’d for C23H26ON

[M+H]
+: 332.2009, found 332.1999; [!]D

25.0 –29.79 (c 1.91, CHCl3, 83% ee); JASCO

SFC conditions: 5% MeOH in CO2, 5 mL/min, Chiralpak AS-H column, % = 254 nm, tR

(min): major = 8.60, minor = 6.48.

O

N

O

O O

N

Bn

Ac

(S)-t-BuPHOX (12.3 mol %)

Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

71% yield

16d 23d
86% ee

Ac

Bn

Ph2P N

O

t-Bu3

Enaminone 23d.  Pd2(dba)3 (2.6 mg, 0.00284 mmol, 5.0 mol %) and (S)-t-BuPHOX (3,

2.7 mg, 0.00697 mmol, 12.3 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (0.51 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16d (19.3 mg, 0.0565 mmol, 1.00 equiv) was transferred to the

flask with several toluene rinses (4 x 0.3 mL, total added = 1.71 mL, 0.033 M), producing

a yellow solution.  The vial was sealed with a Teflon-lined cap, removed from the glove

box, and lowered into a heating block (40 °C).  After 2 days, the reaction mixture

transitioned back to an orange solution.  Subsequently, the reaction was filtered through a
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silica gel plug, rinsed with EtOAc, and concentrated under reduced pressure.  The crude

oil was purified by flash column chromatography (SiO2, 19.5 x 1.5 cm,

5%'10%'20%'30% EtOAc in hexanes) to afford enaminone 23d (12.0 mg, 0.0404

mmol, 71% yield) as a yellow oil; Rf = 0.46 (50% EtOAc in hexanes); 1H NMR (500

MHz, CDCl3) & 7.32 (ddt, J = 8.1, 6.7, 1.2 Hz, 2H), 7.30–7.23 (m, 1H), 7.19 (ddt, J = 7.3,

1.4, 0.7 Hz, 2H), 5.68 (t, J = 1.3 Hz, 1H), 5.66 (ddt, J = 16.9, 10.1, 7.3 Hz, 1H), 5.05 (ddt,

J = 10.1, 1.9, 0.9 Hz, 1H), 4.99 (ddt, J = 17.0, 2.1, 1.4 Hz, 1H), 4.81 (s, 2H), 2.50–2.39

(m, 2H), 2.21 (ddt, J = 13.8, 7.3, 1.2 Hz, 1H), 2.17 (s, 3H), 2.10 (ddt, J = 13.8, 7.5, 1.1

Hz, 1H), 1.87 (dt, J = 13.8, 5.9 Hz, 1H), 1.69 (ddd, J = 13.8, 6.6, 5.7 Hz, 1H), 1.01 (s,

3H); 13C NMR (125 MHz, CDCl3) & 203.1, 169.7, 160.1, 136.6, 133.6, 128.9, 127.9,

127.7, 123.8, 118.6, 50.9, 43.6, 40.8, 32.6, 27.1, 23.2, 21.5; IR (Neat Film NaCl) 3066,

2926, 2854, 1663, 1624, 1496, 1453, 1387, 1371, 1189, 991, 916 cm-1; HRMS (FAB+)

m/z calc’d for C19H24NO2 [M+H]
+: 298.1807, found 298.1794; [!]D

25.0 –14.12 (c 1.20,

CHCl3, 86% ee); Thar SFC conditions: 5% MeOH in CO2, 3 mL/min, Chiralpak AD-H

column, % = 254 nm, tR (min): major = 8.45, minor = 10.35.

O

N

O

O O

N

Bn

Bz

(S)-t-BuPHOX (12.4 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

71% yield

16e 23e
84% ee

Bz

Bn

Ph2P N

O

t-Bu3

Enaminone 23e.  Pd2(dba)3 (4.6 mg, 0.00502 mmol, 5.0 mol %) and (S)-t-BuPHOX (3,

4.8 mg, 0.0124 mmol, 12.4 mol %) were added to an oven-dried scintillation vial
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equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (0.93 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16e (1 M in toluene, 100 µL, 0.100 mmol, 1.00 equiv) was

transferred to the flask with more toluene (1 mL, total added including enaminone

solution = 3.03 mL, 0.033 M), producing a yellow/orange solution.  The vial was sealed

with a Teflon-lined cap, removed from the glove box, and lowered into a heating block

(40 °C).  After 2 days, the reaction mixture transitioned back to an orange solution.

Subsequently, the reaction was filtered through a silica gel plug, rinsed with EtOAc, and

concentrated under reduced pressure.  The crude oil was purified by flash column

chromatography (SiO2, 19.5 x 1.5 cm, 5%'10%'15% EtOAc in hexanes) to afford

enaminone 23e (26.3 mg, 0.0713 mmol, 71% yield, 95% purity) as a yellow oil; Rf = 0.57

(30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.63–7.59 (m, 2H), 7.50–7.43

(m, 1H), 7.39 (ddt, J = 8.2, 6.6, 1.1 Hz, 2H), 7.35–7.29 (m, 4H), 7.29–7.25 (m, 1H), 5.74

(t, J = 1.1 Hz, 1H), 5.54 (ddt, J = 17.3, 10.1, 7.4 Hz, 1H), 5.09 (d, J = 15.3 Hz, 1H), 5.00

(d, J = 15.3 Hz, 1H), 4.98 (dm, J = 9.9 Hz, 1H), 4.86 (dm, J = 17.0 Hz, 1H), 2.11–2.08

(m, 2H), 2.03 (dd, J = 14.2, 7.9 Hz, 1H), 1.95 (ddt, J = 13.8, 7.3, 1.2 Hz, 1H), 1.59 (ddd, J

= 13.7, 6.5, 5.4 Hz, 1H), 1.41 (ddd, J = 13.4, 6.8, 5.3 Hz, 1H), 0.88 (s, 3H); 13C NMR

(125 MHz, CDCl3) & 202.7, 170.8, 160.9, 136.8, 136.2, 133.6, 131.6, 128.9, 128.7, 128.1,

128.0, 127.9, 122.3, 118.4, 52.5, 43.3, 40.6, 32.4, 28.4, 21.3; IR (Neat Film NaCl) 3063,

3030, 2961, 2928, 2855, 1655, 1610, 1496, 1447, 1384, 1374, 1347, 1324, 1273, 1189,

1140, 1076, 1028, 1001, 974, 919, 792 cm-1; HRMS (FAB+) m/z calc’d for C24H26NO2

[M+H]
+: 360.1964, found 360.1956; [!]D

25.0 –26.61 (c 1.87, CHCl3, 84% ee); Thar SFC
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conditions: 7% MeOH in CO2, 2.5 mL/min, Chiralpak AD-H column, % = 254 nm, tR

(min): major = 18.14, minor = 20.28.

O

N

O

O O

N

Bn

Boc

(S)-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

82% yield

16f 23f
82% ee

Boc

Bn

Ph2P N

O

t-Bu3

Enaminone 16f.  Pd2(dba)3 (11.5 mg, 0.0126 mmol, 5.0 mol %) and (S)-t-BuPHOX (3,

12.1 mg, 0.0312 mmol, 12.5 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (2 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16f (1 M in toluene, 250 µL, 0.250 mmol, 1.00 equiv) and

additional toluene (6.34 mL, total added = 7.59 mL, 0.033 M) were added, producing a

green solution.  The vial was sealed with a Teflon-lined cap, removed from the glove

box, and lowered into a heating block (40 °C).  After 2 days, the reaction mixture

transitioned back to an orange solution.  Subsequently, the reaction was filtered through a

silica gel plug, rinsed with EtOAc, and concentrated under reduced pressure.  The crude

oil was purified by flash column chromatography (SiO2, 28 x 3 cm, 100%

hexanes'5%'10% EtOAc in hexanes) to afford enaminone 23f (72.6 mg, 0.204 mmol,

82% yield) as a pale yellow oil; Rf = 0.65 (30% EtOAc in hexanes); 1H NMR (500 MHz,

CDCl3) & 7.33–7.29 (m, 2H), 7.26–7.22 (m, 1H), 7.17–7.14 (m, 2H), 5.69 (dddd, J = 16.8,

10.2, 7.4, 7.4 Hz, 1H), 5.63 (t, J = 0.9 Hz, 1H), 5.07–4.99 (m, 2H), 4.78 (s, 2H), 2.75 (tm,
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J = 6.1 Hz, 2H), 2.29 (dddd, J = 13.7, 7.3, 1.2, 1.2 Hz, 1H), 2.13 (dddd, J = 13.7, 7.5, 1.2,

1.2 Hz, 1H), 1.90–1.84 (m, 1H), 1.71–1.65 (m, 1H), 1.43 (s, 9H), 1.04 (s, 3H); 13C NMR

(125 MHz, CDCl3) & 203.6, 161.6, 153.0, 137.4, 134.1, 128.8, 127.4, 126.4, 118.2, 115.4,

82.6, 52.9, 43.2, 41.2, 33.5, 28.2, 27.2, 21.9; IR (Neat Film NaCl) 3066, 3031, 3004,

2976, 2931, 2868, 1716, 1656, 1598, 1497, 1455, 1428, 1382, 1368, 1350, 1326, 1302,

1243, 1209, 1192, 1153, 1076, 1030, 998, 946, 916, 858, 779, 767, 734 cm-1; HRMS

(MM: ESI-APCI+) m/z calc’d for C22H30O3N [M+H]
+: 356.2229, found 356.2220; [!]D

25.0

–23.61 (c 0.92, CHCl3, 82% ee); JASCO SFC conditions: 7% MeOH in CO2, 5 mL/min,

Chiralpak AD-H column, % = 210 nm, tR (min): major = 4.04, minor = 2.20.

O

N

O

O O

N

Bn

Ts

(S)-t-BuPHOX (12.7 mol %)
Pd2(dba)3 (5.1 mol %)

toluene, 40 °C

71% yield

16g 23g
84% ee

Ts

Bn

Ph2P N

O

t-Bu3

Enaminone 23g.  Pd2(dba)3 (10.2 mg, 0.0111 mmol, 5.1 mol %) and (S)-t-BuPHOX (3,

10.8 mg, 0.0279 mmol, 12.7 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was

charged with toluene (2 mL) and heated at 30 °C for 30 min, generating a red/orange

solution.  Enaminone 16g (1 M in toluene, 220 µL, 0.220 mmol, 1.00 equiv) and

additional toluene (5.46 mL, total added = 6.68 mL, 0.033 M) were added, producing a

green solution.  The vial was sealed with a Teflon-lined cap, removed from the glove

box, and lowered into a heating block (40 °C).  After 2 days, the reaction mixture
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transitioned back to an orange solution.  Subsequently, the reaction was filtered through a

silica gel plug, rinsed with EtOAc, and concentrated under reduced pressure.  The crude

oil was purified by flash column chromatography (SiO2, 27 x 2 cm, 100%

hexanes'5%'10%'15% EtOAc in hexanes) to afford enaminone 23g (64.1 mg, 0.157

mmol, 71% yield) as a pale yellow oil; Rf = 0.55 (30% EtOAc in hexanes); 1H NMR (500

MHz, CDCl3) & 7.70 (dm, J = 8.3 Hz, 2H), 7.35 (dm, J = 8.6 Hz, 2H), 7.33–7.26 (m, 3H),

7.25–7.22 (m, 2H), 5.60–5.50 (m, 2H), 4.98 (dm, J = 10.2 Hz, 1H), 4.86 (dm, J = 17.0

Hz, 1H), 4.74 (d, J = 15.0 Hz, 1H), 4.66 (d, J = 15.0 Hz, 1H), 2.56–2.44 (m, 2H), 2.46 (s,

3H), 1.99–1.86 (m, 2H), 1.70 (ddd, J = 13.9, 6.6, 5.3 Hz, 1H), 1.55 (ddd, J = 13.9, 7.2,

5.5 Hz, 1H), 0.85 (s, 3H); 13C NMR (125 MHz, CDCl3) & 202.9, 157.74, 144.7, 135.4,

135.3, 133.7, 130.1, 128.9, 128.1, 127.9, 127.5, 120.7, 118.3, 53.1, 43.2, 40.6, 32.2, 27.9,

21.8, 21.3; IR (Neat Film NaCl) 3066, 3027, 2963, 2928, 2868, 1663, 1654, 1597, 1496,

1453, 1424, 1355, 1306, 1164, 1089, 1055, 1028, 1001, 912, 859, 814, 745 cm-1; HRMS

(MM: ESI-APCI+) m/z calc’d for C24H28O3NS [M+H]
+: 410.1784, found 410.1792;

[!]D
25.0 –33.05 (c 0.37, CHCl3, 84% ee); JASCO SFC conditions: 10% MeOH, 5 mL/min,

AD-H column, % = 210 nm, tR (min): major = 5.60, minor = 4.73.
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1.4.2.3 Preparation of 2,3-Dihydropyridin-4-ones

1.1.1.1.4 2,3-Dihydropyridin-4-one Allylic Alkylation Precursors

N

Cbz

O
1. LDA, THF, –78 °C

then allyl cyanoformate

2. K2CO3, MeI
acetone, 50 °C

43% yield, 2 steps

N

Cbz

O

O

O

47a 29a

2,3-Dihydropyridin-4-one 29a.  A 100 mL round-bottom flask equipped with a

magnetic stir bar was charged with diisopropyl amine (442 µL, 3.01 mmol, 1.20 equiv)

and THF (28 mL).  The flask was cooled to –78 °C bath (dry ice/IPA) and n-BuLi (1.30

mL, 3.01 mmol, 2.32 M in hexanes, 1.20 equiv) was added.  The reaction was allowed to

warm to 0 °C over 1 h.  The solution was cooled back to –78 °C and added dropwise to a

solution of 2,3-dihydropyridin-4-one 47a37 (580 mg, 2.51 mmol, 1.0 equiv) in THF (40

mL) at –78 °C using positive pressure cannulation.  The reaction was stirred for 1 h at

this temperature before allyl cyanoformate (300 µL, 2.88 mmol, 1.15 equiv) was added

dropwise.  The flask was removed from the bath, allowed to warm to room temperature

slowly, and stirred overnight.  The reaction was quenched with water and sat. NH4Cl

solution.  The phases were separated and the aqueous phase was extracted three times

with EtOAc.  The combined organic layers were dried over MgSO4, filtered, and

concentrated under reduce pressure.  The resulting yellow oil was purified by flash-

chromatography (2:1 Et2O/hexanes).

The yellow oil was transferred to an argon filled 25 mL Schlenk tube equipped

with a magnetic stir bar using several acetone rinses (3 x 2 mL).  K2CO3 (252 mg, 1.83

mmol, 2.0 equiv) and methyl iodide (115 µL, 1.84 mmol, 2.02 equiv) were added to the
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reaction.  The resulting suspension was heated to 50 °C and vigorously stirred for 14 h.

Upon completion, the reaction was allowed to cool to room temperature and filtered

through a plug of celite.  The resulting yellow solution was concentrated under reduced

pressure and purified by flash-chromatography (1:1 Et2O/hexanes) to afford 2,3-

Dihydropyridin-4-one 29a (210 mg, 0.64 mmol, 43% yield over two steps) as a yellow

oil; Rf = 0.38 (1:1 Et2O/hexanes); 1H NMR (500 MHz, CDCl3) & 7.83 (br s, J = 22.5 Hz,

1H), 7.45–7.31 (m, 5H), 5.82 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.37 (br s, 1H), 5.27 (s,

2H), 5.26 (dq, J = 17.1, 1.5 Hz, 1H), 5.20 (dq, J = 10.5, 1.3 Hz, 1H), 4.64 (dd, J = 13.5,

0.9 Hz, 1H), 4.59 (dt, J = 5.6, 1.5 Hz, 2H), 3.63 (d, J = 13.5 Hz, 1H), 1.40 (s, 3H); 13C

NMR (125 MHz, CDCl3) & 190.9, 170.1, 152.5, 142.7, 134.8, 131.3, 128.8, 128.7, 128.4,

118.6, 106.2, 69.2, 66.1, 51.6, 50.5, 17.9; IR (Neat Film, NaCl) 3076, 3034, 2965, 2929,

2360, 2922, 1729, 1668, 1605, 1498, 1456, 1418, 1393, 1344, 1302, 1205, 1157, 1101,

1029, 966, 917, 814, 763 cm-1; HRMS (MM: ESI/APCI+) m/z calc’d for C18H20NO5

[M+H]+: 330.1335, found 330.1335.

N

O

Bn

LDA, THF, –78 °C

then allyl cyanoformate
–78 ! 23 °C

N

O

O

O

Bn

47b 48b44% yield

2,3-Dihydropyridin-4-one 48b.  To a flame-dried 50 mL Schlenk round-bottom flask

equipped with a magnetic stir bar was added 2,3-dihydropyridin-4-one 47b38 (162.0 mg,

0.87 mmol) and THF (10 mL).  The solution was cooled to –78 °C and LDA (0.1 M in

THF, 9.10 mL, 0.91 mmol, 1.05 equiv) was added dropwise by syringe.  After 1 h at –78

°C, allyl cyanoformate (105.2 mg, 0.96 mmol, 1.10 equiv) was added, and the reaction
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was stirred for another 3 h and then quenched with a sat. NH4Cl sol.  The reaction was

transferred to a separatory funnel where the aqueous layer was extracted with CH2Cl2 (4 x

30 mL). The combined organics were washed with brine, dried over MgSO4, fitered, and

concentrated under reduced pressure.  The resulting crude mixture was purified by flash

chromatography (SiO2, 10 x 2.5 cm, 30% EtOAc ' 50% EtOAc in hexanes) to afford

2,3-dihydropyridin-4-one 48b (104.8 mg, 0.38 mmol, 44% yield) as a yellow oil; Rf =

0.30 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.45–7.31 (m, 3H),

7.28–7.23 (m, 2H), 7.17 (d, J = 7.5 Hz, 1H), 5.87 (ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.32

(dq, J = 17.2, 1.5 Hz, 1H), 5.22 (dq, J = 10.4, 1.3 Hz, 1H), 5.06 (d, J = 7.5 Hz, 1H),

4.69–4.55 (m, 2H), 4.40 (d, J = 2.5 Hz, 2H), 3.76 (dd, J = 13.3, 8.7 Hz, 1H), 3.51 (dd, J =

13.3, 5.9 Hz, 1H), 3.40 (dd, J = 8.7, 5.9 Hz, 1H); 13C NMR (125 MHz, CDCl3) & 185.2,

168.8, 153.6, 135.1, 131.6, 129.1, 128.5, 127.8, 118.6, 97.7, 66.0, 60.0, 50.5, 48.4; IR

(Neat Film NaCl) 3029, 2935, 2853, 1732, 1641, 1588, 1494, 1455, 1393, 1361, 1321,

1204, 1154, 1078, 1028, 991, 967, 935, 78, 731 cm-1; HRMS (MM: ESI-APCI+) m/z

calc’d for C16H18NO3 [M+H]
+: 272.1287, found 272.1314.

N

O

O

O

Bn

48b

N

O

O

O

Bn

NaH, MeI

THF, 0 °C

29b

86% yield

2,3-Dihydropyridin-4-one 29b.   To a flame-dried 25 mL round-bottom flask equipped

with a magnetic stir bar was cycled into a glove box and loaded with sodium hydride (9.3

mg, 0.39 mmol, 1.00 equiv).  The flask was removed from the glove box, reconnected to

an Ar-filled manifold, charged with THF (3 mL), and cooled to 0 °C.  A solution of 2,3-
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dihydropyridin-4-one 48b (104.2 mg, 0.39 mmol, 1.00 equiv) was added by syringe and

the mixture was stirred at 0 °C for 30 min.  The reaction was quenched with water,

transferred to a separatory funnel, and extracted four times with CH2Cl2.  The combined

organics were washed with brine, dried over MgSO4, filtered, and concentrated under

reduced pressure.  The crude oil was purified by flash chromatography (SiO2, 10 x 2.5

cm, 30% EtOAc in hexanes) to afford 2,3-dihydropyridin-4-one 29b (95.9 mg, 0.34

mmol, 86% yield) as a colorless oil; Rf = 0.40 (50% EtOAc in hexanes); 1H NMR (500

MHz, CDCl3) & 7.43–7.30 (m, 3H), 7.25–7.20 (m, 2H), 7.13 (d, J = 7.4 Hz, 1H), 5.83

(ddt, J = 17.1, 10.8, 5.5 Hz, 1H), 5.27 (dq, J = 17.2, 1.6 Hz, 1H), 5.19 (dq, J = 10.5, 1.3

Hz, 1H), 5.01 (d, J = 7.4 Hz, 1H), 4.56 (qdt, J = 13.4, 5.5, 1.5 Hz, 2H), 4.46–4.30 (m,

2H), 3.78 (d, J = 13.2 Hz, 1H), 3.15 (d, J = 13.3 Hz, 1H), 1.30 (s, 3H); 13C NMR (125

MHz, CDCl3) & 189.1, 171.7, 152.8, 135.2, 131.8, 129.1, 128.5, 128.1, 118.2, 97.1, 65.9,

60.1, 55.1, 51.4, 18.6; IR (Neat Film NaCl) 3029, 2979, 2934, 2871, 1732, 1642, 1592,

1494, 1455, 1393, 1372, 1359, 1343,  1295, 1223, 1166, 1115, 1028, 975, 937, 792, 732

cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C17H20NO3 [M+H]
+: 286.1443, found

286.1480.

N

O

Bn

N

O

Bn

47b 48c

LDA, THF, –78 °C

I

7% yield

–78!23 °C

then

2,3-Dihydropyridin-4-one 48c.  To a flame-dried 100 mL Schlenk round-bottom flask

equipped with a magnetic stir bar was added 2,3-dihydropyridin-4-one 47b38 (0.68 g, 3.63

mmol) and THF (30 mL).  The solution was cooled to –78 °C and LDA (19.0 mL, 3.80



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 55

mmol, 1.05 equiv, 0.2 M in THF) was added dropwise by syringe.  After 1 h at –78 °C,

1-iodo-2-methylpropane (0.87 g, 4.73 mmol, 1.30 equiv) was added, and the reaction was

stirred for another 1 h at –78 °C, brought to room temperature, and stirred overnight.  The

reaction was quenched with a sat. NH4Cl sol., transferred to a separatory funnel, and

extracted with CH2Cl2 (50 mL x 3). The combined organics were washed with brine,

dried over MgSO4, fitered, and concentrated. The crude mixture was purified by flash

chromatography (SiO2, 10 x 3 cm, 30% EtOAc in hexanes) to afford 2,3-dihydropyridin-

4-one 48c (58.2 mg, 0.24 mmol, 7% yield) as a yellow oil; Rf = 0.50 (50% EtOAc in

hexanes); 1H NMR (500 MHz, CDCl3) & 7.46–7.32 (m, 3H), 7.29–7.25 (m, 2H), 7.12 (d,

J = 7.4 Hz, 1H), 4.96 (d, J = 7.4 Hz, 1H), 4.43–4.28 (m, 2H), 3.38 (dd, J = 13.0, 5.4 Hz,

1H), 3.08 (dd, J = 13.0, 7.7 Hz, 1H), 2.29 (ddt, J = 10.1, 7.6, 5.2 Hz, 1H), 1.56 (ddd, J =

14.0, 9.3, 5.0 Hz, 1H), 1.37 (dpd, J = 9.3, 6.6, 5.2, 1H), 1.18 (ddd, J = 13.7, 9.6, 5.3 Hz,

1H), 0.82 (d, J = 6.5 Hz, 3H), 0.78 (d, J = 6.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) &

195.0, 152.8, 135.8, 128.9, 128.3, 127.8, 97.7, 60.0, 50.4, 42.0, 37.5, 25.0, 23.3, 21.4; IR

(Neat Film NaCl) 3029, 2954, 2868, 1633, 1593, 1494, 1463, 1455, 1385, 1361, 1302,

1210, 1161, 1077, 778, 730 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C16H22NO

[M+H]+: 244.1701, found 244.1707.
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N

O

Bn

48c

N

O

Bn

29c

CO2allylLDA, THF, –78 °C

then allyl cyanoformate
–78!23 °C

30% yield

2,3-Dihydropyridin-4-one 29c.  To a flame-dried 25 mL Schlenk tube equipped with a

magnetic stir bar was added 2,3-dihydropyridin-4-one 48c (50.5 mg, 0.21 mmol) and

THF (5 mL).  After the solution was cooled to -78 °C, LDA (2.2 mL, 0.22 mmol, 1.06

equiv, 0.1 M in THF) was added dropwise by syringe.  The mixture was stirred for 1 h at

-78 °C and allyl cyanoformate (26.4 mg, 0.24 mmol, 1.20 equiv) was added.  The

reaction was stirred for another 3 h and quenched with saturated NH4Cl aqueous.  The

aqueous layer was extracted with CH2Cl2 (30 mL x 4) and the combined organics were

washed with brine, dried over MgSO4, and concentrated.  The crude mixture was purified

by flash chromatography (SiO2, 10 x 1 cm, 30% EtOAc in hexanes) to afford 29c (19.8

mg, 0.06 mmol, 30% yield) as a yellow oil; Rf = 0.30 (30% EtOAc in hexanes); 1H NMR

(500 MHz, CDCl3) & 7.45–7.31 (m, 3H), 7.29–7.19 (m, 2H), 7.07 (d, J = 7.4 Hz, 1H),

5.86 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.32 (dq, J = 17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.5,

1.3 Hz, 1H), 4.96 (d, J = 7.3 Hz, 1H), 4.67–4.51 (m, 2H), 4.43 (s, 2H), 3.82 (d, J = 13.4

Hz, 1H), 3.27 (d, J = 13.4 Hz, 1H), 2.03 (dd, J = 14.2, 7.1 Hz, 1H), 1.64–1.45 (m, 2H),

0.85 (d, J = 6.5 Hz, 3H), 0.80 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) & 187.7,

170.9, 152.2, 135.1, 131.7, 129.0, 128.1, 118.4, 96.7, 65.8, 60.1, 54.4, 52.6, 40.4, 24.6,

24.3, 23.2; IR (Neat Film NaCl) 3029, 2957, 2870, 1729, 1644, 1593, 1455, 1360, 1267,

1215, 1159, 1132, 1077, 1029, 971, 778, 735 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d

for C20H26NO3 [M+H]+: 328.1913, found 328.1947.
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N

O

MeO

MeO

47c

N

O

MeO

MeO

48d

LDA, THF, –78 °C

I

21 % yield
39% recovered 47c

then

2,3-Dihydropyridin-4-one 48d.  To a cooled (–78 °C) solution of 47c39 (0.67 g, 2.6

mmol, 1 equiv) in THF (25 mL) was added LDA (30 mL, 0.1 M, in THF, 30 mmol, 1.15

equiv) dropwise over 10 min.  The reaction was stirred for 1 h before 1-iodo-2-

methylpropane (0.57 g, 3.1 mmol, 1.20 equiv) was added dropwise.  After 2 h, the

reaction was brought to room temperature and stirred overnight.  The reaction was

quenched with sat. NH4Cl sol. and transferred to a separatory funnel where the aqueous

phase was extracted four times with CH2Cl2.  The combined organics were washed with

brine, dried over MgSO4, filtered, and concentrated under reduced pressure.  The

resulting crude mixture purified by flash column chromatography (SiO2, 15 x 3 cm, 50%

EtOAc in hexanes'100% EtOAc) to afford recovered 47c (0.26 g, 1.01 mmol, 39%

recovered) and also 48d (0.17 g, 0.54 mmol, 21% yield) as a yellow solid; Rf = 0.20

(50% EtOAc in hexanes).  Spectral data matches that reported previously.47  NMR data is

included to assist the reader.  1H NMR (300 MHz, CDCl3) & 7.14 (s, 1H), 6.65 (s, 1H),

5.62 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.64 (dd, J = 12.5, 5.3 Hz, 1H), 3.45–3.24 (m,

3H), 2.94 (td, J = 6.3, 3.5 Hz, 2H), 2.51–2.35 (m, 1H), 1.80–1.59 (m, 2H), 1.36–1.19 (m,

1H), 0.96 (d, J = 6.2 Hz, 3H), 0.91 (d, J = 6.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) &

195.5, 156.6, 151.5, 148.1, 129.0, 120.9, 110.5, 108.4, 94.4, 56.1, 55.9, 49.2, 42.1, 37.6,

28.6, 25.6, 23.6, 21.9.
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N

O

MeO

MeO

48d

62% yield

N

O

MeO

MeO

CO2allyl

29d

LDA, THF, –78 °C

then allyl cyanoformate

2,3-Dihydropyridin-4-one 29d.  A solution of 48d (149.1 mg, 0.47 mmol in 15 mol of

THF) was cooled to –78 °C and LDA (5.2 mL, 0.1 M in THF, 0.52 mmol, 1.10 equiv)

was added dropwise.  The reaction was stirred for 1 h before allyl cyanoformate (60.2

mg, 0.54 mmol, 1.15 equiv) was added dropwise.  After 12 h, the reaction was quenched

with sat. NH4Cl sol. and allowed to warm to room temperature.  The reaction contents

were transferred to a separatory funnel where the aqueous phase was extracted four times

with CH2Cl2.  The combined organics were washed with brine, dried over MgSO4,

filtered, and concentrated under reduced pressure.  The resulting crude mixture was

purified by flash column chromatography (SiO2, 15 x 3 cm, 50% EtOAc in hexanes) to

afford 2,3-dihydropyridin-4-one 29d (116.0 mg, 0.29 mmol, 62% yield) as a yellow

solid; Rf = 0.40 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.13 (s, 1H),

6.66 (s, 1H), 5.87 (ddt, J = 17.2, 10.3, 5.6 Hz, 1H), 5.59 (s, 1H), 5.30 (dq, J = 17.2, 1.6

Hz, 1H), 5.17 (dq, J = 10.4, 1.3 Hz, 1H), 4.61 (ddt, J = 5.6, 2.7, 1.4 Hz, 2H), 4.05 (d, J =

13.0 Hz, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.62 (d, J = 13.1 Hz, 1H), 3.55 (ddd, J = 12.1,

8.1, 5.7 Hz, 1H), 3.43 (ddd, J = 12.2, 6.9, 5.4 Hz, 1H), 3.00–2.77 (m, 2H), 2.23–2.06 (m,

1H), 1.79–1.60 (m, 2H), 0.96 (d, J = 6.2 Hz, 3H), 0.90 (d, J = 6.2 Hz, 3H);  13C NMR

(125 MHz, CDCl3) & 188.1, 171.0, 155.7, 151.6, 148.0, 131.8, 129.0, 120.5, 118.3, 110.3,

108.4, 92.8, 65.7, 56.5, 56.0, 56.0, 54.5, 48.6, 40.4, 28.3, 25.0, 24.4, 23.5;   IR (Neat Film

NaCl) 2955, 1720, 1625, 1583, 1544, 1495, 1343, 1237, 1211, 1167, 11523, 1120, 1016



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 59

cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C23H30NO5 [M+H]
+: 400.2124, found

400.2110.

1.4.2.3.5 2,3-Dihydropyridin-4-one Allylic Alkylation Products

N

Cbz

O

O

O

29a

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C

98% yield

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

30a
84% ee

N

Cbz

O

2,3-Dihydropyridin-4-one 30a.  2,3-Dihydropyridin-4-one 29a (27.6 mg, 0.084 mmol,

1.0 equiv) was preloaded in a 1 dram vial and cycled into a glove box.  A separate 1 dram

vial was loaded with (S)-(CF3)3-t-Bu-PHOX (8, 4.1 mg, 10.5 µmol, 0.125 equiv),

Pd2(dba)3 (3.9 mg, 4.20 µmol, 0.05 equiv), and a magnetic stir-bar.  Toluene (1.6 mL)

was added and the black suspension was stirred at 30 °C in a heating block for 30 min.

2,3-Dihydropyridin-4-one 29a was dissolved in 1 mL of toluene and added to the orange

catalyst solution, causing an immediate color change to olive green.  The vial was capped

with a Teflon screw cap and the reaction was stirred for 14 h at 40 °C in the glove box.

Upon completion of the reaction, the vial was allowed to cool to room temperature and

removed from the glove box.  The reaction was concentrated under reduced pressure and

the resulting brown oil was purified by flash-chromatography (1:1 Et2O/hexanes) to

afford 2,3-dihydropyridin-4-one 30a (23.7 mg, 0.083 mmol, 98%) as a colorless oil; Rf =

0.73 (1:1 Et2O/hexanes); 1H NMR (500 MHz, CDCl3) & 7.78 (s, 1H), 7.42–7.36 (m, 5H),

5.69 (td, J = 17.3, 7.5 Hz, 1H), 5.27 (d, J = 2.7 Hz, 3H), 5.05 (dd, J = 29.7, 13.4 Hz, 2H),
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3.91 (d, J = 13.4 Hz, 1H), 3.58 (d, J = 11.8 Hz, 1H), 2.22 (ddd, J = 46.4, 13.8, 7.5 Hz,

2H), 1.07 (s, 3H); 13C NMR (125 MHz, CDCl3) & 198.3, 152.7, 141.7, 135.0, 132.6, 128.8,

128.7, 128.4, 119.2, 106.4, 69.1, 51.4, 43.4, 39.4, 19.5; IR (Neat Film, NaCl) 2922, 1728,

1673, 1602, 1498, 1453, 1416, 1381, 1342, 1305, 1232, 1200, 1144, 1119, 1088, 956,

913, 813, 761 c m-1; HRMS (MM: ESI/APCI+) m/z calc’d for C17H20NO3 [M+H]+:

286.1443, found 286.1438; [!]D
25.0 +9.88 (c 1.15, CHCl3, 84% ee); Thar SFC conditions:

10% MeOH in CO2, 3 mL/min, Chiralpak AD-H column, % = 254 nm, tR (min): major =

2.80, minor = 3.13.

30b
86% ee

29b

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

94% yield

N

O

O

O

Bn

N

O

Bn

2,3-Dihydropyridin-4-one 30b.  In a glove box, Pd2(dba)3 (2.3 mg, 0.0025 mmol, 5.0

mol %) and (S)-(CF3)3-t-BuPHOX (8, 3.7 mg, 0.00625 mmol, 12.5 mol %) were added to

a scintillation vial equipped with a stir bar.  The vial was charged with toluene (0.5 mL)

and heated at 40 °C for 30 min.  2,3-Dihydropyridin-4-one 29b (14.3 mg, 0.050 mmol,

1.00 equiv) and additional toluene (1.0 mL, total added = 1.5 mL, 0.033 M) were added,

producing a green solution.  The vial was sealed and stirred at 40 °C until the starting

material was fully converted, determined by LCMS.  The reaction was filtered through a

celite pad, rinsed with EtOAc, and concentrated under reduced pressure.  The crude oil

was purified by flash chromatography (SiO2, 5 x 1 cm, 30% EtOAc in hexanes) to afford
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2,3-dihydropyridin-4-one 30b (11.3 mg, 0.047 mmol, 94% yield) as a yellow oil; Rf =

0.30 (30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.38–7.25 (m, 3H),

7.24–7.14 (m, 2H), 7.03 (d, J = 7.4 Hz, 1H), 5.54 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 4.94

(ddt, J = 9.9, 1.9, 0.9 Hz, 1H), 4.91–4.81 (m, 2H), 4.27 (d, J = 3.1 Hz, 2H), 3.07 (d, J =

13.0 Hz, 1H), 2.90 (d, J = 13.0 Hz, 1H), 2.22–1.97 (m, 2H), 0.90 (s, 3H); 13C NMR (125

MHz, CDCl3) & 196.5, 152.3, 135.6, 133.6, 129.0, 129.0, 129.0, 128.3, 128.0, 118.3, 96.9,

60.1, 55.9, 42.7, 39.7, 20.1, 20.0; IR (Neat Film NaCl) 3067, 3029, 2962, 2926, 1634,

1593, 1455, 1359, 1321, 1204, 1172, 1076, 1001, 916, 795 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C18H20NO [M+H]+: 242.1545, found 242.1553; [!]D
25.0 +86.46 (c

1.16, CHCl3, 86% ee); HPLC conditions: 10% IPA in hexanes, 1 mL/min, Chiralcel OJ

column, % = 210 nm, tR (min): major = 18.77, minor = 21.21.

30c
88% ee

29c

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

81% yield

N

O

O

O

Bn

N

O

Bn

2,3-Dihydropyridin-4-one 30c.  In a glove box, Pd2(dba)3 (1.4 mg, 0.0015 mmol, 5.0

mol %) and (S)-(CF3)3-t-BuPHOX (8, 2.2 mg, 0.00375 mmol, 12.5 mol %) were added to

a scintillation vial equipped with a stir bar.  The vial was charged with toluene (0.5 mL)

and heated at 40 °C for 30 min.  2,3-Dihydropyridin-4-one 29c (9.8 mg, 0.030 mmol,

1.00 equiv) and additional toluene (0.5 mL, total added = 1.0 mL, 0.030 M) were added,

producing a green solution.  The vial was sealed and stirred at 40 °C until the starting
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material was fully converted, determined by TLC.  The reaction was filtered through a

celite pad, rinsed with EtOAc, and concentrated under reduced pressure.  The crude oil

was purified by flash chromatography (SiO2, 5 x 1 cm, 30% EtOAc in hexanes) to afford

2,3-dihydropyridin-4-one 30c (6.9 mg, 0.024 mmol, 81% yield) as a yellow oil; Rf = 0.40

(30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.45–7.32 (m, 3H), 7.29–7.22

(m, 2H), 7.05 (d, J = 7.4 Hz, 1H), 5.62 (dddd, J = 17.1, 10.1, 7.8, 7.0 Hz, 1H), 5.00 (ddt,

J = 10.1, 2.1, 1.0 Hz, 1H), 4.97–4.91 (m, 2H), 4.33 (s, 2H), 3.13 (d, J = 3.2 Hz, 2H),

2.34–2.24 (m, 1H), 2.16 (ddt, J = 14.1, 7.8, 1.1 Hz, 1H), 1.61 (qd, J = 6.7, 5.6 Hz, 1H),

1.47 (dd, J = 14.2, 6.3 Hz, 1H), 1.33 (dd, J = 14.2, 5.5 Hz, 1H), 0.84 (d, J = 6.6 Hz, 3H),

0.82 (d, J = 6.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) & 196.7, 152.4, 135.7, 133.7,

129.1, 128.5, 128.1, 118.4, 97.1, 60.2, 56.0, 42.8, 39.8, 20.2.; IR (Neat Film NaCl) 3072,

3029, 2954, 2867, 1633, 1593, 1494, 1455, 1385, 1361, 1296, 1205, 1173, 1105, 1076,

1028, 998, 793, 736 cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C19H26NO [M+H]+:

284.2014, found 284.2023; [!]D
25.0 +50.23 (c 0.65, CHCl3, 88% ee); HPLC conditions:

7% IPA in hexanes, 1 mL/min, Chiralcel OJ column, % = 210 nm, tR (min): major =

11.44, minor = 14.80.
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N

O

MeO

MeO

30d
90% ee

N

O

CO2allyl

MeO

MeO

29d

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5.0 mol %)

toluene, 40 °C

81% yield

2,3-Dihydropyridin-4-one 30d.  Pd2(dba)3 (1.4 mg, 0.0015 mmol, 5.0 mol %) and (S)-

(CF3)3-t-BuPHOX (8, 2.2 mg, 0.00375 mmol, 12.5 mol %) were added to an oven-dried

Schlenk tube equipped with a magnetic stir bar, and the tube was backfilled with argon 3

times.  The tube was charged with toluene (1 mL) and heated at 40 °C for 30 min,

generating a red/orange solution.  2,3-Dihydropyridin-4-one 29d (11.9 mg, 0.03 mmol,

1.00 equiv) were added and the tube was lowered into a heating block (40 °C).  After 3 h,

TLC analysis indicated the reaction was complete.  Consequently, the reaction was

filtered through a silica gel plug, rinsed with EtOAc, and concentrated under reduced

pressure.  The crude mixture was purified by flash column chromatography (SiO2, 10 x 2

cm, 50% EtOAc in hexanes) to afford dihydropyridine-4-one 30d (8.6 mg, 0.0242 mmol,

81% yield) as yellow oil; Rf = 0.50 (50% EtOAc in hexanes); 1H NMR (500 MHz,

CDCl3) & 7.16 (s, 1H), 6.66 (s, 1H), 5.82 (ddt, J = 17.4, 10.2, 7.4 Hz, 1H), 5.62 (s, 1H),

5.10–5.03 (m, 2H), 3.91 (s, 3H), 3.87 (s, 3H), 3.39 (s, 2H), 3.37 (td, J = 6.5, 1.5 Hz, 2H),

2.99–2.89 (m, 2H), 2.43 (ddt, J = 13.9, 7.2, 1.3 Hz, 1H), 2.25 (ddt, J = 14.0, 7.7, 1.1 Hz,

1H), 1.74 (hd, J = 6.6, 5.0 Hz, 1H), 1.66 (dd, J = 14.1, 6.5 Hz, 1H), 1.44 (dd, J = 14.1, 5.1

Hz, 1H), 0.94 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3)

& 196.3, 155.6, 151.4, 148.0, 134.7, 128.7, 120.8, 117.9, 110.4, 108.3, 94.3, 58.9, 56.0,

48.9, 46.1, 41.7, 39.2, 28.4, 25.1, 24.5, 24.1; IR (Neat Film NaCl) 2953, 1622, 1586,
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1549, 1495, 1464, 1342, 1212, 1173, 1110, 1016, 913, 794 cm-1; HRMS (MM: ESI-

APCI+) m/z calc’d for C22H30NO3 [M+H]
+: 356.2147, found 356.2221; [!]D

25.0 +32.49 (c

0.71, CHCl3, 90% ee); HPLC conditions: 30% IPA in hexanes, 1 mL/min, Chiralpak AD

column, % = 254 nm, tR (min): major = 21.87, minor = 18.59.

1.4.2.4 Preparation of Lactams

1.4.2.4.6 Lactam Allylic Alkylation Precursors

HN

O

O

O

Et3N, DMAP

THF, 0!23 °C

Cl

O

N

O

O

OO

49 4i89% yield

Lactam 4i.  Lactam 4910 (117.8 mg, 0.597 mmol, 1.00 equiv) was transferred to a flame-

dried 15 mL round-bottom flask using THF (4 x 0.5 mL + 1 x 0.4 mL rinses, total = 2.4

mL, 0.25 M).  Et3N (250 µL, 1.79 mmol, 3.00 equiv) and DMAP (9.3 mg, 0.0761 mmol,

13 mol%) were added and the flask was lowered into a 0 °C bath (ice/water).

Cyclohexanecarbonyl chloride (160 µL, 1.20 mmol, 2.00 equiv) was added dropwise, and

the reaction mixture transitioned from a solution to a white slurry.  The ice bath expired

gradually as the reaction was stirred overnight.  After 15 h of stirring, no starting material

remained by TLC analysis.  The reaction was subsequently quenched with brine (15 mL)

and transferred to a separatory funnel where the aqueous layer was extracted four times

with EtOAc.  The combined organics (100 mL) were rinsed twice with brine (20 mL),

dried over Na2SO4, filtered, and concentrated under reduced pressure.  The resulting

crude oil was purified by flash column chromatography (SiO2, 27.5 x 2 cm, 100%



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 65

hexanes'10% EtOAc in hexanes) to afford lactam 4i (163.5 mg, 0.532 mmol, 89%

yield) as a yellow oil; Rf = 0.60 (30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) &

5.88 (dddd, J = 17.1, 10.4, 5.8, 5.8 Hz, 1H), 5.32 (dq, J = 17.2, 1.5 Hz, 1H), 5.25 (dq, J =

10.4, 1.2 Hz, 1H), 4.64 (ddt, J = 5.8, 2.5, 1.3 Hz, 2H), 3.77 (ddd, J = 13.1, 7.7, 5.1 Hz,

1H), 3.58 (dddd, J = 13.4, 7.0, 5.0, 1.1 Hz, 1H), 3.27 (tt, J = 11.4, 3.2 Hz, 1H), 2.42

(dddd, J = 13.4, 6.0, 4.9, 0.9 Hz, 1H), 1.95 (dtd, J = 10.5, 3.5, 1.8 Hz, 1H), 1.92–1.80 (m,

3H), 1.79–1.70 (m, 3H), 1.67 (dtt, J = 10.8, 3.2, 1.5 Hz, 1H), 1.52 (s, 3H), 1.47–1.34 (m,

2H), 1.34–1.16 (m, 3H); 13C NMR (125 MHz, CDCl3) & 181.3, 173.5, 172.7, 131.4,

119.2, 66.4, 53.5, 45.7, 44.6, 33.1, 30.1, 29.6, 26.1, 25.9, 25.8, 23.0, 20.3; IR (Neat Film

NaCl) 3086, 2931, 2855, 1738, 1694, 1652, 1479, 1451, 1378, 1330, 1301, 1249, 1218,

1196, 1159, 1134, 1073, 1053, 1032, 981, 957, 939, 896, 887, 842, 796, 773 cm-1; HRMS

(MM: ESI-APCI+) m/z calc’d for C17H26O4N [M+H]
+: 308.1856, found 308.1871.

HN

O

O

O

Et3N, DMAP, PivCl

THF, 0!23 °C

N

O

O

OO

49 4j89% yield

Lactam 4j.  Lactam 499 (480 mg, 2.4 mmol, 1.0 equiv) in a 25 mL round-bottom flask

equipped with a magnetic stir bar was taken up in THF (9.6 mL, 0.25 M).  Et3N (1.0 mL,

7.2  mmol, 3.0 equiv) and DMAP (29 mg, 0.24 mmol, 0.10 equiv) were added and the

flask was lowered into a 0 °C bath (ice/water).  Pivaloyl chloride (0.59 mL, 4.8 mmol,

2.0 equiv) was added dropwise and the reaction mixture transitioned from a solution to a

white slurry.  The ice bath expired gradually as the reaction was stirred overnight.  After

24 h of stirring, TLC analysis indicated that conversion had ceased at approximately
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90%.  The reaction was subsequently diluted with 20 mL EtOAc, quenched with brine

(20 mL), and transferred to a separatory funnel where the aqueous layer was extracted

three times with EtOAc (20 mL).  The combined organics were washed twice with brine

(20 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure.  The

resulting crude oil was purified by flash column chromatography (SiO2, 11 x 3 cm, 20%

EtOAc in hexanes) to afford lactam 4j (612 mg, 2.18 mmol, 89% yield) as a pale yellow

oil; Rf = 0.37 (20% EtOAc in hexanes); 1
H NMR (500 MHz, CDCl3) & 5.90 (ddt, J =

17.2, 10.4, 5.9 Hz, 1H), 5.33 (dq, J = 17.2, 1.5 Hz, 1H), 5.25 (dq, J = 10.4, 1.3 Hz, 1H),

4.70–4.59 (m, 2H), 3.62 (ddd, J = 12.8, 8.2, 4.9 Hz, 1H), 3.45 (dddd, J = 12.4, 6.2, 4.9,

1.0 Hz, 1H), 2.40 (dddd, J = 13.6, 7.1, 4.0, 1.0 Hz, 1H), 2.01–1.83 (m, 2H), 1.74 (ddd, J

= 13.7, 9.5, 4.1 Hz, 1H), 1.52 (s, 3H), 1.29 (s, 9H); 
13

C NMR (125 MHz, CDCl3) & 190.8,

172.5, 131.7, 119.2, 66.4, 52.5, 47.9, 44.5, 33.6, 28.0, 22.8, 20.3; IR (Neat Film NaCl)

3434, 2090, 1650, 1257, 1125 cm–1; HRMS (MM: ESI-APCI+) m/z calc'd for C15H24NO4

[M+H]+: 282.1700, found 282.1705.

1.4.2.4.7 Lactam Allylic Alkylation Products

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C

63% yield

N

OO

5i
95% ee

N

O

O

OO

4i

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

Lactam 5i.  Pd2(dba)3 (16.4 mg, 0.0150 mmol, 5.0 mol %) and (S)-(CF3)3-t-BuPHOX (8,

22.1 mg, 0.0374 mmol, 12.5 mol %) were added to an oven-dried scintillation vial

equipped with a magnetic stir bar and the vial was cycled into a glove box.  The vial was
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charged with toluene (2.06 mL) and stirred at ambient temperature for 30 min, generating 

a red/orange solution. Lactam 4i (91.9 mg, 0.299 mmol, 1.00 equiv) was transferred to 

the scintillation vial with toluene (3 x 2 mL + 1 x 1 mL rinses, total = 9.06 mL, 0.033 M,) 

producing a green solution.  The vial was sealed with a Teflon-lined cap, removed from 

the glove box, and lowered into a heating block (40 °C).  After 7 days, the reaction was 

filtered through a silica gel plug, rinsed with EtOAc, and concentrated under reduced 

pressure.  The crude oil was purified by flash column chromatography (SiO2, 27.5 x 2 

cm, 100% hexanes'5%'10% EtOAc in hexanes) to afford recovered lactam 4i (17.2 

mg, 0.0560 mmol, 19% recovered) and lactam 5i (49.8 mg, 0.189 mmol, 63% yield, 78%

yield based on recovered lactam 4i) as a yellow oil; Rf = 0.73 (30% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) & 5.74 (dddd, J = 16.6, 10.4, 7.8, 6.9 Hz, 1H), 5.13–5.06 (m, 

2H), 3.76–3.67 (m, 1H), 3.57–3.49 (m, 1H), 3.18 (tt, J = 11.4, 3.3 Hz, 1H), 2.51 (ddt, J = 

13.6, 6.9, 1.2 Hz, 1H), 2.27 (ddt, J = 13.6, 7.8, 1.1 Hz, 1H), 1.90 (dddd, J = 12.7, 5.5, 2.9, 

1.4 Hz, 1H), 1.87–1.72 (m, 7H), 1.67 (dtt, J = 10.8, 3.5, 1.5 Hz, 1H), 1.62–1.56 (m, 1H), 

1.42 (dtdd, J = 12.9, 12.0, 11.2, 3.2 Hz, 2H), 1.35–1.19 (m, 2H), 1.26 (s, 3H); 13C NMR 

(125 MHz, CDCl3) & 181.9, 179.5, 133.5, 118.9, 46.1, 45.8, 45.0, 44.5, 33.3, 30.0, 30.0, 

26.1, 25.9, 25.9, 25.8, 19.8; IR (Neat Film NaCl)  3076, 2930, 2854, 1690, 1478, 1451, 

1375, 1329, 1313, 1286, 1246, 1198, 1158, 1136, 1089, 1072, 1031, 996, 975, 919, 759 

cm-1; HRMS (MM: ESI-APCI+) m/z calc’d for C16H26O2N [M+H]
+: 264.1958, found 

264.1945; [!]D
25.0 –96.13 (c 1.06, CHCl3, 95% ee); JASCO SFC conditions: 1% IPA in 

CO2, 5 mL/min, Chiralcel OJ-H column, % = 222 nm, tR (min): major = 2.53, minor =

2.13.
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(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C

46% yield

N

OO

5j
96% ee

N

O

O

OO

4j

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

Lactam 5j.  Pd2(pmdba)3 (27 mg, 25 µmol, 5.0 mol %) and (S)-(CF3)3-t-BuPHOX (8, 37

mg, 63 µmol, 12.5 mol %) were added to an oven-dried 20 mL scintillation vial equipped

with a magnetic stir bar in a glove box.  The vial was charged with toluene (12 mL) and

stirred at ambient temperature (28 °C) for 30 min, resulting in a deep orange solution.

Lactam 4j (140  mg, 0.50 mmol, 1.0 equiv) was transferred to the scintillation vial with

toluene (2 mL, total = 15 mL, 0.033 M), producing a light green solution.  The vial was

sealed with a Teflon-lined cap and lowered into a heating block (40 °C).  After 16 days,

TLC analysis indicated that conversion had ceased at approximately 50% and the vial

was removed from the glove box and the reaction was filtered through a silica gel plug,

rinsed with Et2O, and concentrated under reduced pressure.  The crude oil was purified

by flash column chromatography (SiO2, 15 x 2.5 cm, 5% EtOAc in hexanes) to afford

lactam 5j (54 mg, 0.23 mmol, 46% yield) as a colorless oil; Rf = 0.58 (20% EtOAc in

hexanes); 
1
H NMR (500 MHz, CDCl3) & 5.77 (dddd, J = 17.1, 10.2, 7.8, 7.0 Hz, 1H),

5.16–5.05 (m, 2H), 3.53–3.38 (m, 2H), 2.51 (ddt, J = 13.7, 7.0, 1.3 Hz, 1H), 2.28 (ddt, J

= 13.7, 7.7, 1.1 Hz, 1H), 1.92–1.80 (m, 3H), 1.61–1.58 (m, 1H), 1.27 (s, 9H), 1.25 (s,

3H); 
13

C NMR (125 MHz, CDCl3) & 191.5, 179.0, 133.7, 118.9, 48.5, 44.2, 43.4, 43.3,

33.4, 28.1, 25.0, 19.8; IR (Neat Film NaCl) 2963, 1684, 1482, 1457, 1391, 1282, 1259,

1156, 917 cm
–1

; HRMS (MM: ESI-APCI) m/z calc'd for C14H24NO2 [M+H]
+
: 238.1802,



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 69

found 238.1809; [!]D
25.0

 –7.13 (c 2.45, CHCl3, 96% ee); HPLC conditions: 5% IPA in

hexanes, 1 mL/min, Chiralcel OD-H column, % = 210 nm, tR (min): major = 7.95, minor

= 6.52.

1.4.2.5 Preparation of Imides

1.4.2.5.8 Imide Allylic Alkylation Precursors

N

O

O

N

O

O

O

O

50 6c

1. LiHMDS, THF, –78 °C ! – 30 °C
    then allyl cyanoformate, –78 °C

2.  NaH, THF, 0 °C ! 23  °C
     then MeI, 0 °C ! 23  °C

50% yield, 2 steps

N-Methyl imide 6c. A flame-dried 200 mL round-bottom flask containing a magnetic

stir bar was cycled into a glove box and loaded with LiHMDS (5.69 g, 34.0 mmol, 1.7

equiv).  The flask was removed from the glove box, reconnected to a manifold, and

charged with THF (100 mL, 0.2 M) and lowered into a –78 °C bath.  Imide 5048 (2.54 g,

20.0 mmol, 1.0 equiv) was added neat.  After 1 h at –78 °C, the solution was warmed to

30 °C and stirred for 30 min before cooling back to –78 °C.  Allyl cyanoformate (2.67 g,

24.0 mmol, 1.2 equiv) was added neat and the reaction was stirred for 1.5 h before TLC

analysis indicated consumption of starting material.  The reaction was subsequently

quenched with brine and transferred to a separatory funnel where the aqueous layer was

extracted with EtOAc (4 x 50 mL).  The combined organics were rinsed twice with brine,

dried over Na2SO4, filtered, and concentrated under reduced pressure.  The resulting

crude oil was purified by flash column chromatography (SiO2, 5 cm x 7 inches,

25%'30%'40% EtOAc in hexanes) to afford an intermediate oil (2.63 g, 0.45 mmol,

62% yield) that was moved on to the next step.
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A flame-dried 200 mL flask equipped with a magnetic stir bar was charged with

sodium hydride (60% in mineral oil, 312.5 mg, 7.81 mmol, 1.1 equiv) and THF (71 mL,

0.1 M) and cooled to 0 °C.  A portion of the oil from the previous step (1.5 g, 7.10 mmol,

1.0 equiv) was added neat.  After 1.5 h at 0 °C, the reaction was warmed to room

temperature and stirred for 1 h before cooling back to 0 °C.  Methyl iodide (886 µL,

14.20 mmol, 2.0 equiv) was added and the reaction was stirred for 2 h before warming to

room temperature.  After 15 h, the reaction was poured over a mixture of water and brine

and transferred to a separatory funnel where the aqueous layer was extracted with EtOAc

(4 x 50 mL).  The combined organics were rinsed twice with aq. Na2S2O3 (sat. solution

half diluted) and twice with brine, dried over Na2SO4, filtered, and concentrated under

reduced pressure.  The resulting crude oil was purified by flash column chromatography

(SiO2, 5 cm x 8 inches, 10% '20% EtOAc in hexanes) to afford imide 6c (1.28 g, 5.69

mmol, 80% yield, 50% yield over two steps); Rf = 0.32 (35% EtOAc in hexanes); 1H

NMR (500 MHz, CDCl3) & 5.85 (ddt, J = 17.2, 10.5, 5.7 Hz, 1H), 5.29 (dq, J = 17.2, 1.5

Hz, 1H), 5.25 (dq, J = 10.5, 1.2 Hz, 1H), 4.63 (ddt, J = 5.6, 4.1, 1.4 Hz, 2H), 3.18 (s, 3H),

2.72 (ddd, J = 18.1, 5.4, 4.4 Hz, 1H), 2.64 (ddd, J = 17.9, 11.6, 5.4 Hz, 1H), 2.35 (ddd, J

= 13.9, 5.4, 4.4 Hz, 1H), 1.89 (ddd, J = 13.9, 11.6, 5.4 Hz, 1H), 1.56 (s, 3H); 13C NMR

(125 MHz, CDCl3) & 172.0, 171.8, 171.3, 131.2, 119.3, 66.5, 50.9, 30.0, 28.7, 27.3, 21.9;

IR (Neat Film NaCl) 2987, 2943, 1726, 1678, 1458, 1416, 1381, 1356, 1305, 1261, 1247,

1182, 1106, 1036, 993, 938 cm–1; HRMS (MM: ESI-APCI+) m/z calc’d for C11H18NO4

[M+H]
+: 226.1074, found 226.1078.
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i. BnONH2, CH2Cl2

ii. AcCl, EtOAc, reflux

63% yield

O

O

O

N

O

BnO

O

50

N-benzyloxyimide 50.  Benzyloxyamine hydrochloride (3.15 g, 19.7 mmol) in a 100 mL

round-bottom flask was taken up in dichloromethane (30 mL) and saturated aqueous

K2CO3 (30 mL) and stirred for 30 min.  The mixture was transferred to a separatory

funnel and the phases were separated.  The aqueous phase was extracted twice with

dichloromethane (30 mL), the combined organic phases were dried over Na2SO4, filtered,

and concentrated under reduced pressure.  A portion of the resulting crude colorless oil

(1.23 g, 10.0 mmol, 1.00 equiv) was diluted with dichloromethane (10 mL, 1.0 M) in a 50

mL round-bottom flask and glutaric anhydride (1.14 g, 10.0 mmol, 1.00 equiv) was

added.  An exotherm was observed, and the mixture was immediately concentrated under

reduced pressure.  The resulting residue was taken up in EtOAc (13 mL, 0.75 M) and

acetyl chloride (2.00 mL, 2.81 mmol, 2.81 equiv) was added.  A water condenser was

affixed and the reaction was heated to a gentle reflux (oil bath, 85 °C) for 18 h.  The

reaction was diluted with EtOAc (30 mL), dried over Na2SO4, filtered, and concentrated

under reduced pressure.  The crude solid was purified by flash column chromatography

(SiO2, 6 x 5 cm, 20% EtOAc in hexanes'50% Et2O in dichloromethane) to afford N-

benzyloxyimide 50 (1.37 g, 6.25 mmol, 63% yield) as a white solid; Rf = 0.64 (20% Et2O

in methylene chloride); 
1
H NMR (500 MHz, CDCl3) & 7.56–7.45 (m, 2H), 7.41–7.29 (m,

3H), 5.01 (s, 2H), 2.74–2.60 (m, 4H), 1.94–1.85 (m, 2H); 
13

C NMR (125 MHz, CDCl3) &

168.48 , 133.95 , 130.09 , 129.23 , 128.51 , 78.17 , 33.47 , 17.05; IR (Neat Film NaCl)

3033, 2957, 2902, 1689, 1457, 1381, 1350, 1331, 1251, 1175, 1134, 1087, 1056, 999,
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968, 919, 893, 838, 759 cm
–1

; HRMS (MM: ESI-APCI) m/z calc'd for C12H14NO3

[M+H]
+
: 220.0968, found 220.0971.

N
BnO

O

O

N
BnO

O

O

O

O

50 6d73% yield, 2 steps

1. LiHMDS, THF, –78 °C
    then allyl cyanoformate

2.  Cs2CO3, MeI
     MeCN, 50 °C

N-Benzyloxy imide 6d.  Acylation performed in manner analogous to N-methyl imide 6c

at –78 °C using N-benzyloxy imide 50 as starting material.  Alkylation performed in

manner analogous to "-ketoester 45a at 50 °C.  N-Benzyloxy imide 6d was isolated after

flash column chromatography (SiO2, 17 to 25% EtOAc in hexanes) as a colorless oil

(73% yield over two steps); Rf = 0.20 (20% EtOAc in hexanes); 1H NMR (500 MHz,

CDCl3) & 7.53 (m, 2H), 7.37 (m, 3H), 5.87 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.33 (dq, J =

17.2, 1.5 Hz, 1H), 5.28 (dq, J = 10.4, 1.2 Hz, 1H), 5.01 (s, 2H), 4.66 (ddt, J = 13.0, 5.9,

1.3 Hz, 1H), 4.65 (ddt, J = 13.0, 5.9, 1.3 Hz, 1H), 2.72 (m, 2H), 2.30 (ddd, J = 14.1, 5.2,

4.0 Hz, 1H), 1.86 (ddd, J = 14.1, 11.8, 5.5 Hz, 1H), 1.56 (s, 3H); 13C NMR (125 MHz,

CDCl3) & 170.7, 167.9, 167.4, 133.9, 130.9, 130.1, 129.2, 128.5, 119.9, 77.9, 66.9, 52.1,

30.5, 28.5, 21.6; IR (Neat Film NaCl) 2943, 1738, 1733, 1708, 1451, 1255, 1200, 1168,

976 cm–1; HRMS (MM: ESI-APCI) m/z calc'd for C17H20NO5 [M+H]+: 318.1336, found

318.1339.
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N
BnO

O

O

N
BnO

O

O

Et
O

O

50 6e54% yield, 2 steps

1. LiHMDS, THF, –78 °C
    then allyl cyanoformate

2.  Cs2CO3, EtI
     MeCN, 85 °C

N-Benzyloxy imide 6e.  Acylation performed in manner analogous to N-methyl imide 6c

at –78 °C using N-benzyloxy imide 50 as starting material.  Alkylation performed in

manner analogous to "-ketoester 45a at 85 °C using ethyl iodide.  N-Benzyloxy imide 6e

was isolated after flash column chromatography (SiO2, 14 to 20% EtOAc in hexanes) as a

colorless oil (54% yield over two steps); Rf = 0.24 (20% EtOAc in hexanes); 1H NMR

(500 MHz, CDCl3) & 7.53 (m, 2H), 7.37 (m, 3H), 5.87 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H),

5.34 (dq, J = 17.2, 1.5 Hz, 1H), 5.27 (dq, J = 10.4, 1.2 Hz, 1H), 5.0 (s, 2H), 4.66 (dt, J =

5.9, 1.3 Hz, 2H), 2.74 (m, 2H), 2.22 (ddd, J = 14.0, 5.2, 3.5 Hz, 1H), 2.05(m, 2H), 1.96

(ddd, J = 14.0, 12.3, 5.4 Hz, 1H), 0.95 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, CDCl3)

& 170.2, 167.5, 167.1, 134.0, 131.0, 130.1, 129.3, 128.6, 120.0, 77.9, 66.8, 56.2, 30.4,

28.3, 24.8, 9.0; IR (Neat Film NaCl) 2943, 1733, 1713, 1648, 1454, 1237, 1190, 1168,

976, 752 cm–1; HRMS (MM: ESI-APCI) m/z calc'd for C18H22NO5 [M+H]+: 332.1492,

found 332.1493.
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1.4.2.5.9 Imide Allylic Alkylation Products

N

O

O

O

O

6c

N

O

O

7c
76% ee

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C, 20 d

32% yield

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

N-Methyl imide 7c.  Prepared in a manner analogous to lactam 5h using N-methyl imide

6c as starting material.  After 20 d, the reaction was filtered, concentrated, and N-Methyl

imide 7c was isolated following flash column chromatography (SiO2, 3 cm x 10 inches,

5%'7%'9%'10% '12% EtOAc in hexanes) as an oil (32% yield); Rf = 0.36 (20%

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 5.71 (dddd, J = 17.1, 10.2, 7.6, 7.1

Hz, 1H), 5.15–5.08 (m, 2H), 3.12 (s, 3H), 2.75–2.62 (m, 2H), 2.47 (ddt, J = 13.8, 7.1, 1.2

Hz, 1H), 2.29 (ddt, J = 13.8, 7.7, 1.1 Hz, 1H), 1.92 (ddd, J = 14.3, 8.6, 5.9 Hz, 1H), 1.66

(ddd, J = 14.0, 7.1, 5.8 Hz, 1H), 1.24 (s, 3H); 13C NMR (125 MHz, CDCl3) & 177.6,

172.5, 132.8, 119.5, 42.6, 41.7, 29.3, 27.8, 27.0, 23.4; IR (Neat Film NaCl) 2971, 2937,

2876, 1723, 1674, 1464, 1415, 1378, 1356, 1291, 1240, 1110, 1036, 998, 919 cm–1;

HRMS (MM: ESI-APCI) m/z calc'd for C10H16NO2 [M+H]+: 182.1176, found 182.1178;

[!]D
25.0

 –54.19 (c 1.64, CHCl3, 76% ee); HPLC conditions: 3% IPA in hexanes, 1

mL/min, Chiralpak AD column, % = 210 nm, tR (min): major = 11.94, minor = 17.86.
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N
BnO

O

O

O

O

6d

N
BnO

O

O

7d
96% ee

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C

99% yield

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

N-Benzyloxy imide 7d.  Prepared in a manner analogous to lactam 5h using N-

benzyloxy imide 6d as starting material.  N-Benzyloxy imide 7d was isolated after flash

column chromatography (SiO2, 20% EtOAc in hexanes) as a colorless oil (99% yield); Rf

= 0.29 (20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.51 (m, 2H), 7.36 (m,

3H), 5.64 (dddd, J = 17.2, 10.2, 7.7, 7.1 Hz, 1H), 5.09–5.15 (m, 2H), 5.0 (s, 2H),

2.66–2.77 (m, 2H), 2.43 (ddt, J = 13.9, 7.1, 1.2 Hz, 1H), 2.26 (ddt, J = 13.9, 7.7, 1.2 Hz,

1H), 1.87 (ddd, J = 14.3, 8.5, 5.9 Hz, 1H), 1.60 (ddd, J = 14.3, 7.0, 5.7 Hz, 1H), 1.21 (s,

3H); 13C NMR (125 MHz, CDCl3) &  173.4, 168.1, 133.9, 132.3, 130.3, 129.2, 128.5,

119.9, 78.0, 43.1, 42.3, 29.7, 27.6, 23.1; IR (Neat Film NaCl) 3067, 2974, 2935, 1740,

1703, 1700, 1456, 1172, 978, 748 cm–1; HRMS (MM: ESI-APCI) m/z  calc'd for

C16H20NO3 [M+H]+: 274.1438, found 274.1437; [!]D
25.0

 –58.59 (c 1.26, CHCl3, 96% ee);

Thar SFC conditions: 5% MeOH in CO2, 3 mL/min, Chiralcel OJ-H column, % = 210 nm,

tR (min): major = 4.03, minor = 3.64.
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N
BnO

O

O

Et
O

O

6e

N
BnO

O

O

Et

7e
98% ee

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(dba)3 (5 mol %)

toluene, 40 °C

80% yield

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

N-Benzyloxy imide 7e.  Prepared in a manner analogous to lactam 5h using N-benzyloxy

imide 6e as starting material.  N-Benzyloxy imide 7e was isolated after flash column

chromatography (SiO2, 20% EtOAc in hexanes) as a colorless oil (80% yield); Rf = 0.20

(20% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) & 7.51 (m, 2H), 7.36 (m, 3H),

5.63 (dddd, J = 17.3, 10.3, 7.7, 6.9 Hz, 1H), 5.08–5.10 (m, 2H), 4.99 (s, 2H), 2.67–2.76

(m, 2H), 2.46 (ddt, J = 14.0, 6.9, 1.3 Hz, 1H), 2.27 (ddt, J = 14.0, 7.7, 1.1 Hz, 1H), 1.80

(ddd, J = 14.2, 7.9, 6.4 Hz, 1H), 1.76–1.71 (m, 1H), 1.70 (dq, J = 14.2, 7.5 Hz, 1H), 1.62

(dq, J = 14.2, 7.5 Hz, 1H), 0.86 (t, J = 7.5 Hz, 3 H); 13C NMR (125 MHz, CDCl3) &

172.6, 168.0, 134.0, 132.6, 130.2, 129.2, 128.5, 119.6, 78.0, 46.5, 40.0, 29.5, 28.6, 24.7,

8.2; IR (Neat Film NaCl) 3033, 2972, 1739, 1702, 1699, 1455, 1169, 977, 751 cm–1;

HRMS (MM: ESI-APCI) m/z calc'd for C17H22NO3 [M+H]
+
: 288.1594, found 288.1591;

[!]D
25.0

 –35.98 (c 1.98, CHCl3, 98% ee); Thar SFC conditions: 1% MeOH in CO2, 2.5

mL/min, Chiralcel OB-H column, % = 210 nm, tR (min): major = 14.34, minor = 13.39.
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1.4.2.6 Preparation of Enones and Diosphenol Ethers

1.4.2.6.10 Enone and Diosphenol Ether Allylic Alkylation Precursors

O

O

OTMPDA (43)
benzaldehyde

THF/H2O, 23 °C

13a 44
1:1 d.r.

OH

N N

O

O

O

32% yield
63% recovered 13a

Alcohol 44.  Procedure adapted from the literature precedent of Kim.44  A 15 mL round-

bottom flask equipped with a stir bar was charged with enone 13a (852.1 mg, 4.39 mmol,

1.94 equiv), THF (1.4 mL, 1.6 M), benzaldehyde (230 µL, 2.26 mmol, 1.00 equiv), H2O

(1.4 mL, 1.6 M), and TMPDA (43, 380 µL, 2.27 mmol, 1.00 equiv).  The reaction

mixture was a yellow suspension that transitioned to orange over time.  After 6 days, the

reaction was diluted with H2O (10 mL) and transferred to a separatory funnel where the

aqueous phase was extracted four times with CH2Cl2.  The combined organics were dried

over MgSO4, filtered, and concentrated under reduced pressure.  The resulting crude oil

was purified by flash chromatography (SiO2, 25.5 x 3 cm, 100%

hexanes'5%'10%'15%'20% EtOAc in hexanes) to afford recovered enone 13a

(536.0 mg, 2.76 mmol, 63% recovered) pale yellow oil and alcohol 44 (217.7 mg, 0.725

mmol, 32% yield, 45% yield based on recovered enone 13a) as a yellow oil; Rf = 0.28

(30% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) ~1:1 mixture of diastereomers,

see Figure 1.42.1; IR (Neat Film NaCl) 3503 (broad), 3061, 3030, 2980 2934, 1735,

1672, 1492, 1452, 1424, 1379, 1291, 1246, 1187, 1165, 1111, 1018, 982, 936, 760 cm-1;

HRMS (EI+) calc’d for C18H20O4 [M+•]
+: 300.1362, found 300.1376.
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O

O

O

K2CO3, DMP

CH2Cl2, 23 °C

69% yield 13b

OO

O

O

44
1:1 d.r.

OH

Enone 13b.  A scintillation vial containing alcohol 44 (44.5 mg, 0.148 mmol, 1.00 equiv)

was equipped with a stir bar, connected to a manifold, backfilled with Ar, and charged

with CH2Cl2 (1 mL, 0.15 M).  K2CO3 (62.5 mg, 0.452 mmol, 3.05 equiv) and DMP (96.3

mg, 0.227 mmol, 1.53 equiv) were added simultaneously to the vial.  After 2 h of stirring,

no starting material was detected by TLC analysis.  Consequently, the reaction was

diluted with CH2Cl2 (1 mL), filtered through a short celite plug rinsing with CH2Cl2, and

concentrated under reduced pressure.  The resulting crude oil was purified by flash

chromatography (SiO2, 27 x 1 cm, 0.1% Et3N in hexanes'0.1% Et3N and 10% EtOAc in

hexanes) to afford enone 13b (30.4 mg, 0.102 mmol, 69% yield) as a yellow oil; Rf =

0.43 (30% EtOAc in hexanes); 1H NMR (500 MHz, C6D6) & 8.11–8.07 (m, 2H),

7.15–7.08 (m, 3H), 6.62 (ddd, J = 5.0, 2.9, 1.2 Hz, 1H), 5.61 (ddt, J = 17.1, 10.3, 5.7 Hz,

1H), 5.05 (dq, J = 17.2, 1.5 Hz, 1H), 4.92 (dq, J = 10.4, 1.3 Hz, 1H), 4.37 (dt, J = 5.7, 1.4

Hz, 2H), 2.11 (dddd, J = 13.5, 4.8, 3.4, 1.2 Hz, 1H), 2.04 (dddd, J = 20.1, 9.6, 5.1, 2.9 Hz,

1H), 1.59 (dtdd, J = 20.1, 5.1, 3.4, 1.4 Hz, 1H), 1.36–1.27 (m, 1H), 1.32 (s, 3H); 13C

NMR (125 MHz, C6D6) & 194.0, 193.6, 172.1, 150.9, 141.4, 137.6, 133.1, 132.0, 129.9,

128.5, 118.5, 65.9, 53.8, 33.5, 23.6, 20.6; IR (Neat Film NaCl) 3063, 3027, 2981, 2935,

2873, 2855, 2280, 1732, 1668, 1621, 1598, 1581, 1449, 1423, 1378, 1358, 1293, 1265,

1244, 1178, 1157, 1111, 988, 940, 814, 769, 712; HRMS (FAB+) cal’d for C18H18O4

[M+•]
+: 298.1205, found 298.1219.
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O

I

O

I
O

O1. LDA, THF, –78 °C
    then allyl cyanoformate

2. K2CO3, MeI
    acetone, 50 °C

31% yield, 2 steps
42 41

!-Iodoenone 41.  A 50 mL round-bottom flask equipped with a stir bar was charged with

diisopropyl amine (450 µL, 3.21 mmol, 1.10 equiv) and THF (7 mL).  The flask was

lowered into a 0 °C bath (water/ice) and n-BuLi (1.26 mL, 2.43 M in hexanes, 3.06

mmol, 1.05 equiv) was added dropwise over several minutes.  The reaction was stirred

for 15 min before the ice bath was removed and replaced with a –78 °C bath (acetone/dry

ice).  !-Iodoenone 42 (641.3 mg, 2.91 mmol, 1.00 equiv) was transferred via cannula to

the flask using several THF rinses (1 x 6 mL and 2 x 1 mL rinses, total added = 15 mL,

0.19 M), producing a yellow solution.  The reaction was stirred for 1 h before allyl

cyanoformate (330 µL, 3.06 mmol, 1.05 equiv) was added dropwise.  After 2.5 h, no

starting material was observed by 1H NMR analysis and the reaction was subsequently

quenched after an additional hour with sat. NH4Cl solution (10 mL) and allowed to warm

to room temperature.  The reaction contents were transferred to a separatory funnel where

the aqueous phase was extracted four times with Et2O.  The combined organics (100 mL)

were dried over MgSO4, filtered, and concentrated under reduced pressure.  The resulting

crude oil was purified by flash chromatography (SiO2, 27.5 x 3 cm, 100%

hexanes'5%'10% EtOAc in hexanes) to afford a yellow oil (Rf = 0.52, 30% EtOAc in

hexanes) that was moved on to the next step.

The resulting yellow oil was transferred to an argon filled 25 mL Schlenk bomb

(14/20 joint off of an 8 mm Kontes valve) equipped with a magnetic stir bar using several

acetone rinses (ACS reagent grade, 5 x 2 mL).  Additional acetone (3.2 mL, total added =
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13.2 mL, 0.10 M), K2CO3 (367.6 mg, 2.66 mmol, 2.01 equiv), and MeI (170 µL, 2.73

mmol, 2.06 equiv) were added to the bomb.  The Kontes valve was sealed, the bomb was

lowered into a preheated oil bath (50 °C), and the reaction was stirred vigorously.  After

18 h, 1H NMR analysis indicated residual starting material, and consequently more MeI

(90 µL, total added = 260 µL, 4.18 mmol, 3.15 equiv) was added.  After an additional 21

h, no starting material remained by 1H NMR analysis.  Subsequently, the bomb was

removed from the oil bath and allowed to cool to room temperature.  The reaction

contents were filtered through a celite plug rinsing with EtOAc and concentrated under

reduced pressure.  The resulting crude oil was purified by flash chromatography (SiO2, 28

x 2 cm, 100% hexanes'5% EtOAc in hexanes) to afford !-iodoenone 41 (277.8 mg,

0.868 mmol, 31% yield over two steps) as a pale yellow oil; Rf = 0.63 (30% EtOAc in

hexanes); 1H NMR (500 MHz, CDCl3) & 7.64 (ddd, J = 4.7, 3.3, 1.0 Hz, 1H), 5.85 (dddd,

J = 17.2, 10.8, 5.5, 5.5 Hz, 1H), 5.28 (dq, J = 17.2, 1.5 Hz, 1H), 5.22 (dm, J = 10.5 Hz,

1H), 4.64 (dddd, J = 11.5, 6.3, 4.8, 1.5 Hz, 1H), 4.57 (dddd, J = 11.4, 6.2, 4.7, 1.5 Hz,

1H), 2.60–2.51 (m, 2H), 2.42–2.33 (m, 1H), 2.02–1.95 (m, 1H), 1.45 (s, 3H); 13C NMR

(125 MHz, CDCl3) & 190.4, 171.6, 158.1, 131.4, 118.7, 102.0, 66.1, 53.5, 33.3, 27.9,

21.3; IR (Neat Film NaCl) 3085, 2982, 2936, 2874, 2826, 1735, 1696, 1648, 1595, 1457,

1422, 1378, 1323, 1293, 1244, 1178, 1142, 1110, 1089, 1051, 966, 956, 930, 890, 864,

833, 782, 730 cm-1; HRMS (FAB+) calc’d for C11H14O3I [M+H]
+: 320.9988, found

320.9993.
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O

O

OO 1. LHMDS, THF, –78 °C
    then diallyl carbonate

2. K2CO3, MeI
    acetone, 50 °C

57% yield, 2 steps51a 13c

Enone 13c.  A 25 mL round-bottom flask equipped with a magnetic stir bar was cycled

into a glove box, loaded with LHMDS (527.6 mg, 3.15 mmol, 2.10 equiv), removed from

the glove box, and connected to an Ar-filled manifold.  The flask was charged with THF

(1 mL) and lowered into a 0 °C bath (ice/water).  Enone 51a
49

 (279.0 mg, 1.50 mmol,

1.00 equiv) was cannula transferred slowly from a scintillation vial to the flask using

several THF rinses (1 x 4 mL + 2 x 0.5 mL, total added = 6 mL, 0.25 M), generating a

bright red/pink solution.  After the addition was complete, the 0 °C bath was removed

and the reaction was allowed to warm to room temperature.  After 30 min, the flask was

lowered back into the 0 °C bath and diallyl carbonate (230 µL, 1.60 mmol, 1.07 equiv)

was added dropwise, generating an orange solution.  The bath was allowed to expire

overnight.  After 18 h, the reaction was quenched with sat. NH4Cl sol. (10 mL) and

transferred to a separatory funnel where the aqueous layer was extracted five times with

Et2O.  The combined organics (75 mL) were dried over MgSO4, filtered, and

concentrated under reduced pressure.  The resulting crude oil was purified by flash

column chromatography (SiO2, 21 x 2 cm, 100% hexanes' 5%'10% EtOAc in

hexanes) to afford a yellow oil.

The resulting yellow oil (285.8 mg, 1.06 mmol, 1.00 equiv) was transferred to an

Ar-filled 25 mL Schlenk bomb (14/20 joint off of an 8 mm Kontes valve) equipped with

a magnetic stir bar using several acetone rinses (1 x 1.5 mL + 3 x 0.5 mL, total added = 3

mL, 0.35 M).  K2CO3 (292.7 mg, 2.12 mmol, 2.00 equiv) and methyl iodide (180 µL,
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2.89 mmol, 2.73 equiv) were added to the bomb.  The Kontes valve was sealed, the bomb

was lowered into a preheated oil bath (50 °C), and the reaction was stirred vigorously.

After 11 h, 1H NMR analysis indicated residual starting material, and consequently more

methyl iodide (130 µL, total added = 310 µL, 4.98 mmol, 4.71 equiv) was added.  After

an additional 8.5 h, no starting material remained by 1H NMR analysis.  Subsequently,

the bomb was removed from the oil bath and allowed to cool to room temperature.  The

reaction contents were filtered through a celite plug rinsing with CH2Cl2 and concentrated

under reduced pressure.  The resulting crude oil was purified by flash column

chromatography (SiO2, 26.5 x 1.5 cm, 100% hexanes'5% EtOAc in hexanes) to afford

enone 13c (271.2 mg, 0.954 mmol, 64% yield over two steps, 90% purity) as a yellow oil.

This yellow oil was diluted in EtOAc (50 mg/mL) and purified further by preparative

HPLC (10% EtOAc in hexanes) to afford analytically pure enone 13c (242.8 mg, 0.851

mmol, 57% yield over two steps) as a pale yellow oil; Rf = 0.59 (30% EtOAc in hexanes);

1
H NMR (500 MHz, CDCl3) & 7.29–7.25 (m, 2H), 7.21–7.14 (m, 3H), 6.50–6.45 (m, 1H),

5.78 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.24 (dq, J = 17.2, 1.5 Hz, 1H), 5.19 (dq, J = 10.5,

1.1 Hz, 1H), 4.53 (dm, J = 5.6 Hz, 2H), 3.58 (dq, J = 15.7, 1.7 Hz, 1H), 3.51 (dq, J =

15.6, 1.7 Hz, 1H), 2.52–2.40 (m, 2H), 2.34–2.24 (m, 1H), 1.94–1.86 (m, 1H), 1.40 (s,

3H); 
13

C NMR (125 MHz, CDCl3) & 196.6, 172.6, 145.1, 139.5, 138.8, 131.8, 129.3,

128.5, 126.2, 118.4, 65.8, 53.6, 36.0, 33.7, 23.6, 20.6; IR (Neat Film NaCl) 3084, 3061,

3027, 2980, 2934, 1734, 1685, 1603, 1496, 1453, 1430, 1375, 1292, 1246, 1166, 1111,

1077, 1029, 984, 747 cm
–1

; HRMS (MM: ESI-APCI) m/z calc'd for C18H21O3 [M+H]
+
:

285.1485, found 285.1482.
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O

O

OO 1. LHMDS, THF, –78 °C
    then diallyl carbonate

2. K2CO3, MeI
    acetone, 50 °C

30% yield, 2 steps51b 13d

Enone 13d.  A 25 mL round-bottom flask equipped with a magnetic stir bar was cycled

into a glove box, loaded with LHMDS (215.6 mg, 1.29 mmol, 2.12 equiv), removed from

the glove box, and connected to an Ar-filled manifold.  The flask was charged with THF

(0.5 mL) and lowered into a 0 °C bath (ice/water).  Enone 51b
49

 (122.0 mg, 0.609 mmol,

1.00 equiv) was cannula transferred slowly from a scintillation vial to the flask using

several THF rinses (1 x 1 mL + 2 x 0.5 mL, total added = 2.5 mL, 0.24 M), generating a

bright pink solution.  After the addition was complete, the 0 °C bath was removed and the

reaction was allowed to warm to room temperature.  After 30 min, the flask was lowered

back into the 0 °C bath and diallyl carbonate (100 µL, 0.697 mmol, 1.14 equiv) was

added dropwise.  The bath was allowed to expire overnight.  After 18 h, the reaction was

quenched with sat. NH4Cl sol. (5 mL) and transferred to a separatory funnel where the

aqueous layer was extracted five times with Et2O.  The combined organics (70 mL) were

dried over MgSO4, filtered, and concentrated under reduced pressure.  The resulting

crude oil was purified by flash column chromatography (SiO2, 27 x 1.5 cm, 100%

hexanes'5% EtOAc in hexanes) to afford a yellow oil.

The resulting yellow oil (84.6 mg, 0.298 mmol, 1.00 equiv) was transferred to an

Ar-filled 25 mL Schlenk bomb (14/20 joint off of an 8 mm Kontes valve) equipped with

a magnetic stir bar using several acetone rinses (4 x 0.5 mL, total added = 2 mL, 0.15 M).

K2CO3 (87.0 mg, 0.630 mmol, 2.12 equiv) and methyl iodide (100 µL, 1.61 mmol, 5.40

equiv) were added to the bomb.  The Kontes valve was sealed, the bomb was lowered
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into a preheated oil bath (50 °C), and the reaction was stirred vigorously.  After 16 h, 1H

NMR analysis indicated residual starting material, and consequently more methyl iodide

(130 µL, total added = 310 µL, 4.98 mmol, 4.71 equiv) was added.  After an additional

8.5 h, no starting material remained by 1H NMR analysis.  Subsequently, the bomb was

removed from the oil bath and allowed to cool to room temperature.  The reaction

contents were filtered through a celite plug rinsing with CH2Cl2 and concentrated under

reduced pressure.  The resulting crude oil was purified by flash column chromatography

(SiO2, 28 x 1.5 cm, 100% hexanes'2% EtOAc in hexanes) to afford enone 13d (75.6

mg, 0.253 mmol, 42% yield over two steps, 80% purity) as a yellow oil.  This yellow oil

was diluted with EtOAc (50 mg/mL) and purified further by preparative HPLC (10%

EtOAc in hexanes, 50 mL/min) to afford analytically pure enone 13d (54.1 mg, 0.181

mmol, 30% yield over two steps) as a pale yellow oil; Rf = 0.67 (30% EtOAc in hexanes);

1
H NMR (500 MHz, CDCl3) & 7.29–7.24 (m, 2H), 7.20–7.15 (m, 3H), 6.53 (ddq, J = 4.6,

3.3, 1.0 Hz, 1H), 5.87 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.29 (dq, J = 17.2, 1.5 Hz, 1H),

5.22 (dq, J = 10.5, 1.3 Hz, 1H), 4.65–4.57 (m, 2H), 2.74 (ddd, J = 13.4, 9.7, 6.1 Hz, 1H),

2.67 (ddd, J = 13.4, 9.3, 6.1 Hz, 1H), 2.57 (dddq, J = 13.8, 9.2, 6.4, 1.5 Hz, 1H),

2.52–2.37 (m, 2H), 2.29 (qt, J = 4.9, 1.3 Hz, 1H), 2.25 (ddt, J = 9.9, 4.8, 1.3 Hz, 1H), 1.88

(ddd, J = 13.4, 8.4, 5.3 Hz, 1H), 1.41 (s, 3H); 
13

C NMR (125 MHz, CDCl3) & 196.9,

172.7, 144.5, 142.0, 138.2, 131.8, 128.7, 128.4, 126.0, 118.5, 65.8, 53.6, 34.9, 33.6, 32.5,

23.5, 20.6; IR (Neat Film NaCl) 3026, 2930, 1733, 1683, 1603, 1495, 1456, 1377, 1244,

1167, 1109, 985, 931, 748 cm
–1

; HRMS (MM: ESI-APCI) m/z calc'd for C19H23O3

[M+H]
+
: 299.1642, found 299.1638.
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O

O

O

41% yield, 2 steps

1.  LDA, THF, —78 °C;
     allyl chloroformate

2.  Cs2CO3, MeI
     MeCN, 80 °C

52a

BnO

45a

O

BnO

"-ketoester 45a.  Diisopropylamine (390 µL, 2.78 mmol, 4.46 equiv) in a 10 mL round-

bottom flask equipped with a magnetic stir bar was taken up in 2.0 mL THF and lowered

into a 0 °C bath (ice/water).  To the stirring solution was added n-butyl lithium (4.7 M

solution in hexanes, 0.583 mL, 2.74 mmol, 4.40 equiv).  This solution was stirred for 30

min before transferring the flask to a –78 °C bath (dry ice/acetone) and stirring the

mixture for another 15 min.  Benzyl diosphenol ether 52a
50

 (126 mg, 0.623 mmol, 1.00

equiv) in 1.1 mL THF (total = 3.1 mL, 0.2 M) was added dropwise by syringe, and the

solution was stirred for 2 h.  Allyl cyanoformate (270 µL, 2.49 mmol, 4.00 equiv) was

added dropwise by syringe, and the reaction was stirred for 8 h until analysis by TLC

showed complete consumption of starting material.  The reaction was diluted with 2 mL

EtOAc and quenched with 1.5 mL each saturated aqueous NH4Cl and water.  The –78 °C

bath was removed and the biphasic mixture was warmed to room temperature.  The

mixture was transferred to a separatory funnel and the phases were separated.  The

aqueous phase was extracted twice with EtOAc (5 mL).  The combined organic phases

were dried over MgSO4, filtered and concentrated under reduced pressure.  The resulting

crude yellow oil was taken up in acetonitrile (2.0 mL, 0.3 M) in a flame-dried 2-dram vial

equipped with a magnetic stir bar.  Cs2CO3 (264 mg, 0.810 mmol, 1.30 equiv) and methyl

iodide (116 µL, 1,86 mmol, 3.00 equiv) were added, and the reaction was blanketed

under argon and sealed with a Teflon-lined cap.  The vial was placed in a heating block

(80 °C) and stirred for 8 h until analysis by TLC showed complete consumption of
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starting material.  The reaction was diluted with 5 mL EtOAc, filtered and concentrated

under reduced pressure.  The resulting crude oil was purified by flash column

chromatography (SiO2, 12 x 1.5 cm, 20% Et2O in hexanes) to afford "-ketoester 45a (77

mg, 0.26 mmol, 41% yield over two steps) as a colorless oil; Rf = 0.34 (40% Et2O in

hexanes);
 1

H NMR (500 MHz, CDCl3) & 7.41–7.29 (m, 5H), 5.93–5.79 (m, 2H), 5.30 (dq,

J = 17.2, 1.6 Hz, 1H), 5.23 (dq, J = 10.5, 1.3 Hz, 1H), 4.95–4.83 (m, 2H), 4.67–4.52 (m,

2H), 2.50–2.41 (m, 2H), 2.39–2.27 (m, 1H), 1.96–1.83 (m, 1H), 1.46 (s, 3H); 
13

C NMR

(125 MHz, CDCl3) & 192.0, 172.3, 149.7, 136.7, 131.7, 128.6, 128.0, 127.3, 118.8, 118.5,

70.1, 65.9, 54.3, 33.7, 21.7, 20.6; IR (Neat Film NaCl) 3394, 2916, 2167, 1996, 1692,

1627, 1455, 1251, 1153, 1110, 1056 cm
–1

; HRMS (MM: ESI-APCI) m/z calc'd for

C18H21O4 [M+H]
+
: 301.1434, found 301.1422.

O

O

O

27% yield, 2 steps

1.  LDA, THF, —78 °C;
     allyl chloroformate

2.  Cs2CO3, MeI
     MeCN, 80 °C

52b

MeO

45b

O

MeO

Diosphenol ether 45b.  Prepared from 52b
51

 in an analogous manner to 45a.  Purified by

flash chromatography (SiO2, 15 x 3 cm, 20'40% Et2O in hexanes) to afford diosphenol

ether 45b (57 mg, 0.25 mmol, 27% yield over two steps) as a colorless oil; Rf = 0.54

(50% EtOAc in hexanes); 1
H NMR (500 MHz, CDCl3) & 5.96–5.80 (m, 1H), 5.78 (d, J =

4.5 Hz, 1H), 5.27 (dq, J = 17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.5, 1.3 Hz, 1H), 4.67–4.55

(m, 2H), 3.60 (s, 3H), 2.56–2.43 (m, 2H), 2.42–2.32 (m, 1H), 1.95–1.85 (m, 1H), 1.43 (s,

3H); 
13

C NMR (125 MHz, CDCl3) & 192.0, 172.2, 150.7, 131.7, 118.4, 115.2, 65.9, 55.2,

54.3, 33.9, 21.5, 20.6; IR (Neat Film NaCl) 2936, 2839, 1734, 1696, 1631, 1455, 1378,
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1365, 1252, 1231, 1174, 1110, 1081, 1064, 979, 935, 824 cm
–1

; HRMS (MM: ESI-

APCI+) m/z calc'd for C12H17O4 [M+H]
+
: 225.1121, found 225.1122.

1.4.2.6.11 Diosphenol Ether and Enone Allylic Alkylation Products

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(pmdba)3 (5 mol %)

toluene, 40 °C

77% yield

OO

O

O

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

13c 21c
52% ee

Enone 21c.  Prepared from 13c in an analogous manner to 46a.  Purified by flash column

chromatography (SiO2, 12 x 2 cm, 10'20% Et2O in hexanes) to afford enone 21c (68

mg, 0.28 mmol, 77% yield) as a colorless oil and recovered enone 13c (19 mg, 18%

recovered); Rf = 0.70 (40% Et2O in hexanes); 
1
H NMR (500 MHz, CDCl3) & 7.31–7.20

(m, 2H), 7.23 – 7.10 (m, 3H), 6.46 (d, J = 4.0 Hz, 1H), 5.75 – 5.60 (m, 1H), 5.08 – 4.93

(m, 2H), 3.50 (dq, J = 3.3, 1.6 Hz, 2H), 2.41 – 2.23 (m, 3H), 2.16 (ddt, J = 13.7, 7.6, 1.2

Hz, 1H), 1.89 (ddd, J = 13.7, 6.4, 5.5 Hz, 1H), 1.74 (ddd, J = 13.6, 6.9, 5.5 Hz, 1H), 1.06

(s, 3H); 
13

C NMR (125 MHz, CDCl3) & 203.06 , 144.55 , 140.04 , 137.98 , 134.25 ,

129.19 , 128.45 , 126.11 , 118.09 , 44.49 , 41.21 , 36.03 , 33.41 , 23.03 , 21.90; IR (Neat

Film NaCl) 3063, 3027, 2964, 2924, 1668, 1640, 1495, 1453, 1430, 1376, 1174, 1077,

996, 915, 749 cm
–1

; [!]D
25.0

 –200.23 (c 3.86, CHCl3, 52% ee); HRMS (MM: ESI-APCI+)

m/z calc'd for C17H21O [M+H]
+
: 241.1587, found 241.1575; JASCO SFC conditions: 3%

MeOH in CO2, 5 mL/min, Chiralcel OJ-H column, % = 210 nm, tR (min): major = 2.40,

minor = 2.11.



CHAPTER 1 — Expanding Insight into Asymmetric Palladium-Catalyzed Allylic Alkylation 88

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(pmdba)3 (5 mol %)

toluene, 40 °C

50% yield

OO

O

O

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

13d 21d
68% ee

Enone 21d.  Prepared from 13d in an analogous manner to 46a.  Purified by flash

column chromatography (SiO2, 12 x 2 cm, 10'20% Et2O in hexanes) to afford enone

13c (17 mg, 67 !mol, 50% yield) as a colorless oil and recovered enone 13d (8 mg, 20%

recovered); Rf = 0.73 (40% Et2O in hexanes); 
1
H NMR (500 MHz, CDCl3) & 7.32–7.21

(m, 2H), 7.22–7.13 (m, 3H), 6.50 (t, J = 4.1 Hz, 1H), 5.74 (ddt, J = 16.8, 10.3, 7.4 Hz,

1H), 5.12–5.00 (m, 2H), 2.76–2.62 (m, 2H), 2.59–2.41 (m, 2H), 2.40–2.12 (m, 4H), 1.89

(ddd, J = 13.6, 6.7, 5.5 Hz, 1H), 1.72 (ddd, J = 13.6, 6.7, 5.5 Hz, 1H), 1.07 (s, 3H); 
13

C

NMR (125 MHz, CDCl3) & 203.4, 144.2, 142.1, 137.4, 134.4, 128.7, 128.3, 125.9, 118.1,

44.4, 41.3, 35.2, 33.4, 32.4, 23.0, 22.0; IR (Neat Film NaCl) 3062, 3026, 2962, 2924,

2855, 1669, 1639, 1496, 1453, 1430, 1377, 1175, 1078, 995, 914, 747 cm
–1

; [!]D
25.0

–32.55 (c 1.24, CHCl3, 68% ee); HRMS (MM: ESI-APCI+) m/z calc'd for C18H23O

[M+H]
+
: 255.1743, found 255.1730; JASCO SFC conditions: 3% MeOH in CO2, 5

mL/min, Chiralcel OJ-H column, % = 210 nm, tR (min): major = 2.41, minor = 2.17.
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(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(pmdba)3 (5 mol %)

toluene, 40 °C

92% yield

O

BnO

O

O

O

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

BnO

45a 46a
94% ee

Diosphenol ether 46a.  Pd2(pmdba)3 (4.2 mg, 3.8 µmol, 5.0 mol %) and (S)-(CF3)3-t-

BuPHOX (8, 5.7 mg, 9.6 µmol, 12.5 mol %) were added to an oven-dried 2-dram vial

equipped with a magnetic stir bar in a glove box.  The vial was charged with toluene (1.8

mL) and stirred at ambient temperature (28 °C) for 30 min, resulting in a deep orange

solution.  "-ketoester 45a (23 mg, 77 µmol, 1.0 equiv) was transferred to the scintillation

vial with toluene (0.5 mL, total = 2.3 mL, 0.033 M), producing a light green solution.

The vial was sealed with a Teflon-lined cap and lowered into a heating block (40 °C).

After 6 days, the reaction was complete by TLC and colorimetric analysis (the reaction

mixture had reverted to an orange color) and was removed from the glove box.  The

reaction was filtered through a silica gel plug, rinsed with Et2O, and concentrated under

reduced pressure.  The crude oil was purified by flash column chromatography (SiO2, 15

x 1.5 cm, 5%'10% Et2O in hexanes) to afford diosphenol ether 46a (18 mg, 70 µmol,

92% yield) as a colorless oil; Rf = 0.56 (40% Et2O in hexanes); 
1
H NMR (500 MHz,

CDCl3) & 7.39–7.26 (m, 5H), 5.83 (t, J = 4.5 Hz, 1H), 5.74 (ddt, J = 16.7, 10.3, 7.4 Hz,

1H), 5.12–5.03 (m, 2H), 4.85 (s, 2H), 2.42–2.33 (m, 3H), 2.21 (ddt, J = 13.8, 7.6, 1.2 Hz,

1H), 1.89 (ddd, J = 13.7, 6.7, 5.6 Hz, 1H), 1.71 (ddd, J = 13.7, 6.6, 5.4 Hz, 1H), 1.11 (s,

3H); 
13

C NMR (125 MHz, CDCl3) & 198.5, 149.0, 136.8, 134.1, 128.6, 127.9, 127.4,

118.4, 118.0, 70.0, 45.4, 41.2, 33.1, 21.9, 20.9; IR (Neat Film NaCl) 2918, 2360, 1684,
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1628, 1457, 1220, 1204, 1094, 1050, 914, 736 cm
–1

; [!]D
25.0

 –12.01 (c 0.50, CHCl3, 94%

ee); HRMS (MM: ESI-APCI) m/z calc'd for C17H21O2 [M+H]
+
: 257.1536, found

257.1529; HPLC conditions: 7% IPA in hexanes, 1 mL/min, Chiralcel OD-H column, % =

254 nm, tR (min): major = 7.24, minor = 8.27.

(S)-(CF3)3-t-BuPHOX (12.5 mol %)
Pd2(pmdba)3 (5 mol %)

toluene, 40 °C

99% yield

O

MeO

O

O

O

(4-CF3C6H4)2P N

O

t-Bu

CF3

8

MeO

45b 46b
85% ee

Diosphenol ether 46b.  Prepared from 45b in an analogous manner to 46a.  Purified by

flash column chromatography (SiO2, 10 x 3 cm, 5'10% Et2O in hexanes) to afford

diosphenol ether 45b (111 mg, 0.616 mmol, 99% yield) as a colorless oil; Rf = 0.23 (40%

Et2O in hexanes); 
1
H NMR (500 MHz, CDCl3) & 5.79–5.65 (m, 2H), 5.12–5.01 (m, 2H),

3.58 (s, 3H), 2.47–2.34 (m, 3H), 2.20 (ddt, J = 13.7, 7.6, 1.1 Hz, 1H), 1.91 (ddd, J = 13.7,

6.8, 5.5 Hz, 1H), 1.72 (ddd, J = 13.7, 6.5, 5.4 Hz, 1H), 1.11 (s, 3H); 13
C NMR (125 MHz,

CDCl3) & 198.6, 150.0, 134.0, 118.4, 114.5, 55.1, 45.4, 41.2, 33.2, 21.9, 20.8; IR (Neat

Film NaCl) 2929, 1687, 1631, 1455, 1375, 1225, 1095, 1056, 913 cm
–1

; [!]D
25.0

 –27.47 (c

6.00, CHCl3, 85% ee); HRMS (MM: ESI-APCI+) m/z calc'd for C11H17O2 [M+H]
+
:

181.1223, found 181.1222; HPLC conditions: 2% IPA in hexanes, 1 mL/min, Chiralcel

OD-H column, % = 254 nm, tR (min): major = 13.41, minor = 12.23.
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1.4.2.7 Determination of Enantiomeric Excess

Table 1.5.  Methods for the determination of enantiomeric excess (chiral HPLC and SFC).

entry product
retention time

of major
isomer (min)

% ee

1 81

retention time
of minor

isomer (min)

assay
conditions

10.45 9.60

5 824.04 2.20

2 838.60 6.48

3 868.45 10.35

4 878.04 8.97

6 845.60 4.73

842.80 3.137

SFC
Chiralpak AD-H
10% MeOH in CO2
isocratic, 3.0 mL/min
254 nm

SFC
Chiralcel OD-H
5% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

SFC
Chiralpak AS-H
5% MeOH in CO2

isocratic, 5.0 mL/min
254 nm

SFC
Chiralpak AD-H
5% MeOH in CO2

isocratic, 3.0 mL/min
254 nm

SFC
Chiralpak AD-H
7% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

SFC
Chiralpak AD-H
7% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

SFC
Chiralpak AD-H
10% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

O

N

Bn

Me

23a

O

N

Bn

Ph

23b

O

N

Bn

Ac

23d

O

N

Bn

Bz

23e

O

N

Bn

Boc

23f

O

N

Bn

Ts

23g

Cbz

N

O

30a
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8 8618.77 21.21

HPLC
Chiralcel OJ
10% IPA in hexanes
isocratic, 1.0 mL/min
210 nm

Bn

N

O

30b

entry product
retention time

of major
isomer (min)

% ee

12 96

retention time
of minor

isomer (min)

assay
conditions

7.95 6.52

13 7611.94 17.86

14 964.03 3.64

15 9814.34 13.39

HPLC
Chiralcel OD-H
5% IPA in hexanes
isocratic, 1.0 mL/min
210 nm

HPLC
Chiralpak AD
3% IPA in hexanes
isocratic, 1.0 mL/min
210 nm

SFC
Chiralcel OJ-H
1% MeOH in CO2

isocratic, 3.0 mL/min
210 nm

SFC
Chiralcel OB-H
1% MeOH in CO2

isocratic, 2.5 mL/min
210 nm

N

OO

5i

N

O

O 7c

N
BnO

O

O 7d

N
BnO

O

O

Et

7e

9021.87 18.5910

11 952.53 2.13

HPLC
Chiralpak AD
30% IPA in hexanes
isocratic, 1.0 mL/min
254 nm

SFC
Chiralcel OJ-H
1% IPA in CO2
isocratic, 5.0 mL/min
222 nm

N

O

MeO

MeO

30d

N

OO

5h

9 8811.44 14.80

HPLC
Chiralcel OJ
7% IPA in hexanes
isocratic, 1.0 mL/min
210 nm

Bn

N

O

30c
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16 522.40 2.11

SFC
Chiralcel OJ-H
3% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

O

21c

entry product
retention time

of major
isomer (min)

% ee

retention time
of minor

isomer (min)

assay
conditions

19 8513.41 12.23

HPLC
Chiralcel OD-H
2% IPA in hexanes
isocratic, 1.0 mL/min
254 nm

MeO

O

46b

18 947.24 8.27

HPLC
Chiralcel OD-H
7% IPA in hexanes
isocratic, 1.0 mL/min
254 nm

BnO

O

46a

17 682.41 2.17

SFC
Chiralcel OJ-H
3% MeOH in CO2

isocratic, 5.0 mL/min
210 nm

O

21d
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APPENDIX 1
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Allylic Alkylation of N-Heterocyclic Molecules and Cyclic Ketones 
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Infrared spectrum (thin film/NaCl) of compound 17. 

13C NMR (125 MHz, CDCl3) of compound 17. 
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Infrared spectrum (thin film/NaCl) of compound 16a. 

13C NMR (125 MHz, CDCl3) of compound 16a. 
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Infrared spectrum (thin film/NaCl) of compound 16b. 

13C NMR (125 MHz, CDCl3) of compound 16b. 
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Infrared spectrum (thin film/NaCl) of compound 16c. 

13C NMR (125 MHz, CDCl3) of compound 16c. 
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Infrared spectrum (thin film/NaCl) of compound 18. 

13C NMR (125 MHz, CDCl3) of compound 18. 
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Infrared spectrum (thin film/NaCl) of compound 16f. 

13C NMR (125 MHz, CDCl3) of compound 16f. 
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 Infrared spectrum (thin film/NaCl) of compound 16g. 

13C NMR (125 MHz, CDCl3) of compound 16g. 
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Infrared spectrum (thin film/NaCl) of compound 20. 

13C NMR (125 MHz, CDCl3) of compound 20. 
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Infrared spectrum (thin film/NaCl) of compound 16h. 

13C NMR (125 MHz, CDCl3) of compound 16h. 
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Infrared spectrum (thin film/NaCl) of compound 16d. 

13C NMR (125 MHz, CDCl3) of compound 16d. 
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Infrared spectrum (thin film/NaCl) of compound 16i. 

13C NMR (125 MHz, CDCl3) of compound 16i. 
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Infrared spectrum (thin film/NaCl) of compound 16e. 

13C NMR (125 MHz, CDCl3) of compound 16e. 
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Infrared spectrum (thin film/NaCl) of compound 16j. 

13C NMR (125 MHz, CDCl3) of compound 16j. 
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Infrared spectrum (thin film/NaCl) of compound 23a. 

13C NMR (125 MHz, CDCl3) of compound 23a. 
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Infrared spectrum (thin film/NaCl) of compound 23b. 

13C NMR (125 MHz, CDCl3) of compound 23b. 
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Infrared spectrum (thin film/NaCl) of compound 23d. 

13C NMR (125 MHz, CDCl3) of compound 23d. 
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 Infrared spectrum (thin film/NaCl) of compound 23e. 

13C NMR (125 MHz, CDCl3) of compound 23e. 
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Infrared spectrum (thin film/NaCl) of compound 23f. 

13C NMR (125 MHz, CDCl3) of compound 23f. 
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Infrared spectrum (thin film/NaCl) of compound 23g. 

13C NMR (125 MHz, CDCl3) of compound 23g. 
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Infrared spectrum (thin film/NaCl) of compound 29a. 

13
C NMR (125 MHz, CDCl3) of compound 29a. 
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Infrared spectrum (thin film/NaCl) of compound 48b. 

13C NMR (125 MHz, CDCl3) of compound 48b. 



APPENDIX 1 — Spectra Relevant to Chapter 1  146 

1
H

 N
M

R
 (

5
0

0
 M

H
z,

 C
D

C
l 3

) 
o

f 
co

m
p

o
u

n
d

 2
9
b

. 

NO

O

O 2
9
b

!
"

#
$

%
&

'
(

)
*

"
!

+
+
,



APPENDIX 1 — Spectra Relevant to Chapter 1  147 

!"!#!$!%!&!!&"!&#!&$!&%!"!!""!
''(

Infrared spectrum (thin film/NaCl) of compound 29b. 

13C NMR (125 MHz, CDCl3) of compound 29b. 
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Infrared spectrum (thin film/NaCl) of compound 48c. 

13C NMR (125 MHz, CDCl3) of compound 48c. 
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 Infrared spectrum (thin film/NaCl) of compound 29c. 

13C NMR (125 MHz, CDCl3) of compound 29c. 
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13C NMR (125 MHz, CDCl3) of compound 48d. 
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Infrared spectrum (thin film/NaCl) of compound 29d. 

13C NMR (125 MHz, CDCl3) of compound 29d. 
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Infrared spectrum (thin film/NaCl) of compound 30a. 

13C NMR (125 MHz, CDCl3) of compound 30a. 
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Infrared spectrum (thin film/NaCl) of compound 30b. 

13C NMR (125 MHz, CDCl3) of compound 30b. 
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Infrared spectrum (thin film/NaCl) of compound 30c. 

13C NMR (125 MHz, CDCl3) of compound 30c. 
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Infrared spectrum (thin film/NaCl) of compound 30d. 

13C NMR (125 MHz, CDCl3) of compound 30d. 
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Infrared spectrum (thin film/NaCl) of compound 4i. 

13C NMR (125 MHz, CDCl3) of compound 4i. 
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Infrared spectrum (thin film/NaCl) of compound 4j. 

13C NMR (125 MHz, CDCl3) of compound 4j. 
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Infrared spectrum (thin film/NaCl) of compound 5i. 

13C NMR (125 MHz, CDCl3) of compound 5i. 
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Infrared spectrum (thin film/NaCl) of compound 5j. 

13C NMR (125 MHz, CDCl3) of compound 5j. 
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Infrared spectrum (thin film/NaCl) of compound 6c. 

13C NMR (125 MHz, CDCl3) of compound 6c. 
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Infrared spectrum (thin film/NaCl) of compound 50. 

13C NMR (125 MHz, CDCl3) of compound 50. 
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Infrared spectrum (thin film/NaCl) of compound 6d. 

13C NMR (125 MHz, CDCl3) of compound 6d. 
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Infrared spectrum (thin film/NaCl) of compound 6e. 

13C NMR (125 MHz, CDCl3) of compound 6e. 
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Infrared spectrum (thin film/NaCl) of compound 7c. 

13C NMR (125 MHz, CDCl3) of compound 7c. 
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 Infrared spectrum (thin film/NaCl) of compound 7d. 

13C NMR (125 MHz, CDCl3) of compound 7d. 
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Infrared spectrum (thin film/NaCl) of compound 7e. 

13C NMR (125 MHz, CDCl3) of compound 7e. 
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Infrared spectrum (thin film/NaCl) of compound 44. 
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Infrared spectrum (thin film/NaCl) of compound 13b. 

13C NMR (125 MHz, C6D6) of compound 13b. 
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Infrared spectrum (thin film/NaCl) of compound 41. 

13C NMR (125 MHz, CDCl3) of compound 41. 
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Infrared spectrum (thin film/NaCl) of compound 13c. 

13C NMR (125 MHz, CDCl3) of compound 13c. 
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Infrared spectrum (thin film/NaCl) of compound 13d. 

13C NMR (125 MHz, CDCl3) of compound 13d. 
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Infrared spectrum (thin film/NaCl) of compound 45a. 

13C NMR (125 MHz, CDCl3) of compound 45a. 
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Infrared spectrum (thin film/NaCl) of compound 45b. 

13C NMR (125 MHz, CDCl3) of compound 45b. 
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Infrared spectrum (thin film/NaCl) of compound 21c. 

13C NMR (125 MHz, CDCl3) of compound 21c. 
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Infrared spectrum (thin film/NaCl) of compound 21d. 

13C NMR (125 MHz, CDCl3) of compound 21d. 
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Infrared spectrum (thin film/NaCl) of compound 46a. 

13C NMR (125 MHz, CDCl3) of compound 46a. 
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Infrared spectrum (thin film/NaCl) of compound 46b. 

13C NMR (125 MHz, CDCl3) of compound 46b. 
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CHAPTER 2 

Highly Enantioselective Palladium-Catalyzed 

Decarboxylative Allylic Alkylation of Enaminones† 

 

2.1  INTRODUCTION AND BACKGROUND 

The asymmetric palladium-catalyzed decarboxylative allylic alkylation (DAA) 

reaction has long been an area of interest in our group (see Chapter 1.1).1  Although 

carbocycles 1 were the first successful substrates to be utilized in this reaction with the 

ligand (S)-t-BuPHOX (3), enantioselectivity of this transformation was limited to the 

high 70% to low 90% ee range until the discovery that reaction of lactam substrates 5 

utilizing trifluoromethylated ligand (S)-(CF3)3-t-BuPHOX (8) furnish products in 

enantioselectivities ranging from 93% to 99% (Scheme 2.1).2 

  

                                                
†  This research was performed in collaboration with Louise Lefoulon and Dr. Jared A. 
Moore. 
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Scheme 2.1.  Assymetric allylic alkylation carbocyclic and lactam substrates. 

 

 This prompted us to consider what distinguished the lactam substrate class, and if 

we could apply those properties to carbocyclic substrates to increase the reaction 

selectivity.  Our initial efforts focused on enolate electronics, postulating that it was the 

electron-rich nature of the substrate favoring an inner-sphere alkylation mechanism 

thereby leading to increased selectivity.3  Prior theoretical studies have supported the 

Pd(PHOX) catalytic system favoring an inner-sphere reaction mechanism, specifically 

noting that this reaction mechanism is favored due to the basic nature of the enolate 

electrophile leading to apical attack on the intermediate palladium π-allyl complex 

(Figure 2.1).4 
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Ph3P N

O

3, (S)-t-Bu-PHOX
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Figure 2.1.  Comparison of inner- and outer-sphere alkylation mechanisms in the 

DAA reaction. 

 

Investigation of vinylogous amides (Figure 2.2, 16) as carbocyclic lactam mimics, 

however, yielded enantioselectivities in the ordinary range for carbocyclic substrates.  

Despite this, we discovered that diosphenol ether substrate 46a gave moderately higher 

enantioselectivities than previously investigated carbocycles.  This result, combined with 

no trend correlating the steric bulk of the αʹ-substituent to the stereoselectivity of the 

transformation led us to postulate that there might be a stereoelectronic effect governing 

the differences in observed enantioselectivity (see Chapter 1.2).  As such, we turned to 

the substrate class of en-2-aminones (Figure 2.2, 65) to investigate if a stronger 

coordinating group at the αʹ-position would have the desired effect on the reaction 

selectivity. 
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P
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O
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Ph

Ph
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Enolate association, inner-sphere alkylation:

Highly enantioselective

Outer-sphere alkylation:
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Figure 2.2.  Rationale for choice of enaminones as substrates. 

 

 

2.2  RESULTS AND DISCUSSION 

2.2.1  Reaction Optimization 

 The enaminone class of substrates was readily accessible by standard 

acylation/alkylation protocols (see supporting information for details).  The first substrate 

we investigated was morpholine-derived enaminone 65a.  To our delight, the 

corresponding product 66a was furnished in 93% yield and 97% ee using (S)-(CF3)3-t-

BuPHOX (8) (Table 2.1, entry 1).  This result prompted us to perform an optimization for 

reaction medium, as previous reactions had proven to be somewhat variable according to 

the solvent used.1,2  We were pleased to discover that the reaction retained its high 

enantioselectivity in a wide variety of solvents.  Though we briefly investigated the effect 

of temperature on outcome of the reaction, we found that lowering the reaction 

temperature to 30 °C had no effect on the resulting ee (result not shown). 
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Table 2.1.  Initial solvent screen for enaminone substrates. 

 

 To our surprise, when we utilized the standard (S)-t-BuPHOX ligand (3) instead 

of its trifluoromethylated counterpart, the reaction retained its high enantioselectivity 

(Table 2.2).  We determined ethyl acetate to be the optimal reaction medium, as a cheap, 

easy to work with, and relatively environmentally benign solvent. 

Table 2.2 Solvent screen using ligand 3. 
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2.2.2  Substrate Scope 

 With optimized reaction conditions at hand, we desired to determine the 

generality of this substrate class as exceptional among carbocycles (Table 2.3).  

Substitution of the methyl group for a slightly larger ethyl group was unsurprisingly well 

tolerated, furnishing the product in 99% yield and 98% ee (66b, Table 2.3, entry 2).  

Substrates bearing larger alkyl chain substituents such as TBS ethers (66c and 66d, Table 

2.3, entries 3 and 4) also resulted in high yields and excellent enantioselectivity. 

Table 2.3.  Substrate scope of enaminones in the asymmetric DAA. 
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enantioselectivities in the range of 94–97%.  Benzyl substitution was somewhat well-

tolerated, with benzyl, para-methoxybenzyl and para-trifluoromethylbenzyl substrates 

furnishing products in 96%, 95% and 92% ee respectively (66h–j, Table 2.3, entries 5–7). 

Satisfied that the reaction was quite general with respect to the alkyl substitution, 

we found that substitution at the 2-position of the allyl group also furnished product with 

excellent selectivity, as in 2-chloro and 2-methylallyl products 66k and 66l (Table 2.3, 

entries 11 and 12), although product 66k was obtained in significantly lower yield.  

Moreover, we found that this reaction was imminently scalable.  Increasing the reaction 

scale from 0.465 mmol to 12.3 mmol, with a corresponding increase in concentration 

from 0.033 M to 0.33 M and decrease in catalyst loading from 5 mol % to 0.5 mol %, we 

maintained an excellent yield of 93% and no loss of enantioselectivity (Table 2.4). 

Table 2.4.  Increasing scale and reducing catalyst loading of the reaction. 

 

2.2.3  Derivitization of Enaminone Products 

Given the excellent results with this class of substrates, we desired to determine 

the utility of the products for access to alternative building blocks in organic synthesis.  
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revealed the latent 1,2-diketone functionality (Scheme 2.2), yielding diketone 67 in 79% 

yield.  Treatment with NBS resulted in bromination at the nucleophilic 3-position, 

yielding vinyl bromide 68 in 60% yield.  This vinyl bromide proved to be an excellent 

substrate for the Suzuki–Miyaura cross-coupling, as reaction with phenyl boronic acid 

and PdCl2dppf provided arylated enamine 69 in 96% yield. 

Scheme 2.2. Derivitization of enaminone products by hydrolysis and by 

bromination and Suzuki–Miyaura cross-coupling. 

 

2-Morpholine substituted enaminones have been shown to undergo 

transamination, and have been used to in the synthesis of N,N-imino-enaminido ligands 

for hafnium and zirconium polymerization catalysts.5  Reaction of 66a with aniline 

yielded the transaminated product 70 in a modest 35% yield (Scheme 2.3).  Reaction with 

more nucleophilic phenyl hydrazine, however, followed by treatment under Fischer 

indole conditions resulted in indole 71 in 99% yield over two steps.  This result is 
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interesting, as it furnished the carbazolone with opposite connectivity between the 

cyclohexanone and indole systems as compared to the vinylogous amides previously 

investigated by our group (Chapter 1, Scheme 1.7), and used in the total syntheses of (+)-

kosihainanine A and (–)-aspidospermidine by Lupton and Shao.6 

Scheme 2.3. Derivitization of enaminone products by transamination and 

heterocycle formation 

 

2-Morpholine substituted enaminones have also been used en route to pyrazole-

based inhibitors of blood coagulation factor Xa by reaction with para-
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functionality of our enaminone products can be used to access a variety of nucleophilic 

and electrophilic reactivities, and converted in various useful heterocyclic structures.  

2.2.4  Insight from Related Structures 

 Although we had found an exceptional substrate class for our reaction, we desired 

to determine if this reflected a stereoelectronic effect as postulated.  We began by testing 

piperidyl substrate 74 to determine if the distil oxygen of the morpholine substituent had 

any influence over the selectivity of the reaction (Table 2.5, entry 1).  Piperidyl product 

75 was obtained in 99% yield and 99% ee, indicating that the oxygen of the morpholine 

ring is not required for our observed selectivities. 

Table 2.5. Asymmetric DAA of substrates related to enaminones 65. 
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As we hypothesized the existence of a stereoelectronic interaction between the αʹ-

substituent and the catalyst, we sought to perturb this effect by making changes to the 

steric environment of the amine functionality of the enaminone.  Adding a methyl group 

to the 3-position of the enone prolonged the reaction time greatly, resulting in a 52% 

yield after reaction for seven days, and a marked decrease in enantioselectivity to 90% 

(77, Table 2.5, entry 2).8  While this result is ambiguous, it could be due to a steric clash 

with the morpholine group in the transition state of the favored enantiomer, indicating 

that the geometrical arrangement of this group in the transition state of the 

enantiodetermining step is potentially crucial. 

Five-membered enaminone 79 was obtained in good yield, but with a notably 

lower 83% ee (Table 2.5, entry 3).  We note that the bond angles and distances between 

the enolate oxygen (bound to palladium in the inner-sphere reaction mechanism) and the 

morpholine group are considerably different, with the cyclopentenone-derived substrate 

having a morpholine group calculated to be approximately 0.3 Å further away (Figure 

2.3).  Should an interaction between the morpholine nitrogen and the palladium catalyst 

be the cause of increased enantioselectivity, this increase in distance and angle between 

enamine nitrogen and enolate oxygen could potentially account for the underperformance 

of enaminone 78. 

Figure 2.3. Calculated structures for 5- and 6-membered enaminone enolates.9 
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Lastly, to ensure that the observed effects were not simply steric, 2-cyclohexyl-

cyclohexenone substrate 80 was subjected to reaction conditions, resulting in a 93% yield 

but a poor 72% ee (Table 2.5, entry 4).  This indicates to us that the observed increase in 

enantioselectivity observed for enaminone substrate 65 is indeed electronic or 

stereoelectronic nature, and not the result of a simple steric clash. 

Based on these results, we hypothesize that the αʹ-substituent has a reinforcing 

effect on the stereochemical outcome of the reaction by either an electronic attraction 

between the nitrogen lone pair and the palladium center of the catalyst, as in a Lewis 

acid-Lewis base interaction, or by an orbital overlap between the nitrogen lone pair and 

the vacant palladium 5pz orbital, as in an associative ligand substitution reaction (Figure 

2.4).  

Figure 2.4. Mechanistic rationale for observed high enantioselectivities of 

enaminones. 
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Theoretical and experimental studies4 of the Pd(PHOX) catalytic system in the 

asymmetric DAA reaction have shown that coordination of the enolate to the palladium 

π-allyl complex is followed by an enantiodetermining internal rearrangement to form a 

square-planar, η-1-bound palladium allyl complex.  In the intermediate following the (Si) 

transition state (Figure 2.4, A), this rearrangement would place the morpholine moiety in 

the space formerly occupied by the enolate oxygen, i.e. with a good arrangement for 

interaction with the Pd metal center.  In the intermediate following the (Re) transition 

state, the morpholine moiety would be distant from the metal center and therefore unable 

to interact with it (Figure 2.4, B).  This model would also account for the observed 

increase in selectivity of lactam substrates2 (through interaction of the exocyclic amide 

nitrogen with Pd) and the high performance of ligand (S)-(CF3)3-t-BuPHOX (8) in that 

context, by generating a more electron-poor Pd metal center.  We hope that future 

mechanistic and theoretical studies may be performed on this and related substrate classes 

in order to refine this mechanistic hypothesis and determine the nature and origin of the 

observed high enantioselectivity in this reaction. 

2.3  CONCLUDING REMARKS 

In conclusion, we designed a novel substrate class for the palladium-catalyzed 

decarboxylative allylic alkylation based on observations made on previous lactam and 

vinylogous amide substrates.  These enaminone substrates proved to be superlative in the 

reaction, resulting in generally high yields and enantioselectivities of 92–99%, with most 

products being above 95% ee. The products were shown to be versatile building blocks, 

demonstrating both nucleophilic and electrophilic reactivity as well as being amenable to 

conversion to various heterocyclic structures.  Finally, by comparison to results from 
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substrates with different skeletal composition, we determined that the observed 

enantioselectivities are not due to a steric effect, and proposed a model invoking a 

potential interaction between the amine nitrogen of the enaminone and the Pd center of 

the catalyst during the enantiodetermining step of the transformation.  It is our hope that 

further investigation of this and related substrate classes may provide further insight into 

the origin of the observed enantioselectivities, allowing for the design of further 

exceptional substrate classes or refinement of the catalytic system to improve the 

enantioselectivity for general substrates. 
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2.4  EXPERIMENTAL SECTION 

2.4.1  Materials and Methods 

Unless otherwise stated, reactions were performed in flame-dried glassware under an 

argon or nitrogen atmosphere using dry, deoxygenated solvents.  Solvents were dried by 

passage through an activated alumina column under argon.10 Acetone was used directly 

from a Sigma-Aldrich ACS reagent grade bottle.  Brine solutions are saturated aqueous 

solutions of sodium chloride.  Reagents were purchased from Sigma-Aldrich, Acros 

Organics, Strem, or Alfa Aesar and used as received unless otherwise stated.  (S)-t- 

BuPHOX (3),1a,b and allyl cyanoformate11 were prepared by known methods.  Reaction 

temperatures were controlled by an IKAmag temperature modulator.  Reaction progress 

was monitored by thin-layer chromatography (TLC).  TLC was performed using E.  

Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV 

fluorescence quenching, p-anisaldehyde, I2, or KMnO4 staining.  ICN silica gel (particle 

size 0.032-0.0653 mm) was used for flash column chromatography. 1H NMR spectra 

were recorded on a Varian Mercury 300 MHz or Varian Inova 500 MHz spectrometer 

and are reported relative to residual CHCl3 (δ 7.26 ppm).  13C NMR spectra are recorded 

on a Varian Mercury 300 MHz or Varian Inova 500 MHz spectrometer (75 or 125 MHz 

respectively) and are reported relative to CDCl3 (δ 77.16 ppm).  Data for 1H NMR are 

reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), 

integration).  Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sept = septuplet, m = multiplet, dm = doublet of multiplets, br s = 

broad singlet, br d = broad doublet, app = apparent.  Data for 13C are reported in terms of 

chemical shifts (δ ppm).  IR spectra were obtained by use of a Perkin Elmer Spectrum 
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BXII spectrometer using thin films deposited on NaCl plates and reported in frequency of 

absorption (cm-1).  Optical rotations were measured with a Jasco P-2000 polarimeter 

operating on the sodium D-line (589 nm), using a 100 mm path-length cell and are 

reported as: [α]D
25 (concentration in g/100 mL, solvent, ee).  Analytical chiral HPLC was 

performed with an Agilent 1100 Series HPLC utilizing a Chiralpak (AD, AD- H, or AS) 

or Chiralcel (OD-H, OJ-H, or OB-H) columns (4.6 mm x 25 cm) obtained from Daicel 

Chemical Industries, Ltd.  Analytical chiral SFC was performed with a Mettler SFC 

supercritical CO2 analytical chromatography system with Chiralpak AD-H column, OD-

H column, and OJ-H column obtained from Daicel Chemical Industries, Ltd.  High 

resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral Facility 

(GC-EI+, EI+, or FAB+) or Agilent 6200 Series TOF with an Agilent G1978A 

Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical 

ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).   

2.4.2  Substrate Synthesis 

 

 

 

Allyl 1-methyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65a) 

General procedure A:  Diisopropylamine (1.77 mL, 12.7 mmol, 1.29 equiv) was taken 
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1.00 equiv) in 8 mL THF (0.17 M total) was added dropwise.  The mixture was stirred for 

90 minutes, quenched with 50 mL each of saturated aqueous NH4Cl and water, diluted 

with 100 mL EtOAc and the phases were separated.  The aqueous portion was again 

extracted with 100 mL EtOAc, and the combined organic fractions were dried over 

Na2SO4 and concentrated in vacuo yielding 2.00 g of a pale yellow oil confirmed to be 

the desired acylated compound by crude 1H NMR analysis.  A 531 mg portion (2.00 

mmol, 1.00 equiv) of this intermediate was taken up in 10 mL acetone (0.2 M) and 

K2CO3 (553 mg, 4.00 mmol, 2.0 equiv) and MeI (149 µL, 2.40 mmol, 1.20 equiv) were 

added.  The reaction mixture was heated to 50 °C for 10 hours, cooled to room 

temperature, filtered using a fritted funnel and rinsed with 10 mL Et2O.  The reaction 

mixture was concentrated in vacuo and purified by column chromatography (SiO2, 2.5 x 

12 cm, 4→6→8% acetone in hexanes) to yield enaminone 65a (347 mg, 1.24 mmol, 62% 

yield over 2 steps) as a pale yellow oil; Rf = 0.45 (50% EtOAc in hexanes); 1H NMR 

(500 MHz, CDCl3) δ 5.84 (ddt, J = 17.2, 10.4, 5.8 Hz, 2H), 5.29 (dq, J = 17.2, 1.5 Hz, 

1H), 5.23 (dq, J = 10.4, 1.2 Hz, 1H), 4.65 – 4.53 (m, 2H), 3.80 (qdd, J = 11.3, 6.3, 3.0 

Hz, 4H), 3.04 – 2.96 (m, 2H), 2.63 – 2.56 (m, 2H), 2.56 – 2.49 (m, 1H), 2.46 (dddd, J = 

13.6, 5.1, 3.1, 1.1 Hz, 1H), 2.38 (dtd, J = 19.1, 5.4, 3.1 Hz, 1H), 1.86 (ddd, J = 13.6, 9.7, 

5.6 Hz, 1H), 1.39 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 193.9, 172.4, 131.6, 118.9, 

66.9, 66.0, 54.2, 50.0, 33.3, 22.7, 20.6; IR (Neat Film, NaCl): 3447 (broad), 2955, 2855, 

2067, 1733, 1695, 1617, 1450, 1378, 1264, 1248, 1222, 1175, 1145, 1119, 1020, 992, 948 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C15H22NO4 [M+H]+ 280.1543, found 

280.1554. 
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Allyl 1-ethyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65b) 

Synthesized according to general procedure A using ethyl iodide.  The product was 

purified by column chromatography (SiO2, 3.5 x 15 cm, 4→6→8→10→20% EtOAc in 

hexanes) to yield enaminone 65b (468 mg, 1.60 mmol, 74% yield over 2 steps) as a pale 

yellow oil.  Rf = 0.53 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.83 (ddt, 

J = 17.2, 10.4, 5.8 Hz, 1H), 5.73 (ddd, J = 4.5, 3.5, 1.2 Hz, 1H), 5.27 (dq, J = 17.2, 1.5 

Hz, 1H), 5.21 (dq, J = 10.4, 1.2 Hz, 1H), 4.57 (dq, J = 5.8, 1.5 Hz, 2H), 3.78 (qdd, J = 

11.3, 6.3, 3.0 Hz, 4H), 2.95 (ddd, J = 11.9, 6.3, 3.1 Hz, 2H), 2.55 (tddd, J = 8.9, 6.8, 5.2, 

2.4 Hz, 3H), 2.46 – 2.32 (m, 2H), 1.95 (dq, J = 13.9, 7.5 Hz, 1H), 1.90 – 1.73 (m, 2H), 

0.92 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 193.6, 171.3, 146.8, 131.7, 

128.2, 123.5, 119.0, 67.0, 65.8, 57.9, 50.0, 29.8, 27.0, 22.6, 9.1; IR (Neat Film, NaCl): 

2961, 2855, 1732, 1694, 1617, 1448, 1378, 1300, 1264, 1220, 1167, 1120, 957, 934 cm-1; 

HRMS (MM: ESI-APCI) m/z calc’d for C16H24NO4 [M+H]+ 294.1700, found 294.1690. 

 

 

Allyl 1-(((tert-butyldimethylsilyl)oxy)methyl)-3-morpholino-2-oxocyclohex-3-ene-1-

carboxylate (65c) 

Diisopropylamine (1.77 mL, 12.7 mmol, 1.29 equiv) was taken up in 50 mL THF, cooled 

to 0 °C and 5.51 mL of a 2.19 M solution of n-butyllithium in hexanes (12.1 mmol, 1.22 
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equiv) was added dropwise.  The mixture was stirred for 30 minutes and cooled to 78 °C.  

2-morpholinocyclohex-2-en-1-one (1.79 g, 9.88 mmol, 1.00 equiv) in 8 mL THF (0.17 M 

total) was added dropwise.  The mixture was stirred for 90 minutes, quenched with 50 

mL each of saturated aqueous NH4Cl and water, diluted with 100 mL EtOAc and the 

phases were separated.  The aqueous portion was again extracted with 100 mL EtOAc, 

and the combined organic fractions were dried over Na2SO4 and concentrated in vacuo 

yielding 2.00 g of a pale yellow oil confirmed to be the desired acylated compound by 

crude 1H NMR analysis.  A 218 mg portion (0.822 mmol, 1.00 equiv) of this intermediate 

was taken up in 1.6 mL THF (0.5 M), cooled to 0 °C and and K2CO3 (247 mg, 2.47 

mmol, 3.00 equiv) and 37% aqueous formaldehyde (156 µL, 5.67 mmol, 6.9 equiv) were 

added.  The reaction was warmed to 23 °C and stirred for 4 hours, extracted with 2 x 5 

mL EtOAc, dried over Na2SO4, concentrated in vacuo and purified by column 

chromatography (SiO2, 3 x 12 cm, 20→35% acetone in hexanes) to yield 133 mg of a 

pale yellow oil.  This intermediate alcohol was taken up in CH2Cl2 (4.5 mL, 0.1 M) and 

TBSCl (75 mg, 0.49 mmol, 1.1 equiv) and imidazole (61 mg, 0.90 mmol, 2.0 equiv) were 

added.  The reaction mixture was stirred for 8 hours, concentrated in vacuo and purified 

by column chromatography (SiO2, 2.5 x 14 cm, 20→35% EtOAc in hexanes) to yield 

enaminone 65c (106 mg, 0.257 mmol, 29% yield over 3 steps) as a pale yellow oil; Rf = 

0.25 (25% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.90 – 5.82 (m, 2H), 5.27 

(dq, J = 17.2, 1.5 Hz, 1H), 5.20 (dq, J = 10.4, 1.3 Hz, 1H), 4.57 (qdt, J = 13.2, 5.7, 1.4 

Hz, 2H), 4.08 (d, J = 9.8 Hz, 1H), 3.88 (d, J = 9.8 Hz, 1H), 3.78 (qdd, J = 11.3, 6.1, 3.1 

Hz, 4H), 2.92 – 2.84 (m, 2H), 2.70 – 2.61 (m, 2H), 2.60 (dd, J = 6.2, 3.3 Hz, 1H), 2.52 

(dddd, J = 13.8, 5.4, 3.0, 1.1 Hz, 1H), 2.40 (dtd, J = 19.2, 5.6, 2.9 Hz, 1H), 2.02 (ddd, J = 
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13.8, 10.0, 5.8 Hz, 1H), 0.85 (s, 9H), 0.09 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 192.0, 

169.6, 146.7, 131.7, 125.0, 118.8, 66.9, 66.6, 66.0, 65.4, 59.9, 50.0, 29.8, 28.0, 25.9, 25.8, 

22.5, 18.3, -5.5; IR (Neat Film, NaCl): 2955, 2929, 2894, 2856, 1734, 1690, 1616, 1462, 

1448, 1379, 1262, 1217, 1120, 964 cm-1; HRMS (APCI) m/z calc’d for C21H36NO5Si 

[M+H]+ 410.2357, found 410.2342. 

 

 

 

Allyl 1-(2-((tert-butyldimethylsilyl)oxy)ethyl)-3-morpholino-2-oxocyclohex-3-ene-1-

carboxylate (65d) 

Synthesized according to general procedure A using (2-bromoethoxy)(tert-

butyl)dimethylsilane and cesium carbonate.  The product was purified by column 

chromatography (SiO2, 3.5 x 15 cm, 5→10→20% EtOAc in hexanes) to yield enaminone 

65d (184 mg, 0.434 mmol, 49% yield over 2 steps) as a pale tan oil; Rf = 0.23 (20% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.83 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 

5.75 (s, 1H), 5.27 (dq, J = 17.1, 1.5 Hz, 1H), 5.21 (dq, J = 10.4, 1.3 Hz, 1H), 4.63 – 4.50 

(m, 2H), 3.85 – 3.62 (m, 6H), 2.99 – 2.90 (m, 2H), 2.61 – 2.45 (m, 4H), 2.38 (dtd, J = 

19.0, 5.5, 2.9 Hz, 1H), 2.14 (ddd, J = 13.9, 7.6, 6.1 Hz, 1H), 2.00 – 1.86 (m, 2H), 0.86 (s, 

9H), 0.14 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 193.3, 171.0, 131.7, 119.1, 66.9, 66.0, 

59.7, 56.5, 50.0, 36.8, 30.8, 26.0, 22.7, 18.4, -5.2; IR (Neat Film, NaCl): 2955, 2928, 

2855, 1733, 1695, 1616, 1447, 1378, 1263, 1209, 1120, 1100, 981, 935 cm-1; HRMS 

(ESI) m/z calc’d for C22H38NO5Si [M+H]+ 424.2514, found 424.2521. 
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Allyl 1-(3-methoxy-3-oxopropyl)-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate 

(65e) 

Synthesized according to general procedure A using methyl acrylate.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 10→20% acetone in hexanes) to 

yield enaminone 65e (223 mg, 0.635 mmol, 58% yield over 2 steps) as a yellow oil; Rf = 

0.42 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.80 (ddt, J = 17.3, 10.4, 

5.9 Hz, 1H), 5.73 – 5.67 (m, 1H), 5.25 (dq, J = 17.2, 1.5 Hz, 1H), 5.19 (dq, J = 10.3, 1.2 

Hz, 1H), 4.60 – 4.48 (m, 2H), 3.80 – 3.67 (m, 4H), 3.62 (s, 3H), 2.92 (ddd, J = 11.6, 6.3, 

3.0 Hz, 2H), 2.56 – 2.26 (m, 7H), 2.18 (ddd, J = 14.0, 10.6, 5.6 Hz, 1H), 2.04 (ddd, J = 

14.1, 10.8, 5.4 Hz, 1H), 1.84 (ddd, J = 14.5, 9.9, 6.1 Hz, 1H); 13C NMR (125 MHz, 

CDCl3) δ 193.0, 173.4, 170.9, 146.6, 131.4, 123.3, 119.2, 66.8, 66.1, 56.7, 51.7, 49.8, 

30.7, 29.5, 28.9, 22.5; IR (Neat Film, NaCl): 2953, 2854, 2820, 1733, 1694, 1616, 1447, 

1377, 1264, 1209, 1177, 1120, 983, 957 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for 

C18H26NO6 [M+H]+ 352.1755, found 352.1771. 

 

 

Allyl 3-morpholino-2-oxo-1-(3-oxobutyl)cyclohex-3-ene-1-carboxylate (65f) 
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Synthesized according to general procedure A using methyl vinyl ketone.  The product 

was purified by column chromatography (SiO2, 3 x 12 cm, 20→35→50→65% EtOAc in 

hexanes) to yield enaminone 65f (537 mg, 1.60 mmol, 74% yield over 2 steps) as a pale 

yellow oil that solidified on storage at –20 °C; Rf = 0.28 (50% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 5.81 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.75 – 5.69 (m, 1H), 

5.26 (dq, J = 17.2, 1.5 Hz, 1H), 5.20 (dq, J = 10.4, 1.2 Hz, 1H), 4.61 – 4.48 (m, 2H), 3.81 

– 3.68 (m, 4H), 2.93 (ddd, J = 11.8, 6.3, 3.1 Hz, 2H), 2.66 – 2.31 (m, 7H), 2.15 – 2.04 

(m, 4H), 1.98 (ddd, J = 14.2, 10.3, 5.3 Hz, 1H), 1.84 (ddd, J = 13.1, 10.0, 5.4 Hz, 1H); 

13C NMR (125 MHz, CDCl3) δ 207.7, 193.4, 171.2, 146.7, 131.4, 123.5, 119.3, 66.9, 

66.0, 56.7, 49.9, 38.9, 31.1, 30.0, 30.0, 27.7, 22.6; IR (Neat Film, NaCl): 2956, 2854, 

1721, 1615, 1447, 1372, 1299, 1264, 1209, 1179, 1120, 1095, 982, 939 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C18H26NO5 [M+H]+ 336.1805, found 336.1803. 

 

 

Allyl 1-(2-cyanoethyl)-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65g) 

Synthesized according to general procedure A using acrylonitrile.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 10→20% acetone in hexanes) to 

yield enaminone 65g (247 mg, 0.776 mmol, 71% yield over 2 steps) as a colorless oil; Rf 

= 0.29 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.83 (ddt, J = 16.5, 10.4, 

6.0 Hz, 1H), 5.77 – 5.73 (m, 1H), 5.33 – 5.21 (m, 2H), 4.66 – 4.54 (m, 2H), 3.83 – 3.69 

(m, 4H), 2.95 (ddd, J = 11.8, 6.4, 3.0 Hz, 2H), 2.55 (dtt, J = 13.3, 9.9, 6.6 Hz, 4H), 2.41 

O
N

O
O

O

CN



CHAPTER 2 – Highly Enantioselective Palladium-Catalyzed Allylic Alkylation of Enaminones 

 

230 

(dqd, J = 14.7, 5.9, 5.4, 3.4 Hz, 3H), 2.21 (ddd, J = 14.0, 9.5, 5.9 Hz, 1H), 2.07 (ddd, J = 

14.0, 9.6, 6.3 Hz, 1H), 1.94 – 1.84 (m, 1H); 13C NMR (125 MHz, Chloroform-d) δ 192.6, 

170.1, 170.1, 146.5, 131.0, 123.7, 119.8, 119.3, 66.8, 66.4, 56.4, 56.4, 49.8, 31.0, 30.1, 

22.4, 13.2; IR (Neat Film, NaCl): 2956, 2854, 2247, 1734, 1690, 1617, 1448, 1375, 1264, 

1208, 1119, 982, 947 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C17H23N2O4 [M+H]+ 

319.1652, found 319.1668. 

 

 

Allyl 1-benzyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65h) 

Synthesized according to general procedure A using benzyl bromide.  The product was 

purified by column chromatography (SiO2, 2.5 x 15 cm, 4→6→8→10% acetone in 

hexanes) to yield enaminone 65h (498 mg, 1.40 mmol, 65% yield over 2 steps) as a 

colorless oil; Rf = 0.23 (20% acetone in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.28 – 

7.13 (m, 5H), 5.79 (ddt, J = 17.3, 10.4, 5.9 Hz, 1H), 5.71 (ddd, J = 4.5, 3.2, 1.2 Hz, 1H), 

5.31 – 5.22 (m, 2H), 4.52 (dq, J = 5.9, 1.5 Hz, 2H), 3.87 – 3.72 (m, 4H), 3.26 (d, J = 13.7 

Hz, 1H), 3.14 (d, J = 13.7 Hz, 1H), 2.96 (ddd, J = 11.9, 6.4, 3.0 Hz, 2H), 2.60 – 2.49 (m, 

3H), 2.41 – 2.33 (m, 2H), 1.82 – 1.72 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 192.6, 

170.5, 146.8, 136.4, 131.5, 130.7, 128.2, 128.2, 126.9, 123.9, 119.2, 66.9, 66.1, 58.7, 

49.9, 39.8, 30.0, 22.7; IR (Neat Film, NaCl): 2956, 2854, 1734, 1691, 1615, 1447, 1377, 

1263, 1207, 1176, 1118, 1085, 980, 937 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for 

C21H26NO4 [M+H]+ 356.1856, found 356.1857. 
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Allyl 1-(4-methoxybenzyl)-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65i) 

Synthesized according to general procedure A using p-methoxybenzyl chloride.  The 

product was purified by column chromatography (SiO2, 3 x 15 cm, 5→10% acetone in 

hexanes) to yield enaminone 65i (86 mg, 0.22 mmol, 21% yield over 2 steps) as a pale 

yellow oil; Rf = 0.72 (20% Et2O in CH2Cl2); 1H NMR (500 MHz, CDCl3) δ 7.12 – 7.03 

(m, 2H), 6.82 – 6.74 (m, 2H), 5.80 (ddt, J = 17.2, 10.4, 5.9 Hz, 1H), 5.72 (t, J = 4.2 Hz, 

1H), 5.28 (q, J = 1.5 Hz, 1H), 5.26 – 5.18 (m, 1H), 4.53 (dq, J = 5.9, 1.5 Hz, 2H), 3.87 – 

3.70 (m, 6H), 3.21 – 3.08 (m, 2H), 2.96 (ddt, J = 11.6, 6.3, 2.5 Hz, 2H), 2.60 – 2.48 (m, 

3H), 2.39 – 2.33 (m, 1H), 2.31 (td, J = 5.7, 2.2 Hz, 1H), 1.76 (ddd, J = 14.2, 10.4, 6.2 Hz, 

1H); 13C NMR (125 MHz, Chloroform-d) δ 192.7, 170.6, 158.6, 146.8, 131.7, 131.6, 

128.3, 123.9, 119.2, 113.6, 66.9, 66.1, 58.8, 55.3, 50.0, 38.9, 30.0, 22.7; IR (Neat Film, 

NaCl): 2954, 2853, 1734, 1691, 1612, 1512, 1445, 1262, 1248, 1208, 1178, 1119, 1034, 

981, 938 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C22H28NO5 [M+H]+ 386.1962, 

found 386.1948. 
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Allyl 3-morpholino-2-oxo-1-(4-(trifluoromethyl)benzyl)cyclohex-3-ene-1-carboxylate 

(65j) 

Synthesized according to general procedure A using p-trifluoromethylbenzyl bromide.  

The product was purified by column chromatography (SiO2, 3 x 25 cm, 2:1:1→2:2:1 

hexanes:DCM:acetone) to yield enaminone 65j (276 mg, 0.652 mmol, 60% yield over 2 

steps) as a pale yellow oil; Rf = 0.78 (20% Et2O in CH2Cl2); 1H NMR (500 MHz, CDCl3) 

δ 7.54 – 7.47 (m, 2H), 7.35 – 7.26 (m, 2H), 5.81 – 5.69 (m, 2H), 5.28 – 5.18 (m, 2H), 

4.51 (dq, J = 5.9, 1.5 Hz, 2H), 3.80 (dddd, J = 30.5, 11.4, 6.4, 2.9 Hz, 4H), 3.32 – 3.16 

(m, 2H), 2.97 (ddd, J = 11.8, 6.4, 3.0 Hz, 2H), 2.61 – 2.48 (m, 3H), 2.40 – 2.29 (m, 2H), 

1.78 (ddd, J = 14.2, 10.4, 6.1 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 192.3, 170.3, 

146.8, 140.7, 131.3, 131.2, 129.2 (q, J = 32.4 Hz), 125.3, 125.1 (q, J = 3.8 Hz), 123.8, 

123.3, 119.5, 66.9, 66.3, 58.7, 49.9, 39.6, 30.4, 22.7; IR (Neat Film, NaCl): 2957, 2855, 

1732, 1694, 1618, 1447, 1418, 1323, 1263, 1209, 1162, 1116, 1066, 1019, 981, 938 cm-1; 

HRMS (MM: ESI-APCI) m/z calc’d for C22H25NO4F [M+H]+ 424.1730, found 424.1737. 

 

 

2-Chloroallyl 1-methyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65k) 
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Synthesized according to general procedure A using 2-chloroallyl cyanoformate (83a, see 

section 2.4.6).  Product purified by flash chromatography (20→22% EtOAc/hexanes) to 

yield enaminone 65k as a slightly yellow oil (470 mg, 1.50 mmol, 37% yield over 2 

steps);  1H NMR (500 MHz, CDCl3) δ 5.84 – 5.79 (m, 1H), 5.46 – 5.43 (m, 1H), 5.41 – 

5.39 (m, 1H), 4.75 – 4.68 (m, 1H), 4.67 – 4.59 (m, 1H), 3.87 – 3.73 (m, 4H), 3.04 – 2.95 

(m, 2H), 2.65 – 2.58 (m, 2H), 2.58 – 2.35 (m, 3H), 1.94 – 1.84 (m, 1H), 1.43 (s, 3H); 13C 

NMR (125 MHz, CDCl3) δ 193.5, 171.9, 146.3, 135.4, 124.3, 115.8, 66.9, 66.7, 54.2, 

49.9, 33.3, 22.6, 20.6; IR (Neat Film, NaCl) 2954, 2855, 1741, 1693, 1450, 1377 cm-1; 

HRMS (ESI) m/z calc’d for C15H21NClO4 [M+H]+: 314.1154, found 314.1156. 

 

 

2-Methylallyl 1-methyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (65l) 

Synthesized according to general procedure A using 2-methylallyl cyanoformate (83b, 

see section 2.4.6).  Product purified by flash chromatography (20→24% EtOAc/hexanes) 

to yield enaminone 65l  as a slightly yellow oil (808 mg, 2.76 mmol, 56% yield over 2 

steps).  1H NMR (500 MHz, CDCl3) δ 5.79 (ddd, J = 5.0, 3.5, 1.0 Hz, 1H), 4.94 – 4.92 

(m, 1H), 4.92 – 4.90 (m, 1H), 4.55 – 4.47 (m, 2H), 3.86 – 3.74 (m, 4H), 3.04 – 2.96 (m, 

2H), 2.62 – 2.50 (m, 3H), 2.50 – 2.44 (m, 1H), 2.43 – 2.35 (m, 1H), 1.87 (ddd, J = 13.5, 

9.7, 5.6 Hz, 1H), 1.71 (s, 3H), 1.41 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 193.7, 172.3, 

146.3, 139.4, 123.9, 113.5, 68.4, 66.8, 54.1, 49.8, 33.3, 22.6, 20.6, 19.5; IR (Neat Film, 

NaCl) 2936, 2854, 1737, 1694, 1615, 1450, 1175, 1119, cm-1; HRMS (ESI) m/z calc’d for 

C16H24NO4 [M+H]+: 294.1700, found 294.1705. 
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Allyl 1-methyl-2-oxo-3-(piperidin-1-yl)cyclohex-3-ene-1-carboxylate (74) 

Synthesized according to general procedure A using 2-(piperidin-1-yl)cyclohex-2-en-1-

one.  The product was purified by column chromatography (SiO2, 3 x 15 cm, 

8→12→16% Et2O in hexanes) to yield enaminone 74 (427 mg, 1.54 mmol, 59% yield 

over 2 steps) as a pale tan oil; Rf = 0.32 (40% Et2O in hexanes); 1H NMR (500 MHz, 

CDCl3) δ 5.83 – 5.74 (m, 1H), 5.74 – 5.66 (m, 1H), 5.21 (dt, J = 17.2, 1.5 Hz, 1H), 5.19 – 

5.10 (m, 1H), 4.59 – 4.45 (m, 2H), 2.81 (ddd, J = 11.2, 7.2, 3.6 Hz, 2H), 2.45 (tdd, J = 

9.3, 7.5, 4.3 Hz, 3H), 2.37 (dddd, J = 13.5, 5.0, 3.2, 1.1 Hz, 1H), 2.29 (dtd, J = 19.0, 5.4, 

3.2 Hz, 1H), 1.77 (ddd, J = 13.4, 9.6, 5.6 Hz, 1H), 1.67 – 1.50 (m, 4H), 1.44 (p, J = 6.0 

Hz, 2H), 1.31 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 194.0, 172.3, 147.5, 131.6, 123.3, 

118.5, 65.7, 54.0, 50.8, 33.2, 25.9, 24.3, 22.6, 20.5; IR (Neat Film, NaCl): 2934, 2851, 

2802, 1735, 1696, 1613, 1452, 1387, 1248, 1222, 1175, 1110, 987, 943 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C16H24NO3 [M+H]+ 278.1751, found 278.1747. 

 

 

Allyl 1,4-dimethyl-3-morpholino-2-oxocyclohex-3-ene-1-carboxylate (76) 

Synthesized according to general procedure A using 3-methyl-2-morpholinocyclohex-2-

en-1-one.  The product was purified by column chromatography (SiO2, 3 x 13 cm, 

5→10→20% EtOAc in hexanes) to yield enaminone 76 (772 mg, 2.63 mmol, 74% yield 
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over 2 steps) as a pale yellow oil; Rf = 0.34 (20% EtOAc in hexanes); 1H NMR (500 

MHz, CDCl3) δ 5.81 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.24 (dq, J = 17.2, 1.6 Hz, 1H), 

5.18 (dq, J = 10.5, 1.3 Hz, 1H), 4.55 (qdt, J = 13.3, 5.6, 1.5 Hz, 2H), 3.72 – 3.61 (m, 4H), 

2.94 (dt, J = 9.8, 4.4 Hz, 2H), 2.85 (dt, J = 11.4, 4.3 Hz, 2H), 2.49 (dddd, J = 19.2, 9.8, 

5.3, 1.1 Hz, 1H), 2.38 (ddd, J = 13.6, 5.3, 3.6 Hz, 1H), 2.33 – 2.23 (m, 1H), 1.95 (d, J = 

0.9 Hz, 3H), 1.79 (ddd, J = 13.6, 9.7, 5.5 Hz, 1H), 1.33 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 194.8, 172.5, 153.2, 142.1, 131.8, 118.4, 67.9, 65.7, 53.9, 50.3, 32.3, 29.2, 20.5, 

19.6; IR (Neat Film, NaCl): 2935, 2848, 1734, 1680, 1452, 1375, 1259, 1190, 1168, 

1114, 1070, 989 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C16H24NO4 [M+H]+ 

294.1700, found 294.1701.   

 

  

Allyl 1-methyl-3-morpholino-2-oxocyclopent-3-ene-1-carboxylate (78) 

Synthesized according to general procedure A using 2-morpholinocyclopent-2-en-1-one.  

The product was purified by column chromatography (SiO2, 3.5 x 12 cm, 

2→4→6→8→10% EtOAc in DCM) to yield enaminone 78 (151 mg, 0.570 mmol, 21% 

yield over 2 steps) as a pale orange oil; Rf = 0.33 (10% EtOAc in CH2Cl2); 1H NMR (500 

MHz, CDCl3) δ 6.39 (t, J = 3.2 Hz, 1H), 5.92 – 5.78 (m, 1H), 5.32 – 5.22 (m, 1H), 5.20 

(dq, J = 10.5, 1.3 Hz, 1H), 4.64 – 4.54 (m, 2H), 3.84 – 3.68 (m, 4H), 3.24 – 3.11 (m, 2H), 

3.07 – 2.96 (m, 3H), 2.38 (dd, J = 18.2, 3.2 Hz, 1H), 1.42 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 201.8, 171.6, 148.6, 131.9, 131.8, 118.3, 66.6, 65.9, 54.1, 48.5, 37.8, 21.1; IR 

(Neat Film, NaCl): 2962, 2933, 2855, 1740, 1707, 1612, 1452, 1379, 1263, 1178, 1120, 

O
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1068, 1022, 994 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C14H20NO4 [M+H]+ 

266.1387, found 266.1391. 

 

 

Allyl 3-methyl-2-oxo-[1,1'-bi(cyclohexan)]-6-ene-3-carboxylate (80) 

Synthesized according to general procedure A using [1,1'-bi(cyclohexan)]-6-en-2-one.13  

The product was purified by column chromatography (SiO2, 1.5 x 12 cm, 10% Et2O in 

DCM) to yield enone 80 (51 mg, 0.185 mmol, 30% yield over 2 steps) as a pale yellow 

oil; Rf = 0.33 (10% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 6.54 – 6.48 (m, 1H), 

5.85 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.27 (dq, J = 17.2, 1.6 Hz, 1H), 5.20 (dq, J = 10.5, 

1.3 Hz, 1H), 4.64 – 4.52 (m, 2H), 2.59 – 2.50 (m, 1H), 2.50 – 2.40 (m, 2H), 2.38 – 2.26 

(m, 1H), 1.92 – 1.81 (m, 1H), 1.80 – 1.60 (m, 5H), 1.55 (s, 1H), 1.40 – 1.22 (m, 5H), 1.21 

– 1.04 (m, 2H), 1.04 – 0.92 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 196.8, 172.8, 144.2, 

140.9, 131.9, 118.5, 65.8, 53.6, 36.8, 33.4, 32.8, 32.3, 26.9, 26.8, 26.5, 23.6, 20.6; IR 

(Neat Film, NaCl): 2925, 2851, 1734, 1684, 1379, 1351, 1299, 1247, 1167, 1110, 981, 

935 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C17H25O3 [M+H]+ 277.1798, found 

277.1791. 
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2.4.3  Asymmetric Decarboxylative Allylic Alkylation of Enaminone 

Substrates 

 

(S)-6-allyl-6-methyl-2-morpholinocyclohex-2-en-1-one (66a) 

General procedure B:  In a glove box under an atmostphere of N2, Pd2dmdba3 (29.7 mg, 

23.3 µmol, 5 mol %) and (S)-t-Bu PHOX (3, 22.5 mg, 58.2 µmol, 12.5 mol %) were 

taken up in 12 mL EtOAc.  The catalystic was allowed to preform at 40 °C for 30 

minutes, as indicated by the reaction mixture turning orange.  At this point, enaminone 

substrate 65a (130 mg, 0.465 mmol, 1.00 equiv) in 2 mL EtOAc (total concentration = 

0.033 M) was added, causing the reaction mixture to turn green.  The reaction mixture 

was sealed, removed from the glove box and stirred at 40 °C for 9 hours, until the 

reaction was complete as indicated by the mixture returning to an orange color (and 

confirmed by TLC analysis).  The reaction mixture was filtered through a short plug of 

silica and rinsed with 25 mL EtOAC, concentrated in vacuo, and purified by column 

chromatography (SiO2, 3 x 12 cm, 5→10% acetone in hexanes) to yield enaminone 66a 

(104 mg, 0.442 mmol, 95% yield) as a colorless oil; Rf = 0.22 (20% acetone in hexanes); 

1H NMR (500 MHz, CDCl3) δ 7.26 (s, 1H), 5.88 (t, J = 4.5 Hz, 1H), 5.80 – 5.67 (m, 1H), 

5.09 – 5.00 (m, 2H), 3.80 (ddd, J = 5.8, 3.5, 2.2 Hz, 4H), 2.82 (dt, J = 9.8, 4.5 Hz, 2H), 

2.74 – 2.66 (m, 2H), 2.51 – 2.37 (m, 2H), 2.37 – 2.30 (m, 1H), 2.22 (ddq, J = 13.7, 7.6, 

1.0 Hz, 1H), 1.88 (dt, J = 13.7, 6.0 Hz, 1H), 1.73 (ddd, J = 13.9, 6.9, 5.7 Hz, 1H), 1.09 (d, 

O
N

O O
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J = 0.7 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 200.5, 145.7, 134.2, 125.1, 118.2, 67.0, 

50.6, 45.6, 41.4, 33.3, 22.0, 22.0; IR (Neat Film, NaCl): 2960, 2918, 2853, 2813, 1679, 

1615, 1447, 1376, 1262, 1208, 1120, 1099, 1001, 990, 915 cm-1; HRMS (MM: ESI-

APCI) m/z calc’d for C14H22NO2 [M+H]+ 236.1645, found 236.1641; [α]25 –315.66 (c 

13.57, CHCl3, 99% ee). 

 

 

(S)-6-allyl-6-ethyl-2-morpholinocyclohex-2-en-1-one (66b) 

Synthesized according to general procedure B using substrate 65b. The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 5→10% acetone in hexanes) to 

yield enaminone 66b (116 mg, 0.465 mmol, quantitative yield) as a colorless oil; Rf = 

0.25 (40% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.83 (t, J = 4.4 Hz, 1H), 5.76 

– 5.64 (m, 1H), 5.06 – 4.97 (m, 2H), 3.78 (ddd, J = 5.2, 3.8, 1.0 Hz, 4H), 2.81 – 2.75 (m, 

2H), 2.75 – 2.66 (m, 2H), 2.40 (tdd, J = 5.9, 4.5, 1.4 Hz, 2H), 2.34 (ddt, J = 14.0, 6.9, 1.3 

Hz, 1H), 2.23 (ddt, J = 14.0, 7.9, 1.1 Hz, 1H), 1.81 (t, J = 6.2 Hz, 2H), 1.59 (qd, J = 7.5, 

1.3 Hz, 2H), 0.80 (t, J = 7.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 200.2, 145.9, 134.4, 

124.7, 117.9, 67.0, 50.6, 48.6, 38.8, 30.4, 27.0, 21.8, 8.4; IR (Neat Film, NaCl): 2962, 

2933, 2854, 2814, 1678, 1616, 1447, 1377, 1263, 1208, 1120, 1070, 1099, 998 cm-1; 

HRMS (MM: ESI-APCI) m/z calc’d for C15H24NO2 [M+H]+ 250.1802, found 250.1813; 

[α]25 5.52 (c 7.45, CHCl3, 98% ee). 
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(S)-6-allyl-6-(((tert-butyldimethylsilyl)oxy)methyl)-2-morpholinocyclohex-2-en-1-one 
(66c) 
 
Synthesized according to general procedure B using substrate 65c.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 20% acetone in hexanes) to yield 

enaminone 66c (164 mg, 0.445 mmol, 96% yield) as a pale tan oil; Rf = 0.33 (20% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.87 (t, J = 4.5 Hz, 1H), 5.76 – 5.64 

(m, 1H), 5.06 – 4.98 (m, 2H), 3.79 (t, J = 4.6 Hz, 4H), 3.68 (d, J = 9.7 Hz, 1H), 3.62 (d, J 

= 9.7 Hz, 1H), 2.74 (t, J = 4.6 Hz, 4H), 2.47 – 2.35 (m, 3H), 2.26 (ddt, J = 13.7, 7.8, 1.1 

Hz, 1H), 1.96 (ddd, J = 13.3, 7.1, 6.0 Hz, 1H), 1.89 (dt, J = 13.7, 5.9 Hz, 1H), 0.85 (s, 

9H), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 198.8, 146.4, 134.1, 125.1, 118.0, 67.0, 

66.1, 51.0, 50.5, 37.2, 28.5, 26.0, 21.7, 18.3, -5.4, -5.5; IR (Neat Film, NaCl): 2953, 

2855, 1677, 1639, 1615, 1472, 1463, 1447, 1378, 1299, 1262, 1208, 1121, 973, 917 cm-1; 

HRMS (MM: ESI-APCI) m/z calc’d for C20H36NO3Si [M+H]+ 366.2459, found 

366.2466; [α]25 –111.67 (c 10.25, CHCl3, 99% ee). 

 

 

(S)-6-allyl-6-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-morpholinocyclohex-2-en-1-one 

(66d) 
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Synthesized according to general procedure B using substrate 65d.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 20% acetone in hexanes) to yield 

enaminone 66d (165 mg, 0.432 mmol, 93% yield) as a colorless oil; Rf = 0.31 (20% 

EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.87 (d, J = 4.5 Hz, 1H), 5.74 (dddd, 

J = 16.5, 10.5, 7.8, 6.9 Hz, 1H), 5.09 – 5.00 (m, 2H), 3.80 (t, J = 4.7 Hz, 4H), 3.70 (ddd, 

J = 10.2, 8.4, 6.1 Hz, 1H), 3.57 (ddd, J = 10.3, 8.6, 5.9 Hz, 1H), 2.76 (q, J = 3.5 Hz, 4H), 

2.52 – 2.41 (m, 2H), 2.38 (ddt, J = 14.0, 6.8, 1.3 Hz, 1H), 2.27 (ddt, J = 14.0, 7.8, 1.1 Hz, 

1H), 1.94 – 1.81 (m, 3H), 1.75 (ddd, J = 14.0, 8.4, 5.9 Hz, 1H), 0.87 (s, 9H), 0.03 (s, 3H), 

0.02 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 199.6, 145.8, 134.2, 125.0, 118.3, 67.0, 

59.5, 50.6, 47.8, 39.5, 37.0, 31.3, 26.1, 21.9, 18.4, -5.1, -5.2; IR (Neat Film, NaCl): 2953, 

2928, 2855, 2817, 1679, 1616, 1448, 1262, 1207, 1121, 1098, 1030, 977, 914 cm-1; 

HRMS (APCI) m/z calc’d for C21H38NO3Si [M+H]+ 380.2615, found 380.2618; [α]25 –

9.38 (c 3.48, CHCl3, 99% ee). 

 

 

Methyl (R)-3-(1-allyl-3-morpholino-2-oxocyclohex-3-en-1-yl)propanoate (66e) 

Synthesized according to general procedure B using substrate 65e.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 5→10→15→20→30→50% 

EtOAc in hexanes) to yield enaminone 66e (140 mg, 0.456 mmol, 98% yield) as a 

colorless oil; Rf = 0.31 (20% EtOAc in hexanes); Rf = 0.40 (50% EtOAc in hexanes); 1H 

NMR (500 MHz, CDCl3) δ 5.88 (s, 1H), 5.70 (dddd, J = 16.6, 10.4, 7.7, 7.0 Hz, 1H), 5.11 
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– 5.02 (m, 2H), 3.83 – 3.77 (m, 3H), 3.65 (s, 3H), 2.81 – 2.73 (m, 3H), 2.45 (td, J = 6.1, 

4.4 Hz, 2H), 2.39 – 2.29 (m, 2H), 2.29 – 2.23 (m, 1H), 2.23 – 2.15 (m, 1H), 1.95 (ddd, J 

= 14.1, 11.2, 5.4 Hz, 1H), 1.90 – 1.77 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 199.2, 

174.1, 145.8, 133.5, 125.1, 118.7, 77.4, 77.2, 76.9, 66.9, 51.8, 50.5, 50.4, 47.9, 39.1, 30.7, 

29.4, 29.0, 21.7; IR (Neat Film, NaCl): 2950, 2853, 1735, 1676, 1617, 1437, 1375, 1263, 

1207, 1174, 1119 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C17H26NO4 [M+H]+ 

308.1856, found 308.1859; [α]25 34.36 (c 16.49, CHCl3, 97% ee). 

 

 

(R)-6-allyl-2-morpholino-6-(3-oxobutyl)cyclohex-2-en-1-one (66f) 

Synthesized according to general procedure B using substrate 65f.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 20→35→50%) to yield enaminone 

66f (122 mg, 0.419 mmol, 90% yield) as a colorless oil; Rf = 0.35 (50% EtOAc in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 5.89 (t, J = 4.5 Hz, 1H), 5.69 (ddt, J = 16.7, 

10.4, 7.3 Hz, 1H), 5.10 – 5.01 (m, 2H), 3.79 (t, J = 4.7 Hz, 4H), 2.78 (dt, J = 11.7, 4.7 

Hz, 2H), 2.70 (dt, J = 11.5, 4.7 Hz, 2H), 2.54 – 2.44 (m, 2H), 2.44 – 2.39 (m, 1H), 2.38 – 

2.27 (m, 2H), 2.25 (ddt, J = 14.0, 7.6, 1.2 Hz, 1H), 2.12 (s, 3H), 1.92 – 1.73 (m, 4H); 13C 

NMR (125 MHz, CDCl3) δ 208.6, 199.6, 145.9, 133.6, 118.7, 67.0, 50.7, 47.9, 39.3, 38.4, 

31.0, 30.2, 30.2, 28.0, 21.8; IR (Neat Film, NaCl): 2921, 2853, 2814, 1716, 1674, 1615, 

1446, 1369, 1262, 1206, 1167, 1119, 978, 922 cm-1; HRMS (MM: ESI-APCI) m/z calc’d 

for C17H26NO3 [M+H]+ 292.1907, found 292.1914; [α]25 15.98 (c 10.28, CHCl3, 94% ee). 
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(R)-3-(1-allyl-3-morpholino-2-oxocyclohex-3-en-1-yl)propanenitrile (66g) 

Synthesized according to general procedure B using substrate 65g.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 5→10→15→20→30→50% 

EtOAc in hexanes) to yield enaminone 66g (217 mg, 0.465 mmol, quantitative yield) as a 

colorless oil; Rf = 0.30 (50% EtOAc in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.94 (s, 

1H), 5.66 (ddt, J = 16.9, 10.1, 7.4 Hz, 1H), 5.19 – 5.06 (m, 2H), 3.86 – 3.75 (m, 4H), 2.85 

(dt, J = 9.7, 4.4 Hz, 2H), 2.68 (d, J = 12.3 Hz, 2H), 2.58 – 2.47 (m, 2H), 2.47 – 2.34 (m, 

2H), 2.34 – 2.24 (m, 3H), 2.10 (ddd, J = 14.0, 10.1, 5.9 Hz, 1H), 1.96 – 1.83 (m, 2H), 

1.80 (ddd, J = 14.1, 10.2, 5.8 Hz, 1H); 13C NMR (125 MHz, Chloroform-d) δ 198.5, 

145.7, 132.4, 125.4, 120.1, 119.5, 77.4, 77.2, 76.9, 66.9, 50.5, 48.0, 48.0, 38.8, 30.5, 30.3, 

21.6, 12.3; IR (Neat Film, NaCl): 2929, 2854, 1675, 1448, 1263, 1205, 1118, 1000, 924 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C16H23N2O2 [M+H]+ 275.1754, found 

275.1753; [α]25 29.26 (c 11.02, CHCl3, 94% ee). 

 

 

(S)-6-allyl-6-benzyl-2-morpholinocyclohex-2-en-1-one (66h) 

Synthesized according to general procedure B using substrate 65h.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 5→10→20% acetone in hexanes) 
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to yield enaminone 66h (217 mg, 0.442 mmol, 95% yield) as a colorless oil; Rf = 0.20 

(40% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.28 – 7.22 (m, 2H), 7.22 – 7.17 

(m, 1H), 7.17 – 7.08 (m, 2H), 5.88 (t, J = 4.5 Hz, 1H), 5.77 (dddd, J = 16.9, 10.2, 8.0, 6.6 

Hz, 1H), 5.12 – 5.00 (m, 2H), 3.80 (dd, J = 5.2, 4.2 Hz, 4H), 3.07 (d, J = 13.5 Hz, 1H), 

2.81 – 2.69 (m, 5H), 2.50 – 2.37 (m, 3H), 2.15 (ddt, J = 14.0, 8.1, 1.2 Hz, 1H), 1.80 (dt, J 

= 13.9, 5.8 Hz, 1H), 1.76 – 1.67 (m, 1H); 13C NMR (125 MHz, CDCl3) δ 199.2, 146.3, 

137.6, 134.1, 130.9, 128.1, 126.5, 125.2, 118.6, 67.0, 50.6, 49.9, 40.7, 39.8, 29.8, 21.9; 

IR (Neat Film, NaCl): 2919, 2854, 2814, 1675, 1614, 1447, 1263, 1205, 1119, 981, 923 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C20H26NO2 [M+H]+ 312.1958, found 

312.1967; [α]25 –95.78 (c 4.69, CHCl3, 96% ee).   

 

 

(S)-6-allyl-6-(4-methoxybenzyl)-2-morpholinocyclohex-2-en-1-one (66i) 

Synthesized according to general procedure B using substrate 65i.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 5→10→20% acetone in hexanes) 

to yield enaminone 66i (159 mg, 0.465 mmol, quantitative yield) as a colorless oil; Rf = 

0.17 (40% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.07 – 6.98 (m, 2H), 6.83 – 

6.73 (m, 2H), 5.87 (t, J = 4.5 Hz, 1H), 5.76 (dddd, J = 16.8, 10.2, 8.0, 6.6 Hz, 1H), 5.10 – 

4.99 (m, 2H), 3.80 (t, J = 4.7 Hz, 3H), 3.68 (s, 3H), 3.01 (d, J = 13.8 Hz, 1H), 2.81 – 2.70 

(m, 4H), 2.66 (d, J = 13.7 Hz, 1H), 2.47 – 2.38 (m, 3H), 2.13 (ddt, J = 13.9, 7.9, 1.1 Hz, 

1H), 1.80 (dt, J = 13.9, 5.9 Hz, 1H), 1.71 (dt, J = 13.9, 6.5 Hz, 1H); 13C NMR (125 MHz, 

CDCl3) δ 199.3, 158.3, 146.3, 134.1, 131.8, 129.5, 125.3, 118.5, 113.5, 67.0, 55.3, 55.2, 
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50.6, 50.0, 39.9, 39.8, 29.7, 21.9; IR (Neat Film, NaCl): 2930, 2853, 1675, 1611, 1512, 

1447, 1263, 1248, 1205, 1178, 1119, 1035, 981, 923 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C21H28NO3 [M+H]+ 342.2064, found 342.2064; [α]25 –316.96 (c 12.93, CHCl3, 

95% ee). 

 

 

 (S)-6-allyl-2-morpholino-6-(4-(trifluoromethyl)benzyl)cyclohex-2-en-1-one (66j) 

Synthesized according to general procedure B using substrate 65j.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 5→10→20% acetone in hexanes) 

to yield enaminone 66j (154 mg, 0.406 mmol, 87% yield) as a pale yellow oil; Rf = 0.20 

(40% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 7.49 (d, J = 8.0 Hz, 2H), 7.25 (d, J 

= 8.8 Hz, 2H), 5.88 (t, J = 4.5 Hz, 1H), 5.77 (dddd, J = 17.0, 10.2, 7.8, 6.8 Hz, 1H), 5.16 

– 5.04 (m, 2H), 3.86 – 3.75 (m, 4H), 3.20 (d, J = 13.5 Hz, 1H), 2.83 – 2.75 (m, 2H), 2.75 

– 2.66 (m, 3H), 2.54 – 2.43 (m, 1H), 2.43 – 2.33 (m, 2H), 2.22 (ddt, J = 14.0, 7.8, 1.2 Hz, 

1H), 1.79 (dt, J = 13.8, 5.3 Hz, 1H), 1.70 (ddd, J = 13.9, 8.5, 5.6 Hz, 1H); 13C NMR (125 

MHz, CDCl3) δ 198.6, 146.2, 142.1, 133.5, 131.2, 128.7 (q, J = 32.3 Hz), 127.7, 125.5, 

125.3, 124.9 (q, J = 3.8 Hz), 123.3, 119.1, 66.9, 50.6, 50.0, 40.4, 39.8, 29.9, 21.8; IR 

(Neat Film, NaCl): 2928, 2855, 2817, 1678, 1616, 1448, 1325, 1263, 1163, 1119, 1067, 

1019, 982, 923 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C21H25NO2F [M+H]+ 

380.1832, found 380.1835; [α]25 –22.43 (c 8.54, CHCl3, 92% ee).   

 

O
N

O
CF3
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(S)-6-(2-chloroallyl)-6-methyl-2-morpholinocyclohex-2-en-1-one (66k) 

Synthesized according to general procedure B using substrate 65k.  The product was 

purified by column chromatography (20% EtOAc in hexanes) to afford enaminone 66k as 

a colorless oil (25 mg, 93 µmol, 58% yield); 1H NMR (500 MHz, CDCl3) δ 5.91 (t, J = 

4.5 Hz, 1H), 5.28 (dd, J = 1.1, 0.4 Hz, 1H), 5.16 – 5.15 (m, 1H), 3.86 – 3.76 (m, 4H), 

2.94 – 2.88 (m, 2H), 2.85 (dd, J = 14.3, 0.9 Hz, 1H), 2.72 – 2.65 (m, 2H), 2.53 (d, J = 

14.3 Hz, 1H), 2.49 – 2.44 (m, 2H), 2.04 (ddd, J = 13.6, 7.4, 6.2 Hz, 1H), 1.86 – 1.78 (m, 

1H), 1.17 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 199.1, 145.6, 138.9, 125.1, 116.7, 67.0, 

50.5, 46.1, 45.6, 32.8, 22.5, 21.8; IR (Neat Film, NaCl) 2931, 2855, 1679, 1263, 1120cm-

1; HRMS (ESI) m/z calc’d for C14H21NClO2 [M+H]+: 270.1261, found 270.1259; [α]25 –

7.5 (c 0.8, CHCl3, 99% ee). 

 

 

(S)-6-methyl-6-(2-methylallyl)-2-morpholinocyclohex-2-en-1-one (66l) 

Synthesized according to general procedure B using substrate 65l.  The product was 

purified by column chromatography (20% EtOAc in hexanes) to afford enaminone 66l as 

a colorless oil (25 mg, 100 µmol 92% yield); 1H NMR (500 MHz, CDCl3) δ 5.91 (t, J = 

4.5 Hz, 1H), 5.28 (dd, J = 1.1, 0.4 Hz, 1H), 5.16 – 5.15 (m, 1H), 3.86 – 3.76 (m, 4H), 

2.94 – 2.88 (m, 2H), 2.85 (dd, J = 14.3, 0.9 Hz, 1H), 2.72 – 2.65 (m, 2H), 2.53 (d, J = 

O
N

O

Cl

O
N

O

Me
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14.3 Hz, 1H), 2.49 – 2.44 (m, 2H), 2.04 (ddd, J = 13.6, 7.4, 6.2 Hz, 1H), 1.86 – 1.78 (m, 

1H), 1.17 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 199.1, 145.6, 138.9, 125.1, 116.7, 67.0, 

50.5, 46.1, 45.6, 32.8, 22.5, 21.8; IR (Neat Film, NaCl) 2931, 2855, 1679, 1263, 1120cm-

1; HRMS (ESI) m/z calc’d for C14H21NClO2 [M+H]+: 270.1261, found 270.1259; [α]25 –

7.5 (c 0.8, CHCl3, 99% ee). 

 

 

 (S)-6-allyl-6-methyl-2-(piperidin-1-yl)cyclohex-2-en-1-one (75) 

Synthesized according to general procedure B using substrate 74.  The product was 

purified by column chromatography (SiO2, 3 x 15 cm, 10→20% acetone in hexanes) to 

yield enaminone 75 (107 mg, 0.459 mmol, 99% yield) as a colorless oil; Rf = 0.37 (40% 

Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.84 (t, J = 4.5 Hz, 1H), 5.73 (ddt, J = 

15.1, 10.1, 7.5 Hz, 1H), 5.06 – 4.98 (m, 2H), 2.70 (dt, J = 10.9, 5.2 Hz, 2H), 2.60 (dt, J = 

11.2, 5.1 Hz, 2H), 2.47 – 2.29 (m, 3H), 2.21 (dd, J = 13.8, 7.7 Hz, 1H), 1.84 (dt, J = 12.7, 

6.0 Hz, 1H), 1.67 (qq, J = 14.2, 8.2, 7.3 Hz, 5H), 1.49 (p, J = 6.0 Hz, 2H), 1.07 (s, 3H); 

13C NMR (125 MHz, CDCl3) δ 200.8, 147.0, 134.4, 124.6, 118.0, 51.6, 45.5, 41.4, 33.4, 

26.1, 24.5, 22.1, 22.0; IR (Neat Film, NaCl): 2931, 2852, 2798, 1680, 1613, 1451, 1384, 

1217, 1093, 996, 913 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C15H24NO [M+H]+ 

234.1852, found 234.1847; [α]25 –172.28 (c 6.64, CHCl3, 99% ee). 

 

O
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 (S)-6-allyl-3,6-dimethyl-2-morpholinocyclohex-2-en-1-one (77) 

Synthesized according to general procedure B using substrate 76.  The product was 

purified by column chromatography (SiO2, 3 x 12 cm, 10→20% Et2O in hexanes) to 

yield enaminone 77 (60.2 mg, 0.241 mmol, 52% yield) as a pale yellow oil; Rf = 0.35 

(29% Et2O in hexanes); 1H NMR (500 MHz, CDCl3) δ 5.72 (ddt, J = 16.8, 10.2, 7.4 Hz, 

1H), 5.08 – 4.99 (m, 2H), 3.71 – 3.63 (m, 4H), 2.97 – 2.85 (m, 4H), 2.45 – 2.30 (m, 2H), 

2.27 (ddt, J = 13.6, 7.2, 1.2 Hz, 1H), 2.18 (ddt, J = 13.6, 7.5, 1.2 Hz, 1H), 1.99 (d, J = 0.9 

Hz, 3H), 1.82 (ddd, J = 13.7, 6.4, 5.6 Hz, 1H), 1.67 (ddd, J = 13.7, 7.2, 5.6 Hz, 1H), 1.04 

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 202.0, 153.4, 141.6, 134.3, 118.0, 77.4, 77.2, 

76.9, 68.1, 50.6, 44.9, 41.3, 32.5, 28.7, 21.8, 19.8; IR (Neat Film, NaCl): 2912, 2847, 

1664, 1452, 1374, 1294, 1259, 1190, 1114, 988, 911 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C15H24NO2 [M+H]+ 250.1802, found 250.1803; [α]25 30.71 (c 3.52, CHCl3, 

90% ee). 

 

 

(R)-5-allyl-5-methyl-2-morpholinocyclopent-2-en-1-one (79) 

Synthesized according to general procedure B using substrate 78.  The product was 

purified by column chromatography (SiO2, 3 x 10 cm, 10% acetone in hexanes) to yield 

enaminone 79 (97 mg, 0.438 mmol, 94% yield) as a pale tan oil; Rf = 0.23 (20% acetone 

in hexanes); 1H NMR (500 MHz, CDCl3) δ 6.25 (t, J = 3.1 Hz, 1H), 5.68 – 5.55 (m, 1H), 

O
N

O

O

N
O
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5.07 – 4.97 (m, 2H), 3.80 – 3.74 (m, 4H), 3.12 – 2.96 (m, 4H), 2.49 (dt, J = 18.2, 2.1 Hz, 

1H), 2.27 – 2.16 (m, 2H), 2.12 (dd, J = 13.6, 7.9 Hz, 1H), 1.09 (d, J = 1.4 Hz, 3H); 13C 

NMR (125 MHz, CDCl3) δ 209.1, 149.3, 133.9, 131.6, 118.2, 66.7, 48.6, 46.8, 42.7, 37.2, 

24.0; IR (Neat Film, NaCl): 2960, 2913, 2853, 1703, 1611, 1451, 1380, 1261, 1120, 

1020, 993 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C13H20NO2 [M+H]+ 222.1489, 

found 222.1490; [α]25 –263.53 (c 6.76, CHCl3, 83% ee). 

 

  

(S)-3-allyl-3-methyl-[1,1'-bi(cyclohexan)]-6-en-2-one (81) 

Synthesized according to general procedure B using substrate 80.  The product was 

purified by column chromatography (SiO2, 1 x 12 cm, 5% Et2O in hexanes) to yield 

enaminone 81 (11 mg, 47 µmol, 93% yield) as a pale yellow oil; Rf = 0.43 (5% Et2O in 

hexanes); 1H NMR (500 MHz, CDCl3) δ 6.50 (td, J = 4.1, 1.0 Hz, 1H), 5.73 (ddt, J = 

16.9, 10.4, 7.4 Hz, 1H), 5.08 – 4.99 (m, 2H), 2.52 (ttd, J = 12.0, 3.2, 1.4 Hz, 1H), 2.43 – 

2.33 (m, 2H), 2.33 – 2.25 (m, 1H), 2.17 (ddt, J = 13.7, 7.5, 1.2 Hz, 1H), 1.91 – 1.81 (m, 

1H), 1.78 – 1.60 (m, 6H), 1.34 (qt, J = 12.2, 3.1 Hz, 2H), 1.21 – 0.95 (m, 6H); 13C NMR 

(125 MHz, CDCl3) δ 203.2, 143.4, 140.5, 134.5, 117.9, 44.4, 41.4, 36.4, 33.3, 33.1, 32.7, 

26.9, 26.9, 26.6, 23.0, 22.0; IR (Neat Film, NaCl): 2922, 2849, 1669, 1448, 1175, 911 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C16H25O [M+H]+ 233.1900, found 

233.1892; [α]25 –1.176 (c 0.43, CHCl3, 72% ee). 

 

  

O
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2.4.4  Determination of Enantiomeric Excess 

Table 2.6. Methods for the determination of enantiomeric excess. 

  

compound assay method
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%eeentry

1 SFC, 5% iPrOH in CO2
2.5 mL/min, AD-H col.

5.91 5.62 99

O
N

O

66a

2 HPLC, 5% iPrOH in hexanes
1 mL/min, OD-H col.

8.77 9.14 98

O
Et

N
O

66b

3 SFC, 3% iPrOH in CO2
2.5 mL/min, AD-H col.

4.45 3.95 99

O
N

O

66c

4 SFC, 2% iPrOH in CO2
2.5 mL/min, OD-H col.

3.59 4.10 99

O
N

O

66d

5 SFC, 10% MeOH in CO2
5 mL/min, AD-H col.

3.43 1.75 97

O
N

O

66e

6 SFC, 10% iPrOH in CO2
5 mL/min, AD-H col.

2.27 1.81 94

O
N

O

66f

CO2Me

OTBS

OTBS

O
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compound assay method
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%eeentry

7 SFC, 10% iPrOH in CO2
5 mL/min, AD-H col.

2.19 2.40 94

O
N

O

66g

8 SFC, 8% MeOH in CO2
5 mL/min, OJ-H col.

2.41 2.63 96

O
Bn

N
O

66h

9 SFC, 5% MeOH in CO2
5 mL/min, OD-H col.

6.29 6.99 95

66i

CN

O
N

O
OMe

10 SFC, 5% iPrOH in CO2
5 mL/min, OJ-H col.

3.88 4.52 92

66j

O
N

O
CF3

13 HPLC, 3% EtOH in hexanes
1 mL/min, AD col.

9.01 9.84 99

O
N

75

12 SFC, 5% iPrOH in hexanes
2.5 mL/min, AD-H col.

10.2 9.4 99

O
N

O

66l

11 SFC, 5% iPrOH in hexanes
2.5 mL/min, OD-H col.

8.6 7.8 99

O
N

O

66k

Cl
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2.4.5  Derivatization of Enaminone Products 
 

 

(S)-6-allyl-2-hydroxy-6-methylcyclohex-2-en-1-one (67) 

Enaminone 66a  (297 mg, 1.26 mmol) was diluted in MeOH:water (4:1).  HCl (0.1 mL, 

37%) was added by syringe.  The reaction mixture was stirred at 60°C under nitrogen for 

2h.  The mixture was cooled to room temperature and partitioned between H2O and 

CH2Cl2.  The aqueous layer was extracted with CH2Cl2 two additional times.  The 

organic layers were combined, dried with Na2SO4, filtered, and concentrated.  The 

residue was purified by flash column chromatography (1→2% EtOAc/hexanes) to give 

diketone 21 (166 mg, 1.00 mmol, 79% yield) as a yellow oil.  1H NMR (300 MHz, 

CDCl3) δ 6.10 – 5.97 (m, 1H), 5.80 – 5.58 (m, 1H), 5.15 – 4.94 (m, 2H), 2.45 – 2.29 (m, 

2H), 2.18 (ddt, J = 13.8, 7.6, 1.1 Hz, 1H), 1.91 – 1.83 (m, 1H), 1.72 (ddd, J = 13.7, 6.5, 

compound assay method
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%eeentry

14 HPLC, 1.5% iPrOH in hexanes
1 mL/min, OD-H col.

8.99 8.40 90

O
N

O

77

15 HPLC, 3% iPrOH in hexanes
1 mL/min, OD-H col.

14.22 17.7 83

77

O

N
O

16 SFC, 10% iPrOH in CO2
2.5 mL/min, AD col.

3.08 3.52 72

O

81

O
HO
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5.5 Hz, 1H), 1.09 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 200.2, 145.4, 133.4, 118.6, 

116.8, 43.9, 40.9, 33.5, 21.7, 20.2; IR (Neat Film, NaCl): 3428, 3076, 2975, 2935, 1721, 

1640, 1455, 1217 cm-1; HRMS (FAB+) m/z calc’d for C10H13O2 [M+H–H2]+ 165.0916, 

found 165.0916; [α]25 –5.95 (c 4.45, CHCl3). 

 

 

  

(6S) 3-bromo-6-methyl-2-(morpholin-4-yl)-6-(prop-2-en-1-yl)cyclohex-2-en-1-one 

(68) 

Enaminone 66a (120 mg, 0.51 mmol, 1.0 equiv) was dissolved in CH2Cl2 (4.5 mL, 0.1 

M).  The reaction mixture was cooled to –78 °C.  NBS (91 mg, 0.51 mmol, 1.0 equiv), 

dissolved in CH2Cl2 (4.5 mL), was added drop-wise to the solution by syringe.  The 

reaction mixture was stirred at –78 °C for 25 min.  The solution was quenched with a 

solution of 10% K2CO3 (3 mL).  The mixture was warmed to room temperature and 

extracted with 3 x CH2Cl2.  The organic layers were combined, dried, filtered, and 

concentrated.  The residue was purified by flash column chromatography (3% 

EtOAc/hexanes) to give the desired compound as a yellow oil (96 mg, 0.31 mmol, 60% 

yield).  1H NMR (500 MHz, CDCl3) δ 5.68 (ddt, J = 16.7, 10.2, 7.4 Hz, 1H), 5.10 – 5.01 

(m, 2H), 3.71 (ddd, J = 5.3, 3.8, 1.3 Hz, 4H), 3.06 – 2.99 (m, 2H), 2.97 – 2.92 (m, 2H), 

2.93 – 2.83 (m, 2H), 2.28 (ddt, J = 13.8, 7.3, 1.2 Hz, 1H), 2.21 (ddt, J = 13.8, 7.5, 1.2 Hz, 

1H), 1.88 (ddd, J = 13.8, 6.3, 5.7 Hz, 1H), 1.74 (ddd, J = 13.9, 7.2, 5.8 Hz, 1H), 1.07 (s, 

3H); 13C NMR (125 MHz, CDCl3) δ 199.4, 143.8, 141.9, 133.5, 118.7, 67.7, 50.2, 45.8, 

O
N

O

Br
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40.9, 33.7, 33.3, 21.5; IR (Neat Film, NaCl) 2958, 2851, 1678, 1606, 1451, 1261, 1212, 

1113, 1049, 920 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C14H21BrNO2 [M+H]+ 

314.0750, found 314.0742; [α]25 –1.56 (c 1.68, CHCl3). 

 

 

(S)-4-allyl-4-methyl-2-morpholino-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (69) 

Compound 68 (54 mg, 0.17 mmol, 1.0 equiv) was dissolved in 7 mL of DME and 0.72 

mL (4.5 equiv) of 1 M K3PO4.  Phenylboronic acid (29 mg, 0.24 mmol, 1.5 equiv) and of 

PdCl2(dppf) (26 mg, 32 µmol, 0.19 equiv) were added to the reaction mixture.  The 

mixture was heated to 60 °C under nitrogen for 2h.  The reaction mixture was cooled to 

room temperature and then extracted with 3x ethyl ether.  The organic layers were 

combined, dried with Na2SO4, filtered, and concentrated.  The reaction mixture was 

purified by flash column chromatography (3→6% EtOAc/hexanes) to give the product as 

bright yellow-orange oil (51 mg, 0.16 mmol, 96% yield).  1H NMR (500 MHz, CDCl3) δ 

7.41 – 7.35 (m, 2H), 7.34 – 7.28 (m, 1H), 7.26 – 7.21 (m, 2H), 5.79 (ddt, J = 16.6, 10.4, 

7.4 Hz, 1H), 5.12 – 5.04 (m, 2H), 3.53 (t, J = 4.6 Hz, 4H), 2.83 – 2.57 (m, 6H), 2.42 – 

2.26 (m, 2H), 1.96 (dt, J = 13.7, 5.7 Hz, 1H), 1.85 (ddd, J = 13.5, 6.9, 6.2 Hz, 1H), 1.15 

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 202.5, 145.5, 141.0, 140.4, 134.1, 129.6, 128.1, 

127.9, 127.8, 118.1, 115.3, 67.4, 51.1, 44.6, 41.2, 32.1, 28.9, 21.8; IR (Neat Film, NaCl): 

2916, 2850, 2358, 1669, 1457, 1374, 1261, 1210, 1112, 1029, 978, 757, 698 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C20H26NO2 [M+H]+ 312.1958, found 312.1968; [α]25 

0.00 (c 0.76, CHCl3). 

O
N

O

Ph
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(S)-6-allyl-6-methyl-2-(phenylamino)cyclohex-2-en-1-one (70) 

Compound 66a (52 mg, 0.21 mmol, 1.0 equiv) was dissolved in 1.3 mL of toluene (0.16 

M).  PTSA monohydrate (39 mg, 0.21 mmol, 1.0 equiv) and aniline (20 µL, 0.22 mmol, 

1.0 equiv) were added.  The mixture was heated to 50°C for 3.5 h.  Then the solution was 

diluted with ethyl acetate and washed 3 times with saturated aqueous NaHCO3.  The 

organic layer was combined, dried with Na2SO4, filtered, and concentrated.  The reaction 

mixture was purified by flash column chromatography (2% EtOAc in hexanes) to yield 

compound 70 (18 mg, 75 µmol, 35% yield).  1H NMR (500 MHz, CDCl3) δ 7.29 – 7.23 

(m, 2H), 7.06 – 7.00 (m, 2H), 6.91 (tt, J = 7.4, 1.1 Hz, 1H), 6.33 (t, J = 4.7 Hz, 1H), 5.75 

(ddq, J = 16.8, 10.3, 7.5 Hz, 1H), 5.14 – 5.03 (m, 2H), 2.54 – 2.39 (m, 3H), 2.26 (ddt, J = 

13.7, 7.6, 1.2 Hz, 1H), 1.98 (ddd, J = 13.6, 6.8, 5.4 Hz, 1H), 1.80 (ddd, J = 13.5, 6.8, 5.3 

Hz, 1H), 1.17 (s, 3H) (N-H not observed); 13C NMR (125 MHz, CDCl3) δ 200.0, 142.3, 

134.8, 134.0, 133.9, 121.1, 118.8, 118.5, 115.0, 44.4, 41.5, 33.1, 22.2, 21.0; IR (Neat 

Film, NaCl): 3364, 2926, 1668, 1634, 1600, 1515, 1442, 1306, 1203, 1014, 997, 916, 

750, 691 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C16H20NO [M+H]+ 242.1539, 

found 242.1535; [α]25 –4.72 (c 2.18, CHCl3). 

 

 

O
PhHN

O
H
N
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(S)-2-allyl-2-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-one (71) 

Enaminone 66a (118 mg, 0.500 mmol, 1.00 equiv) was taken up in toluene (2 mL, 0.25 

M) and PTSA monohydrate (95 mg, 0.50 mmol, 1.0 equiv) and phenyl hydrazine (54 mg, 

0.50 mmol, 1.0 equiv) were added.  The reaction was heated to 60 °C and stirred for 4 

hours, cooled to room temperature, diluted with 1 mL saturated aqueous NH4Cl and 

extracted with 3 x 5 mL EtOAc.  The combined organic fractions were dried over Na2SO4 

and concentrated in vacuo.  The crude intermediate was taken up in 5 mL 4:1 AcOH:12 

M HCl (0.1 M), stirred for 2 hours and ice (approx. 10 g) was added.  The ice/reaction 

mixture was quenched with 5.0 M NaOH until a pH of 9–10 was achieved.  The mixture 

was extracted with 3x20 mL EtOAc.  The combined organic fractions were dried over 

Na2SO4 and concentrated in vacuo. The product was purified by column chromatography 

(SiO2, 3 x 10 cm, 5→10→15% EtOAc in hexanes) to yield indole 71 (120 mg, 0.500 

mmol, quantitative yield over 2 steps) as a yellow oil; Rf = 0.54 (20% EtOAc in hexanes); 

1H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 7.66 (dq, J = 8.1, 0.9 Hz, 1H), 7.49 (dt, J = 

8.4, 0.9 Hz, 1H), 7.38 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 7.15 (ddd, J = 8.0, 6.9, 1.0 Hz, 1H), 

5.87 (ddt, J = 16.6, 10.4, 7.4 Hz, 1H), 5.17 – 5.08 (m, 2H), 3.12 – 2.96 (m, 2H), 2.57 

(ddt, J = 13.8, 7.2, 1.2 Hz, 1H), 2.38 (ddt, J = 13.8, 7.5, 1.2 Hz, 1H), 2.24 (ddd, J = 13.6, 

7.1, 5.2 Hz, 1H), 2.05 (ddd, J = 13.6, 7.0, 5.2 Hz, 1H), 1.29 (s, 3H); 13C NMR (125 MHz, 

CDCl3) δ 196.3, 138.7, 134.4, 130.3, 128.0, 126.9, 125.9, 121.4, 120.4, 118.3, 112.9, 

45.5, 41.5, 35.7, 22.1, 18.4; IR (Neat Film, NaCl): 3279, 3076, 2963, 2926, 1638, 1573, 

1545, 1473, 1331, 1224, 1014, 992, 977, 916 cm-1; HRMS (MM: ESI-APCI) m/z calc’d 

for C16H18NO [M+H]+ 240.1383, found 240.1383; [α]25 –131.65 (c 7.84, CHCl3). 
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Ethyl (S)-6-allyl-1-(4-methoxyphenyl)-6-methyl-7-oxo-4,5,6,7-tetrahydro-1H-

indazole-3-carboxylate (72) 

Enaminone 66a (31 mg, 0.13 mmol, 1.0 equiv) and ethyl (Z)-2-chloro-2-(2-(4-

methoxyphenyl)hydrazono)acetate7 (73, 50 mg, 0.19 mmol, 1.5 equiv) were diluted in 0.4 

mL of toluene (0.033M).  Then, TEA (0.15 mL, 0.11 mmol, 0.83 equiv) was added.  The 

reaction mixture was heated at the reflux for 17 h.  The reaction mixture was cooled, 

quenched with water, extracted with ethyl acetate, washed with brine, and dried with 

Na2SO4.  The product was purified by flash column chromatography (5→15% 

EtOAc/hexanes) to give the compound 72 as a yellow-orange oil (22 mg, , 6.0 µmol, 46% 

yield); 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.33 (m, 2H), 6.98 – 6.89 (m, 2H), 5.76 (ddt, 

J = 17.2, 10.1, 7.4 Hz, 1H), 5.15 – 5.02 (m, 2H), 4.44 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 

3.20 – 3.04 (m, 2H), 2.42 (ddt, J = 13.8, 7.1, 1.2 Hz, 1H), 2.27 (ddt, J = 13.8, 7.6, 1.1 Hz, 

1H), 2.13 (ddd, J = 14.0, 6.7, 5.5 Hz, 1H), 1.98 (ddd, J = 13.9, 7.3, 5.5 Hz, 1H), 1.42 (t, J 

= 7.1 Hz, 3H), 1.18 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 192.7, 162.3, 160.1, 140.0, 

135.2, 133.6, 132.9, 132.8, 127.1, 118.8, 113.8, 61.3, 55.7, 46.7, 40.8, 34.9, 21.6, 19.0, 

14.6; IR (Neat Film, NaCl): 2917, 2357, 2340, 1691, 1515, 1301, 1251, 1195, 1127, 

1026, 935 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C21H25N2O4 [M+H]+ 369.1809, 

found 369.1791; [α]25 –7.56 (c 0.45, CHCl3). 

 

O

N
N

EtO2C

MeO



CHAPTER 2 – Highly Enantioselective Palladium-Catalyzed Allylic Alkylation of Enaminones 

 

257 

2.4.6  Synthesis of Substituted Allyl Cyanoformates 

 

2-methylallyl carbonochloridate (82) 

Prepared as reported for the 2-chloroallyl substrate from the report by Stoltz and 

coworkers.14  The product was vacuum distilled (45–47 °C, 20 torr) to provide the 

product as a clear oil (7.48 g, 60% yield).  Spectral data matches that reported in the 

literature.15  1H NMR (500 MHz, CDCl3) δ 5.10 – 5.07 (m, 1H), 5.07 – 5.04 (m, 1H), 

4.71 (s, 2H), 1.81 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 150.4, 137.9, 115.8, 75.0, 19.2. 

 

2-chloroallyl carbonocyanidate (83a) 

Prepared according to literature precedent.14  Product vacuum distilled (62–65°C, 20 torr) 

to afford the product as a clear oil (6.13 g, 90% yield).  1H NMR (500 MHz, CDCl3) δ 

5.62 – 5.59 (m, 1H), 5.57 (d, J = 2.1 Hz, 1H), 4.88 (d, J = 0.9 Hz, 2H); 13C NMR (125 

MHz, CDCl3) δ 143.5, 132.9, 118.5, 108.9, 69.7; IR (Neat Film, NaCl) 2249, 1759, 1640, 

1230, 1180, 918 cm-1; Anal.  Calc’d for C5H4NO2Cl: C, 41.26%; H, 2.77%; N, 9.62%; 

Cl, 24.36% ;Found: C, 41.22%; H, 2.79%, N, 9.49%; Cl, 24.18%. 

 

Cl O

O

NC O

O

Cl
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2-methylallyl carbonocyanidate (83b) 

Prepared according to procedure for cyanoformate 83a from chloroformate 82.  Product 

vacuum distilled (60°C, 35 torr) to afford the product as a clear oil (3.61 g, 81% yield).  

1H NMR (500 MHz, CDCl3) δ 5.12 – 5.06 (m, 2H), 4.73 (s, 2H), 1.81 (s, 3H); 13C NMR 

(125 MHz, CDCl3) δ 144.1, 137.2, 116.4, 109.3, 72.0, 19.3; IR (Neat Film, NaCl) 2246, 

1762, 1227, 1242, 918 cm-1; Anal.  Calc’d for C6H7NO2: C, 57.59%; H, 5.64%; N, 

11.19%; Found: C, 57.59%; H, 5.49%; N, 11.11%. 
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Infrared spectrum (Thin Film, NaCl) of compound 65a. 
 

 13C NMR (125 MHz, CDCl3) of compound 65a. 
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Infrared spectrum (Thin Film, NaCl) of compound 65b. 
 

 13C NMR (125 MHz, CDCl3) of compound 65b. 
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 13C NMR (125 MHz, CDCl3) of compound 65c. 
 

Infrared spectrum (Thin Film, NaCl) of compound 65c. 
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Infrared spectrum (Thin Film, NaCl) of compound 65d. 
 

 13C NMR (125 MHz, CDCl3) of compound 65d. 
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 13C NMR (125 MHz, CDCl3) of compound 65e. 
 

Infrared spectrum (Thin Film, NaCl) of compound 65e. 
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Infrared spectrum (Thin Film, NaCl) of compound 65f. 
 

 13C NMR (125 MHz, CDCl3) of compound 65f. 
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 13C NMR (125 MHz, CDCl3) of compound 65g. 
 

Infrared spectrum (Thin Film, NaCl) of compound 65g. 
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Infrared spectrum (Thin Film, NaCl) of compound 65h

 13C NMR (125 MHz, CDCl3) of compound 65h. 
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 13C NMR (125 MHz, CDCl3) of compound 65i. 
 

Infrared spectrum (Thin Film, NaCl) of compound 65i. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

281 

0
1

2
3

4
5

6
7

8
p
p
m

  

O
N

O
O

O

CF
3

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l3
) o

f c
om

po
un

d 
65
j. 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

282 

020406080100120140160180200
ppm

 

Infrared spectrum (Thin Film, NaCl) of compound 65j. 
 

 13C NMR (125 MHz, CDCl3) of compound 65j. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

283 

0
1

2
3

4
5

6
7

8
p
p
m

  

O
N

O

O

O

Cl

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l3
) o

f c
om

po
un

d 
65
k.

 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

284 

020406080100120140160180200
ppm

 

 13C NMR (125 MHz, CDCl3) of compound 65k. 
 

Infrared spectrum (Thin Film, NaCl) of compound 65k. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

285 

0
1

2
3

4
5

6
7

8
9

1
0

p
p
m

  

O
N

O

O

O

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l3
) o

f c
om

po
un

d 
65
l. 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

286 

020406080100120140160180200
ppm

 

Infrared spectrum (Thin Film, NaCl) of compound 65l

 13C NMR (125 MHz, CDCl3) of compound 65l. 
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Infrared spectrum (Thin Film, NaCl) of compound 66a. 
 

 13C NMR (125 MHz, CDCl3) of compound 66a. 
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 13C NMR (125 MHz, CDCl3) of compound 66b. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66b. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

291 

0
1

2
3

4
5

6
7

8
p
p
m

   

O
N

O
O
TB
S

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l3
) o

f c
om

po
un

d 
66
c.

 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

292 

020406080100120140160180200
ppm

 

Infrared spectrum (Thin Film, NaCl) of compound 66c. 
 

 13C NMR (125 MHz, CDCl3) of compound 66c. 
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 13C NMR (125 MHz, CDCl3) of compound 66d. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66d. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

295 

0
1

2
3

4
5

6
7

8
p
p
m

O
N

O
CO

2M
e  1 H

 N
M

R
 (5

00
 M

H
z,

 C
D

C
l3

) o
f c

om
po

un
d 
66
e.

 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

296 

020406080100120140160180200
ppm

 

Infrared spectrum (Thin Film, NaCl) of compound 66e. 
 

 13C NMR (125 MHz, CDCl3) of compound 66e. 
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 13C NMR (125 MHz, CDCl3) of compound 66f. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66f. 
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Infrared spectrum (Thin Film, NaCl) of compound 66g. 
 

 13C NMR (125 MHz, CDCl3) of compound 66g. 
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 13C NMR (125 MHz, CDCl3) of compound 66h. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66h. 
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 13C NMR (125 MHz, CDCl3) of compound 66i. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66i. 
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Infrared spectrum (Thin Film, NaCl) of compound 66j. 
 

 13C NMR (125 MHz, CDCl3) of compound 66j. 
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 13C NMR (125 MHz, CDCl3) of compound 66k. 
 

Infrared spectrum (Thin Film, NaCl) of compound 66k. 
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Infrared spectrum (Thin Film, NaCl) of compound 66l. 
 

 13C NMR (125 MHz, CDCl3) of compound 66l. 
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Infrared spectrum (Thin Film, NaCl) of compound 67. 
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Infrared spectrum (Thin Film, NaCl) of compound 68. 
 

 13C NMR (125 MHz, CDCl3) of compound 68. 
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Infrared spectrum (Thin Film, NaCl) of compound 69. 
 

 13C NMR (125 MHz, CDCl3) of compound 69. 
 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

317 

0
1

2
3

4
5

6
7

8
p
p
m

  

O
Ph
HN

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l3
) o

f c
om

po
un

d 
70

. 



APPENDIX 2 – Spectra Relevant to Chapter 2 
 

 

318 

020406080100120140160180200220
ppm

 

 13C NMR (125 MHz, CDCl3) of compound 70. 
 

Infrared spectrum (Thin Film, NaCl) of compound 70. 
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Infrared spectrum (Thin Film, NaCl) of compound 71. 
 

 13C NMR (125 MHz, CDCl3) of compound 71. 
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 13C NMR (125 MHz, CDCl3) of compound 72. 
 

Infrared spectrum (Thin Film, NaCl) of compound 72. 
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Infrared spectrum (Thin Film, NaCl) of compound 74. 
 

 13C NMR (125 MHz, CDCl3) of compound 74. 
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 13C NMR (125 MHz, CDCl3) of compound 75. 
 

Infrared spectrum (Thin Film, NaCl) of compound 75. 
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Infrared spectrum (Thin Film, NaCl) of compound 76. 
 

 13C NMR (125 MHz, CDCl3) of compound 76. 
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 13C NMR (125 MHz, CDCl3) of compound 77. 
 

Infrared spectrum (Thin Film, NaCl) of compound 77. 
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Infrared spectrum (Thin Film, NaCl) of compound 78. 
 

 13C NMR (125 MHz, CDCl3) of compound 78. 
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 13C NMR (125 MHz, CDCl3) of compound 79. 
 

Infrared spectrum (Thin Film, NaCl) of compound 79. 
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Infrared spectrum (Thin Film, NaCl) of compound 80. 
 

 13C NMR (125 MHz, CDCl3) of compound 80. 
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 13C NMR (125 MHz, CDCl3) of compound 81. 
 

Infrared spectrum (Thin Film, NaCl) of compound 81. 
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 13C NMR (125 MHz, CDCl3) of compound 82. 
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 13C NMR (125 MHz, CDCl3) of compound 83a. 
 

Infrared spectrum (Thin Film, NaCl) of compound 83a. 
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Infrared spectrum (Thin Film, NaCl) of compound 83b. 
 

 13C NMR (125 MHz, CDCl3) of compound 83b. 
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CHAPTER 3 

The Palladium-Catalyzed Asymmetric Decarboxylative Allylic 

Alkylation for Formation of De Novo Acyclic Quaternary Stereocenters† 

 

3.1  INTRODUCTION AND BACKGROUND 

As discussed in previous chapters, synthesis of all-carbon quaternary 

stereocenters represents an important challenge to organic chemists.  While methods for 

access to all-carbon to quaternary centers in cyclic systems are limited, synthesis of such 

moieties in acyclic systems is particularly challenging due to the lack of rigidity that can 

be utilized to establish a favored stereochemical outcome.  Only a handful of methods 

exist to access all-carbon quaternary stereocenters from simple starting materials in an 

enantioselective manner.1,2  Despite the recent surge in development of alternative 

surrogates2e,2f the prevailing majority of these approaches rely on either the use of 

stereodefined trisubstituted alkenes as substrates2a–d or the regioselective in situ formation 

of fully-substituted intermediates bearing heteroaromatic substitution3 such as 

                                                
†  This research was performed in collaboration with Drs. Pavel Starkov and Jared A. 
Moore and Prof. Ilan Marek. 
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enamines2g–I and enolates2j,3k as well as ester,2l,2m thioester,3n and amide2o,2p,4,6 enolates 

(Scheme 3.1). 

Scheme 3.1.  Asymetric allylic alkylation of amide enolates. 

 

 

In acyclic systems, typical synthetic strategies (e.g. the use of sterically-hindered 

bases, directing groups or cyclic starting materials to favor E or Z-enolate formation by 

deprotonation or decarboxylation) may set distinct limits to the range of substrates 

relevant to the method.  Therefore, developing more general routes to access 

differentially substituted enolates is an important challenge for the synthesis of all-carbon 

quaternary stereocenters in acyclic systems. 
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Scheme 3.2.  One-pot method for the synthesis of stereodefined amide enolates. 

 

 

To this end, the Marek group has developed methods for the addition of 

organocuprates to ynecarbamates 85 to form vinyl cuprate intermediates in a 

stereodefined fashion (Scheme 3.2).4  These intermediates may be trapped under 

oxidative conditions, maintaining stereochemical control, resulting in fully-substituted 

amide enolates 86 with well-defined stereochemistry.  In particular, trapping with tert-

butyl peroxide and allyl chloroformate yields a product which is particularly attractive as 

a substrate for the palladium-catalyzed decarboxylative allylic alkylation (DAA) 

reaction.5,6  Given our group’s experience and success with this reaction, we decided to 

pursue these substrates as a general entry into all-carbon quaternary centers in acyclic 

systems. 
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3.2  RESULTS AND DISCUSSION 

3.2.1  Initial Screening Efforts 

Our investigations began with a screen of a number of model substrates (Scheme 

3.2) provided by the Marek group using the phosphinooxazoline (PHOX) ligand system 

previously found to be successful in our group (Table 3.1, next page).  Due to the lack of 

a strong chromophore and difficulty in separation of some products (87), we found it to 

be necessary to perform an olefin cross-metathesis with methyl acrylate on the products 

of the DAA before analysis by chiral HPLC or SFC (88).  While the tris(trifluoromethyl)-

tert-butyl PHOX ligand 8 proved superior to the standard tert-butyl PHOX ligand 3 in all 

cases, neither ligand provided satisfactory enantioselectivity despite the wide range of 

solvents screened.  The largest ee value obtained was with oxazolidinone substrate 86b 

and CF3-PHOX ligand 8, with a value of 50% and 52% ee in THF and toluene 

respectively (Table 3.1, entries 10 and 11).  Benzoxazolidinone substrate 86c failed to 

produce material of higher than 10% ee under any conditions, while acyclic carbamate 

86d fared slightly better, delivering an ee of 38% in toluene with ligand 8 (Table 3.1, 

entry 24).  Notably, reversing the enolate geometry resulted in an inversion of the 

stereochemical outcome of the reaction (i.e. between substrates 86a and 86b), indicating 

that the stereochemical information of the enolate was retained throughout the 

transformation. 
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Table 3.1. Initial screening efforts with PHOX ligands. 
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Given the lack of success with the P,N-PHOX ligands, we turned to the C2-

symmetric, biphosphine ligands developed and employed by Trost and coworkers.  In 

particular, these ligands were deemed promising due to the substantial difference in 

mechanism of enantioinduction established between the two systems.7  While the PHOX 

ligands have been determined to react via a metal-bound, inner sphere Pd-enolate 

intermediate, the biphosphine class of ligands has been found to react via an outer sphere 

mechanism in which the enolate is not bound to the palladium allyl complex. 

Gratifyingly, the diamine-linked P,P-ligands provided enhanced 

enantioselectivities compared to those observed with the PHOX ligands (Table 3.2, next 

page).  Additionally, ethyl acetate, tetrahydrofuran, and dioxane were determined to be 

promising solvents for the reaction, while MTBE and acetonitrile provided far lower 

enantioselectivity, and dichloromethane resulted in poor conversion (not shown in table 

3.2). 

Out of the diamine scaffolds examined in our initial screens, anthracene-based 

ligand 92 gave consistently better results.  Accordingly, we prepared and evaluated two 

additional derivatives to test the effect of additional steric bulk (93) and modulating the 

ligand electronics (94), akin to the differences observed between standard PHOX 3 and 

tris(trifluoromethyl)-PHOX ligand 8. Multifunctional, bulky ligand 94 unfortunately 

hindered reactivity (Table 3.2, entries 10 and 25).  Electron-deficient ligand 93, however, 

gratifyingly furnished products with good selectivity, and in particular acyclic carbamate 

86d was found to proceed with 94% ee in ethyl acetate using this ligand (Table 3.2, entry 

24).  Also notable, with this ligand system acyclic carbamate 86d outperformed the 

oxazolidinone substrate 86a. 
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Table 3.2. Screening Results with P,P-Trost ligands. 
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3.2.2  Substrate Scope 

Given the success of substrate 86d, the Marek group was able to furnish a number 

of additional amide enolate substrates for investigation (Table 3.3, next page).8  

Generally, these substrates yielded products with high enantioselectivities (≥90 ee%) and 

in moderate yield over the two-step DAA-metathesis sequence.  Alteration of the 

substituent on the carbamate oxygen (88d-g) and nitrogen (88h) as well as simple 

changes to the larger substituent on the alkene (88i, 88j) was well tolerated and did not 

result in a substantial change in the observed ee.  Phenyl substitution on the alkene, 

however, resulted in a dramatic decrease in ee to 76% (88k).  Changing the (E)-methyl 

substituent to an ethyl group (88l) resulted in a slight loss of ee to 82%, but 

enantioselectivity was recovered upon enlarging the (Z)-butyl group to a hexyl group 

(88m).  Adding further bulk to the (E)-substituent again resulted in a significant loss of 

enantioselectivity (88n).  As noted in our previous screen, the enantioselectivity observed 

for cyclic carbamates 86o and 86p was also substantially diminished. 
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Table 3.3. Substrate scope for synthesis of linear quaternary stereocenters by DAA. 
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3.2.3  Determination of Absolute Stereochemistry 

In order to determine the absolute stereochemistry of the products, we converted 

acyclic product 87 to 96, which allowed comparison by derivatization of known6a allylic 

alkylation product 97 (Scheme 3.3).  Comparison of optical rotations allowed us to 

estabilish absolute stereochemistry as shown in Scheme 3.3, i.e. that reaction with the 

(R,R)-Trost ligands gave the (S)-quaternary linear carbamate. 

Scheme 3.3. Determination of absolute stereochemistry. 
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asymmetric DAA reaction, and improvement upon existing ANDEN Trost ligands by 

modulation of ligand electronics.  It is our hope that this method will prompt further 

investigation of these substrates for the synthesis of stereocenters in acyclic systems, use 

of the products of this reaction in total synthesis efforts, and further use of the newly 

developed electron-deficient ligand in other catalytic reactions. 
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3.4  EXPERIMENTAL SECTION 

3.4.1  Materials and Methods 

Unless stated otherwise, reactions were performed at ambient temperature (23 °C) in 

flame-dried glassware under an nitrogen atmosphere using dry, deoxygentated solvents 

(distilled or passed over a column of activated alumina).9 Commercially available 

reagents were used as received.  Reactions requiring external heat were modulated to the 

specified temperatures using an IKAmag temperature controller.  Thin-layer 

chromatography (TLC) was performed using E. Merck silica gel 60 F254 pre-coated 

plates (250 nm) and visualized by UV fluorescence quenching, potassium permanganate, 

or p-anisaldehyde staining.  Silicycle SiliaFlash P60 Academic Silica gel (particle size 

40- 63 nm) was used for flash chromatography.  (S)-t-BuPHOX,10 (S)-(CF3)-t-BuPHOX,11 

and Bis(dibenzylideneacetone) palladium(0) (Pd(dba)2) were prepared by known 

methods.  Commercially available C-2 symmetric ligands ((R,R)-DACH-naphthyl Trost 

ligand, (R,R)-DACH-phenyl Trost ligand, (R,R)-ANDEN-Phenyl Trost Ligand) were 

purchased from Sigma Aldrich, used as received, and stored in a glovebox.  Grubbs’s 

Generation II catalyst was purchased from Materia inc. and used as received.  1H and 13C 

NMR spectra were recorded on a Varian Inova 500 (500 MHz and 126 MHz, 

respectively) and are reported in terms of chemical shift relative to CHCl3 (δ 7.26 and 

77.16, respectively).  Data for 1H NMR spectra are reported as follows: chemical shift (δ 

ppm) (multiplicity, coupling constant (Hz), integration). Infrared (IR) spectra were 

recorded on a Perkin Elmer Paragon 1000 Spectrometer and are reported in frequency of 

absorption (cm-1).  Analytical chiral SFC was performed with a Mettler SFC supercritical 

CO2 analytical chromatography system with Chiralpak AD-H column, OD-H column, 
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and OJ-H column obtained from Daicel Chemical Industries, Ltd. High resolution mass 

spectra (HRMS) were obtained from the Caltech Mass Spectral Facility using a JEOL 

JMS-600H High Resolution Mass Spectrometer in fast atom bombardment (FAB+) or 

electron ionization (EI+) mode, or from the Caltech Center for Catalysis and Chemical 

Synthesis using an Agilent 6200 series TOF with an Agilent G1978A Multimode source 

in mixed (Multimode ESI/APCI) ionization mode.  Optical rotations were measured on a 

Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm.  

 

3.4.2  Ligand Synthesis 

 

Br

F3C

OHO

Br
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MeO2C
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CF3

CF3

MeO2C
P

F3C

CF3

CF3

HO2C
P

F3C

CF3

CF3

100 101

103

102

104

93

N
H

N
H

O O

F3C
PAr2 Ar2P

CF3

Ar = 4-CF3-C6H4

MeI (1.20 equiv)
K2CO3 (1.10 equiv)

DMF, 23 °C, 16h

81% yield 78% yield

PhMe, 110 °C, 24h
sealed flask

(p-CF3-C6H4)2PHO
(1.0 equiv)

CuI (20 mol%)
(S)-α-phenethylamine

(20 mol%)
K2CO3 (2.0 equiv)

TEA (4.35 equiv)
Cl3SiH (4.2 equiv)
PhMe, 110 °C, 16h

sealed flask

LiOH•H2O
 (20 equiv)

87% yield

THF, H2O, 70 °C, 12h

92% yield

DCC (1.0 equiv)
(R,R)-S6 (0.47 equiv)

DMAP (cat.)

CH2Cl2, 0 °C to rt, 16h

64% yield

NH2H2N

105 reference 18
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Methyl 2-bromo-5-(trifluoromethyl)benzoate (101) 

To an oven-dried round-bottom flask and magnetic stir bar was added 2-bromo-5-

(trifluoromethyl)benzoic acid (101)12 (1.91 g, 7.10 mmol) followed by anhydrous DMF 

(20.0 mL).  The solution was stirred under nitrogen at room temperature.  Solid 

potassium carbonate (1.08 g, 7.81 mmol) was added all at once followed by methyl 

iodide (0.53 mL, 8.52 mmol) dropwise by syringe.  The reaction was stirred at room 

temperature for 16h.  Afterward, the reaction mixture was poured into water (300 mL) 

and extracted with ethyl acetate (3 x 80 mL).  The combined organic layers were washed 

with brine (50 mL), dried with sodium sulfate, filtered, and concentrated in vacuo to 

afford the product (1.83 g, 91% yield), which was not purified further.  Characterization 

data matched literature values:13 1H NMR (300 MHz, CDCl3) δ 8.07 (s, 1H), 7.81 (d, J = 

8.0 Hz, 1H), 7.59 –7.56 (m, 1H), 3.97 (s, 3H). 

 

 

Methyl 2-(bis(4-(trifluoromethyl)phenyl)phosphoryl)-5-(trifluoromethyl)benzoate 

(102) 

Procedure adapted from Stankevič and Włodarcyk.14 To an oven dried Schlenk tube 

equipped with a magnetic stir bar was added CuI (0.145 g, 0.761 mmol).  The tube was 

Br

F3C

OMeO

MeO2C
P

F3C

O

CF3

CF3
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purged with nitrogen and (S)-α-phenylethylamine (0.100 mL, 0.760 mmol) was added 

with a micro-syringe followed by 101 (1.09 g, 3.8 mmol) dissolved in toluene (19.0 mL) 

with a syringe.  The reaction mixture was stirred under nitrogen for 5 minutes at room 

temperature.  Bis(4-(trifluoromethyl)phenyl)phosphine oxide (1.30 g, 3.84 mmol) was 

added to the reaction mixture all at once and stirring continued for five minutes.  

Potassium carbonate (1.05 g, 7.60 mmol) was added to the reaction mixture and the tube 

was sealed with a Teflon cap and electrical tape and heated to 110 °C behind a blast 

shield for 24 hours.  The mixture was cooled to room temperature and the mixture was 

filtered through a pad of celite, eluting with dichloromethane.  This mixture was 

concentrated in vacuo and purified by flash chromatography (30:70 to 35/65, 

EtOAc/hexanes) to provide the product as an amorphous white solid (1.61 g, 78% yield); 

1H NMR (500 MHz, CDCl3) δ 8.27 – 8.22 (m, 1H), 7.95 – 7.87 (m, 2H), 7.84 – 7.73 (m, 

8H), 3.59 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 165.7 (d, J = 2.5 Hz), 136.7 – 136.6 

(m), 136.2 (d, J = 6.3 Hz), 135.8 (d, J = 10.4 Hz), 135.8 (m), 134.9 (qd, J = 34.2, 2.4 Hz), 

134.2 (qd, J = 32.9, 3.0 Hz), 132.3 (d, J = 10.4 Hz), 128.5 (dq, J = 11.9, 3.6 Hz), 127.9 

(dq, J = 7.2, 3.5 Hz), 125.7 (dq, J = 12.8, 3.7 Hz), 123.5 (q, J = 272.6 Hz), 123.0 (q, J = 

273.1 Hz), 53.1; 19F NMR (282 MHz, CDCl3) δ -63.2, -63.4; 31P NMR (121 MHz, 

CDCl3) δ 28.7; IR (Neat Film, NaCl) 1737, 1440, 1324, 1269, 1131, 715 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C23H15F9O3P [M+H]+: 541.0610, found 541.0616. 
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Methyl 2-(bis(4-(trifluoromethyl)phenyl)phosphanyl)-5-(trifluoromethyl)benzoate 

(103) 

To an oven-dried Schlenk flask equipped with a magnetic stir bar was added 102 (0.650 

g, 1.20 mmol) in toluene (17.5 mL).  The mixture was stirred under flow of nitrogen at 

room temperature.  Triethylamine (0.730 mL, 5.22 mmol) was added to the reaction 

mixture followed by trichlorosilane (0.510 mL, 5.04 mmol) with a syringe.  At this stage, 

the reaction mixture was heated to 110 °C behind a blast shield for 16 hours.  The 

reaction mixture was cooled to room temperature, diluted with ethyl acetate (40 mL), and 

quenched with a solution of saturated sodium bicarbonate (0.5 mL).  The mixture was 

filtered through celite and eluted with ethyl acetate followed by drying with sodium 

sulfate.  The mixture was filtered, concentrated in vacuo, and purified by flash 

chromatography (2:98 to 4:96, EtOAc/hexanes) to provide the product as a slightly 

yellow oil that solidified at –20 °C and remained solid at room temperature (0.55 g, 87% 

yield).  The purified product slowly oxidizes in the time it takes to characterize; 1H NMR 

(500 MHz, CDCl3) δ 8.38 (ddt, J = 3.6, 2.1, 0.7 Hz, 1H), 7.68 (dd, J = 8.3, 1.9 Hz, 1H), 

7.64 – 7.59 (m, 4H), 7.36 (dddd, J = 7.3, 6.5, 1.7, 0.8 Hz, 4H), 7.02 (ddt, J = 8.1, 3.3, 0.7 

Hz, 1H), 3.84 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 165.9 (d, J = 2.4 Hz), 143.9 (d, J = 

29.8 Hz), 141.4 (d, J = 13.7 Hz), 135.8 (d, J = 10.5 Hz), 134.9, 134.2 (d, J = 21.3 Hz), 

131.5 (q, J = 32.6 Hz), 131.5 (q, J = 33.2 Hz), 128.9 (q, J = 3.5 Hz), 128.1 – 127.8 (m), 

125.7 (dq, J = 7.5, 3.7 Hz), 124.0 (q, J = 272.4 Hz), 123.5 (q, J = 272.7 Hz), 53.0; 19F 

MeO2C
P

F3C

CF3

CF3
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NMR (282 MHz, CDCl3) δ –62.9, –63.1; 31P NMR (121 MHz, CDCl3) δ –5.0; IR (Neat 

Film, NaCl) 1723, 1324, 1257, 1128, 832 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for 

C23H15F9O2P [M+H]+: 525.0660, found 525.0646. 

 

 

 

2-(Bis(4-(trifluoromethyl)phenyl)phosphanyl)-5-(trifluoromethyl)benzoic acid (104):  

Compound 103 (0.550 g, 1.05 mmol) was charged into a round bottom flask equipped 

with a magnetic stir bar and was dissolved in THF (4.2 mL) at room temperature.  Water 

(4.2 mL) was added to this solution followed by lithium hydroxide monohydrate (0.882 

g, 21.0 mmol).  The reaction mixture was sealed with a Teflon cap, stirred, and heated to 

70 °C for 12 hours.  The mixture was cooled to room temperature and diluted with ethyl 

acetate (50 mL).  This mixture was added to a 10% aqueous citric acid solution (50 mL) 

and this phase was extracted with ethyl acetate (2 x 50 mL).  The combined organic 

phases were washed with brine, dried with sodium sulfate, filtered, and concentrated in 

vacuo.  The crude material was purified by flash chromatography (3:97 to 5:95, 

MeOH:CH2Cl2) to provide the product as a white amorphous solid (0.492 g, 92% yield); 

1H NMR (300 MHz, CD3OD) δ 8.39 (s, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.0 

Hz, 4H), 7.43 (t, J = 7.6 Hz, 4H), 7.07 (dd, J = 8.1, 3.4 Hz, 1H); 13C NMR (126 MHz, 

CD3OD) δ 168.5 (d, J = 5.1 Hz), 145.4 (d, J = 30.2 Hz), 143.9 (d, J = 14.6 Hz), 137.2 (d, 

J = 20.7 Hz), 136.0, 135.5 (d, J = 21.6 Hz), 132.1 (q, J = 32.3 Hz), 132.1 (q, J = 33.0 

HO2C
P

F3C

CF3

CF3
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Hz), 129.5 (q, J = 3.4 Hz), 128.7 – 128.5 (m), 126.5 (dq, J = 7.4, 3.7 Hz), 125.5 (q, J = 

271.5 Hz), 125.1 (q, J = 271.6 Hz); 19F NMR (282 MHz, cd3od) δ -64.3, -64.5; 31P NMR 

(121 MHz, MeOD) δ -4.9; IR (Neat Film, NaCl) 1698, 1324, 1127, 832 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C22H11F9O2P [M-H]-: 509.0358, found 509.0369. 

 

 

Electron deficient C-2 symmetric ligand (93): 

To an oven-dried flask equipped with a magnetic stir bar was added chiral diamine 10515 

(0.035 g, 0.149 mmol) and dichloromethane (2.6 mL) at room temperature under 

nitrogen.  Benzoic acid 104 (0.160 g, 0.313 mmol) was added to the reaction and an 

insoluble mixture was formed.  The reaction mixture was cooled to 0 °C and a single 

crystal of DMAP was added.  DCC (0.065 g, 0.313 mmol) was added all at once and the 

mixture was slowly allowed to warm to room temperature overnight (12 hours).  At this 

time, the cloudy mixture was filtered through celite, eluting with dichloromethane, and 

concentrated.  The crude material was suspended in a small amount of diethylether and 

filtered once again through a pad of celite.  This mixture was concentrated and purified 

by flash chromatography (8:92 to 10:90, EtOAc:hexanes) to provide the product as a 

white amorphous solid (0.116 g, 64% yield); 1H NMR (500 MHz, CDCl3) δ 7.64 – 7.58 

(m, 8H), 7.56 (d, J = 8.0 Hz, 4H), 7.40 (dd, J = 7.3, 1.3 Hz, 2H), 7.34 – 7.28 (m, 10H), 

7.25 – 7.15 (m, 4H), 7.08 (dd, J = 8.1, 3.1 Hz, 2H), 5.82 (d, J = 7.7 Hz, 2H), 4.49 (d, J = 

N
H

N
H

O O

F3C
PAr2 Ar2P

CF3

Ar = 4-CF3-C6H4
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2.4 Hz, 2H), 4.15 – 4.08 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 167.2, 141.7 (d, J = 

28.3 Hz), 141.1 (dd, J = 25.5, 14.6 Hz), 140.6 , 140.3 (d, J = 25.0 Hz), 138.5, 135.5, 

133.9 (dd, J = 20.8, 7.0 Hz), 131.9 (q, J = 33.3 Hz), 131.5 (qd, J = 32.6, 1.3 Hz), 127.5 

(q, J = 3.4 Hz), 127.4, 127.1, 125.9, 125.7 (dt, J = 6.9, 3.6 Hz), 125.3, 124.3 – 123.9 (m), 

123.97 (qd, J = 272.3, 5.8 Hz), 123.3 (q, J = 272.8 Hz), 57.8, 48.9; 19F NMR (282 MHz, 

CDCl3) δ –62.9, –62.9, –63.1; 31P NMR (121 MHz, CDCl3) δ –10.70; IR (Neat Film, 

NaCl) 1659, 1509, 1397, 1325, 1172, 1130, 1061, 832 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C60H37F18N2O2P2 [M+H]+: 1221.2037, found 1221.2039; [α]25 –55.0 (c 3.17 

CHCl3). 
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94: Ar = 2-CH3-C6H4

CH2Cl2, 0 °C to rt
16h NH2H2N
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(0.47 equiv)
DMAP (cat.)

90% yield

74% yield



CHAPTER 3 – Palladium-Catalyzed Allylic Alkylation to form Acyclic Quaternary Stereocenters 
	

364 

 

Methyl 2-(di-o-tolylphosphanyl)benzoate (108): 

In a nitrogen filled glove box, an oven-dried round-bottom flask equipped with a 

magnetic stir bar was charged with di-(o-tolyl)phosphine (106) (0.321 g, 1.50 mmol).  

The flask was sealed with a cap equipped with a septa and electrical tape and removed 

from the glove box.  The flask was then charged with THF (8.0 mL) under positive 

nitrogen pressure.  This mixture was cooled to –78 °C in a dry ice/acetone bath. A freshly 

prepared solution of KHMDS (2.00 mL, 1.65 mmol, 0.825 M) was added to the mixture 

dropwise by syringe.  The reaction mixture was stirred at this temperature for 30 min and 

then warmed to room temperature.  Methyl-2-fluorobenzoate (107) (0.13 mL, 1.0 mmol) 

was added dropwise and the mixture was stirred for 2.5 hours.  A precipitate formed and 

the reaction turned black in color.  The mixture was quenched and diluted with water (10 

mL).  The aqueous phase was extracted with ethyl acetate (3 x 30 mL) and the combined 

organic layers were dried with sodium sulfate, filtered, and evaporated in vacuo.  The 

crude material was purified by flash chromatography (5:95, EtOAc:hexanes) to provide 

the product as a white amorphous solid (0.238 g, 68% yield); 1H NMR (300 MHz, 

CDCl3) δ 8.10 (ddd, J = 7.2, 3.9, 1.8 Hz, 1H), 7.42 (pd, J = 7.4, 1.7 Hz, 2H), 7.33 – 7.21 

(m, 4H), 7.08 (td, J = 7.0, 6.5, 2.3 Hz, 2H), 6.97 (ddt, J = 7.7, 3.6, 1.6 Hz, 1H), 6.75 (ddd, 

J = 7.5, 4.3, 1.2 Hz, 2H), 3.77 (s, 3H), 2.44 (d, J = 1.7 Hz, 6H); 13C NMR (126 MHz, 

CDCl3) δ 167.3 (d, J = 1.9 Hz), 142.6 (d, J = 27.7 Hz), 139.5 (d, J = 25.4 Hz), 136.1 (d, J 

= 11.4 Hz), 134.9 (d, J = 20.3 Hz), 134.5, 133.2, 132.2, 131.0 (d, J = 3.0 Hz), 130.2 (d, J 

P

Me

Me CO2Me
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= 4.8 Hz), 128.8, 128.4, 126.2, 52.2, 21.4 (d, J = 22.6 Hz); 31P NMR (121 MHz, CDCl3) δ 

–20.4; IR (Neat Film, NaCl) 3055, 1721, 1452, 1269, 1107, 749 cm-1; HRMS (MM: ESI-

APCI) m/z calc’d for C22H22O2P [M+H]+: 349.1352, found 349.1362. 

 

 

2-(Di-o-tolylphosphanyl)benzoic acid (109): 

Compound 108 (0.238 g, 0.683 mmol) was charged into a round bottom flask equipped 

with a magnetic stir bar and was dissolved in THF (2.8 mL) at room temperature.  Water 

(2.8 mL) was added to this solution followed by lithium hydroxide monohydrate (0.574 

g, 13.7 mmol).  The reaction mixture was sealed with a Teflon cap, stirred and heated to 

70 °C for 12 hours.  The mixture was cooled to room temperature and diluted with ethyl 

acetate (30 mL).  This mixture was added to a 10% aqueous citric acid solution (50 mL) 

and this phase was extracted with ethyl acetate (2 x 30 mL).  The combined organic 

phases were washed with brine, dried with sodium sulfate, filtered, and concentrated in 

vacuo.  The crude material was purified by flash chromatography (40:60, 

EtOAc:hexanes) to provide the product as a white amorphous solid (0.205 g, 90% yield).  

Characterization data matched literature values.16 1H-NMR (500 MHz, CDCl3) δ 8.14–

8.20 (m, 1H), 7.38–7.45 (m, 2H), 7.18–7.27 (m, 4H), 7.05 (t, J = 7.5 Hz, 2H), 6.96–7.01 

(m, 1H), 6.68–6.72 (m, 2H), 2.40 (s, 6H); HRMS (MM: ESI-APCI) m/z calc’d for 

C21H18O2P [M-H]-: 333.1044, found 333.1050. 

 

P

Me

Me CO2H
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Sterically hindered C2-symmetric ligand (94): 

To an oven-dried flask equipped with a magnetic stir bar was added 10515 (0.050 g, 0.212 

mmol) and dichloromethane (3.0 mL) at room temperature under nitrogen.  Benzoic acid 

109 (0.150 g, 0.450 mmol) was added to the reaction and an insoluble mixture was 

formed.  The reaction mixture was cooled to 0 °C and a single crystal of DMAP was 

added.  DCC (0.093 g, 0.45 mmol) was added all at once and the mixture was slowly 

allowed to warm to room temperature overnight (12 hours).  At this time, the cloudy 

mixture was filtered through celite, eluting with dichloromethane, and concentrated.  The 

crude material was suspended in a small amount of diethylether and filtered once again 

through a pad of celite.  This mixture was concentrated and purified by flash 

chromatography (20:80 to 40:60, Et2O:pentane) to provide the product as a white 

amorphous solid (0.136 g, 74% yield); 1H NMR (300 MHz, CDCl3) δ 7.55 – 7.48 (m, 

2H), 7.39 – 7.20 (m, 14H), 7.15 – 7.06 (m, 4H), 7.04 – 6.93 (m, 6H), 6.88 (ddd, J = 7.5, 

4.2, 1.3 Hz, 2H), 6.75 – 6.68 (m, 2H), 6.65 (dd, J = 7.6, 4.3 Hz, 2H), 5.74 (d, J = 7.1 Hz, 

2H), 4.36 (s, 2H), 3.83 (d, J = 7.0 Hz, 2H), 2.35 (d, J = 4.6 Hz, 12H); 13C NMR (126 

MHz, CDCl3) δ 169.1 (d, J = 1.8 Hz), 142.6 – 142.2 (m), 141.0, 138.7, 135.3 (d, J = 10.8 

Hz), 134.9, 134.2 (d, J = 18.4 Hz), 132.9 (d, J = 62.2 Hz), 130.5 (dd, J = 14.7, 4.6 Hz), 

130.4, 129.2, 128.9 (d, J = 10.1 Hz), 128.0 (d, J = 6.1 Hz), 126.7 (d, J = 11.0 Hz), 126.4 

(d, J = 30.4 Hz), 125.9, 124.8, 57.9, 48.6, 21.5 (dd, J = 21.6, 9.6 Hz); 31P NMR (121 

MHz, CDCl3) δ –26.5; IR (Neat Film, NaCl) 3054, 1658, 1501, 908, 748 cm-1; HRMS 
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(MM: ESI-APCI) m/z calc’d for C58H51N2O2P2 [M+H]+: 869.3420, found 869.3433; [α]25 

– 84.1 (c 1.83, CHCl3). 

	

3.4.3  Exploratory Allylic Alkylation Screen 

Initially, we ran a series of screens to determine the best combination of ligand 

and solvent that provided the highest %ee for the allylic alkylation.  The following 

procedure was followed to conduct these screens.  This procedure is similar to that 

previously used by the Stoltz group.6a To separate enantiomers, the allylic alkylation 

products were derivitized using a cross metathesis with Grubbs-second generation 

catalyst and methyl acrylate.  This procedure is similar to that previously used by the 

Stoltz group.17 

General Screening Procedure (from Table 1 and Table 2):  

In a nitrogen-filled glove box, 38.0 mg Pd(dba2) was taken up in 10 mL THF.  To 

each of 16 half-dram vials, 0.5 mL of this solution (1.90 mg Pd(dba)2, 1.65 µmol, 0.100 

equiv) was added.  The THF was then removed by evacuation using a Genevac 

centrifugal evaporator within the glove box.  To each of the vials was then added 500 µL 

of the reaction solvent followed by a small stirbar.  Stock solutions of ligand (0.0165 M) 

were made in each reaction solvent.  From these ligand stock solutions, 250 µL (4.13 

µmol, 0.125 equiv) were added to the corresponding reaction vials.  The resulting catalyst 

solutions were stirred in the glove box for 30 minutes at the indicated reaction 

temperature.  Stock solutions of reaction substrate (0.132 M) were made in each reaction 

solvent.  To the stirring catalyst solutions were added 250 µL (33.0 µmol, 1.00 equiv) of 

the corresponding substrate solution, resulting in a final reaction volume of 1.00 mL 
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(0.033 M with respect to substrate).  The reactions were sealed with a Teflon-lined cap 

and stirred for the indicated reaction duration.  The reactions were then removed from the 

glove box, diluted with 1 mL hexanes and filtered through a silica plug, concentrated in 

vacuo, taken up in CDCl3, and analyzed by crude 1H NMR to determine conversion. 

The crude reaction mixtures in CDCl3 were concentrated in vacuo in half-dram 

vials and returned to the glove box.  To each half-dram vial was added 500 µL of methyl 

acrylate solution in CH2Cl2 (0.66M, 0.33 mmol, 10 equiv), followed by a small stir bar.  

The reactions were stirred for approximately 15 minutes.  To the resulting solutions was 

added 500 µL each of a Grubbs second-generation Ru catalyst solution in CH2Cl2 (0.004 

M, 2 µmol, 0.06 equiv).  The reactions were then stirred at 40 °C for 3 hours, removed 

from the glove box, filtered through a silica plug, concentrated in vacuo, and analyzed by 

crude 1H NMR to determine conversion and chiral SFC to determine enantiomeric 

excess.  SFC conditions for each substrate can be found in a table at the end of the text 

portion of the SI. 

 

3.4.3.1  Characterization data for compounds relevant to exploratory 

screen 

 

(R)-3-(2-Allyl-2-methylhexanoyl)oxazolidin-2-one (87a) 

Prepared from 86a or 86b: 

1H NMR (500 MHz, CDCl3) δ 5.72 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.10 – 5.01 (m, 2H), 

4.42 – 4.34 (m, 2H), 4.09 – 3.98 (m, 2H), 2.92 – 2.84 (m, 1H), 2.36 (ddt, J = 14.1, 7.2, 

O

Bu
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1.2 Hz, 1H), 2.10 (ddd, J = 13.7, 11.9, 4.6 Hz, 1H), 1.67 (ddd, J = 13.6, 12.4, 4.3 Hz, 

1H), 1.31 (s, 3H), 1.30 – 1.19 (m, 3H), 1.15 – 1.03 (m, 1H), 0.88 (t, J = 7.2 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 177.3, 152.4, 134.5, 117.8, 62.3, 49.0, 45.4, 41.0, 35.8, 27.0, 

23.2, 22.5, 14.1; IR (Neat Film, NaCl) 2958, 2928, 1777, 1685, 1382, 1200 cm-1; HRMS 

(FAB+) m/z calc’d for C13H22NO3 [M+H]+: 240.1600, found 240.1601. 

 

 

(R)-1-(2-Allyl-2-methylhexanoyl)indolin-2-one (87c) 

Prepared from 86c: 

1H NMR (500 MHz, CDCl3) δ 7.88 – 7.82 (m, 1H), 7.24 – 7.17 (m, 3H), 5.80 – 5.68 (m, 

1H), 5.12 – 5.03 (m, 1H), 5.05 – 5.00 (m, 1H), 2.97 (dd, J = 14.1, 7.4 Hz, 1H), 2.48 (dd, J 

= 14.1, 7.3 Hz, 1H), 2.18 (td, J = 12.6, 11.4, 4.3 Hz, 1H), 1.78 (td, J = 14.1, 3.8 Hz, 1H), 

1.43 (s, 3H), 1.35 – 1.23 (m, 3H), 1.23 – 1.11 (m, 1H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 177.3, 150.5, 143.0, 133.9, 129.4, 125.0, 124.6, 118.7, 116.1, 109.9, 

50.5, 41.2, 36.1, 27.0, 23.3, 22.4, 14.1; IR (Neat Film, NaCl) 2958, 2932, 1795, 1479, 

1299, 1027, 757 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C17H22NO3 [M+H]+: 

288.1600, found 288.1603. 

 

 

Methyl (R,E)-5-methyl-5-(2-oxooxazolidine-3-carbonyl)non-2-enoate (88a) 

Prepared from 86a: 

O
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1H NMR (500 MHz, CDCl3) δ 6.85 (dt, J = 15.4, 7.7 Hz, 1H), 5.86 (dt, J = 15.5, 1.4 Hz, 

1H), 4.40 (t, J = 8.0 Hz, 2H), 4.04 (t, J = 8.0 Hz, 2H), 3.71 (s, 3H), 3.01 (ddd, J = 14.5, 

7.6, 1.5 Hz, 1H), 2.51 (ddd, J = 14.5, 7.9, 1.4 Hz, 1H), 2.01 (ddd, J = 13.8, 11.9, 4.8 Hz, 

1H), 1.76 (ddd, J = 13.8, 12.1, 4.7 Hz, 1H), 1.34 (s, 3H), 1.31 – 1.24 (m, 2H), 1.24 – 1.07 

(m, 2H), 0.87 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.7, 166.8, 152.5, 

145.4, 123.9, 62.4, 51.6, 49.0, 45.4, 39.8, 35.8, 27.0, 23.2, 22.4, 14.1; IR (Neat Film, 

NaCl) 2931, 2957, 1778, 1723, 1688, 1274, 1197 cm-1; HRMS (FAB+) m/z calc’d for 

C15H24NO5 [M+H]+: 298.1654, found 298.1650. 

 

 

Methyl (R,E)-5-methyl-5-(2-oxo-2,3-dihydrobenzo[d]oxazole-3-carbonyl)non-2-

enoate (88c) 

Prepared from 86c: 

1H NMR (500 MHz, CDCl3) δ 7.89 – 7.85 (m, 1H), 7.26 – 7.19 (m, 3H), 6.90 (dt, J = 

15.4, 7.7 Hz, 1H), 5.90 (dt, J = 15.5, 1.4 Hz, 1H), 3.70 (s, 3H), 3.08 (ddd, J = 14.3, 7.5, 

1.4 Hz, 1H), 2.66 (ddd, J = 14.3, 7.9, 1.4 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.94 – 1.84 (m, 

1H), 1.46 (s, 3H), 1.36 – 1.14 (m, 4H), 0.86 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 176.5, 166.6, 150.5, 144.5, 143.0, 129.2, 125.2, 124.8, 124.4, 116.2, 110.0, 

51.7, 50.3, 39.9, 36.0, 27.0, 23.1, 22.0, 14.0; IR (Neat Film, NaCl) 2256, 1796, 1722, 

1479, 1272, cm-1; HRMS (FAB+) m/z calc’d for C19H24NO5 [M+H]+: 346.1654, found 

346.1650. 
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3.4.4  Allylic Alkylation Substrate Library 

Representative Procedure: 

Unless otherwise noted, the allylic alkylation reactions proceeded as follows: Outside of 

a glove box, an oven-dried 2-dram vial equipped with a magnetic stir bar was charged 

with Pd(dba)2 (2.3 mg, 4.0 µmol, 4 mol%).  A second oven-dried two-dram vial was 

charged with allylenolcarbonate 86d–86q (0.1 mmol).  Finally, a third oven-dried 2-dram 

vial was charged with C-2 symmetric ligand 89 or 90 (7.0 µmol).  These three uncapped 

vials were brought into a nitrogen-filled glove box through a small antechamber with 4 x 

5 minute vacuum cycles with nitrogen back-filling.  To the vial containing compounds 

86d–86q was added or THF (0.3 mL) unless otherwise noted.  To the vial containing C-2 

symmetric ligand (89 or 90) was added THF (0.3 ml) unless otherwise noted.  To the vial 

containing Pd(dba)2 and a magnetic stir bar was added the entirety of the ligand solution 

and the reaction was capped, cooled to 20 °C and stirred for 30 min to form the catalyst.  

At this time, the entirety of the solution containing the substrate (86d–86q) was added to 

the catalyst mixture dropwise and the reactions were allowed to stir at 20 °C for 24h.  

The reaction mixtures were removed from the glove box through the small antechamber 

and diluted with hexanes (1mL).  The mixture was filtered through a short plug of silica 

gel and eluted with ethyl acetate.  The crude material was concentrated and purified by 

preparative TLC (EtOAc:hexanes mixtures) to provide the products as clear to slightly 

yellow oils (53–88% yield).  Purified products were converted to the corresponding 

methyl acrylate species via cross metathesis for SFC analysis. 
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Methyl (R)-(2-allyl-2-methylhexanoyl)(benzyl)carbamate (87d) 

Representative Procedure H.  Compound 87d was prepared from allylenolcarbonate 86d 

using General Procedure G (27.0 mg, 85% yield); 1H NMR (500 MHz, CDCl3) δ 7.34 – 

7.20 (m, 5H), 5.63 – 5.53 (m, 1H), 5.03 – 4.93 (m, 2H), 4.76 (s, 2H), 3.76 (s, 3H), 2.58 

(ddt, J = 13.7, 7.2, 1.3 Hz, 1H), 2.27 (ddt, J = 13.7, 7.6, 1.2 Hz, 1H), 1.78 (ddd, J = 13.4, 

12.3, 4.5 Hz, 1H), 1.52 (ddd, J = 13.3, 12.4, 4.5 Hz, 1H), 1.27 – 1.14 (m, 2H), 1.19 (s, 

3H), 1.16 – 1.04 (m, 1H), 1.06 – 0.91 (m, 1H), 0.83 (t, J = 7.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 182.9, 155.6, 137.8, 134.6, 128.5, 128.3, 127.5, 117.8, 53.5, 50.6, 50.54, 

44.1, 39.6, 26.8, 23.4, 22.5, 14.1; IR (Neat Film, NaCl) 2932, 2872, 1738, 1681, 1444, 

1156, 998, 916 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C19H28NO3 [M+H]+: 

318.2064, found 318.2064; [α]25 –2.36 (c 2.40, CHCl3, 92% ee). 

 

 

Ethyl (R)-(2-allyl-2-methylhexanoyl)(benzyl)carbamate (87e) 

Representative Procedure H.  Compound 87e was prepared from allylenolcarbonate 86e 

using General Procedure G (20.5 mg, 62% yield); 1H NMR (500 MHz, CDCl3) δ 7.36 – 

7.12 (m, 5H), 5.56 (ddt, J = 17.3, 10.1, 7.3 Hz, 1H), 5.02 – 4.87 (m, 2H), 4.72 (s, 2H), 

4.15 (q, J = 7.1 Hz, 2H), 2.57 (ddd, J = 13.7, 7.1, 1.3 Hz, 1H), 2.25 (ddd, J = 13.7, 7.1, 

1.3 Hz, 1H), 1.76 (td, J = 12.9, 4.5 Hz, 1H), 1.50 (td, J = 12.9, 4.5 Hz, 1H), 1.20 (t, J = 

7.1 Hz, 3H), 1.20 – 1.13 (m, 2H), 1,17 (s, 3H), 1.12 – 1.02 (m, 1H), 1.02 – 0.92 (m, 1H), 
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0.79 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 183.1, 155.2, 138.0, 134.7, 

128.4, 128.3, 127.4, 117.8, 63.0, 50.6, 50.5, 44.1, 39.5, 26.8, 23.4, 22.5, 14.3, 14.1; IR 

(Neat Film, NaCl) 2958, 2872, 1738, 1693, 1455, 1376, 1345, 1206, 1018 cm-1; HRMS 

(MM: ESI-APCI) m/z calc’d for C20H30NO3 [M+H]+: 332.2220, found 332.2219; [α]25 –

3.19 (c 1.70, CHCl3, 94% ee).

 

 

 

 

tert-Butyl (R)-(2-allyl-2-methylhexanoyl)(benzyl)carbamate (87f) 

Representative Procedure H.  Compound 87f was prepared from allylenolcarbonate 86f 

using General Procedure G (10.8 mg, 88% yield, 0.034mmol scale): 1H NMR (500 MHz, 

CDCl3) δ 7.32 – 7.19 (m, 5H), 5.73 – 5.60 (m, 1H), 5.07 – 4.95 (m, 2H), 4.71 (s, 2H), 

2.66 (ddt, J = 13.6, 7.2, 1.3 Hz, 1H), 2.32 (ddt, J = 13.5, 7.6, 1.2 Hz, 1H), 1.84 (ddd, J = 

13.3, 12.0, 4.4 Hz, 1H), 1.56 (ddd, J = 13.2, 12.4, 4.5 Hz, 1H), 1.36 (s, 9H), 1.28 – 1.20 

(m, 2H), 1.26 (s, 3H), 1.20 – 1.12 (m, 1H), 1.07 (dddd, J = 15.0, 12.6, 7.3, 4.3 Hz, 1H), 

0.85 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 183.3, 153.9, 138.5, 134.9, 

128.4, 128.1, 127.3, 117.7, 82.7, 50.8, 50.3, 44.1, 39.5, 27.9, 26.9, 23.4, 22.5, 14.2; IR 

(Neat Film, NaCl) 2958, 2931, 2872, 1736, 1682, 1368, 1212, 987, 699 cm-1; HRMS 

(FAB+) m/z calc’d for C22H34NO3 [M+H]+: 360.2539, found 360.2527; [α]25 -2.89 (c 0.8, 

CHCl3, 90% ee). 

 

 

Benzyl (R)-(2-allyl-2-methylhexanoyl)(benzyl)carbamate (87g) 
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Representative Procedure H.  Compound 87g was prepared from allylenolcarbonate 86g 

using General Procedure G (21.0 mg, 53% yield); 1H NMR (500 MHz, CDCl3) δ 7.35 –

7.31 (m, 3H), 7.28 – 7.20 (m, 7H), 5.61 – 5.51 (m, 1H), 5.15 (s, 2H), 4.97 – 4.93 (m, 1H), 

4.93 – 4.91 (m, 1H), 4.78 (s, 2H), 2.58 (ddt, J = 13.6, 7.1, 1.2 Hz, 1H), 2.25 (ddt, J = 

13.6, 7.7, 1.2 Hz, 1H), 1.75 (ddd, J = 13.3, 12.1, 4.4 Hz, 1H), 1.50 (ddd, J = 13.3, 12.4, 

4.4 Hz, 1H), 1.18 (s, 3H), 1.16 – 1.12 (m, 2H), 1.10 – 1.02 (m, 1H), 1.02 – 0.91 (m, 1H), 

0.80 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 183.1, 155.0, 137.9, 135.0, 

134.6, 128.7, 128.7, 128.7, 128.5, 128.3, 127.5, 117.8, 68.7, 50.7, 50.6, 44.0, 39.4, 26.8, 

23.3, 22.5, 14.1; IR (Neat Film, NaCl) 3067, 2957, 2932, 2872, 1732, 1696, 1456, 1386, 

1347, 1192 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C25H32NO3 [M+H]+: 394.2377, 

found 394.2376; [α]25 

 

–3.88 (c 1.91, CHCl3, 93% ee). 

 

 

Methyl (R)-(2-allyl-2-methylhexanoyl)(4-chlorophenyl)carbamate (87h) 

Representative Procedure H.  Compound 87h was prepared from allylenolcarbonate 86h 

using General Procedure G (20.7 mg, 62% yield); 1H NMR (500 MHz, CDCl3) δ 7.38 – 

7.33 (m, 2H), 7.14 – 7.10 (m, 2H), 5.77 – 5.66 (m, 1H), 5.09 – 5.00 (m, 2H), 3.75 (s, 3H), 

2.54 (ddt, J = 13.8, 7.2, 1.3 Hz, 1H), 2.28 (ddt, J = 13.8, 7.5, 1.2 Hz, 1H), 1.76 – 1.65 (m, 

1H), 1.55 – 1.47 (m, 1H), 1.29 – 1.20 (m, 4H), 1.19 (s, 3H), 0.86 (t, J = 6.9 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 182.3, 154.8, 137.1, 134.0, 133.9, 129.5, 129.3, 118.5, 53.8, 

51.0, 43.4, 39.1, 26.6, 23.3, 22.9, 14.1; IR (Neat Film, NaCl) 2957, 2933, 1742, 1731, 
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1491, 1439, 1245, 1091 cm-1; HRMS (FAB+) m/z calc’d for C18H25NO3Cl [M+H]+: 

338.1523, found 338.1531; [α]25 2.64 (c 1.9, CHCl3, 90% ee). 

 

 

Methyl (R)-(2-allyl-2-methyloctanoyl)(benzyl)carbamate (87i) 

Representative Procedure H.  Compound 87i was prepared from allylenolcarbonate 86i 

using General Procedure G (24.0 mg, 69% yield); 1H NMR (500 MHz, CDCl3) δ 7.32 – 

7.27 (m, 3H), 7.26 – 7.22 (m, 2H), 5.58 (ddt, J = 17.3, 10.1, 7.3 Hz, 1H), 5.02 – 4.94 (m, 

2H), 4.76 (s, 2H), 3.76 (s, 3H), 2.58 (ddt, J = 13.7, 7.0, 1.2 Hz, 1H), 2.27 (ddt, J = 13.6, 

7.6, 1.2 Hz, 1H), 1.77 (ddd, J = 13.3, 12.0, 4.4 Hz, 1H), 1.51 (ddd, J = 13.3, 12.0, 4.4 Hz, 

1H), 1.19 (s, 3H), 1.28 – 1.14 (m, 6H), 1.16 – 1.06 (m, 1H), 1.05 – 0.95 (m, 1H), 0.86 (t, 

J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 182.88, 155.63, 137.81, 134.58, 128.45, 

128.30, 127.49, 117.79, 53.54, 50.60, 50.57, 44.12, 39.90, 31.79, 29.97, 24.52, 22.73, 

22.45, 14.22; IR (Neat Film, NaCl) 3067, 2950, 2930, 2858, 1738, 1694, 1455, 1445, 

1351, 1208, 1000 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C21H32NO3 [M+H]+: 

346.2377, found 346.2375; [α]25 

 

–2.14 (c 2.18, CHCl3, 94% ee). 
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Methyl (S)-benzyl(2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-methylpent-4-

enoyl)carbamate (87j) 

Representative Procedure H.  Compound 87j was prepared from allylenolcarbonate 86j 

using General Procedure G (32.1 mg, 76% yield); 1H NMR (500 MHz, CDCl3) δ 7.29 – 

7.18 (m, 5H), 5.52 (ddt, J = 17.2, 10.1, 7.3 Hz, 1H), 4.99 – 4.90 (m, 2H), 4.74 (s, 2H), 

3.73 (s, 3H), 3.54 – 3.44 (m, 2H), 2.58 (dd, J = 13.6, 7.1 Hz, 1H), 2.27 (dd, J = 13.6, 7.5 

Hz, 1H), 2.11 – 2.03 (m, 1H), 1.84 – 1.76 (m, 1H), 1.20 (s, 3H), 0.83 (d, J = 0.7 Hz, 9H), 

-0.03 (d, J = 1.8 Hz, 6H); 13C NMR (126 MHz, CDCl3) δ 182.1, 155.5, 137.8, 134.3, 

128.5, 128.2, 127.5, 118.1, 59.9, 53.6, 50.6, 49.2, 44.5, 41.9, 26.1, 22.7, 18.4, –5.2, –5.2;  

IR (Neat Film, NaCl) 2955, 2929, 2857, 1741, 1686, 1444, 1351, 1207, 1095, 837 cm-1; 

HRMS (FAB+) m/z calc’d for C23H38NO3 [M+H]+: 420.2570, found 420.2541; [α]25 

 

– 

6.23 (c 2.91, CHCl3, 94% ee). 

 

 

Methyl (S)-benzyl(2-methyl-2-phenylpent-4-enoyl)carbamate (87k) 

Representative Procedure H.  Compound 87k was prepared from allylenolcarbonate 86k 

using General Procedure G (26.0 mg, 77% yield); 1H NMR (500 MHz, CDCl3) δ 7.36 – 

7.30 (m, 4H), 7.30 – 7.23 (m, 3H), 7.20 – 7.15 (m, 1H), 7.06 – 7.01 (m, 2H), 5.34 (dddd, 

J = 16.8, 10.3, 8.1, 6.5 Hz, 1H), 4.95 (ddt, J = 8.7, 2.2, 1.2 Hz, 1H), 4.93 (h, J = 1.2 Hz, 

1H), 4.88 (s, 2H), 3.22 (s, 3H), 2.90 (ddt, J = 13.7, 8.2, 1.0 Hz, 1H), 2.55 (ddt, J = 13.6, 
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6.6, 1.4 Hz, 1H), 1.63 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 179.7, 154.5, 143.7, 137.5, 

134.3, 128.6, 128.5, 128.1, 127.6, 126.2, 125.9, 118.5, 54.0, 53.3, 50.1, 47.0, 23.8; IR 

(Neat Film, NaCl) 3064, 3007, 2954, 1755, 1674 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C21H23NO3 [M+H]+: 338.1751, found 338.1754; [α]25 

 

+ 71.01 (c 2.36, CHCl3, 

76% ee). 

 

 

Methyl (R)-(2-allyl-2-ethylhexanoyl)(benzyl)carbamate (87l) 

Representative Procedure H.  Compound 87l was prepared from allylenolcarbonate 86l 

using General Procedure G (8.6 mg, 76% yield, 0.034 mmol scale).  Note: this reaction 

was run in EtOAc and not THF; 1H NMR (500 MHz, CDCl3) δ 7.34 – 7.20 (m, 5H), 5.62 

(ddt, J = 17.3, 10.1, 7.3 Hz, 1H), 5.07 – 4.97 (m, 2H), 4.78 (s, 2H), 3.75 (s, 3H), 2.53 – 

2.39 (m, 2H), 1.82 – 1.55 (m, 4H), 1.28 – 1.18 (m, 2H), 1.15 – 1.00 (m, 2H), 0.85 (t, J = 

7.3 Hz, 3H), 0.76 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 181.7, 155.6, 137.9, 

134.7, 128.5, 128.3, 127.5, 117.7, 54.0, 53.6, 50.8, 39.1, 35.0, 28.1, 26.7, 23.4, 14.1, 9.0; 

IR (Neat Film, NaCl) 2958, 2933, 2873, 1741, 1732, 1682, 1443, 1350, 1206, 699 cm-1; 

HRMS (MM: ESI-APCI) m/z calc’d for C20H29NO3 [M+H]+: 332.2220, found 332.2216; 

[α]25 +0.64 (c 0.7, CHCl3, 82% ee). 
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Methyl (R)-(2-allyl-2-ethyloctanoyl)(benzyl)carbamate (87m) 

Representative Procedure H.  Compound 87m was prepared from allylenolcarbonate 86m 

using General Procedure G (24.0 mg, 64% yield); 1H NMR (500 MHz, CDCl3) δ 7.36 – 

7.17 (m, 5H), 5.62 (ddt, J = 17.3, 10.1, 7.3 Hz, 1H), 5.09 – 4.95 (m, 2H), 4.78 (s, 2H), 

3.75 (s, 3H), 2.51 – 2.40 (m, 2H), 1.83 – 1.73 (m, 1H), 1.73 – 1.64 (m, 2H), 1.64 – 1.56 

(m, 1H), 1.31 – 1.17 (m, 6H), 1.17 – 1.02 (m, 2H), 0.87 (t, J = 7.0 Hz, 3H), 0.76 (t, J = 

7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 181.7, 155.6, 137.9, 134.7, 128.5, 128.3, 

127.5, 117.7, 54.0, 53.6, 50.8, 39.1, 35.3, 31.8, 30.0, 28.1, 24.4, 22.8, 14.2, 9.0; IR (Neat 

Film, NaCl)2956, 2872, 1739, 1685, 1443, 1350, 1206, 1183, 998 cm-1; HRMS (MM: 

ESI-APCI) m/z calc’d for C22H34NO3 [M+H]+: 360.2533, found 360.2530; [α]25 +1.25 (c 

1.90, CHCl3, 93% ee).

		

 

 

 

Methyl (S)-(2-allyl-2-(3-phenylpropyl)octanoyl)(benzyl)carbamate (87n) 

Representative Procedure H.  Compound 87n was prepared from allylenolcarbonate 86n 

using General Procedure G (22.4 mg, 56% yield, 0.089 mmol scale); 1H NMR (500 MHz, 

CDCl3) δ 7.31 – 7.09 (m, 10H), 5.61 – 5.52 (m, 1H), 5.01 – 4.98 (m, 1H), 4.97 –4.96 (m, 

1H), 4.76 (s, 2H), 3.67 (s, 3H), 2.53 (t, J = 7.5 Hz, 2H), 2.43 (dq, J = 7.4, 1.3 Hz, 2H), 

1.79 – 1.37 (m, 6H), 1.29 – 1.13 (m, 6H), 1.13 – 0.96 (m, 2H), 0.86 (t, J = 7.1 Hz, 3H); 

13C NMR (126 MHz, CDCl3) δ 181.5, 155.5, 142.4, 137.8, 134.6, 128.6, 128.4, 128.4, 
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128.3, 127.5, 125.8, 117.8, 53.6, 53.5, 50.8, 39.6, 36.5, 35.7, 35.1, 31.8, 30.0, 26.3, 24.3, 

22.7, 14.2; IR (Neat Film, NaCl) 2954, 2930, 1738, 1682, 1444, 1350, 1205, 1176, 699 

cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C29H40NO3 [M+H]+: 450.3003, found 

450.2995; [α]25 –0.11 (c 2.0, CHCl3, 76% ee). 

 

 

(R)-3-(2-Allyl-2-ethylhexanoyl)oxazolidin-2-one (87o) 

Representative Procedure H.  Compound 87o was prepared from allylenolcarbonate 86o 

using General Procedure G (16.3 mg, 67% yield); 1H NMR (500 MHz, CDCl3) δ 5.69 

(ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.11 – 5.01 (m, 2H), 4.38 (dd, J = 8.4, 7.6 Hz, 2H), 4.04 

(dd, J = 8.5, 7.6 Hz, 2H), 2.68 – 2.54 (m, 2H), 2.05 – 1.76 (m, 4H), 1.33 – 1.23 (m, 2H), 

1.21 – 1.04 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H), 0.80 (t, J = 7.5 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 177.5, 152.4, 134.5, 117.9, 62.3, 52.7, 45.6, 36.6, 31.8, 26.6, 25.1, 23.3, 

14.2, 8.8; IR (Neat Film, NaCl) 3076, 2960, 2931, 2874, 1778, 1682, 1468, 1384, 1202 

cm-1; HRMS (FAB+) m/z calc’d for C14H24NO3 [M+H]+: 254.1756, found 254.1756; 

[α]25 

 

0.02 (c 1.45, CHCl3, 69% ee). 

 

 

(R)-3-(2-Allyl-2-ethyloctanoyl)oxazolidin-2-one (87p) 

Representative Procedure H.  Compound 387p was prepared from allylenolcarbonate 86p 

using General Procedure G (20.1 mg, 72% yield); 1H NMR (500 MHz, CDCl3) δ 5.77 – 
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5.58 (m, 1H), 5.14 – 4.96 (m, 2H), 4.38 (t, J = 8.0 Hz, 2H), 4.04 (t, J = 8.0 Hz, 2H), 2.70 

– 2.48 (m, 2H), 2.05 – 1.73 (m, 4H), 1.33 – 1.05 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H), 0.79 (t, 

J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 177.5, 152.4, 134.5, 117.9, 62.3, 52.8, 

45.6, 36.6, 32.1, 31.8, 29.9, 25.1, 24.4, 22.8, 14.2, 8.8; IR (Neat Film, NaCl) 2958, 2926, 

1779, 1682, 1467, 1383, 1228, 1194, 1107, 914 cm-1; HRMS (MM: ESI-APCI) m/z calc’d 

for C16H28NO3 [M+H]+: 282.2069, found 282.2078; [α]25 0.21 (c 1.67, CHCl3, 73% ee).

 

 

	

3.4.5  Cross Metathesis Procedure 

Representative Procedure I. 

Unless otherwise noted, the cross metathesis procedure was executed as follows: The 

allylic alkylation substrates were loaded into a 2-dram vial equipped with a magnetic 

stirring bar and brought into a glove box.  A solution of methacrylate (0.06M, 10 equiv.) 

in dichloromethane was added and the vial was capped with a Teflon lined screw-cap.  

The reaction mixture was stirred for 30 minutes.  A solution of Grubbs generation II 

catalyst (6.6 mM, 5 mol%) in dichloromethane was added to the reaction.  The mixture 

was sealed the cap and heated to 45 °C with stirring.  After 5 hours, the reaction mixture 

was cooled to room temperature and removed from the glovebox.  The reaction mixture 

was filtered through a silica plug, eluting with diethyl ether, and concentrated.  The crude 

material was purified by preparative TLC (EtOAc/hexanes mobile phase) to afford the 

product, which was analyzed by SFC to determine the %ee of the allylic alkylation.  
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Methyl (R,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-5-methylnon-2-enoate (88d) 

Representative Procedure I.  Compound 88d was prepared using General Procedure H 

with 87d (26.9 mg, 85 µmol) to afford a clear oil (25.5 mg, 80% yield): 1H NMR (500 

MHz, CDCl3) δ 7.32 – 7.19 (m, 5H), 6.83 (dt, J = 15.5, 7.7 Hz, 1H), 5.81 (dt, J = 15.5, 

1.4 Hz, 1H), 4.77 (s, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 2.76 (ddd, J = 14.0, 7.6, 1.5 Hz, 1H), 

2.44 (ddd, J = 14.0, 7.9, 1.4 Hz, 1H), 1.77 (ddd, J = 13.4, 12.2, 4.4 Hz, 1H), 1.55 (ddd, J 

= 13.4, 12.4, 4.6 Hz, 1H), 1.23 (s, 3H), 1.22 – 1.15 (m, 2H), 1.12 – 1.01 (m, 1H), 0.96 

(ttd, J = 11.9, 7.4, 4.4 Hz, 1H), 0.81 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

182.0, 166.7, 155.5, 145.5, 137.6, 128.5, 128.2, 127.6, 123.8, 53.7, 51.6, 50.6, 50.6, 42.3, 

39.7, 26.8, 23.3, 22.4, 14.1; IR (Neat Film, NaCl) 2957, 2872, 1726, 1686, 1439, 1350, 

1272, 1195, 998 cm-1; HRMS (ESI) m/z calc’d for C21H33N2O5 [M+NH4]+: 393.2384, 

found 393.2376; [α]25 +12.17 (c 2.3, CHCl3, 92% ee). 

	

	

Methyl (R,E)-5-(benzyl(ethoxycarbonyl)carbamoyl)-5-methylnon-2-enoate (88e) 

Representative Procedure I.  Compound 88e was prepared using General Procedure H 

with 87e (17.4 mg, 53 µmol) to afford a clear oil (17.4 mg, 85% yield): 1H NMR (500 

MHz, CDCl3) δ 7.33 – 7.19 (m, 5H), 6.84 (dt, J = 15.5, 7.7 Hz, 1H), 5.82 (dt, J = 15.5, 

1.4 Hz, 1H), 4.77 (s, 2H), 4.25 – 4.12 (m, 2H), 3.71 (s, 3H), 2.78 (ddd, J = 13.9, 7.5, 1.5 

Hz, 1H), 2.46 (ddd, J = 13.9, 7.9, 1.4 Hz, 1H), 1.80 (ddd, J = 13.4, 12.3, 4.4 Hz, 1H), 
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1.63 – 1.52 (m, 1H), 1.25 (s, 3H), 1.24 (t, J = 9.1, 3H), 1.23 – 1.16 (m, 2H), 1.14 – 1.03 

(m, 1H), 0.98 (ttd, J = 12.4, 7.5, 4.4 Hz, 1H), 0.82 (t, J = 7.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 182.1, 166.8, 155.1, 145.6, 137.8, 128.5, 128.2, 127.5, 123.8, 63.1, 51.6, 

50.6, 50.5, 42.2, 39.6, 26.8, 23.3, 22.5, 14.3, 14.1; IR (Neat Film, NaCl) 1956, 2873, 

1727, 1688, 1436, 1376, 1345, 1272, 1193, 1019, 986 cm-1; HRMS (ESI) m/z calc’d for 

C22H35N2O5 [M+NH4]+: 407.2540, found 407.2538; [α]25 +9.70 (c 1.5, CHCl3, 94% ee). 

	

 

Methyl (R,E)-5-(benzyl(tert-butoxycarbonyl)carbamoyl)-5-methylnon-2-enoate (88f) 

Representative Procedure I.  Compound 88f was prepared using General Procedure H 

with 87f (9.3 mg, 26 µmol) to afford a clear oil (8.5 mg, 79% yield): 1H NMR (500 MHz, 

CDCl3) δ 7.33 – 7.17 (m, 5H), 6.88 (dt, J = 15.5, 7.7 Hz, 1H), 5.84 (dt, J = 15.5, 1.4 Hz, 

1H), 4.71 (s, 2H), 3.72 (s, 3H), 2.83 (ddd, J = 13.9, 7.5, 1.5 Hz, 1H), 2.50 (ddd, J = 13.9, 

7.9, 1.4 Hz, 1H), 1.84 (ddd, J = 13.4, 12.1, 4.4 Hz, 1H), 1.59 (ddd, J = 13.4, 12.3, 4.5 Hz, 

1H), 1.35 (s, 9H), 1.29 (s, 3H), 1.27 – 1.19 (m, 2H), 1.13 (dddd, J = 17.0, 7.8, 6.6, 4.6 

Hz, 1H), 1.04 (tdd, J = 12.4, 8.3, 4.5 Hz, 1H), 0.84 (t, J = 7.3 Hz, 3H); 13C NMR (126 

MHz, CDCl3) δ 182.3, 166.9, 153.9, 145.9, 138.3, 128.4, 128.0, 127.3, 123.7, 83.0, 51.6, 

50.8, 50.3, 42.4, 39.6, 27.9, 26.9, 23.4, 22.5, 14.2; IR (Neat Film, NaCl) 2957, 2933, 

1728, 1682, 1370, 1272, 1150, 987, 699 cm-1; HRMS (FAB+) m/z calc’d for C24H36NO5 

[M+H]+: 418.2593, found 418.2593; [α]25 +10.60 (c 0.85, CHCl3, 90% ee). 
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Methyl (R,E)-5-(benzyl((benzyloxy)carbonyl)carbamoyl)-5-methylnon-2-enoate 

(88g) 

Representative Procedure I.  Compound 88g was prepared using General Procedure H 

with 87g (20.9 mg, 53 µmol) to afford a clear oil (18.2 mg, 76% yield): 1H NMR (500 

MHz, CDCl3) δ 7.36 – 7.31 (m, 3H), 7.29 – 7.20 (m, 7H), 6.81 (dt, J = 15.4, 7.7 Hz, 1H), 

5.75 (dd, J = 15.5, 1.4 Hz, 1H), 5.15 (s, 2H), 4.79 (s, 2H), 3.71 (s, 3H), 2.73 (ddd, J = 

14.0, 7.6, 1.4 Hz, 1H), 2.43 (ddd, J = 13.9, 7.9, 1.5 Hz, 1H), 1.76 (ddd, J = 13.5, 12.2, 4.5 

Hz, 1H), 1.61 – 1.48 (m, 1H), 1.22 (s, 3H), 1.14 (p, J = 7.2 Hz, 2H), 1.10 – 0.99 (m, 1H), 

0.94 (ttd, J = 12.3, 7.4, 4.3 Hz, 1H), 0.79 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, 

CDCl3) δ 182.2, 166.8, 154.9, 145.5, 137.7, 134.9, 128.8, 128.8, 128.7, 128.5, 128.2, 

127.5, 123.8, 68.9, 51.6, 50.6, 50.5, 42.1, 39.5, 26.8, 23.2, 22.5, 14.1; IR (Neat Film, 

NaCl) 2955, 1725, 1688, 1386, 1346, 1272, 1192, 990, 698 cm-1; HRMS (ESI) m/z calc’d 

for C27H37N2O5 [M+NH4]+: 469.2697, found 469.2693; [α]25 +5.94 (c 1.7, CHCl3, 93% 

ee). 
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Methyl (R,E)-5-((4-chlorophenyl)(methoxycarbonyl)carbamoyl)-5-methylnon-2-

enoate (88h) 

Representative Procedure I.  Compound 88h was prepared using General Procedure H 

with 87h (19.8 mg, 59 µmol) to afford a clear oil (19.7 mg, 80% yield): 1H NMR (500 

MHz, CDCl3) δ 7.39 – 7.31 (m, 2H), 7.13 – 7.05 (m, 2H), 6.88 (dt, J = 15.4, 7.7 Hz, 1H), 

5.83 (dt, J = 15.3, 1.3 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 2.73 (ddd, J = 14.3, 7.6, 1.5 Hz, 

1H), 2.44 (ddd, J = 14.1, 7.8, 1.4 Hz, 1H), 1.79 – 1.67 (m, 1H), 1.61 – 1.52 (m, 1H), 1.30 

– 1.14 (m, 4H), 1.24 (s, 3H), 0.86 (t, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

181.7, 166.7, 154.7, 144.8, 136.9, 134.1, 129.5, 129.3, 124.2, 54.0, 51.7, 51.2, 41.8, 39.4, 

26.6, 23.2, 22.9, 14.1; IR (Neat Film, NaCl) 2956, 2873, 1728, 1658, 1492, 1439, 1272, 

1247, 1198, 1092 cm-1; HRMS (FAB+) m/z calc’d for C20H26NClO5 [M+H-H2]+: 

395.1499, found 395.1476; [α]25 +7.94 (c 1.8, CHCl3, 90% ee). 

	

 

Methyl (R,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-5-methylundec-2-enoate (88i) 

Representative Procedure I.  Compound 88i was prepared using General Procedure H 

with 87i (17.3 mg, 51 µmol) to afford a clear oil (17.2 mg, 84% yield): 1H NMR (500 

MHz, CDCl3) δ 7.34 – 7.19 (m, 5H), 6.83 (dt, J = 15.5, 7.7 Hz, 1H), 5.81 (dt, J = 15.5, 

1.4 Hz, 1H), 4.77 (s, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 2.75 (ddd, J = 14.0, 7.5, 1.4 Hz, 1H), 
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2.45 (ddd, J = 13.9, 8.0, 1.4 Hz, 1H), 1.77 (ddd, J = 13.4, 12.1, 4.4 Hz, 1H), 1.61 – 1.46 

(m, 1H), 1.30 – 1.13 (m, 6H), 1.23 (s, 3H), 1.13 – 1.03 (m, 1H), 1.02 – 0.91 (m, 1H), 0.86 

(t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 182.0, 166.8, 155.5, 145.5, 137.6, 

128.5, 128.2, 127.6, 123.8, 53.7, 51.6, 50.6, 50.6, 42.3, 40.0, 31.7, 29.9, 24.5, 22.7, 22.4, 

14.2; IR (Neat Film, NaCl) 2954, 2930, 2858, 1728, 1688, 1441, 1350, 1272, 1779, 998 

cm-1; HRMS (ESI) m/z calc’d for C23H37N2O5 [M+NH4]+: 421.2697, found 421.2688; 

[α]25 +10.91 (c 1.6, CHCl3, 94% ee). 

	

 

Methyl (S,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-7-((tert-

butyldimethylsilyl)oxy)-5-methylhept-2-enoate (88j) 

Representative Procedure I.  Compound 88j was prepared using General Procedure H 

with 87j (31.7 mg, 76 µmol) to afford a clear oil (28.5 mg, 79% yield): 1H NMR (500 

MHz, CDCl3) δ 7.29 – 7.17 (m, 5H), 6.79 (dq, J = 15.4, 7.8 Hz, 1H), 5.77 (dt, J = 15.5, 

1.4 Hz, 1H), 4.75 (s, 2H), 3.72 (s, 3H), 3.67 (s, 3H), 3.54 – 3.44 (m, 2H), 2.78 (ddd, J = 

14.0, 7.6, 1.5 Hz, 1H), 2.47 (ddd, J = 14.0, 7.9, 1.5 Hz, 1H), 2.06 (ddd, J = 13.9, 7.8, 6.2 

Hz, 1H), 1.86 (ddd, J = 13.9, 7.9, 6.3 Hz, 1H), 1.24 (s, 3H), 0.82 (s, 9H), -0.03 (s, 3H), -

0.03 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 181.2, 166.7, 155.4, 145.3, 137.6, 128.6, 

128.1, 127.6, 124.0, 59.8, 53.7, 51.6, 50.6, 49.3, 42.6, 41.8, 26.1, 22.7, 18.4, -5.2, -5.3; IR 

(Neat Film, NaCl) 2955, 2857, 1728, 1688, 1440, 1351, 1256, 1195, 1094, 994 cm-1; 

HRMS (FAB+) m/z calc’d for C25H40NO6Si [M+H]+: 478.2625, found 478.2646; [α]25 

+2.20 (c 2.6, CHCl3, 94% ee). 
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Methyl (S,E)-6-(benzyl(methoxycarbonyl)amino)-5-methyl-6-oxo-5-phenylhex-2-

enoate (88k) 

Representative Procedure I.  Compound 88k was prepared using General Procedure H 

with 87k (26.0 mg, 77 µmol) to afford a clear oil (23.9 mg, 78% yield): 1H NMR (500 

MHz, CDCl3) δ 7.35 – 7.30 (m, 4H), 7.30 – 7.23 (m, 3H), 7.22 – 7.13 (m, 1H), 7.05 – 

6.97 (m, 2H), 6.57 (ddd, J = 15.4, 8.3, 6.9 Hz, 1H), 5.71 (dt, J = 15.5, 1.4 Hz, 1H), 4.89 

(s, 2H), 3.67 (s, 3H), 3.22 (s, 3H), 3.01 (ddd, J = 13.9, 8.4, 1.2 Hz, 1H), 2.67 (ddd, J = 

13.9, 6.9, 1.6 Hz, 1H), 1.68 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 179.0, 166.6, 154.3, 

145.1, 142.7, 137.4, 128.5, 128.5, 128.3, 127.7, 126.6, 125.8, 124.3, 54.1, 53.4, 51.5, 

50.1, 45.9, 23.4; IR (Neat Film, NaCl) 2953, 1725, 1674, 1496, 1441, 1351, 1315, 1274, 

1203, 1004, 700 cm-1; HRMS (ESI) m/z calc’d for C23H29N2O5 [M+NH4]+: 413.2071, 

found 413.2065; [α]25 +67.74 (c 2.2, CHCl3, 76% ee). 

	

 

Methyl (R,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-5-ethylnon-2-enoate (88l) 

Representative Procedure I.  Compound 88l was prepared using General Procedure H 

with 87l (7.3 mg, 22 µmol) to afford a clear oil (7.3 mg, 85% yield): 1H NMR (500 MHz, 

CDCl3) δ 7.36 – 7.16 (m, 5H), 6.83 (dt, J = 15.4, 7.7 Hz, 1H), 5.84 (dt, J = 15.5, 1.4 Hz, 

1H), 4.80 (s, 2H), 3.76 (s, 3H), 3.72 (s, 3H), 2.62 (qdd, J = 14.4, 7.7, 1.5 Hz, 2H), 1.84 
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(dq, J = 14.8, 7.4 Hz, 1H), 1.75 (ddd, J = 13.8, 12.2, 4.7 Hz, 1H), 1.66 (dt, J = 14.3, 7.4 

Hz, 1H), 1.59 (ddd, J = 13.8, 12.2, 4.7 Hz, 1H), 1.22 (p, J = 7.2 Hz, 2H), 1.15 – 0.97 (m, 

2H), 0.84 (t, J = 7.3 Hz, 3H), 0.76 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 

180.8, 166.8, 155.5, 145.8, 137.7, 128.5, 128.2, 127.6, 123.6, 54.2, 53.7, 51.6, 50.8, 37.6, 

35.2, 28.3, 26.7, 23.3, 14.1, 9.0; IR (Neat Film, NaCl) 2957, 2874, 1727, 1682, 1442, 

1351, 1190, 700 cm-1; HRMS (ESI) m/z calc’d for C22H35N2O5 [M+NH4]+: 407.2540, 

found 407.2537; [α]25 +1.32 (c 0.66, CHCl3, 82% ee). 

	

 

Methyl (R,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-5-ethylundec-2-enoate (88m) 

Representative Procedure I.  Compound 88m was prepared using General Procedure H 

with 87m (19.0 mg, 53 µmol) to afford a clear oil (18.7 mg, 85% yield): 1H NMR (500 

MHz, CDCl3) δ 7.36 – 7.14 (m, 5H), 6.83 (dt, J = 15.4, 7.7 Hz, 1H), 5.83 (dd, J = 15.5, 

1.6 Hz, 1H), 4.79 (s, 2H), 3.75 (s, 3H), 3.72 (s, 3H), 2.62 (qdd, J = 14.6, 7.7, 1.5 Hz, 2H), 

1.84 (dq, J = 14.8, 7.4 Hz, 1H), 1.78 – 1.70 (m, 1H), 1.69 – 1.54 (m, 2H), 1.30 – 1.15 (m, 

6H), 1.15 – 0.97 (m, 2H), 0.86 (t, J = 7.0 Hz, 3H), 0.75 (t, J = 7.4 Hz, 3H); 13C NMR 

(126 MHz, CDCl3) δ 180.8, 166.8, 155.5, 145.8, 137.7, 128.5, 128.2, 127.5, 123.6, 54.2, 

53.7, 51.6, 50.7, 37.6, 35.5, 31.7, 29.9, 28.3, 24.5, 22.7, 14.2, 9.0; IR (Neat Film, NaCl) 

2955, 1727, 1683, 1441, 1351, 1176 cm-1; HRMS (ESI) m/z calc’d for C25H39N2O5 

[M+NH4]+: 435.2853, found 435.2853; [α]25 +2.25 (c 1.7, CHCl3, 93% ee). 
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Methyl (S,E)-5-(benzyl(methoxycarbonyl)carbamoyl)-5-(3-phenylpropyl)undec-2-

enoate (88n) 

Representative Procedure I.  Compound 88n was prepared using General Procedure H 

with 87n (21.6 mg, 48 mmol) to afford a clear oil (19.8 mg, 84% yield): 1H NMR (500 

MHz, CDCl3) δ 7.30 – 7.14 (m, 8H), 7.13 – 7.07 (m, 2H), 6.79 (dt, J = 15.4, 7.6 Hz, 1H), 

5.79 (dt, J = 15.4, 1.3 Hz, 1H), 4.78 (s, 2H), 3.72 (s, 3H), 3.67 (s, 3H), 2.60 (dt, J = 7.7, 

1.3 Hz, 2H), 2.53 (t, J = 7.4 Hz, 2H), 1.84 – 1.68 (m, 2H), 1.65 – 1.51 (m, 2H), 1.51 – 

1.35 (m, 2H), 1.29 – 1.13 (m, 6H), 1.12 – 0.93 (m, 2H), 0.86 (t, J = 7.1 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 180.6, 166.7, 155.4, 145.6, 142.1, 137.6, 128.5, 128.5, 128.4, 

128.2, 127.6, 125.9, 123.7, 53.8, 53.7, 51.6, 50.7, 38.2, 36.3, 35.8, 35.2, 31.7, 29.9, 26.3, 

24.4, 22.7, 14.2; IR (Neat Film, NaCl) 3028, 2930, 2858, 1727, 1683, 1442, 1350, 1273, 

1170, 699 cm-1; HRMS (ESI) m/z calc’d for C31H45N2O5 [M+NH4]+: 525.3323, found 

525.3329; [α]25 +0.25 (c 1.8, CHCl3, 76% ee). 

	

Methyl (R,E)-5-ethyl-5-(2-oxooxazolidine-3-carbonyl)non-2-enoate (88o) 

Representative Procedure I.  Compound 88o was prepared using General Procedure H 

with 87o (15.2 mg, 60 µmol) to afford a clear oil (14.6 mg, 78% yield): 1H NMR (500 

MHz, CDCl3) δ 6.84 (dt, J = 15.4, 7.7 Hz, 1H), 5.88 (dt, J = 15.5, 1.5 Hz, 1H), 4.48 – 

4.31 (m, 2H), 4.05 (dd, J = 8.5, 7.6 Hz, 2H), 3.72 (s, 3H), 2.83 – 2.63 (m, 2H), 2.14 – 

1.95 (m, 2H), 1.82 – 1.67 (m, 2H), 1.28 (h, J = 7.1 Hz, 2H), 1.22 – 1.12 (m, 1H), 1.06 

O

Hex
N
CO2Me

Bn
MeO2C

Ph

O

Bu

Et
NMeO2C O

O
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(ttd, J = 12.3, 7.3, 4.5 Hz, 1H), 0.87 (t, J = 7.3 Hz, 3H), 0.79 (t, J = 7.5 Hz, 3H); 13C 

NMR (126 MHz, CDCl3) δ 176.6, 166.8, 152.4, 145.5, 123.8, 62.4, 52.9, 51.6, 45.6, 35.6, 

32.2, 26.7, 25.5, 23.2 14.1, 8.8; IR (Neat Film, NaCl) 2959, 2875, 1778, 1722, 1682, 

1470, 1436, 1385, 1257, 1195, 1175, 1109, 1045 cm-1; HRMS (FAB+) m/z calc’d for 

C16H26NO5 [M+H]+: 312.1811, found 312.1791; [α]25 +0.50 (c 1.3, CHCl3, 69% ee). 

 

 

Methyl (R,E)-5-ethyl-5-(2-oxooxazolidine-3-carbonyl)undec-2-enoate (88p) 

Representative Procedure I.  Compound 88p was prepared using General Procedure H 

with 87p (16.5 mg, 59 µmol) to afford a clear oil (16.3 mg, 82% yield): 1H NMR (500 

MHz, CDCl3) δ 6.91 – 6.74 (m, 1H), 5.87 (dt, J = 15.5, 1.5 Hz, 1H), 4.39 (t, J = 8.0 Hz, 

2H), 4.05 (t, J = 8.0 Hz, 2H), 3.71 (s, 3H), 2.86 – 2.62 (m, 2H), 2.14 – 1.91 (m, 2H), 1.84 

– 1.66 (m, 2H), 1.31 – 1.12 (m, 7H), 1.12 – 1.00 (m, 1H), 0.86 (t, J = 6.8 Hz, 3H), 0.79 (t, 

J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 176.6, 166.8, 152.4, 145.6, 123.7, 62.4, 

52.9, 51.6, 45.6, 35.6, 32.4, 31.7, 29.7, 25.6, 24.4, 22.7, 14.2, 8.8; IR (Neat Film, NaCl) 

2956, 2929, 2858, 1779, 1723, 1682, 1469, 1385, 1254, 1194, 1110, 1046 cm-1; HRMS 

(FAB+) m/z calc’d for C18H30NO5 [M+H]+: 340.2124, found 340.2116; [α]25 +2.41 (c 1.5, 

CHCl3, 73% ee). 

 

 

 

  

O

Hex

Et
NMeO2C O

O
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3.4.6  Determination of Enantiomeric Excess 

Table 3.4. Methods for the determination of enantiomeric excess. 

 

compound assay method
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%eeentry

1

O

Bu

Me
NMeO2C O

O

88a

O

Bu

Me
NMeO2C O

O

88c

O

Bu

Me
N

CO2Me

Bn
MeO2C

2

3

O

Bu

Me
N

CO2Et

Bn
MeO2C

88d

88e

O

Bu

Me
N

CO2tBu

Bn
MeO2C

88f

O

Bu

Me
N

CO2Bn

Bn
MeO2C

88g

4

5

6

7

SFC, 5% iPrOH in CO2
2.5 mL/min, OD-H col.

6.80 9.33 94

SFC, 5% iPrOH in CO2
2.5 mL/min, OD-H col.

7.00 9.65 92

SFC, 15% iPrOH in CO2
2.5 mL/min, OD-H col.

4.45 5.69 93

SFC, 2% iPrOH in CO2
2.5 mL/min, OJ-H col.

3.05 3.64 90

SFC, 5% iPrOH in CO2
2.5 mL/min, OD-H col.

5.55 6.82 57*

*used Ph-ANDEN ligand

SFC, 5% iPrOH in CO2
2.5 mL/min, AD-H col.

5.31 5.87 70

O

Bu

Me
N

CO2Me
MeO2C

88h
Ar = 4-ClC6H4

Ar
SFC, 5% iPrOH in CO2
2.5 mL/min, OD-H col.

6.28 8.73 90
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compound assay method
and conditions

retention time
of major isomer

(min)

retention time
of minor isomer

(min)
%eeentry

9

88j

88l

10

11

O

Hex
N

CO2Me

Bn
MeO2C

88m

88n

880

12

13

14

15

88p

O

Hex

Et
N

CO2Me

Bn
MeO2C

Ph

O

Bu

Et
N

CO2Me

Bn
MeO2C

O
Me

N
CO2Me

Bn
MeO2C

TBSO

O

Bu

Et
NMeO2C O

O

O

Hex

Et
NMeO2C O

O

SFC, 10% iPrOH in CO2
2.5 mL/min, AD-H col.

6.55 5.71 76

SFC, 6% iPrOH in CO2
2.5 mL/min, OD-H col.

7.73 10.18 73

SFC, 7% iPrOH in CO2
2.5 mL/min, OD-H col.

5.67 7.40 93

SFC, 5% iPrOH in CO2
2.5 mL/min, OD-H col.

8.13 10.61 69

SFC, 10% iPrOH in CO2
2.5 mL/min, OD-H col.

4.00 4.83 94

SFC, 10% iPrOH in CO2
2.5 mL/min, OD-H col.

3.58 4.39 82

88k

O

Ph

Me
N

CO2Me

Bn
MeO2C SFC, 7% iPrOH in CO2

2.5 mL/min, AD-H col.
8.77 9.66 76

88i

8

O

Hex

Me
N

CO2Me

Bn
MeO2C SFC, 7% iPrOH in CO2

2.5 mL/min, OD-H col.
6.09 8.25 94
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3.4.7  Determination of Absolute Stereochemistry 

 

 

 

(S)-N-Benzyl-2-(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-methylpent-4-enamide (110) 

To an oven-dried round-bottom flask and magnetic stir bar was added 87j (60 mg, 0.143 

mmol) followed by anhydrous THF (1.4 mL).  The solution was stirred under nitrogen at 

room temperature.  A solution of NaOH in anhydrous methanol (0.17 mL, 1.0 M) was 

added dropwise by syringe.  The reaction was stirred at room temperature for 45 min.  

Afterward, the reaction mixture was diluted with ethyl acetate and quenched with water.  

The mixture was partitioned between water and ethyl acetate and the aqueous layer was 

extracted two additional times with ethyl acetate.  The combined organic layers were 

washed with brine (50 mL), dried with sodium sulfate, and filtered.  This mixture was 

concentrated in vacuo and purified by flash chromatography (10/90 to 12/88 

EtOAc/hexanes) to provide the product as an amorphous white solid (30.2 mg, 58% 

yield); 1H NMR (500 MHz, CDCl3) δ 7.36 – 7.24 (m, 5H), 6.37 (s, 1H), 5.80 – 5.69 (m, 

N

O

OTBS

Me
MeO2C

BzN

O

O

O

BzN
Me

O

HN
Me

O

98% ee

BnHN

O

OH

MeNaOH in
 MeOH BnN

Me
O

87% ee
from 92

92% yield
MeOH, 0 °C

(i) MsCl, TEA

(ii) NaHMDS

Pd2dba3 (5 mol%)
(S)-(CF3)3-t-BuPHOX

(12.5 mol%)

PhMe, 40 °C
90% yield

NaH
BnBr
59%

[α] = –30.1°

[α] = 26.2°
46% yield

NaOH

87j 95 96

999897

Bn
58% yield

THF, RT
BnHN

O

OTBS

Me

110

THF, RT
TBAF

90% yield

BnHN

O

OTBS

Me
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1H), 5.08 – 5.06 (m, 1H), 5.06 – 5.03 (m, 1H), 4.49 – 4.38 (m, 2H), 3.68 (td, J = 6.7, 1.5 

Hz, 2H), 2.40 (ddt, J = 13.7, 7.1, 1.2 Hz, 1H), 2.27 (ddt, J = 13.7, 7.7, 1.1 Hz, 1H), 1.93 

(dt, J = 13.7, 6.7 Hz, 1H), 1.69 (dt, J = 14.1, 6.7 Hz, 1H), 1.20 (s, 3H), 0.86 (s, 9H), 0.02 

– -0.00 (m, 6H); 13C NMR (126 MHz, CDCl3) δ 176.4, 138.8, 134.3, 128.8, 127.9, 127.5, 

118.3, 60.1, 44.7, 44.7, 43.7, 41.4, 26.1, 22.3, 18.4, -5.3, -5.3; IR (Neat Film, NaCl) 3343, 

2955, 2929, 2856, 1640, 1531, 1254, 1095, 836 cm-1; HRMS (FAB+) m/z calc’d for 

C21H36NO2Si [M+H]+: 362.2514, found 362.2515; [α]25 –2.93 (c 2.5, CHCl3, 94% ee). 

 

 

(S)-N-Benzyl-2-(2-hydroxyethyl)-2-methylpent-4-enamide (95) 

To an oven-dried 2-dram vial and magnetic stir bar was added S11 (30 mg, 0.083 mmol) 

followed by anhydrous THF (0.5 mL).  The solution was stirred under nitrogen at room 

temperature.  A solution of TBAF in anhydrous THF (0.17 mL, 1.0 M) was added 

dropwise by syringe.  The reaction was stirred at room temperature for 2 h.  Afterward, 

the reaction mixture was quenched with saturated ammonium chloride.  The mixture was 

partitioned between water and dichloromethane and the aqueous layer was extracted two 

additional times with dichloromethane.  The combined organic layers were washed with 

brine (50 mL), dried with sodium sulfate, and filtered.  This mixture was concentrated in 

vacuo and purified by flash chromatography (60/40 EtOAc/hexanes) to provide the 

product as an oil (19.5 mg, 58% yield): 1H NMR (500 MHz, CDCl3) δ 7.38 – 7.24 (m, 

5H), 6.10 (s, 1H), 5.78 – 5.69 (m, 1H), 5.11 – 5.09 (m, 1H), 5.09 – 5.05 (m, 1H), 4.45 (d, 

J = 5.5 Hz, 2H), 3.78 (dt, J = 11.8, 6.1 Hz, 1H), 3.74 – 3.65 (m, 1H), 2.56 (s, 1H), 2.48 

BnHN

O

OH

Me
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(ddt, J = 13.7, 7.0, 1.3 Hz, 1H), 2.22 (ddt, J = 13.7, 7.7, 1.2 Hz, 1H), 2.00 (ddd, J = 14.4, 

7.3, 5.5 Hz, 1H), 1.70 (ddd, J = 14.4, 6.6, 5.4 Hz, 1H), 1.22 (s, 3H); 13C NMR (126 MHz, 

CDCl3) δ 177.5, 138.3, 133.7, 128.9, 127.9, 127.7, 118.9, 59.3, 44.5, 44.4, 44.0, 41.5, 

22.2; IR (Neat Film, NaCl) 3335, 2927, 1634, 1538, 1249 cm-1; HRMS (MM: ESI-APCI) 

m/z calc’d for C15H21NO2 [M+H]+: 248.1645, found 248.1651; [α]25 –61.06 (c 1.63, 

CHCl3, 94% ee). 

 

 

(S)-3-Allyl-1-benzyl-3-methylpyrrolidin-2-one ((S)-96): 

To an oven-dried 2-dram vial and magnetic stir bar was added 95 (19.5 mg, 0.079 mmol) 

followed by anhydrous THF (0.20 mL).  The solution was stirred under nitrogen at 0 °C.  

Triethylamine (12 µL, 0.087 mmol) was added dropwise by syringe followed by a 

solution of methanesulfonyl chloride in THF (0.10 mL, 0.79 M).  The reaction was stirred 

at 0 °C for 0.5 h.  A separate oven-dried 2-dram vial and magnetic stir bar was charged 

with NaHMDS (46 mg, 0.253 mmol) and THF (0.25 mL).  The reaction mixture was 

canulated into the NaHMDS solution at 0 °C over 5 minutes.  This solution was warmed 

to room temperature and stirred overnight.  Afterward, the reaction mixture was 

quenched with saturated ammonium chloride.  The mixture was partitioned between 

water and ethyl acetate and the aqueous layer was extracted two additional times with 

ethyl acetate.  The combined organic layers were washed with brine (50 mL), dried with 

sodium sulfate and filtered.  This mixture was concentrated in vacuo and purified by 

preparative TLC (40/60 EtOAc/hexanes) to provide the product as an oil (8.4 mg, 46% 

BnN
Me

O
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yield); 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.22 (m, 5H), 5.82 –5.74 (m, 1H), 5.18 – 

5.06 (m, 2H), 4.53 – 4.42 (m, 2H), 3.20 – 3.10 (m, 2H), 2.37 (ddt, J = 13.7, 6.7, 1.3 Hz, 

1H), 2.25 (ddt, J = 13.8, 8.2, 1.1 Hz, 1H), 2.03 (ddd, J = 12.8, 8.2, 6.4 Hz, 1H), 1.73 

(ddd, J = 12.9, 8.0, 5.5 Hz, 1H), 1.20 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 178.6, 

136.7, 134.1, 128.7, 128.1, 127.6, 118.4, 46.8, 44.1, 43.4, 42.3, 30.4, 23.2; IR (Neat Film, 

NaCl) 3002, 2962, 1686, 1454, 1431, 1291, 917, 701 cm-1; HRMS (MM: ESI-APCI) m/z 

calc’d for C15H20NO [M+H]+: 230.1539, found 230.1549; [α]25 26.10 (c 0.70, CHCl3, 

94% ee). 

 

 

(R)-3-Allyl-3-methylpyrrolidin-2-one (99): 

To a round-bottom flask and magnetic stir bar was added 986a (98% ee) (80 mg, 0.33 

mmol) followed by MeOH (4.0 mL).  The solution was stirred under nitrogen at 0 °C.  A 

solution of NaOH (0.61 mL, 2.0 M, 1.2 mmol) was added dropwise by syringe.  The 

reaction was stirred at 0 °C for 1.5 h.  The mixture was partitioned between brine and 

diethyl ether.  The organic layer was washed with saturated sodium bicarbonate solution 

followed by brine, dried with sodium sulfate, and filtered.  This mixture was concentrated 

in vacuo and purified by flash chromatography (80/20 to 100/0 EtOAc/hexanes) to 

provide the product as an amorphous white solid (28.3 mg, 62% yield); 1H NMR (500 

MHz, CDCl3) δ 6.49 (s, 1H), 5.84 – 5.70 (m, 1H), 5.13 – 5.09 (m, 1H), 5.08 (p, J = 1.2 

Hz, 1H), 3.34 – 3.19 (m, 2H), 2.33 – 2.25 (m, 1H), 2.19 (ddt, J = 13.6, 8.2, 1.1 Hz, 1H), 

2.15 – 2.06 (m, 1H), 1.86 – 1.76 (m, 1H), 1.15 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 

HN
Me

O
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182.9, 134.1, 118.4, 43.1, 42.0, 39.0, 33.0, 22.8; IR (Neat Film, NaCl) 3233, 3077, 2928, 

1697, 1295, 915 cm-1; HRMS (MM: ESI-APCI) m/z calc’d for C8H14NO [M+H]+: 

140.1070, found 140.1071; [α]25 –33.10 (c 2.27, CHCl3, 98% ee). 

 

 

(R)-3-Allyl-1-benzyl-3-methylpyrrolidin-2-one ((R)-96): 

To an oven-dried 2-dram vial and magnetic stir bar was added 99 (28.3 mg, 0.203 mmol) 

followed by anhydrous DMF (1.0 mL).  The solution was stirred under nitrogen at 0 °C.  

Sodium hydride (8.1 mg, 0.203 mmol) was added portion-wise over two minutes.  The 

reaction was stirred at 0 °C for 40 min.  To this solution was added benzyl bromide (30 

µL, 0.256 mmol) dropwise through by syringe.  This solution was warmed to room 

temperature and stirred for 2 h.  Afterward, the reaction mixture was quenched with 

saturated ammonium chloride.  The mixture was partitioned between water and ethyl 

acetate and the aqueous layer was extracted two additional times with ethyl acetate.  The 

combined organic layers were washed with brine (50 mL), dried with sodium sulfate, and 

filtered.  This mixture was concentrated in vacuo and purified by preparative TLC (40/60 

EtOAc/hexanes) to provide the product as an oil (27 mg, 59% yield).  Characterization 

data matched previously synthesized material; [α]25 –33.10 (c 2.27, CHCl3, 98% ee). 
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 13C NMR (126 MHz, CDCl3) of compound 87a. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87a. 
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 13C NMR (126 MHz, CDCl3) of compound 87c. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87c. 
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 13C NMR (126 MHz, CDCl3) of compound 87d. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87d. 
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 13C NMR (126 MHz, CDCl3) of compound 87e. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87e. 
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 13C NMR (126 MHz, CDCl3) of compound 87f. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87f. 
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 13C NMR (126 MHz, CDCl3) of compound 87g. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87g. 
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 13C NMR (126 MHz, CDCl3) of compound 87h. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87h. 
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 13C NMR (126 MHz, CDCl3) of compound 87i. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87i. 
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 13C NMR (126 MHz, CDCl3) of compound 87j. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87j. 
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 13C NMR (126 MHz, CDCl3) of compound 87k. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87k. 
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 13C NMR (126 MHz, CDCl3) of compound 87l. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87l. 
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 13C NMR (126 MHz, CDCl3) of compound 87m. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87m. 
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 13C NMR (126 MHz, CDCl3) of compound 87n. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87n. 
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 13C NMR (126 MHz, CDCl3) of compound 87o. 

Infrared spectrum (Thin Film, NaCl) of compound 87o. 
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 13C NMR (126 MHz, CDCl3) of compound 87p. 
 

Infrared spectrum (Thin Film, NaCl) of compound 87p. 
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 13C NMR (126 MHz, CDCl3) of compound 88a. 

Infrared spectrum (Thin Film, NaCl) of compound 88a. 
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 13C NMR (126 MHz, CDCl3) of compound 88c. 

Infrared spectrum (Thin Film, NaCl) of compound 88c. 
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 13C NMR (126 MHz, CDCl3) of compound 88d. 

Infrared spectrum (Thin Film, NaCl) of compound 88d. 
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 13C NMR (126 MHz, CDCl3) of compound 88e. 

Infrared spectrum (Thin Film, NaCl) of compound 88e. 
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 13C NMR (126 MHz, CDCl3) of compound 88f. 

Infrared spectrum (Thin Film, NaCl) of compound 88f. 
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 13C NMR (126 MHz, CDCl3) of compound 88g. 

Infrared spectrum (Thin Film, NaCl) of compound 88g. 
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 13C NMR (126 MHz, CDCl3) of compound 88h. 
 

Infrared spectrum (Thin Film, NaCl) of compound 88h. 
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 13C NMR (126 MHz, CDCl3) of compound 88i. 
 

Infrared spectrum (Thin Film, NaCl) of compound 88i. 
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 13C NMR (126 MHz, CDCl3) of compound 88j. 

Infrared spectrum (Thin Film, NaCl) of compound 88j. 
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 13C NMR (126 MHz, CDCl3) of compound 88k. 

Infrared spectrum (Thin Film, NaCl) of compound 88k. 
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 13C NMR (126 MHz, CDCl3) of compound 88l. 

Infrared spectrum (Thin Film, NaCl) of compound 88l. 
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 13C NMR (126 MHz, CDCl3) of compound 88m. 

Infrared spectrum (Thin Film, NaCl) of compound 88m. 



APPENDIX 3 – Spectra Relevant to Chapter 3 455 

 1 H
 N

M
R

 (5
00

 M
H

z,
 C

D
C

l 3)
 o

f c
om

po
un

d 
88
n.

 

O

He
x

N
CO

2M
e

Bn
M
eO

2C

Ph



APPENDIX 3 – Spectra Relevant to Chapter 3 456 

 13C NMR (126 MHz, CDCl3) of compound 88n. 

Infrared spectrum (Thin Film, NaCl) of compound 88n. 
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 13C NMR (126 MHz, CDCl3) of compound 88o. 
 

Infrared spectrum (Thin Film, NaCl) of compound 88o. 
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 13C NMR (126 MHz, CDCl3) of compound 88p. 

Infrared spectrum (Thin Film, NaCl) of compound 88p. 
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 13C NMR (126 MHz, CDCl3) of compound 93. 

Infrared spectrum (Thin Film, NaCl) of compound 93. 
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 19F NMR (282 MHz, CDCl3) of compound 93. 

 31P NMR (121 MHz, CDCl3) of compound 93. 
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 13C NMR (126 MHz, CDCl3) of compound 94. 

Infrared spectrum (Thin Film, NaCl) of compound 94. 

APPENDIX 3 – Spectra Relevant to Chapter 3  



466 

 31P NMR (121 MHz, CDCl3) of compound 94. 
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 13C NMR (126 MHz, CDCl3) of compound 95. 

Infrared spectrum (Thin Film, NaCl) of compound 95. 
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 13C NMR (126 MHz, CDCl3) of compound 96. 
 

Infrared spectrum (Thin Film, NaCl) of compound 96. 
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 13C NMR (126 MHz, CDCl3) of compound 99. 

Infrared spectrum (Thin Film, NaCl) of compound 99. 
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 13C NMR (126 MHz, CDCl3) of compound 102. 

Infrared spectrum (Thin Film, NaCl) of compound 102. 
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 19F NMR (282 MHz, CDCl3) of compound 102. 
 

 31P NMR (121 MHz, CDCl3) of compound 102. 
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 13C NMR (126 MHz, CDCl3) of compound 103. 
 

Infrared spectrum (Thin Film, NaCl) of compound 103. 
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 19F NMR (282 MHz, CDCl3) of compound 103. 

 31P NMR (121 MHz, CDCl3) of compound 103. 
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 13C NMR (126 MHz, CDCl3) of compound 104. 

Infrared spectrum (Thin Film, NaCl) of compound 104. 
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 19F NMR (282 MHz, CDCl3) of compound 104. 
 

 31P NMR (121 MHz, CDCl3) of compound 104. 
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 13C NMR (126 MHz, CDCl3) of compound 108. 

Infrared spectrum (Thin Film, NaCl) of compound 108. 
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 31P NMR (121 MHz, CDCl3) of compound 108. 
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 13C NMR (126 MHz, CDCl3) of compound 110. 
 

Infrared spectrum (Thin Film, NaCl) of compound 110. 
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APPENDIX 4 

A Highly Efficient Protocol for the 

Palladium-Catalyzed Asymmetric Decarboxylative 

Allylic Alkylation Using Low Catalyst Loading† 

 

4.1  INTRODUCTION AND BACKGROUND 

Despite the importance of palladium-catalyzed decarboxylative asymmetric 

alkylation in total synthesis, its application on an industrial scale is hampered by the need 

for high catalyst loadings (2.5–5.0 mol %).  The high cost of palladium significantly 

increases the cost of each reaction.  Furthermore, high catalyst loadings also increase the 

risk of poisoning downstream chemistry or contaminating active pharmaceutical 

ingredients.1  

These drawbacks have prevented application of the enantioselective allylic 

alkylation on a larger scale.  The application of transition metal catalysis to industry-scale 

                                                
†  This research was performed in collaboration with Dr. Alex Marziale, Dr. Robert A. 
Craig, II, Kelly Kim and Dr. Marc Liniger and has been published.  See: Marziale, A. N.; 
Duquette, D. C.; Craig, R. A., II; Kim, K. E.; Liniger, M.; Stoltz, B. M.  Adv. Synth. 
Catal. 2015, 357, 2238–2245. 
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synthesis requires transformations that are safe, robust, cost-effective, and scalable.2  

Consequently, there remains a significant need to develop new reaction protocols that 

employ lower catalyst concentrations and hence facilitate the scale-up of such 

transformations. 

Consequently, we began to question the existing protocols and reinvestigated 

critical reaction parameters such as the palladium source, catalyst loading, solvent and 

temperature, with respect to the scalability of our reaction and its compatibility with 

industry requirements.  This chapter describes a new protocol we developed towards 

these ends. 

 

4.2  RESULTS AND DISCUSSION 

4.2.1  Exploring New Palladium Sources and Optimization 

We first turned our attention to the palladium source in an effort to replace the 

oxygen-sensitive Pd2(dba)3 used in our original conditions.  Therefore, the original 

catalytic enantioconvergent decarboxylative allylic alkylation of allyl 1-methyl-2-

oxocyclohexanecarboxylate was chosen as a model reaction (Scheme 4.1).3 
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Scheme 4.1. The catalytic enantioconvergent decarboxylative allylic alkylation. 

 

The catalytic cycle of the allylic alkylation operates starting from a zerovalent 

palladium source and is believed to involve a palladium (0/II) redox cycle.4  While 

utilization of Pd2(dba)3 renders in situ reduction of the catalyst obsolete, its application is 

not only hampered by increased sensitivity to oxygen, but the dibenzylideneacetone 

ligand is also challenging to separate from non-polar reaction products.  

In their original reports Tsuji and co-workers performed the allylic alkylation 

reactions in the presence of Pd(OAc)2 and PPh3.5 We adopted this strategy and started 

screening a variety of Pd(II) sources in combination with the chiral phosphinooxazoline 

ligands (S)-t-BuPHOX 36 and (S)-(CF3)3-t-BuPHOX 8.7 

When comparing Pd(OAc)2 and Pd(dba)2 at 1.0 mol % palladium in combination 

with a tenfold excess of PHOX ligands 3 or 8 respectively, in TBME at 80 °C we were 

pleased to find that both palladium sources exhibited comparable catalytic performance 

(Table 4.1).  At lower palladium concentrations, however, Pd(OAc)2 was clearly superior, 

delivering quantitative yields and good enantioselectivity at only 0.1 mol % Pd (entries 5 

O

O

O
Pd(OAc)2

(S)-t-BuPHOX (3)
or

(S)-(CF3)3-t-BuPHOX (8)

solvent

O

1a 2a

Ph2P N

O

tBu
3

(S)-t-BuPHOX

(4-CF3C6H4)2P N

O

tBu
8

(S)-t-BuPHOX

CF3



APPENDIX 4 – A Low Catalyst Loading Protocol for the Palladium-Catalyzed DAA 
 

491 

and 6).  When 0.1 mol % Pd(dba)2 was used to form the catalyst, a dramatic decrease in 

yields was observed (entires 7 and 8). 

Table 4.1. Initial screening efforts with a Pd(OAc)2 precatalyst. 

 

We then became interested to see if other palladium(II) sources were equally 

suited to catalyze the decarboxylative allylic alkylation. Consequently, a total of eight 

different commercially available Pd(II) precursors were examined in our model reaction 

in the presence of ligand 3.8  While with Pd(OAc)2 a quantitative yield for the desired 

allylic alkylation product was obtained, none of the other palladium sources promoted 

any conversion of the substrate. We reason that the limited solubility of these palladium 

salts in TBME likely prevented catalysis. 

Limited to Pd(OAc)2 as the only viable palladium precursor, we turned our 

attention to minimizing the catalyst loading. A screening of six different catalyst 

loadings, ranging from 0.05 mol % to 1.0 mol %, was performed (Table 4.2). All 

O

O

O
Pd(OAc)2 / Pd(dba)2

ligand 3 / 4

TBME, 80 °C, 16h

O

1a 2a

Entry Ligand
[mmol]

Pd source
[mmol]

Yield
[%]

ee
[%]

1 3 [10.0] Pd(OAc)2 [1.0] 99 86
2 8 [10.0] Pd(OAc)2 [1.0] 99 82
3 3 [10.0] Pd(dba)2 [1.0] 99 84

4 8 [10.0] Pd(dba)2 [1.0] 90 82

5 3 [10.0] Pd(OAc)2 [0.1] 99 79

6 8 [10.0] Pd(OAc)2 [0.1] 99 83

7 3 [10.0] Pd(dba)2 [0.1] 12 n.d.

8 8 [10.0] Pd(dba)2 [0.1] 14 n.d.
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reactions were conducted in the presence of a tenfold excess of ligand with respect to 

palladium, in TBME at 40 °C.9 

Table 4.2.  Optimization of catalyst loading. 

 

Under these reaction conditions, palladium loadings as low as 0.10 mol % were 

sufficient to deliver the desired allylic alkylation product in 90% yield and high 

enantioselectivity (Table 4.2, entry 5).  To obtain a quantitative yield of ketone 2a, the 

catalyst loading was increased to 0.15 mol % of Pd(OAc)2 (Table 4.2, entry 4). 

Enantioselective allylic alkylation reactions are typically performed in solvents such as 

THF, DCM, dioxane or diethylether.3, 9b, 9c, 10   While these solvents are common for 

academic laboratory scale, their use prohibits conducting the reaction in an industry 

setting.11 We sought to overcome this limitation and performed a solvent screening with a 

total of ten different solvents that are considered to be safe, sustainable, and cost-efficient 

(Table 4.3).10, 12  

  

O

O

O
Pd(OAc)2

(S)-t-BuPHOX (3)

TBME, 40 °C

O

1a 2a

Entry Pd
[mol %]

(S)-t-BuPHOX
[mol %]

Yield
[%]

ee
[%]

1 1.0 10.0 99 90
2 0.50 5.0 99 90
3 0.25 2.50 99 90

4 0.15 1.50 99 89

5 0.10 1.0 90 89

6 0.05 0.50 10 89
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Table 4.3.  Optimization of the reaction medium. 

 

Conversion of allyl 1-methyl-2-oxocyclohexane-carboxylate in TBME resulted in 

high yields and good enantioselectivity (Table 4.3, entry 1).  When the reaction was 

performed in various alkyl acetates the yields dropped dramatically, to 12%, 28%, and 

17% respectively (Table 4.3, entires 2, 4 and 5).  Similarly low yields were observed for 

reactions performed in acetonitrile, dimethylacetamide, 2-Me-THF, and acetone (Table 

4.3, entries 3, 6, 8 and 10).  Moderate conversion was found when the reaction was 

performed in toluene (Table 4.3, entry 7).  Consequently, all further experiments were 

carried out in TBME. 

At this point, we considered that the palladium concentration could be lowered 

further by performing the reaction at higher temperatures, and we were interested in the 

influence of increased reaction temperature on stereoselectivity.  All experiments were 

O

O

O
Pd(OAc)2 (0.1 mol %)

(S)-t-BuPHOX (1.0 mol %)

solvent, 40 °C, 16h

O

1a 2a

Entry solvent Yield
[%]

ee
[%]

1 TBME 88 89
2 12* 74
3 trace -

4 Isopropyl acetate 28 64

5 Isobutyl acetate 17 -

6 Dimethylacetamide trace -

EtOAc
MeCN

7 52 80

8 2-Me-THF 21 89

9 t-AmylOH -* -

10 Acetone -* 57

Toluene

*Reaction run at 60 °C
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performed in TBME with a tenfold excess of ligand 3 (Table 4.4).  A palladium loading 

as low as 0.075 mol % afforded ketone 2a in 99% yield when the reaction was performed 

at 80 °C, which corresponds to a turnover number of 1320 for the in situ formed catalyst.  

Nevertheless, a slightly lower enantioselectivity of 84% was observed in this case (Table 

4.4, entry 1).  At 60 °C and 40 °C, palladium loadings of 0.10 and 0.125 mol % 

respectively were sufficient to deliver the desired product in quantitative yield and high 

enantioselectivity (Table 4.4, entries 2 and 3). 

Table 4.4.  Optimization of the palladium loading at varying temperatures. 

 

We then applied the protocol to the 10 and 20 mmol scale synthesis of alpha-

quaternary ketones 2a and 112 (Scheme 4.2).  Both reactions were performed in TBME 

with a tenfold excess of ligand 3.  In experiment 1, 1.96 g (10.0 mmol) of cyclohexanone 

1a was converted in the presence of 0.15 mol % (3.37 mg) of Pd(OAc)2 at 60 °C.  The 

corresponding product 2a was isolated by distillation in 95% yield and 89% ee.  

Similarly, tetralone substrate 111 was applied on a 20 mmol scale (4.89 g) in the 

enantioselective allylic alkylation at 40°C.  The desired product 112 was purified by flash 

chromatography and isolated in 95% yield and 88% ee. 

  

O

O

O
Pd(OAc)2

(S)-t-BuPHOX

TBME, 16h

O

1a 2a

Entry Pd
[mol %]

Yield
[%]

ee
[%]

1 0.075 99 84
2 99 88
3 99 89

0.1
0.125

T
[° C]

80
60
40
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Scheme 4.2.  Application of the developed protocol on scale. 

 

Satisfied with the scalability of our new allylic alkylation conditions, we turned 

our attention to reducing the ligand loading. A series of six experiments employing 

different quantities of ligand, from 0.20 mol % to 1.00 mol %, in the presence of 0.10 

mol % Pd(OAc)2 were performed (Table 4.5).  A ligand loading of 0.4 mol %, which 

corresponds to a 4-fold excess of ligand with respect to palladium, was sufficient to 

provide the desired product in quantitative yield and high enantioselectivity (Table 4.5, 

entry 4).  Only at a loading of 0.20 mol % of ligand 3 was a slight decrease in 

enantioselectivity observed (Table 4.5, entry 5). 

  

O

O

O
Pd(OAc)2 (0.15 mol %)

(S)-t-BuPHOX

TBME, 60 °C, 16h

O

1a 2a
0.01 mmol scale

95% yield, 89% ee
O

O

O
Pd(OAc)2 (0.125 mol %)

(S)-t-BuPHOX

TBME, 40 °C, 16h

O

111 112
0.02 mmol scale

95% yield, 88% ee
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Table 4.5.  Optimization of ligand loading. 

 

Finally, we investigated the influence of concentration on reactivity.  A brief 

study across five different substrate concentrations was executed (Table 4.6).  We were 

pleased to find that the decarboxylative alkylation reaction could be performed in high 

concentrations of up to 0.4 M without any negative impact on yield or enantiomeric 

excess (Table 4.6, entry 1). When the reaction was performed at higher dilution (0.033 

mol/l) a slight decrease in yield and optical purity was observed (Table 4.5, entry 5). 

Table 4.6.  Optimization of reaction concentration. 

 

O

O

O
Pd(OAc)2 (0.1 mol %)

(S)-t-BuPHOX

TBME, 60 °C, 16h

O

1a 2a

Entry (S)-t-BuPHOX
[mol %]

Yield
[%]

ee
[%]

1 1.00 99 88
2 99 89
3 99 88

0.80
0.60

4 99 88
5 99 86

0.40
0.20

O

O

O Pd(OAc)2 (0.125 mol %)
(S)-t-BuPHOX (0.125 mol %)

TBME, 60 °C, 16h

O

1a 2a

Entry concentration
[M]

Yield
[%]

ee
[%]

1 0.4 99 88
2 99 88
3 99 89

0.2
0.1

4 99 89
5 91 87

0.05
0.033
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4.2.2  Substrate Scope 

After optimizing all critical reaction parameters for the conversion of 

cyclohexanone substrate 1a, we sought to investigate the substrate scope of this novel 

protocol.  To demonstrate its broad applicability, a total of ten compounds were subjected 

to the improved reaction parameters (Table 4.6). 

Table 4.7.  Substrate scope of the new protocol. 

 

  

Entry Product Yield
[%]

ee
[%]

1
89 88

O

2a

2

99 89

O

112

Protocol Pd
[mol %]

old

new

5.00

0.125

97 92

85 89

old

new

8.00

0.125

3

O

5a

85 99

81 95

old

new

10.0

0.50

BzN

4

O
Et

5k

97 99

85 97

old

new

10.0

0.30

BzN

5

O
F

5l

89 99

80 99

old

new

10.0

0.125

BzN
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Table 4.7.  Substrate scope of the new protocol (cont’d). 

 

Asymmetric allylic alkylation to generate products 2a and 112 was discussed 

previously in detail (Table 4.7, entries 1–2).  Lactam (5a, 5k and 5l) and piperidone 

products (7a) were obtained in good yields and enantioselectivities (Table 4.7, entries 3–

6).  The protocol could also be applied to seven-membered rings; however, despite a near 

Entry Product Yield
[%]

ee
[%]Protocol Pd

[mol %]

6

O

7a

91 94

99 88

old

new

10.0

0.125

BzN

O

7
83 87

97 70

old

new

5.00

0.10

O

113

8
83 93

95 90

old

new

5.00

0.125

N

O

114
R = p-MeO-C6H4

R

O

9 O

O

115

- -

79 90

old

new

-

0.10

O

10

O

116

78 99

97 99

old

new

5.0

0.25
O

For experimental details, see: Marziale, A. N.; Duquette, D. C.; Craig, R. A., II; 
Kim, K. E.; Liniger, M.; Stoltz, B. M.  Adv. Synth. Catal. 2015, 357, 2238–2245.
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quantitative yield, a reduced enantiomeric excess of 70% was observed for ketone 113 

(Table 4.7, entry 7).  In contrast, seven-membered caprolactam 114 was isolated in 95% 

yield and 90% ee (Table 4.7, entry 8).  Notably, cyclohexyl ketal 115 was generated in 

79% yield and good enantioselectivity through intermolecular allylic alkylation of the 

corresponding silyl enol ether and allyl methanesulfonate (Table 4.7, entry 9). 

Finally, cyclohexanedione 116, which is a critical intermediate in the synthesis of 

(–)-cyanthiwigin F,13 could be accessed through double enantioselective allylic alkylation 

of the corresponding bis(β-ketoester) in excellent yield and near perfect enantioselectivity 

using only 0.25 mol % palladium (Table 4.7, entry 10).  This corresponds to 5% of the 

palladium loading used in the original protocol.  Despite the considerable reduction in 

catalyst concentration, the yield for this reaction was improved to 97% (Table 4.7, entry 

10). 

 

4.3  CONCLUDING REMARKS 

In conclusion, we have reported a novel and highly efficient protocol for the 

decarboxylative enantioselective allylic alkylation using palladium acetate and loadings 

below 0.50 mol %.  For simple quaternary ketone products metal loadings as low as 

0.075 mol % effectively catalyzed the reaction and generated the desired products in high 

yields and enantioselectivities. Thereby, turnover numbers of up to 1320 could be 

reached.  Furthermore, a variety of critical reaction parameters such as temperature, 

concentration, ligand stoichiometry, and choice of solvent were optimized to increase the 

scalability and lower the cost basis for palladium catalyzed allylic alkylation reactions.  

The method is broadly applicable among a variety of substrate classes and is tolerant of 
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most functional groups because of the neutral reaction conditions and modest reaction 

temperatures.  We anticipate these advances will promote the continued use of palladium-

catalyzed allylic alkylation reactions as means of installing quaternary sterocenters in 

multi-step syntheses in academic laboratories, and hope to see these reactions used to 

synthesize valuable molecules in the chemical and pharmaceutical industry. 

 

4.4  NOTES AND REFERENCES 

(1) a) D. H. B. Ripin, D. E. Bourassa, T. Brandt, M. J. Castaldi, H. N. Frost, J. 

Hawkins, P. H. Johnson, S. S. Massett, K. Neumann, J. Phillips, J. W. Raggon, P. 

R. Rose, J. L. Rutherford, B. Sitter, A. M. Stewart, III; M. G. Vetelino, L. Wei, 

Org. Process Res. Dev. 2005, 9, 440–450; b) X. Jiang, G. T. Lee, K. Prasad, O. 

Repic, Org. Process Res. Dev. 2008, 12, 1137–1141; c) S. Caron, E. Vazquez, R. 

W. Stevens, K. Nakao, H. Koike, Y. Murata, J. Org. Chem. 2003, 68, 4104–4107; 

d) B. P. Chekal, S. M. Guinness, B. M. Lillie, R. W. McLaughlin, C. W. Palmer, 

R. J. Post, J. E. Sieser, R. A. Singer, G. W. Sluggett, R. Vaidyanathan, G. J. 

Withbroe, Org. Process Res. Dev. 2014, 18, 266–274; e) J. Magano, J. R. Dunetz, 

Chem. Rev. 2011, 111, 2177–2250; f) K. Konigsberger, G. P. Chen, R. R. Wu, M. 

J. Girgis, K. Prasad, O. Repic, T. J. Blacklock, Org. Process Res. Dev. 2003, 7, 

733–742. 

(2) A. O. King, N. Yasuda Palladium–Catalyzed Cross–Coupling Reactions in the 

Synthesis of Pharmaceuticals in Organometallics in Process Chemistry, (Ed.: R. 

D. Larsen), Springer, Berlin, Germany, 2004, pp 205–246. 



APPENDIX 4 – A Low Catalyst Loading Protocol for the Palladium-Catalyzed DAA 
 

501 

(3) J. T. Mohr, D. C. Behenna, A. M. Harned, B. M. Stoltz, Angew. Chem. Int. Ed. 

2005, 44, 6924–6927. 

(4) a) J. A. Keith, D. C. Behenna, J. T. Mohr, S. Ma, S. C. Marinescu, J. Oxgaard, B. 

M. Stoltz, W. A. Goddard III, J. Am. Chem. Soc. 2007, 129, 11876–11877; b) N. 

H. Sherden, D. C. Behenna, S. C. Virgil, B. M. Stoltz, Angew. Chem. 2009, 121, 

6972–6975; Angew. Chem. Int. Ed. 2009, 48, 6840–6843; c) J. A. Keith, D. C. 

Behenna, N. Sherden, J. T. Mohr, S. Ma, S. C. Marinescu, R. J. Nielsen, J. 

Oxgaard, B. M. Stoltz, W. A. Goddard III, J. Am. Chem. Soc. 2012, 134, 19050–

19060. 

(5) a) J. Tsuji, I. Minami, I. Shimizu, Tetrahedron Lett. 1983, 24, 1793–1796; b) I. 

Shimizu, T. Yamada, J. Tsuji, Tetrahedron Lett. 1980, 21, 3199–3202. 

(6) a) K. Tani, D. C. Behenna, R. M. McFadden, B. M. Stoltz, Org. Lett. 2007, 9, 

2529–2531; b) M. R. Krout, J. T. Mohr, B. M. Stoltz, Org. Synth. 2009, 86, 181–

193. 

(7) N. T. McDougal, J. Streuff, H. Mukherjee, S. C. Virgil, B. M. Stoltz, Tetrahedron 

Lett. 2010, 51, 5550–5554. 

(8) Palladium(II) sources applied in screening: Pd(OAc)2, PdCl2, Pd(PhCN)2Cl2, 

Pd(CH3CN)2Cl2, PdBr2, Pd(acac)2, [Pd(allyl)Cl]2, Pd(TFA)2. 

(9) The high excess of ligand was chosen to facilitate formation of the active catalyst 

through in situ reduction of Pd(OAc)2. We reasoned that the PHOX ligand hereby 

acts as the reductive agent. 

(10) a) J. T. Mohr, B. M. Stoltz, Chem. Asian. J. 2007, 2, 1476–1491; b) B. M. Trost, 

J. Xu, M. Reichle, J. Am. Chem. Soc. 2007, 129, 282–283; c) D. C. Behenna, B. 



APPENDIX 4 – A Low Catalyst Loading Protocol for the Palladium-Catalyzed DAA 
 

502 

M. Stoltz, J. Am. Chem. Soc. 2004, 126, 15044–15045; d) N. B. Bennett, D. C. 

Duquette, J. Kim, W.-B. Liu, A. N. Marziale, D. C. Behenna, S. C. Virgil, B. M. 

Stoltz, Chem. Eur. J. 2013, 19, 4414–4418; e) B. M. Trost, D. L. Van Vranken, 

Chem. Rev. 1996, 96, 395–422; f) B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 

103, 2921–2943. 

(11) a) P. J. Dunn, in Pharmaceutical Process Development, (Eds.: J. A. Blacker, M. 

T. Williams), Royal Society of Chemistry, London, 2011, Chapter 6; b) Green 

Chemistry and Engineering: A Practical Approach, (Eds.: C. Jimenez-Gonzales, 

D. J. Constable), Wiley, New York, 2011. 

12) a) P. G. Jessop, Green Chem. 2011, 13, 1391–1398; b) C. Capello, U. Fischer, K. 

Hungerbühler, Green Chem. 2007, 9, 927–934. 

13) J. A. Enquist Jr., B. M. Stoltz, Nature 2008, 453, 1228–1231. 



APPENDIX 5 – Synthesis of (±)-Grandifloracin and Acylated Analogues 
 

503 

 

 

 

 

 

APPENDIX 5 

Synthesis of (±)-Grandifloracin and Acylated Analogues† 

 

5.1  INTRODUCTION AND BACKGROUND 

Pancreatic cancer is one of the most severe forms of cancer, with a 5-year survival 

rate of only 3–5%.  This high mortality rate has not improved during the last four decades 

of chemotherapeutic research.1  To date, there has not been any report of an effective 

treatment against the disease, and the agents used against other types of cancer have been 

shown to have little to no effect on pancreatic cancer.2  It has been hypothesized that this 

might be the result of pancreatic cancer cells being hypovascular and thereby able to 

proliferate in a nutrient-deficient and hypoxic environment.3  The lack of viable 

treatments for, and the severity of pancreatic cancer create a pressing need to develop 

new drugs to combat the disease.4  

One means to overcome these challenges is to develop anti-austerity agents.  

These drugs target the biochemical pathways that allow cancer cells to thrive under low 

                                                
†  This research was performed in collaboration with Magnus Bergner and Linda Chio 
and has been published.  See: Bergner, M.; Duquette, D. C.; Chio, L.; Stoltz, B. M.  Org. 
Lett. 2015, 17, 3008. 
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nutrition, thereby reducing or halting the cancerous cells’ ability to survive in 

hypovascular conditions without affecting the surrounding cells.4 A recent breakthrough 

came in 2012 when the Awale group extracted (+)-grandifloracin from the stem of 

Uvaria dac.5  (+)-Grandifloracin was shown to be a potent anti-austerity agent against 

pancreatic cancer cell lines, PANC-1 (PC50 14.5 µM), PSN-1 (PC50 32.6 µM), MIA 

PaCa-2 (PC50 17.5 µM) and KLM-1 (PC50 32.7 µM).6  Interestingly, the first isolation of 

grandifloracin from Uvaria grandiflora in 19977 was later shown to be the (–)-

enantiomer of grandifloracin.8 

In a comprehensive study of (+)-grandifloracin, its mode of action was 

determined to be the induction of autophagic programmed cell death in PANC-1 cells 

rather than through typical apoptotic modes.9  This evidence strongly supports the 

potential efficacy of anti-austerity agents in the treatment of pancreatic cancer. 

The first synthesis of grandifloracin in racemic form was reported in 2007 by 

Quideau and coworkers.10  This synthesis hinged on a hydroxylative dearomatization of 

2-hydroxybenzyl benzoate, which subsequently underwent a spontaneous Diels-Alder 

cyclodimerization to directly yield (±)-grandifloracin, albeit in a modest 30% yield.  A 

subsequent asymmetric syntheses of (+)-grandifloracin by Lewis and coworkers similarly 

made use of a spontaneous Diels-Alder reaction of a chiral cyclohexa-2,4-dienone 

obtained after a five step sequence following the microbial oxidative dearomatization of 

benzoic acid.7  Notably, Toste and coworkers have also reported the synthesis of a 

fluorinated (–)-grandifloracin derivative11 utilizing an asymmetric dearomative 

fluorination and cyclodimerization of silyloxymethylphenol, followed by deprotection 
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and acylation in a single step.  However, they note that the corresponding benzoate ester 

only gave trace conversion in the fluorination step. 

While the linchpin Diels-Alder cyclodimerization is highly efficient in 

constructing the backbone of grandifloracin, its use can also be limiting for potential 

diversification for the study of structure-activity relationships.  In each of the syntheses of 

the natural product, the hydroxymethyl group is protected as a benzoate ester prior to the 

cyclodimerization step.  As such, any derivative must either be obtained by a 

deprotection-acylation sequence, adding extra steps to such a library synthesis, or by 

carrying each individual acyl group through the Diels-Alder step.  This is potentially 

troublesome, as electronically differentiated substrates can perform with substantially 

varying yields.12  As such, when planning our synthesis, we sought to carry a free 

hydroxymethyl group through the cyclodimerization in order to facilitate subsequent 

derivatization for biological study of analogues of the natural product. 

 

  



APPENDIX 5 – Synthesis of (±)-Grandifloracin and Acylated Analogues 
 

506 

5.2  RESULTS AND DISCUSSION 

5.2.1  Retrosynthetic Analysis 

Scheme 5.1.  Retrosynthetic analysis of (±)-grandifloracin. 

 

 

 

 

 

 

 

 

 

 

The aim of this project was to develop an even more efficient synthetic route to 

(±)-grandifloracin than previously employed that would permit late-stage diversification 

of a key intermediate.  To achieve this, we devised a strategy (Scheme 5.1) in which 

removal of the benzoyl groups of grandifloracin (117) yields the core-structure as a diol 

(118), which would be amenable to derivatization by selective acylation of the free 

hydroxymethyl groups. This key tetraol was anticipated to arise from a double epoxide-

opening of the known bis-spiroepoxy-dienedione 119.13  This key intermediate can be 

readily prepared through an oxidative dearomatization of salicylic alcohol (120) and 

subsequent Diels–Alder homodimerization. 
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5.2.2  Synthesis of (±)-Grandifloracin 

Scheme 5.2.  Synthesis of (±)-grandifloracin. 

 

 

 

Salicylic acid (121) was reduced by LiAlH4 to give the corresponding salicylic 

alcohol (120, 93% yield).  The alcohol was then subjected to known oxidative 

dearomatization with sodium periodate (NaIO4) in water to afford 

spiroepoxycyclohexadienone (122).12  Diene 122 spontaneously undergoes a Diels–Alder 

dimerization to yield the dispirooxirane 119 in a remarkably stereoselective and efficient 

overall process (89% yield of a >10:1 mixture of diastereomers).  The two epoxides were 

smoothly opened by gentle heating in water over two days to yield the core tetraol 118 

(77% yield).14  The tetraol was treated with benzoyl chloride to furnish (±)-grandifloracin 

(50% yield), completing the total synthesis in only four steps from salicylic acid in an 

overall yield of 32% (Scheme 5.2).  Gratifyingly, we were able to identify suitable 

chromatographic conditions to allow separation of (+)- and (–)-grandifloracin by 
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preparative chiral HPLC.  Even after separation of the two enantiomers, the yield for each 

antipode is still significantly higher than the previously reported enantioselective total 

synthesis of (+)-grandifloracin.7 

Scheme 5.3.  Telescoped synthesis of (±)-grandifloracin. 

 

 

This rapid and efficient four-step synthesis of (±)-grandifloracin (1) was further 

improved by eliminating intermediate recrystallization steps (Scheme 5.3).  Salicylic 

alcohol was telescoped through the synthetic route without any purification until the final 

compound. This resulted in a yield of 52% over the last three steps, and an excellent 

overall 48% yield.  This procedure allowed us facile access to over 200 mg of the 

racemic natural product, and was amenable to even larger scale for the synthesis of 

analogs (vide infra). 

5.2.3  Synthesis of Acylated Analogues of (±)-Grandifloracin 

To investigate the effect of the acyl substituents present on the natural product, a 

small library of analogues was synthesized (Table 5.1).  Introduction of a methyl group in 

the para, meta or ortho position (123a-c) of the phenyl group was well tolerated in the 

acylation reaction, proceeding in roughly the same yields as with benzoyl chloride.  

Replacement of the phenyl ring with a cyclic alkyl group (123f-g) slightly increased the 

yield of acylation.  While the introduction of an electron-donating para-methoxy group 

(123d) substantially increased the yield of the acylation reaction, the introduction of an 

electron-withdrawing para-cyano group (123e) significantly lowered the yield. This trend 
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was also observed when we attempted to synthesize the para-nitro analogue, which failed 

due to lack of reactivity.  The moderate yield in the acylation step is believed to arise 

from competing elimination of the α-hydroxy group of the B-ring.15 

Table 5.1.  Synthesis of acylated analogues of (±)-grandifloracin. 

 

 

 

 

 

 

 

 

 

 

5.3  CONCLUDING REMARKS 

In summary, we have completed a highly efficient synthesis of (±)-grandifloracin, 

which is amenable to late-stage diversification for the synthesis of analogues.  In a recent 

study, analogue 123d has been shown to have an increased anti-proliferative effect 

compared with grandifloracin on PANC-1 and HT-29 (human colon cancer) cells, both in 

nutrient rich (10% fetal bovine serum) and in nutrient deprived conditions (0.5% fetal 

bovine serum).16  This indicates that there is an incentive to develop further 

grandifloracin analogues for the study and treatment of pancreatic cancer. 
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APPENDIX 6 

Progress Towards the Total 

Synthesis of Hamigerans C and D 

 

6.1  INTRODUCTION AND BACKGROUND 

The hamigeran family of natural products was isolated in 1999 from marine 

sponge Hamigera tarangaensis by Cambie and coworkers (Figure 6.1).1  While all four 

members of the family possess moderate cytotoxicity in P-388 leukemia cells (IC50 = 

31.6, 13.5, 16.0 and 8.0 µM for hamigerans A, B, C and D, respectively), hamigeran B 

(125) displays 100% in vitro inhibition against both Herpes and Polio viruses. 

Figure 6.1.  The hamigeran family of natural products. 
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Due to this attractive biological activity and the synthetically challenging 6-6-5 

tricyclic structure bearing three consecutive stereocenters on the congested A-ring, 

hamigeran B has been the target of continual efforts of many synthetic organic chemists.  

Hamigeran B (along with hamigeran A and several analogs) was first synthesized in 2003 

by Nicolau and coworkers2a,b and since has succumbed to a number of syntheses,2 

including epimeric and formal syntheses.  In contrast, no syntheses of hamigerans C or D 

(126 and 127), which share a unique 6-7-5 tricyclic core, have been reported in the 

literature, presumably in part to the relative scarcity of methods for the synthesis of 7-

membered rings as compared to their 6-membered counterparts. 

The Stoltz group has developed a methodology for the asymmetric synthesis of γ-

quaternary acylcyclopentenes (Scheme 6.1, 131) by a retro-aldol/aldol condensation 

sequence resulting in a two-carbon contraction of vinylogous esters of cycloheptenone 

(129).3  The versatility of this intermediate and the excellent scalability of this sequence 

inspired us to pursue the synthesis natural products with cores containing densely-

functionalized cyclopentanes with quaternary carbon stereocenters, making hamigerans C 

and D ideal targets. 

Scheme 6.1.  Synthesis of acylcyclopentenes by ring contraction. 
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6.2  RESULTS AND DISCUSSION 

6.2.1  Synthesis of a Model System and Retrosynthetic Analysis 

Studies toward the syntheses of hamigerans C and D were initiated during our 

investigations of the asymmetric synthesis of γ-quaternary acylcyclopentenes.3  From 

acylcyclopentene 131, we were able to assemble the 6-7-5 carbocyclic core of 

hamigerans C and D (134) in good overall yield over four synthetic steps, featuring  two 

sequential Heck cross-coupling reactions (Scheme 6.2). 

Scheme 6.2.  Synthesis of the 6-7-5 carbocyclic core of hamigerans C and D.3 

 

Notably lacking on tricycle 134, however, is substitution on the aromatic C-ring 

and any functional handle on the benzannulated cycloheptyl B-ring of the natural 

products.  The latter is due to the (E)-selectivity in the coupling of 9 with o-iodophenol.  

The resulting olefin must be hydrogenated in order to perform the second Heck coupling, 

resulting in loss of the otherwise useful olefin moiety.  As such, we envisioned a 

retrosynthetic strategy that would allow us to perform the first cross-coupling reaction to 

yield a (Z)-olefin with an appropriately substituted aromatic ring (Scheme 6.3). Such a 

strategy would allow us to obtain a tricyclic intermediate (137) with all of the necessary 
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functional handles in place to complete the first total syntheses of both of these natural 

products. 

Scheme 6.3.  Retrosynthetic analysis of hamigerans C and D. 

 

6.2.2  Synthesis of Negishi Coupling Partners 

Our first synthetic efforts were directed toward synthesis of Negishi coupling 

partners 139 and 140.  We desired a differentially protected orcinol derivative, as one 

phenol group would need to be deprotected and converted to an aryl triflate for the 

planned Heck cross-coupling, while the other phenol would be need to be robustly 

protected as a methyl ether to be revealed late in the synthesis as the phenol present in 

hamigeran C or the phenol precursor to the oxazine moiety of Hamigeran D.  Synthesis of 

the O-methyl-O'-tetrahydro-2-pyranylorcinol 139 was accomplished by dimethylation 

and mono-demethylation of orcinol (141),4a followed protection as a THP ether5b in 64% 

yield over three steps (Scheme 6.4). 
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Scheme 6.4.  Synthesis of Negishi cross-coupling partner 139. 

 

 Synthesis of (Z)-vinyl iodide 140 represented synthesis of a novel target from 

acylcyclopentene 131.  Following the established procedure for ketal protection of the 

enone,3 the resulting diene could be selectively ozonolyzed to yield aldehyde 144 in 66% 

yield over 2 steps.  However, yields obtained using the (Z)-iodomethylenation procedure 

reported by Stork5 proved unreliable upon several repeated experiments (Scheme 6.5). 

Scheme 6.5.  Initial efforts towards Negishi cross-coupling partner 140. 
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starting material contaminated by deprotection side-products were reisolated, with yields 

of the desired vinyl iodide 140 ranging from 33–67%.  Moreover, the 5:1 ratio of Z:E 

isomers (as determined by integration of the terminal vinyl proton in the 1H NMR 

spectrum) could not be separated by chromatography through gel of silica, alumina, or 

silver nitrate-impregnated silica with a wide variety of eluent combinations.  We saw this 

as an early opportunity to address optimization of our synthetic route, as formation of 

(Z)-olefin 138 was considered paramount to our ability to access an intermediate with 

functionality on the B-ring such as 136. 
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 As unreacted starting material appeared to be the cause of loss of yield in this 

transformation, we considered that, given the quaternary center proximal to the aldehyde 

of 144, nucleophilic approach by the Wittig reagent was extremely hindered.  We 

reasoned that the Wittig reagent was instead acting as a base, deprotonating the α-

position of 144 to yield an unreactive enolate.  We began optimization studies by 

increasing the temperature at which aldehyde was added to the solution of Wittig reagent 

(Table 6.1). 

Table 6.1.  Optimization of synthesis of 144: solvent and temperature effects. 

 

Raising the temperature of addition to 40 °C and maintaining that temperature 

throughout the reaction yielded a consistent boost in yield (66–87%) without any 

detriment to the (Z)-selectivity.  Reaction at 30 °C also appeared to be an improvement, 

though longer reaction times resulted in increased appearance of side products resulting 

from deprotection of the ketal.  By increasing the temperature to 50 °C and performing 

the reaction in benzene, we were able to achieve a good yield, but noted a dramatic 

decrease in selectivity from 5:1 to 1.3:1 in favor of the (Z)-olefin. 

 Satisfied with the improved yields obtained by performing the reaction with an 
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nature of the Wittig reagent.  We imagined that modification of the aggregation state of 

the deprotonated Wittig salt by modifying the counterion or base used or by chelation of 

the counterion by hexamethylphosphoramide (HMPA), could benefit the selectivity of 

the reaction (Table 6.2). 

Table 6.2.  Optimization of synthesis of 144: alternate Wittig reagents. 

 

Unfortunately, substitution of sodium hexamethyldisilylamide (HMDS) for 

lithium or sodium HMDS both resulted in a decrease in selectivity for the desired (Z)-

olefin, as did addition of HMPA or the use of sodium t-butoxide.  Moreover, tuning of 
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our surprise, the more sterically-hindered (iodomethyl)tri-o-tolylphosphonium iodide 

gave a modest selectivity of 0.9:1 in favor of the undesired (E)-olefin.  As such, we 

returned to the use of our original Wittig reagent and base and proceeded with our 

synthetic studies. 
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6.2.3  Synthesis of an Elaborated Core of Hamigerans C and D 

With the proposed Negishi cross-coupling partners in hand, we began 

investigations of this reaction.  We anticipated being able to affect a selective 

deprotonation of 143 ortho- to the two ether substituents with n-butyllithium, followed by 

transmetallation with zinc(II) chloride to afford the Negishi coupling partner for 

vinyliodide 144 (Scheme 6.6.). 

Scheme 6.6.  Negishi cross coupling of 143 and 144. 

 

Gratifyingly, this reaction proceeded in good yield to afford 145 as a single 

product with respect to the deprotonation of 143.  Removal of both acetal and THP 

protecting groups proceeded smoothly using Montmorillonite K-10 clay in methanol at 

50 °C, the crude product of which was >95% pure by 1H NMR and could be used directly 

in the following step.  We also found that triflation of the intermediate phenol could be 

affected using trifluoromethanesulfonyl anhydride and DMAP over a slightly longer 

reaction time but without loss of yield when compared to the more costly Comin’s 

reagent (N-(5-chloro-2-pyridyl)bis(trifluoromethanesulfonimide)), furnishing the desired 

aryl triflate 146 in 55–62% yield from Negishi coupling partners 143 and 145 over three 

steps. 
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Scheme 6.7.  Intramolecular Heck reaction of 146. 

 

Aryl triflate 146 was subjected to conditions developed for the model Heck 

reaction (Scheme 6.2), modified to be run in a microwave reactor, yielding excellent 

results on small scale (Scheme 6.7).  However, upon scale up, cleavage of the triflate 

caused a significant decrease in yield, and a large amount of an undesired acylated side-

product was obtained. 

6.2.4  Attempts Toward a Negishi-Heck Cascade Reaction 

Considering that we performed two palladium(0)-catalyzed cross-coupling 

reactions in the span of four synthetic steps, resulting in a longer synthesis and lower 
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transition metal (Scheme 6.8). 
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Scheme 6.8.  Proposed Negishi-Heck cascade reaction. 

 

Nickel-catalyzed cross-couplings of various phenol derivatives have become an 

area of intense research, with Kumada, Negishi and Suzuki-type couplings of aryl methyl 

ethers, carbamates, sulfamates and pivalates prevailing.7 Inamoto and coworkers have 
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from nickel(II) complexes in situ with or without zinc as a reductant9 in a variety of 

solvents similarly did not affect the desired transformation (Scheme 6.9b).  We observed 

that only using iodobenzene and Ni(cod)2 were we able to detect any coupling product. 

Scheme 6.9.  Unsuccessful attempts at a Ni-catalyzed Heck reaction. 

 

Given these discouraging results, we considered another possibility.  If we were to 

require a halide as a Heck coupling partner for the second cross-coupling, perhaps we 
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Scheme 6.10.  Literature precedence for use of zincates in the Negishi cross-

coupling. 
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several products were observed.  However, neither the exact mass for ketal 148 nor 

deprotected ketone 147 could not be found by HPLC-MS of the crude reaction mixture, 

and no product was isolated, though further investigations were precluded by material 

limitations. 

Scheme 6.11.  Attempts at a zincates Negishi cross-coupling. 

 

6.2.5  Elaboration of the Hamigeran C and D Core 

 With functionalized tricyclic core of hamigerans C and D (147) in hand, we 

turned our attention to oxidation of the B-ring to install the two necessary oxygen atoms 

present in both natural products.  While we initially anticipated a facile dihydroxylation 

of the electron-rich styrene, this transformation proved non-trivial.  In fact, treatment of 

147 with AD–mix α or β or stoichiometric osmium tetroxide in either t-butanol/water or 

a quaternary solvent mixture of water, t-butanol, carbon tetrachloride and acetone used by 

Clive in the dihydroxylation of a similar intermediate in his hamigeran B synthesis2d all 

failed to furnish any product of oxidation (Scheme 6.12). 
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Scheme 6.12.  Initial round of oxidation attempts. 

 

Wittig olefination with bromomethyltriphenylphosphonium bromide and n-

butyllithium in refluxing benzene yielded triene 164 in 84% yield, but attempts to 

selectively oxidize the styrenyl olefin of 164 with t-butyl hydroperoxide and dichloro 

ruthenium(II) cymene dimer12 (Scheme 12, 165) resulted in rapid overoxidation of 

starting material, as evidenced by the disappearance of all signals in the olefin region of 

the crude 1H NMR spectrum.  Attempts to selectively oxidize the styrenyl olefin of 164 

with electrophilic epoxidizing reagents such as m-CPBA resulted in only oxidation of the 

enone moiety, while use of the Jacobsen (R,R)-Mn(salen) epoxidation catalyst 169 in 

hopes of selectively oxidizing the cis-olefin of triene 167 also failed (Scheme 6.13). 

  

MeO

H
O

MeO

H
O

HO OH

147

oxidants: AD–mix α, AD–mix β,
                 OsO4 (stoichiometric)

oxidant, solvent

163
not observed

MeO

H

n-BuLi, H3CPPh3Br
benzene, reflux

MeO

H

O O

[Ru(cymene)Cl2]2
t-BuOOH, Bu4NI

5:5:1 MeCN:toluene:H2O

165
only overoxidation observed

164

(84% yield)



APPENDIX 6 – Progress Towards the Synthesis of Hamigerans C and D 
 

526 

Scheme 6.13.  Second round of oxidation attempts. 

 

At last, epoxidation of enone 147 was affected in a mixture of aqueous bleach and 

dichloromethane with (R,R)-(Mn)salen epoxidation catalyst 169 to afford epoxide 166 in 

89% yield and 7.5–10:1 d.r. (Scheme 16.4) 

Scheme 6.14.  Successful oxidation of the hamigeran C and D core. 
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We next turned our attention to the opening of epoxide 166 in order to protect this 

presumably sensistive functional group to allow the necessary manipulations of the A-

ring.  To our surprise, a number of Lewis and Brønsted acids as well as Brønsted bases in 

a number of solvents failed to afford expected diol 163 even at elevated temperatures 

(Scheme 6.15). 

Scheme 6.15.  Unsuccessful attempts at epoxide opening. 

 

After the failure of extensive screening to yield reliable hydrolysis conditions, we 

discovered that treatment of 166 with catalytic gold(III) chloride in dry acetone13 directly 

yielded protected diol 170 by in 74% yield as a single diastereomer (Scheme 6.16).  The 

final carbon of hamigerans C and D could be installed by submitting acetal 170 to 

previously established Wittig conditions (Scheme 6.12) to yield diene 171. 

Scheme 6.16.  Epoxide opening and installation of the final carbon of Hamigerans C and D. 
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would furnish the desired stereocenter based on the concavity of the tricyclic core 

assembled.  Initial attempts to hydrogenate diene 171, however, resulted only in isolation 

of the product of hydrogenation of the more accessible olefin, 172 (Scheme 6.17). 

Scheme 6.17.  Failed hydrogenation attempts of diene 171. 

 

Under more forcing conditions with a number of catalysts and solvents, products 

resulting from hydrogenolysis of the acetal moiety were observed, typically as a mixture 

consisting mostly of trisubstituted olefin 173 with a small amount of fully hydrogenated 

174 (diastereomeric ratio of 174 was not determined due to the small amount observed 

and the difficulty of separating the two extremely non-polar products). 
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nearby quaternary carbon, while the α-face is inaccessible due to the concavity of the 

molecule’s core (Figure 6.2). 

Figure 6.2.  Analysis of challenges in the attempted hydrogenation reactions. 

 

We imagine that this hurdle could be overcome by instead setting this stereocenter 

by protonation of enolate 175.  Due to the absence of the isopropyl substituent, the β-face 

of the olefin is significantly more accessible than in that of 172.  Thus, by setting this 

stereocenter before imposing the steric demands of the isopropyl group, we hope to be 

able to circumvent the problem that it appears we created for ourselves in our attempts to 

hydrogenate 172. 
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6.3  CONCLUDING REMARKS 

In conclusion, we have synthesized advanced intermediate 171, bearing all of the 

carbon atoms present in Hamigerans C and D and all of the necessary functional handles 

required to complete their synthesis.  We have proposed a method to circumvent the 

problems encountered in hydrogenation to set the final stereocenter, at which point 

elaboration of the aromatic C ring and oxidation state manipulations are all that would be 

required to complete these syntheses.  We have also proposed a tandem Negish-Heck 

reaction that, while of yet unsuccessful, could represent a useful method for the synthesis 

of benzannulated molecules.  We hope that completion of the synthesis of these 

molecules could allow for further biological testing, and set precedence for the synthesis 

of similar 6-7-5 tricyclic systems. 
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