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Abstract

Part I:

We consider the numerical solution of the Navier-Stokes equations governing
the unsteady flow of a viscous incompressible fluid. The analysis of numerical ap-
proximations to smooth nonlinear problems reduces to the examination of related
linearized problems. The well posedness of the linear Navier-Stokes equations and
the stability of finite difference approximations are studied by making energy esti-
mates for the initial boundary value problems. Flows with open boundaries (i.e.,
inflow and outflow) and with solid walls are considered. We analyse boundary
conditions of several types involving the velocity components or a combination of
the velocity components and the pressure. The properties of these different types
of boundary conditions are compared with emphasis on the suppression of unde-
sirable numerical boundary layers for high Reynolds number calculations. The
formulation of the Navier-Stokes equations which uses an elliptic equation for the
pressure in lieu of the divergence equation for the velocity is shown to be equiva-
lent to the usual formulation if the boundary conditions are treated correctly. The

stability of numerical methods which use this formulation is demonstrated.

Part II:

We consider the numerical solution of the stream function vorticity formulation
of the two dimensional incompressible Navier-Stokes equations for unsteady flows
on a domain with rigid walls. The no-slip boundary conditions on the velocity
components at the rigid walls are prescribed. In the stream function vorticity

formulation these become two boundary conditions on the stream function and
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there is no explicit boundary condition on the vorticity. The accuracy of the
numerical approximations to the stream function and the vorticity is investigated.
The common approach in calculations is to employ second order accurate finite
difference approximations for all the space derivatives and the boundary conditions
together with a time marching procedure involving iteration at each time step to
satisfy the boundary conditions. With such schemes the vorticity may be only first
order accurate. Higher order approximations to the no-slip boundary conditions
have frequently been used to overcome this problem. A one dimensional initial
boundary value problem containing the salient features is proposed and analysed.

With the use of this model, the behaviour observed in calculations is explained.
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Part I: Boundary Conditions for

the Primitive Variable Formulation



CHAPTER 1

Introduction

The Navier-Stokes equations for a uniform viscous incompressible fluid in two
space dimensions can be written in the form
U + uuy +vuy +p, = vAu + fy,
vy + uvg + vy, +py = VAV + fy, (1.0.1)
ug +v, = 0.
Here u, v are the velocity components, p is the pressure, and the constant density
has been normalized to p = 1. The external forcing has components f, g and v is
the viscosity coefficient. In addition, initial and boundary conditions are required
to complete the specification of the problem. Initial conditions are needed for the

velocity components
u(z,y,0) = U z,y), v(z,y,0) = VO(z,y). (1.0.2)
Boundary conditions can be written in the general form
B(u,v,p) =g (1.0.3)

for (z,y) € 9. These equations describe the flow in some region {1 of R? for some
time interval 0 <t <T.

These equations are important in the modelling of a large number of physical
phenomena in fluid dynamics where the effects of compressibility are negligible.
Such situations arise widely in scientific and engineering applications, including

flows of water and of air at low speeds. Examples are the flow over bodies, flows in
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pipes and channels, tihe modelling of turbulence, shear layers, jets, boundary layers,
etc. The conditions under which a fluid is almost incompressible are discussed by
Batchelor [1967].

The study of the Navier-Stokes equations has traditionally (always) involved
using approximate methods of some sort since the number of exact solutions avail-
able is very limited. The assumption of incompressibility is itsell an approxima-
tion. Some other approximations include deriving the boundary layer equations,
dropping the viscous terms in parts of the flow and using perturbation methods.

Numerical methods provide yet another powerful tool, and one which can be
used in conjunction with other approximation techniques to increase their power.
In addition, nﬁmerical methods can be applied directly to the complete Navier-
Stokes equations in situations where no other approximations are appropriate or
to examine the validity of other approximations. We shall confine ourselves here
to consideration of approaches to solving the complete equations.

With numerical methods as with any other approximation methods the ques-
tion must be asked: How does the numerical solution relate to the true solution
of the equations? This is the basic question of numerical analysis, and it merits
careful consideration. One may ask this question about the results of a particular
calculation or about a class of numerical methods for a particular problem. In ei-
ther case it is desirable to have estimates for the difference between the numerical
and the true solution, either a priori or a posteriori estimates. A prior: estimates
are estimates in terms of the data. In this case the data consist of the forcing
functions, the initial conditions, the boundary data and the viscosity coefficient or
Reynolds number. A posteriori estimates may also be in terms of the computed
solution.

The concepts of convergence, stability and order of accuracy of difference ap-

proximations form the basis of the theory which has been developed for analysing
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numerical methods. Another important concept is the well posedness of partial dif-
ferential equations. Equally important is the principle of linearization for smooth
nonlinear problems, which enables the question of convergence to be reduced to the
well posedness of linear problems and the stability of difference approximations.

The first investigations of numerical analysis concentrated on the Cauchy prob-
lem, that is, the initial value problem in the absence of boundaries. As the un-
derstanding of the properties of approximations to the Cauchy problem became
well advanced, attention was directed to the initial boundary value problem. The
theory of initial boundary value problems for hyperbolic and parabolic systems
of partial differential equations is by now fairly complete. The Navier-Stokes
equations share many features in common with hyperbolic and parabolic systems.
However because of the incompressibility condition the ecquations are not covered
by the general theory. Incompressibility introduces an elliptic nature into the
equations.

It is the aim of the present work to investigate the choice of boundary condi-
tions for the incompressible Navier-Stokes equations. Flows with open boundaries
(i.e. inflow and outflow) and with solid walls are considered. Several different
types of boundary conditions are studied, involving the velocity components or a
combination of the velocity components and the pressure. Previous studies of vis-
cous incompressible flow have only considered either periodic boundary conditions
or boundary conditions on the velocity. We are also interested in comparing the

properties of the boundary conditions for high Reynolds number calculations.

Synopsis
In the remainder of this chapter we review the framework used to analyse
numerical methods for nonlinear initial boundary value problems. We discuss

well posedness, stability, the principle of linearization and the reduction to half
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plane problems. We also consider the pressure formulation of the Navier-Stokes
equations which explicitly involves the elliptic nature of the pressure.

In chapter 2 we consider the well posedness of the half plane problem for the
linear Navier-Stokes equations. We study four different choices for the bound-
ary conditions. Energy estimates are made for the velocity components and the
pressure for each type of boundary condition.

In chapter 3 we ihvestigate the stability of discretization in space. A staggered
grid is used for the discretization because it is well suited to making estimates of
the same form as in the continuous case. Discrete boundary conditions of each of
the four types are chosen such that the semi-discrete velocity components can be
estimated.

In chapter 4 we consider the stability of the fully discrete linear Navier-Stokes
equations. The emphasis is on how the boundary conditions are effected when time
is discretized. Two diffferent time differencing methods are studied, the Crank-
Nicholson method and a combination of leap frog for the convective terms and
the pressure with Crank-Nicholson for the viscous diffusion terms. In each case

appropriate boundary conditions are derived and stability is demonstrated.

1.1 Well Posedness

The well posedness of a problem refers to the dependence of the solution on the
data of the problem. A well posed problem is one for which the solution satisfies
certain a priort estimates.

To discuss these estimates we introduce a general notation for initial boundary

value problems. An initial boundary value problem consists of a partial differential
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equation, initial conditions and boundary conditions
Lu=f for (x,t) in Q2 x [0,T],
u(x,0) = UO(x) forxeq, (1.1.1)
Bu=g forxedN,0<t<T.

The estimates for well posedness are typically of the form

Hu||ﬂ><[0,T] + nllﬂllanx[o,:r] < K (HfHﬂx[O,T] + Hgllanx[u,T] =+ HU(O)HQ) (1.1.2)

with appropriately deﬁned L? norms over the regions indicated. K is a constant
and 7 = 1 (strong estimate) or n = 0 (weak estimate).

These estimates are of importance for a number of reasons. They can be
used to prove the existence and uniqueness of solutions to a problem. Questions
of existence and uniqueness are clearly important for numerical approximations
as one can only hope to accurately approximate a problem which has reasonable
solutions. Also the concepts of well posedness for partial differential equations and
stability for difference approximations are intimately related — the definitions
involved are analogous and the methods of determining well posedness can be
applied in their discrete forms to stability calculations.

Existence and uniqueness questions for the Navier-Stokes equations are treated
by Ladyzhenskaya [1969]. Her treatment applies to flows on a bounded domain
with homogeneous boundary conditions on the velocity. In two space dimensions
a unique smooth solution is shown to exist for all time. I am not aware of any
existence and uniqueness results for open boundaries. In three space dimensions
the estimates only suffice to prove the existence of the solution for a finite time
T which depends on the initial data and the external forces. The existence of the
solution in three dimensions for all time remains an open qusestion.

The general theory of well posedness for linear systems of hyperbolic initial

boundary value problems was elucidated in the works of Kreiss [1970] and Majda
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and Osher [1975] and for incompletely parabolic systems by Strikwerda [1977]. The
theory applies to the initial boundary value problem with variable coefficients and
lower order terms on a general domain {1 with smooth boundary. The results of
these papers reduce the question of well posedness to the well posedness of families
of half plane problems with constant coefficients. This reduction is sometimes
called freezing coefficients or localization.

It is the mathematical theory of pseudo-differential operators which undergirds
the freezing of coefficients. The application of this theory involves the construction
of a resolvent function for each of the frozen coefficiecnt problems. It is these
constructions which are demonstrated in the referenced works for the problems
studied. The existing theory covers hyperbolic problems with a smooth non-
characteristic boundary (Kreiss [1970]) or a uniformly characteristic boundary
(Majda and Osher [1975]), and the extensions of Strikwerda [1977] cover viscous
diffusion terms of the type which appear in the Navier-Stokes equations. The
theory has some limitations which should be noted. T'he existing theory does not
apply at nonuniformly characteristic points on the boundary or at points where
the boundary is not smooth. We are interested in llows on regions with open
boundaries such as flow through channels. In these applications the boundary
can be divided into walls (which are uniformly characteristic) and sections of
inflow and outflow. Wherever a wall meets an inflow or outflow section of the
boundary or along an open boundary where the flow reverses direction the general
theory does not apply. For the incompressible Navier-Stokes equations no resolvent
construction has been made and so the incomplete justification of the technique
of freezing coeflicients in this application should be borne in mind.

The two methods for establishing estimates for well posedness are the energy
method and the normal mode analysis. The classical energy method involves tak-

ing inner products, integrating by parts and bounding the terms which result.
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For the energy method the freezing of coefficients is only a convenient device for
simplifying the calculations required. If desired, the variable coefficients and lower
order terms can be retained and demonstrated to be dominated by the principal
terms. The limitation with the energy method is that il gives sufficient conditions
for well posedness but it does not give necessary conditions. The Kreiss normal
mode analysis for initial boundary value problems involves estimating the solution
obtained by taking the Laplace transform in time. The normal mode analysis is
applied to constant coefficient half plane problems and hence relies critically on
the technique of freezing coefficients for its extension to more general problems.
For the classes of problems where freezing coefficients is justified, the normal mode
analysis gives necessary and sufficient conditions for well posedness.

Aspects of initial boundary value problems in fluid mechanics are studied by
Oliger and Sundstrom [1978], Gustafsson and Sundstrém [1978] and Gustafsson
and Kreiss [1983].

The Euler equations of inviscid compressible flow are a hyperbolic system, and
with the usual viscous terms added they form an incompletely parabolic system
of two parabolic momentum equations coupled to a hyperbolic equation for the
pressure. The incompressible Navier-Stokes equations are the limiting equations
which are obtained from the equations of viscous compressible flow in the limit as
the Mach number of the flow tends to zero. These systems are quasilinear with
the nonlinearity entering through the convective terms.

The relation between compressible and incompressible flow has received atten-
tion. The incompressible limiting process has been studied in the inviscid case by
Kreiss et al. (Kreiss [1980], Browning and Kreiss [1982], Gustafsson and Kreiss
[1983]), including the effects of boundaries, and in the inviscid case with periodic
boundary conditions by Klainerman and Majda [1981]. Basically the limit is well

behaved provided the fast sound waves are suppressed by proper initialization and
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choice of boundary conditions. The presence of viscous terms in the momentum
equations improves the energy estimates for this limit and otherwise does not alter
the analysis except with regard to the boundary conditions.

The incompressible equations are no longer hyperbolic or incompletely para-
bolic. The two characteristic or subcharacteristic speeds associated with the sound
waves become infinite in this limit. The mass conservation equation, which in the
compressible equations provides an evolution equation for the pressure, reduces
to the divergence equation which does not include the pressure and involves only
derivatives in space. For this reason the incompressible equations are sometimes

described as time singular.

1.2 Stability of Difference Approximations

The concept of stability for difference approximations is the discrete analogue
of well posedness for differential equations. A difference approximation is stable
if it satisfies an estimate of the form (1.1.2) with appropriate discrete norms.

The general theory of stability of finite difference approximations for hyper-
bolic initial boundary value problems is given by Gustafsson, Kreiss and Sund-
strom [1972]. Extensions of this theory have been made by Michelson [1983], who
develops the theory for more than one space dimension, and by Strikwerda [1980],
who gives the theory for the method of lines (i.e. finite difference approximation
in space with time remaining continuous).

For the equations of fluid dynamics there have been studies made for inviscid
compressible flow (i.e., the Euler equations of gas dynamics) by Gustafsson and
Oliger [1982] and for.inviscid incompressible flow by Gustafsson and Kreiss [1983]
and Guerra and Gustafsson [preprint|.

For the incompressible Navier-Stokes equations Chorin [1969] showed the con-

vergence of a finite difference scheme (the Projection method) for the Cauchy
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problem. Porsching {1978] demonstrated the convergence of a modification of the
MAC method for the linearized Navier-Stokes equations with boundary conditions
on the velocity. Porsching’s results show convergence for the velocity components

but they say nothing about the behaviour of the pressure field.

1.3 Principle of Linearization

The principle of linearization is fundamental to the numerical analysis of non-
linear problems with smooth solutions. The relation between stability, consistency
and convergence for nonlinear problems is not so trivial as for linear problems. For
linear problems

consistency + stability = convergence,
which is often referred to as the Lax equivalence theorem.

The principle of linearization for nonlinear problems with smooth solutions
states that the stability of linearized problems, together with consistency, is enough
to ensure convergence. This is the case because the error of the discrete solution
has an asymptotic expansion in terms of the smooth solution of the nonlinear
problem and the solutions of appropriate linearized variational problems. The
asymptotic expansion is valid if the remainder term in the expansion has the right
bound, and this is so provided the linearization of the difference approximation is
stable. The error tends to zero as the approximation is refined (i.e., the approxi-
mation is convergent) provided the terms in the expansion are bounded. This is
the case if the linearized variational problems are well posed.

Consider the nonlinear problem
Fu=0 (1.3.1)

where F is a differential operator and u is in an appropriate space of functions.

The Navier-Stokes equations including their initial and boundary conditions are
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of this form. Assume that the operator F is a smooth function of u. Let A(w)
denote the Jacobian of F with respect to u at u = w. Assume that the solution

u of (1.3.1) exists and is smooth. The linearized variational problem of (1.3.1) is
A(u)u' =0. (1.3.2)

For the Navier-Stokes equations let (@, 7, D) be the smooth solution. Then the Ja-
cobian is the linearized operator obtained by letting (v,v,p) = (@,v,p) + (v',v',p')
in (1.0.1) and linearizing in the primed variables. Variations of the forcing func-
tions can also be taken. The resulting linearized variational problem is

up + Ty, + vy, + Upu' + vyu +pl = vAu + f,

vy + Tl + TUy + U0+ Ty’ + p, = VAV A+ £, (1.3.3)

u'ﬂD + 'UL =0

together with variational forms of the initial and boundary conditions. This system
is called the linearized Navier-Stokes equations.

A finite difference approximation for (1.3.1) can be written as
Fth =0 (134)

where Fy, is a finite difference operator and vy, is in an appropriate space of discrete
functions. Let Ap(wy) denote the Jacobian of Fy with respect to vy at vy, = Wh.

The truncation error of the difference approximation is
rp = Fhuh (135)

where uy denotes the restriction of u to the grid. The difference approximation
is consistent if ||rp]| — 0 as h — 0 where h is a measure of the grid spacing
or refinement of the approximation and an appropriate norm is used. For finite

differences the truncation error can usually be expressed in terms of u and its
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derivatives evaluated on the grid. We assume that the truncation error can be

expanded as
r=h'W =h'U, + h?""W .+ ... bP¥, + K" R, (1.3.6)

The normalized error is defined by

ey = (uy — vn) /1Y (1.3.7)
i.e.,
Up = Vh + hiey,.
Then
0= Fth = Fh(llh - hqeh)
(1.3.8)
= Fhuh — hth(uh)eh — ‘];’(llh; hqeh)
where the remainder is a nonlinear function given by
1
¢ (up; hiep) = / [An(up — 7hien) — Ay (un)| hfey dr
01 1
— / / d*Fp(up — orhlen; —they,, hiey) do dr (1.3.9)
o Jo

1 g1
= —h% / / 7d*Fy(uy — orhley; ey, ey) do dr
o Jo

where d*F}, is the second Fréchet derivative of Fy,. The remainder term can be
estimated by

|®(up; h%ey) || < const h? |ley||?

for h sufficiently small provided Fy, is a C* function. Scale the remainder by letting
‘I)(uh;hqeh) = h"""I—'.[(uh,hq;eh) == llqu{(eh).
The error equation (1.3.8) can be written as

Ah(uh)eh + th(uh,hq;eh) = ‘I’h. (1310)
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It is possible to expand the error in terms of solutions to continuous linear

problems. The first term is w(?) given by
Aw)w® = v (1.3.11)

The linearization of the discrete approximation is also a ¢ order approximation

to the linearized continuous problem; i.e.,
Ap(un)wi? = [A(@)w®], + O(h?) = Yy, + W1y,

where ¥ is a function of u and w(@. The remaining part of the error can be

written as

ep = W‘gl) + heﬁ”l).

The equation for eﬁ”l) is found as follows:
0 = Fpvhy = Fr(uy — hqwif) - hq“e(hqﬂ))

= Fh(llh - hqwﬁz)) — hq+1A.h (uh — hqwgf))equﬂ)

+ ®(uy — hqwg);hq“egﬂ))

= Fhllh — hth(llh)WE) — ‘P(uh; hqwg’))

—h*" Ay (uy, — th(Q))eSH) — ®(uy, — hqw(Q);hq+1e£f+1))

h h ’

which can be written as

Ap(up — hqwgf))egfﬂ) +h? H(uy, — hqwgf),hq“; eg’H))

1
— E [\Ilh - Ah(uh)wﬁl)} — hq—IH[(uh,hQ;ng))-
Hence
Ap(uy — hiw{P)elV ¢ pottHED (1)) = wloth), (1.3.12)

where H(@1) is a nonlinear function of eglqﬂ) and both H*YD and Wt depend

on u and w(®,

This process can be continued to produce an asymptotic expansion

up = vp + hqwﬁ’) + hq“wgﬁl) +.o hpwgf’) + h"“eg’“), (1.3.13)
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where the w9 are solutions of the continuous linearized equations

A= Nw = gl)

q

(1.3.14)
u = u — htw(@ — hetlw ) _ i)

with different forcing functions W), The remainder eﬂ’"'_l) satisfies the nonlinear

difference equation
Ap(uM)ef ) 4 hHHE (e ) = w — W+, (1.3.15)

Now assume that the linearized difference approximation is stable in a neigh-

bourhood of uy,; i.e., there exist constants K, p; such that for any z the solution

of
Ah (ﬁh)Wh — Z
satisfies

Iwall < Killz] for lu— | < pu.

Assume also that H"+Y(wy) is locally Lipschitz continuous; ie., there exist

constants K, ps such that
HP (wi) — HED (@) < Kollwn — W] for [lw = ®[| < pa.

Then the iteration

(1.3.16)
Ap (ug’))ggﬁl) + hp+1H(p+1)(g§1”)) — et
converges to the solution e**!) of (1.3.15) and

le* ]| < const [ W],

provided h is sufficiently small.
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1.4 Pressure Formulation

One way to view the incompressible Navier-Stokes equations is as a pair of
evolution equations for the velocity with the pressure adjusting itself continuously
to ensure that the divergence of the velocity field remains zero. From this point of
view it is useful to derive an additional elliptic equation for the pressure. Taking

the divergence of the momentum equations in (1.0.1) gives

Ap + R+ 6, + ub, + v6, = vAS (1.4.1)
where
R = ul + 2u,v, + v) ~ (f1z + [f2y) (1.4.2)
and
6= u, + vy. (1.4.3)

Using the divergence equation this equation simplifies Lo

Ap+ R =0, (1.4.4)

which is called the elliptic equation for the pressure.

Now consider the system of equations consisting of the evolution equations for
the velocity components coupled with the elliptic equation for the pressure. We
shall call this system the pressure formulation of the incompressible Navier-Stokes
equations. The usual formulation (1.0.1) of momentum equations and divergence
equation will be called the divergence formulation.

Our motivation for studying this question is an interest in methods for the
numerical solution of the unsteady Navier-Stokes equations. We consider methods
which are based on the pressure formulation such as the MAC method of Harlow
and Welch [1965]. In these methods advancement from one time level to the next

is achieved by splitting into two steps. The first step is to advance the velocities
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by considering the pressure terms as forcing (i.e. explicitly) in the momentum
equations using an explicit or implicit scheme. The second step is to solve the
elliptic equation fo‘r the pressure at the new time level using the new velocities to
calculate the terms in K.

The first question which we address is the following: Under what conditions
is the pressure formulation of the incompressible Navier-Stokes equations equiv-
alent to the divergence formulation? To pose this question properly, initial and
boundary conditions must also be specified. Assuine that these are such that the
divergence formulation has a unique smooth solution for (z,y) € 2,0<t <T.

We shall see that the pressure formulation requires an additional boundary
condition in order to be specified properly. This is to be expected since the pres-
sure formulation wa-Ls obtained by differentiating in space and so the order of the
equations is higher. The extra boundary condition is required for the divergence
— otherwise the divergence satisfies an evolution equation with no boundary con-
ditions and hence is not uniquely determined. It is also clear that the extra
boundary condition must be chosen to ensure that the divergence is identically
zero, and that this is both necessary and sufficient for the pressure formulation
and the divergence formulation to be equivalent.

The equation for the divergence in the pressure formulation is found by tak-
ing the divergence of the momentum equations and making use of the pressure

equation. The result is

& + ub, + véy = v AL, (1.4.5)

This equation can be used to obtain an energy estimate for 4,

LYol + 2098 = — 8] + (5,67

(1.4.6)
+/ [un62 — 21/6—(16—} ds.
20 3

n
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Suppose the initial data are divergence free, and the boundary terms are non-
positive; then it follows that [|6]| = 0; ie., 6(z,y,t) = U almost everywhere in 2
for all time.
From this we can derive pointwise boundary conditions on the divergence by
requiring that
ao a6

2
YUY = —2ué
an) ) 2u E™

<0 (1.4.7)

for (z,y) € 90, where u, is the inward normal component of the velocity on the
boundary and d/dn is the normal derivative. H is a quadratic form in 6, 96 /9n.
The simplest type of boundary condition which will assure that (1.4.7) is satisfied
is the Dirichlet condition 6 = 0. At an outflow or solid wall boundary (i.e., where
t, < 0) the Neumann boundary condition d6/dn == 0 will also suffice. More
general mixed boundary conditions involving a linear combination of § and 96/0n
are also possible.

The conclusion is that the two formulations of the Navier-Stokes equations are
equivalent provided the boundary conditions are treated correctly.

This equivalence between the two formulations provides justification for nu-
merical methods which use the pressure formulation. By the principle of lineariza-
tion it implies that difference approximations for the pressure formulation which
are consistent and linearly stable are also convergent to the divergence free solution
of the Navier-Stokes equations. We shall investigate well posedness and stability
questions for the linearized Navier-Stokes — both the divergence formulation and

the pressure formulation — in subsequent chapters.

1.5 Numerical Methods

Numerical methods for the Navier-Stokes equations are discussed at length in

Peyret and Taylor [1983] and Roache [1972]. For the incompressible Navier-Stokes
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equations the considerations centre around the special nature of the constraint on
the velocity field posed by the divergence equation.

One way to guarantee zero divergence is to use the stream function vortic-
ity formulation. Aspects of numerical methods for the stream function vorticity
equations are discussed elsewhere in this thesis.

For the primitive variable formulation it is necessary to devise methods to
advance the solution in time whilst preserving zero divergence from one time step
to the next. This can be achieved by a splitting process using the elliptic nature
of the pressure. The splitting can be constructed in inore than one way. The
best known methods are the MAC method (Harlow and Welch [1965]) and the
projection method (Chorin [1968]) and derivatives of these. Peyret and Taylor
[1983] discuss the relationship between the two methods — the two methods are
essentially equivalent.

In the projection method the first step is to advance the velocity taking into
account the convective and the viscous terms with the pressure terms omitted.
The second step is to use the pressure to project the velocity onto the subspace of
divergence free velocity fields. This is done by solving an elliptic equation for the
pressure and then calculating the velocity.

In the MAC method the first step is to calculate the pressure by solving an
elliptic equation. The forcing in the equation for the pressure is calculated in such
a way that the divergence of the velocity field is zero at the next time step. The
second step is to advance the velocity field.

Different variants of these methods can be devised by changing the schemes
used to advance the velocity components and by treating the boundary conditions

in various ways.
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Other approaches to solving the incompressible Navier-Stokes equations in-
volve adding a small amount of compressibility. This may be an artificial com-
pressibility (see Peyret and Taylor [1983] for references) or the equations of slightly
compressible flow can be solved as discussed by Guerra and Gustafsson [preprints|

for the incompressible Euler equations.
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CHAPTER 2

Linear Navier-Stokes Equations

2.1 Introduction
The linear incompressible Navier-Stokes equations in two space dimensions

are
U + cuy + duy + py, = VAU + fi,

v, + cvg +dvy, + py = VAV + fi, (2.1.1)
u, + v, = 0.

Here u, v are the velocity components and p is the pressure. The coefficients
¢ and d of the convective terms are taken to be smooth bounded functions of
z, y and t. The external forcing has components fi, f, and v is the viscosity
coefficient. Consider this problem on the strip z > 0, 0 < y < 1 with periodic
boundary conditions in y and ¢t > 0. In addition, initial and boundary conditions
are required to complete the specification of the problem. Initial conditions are

needed for the velocity components

w(z,y,0) = UO(z,y), v(z,y,0) = VO(z,y). (2.1.2)

Boundary conditions are needed at « = 0 and = = co. We assume that u and
v smoothly and rapidly approach zero as z — oo and that p approaches some
constant which can also be taken as zero without loss of generality. These bound-

ary conditions are chosen since it is the local influence of the boundary at z = 0
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which is of interest to us. The boundary conditions al = 0 are linear and can

be written in the general form
B(u,v,p) = g. (2.1.3)

We shall discuss the specific forms of the boundary conditions in due course.
The pressure formulation of the linear Navier-Stokes equations consists of the

momentum equations with the pressure equation

Ap+R=0 (2.1.4)

where

R = cpug + dyuy + cyug + dyvy — (1o + foy)- (2.1.5)

Different forms of R are also possible. The pressure equation is obtained by taking
the divergence of the momentum equations and eliminating terms involving the
divergence u, + v, and its derivatives. Any function of u; + v, can be added to E.
In numerical methods this may be a desirable thing to achieve a damping effect
on the non-zero divergence.

The boundary conditions which we study are of several types. All of them are
local in the sense that they involve the dependent variables at a single point on the
boundary. They are linear since we have linearized about a smooth solution of the
Navier-Stokes equations. The boundary conditions are applied on the boundary
£ = 0,0 <y < 1. The sign of ¢ determines whether the boundary is inflow
(¢ > 0), outflow (¢ < 0) or a solid wall (¢ = 0). There are four types of boundary

conditions which we categorize as follows.

I.  Velocity uw=0 v=0 Uy =0 (
II. Inflow p+yu=20 v=20 Uy =0 (

III. Outflow p+yu—rvu, =0 v, =0 Ugy = O (6, =0) (2.1.8)



IV. Outflow p=20 v, =0 Uy =0 (2.1.9)

where ~ is a parameter which we shall take to be constant. These boundary
conditions are written down with the pressure formulation in mind; there is some
redundancy if they are used for the divergence formulation.

These are the homogeneous forms of the boundars} conditions. In fact, the
process of linearization leads to inhomogeneous 1inear‘/1\)oundary conditions. It is
convenient for the classical energy method to remove the inhomogeneity in the
boundary conditions at the outset. This is achieved by subtracting off a function
satisfying the inhomogeneous boundary conditions and thereby the boundary con-
ditions become homogeneous and the effect of the inhomogeneity appears as an
extra contribution to the forcing terms. For example, consider the inhomogeneous

form of the velocity boundary conditions

u(0,y,t) = U(l)(y,t), v(0,y,t) = V(l)(y,t), uy(0,y,t) = —Vy(l)(y,t).

(2.1.10)
The boundary conditions can be made homogeneous by subtracting off a smooth
function which satisfies the inhomogeneous boundary conditions (2.1.10) at z = 0,
dies off sufficiently fast as £ — oo, and has zero divergence in the interior. Such
a velocity field can be constructed in infinitely many ways. Let ¢(z) be a C*
function on [0, 00) with ¢(0) = 0, ¥,(0) = 1, 144(0) = 0 and ¥(z) =0 for = > 1.
Then the velocity field

u(z,y,t) == UM (y, 1) ¢, (2) — VD (y,0) ¥(a),

v (z,y,t) = VO (y,t) v, (z) - /v U (y,0) dy e () (2.1.11)

0

suffices. Another suitable choice for ¢ with exponential type decay would be

¥(z) = z(z+1)e~*. So we assume that the boundary conditions are homogeneous.
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We define the usual inner product and norm by

(/) = / ) / Fea(zy)dyde,  |I71? = (/. /)

where the bar denotes complex conjugate in this instance. Also we define
R _ (N
w.*(v>, f._<f2)

bWl o= Jlul® + [l

with

7w o= sl 4 flug[* + [lva® + [loy |*

We shall also use norms for functions of one variable only, either = or y, which we
define like those above and write as || - ||, and || - ||,, respectively.

The aim is to establish the well posedness of the linearized Navier-Stokes
equations with each set of boundary conditions. We derive estimates for the
velocity components and the pressure in terms of the data, and also estimates
for derivatives of the flow variables as well. It is important to obtain estimates
for as many derivatives as possible. The principle of linearization provides error
estimates for difference approximations to the nonlinear Navier-Stokes equations.
In that argument the error estimates depend on bounds on a number of derivatives
of the solutions of the linearized Navier-Stokes cquations. Also the estimates for
u, v alone give no information about the pressure field.

When it comes to making estimates of derivatives we assume that the data
are smooth in all the independent variables z, y and ¢{. Estimates for any number
of y derivatives require no work since the equations can be differentiated in the y
direction. The form of the equations for the y derivatives are the same and so the
same type of estimates hold. Similarly, estimates for ¢ derivatives are obtained.

The only complication in this case is that smoothness of the initial data alone



94—
does not ensure that the initial time derivatives will be bounded and smooth.
The determination of the initial time derivatives involves the initial conditions
and the differential equations. At the boundary there are compatibility conditions
between the initial and boundary data which arc needed to ensure boundedness of
time derivatives. The question of compatibility is taken up in detail elsewhere in
this thesis for the stream function vorticity equations. In the present context the
conditions for compatibility and their consequences have not been investigated.

On the other hand, it is not possible to obtlain estimates for the x derivatives
in the same way since the boundary conditions cannot be differentiated in the z
direction (i.e., away from the boundary). Manipulation of the differential equations
is required to express higher = derivatives in terms of lower derivatives. This is
where the work is.

We are especially interested in choosing numerical boundary conditions which
are suitable for high Reynolds number flows. This is the limit of small viscosity
coefficient (i.e., v small) in (2.1.1). Estimates which depend inversely on v indicate
the possibility that boundary layers will be present in the numerical solution even
in situations where the true solution is smooth. This is undesirable and so we
endeavour to obtain estimates independent of v wherever possible.

In incompressible flows the boundary can be divided into walls and open
boundaries where the fluid may flow into or oﬁt of the region. At a wall the
no-slip boundary condition is a natural one on physical grounds due to viscous
effects. In general this leads to the occurence of a boundary layer adjacent to the
wall where the interior flow matches to this boundary condition. However, the
situation is different at inflow and outflow boundaries. Since these are artificial
rather than physical boundaries, there is no reason to expect a boundary layer to

be present. That is, one can consider the flow as part of a flow on a larger domain.
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Provided the artificial boundary does not coincide with an internal boundary layer
the flow in the neighbourhood of the open boundary should be locally smooth.

Of the four types of boundary conditions only type I involves only the velocity
components; the other types also use the pressure. For the primitive variable
formulation this is not an important distinction per se. However, for the stream
function vorticity formulation, the pressure does not appear in the equations and
so it is not clear how a boundary condition on the pressure could be used.

The first type of boundary conditions consists of specifying the velocity com-
ponents. These are the boundary conditions used in most of the incompressible
flow calculations which I have seen reported, and also in the theoretical stud-
ies. More general forms of boundary conditions are comionly used for calculating
compressible flows and in numerical meteorology. Reference Gustafsson and Kreiss
[1983], Oliger and Sundstrom [1978], Gustafsson and Oliger [1982], Gustafsson and
Sundstrom [1978].

For the type I boundary conditions we show how to derive estimates for u, v, p
and any number of derivatives. The limitation is that the estimates for derivatives
rely on the viscous terms and hence they become weak and allow boundary layers
for high Reynolds numbers. The dependence on v becomes stronger for higher
derivatives. The estimates are valid for any type of flow at the boundary — walls
(¢ = 0), inflow (¢ > 0) or outflow (¢ < 0).

The interest in studying the other types of boundary conditions is in obtaining
better estimates; i.e., fnore estimates independent of v.

The type Il boundary conditions satisfy better estimates for an inflow bound-
ary — estimates for all derivatives can be generated independent of v. The type II
boundary conditions are related to the type I boundary conditions; the boundary

condition p 4+ yu = 0 becomes u = 0 in the limit v — oco. The same estimates
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which are made for the type I boundary conditions for wall, inflow and outflow
boundaries go through also for the type II boundary conditions.

The question of outflow boundary conditions is more delicate. This is because
the number of outflow boundary conditions required for viscous incompressible
flow is more than the number for inviscid flow. We expect that there are no
boundary conditions which remove the possibility of an outflow boundary layer
altogether. However, the possible boundary layer can be made weak by choosing
soft boundary conditions.

High Reynolds number flow is a singular perturbation of inviscid flow. From
the study of singular perturbation problems it is well known that boundary layers
are weaker if boundary conditions on derivatives are used (soft boundary condi-
tions) rather than boundary conditions on a function itself (hard boundary con-
ditions). The outflow boundary conditions of types III and IV make use of this.
Some investigators recommend that in computations a fine grid be used near the
outflow boundary in order to resolve the possible outflow boundary layer. This is
a boundary layer not in the true solution but in the computed solution. We feel
that this should not be necessary if appropriate soft boundary conditions are used
since any possible boundary layer should be weak.

The type III boundary conditions are a modification of the type II boundary
conditions. The condition v = 0is softened to v, = 0, and the divergence boundary
condition § = 0 is softened to 6, = 0. The vu, term in the mixed boundary
condition is needed to account for one of the viscous boundary terms in the velocity
estimate. The sequence of estimates for the type III follows closely those for the
type II boundary conditions; the estimates are valid only for an outflow boundary
where ¢ < 0.

The type 1V outflow boundary conditions are different; they impose no explicit

constraint on the divergence or its normal derivative. The sequence of estimates
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starts with a combined estimate for the velocity components and the gradient
of the pressure instead of first estimating the divergence. An estimate for the
divergence on the boundary is then obtained as a corollary. With this type of
boundary condition there is the possibility that the divergence may not remain
zero even if the initial conditions are divergence free.

To summarize these differences we write down the variables which can be

estimated independent of v in the order in which the estimates are made.

| L | IL. ; I11. [ IV. |
| Velocity | Inflow \ Outflow | Outflow |
| wu=0 | p+tyu=0 | p+tyu—vu,=0 [ p= l
I v=0 | v=20 | v, =0 | vy =0 \
| u, =0 | Uy =0 | Uge = 0 | Uy = |
| | (e>0) | (c <0) | (e<0) |
| 6 | Y 1 65 6], | U, |
) U,V | U, v \ U, v | Pz Dy |
| Ug | tymgs Plomo | Ulym0s V]pmo I R
| P Us | Us (R PP
| | Dby 1 Pz Py | 6 \
| I Pla=o | Ug |
| | Vs | e *p I T
| | Puz | Uy ! Vg |
| | Ugz | Pae | Pas |
| | Vaz | Uz | |
e ! |

Table 2.1
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2.2 Velocity Boundary Conditions
In this section we make energy estimates for the solution of the linear Navier-

Stokes equations (2.1.1) with boundary conditions on the velocity components
u(0,y,t) =0, v(0,y,t) =0, ug(0,y,t) =0 (2.2.1)

which we have called type I boundary conditions.

We consider both the divergence formulation and the pressure formulation.
The condition u, = 0 is not an independent boundary condition in the divergence
formulation since it is a consequence of the divergence equation.

We first consider the divergence formulation. The energy estimate for the
velocity is obtained by taking the inner product of the velocity components with

the momentum equations and integrating by parts.

Lemma 2.2.1 Energy estimate for u, v. Let a > 0 be arbitrary. Then

1d

Wl Wl < S w5 e (2:2.2)

and

I :
Il < WO e 2 [ e et ar
a Jo (2.2.3)
< WO e+ 0(a,0) ma, 8,0

o<t <t

where 0(a,t) := (e** — 1)/a.
Proof. Taking the inner product of the velocity components with the momentum
equations gives
(w,us + cuy + duy +p, — VAU — fi)
+(v,v; + cvg + dv, + p, — VAV — fp) = 0.

Consider each of the terms in turn. The time derivatives are

| e

() + (v,00) = o ([[ull® + olf) = 5 liwl®

[N
QU

t
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The first of the convective terms is

1
(u,cug) = (u, (cu)s) — (u,cou) = / cu? |72 dy — (ugycu) — (u,cpu),
0
SO
1
c 5 1
Uy CUgy) = — —utl,_ody — ~(u,c  u).
(weu) =~ | §0llody— jluncn)
Taking the convective terms together and moving them to the right hand side
1
c
—{(u, cuy + duy) + (v, cv, + dvy) } = /0 §(u2 + vH)| o dy
1 1
+ E(u,czu + dyu) + E(U,czv + d,v)
Le
= [ S, dy
0o 2

since the divergence of the coefficients (i.e., ¢, + d, ) is assumed to be zero.

The pressure terms are

—{(wp2) + (0214)) / 4 plco dy + (s +vy,7).

The diffusion terms are

1
(u,v Au) = —1//0 Uy, ody — Vv (H%Hz + H“y”z) )

50

(1, v Aw) + (v, Av) — ~l//01(u e + v v3)|, o dy — v]| V.
The forcing terms are
(u, 1) + (v, f2) = (w, 1),
and

()1 < wl < S wl? + 5 el

Putting these results together

= P+ T = e+ vyp) + ()

2 dt 1 (2.2.4)
+/ G(y,t) dy
0
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where the boundary integral terms are
c
G(y,t) := [E(uz +v*) + up — v(uu, + vvz)] | oo

The divergence term vanishes in the divergence formulation and the boundary

terms are annihilated by the boundary conditions.

We assume that estimates for any number of y and ¢ derivatives follow immedi-
ately with no further work. We write out the form of the estimates corresponding
to Lemma Lemma 2.2.1; likewise, y and ¢ derivatives can be taken for all of the
estimates made below. On the other hand, it is not possible to obtain estimates
for the z derivatives in the same way since the boundary conditions cannot be

differentiated in the z direction (i.e., away from the boundary).

Lemma 2.2.2 Energy estimates for y and t derivatives of the velocity. For any

k and !

d  oFthw ort o tiw 1, 0t
— 2v i< t ——|* + = 2.
N a2V o < comst Y (IS + Sl (229

i<kl
where const depends on the maximum norm of a number of derivatives of ¢ and

d.

The energy estimate for u, follows from the divergence equation. The energy
estimate for v, is obtained by using the viscous terms in (2.2.2); however this

estimate depends on the Reynolds number.

Lemma 2.2.3 Energy estimates for u,, v,.

sl = llog[| < [lw| (2.2.6)

vllvall* < const (w* + [[w]* + [[£]]*) (2.2.7)
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Lemma 2.2.4 Energy estimates for u,, and p..

sl = ol = 2% (w2 v |+ 18]17) (22.8)
Ipal) < fwell + llewall + I ugll + v (luesll + el + 1152] (2.2.9)

Proof. These estimates follow from the z derivative of the divergence equation

and from the first momentum equation, respectively.

To obtain estimates for vys, Uz and higher z derivatives of the velocity com-
ponents we need first to estimate the pressure. The elliptic equation for the pres-
sure is (2.1.4) and the boundary conditions at = = 0 are obtained from the first

momentum equation at the boundary

Py =T i= VU + f1. (2.2.10)

At £ = oo we have the boundary condition p, = 0. The pressure is determined up
to a constant which is fixed by adding the constraint p =0 at = = oo.

In order to estimate ||p|| and ||p,|| we shall make use of the estimates we have
already for ||R|| and ||p,||. We note that at this point we do not have an estimate
for gy |, OT Vsa|,_o and so we cannot estimate p in terms of its boundary data.

The estimates are obtained by writing p as a Fourier series in y and estimating

the coeflicients. We write

e ¢]

p(z’y’t) - Z ﬁ(x’w’t)ezﬂ-lwy

W=—00

and similarly for the other variables. The Fourier coeflicients p are given by

1
Pz, w,t) :/ p(x,y,t)ezm‘"y dy
0

and Parseval’s equality is

Ipll* = > IBIl2
W
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where ||.||; is the norm over z.

The Fourier coefficients of p satisfy the equations
Pro — AT WP+ R =0,  Bulyo=T7 (2.2.11)

for each frequency w.

Lemma 2.2.5 Estimate for py.

lpyll < const([lp|| + [ E]) (2.2.12)

Proof. By Parseval’s equation for p,
Ipylf* =Y 4n*w? Bl
w#0

To estimate the Fourier coefficients p for w # 0 we decompose P as

where

/15(1) _ 47r2w2’13(]) + B = 0, /ﬁg) ~0

T

and

23 4r?fp® =0, PP

Tz

Then ) and ﬁ&l) can be estimated in terms of I/i\f, and P can be estimated in

terms of p, and '13(11). Taking the inner product over z and integrating by parts

gives the estimate for pv

PO +ant? BN = (60, B < 5 (IBVIE+ IRIE)

(SN

So

(antert — DB+ [PV < IR
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To estimate p(® for w # 0 we express the Fourier coeflicients as

52 = _ T s
27| w| ’

so
ar®W [pONE = PPN < 2 (IPa]l3 + 1B12) < 2[P:07 + [ Bl
The estimate for ||p,|| follows from combining these two results.

Lemma 2.2.6 Estimate for p.

Ipl* < [[Bol® + const (|lpa[|* -+ | R]1*) ,

where
Po 1= /ﬁ'wzo = fﬁ(:c,O,t).

Proof.

Ipll* = Z 1BI13 = lIBollz + >_ 1712

w#0
and the sum can be estimated as in the previous lemma.

The zero coefficient of P is

—/ / R(z",0,t) dz" dz'

which satisfies the boundary condition at = = O since

/I;Of”lz:O:/ RmOtdx‘// Rdxdy =
0

#/0 lcug + duy — fil],- ody*/ fila=o dy

and

1 1
ﬂwzo = / [Vum + fl] |:1::O dy = / fllz:O dy,
0 0

since Uy, = —Vgy.
At this point we have estimates for u, v, p, Us, Ve, Pz and ug; and by assumption
also for any y and ¢ derivatives of these. This process can be continued to give

estimates for higher z derivatives. However in the process the dependence on the

Reynolds number becomes stronger still. We include here a couple more estimates.



34—

Lemma 2.2.7 Estimates for vyg, Przs Uzoz-

Vel < wlluell + v (lld vyl + Ipyll + vllvgy |l + 11 £211) (2.2.13)
[Poz|| < [Pyl + | 2] (2.2.14)
[ (2.2.15)

Lemma 2.2.8 Estimates for py,,.

||pz:cl'H < szyyH + HRIH (2'2'16)

where

R, = %R(uz,uy,vz,vy) = Rz(umzauzyavzzavzy)

IRo|| < const ([|uaell + llwayll + vazll + [[vzyll) -

2.2.1 Estimates for Pressure Formulation

We now consider estimates for the pressure formulation. In passing from the
original formulation to the pressure formulation the equations have been differ-
entiated in space. We shall see that a boundary condition for the divergence is
needed in addition to those for the velocity components. The boundary condition
on the divergence is

6(0,y,t) =0,

since the boundary condition v = 0 can be differentiated along the boundary z = 0
to give v, = 0 and the extra boundary condition in (2.2.1) is u, = 0.
In order to obtain estimates for the velocity components and the pressure in

this formulation we look first at the divergence. The divergence satisfies

6 +cb,+do, =vAé+ V.1, (2.2.17)



_35-

which is obtained by taking the divergence of the momentum equations and sub-
tracting off the terms in the pressure equation. Other terms may appear in this
equation if the function R is chosen differently.

The energy estimate for the divergence is obtained using integration by parts
in the same way as the estimates for the velocity components above. Integration
by parts gives
1

16]12 + v|| V6] = (6, V. 1) +/0 [%52 - y&sz] | o dy. (2.2.18)

1d
2dt

The boundary condition for the divergence is needed to bound the boundary terms.

Lemma 2.2.9 Energy estimate for 6. Let o > 0 be arbitrary. Then

L ol 4 v Vo7 = (6,9.0) < el 5191 (2.2.19)
H6”2 < Hv_w(o)Hzeat n é /tea(t—t') HV-f("',t’)llz dt' (2.2.20)

If V.f =0 then
6]l < [|V. WO (2.2.21)

If we assume that the divergence is zero initially and the forcing is divergence
free, then it follows from this estimate that the divergence remains identically zero
for all time. That is, the divergence equation is satisfied and so all the estimates
above for the velocity and the pressure hold.

In the case where the divergence is not initially zero the estimate of Lemma
Lemma 2.2.1 remains valid; however, the non-zero divergence enters the estimates
for the velocity components. The divergence term brings the pressure into the
estimate (2.2.4) for the velocity in a way which seems difficult to handle. To

resolve this difficulty, we first subtract out the divergent part of the velocity field

and then the remainder can be estimated as above.
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Since we have an estimate for the divergence 6, the divergent part of the

velocity field can be estimated. Choose

U(z,y,t) = — /OO 6(2',y,t) da’, ¥(z,y,t) = 0.
Then the velocity field (%,7) satisfies
Uy +Vy =6
and (%,7) — 0 as £ — oco. Now let
w=1u-+u, v="1-+7v.

Then (u',v') satisfies the same momentum equations as (u,v) with a different

forcing f' depending on f, ¥ and v. In addition,
§' =uy+v, =0

is satisfied everywhere and u', v’ vanish at z = oo. The boundary conditions at
x = 0 are
oo

u'(0,y,t) = ~u(0,y,t) = / 6(z,y,t) de, v'(0,y,t) = 0.
0

The boundary conditions can be made homogeneous as described in Section 2.1.
Then the form of the resulting system for (u',v',p) is the same as (2.1.1) for
(u,v,p) — the linear Navier-Stokes equations with zero divergence and homoge-

neous boundary conditions. Hence, all the estimates carry over to this case.

2.3 Inflow Boundary Conditions
We obtain estimates for the linear Navier-Stokes equations which do not de-

pend on the Reynolds number. That is, we obtain estimates for the velocity
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components and the pressure which remain good as v — 0. We consider bound-

ary conditions which involve the pressure as well as the velocity. The boundary

conditions which we consider are
p+qu =0, v =0, uz = 0. (2.3.1)

These boundary conditions (type II) are suitable for an inflow boundary, where
¢ > 0. We consider the pressure formulation, and the estimates apply to the
divergence formulation also.

The energy estimate for the divergence is obtained in the usual way. The
boundary terms vanish since the boundary conditions guarantee that the diver-

gence vanishes on the boundary.

Lemma 2.3.1 Energy estimate for divergence.
d 2 2 2
L1617 + 20967 < Clé] + 1(6,7.9) (2.3.2)

where C = (|¢z|oo + |dyloo) /2.

We assume for simplicity that the initial velocity is divergence free and hence
by this estimate the divergence remains identically zero for all time. Otherwise,
the divergent part can be subtracted off as in Section 2.2.

Estimates for any number of y and t derivatives are assumed throughout.

The energy estimate for the velocity is obtained in the same way. We obtain

1d
A+ T = (s vy, p) + (8)
] (2.3.3)
+ / G(y,t) dy,
0
where the boundary integral terms are
G(y,t) := [E(u2 4+ v?) + up — v(uy, + vvz)] |l =0
2 (2.3.4)
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The contribution of the boundary term to the estimate has the right sign provided

N> ¢ = max ¢(0,y,t). (2.3.5)

c‘r!‘-
2’ uzy<1
Furthermore, if this is a strict inequality, then the contribution of the boundary

terms is dissipative.

Lemma 2.3.2 Energy estimate for u, v.

1d

S Sl + vl Vw ] + / (1= Dt ody < Ol +I(w, D) (2:36)

Lemma 2.3.83 Energy estimates for v and p on the boundary.

1
1
[y < (I e 1) (2:3.7)
0 Y — 42—
1 2
i
[ oy < e (I + el + 1) (2:5.)
0 .
2

Proof. Equation (2.3.3) can be written as

[ = gty = (0, = v T ()

< Wi+ (fwill? + [18]17)

This proves the first estimate and the second estimate follows from p = —yu.

From these estimates we can decide what is a good choice for 4. The parameter
~ appears in the estimates for both v and p on the boundary. The estimate for u
improves as « increases without bound. The estimate for p deteriorates for large
~ and for this estimate the optimum value is v = ¢*. This is the value of v > ¢*/2
which minimizes v*/(y—c¢*/2). If ¢* < 0 on the boundary, then the optimum value
is v = 0. Just by looking at these two estimates it appears that for large values of
~ the u velocity would be smooth but the pressure may be rough on the boundary.
In the limit as v tends to infinity the boundary condition v = 0 is obtained, and

for this boundary condition (type I) the estimate for p on the boundary is lost.
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Lemma 2.3.4 Energy estimate for u,.
[ = oyl (2.3.9)

To obtain an estimate for v, which does not depend on v, we need first to
estimate the pressure. Estimates for the pressure are obtained from the pressure
equation.

To get the desired estimates it is necessary to eliminate the boundary terms
which arise. This is done by subtracting off a function which is equal to the

pressure on the boundary and dies off smoothly into the interior, such as

B(z,y,t) = p(0,y,t)e " (2.3.10)

This allows the boundary condition for the pressure to be taken as p = 0 and it

adds extra terms to the forcing functions. The forcing functions are replaced by
fl + e*zp(O,y,t), f2 - CAxpy(anat)a
respectively.

Lemma 2.3.5 Energy estimate for p;, py.

1
195 < const ([0 + )L+ Il + ) (2:3.1)
0
Proof. We write the forcing function R in the form

R = cyu; + CyVg + dzuy + dyvy - (fla: + ny)

= (et + ¢yv — fi)s + (deu + dyv — f2)y,
assuming that the coefficient functions are divergence free; i.e., ¢, +d, is identically
zero. Taking the inner product of p with the pressure equation and integrating by
parts gives .
951 = (0 R) = [ poclydy

::'7(pmaczu +cyv *“fi)“(Pyadzu‘+‘dyU —'fé) (2.3.12)

1
— / p(ps + cou + cyv — fi)],_o dy.
0
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At this point the boundary terms are eliminated by the boundary condition p = 0.
The extra terms which arise are || Vp||* and the extra contributions to the forcing

functions. These account for the other terms in the estimate.

Lemma 2.3.6 Estimate for p. Let o« > 0 be arbitrary. Then

const

e *p||* < const/olpz|gc:O dy + — <||Vp|]2 + (1 + —O%)HWIP) . (2.3.13)
Proof. Take the inner product of e=?*®p with the pressure equation. Then
(e72%%p, R) = — (e 2°%p, Ap).
Now integrate by parts. The left side gives
(e7***p, R) = — (e ***py, dyu + dyv) — (e 2% (p, — 2ap), czu + ¢,v),

SO
—2azx -z p 1
[(e7**p, R)| < || Vp|* + B le™**p||* + const (1 + 5) (el +[o]*).
The right hand side gives
_(€~2a:cp, Ap) — (e—Zazpy’py) + (6_20”;171,}%) o 2a(e~2axp,pz)

= [e=*"Vp||* — 2a*(le™*"p|?,

since
(€7 p,ps) = = (7" pay p) + 20 (e7**"p, p).
Hence
2a® (e **p||* = || **Vp||* — (e7***p, R);
thus

(20 - ) el < const (V{7 + (14 )

Take 8 = « and the result follows. The boundary integral term comes from p.
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Next we estimate v,. At this point we have estimates for the L? norms of all

the terms in the v momentum equation except v, and v,,. So we can write

CUy — VU — H (2.3.14)

where
H := vy, + fo — (v, + dv, + py) (2.3.15)

is bounded in terms of the data. In addition, we know that v = 0 at £ = 0 and we

assume that v, and v, both tend to zero as £ — co. Now define

¢ = min ¢(0,y,t).
20
0<y<i

Taking the inner product of v, with (2.3.14) gives

C**“vznz S;(1)‘070"}13) ::(vz’lf)‘+'u(vzvvmm)

c™ 1 v [t
el + o = % [ a2y,

provided ¢** > 0. Thus we have shown the following.

<

Lemma 2.3.7 Estimate for v,. If ¢** > 0 then

a4 [ oty dy < AP (2.3.16)
and
Joall < = Qo+ v |+ pgl + wlloall + 051 (2:37)

If ¢** < 0, then = = 0 is not an inflow boundary. In this case the estimate
for v, breaks down and it is necessary to fall back to weaker estimates depending
on the Reynolds number. This is a real breakdown and not just an artifact of
the estimates. A boundary layer in the v velocity is expected to be present at
the outflow boundary if these boundary conditions are used. We shall see below
that this boundary layer is weaker if v, is specified at outflow. For this reason the

current choice of boundary conditions is not recommended at an outflow boundary.
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At this point for inflow we have estimates for u, v, p and u,, v,, p; and all their
y and t derivatives. Estimates for higher = derivatives are obtained by continuing
this process as follows. R can be estimated now that v, has been estimated. p,,
can be estimated in terms of R and p,,. An estimate for é, is obtained in the same

way as the estimate for v,. Then u,, lollows, v,, follows, et cetera.

2.4 Outflow Boundary Conditions
Next we consider boundary conditions suitable for an outflow boundary. We
consider boundary conditions which involve the pressure as well as the velocity.

The boundary conditions which we consider are of two types:
p+yu — vy, = 0, v, = 0, Ugy = 0 (2.4.1)

and
P = 03 Vg = 0, Uy = 0. (242)

These are type III and type IV of those boundary conditions which we introduced

above.

2.4.1 Type 111 Boundary Conditions

We consider first the boundary conditions of type IIl. The sequence of estimates
follows closely those for the inflow boundary conditions (type II). The energy
estimate for the divergence is obtained in the usual way.

The boundary terms have the right sign provided

¢ = ggﬁg{lc(o,y,t) <0, (2.4.3)

since the boundary conditions guarantee that the normal derivative of the diver-

gence vanishes on the boundary; i.e., 6, = (u; + vy), = 0 at z = 0. In addition,

we obtain an estimate for the divergence on the boundary.
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Lemma 2.4.1 Energy estimate for divergence. If ¢* <0, then

%%H«SH? V| VS| + '/ 62| dy = 0. (2.4.4)
If ¢* < 0, then 1
[ oy < 2 (181 a7 (24.5)
Proof.
(6,8) + V||V = /01 (56 66) oo dy (2.4.6)

We assume for simplicity that the initial velocity is divergence free; otherwise
the divergent part can be subtracted off. Hence, we take ¢ := u; + v, =0.

Estimates for any number of y and ¢ derivatives are assumed throughout.

The energy estimate for the velocity is obtained in the same way. The inte-

grand in the boundary integral is
Gly,t) := [%(uz +v?) 4+ up — v{uu, + vvz)] -

===t 5o e

(2.4.7)

The contribution of the boundary term to the estimate has the right sign, provided

N> and ¢* <0.

Ea
Furthermore, if either of these is a strict inequality then the boundary conditions

are dissipative.
Lemma 2.4.2 Energy estimate for u, v.

c

il e owl e [ - et ety = D) @249)

Lemma 2.4.3 Energy estimates for v and v on the boundary.

1
1
0 N -

o (Wl -+ [lwell® -+ 1E1) (2.4.9)
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[ oty < e ol + P (2.4.10)

c‘*]

Lemma 2.4.4 Energy estimate for u,.

lall = lloy (2.4.11)

To obtain an estimate for v, which does not depend on v we need first to
estimate the pressure. Estimates for the pressure are obtained from the pressure
equation. However, at this point we do not have an estimate for p on the boundary.
We do have a relation between p and u, on the boundary, which gives the boundary

estimate

1 1
/ (p — vug)|,—ody = 7 / u?l,_, dy. (2.4.12)
0

0

This estimate corresponds to the estimate for p on the boundary which held for
the inflow boundary conditions considered above. Again, it provides a constraint
preventing the limit v — oo from being taken. It also indicates that the choice

~ = 0 is optimal for this estimate.

Lemma 2.4.5 Energy estimate for p,, p,, and p on the boundary.

oale + 21 oy < const [ 0o dy + [l 1) 24

where

1 "
® — ] [Y2u? + VA (P + 0%+ uf o+ ul vt ] loeo- (2.4.14)

Proof. The same estimate (2.3.12) which was found for the inflow case applies

here. It remains to estimate the boundary integral

I:=- /01 p(pz + cou 4 cyv — f)] |,—0 dy- (2.4.15)

We claim that the —pp, term has the right sign and that it dominates the other

(erms.
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To see this we first notice that on the boundary z = 0 the « momentum equa-

tion reduces to

Pz + cugy = 11 i= —up — duy + vuy, + fi,

since u,, = 0, and also that
pP— VU, = —yu.
Hence
~e

c 1
Pz + —pP= Ty i=r— —u,
174 174 v

S0
c 1

—pps = —p' = —pra.
v v
For ¢ < 0 the term % p* has the right sign and it is also strong enough to dominate

all the other terms. The integrand of the boundary integral can be written as

c 1
—p (pz + czu +cyv — f) = ;pz — P

where
r3 =71y + v (cou + cyv — f)

= —qcu+v(r+ cu -+ cyv— f).
Thus, it can be estimated by

This completes the proof of the lemma.

Observe that this is a strong estimate for p on the boundary. As in the inflow
case we can now subtract off a function to make p = 0 on the boundary and then

proceed to estimate p.
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Lemma 2.4.6 Estimate for p. Let o > 0 be arbitrary. Then

const

1 1
Jemespl* < const [ 47],_ydy+ (||Vp||2+(1+—&)uw||2)- (2.4.16)

o2
Next we estimate v,. The argument is similar to that which was used in the
inflow case. The equation for v, has the same form as (2.3.14). This time we
use the fact that ¢* < 0 to get the estimate. Taking the inner product of v, with

(2.3.14) gives

C*vaHz Ei(vz’cvx) ::(Uz>1¥)'+'V(Ux;sz)

provided ¢* < 0. Hence

€] o2 < l-c-lqnﬂnz o / 02, dy.

Now by the boundary condition v, = 0 the estimate for v, follows.

Lemma 2.4.7 Estimate for v,. If ¢* <0, then

1

[[va]l < WHHH- (2.4.17)

At this point we have estimates for u, v, p and u,, v,, p, and all their y and ¢
derivatives. Estimates for a couple more z derivatives are obtained by continuing
this process as follows. R can be estimated now that v, has been estimated. p,,
can be estimated in terms of K and p,,. An estimate for 6, is obtained in the same
way as the estimate for v,. Then u,, is estimated.

This is as far as we can go. The process fails when we try to estimate vgg.
There is no boundary condition at =0 for v,, and so the technique used in
estimating v, and §, fails. In contrast to the situation at the inflow boundary we

cannot continue indefinitely making these estimates.
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2.4.2 Type 1V Boundary Conditions

Next we consider type IV boundary conditions (2.4.2) which are also suitable
for an outflow boundary. There is a major difference between these boundary
conditions and the others which we have considered so far. With these boundary
conditions there is no constraint on the divergence on the boundary. Consequently,
the estimates must be made in a diflerent order, since we cannot begin with an
estimate for the divergence.

The energy estimates for the velocity and the pressure are treated together.

In the usual way we obtain for the velocity components by integration by parts

1d 1
53\\‘”\12 + v||VW||? = (u,ps) + (v,py) + (W, 1) +/0 G(y,t) dy (2.4.18)
where .
G(y,t) == [—(u2 +v?) — v(uu, + vvz)] |l a0
2
¢, 4 \ . (2.4.19)
= i(’u’ tv )|1::0

Note that the terms involving the pressure are not integrated by parts. The
contribution of the boundary term to the estimate has the right sign provided
¢* < 0. If this is a strict inequality then the boundary terms are dissipative.

To obtain an estimate for the velocity components it is necessary to estimate
the gradient of the pressure in terms of the velocity. Consider the pressure equation
(2.1.4). Integration by parts leads to (2.3.12), in which the boundary terms vanish

since p = 0 on the boundary. Hence
IV p||* < const (||wl* +[|£]]*) -

This estimate is used to eliminate the pressure terms from (2.4.18). Thus we have

proved the following.
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Lemma 2.4.8 Energy estimates for u, v, p, and py.

%%HWHZ + v||[Vw|* + /0 [—%(uz + vz)] | =0 dy < const (||WH2 + ||f||2)
IVpl* < const (|lw|* + [I£]1*)

Lemma 2.4.9 Energy estimates for v and v on the boundary.

2

3

/0 (w0 oo dy < s (w2 w2 + £]2)

Now that we have this estimate for v on the boundary, we get immediately an
estimate for v, on the boundary. This means that we can bound the divergence

on the boundary also.

Lemma 2.4.10 Estimate for the divergence on the boundary.

c

1 1
2
/0 ‘52|z:0 dy = /(; U;lz:O dy < (HWyHZ + kutHZ + ”fyllz)

We use this to subtract off the part of the velocity field associated with the

non-zero divergence on the boundary, and then we can estimate the divergence of

the rest. The velocity which we subtract off is
v =v(0,y,t)¢(z)
where ¢(z) is a C'* function satisfying
$(0) =1, ¢.(0) =0, ¢(z) =0 for z > 1.
This velocity satisfies the boundary conditions
v:(0,y,t) =0, v(0,y,t) = v(0,y,t),

and furthermore

= [ L2 dy [ otertan



T
Let v' := v — ©. Then (u,v',p) satisfies the same equations as (u,v,p) with fa
replaced by

fy=fa2 = (V0 + ¥, + dv, — vAD)

and the boundary conditions at £ = O are

So, in particular,

6" =y + v, =0

at x = 0. Hence, the usual estimate works for ', and we have proved the following

result.

Lemma 2.4.11 FEnergy estimate for the divergence.
1611 < {[6"[l + [

is bounded.

The estimates for u,, p, v;, and p,; now go through exactly as for the outflow
boundary conditions considered above.
This time the process fails when we try to estimate 6,. There is no boundary

condition at £ = 0 for 6, and so the technique used in estimating v, fails.
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CHAPTER 3

Semi-discrete Linear Navier-Stokes Equations

3.1 Introduction

In this chapter we study the discretization in space of the linear Navier-Stokes
equations. This is the method of lines approach for analysis of finite difference
methods. As in the previous chapter the aim is to establish estimates for the
solution in terms of the data.

The techniques which are used in this analysis are the discrete analogues of
those used for the continuous equations. The most important technique for the
energy method is integration by parts. Integration by parts is essential to the
estimates for the velocity components and the estimate for the divergence in the
pressure formulation. The discrete analogue of integration by parts is summation
by parts.

We discretize the linear Navier-Stokes equations (2.1.1) in space using a uni-
form staggered grid on the domain £ > 0, 0 < y < 1. The arrangement of the
variables on the grid is shown in Figure 3.1. The discrete flow variables are

i g+1/2(t) = w(Ti, Yjr1/2,1),
Vit1/2,4(t) = v(Tiv1/2, Y5 t),
Pir1/2,i+1/2(t) = p(Tiz1/2, Yjr1/2: 1)
for ¢t = —1,0,1,... and y = 0,1,..., N — 1. The variables u, v, p here are not
the same as the continuous u, v, p of the previous chapter; this duplicate notation

should not be confusing.
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Figure 3.1. Staggered grid
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The location of the boundary x = 0 on the grid can be chosen in more than
one way. Two possible choices are for the boundary = = 0 to lie along the line
x = xo where the u velocity is defined or to lie along the line x = z_;/; where v

and p are defined. In general, we define the grid to be
{(zs,y;): ¢=-1,0,1,..., y=0,1,...,N —1,N}

where
z; = (1 — a)h, y; =Jh
and Nh = 1. The parameter o determines the location of the boundary line —
the boundary line is z, = 0. The assumption that the = and y mesh spacings
are the same plays no role and is made purely for the sake of simplicity. The half
points 1/ and y;;1/; are the midpoints of the grid.
The space derivatives in the partial differential equations are replaced by finite

differences. The divided difference operators are defined by
Wiv1/2,j — Wi—-1/25
h ?
Wi,y — Wi-14
2h ’

Wit1,j — 2Wij + Wioyj
D, D_,w;;:= D, D,w =

h?

and similarly for the y differences. The discrete Laplacian operator is defined by

Dzwi,]- =

Do,w; j :=

Ahwi,j = (D-HvDﬂn + D+yD—y) Wy 5.

Also we define the averaging operators S;, S, by

 Wigy/ag t Wis/2
Szwm- = 2 )

Wi j+1/2 T Wij-1/2
5 .

Sywij 1=
The semi-discrete linear Navier-Stokes equations can be written as

us + ¢ Dogu + d Doyu + Dyp = vApu + fy, (3.1.1a)
v -+ CDO:C’U -+ dDoy'U -+ Dyp = I/Ah’i) + fz, (311b)

6 = iy1j2,441/2 := Dyu + Dyv =0, (3.1.1¢)
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where the appropriate subscripts have been omitted from the variables. The u
momentum equation is centred at the points (z;, Yj+1/2), the v momentum equation
is centred at (z;1/2,y;), and the divergence equation is centred at (Tit1/2, Yjr1)2)-
The range of values of (7,5) for which the equations (3.1.1) apply is ¢ = 0,1,2,...
and 7 =0,1,..., N — 1. The coefficients ¢, d will mostly be taken to be constants
since we have verified in the context of the continuous problem that the variable
coefficients do not play an important role in the analysis.

The semi-discrete pressure formulation is obtained by the same steps as in the

continuous case. Taking the discrete divergence of the momentum equations gives
O+ Q + App = UARLE + Vi T
where @ is the divergence of the convective terms
Q = Qit1/2,5+1/2 = Dz (¢ Dogu + d Doyu) + Dy (¢ Dogv + d Doyv) .
If ¢,d are constants, then @ has a simple form
Q@ = ¢ Do, 6 + d Dy, é.

If ¢, d are functions of x and y, then there are additional terms and we must expand

further.
Q = Sz¢ Doy Dyu + S;d Doy Dyu + Sye Doy Dyv + S,d Do, Dyv

+ Dye DogSzu + Dyd Doy Syu + Dye Doy Syv + Dyd Dy, Syv
1 1 :
= —2—(51 + Sy)C Dozé + E(Sz -+ Sy)dl)oy5
1 1
+5(5: = 8,)e Doy (Dyu = Dy) + (S, — §,)d Doy (D,u — D)
+ ch DOISzu + Dzd DoySzu + DyC Domsyv + Dyd Doysyv.

Define the function R by

Ri=Q—Vyf- (z Doa6 +d Doyé) :
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where ¢ and d stand for the four point averages 3(S, + Sy)c and (S, + S,)d, re-
spectively. Then the pressure formulation consists of the two momentum equations

together with the elliptic pressure equation
App + £ = 0. (3.1.2)
The equation for the divergence in the pressure formulation is
8 + € Doab + d Doy = vALS. (3.1.3)

Furthermore, if the coeflicient functions ¢, d are both sufficiently smooth and
bounded, then each of the terms in R can be estimated in terms of the velocity
and its gradient and the forcing.

Both formulations consist of a system of ordinary differential equations with
algebraic constraints. We are interested in the evolution for ¢ > 0 of this system.
To close the system we must add initial and boundary conditions.

The initial conditions are

i j4+1/2(0) = U(O)(fﬂz’,yy‘ﬂ/z), 1> 1,
' (3.1.4)
Vit1/2,5(0) = VO (210, 15), 1> 0.
For consistency between the initial conditions and the divergence equation it is
required that the discrete divergence of the initial data is identically zero. This
constraint is not required for the pressure formulation. The initial pressure field is
determined by solving the elliptic pressure equation once the boundary conditions
have been properly specified.

The number of boundary conditions needed is determined by a counting argu-

ment. The unknowns are

{('Uli,j+1/2a Vit1/2,4> Pirtj2g1/2) 2 1= —1,0,1,..., 7 =0,1,...,N — 1}.
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The differential equations and algebraic constraints (3.1.1) provide three equa-
tions for each grid point + > 0. Hence, three additional equations (i.e., boundary
conditions) are needed. For the divergence formulation (3.1.1) one of these bound-
ary conditions is the divergence equation on the line £ = z_;/5. The form of the
boundary conditions will be discussed later.

We define the 1-D discrete inner product and norm for real functions u, u

defined at the points x; by

- ~ 1 NS,
(s W = (1w, Wns = (5 — ool + Y hudis,  ull, = (U he
i=1

and for functions v, ¥ defined at the half points Tiy1/2 DY
('U,a)h:C = (’l)i,/’l\)li)hgC = (—a)hv_l/ﬁ_uz + Zhvi+1/2%/i—i-l/2a H’U”iz = ('U,’U)hz.
=0
These definitions are for « in the range —1/2 < « < 0. Similar definitions can
be made for other choices of «, say « between 0 and 1/2. The dependence of the
inner product on « has been suppressed here to simplify the notation. These inner
products are both second order approximations to the continuous inner product
from z =z, = 0 to x = oco.
The two dimensional inner product is defined by

N—

(w,W)n = (U, W) na = (Wijr/2s Uijriya)n i= Z h(Wi 41725 Wij11/2) he

7=

ey

for functions defined at (z;,y;41/2) and similarly for functions defined at the other

staggered points (ziy12,9;) and (@i11/2,¥j+1/2). As in the continuous case we

define
W = Wi’j — (Ui,j+l/2> : f — fz,] = (flgzi,y]'+l/2))

Vit1/2,5 Fao(Tiv1y2,95)

with . ) )
[Wlli = llullha, + 0[]

IVewllh = [[Deulls g, + I1Dyulls g, + [1D20] 6, + 1 Dyo]7 5,
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3.2 Summation by Parts

We shall need some formulae for summation by parts. The boundary terms
which result depend on the definition of the inner products; there are some cases
of special interest and these are noted. It is only the summation by parts over
z which produces boundary terms. The periodic boundary conditions in the y
direction guarantee that the summation by parts over y is trivial. For notational
convenience we ignore the y dependence throughout this section. All the appro-

priate summations over j are assumed.
Lemma 3.2.1 u convection terms.

S 11 Ao RS G L R

1
= —~2~u0 [SQZ’U,() -+ 205hD0zu0]

Special cases:

o=0: (u)DOxu)h,O = *EUOSOWO,
1
o = —1/2 : (u,DOEu)h,_lﬂ - ——511/011,_1.
Proof.
1|/1 =
(t, Dogth) e 2 [(5 - Oé) Ug(ty — U-q) + Z Ui (Uiyy — ﬂz‘—l):|
i=1
1 1 ~ ~
=5 {(5 — a) uo(Uy — U-1)
o0
+ Z(Ui—ﬂi ~ Uit1ls) — Uoly — uﬁo}
i=1
1 1 ~ ~ ~ ~
=3 [(— — a) up(Uy — U_y1) — uoly — U1to
1 ~ ~
+i{-—« (u1 - u~1)u0 - (DOmU,u)h,a
Hence

~ ~ 1 1 ~ ~
(U’a DO:cu)h,a + (DOzuau)h,a - 5 l:— <§ + Oé> (uoul + uluO)

~ <% _ a> (woti_ + u-lﬁo)] .
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Lemma 3.2.2 v convection terms.

1 .
(v, Dog¥)po = 5172 {(1 + ) vy — 06U~3/2]

: (3.2.2)
= U2 [Ul/z -+ ZOéhDOzU—Uz]
Special case:
1
a=0: (U,DOzU)h,o = —‘50—1/21)1/2-

Proof. Replace (} — @) by (—a) in the formula (3.2.1) above.

Lemma 3.2.3 Pressure terms.

1
(U,sz)h,a = —2 (5 + 06) u0SzPo — 2(—/@)5:5“4/21)—1/2 + 2(04 - ﬂ)uop—uz

- (Dzuap)h,ﬁ
(3.2.3)
Special cases:
a=0,8=0: boundary terms = —ugS;po,
a=-1/2, f=-1/2: boundary terms = —Syu_1/3p_1/2,
a=-1/2, 8=0: boundary terms = —ugp_y/;.

Proof.

1 ol
(uasz)h,a = <§ - 04> uo(P1/2 - P—l/z) + Z ui(pH—l/Z - Pz'—1/2)

i=1

1
= (5 - Oé) uo(Pl/z - p—1/2)

o0

+ Z(uipi+1/2 — Uir1Piv1/2) — UoP1)2
i=0

1
' (5 — a) uo(Pijz = P-172) — uop1sz + () (w0 — w_1)p_1s2
— (Dxu’p)h,,ﬁ
1 1
= — (5 + OL) UoP1/2 — (5 — o /8) UgpP-1/2 — (_ﬂ)u"lp‘l/2
— (Dzuap)h,ﬁ
1
= — (5 + Oé> wo(pryz + p-1y2) — (—8)(u_y + Uo)P-1/2

+2(a ~ B)uop_1/2 — (Dott, p) g
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Lemma 3.2.4 u diffusion terms.

1
(u:D+zD—zu)h,a = -2 ('2“ + a) uODOa:uo - 2("ﬁ)smu—1/2Dzu—1/2

(3.2.4)
+2(a— B)uoDou_yss ~ | Daulfl,
Special cases:
a=0, =0: boundary terms = —ugDgzuq,
a=-1/2, §=-1/2: boundary terms = —Szu_y/3Dpu_ys,
a=-1/2, f=0: boundary terms = —ugDyu_y,.
Proof. Write
(w, DygD_zu)po = (U Dyw)p o, where w := D,u.
Then the result follows by using Lemma Lemma 3.2.3.
Lemma 3.2.5 v diffusion terms.
1
(UaD+zD—mv)h,a = #2(—04)0—1/21)095’0—1/2 — 2 o+ 0] SvD v
2 (3.2.5)

—2(a—p) v_y/2Dzv0 — HDzU”i,ﬁ
Special cases:

oa=0, =0: boundary terms = —SyvD,vy,

a=0,0=-1/2: boundary terms = —v_y/3D,v,.
Proof. Let w := D,v. Then

(vs Dow)pa = (_04)“—1/2(“)0 —w_q) + Z Ui+1/2(wi+1 — w;)
i=0

= (—a)v—l/z(wo - w—1) + Z(W—Uzwi - vi+1/2wi) — U1/2Wo
i=1
= (—Oé)U—1/2(wo - w—1) — U1/2Wo

+ <% B ﬂ) (Va2 = v-1p2)wo — (Dav, w)hp

= —( a)v 1/2 Wo + w- 1 < > v1/2 + v-l/z)wo
-+ ( 20[‘|‘2ﬂ)'l) 1/2'11)0 ( 2V w)hﬁ
:—-2( )’U 1/2S’LU 1/2—2<2+ﬂ>5v0w0

- 2(0[ - ﬂ)vkl/ng - (Dzv, w)h,ﬁ-
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3.3 Estimates for the Divergence and the Velocity

The summation by parts formulae can be used to obtain energy estimates
for the divergence and the velocity components. The estimate for the divergence
in the pressure formulation is obtained by taking the inner product of § with the
equation (3.1.3) satisfied by the divergence. The inner product is taken from o = 0
since 6 is defined only for z;,1/2, 1 > —1. Otherwise, if & < 0 then the summation

by parts brings in é_3/;. The result is

N—-1
1d ,
o610+ VIDLSIE 5+ vIDy IR = ST hHy oy (3.1
7=0

where
c 1
Hjyypg = -2*5—1/251/2 -2 <§ + ﬂ) VS0 Dyby — 2(—PB)vb_1/2D,6

C 1 1
= 55—1/261/2 — UV |:(5 + ﬂ) 61/2 + (5 — ﬂ) 5_1/2:| Dz60 (332)

[

- 55_;/261/2 — US,60D,60 — Bhu (Dy6)* .

Each of the é terms in this expression also depends on j 4 1/2. Two particular

choices of the inner product for the gradient terms are of special interest.

C
p=0: H = 55—1/251/2 ~ 15,60 D, b,
C
ﬂ = **1/2 . H = 56-1/261/2 - 1/6_1/2Dm60.

The energy estimate for the velocity is obtained by taking (u,(3.1.1a))s, +

(v, (3.1.1b)) 0.

1d
2d (lullh o +lvllko) + v (I1Daull} 5 + [ Dyullh .
N-1
HIDlh g, + Dyvllho) = (8,P)no + Y G
§=0

(3.3.3)
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where the boundary terms are

(3.3.4)

Special cases: (i) o = O:

c
Gy = 2 [UOSOzuO + 'U—1/27)1/2} + uoSzpo

i 4 [’LLODOZU/O -+ 2,61/1 (Dzu_l/z)z]

-V [(% + ﬂz) vz + (% - 52) 'U—1/2} Dgvo.

If we take 8; = B; = 0 also, the formula becomes
G; = % [uOSOEuO -+ v_l/zvl/z] + u0Szpo
— v [ugDogug + SzvoDyug] .
(ii) @ = —1/2:

c

G]. = 5 [uouAl + vﬁl/zv1/2] + UoP-1/2

— v |[(1+ B1)ug — Bruy] Dou_yyy

-V [(% + ﬁz) Uiz + + (% - ﬂz) U—1/2] D vo.

The terms depending on f; and f,, respectively, in this formula reduce to simpler

expressions in special cases of interest.

P = ‘1/2 : -V Szu—1/2Dzu—1/2a
pr=0: —vugDyu_ya,
ﬂZ = _1/2 . 4 U—1/2DzU0>

B2=0: —v S;voDvg.
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3.4 Boundary Conditions

We discuss the types of boundary conditions which will guarantee that the
boundary terms G and H arising in the estimates for the velocity components and
the divergence have the right sign. The boundary conditions are classified into the
same four types which we studied for the continuous equations. We consider two
particular choices for the location of the boundary line z = 0.

First consider the case where the boundary line is £y = 0. The u velocity
points lie on the boundary but the boundary lies midway between v and p points.

This is the case a = 0, and we take § = f; = 3 = 0 also. The formulae for G and

H are c
G]. = 5 [uO,S’Ozuo -+ v>1/2U1/2} + ©0Szpo

-V [uODOxuO + SszDzUO] )
c
H] == §6v1/25l/2 - VSZ50D260.

Type I: Velocity boundary conditions.

'LLO:()
C 9
SzUO =0 G = ——5'01/2
¢
DOZUIO — 0 H — —"2’(512/2

Type I b: Velocity boundary conditions for Outflow.

Up = 0
¢ 2
DzUO =0 G = 5’01/2
€2
D+:DD~:EU'O =0 H = 561/2

(DI(S():O)
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Type II: Inflow boundary conditions.

c
Sgpo + 550;;“0 = —UUg

Suv0 = 0 G = —oul~ ol
c
Dogug = 0 H = *5512/2
( SI(SO =0 )
Type III: Outflow boundary conditions.
Sepo + yuo — vDoguo =0
_ c c
Dyvg =20 G:~(7—§>u§+§vf/2
D+:;D—zu0 =0 H = E(512/2
2
( Dz(SO == 0 )
Type IV: Outflow boundary conditions.
Sa:pO =0
D,vo =0 {G: —0u3+ %vfﬂ}
%SOzuo — VDOa:uO = —OUgy

Next consider the case where the boundary line is _1/; = 0. The v velocity
points and the pressure points lie on the boundary; the boundary lies midway

between the u velocity points. This is the case @« = —1/2 and we also take

B =1 =P = —1/2. Then

c
G, = 2 [uou_l + ’U~1/2U1/2] + Uop-1/2

— v [Spu_1/2Daucyy2 + v_y2Dgvo }

c
H]' = 56_1/261/2 - 1/6_1/21)1;60.
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Type I: Velocity boundary conditions.

Szt_q/3 =0

v_o12=0 G=0
Dyu_yj3 =0 {H:O}
(6-12=0)

Type 1I: Inflow boundary conditions.

P-1/2 +YS:uU_1/2 =0

v_1/2 =0 G:~<7_E>ug
2
Dzu~1/2 =0 H =
(6-12=0)

Type III: Outflow boundary conditions. There is trouble in this case to eliminate
the S;u_y/2Dzu_y/; term. To fix this, change to §; = 0. Then the boundary

conditions which yield an estimate are not centred on z-1/2 = 0. They are

po1/2 + g—u_l — I/Dmu_l/z = —0ug
Dyvg =0 G = _ng + %”3/2
DioD_yup =0 o= %512/2

(D6 =0)

Type IV: Outflow boundary conditions.
p-1/2 =10

Dyuy =0 CEECERAN

[SC R

Dzu_l/g =0
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CHAPTER 4

Fully Discrete Linear Navier-Stokes Equations

4.1 Introduction

We now consider discretizing in time. We are interested in choosing a method
which will enable us to make energy estimates of the solution as we have above in
the continuous and the semi-discrete cases.

The simplest discretization which gives energy estimates is Crank-Nicholson.
The estimates go through easily in this case. This method is fully implicit and
hence for the nonlinear Navier-Stokes equations the solution of a nonlinear system
is required at each time step.

Another possibility is to use a semi-implicit method which treats the nonlinear
terms explicitly. We consider the leap frog-Crank-Nicholson method (LF-CN),
which uses leap frog for the convective terms and the pressure terms and Crank-
Nicholson over two time steps for the diffusive terms. The result is a scheme which
is stable and second order accurate. The technique for obtaining energy estimates
for the LF-CN method is well known for hyperbolic and parabolic problems. It
involves defining an equivalent energy norm Whi.Ch can be estimated directly.

As in the continuous and semi-discrete cases boundary terms arise in the energy

estimates. For the energy method to succeed the boundary conditions must be
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chosen such that these boundary terms have the right sign. We find that the LF-
CN time discretization leads to a coupling between the different time levels in the
boundary conditions.

The sequence of the estimates in each of the four cases is exactly the same
as those which were made above in the continuous case and so we shall not go
through all the details. We must look at how the time discretization affects these
estimates and how the boundary conditions are modified to account for this.

The semi-discrete linear Navier-Stokes equations can be written in symbolic
form as

w; = Aw + Bw + Cp,

(4.1.1)
Ahp -+ R(W) =0

where w represents the velocity components, Aw is the convective terms, Bw is
the diffusive terms, and Cp is the pressure terms. That is

u'.
W = w(xi,yj,nAt) = W?’]_ _ ( w+1/2) ,

(3
Viti/2,4

P = P($i+1/2, Yi+1/2, nAt) - P?+1/2,j+1/2,

CDO:C'LL + dDoyu
cDo,v + dDOy’U ’

. o I/Ah’u, _ N Dmp
Bw—uAhW—(VAhv>, Cp——Vhp——(Dyp).

The Crank-Nicholson scheme is

AW = —(cDo,W + dDoyw) = — (

Wn+1 —w"
At
App + R(W™) =0

= AwW™ + Bw" + Cp" (412

where the snook denotes the average of the time levels ¢, and ¢,

;‘;ﬁ - ,uTH-l _]L un
: 2 .

The leap frog—Crank-Nicholson scheme is

Wn+1 . Wn—l wn+1 + Wn—l

App” + R(w") = 0. (4.1.3b)
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4.2 Crank-Nicholson Method

The stability of the Crank-Nicholson method follows easily from the estimates
for the semi-discrete problem. The boundary conditions which we found in Section
3.4 are applied at each time level. The estimates for the divergence and the velocity
components and the role of the boundary conditions mimic closely the situation
for the semi-discrete equations discussed above. We outline the details.

In the pressure formulation the divergence 6 = D, u + D,v satisfies

5n+1 —n

— Ab" + Bén.
At !

Taking the inner product of 6n = (6™ + 6™*t1) /2 with this equation gives

6™ IA — 116™11

— (67, A8™),, + (67, B&™),

2At
= | Vab" |} + ) hH].
§=0

The right hand side of this equation can be summed by parts in the same way as
in the semi-discrete case. The boundary terms which result are of the same form
as H defined in (3.3.2) with 6 replaced by the time average 6.

Similarly, the estimate for the velocity terms comes from the inner product of

w" with (4.1.2). The result is

[l — Il

2At

= (W", AW™),, + (WP, Bw"), + (w?, Cp?),,

= —V[|VuWr |} + (67, p)n + Y hGY

where G has the same form as G of the continuous case defined in (3.3.4) with u,
v, p replaced by u®, o™, p*.
In Section 3.4 we discussed the choice of boundary conditions which guarantee

that G and H are both non-positive at each point on the boundary (i.e., for
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any j) at any time t. The same boundary conditions can be used with Crank-
Nicholson time discretization if they are applied at each time level ¢,. If the
boundary conditions are applied at each time level separately then they can also
be averaged in time — for example, if u(t,) = u™ = 0 for all n then u = 0 also
for all n. Hence it follows that G = é? and H = fNI]" are both non-positive for all

y; and all £,.

4.3 Leap Frog—Crank-Nicholson Method

We study the stability of the leap frog—Crank-Nicholson method for the linear
Navier-Stokes equations. The energy method requires modification to be applied
with leap frog time discretization of the convective terms. The usual estimates for
the L? norms of the divergence and the velocity which we have used repeatedly
above fail here because the terms appearing cannot be removed by summation
by parts. The type of modification required is well known; it is discussed by
Richtmyer and Morton [1967]. An equivalent norm is introduced involving the
solution at two time levels. The estimates for the divergence and the velocity are
made in the equivalent norm.

There is a stability limit on the time step At in terms of the grid spacing
h. This is the usual CFL condition. It arises in the analysis in enforcing the

requirement that the new norm be equivalent to the usual L? norm.

4.3.1 Boundary Conditions

Before going into the details of the equivalent norms we jump ahead to exam-
ine the boundary conditions. The boundary conditions are chosen in the (by now)
familiar way to bound the boundary terms G, H which result from the summation

by parts. The boundary terms G, H involve a coupling between the solution at the
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time level ¢, and the average over ¢, 1, t,;1. For all the types of boundary con-
ditions which involve the pressure (i.e., types II, III, IV) the boundary conditions
couple the different time levels.

As we have found previously, the boundary terms depend on the location of
the boundary line and the precise way the discrete inner products are defined.
The general form will be given later. The special case which leads to the simplest
boundary conditions is the case z_;/; = 0 where the v velocity and the pressure
are defined on the boundary line. In this case (& = —1/2) the boundary terms

have the form

—=n

c
j——-E[uOu 1+U/U 1/2]+u0p 1/2

—v [(1 + Br)uf — 51@] D m

*V[(%+ﬂ2) 1/2++( —/62> }Dvo,
—=n n 1
;= 1/25 1/2 {( + ﬁ) 172 T (5 —ﬁ> 6" 1/2] D&%

where the bar denotes the average over t,,_; and ¢,

_ un——l + un-i—l
L
2

The boundary conditions are classified into the same four types which we have
studied in the previous chapters.

Type I: Velocity boundary conditions. Take 8 = 8; = B, = —%. The boundary

conditions are applied at each time level separately.

Szu_l/z =0
'U_1/2 =0 é:O
Dwu_l/2:0 FZO

(6-12=0)
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Type II: Inflow boundary conditions. Take 8 = §; = 0y = —~%. The pressure

boundary condition involves coupling between the time levels.

c
P-1/2 t+ §Szu—-1/2 = “stu'ﬁlﬂ

U_1/2 =0 Ej_. _0-(11’8)2
Dyu_yj2 =0 H=0
(6-12=0)

Type III: Outflow boundary conditions. Take #; = 0, f = B, = % All the

boundary conditions involve coupling between the time levels.

¢ —
P-1jz+ GU-1 — vDguly, = —0o1ug
c . o . . O
‘2"()_1/2 — I/Dzvg B “0'21);7’/2 G = —0 (u’g)2 o 0-2(’0?/2)2
¢ L _ —
_Dzu~1/2 — VD+Q;D__IUS — ‘“O-ZDQ;U?/:Z H = _02( ?/2)2

C —_— —
( 55_1/2 — I/Dzé(? = _026{72 )

Type IV: Outflow boundary conditions. Take 3; = 0, £, = % The Neumann

boundary conditions on the velocity components involve coupling between the

time levels.

P-1/2 = 0
c — _— i —_ —
Sv-1/2 — vDgug = —0201), { G = —oy(ug)’ - 02(”?/2)2 }
Eu_l — I/D,cu’fal/2 = —oul

4.3.2 Equivalent Norms and Estimates
Now we go through the calculations in detail. First we seek an estimate for
the divergence. The divergence § = D,u + D,v satisfies

6n+1 . 6n71
2At

= A8" + Bé™. (4.3.1)
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Taking the inner product of 6" 4 6™ ! with this equation gives

6™ 1A — l16™lia

2At

= (6™ + 7L AS™), + 2(67, BE™)),. (4.3.2)

The hitch with applying the usual energy argument can be seen in this equa-

tion. It is the terms
(6" 4 6™ A8™)p = — (6™ + 6™ e Doy6™ + d Doy 6™ (4.3.3)
which cause the trouble. The summation by parts formula for the operator A is
(6, A/(S\)h,a = boundary terms — (A9, g)h,a

for any two discrete functions 8, § defined at the half points z;11/2. In all the cases
treated previously the A terms arising in the equations corresponding to (4.3.2)
have had the form (8, A6), enabling the A terms to be replaced by boundary terms.
An equivalent norm can be constructed in the present case to restore this property.

The boundary terms from the summation by parts have a symmetric form.

They are
boundary terms = % [(1 + ) (61/2/5_1/2 + 5_1/2;5\1/2>

T (671/23—3/2 + 5~3/2;§_1/2>] (4.3.4)
= g(6,8) + ¢(5,6)

where ¢ is defined by

g(&,,&\) = (1 + a) (51/23,1/2 — a(s_.l/zg_?,/z. (43.5)

N o

We concentrate on the special case a = 0 since we have defined 6 only for /2,

¢ > —1. In the special case o = 0

~ c ~
g(6, 6) = 551/25_1/2.
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Define the equivalent norm N = N(§) for the divergence by

N-1

N™ = [[6™[5 + 167117 — 2A8(6™, 46" 1) + 248 ) hg(6™,6™7Y).  (4.3.6)
=0
Then
Nn—|~1 — N©"

- = (6"t g AST 2(6m, Bé™
N ( + , A6™ )+ 2( )

o (5n+1’A5n)h + (6n’A6n~1)h +g(6n+l’6n) - g(én,5n~1)

— (5n—1,A6n)h + (6naA6n_l)h +g(6n+]’6n) _ g(én’5n~1)
+ 2(5_n’ Bﬁ)h

— g(6n—1,5n) +g(én’énvl)_+_g(6n+1,5n)_ g(&n,én_l)
+2(67, Bé"),,

N-1

= —*21/thgﬁ”i + 2 Z hF]

=0
where the sum over j in all the g terms is assumed. The boundary summand

simplifies to

_ — 1 - 1 S __
The coeflicients # arise from summation by parts of the diffusion terms since there

is some freedom in the choice of the inner product.

The equivalence between N and the L* norm for é is determined as follows.

-~

(6, Dozb)no = Y hbiy1/2Dosbii1)s

=0
1 ~ .
- 52 bit1/2 <6i+3/2 - 61-_1/2)
i=0
! s < 1 ~
= oF [(6i+1/2,5i+3/2)h,0 - (6z‘+3/2a6i+1/2)h,0] — 561/254/2,

SO

[(5, Dos)uo + 5uyzb-uja| < o (1610 + [B13)




Likewise,

~~ ]_ o~
< 2 2 )
(8, D68 < o (118112 + 113112

From these results it follows that

(67, 46"~ (6%, 8")| < oo (el -+ [dlee) [I672 + ™12

and so

KAt iy KAL] e
{1 - T} (67112 + [|6™71]2) < N, < [1+ T} (67117 + [16™~*11%)

for K = |c|o + |d]oo- Hence, N, is a norm and is equivalent to ||6"||% + ||6"1|}3,
provided

(leleo -+ ldleo) AL < k. (4.3.7)

For the velocity components the analysis goes the same way. The evolution of

the norm of the velocity is obtained by taking
(Wt £ w™ ! (4.1.3a)), = 0,

where the discrete norm starts at £ = z, = 0 for the first component and at z = z,
for the second component. The resulting evolution equation for the norm of the

velocity is

W™ R = (i
2At

= (W't 4w AW™ 4 Cp")y, + 2(W™, BWP),,.

Define the equivalent norm for the velocity components by

N-1
M™Mw) = [[wh]lh + Iwm R = 288 (w™, AW TY) + 248 > hG(w, WY,

§=0

where ¢ is defined by

~ &) = c 1 . o 1 ~
g(w,w =513 o1 ) w1l 5~ Upl_1

4 (1 4 a2) v1/20-1)3 — 062”—1/2@—3/2} .
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The summation by parts formula to be used for the velocity is

(W,AV/O)}L —+ (\/7\\/, AW)h = (u,Aﬁ)h,al -+ (iZ, Au)h,al + (U, Aﬁ)h,ag + (i)\, 141))}%&2

We concentrate once again on the special case oz = 0 and we omit the subscript

from «;.

Then the resulting equation for the equivalent norin for the velocity is

Mn+1 _ Mn .
A = LAWY (W Aw ),

+ 2(w™, Cw"), + 2(W™, BW"),,
#20 [Flwwn) — gl we )
7
o N-1
= 2(6",p")n — 20| VW ||2 + 2 Z hG,
§=0

where the boundary terms G; are

|

G, = n

n
g s W

3>p (o)
e

+ a ) u Do ull — B1Su” . Dou™ . — (o a— f1) ul D u”
1/2 1/2

sU /9
1 o o

The equivalence between M and the L? norm for w is determined by the same

a7t
+u0

— 2v

/\/\é

steps as for the divergence. The result is that M, is a norm and is equivalent to

lw”[|} + [|[w"~1||Z , provided the time step satisfies the CFL stability condition
(4.3.7).
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Part 1I: Boundary Conditions for the

Stream Function Vorticity Equations



-

CHAPTER 1

Introduction

One of the difficulties associated with the stream [unction vorticity equations
for viscous incompressible flows is the numerical implementation of the no-slip
boundary conditions ¥ = 0 and d1/dn = 0 at a rigid wall. These boundary
conditions place constraints on the stream function and its normal derivative at
the boundary. There is, however, no explicit boundary condition for the vorticity.
This lack of a vorticity boundary condition seems to be at the root of the problems
which appear.

In this study we isolate an appropriate model problem and analyse the process
of discretization in space. We investigate the error between the solution of the
continuous model problem and the solution of the semi-discrete model problem.

The stream function vorticity equations describe the flow of a viscous incom-
pressible fluid in two space dimensions. They are

Gtugtvg=vAc+f,
¢ = Ay

where
¢ 1= Uz — Uy, U = —Tﬁy, 'U:wz-
The stream function vorticity equations are an alternative formulation of the in-

compressible Navier-Stokes equations which are derived from the primitive variable

formulation. The vorticity ¢ is defined to be the curl of the velocity. For 2-D flow

The work in this part was performed together with William Henshaw.
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the vorticity vector has only one non-zero component, which points in the z di-
rection, and hence it can be treated as a scalar quantity. The vorticity equation is
obtained by taking the curl of the momentum equations. In this way the pressure
is eliminated from the equations. The stream function ¢ is defined in such a way
that u, + v, = 0 is satisfied identically.

To close the system initial and boundary conditions are also needed. For flow

in a bounded region {1 with solid walls the no-slip boundary conditions
u=v=0 on Jf1
become conditions on the stream function and its normal derivative
P =20¢/On=0 on 9.

Initial conditions are

u(z,y,0) = v@(z,y),  v(z,y,0) =vO(z,y)

satisfying w4+ vl(,o) = 0 for (z,y) in €1, which become

¢(Ia y,O) = ¢(0) (iE, y)

The stream function vorticity formulation is very popular for use in 2-D nu-
merical calculations. Its primary advantage over the primitive variable formulation
is that it involves two dependent variables (i,¢) instead of three (u,v,p) which
is an advantage for storage and possibly also in computational speed, depending
on the numerical method used. Also, with the stream function vorticity formula-
tion, the divergence is guaranteed to remain zero, which is not the case for other
formulations. The stream function vorticity formulation also presents the same
advantages for the calculation of axisymmetric flows.

On the other hand, the stream function vorticity formulation has its limitations

in comparison to the primitive variable formulation. Since the pressure has been
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eliminated from the equations, the only boundary conditions which can be used
are those which involve the velocity components (or possibly the vorticity). This
is a disadvantage for computation of flows with open boundaries where bound-
ary conditions involving the pressure have desirable characteristics as discussed
elsewhere in this thesis. Also, the stream function vorticity formulation can only
be applied to incompressible flows. For 3-D flows the primary advantage of the
stream function vorticity formulation disappears — the vorticity vector has three
non-zero components and so the number of dependent variables is the same as in
the primitive variable formulation.

Some reviews of numerical methods for the stream function vorticity equations
can be found in Peyret and Taylor {1983], Orszag and Israeli [1974] and Roache
[1972].

The two boundary conditions ¢ = 0 and 99 /dn = 0 both must be applied on
the boundary. The first condition specifies that there is no flow of fluid through
the boundary, the zero flux condition, and the second condition specifies that there
is no flow of fluid along the boundary, the no-slip condition. Usually, there is no
trouble satisfying the zero flux boundary condition if the grid is chosen such that
the boundary lies on a curve of grid points; the boundary condition is applied at
each of the grid points on the boundary. There are (at least) two ways to look
at the numerical approximation of the no-slip boundary condition. The first and
more common approach is to use the normal derivative condition to determine an
expression for the vorticity on the wall in terms of interior and boundary values
of the stream function. This requires that a special one-sided formula be used
for the vorticity on the boundary, and that the no-slip boundary condition be
incorporated in this formula. The alternative approach, which we prefer, is to
think not of approximating the vorticity at the wall but rather of approximating

dv/dn. The vorticity on the wall is defined as it is in the interior. The discrete
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approximation to d¢¥/dn will determine the values of ¢;; needed to apply the
formula for ¢ on the boundary.

To achieve accurate answers, many investigators advocate the use of higher or-
der approximations to the boundary conditions. When an implicit time marching
method is used, or when a steady state solution is required, the stream function
vorticity equations may have to be solved by iteration. When such iterations are
required, some investigators have encountered difficulties with higher order bound-
ary conditions and have abandoned them in preference to lower order schemes. The
trouble is that the iterations to solve the nonlinear equations at each time step
may converge slowly or not at all. We have found in implicit time stepping cal-
culations that higher order methods are stable provided an appropriate iteration
scheme is used, such as the one developed by Israeli [1970].

There has been some work performed at trying to obtain accurate and stable
boundary conditions and to try to understand the difficulties present in this prob-
lem including the work of Briley [1971], Bontoux, Gilly and Roux [1980], Israeli
[1970] and Orszag and Israeli [1974]. It appears that most results are heuristic
or only qualitative in nature, although Orszag and Israeli study a model problem
similar to the one we look at here.

Numerical experience shows that the difficulties seem to be related to bound-
ary layers in the vorticity. We were led to this problem through observations of
the errors in numerical calculations whilst testing a code for the stream function
vorticity equations on a bounded domain. The exact solution of the equations was
known — the solution was prescribed and the corresponding forcing was calcu-
lated. The equations were solved numerically and the error could be calculated
exactly. The error in the stream function was observed to be uniformly second
order in the local mesh spacing. The error in the vorticity was also O(h?) except

for a boundary layer which was O(h). This O(h) boundary layer in the vorticity
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error was generated immediately at { = 0 and then it diffused and decayed away

in time.

1.1 Reduction to a Model Problem

In the neighbourhood of a no-slip boundary the convective terms are small
compared with the other terms. This suggests that it is reasonable to neglect the
convective terms and to consider the stream function vorticity formulation of the
Stokes equations. The initial boundary value problem is

for (z,y) € Q, t >0,
¢ = Ay
with
Yp=0¢Y/dn=0  for (z,y) € 0, t >0,

¥(z,y,0) = pO(z,y)  for (z,y) € Q.

Near the boundary the flow is often one dimensional in character, varying in the
normal direction to the boundary. Tangential derivatives of the stream function
and vorticity are small. A reasonable model problem to study thus seems to be

the following initial boundary value problem in one space dimension
G = Ve + [(251),
¢ = Vsa)
v=19,=0 at £ = 0,1,
Y(z,0) = z,b(o)(x).

We shall call this the continuous model problem. The terms which have been

(1.1.1)

neglected are assumed to be small or to vary smoothly in which case one can
argue that they can be absorbed into the forcing term f.
In studying this model problem we are interested in the influence of the bound-

ary conditions. We hope that its structure is rich enough to contain the salient
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features of the full problem and at the same time simple enough to be analysed
and explained. In fact, we do find that the continuous model and its space dis-
cretization have interesting properties which seem to explain the source of the
difficulty and its proper resolution.

In Chapter 2 we study the continuous model problem in detail. We show how
 and any number of its z and t derivatives can be estimated in terms of the
forcing, the initial data and the viscosity coeflicient. These estimates also involve

the time derivatives of ¢ and v, at ¢ = 0. We prove the following result.

Theorem 1.1.1 For each integer | > 0 there exist constants K, o such that

IO j+1

0 N Jd
- < Ke® : 2 1.
V@01 < K D I (a0l e e (112)
where
0 1=0,1,
J() =4 1/2 l even,l > 2, (1.1.3)
({+1)/2 1odd, >3,

and F(z,t) depends on the forcing function and its derivatives.

This theorem can be rephrased. If ¢, has J time derivatives bounded at ¢ = O,
then 1 has 2J space derivatives bounded for all time in the L? norm.

The question of compatibility between the initial data and the boundary con-
ditions arises. We show that there are constraints which the initial data must
satisfy for the time derivatives of ¢ and ), to be bounded at t = 0. A sequence of
compatibility conditions is obtained by requiring that d'1/dt* and 0"l [0zt be
continuous up to the boundary at t =0 for ¢ = 0,1,2,.... We make the following

definition.

Definition 1.1.2 The initial boundary value problem (1.1.1) is compatible to
order m if /At and 9'T1/0zdt’ are both continuous up to the boundary at

t=0fori=0,1,...,m.
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The zeroth order compatibility conditions are just the boundary conditions of
the problem. These are of local type. The higher order compatibility conditions
are global constraints which in two dimensions involve an integral of the initial
data around the boundary.

If some of the compatibility conditions are not satisfied, then the process of
estimating derivatives of ¢ breaks down at some point. To any given order the
solution for 7 can be decomposed into a compatible part and an incompatible

part. This is achieved by decomposing the initial data as

where the gz part is compatible and the ¢ part contains the incompatibility. A
precise description of this decomposition is given in Chapter 2. The breakdown
of the estimates can be traced to singularities in derivatives of the incompatible
part of the solution at the boundary at ¢t = 0. We show that the singularity in the
solution due to incompatibility diffuses and decays away in time; for large time
the incompatible part of the solution decays away exponentially to zero.

It is already clear from the energy estimates above that the solution retains
some smoothness even if the compatibility conditions are violated at some order.
By examining in detail the nature of the solutions in such incompatible cases it is

in fact possible to estimate one more z derivative than is given by (1.1.2).

Theorem 1.1.3 Consider the continuous model problem (1.1.1) with zero forcing

and special initial data
PO (z) = 2"(1 — z)" [a + b] (1.1.4)
where a and b are constants. The solution ¢(z,t) satisfies

al ( —v(27)?
-2l < Ke O (o] + ) (1.15)
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forl =0,1,...,2n — 1 for some constant K depending on n.

For these initial data we shall see that 1 has exactly J = n—1 time derivatives
bounded at ¢ = 0;’the number of = derivatives of ¢(z,t) which can be bounded is

2n —1=2J+1.

1.2 Space Discrete Model Problem
The process of discretization in space consists of laying down a grid on the
domain, replacing the dependent variables by corresponding grid functions and

replacing the space derivatives by finite differences. A uniform grid on the interval

[0,1] is shown in Figure 1.1; it is given by
z, = ph, w=-1,0,1,...,N,N +1

with Nh = 1. The grid is located such that grid points lie at both-the end points

z = 0 and z = 1; the grid extends by one grid point beyond each end point.

0 : 1
L | 1 L 3 1 A ] ] l |
e ¢ @ x x
-l xo xl xz XN-I N N+14
Figure 1.1

The discrete solution consists of the discrete stream function ¢,(t) and the
discrete vorticity z,(t). ¢,(t), which is defined for p = -1,0,1,...,N—1,N,N+1,
t > 0 is an approximation to ¥,(t) := ¥(z,,t), » = 0,1,...,N. The points outside

the boundary, ¢_; and ¢n1, are fictitious ﬁoints which enable z, to be calculated
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on the boundary by the same centred second order formula as in the interior. z,(t)
is defined for 4 = 0,1,..., N — 1, N, and is an approximation to ¢,(t) 1= ¢(z,,t).
Second order centred finite differences are used to approximate d*/dz?

Uity — 2U; + Uj—q

h?

DD _w, =

The derivative boundary conditions are differenced with approximations of order
q. D4 will be the approximation to d/dz at the left boundary and D,, the
approximation at the right boundary; we shall define these operators below.

The initial conditions specify ¢, at the interior grid points p = 1,..., N — 1.
The boundary conditions are applied all the way to ¢t = 0 and so they are used to
calculate ¢,(0) on the boundary and at the fictitious points. The discrete initial
data is taken to be a second order accurate approximation to the continuous initial

data. By this we mean that
o) = v (w,) + O(R?).

Often it is convenient to think of the discrete initial data qb&o) as the point values

of some continuous function qﬁgf))(a:) where
¢, (z) = 99(z) + O(h*).

Likewise, the forcing is a second order accurate discretization of the continuous
forcing; we shall usually take f” to be the point values of the continuous forcing;
ie., f)(t) = fzu,t).
The resulting problem is the space discrete model problem
0z,

- =vD{D_z,+f}, w=12,...,N—1,

z,=D,D_¢,, pu=0,1,...,N,
¢o = ¢y =0, (1.2.1)

Dl,q¢0 = Dr,q¢N =0,
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We consider a particular class of numerical approximations to the no-slip
boundary condition. The approximations which we consider use the fictitious
points outside the boundary and minimize the number of points used inside the
boundary for a given order of accuracy. The general form of the no-slip boundary
conditions of order ¢ is

g—1 g—1
1

1
Dy 4o := 5 Z a;¢; =0, D, by = A Z (—a;)pn-i = 0,

where the coefficients a; must be determined. The second order form of the discrete

boundary conditions is
Dy 2¢0 := Dogo = 0, D, 2¢n = Dopn =0, (1.2.2)

where Dy is the usual centred second order approximation for d/dz

Upt1 — Up-1

Dou,, = o

The fictitious points can be eliminated from the scheme by using special formulae
for the vorticity on the boundary. This corresponds to an approximation to the

vorticity on the left hand boundary of

_ 24y

20="7;" (1.2.3)

This approximation is alternatively referred to as the conventional approrimation
(Gupta and Manohar [1979]) or Thom’s formula. The truncation error in formula
(1.2.3) is formally only O(h). We shall also be interested in using higher order
approximations for the no-slip condition. The second order approximation was
centred but the higher order schemes are one sided; there are more values of the

stream function used from within the interval but still only a single point outside
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the boundary (i.e., at £_y or zy41 ). The third order approximations can be

derived from Taylor expansions of ¢ and are

—2¢_1 — 3¢ + 661 — @y

D3¢0 = 6h =0,
Dygty i PN-2 — 6¢N416Z 3¢N + 20N 41 _ 0.
The fourth order approximations are
Disdo = —3¢_1 — 10¢q ;28?51 — 64y + ¢35 0,
Dy sy = —¢n-3+6¢n_2 — 18¢py 1 + 100y +3dny1 _ 0.

12h

In Chapter 3 we study the semi-discrete model problem in detail. We show
how ¢ and any number of its divided differences and ¢ derivatives can be estimated
in terms of the data. As in the continuous case the estimates involve the time
derivatives of D¢ at t = 0, where D is the usual compact two point divided

difference operator which approximates d/dz

This difference approximation is thought of as being centred at the midpoints of
the grid, where it is second order accurate. If second order boundary conditions
are used, all the estimates go through exactly as in the continuous case. If higher
order boundary conditions are used, the estimates require modification. Let D®
denote the compact [ + 1 point divided difference approximation for d'/dz'; i.e.,
DOy, = (D)u, [ even,
DWupyirje = (DY uprryy 1 odd.

We prove the following result.
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Theorem 1.2.1 If the no-slip boundary conditions are approximated by the sec-
ond order formulae (1.2.2), then for each integer | > O there exist constants K, a

such that

|DOg(e); < “on;ﬁ,—Dqs )l + F"(2) (1:2.4)

where J(l) is given by (1.1.3) and F"(t) depends on the forcing function and its

divided differences and derivatives.

Theorem 1.2.2 If no-slip boundary conditions of order q are used, then
¢ = ¢ +h'p,

where ¢ satisfies the estimates (1.2.4) and ¢ satisfies

i

t ~
/e““"”\%(t)Pdtsconst/ e 2o | D) 2, dt,
. t o (1.2.5)
SEPpY cons —2v0,
/ e~ ol F (1) dt < S e 2oot| DEYG(t)]2, dt
0 a

for some constant oy > 0.
The estimates (1.2.5) are quite crude, but they demonstrate that the space

discrete approximation is stable. These estimates can be improved.

We also prove estimates for incompatible problems.

Theorem 1.2.3 Consider the space discrete model problem with inhomogeneous

boundary data

]
atD+D W, = v(Di D)y, w=1,2...,N—1,

¢O::‘ﬁN =0,
Dl,qd)o - gO(t)a Dr,q¢N - gl(t)a
$,(0) = 0.

(1.2.6)
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The solution ¢ and z = D, D_¢ satisfy the estimates

¢ 't
/ 6*2"“"t|q§“(t)|2 dt < const/ g~ tvant [|g0(t)\2 + [gl(t)lz] dt
¥ 0 (1.2.7)

const

t ('t )
[ el dr < S5 [ e me o) + o)) a
0 h’ 0

for some constant oy > 0.

Theorem 1.2.4 Consider the space discrete model problem (1.2.1) with zero

forcing and special initial data
</>(O)(m) =z"(1 —z)"[a + bz]. (1.2.8)

where a and b are constants. The solution ¢,(t) satisfies

t 1 — 6—21/0015
—2v0,t D(l) t 2 dt < t —— 2 b 2 1.2.9
| Sl dt < const T (P +bP) (129

for{ =0,1,...,2n — 1, and

const 1 — e~ 2voot
hZ 21/00

t
/ e—2uaot|D(2n)¢M(t)|2 dt S <|a‘2 —+— Ib|2) (1210)
Q

for some constant oy > 0.

It is convenient to introduce a shorthand notation for the model problems.
Define the continuous and semi-discrete operators L and Lj by
Lip(z) = Yumt — Vasras
Ly = 2D, D_g, — v(D, D.)8,

ot
and the boundary operators B and Bj by
TZJEO; ] %o
1
Bp= | M1 Be=Bus= |
wzglg . rq¢N

With this notation the continuous and semi-discrete model problems are written

as

Lp=f  Byp=0, o(z,0) = ¢O() (1.2.11)
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and

Lyp = f", By = 0, $u(0) = ¢ = ¢V (z,), (1.2.12)

respectively. Proceeding one step further we will write (1.2.11) and (1.2.12) as
Ly =T,

L,¢ = F".

1.3 Error Analysis

We now investigate the properties of the semi-discrete solution (¢,(t), z,(t)) of
(1.2.1) as an approximation of the continuous solution (¢(z,t),¢(z,t)) of (1.1.1).
The analysis of the error makes use of the estimates for the solutions of the con-
tinuous and semi-discrete model problems. We are interested in the following
questions:

1. What is the error in the approximation to the stream function 7

2. What is the error in the approximation to the vorticity ?

The distinction must be made between compatible and incompatible problems.
Our discussion will focus mostly on compatible problems. First we analyse the
errors in the approximation of compatible problems, and then we make some

remarks about incompatible problems.

Compatible Problems

We need to define what we mean by a compatible problem. The error analysis
involves an expansion of the semi-discrete stream function ¢,(t) in terms of the
continuous stream function ¢(z,t). This asymptotic expansion technique relies on
the smoothness of ¢(z,t). The precise number of bounded derivatives needed can

be found by an inspection of the asymptotic expansion below.
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Definition 1.3.1 The continuous model problem (1.2.11) is called compatible if

¥(z,t) has a sufficient number of bounded derivatives.

From a practical viewpoint this notion of a compatible problem represents an
a priort knowledge or assumption that the fluid flow which is being calculated is
smooth. By this assumption we rule out the situation of an impulsive start. In an

impulsive start problem the error estimates which follow will not be good.

Error Equations

To analyse the error in the stream function we form the equations for the error.

The normalized error in the stream function is defined by
D(@0r8) = Pult) = Bu(t) + heu(t) (1.3.1)
and satisfies the semi-discrete error equations
Le=fM,  Bre=g¢W,  ¢,(0) = e, (1.3.2)

where f(), g(1) are the truncation errors of the difference equations divided by h?2
and el® is the normalized error in the initial conditions e,(,LO) = (1&,&0) - ¢5L0)> /h?.
The error equations can also be written as Lje = F).

Estimates for the forcing terms in the error equations are provided by the
estimates for ¢¥(z,t) and its z, ¢t derivatives. These estimates depend on the data
f(z,t), ¥ (z) and they also involve the time derivatives of ¢, at ¢ = 0.

In the compatible case the truncation errors in approximation (1.2.1) are
all O(h*) or higher. The discrete stream function computed from (1.2.1) will
thus be second order accurate provided that the normalized error satisfies ||e|]| =
|L; 'FW|| = O(1). The discrete vorticity z, = D D_¢, will also be second order

provided that the error e, is sufficiently smooth. This can been seen as follows.
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The computed stream function ¢,(t) is related to the true solution ¥(z,,t) by
Gu(t) = ¢(z,,t) — h*e,. The discrete vorticity is thus given by
zui=DyD_¢,=D.D ¢, —h*D,D e,
= tu.(z,) + O(h?) — R*D, D _e,.
If the error e, is sufficiently smooth, then D, D_e, looks like a second derivative
and so ||[DyD_e,| will be O(1). The approximation to the vorticity will then
be second order. 1t seems useful to consider the problem of obtaining an accurate
answer to the vorticity in this way; that is, to think of obtaining an approximation
to the stream function with a smooth error. Divided difference approximations
to higher derivatives of the stream function will then have the same accuracy as
the stream function itself. This is one reason why we consider approximating
dY/dn =0 rathér than the vorticity on the wall.
The forcing function in the error equation f(!) is given explicitly by
FO(t) = W (. 1),

FO (e, t) == = (Ly — L)Y (z,1)
o* 0 94
B [(DJFD" a %5> a7 <(D+D~)2 - @)] ¥(z,t)
—_ 1 85¢ th (97'(,0 4 1 aG,(/) \
—ﬁaﬁn+znﬁ@*0m)“”@55+0w0'

The truncation errors in the boundary terms are of the form ¢®) = (0,0, g(l) (1))'

0 191
1 0 _, 01tt ~
#”:ﬁ(“ﬂ*aﬁwﬁﬂzqwﬁ%;ﬁWmﬂ+mmlx
(1) 1 d q-2 o g-1
g = 15 D“q_é“g} P(1,t) = Cyh a$q+1¢(1,t)+o(h ).

The approximations are accurate to order ¢. In particular, for the conventional

approximation D, = Dy and D,, = D, we have

. 1 D _8 0.t) = ! 0 U 0 O(h*
90 = 13 | Do 5 ) 0(0:8) = cera(0,8) +  Yasaus (0,) + O(HY),
O 9 1 n !
g = <D0 83:) V(L) = (Van(L,8) + S ¥snea(L, ) + O(RY).



93—
Asymptotic Expansion of the Error
The error can be expanded in an asymptotic series if the incompatible part is
subtracted off at each order. The error e,(t) can be decomposed into a smooth
part, an incompatible part and a higher order part
eu(t) =€u(t) +2u(t)
= (2 1) + €u(t) + B2 (2).

The decomposition is made in two steps. The first step is to split the error equation

(1.3.2) into
LE=f",  BE=0, 2,0 =¢) =2 (z,), (1.3.3a)
Lyg=0, Bye=g", g,(0) =e) =e 20, (1.3.3b)

The initial data ?(0)(2:) is chosen such that the continuous model problem corre-
sponding to (1.3.3a) is compatible — that is, {fV(2,¢),e%(z)} is a compatible
data set. Then € can be approximated by the smooth solution 2 of the continuous

problem plus a remainder term h?e(?) of higher order

Li=f0,  Bé=0, z,0) =) (x), (1.3.4a)

Lue® = fO BLe® =4 2)(0) =0, (1.3.4b)

14

The forcing terms (¥ and ¢ in the equation for e(?) are the truncation errors in
the approximating € by %. Hence they have the same form as f(V) and ¢V) except
that they involve derivatives of  instead of Y. The assumption of compatibility
guarantees that f(?)(z,t) and g(®(t) are as smooth as necessary. It is clear that
(1.3.4b) has the same form as (1.3.2) and so these steps can be repeated to generate

more terms in the expansion.
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Now each of the equations for %, e, ¢ is in the right form to be estimated
using the theorems stated above. Loosely speaking the result is that

¢=0(1), D,DE=0(),

_ - 1 1 1
€~ O(l)’ D+D_€ = O(};g(l)’ ﬁ¢§toz)|:a::o,l’ ﬁ 51,0)':1::0,1)7
1
e =0(1), DD ®= O(Eg(z)).

The conclusion is that the error is second order excepl for the terms in D, D_e.
One contribution comes from the initial data for the scmi-discrete approximation
which is assumed to be at least O(h?). If this initial data qﬁgo)(:c) satisfies the
no-slip boundary conditions then this contribution is not present.

The other contribution comes from ¢*), the normalized truncation error in the
approximation of the no-slip boundary condition. The magnitude of ¢(!) depends
on the order of the numerical boundary conditions. If ¢th order boundary con-
ditions are used, then ¢! is O(h?7%), causing an error in the vorticity of order
h? 1. The conclusion is that if second order boundary conditions are used then
the vorticity is in general accurate to O(h) on the boundary, whilst if higher order
boundary conditions are used then the vorticity is O(h?).

A more precise statement of the error bounds is the following.

Theorem 1.3.2 Suppose 9(x,t) satisfies the continuous model problem (1.2.11)
and ¢,(t) satisfies the semi-discrete model problem (1.2.12) with
$O(@) = 90(z) 1 K26 (),
fut) = f(zwt).
Assume that the continuous problem for ¢ is compatible. Then the normalized

error e,(t) can be decomposed into
eult) = ez t) + eult) + R (1),

where
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o ¢ satisfies estimates of the form (1.1.2) with {f,ib(o)} replaced by {f(l),?(o)}

b

e ¢ is the sum of terms which satisly estimates of the forms
(1.2.7) with g replaced by g(*), and
(1.2.9) with ¢ replaced by &,

o ¢?) is the sum of terms which satisfy estimates ol the forms
(1.2.4) with {f, qS(O)} replaced by {f(z),E(z)(O)},
(1.2.7) with g replaced by ¢, and
(1.2.9) with ¢ replaced by &*0),

The initial con.ditions @) are chosen to ensure that {r® 8D} satisfies the

compatibility conditions at least to order 2.

Incompatible Problems

If the initial data and the boundary conditions are incompatible, then the
forcing functions and the inhomogeneous boundary data in the error equations
are not bounded. It is not clear that the error in either the stream function or the
vorticity can be estimated well.

However, for large time the incompatible part of the continuous solution dies
off exponentially. Likewise, we expect that the incompatible part of the discrete
solution also dies off exponentially although the stability results we have proved are
only sufficient to show a positive exponential bound on the growth rate. Assuming

that this expectation is correct, it follows that asymptotically for large time second

order accuracy is obtained.
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CHAPTER 2

Continuous Model Problem

We consider the model problem for ¢(z,t)
Yozt = Vrags + f 0<z<1,1>0,
Yp=v,=0 =z=0,1,1>0, (2.0.1)
¥(z,0) = ¢v9(z)  O0<z<1,

where f = f(z,t) is the external forcing and ) is the initial data. Our first goal is
to investigate the properties of this system. We show that ¢ and its derivatives can
be estimated in terms of the data. The estimates relate the norm of the solution
at any time to the forcing and the initial data. Estimates for the derivatives of ¢
also involve the time derivatives of ¢, at t = 0. We shall see that boundedness of
the initial time derivatives of 1) places constraints on the initial data which we call

compatibility conditions. We investigate the form of these compatibility conditions

and their consequences.

The norms which we use here are the L? norm defined in the usual way in

terms of the L? inner product on [0, 1]

(u,v) := /01 u(z) v(z) dz, ull? == (u,u),

and the maximum norm

[uleo := max [u(z)|-

We assume throughout that the forcing and the initial data are smooth func-

tions of (z,t) and z, respectively, in the interior and as x approaches the boundary.
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We allow the possibility that the limil of the initial data from the interior may not
match the boundary conditions. For the forcing function this means that || f(-,¢)]]

is finite for all £ and the norms of all the =z and ¢ derivatives of f are finite.

2.1 Estimates for the Compatible Problem

First we present the estimates under the assumption that the initial data and
the boundary data are compatible to any order. That is, we assume that all the
time derivatives of ¢ at ¢ = 0 are as smooth as needed. Hence, once any estimate

is made for ¢, then estimates for any number of t derivatives follow immediately.

Lemma 2.1.1 (Sobolev’s Inequality) For any function uw € C'[0,1] and any ¢ > 0

there exists a constant Cy(¢) such that
|ulse < Cu()l|ull® + eljug|*. (2.1.1)

Proof. Let z,,, and z,,, denote the z-values where

ofzmin) | = in [6(=)] [0{s)| = s ).
Then
1
uomin) P < [ JuPda
¢}
and
(@) — (@) | = / Y, dz
imply

w(zmae)? < 0l + 2 s
<l + eljual + ]
This proves the lemma with Ci(€) = 1+ 1/e.

Lemma 2.1.2 (Poincaré’s Inequality) Let v € C[0,1]. Then

2

ol < ([ wdte) + gl (212)
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Proof. Let £ and y be between 0 and 1. Then

u(y) — u(z) = /my updz.
So

Yy 1
u2(m) + uz(y) — 2u(z)u(y) < \/ uidz\ < / wlde.
z 0
Integrate this inequality from O to 1 with respect to z and then with respect to y.

The result of the lemma follows.

Lemma 2.1.3 Let u € C*0,1] and u(0) = u(1) = 0. Then

2 Julf? < [lu” (2.1.3)
In particular

o [l < sl

w* |hal|* < flobaa|®-
This result follows from Parseval’s relation applied to the Fourier sine series

of u.

We now make estimates for ¢ and its z derivatives, beginning with ;.

Lemma 2.1.4 Estimate for ||1,||. For any o > 0 there exists a constant Cs(c, V)

such that
1d
5 el + vllal® < Sl + Gl £ (2.1.4)

and

£
waHz Se(a—Zuwg)t||¢£O)H2+C3/0 6oz(t»t’) f(',t’)HZdt’

< @O 4 C0(ar 1) max || £(- 1)

where 0(a,t) := (e* — 1)/ a.

(2.1.5)

Proof. Take the inner product of ¢ with the equation (2.0.1), integrate by parts
and use the boundary conditions to eliminate the boundary terms which arise.

The resulting equation is

1d

2 2 . o 9 1 .
gl el = () < Sl 5] (2.1.6)
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for any 6 > 0 using the Cauchy-Schwarz inequality. Now use the result of Lemma
Lemma 2.1.3 to estimate ||¢| in terms of ||¢),||. The inequality (2.1.5) follows
from integrating (2.1.4) with respect to ¢ and using Lemma Lemma 2.1.3 as a

lower bound for ||t4.|| in terms of ||4,]|.

The same arguments used to estimate ¢, also give estimates for 1,; and higher
t derivatives. The only difference for ¢, is that the estimates are in terms of f;
and ¥,:(z,0). The estimates for time derivatives will be used to obtain estimates

for higher z derivatives. We state the results for ¥,;.

Lemma 2.1.5 Estimate for ||[t||. For any o > 0 there exists a constant Cy(a, v/)

such that

2 dt”"vb:ct‘lz I/H’szzt||2 %szt'P + C ”ft||2 (217)

and

t
e | < 27 s (-, 0)* + 04/0 N £ 1) Pa

‘ (2.1.8)
< N (O + Cablant) gmase (1)
where 0(a,t) := (e** — 1)/a.
An estimate for ||1),,|| is obtained in terms of v, and .
Lemma 2.1.6 Estimate for ||1,,]].
[tasl|* < Calv) (19all* + bl + 1F17) - (2.1.9)

Proof. From (2.1.4)
I/“wmw - h(waf) - (¢xa¢zt)
5 (lell® + 11 l1® + ol + 1£1%)

[N

Estimates for |¢|e, |¥;]c now follow from Sobolev’s inequality. Furthermore,
we infer from the estimate for ||¢,,|| a similar estimate for ||¢,4||, at the expense

of involving 4.
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Lemma 2.1.7 Estimate for ||,z

haaell® < Cs(v) (1¥aell* + arell® + 15:)%) - (2.1.10)

The next estimate follows from the vorticity equation (2.0.1).

Lemma 2.1.8 Estimates for ||t,z02]), |22z -

V|[$ezesl| < [lbaal] + 11711, (2.1.11)

[$azall* < Crle)lthaall” + €[ $asmsl|*. (2.1.12)

Proof. The estimate for 1,,,, comes immediately from (2.0.1). The estimate for
Vses is @ Sobolev type inequality. By Poincaré’s inequality ||444,|| can be estimated
by %, on the boundary and ||¢,4s.||. Then use Sobolev’s inequality to estimate

|¥sz|oo In terms of ||1,,]| and ||1.../l. By choosing the coefficients suitably the 1,

terms can be moved to the left hand side and the results follow.

Lemma 2.1.9 Estimate for |¢zz]c0-

[Vssle0 < Col(€)[Vozsl|” + €]l thuwas|- (2.1.13)

It is possible to continue in the same way making estimates for higher deriva-

tives of .

2.2 Compatibility

The sequence of energy estimates as they stand does not tell the whole story.
It is necessary also to examine the question of compatibility between the initial
data t(x,0) = 1 (z) and the boundary conditions ¢ = 1), = 0 at £ = 0,1. The
estimates involve the time derivatives of ¢, at ¢ = 0 and these involve the initial

data, the forcing function and the boundary conditions at ¢t = 0.
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We consider the boundary conditions as applying at £ = 0 and z = 1 for
t > 0 and the initial conditions as applying for 0 < z < 1 at t = 0. The idea
of compatibility is that the limits as £ - 0 and £ — 1 of the initial data should
agree with the boundary data. Alternatively, we could take the initial conditions
up to the boundary and define the boundary conditions for ¢ > 0; in this case
compatibility applies to the agreement between the limit as ¢ — 0 of the boundary
data and the initial data.

It is well known from the study of the heat equation that an incompatible
problem can still have a solution, but that this solution will be singular at the
boundary at ¢t = 0. For ¢t > 0 the singularity spreads and decays by diffusion; in
the presence of convective terms the singularity also moves in space.

The one dimensional initial boundary value problem which we study here
resembles closely the heat equation. It is a heat equation for the vorticity ¢ = .
The twist is in the boundary conditions which are on ¢ and ¢, instead of ¢.

A sequence of compatibility conditions is obtained by requiring that a number
of time derivatives of ¥ be bounded at ¢t = 0. In the introduction we have made
the definition (Definition 1.1.2) for a continuous model to be compatible to order
m. It is straightforward to relate compatibility to conditions on the initial data.

The zeroth order compatibility conditions are
»©(0) = (1) =0, $O(0) = (1) = 0; (2.2.1)

i.e., ¥(z,0), ¥;(z,0) are continuous up to the boundary. These conditions state
simply that the initial data satisfies the no-slip boundary conditions.

The first order compatibility conditions are that ¢:(z,0) and ¥,(z,0) are
continuous up to the boundary. The conditions on the boundary are obtained by

differentiating the boundary conditions in time:

Py = Py =0 at £ = 0,1 for t > 0.
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The time derivatives of ¢ and ¢, in the interior are obtained by integration of the

vorticity equation in space

wzt z’i - V’ﬂbzzziij + /zz f(x,t) dzx
zj - (1132 - xl)wzttzl [¢zz 351 232 '— xl)’(ﬁzzz'zl]

//f:atdxdm

for 0 < z; < z, < 1. Taking these equations over the whole interval z; =0, z; = 1

P

and evaluating at ¢ = 0 gives
1~ 1- 1
Purle, 0)[, = v pOLL + / £(z,0) dz

Dl 0) 5 — se(07,0) = v [9DP, — v / | rte0 a2

If the initial data is compatible to first order, then the left hand sides of these
two equations vanish by continuity. This pair of equations becomes a pair of

compatibility conditions on the initial data involving zpi?,) and wﬁfj)z. That is,

1
w5+ [ Je0)ds=o,
0

v |0l o — ¢£‘i)z(0+)] +/ /zf(:c’,o) da' dz = 0.
v} 0

Similar constraints can be derived for higher order compatibility conditions to

(2.2.2)

be satisfied. The next in the sequence are the conditions for ¥y:(z,0) and . (z,0)
to be continuous up to the boundary. They can be determined by differentiating
the vorticity equation in time and then integrating in space. Differentiating in

time gives an equation for ¥,

¢:c:ctt — sza:za:t + ft - Vzwa;xm:zz + Vf:c:c + ft-
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The resulting second order compatibility conditions are

0= ¢ztt($70)‘(1);
1
=V P alor + v fao(2,0)]5 + / fi(z,0) dz,
0
0= @btt(xao)ié; — 154:(07,0)
= v |$Lli — vl (0M)]

+ v [0}~ £.(0,0)] + / / (e, 0) da do.

At this point it is clear that the assumption of compatibility is quite a stringent
restriction on the initial data. The zeroth order compatibility is a local condition
on ¥(® at each point on the boundary. The other compatibility conditions are
global conditions; in two space dimensions they involve an integral of the initial
data around the boundary and an integral of the initial forcing over the whole
domain.

The zeroth order compatibility conditions are also distinguished in that they
consist of four conditions, whereas the other compatibility conditions each have two
constraints. The mth order compatibility conditions give two linear constraints on
the four quantities d2m¢(0)/d$ZM‘z:OY1, dzm“gb(o)/dz:m“b:o,l. The general form
is

d2m+1¢(0) d2m’(,b(0) d2m+1 .
d$2m+1 li‘:o - Hm,l) dzzm ’i:O - dm——zm+1f(’b(0)(0) g Hm,O- (223)

2.3 Incompatible Problems

It is already clear from the energy estimates in Section 2.1 that the solution
retains some smoothness even if the compatibility conditions are violated at some
order. But we can show more than this. We now go on to show that the effect of

incompatibility is to create singularities, that the singularities are present in the
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(2m + 2)th space derivative if the compatibility conditions are violated at order
m, and that the singularities die off exponentially for large time.

The effects of incompatibility can be isolated and considered separately.

Lemma 2.3.1 Consider the continuous model problem (2.0.1) with forcing f(x,t)

and initial data w(o)(x). For any given m the problem can be decomposed into
(@) = Pla,t) + P(a, 1),

where

Ly=1f,  Bp=0, ¢(z,0)=90(z) =y (z) —¢(z), (2.3.1a)

Lg=0 Byp=0, 3(z,0) =" (a). (2.3.1b)

For any given m, the initial data E(O) can be constructed in such a way that (2.3.1a)
. . —(0 . . . .
is compatible to order m. Furthermore, ¢( )(x) and its derivatives are bounded in

terms of the data {f,w(o)}.

Proof. The proof consists in constructing the appropriate function J(O) suc-
cessively to annihilate the compatibility conditions at each order. To make the

construction we define two families of polynomials p,(z), g.(z) by

pu(z) :=2"(1 — z)",
onla) = 21— (L~ ) (242
forn=20,1,2,....
We claim that p, and ¢,, both satisfy the compatibility conditions up to order
n — 2 and that they violate the homogeneous compatibility conditions at order

n — 1. Furthermore, we claim that for any combination of H,_ 0, H,_11 there

exist constants a,,_1, b,_1 such that

P01 (2) = -1 Pa(®) + buo1 ga() (2.3.3)
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satisfies the (n — 1)th order compatibility conditions

d2r- lw(O)

d$2n—1

dZn—2¢(0) d2n-—1
“ggn 7m0 = ¥ 0(0) = Haorg.

‘1 :Hn—l,lv

=0

These claims are easily verified by differentiation of p, and g¢,, keeping in mind
that p,(z) is even about = = 1/2 whilst ¢, is odd aboul = = 1/2.

It is now clear how the construction goes. The induction step is as follows.
Assume that ¢(0)(x) satisfies the compatibility conditions up to order m — 1.
Then choose a,,, b,, such that @D,(qg)(rc) defined by (2.3.3) satisfies the mth order
compatibility conditions. Replace the initial conditions ¢(%)(z) by IZ(O)(QJ) defined
by

DO = O (@),

Then ’(Z(:l),t) is compatible to order m. This completes the proof.

As a corollary to this lemma it suffices to examine unforced problems of the
form (2.3.1b) with special initial conditions in order to understand the effect of
incompatible initial conditions in general. The special initial conditions are obvi-
ously the families p,(z) and ¢,(z).

We consider the problem

with ¥ = a,, p, + b, ¢,. The solution of this problein can be obtained either by
Laplace transforms or by eigenfunction expansions. There are advantages to each
approach — the Laplace transform method gives a better view of the behaviour for
small time, whilst the eigenfunction approach gives the energy estimates cleanly.

The solution by eigenfunction expansions is made by expanding the initial data

in a series

$() = Y Fu(s)
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where 1(™)(z) are the eigenfunctions of the eigenvaluc problem

'(/)m:cmx - S'Qbm; — 0, 0 S xr 5 1,

(2.3.5)
v=,=0 at z =0,1

with corresponding eigenvalues s,,. This is a self adjoint problem, but it differs
from the form of eigenvalue problems which commonly arise in that the eigenvalue
multiplies 1., instead of . That is, eigenvalue problems are usually written as
Lu = Au, whereas (2.3.5) is in the form Lu = s Mu. We study the interesting
properties of this eigenvalue problem in an appendix.

The solution of the initial boundary value problei is expressed as

Zw e"iaptm (z).

The eigenvalues are all real and negative; they split inlo an even sequence and an
odd sequence. The first even eigenvalue is s, = —(27)%. The first odd eigenvalue
is 83 = —w}, where w3/2 = tan(ws/2), 27 < ws < 3.

In the appendix we prove the following results.

Lemma 2.3.2 (a) The coefficients Dn,m, Gnm of the expansions of p,(z), ¢n(z)

satisfy

~ 1 ~ 1
Dnym = O(mZn)’ Gnm = O(

) (2.3.6)

(b) Let pn(x,t) , gu(z,t) denote the solutions with initial data p,(z), ¢,(x). Then
for each k = 0,1,...,2n — 1 there exist constants C, C depending on n, k such

that
k

H—; gPa(@, )| < Cem ™,

xr

p o (2.3.7)
|5z n( ]| < G

The rate of decay is higher for the higher modes.

The results of the lemma indicate that there is a singularity in the solution

at t = 0. They show that the singularity decays exponentially in time. They also
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indicate in which derivative the singularity occurs. I'or n = 1,2,... the indication
is that there is a singularity in the 2nth derivative. The case n = 0 is special since
the lemma gives no L? estimates for the solution.

The details of the singularity at ¢ = 0 are most apparent in the Laplace
transform solution. The singularities in the solutions occur on the boundaries.
Their forms are familiar from the study of the heat equation. We give the details
for the initial data p; and ¢; which satisfy the Dirichlel boundary conditions ¢ = 0
but not the derivative conditions v, = 0.

We denote the Laplace transform of ¢ (z,t) by 1//3(32,3) and we scale time to

make v = 1 for simplicity. Then @ satisfies
¢zzzz Swzz = _"Q[)zoz), ¢ = ’(,bz =0atz = 0, 1.

In each case @ can be written down. The properties of ¢(z,t) can be deduced
from the transform by standard asymptotic arguments.

First consider the case 9% = p, = z(1 — z). The solution for the transform is

Be,s) = - [=(1— )~ B0,

S
where
(1) - - M2 cost - =
P\(z, s) \/Esinh\f {cosh 5~ cos 1y/s(z 2)} (2.3.8)

The behaviour of ¢ for small time is obtained by expanding @ for large s. The

o~

M) term is

@(1)(1', 8) ~ 1-—- eﬁ('“*%‘”%)}

rd
e
| |

[1—e Ve 0<z<1/2.
—evell=)] 1/2 <z <1

2
o

Hence

IZ(.’IJ,S)NZ(lﬁx)“ 1 {1*-6\5(':”_%[_%)},

s 33/2
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To invert this transform we make use of the transform pair

1 2 1
2(z,t) = ——e " /4 “ 2(z,8) = —=e"V?2,

Vit Vs
At t = 0 the form of z is a delta function at x = 0; for ¢ > 0 the delta function
diffuses as a Gaussian with peak 1/\/ﬁ
¢ itself is continuous up to the boundary since it involves a convolution of z
with go. The singularity in ¢, at ¢ = 0 is a step function at £ = 0. The singularity
in the second derivative is a delta function at the boundary at £ = 0. That is, the

limit as ¢ — O of the Laplace solution is
Y(z,t) ~ p0(z) + O(#%),
Ya(,t) = O (2) + go {H(z) — H(1 - )},
Yao(2,1) = Y () + g0 {2(2,t) + 2(1 - z,1)} .
1

Now we consider the case ¥(®) = ¢ = z(1 — z)(} — z). The solution for the

transform is

~ 1 1
17[}(3:)3) - _Q1($) - ”Zgw(z)(xa 5)7
where
~ 1 1 1 Vs
®) (2, ) — mh Vsl — D 2z - Nsinn V2
P\ (z, s) ﬁcosh‘é—%sinh% {sm Vs(z 2) (z 2)smh 5 }

(2.3.9)

The long time behaviour is found in the same way as the previous example.
Once again the singularity is a pair of delta functions in the second derivative at
z = 0 and z = 1. This time they have opposite signs instead of the same.

It is not difficult to analyse the next pair py(z) = z*(1 — z)* and gz(z) =
z?(1—z)*(3 — z) in the same way. In these cases the delta function appears in the
fourth derivative. The general case, either p,, or g,, is not amenable to analysis in

this way since the algebra accumulates factorially in n.
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CHAPTER 3

Space Discrete Model Problem

In this section we consider the semi-discrete problem (1.2.1) obtained from
(1.1.1) by discretizing in space using centred second order differences in the interior
and a class of difference approximations for the boundary conditions. The discrete
approximation for ¢(z,t) is ¢,(t) defined for t > 0 at the grid points z, = ph,
w=—1,0,1,...,N,N + 1 where Nh = 1. The equations of the model are

D,D_¢,=v(D,D_Y¢+ fM,  1<u<N,t>0,
%o = ¢n =0,
Dyg¢o = Drgépn =0,

$(0) =9,  0<u<N

(3.0.1)

where f,gh) (t) is a discrete function related to f.
We define the discrete inner product of two functions Uy, U, defined at the grid

points z,, u = 0,1,...,N by

h

N, N-1 h
(u, @)y = Z hu,t, = Euoﬁo + Z hu,u, + EuN{LN’
=0 pn=1

and for functions v,i1/2,u11/2 defined at the midpoints of the grid z,.1/0 =

(u+1/2)h, u=0,1,...,N — 1 by

N-1
(’U, 6)}1 = Z hv“+1/21~)u+1/2.

pn=0

These discrete formulae are second order approximations to the integrals of the
continuous inner product. We use the notation D) for the two point difference

operator which approximates d/dz.
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3.1 Estimates for the Compatible Problem

We make estimates of ¢ and its divided differences in terms of the initial data
and the forcing. The sequence of estimates is closely related to the estimates
for the continuous case in the previous section. The major difference arises in
obtaining the estimate for D¢. The technique used in obtaining this estimate is
integration by parts in the continuous case, summation by parts in the discrete
case, and it relies on using the boundary conditions to eliminate the boundary
terms which arise. In the case where second order boundary conditions are used
for the derivative of ¢, the boundary terms do vanish. However, if higher order
approximations are used, then they do not vanish and it is necessary to use Laplace
transform techniques to obtain estimates.

Throughout this section we assume that || f*)(-,¢)||, is finite for all ¢ and also
that the norms of all the divided differences in z and derivatives in time of f(®
are finite.

We begin by stating the discrete analogues of the first three lemmas of the

previous section. We omit the proofs which mimic those presented above.

Lemma 3.1.1 (Sobolev’s Inequality) For any discrete function u, and any ¢ > 0

there exists a constant Cy(e) such that
[ulee < Ca(e)llulls + el Dullj. (3.1.1)

Lemma 3.1.2 (Poincaré’s Inequality)

N 2
! 1 ‘
lWMS<Z:M0 + 51 Dull; (3.1.2)
0

Lemma 3.1.3 Let u be a discrete function on (0,1} and ug = uy = 0. Then there

exists a constant Cy such that

lulll < Caf| Dulfs. (3.1.3)
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Lemma 3.1.4 Summation by parts formulae.

N-1
Y h¢uDyD_$, = =¢o Dy + dn Dy 172 — (D, D), (3.1.4)

p=1

N-1
Y hu(DiD_) ¢y = ~¢o Dy D_(Dd1y2) + ¢nDyD_(Ddy_172)

u=
+ DogoDy Do — Dodn Dy Dy (3.1.5)
+ (D+D7¢, D+D—§~b)h.

Proof.

N-1 N N-1 . N-2 .
Y h¢uDiD $. =Y h$.Dduiiss— Y hduriDduii
u=1 u=1 1=0

N-2

= ¢N—1D§~bN~1/2 - Z hD¢M+1/2D§~bu+1/2 - ¢1D€751/2

pw=1
N-1

= ¢ND¢~5N—1/2 - Z }LD¢M+1/2D¢~5N+1/2 - ¢0D<;51/2,

u=0

N-1
Y hu(DyD-)py = —¢oDyD_Dyja+ ¢nD..D_Déy-yj2 — (Dp, D D_Dg),
n=1

and

(D$, Dy D_Dg)

Il

N-1
> hD$us1jaDy D-Dyy o

=
o

N—1
=" Déuirss (D D-uss —~ D1 D-3,)

p=0

N . N-1
=Y D¢, 12DiD ¢y — Y DéuurjeDD_,

u=1 u=0

~ N——l ~
= Dén-12DD ¢y — Y _hD,.D_¢,D.D_4,
n=1

— DéjaDy Do
- h .
= D¢n-12D+D_¢n + §D+D—¢ND+D—¢N

~(D4yD-¢, D, D_9)p,
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. h .
— D¢12D D ¢ + §D+D—¢0D+D—¢o

= Dopn Dy D_¢n —~ DopoD D_¢g — (D4 D_¢p, Dy D_¢),..

Lemma 3.1.5 Estimate for || D¢||,. For any o > 0 there exists a constant Cs(c, 1)

such that

d
NPl +vIDyD-¢ll5 < |G| + al D] + Call /1[5 (3.1.6)

where G denotes the boundary terms
G=v (D0¢ND+D—¢N - D0¢0D+D~¢0) .

If second order boundary conditions are used (i.e., ¢ = 2 in (3.0.1) so that Dg¢g =

Do¢y = 0), then the boundary terms vanish (G=0) and
t
D61 < DO+ Cx [ OO e )
0

Proof. Take the sum from u = 1 to N — 1 of h¢, with the equation (3.0.1). Use

the summation by parts formulae to obtain

1d

N-1
5 gDl + VDD gll} =G = heyf(?

p=1

where

G = —¢0D¢1/2 + ¢ND¢n~1/2
+v (¢OD+D_D¢1/2 — oD D_Don_y2

—Do¢oDy D_¢po + Doy D D_¢n) .

The boundary conditions ¢g = ¢n = 0 eliminate four of the six terms. The rest

of the proof follows the continuous case.

For second order boundary conditions it is possible to continue as in the con-

tinuous case making estimates for higher divided differences of ¢.
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3.1.1 Higher Order Boundary Conditions

In the case of higher order boundary conditions the boundary terms G do not
vanish and so we do not obtain an estiinate of the form (3.1.6) for || D¢||. One
approach which we pursued without success was to try to eliminate the boundary
terms by choosing the inner product in another way. We investigated the effect of
changing the weighting of the terms near the boundary, but this did not appear
to work.

Instead we take another approach. The idea is [irst to subtract out the so-
lution with second order boundary conditions. Then the remainder satisfies the
semi-discrete equations (3.0.1) with zero forcing, zero initial data and inhomoge-
neous boundary data for the derivative boundary conditions. This problem can
be estimated using Laplace transforms in the same manner as the incompatible
problems were treated in the continuous case.

Let ¢ be the solution of (3.0.1) with boundary conditions of order ¢, B, ;¢ = 0,
and let q~5 be the solution with second order boundary conditions, Bh,2<?§ = 0. Then

the normalized difference of these two solutions is

6= (- 9)/? (3.1.8)
which satisfies
L =0  Bugd=g $(0) =0, (3.1.9)
where
h*g = Buy(¢ — ¢) = —Bre$ = (Buz — Bug) 6.
So
0 0
0 1 0

g1 (Dy — Dy )N
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Both ¢go and g; can be written as divided differences of qNS For example, for

third order boundary conditions

L gy — 3¢ +3¢o— ¢ 1 - 1 "
g0 =g 2 1 - 0 L g D+D-Déys, g1 = D+ D_Dén-y2.

Hence, ¢ can be estimated in terms of f(® via the estimates for g75 and its divided

differences.

It remains to estimate ¢ in terms of ¢ and for this we use Laplace transforms.

3.2 Space Discrete Model with Inhomogeneous Boundary Data

We consider the space discrete model problem with inhomogeneous boundary

data 3
5y DiD-du=v(DiD)’¢y,  1<p<N-1,

¢)0 - QSN = 05
Dl,qQSO - gO(t)a Dr,qqu - gl(t))

$.(0)=0 0<u<N

for 0 <t < co. We seek estimates for the discrete stream function ¢ and the

(3.2.1)

discrete vorticity z = D, D_¢. These estimates are obtained using the method of

Laplace transforms. They are contained in the following two lemmas.

Lemma 3.2.1 Estimate for ¢. There exists a constant og > 0 such that

t t
[ e etpu0Pa < const [ e (o) +ln@F) ot (32
0 0

Lemma 3.2.2 Estimate for z. There exists a constant oy > 0 such that

i

t
4
/0 e 27 2, (t)|dt < const W, e 7 (lgo(t)* + |ga(¢) ) dt. (3.2.3)

Loosely speaking, the estimate for z says that the discrete vorticity behaves

like 1/h. This is in contrast to the estimate for ¢ and all the other estimates

above which are independent of A. We shall examine below the asymptotic form
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of the solution for z for small time. In fact z is not everywhere large but the
1/h behaviour is contained in a boundary layer generated by the inhomogeneous
boundary conditions. This boundary layer is set up at ¢ = 0 and then it diffuses
into the interior of the region and decays in time.
We proceed to prove these two estimates, and then to look at the asymptotic
behaviour. The solution to (3.2.1) is found by the Laplace transform method. We

denote the Laplace transform of ¢ by g?ﬁ

bule) = [ e oultyar

Then ¢(s) satisfies
sD.D_¢,=v(D,D_)*$,, 1<u<N,
$o = dy =0, (3.2.4)
Dl,q%O = Qo(s)a Dr,q<;5N = @1(3)-

The estimates for ¢ and z will be made by estimating the Laplace transforms
qAS and 2 in terms of the boundary data gy, g; and then inverting the Laplace
transforms.

First we show how the bounds for qAS and 2 are used to get the bounds on
¢ and z. The argument is as follows. Take the solution for q?)(s) and invert the

Laplace transform, using the inversion contour s = vog + i, —oo < n < oo for

some constant oy

1 <.
6ult) = - e / ¢ (s)dn.

[0.0]

By Parseval’s relation
© ey 1 [
[T emetsiba= 5 [ dua

const [ /. : . .
< 2 [ (laotvor i)+ las(won + i) ) d

= const/ e 2ot (lgo(t)|2 + |g1(t)[2) dt.
0
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The integrals from 0 to co over time can be replaced by integrals from 0 to ¢t by
the observation that ¢(t) depends on go(7) and g,(7) only for 0 < 7 < ¢ and so we
can replace go(7) and g¢;(7) by 0 for 7 > t. This gives the estimate for ¢ in the
right form. The estimate for z uses the same steps.
Now we turn to the task of estimating g;ﬁ and 2. Consider the solution of (3.2.4)

for &5 The homogeneous difference equation for qAﬁ has the general solution

$, = Ak™" + Bx" N 1 C + Du, (3.2.5)
where k is the larger root (in absolute value) of

(k — 1)? — oh*x = 0, o=s/v. (3.2.6)
( Note that the two roots of (3.2.6) satisfy k;ks = 1.) The larger root is

n—1+0h2+ oh? 2+0h2 597
B 2 2 2 ) (8:2.7)

There are two interesting limits, |oh?| < 1 and |oh?| > 1. In these limiting cases

. 1+0Y%h |oh? < 1
oh? loh?| > 1

The coeflicients A, B, C, D are functions of ¢ and h. They are determined from
the boundary conditions. Substituting into the boundary conditions gives
A+Be N 4+C=0
Ak Y +B+C+D=0
. (3.2.8)
A [Digk™] o+ B DN 4+ D= go
A[Drgr™] 4 B Dege? ™M 4D =g
We want to estimate A, B, C, D in terms of gy, §;. To solve this system of

equations we first eliminate C' and D

C=-(A+Bc "), D=(A-B)(1-«xT").
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Define
0y = 01(x,h) := [D,.,qrc“]uio = — [Dl,qf@“”]

0y = ba(x, h) := [Dlyq/c“]“ = — [D,,q/c_”

=0

Then A, B are given by

where

a:~01+(1—fc_N), b= —Oc N + (1 A—/{'N).

(8) a2t 2) ()

For it second order boundary conditions #; and 6, are equal

01:02:05

Hence

-1

_ 2\ 1/2
Hzﬁ(m,h)::ﬂz;: :01/2<1+OZ> :

In the two limits of interest

0~ o'%  |oh?| <« 1
oh/2 |oh*|>1 "

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

For higher order boundary conditions 6; and 8, are not equal, but they can be

expressed as perturbations (not necessarily small) of 8. For third order boundary

conditions
p 26436+ kP k—k' A k3438 —k?
e 6h T 2h 6 13
_IQ—K_I . h* (k—1)%
~ 2h 3 h2k(k+1)
h? 1
=017 :
3 k+1
0 w—n2+6l€-3—2/c_1_n—/§_1mh_2 k2 =3k +3—k!
e 6h Y 6 e
“r€~fc_1 ) Rt (k—1)2
2k 3 h*k+1)

och*
=01|1~—
3 k+1

(3.2.14)

(3.2.15)
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using the definitions of 6 and o.
The estimates for A, B in terms of gy, §; are obtained from the following
bounds for a, b and a? — b%. These bounds show that the 6; term in ¢ dominates

the other terms in the equations.

Lemma 3.2.3 Suppose that oy > 0 is sufficiently large. Then there exist positive

constants M,, My, M such that
ol < Mo, Bl<MIS, a0z MPE (3:216)

for all o with Re 0 > 0¢ and all h < 1/2, where 8 is given by (3.2.13).

This lemma will provide the estimate for qAﬁ in terms of gy and g, on the contour
s = vog + 1, —oo < n < co. The estimate is
[$u(s)* < const (|4 + |BJ* + |C[* + | DI)

1

< const 0] (190(s)? + 11 (s)1*)

where 1/|6| is bounded for Re o > oy.

Likewise we can obtain the estimate for z = D, D_¢. The solution for 2 is
2,(s) = D+D_<;5,L(s) =0 (Ak™* 4+ Be#N) | w=20,1,...,N,

where 0 A and o B can be estimated by

]Zé } < const |a/0] (|go(s)[* + |§1(s)\2)l/2
and
\U/elz - lﬂ{-ﬁ}‘/‘;\ < 4/h2.

Proof of lemma Lemma 3.2.3. We first give the proof for second order bound-

ary conditions and then consider higher order boundary conditions. Let

Ky:= sup |77, Ky:= inf 0]
Re o>0q Re o>y
h>0
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Clearly, Ky < 1 since || > 1, and K; = 03/2. Then

lal < [0] + (1 + Ko) < M,|0],

b < Kol + (1 + Ko) < M0,

where

1+ Ko 1+ Ky

M,=1 , My =Ko+ —
+ 28 b o i,

M, and M, are both positive numbers. Furthermore
a* — b = (a—b)(a+10)
= (0; — Ozfc_N) [01 + 0,7 — 2(1 - m_N)}
— 0w e - S e o

S0
8| > (1 — Ko) {(1 LK) - 21+ Ko)] 0 = Mo,
K,

Hence M is positive provided

- 4o

1+ K
Ky > 2 (1 il K°> and K, < 1. (3.2.17)

We must check that these inequalities are satisfied for some oy. Since K; = 03/2

increases without bound as a function of oy and K is a decreasing function of oy,
all we need show is that Ky < 1 independently of h for some og. Then (3.2.17)
will be satisfied for gy sufliciently large.

First consider o real. In this case x = k(oh?) is real also and satisfies
k> 1402k > 1+ o *h.

Hence

: -1
mN:fel/h21+oé/z, |m_N|§(1—}—001/2) .

Next, consider o complex, 0 = o, + 10;. We claim that the real part of k£ is an

increasing function of |Im o|. That is,

K = Ky + 1K, k. (oh?) > k.(0,h?) = K(0vh?).
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A
~N
-~
. b
N
£
~
2
Re (ch)
} ! { { >
~ «~ 0] + N ~o
HL D 1 i m ”L
3 }3‘ 2’1 QL A
Figure 3.1

Hence
(e ™ 1 < (rnlot®) ™ < (el < (1 0)

So, in order to complete the proof of the lemma for second order boundary
conditions, we need only to prove this claim. Instead of considering « as a function
of oh? it is convenient to consider oh? as a function of « given by

oh? = -~———(n — 1)2.

K
Consider the curves in the oh? plane which map onto the lines Re £ = const (> 1)

in the k plane. They are given by
oy
Kk 4 12

Im(oh?) = k; (1_ 1 > (3.2.18)

7 ’€r2+’€i2

Re(oh?) =k, — 2 +

-

These curves are sketched in Figure 3.1.
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Clearly, for k, > 0 Re(oh?) is maximal when &; = 0. Now consider the curves
in the £ plane with |x| > 1 which map into the lines Re(ch?) = const > 0 in
the oh? plane. It is clear from an inspection of the figure that Re s increases
as |Im(oh?)| increases away from the real axis. This completes the proof of the
lemma for second order boundary conditions.

The proof of the lemma for higher order boundary conditions follows the same
steps. We give the details for third order boundary conditions.

First we show that

2|0|<|0|<4|0| 0 ~N;<4 1+ Lol —11o| (3.2.19)
3 > 0 > 3171 2K =3 200 . 2.
To establish these inequalities observe that

o h? + 1<k, <o.h’+2, lo:h?| < |kl
for o, > 0 from (3.2.18) and so

5| > 1+ |oh?|?, k| > max {1, |oh®|}.

Hence

oh? 1 . [oh? 1
e | < min s

The inequalities for #; in (3.2.19) are obtained by taking the second of these two

upper bounds and substituting it into the expression for 6,

Bt o1
01:0<1*U— >
3 k+1

Also

h? 4
|02/9_N1 = |9 (1 _ar ok ) fc‘N} < (1 + l—&—l) .|/€‘Nl.|6] < — Iml_N|.|0|
3 k+1 3 3

and

N-1 N-1 4, 1
N1 > (1+03/2h> > 14 oy 2 14 oy
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for N > 2 (i.e., for h < 1/2). This proves the inequality for f,< % in (3.2.19).

The inequalities for a, b and a® — b* follow.

4 1+ K,
< (= 0| = M,|0
ol < (5450 ) o] = o,
4 1 114K
|b] < [g <1+ 5"8“) + Klo 0] = M,|d|,

2 14 Ko)? .
ja* —b*] < {[g‘—};l 0] —Mz?}WZ:MWZ-

M,, M, and M are all positive for Re 0 > ¢ provided oy is sufficiently large.

This completes the proof of Lemma 3 for third order boundary conditions.

3.2.1 Asymptotic Behaviour for Small Time

Through the Laplace transform there is a correspondence between t small and

s large. For s large (i.e., [oh?| > 1)
k! oh

|b| < la|] and a~ —0; ~ - ~ ———,
qh q

SO
do q Go q g1
A~ "o —— =, B ~ ===,
a h o h o
Hence
N q | Jo _ g1 _
2u(e) ~ 1 | L ory - Dinp|

for s large. Thus

au) ~ 1 | 2wy — ey

for t < A
The boundary layer form of this asymptotic solution is clear. The strength

of the boundary layer is O(1/h) times the initial value of the inhomogeneous

boundary forcing. The boundary layer is set up instantaneously at ¢ = 0 and it
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diffuses rapidly into the interior of the domain. Over time, however, this boundary
layer decays as well as diffuses as can be seen by examining the asymptotic solution

for large time.
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APPENDIX 1

Eigenvalue Problem

We consider the eigenvalue problem for ¢(z)

%mz*S%z:O 0<z< 15
(41.0.1)
=1, =0 z=0,1.

In operator form this problem can be written as
Ly = sM1, By =0,

where

P (0
P (1

Both L and M are self adjoint operators with the usual L? inner product on
[0,1]. By this we mean that for any two functions %, 1/NJ satisfying the boundary
conditions the equations (gb,LmNb) = (Llﬁ,'(%) and (w,MgZ) = (M1/),1Nb) are satisfied.
It is a simple consequence of this self-adjointness that all the eigenvalues are real

and that the orthogonality properties

Hz,bz |2 forl =
(¢ { for [ 7& m’
(sz My =0 forl #m

hold. To verify these relations, consider (57 — s,,) (@, Myl"™) and (5 — s,n)

(MW, M1p(™)), respectively. In general,

(U, ™) £0  forl #m;

i.e., the usual orthogonality of the eigenfunctions does not hold.
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The eigenvalues and eigenfunctions consist of an even family and an odd family.

They are
) (g) = 1 — cos 2knz, sok = —(2km)?, (A1.0.2)
and
¢(2k+1)(z) e Sin [wk(m — l)] —_— 2(:1: —_— .];) Sin ﬂ,
2 22 (41.0.3)

Sopr1 = —Wi, % = tan %, 2km < wp < (2k+ 1)

for k = 1,2,... . The asymptotic form of the odd cigenvalues for large % is
Spkp1 = —wh, wy ~ (2k + 1)7.

We are interested in the expansion properties of these eigenfunctions. That
is, we would like to know which functions have a convergent expansion in terms

of the eigenfunctions. The answer is the following.

Theorem A1.0.1 Let f(z) be any continuous function on [0, 1] satisfying f(0) =

f(1) = 0. Then f can be expanded as

The theorem is proved by constructing the expansions of a dense subset of

functions. The basis for this dense subset is the sequence of polynomials pn(z),

¢n(z) defined by
pu(z) := 2"(1 — 2)",
. 1 (A1.0.4)
gn(z) 1= 2" (1 — 1) (5 — )
for n = 1,2,.... We show that convergent eigenfunction expansions can be con-
structed for each of the p,, ¢, for n > 1. The construction breaks down for

the n = 0 polynomials py(z) = 1, q(x) = ; — =z, leading to the restriction

f(0) = f(1) = 0 in the theorem.
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Lemma A1.0.2 (a) Each of the polynomials p,(z), gn(z) for n > 1 has a conver-
gent expansion in terms of the cigenfunctions of (A1.0.1). The coefficients Py, m,

Qn,m of the expansions of p,(z), qn(z) satisfy

1

mZn

/ﬁn,m = O(

)y Gum = O(—52) (A1.0.5)

as m — oo.

(b) Estimates for the polynomials p,, g, for n > 1 from their eigenfunction expan-

sions. For each k = 0,1,...,2n — 1 there exist constants C, C depending on n, k
such that .
l57Pa(2)l < C,
Bxk (A1.0.6)

|2 anla)l < O
Remark: The norm estimates for the polynomials in this lemma are of no
interest per se. Their usefulness is in their application to the separation of variables
solution for the time dependent model problem studied above.
The case n = 0 is special since the eigenfunction expansion gives no L? esti-
mates for the solution.
First we construct the expansions of the p,. The expansions are in terms of

the even eigenfunctions

Pafz) = Z ﬁn,mw(m)(m) = Z/ﬁn,%w(%)(x)- (A1.0.7)
m=1 k=1
The coefficients of p are found in terms of the cosine series of p,,
g"(1—z)" = Zﬁn,k €08 2kmT = Ppo + Zﬁn‘k cos 2km.
k=0 k=1

For n > 1 the Fourier series converges pointwise since the periodic extension of p,

is continuous. Hence

0="Pno+ > P (A1.0.8)
k=1
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Thus the coeflicients P are given by

Prnz2k = 7 Pn,k-

The properties of Fourier series are thoroughly known. In particular, it is known
that if f is a C° function in the interior of the interval and the periodic extension
has a jump in the nth derivative, then the coefficients 7m of the Fourier series of

f are O(1/m™*?) for m large. In particular
P = O(1/E™)

for k large since the periodic extension of p, has a jump in the (2n—1)st derivative
at z = 0.

The case n = 0 is special. In this case the eigenfunction expansion breaks
down in a manner resembling the non-convergent Fourier series expansion of the
delta function. The Fourier series of py(z) = 1 has coellicients oo = 1, Por = O,
k=1,2,..., 50 (A1.0.8) does not hold in this case. It is not clear how to calculate
the expansion coefficients D o

Next we construct the expansions of the g,. The expansions are in terms of

the odd eigenfunctions

m=1
=) G (2) (A1.0.9)
=1
N . 1 1, wy
= - t— =) =2z —=)sin—|.
Z n,2k-1 [mn[wk('v 2)] (z 2)sm ;

a
i

1
The direct approach to get the coefficients § is to take the inner product of (A1.0.9)
with each of the eigenfunctions ¥+, This approach runs into difficulty here be-

cause the eigenfunctions are not orthogonal. Instead, the orthogonality properties
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of the derivatives can be used by writing

q, 2k+1M¢(2k+1)(-’E)

| a,
[ o3
)
-
B

Il
[]s
=

>

1
— 2 . i
= In,2k4-1 [ﬂwk sin l:wk(a, — i)H .
k=1

The coefficients § are found in terms of the sine series of ¢,. The argument requires
calculating the expansion of sin 2[7z in terms of the functions sin [wk(m — %)} . The

sine series of ¢, is

L s
(L — z)"(z - E) = ; dnsin2lmwe.

We state some useful results in a lemma.

Lemma A1.0.3 (a) The Fourier coeflicients satisfy ¢,; = O(1/1*"*1) as | — oo.

(b) Expansion coefficients of sin 2inz in terms of sin [w,c(a: = l)]

( sin {w]-(x — %)} ,sin 2z ) = (—1)"sin (&) —Alm

2/ wi-—4lin?
, U/m
~(—1 {+7-+1
U Gy

for j large.

(c) Orthogonality of the functions sin [wk(:c — %)]

( sin [wj(x — %)] , sin [wk(x — é—)] ) -0 for § + k,
( sin [wlc(x — ;)] ,sin [wk(:c — %

(4) Non-orthogonality of the odd eigenfunctions.

wj,w

(w(2j+1),w(2k+l)) - é-sin o sin _2_k — _(__1)j+k

1
3
for 7, k large.

From these results the expansion of sin 2{rz follows as

. o . 1
sin 2lrz = }_{ ri g sin [wk(z - 5)] .
k=1
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Asymptotically, the behaviour of the coeflicients r;; is

1)k+l+1 2_l7/7r
GRS

_ {OEl/kz) for k — oo, [ fixed

TiE ™~ (*

O(1/l)  forl — oo, k fixed and large
Now the calculation of the coefficients § is

d2
az2 ) =

3 : 1
(_wz‘In,2k+1) sin {Wk(x — E)]

Mgl

|
NE

(4127, sin 2l

a.
If
-

~ . 1
(—47%) G, Ty 1 SN [wk(:z: — 5)]

I
NE
18

o~
Il
-
bl
—

[i(~4l2ﬂ2)§n’lrm} sin [wk(x — %)]

I=1

NE

x
Il

1

The interchange of the order of summation is valid provided the series is absolutely
convergent, and this depends on the decay rate of the coeflicients. We claim that
the series is absolutely convergent provided n > 2. Then the coefficients are given
by

(o]
Gn2k+1 = —5 AU T qn k-
Wi
1=1

From this it follows that G ar41 = O(L/k*™) for n > 2. For n = 1 it is easy to
calculate the coefficients directly and to verify that the § are O(1/k*").
The case n = 0 is go(z) = % — z. As with the py(z) = 1, this case is special.

The eigenfunction expansion breaks down once again.
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