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ABSTRACT 

This thesis is concerned with the earthquake response of 

deteriorating systems. A model for stiffness degrading or 

deteriorating systems is used to de scribe six different single­

degree-of-freedom systems. A numerical investigation of the 

response of these six systems is performed using an ensemble of 

twelve earthquakes. The response is studied at nine nominal 

periods of oscillation. The numerical results are presented as 

response spectra corresponding to six different ductilities. 

An approximate analytical method for calculating the earth­

quake response of deteriorating systems from a linear response 

spectrum is presented. The method, called the average stiffness 

and energy method, is based upon the premise that a linear system 

may be defined which is in some sense equivalent to the deteriorat­

ing system. The criterion for equiv alenc e in this method is that 

the a ve rage stiffness of the deteriorating system be equal to the 

stiffness of the linear system and the average energy dissipated 

by the linear system b e the same as the ave rage energy dissipated 

by the deteriorating syst em. 

The new analytical method is compared to existing methods. 

Comparison with the nume rical results is also made. Based upon 

these comparisons, it is concluded that the average stiffness and 

energy method represents a significant improv ement over currently 

available methods for predicting the earthquake response of 

dete riorating and nonde teriorating systems. 
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CHAPTER I 

INTRODUCTION 

There have been numerous studies of the earthquake response 

of linear, elasto-plastic, bilinear hysteretic and simple yielding 

systems and many of the results of these studies have now been 

incorporated into design manuals and codes. There has been far 

less attention devoted to the study of the dynamic behavior of 

deteriorating systems. Deterioration here refers to changes in 

a structure which result in loss of stiffness and reduced energy 

absorbing capacity with cyclic loading. 

Many investigations have demonstrated the existence of 

deterioration or 11 stiffness degradation" in structural elements 

[ 1-9]. Some work has been done to develop a simple model for 

deteriorating systems [ 9-24]. A particularly useful model for 

deteriorating was proposed by Iwan [ 23, 24] and will be used in 

this investigation because of its ability to approximate a wide 

class of deteriorating systems. 

The use of linear response spectra in earthquake design 

criteria is well established. Despite some opposition [25, 26], the 

use of inelastic response spectra derived from linear response 

spectra is also gaining wide acceptance [ 27-33 J. There are two 

methods by which an inelastic response spectrum may be obtained from 

a linear response spectrum, The first method is to develop a set 

of rules based upon empirica 1 observations. An example of such a 

method is the widely accepted method of Newmark and Hall [ 33 J 
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for the elastoplastic system. The second method involves an 

analytical approach to defining a linear system which will in some 

sense be ''equivalent'' to the nonlinear system. The second method 

is more easily generalized to a variety of systems. The second 

method also gives greater insight into the manner in which variations 

m system behavior affect the earthquake response. 

Much of the work in the area of defining an equivalent linear 

system for a nonlinear system has been devoted to nonlinear elastic, 

elasto-plastic, bilinear hysteretic and simple yielding systems 

[ 34-49]. The little work that has been done in the area of 

deteriorating systems has been associated with a rather specialized 

model for deterioration [19-22]. The method presented in this 

investigation is applicable to general deteriorating systems. Com­

parison with numerical results for six different systems is also 

presented. 

The ultimate goal of this investigation is to present an 

analytical method for obtaining the nonlinear or inelastic response 

spectrum from a linear response spectrum for general deteriorating 

systems. 

In Chapter II, existing methods for determining the effective 

linear system parameters for nondeteriorating systems are dis­

cussed. A new method, the average stiffness and energy method, 

which is applicable to general deteriorating systems is also pre­

sented. The predictions of the various methods are compared for 

a simple bilinear hysteretic system. 
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In Chapter III a model for stiffness degrading systems [ 23, 24] 

is presented. Six particular systems used in the numerical section 

of this investigation are presented and their behavior is discussed 

in detail. 

In Chapter IV the results of a numerical investigation of the 

earthquake response of deteriorating systems are presented. The 

six systems of Chapter III are considered along with an ensemble 

of twelve earthquakes. Nine nominal periods of oscillation are 

used to define the response spectrum of the nonlinear system; a 

range of values of relative amplitude of excitation to strength of 

the nonlinear system is used to obtain values of spectral displace­

ment corresponding to six values of ductility ratio. The numerical 

results are compared with linear response spectra and an effective 

linear period and damping are determined for each nonlinear system. 

In Chapter V the approximate methods of Chapter II are used 

to calculate effective linear system parameters and spectral dis­

placements. Comparison is made with the numerical results and 

conclusions are drawn concerning the relative merit of the various 

methods. It is concluded that the average stiffness and energy 

method is superior to the other methods considered not only because 

it is applicable to deteriorating systems , but also because it gives 

a better estimate of the spectral displacement for nondeteriorating 

systems. 
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CHAPTER II 

APPROXIMATE ANALYTICAL METHODS 

2. 0 Introduction 

The response history of deteriorating structures such as 

reinforced concrete can be simulated by analytical models which 

specify in detail the changes in hysteretic response. Such models 

require considerable computational expense. Therefore, an approxi­

mate analytical method for estimating the earthquake response of 

deteriorating systems is desirable. 

In this chapter the existing approximate analytical methods 

for estimating the earthquake response of nonlinear systems will 

be summarized. First, methods applicable to harmonic excitation 

will be discussed. Then, methods for stationary random excitation 

and finally methods for earthquake excitation will be examined. 

Only the a v erage stiffness and energy method in section 

2. 5. 2 is applicable to a general deteriorating system. Although 

the substitute damping method in section 2. 5. 1 is applicable to 

deteriorating systems, the model for deterioration used by that 

method is very specialized. The other methods discussed in this 

chapter are not applicable to deteriorating systems. 

The approach that will be used throughout this chapter is to 

define a linear system which is equivalent in some sense to the 

nonlinear system. The equivalent linear system will be described 

in terms of two effective or equivalent linear parameters; an 

effective period Te and an effective fraction of viscous damping i;;e. 
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The peak earthquake response of a nonlinear system may be 

obtained by calculating the peak response of the linear system 

specified by Te and Ce. 

2. 1 Terminology and Definitions 

In this section some basic concepts which will be used 

throughout the chapter will be defined and explained. 

2. 1. 1 Nature of the System 

The system investigated is a single-degree-of-freedom 

oscillator which can be represented as in Fig. 2. 1. For conceptual 

purposes, the system may be considered to consist of a mass m
0 

supported by flexible members whose generalized restoring force is 

k 0f(x) and which also provides viscous damping c
0
x. The system 

is excited by a base acceleration a(t) . It is further assumed that 

lim df(x) = 1 
dX x-+ 0 

k
0 

and c
0 

are the nominal stiffness and nominal damping 

coefficient of the system, respectively. f(x) is a normalized 

( 2. 1) 

restoring force function which could be linear, nonlinear elastic, 

hysteretic or deteriorating as indicated in Fig . 2. 2. In this 

chapter only hysteretic restoring forces will be discussed, although 

the methods are equally applicable to elastic restoring forces. 

For hysteretic systems the generalized restoring force f(x) 

is generally defined in terms of a scaling parameter xy called 

the yield level. The specification of this parameter is somewhat 
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___.,. a(t) 
Ground 

Figure 2. 1. Single-Degree of Freedom Oscillator. 



-7-

f (x > f (x) 

x 

a- Linear b-Nonlinear elastic 
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c-Hysteretic d- Deteriorating 

Figure 2. 2. Restoring Force Diagrams. 
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arbitrary but it is usually taken to be the generalized displacement 

at which significant reduction in stiffness is obtained. If ~ is 

the absolute maximum displacement obtained during a particular 

time history of excitation of a hysteretic system, the parameter 

µ = xm/xy is referred to as the ductility ratio of the response. 

This parameter is frequently used to indicate the degree of yielding 

of a hysteretic system. 

2. 1. 2 Viscous and Hysteretic Damping 

In a single-degree of freedom oscillator with hysteresis, 

energy is dissipated in two ways; viscous damping and hysteresis. 

Let V represent the energy dissipated by viscous damping. Then, 

for harmonic oscillations of amplitude ~ the viscous energy 

dissipated per cycle of oscillation may be represented by the area 

of the ellipse in Fig. 2. 3b and may be written as 

2 = 2nCkx 
m 

where ~ = c/ 2/ km is the fraction of critical damping . 

( 2. 2) 

Let H represent the energy dissipated by hysteresis. For 

harmonic oscillations of amplitude ~ the hysteretic energy 

dissipated per cycle of oscillation is denoted by H(~) and is 

represented by the area of the hysteresis loop in Fig. 2. 3a. 

The total energy dissipated is the sum of the energy dissi-

pated by hysteresis and the energy dissipated by viscous damping. 

Let .6 W denote the total energy dissipated. Then 

.6.W = H + V • (2.3) 
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2. 1. 3 Secant Stiffness 

In several methods of analysis the secant stiffness will be 

used. The secant stiffness k(Xru) is defined as the slope of a line 

from the origin of the restoring force diagram to the turnaround 

point for cyclic loading to amplitude xm. Fig. 2. 3a shows the 

secant stiffness for a hysteretic system. 

2. 1. 4 Skeleton Curve and Loci of Response Maxima 

The skeleton curve of a hysteretic system is defined as the 

load deflection relation for monotonic loading from a virgin state. 

Fig. 2. 3a shows the skeleton curve for a general nondeteriorating 

hysteretic system. For such a system the maximum of the response 

for cyclic loading with a slowly varying amplitude generally lies on 

the skeleton curve. In this case, the skeleton curve may also be 

referred to as the locus of response maxima, 

For a deteriorating system two or more loci of response 

maxima may exist. If such a system is loaded cyclically from a 

virgin state with gradually increasing amplitude, the locus of 

response maxima will correspond to the skeleton curve. However, 

if the amplitude of cyclic response is gradually decreased and 

subsequently increased, the locus of response maxima will normally 

lie below the skeleton curve. This lowering of the locus of 

response maxima is tied directly to the reduction in stiffness and 

energy dissipation of the deteriorating system which takes place 

after significant yielding has occurred. In this case, the skeleton 
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x 
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H(Xm), Hysteretic Area 

Figure 2. 3a. Hysteresis Loop for Nondeteriorating System. 

f (X) 

V(Xm), Viscous 
Hysteretic Area 

Figure 2. 3b. Hysteresis Loop for Viscous Damped 
Linear System. 
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curve as given by the initial loading curve provides only an upper 

bound on the loci of response maxima. 

In many deteriorating systems a unique lower locus of 

response maxima can be identified as shown in Fig. 2. 4. All the 

points on the lower locus of maxima are potential turnaround points 

for cyclic loading after a maximum displacement Xmax has been 

experienced. 

2. 2 Equation of Motion 

The equation of motion for the single-degree-of-freedom 

oscillator shown in Fig. 1 may be written as 

( 2. 4) 

This equation may be rewritten in the form 

( 2. 5) 

where 

(2. 6a) 

= = (2.6b) 

Then, Co is the nominal fraction of critical damping, w
0 

is the 

nominal frequency and T
0 

is the nominal period of the system. 

As mentioned in section 2. 0, the approach used in the chapter 

involves defining an effective linear system with system parameters 

Ce and Te. Thus, the linearized equation of motion may be written 

as 



--
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f (X) 

Upper Locus of 
Response Maxima ----11-----

Lower Locus of 
Response Maxima 

Figure 2. 4. Repeated Loading of a Deteriorating System, 
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~ex 
2 

-a(t) x + + w x = e 
( 2. 7) 

where 

~e = 2(; ewe (2. 8a) 

2 ke (i: )2 w = = e me 
(2 . Sb) 

Note that most effective linear system parameters will be a function 

of the amplitude of response of the nonlinear system. If ~ is the 

amplitude of response, then µ = ~/xy is the ductility ratio and the 

effective linear parameters may be written as functions of µ. 

2. 3 Nondeteriorating Systems with Harmonic Excitation 

The ultimate goal of this chapter is to examine methods for 

estimating the peak earthquake response of deteriorating systems. 

However, before investigating deteriorating systems, methods 

applicable to nondeteriorating systems will be discussed. For 

small amplitudes of excitation and for short duration of strong 

ground motion, the deteriorating features of a system may have 

little effect on the response. Hence, in some cases deteriorating 

systems may be modeled adequately as nondeteriorating systems. 

Before examining techniques applicable to earthquake-like 

excitation, consideration will be given to excitations which can be 

more precisely described mathematically. First harmonic and 

then stationary random excitation will be discussed. 

Structural testing employing forced harmonic excitation is 

frequently used to gain information about the nature of the structure 



-14-

and to define structural parameters such as period and damping. 

Also, the response of a structure to earthquake excitation is often 

very nearly harmonic in character. Hence, an understanding of 

the steady- state harmonic response of hysteretic structures is 

useful. 

2. 3. 1 Harmonic Equivalent Linearization (HEL) 

In the method of equivalent linearization the difference 

between the nonlinear equation of motion (2. 5) and the linear 

equation of motion (2. 7) is minimized with respect to the param­

eters ~ e and w; for all solutions of the form 

x(t) = A cos (wt - cp) = A cos 8 (2. 9) 

where A is the amplitude of steady- state oscillation, w is the 

forcing function frequency and cp is the shift in phase angle. The 

difference between the two equations may be written as 

. 2 . = ~ x + w f(x) - ~ x -0 0 e 
2 

w x 
e 

(2. 10) 

Minimization of this difference may take several forms. However, 

in the method of equivalent linearization for harmonic response, 

the mean square value of the difference over one cycle of oscilla-

tion is minimized. Let 

2 1 T 2 
6 = T I 6 dt . (2.11) 

0 

A necessary condition for the minimization will be 
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( 2. 12) 

Substituting for x from equation (2. 9) and performing the specified 

2 
differentiations yields the following expressions for ~e and we 

2 

~e ~o -
WO S(A) 

= -x-we 
(2. 13a) 

2 2 C(A) w = WO p:-e (2. 13b) 

where 

1 
2TT 

S(A) = I f(A cos 8) sin 8 d8 
TT 

(2. 14a) 

0 

1 
2rr 

C(A) = f f(A cos 8) cos 8 d8 
TT 

(2. 14b) 

0 

The function S(A) is related to the energy dissipated by hysteresis 

in the following manner 

S(A) = H(A) 
- rrk

0
A (2.15) 

where H(A) is the energy dissipated by hysteresis per cycle of 

oscillation of amplitude A . The function C (A) is related to the 

strain energy per cycle of oscillation, For a linear system with 

slope k
0 

S(A) = 0 and 
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2. 3. 2 Resonant Amplitude Matching (RAM) 

In this method, the shift in period of the yielding system is 

not taken into account. The mass and stiffness of the equivalent 

linear system are taken to be the mass and nominal stiffness of 

the yielding system. Thus, 

y... A • (2. 16) 

The resonant response amplitude of the equivalent linear system is 

set equal to the resonant response amplitude of the yielding system 

and the effective viscous damping is chosen so that the two systems 

dissipate the same amounts of energy at resonance. Thus 

V- A ( 2 0 17) 

where !:::,. W(A) is the energy dissipated by the yielding system per 

cycle of oscillation of amplitude A. For the linear system D. We(A) 

is given by (2. 2) which can be rewritten as 

(2 0 18) 

In this case ke = k
0

, V- A. Thus, (2. 17) and (2. 18) give 

t' = D. W(A) 
"'e 2 • 

2nk0A 
( 2. 1 9) 

This is easily interpreted as the ratio of two areas; the area of 

the hysteresis loop in Fig. 2. 3a and the area of the ellipse in 

Fig. 2. 3b. 



-17-

2.3.3 Dynamic Mass (DM) 

Another physically motivated approach is the dynamic mass 

method. In this method, the stiffness of the equivalent linear sys-

tern is taken to be the nominal stiffness of the yielding system and 

the mass of the equivalent linear system is varied so as to match 

the observed period shift in the resonance response of the yielding 

system. Thus, the effective period calculated by this method is 

the same as that calculated by harmonic equivalent linearization. 

As in the resonant amplitude matching method, the resonant ampli-

tudes and energies dissipated per cycle by the yielding and equi-

valent linear systems are set equal to each other. Thus, for a 

system with purely hysteretic energy dissipation, resonant ampli-

tude matching and dynamic mass give the same effective viscous 

damping. 

2. 3. 4 Constant Critical Damping (CCD) 

It is possible to define an equivalent linear system in such a 

way that the critical damping factor (cc= 2/ km) remains constant, 

while modeling the period shift of the yielding system. This is 

done by setting 

(2.20a) 

and 

ke 2 
= w m e 

(2. 20b) 
e 

2 
where w is given by (2. 13b). Thus, the effective period is the 

e 
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same as in harmonic equivalent linearization and dynamic mass . 

As in the resonant amplitude matching and dynamic mass approaches, 

the resonant amplitudes and dissipated energies of the linear and 

nonlinear systems are equated . Since ke I k
0

, the effective viscous 

damping calculated using this method is not the same as that given 

by (2. 19). Hence, 

= b,. W(A) 

2nk A
2 

e 

which differs from (2 . 19) by the replacement of k
0 

by ke . 

2.3.5 Geometric Stiffness (GS) 

(2. 21) 

In all the p r evious methods with the exception of the resonant 

amplitude matching method, the period of the equivalent linear 

oscillator matches the resonant period of the yielding oscillator. 

In the geometric stiffness method, the stiffness of the equivalent 

linear oscillator is specified by the geometry of the hysteresis 

loop. Berg [34] , and Rosenblueth and Herrera [49] have used this 

approach for hysteretic systems and have chosen the equivalent 

stiffness to be the secant stiffness shown in Fig. 2. 3a. Equating the 

mass, resonant amplitude and energy diss ipated for the hysteretic 

and equivalent linear oscillators implies that Ce is given by (2. 21) 

and 

( 2 . 2 2) 

where ke is taken to be the secant stiffness . Since ke in this 



-19-

method is the secant stiffness, both Te and Ce will be different 

from any Te and Ce obtained in previous methods. 

2.3.6 Geometric Energy (GE) 

Another geometric method of approximating the equivalent 

viscous damping for the steady- state harmonic response of hystere-

tic structures has been proposed by Jacobsen [44]. In this approach 

the geometry of the skeleton curve and the hysteresis loop as shown in 

Fig. 2. 3a are used to calculate the effective viscous damping. Let 

W(A) be the maximum strain energy during a cycle of oscillation 

of amplitude A. Note that W(A) is the area under the skeleton 

curve as shown in Fig. 2. 3a . For a linear .,system, the energy 

dissipated by viscous damping is given by equation (2. 2) and the 

maximum strain energy is 

W(A) = .!. kA 2 
2 (2.23) 

Hence, by analogy to the linear system the effective linear viscous 

damping for the yielding system may be written as 

1 6. W(A) 
Ce = 4n W(A) ( 2. 24) 

where 6. W(A) is the energy dissipated per cycle of oscillation by 

the yielding system and W(A) is the maximum strain energy per 

cycle of oscillation stored in the yielding system. The geometric 

energy method does not provide an effective period. 
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2. 4 Nondeteriorating Systems with Stationary Random or Earthquake 
Excitation 

In this section the response of nondeteriorating systems will 

be investigated further. The methods in this section are of two 

types. The first type assumes the excitation to be a stationary 

random process. The second type assumes the excitation to be an 

earthquake. In the harmonic methods the response of the system 

was assumed to be fix ed at one amplitude so that A = xm. In the 

methods of this section, the response is assumed to vary in ampli-

tude and ~ will represent the peak value of the response amplitude 

while A will continue to represent the amplitude of a cycle of 

harmonic oscillation. 

2. 4 . 1 Stationary Random Equivalent Linearization (SREL) 

The method of equivalent linearization has been applied to 

stationary random excitation by many investigators since first 

formulated by Booton [50] and Caughey [5 IJ. The development of 

the method proceeds just as in the case of harmonic excitation 

ex cept that minimization of the difference term o in equation (2. 10) 

must be interpreted in a statistical sense. If the response is an 

ergodic process , time averages may be replaced by ensemble 

averages. The minimization condition in this case may be written 

as 

( 2 0 25) 

where E[ • J denotes the expected value or ensemble average. 
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Substituting for 6 from (2, 10), interchanging the order of differen-

tiation and expectation yields 

~e ~o + 
2 E[xf(x)J = WO 

E[x
2

J 
(2,26a) 

2 2 E[xf(x)] 
w = WO 

E[x
2

J 
e 

(2.26b) 

. 
where it is assumed that x and x are jointly stationary, 

In the development of this method, two basic assumptions 

about the response of the oscillator are made. First, the response 

is assumed to be a narrow band process. Thus, it is assumed that 

x(t) = A(t) cos [wt - cp(t)] = A(t) cos 8 ( 2. 2 7) 

where A(t) and cp(t) are slowly varying random functions of time. 

Second, the response is assumed to be Gaussian. These assump-

tions are valid for a linear system with small damping and Gaussian 

excitation but for large nonlinearities the response is neither narrow 

band nor Gaussian. However, !wan and Lutes [37] have found that 

even though these assumptions are not strictly valid for large non-

linearities, the results of this analysis are surprisingly good. 

For hysteretic systems eqns. (2. 26) must be modified by sub-

stituting (2. 27) into (2. 26) and averaging over one cycle of oscilla-

tion to yield 

~e 

2 
WO 

= ~o - w 
e 

E[AS(A) J 

E[A
2

] 
(2. 28a) 
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w 2 = 2 E[AC(A)] 
e wO E[A 2] 

(2. 28b) 

where S(A) and C(A) are defined by eqns. (2 . 14). 

Since the response process has been assumed to be narrow 

band and Gaussian, the probability density function of the response 

amplitude A may be approximated by a Rayleigh distribution. 

Hence, 

( 2. 2 9) 

where g(A) is any arbitrary function of A and a- is the rms value 

of the response. 

Substituting (2. 29) into (2. 28) yields ~ and w as functions of e e 

a- rather than µ. or ~. However, these may be written as functions 

of ~ by assuming some relationship between xm and a-, The 

simplest relationship is a linear one such as 

(2. 30) 

Since Xm is the peak response, A. must be greater than one. As A. 

is increased the probability that ~ is exceeded decreases as is 

shown in Fig. 2.5. Liu[52]has suggested the use of 

"A = E[xmJ = / rr/2 . This value for "A would imply that the proba-

bility that xm is exceeded would be O. 45 which is large, On the 

other hand, "A = 5 would imply that there is only a 4 X 10- 6 probability 

that xm is exceeded. The upper bound on values of "A is dependent 
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on how realistic the resulting system · parameters areo Further 

discussion of /... will be reserved until section 2. 6. 7. 

2. 4. 2 Extended Equivalent Linearization (EEL) 

The method of equivalent linearization has been extended by 

Kobori, et al. [53] to include three parameters as randomly distri­

buted variables. In this approach the location of the center of 

hysteresis, the amplitude of hysteretic oscillation and the frequency 

of hysteretic oscillation are all randomly distributed variables. 

This method yields stationary random equivalent linearization, if 

both the scatter of frequency and fluctuation of the center of hystere­

tic oscillation are neglected. 

The extended equivalent linearization method is sufficiently 

complex to make its application to the problem of the earthquake 

response of a hysteretic system very difficult. To begin with, it 

is necessary to specify the probability density function for the 

three random variables of the model. This involves additional 

assumptions about the nature of the response which may not be 

v alid in the case of a strongly nonlinear system. Therefore, this 

method will not be discussed further here . 

2. 4. 3 Average Period and Damping (APD) 

Newmark and Rosenblueth [54] present a general approximate 

method of analysis for the earthquake response of nonlinear systems. 

This method of analysis is applicable to all single-degree - of-freedom 

systems with generalized force displacement curves which are 
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symmetric about the origin, subject only to the condition that the 

system does not deteriorate. 

This approach defines the effective linear system to be the 

average of all the linear systems, based on the geometric stiffness 

method, corresponding to amplitudes less than or equal to Xni· Let 

T ~ be the effective period and '~ the effective viscous damping for 

harmonic oscillations of amplitude A. 
I 

Hence, T is given by eqn. 
e 

(2. 22) and '
1 

is given by eqn. (2. 21) where k is the secant stiff-e e 

ness. The average period and damping are given by 

1 ~ 
Te = f T ~(A)dA 

xm 
(2.3la) 

0 

1 /Xm c I (A)dA 
'e = 0 

xm 0 
e (2 . 3lb) 

2. 5 Deteriorating Systems with Earthquake Excitation 

In this section two approximate analytical methods applicable 

to deteriorating systems will be presented . The fir st method by 

Shibata [ 19] is applicable only to a specialized model for deteriora-

tion. The method called the average stiffness and energy method 

is presented here for the first time . This latter method is 

applicable to general deteriorating systems. Both methods assume 

earthquake excitation of the deteriorating system. 

2. 5. 1 Substitute Damping (SD) 

The substitute damping method first suggested by Gulkan and 

Sozen [ 5 J and further modified by Shibata and Sozen [ 19-22] was 
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developed as a vehicle to interpret the response of reinforced 

concrete. This method assumes that the deteriorating system can 

be modeled using Takeda 1 s [ 9] hysteresis rule as shown in Fig. 

2.6. 

In this method 

( 2. 3 2a) 

(2. 32b) 

where µ = x /x = ductility in early formulations and i'.L = k 0/k = m y e 

damage ratio in later formulations. Since k is taken to be the 
e 

secant stiffness, the difference between the two formulations dis-

appears if the skeleton curve has zero slope after yielding . 

According to Gulkan and Sozen [ 5 J, quantitative values for 

this substitute damping were distilled from results of dynamic tests 

of one - story , one-bay frames. This was done by assuming that the 

energy input was entirely dissipated by an imaginary viscous 

damper . 

The empirical basis and special model for the deteriorating 

system restricts the usefulness of this method . In particular , this 

method cannot be used to estimate the response of a nondeteriorating 

system. 

2. 5. 2 Average Stiffness and Energy (ASE) 

The average stiffness and energy method is not restricted to 

any special model for the deteriorating system. In this method two 
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Figure 2. 6. Ideali zed Hystere sis for Reinforced Concrete. 
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loci of response maxima are used to specify the effective linear 

system parameters. Let a subscript u denote system parameters 

based on the upper locus of response maxima and let a subscript 

t denote system parameters based on the lower locus of response 

maxima as shown in Fig. 2. 4. Thus, k (x ), H (x ), V (x ) 
um um um 

denote the secant stiffness, hysteretic energy dissipated and viscous 

energy dissipated by the nonlinear system which follows the upper 

locus of response maxima. Similarly, kt(xm)' Ht(xm)' Vt(xm) 

denote the secant stiffness, hysteretic energy dissipated and viscous 

energy dissipated by the nonlinear system which follows the lower 

locus of response maxima. 

As in the average period and damping method, the equivalent 

linear system will be defined in terms of the average values of the 

fundamental parameters. In this method the fundamental system 

parameters are the stiffness and the energy dissipated. Let k
1
{A) 

I 
and !:::. W (A) be the secant stiffness and the energy dissipated for 

harmonic oscillations of amplitude A. Then, the average stiffness 

k(xm) is given by 

= 
1 

~ 
k

1 
(A)dA • 

Likewise, the average energy dissipated !:::. W(~) is given by 

1 !~ 
s6 W' (A)dA . = 

0 

(2.33a) 

(2.33b) 
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The equivalent linear system parameters are obtained by 

taking the average of the values associated with the upper and 

lower loci. Hence, the equivalent linear stiffness is given by 

(2. 34) 

Similarly, the total energy dissipated is given by 

( 2. 35) 

For a linea:r system 6.W' is given by (2. 18) 0 Substituting (2. 18) 
e 

into (2. 33b) yields_ 

6. We(xm) = Ve(xm) = 2 2 
3TICekexm (2.36) 

Thus, the effective viscous damping of the deteriorating system is 

given by 

(2 0 3 7) 
~Tik (x )x e m m 

where 6. W(xm) and ke(xm) are given by (2, 33) with (2. 35) and 

(2. 34), respectively. The effective period may be denoted by (2. 22). 

This method attempts to account for the significant differences 

in the stiffness and energy dissipation of the deteriorating system 

on initial loading to response amplitude xm greater than xy and on 

subsequent loading to that same response amplitude ~· The con­

tribution to k and 6. w due to the upper locus alone would over-

estimate the effective stiffness and energy dissipated, while the 

contribution due to the lower locus alone would underestimate the 
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effective stiffness and energy dissipated. It is felt that the average 

of the contributions due to both the upper and lower locus should 

give a much better estimate of the effective stiffness and energy 

1 dissipation of a deteriorating structure. 

2. 6 Example of Application - Bilinear Hysteresis (BLH) 

In this chapter six methods for obtaining an equivalent linear 

system for a nondeteriorating system with harmonic excitation 

were discussed. Three methods for obtaining an equivalent linear 

system for a nondeteriorating system with random or earthquake 

excitation were also discussed and two methods for obtaining an 

equivalent linear system for a deteriorating system with earthquake 

excitation were discussed. 

Before moving into the application of the average stiffness and 

energy method to several deteriorating systems, a comparison of 

the equivalent linear systems obtained by the application of the 

various methods in this chapter to the bilinear hysteretic system 

will be presented. 

In Fig . 2. 7 the force-displacement diagram for a bilinear 

hysteretic system is shown. This system has initial slope k
0

, 

post yield slope ak
0

, and yield level xy. The maximum response 

amplitude is x = µx and in the harmonic methods xm = A. m y 

2. 6. 1 Harmonic Equivalent Linearization 

For the bilinear hysteretic system whose force displacement 

diagram is shown in Fig. 2. 7 the term f(A cos 8) in eqn. (2 . 14) 

may be written as 
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f (x) 

Figure 2. 7. Force-Displacement Diagram for 
Bilinear Hysteretic System. 

x 
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( 1 - a) 

I 
aµ cos 8 

µcos 8 - (~) 
1 - a 

cos 8 < µ - 2 
µ 

µ - 2 < cos 8 < 1 
µ 

where µ = A/xy. Substituting (2. 38) into (2. 14) yields 

µ 

where 

0 

_ l!: ( 1 - a) sin 2 e* 
TI 

* -l(µ-2) 8 = cos -- • 
µ 

µ < 1 

µ > 1 

µ < 1 

µ > 1 

Substituting (2. 39) into (2. 13) and using eqn. (2. 8) yields 

T 
e 

TO 
µ > 1 

~ ( 1 - a) (µ - 1) (Te ) 2 
n µ2 T 0 

µ > 1 • 

2. 6. 2 Resonant Amplitude Matching 

(2. 38) 

(2. 39a) 

(2. 39b) 

(2. 40) 

(2. 4la) 

(2.4lb) 

For the BLH system indicated by Fig. 2. 7 the hysteretic 

energy dissipated per cycle may be written as 

H(A) I 0 

~ = 4ko(l - a)(µ - 1) 

µ < 1 

µ > 1 

(2.42) 
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The viscous energy dissipated may be written as 

V(A) 
-z-
x 

y 

¥- µ. • ( 2. 43) 

Using (2. 3) along with (2. 42) and (2. 43) to express I:::. W in (2. 19) 

and using ke = k
0

, the resonant amplitude matching method yields 

Ce(µ.) 
2(1- a)(µ. - 1) 

= Co + z µ. > 1 • ( 2. 44) 
n µ. 

Te is given by (2. 16). Note that substituting for Te from (2. 16) 

into eqn. (2. 4lb) yields (2. 44). 

2. 6. 3 Dynamic Mass 

In the dynamic mass method, the effective period shift is 

given by (2. 4la) and the effective viscous damping is given by 

(2. 44) 0 

2. 6. 4 Constant Critical Damping 

The method of constant critical damping gives the same 

effective period as harmonic equivalent linearization and the effec-

tive viscous damping is given by 

µ. > 1 . ( 2. 45) 

Note that ( 2. 45) differs from (2. 41 b) only in the exponent of the 

second T e/T 
0 

term . In this method the viscous damping is a linear 

function of the period shift. 
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2. 6. 5 Geometric Stiffness 

For the BLH system of Fig. 2. 7 the secant stiffness may be 

written as 

µ < 1 

µ > 1 

Substituting this expression for k into eqn. (2. 21) yields e 

T 
e 

TO 
µ > 1 • 

(2. 46) 

( 2. 4 7) 

The effective viscous damping is given by (2. 4lb) with this period 

shift. 

2. 6. 6 Geometric Energy 

The maximum strain energy for the BLH system may be 

written as 

W(A) 
--2-

x 
y 

Q:' 2 
= ko [ < µ - i) + 2 < µ - I) J µ > 1 . (2. 48) 

Thus, the effective viscous damping according to the geometric 

energy method is given by substituting (2. 48) and (2. 42) into (2. 24) 

which yields 

= 1 (l-a)(µ-1) 
TI ( l) Q:' 2 µ-2 + 2 ( µ - 1) 

µ > 1 0 (2.49) 

Note that there is no consistent way to treat Co-/ 0 and no expres­

sion for Te is given by this method. 
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2. 6. 7 Stationary Random Equivalent Linear ization 

Caughey [ 36] presented the following expressions for the BLH 

system 

erfc ( 
1 

) 
Vi a-

(2.50a) 

8( 1 - a) 
1 -

n / ~ LA~z + ~] exp (;::) dA 
(2.SOb) 

where erfc is the complimentary error function. 

Using eqn. (2. 30) ~ and w may be expressed as functions of 
e e 

xm or µ. As stated in section 2.5 . 1, the proper choice of A. in 

eqn. (2. 30) depends on the resulting system parameters. In Fig. 

2. 8 the effective period shift T e/T 0 and the effective viscous 

damping of a BLH system with a = 0 . 05 and c
0 

= 0 are presented 

as functions of µ for three values of A. . Note that as A. increases, 

both the effective period shift and effective viscous damping 

decrease. For the numerical comparison in the next section A. 

will be assumed to be 3, even though ce-1 c
0 

atµ= 1 for A.=3. 

2. 6 . 8 Average Period and Damping 

As stated in section 2. 4. 3 the average period and damping 

method uses the effective period and damping obtained by the 

geometric stiffness method. Hence, substituting (2. 47) and (2. 4lb) 

into (2 . 31) yields 
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SYSTEM BLH 

2 5 10 
DUCTILITY RATIO. µ 

Figure 2. 8. Dependence upon "A = xm/ CJ of the SREL Effective 
Linear System Parameters for the BLH System 
with o: = 0 . 05 and 'o = 0. 



T 
e 

TO 

where 

~a J- + ( 1 - a) µ, - 1 
Q 
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1-a . ] 
3/2 @! s 

2a 
µ, > 1 

= 2'j a{aµ,
2 + (1- a)µ,] +2aµ, + (1- a) 

a+ 2Y"; + 1 

(2.Sla) 

µ, > 1 • 

(2.Slb) 

Tliese expressions, although lengthy, are easier to evaluate than 

(2. 50) because no numerical integration is involved. 

2. 6. 9 Substitute Damping 

The substitute damping method as presented in section 2. 5. 1 

is applicable to Takeda' s [ 9 J rule for hysteresis. Hence, no 

direct comparison with the other methods can be made. 

2. 6. 10 Average Stiffness and Energy 

For the BLH system the lower locus of response maxima is 

identical to the upper locus of response maxima. Hence, substi-

tuting (2. 46) into (2. 33a) and (2. 42), (2. 43) into (2. 33b) yields 

µ, > 1 (2.52a) 

" = H(µ,) µ, > 1 (2.52b) 
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~ nCoko µ 
2 

µ < 1 
V(xm) 

2 = V( µ) = 
x nC k 

2 l y 0 0 [ ( 1 - a) +~aµ] µ > 1 
µ ( µ - 3) 

Thus, the average stiffness and energy method yields 

T 
e 

TO 
µ > 1 

" " H(µ) + V(µ) 
= 2 

~nk (µ)µ 
e 

. (2.52c) 

(2. 53a) 

(2. 53b) 

These expressions are easier to evaluate than (2. 50) and at least 

as easy to evaluate as (2. 51). 

2. 7 Numerical Example and Comparison 

The results of the various methods for a BLH system with 

a = O. 05 and Co= 0 are presented in Fig. 2. 9. Note that the geo­

metric energy method has no period shift as mentioned earlier. 

Although the viscous damping for dynamic mass and resonant 

amplitude matching are identical, the period shift for resonant 

amplitude matching is unity, while the dynamic mass method yields 

the largest period shift. 

All harmonic methods yield an effective viscous damping with 

a maxima in the range 1 :s; µ :s; 10, while only the average stiffness 

and energy method of the nonharmonic methods has a maxima in 

this range. 
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Figure 2. 9. Effective Linear System Parameters for the BLH 
System with a = O. 05 and Co = 0. 
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All harmonic methods yield an effective period shift which is 

larger than the nonharmonic methods except resonant amplitude 

matching and geometric energy. The average stiffness and energy 

method gives the smallest effective period shift neglecting the 

Te/T 
0 

= 1 from the resonant amplitude matching method. 

The nonharmonic methods which were applied to the BLH 

system in the last section are all averaging methods. The SREL 

method is a weighted average of the HEL method. The APD is an 

average of the GS method. The ASE is an average of other system 

parameters, namely stiffness and energy dissipated. A comparison 

between SREL and HEL or APD and GS demonstrates the effect of 

averaging. As long as the system parameter due to the harmonic 

method is monotonically increasing, the system parameter due to 

the averaging method will be smaller than the system parameter 

due to the harmonic method. 

These approximate methods are discussed further in Chapter 

V, where comparison is made with the numerical results for a 

particular BLH system. In Chapter V conclusions are presented 

regarding the merits of the various methods presented in this 

chapter. 
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CHAPTER III 

MODEL FOR HYSTERETIC AND DETERIORATING SYSTEMS 

3 o 0 Introduction 

Many models for deteriorating or stiffness degrading systems 

have been proposed. These models fall into three categories. In 

the fir st category are highly idealized models which lead to con­

siderable simplification of the mathematics of the dynamic response 

problem but which only very roughly approximate the behavior of 

real structures [ 14, 18]. In the second category are detailed 

empirical models which very precisely describe a particular system 

and a particular loading history [ 9, 55 J but cannot be easily genera­

lized to other systems or loading histories. In the third category 

are physically motivated models which are based on phenomeno­

logical description of the behavior of deteriorating structures 

during cyclic loading [ 23, 24]. At the same time, models in this 

third cate gory are sufficiently well defined mathematically to make 

their use in dynamic analysis straightforward . 

3 o 1 The Model 

The model which will be used in this investigation falls in 

the third category. It was first proposed by Iwan [ 23] and has 

been demonstrated to be capable of modeling a wide range of 

deteriorating structureso 

The model may be thought of as a subclass of the distributed 

element model [56]. The gradual changes observed in many 

force-displacement diagrams may be modeled with distributed 
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elements. However, in this investigation only one element from 

each of the three basic types of elements will be used to model the 

. deteriorating system. 

3. 2 Elements of the Model 

The three basic elements of the model for the deteriorating 

restoring force are: an elastic element (E-type), an elasto-plastic 

element (Y-type) and an element which exhibits both cracking and 

crushing like behavior (C-type). In Fig. 3. 1 physical analogs of 

these elements are indicated ~long with force-deflection diagram's 

for one cycle of loading from the virgin state. 

3. 2. 1 E-type Element 

The E-type element which is completely elastic, contributes 

a force kex to the generalized force for all generalized displace­

ments x. 

3. 2. 2 Y -type Element 

The Y-type element is an elasto-plastic element with initial 

stiffness ks and generalized yield displacement xs. Hence , the 

generalized yield force as shown in Fig . 3. 1 is 

( 3. 1) 

The Y and E-type elements are frequently used in the analysis of 

nondeteriorating structures. The bilinear hysteretic system (BLH) 

can be modeled by a single E-type in parallel with a single Y-type 

element. 
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3. 2. 3 C-type Element 

The effects of deterioration come from the inclusion of the 

C-type element. As shown in Fig. 3. 1 when this element is loaded 

in a tensile direction it slips or 11 cracks" at a generalized force 

level fb corresponding to a generalized displacement xb. When the 

element is loaded in a compressive sense, it yields or 11 crushes 11 

at a generalized force level fc corresponding to a generalized 

displacement xc• The initial stiffness of this element is given by 

kc. The similarity of the behavior of the C-type element to that 

observed in concrete is apparent. The fact that the generalized 

force associated with crushing normally decreases with increasing 

displacement can be accounted for by a negative stiffness after 

yielding, denoted by kd (kd s; 0). 

It is easily seen that the cyclic energy dissipation of the C­

type element decreases sharply after the first loading excursion to 

an amplitude greater than that required for compressive failure 

(i.e. x > xc). Two such elements are used in a back-to-back con­

figuration to model the initially symmetric force-displacement 

diagrams considered herein. 

These three basic elements are the building blocks of the 

distributed element model. As mentioned earlier , a model com­

posed of one E-type element , one Y-type element and one pair of 

C-type elements will be used in this investigation to simplify the 

analysis. An example of how these three elements are combined 

to give the deteriorating response of the system is shown in Fig. 

3. 2. 
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Figure 3. 2. Summation of Element Contributions. 
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3. 3 System Parameters 

For this simplified model there are five basic system 

parameters a, ~' Y, 6 and v . These five basic system parameters 

specify the relationships between the spring stiffnesses ke, kc, ks 

and kd, and the yield forces f S' fb and fc or the yield displacements 

3. 3.1 Definition and Description 

The five basic system parameters will be defined in terms of 

the parameters in Fig. 3. 1 and in terms of their effect on the 

shape of the restoring force diagram. The five system parameters 

are: 

k s 

ratio of the stiffness of the elastic 
element to the nominal stiffness 
of the system 

= = 
kc 

ratio of the small amplitude stiffness 
of the simple yielding element to 

y = 

6 

\) = 
kc 

that of one deteriorating element 

= ratio of the generalized displacement 
at which significant yielding occurs 
to that at which crushing occurs 

= ratio of cracking to crushing strength 
for deteriorating elements 

= ratio of the limiting large amplitude 
stiffness to the small amplitude 
stiffness of the deteriorating elements 

All of these parameters have a direct physical interpretation and 

are in some way related to the parameters used in structural 
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design. The parameter y, for example, denotes the degree of 

ductility of the structure. If y< 1, the system is said to be of 

ductile design with yielding of steel elements occurring before 

significant crushing of concrete elements. 

3. 3. 2 Effect of Varying the System Parameters 

In Fig. 3. 3 the initial loading curve for this model is given. 

The various stiffnesses are indicated in terms of k 0 the nominal 

stiffness of the system and the system parameters a, ~, Y, o and 

v. Note that a and v control the limiting slope for large amplitude 

response. The parameter ~ controls the ratio of the various slopes 

while y and o control the location of the points of slope change. 

In Fig. 3. 4 the effect on the shape of the hysteresis loop due 

to variations in ~ and y are demonstrated for nine systems speci­

fied by a =0.05, o =0.10, v =0.0, ~ =0.2, 1.0, 50, and Y =0.2, 

O. 6, 1. O. Note that ~ small indicates a highly deteriorating system. 

The effect of varying o is demonstrated in Fig. 3. 5. When 

o = 0 the system has no cracking strength, while o = • 5 indicates 

that the cracking strength is half the crushing strength. 

3. 3. 3 Typical Range of System Parameters 

The system parameters ~ and y could be deduced directly 

from an analysis of a given beam or column section according to 

the rules of normal design practice [57]. This gives a range of 

values for y between approximately 0.2 and 0.5 and for~ between 

5 and 15. However, from tests of full scale structural components 

it would appear that if the model is used to describe the gross 
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BETR =5 .0 
GRMMR=0.2 
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BETR =5 .0 
GRMMR=l .0 

Figure 3. 4. The Effect of Varying ~ and Y. 



-50 -

Figure 3. 5. The Effect of Varying 6. 
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behavior of a structure including joints, the parameter Y should be 

allowed to vary from 0. 2 to I. 0 while the meaningful range of ~ 

is 0. 2 to 5. 0. 

3. 4 Six Particular Systems 

In this investigation six systems will be taken as represen­

tative of the wide range of systems which can be modeled by the 

model discussed in this chapter . In all six systems the parameters 

v and a will be fixed at 0.0 and 0.05 respectively. Hence, the 

structural model may be described in terms of the three param­

eters ~, y and 6. In what follows, the systems will be designated 

by the code 10~-lOy-1006. Hence , the code 02-06-10 respresents 

the system described by the parameters ~ = 0 . 2, Y = 0 . 6 and 6 = 

0.10. The BLH system is the only system among the six inves­

tigated which will not be specified by this code . 

The force-displacement diagrams of these six systems are 

shown in Fig. 3 . 6 for the case of a cyclic loading with monotoni-

cally increasing amplitude. It is seen that the systems encompass 

a wide range of structural behavior . Table 3. 1 indicates the 

nature of the system behavior for the six systems considered as a 

function of ductility ratio. In this case the ductility ratio is 

defined as 

µ. = x /x m s ' ( 3. 2) 

where ~ is the maximum amplitude of response. In the table , 

cracking refers to hysteretic energy dissipation associated with 
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slip level fb while stiffness degrading refers to deteriorating energy 

dissipation associated with the slip level f . TLH denotes non-
. c 

deteriorating trilinear hysteretic behavior. 

The BLH system with initial slope k0 and post yield. slope 

ak
0 

= O. 05k
0 

is included in the six systems of this investigation 

for comparison with the nondeteriorating methods. This system has 

been studied by other investigators [ 35-37] and next to the elasto-

plastic system is one of the most commonly used hysteretic models. 

The system parameters and the resulting element parameters 

for the six systems are ,presented in Table 3 . 2. The BLH, 

10-10-00 and 02-10-00 systems have no cracking strength, while 

the other three systems all have 10 3 cracking strength. The 

02-10-00, 02-10-10 and 02-06-10 systems all have five times as 

much stiffness in the C-type element as in the Y-type element. 

The system 02-10-10 differs from 02-10-00 by the addition of 

cracking strength. The system 0 2- 06-10 differs from 0 2-10-10 

by the change in yield point for the C-type elements. 

Both 10-10-00 and 50-06-10 systems have less deterioration 

than the three systems with ~ = 0. 2. The 50-06-10 system is 

closest to the BLH system of the five deteriorating systems. Thus, 

it is seen that the smaller ~ is the greater the contribution of the 

C-type elements and the more deterioration possible in the system. 

Likewise, the larger ~ is the greater the contribution of the Y -type 

element and the less deterioration possible in the system. 
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Hence, it is seen that a wide range of system behavior from 

nondeteriorating to highly deteriorating is represented by the six 

systems used in this investigation. 
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CHAPTER IV 

NUMERICAL RESULTS 

4. 0 Introduction 

In this chapter the selection and scaling of an ensemble of 

twelve earthquakes is discussed. The nonlinear equation of motion 

is restated and the method of numerical integration is discussed. 

The numerical results of the present investigation are presented 

in a general form as a function of the parameters of the study. 

Then, the results are converted to nonlinear response spectra. 

Finally a method for defining an effective linear system based upon 

response spectra is discussed and effective linear system param-

eters are presented. 

4. 1 Selection and Scaling of Input Accelerograms 

In Chapter II the nonlinear equation of motion (2. 5) was 

written as 

2 
x + ~ 0 :X + w0 f(x) = - a(t) ( 4. 1) 

Let the displacement ratio z and the system parameters A. and a 
y 

be defined as 

z = x/x ; y A. = f / (k0x ) y y 

Then, the equation of motion becomes 

•• 0 2-
z + ~ 0 z + w0 f(z) 

where 

( 4. 2) 

( 4. 3) 



f(z) 
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= f(x)/x 
y 

( 4. 4) 

The magnitude of the excitation in eqn. ( 4. 3) may be specified 

by some characteristic acceleration a':'. This might be taken as 

the peak acceleration, the rms acceleration , or some other measure 

of the strength of the excitation. The right-hand side of the equa-

tion of motion could then be expressed in terms of the characteris-

tic acceleration as 

( 4. 5) 

where 

p ( 4. 6) 

In this form, [a(t)/a>:'J is a dimensionless normalized excitation and 

the parameter p specifies the strength of the excitation relativ e to 

that value of steady input acceleration which would just cause sig-

nificant yielding of the system . 

The twelve earthquake accelerograms used in the present 

investigation are selected so as to be representative of a variety 

of different types of earthquake. In Table 4. 1 the twelve earthquake 

accelerograms are listed along with their maximum accelerations, 

am and characteristic accelerations, a*. Except for the accelero-

gram denoted by SGGP all accelerograms may be found among the 

Caltech digitized accelerograms. 

Since the peak acceleration is not necessarily the best 

measure of the strength of an earthquake [54 J, the characteristic 

acceleration used herein 1s derived from the response spectrum 
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of the earthquake. The characteristic acceleration a ':' is the peak 

acceleration of a reference spectrum which has been scaled so as 

to minimize the squared error between the log of the 2% damped 

spectrum of the earthquake and the log of the reference spectrum 

for periods from 0. 2 to 4. 0 seconds. Almost any spectrum may 

be used as the reference spectrum. In the present investigation 

the reference spectrum is the 2 % damped spectrum from the 

Nuclear Regulatory Guide 1. 60 [ 5 8 J adjusted to mean value. The 

mean value spectrum is deduced from the published spectrum by 

subtracting lo- from this spectrum as discussed in references 

[59-61]. The peak and mean value design spectra are shown in 

Fig. 4.1. 

The average response spectrum for the twelve earthquakes 

used herein is shown in Fig. 4. 2. This average spectrum is 

obtained by scaling all of the response spectra of the earthquakes 

in the ensemble to a lg characteristic acceleration and taking the 

ensemble average. 

4. 2 Method of Numerical Integration 

Since the nonlinear restoring force rn eqn. (4 . 3) is piecewise 

linear for all systems used in the present investigation and since 

the input accelerograms as available have all been digitized at an 

equally spaced time interval, an approach based on the exact 

analytical solution of the Duhamel integral for the successiv e 

linear segments of excitation [62] will be used herein. 
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Figure 4. 1 . D e sign Spectra - Nuclear Regulatory Guide 1. 60. 
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Let ~t be the· time interval, k be the local slope of the 

restoring force curve and w be the natural frequency based upon 

the mass m and stiffness k. Let C be the fraction of viscous 

damping of the system and let z.' z. and a. be the relative dis-
l l l 

placement ratio, relative velocity ratio and scaled input accelera-

tion at time ti respectively. As shown in Fig. 4. 3, z
0 

is the point 

of intersection between the line with slope k which passes through 

[ z., I(z.)] and the displacement ratio axis. Using these definitions 
l l 

the displacement ratio and velocity ratio at time ti+ 1 = ti+ ~t are 

given by 

Jziz-.. zo) = [A(C,w,~t)] l 
l 

The elements of matrices A and B are 

a21 

a22 

= e -Cw~t ( C 

~..--1 _-,-2 

-Cw~t e 

w -Cw~t = e sin wd.6t 

~ 1 - ,2 

_ ,wL'>t ( ' = e cos wd.6t 

~ 1 - c2 

( 4. 7) 

( 4. 8) 

sin wdL'>~ 
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f(Z) 

z 

Figure 4.3. Piecewise Linear Restoring Forceo 
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( 4. 9) 

b
22 

= -e -Cw.0.t[ 2c
2

2 
- l (cos wd.0.t - C sinwd.0.t\ 

w .0.t . ~l-C2 I 

- -¥-(wd sin wd.0.t + Cw cos wd.6.t\l - + 
w .0.t /J w .0.t 

where 

( 4. 10) 

If the displacement and velocity of the oscillator are known 

at t., the complete response can be computed by a step- by- step 
1 

application of eqn. ( 4. 7). The advantage of this method lies in the 

fact that for a constant time interval .0.t, matrices A and B depend 

only on C and w which are constant along any linear segment of the 

restoring force. 

4. 3 Numerical Results 

Solving eqn. ( 4. 3) yields the entire time history of the 

response. However, only the maximum amplitude of response will 
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be discussed in this investigation. Let zm be the maximum dis­

placement ratio as a function of the earthquake, system, nominal 

period, nominal viscous damping and relative strength of the 

excitation. Then, the ductility ratio may be expressed as 

(4. 11) 

For each p as given in eqn. (4. 6) there is a corresponding 

yield displacement ~· Hence, the maximum displacement response 

xm may be expressed as 

( 4. 12) 

For a typical earthquake in the ensemble such as HOL the values 

of xm/a* may be plotted versus the corresponding values of µ. for 

monotonically increasing p • This is illustrated for the earthquake 

HOL in Figs. 4. 4-4. 9. 

In Figs. 4. 4-4. 9 the response of a completely linear system 

would be a line of constant ~/a':< for all µ.. This is seen in the 

regions of linear response for the BLH, 02-10-00 and 10-00-00 

systems. The method of scaling the system relative to the exci-

tation which was used in the present investigation yields decreasing 

xy with increasing p. For a linear region of system response, as 

p is increasing xy is decreasing and µ. is increasing such that 

xm = µ.xy remains constant. 

Visual inspection of Figs. 4. 4-4. 9 reveals that ~/a':< versus 

µ. is not a single valued function of µ.. For a typical system such 
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Figure 4. 7. Maximum Displacement versus Ductility Ratio 
for 02-10-10 System and HOL Earthquake. 
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as 02-10-00 rn Fig. 4 . 8 with nominal period T
0 

= 2. 0 seconds the 

response as a function of ductility is multivalued in the range of 

ductilities 1. 5 s; µ s; 2. 0. 

The time histories for this system corresponding to seven 

values of p are presented in Fig. 4. 10. There are two important 

characteristics of these time histories that help to explain the 

multivalued nature of the nonlinear system response. First, as 

p increases and xy decreases the system enters the nonlinear 

region of response earlier and thus dissipates more energy. Hence, 

although the system is getting weaker the maximum response may 

decrease due to the energy dissipation. This decrease in the 

maximum response may be greater than the corresponding decrease 

in x so that µ actually decreases. In Fig. 4. 10 this behavior is y 

evident in comparing p = 2. 36 with p = 1. 8 9. For p = 1 . 8 9 the · 

response doesn't exceed the yield level until t = 11 seconds but for 

p = 2.36 the first nonlinear response occurs at t = 7.5 seconds. 

Comparison of p = 4. 7 2 with p = 2. 36 reveals that more nonlinear 

behavior is occurring even earlier and the peak response is there-

fore much earlier as well as being smaller. 

The second important characteristic to note from the time 

histories in Fig. 4. 10 is that as the system becomes nonlinear the 

effective period of the system changes and the system in essence 

detunes itself from the excitation. Hence, the system may shift 

its response to a period range where there is less excitation 

energy and may therefore have a smaller maximum response in 

spite of the relative increase in the strength of the excitation. 
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10 20 30 
TIME <SEC) 

Time Histories of Response for HOL 
Earthquake, 02-10-00 System w ith 
T 0 = 2.0 seconds. Vertical Scale is 
the same in all seven cases. 
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Again, the decrease in maximum response may be greater than the 

corresponding decrease in yield level resulting in a decrease in 

ductility. An example of this detuning is seen in comparing p = 4. 72 

with p = 1. 89. For p = 1. 89 the response is nearly the narrowband 

response of a linear system while p = 4. 72 resembles a broadband 

response due to the changing period of the nonlinear system. 

4. 4 Nonlinear Response Spectra 

The nonlinear spectral displacement SDn may be obtained from 

the maximum response xm(Eqk, Sys, T
0

, c
0

, p) and the ductility µ, by 

letting 

SDn(Eqk, Sys, T
0

, c
0

, µ,) = max ~(Eqk, Sys, T0 , c0 , p) 
p 

p such that µ, = zm(Eqk , Sys, T0 , c0 , P) 

l (4. 13) 

Based on data such as that presented in Figs. 4 . 4-4 . 9 , dis-

placement response spectra are calculated for each earthquake in 

the ensemble and each of the six systems at the six ductilities 

µ, = 0.6 , 1.0, 1.5, 2 . 0, 4.0 and 8 . 0 . The ensemble average 

response spectra for each of the six systems is presented in Figs. 

4.11 - 4. 13 . The nonlinear displacement response spectra are pre-

sented as pseudovelocity spectra using the relationship 

PSV = :; SD • ( 4 . 14) 

For the remainder of this chapter the numerical results are based 

upon the ensemble average rather than one particular earthquake. 
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For highly deteriorating systems with cracking such as 

02-06-10 and 02-10-10 the nonlinear response spectra generally 

increase with increasing ductility. On the other hand, for non­

deteriorating or slightly deteriorating systems such as BLH and 

50-06-10 the response spectra decrease with increasing ductility 

up to µ. = 2. 0 then they increase with increasing ductility. 

The three systems with no cracking (BLH, 02-10-00 and 

10-10-00) have similar response. The µ. = 0. 6 and 1. 0 spectra are 

the linear response spectrum for these systems. The response 

decreases then increases with increasing ductility. The spectrum 

corresponding to µ. = 8. 0 is larger than the other spectra for small 

periods. This behavior is predicted by approximate stationary 

theories [37]. 

The individual earthquake dependence has been removed from 

the data presented in Figs. 4. 11-4. 13 by taking the ensemble 

average. A measure of the dispersion of the data may be obtained 

from the ratio of the standard deviation Cf and the mean x of the 

nonlinear spectral displacement. In Table 4. 2, the ratio CJ/X is 

presented for all six systems at the six ductilities and the nine 

nominal periods considered herein. 

From visual inspection of the ratio CJ/x in Table 4. 2 it appears 

that there is a significant dependence of a/x on the nominal period 

of the system. Performing two way analyses of variance with 

replication [63 J confirms the observation that period effects have 

a more significant effect upon CJ/x than ductility or system effects. 

For a period of O. 4 sec the average value of CJ/x is 22. 64 % while 
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for a period of O. 8 sec it is 19. 3 % and for a period of 4 . 0 sec 

it is 47.5% . 

4. 5 Defining an Effective Linear System 

In Figs. 4. 11-4. 13 it is observed that the averaged nonlinear 

response spectra resemble the average linear response spectra 

except for a shift along an axis of constant displacemento For 

example, it is seen that if the nonlinear spectrum corresponding to 

the 02-06-10 system at µ, = 8. 0 is shifted along an axis of constant 

displacement by a factor corresponding to a period shift of T/T
0 

= 

1. 59 then this spectrum lies almost exactly on the linear spectrum 

corresponding to C = 13.7%. This is illustrated in Fig. 4. 14a. 

Another example of a shifted nonlinear response spectrum is shown 

in Fig. 4. 14b for the 0 2-10-00 system at µ, = 8. 0. On the basis of 

this observation, it is concluded that it is possible to define an 

effective linear system for each earthquake, system, ductility 

combination. 

The effective linear system may be specified by two param-

eters T /T
0 

and C which minimize the rms error between a linear 
e e 

and shifted nonlinear spectra. The period ratio is used rather than 

period itself to eliminate the dependence upon nominal period. Let 

SDn(Eqk , Sys, T0 , c
0

, µ,) be the nonlinear spectral displacement as 

defined in eqn. ( 4 . 13) and let SD t (Eqk, T, ') be the linear spectral 

displacement corresponding to a linear system with period T and 

viscous damping C. Then, the spectrum error at a particular 

nominal period T . is given by 
1 
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6i == 6(Eqk, Sys, T, Ti, c, 'o' µ) 

(4.15) 

The rms spectrum error denoted by € is then taken to be 

-- j ~i9== 1 69~ €(Eqk,Sys, T/To''' 'o' µ) L- (4. 16) 

Note that the period shift T/T
0 

replaces the dependence upon both T 

and T. in eqn. (4.15). 
1 

Let ~ be the minimum rms spectrum error and let Tm/T
0 

and C be the linear system parameters corresponding to € • m . m 

Then, the effective linear system for a particular nonlinear system 

is given by 

T == T. • T /T0 e l m 
( 4. 1 7) 

where Ti is the nominal period of the nonlinear system and Tm/T
0 

and C are functions of earthquake, system, ductility and nominal 
m 

viscous damping. 

All the data presented in the remainder of this chapter are 

derived from the average linear and average nonlinear spectra. 

Values of the rms spectral error € for all of the systems con-

side red in this study are shown in Figs. 4. 15-4. 19 as a function of 
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T/T
0 

and C· Contour lines for € = 10, 20, 30, 40 and 50 percent 

are indicated. The location of (Tm/T0 , Cm) corresponding to Em 

is denoted by a . box. There are thirty contour plots in Figs. 4. 15-

4. 19 correspontj.ing to the rms spectral error for all six systems 

and all ductilities considered except for combinations which result 

in purely linear behavior. 

In Figs. 4. 15-4.19 it can be seen that the gradient of € is a 

minimum in the direction of an axis passing diagonally through the 

point (Tm/T
0

, Cm) such that Co: (T/T 0). For example, m the case 

of system 02-06-10 at µ, = 8.0 the minimum rms spectral error is 

e: = 3.17% at T /T
0 

= 1.594 and C = 13.66%. Along the axis of m m m 

minimum gradient at T/T
0

= 2.0 and C = 21% the error is€""" 10% 

while off this axis at T/T0 = 1.2 and C = 21% the error is E:""'40%. 

Hence, it is concluded that approximations to T /T
0 

and C will 
m m 

give better results if they fall on or near the axis of minimum 

gradient. 

The values of T m/T 0 , Cm and Em are tabulated for the average 

spectra in Table 4. 3. Note that for the three systems with non-

zero cracking strength 50-06-10, 02-06-10 and 02-10-10 the period 

shift is less than one for ductilities less than or equal to one. 

This is due to neglecting the cracking in defining the nominal stiff-

ness of the system. Hence, the initial stiffness of the system 

including cracking is greater than the nominal stiffness and the 

effective stiffness remains greater for all ductilities less than one. 

The period shift for the more highly deteriorating systems 

with cracking such as 0 2-06-10 and 0 2-10-10 is smaller at µ, = 0. 6 
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than the slightly deteriorating system 50-06-10 due to the greater 

increase in initial stiffness from the larger C-type element contri-

bution, The effective viscous damping for these three systems 

with cracking is much larger at small ductilities due mainly to the 

energy dissipated by cracking and partly due to the effect upon 

viscous damping factor of period shift. Note that the slightly 

deteriorating system 50-06-10 has much smaller effective viscous 

damping at µ = 0. 6 than the highly deteriorating systems. 

The three systems with zero cracking strength BLH, 02-10-00 

and 10-10-00 behave as linear systems up to a ductility of one. 

For these systems (m should be zero at T m/T 0 = 1. 0 and 'm = c0 = 

2% but numerical inaccuracies such as round-off errors cause f: 
m 

to be as large as 0, 28% at values of T /T
0 

and C slightly 
m m 

different from their theoretical values. 

The effect of cracking is greatest at small ductilities which 

is clearly demonstrated by comparing the 02-10-10 and 02-10-00 

systems. The contribution to the effective viscous damping due to 

cracking is significant at small ductilities, but at µ = 8. 0 its con-

tribution is negligible. The effective period shift continues to 

reveal some effect of cracking even at ductilities as large as 

µ = 8.0. 

The effect of a more 11 ductile 11 design is to increase the 

energy dissipation as demonstrated by comparing 02-06-10 and 

02-10-10. The 02-06-10 system is termed more ductile since the 

Y-type element yields before the C-type element. At µ = 1. 0 and 

at µ = 4.0 the viscous damping of 02-06-10 exceeds that of 02-10-10. 
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The period shift for 02-06-10 is less due to the increased post 

yield stiffness associated with unyielded C-type element. 

In Table 4. 3 the minimum rms spectral error Em is 

generally less than 6%. Hence, the spectral displacement of the 

nonlinear system can always be estimated to within this error using 

the effective linear system values Tm/TO and Cm. Although the 

error may be larger than the rms value at a particular period, 

this still provides a very good estimate of the spectral displace­

ment. 
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CHAPTER V 

NUMERICAL COMPARISON WITH ANALYTICAL MODELS 

5. 0 Introduction 

In this chapter the approximate methods of Chapter II are 

compared to the numerical results of Chapter IV. First, methods 

applicable to nondeteriorating systems are considered; then, 

methods applicable to deteriorating systems. Finally, the average 

stiffness and energy method is used to demonstrate the manner in 

which a nonlinear response spectrum may be generated from a 

particular earthquake, system and ductility. 

5. 1 Nondeteriorating Systems 

There are eight approximate methods presented in Chapter II 

which may be applied to nondeteriorating systems. The five 

methods which may be used from the harmonic excitation section 

are harmonic equivalent linearization, resonant amplitude matching, 

dynamic mass, constant critical damping and geometric stiffness. 

The geometric energy method is excluded since it gives the effec­

tive viscous damping only. The two methods which may be used 

from the random and earthquake excitation section are stationary 

random equivalent linearization and average period and damping. 

Of the two methods in the deteriorating system section, only the 

average stiffness and energy method may also be applied to non­

deteriorating systems. 

Each of these eight methods yields a value of the period 

shift and viscous damping as a function of ductility . This may be 
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translated into a value for the spectral displacement using the 

appropriate linear response spectrum. 

In this section the eight approximate methods indicated are 

applied to the BLH system of Chapter III. The approximate linear 

system parameters and the approximate spectral displacement are 

compared to the results presented in Chapter IV. 

5. 1. 1 Effective Period Shift and Effective Viscous Damping 

Applying the eight methods just mentioned to the BLH system 

with a= 0.05 and 'o= 2% yields the values of Te/T 0 and Ce indicated 

in Fig. 5. 1. The effective viscous damping is larger than that 

indicated in Fig. 2. 9 since Co = 2°/o in this case. Also indicated in 

Fig. 5. 1 are the numerical results for the period shift and viscous 

damping which minimize the rms spectral error between the average 

linear and nonlinear response spectra. These results are tabulated 

in Table 4. 3. 

The following observations may be made about the approxi­

mate methods. All of the approximate methods except resonant 

amplitude matching and dynamic mass overestimate the effective 

viscous damping at all ductilities. For ductilities less than 5 the 

RAM and DM methods also overestimate the viscous damping. 

Generally speaking, the effective period shift is overestimated by 

all the methods except RAM and ASE methods . At µ = 1. 5 the 

SREL and APD methods also underestimate the effective period 

shift . 
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Figure 5. 1. Approximate Linear System Parameters for the 
BLH system wi.th a = 5 % and Co = 2 % . 
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As mentioned in Chapter II and indicated by the numerical 

results, the effective viscous damping increases much more 

gradually with ductility on the range 1 ::;; µ s 2 than indicated by 

the harmonic methods. 

Generally speaking the three methods SREL, APD and ASE 

appear to give values for the effective linear system parameters 

which show better agreement with numerical results than do those 

from the harmonic methods. Furthermore , for large ductilities 

(µ ;:: 4) the ASE method gives effective linear system parameters 

which show better agreement than either the SREL or APD methods. 

5. 1. 2 Spectral Displacement 

The fact that an approximate method gives better values for 

the linear system parameters may or may not imply that it also 

gives a better value for the spectral displacement. As mentioned 

in section 4. 5 the location of the point (Te/To, Ce) with respect to 

the axis of minimum gradient has an important effect upon the 

accuracy of the approximate spectral displacement. 

To evaluate the accuracy of the approximate spectral dis­

placement, the rms spectral error e as defined by eqn . (4. 16) is 

used. In Table 5. 1 e is tabulated along with T e/T 0 and. Ce for each 

of the eight approximate methods considered in this section. 

As mentioned earlier, the location of point (T e/T 0 , Ce) as well 

as its distance from (Tm/T 0 , 'm) has an important effect on the 

rms spectral error. In the case of the CCD method at µ = 4 the 

rms spectral error is 18.3% even though Te/T 0 is 56.4% greater 



RAM 

HEL 

DM 

CCD 

GS 

SREL 

APD 

ASE 

TABLE 5. 1 

Comparison of Approximate Methods 
BLH System with a ::: 5 % and Co ::: 2 % 

DUCTILITY RATIO, µ, 

1. 5 2.0 4 . 0 

Te/T ::: 1. 000 1.000 1. 000 
Ce (%~ ::: 15. 44 17 0 12 13. 34 
e ( %) - ::: 37 . 7 36.9 31. 8 

Te/To ::: 1. 176 1. 380 2.060 
Ce ( %) ::: 20 0 95 31. 56 52.23 
e {%) ::: 36.0 41. 0 52.2 

Te/To::: 1. 176 1.380 2.060 
Ce { %) ::: 15 0 44 17. 12 13. 34 
e {%) ::: 25 . 2 13.5 52.0 

Te/T ::: 1. 176 1. 380 2.060 
Ce {%~ ::: 18. 16 23 . 63 27.48 
e {%) ::: 30.7 26.5 18.3 

Te/To ::: 1. 210 2.380 1. 865 
Ce {%) ::: 22.09 31. 56 43 . 17 
e (%) ::: 36 . 2 41. 0 43.9 

Te/To::: 1. 030 1. 095 1. 458 
Ce {%) ::: 5.72 11. 30 30.31 
e {%) ::: 8.6 16 0 8 37. 1 

Te/To ::: 1. 036 1. 102 1. 372 
Ce {%) ::: 5.82 110 20 25. 17 
e (%) ::: 8.4 16. 0 31. 8 

Te/To ::: 1. 031 1. 082 1. 273 
Ce (%) ::: 8.92 14.83 21. 83 
e «Jo ) ::: 20.3 25 0 9 30.2 

8.0 

1.000 
8 . 61 

30.8 

2.904 
61. 61 
57.3 

2. 904 
8. 61 

98.8 

2. 904 
25. 02 
28.7 

2. 434 
44.07 
40.3 

2. 105 
48.79 
53 . 1 

1.775 
34 . 76 
40.6 

1. 551 
21. 74 
25 . 6 
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than Tm/To and Ce is 155.6% greater than Cm· On the other hand, 

for ASE at µ. = 4 the rms spectral error is 30. 2% even though 

Te/T 0 is only 3.3% less than Tm/T 0 and Ce is only 103. 1% greater 

than C . If the ASE method had overestimated the period shift 
m 

rather than underestimated it, the rms spectral error would be 

much smaller. 

As noted in section 5. 1. 1, the three methods SREL, APD and 

ASE are generally better than the harmonic methods. This is 

especially true for µ. ::;; 2. At small ductilities, such as µ, < 4, the 

ASE method gives poorer values for the spectral displacement for 

this system than the SREL and APD methods. However, the ASE 

method gives the best approximate spectral displacement for the 

BLH system at µ, = 8. In any case, the errors do not exceed 31% 

for the ASE method. 

5. 2 Deteriorating Systems 

The only methods presented in Chapter II which are applicable 

to deteriorating systems are substitute damping and average stiffness 

and energy. Of these two only the average stiffness and energy 

method is applicable to general deteriorating systems such as those 

described in Chapter III. 

In this section the average stiffness and energy method is 

applied to the six systems of this investigation. The BLH system 

is included for comparison even though it was discussed in the 

previous section. The approximate linear system parameters are 

compared to the numerical results presented in Table 4. 3. The 
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linear system parameters are used in conjunction with the average 

linear response spectra to obtain the approximate spectral dis­

placement and comparison is made with the observed spectral 

displacement. 

5. 2. 1 Effective Period Shift and Effective Viscous Damping 

In Figs. 5.2-5.7 the values of Te/To and Ce are indicated as 

a function of ductility for the six systems considered in this inves­

tigation. The values Tm/To and Cm which minimize the rms 

spectral error between the average linear and nonlinear response 

spectra, as tabulated in Table 4. 3, are also indicated in Figs. 

5. 2-5. 7. It is clearly seen that the ASE method provides a 

reasonable value for the effective period shift for the six systems 

considered herein at all ductilities investigated. For highly 

deteriorating systems such as 02-06-10, 02-10-10 and 02-10-00 

the ASE method gives a reasonable value for the effective viscous 

damping. Note that this method even predicts the observed dip m 

the effective viscous damping near µ = 1 for the three systems 

with nonzero cracking strength. 

However, the ASE method overestimates the effective viscous 

damping at large ductilities for systems with little or no deteriora­

tion such as BLH, 50-06 - 10 and 10-10-00. Overestimating the 

effective viscous damping should imply underestimating the spectral 

displacement if the spectrum is relatively smooth and the period 

shift is not too large. This is discussed further in the next section. 
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Figure 5. 3. ASE Method Linear System Parameters for the 
02-06-10 System with a= 5% and Co= 2%. 
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5.2.2 Spectral Displacement 

As in section 5. 1. 2 for the BLH system, the effective linear 

system parameters are used to calculate the rms spectral error for 

the six systems considered in the present investigation. In Table 

5. 2 the effective period shift, the effective viscous damping and the 

rms spectral error are tabulated for the ASE method applied to the 

six systems considered at the six ductilities investigated. As noted 

in the last section, the ASE method does a much better job of 

estimating the effective linear system parameters and hence the 

spectral displacement for highly deteriorating systems than for non­

deteriorating or slightly deteriorating systems. This is seen in the 

fact that e is generally less than 10% for the systems 02-06-10, 

02-10-10 and 02-10-00 while it is as great as 30% for the BLH 

system. This may be due to the fact that the actual system 

behavior of nondeteriorating systems favors smaller amplitude 

oscillations. Hence, the weighting factor used in calculating the 

average stiffness and average energy dissipated should not be 

uniform but should decrease with increasing amplitude of response. 

The rms value of the error does not provide any information 

about the sign of the error in estimating the spectral displacement. 

As mentioned in section 5. 2. 1, overestimating Ce should imply a 

nonconservative estimate of the spectral displacement. In Figs. 

5. 8-5. 10 the spectral error, <\, is indicated for each nominal period 

for each ductility considered and for all six systems. 

As mentioned previously, the ASE method almost always over­

estimates the effective viscous damping and hence the estimated 



T
A

B
L

E
 

5
. 

2 

C
o

m
p

a
ri

so
n

 
o

f 
A

S
E

 
M

e
th

o
d

 f
o

r 
S

ix
 
S

y
st

e
m

s 

D
U

C
T

IL
IT

Y
 

R
A

T
IO

, 
µ, 

0
.6

 
1.

 0
 

1
. 5

 
2

.0
 

4
.0

 
8

.0
 

-
-

-
-
-

-
-

B
L

H
 

T
e
/T

o
 =

 
1

. 0
00

 
1.

 0
00

 
1.

 0
03

1 
1

. 0
0

8
2

 
1

.2
7

4
 

1
. 5

5
1

 
C

e(
%

) 
=

 
2

.0
0

 
2

.0
0

 
8

.9
7

 
1

4
.9

1
 

2
1

.9
7

 
21

. 
97

 
e 

( %
) 

0
. 

1 
0

.2
 

2
0

.5
 

2
6

.0
 

3
0

.4
 

2
6

.0
 

0
2

-0
6

-1
0

 
T

e
/T

o
 =

 
0

.8
1

6
 

0
.8

5
5

 
0

.8
8

7
 

0
. 

95
1 

1
. 

19
0 

1
. 4

79
 

C
e(

%
) 

9
.0

5
 

8
. 

14
 

7
.8

4
 

8
.7

5
 

1
3

. 4
3 

1
4

.6
1

 
e 

(%
) 

1
1

. 
1 

7
.8

 
7

.8
 

7
.8

 
8

.3
 

11
. 

1 
I .....

.. 
5

0
-0

6
-1

0
 

T
e
/T

o
 =

 
0

.9
5

3
 

0
.9

6
5

 
0

.9
9

7
 

1
. 0

46
 

1
.2

4
9

 
1.

 5
3

0
 

0 -.
J 

C
e 

(%
) 

=
 

3
.9

3
 

3
. 5

7
 

8
.6

9
 

1
3

.2
8

 
1

9
.8

7
 

20
. 

23
 

I 

e 
(%

) 
=

 
2

.2
 

1.
 5

 
1

4
. 

2 
1

9
. 

1 
2

3
.5

 
2

1
. 6

 

0
2

-1
0

-1
0

 
T

e
/T

o
 =

 
0

.8
5

5
 

o
. 

89
0 

0
.9

9
8

 
1.

 0
90

 
1.

 3
50

 
1.

 6
78

 
C

e 
(%

) 
=

 
8

.1
4

 
6

.6
3

 
8

. 0
1 

9
.5

7
 

11
. 4

0 
1

0
.9

3
 

e 
(%

) 
=

 
7

.8
 

6
.3

 
4

.6
 

4
.6

 
6

.0
 

6
.3

 

0
2

-1
0

-0
0

 
T

e
/T

o
 =

 
1.

 0
00

 
1

.0
0

0
 

1.
 1

30
 

1
.2

4
0

 
1.

 5
26

 
1.

 8
76

 
C

e 
(%

) 
=

 
2

.0
0

 
2

.0
0

 
5 

.1
1

 
8

. 
25

 
1

2
.4

8
 

1
2

. 5
 9

 
e 

(%
) 

=
 

0
.2

 
0

.3
 

5
.3

 
9

.4
 

10
. 3

 
9

.4
 

1
0

-1
0

-0
0

 
T

e
/T

o
 =

 
1.

 0
00

 
1.

 0
00

 
1.

 0
55

 
1.

 1
38

 
1.

 3
81

 
1.

 6
98

 
C

e(
%

) 
=

 
2

.0
0

 
2

.0
0

 
6

.4
7

 
1

0
.8

0
 

16
. 4

8 
1

6
.7

3
 

e 
(%

) 
=

 
0

.2
 

0
.3

 
9

.8
 

1
6

.4
 

1
6

.8
 

1
4

.3
 



-108-

50 
µ µ SYSTEM BLH ij0 0.6 (!) 2.0 x 

1.0 & l!.0 ~ 
30 1.5 + 8.0 + 

,..... 
20 "" '..J 

cc 10 

~ 0 LU 

...J cc -10 cc 
I-u 
LU 

-20 a.. 
Ul 

-30 

-ijO 

-50 
0.3 0.5 1 2 5 

NOMINAL PERIOO <SEC) 

Figure 5.8a. Spectral Error - Average Spectra. 
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Figure 5 . 9a. Spectral Error - Average Spectra. 
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Figure 5. 9b. Spectral Error - Average Spectra. 



-110 -

50 
µ µ SYSTEM 02-10-00 

110 0.6 (!) 2.0 x 
1.0 & LLO ~ 

30 1.5 + 8.0 + 

r-. 
20 .. 

'\J 

a: 10 

~ 0 UJ 

-I 

~ -10 
I-
u 
UJ 

-20 a... en 

-30 

-ijO 

-50 
0.3 0.5 1 2 5 

NOMINAL PERIOO <SEC) 

Figure 5. lOa . Spectral Error - Average Spectra. 

50 
µ µ SYSTEM 10-10-00 

llO 0.6 (!) 2.0 x 
1.0 & LLO ~ 

30 1.5 + 8.0 + 

r-. 
20 .. 

'\J 

a: 10 
Cl 

~ o UJ 

-I a: -10 a: 
I-
u 
UJ 

-20 a... en 

-30 

-1!0 

-so 
0.3 0.5 1 2 5 

NOMINAL PERIOO <SEC) 
Figure 5 . lOb. Spectral Error - Average Spectra. 



-111-

spectral displ;;i.cement is almost always nonconservative. This is 

especially true for the nondeteriorating and slightly deteriorating 

systems such as BLH, 50-06-10 and 10-10-00. 

The rms spectral error may disguise a strong period depen­

dence of the spectral error but in this case the spectral error is 

generally independent of the nominal period. As indicated in Table 

5. 2 the spectral errors shown in Figs. 5. 8-5. 10 are less for highly 

deteriorating than for nondeteriorating or slightly deteriorating 

systems. 

Up to this point the spectral error has been calculated using 

the relatively smooth average spectra. One might ask, how well 

the ASE method estimates the spectral displacement for a particular 

earthquake whose spectrum is not particularly smooth. 

In Figs. 5.11-5.13 the spectral errors for the ELC earth-

quake are presented for all nominal periods, for all ductilities 

considered and for all six systems investigated. The increased 

scatter in the spectral error and the increased period dependence 

are the most obvious changes from the average spectrum cases of 

Figs. 5. 8-5. 10. However, the magnitude of the spectral error is 

still less than 50% in these cases. 

Comparing Figs. 5. 8-5 . 10 with Figs. 5. 11-5. 13 respectively, 

one can clearly see that the amplitude of the spectral error and the 

scatter of the spectral error about the rms spectral error is larger 

in the case of the ELC spectrum than the average spectrum. 

Generally speaking, the approximate spectral displacement will be 

more accurate when using a smooth linear response spectrum such 
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as a design spectrum than when using an actual earthquake response 

spectrum. This is due in part to the strong frequency dependence of 

most earthquake response spectra accentuating any error in the 

approximate value of the effective period shift. 

5. 3 Application of the ASE Method 

The average stiffness and energy method provides two effective 

linear system parameters as functions of system, ductility, nominal 

period and nominal viscous damping. The dependence upon nominal 

period may be eliminated by using effective period shift rather than 

effective period as one of the system parameters. Hence, the ASE 

method yields 

(5. 1) 

Using these parameters and a linear excitation response spectrum 

an effective nonlinear response spectrum may be defined as 

(5 0 2) 

where SDt is the linear response spectrum as mentioned in section 

4.5 and Te/T 0 , Ce are given by eqn. (5. 1). 

As an example of how the average stiffness and energy method 

could be applied to a specific system and earthquake response spec­

trum consider the ELC earthquake.' Let the system be the 02-06-10 

system and consider the response for the nominal period of 1 second 

at ductilities µ. = 1 and 4. For this system at µ. = 1 the effective 



-116-

linear system parameters are Te/T 0 = O. 855 and Ce = 8. 14%. Using 

the scaled response spectrum for ELC the approximate spectral 

displacement is given by 

SDe = SDt(ELC, O. 855, 8. 14%) = 20. 77 cm/g . (5 . 3) 

The actual peak response is 

SDn(ELC , 02-06-10, 1.0, 2%, 1.0) = 21.83 cm/g . (5 0 4) 

Hence, substituting (5. 3) and (5. 4) into ( 4. 15) yields a spectral 

error of 

(ii = -4. 84% (5. 5) 

Similarly for µ. = 4 

Te/To = 1. 190 and Ce = 13. 43% 

SDe = 18.50 cm/g 
(5. 6) 

SDn = 23. 22 cm/g 

6. = -20.35% 
l 

In these two examples, the ASE method underestimates the spectral 

displacement. In Table 5. 3 similar information is tabulated for 

this same system and earthquake combination at eighteeen nominal 

periods for three ductilities. The results in Table 5. 3 indicate that 

the nine point spectrum used throughout this investigation is an 

adequate representation of the response spectrum. It is also noted 
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that maximum error in estimating the spectral displacement is less 

than 29%. 

The fact that a nonlinear response spectrum can be generated 

from a linear response spectrum is more clearly indicated in Figs. 

5. 14a and b. In Fig. 5. 14a the nonlinear response spectra corres­

ponding to µ. = 1, 2 and 4 are indicated along with the linear response 

spectra corresponding to ' = 2, 5 and 10 percent damping. Shifting 

the linear response spectrum corresponding to the appropriate 'e 

by the appropriate Te/T 0 from Table 5.3 the nonlinear response 

spectrum may be obtained for each value of µ. as indicated in Fig. 

5. 14b. There is clearly a strong similarity between the analytically 

predicted and numerically determined response spectra. The 

approximate nonlinear response spectra and the numerical results 

for µ. = 1 and 2 show much better agreement than those for µ. = 4. 

However, even for µ. = 4 the numerical results show trends similar 

to a shifted linear response spectrum. It is encouraging to note 

that the strong peaks and valleys of the numerical results are 

matched reasonably well by the approximate nonlinear response 

spectra. 

5. 4 Comparison with Newmark-Hall Procedure 

The Newmark-Hall procedure [ 33] for calculating an inelastic 

response spectrum from a linear response spectrum strictly speaking 

applies only to an elasto-plastic system. However, this method is 

sometimes applied to other systems for lack of a better method. 
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Figure 5. 14a . Nonlinear and Unshifted Linear Spectra - El Centro. 
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Figure 5. 14b. Nonlinear and Shifted Linear Spectra - El Centro. 
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Comparison of the Newmark-Hall inelastic response spectrum 

with the numerical results for the six systems investigated herein 

indicates that the spectral error may be as great as 125 % based 

on the average spectrum. The rms spectral error may exceed 

88 o/o. For the bilinear hysteretic system, the maximum error is 

lOOo/o, but the rms error is less than 38%. 

All nominal periods used in this investigation except T 0 = O. 4 

seconds are in the region where the Newmark-Hall spectral dis­

placement for the inelastic response spectrum is identical to that 

of the linear response spectrum for all ductilities. Hence, using 

the Newmark-Hall inelastic response spectrum, while it may be 

conservative, gives no information regarding the variation of 

response amplitude with ductility. In all cases, the results of the 

ASE method represent a significant improvement over the predic­

tions of the Newmark-Hall inelastic spectrum. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In Chapter II the existing approximate analytical methods for 

linearizing nonlinear systems are surveyed, Six methods are con­

sidered which are applicable to nondeteriorating systems with har­

monic excitation, Three methods are discussed which are applicable 

to nondeteriorating systems with stationary random or earthquake 

excitation. Two methods are presented which are applicable to 

deteriorating systems with earthquake excitation, Of all of the 

methods considered only the a v erage stiffness and energy method 

is applicable to both deteriorating and nondeteriorating systems. 

Comparison of those methods which may be applied to non­

deteriorating systems is made with reference to a bilinear hystere­

tic system with ratio of upper to lower slope of 0 . 05 and no v iscous 

damping, 

It is observed that the nonharmonic methods (SREL, APD and 

ASE) give effective period shifts which are smaller than the values 

obtained from the harmonic methods except RAM whose period 

shift is unity. It is also observed that the effective v iscous 

dampings obtained from the harmonic methods increase more 

rapidly in the range 1 :S:: µ :S:: 2 than do the values obtained from the 

nonharmonic methods. 

Presented in Chapter III is a model for general deteriorating 

and nondeteriorating systems, The model is physically motivated 

and based on a phenomenological description of the behavior of the 
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system during cyclic loading. The model is sufficiently well 

defined mathematically to make its use m dynamic analysis straight-

forward. Also the model is easily generalized and adapted to a 

variety of dynamic loading histories. 

The model consists of three basic elements. The nature of 

the behavior of these three basic elements is discussed. The 

relationship between the element parameters and the system param-

eters is presented and six particular systems are discussed in 

detail. These six systems are used throughout the remainder of 

the investigation. 

In Chapter IV the results of a numerical investigation are 

presented. First, the selection and scaling of the input earthquake 

accelerograms are discussed. Then, the method of numerical inte-

gration is presented. This method utilizes the special character of 

the piecewise linear restoring forces and uniformly digitized 

accelerograms to simplify the computer calculations. 

The numerical results presented in Chapter IV are first pre-

sented as functions of the relative strength of the system excitation. 

Then, simple linear interpolation is used to obtain nonlinear response 

spectra for six values of ductility. It is observed that the nonlinear 

response spectra have the same trends as do linear response spec-

tra of higher damping and shifted period. This fact is used to 

define effective linear system parameters T /T 0 and ' which 
m m 

minimize the rms value of the error between the linear and non-

linear response spectra. 
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The absolute minimum values of the rms spectral error are 

generally less than 6 %. Examination of the rms spectral error as 

a function of period shift and viscous damping indicates that there 

is an axis of minimum gradient (valley in the contour plots). Along 

the direction of the axis of minimum gradient the spectral error is 

minimized relative to any other direction. 

Presented in Chapter V is a comparison of the approximate 

analytical methods of Chapter II and the numerical results of 

Chapter IV. First, the eight methods which may be applied to the 

BLH system are compared. Comparison of the effective linear 

system parameters reveals that the nonharmonic methods (SREL, 

APD and ASE) yield parameters which show better agreement with 

the numerical results than do the harmonic methods (HEL, DM, 

CCD, GS and RAM). Comparison of the spectral displacement also 

supports this conclusion. The fact that the error b e tween the 

approximate response spectrum and the numerical results is 

dependent upon the relative position of effective linear system 

parameters with respect to the axis of minimum gradient is also 

demonstrated . 

Also presented in Chapter V is a comparison of the average 

stiffness and energy method and the numerical results for all six 

systems considered in the present investigation. Comparison of 

the effective linear system parameters indicates that the ASE 

method overestimates the damping for nondeteriorating and slightly 

deteriorating systems . For highly deteriorating systems the 

effective linear system parameters obtained from the ASE method 



-124-

show good agreement with the numerical results. Comparison of 

the spectral displacement shows that overestimating the viscous 

damping generally implies underestimating the spectral displace­

ment. Although the approximate spectral displacement is generally 

smaller than the numerically calculated spectral displacement, in 

no case is the error greater than 40% for the average response 

spectrum and for highly deteriorating systems the error is less 

than 203. 

The effect of the smoothness of the linear response spectrum 

upon the accuracy of the approximate nonlinear response spectrum 

is also considered in Chapter V. Generally speaking, the smoother 

the linear response spectrum the better the agreement between the 

approximate nonlinear response spectrum and the actual response 

of the nonlinear system. Smoothness of the linear response spec­

trum minimizes the effect of inaccuracies in estimating the effec­

tive period shift. 

An example of how the ASE method may be applied to obtain 

a nonlinear response spectrum is presented in Chapter V. Three 

nonlinear response spectra are presented and numerical results 

corresponding to eighteen nominal periods of oscillation are com­

pared to these spectra. Even though the linear response spectrum 

is not very smooth the approximate response spectra show good 

agreement with the numerical results. Even in the case where 

agreement between the approximate response spectrum and the 

numerical results is poorest, it is obvious that the numerical 

results have trends similar to a shifted linear response spectrum. 
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The procedure proposed by Newmark and Hall for obtaining 

an inelastic response spectrum from a linear response spectrum 

is used to estimate the spectral displacement for the systems 

investigated. It is observed that large errors in the spectral 

displacement occur when this procecure is used to calculate the 

spectral displacement for deteriorating systems. 

6. 2 Conclusions 

Based on the results of this investigation, it is concluded that 

the ASE method is a useful tool in estimating the peak earthquake 

response of deteriorating systems. This method is useful in 

estimating the peak earthquake response of nondeteriorating systems, 

even though it somewhat overestimates the effective viscous damping 

and hence underestimates the spectral displacement. 

Further study should be done in the area of under standing why 

this method overestimates the effective viscous damping for non­

deteriorating systems. Perhaps the weighting factor in calculating 

the average stiffness and average energy dissipated should be a 

function of the amplitude rather than a constant. Also the weighting 

of the contribution due to upper locus of response maxima relative 

to lower locus of response maxima might be investigated further. 

At the present there is no obvious reason to weight either contri­

bution higher than the other. 

Another area for further investigation is applying the ASE 

method to more deteriorating and nondeteriorating systems . The 

present model for the system may be used or an extension of the 
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present model to include more than one element from each of the 

three types of elements in the model. The ASE method is not 

restricted to the model used for the system. Hence, further 

investigation might include applying this method to other models 

for deteriorating systems. 

The region of greatest variation in response as a function of 

system parameters occurs at short periods. There is relatively 

less variation for long periods. Hence, it would be instructive to 

extend the range of numerical results to nominal periods below 

T
0 

= O. 4 seconds. 
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