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ABSTRACT

This thesis is concerned with the earthquake response of
deteriorating systems. A model for stiffness degrading or
deteriorating systems is used to describe six different single-
degree-of-freedom systems. A numerical investigation of the
response of these six systems is performed using an ensemble of
twelve earthquakes. The response is studied at nine nominal
periods of oscillation, The numerical results are presented as
response spectra corresponding to six different ductilities,

An approximate analytical method for calculating the earth-
quake response of deteriorating systems from a linear response
spectrum is presented. The method, called the average stiffness
and energy method, is based upon the premise that a linear system
may be defined which is in some sense equivalent to the deteriorat-
ing system. The criterion for equivalence in this method is that
the average stiffness of the deteriorating system be equal to the
stiffness of the linear system and the average energy dissipated
by the linear system be the same as the average energy dissipated
by the deteriorating system.

The new analytical method is compared to existing methods.
Comparison with the numerical results is also made. Based upon
these comparisons, it is concluded that the average stiffness and
energy method represents a significant improvement over currently
available methods for predicting the earthquake response of

deteriorating and nondeteriorating systems,
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CHAPTER 1

INTRODUCTION

There have been numerous studies of the earthquake response
of linear, elasto-plastic, bilinear hysteretic and simple yielding
systems and many of the results of these studies have now been
incorporated into design manuals and codes. There has been far
less attention devoted to the study of the dynamic behavior of
deteriorating systems. Deterioration here refers to changes in
a structure which result in loss of stiffness and reduced energy
absorbing capacity with cyclic loading.

Many investigations have demonstrated the existence of
deterioration or ''stiffness degradation'' in structural elements
[1-9]. Some work has been done to develop a simple model for
deteriorating systems [9-24]., A particularly useful model for
deteriorating was proposed by Iwan [23,24] and will be used in
this investigation because of its ability to approximate a wide
class of deteriorating systems.

The use of linear response spectra in earthquake design
criteria is well established. Despite some opposition [25,26], the
use of inelastic response spectra derived from linear response
spectra is also gaining wide acceptance [27-33]. There are two
methods by which an inelastic response spectrum may be obtained from
a linear response spectrum., The first method is to develop a set
of rules based upon empirical observations. An example of such a

method is the widely accepted method of Newmark and Hall [33]
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for the elastoplastic system. The second method involves an
analytical approach to defining a linear system which will in some
sense be ''equivalent'' to the nonlinear system. The second method
is more easily generalized to a variety of systems. The second
method also gives greater insight into the manner in which variations
in system behavior affect the earthquake response.

Much of the work in the area of defining an equivalent linear
system for a nonlinear system has been devoted to nonlinear elastic,
elasto-plastic, bilinear hysteretic and simple yielding systems
[34-49]. The little work that has been done in the area of
deteriorating systems has been associated with a rather specialized
model for deterioration [19-22]., The method presented in this
investigation is applicable to general deteriorating systems. Com-
parison with numerical results for six different systems is also
presented.

The ultimate goal of this investigation is to present an
analytical method for obtaining the nonlinear or inelastic response
spectrum from a linear response spectrum for general deteriorating
systems,

In Chapter II, existing methods for determining the effective
linear system parameters for nondeteriorating systems are dis-
cussed. A new method, the average stiffness and energy method,
which is applicable to general deteriorating systems is also pre-
sented. The predictions of the various methods are compared for

a simple bilinear hysteretic system.
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In Chapter III a model for stiffness degrading systems [23, 24]
is presented., Six particular systems used in the numerical section
of this investigation are presented and their behavior is discussed
in detail.

In Chapter IV the results of a numerical investigation of the
earthquake response of deteriorating systems are presented., The
six systems of Chapter III are considered along with an ensemble
of twelve earthquakes. Nine nominal periods of oscillation are
used to define the response spectrum of the nonlinear system; a
range of values of relative amplitude of excitation to strength of
the nonlinear system is used to obtain values of spectral displace-
ment corresponding to six values of ductility ratio. The numerical
results are compared with linear response spectra and an effective
linear period and damping are determined for each nonlinear system.

In Chapter V the approximate methods of Chapter II are used
to calculate effective linear system parameters and spectral dis-
placements, Comparison is made with the numerical results and
conclusions are drawn concerning the relative merit of the various
methods., It is concluded that the average stiffness and energy
method is superior to the other methods considered not only because
it is applicable to deteriorating systems, but also because it gives
a better estimate of the spectral displacement for nondeteriorating

systems.



CHAPTER 1I

APPROXIMATE ANALYTICAL METHODS

2,0 Introduction

The response history of deteriorating structures such as
reinforced concrete can be simulated by analytical models which
specify in detail the changes in hysteretic response. Such models
require considerable computational expense., Therefore, an approxi-
mate analytical method for estimating the earthquake response of
deteriorating systems is desirable.

In this chapter the existing approximate analytical methods
for estimating the earthquake response of nonlinear systems will
be summarized., First, methods applicable to harmonic excitation
will be discussed. Then, methods for stationary random excitation
and finally methods for earthquake excitation will be examined.,

Only the average stiffness and energy method in section
2.5.2 is applicable to a general deteriorating system. Although
the substitute damping method in section 2.5.1 is applicable to
deteriorating systems, the model for deterioration used by that
method is very specialized. The other methods discussed in this
chapter are not applicable to deteriorating systems.

The approach that will be used throughout this chapter is to
define a linear system which is equivalent in some sense to the
nonlinear system. The equivalent linear system will be described
in terms of two effective or equivalent linear parameters; an

effective period T, and an effective fraction of viscous damping Cov



The peak earthquake response of a nonlinear system may be
obtained by calculating the peak response of the linear system

specified by Ty and (..

2,1 Terminology and Definitions

In this section some basic concepts which will be used

throughout the chapter will be defined and explained.

2,1.,1 Nature of the System

The system investigated is a single-degree-of-freedom
oscillator which can be represented as in Fig. 2.1. For conceptual
purposes, the system may be considered to consist of a mass m

supported by flexible members whose generalized restoring force is

kof(x) and which also provides viscous damping CO}°<_ The system

is excited by a base acceleration a(t). It is further assumed that

iy i = (2. 1)

e dx

ko and ¢, are the nominal stiffness and nominal damping

coefficient of the system, respectively. £(x) is a normalized

restoring force function which could be linear, nonlinear elastic,

hysteretic or deteriorating as indicated in Fig. 2.2. In this
chapter only hysteretic restoring forces will be discussed, although
the methods are equally applicable to elastic restoring forces.

For hysteretic systems the generalized restoring force f(x)
is generally defined in terms of a scaling parameter Xy called

the yield level. The specification of this parameter is somewhat
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arbitrary but it is usually taken to be the generalized displacement
at which significant reduction in stiffness is obtained. If %, is
the absolute maximum displacement obtained during a particular
time history of excitation of a hysteretic system, the parameter

T Xm/XY is referred to as the ductility ratio of the response.

This parameter is frequently used to indicate the degree of yielding

of a hysteretic system.

2.1.,2 Viscous and Hysteretic Damping

In a single-degree of freedom oscillator with hysteresis,
energy is dissipated in two ways; viscous damping and hysteresis,
Let V represent the energy dissipated by viscous damping. Then,
for harmonic oscillations of amplitude x,, the viscous energy
dissipated per cycle of oscillation may be represented by the area

of the ellipse in Fig. 2.3b and may be written as

Vix,) = aneri (2.2)

where { = ¢/2/km is the fraction of critical damping.

Let H represent the energy dissipated by hysteresis. For
harmonic oscillations of amplitude x,, the hysteretic energy
dissipated per cycle of oscillation is denoted by H(x,,) and is
represented by the area of the hysteresis loop in Fig. 2.3a.

The total energy dissipated is the sum of the energy dissi-
pated by hysteresis and the energy dissipated by viscous damping.

Let AW denote the total energy dissipated. Then

AW = H+ V . (2.3)



2.1.3 Secant Stiffness

In several methods of analysis the secant stiffness will be

used. The secant stiffness k(x,,) is defined as the slope of a line

from the origin of the restoring force diagram to the turnaround
point for cyclic loading to amplitude x . Fig. 2.3a shows the

secant stiffness for a hysteretic system.,

2,1.4 Skeleton Curve and Loci of Response Maxima

The skeleton curve of a hysteretic system is defined as the
load deflection relation for monofonic loading from a virgin state,
Fig. 2.3a shows the skeleton curve for a general nondeteriorating
hysteretic system. ZFor such a system the maximum of the response
for cyclic loading with a slowly varying amplitude generally lies on

the skeleton curve. In this case, the skeleton curve may also be

referred to as the locus of response maxima,

For a deteriorating system two or more loci of response
maxima may exist. If such a system is loaded cyclically from a
virgin state with gradually increasing amplitude, the locus of
response maxima will correspond to the skeleton curve, However,
if the amplitude of cyclic response is gradually decreased and
subsequently increased, the locus of resi:)onse maxima will normally
lie below the skeleton curve. This lowering of the locus of
response maxima is tied directly to the reduction in stiffness and
energy dissipation of the deteriorating system which takes place

after significant yielding has occurred. In this case, the skeleton



f(x)

Cyclic Loading

~10-

Skeleton Curve

Secant
Stiffness

Figure 2.3a., Hysteresis

f(x)

W(Xm), Area Under
the Skeleton Curve

H(Xm), Hysteretic Area

Loop for Nondeteriorating System.

V(Xm), Viscous
Hysteretic Area

Figure 2,3b. Hysteresis Loop for Viscous Damped
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curve as given by the initial loading curve provides only an upper
bound on the loci of response maxima,

In many deteriorating systems a unique lower locus of

response maxima can be identified as shown in Fig. 2.4. All the

points on the lower locus of maxima are potential turnaround points
for cyclic loading after a maximum displacement xy,5x has been

experienced,

2.2 Equation of Motion

The equation of motion for the single-degree-of-freedom

oscillator shown in Fig. 1 may be written as

m,X + X + kof(x) = -moa(t) s (2.4)

This equation may be rewritten in the form

X + 505; - ooozf(x) = ~a(t) (2.5)
where
Bo Zgowo (2.6a)
k 2
Z 0 _ 2t
v = < (%) 260

Then, QO is the nominal fraction of critical damping, wg is the

nominal frequency and T, is the nominal period of the system,

0
As mentioned in section 2,0, the approach used in the chapter
involves defining an effective linear system with system parameters

Ce @and T,. Thus, the linearized equation of motion may be written

as
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X + BoX + wezx = -af(t) (2.7)
where
Be = 20eWe (2.8a)
k Z
2 e _ [2m
N

Note that most effective linear system parameters will be a function
of the amplitude of response of the nonlinear system. If x_ is the
amplitude of response, then p = Xrn/xy is the ductility ratio and the

effective linear parameters may be written as functions of u.

2.3 Nondeteriorating Systems with Harmonic Excitation

The ultimate goal of this chapter is to examine methods for
estimating the peak earthquake response of deteriorating systems.
However, before investigating deteriorating systems, methods
afplicable to nondeteriorating systems will be discussed. For
small amplitudes of excitation and for short duration of strong
ground motion, the deteriorating features of a system may have
little effect on the response. Hence, in some cases deteriorating
systems may be modeled adequately as nondeteriorating systems.

Before examining techniques applicable to earthquake-like
excitation, consideration will be given to excitations which can be
more precisely described mathematically., First harmonic and
then stationary random excitation will be discussed.

Structural testing employing forced harmonic excitation is

frequently used to gain information about the nature of the structure
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and to define structural parameters such as period and damping.
Also, the response of a structure to earthquake excitation is often
very nearly harmonic in character, Hence, an understanding of
the steady-state harmonic response of hysteretic structures is

useful,

2.3.1 Harmonic Equivalent Linearization (HEL)

In the method of equivalent linearization the difference
between the nonlinear equation of motion (2.5) and the linear
equation of motion (2.7) is minimized with respect to the param-

eters B, and wez for all solutions of the form
x(t) = A cos (wt-¢) = A cos 6 (2.9)

where A is the amplitude of steady-state oscillation, w is the
forcing function frequency and ¢ is the shift in phase angle. The

difference between the two equations may be written as
6 = X + 2f 5 4 2. 10
= BoX T g (x) - Bx ~ w X . (2.10)

Minimization of this difference may take several forms., However,
in the method of equivalent linearization for harmonic response,
the mean square value of the difference over one cycle of oscilla-
tion is minimized, Let

iy

2 1 2

5 :T/ 5% dt . (2.11)
0

A necessary condition for the minimization will be
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9 2 8 =2
— (& = —=((67) =0
BBe : 8wez

(2.12)

Substituting for x from equation (2.9) and performing the specified

differentiations yields the following expressions for B, and w

where

2
_ 0 S(Aa)
Be = Po- o, A&
L2 - 2 C)
e 0 A
O
S(a) = - / f(A cos ) sin 6 do
0
1 2m
ci) = = f(A cos ) cos 6d6
IS

o

(2.13a)

(2. 13b)

(2. 14a)

(2. 14b)

The function S(A) is related to the energy dissipated by hysteresis

in the following manner

(2. 15)

where H(A) is the energy dissipated by hysteresis per cycle of

oscillation of amplitude A. The function C(A) is related to the

strain energy per cycle of oscillation,

slope k

S(A) = 0 and C(A) = k.A

For a linear system with
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2.3.2 Resonant Amplitude Matching (RAM)

In this method, the shift in period of the yielding system is
not taken into account. The mass and stiffness of the equivalent
linear system are taken to be the mass and nominal stiffness of

the yielding system. Thus,
T = T v A . (2. 16)

The resonant response amplitude of the equivalent linear system is
set equal to the resonant response amplitude of the yielding system
and the effective viscous damping is chosen so that the two systems

dissipate the same amounts of energy at resonance. Thus
(A) = AW(A) v A (2.17)

where AW(A) is the energy dissipated by the yielding system per
cycle of oscillation of amplitude A. For the linear system AW, (A)

is given by (2.2) which can be rewritten as

2
AW (A) = Ve(A) = 2mC k A" . (2.18)
In this case ke: ko, ¥ A, Thus, (2.17) and (2.18) give
- AW(A)
b &~y = (2.19)
° 2mk A

This is easily interpreted as the ratio of two areas; the area of
the hysteresis loop in Fig. 2.3a and the area of the ellipse in

Fig. 2.3b.
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2.3.3 Dynamic Mass (DM)

Another physically motivated approach is the dynamic mass
method. In this method, the stiffness of the equivalent linear sys-
tem is taken to be the nominal stiffness of the yielding system and
the mass of the equivalent linear system is varied so as to match
the observed period shift in the resonance response of the yielding
system. Thus, the effective period calculated by this method is
the same as that calculated by harmonic equivalent linearization.
As in the resonant amplitude matching method, the resonant ampli-
tudes and energies dissipated per cycle by the yielding and equi-
valent linear systems are set equal to each other. Thus, for a
system with purely hysteretic energy dissipation, resonant ampli-
tude matching and dynamic mass give the same effective viscous

damping.

2.3.4 Constant Critical Damping (CCD)

It is possible to define an equivalent linear system in such a
way that the critical damping factor (c. = 2/km) remains constant,
while modeling the period shift of the yielding system. This is

done by setting

kemg = komo (2.20a)
and
k
_e . 2 (2. 20b)
me (S

where wez is given by (2.13b). Thus, the effective period is the
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same as in harmonic equivalent linearization and dynamic mass.

As in the resonant amplitude matching and dynamic mass approaches,
the resonant amplitudes and dissipated energies of the linear and
nonlinear systems are equated. Since ke;lko, the effective viscous
damping calculated using this method is not the same as that given
by (2.19). Hence,

AW (A)

s = —3 (Z.21)
< 2mk A

which differs from (2.19) by the replacement of k. by ke.

0

2,3.5 Geometric Stiffness (GS)

In all the previous methods with the exception of the resonant
amplitude matching method, the period of the equivalent linear
oscillator matches the resonant period of the yielding oscillator,

In the geometric stiffness method, the stiffness of the equivalent
linear oscillator is specified by the geometry of the hysteresis
loop. Berg [34], and Rosenblueth and Herrera [49] have used this
approach for hysteretic systems and have chosen the equivalent
stiffness to be the secant stiffness shown in Fig. 2.3a. Equating the
mass, resonant amplitude and energy dissipated for the hysteretic
and equivalent linear oscillators implies that (e is given by (2.21)

and

;SR N . (2.22)

where ke is taken to be the secant stiffness. Since ke in this
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method is the secant stiffness, both T, and (. will be different

from any T, and (. obtained in previous methods.

2.3.6 Geometric Energy (GE)

Another geometric method of approximating the equivalent
viscous damping for the steady-state harmonic response of hystere-
tic structures has been proposed by Jacobsen [44]. In this approach
the geometry of the skeleton curve and the hysteresis loop as shown in
Fig, 2.3a are used to calculate the effective viscous damping. Let
W(A) be the maximum strain energy during a cycle of oscillation
of amplitude A. Note that W(A) is the area under the skeleton
curve as shown in Fig. 2.3a. For a linear 'system, the energy
dissipated by viscous damping is given by equation (2.2) and the

maximum strain energy is
w(A) = kA" . (2.23)

Hence, by analogy to the linear system the effective linear viscous

damping for the yielding system may be written as

1 AW(A)
e T Im W(A) (2. 24)

where AW(A) is the energy dissipated per cycle of oscillation by
the yielding system and W(A) is the maximum strain energy per
cycle of oscillation stored in the yielding system. The geometric

energy method does not provide an effective period.
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2.4 Nondeteriorating Systems with Stationary Random or Earthquake
Excitation

In this section the response of nondeteriorating systems will
be investigated further. The methods in this section are of two
types. The first type assumes the excitation to be a stationary
random process., The second type assumes the excitation to be an
earthquake. In the harmonic methods the response of the system
was assumed to be fixed at one amplitude so that A =x . In the
methods of this section, the response is assumed to vary in ampli-
tude and x,, will represent the peak value of the response amplitude
while A will continue to represent the amplitude of a cycle of

harmonic oscillation,

2,4.1 Stationary Random Equivalent Linearization (SREL)

The method of equivalent linearization has been applied to
stationary random excitation by many investigators since first
formulated by Booton [50] and Caughey [5I]. The development of
the method proceeds just as in the case of harmonic excitation
except that minimization of the difference term 6 in equation (2.10)
must be interpreted in a statistical sense. If the response is an
ergodic process, time averages may be replaced by ensemble
averages. The minimization condition in this case may be written

as

9 2. 9 2.
EEU’ ]l = —awj E[67] =0 (2.25)

where E[-] denotes the expected value or ensemble average,
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Substituting for 6 from (2.10), interchanging the order of differen-
tiation and expectation yields

E[xf(x)]

2
Bo = Byt @ (2.26a)
070 g

2 _ 2 E[xf(x)]

5% = . (2. 26b)
E[x"]

e 0
where it is assumed that x and x are jointly stationary.
In the development of this method, two basic assumptions
about the response of the oscillator are made, First, the response

is assumed to be a narrow band process. Thus, it is assumed that
x(t) = A(t) cos [wt - @(t)] = A(t) cos ® (2.27)

where A(t) and ¢(t) are slowly varying random functions of time,
Second, the response is assumed to be Gaussian, These assump-
tions are valid for a linear system with small damping and Gaussian
excitation but for large nonlinearities the response is neither narrow
band nor Gaussian. However, Iwan and Lutes [37] have found that
even though these assumptions are not strictly valid for large non-
linearities, the results of this analysis are surprisingly good.

For hysteretic systems eqns. (2.26) must be modified by sub-
stituting (2.27) into (2.26) and averaging over one cycle of oscilla-

tion to yield

2
“0 E[AS(A)]
0 2oolA)]

> (2.28a)
e E[AT]
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2 _ 2 E[AC(A)]
E[A%]

(2.28D)

where S(A) and C(A) are defined by eqns. (2.14),

Since the response process has been assumed to be narrow
band and Gaussian, the probability density function of the response
amplitude A may be approximated by a Rayleigh distribution.

Hence,

@ 2
Elga)] = [ o [- iz]dA (2. 29)

where g(A) is any arbitrary function of A and ¢ is the rms value
of the response,

Substituting (2.29) into (2.28) yields Be and w, 2as functions of
o rather than p or x,,. However, these may be written as functions
of x,,, by assuming some relationship between x,, and ¢. The

simplest relationship is a linear one such as
X . = AT s (2.30)

Since xp, is the peak response, A must be greater ‘than one. As A
is increased the probability that x,, is exceeded decreases as is
shown in Fig. 2.5. Liu[52] has suggested the use of

A= E[xy] = /n/2 . This value for A would imply that the proba-
bility that x_ is exceeded would be 0.45 which is large. On the
other hand, A =5 would imply that there is only a 4 X 10.6 probability

that x  is exceeded. The upper bound on values of A is dependent
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on how realistic the resulting system parameters are. Further

discussion of A will be reserved until section 2.6.7,

2.4.2 Extended Equivalent Linearization (EEL)

The method of equivalent linearization has been extended by
Kobori, et al.[53] to include three parameters as randomly distri-
buted variables. In this approach the location of the center of
hysteresis, the amplitude of hysteretic oscillation and the frequency
of hysteretic oscillation are all randomly distributed variables.
This method yields stationary random equivalent linearization, if
both the scatter of frequency and fluctuation of the center of hystere-
tic oscillation are neglected.

The extended equivalent linearization method is sufficiently
complex to make its application to the problem of the earthquake
response of a hysteretic system very difficult. To begin with, it
is necessary to specify the probability density function for the
three random variables of the model. This involves additional
assumptions about the nature of the response which may not be
valid in the case of a strongly nonlinear system. Therefore, this

method will not be discussed further here.

2.4.3 Average Period and Damping (APD)

Newmark and Rosenblueth [54] present a general approximate
method of analysis for the earthquake response of nonlinear systems.
This method of analysis is applicable to all single-degree-of-freedom

systems with generalized force displacement curves which are
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symmetric about the origin, subject only to the condition that the
system does not deteriorate,

This approach defines the effective linear system to be the
average of all the linear systems, based on the geometric stiffness
method, corresponding to amplitudes less than or equal to x,,. Let
Té be the effective period and C; the effective viscous damping for
harmonic oscillations of amplitude A. Hence, Té is given by eqn.
(2.22) and gé is given by eqgn. (2.21) where ke is the secant stiff-

ness. The average period and damping are given by

e N
T = ;(i- / To(A)dA (2.31a)
0
Xm
1 /
£ = = o/ Co(A)dA . (2.31b)

2.5 Deteriorating Systems with Earthquake Excitation

In this section two approximate analytical methods applicable
to deteriorating systems will be presented. The first method by
Shibata [19] is applicable only to a specialized model for deteriora-
tion. The method called the average stiffness and eﬁergy method
is presented here for the first time, This latter method is
applicable to general deteriorating systems. Both methods assume

earthquake excitation of the deteriorating system.

2.5.1 Substitute Damping (SD)

The substitute damping method first suggested by Gulkan and

Sozen [5 ] and further modified by Shibata and Sozen [19-22] was
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developed as a vehicle to interpret the response of reinforced
concrete. This method assumes that the deteriorating system can
be modeled using Takeda's [ 9 ] hysteresis rule as shown in Fig.
Zx 0w

In this method

Ty = T fﬁ— (2.32a)
Co = Gt %(1 - l/fﬁ_) (2.32b)

where {1 = Xm/Xy: ductility in early formulations and o= ko/ke:
damage ratio in later formulations, Since ke is taken to be the
secant stiffness, the difference between the two formulations dis-
appears if the skeleton curve has zero slope after yielding.

According to Gulkan and Sozen [ 5 ], quantitative values for
this substitute damping were distilled from results of dynamic tests
of one-story, one-bay frames. This was done by assuming that the
energy input was entirely dissipated by an imaginary viscous
damper,

The empirical basis and special model for the deteriorating -
system restricts the usefulness of this method. In particular, this

method cannot be used to estimate the response of a nondeteriorating

system.,

2.5.2 Average Stiffness and Energy (ASE)

The average stiffness and energy method is not restricted to

any special model for the deteriorating system. In this method two



2 =

(b)

Figure 2,6, Ildealized Hysteresis for Reinforced Concrete,
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loci of response maxima are used to specify the effective linear
system parameters. Let a subscript u denote system parameters
based on the upper locus of response maxima and let a subscript
£ denote system parameters based on the lower locus of response
maxima as shown in Fig. 2.4. Thus, ku(xm), Hu(xm)’ V (x )

o Im

denote the secant stiffness, hysteretic energy dissipated and viscous
energy dissipated by the nonlinear system which follows the upper
locus of response maxima. Similarly, k&(xm), H&(Xm)’ V{I(X )

denote the secant stiffness, hysteretic energy dissipated and viscous

m

energy dissipated by the nonlinear system which follows the lower
locus of response maxima,

As in the average period and damping method, the equivalent
linear system will be defined in terms of the average values of the
fundamental parameters. In this method the fundamental system
parameters are the stiffness and the energy dissipated. Let kI(A)
and AW’(A) be the secant stiffness and the energy dissipated for
harmonic oscillations of amplitude A, Then, the average .stiffness

k(x,,) is given by

X

m
k(%) = %10/ kK (A)dA . (2.33a)

Likewise, the average energy dissipated AW(x,,) is given by

m
AW (x,,) = e / AW (A)dA . (2.33b)
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The equivalent linear system parameters are obtained by
taking the average of the values associated with the upper and

lower loci. Hence, the equivalent linear stiffness is given by
k, = &k, + 5k, . (2.34)
Similarly, the total energy dissipated is given by

AW = %AWu + AW, . (2.35)
For a linear system AWel is given by (2.18). Substituting (2.18)

into (2.33b) yields

2
AW, (%) = Vo(xy) = %ngekexm ; (2.36)

Thus, the effective viscous damping of the deteriorating system is

given by

AW (%)
ge = > (2.37)

kg (x )%

m

where AW(x,,) and ke(xm) are given by (2.33) with (2.35) and
(2.34), respectiveiy. The effective period may be denoted by (2.22).
This method attempts to account for the significant differences
in the stiffness and energy dissipation of the deteriorating system
on initial loading to response amplitude x  greater than Xy and on
subsequent loading to that same response amplitude x_ . The con-
tribution to k and AW due to the upper locus alone would over-
estimate the effective stiffness and energy dissipated, while the

contribution due to the lower locus alone would underestimate the
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effective stiffness and energy dissipated. It is felt that the average
of the contributions due to both the upper and lower locus should
give a much better estimate of the effective stiffness and energy

dissipation of a deteriorating structure.

2.6 Example of Application - Bilinear Hysteresis (BLH)

In this chapter six methods for obtaining an equivalent linear
system for a nondeteriorating system with harmonic excitation
were discussed. Three methods for obtaining an equivalent linear
system for a nondeteriorating system with random or earthquake
excitation were also discussed and two methods for obtaining an
equivalent linear system for a deteriorating system with earthquake
excitation were discussed.

Before moving into the application of the average stiffness and
energy method to several deteriorating systems, a comparison of
the equivalent linear systems obtained by the application of the
various methods in this chapter to the bilinear hysteretic system
will be presented.

In Fig. 2.7 the force-displacement diagram for a bilinear
hysteretic system is shown, This system has initial slope ko,

post yield slope ak,, and yield level Koo The maximum response

0,

amplitude is X T HX and in the harmonic methods x,, = A.

y

2.6.1 Harmonic Equivalent Linearization

For the bilinear hysteretic system whose force displacement
diagram is shown in Fig. 2.7 the term f(A cos 0) in eqn. (2.14)

may be written as



3] =

f (x)

Figure 2.7. Force-Displacement Diagram for
Bilinear Hysteretic System.
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ap cos B - (1 =-a) ; cosG<E—i—2’
f(A cos 6) _ (2.38)
*y ~ ] -2
p,cose-<p' > s B-% < cosd < 1
l-a o
where p = A/XY, Substituting (2.38) into (2.14) yields
0 H o<1
G (2.39a)
Xy >
-%(l-a)sin oF > 1
v ; po< 1
St | (2.39b)
Xy " % sin 20
F[(l-o:) 8 = S + om] = 1
where
8 = cos-1<“'—-2—> ) (2. 40)
n
Substituting (2.39) into (2.13) and using eqn. (2.8) yields
T , % Sk -%
e - |(-a (g _sin267) . ow>1  (2.41a)
T m 2
0
%,
c -=¢ EJ,EU_Q)(H'”(ES) ; b > 1 (2. 41b)
e 0 TO ™ MZ TO
2.6.2 Resonant Amplitude Matching
For the BLH system indicated by Fig. 2.7 the hysteretic
energy dissipated per cycle may be written as
0 5 p< 1
H_(?_) . . (2. 42)
%

y 4kg(l-a)w-1) 3 wo>1
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The viscous energy dissipated may be written as

2
T = 2ng kg Voo, (2. 43)

Using (2.3) along with (2.42) and (2.43) to express AW in (2.19)

and using k_ =k the resonant amplitude matching method yields

0’

() = go+ 2hzale=l) oy, 5y

g

. (2.44)

Te is given by (2.16). Note that substituting for T, from (2.16)

into eqn. (2.41b) yields (2.44).

2.6.3 Dynamic Mass

In the dynamic mass method, the effective period shift is
given by (2.4la) and the effective viscous damping is given by

(2.44).

2,6.4 Constant Critical Damping

The method of constant critical damping gives the same
effective period as harmonic equivalent linearization and the effec-

tive viscous damping is given by

T T
e

Celh) :QO-T—+§(l-a) LT - b>1 . (2.45)

e 0 p,,Z TO

Note that (2.45) differs from (2.41b) only in the exponent of the
second Te/TO term. In this method the viscous damping is a linear

function of the period shift,
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2.6.5 Geometric Stiffness

For the BLH system of Fig. 2.7 the secant stiffness may be

written as

kO - o<1
k = . (2.46)

© l-a
k0<T+Q/> 5 po>1

Substituting this expression for ke into eqn. (2.21) yields

T 3
o= (L2, . ow>1 . (2.47)
TO v .

The effective viscous damping is given by (2.41b) with this period

shift,

2,6.6 Geometric Energy

The maximum strain energy for the BLH system may be

written as

R N T S e I T (2. 48)

Thus, the effective viscous damping according to the geometric
energy method is given by substituting (2.48) and (2.42) into (2.24)

which yields

1 (1-a)(p-1)
C.(w) = = ; b> 1, (2.49)
° " (u-3)+ L (p-1)°

Note that there is no consistent way to treat QO;!O and no expres-

sion for T, is given by this method.
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2.6.7 Stationary Random Equivalent Linearization

Caughey [36] presented the following expressions for the BLH

system
wZ
l-o 0 1

B. = By t ey erfc< > (2.50a)

N 0 T ow.o N2 ¢
“e>2 8(1 - a) 1 e
— = 1 = A-1 g & exp —-—Z- dA
<w0 5 1'[ [ZAO' ZE] <20' >

(2.50b)

where erfc is the complimentary error function.

Using eqn., (2.30) Be and w, may be expressed as functions of
X, Or p. As stated in section 2.5.1, the proper choice of A in
eqn. (2.30) depends on the resulting system parameters. In Fig.
2.8 the effective period shift Te/TO and the effective viscous
damping of a BLH system with « = 0.05 and gO: 0 are presented
as functions of p for three values of A. Note that as A increases,
both the effective period shift and effective viscous damping

decrease., For the numerical comparison in the next section A

will be assumed to be 3, even though ZC, at u=1 for =3,
gh ¢, 0

2.6.8 Average Period and Damping

As stated in section 2.4.3 the average period and dé.mping
method uses the effective period and damping obtained by the
geometric stiffness method. Hence, substituting (2.47) and (2.41b)

into (2.31) yields



B

3 T T T I T | I
SYSTEM BLH

EFFECTIVE PERIGD SHIFT

EFFECTIVE VISCOUS DAMPING (Z2)

| 1

DUCTILITY RATIO, H

Figure 2.8. Dependence upon A = xm/cr of the SREL Effective
Linear System Parameters for the BLH System
with o = 0.05 and ¢ = 0.
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