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ABSTRACT

Many applications in recommender systems or experimental design need to make
decisions online. Each decision leads to a stochastic reward with initially unknown
distribution, while new decisions are made based on the observations of previous
rewards. To maximize the total reward, one needs to balance between exploring
different strategies and exploiting currently optimal strategies within a given set
of strategies. This is the underlying trade-off of a number of clinical neural engi-
neering problems, including brain-computer interface, deep brain stimulation, and
spinal cord injury therapy. In these systems, complex electronic and computational
systems interact with the human central nervous system. A critical issue is how to
control the agents to produce results which are optimal under some measure, for
example, efficiently decoding the user’s intention in a brain-computer interface or
performs temporal and spatial specific stimulation in deep brain stimulation. This
dissertation is motivated by electrical sipnal cord stimulation with high dimensional
inputs(multi-electrode arrays). The stimulation is applied to promote the function
and rehabilitation of the remaining neural circuitry below the spinal cord injury,
and enable complex motor behaviors such as stepping and standing. To enable the
careful tuning of these stimuli for each patient, the electrode arrays which deliver
these stimuli have become increasingly more sophisticated, with a corresponding
increase in the number of free parameters over which the stimuli need to be opti-
mized. Since the number of stimuli is growing exponentially with the number of
electrodes, algorithmic methods of selecting stimuli is necessary, particularly when
the feedback is expensive to get.

In many online learning settings, particularly those that involve human feedback,
reliable feedback is often limited to pairwise preferences instead of real valued
feedback. Examples include implicit or subjective feedback for information retrieval
and recommender systems, such as clicks on search results, and subjective feedback
on the quality of recommended care. Sometimes with real valued feedback, we
require that the sampled function values exceed someprespecified “safety” threshold,
a requirement that existing algorithms fail to meet. Examples include medical
applications where the patients’ comfort must be guaranteed; recommender systems
aiming to avoid user dissatisfaction; and robotic control, where one seeks to avoid
controls that cause physical harm to the platform.

This dissertation provides online learning algorithms for several specific online
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decision-making problems. SelfSparring optimizes the cumulative reward with
relative feedback. RankComparison dealswith ranking feedback. SafeOpt considers
the optimization with real valued feedback and safety constraints. Correlational
Dueling is designed for specific spinal cord injury therapy.

A variant of Correlational Dueling was implemented in closed-loop human experi-
ments, controlling which epidural stimulating electrodes are used in the spinal cord
of SCI patients. The results obtained are compared with concurrent stimulus tuning
carried out by human experimenter. These experiments show that this algorithm is
at least as effective as the human experimenter, suggesting that this algorithm can
be applied to the more challenging problems of enabling and optimizing complex,
sensory-dependent behaviors, such as stepping and standing in SCI patients.

In order to get reliable quantitative measurements besides comparisons, the standing
behaviors of paralyzed patients under spinal cord stimulation are evaluated. The
potential of quantifying the quality of bipedal standing in an automatic approach is
also shown in this work.
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C h a p t e r 1

INTRODUCTION

We consider the problem of sequential decision-makings under uncertainty, where
we seek to optimize an initially unknown function from noisy samples. This requires
balancing exploration (learning about the objective) and exploitation (localizing the
maximum), a problem well-studied in the multi-armed bandit literature. This is the
underlying trade-off of a number of clinical neural engineering problems, including
brain-computer interface, deep brain stimulation, and spinal cord injury therapy.
In these problems, (high dimensional) control systems interact with the human
central nervous system. A critical issue is how to control these agents to generate
optimal controlling inputs. This dissertation is concerned with electrical spinal
cord stimulation via multi-channel electrode arrays. The stimulation promotes the
function and rehabilitation of the remaining neural circuitry below the injury, with
the goal of enabling human motor behaviors such as standing and stepping. The
electrode arrays which are used to tune these stimuli for each patient have a large
number of freely tuning parameters, and little prior knowledge can be applied to
restrain the exponential growth of input space w.r.t. the number of electrodes. Due
to the expense and relative inaccessibility of expert hand-tuning, a more strategic,
algorithmic method of selecting stimuli is necessary.

In this dissertation, we study online learning algorithms for several specific online
decision-making problems. SelfSparring optimizes the cumulative reward with
relative feedback. RankComparison dealswith ranking feedback. SafeOpt considers
the optimization with real valued feedback and safety constraints. Correlational
Dueling is designed for the specific spinal cord injury therapy.

A variant of Correlational Dueling was implemented in closed-loop human experi-
ments, controlling which epidural stimulating electrodes are used in the spinal cord
of SCI patients. The results obtained are compared with concurrent stimulus tuning
carried out by human experimenter. These experiments show that this algorithm is
at least as effective as the human experimenter, suggesting that this algorithm can
be applied to the more challenging problems of enabling and optimizing complex,
sensory-dependent behaviors, such as stepping and standing in SCI patients.

Studying stimulation induced standing for paralyzed patients bringsmany challenges
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that require concurrent use of advanced tools in imaging techniques, computer
simulations, and robotics. Biomechanics is aiming to analyze movement to enhance
performance and understand mechanisms of injury. In robotics research, similar
efforts concentrate on improving the dynamic performance of humanoid robots and
other redundant mechanisms without compromising safety. The effectiveness of
control relies on robust feedback measures. In order to get reliable quantitative
measurements besides comparisons, the standing behaviors of paralyzed patients
under spinal cord stimulation are evaluated. The potential to quantify the quality of
bipedal standing in an automatic approach is also shown in this thesis.

1.1 Motivation
This dissertation is motivated by spinal cord injury therapies. Spinal cord injury
(SCI) is a traumatic injury to the spinal cord resulting in losses of functions. The
goal of the SCI therapies is to help patients with severe spinal cord injury recover
their ability to stand, walk, and regain voluntary movements.

According to the 2016 report by the National Spinal Cord Injury Statistical Center,
the number of people in the U.S. who are alive in 2016 who have SCI has been
estimated to be approximately 282,000 persons, with a range from 243,000 to
347,000 persons. Given the current population size of 314million people in theU.S.,
the estimate showed that the annual incidence of spinal cord injury is approximately
54 cases per million population in the U.S. or approximately 17,000 new SCI cases
each year. In particularly, about 30 percent of the cases are complete SCI, which
means all the sensation and voluntary control of some parts of the body is lost. As
shown in Figure 1.1, SCI is mainly caused by motor vehicle crashes (38%), followed
by falls (30.5%) and violence (13.5%), and there is a quire large percentage of
complete (severe) injuries (33.3%).

Spinal cord injury cannot be cured under current medical treatments, and rehabil-
itation can be very difficult. Besides the pain and extreme high cost of lifetime
medical care, people with severe SCI cannot currently stand or walk, which impacts
their social and work life. The work done for this thesis is part of a collaborative
effort by Caltech, University of Louisville, and UCLA to provide new therapies for
SCI. Some previous work along this line of research can be found in T. A. Desautels
(2014) and Z. Liu (2016).
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Figure 1.1: Facts on Spinal Cord Injury. The left pie chart shows the etiology of
injuries. The right chart shows the neurological level and extent of lesion.

1.2 Epidural electrical stimulation
The technique we study for SCI therapy is Epidural Electrical Stimulation (EES).
EES involves electrically stimulating the spinal cord via an electrode or multi-
electrode array placed in the epidural space. Spinal electrical stimulation has been
applied for a number of purposes, including the the alleviation of chronic pain
(Shealy et al., 1967a,b). It is also used for the treatment of motor deficits, such as
cerebral palsy. Recent stimulators provide more flexibility with more electrodes and
more complex stimuli waveforms are applied on the electrodes. These increased
capabilities allow complex stimuli to be customized after the implantation. A single
device can thus accommodate changes in the stimuli as the optimal parameters
change with time, as well as variations in surgical placement, injury, and patient-
specific needs for symptom alleviation.

Mechanistically, SCI therapy by EES is intended to promote activity, particularly
closed-loop activity, of the spinal cord below the site of the injury. This is ac-

Figure 1.2: Medtronic 16-channel electrode arrays (Model 5-6-5 Specify).
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complished by applying a tonic electrical stimulus to activate specific networks and
structures in the spinal cord. This stimulus is typically not intended to drive the
desired activity directly. Instead, stimuli enable the patient’s native neural circuits
to regulate motor activity according to the sensory environment of the patient, such
that the muscle contractions are appropriate to the environment and behavior of the
patient, such as weight shifts during standing. Such circuitry does in fact remain
intact, if quiescent, below the site of the injury; an autonomously rhythm-generating
structure known as a central pattern generator (CPG) is known to exist in a va-
riety of species, including rats and cats, and is thought to exist in humans (Yury
Gerasimenko, Roy, and Edgerton, 2008). These neural circuits drive and control
complex motor behaviors such as stepping, even in the absence of input from the
brain. EES has been applied to stimulate these networks of neurons, enabling step-
ping and standing after SCI (Harkema et al., 2011; Brand et al., 2012). From a
control-theoretic perspective, the EES system is not intended to be the controller to
the body’s plant or process. The EES system modifies the activity of the intrinsic
spinal controller or replaces the absent supraspinal control signal. In order to make
the EES system a higher-level controller for the spinal cord and lower body system,
it is necessary to measure the performance of the spinal cord and body and use
these experimental measurements to make decisions about how to change the EES
parameters. As the number of electrodes and free parameters increases, however, it
is necessary to develop more advanced methods of selecting the stimuli delivered by
EES arrays. The motivating problem of this dissertation is optimizing the stimulus
patterns for the complex arrays available now and in the near future.

1.3 Learning and Optimization
To optimize the stimulation patterns, we consider efficient online learning by actively
sampling the input space. Active learning techniques are algorithms for actively,
rather than passively, attempting to learn about a system. An active learning algo-
rithm is able to interactively query the user (or some other information source) to
obtain the desired outputs at new data points. It is also called optimal experimental
design in some statistics literature. In the traditional formulation, the active learner
is interacting with an oracle, a system which accepts experimental interrogations,
each single one of which is called a query and returns observations which corre-
spond to the queries. In this fashion, the learner gradually acquires information
about expected the response to any query. The element which makes this interaction
active, rather than passive, is that the active learner has choices, most typically the
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choice of which query to submit to the oracle at each opportunity. The active learner
makes these choices on the basis of amodel of the oracle, constructed based upon the
data. Using the choice of which queries to submit, rather than waiting passively for
whatever data happens to arrive, the active learner is thus able to acquire the desired
information (or simply more information) about the oracle in fewer observations
than a passive learner.

Active learning can be targeted to particular pieces of information about the oracle.
One important example is the problemofBayesian optimization (BO).An interesting
approach to this problem is taken by Hennig and Schuler (2012), who also make
interesting points regarding the appropriate algorithm design philosophy for this
setting. In this case, the learner is given a finite budget of queries and is asked
to spend these queries to find the action within the available set which yields the
maximum value of the reward. After the learning process is complete, the optimal
action will be chosen and the algorithm will receive this reward. In order to be
effective, an algorithm must observe the reward values which would be associated
with the queries it has so far submitted and then choose future queries which are
likely to decrease its uncertainty about where the optimum lies. Choosing queries
online, rather than a priori, allows the algorithm to target these queries to the regions
of the set of possible actions which appear promising on the basis of the data being
acquired.

An important and closely related problem is the exploitation-exploration tradeoff. If
the algorithm receives reward for each and every single query, rather than having a
distinct search phase in which no rewards are obtained, followed by an exploit phase
(as in the BO setting), it is important to choose these queries not simply to learn about
the best rewards which may be obtained, but also to obtain high reward at this very
moment. This is particularly appropriate in the SCI therapeutic setting, in which
each EES stimulus and each interval of training time is valuable and should be spent
intelligently. Algorithms for solving this problem have traditionally been explored
under the framework of multi-armed bandits (Robbins, 1952). These algorithms
make sequential decisions by trading off exploitation of actions known to yield
high reward action with exploration of novel or poorly-understood actions. If these
competing imperatives are properly balanced, it can sometimes be demonstrated
that the algorithm will converge to the optimal action (i.e., the rate of sub-optimal
actions approaches zero) with high probability in the limit of infinite time. Recent
work in this field has brought bandits and Bayesian optimization together, yielding
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algorithms which seek to explore and exploit over very large decision sets, using
models of the response function (e.g., the GP-UCB algorithm of Srinivas et al.
(2010a), which uses Gaussian processes to model the reward function).

1.4 Major Problem
In order to make a practical, fully-implantable system to apply epidural electrical
stimulation which is highly effective for SCI therapy, it is necessary to create, im-
plement, and test a class of active learning algorithms with the following properties:

• Exploit the structure of the epidural spinal stimulation problem, i.e., the
anatomical and neurophysiological knowledge of the spinal cord and the lower
limbs, as well as the capabilities and construction of the stimulating device, to
learn the responses of the patient’s spinal cord and muscle activity to epidural
electrical stimulation.

• Use such a model to choose queries or experimental actions in a way which
enables the response functions to be learned in a query-efficient manner, due
to the expense of individual queries and the large size of search space.

• Performing effective therapy for the patient, as measured bymetrics of success
available on a per-trial basis.

• Performing effective therapy for the patient, as measured by relative feedback
such as rank or pairwise comparison.

In order for the learning process to be both efficient and tractable, the first property
is necessary. To provide an effective therapy, prior information must be combined
with measurements taken for this particular individual. This prior information,
largely invariant, structural, and qualitative in nature, is the result of many years
of neurophysiological studies and clinical experience and represents a tremendous
resource for exploitation by an automated agent. Since it is desirable for this agent
to accomplish the same tasks as would normally be performed by experienced
clinicians, incorporating this prior information is a crucial first step. The budget
of experiments, constrained principally by the time required to perform the desired
measurements, but also the monetary expense of doing so, will often be several
orders of magnitude smaller than the number of potential stimuli; thus, stimuli
which will likely be ineffective must be rapidly eliminated from consideration, such
that experimental effort is concentrated on stimuli which are more likely to be
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therapeutically useful. This motivates the second requirement. The third property
is required by the fact that the calibration sessions in which the algorithm is run will
also constitute a substantial part of the patient’s therapy, and indeed, are arguably
the most therapeutically useful sessions available due to the very expensive presence
of highly trained clinicians and therapists. Optimally, all stimuli ever administered
(including those delivered by the stimulator as the patient undertakes the tasks of
daily living) should be evaluated in terms of their functional performance, such that
an algorithm which takes full advantage of this opportunity for experimentation and
learning may be preferable. If the algorithm operates continuously, it must treat the
therapeutic effectiveness of the stimuli delivered as a substantial component of its
decision-making if an effective therapy is to be applied. Furthermore, poor stimuli
(thosewhich produce low reward values, indicative of poor therapeutic performance)
may produce high fatigue or confound the results of later experiments. Poor stimulus
choices destroy much of the utility of the experimental or therapeutic training
session. The fourth property allows for much greater flexibility in applications;
the requirement of algorithms like GP-UCB that all observations be available before
the next action can be selected, and thus that only one action can be pending at any
time can prove to be a substantial encumbrance. In the SCI therapy setting, the data
processed into the performance metric used by the algorithm is often complex and
time-consuming to calculate, resulting in substantial delays between the performance
of an experiment and the availability of the assessed performance on that experiment.
Motion capture, for example, may take extensive hand annotation to analyze fully,
and multi-channel EMG may take several minutes to process into a useful form.
However, it is most efficient to assemble an experimental session which consists of
an unbroken sequence of requested stimuli; this necessitates either a batch procedure
or delayed selection of stimuli. Further, it is highly desirable that an active learning
system have the following additional properties:

• It has rigorous guarantees of behavior, at least under some conditions.

• It is sufficiently modular to enable adaptation to different experimental condi-
tions, e.g. by the revision of structural assumptions, the inclusion or exclusion
of stimuli within the decision set, and possibly even modification of the deci-
sion rule.

• The predictions made by and the assumptions encoded within the algorithm
are human interpretable.
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• The computations compose the modeling and action selection steps of the
algorithm should be as efficient as possible, with an eye toward deployment on
systemswith limited computational power, i.e., miniaturized fully implantable
devices.

These secondary specifications also describe important capabilities. Guarantees of
performance are an important requirement, as the algorithm’s practical performance
may be easier to understand in light of these guarantees. Modularity is highly desir-
able because various components can be interchanged to suit the particular problem
at hand. From a practical perspective, modularity is also useful because it enables
the re-use of computer code between similar experiments, as well as potentially
allowing rigorous comparisons of different modules, e.g., model selection on the
Gaussian process kernel functions. The third desire, human interpretable predic-
tions, is important for both contributing to the body of clinical and neuroscience
literature on the spinal cord, as well as verification of these models by clinical ob-
servation and experience. Finally, computational efficiency is important, as the long
term goal of a fully implantable, autonomous device which administers a dynamic,
data-driven therapy requires algorithms which can be run with extremely limited
computational resources.

1.5 Contributions
This dissertation develops both online learning algorithms for several specific online
decision-making problems and clinical experiments for the spinal cord injury therapy
via electrical stimulation.

SelfSparring optimizes the cumulative reward with relative feedback. RankCom-
parison deals with ranking feedback. SafeOpt considers the optimization with real
valued feedback and safety constraints. Correlational Dueling is designed for the
specific spinal cord injury therapy.

A variant of Correlational Dueling was implemented in closed-loop human exper-
iments, and used to control which epidural stimulating electrodes are used in the
spinal cord of SCI patients. The results obtained are compared with concurrent
stimulus tuning carried out by human experimenter. These experiments show that
this algorithm is at least as effective as the human experimenter, suggesting that
this algorithm can be applied to the more challenging problems of enabling and
optimizing complex, sensory-dependent behaviors, such as stepping and standing in
SCI patients.
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In order to get reliable quantitative measurements besides comparisons, the standing
behaviors of paralyzed patients under spinal cord stimulation are evaluated. The
potential to quantify the quality of bipedal standing in an automatic approach is also
shown in this work.

1.6 Organization
Some backgroundmaterials relevant to this dissertation, including spinal cord injury
therapy, bandit problem, Gaussian processes, kernel functions, and the learning al-
gorithms, are introduced in Chapter 2. The theoretical properties of new proposing
dueling bandit algorithms are examined in Chapter 3. These results are examined
by a series of computational experiments comparing these algorithms with several
others. Chapter 4 presents the development of RankComparison algorithm on the
dueling bandit framework and the primary experiments in complete SCI patients.
The safety constraint of stimulation is studied in Chapter 5 with real valued feed-
back. Chapter 6 describes human experiments with correlational dueling feedback.
Measuring the quality of bipedal standing in an automatic approach is explored in
Chapter 7. Chapter 8 makes some final conclusions with regard to the present work
and also discusses potential extensions of current results.
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C h a p t e r 2

BACKGROUND

This chapter reviews the background knowledge which is useful for the following
chapters.

Section 2.1 introduces key clinical problems associated with spinal cord injury.
Section 2.2 describes the current therapeutic approaches for spinal cord injury. Some
background on active learning and the bandit problem are provided in Section 2.3,
which is the theoretical foundation of the algorithmic developments in this thesis.
Section 2.4 describes the dueling bandit problem, which uses relative feedback for
our optimization. In Section 2.5, the Gaussian processes (GPs) are reviewed. The
following Section 2.6 provides background on the covariance functions.

2.1 Spinal Cord Injury
Patients with SCI present different clinical symptoms depending on the location
of the injury within the spinal cord, including a variety of syndromes which are
symptomatic of damage to different structures within the spinal cord. Sufficiently
severe damage to the spinal cord can result in the loss of voluntary control (frequently
accompanied by loss of sensation as well) of the legs (paraplegia) or the legs and
arms (quadraplegia). The severity of a patient’s injury ismost commonly assessed on
the ASIA (American Spinal Injury Association) scale, as well as by the neurological
level of the injury in the spinal cord, diagnosed via the affected dermatomes and
myotomes, which correspond in a fixed fashion to spinal levels.

The rahabilitation after spinal cord injury has been studied in both human patients
(e.g., Harkema et al. (2011)) and animal models (e.g., Brand et al. (2012)). There
are several good reviews on this topic such as Thuret, Moon, and Gage (2006),
Edgerton et al. (2006), and Yury Gerasimenko, Roy, and Edgerton (2008).

The primary, long-term result of this damage is a substantial loss of function in terms
of motor control and sensation, resulting in impaired mobility and independence.
While the symptoms of some patients improve over the first 1 ∼ 1.5 years after injury,
these improvements eventually cease (Fawcett et al., 2007). The remaining deficits
in sensory and motor function are at present generally considered to be largely
irreversible, i.e., there is no cure for SCI, though a number of approaches have been
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developed which have produced gains for some patients. Interestingly, in incomplete
injuries and within the general realm of motor control, the degree of recovery in the
performance of individual motor tasks may be somewhat independent; this may be
due to different levels of supraspinal control exercised in different motor functions,
e.g., locomotion versus reaching (Grégoire Courtine et al., 2005).

Beyond loss of motor control and bodily sensation, a number of other problems
commonly arise for SCI patients, particularly issues resulting from lack of ex-
ercise and from the disruption of the nervous system’s internal communications.
These deficits can include muscle atrophy and spasticity, as well as potentially
life-threatening autonomic problems such as failures of temperature regulation and
autonomic dysreflexia. For a discussion of the many and varied autonomic deficits
which result from SCI, the symposium proceedings edited by Weaver and Polosa
(2006) are an excellent resource.

Advances in care have meant that SCI patients who do not die immediately tend
to survive for a many years, such that therapies which partially alleviate some of
their symptoms are highly desirable. A survey of 681 SCI patients was reported
by Anderson (2004). They found that among the seven options presented on the
survey instrument, a near-majority of quadriplegics believed that recovery of hand
and arm function would produce the greatest improvement in their quality of life,
while a plurality of paraplegics believed that recovery of sexual function would most
greatly improve the quality of theirs. A very substantial number of both populations
ranked the item composed of bladder, bowel, and autonomic dysreflexia as one of
their top two potential greatest gains in quality of life. Among paraplegics, walking
movement, described by the survey’s creator as inclusive of standing and other forms
of exercise, also ranked highly, but its share of first or second votes was much lower
among quadraplegics. Even given the limitations of the survey, it is striking that
bladder, bowel, and autonomic dysreflexia concerns were so important, particularly
as compared with walking and mobility.

Current and experimental therapies have begun to deliver this desirable alleviation
of secondary symptoms; for example, the initial patient in an epidural electrical
stimulation study (Harkema et al., 2011), whose therapy program included epidural
electrical stimulation, locomotion training, and stand training, reports that his gains
have included improved mental well-being, improved bladder and bowel function,
some improvement in sensory function, some improvement in sexual function,
substantial gains in muscle mass, including gains in the legs, core, and upper
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body, and better postural control. Note that this patient had already participated in
an intensive locomotion training program, and that these gains are relative to his
condition after that program. Additionally, this patient has recovered some gross
voluntary motor control of his lower limbs; it has been suggested that this control is
a result of use-dependent plasticity of spared supraspinal axonal projections.

2.2 Existing Therapeutic Approaches
Since no cure currently exists for spinal cord injuries, current practice focuses on
therapy, applied in a variety of approaches. Some techniques attempt to directly
create the pattern of muscle activation in the extremities which would ordinarily
be associated with the desired activity. Other approaches focus on rehabilitating
the spinal cord; Bradbury and McMahon (2006) describe these as attempting either
to induce regeneration of damaged axons, repairing the damage to some extent, or
to rehabilitate the spinal cord’s ability to control the body without addressing the
injury itself. A review of a number of approaches is presented in the following
sub-sections, including epidural electrical stimulation, the approach which is the
particular focus of this dissertation.

Functional Electrical Stimulation
Functional Electrical Stimulation (FES, Liberson et al. (1961)) attempts to treat the
symptoms of paralysis via direct stimulation of the muscles themselves; in FES,
electrical stimulators are placed on or within the skeletal muscles and are then
activated in a pattern engineered to replicate a desired activity, e.g., the stride cycle.
The pattern of muscle activation is directly controlled, such that FES can be used to
treat foot drop in hemiplegic patients (Liberson et al., 1961), and produce weight-
bearing locomotion in paraplegics (Klose et al., 1997). Applied as an exercise
therapy, FES has been shown to confer gains in a variety of cardiorespiratory and
metabolic metrics (Davis et al., 2008). However, since FES is an open-loop control
method, the stimulation pattern must be carefully designed and/or user-controlled
if complex behaviors are desired (e.g., in hand control, as examined by Mangold
et al., 2004). Further, the resulting muscle contractions do not respond directly
to sensory feedback, an important consideration when considering activities which
require significant feedback control, e.g., standing. Another important problemwith
FES is rapid fatigue; muscle contraction force typically decreases rapidly under FES
(see Thrasher et al., 2005, for a discussion of fatigue and the difficulties in mitigating
it).
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Regenerative Therapies
Another major approach to SCI rehabilitation aims to induce the spinal cord to
repair itself via the introduction of signaling molecules and/or the suppression
of endogenous signaling (Karimi-Abdolrezaee et al., 2012), or to introduce cells,
exogenous or autologous, into the injury site which would promote or support
regrowth (Coumans et al., 2001; Wu et al., 2012). Often, scaffolds are constructed
from biomaterials and used to support regrowth by providing a stable and permissive
environment (Pego et al., 2012). Regenerative therapies seem promising in the long-
term, but have not to date met with substantial success in patients with complete
SCI (Thuret, Moon, and Gage, 2006). However, there is evidence that, in the case
of some incomplete injuries, and even without therapeutic aid beyond exercise,
the central nervous system can reroute connections through existing neurons which
bypass the injury site to make some small functional gains (Bareyre et al., 2004;
Gregoire Courtine et al., 2008). If these gains can be further improved, they may
provide the basis for substantial recovery in the future.

Cord-Rehabilitative Approaches
In contrast to FES and regenerative therapies, cord-rehabilitative approaches do not
seek to directly drive the muscles or repair the spinal cord; rather, these approaches
take a middle road and attempt to modify the function of the spinal cord in order
to produce the desired motor behavior. This avenue of SCI therapy attempts to
take advantage of the surviving spinal cord circuitry below the site of injury, which
remains viable and adaptable (Edgerton et al., 2006). Specific targets include
interneuron networks responsible for reflexes and the central pattern generator, the
region of the spinal cord responsible for generating the overall pattern of muscle
activation in walking (Dimitrijevic, Yuri Gerasimenko, and Pinter, 1998).

Methods of this type may attempt to use any of a variety of approaches to pro-
mote lower spinal cord activity. Pharmaceutical replacement of or substitution for
neurotransmitters which would normally be delivered from the higher central ner-
vous system has been shown to produce substantial gains in stepping performance.
If made practicable by an incomplete motor injury or some other therapeutic ap-
proach, physical training is also very useful for recovering function, as it provides
the task-appropriate input to which the spinal cord is being trained to respond appro-
priately (Wernig and Mller, 1992; Engesser-Cesar et al., 2007), which may induce
plastic reorganization of the lower spinal cord. In order to reduce the need for
human assistance of the patient during activity-based therapy, a number of efforts
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have concentrated on robotic locomotor training. Cai et al. (2006) considered how
the controller which drives a robotic assistance system can affect the therapeutic
outcome, showing that an assist-as-needed paradigm which enforced some inter-
limb coordination outperformed both rote training of the nominal trajectory and an
assist-as-needed controller which did not enforce interlimb coordination. Emken
et al. (2008) addressed a similar question of robotic gait training and appropriate
control algorithms in humans. The phenomenon of learned helplessness, i.e., non-
responsiveness to stimuli which cannot be avoided, is present in the rat spinal cord
and can be manipulated by both pharmacology and linkage of lower limb position
with noxious stimulus (Crown and Grau, 2001). The results of Cai et al. (2006) may
provide evidence that variability in the training paradigm is important for avoiding
this outcome.

Epidural Electrical Stimulation
Another important cord-therapeutic technique for SCI therapy, and the focus of
the applied portions of this dissertation, is epidural electrical stimulation. While
originally developed for chronic pain therapy (Shealy,Mortimer, andReswick, 1967;
Shealy, Taslitz, et al., 1967), spinal electrical stimulation can produce complex
motor patterns (Dimitrijevic, Yuri Gerasimenko, and Pinter, 1998). A variety
of methods for delivering the electrical stimulus have been suggested, including
penetrating microelectrodes. Epidural spinal cord stimulation has been applied
with similar results in spinal and decerebrate cats, spinalized rats, and humans, and
when properly configured, can produce walking motions (described in the review
by Yury Gerasimenko, Roy, and Edgerton (2008). Herman et al. (2002) combined
epidural electrical stimulation with partial body weight support exercise training
to produce substantial perceived, functional, and metabolic gains in locomotion in
an incomplete quadraplegic patient. More recently, Harkema et al. (2011) used
epidural electrical stimulation with training and demonstrated substantial gains in a
motor-complete patient in a similar setting. This type of stimulation is believed to
activate afferent fibers as they enter the spinal cord through the dorsal nerve roots
(Minassian et al., 2007).

Combined Approaches
It is often the case that the therapeutic approaches outlined above can be combined for
improved effects. For example, Capogrosso et al. (2016) examine serotonin agonists
and electrical stimulation for excitation of the spinal cord in treadmill walking, and
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Brand et al. (2012) use electrical stimulation, pharmacology, and a compliant robotic
assist device, both in SCI rats. Both works show impressive functional gains, with
the latter showing a restoration of voluntary locomotion. As mentioned in Edgerton
et al. (2006), it remains an open question as to how to optimally combine individual,
disparate therapies into a therapeutic program.

2.3 Bandit Learning
This section provides an overview of active learning and bandit algorithms related
to the work in this dissertation. Intuitively, a learner which asks useful questions
should be able to learn more information and use fewer observations than a learner
which waits for informative data to arrive by chance. For a view of the traditional
field of active learning, i.e., the field of actively querying algorithms which do not
obtain reward or suffer regret, the interested reader may refer to the text by Settles
(2012). Since this work combines ideas from bandits and Bayesian optimization, a
brief review of the literature in each of these areas is included.

Basic Setting
Exploration-exploitation tradeoffs have been classically studied in the context of the
(stochastic) multi-armed bandit problem, in which, from among some finite set of
candidate actions, a single action is chosen at each round, and the corresponding
(possibly noisy) reward is observed. A recent monograph by Sébastien Bubeck
and Cesa-Bianchi (2012) describes a number of related bandit problems and several
algorithms for solving each. Briefly, early work has focused on the case of a finite
number of decisions and payoffs that are independent across the arms (Robbins,
1952). In this setting, under some strong assumptions, optimal policies can be
computed (Lai and Robbins, 1985). Due to the difficulties inherent in doing so,
however, a number of heuristic policies have been created. Optimistic allocation of
actions according to upper-confidence bounds (UCB) on the payoffs has proven to
be particularly effective (Auer, Cesa-Bianchi, and Fischer, 2002).

Bandit Theory
The original i.i.d. multi-armed bandit problem was proposed in Robbins (1952).
The problem formulation is reviewed below.

• Known parameters: number of arms K and (possibly) number of rounds
T ≥ K .
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• Unknown parameters: K probability distributions ν1, . . . , νK on [0, 1] with
mean µ1, . . . , µK (notation: µ∗ = maxi∈[K] µi).

• Protocol: For each round t = 1, 2, . . . ,T , the player chooses It ∈ [K] based on
past observations and receives a reward/observation Yt ∼ νIt (independently
from the past).

• Performance measure: The cumulative regret is the difference between the
player’s accumulated reward and the maximum the player could have obtained
had she known all the parameters,

ERT = T µ∗ − E
∑
t∈[T]

Yt .

This problem models the fundamental tension between exploration and exploitation
where one wants to pick arms that performed well in the past, yet one needs to make
sure that no good option has been missed. More and more applications are found
that fit this simple framework, such as advertisement placement on the Internet.

There are fundamental limitations of i.i.d. multi-armed bandit.

First, there exists lower bounds for ERT . Consider the 2-armed case where ν1 =

Ber(1/2) and ν2 = Ber(1/2 + ξ∆) where ξ ∈ {−1, 1} is unknown. Ber denotes the
Bernoulli distribution and ∆ is the marginal difference between ν1 and nu2. With τ
expected observations from the second arm there is a probability at least exp(−τ∆2)
to make the wrong guess on the value of ξ. Now let τ(t) be the expected number of
pulls of arm 2 when ξ = −1. One has

ERT (ξ = +1)+ERT (ξ = −1) ≥ τ(T)∆+
T∑

t=1
exp(−τ(t)∆2) ≥ min

t∈[T]
(t∆+T exp(−t∆2)) ≈ log(T∆2)

∆
.

More details can be found in Sébastien Bubeck, Perchet, and Rigollet (2013). The
important message is that for ∆ fixed the lower bound is log(T)

∆
. For the worse ∆

it is
√

T . In the K-armed case this worst-case lower bound becomes
√

KT . Let
∆i = µ

∗ − µi and Ni(t) the number of pulls of arm i up to time t. Note that one has
ERT =

∑K
i=1 ∆iENi(T). For p, q ∈ [0, 1] let

kl(p, q) := p log
p
q
+ (1 − p) log

1 − p
1 − q
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Theorem (Lai and Robbins, 1985) considers a multi-armed bandit strategy s.t.
∀a > 0, we have ENi(T) = o(Ta) if ∆i > 0. Then for any Bernoulli distributions,

lim inf
n→+∞

ERT

log(T) ≥
∑

i:∆i>0

∆i

kl(µi, µ∗)
.

Note that 1
2∆i ≥

∆i
kl(µi,µ∗) ≥

µ∗(1−µ∗)
2∆i , so up to a variance-like term the Lai and Robbins

lower bound for the multi-armed bandit problem is
∑

i:∆i>0
log(T)

2∆i .

The UCB (Upper Confidence Bound) strategy (Lai and Robbins, 1985; Auer, Cesa-
Bianchi, and Fischer, 2002) is,

It ∈ argmax
i∈[K]

UCBi(t).

The regret analysis is on a 1 − 2/T probability event one has

Ni(t) ≥ 8 log(T)/∆2
i ⇒ UCBi(t) < µ∗ ≤ UCBi∗(t),

so that ENi(T) ≤ 2 + 8 log(T)/∆2
i and in fact

ERT ≤ 2 +
∑

i:∆i>0

8 log(T)
∆i

.

Bayesian multi-armed bandit Thompson Sampling (TS) (Thompson, 1933)

Assume a set of models {(ν1(θ), . . . , νK(θ)), θ ∈ Θ} and prior distribution π0 over
Θ. The Bayesian regret is defined as

BRT (π0) = Eθ∼π0ERT (ν1(θ), . . . , νK(θ)),

where ERT (ν) simply denotes the regret for the i.i.d. model when the underlying
reward distributions are ν1, . . . , νK . In principle the strategyminimizing theBayesian
regret can be computed by dynamic programming on the potentially huge state
space P(Θ). The Gittins index theorem (Gittins, Glazebrook, and Weber, 2011)
gives sufficient condition to dramatically reduce the computational complexity of
implementing the optimal Bayesian strategy under a strong product assumption on
π0. Notation: πt denotes the posterior distribution on θ at time t.
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Theorem (Gittins Index Theorem, Gittins, ’74, ’79, ’89) The expected discounted
reward obtained from a simple family of alternative bandit processes is maximized
by always continuing the bandit having greatest Gittins index,

Gi(xi) = supτ≥1
E[Στ−1

t=0 ri(xi(t))βt |xi(0) = xi]
E[Στ−1

t=0 β
t |xi(0) = xi]

where τ is a (past-measurable) stopping time.

Thompson proposed the following strategy: sample θ′ ∼ πt and play It ∈ argmax µi(θ′).

Theoretical guarantees for this highly practical strategy have been provided by
Agrawal and Goyal (2012) and Kaufmann, Korda, and Rémi Munos (2012). They
proved that TS with Bernoulli reward distributions and uniform prior on the param-
eters achieves ERT = O

(∑
i

log(T)
∆i

)
.

Bandit Algorithms
Many problems have a repeating game structure, in which there exist, a set of alter-
natives and the agent must choose one among these at each round. The agent then
receives the reward corresponding to this action. Crucially, only this (possibly noisy)
reward is observed, while rewards corresponding to other actions are unrevealed;
this suggests that, in order to obtain a good amount of reward, the agent must use a
strategy which exploits knowledge of the reward function to obtain high reward, and
explores the reward function thoroughly enough to be assured that the action which
is apparently best is, in fact, the one which yields the highest reward. The balance
between these competing imperatives is referred to as the exploration-exploitation
tradeoff. The most crucial division among algorithms in the bandit class is in regard
to the types of structural assumptions made about the reward function, i.e., whether
the payoffs corresponding to individual actions are somehow related to one another,
or if they are totally independent.

Structural Assumptions for Large Problems
Recently, approaches for coping with large (or infinite) sets of decisions have been
developed. In these cases, since the number of candidate actions is very large
compared to the number of actions to be allocated, the reward function cannot
be adequately learned if the payoffs are independent. In order to achieve some
level of tractability, the dependence between the payoffs associated with different
candidate actions must be modeled and exploited. Examples include bandits with
linear (Dani, Hayes, and Kakade, 2008; Abernethy, Hazan, and Rakhlin, 2008) or
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Lipschitz-continous payoffs (Kleinberg, Slivkins, and Upfal, 2008), or bandits on
trees (Kocsis and Szepesvári, 2006b; Sébastien Bubeck, Rémi Munos, et al., 2008).
Chapter 5 pursues a Bayesian approach to bandits, where fine-grained assumptions
on the regularity of the reward function can be imposed through proper choice of
the prior distribution.

Bayesian Optimization
The exploration-exploitation tradeoff has also been studied in Bayesian global opti-
mization and response surface modeling, where Gaussian process models are often
used due to their flexibility in incorporating prior assumptions about the struc-
ture of the payoff function (Brochu, Cora, and Freitas, 2010). Several bandit-like
heuristics, such as Maximum Expected Improvement (Jones, Schonlau, and Welch,
1998), Maximum Probability of Improvement (Mockus, 1989), Knowledge Gra-
dient (Ryzhov, Powell, and Frazier, 2012), and upper-confidence based methods
(Cox and John, 1997), have been developed to balance exploration with exploitation
and have been successfully applied in different learning problems. In contrast, the
Entropy Search algorithm of Hennig and Schuler (2012) considers the estimate of
the location of the optimum at any given time and tries to take the action which will
greedily decrease future losses, a less bandit-like and more optimization-focused
heuristic. Srinivas et al. (2010a) analyzed GP-UCB, an upper-confidence bound
sampling based algorithm for this setting, and proved bounds on its cumulative
regret, and thus convergence rates for Bayesian global optimization. T. Desautels,
Krause, and J. Burdick (2012) studied a batched version of the GP-UCB.

Online Learning
Some attempts to use algorithmic methods for managing the interaction of thera-
peutic systems with complex biological systems have been made in the past. For
example Santaniello et al. (2011) studied the simulation of the closed-loop control
of deep brain stimulation. They modeled the responses of simulated neurons in the
ventral intermediate nucleus of the thalamus to deep brain electrical stimulation as
a parametric dynamic model, with coefficients fitted online. They controlled the
application of the stimulator to attempt to disrupt tremor-like activity in this popu-
lation of simulated cells. Another application of interest has been brain-computer
interface (BCI). Traditionally, BCI uses fairly simple decoding algorithms, which
classify neural activity by comparison to pre-computed, possibly stereotyped pat-
terns corresponding to putative volitional states. Fruitet, Carpentier, Clerc, et al.
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(2012) developed and tested in humans a bandit-based algorithm to create person-
alized BCI (Fruitet, Carpentier, Rémi Munos, et al., 2013). This algorithm chose
which action to ask the user to imagine performing adaptively, and eventually pro-
duced good discrimination between this neurological state and the resting state,
thus creating a classifier for the state of a volitional “button-press” manifested in
the patient’s sensori-motor rhythms. While intended to ultimately work with much
larger sets of imagined motor actions, these experiments used a menu of three to
five possible actions.

Gürel and Mehring (2012) used what is essentially an ε-greedy bandit as a meta-
algorithm for online, continuing calibration of a BCI decoding process, following
an initial supervised training stage. Vidaurre et al. (2011) employed a multi-phase
calibration of such a system, including the user’s immediate feedback responses to
the online-decoded intention. The work in SCI therapy uses more structure over the
space of actions (over which the reward function is modeled as a Gaussian process
or as a correlated dueling bandit problem which is described below) in order to
enable the use of a very large decision set.

2.4 Dueling Bandit
The dueling bandits problem is an online learning framework for learning from
preference feedback, and is particularly well-suited for modeling settings that elicit
subjective or implicit human feedback.

Consider the following sequential optimization problem with relative feedback. Let
B = {b1, . . . , bK} be the set of K bandits (or arms). At each round t = 1, 2, · · · , the
system presents a pair of arms bi, b j from the set of K arms based on users picking
criteria (or dueling bandits algorithm). Arms bi and b j may be identical. We assume
the outcome of each duel or comparison between bi and b j is an independent sample
of a Bernoulli random variable X(bi, b j). We define the probability that arm bi beats
b j as

P(bi � b j) = φ(bi, b j) + 1/2,

where φ(bi, b j) ∈ [−1/2, 1/2] denotes the underlying preference between bi and b j .
Obviously, bi � b j if and only if φ(bi, b j) > 0. We also assume that there is a total
ordering, and that the bandits are indexed in that ordering WLOG: bi � b j ⇔ i < j.

The setting proceeds in a sequence of iterations or rounds. At each iteration t, the
decision maker must choose a pair of bandits b(1)t and b(2)t to compare, and observes
the outcome X(b(1)t , b(2)t ) of that comparison. The quality of the decision making is
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then quantified using a notion of cumulative regret of T iterations

RT =

T∑
t=1

[
φ(b1, b

(1)
t ) + φ(b1, b

(2)
t )

]
. (2.1)

To date, there have been several algorithms proposed for the stochastic K-armed
dueling bandits problem, including Interleaved Filter (Yue et al., 2012), Beat the
Mean (Yue and Joachims, 2011), SAVAGE (Urvoy et al., 2013), RUCB (Zoghi,
Whiteson, Remi Munos, et al., 2014; Zoghi, Whiteson, and Rijke, 2015), and
Sparring (Ailon, Z. Karnin, and Joachims, 2014; Dudik et al., 2015). Of these,
RUCB and Sparring consistently achieve the best empirical performance (Ailon,
Z. Karnin, and Joachims, 2014). Chapter 3 introduces a new algorithm that builds
upon Sparring to arrive at a new algorithm, whichwe call SelfSparring, SelfSparring
significantly outperforms the state-of-the-art algorithms in empirical evaluations.

2.5 Gaussian Processes
Gaussian processes (GPs) are a flexible model for capturing knowledge about func-
tions from a variety of classes. Rasmussen andWilliams (2006) provide an excellent
introduction to GPs. This section presents a brief review of relevant parts of GP
theory and practice.

Rasmussen and Williams (2006) define a Gaussian process as follows: a Gaussian
process is a collection of random variables, any finite number of which have a joint
Gaussian distribution.

Another way of thinking of a Gaussian processes is to describe it as a probability
distribution over functions mapping from an arbitrary (possibly continuous) index
set S to R. To denote that such a function f : D ⇒ R is drawn from a GP over
functions on D, one may write f ∼ GP(µ(x), k(x, x′)), where x, x′ ∈ D, µ(x) is
the mean function and k(x, x′) is the covariance function. Any element x ∈ D

corresponds to the identity of a random variable, and the value of any function
drawn from the GP at x, f (x), corresponds to a particular assignment of a value
to the random variable identified by x. Note that here and in the remainder of the
text, we use the notation f to denote a function over D and f (·) to denote the value
of that function at a finite collection of elements in D. A GP is fully specified by
the mean function and covariance function; for any collection of elements of the
GP, these may be used to define the Gaussian joint distribution over the values of
those random variables. For example, on any collection of n ∈ N+ elements of D,
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where this collection of points is described as a column vector, X = [x1, ..., xt]T , the
Gaussian joint distribution over this column vector of corresponding values of f is
f (X) = [ f (x1), ..., f (xt)]T ∼ N(µ(X),K(X, X)), where µ(X) is the column vector of
values of the mean function and K(X, X) is the covariance matrix, and where the
entries of K(X, X) are [K(X, X)]i j = k(xi, x j), ∀i, j ≤ t.

In particular, for any x, x′ ∈ D, the covariance of f (x) and f (x′) is k(x, x′). The
existence of a covariance function automatically grants a consistency property, which
is the distribution of any sub-collection of random variables from the GP.

This dissertation will assume without loss of generality that the prior for mean
function µ(x) is zero everywhere in D. It is mathematically equivalent to perform
regression on deviations from µ(x), expressed as f (x) − µ(x), rather than on the
actual value of the function f (x), and thus the corresponding change of definitions
is preferred for simplicity of presentation and calculation.

Regression Using Gaussian Processes
Chapter 5 of this work considers using the GPmodel to make predictions about f (x),
the value of a function drawn from the GP at a test point x, given some finite set of
observations y corresponding to the set X . Assuming i.i.d. Gaussian noise on these
observations with noise variance σ2

n , and denoting the size of X as t, the individual
observations corresponding to xi ∈ X may be written as yi = f (xi) + εi, i ∈ 1, ..., t,
where εi ∼ N(0, σ2

n ), ∀i ∈ 1, ..., t. The joint distribution over the observations
y = [y1, ..., yt]T This assumption allows us to model our reward function f as a
sample from a Gaussian process (GP) (Rasmussen andWilliams, 2006). A GP(µ( ×
x), k(x, x′)) is a probability distribution across a class of “smooth” functions, which
is parameterized by a kernel function k(x, x′) that characterizes the smoothness of
f . We assume w.l.o.g. that µ(x) = 0, and that our observations are perturbed by
i.i.d. Gaussian noise. At points AT = [x1 . . . xT ]T ⊆ D, we have yt = f (xt) + nt

where nt N(0, σ2). (We will relax this assumption later.) The posterior over f is
then also Gaussian with mean µT (x), covariance kT (x, x′) and variance σ2

T (x, x′)
that satisfy,

µT (x) = kT (x)T (KT + σ
2I)−1yT

kT (x, x′) = k(x, x′) − kT (x)T (KT + σ
2I)−1kT (x′)

σ2
T (x) = kT (x, x),

where kT (x) = [k(x1, x) . . . k(xT, x)]T and KT is the positive definite kernel matrix
[k(x, x′)]x,x′∈AT .
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These forms represent the uncertainty overwhich function from theGaussian process
explains the observations, and capture the marginalization over all functions which
could be drawn from the GP; this implicit marginalization is a manifestation of the
consistency property.

2.6 Covariance Functions
The previous discussion has assumed the availability of a covariance function (ker-
nel function) k(·, ·), but covariance functions are themselves a topic of significant
interest. In applications, the choice of covariance function is a major opportunity
to specify the structure of the problem, as expert knowledge can be used to choose
a covariance function which encodes a great deal of problem-specific knowledge.
Such choices result in relatively stronger or weaker links between the values of
f at various pairs of elements x, x′ from within the chosen domain S of the co-
variance function (which is the domain of functions drawn from the corresponding
GP). Further, some regions of S could be specified to have larger variances than
others, encoding the knowledge that some particular region of the space is known
to produce more variable behavior. Similarly, in Rd , a covariance function could
be constructed to produce draws from the GP which vary more slowly in certain
directions than others; this can be very useful, e.g., if the system being modeled
is known to be relatively insensitive to one of the variables describing the loca-
tion in Rd , whereas it is more sensitive to others. As covariance functions are a
crucial topic in understanding GPs, Rasmussen and Williams (2006) also provide
a thorough description of this topic. A brief introduction of the relevant details is
presented here. A real kernel function k is a function which maps pairs of elements
of D into R, i.e., k : D × D → R. A kernel which is symmetric in its arguments,
i.e., k(x, x′) = k(x′, x), is referred to as a symmetric kernel. In Euclidean spaces,
the stationary and isotropic properties are of interest. If k is solely a function of
x − x′, k is stationary, and it is invariant to translations of the inputs. If k is a
function of only the (vector) magnitude of this difference, |x − x′|, it is isotropic.
Covariance functions are a sub-class of symmetric kernel functions. For any kernel
function k and collection X = x1, · · · , xn of n elements of D, the Gram matrix is
K(X, X), where [K(X, X)]i j = k(xi, x j), ∀i, j ≤ n. If for a symmetric kernel k, the
Gram matrix is positive semi-definite ∀n ∈ N+, k is termed positive semi-definite.
If a kernel k is symmetric and positive semi-definite, k is also a valid covariance
function, and any Gram matrix corresponding to k is referred to as a covariance
matrix. The covariance function in essence defines similarity between the values of
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f (x) and f (x′) for any two elements x, x′ ∈ D, and does so by reference to x and x′,
rather than the function itself. This is useful for a variety of reasons:

• For a finite collection of points d ∈ D, the covariance matrix K(d, d) of the
jointly Gaussian values of f at the elements of d can be computed before
hand. Conditioned on observations of elements of d, the posterior over f at
d can be computed using this matrix.

• Complex representations of x and x′ in feature spaces, even infinite-dimensional
feature spaces, can be encoded by using a kernel (covariance) function which
operates (typically very simply) on x and x′; this is commonly known in
machine learning as the kernel trick, and is employed to leverage a simple
technique into a much more complex and expressive suite of techniques while
incurring very little computational expense. In this sense, Gaussian process
regression is actually Bayesian linear regression, extended via the kernel trick.

• From a practical perspective, careful choices of the representation of the
inputs, the kernel function, and the corresponding hyperparameters can allow
expert knowledge to be encoded into the GPmodel very simply and intuitively.
As an expert works with a system, they might plausibly acquire some intuition
of which variables are functionally important and which are less so. It might
be that there are many ways to describe the objects in the input space, but
some may be more convenient or meaningful than others; in essence, this
is an extension of the kernel trick. The choice of covariance function also
is an opportunity for expert intuition to be expressed; linear or squared-
exponential kernels imply quite different things about the functions drawn
from the corresponding GPs. Similarly, the choice of the hyperparameters of
selected kernel function encodes information like the relative sensitivity of
the responses to variation in any of the chosen features.

Reproducing Kernel Hilbert Spaces
A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions over
a set D associated with a particular kernel function. More precisely, an RKHS is
defined by Rasmussen and Williams (2006) as follows: Let H be a Hilbert space
of real functions f defined on an index set D. Then H is called a reproducing
kernel Hilbert space (RKHS) endowed with an inner product < ·, · >H (and norm
| | f | |H =< f , f >H). If there exists a function k : D × D → R with the following
properties:
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• for every x, k(x, x′) as a function of x belongs to H.

• k has the reproducing property < f (·), k(·, x) >H= f (x).

For the purposes of structural learning of input space, it is most important to note that
the RKHS norm of a function f provides a measure of how closely f matches the
possible posterior means, which would be constructed from a GP model using the
corresponding kernel and a finite amount of data, i.e., how well f can be captured by
the model; a small value for | | f | |H implies that f is much like a linear combination
of relatively few copies of the kernel function, whereas a large or infinite value for
| | f | |H implies that this is not the case. Alternatively, a finite value of | | f | |H could be
viewed as the rapid decay of the eigenvalues of f with respect to an eigenfunction
basis of the RKHS.

Constructing Covariance Functions
It is also possible to construct more complicated covariance functions by using
compositions of simpler covariance functions. In particular, the sum of two covari-
ance functions is a covariance function, and a sample from the GP corresponding
to this covariance function corresponds to a sum of independent samples from the
two GPs which correspond to the two original covariance functions. Similarly, the
product of two covariance functions is also a covariance function, such that draws
from the GP corresponding to the product covariance function can be thought of
as being the product of two independent draws from the GPs corresponding to the
individual factor covariance functions. Finally, two covariance functions k1(x1, x′1)
and k2(x2, x′2) over different spaces D1 and D2 may be combined as either a sum
k(x, x′) = k1(x1, x′1)+ k2(x2, x′2) or product k(x, x′) = k1(x1, x′1) × k2(x2, x′2) to form
a covariance function k for x, x′ ∈ D1 ×D2 via the sum and product methods above.
This allows the construction of covariance functions from individual covariance
functions over subspaces, e.g., different dimensions of Rd , or even radically differ-
ent sets; D1 might beR, whereas D2 could be nodes in a graph, words in a corpus, or
something more exotic. While it is possible to construct covariance functions which
natively represent covariance over a space D which is not a subset of Rd , another
way to construct covariance functions for such D is to find a mapping: D → Rd

and then use a covariance function k ∼: Rd × Rd ⇒ R to construct a covariance
function, such that k(x, x′) = k ∼ (g(x), g(x′)). The combination of all of these
techniques allows a great deal of flexibility in terms of modeling assumptions.



26

C h a p t e r 3

THEORETICAL CONTRIBUTIONS: ALGORITHMS FOR
DUELING BANDITS

This chapter provides several new algorithms for dueling bandits problem, a variant
of the multi-armed bandit problem. The dueling bandits problem is an online
learning framework for learning from preference feedback, and is particularly well-
suited for modeling settings that elicit subjective or implicit human feedback. This
chapter shows how to view the dueling bandits problem as a two-player game with
stochastic rewards and slowly drifting dynamics. This chapter also studies the
problem of multi-dueling bandits with dependent arms, which extends the original
dueling bandits setting by simultaneously dueling multiple arms as well as modeling
dependencies between arms. These extensions capture key characteristics found in
many real-world applications, and allow for the opportunity to develop significantly
more efficient algorithms than were possible in the original setting.

3.1 Introduction
In many online learning settings, particularly those that involve human feedback,
reliable feedback is often limited to pairwise preferences (e.g., “is A better than
B?”). Examples include implicit or subjective feedback for information retrieval
and recommender systems (e.g., clicks on search results, or subjective feedback
on the quality of recommended care) (Chapelle, Joachims, et al., 2012; Sui and
J. Burdick, 2014b). This setup motivates the dueling bandits problem (Yue et al.,
2012), which formalizes the problem of online regret minimization via preference
feedback (e.g., choosing a pair of arms to be compared at each time step).

One of the best performing algorithms is the Sparring algorithm (Ailon, Z. Karnin,
and Joachims, 2014), which uses two separate multi-armed bandit algorithms to
choose the two arms to be compared at each time step, and essentially treats the du-
eling bandits problem as a competition between two learning agents. Operationally,
Sparring uses two separate multi-armed bandit algorithms to choose the two arms to
be compared at each time step. This viewpoint reveals a close connection between
the dueling bandits problem and online learning in two-player zero-sum games. As
such, designing efficient no-regret dueling bandit algorithms is closely related to
designing online learning agents that quickly converge to the Nash equilibrium in
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the corresponding two-player game. Furthermore, if there is a Condorcet winner 1 in
the arms (i.e., a dominating strategy), then the optimal solution to the Dueling Ban-
dits problem is also a unique pure Nash equilibrium in a corresponding two-player
zero-sum game.

This chapter shows how to view the dueling bandits problem as a two-player game
with stochastic rewards and slowly drifting dynamics. Through this viewpoint, I
provide the first near-optimal no-regret guarantee for a variant of Sparring using a
stochastic bandit algorithm, which we call SelfSparring. One important property
that we leverage is approximate linearity, which fully generalizes the linear utility-
based dueling bandits setting studied in Ailon, Z. Karnin, and Joachims (2014) –
see Section 3.6 for more details. We also demonstrate empirically that SelfSparring
achieves state-of-the-art performance.

3.2 Problem Setups
Consider the following sequential optimization problem with relative feedback. Let
B = {b1, . . . , bK} be the set of K arms. At each round t = 1, 2, · · · , the system
presents a pair of arms bi, b j from the set of K arms based on users picking criteria
(or dueling bandits algorithm). bi and b j can be identical. We assume the outcome of
each duel or comparison between bi and b j is an independent sample of a Bernoulli
random variable X(bi, b j). We define the probability that arm bi beats b j as

P(bi � b j) = φ(bi, b j) + 1/2,

where φ(bi, b j) ∈ [−1/2, 1/2] denotes the preference between bi and b j . Obviously,
bi � b j if and only if φ(bi, b j) > 0. We also assume that there is a total ordering,
and that the bandits are indexed in that ordering WLOG: bi � b j ⇔ i < j.

The setting proceeds in a sequence of iterations or rounds. At each iteration t, the
decision maker must choose a pair of bandits b(1)t and b(2)t to compare, and observes
the outcome X(b(1)t , b(2)t ) of that comparison. The quality of the decision making is
then quantified using a notion of cumulative regret of T iterations:

RT =

T∑
t=1

[
φ(b1, b

(1)
t ) + φ(b1, b

(2)
t )

]
. (3.1)

To date, there have been several algorithms proposed for the stochastic K-armed
dueling bandits problem, including Interleaved Filter (Yue et al., 2012), Beat the

1The Condorcet winner is the person who would win a two-candidate election against each of
the other candidates in a plurality vote. For a set of candidates, the Condorcet winner is always the
same regardless of the voting system in question.
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Table 3.1: Example Prob(Row > Col) − 1/2 preference matrix.

A B C D E F
A 0 0.04 0.05 0.07 0.10 0.12
B -0.04 0 0.04 0.06 0.08 0.10
C -0.05 -0.04 0 0.01 0.04 0.09
D -0.07 -0.06 -0.01 0 0.02 0.05
E -0.10 -0.08 -0.04 -0.02 0 0.03
F -0.12 -0.10 -0.09 -0.05 -0.03 0

Mean (Yue and Joachims, 2011), SAVAGE (Urvoy et al., 2013), RUCB (Zoghi,
Whiteson, Remi Munos, et al., 2014; Zoghi, Whiteson, and Rijke, 2015), and
Sparring (Ailon, Z. Karnin, and Joachims, 2014; Dudik et al., 2015). Of these,
RUCB and Sparring consistently achieve the best empirical performance (Ailon,
Z. Karnin, and Joachims, 2014). Our work builds upon Sparring to arrive at a new
algorithm, called SelfSparring, that significantly outperforms Sparring in empirical
evaluations and enjoys asymptotic no-regret guarantees.

SelfSparring relies on the following assumption:

Approximate Linearity: For any triplet of bandits bi � b j � bk and some constant
γ > 0:

φ(bi, bk) − φ(b j, bk) ≥ γφ(bi, b j). (3.2)

Illustration of a special case ofApproximateLinearity: To visualizeApproximate
Linearity we consider the special case when the preference function φ(bi, b j) =
Φ(ui − u j) holds for all bandit pairs (i, j). ui is a bounded measure of the utility
of playing arm bi. In this case, the approximate linearity of φ(·, ·) is equivalent
to having the function Φ(·) not deviating much from some linear function on its
bounded support, as shown in Figure 3.1. Also, any monotonic increasing function
Φ(·) satisfies approximate linearity. When Φ is linear, then the problem setting
reduces to the utility-based dueling bandits setting studied in Ailon, Z. Karnin, and
Joachims (2014).2

2Compared to the assumptions of the original dueling bandits setting (Yue et al., 2012), one
can show that Approximate Linearity is a stricter requirement than strong stochastic transitivity, and
is a complementary requirement to stochastic triangle inequality. In particular, stochastic triangle
inequality requires that the curve in Figure 3.1 exhibits diminishing returns in the top-right quadrant
(i.e., is sub-linear), whereas Approximate Linearity requires that the curve be not too far from linear.
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Figure 3.1: Illustration of Approximate Linearity. The curve represents Φ(·) with
support on [−1, 1]. The strictly increasing Φ(·) guarantees the positive value of
Φ(ui − uk) − Φ(u j − uk). Then approximate linearity holds for some γ.

3.3 Background
Multi-Armed Bandits
Both Sparring and SelfSparring utilize a multi-armed bandit (MAB) algorithm
as a subroutine, and so we provide here a brief formal description of the MAB
problem for completeness. The stochastic MAB problem (Robbins, 1952) refers
to an iterative decision making problem in which we repeatedly choose among K
options, such as pulling one of K arms of a bandit machine. In each round, we
receive a reward that depends on the arm being selected. Without loss of generality,
assume that every reward is bounded between [0, 1].3 The goal then is to minimize
the cumulative regret compared to the best arm:·

RMAB
T =

T∑
t=1
[µ∗ − µ(bt)] , (3.3)

where bt denotes the arm chosen at time t, µ(b) denotes the expected reward of
arm b, and µ∗ = argmaxb µ(b). Popular algorithms for the stochastic setting include
UCB (upper confidence bound) algorithms (Auer, Cesa-Bianchi, and Fischer, 2002;
Sébastien Bubeck and Cesa-Bianchi, 2012), and Thompson Sampling (Chapelle and
Li, 2011; Russo and Van Roy, 2014).

3So long as the rewards are bounded, one can shift and re-scale them to fit within [0, 1].
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In the adversarial setting, the rewards are chosen in an adversarial fashion, rather than
sampled independently from some underlying distribution. In this case, regret (3.3)
is rephrased as the difference in the sum of rewards. The predominant algorithm for
the adversarial setting is EXP3 (Auer, Cesa-Bianchi, Freund, et al., 2002).

All of the algorithms we study in this chapter can, in principle, use any of the
previously mentionedMAB algorithms. Previous work showed that Sparring enjoys
state-of-the-art empirical performance usingUCB1 (Ailon, Z.Karnin, and Joachims,
2014), and near-optimal no-regret guarantees using EXP3 (Dudik et al., 2015) (but
with much worse empirical performance).

Two-Player Games
As mentioned earlier, the dueling bandits problem bears a close affinity to learning
in two-player zero-sum games. In Table 3.1, if we view each dimension of the
matrix as the behavior of a separate agent, then one can view the preference matrix
itself as the payoff matrix for the row agent. Since there is exactly one winner and
one loser, the payoff matrix for the column agent is exactly the negation of the row
agent, hence a zero-sum game. Furthermore, Table 3.1 has a unique (pure) Nash
equilibrium of both agents choosing the Condorcet winner (arm A).

When Table 3.1 is unknown a priori, one can formulate the one-sided online learning
problem for each agent as a MAB problem, with regret defined relative to the
reward obtained from the Nash equilibrum solution. It is known that no-regret
learning agents in a two-player zero-sum game are guaranteed to converge to a Nash
equilibrium (Friedman and Shenker, 1998). Furthermore, in the case where there
is a Condorcet winner (as is the case in our setting), the Nash equilibrium is a pure
Nash, i.e., a deterministic strategy (e.g., arm A in Table 3.1). Thus, one can directly
relate no-regret learning for the dueling bandits problem to efficient convergence to
the Nash equilibrium in the corresponding two-player game. Indeed, the analysis
of Sparring using EXP3 (Dudik et al., 2015) almost exactly follows the analysis of
how no-regret online learning converges to a Nash equilibrium in zero-sum games.
More generally, the study of learning in games is an area of intense interest within
the machine learning and algorithmic game theory communities (Syrgkanis et al.,
2015).

The main difficulty in analyzing Sparring using stochastic bandit algorithms such
as UCB1 and Thompson Sampling is the fact that the “environment” from the
perspective of each learning agent is not static, but rather drifts with the decision
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Algorithm 1 Thompson Sampling Subroutines
1: function init()
2: Store D ≡ {S1, · · · , SK ; F1, · · · , FK} ← {0}
3: end function
4: function recalibrate(Ln, Ln−1)
5: for i in 1, . . . ,K do
6: Si ← Si · PLn (i)

PLn−1 (i)

7: Fi ← Fi · PLn (i)
PLn−1 (i)

8: end for
9: end function
10: function queryAction()
11: For each arm i = 1, 2, · · · ,K:

sample θi from Beta(Si + 1, Fi + 1)
12: return i = arg maxi θi
13: end function
14: function feedback(i, r, L,G)
15: if L not defined then
16: L ← self.D
17: end if
18: if G not defined then
19: G← self.D
20: end if
21: if r = 1 then
22: Si ← Si +

PL(i)
PG(i)

23: else
24: Fi ← Fi +

PL(i)
PG(i)

25: end if
26: end function

making of the other agent. We will show how to incorporate importance weighting
into Thompson Sampling to calibrate the drifting environments against a single
reference environment to prove no-regret guarantees.

Thompson Sampling
Thompson Sampling is a stochastic MAB algorithm that maintains a distribution
over the arms, and chooses arms by sampling from this distribution (Chapelle and
Li, 2011; Russo and Van Roy, 2014). This distribution is then updated as feedback
is incorporated. The entropy of the distribution thus corresponds to the uncertainty
regarding which is the best arm, and flatter distributions lead to more exploration.

Our algorithms rely on Thompson Sampling as a subroutine; hence we define a
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Algorithm 2 Thompson Sampling for Bernoulli Bandits
1: TS ← new Thompson Sampling SBM
2: TS.init()
3: for t = 1, 2, · · · do
4: i ← TS.queryAction()
5: Play arm i, observe reward r
6: TS.feedback(i, r)
7: end for

Thompson Sampling Singleton Bandit Machine (SBM) in Algorithm 1. Let Si and
Fi denote the historical number of wins and losses of arm i, and let Dt denote the
set of all parameters at round t:

Dt = {S1, · · · , SK ; F1, · · · , FK}.

For brevity, we often represent Dt by D since we only need to keep track of the
current distribution. The sampling process of Beta-Bernoulli Thompson Sampling
given D is:

• For each arm i, sample θi ∼ Beta(Si, Fi).
• Choose the arm with maximal θi.

In other words, we model the average utility of each arm using a Beta prior, and
rewards for arm i as Bernoulli distributed according to latent mean utility θi. As we
observe more rewards, we can compute the posterior, which is also Beta distributed
by conjugation between Beta and Bernoulli. The sampling process above can be
shown to be sampling for the following distribution:

P(i |D) = P(i = argmax
b

θb |D). (3.4)

In other words, the probability we choose arm i is equal to the probability that it has
the maximal expected reward under the Beta posterior (after observing D).

Algorithm 1 describes the relevant components of the version of Thompson Sam-
pling we use for SelfSparring-IW and SelfSparring, and Algorithm 2 shows how
to use these subroutines for the conventional MAB problem. For the basic MAB
problem, the components used are init(), queryAction(), and feedback(i,r). We
discuss recalibrate(Ln,Ln−1) later in the subsection of importance weighting.

init(): initializes the observation set D to be empty.
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queryAction(): samples from the K arms according to the Beta posterior induced
by D.

feedback(i, r): takes arm i, reward r , and updates D. Note that the full definition of
feedback is more complicated due to incorporating importance weighting. In the
standard MAB setting, we simply increment Si by 1 if r = 1 and Fi by 1 if r = 0.

We revisit the Thompson sampling method for Bernoulli bandits as shown in Al-
gorithm 2. (Descriptions for the modular functions are at the end of this section.)
The algorithm for Bernoulli bandits maintains Bayesian priors on the Bernoulli
means µi’s. Beta distribution is the conjugate prior for Bernoulli rewards. It forms
a family of continuous probability distributions on the interval (0, 1). The pdf
of the beta distributions, Beta(α, β) with parameters α > 0, β > 0, is given by
f (x;α, β) = Γ(α+β)

Γ(α)Γ(β) x
α−1(1 − x)β−1. The mean of Beta(α, β) is α

α+β . Larger α and
β leads to tighter concentration of Beta(α, β) around the mean. If the prior is a
Beta(α, β) distribution, then after observing a Bernoulli trial, the posterior distri-
bution is either Beta(α + 1, β) or Beta(α, β + 1), depending on whether the trial
resulted in a success or failure, respectively. The Thompson Sampling algorithm
initially assumes arm i to have prior Beta(1, 1) on µi, which is natural because
Beta(1, 1) is the uniform distribution on (0, 1). At time t, having observed Si(t)

successes (reward = 1) and Fi(t) failures (reward = 0) in ki(t) = Si(t) + Fi(t) plays of
arm i, the algorithm updates the distribution on µi as Beta(Si(t) + 1, Fi(t) + 1). The
algorithm then samples from these posterior distributions of the µi’s, and plays an
arm according to the probability of its mean being the largest.

Thompson Sampling enjoys near-optimal no-regret guarantees, as give by the fol-
lowing lemma (which is a direct consequence of the main theorems in Agrawal and
Goyal (2012) and Kaufmann, Korda, and Rémi Munos (2012)). In fact, one can
show that any Thompson Sampling algorithm can match the regret of its analogous
UCB style algorithm (Russo and Van Roy, 2014).

Lemma 1 For the K-armed stochastic MAB problem, Thompson Sampling has
expected regret: E[R(T)] = O

(K
∆

ln T
)
, where ∆ is the difference between rewards

of the best 2 arms and T is the total number of rounds.

Although the empirical performance of Thompson sampling is not necessarily better
than that of UCB methods, it is shown below that its sampling process enables the
sharing of information between two players (singleton bandit machines).
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Algorithm 3 SelfSparring-IW
1: Input: ω
2: TS ← new Thompson Sampling SBM
3: TS.init()
4: L0 ← TS.D
5: n← 0, t ← 0
6: while t ≥ 0 do
7: Ln ← TS.D
8: ωn ← bωnc
9: TS.recalibrate(Ln, Ln−1)
10: for τ = 1, . . . , ωn do
11: i1 = TS.queryAction()
12: i2 = TS.queryAction()
13: play i1, i2, observe rewards r1, r2
14: TS.feedback(i1, r1, Ln)
15: TS.feedback(i2, r2, Ln)
16: t ← t + 1
17: end for
18: n← n + 1
19: end while

Importance weighting. Thompson Sampling is used as the base MAB algorithm
is due to the fact that it is probabilistic. SelfSparring-IW uses a variant of Thompson
Sampling with importance weighting. Importance weighting is a general technique
for estimating properties of a particular distribution of interest, while only having
samples generated from a different distribution, and will be used in SelfSparring-IW
to control for the drifting distribution induced by the dueling bandits problem.

In Algorithm 2, for importance weighting, feedback with the full argument list, and
also periodically use recalibrate as well.

feedback(i, r, L,G) takes arm i, reward r , reference distribution L, and historical
data distribution G as inputs. It updates D by importance sampling L against G. By
adding PL(i)

PG(i) instead of 1 to the Beta parameters, arm i can be regarded as sampling
from L instead of G. In other words, our goal is to calibrate against distribution L

when the rewards are coming from distribution G (that is drifting slowly away from
L). In the classical Thompson Sampling approach, G = L.

recalibrate(Ln, Ln−1) updates the recalibration distribution from Ln−1 to Ln, which
requires reweighting D according to the current fixed distribution. This function is
only called periodically by SelfSparring-IW.
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Algorithm 4 SelfSparring
1: TS ← new Thompson Sampling SBM
2: TS.init(), t ← 0
3: while t ≥ 0 do
4: i1 = TS.queryAction()
5: i2 = TS.queryAction()
6: play i1, i2, observe rewards r1, r2
7: TS.feedback(i1, r1)
8: TS.feedback(i2, r2)
9: t ← t + 1
10: end while

3.4 SelfSparring-IW Algorithms
At each round, most existing dueling bandits algorithm would pick one arm (say, the
left arm) as a reference and the other arm (the right arm) for exploration/exploitation.
If the left arm remains unchanged throughout the game, the right arm is playing
against a fixed (stochastic) environment and receiving feedback from it. In this
sense, the right arm can be regarded as a Bernoulli bandit. If we only consider the
regret of right arm, the following lemma holds.

Lemma 2 If approximate linearity holds, competing with a fixed distribution of
arms leads to one-side optimal regret for any optimal MAB algorithms.

Although the regret for the reference (left) arm is not guaranteed to be optimal in this
setting, the regret of right arm is optimal. Lemma 6 motivates the idea of keeping
a virtually fixed reference and let both arms play against it. We implement it in our
proposed algorithms, SelfSparring-IW (SelfSparring with Importance-Weighting)
and SelfSparring, for the dueling bandits problem.

SelfSparring-IWandSelfSparring. Here, we describe the operation of SelfSparring-
IW and SelfSparring, which are outlined in Algorithm 3 and Algorithm 5 respec-
tively. We make extensive use of the Thompson sampling SBM’s modular functions
defined in Algorithm 1.

SelfSparring-IW uses the framework of the Sparring algorithm proposed by Ailon,
Z. Karnin, and Joachims (2014). Sparring allows two SBMs to compete against
each other, treating both arms as equals. By contrast, our algorithms draw both arms
from just one SBM, hence the name "Self-Sparring." Instead of the more common
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class of UCB methods, we use Thompson sampling as the SBM, which allows for
the sharing of information between arms.

Since the behavior of both arms are non-stationary, we build a virtual reference
via importance weighting. This approach leads to SelfSparring-IW. SelfSparring
is also shown as a natural extension of SelfSparring-IW in which no recalibration
or importance-weighting is performed. In fact, the ω = 1 case of SelfSparring-IW
is just SelfSparring with recalibration and one-step importance weighting at every
iteration.

SelfSparring iteratively samples two arms from the current Thompson Sampling
distribution (lines 11, 12) and competes both against each other. SelfSparring-IW
operates similarly, but updates D in a different manner and proceeds in epochs. The
length of each epoch is controlled by a scaling parameter ω, which sets the length
of the nth epoch to be ωn := bωnc (line 8).

SelfSparring-IW relies on importance-weighting in order to calibrate the information
gained during each epoch against a fixed set of distributions Ln. In effect, this allows
us to assume that the arms we compete against in epoch n are sampled from the
fixed Ln.

L0 and L−1 are both initialized to D0. From epoch n − 1 to epoch n, the refer-
ence distribution is first set to the current D, then recalibrated by function recali-
brate(Ln, Ln−1), which adjusts the information gained in past iterations against the
current reference set of distributions Ln.

Within epoch n, the Beta distribution of arm i is updated with the importance-
weighted parameter PLn (i)

PDt (i)
. PLn(i) is the probability of sampling arm i given the set

Ln of Beta distributions by equation (3.4).

Lemma 3 If approximate linearity holds, competing with a drifting but converging
distribution of arms guarantees convergence for Thompson Sampling.

3.5 Dueling Experiments
We empirically evaluate the performances of SelfSparring-IW and SelfSparring
against several other dueling bandit algorithms, including:

• Interleaved Filter (IF) Yue et al. (2012)

• Beat the Mean (BTM) Yue and Joachims (2011)

• RUCB Zoghi, Whiteson, Remi Munos, et al. (2014)
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• MergeRUCB Zoghi, Whiteson, and Rijke (2015)

• Sparring + UCB1 Ailon, Z. Karnin, and Joachims (2014)

• Sparring + EXP3 Dudik et al. (2015)

We test these algorithms on 15 six-arm (with arms indexed by {A,B,C,D,E,F})
synthetic scenarios, generated from the three preference functions and five utility
functions used in Ailon, Z. Karnin, and Joachims (2014):

linear: φ(x, y) − 1/2 = (1 + x − y)/2
natural: φ(x, y) − 1/2 = x/(x + y)
logit: φ(x, y) − 1/2 = (1 + exp (y − x))−1

with the following utilities:

Name µ(A) µ(B) µ(C) µ(D) µ(E) µ(F)
1good 0.8 0.2 0.2 0.2 0.2 0.2
2good 0.8 0.7 0.7 0.2 0.2 0.2
3good 0.8 0.7 0.7 0.7 0.2 0.2
arith 0.8 0.7 0.575 0.45 0.325 0.2
geom 0.8 0.7 0.512 0.374 0.274 0.2
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Figure 3.3: Expectations of cumulative regrets of top 4 algorithms. Dashed lines
represent one standard deviation error curves.

Note that although these preference functions do not satisfy approximate linearity
over their entire domains, they do for the utility samples (for arms A,B,C,D,E,F).

For each scenario, run each algorithm for 20000 iterations 48 times, and plot the
averaged regret in Figure A.1. Set the ω parameter of SelfSparring-IW to be 2 in
all trials. Some of these algorithms perform much better than others, so for clarity,
also show a zoomed-in version of the linear/1good scenario, Figure 3.3, in which
the expected regrets of just the top four algorithms (SelfSparring, SelfSparring-IW,
RUCB and Sparring + UCB1) along with their one standard deviation curves are
plotted.

I also investigate the effect of the scaling parameter ω on the empirical regret on
SelfSparring-IW, and plot the results in Figure 3.4.

Results and Analysis. From Figure A.1, one can see that SelfSparring and
SelfSparring-IW are consistently among the best algorithms, and outperform previ-
ous state-of-the-art Sparring UCB1 in every scenario. Only RUCB is competitive
with SelfSparring-IW and SelfSparring; however, SelfSparring is approximately as
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Figure 3.4: Expectations of cumulative regrets of SelfSparring-IW for ω =
1.5, 1.75, 2.

good as or beats RUCB in every scenario. For example, from Figure 3.3, one can
see the difference between SelfSparring/SelfSparring-IW and RUCB.

Figure 3.4 shows that the performance of SelfSparring-IW increases asω decreases.
In fact, asω approaches 1, SelfSparring-IW becomes SelfSparring with minimal re-
calibration and importance weighting at every iteration. Furthermore, SelfSparring-
IW suffers from high variance due to the importance-weighting scheme, as seen in
Figure 3.3. However, observe that SelfSparring has variance comparable to that of
SparringUCB andRUCB, so due to its lower regret mean and variance, SelfSparring
is preferred in practice.

3.6 Multi-dueling Bandits
We also extend the original dueling bandits problem by simultaneously dueling
multiple arms as well as modeling dependencies between arms using a kernel.
Explicitly formalizing these real-world characteristics provides an opportunity to
develop principled algorithms that are muchmore efficient than algorithms designed
for the original setting. For instance, most dueling bandits algorithms suffer regret
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that scales linearly with the number of arms, which is not practical when the number
of arms is very large or infinite.

For this setting, we propose the SelfSparring framework, based on the dueling
case SelfSparring algorithm from above, which algorithmically reduces the multi-
dueling bandits problem into a conventional muilti-armed bandit problem that can
be solved using a stochastic bandit algorithm such as Thompson Sampling (Chapelle
and Li, 2011; Russo and Van Roy, 2014). Our approach can naturally incorporate
dependencies using a Gaussian process prior with an appropriate kernel.

While there have been some prior work on multi-dueling (Brost et al., 2016) and
learning from pairwise preferences over kernels (Gonzalez et al., 2016), to the best
of our knowledge, our approach is the first to address to both in a unified framework.
We are also the first to provide a regret analysis of the multi-dueling setting. We
further demonstrate the effectiveness of our approach over conventional dueling
bandits approaches in a wide range of simulation experiments.

We now formalize the multi-dueling bandits problem. We inherit all notation from
original dueling bandits setting (Section 2.4). The key difference is that the algorithm
now selects a (multi-)set St of arms at each iteration t, and observes outcomes of
duels between some pairs of arms in St . For example, in information retrieval this
can be implemented via multi-leaving (Schuth et al., 2014) the ranked lists of the
subset, St , of rankers and then inferring the relative quality of the lists (and the
corresponding rankers) from user feedback.

In general, we assume the number of arms being dueled at each iteration is some
fixed constant m = |St |. When m = 2, the problem reduces to the original dueling
bandits setting. Extending the regret formulation from the original setting (3.1), we
can write the regret as:

RT =

T∑
t=1

∑
b∈St

φ(b1, b). (3.5)

The goal then is to select subsets of arms St so that the cumulative regret (3.5) is
minimized. Intuitively, all arms have to be selected a small number of times in order
to be explored, but the goal of the algorithm is to minimize the number of times
when suboptimal arms are selected. When the algorithm has converged to the best
arm b1, then it can simply choose St to only contain b1, thus incurring no additional
regret.
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Our setting differs from Brost et al. (2016) in two ways. First, we play a fixed, rather
than variable, number of arms at each iteration. Furthermore, we focus on total
regret, rather than the instantaneous average regret in a single iteration; in many
applications (e.g., Sui and J. Burdick (2014b)), playing each arm incurs its own
regret .

Feedback Mechanisms. Simultaneously dueling multiple arms opens up multiple
options for collecting feedback. For example, in some applications it may be viable
to collect all pairwise feedback for all chosen arms St . In other applications, it is
more realistic to only observe the “winner” of St , in which we observe feedback that
one b ∈ St wins against all other arms in St , but nothing about pairwise preferences
between the other arms.

3.7 SelfSparring Algorithms
We start with a high-level description of our general framework, called SelfSparring,
which is inspired by the Sparring algorithm from Ailon, Z. Karnin, and Joachims
(2014). The high-level strategy is to reduce the multi-dueling bandits problem to
a multi-armed bandit (MAB) problem that can be solved using a MAB algorithm,
and ideally lift existing MAB guarantees to the multi-dueling setting.

Algorithm 5 describes the SelfSparring approach. SelfSparring uses a stochastic
MAB algorithm such as Thompson sampling as a subroutine to independently
sample the set of m arms, St to duel. The distribution of St is generally not
degenerate (e.g., all the same arm) unless the algorithm has converged. In contrast,
the Sparring algorithm uses m MAB algorithms to control the choice of the each
arm, which essentially reduces the conventional dueling bandits problem to two
multi-armed bandit problems “sparring” against each other.

SelfSparring takes as input S the total set of arms, m the number of arms to be dueled
at each iteration, and η the learning rate for posterior updates. S can be a finite set of
K arms for independent setting, or a continuous action space of arms for kernelized
setting. A prior distribution D0 is used to initialize the sampling process over S.
In the t-th iteration, SelfSparring selects m arms by sampling over the distribution
Dt−1 as shown in line 5 of Algorithm 5. The preference feedback can be any type
of comparisons ranging from full comparison over the m arms (a full matrix for R,
aka ‘all pairs”) to single comparison of one pair (just two valid entries in R). The
posterior distribution over arms Dt then gets updated by R and the prior Dt−1.

We specialize SelfSparring in two ways. The first, IndSelfSparring (Algorithm 6),
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Algorithm 5 SelfSparring
input arms 1, . . . ,K in space S, m the number of arms drawn at each iteration, η

the learning rate
1: Set prior D0 over S
2: for t = 1, 2, . . . do
3: for j = 1, . . . ,m do
4: select arm i j(t) using Dt−1
5: end for
6: Play m arms {i j(t)} j and observe m×m pairwise feedback matrix R = {ri j ∈

{0, 1, ∅}}m×m
7: update Dt−1 using R to obtain Dt
8: end for

is the independent-armed version of SelfSparring. The second, KernelSelfSpar-
ring (Algorithm 7), uses Gaussian processes to make predictions about preference
function f based on noisy evaluations over comparisons. We emphasize here that
SelfSparring is very modular approach, and is thus easy to implement and extend.

Independent Arms Case
IndSelfSparring (Algorithm6) instantiates SelfSparring usingBeta-Bernoulli Thomp-
son sampling.

The posterior Beta distributions Dt over the arms are updated by the preference
feedback within the iteration and the prior Beta distributions Dt−1.

We present a no-regret guarantee of IndSelfSparring in Theorem 2 below. We now
provide a high-level outline of the main components leading to the result. Detail
proofs are deferred to the supplementary material.

Our first step is to prove that IndSelfSparring is asymptotically consistent, i.e., it
is guaranteed (with high probability) to converge to the best bandit. In order to
guarantee consistency, we first show that all arms are sampled infinitely often in the
limit.

Lemma 4 For the K-armed stochastic MAB problem, Thompson Sampling has
expected regret: E[RMAB

T ] = O
(K
∆

ln T
)
, where ∆ is the difference between expected

rewards of the best two arms.

Lemma 5 Running IndSelfSparring with infinite time horizon will sample each arm
infinitely often.
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Algorithm 6 IndSelfSparring
input m the number of arms drawn at each iteration, η the learning rate
1: For each arm i = 1, 2, · · · ,K , set Si = 0, Fi = 0.
2: for t = 1, 2, . . . do
3: for j = 1, . . . ,m do
4: For each arm i = 1, 2, · · · ,K , sample θi from Beta(Si + 1, Fi + 1)
5: Select i j(t) := argmaxi θi(t)
6: end for
7: Play m arms {i j(t)} j , observe pairwise feedback matrix R = {r j k ∈

{0, 1, ∅}}m×m
8: for j, k = 1, . . . ,m do
9: if r j k , ∅ then
10: Sj ← Sj + η · r j k , Fj ← Fj + η(1 − r j k)
11: end if
12: end for
13: end for

In other words, Thompson sampling style algorithms do not eliminate any arms.
Lemma 5 also guarantees concentration of any statistical estimates for each arm as
t →∞. We next show that the sampling of IndSelfSparring will concentrate around
the optimal arm.

Theorem 1 UnderApproximate Linearity, IndSelfSparring converges to the optimal
arm b1 as running time t →∞: limt→∞ P(bt = b1) = 1.

Theorem 1 implies that IndSelfSparring is asymptotically no-regret. As t → ∞,
the Beta distribution for each arm i is converging to P(bi � b1), which implies
converging to only choosing the optimal arm.

Most existing dueling bandits algorithm chooses one arm as a “reference” arm
and the other arm as a competing arm for exploration/exploitation (in the m = 2
setting). If the distribution over reference arms never changes, then the competing
arm is playing against a fixed “environment”, i.e., it is a standard MAB problem.
For general m, we can analogously consider choosing only one arm against a fixed
distribution over all the other arms. Using Thompson sampling, the following
lemma holds.

Lemma 6 Under Approximate Linearity, selecting only one arm via Thompson
sampling against a fixed distribution over the remaining arms leads to optimal
regret w.r.t. choosing that arm.
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Figure 3.5: Evolution of a GP preference function in KernelSelfSparring; dashed
lines correspond to the mean and shaded areas to ±2 standard deviations. The
underlying utility function was sampled randomly from a GP with a squared expo-
nential kernel with lengthscale parameter 0.2, and the resulting preference function
is shown in blue. The GP finds the best arm with high confidence.

Lemma 6 and Theorem 1motivate the idea of analyzing the regret of each individual
arm against near-fixed (i.e., converging) environments.

Theorem 2 UnderApproximate Linearity, IndSelfSparring converges to the optimal
arm with asymptotically optimal no-regret rate of O(K ln(T)/∆).

Theorem 2 shows an no-regret guarantee for IndSelfSparring that asymptotically
matches the optimal rate of O(K ln(T)/∆) up to constant factors. In other words,
once t > C for some problem-dependent constant C, the regret of IndSelfSparring
matches information-theoretic bounds up to constant factors (see Yue et al. (2012)
for lower bound analysis).4 The proof technique follows two major steps: (1) prove
the convergence of IndSelfSparring as shown in Theorem 1; and (2) bound the
expected total regret for sufficiently large T .

Dependent Arms Case
We use Gaussian processes (see Section 2.5) to model dependencies among arms.
Applying Gaussian processes is not straightforward, since the underlying utility

4A finite-time guarantee requires more a refined analysis of C, and is an interesting direction for
future work.
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Algorithm 7 KernelSelfSparring
input Input space S, GP prior (µ0, σ0), m the number of arms drawn at each iteration
1: for t = 1, 2, . . . do
2: for j = 1, . . . ,m do
3: Sample f j from (µt−1, σt−1)
4: Select i j(t) := argmaxx f j(x)
5: end for
6: Play m arms {i j(t)} j , observe pairwise feedback matrix R = {r j k ∈

{0, 1, ∅}}m×m
7: for j, k = 1, . . . ,m do
8: if r j k , ∅ then
9: apply Bayesian update using (i j(t), r j k) to obtain (µt, σt)
10: end if
11: end for
12: end for

function is not directly observable or does not exist. We instead use Gaussian
processes to model a specific the preference function. In Gaussian process notation,
the preference function f (b) represents the preference of choosing b over the perfect
“environment” of competing arms. Like in the independent arms case (Section
3.7), the perfect environment corresponds to having all the remaining arms be
deterministically selected as the best arm b1, yielding f (b) = P(b � b1). We model
f (b) as a sample from a Gaussian process GP(µ(b), k(b, b′)). Note that this setup
is analogous to the independent arms case, which uses a Beta prior to estimate the
probability of each arm defeating the environment (and converges to competing
against the best environment).

Algorithm 7 describes KernelSelfSparring, which instantiates SelfSparring using
a Gaussian process Thompson sampling algorithm. The input space S can be
continuous. At each iteration t, m arms are sampled using the Gaussian process
prior Dt−1. The posterior Dt is then updated by the responses R and the prior.

Figure 3.5 illustrates the optimization process in a one-dimensional example. The
underlying preference function against the best environment is shown in blue.
Dashed lines are the mean function of GP. Shaded areas are ±2 standard devi-
ations regions (high confidence regions). Figures 3.5(a)(b)(c) represent running
KernelSelfSparring algorithm at 5, 20, and 100 iterations. The GP model can be
observed to be converging to the preference function against the best environment.

We conjecture that it is possible to prove no-regret guarantees that scale w.r.t. the
dimensionality of the kernel. However, there does not yet exist suitable regret
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Name Distribution of Utilities of arms
1good 1 arm with utility 0.8, 15 arms with utility 0.2
arith 1 arm with utility 0.8, 15 arms forming an arithmetic sequence between 0.7 and 0.2

Table 3.2: 16-arm synthetic datasets used for experiments.

analyses for Gaussian Process Thompson Sampling in the kernelized MAB setting
to leverage.

3.8 SelfSparring Experiments
Simulation Settings & Datasets
Synthetic Functions. We evaluated on a range of 16-arm synthetic settings derived
from the utility-based dueling bandits setting of Ailon, Z. Karnin, and Joachims
(2014). For the multi-dueling setting, we used the following preference functions:

linear: φ(x, y) − 1/2 = (1 + x − y)/2
logit: φ(x, y) − 1/2 = (1 + exp (y − x))−1

and the utility functions shown in Table 3.2 (generalized from those in Ailon, Z.
Karnin, and Joachims (2014)). Note that although these preference functions do
not satisfy approximate linearity over their entire domains, they do for the utility
samples (over the a finite subset of arms).

MSLR Dataset. Following the evaluation setup of Brost et al. (2016), we also
used the Microsoft Learning to Rank (MSLR) WEB30k dataset, which consists
of over 3 million query-document pairs labeled with relevance scores (T.-Y. Liu
et al., 2007). Each pair is scored along 136 features, which can be treated as
rankers (arms). For any subset of arms, we can estimate a preference matrix using
the expected probability over the entire dataset of one arm beating another using
top-10 interleaving and a perfect-click model. We simulate user feedback by using
team-draft multileaving (Schuth et al., 2014).

Vanilla Dueling Bandits Experiments
We first compare against the vanilla dueling bandits setting of dueling a single pair
of arms at a time. These experiments are included as a sanity check to confirm that
SelfSparring (with m = 2) is a competitive algorithm in the original dueling bandits
setting, and are not the main focus of our empirical analysis.

We empirically evaluate against a range of conventional dueling bandit algorithms,
including:
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• Interleaved Filter (IF) (Yue et al., 2012)

• Beat the Mean (BTM) (Yue and Joachims, 2011)

• RUCB (Zoghi, Whiteson, Remi Munos, et al., 2014)

• MergeRUCB (Zoghi, Whiteson, and Rijke, 2015)

• Sparring + UCB1 (Ailon, Z. Karnin, and Joachims, 2014)

• Sparring + EXP3 (Dudik et al., 2015)

• RMED1 (Komiyama et al., 2015)

• Double Thompson Sampling (wu2016doublets)

For Double Thompson Sampling and IndSelfSparring, we set the learning rates to
be 2.5 and 3.5 as optimized over a separate dataset of uniformly sampled utility
functions. We use α = 0.51 for RUCB/MergeRUCB, γ = 1 for BTM, and f (K) =
0.3K1.01 for RMED1.

Results. For each scenario, we run each algorithm 100 times for 20000 iterations.
For brevity, we show in Figure 3.6 the average regret of one synthetic simulation
along with shaded one standard-deviation areas. We observe that SelfSparring is
competitive with the best performingmethods in the original dueling bandits setting.
More complete experiments that replicate Ailon, Z. Karnin, and Joachims (2014)
are provided in the supplementary material, and demonstrate the consistency of this
result.

Double Thompson Sampling (DTS) is the best performing approach in Figure 3.6,
which is a fairly consistent result in the extended results in the supplementary
material. However, given their high variances they are essentially comparable w.r.t.
all other algorithms. Furthermore, IndSelfSparring has the advantage of being easily
extensible to the more realistic multi-dueling and kernelized settings, which is not
true of DTS.

Multi-Dueling Bandits Experiments
Next evaluate the multi-dueling setting with independent arms. Compare against the
main existing approaches that are applicable to the multi-dueling setting, including
the MDB algorithm (Brost et al., 2016), and the multi-dueling extension of Spar-
ring, which we refer to as MultiSparring (Ailon, Z. Karnin, and Joachims, 2014).
Following Brost et al., 2016, we use α = 0.5 and β = 1.5 for the MDB algorithm.
For IndSelfSparring, we set learning rate to be the default 1. Note that the vast
majority dueling bandits algorithms are not easily applicable to the multi-dueling
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Figure 3.6: Vanilla dueling bandits setting. Average regret for top nine algorithms
on logit/arith. Shaded regions correspond to one standard deviation.

setting. For instance, RUCB-style algorithms treat the two arms asymmetrically,
which is not easily generalized to multi-dueling.

Results on Synthetic Experiments. Test m = 4 on the linear 1good and arith
datasets in Figure 3.7 andFigure 3.8, respectively. It is observed that IndSelfSparring
significantly outperforms competing approaches.

Results on MSLR Dataset. Following the simulation setting of Brost et al., 2016
on the MSLR dataset (see Section 3.8), SelfSparring is compared against the MDB
algorithm over the same collection of 50 randomly sampled 16-arm subsets. Ensur-
ing that each 16-arm subset had a Condorcet winner; in general it is likely for any
random subset of arms in the MSLR dataset to have a Condorcet winner (Zoghi,
Z. S. Karnin, et al., 2015). Figure 3.9 shows the results, where one can see that
IndSelfSparring enjoys significantly better performance.

Kernelized (Multi-)Dueling Experiments
This subsection evaluates the kernelized setting for both the 2-dueling and the multi-
dueling case. KernelSelfSparring is evaluated against BOPPER (Gonzalez et al.,
2016) and Sparring (Ailon, Z. Karnin, and Joachims, 2014) with GP-UCB (Srinivas
et al., 2010a). BOPPER is a Bayesian optimization method can be applied to
kernelized 2-dueling setting (but not multi-dueling). Sparring with GP-UCB, which
refer to as GP-Sparring, is essentially a variant of our KernelSelfSparring approach
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Figure 3.7: Multi-dueling regret for linear/1good setting
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Figure 3.8: Multi-dueling regret for linear/arith setting

but maintains a m GP-UCB bandit algorithms (one controlling each choice of arm
to be dueled), rather than just a single one.

KernelSelfSparring and GP-Sparring use GPs that model the preference function,
i.e. are one-sided, whereas BOPPER uses a GP to model the entire preference
matrix. Following Srinivas et al. (2010a), a squared exponential kernel is used with
lengthscale parameter 0.2 for both GP-Sparring and KernelSelfSparring, and use a
squared exponential kernel with parameter 1 for BOPPER. Initialize all GPs with a
zero-mean prior, and use sampling noise variance σ2 = 0.025. For GP-Sparring,
use the scaled-down version of βt as suggested by Srinivas et al. (2010a).

Use the Forrester and Six-Hump Camel functions as utility functions on [0, 1] and
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Figure 3.9: Multi-dueling regret for MSLR-30K experiments

[0, 1]2, respectively, as in Gonzalez et al. (2016). Similarly, use the same uniform
discretizations of 30 and 64 points for the Forrester and Six-Hump Camel settings
respectively, and use the logit link function to generate preferences.

Since the BOPPER algorithm is computationally expensive, only including it in
the Forrester setting, and running each algorithm 20 times for 100 iterations. In
the Six-Hump Camel setting, we run KernelSelfSparring and GP-Sparring for 500
iterations 100 times each. Results are presented in Figures 3.11 and 3.12, where we
observe much better performance from KernelSelfSparring against both BOPPER
and GP-Sparring.

In the kernelized multi-dueling setting, SelfSparring is compared against GP-
Sparring. Running each algorithm for 100 iterations 50 times on the Forrester
and Six-Hump Camel functions, and plotting their regrets in Figures 3.13 and 3.14
respectively. Use m = 4 for both algorithms, and the same discretization as in
the standard dueling case. One can observe significant performance gains of our
KernelSelfSparring approach.
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Figure 3.10: 2-dueling regret for kernelized setting with synthetic preferences
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Figure 3.11: 2-dueling regret for kernelized setting with Forrester objective function
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Figure 3.12: 2-dueling regret for kernelized setting with Six-Hump Camel objective
function
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Figure 3.13: Multi-dueling regret for kernelized setting with Forrester objective
function
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C h a p t e r 4

THEORETICAL CONTRIBUTIONS: RANK-COMPARISON
ALGORITHM FOR DUELING BANDITS

The original dueling bandits problem described in Chapter 3 suffers from a theoret-
ical lower bound K

δ log T for cumulative regret. To achieve even lower regret (which
translates to better performance), more assumptions or finer problem formulations
are necessary. This chapter studies the Multi-armed bandit problem with feedback
given as a stochastic rank list instead of quantified reward values. An algorithm,
RankComparison, is proposed for this new problem, with theoretical guarantees on
the optimality of total regret.

4.1 Introduction and Motivation
Figure 4.1 shows the clinical treatment procedure for stand-training. During a
treatment/optimization session, a new stimulus is recommended by our algorithm.
The patient then attempts to stand using the given stimulus, and the observing
clinicians then rank the patient’s resulting performance. Using this noisy ranking

Figure 4.1: Clinical Treatment of Spinal Cord Injury
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as feedback, the algorithm continues to explore for the optimal stimulus while also
exploiting currently good ones. The algorithm must spend significant time dwelling
on good performing stimuli in order to provide the patient with a good therapeutic
experience. Since clinical training has a fixed time horizon, we must also maximize
total performance during the limited period within which we can search for the
optimal solution.

This chapter develops an algorithm to recommend optimal stimuli based on the
general setting of multi-armed bandit problem. The classical bandit problem trades
off between exploration and multi-armed bandit problem exploitation among a
number of different arms, each having a quantifiable, but stochastic, reward with
initially unknown distribution. The goal of a bandit algorithm is to maximize the
total reward.

However, for our clinical problem, the patient’s motor response to stimulation is hard
to quantify. Neither video motion capture nor electromyograhic (EMG) recordings
of muscle activity can yet provide a consistent and satisfactory measure of motor
skill under stimulation. A good standing performance might map to numerous
combinations of muscle activities, and it is not a stationary process. While the
patient’s performance under a specific stimulus is hard to quantify, it can be compared
to others. In the clinical setting, we can obtain the ranking of a group of stimuli which
are tested within the short time period of one training session. The dueling bandit
problem (Yue et al., 2009) formalizes online learning problems with preference
feedback instead of absolute rewards, and hence it can be used for problems with
unquantifiable reward. The algorithm we propose in this chapter is a variant of the
dueling bandit problem which is dictated by the clinical demands of our application.

At the start of the optimization process, we have little information about the best
stimulus for the patient, but we have often have a pool of possibly useful stimuli. Like
Sparring, this approach is based on the idea of successively removing suboptimal
arms (Even-Dar, Mannor, and Mansour, 2002) while keeping the optimal one(s) in
the sample space. By setting proper confidence intervals, we can reach the optimal
reward within the time horizon.

4.2 Problem Setup
The classical dueling bandit problem receives feedback in the form of a comparison
between a pair of bandits in each test. When the size of the decision set, K , is
large, it is unavoidable to carry out a very large number of tests before the algorithm
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converges to its optimal solution. In some applications like our clinical example,
each test is expensive and time consuming. The number of tests - time horizon of
an algorithm - is often predetermined by clinical conditions. It is infeasible to apply
the dueling bandit algorithm directly.

However, the training and optimization procedure allows for patients to not only
compare successive stimulations, but to also rank the performances for a modest-
sized group of stimulations (the number which can be tested in one clinical session
before the patient fatigues). Thus, feedback consists of a ranked list of at most
d (d < K) chosen arms. More precisely, the feedback for each test consists of a
combined scoring of 4 different standing criteria by the observing clinicians, and
the combined score is used to rank the tests within one session. As shown below,
this feature helps us to reduce the total number of tests significantly, while also
dovetailing well with current clinical practice.

The procedure can be described as follows. There are K arms {b1, · · · , bK}, and
a total number of T tests to be performed. Each test physically corresponds to a
∼90-second stimulation period with a specific stimulus (arm) chosen from the K

arms. T is determined before we run the algorithm, and is generally assumed to be
an integer multiple of d: T = d ∗ G, where G is the number of ranking sessions,
with each session producing a noisy ranked list of d arms.

This approach follows the the original notation of the dueling bandit problem (Yue
et al., 2009). For two arms bi and b j , where i, j ∈ {1, · · · ,K}, write the comparison
factor as:

ε(bi, b j) = P(bi � b j) − 1/2

where P(bi � b j) is the probability that bi dominates b j and ε(bi, b j) ∈ [−1/2, 1/2]
represents the priority between bi and b j . We define bi � b j ⇔ ε(bi, b j) > 0. Use
the notation εi, j ≡ ε(bi, b j) for convenience. Note that ε(bi, b j) = −ε(b j, bi) and
epsilon(bi, bi) = 0. Assume the distribution of reward for each arm is stationary so
that all comparison factors converge in [-1/2,1/2]. This setup also assumes without
loss of generality that the bandits are indexed in preferential order b1 � b2 � · · · �
bK so that there is one preferred arm.

The total reward is defined in terms of regret as in the classical bandit problem
setting. In the online setting, let b(t) be the arm chosen at test t. Define total regret
as follows:

RT =

T∑
t=1

ε(b1, b(t)).
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Algorithm 8 Rank-Comparisons
1: Input: {b1, ..., bK}, d, G // Total tests T = d · G
2: Input: cδ(n) =

√
(1/n)log(1/δ)

3: Run: [Parameters-Initialization]
4: Run: [Active-Elimination]
5: return b∗ // Optimal arm

Algorithm 9 Parameters-Initialization
1: Input: {b1, ..., bK}, d, G
2: Input: cδ(n) =

√
(1/n)log(1/δ)

3: W1 ← {b1, ..., bK} // set o f active arms
4: ` ← 1 // rounds
5: ∀b ∈ W`, nb ← 0 // comparisons
6: ∀b ∈ W`, wb ← 0 // priorities
7: ∀b ∈ W`, P̂b ≡ wb/nb, or 1/2 if nb = 0
8: n∗ ≡ minb∈W`nb
9: c∗ ≡ cδ(n∗), or 1 if n∗ = 0 // con f idence radius
10: g ← 0 // total number o f ranks
11: T ← d · G
12: return all new parameters

The total regret RT = 0 if we constantly choose b(t) = b1 during the experiment.
RT = Θ(T) is linear w.r .t. T if the agent constantly chooses b(t) ∈ {b1, · · · , bK}.

This setup also inherit two important properties of the comparison factors from the
original dueling bandit problem:

Strong Stochastic Transitivity. For any triplet of arms bi � b j � bk , we assume
εi,k ≥ max{εi, j, ε j,k}.

Stochastic Triangle Inequality. For any triplet of arms bi � b j � bk , we assume
εi,k ≤ εi, j + ε j,k . This can be viewed as a diminishing returns property.

An optimal method is proposed for our problemwhich has a finite-time regret bound
of order O(Kd logT), where T is the time horizon.

4.3 Algorithm
Our Rank-Comparison algorithm (Algorithm 1), which is a modified version of
"Beat-the-Mean" Yue and Joachims (2011), is based on the idea of successively
removing suboptimal arms while keeping the optimal one(s) in the sample space.
The inputs to Rank-Comparison are the K arms, the largest group size d, and total
number of groups G: T = d · G.
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Algorithm 10 Active-Elimination
1: Input: {b1, ..., bK}, d, G
2: Input: parameters generated in [Parameters-Initialization]
3: while |W` | > 1 and g ≤ G do
4: if |W` | ≥ d then
5: select b′1, ..., b

′
d ∈ W` at random with no repeats

6: else
7: r ← d%|W` |
8: p← (d − r)/|W` |
9: select b′1, ..., b

′
r ∈ W` at random with no repeats. In addition, select each

arm in W` p times
10: end if
11: test selected arms and get rank of the selection
12: for all commutable pairs (b′i, b′j) in the selection do
13: if b′i � b′j , wb′i ← wb′i + 1
14: nb′i ← nb′i + 1
15: if minb′∈W` P̂b′ + c∗ ≤ maxb∈W` P̂b − c∗ then
16: b′← arg minb∈W` P̂b
17: ∀b ∈ W`, delete comparisons with b′ from wb, nb
18: W`+1 ← W`\{b′} // update working set
19: ` ← ` + 1 // new round
20: end if
21: end for
22: end while
23: return b∗ = arg maxb∈W` P̂b

Parameters-Initialization (Algorithm 2) defines the set of active arms W`, whose
size shrinks as more tests are completed. For each arm b, let nb be the total number
of comparisons between b and other arms, and let wb be the total number of wins
against all other arms. Let P̂b be the empirical average of P(b � b′) for all b′ in W`,
and let P̂b,n be the value of P̂b after n comparisons between arm b and any other
arms. Set the confidence interval of P(b � b′) as:

Ĉb,n = (P̂b,n − cδ(n), P̂b,n + cδ(n)),

where cδ(n) =
√
(1/n)log(1/δ), and δ is the confidence that P(b � b′) lies in Ĉb,n.

The function cδ(n) decreases as the number of comparisons n increases. By properly
setting parameter δ, the optimal reward can be reached within the fixed time horizon.

Active-Elimination (Algorithm 3) is the key part of Rank-Comparison. For each
group of tests, d arms are randomly chosen fromW` with no repeats when d < |W` |.
Otherwise, we pick each arm equally and pick the rest arms randomly according to
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lines 7-9 in Algorithm 3. The randomized selection method provides low-variance
total regret. Each group of tests results in a ranking of d arms, which can be regarded
as d(d − 1)/2 comparisons among the d arms. For each arm b, the values of wb, nb

and P̂b are updated, as is the corresponding confidence radius c∗. For any pair of
arms b and b′, one dominates the other if their confidence intervals do not overlap,
and the less superior arm is eliminated from W`. The algorithm runs until the time
horizon T = d · G is reached, or until only one active arm remains.

4.4 Theoretical Results
The patients can rank at most, the performances of d stimuli responses. For fixed
time horizon T , choose the size of the groups equals to the maximum group size d.
It will maximize the number of total comparisons extracted from the ranks, which
is d(d − 1)/2.

Let ε = ε1,2 to be the comparison factor between the best and second best arms.
Obviously, we have ε ≤ ε1, j for all j. The upper bound of the expected total regret
for Rank-Comparison is given in the theorem below.

Theorem 3 The expected regret generated by running Algorithm 1 is bounded from
above by O( K

ε ·d logT).

As compared to the classical dueling bandit regret bound of O(Kε logT), Rank-
Comparison has an extra divisor factor of d. This tighter bound is realized because
for each group of d tests, order O(d2) comparisons are extracted from the ranking
test. Recall that RT = 0 if the optimal arm b(t) = b1 is constantly chosen, and
RT = Θ(T) is linear w.r .t. T if we constantly choose b(t) ∈ {b1, · · · , bK}. The factor
O( K

ε ·d logT) lies in the region between 0 and Θ(T). As T increases, O( K
ε ·d logT) is

significantly less than Θ(T).

By extending Theorem 4 of Yue et al. (2009), we can form a lower bound on
regret in expectation, as stated in Theorem 2, for any algorithm which solves the
rank comparison problem, which means no algorithm can achieve lower regret than
Rank-Comparison in expectation.

Theorem 4 Any algorithm for the rank comparison problem has a regret bounded
from below by Ω( K

ε ·d logT).
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Notice that Theorem 4 lower bounds total regret on the same order as the upper
bound in Theorem 1. So we have Ω( K

ε ·d logT) = E[RT ] = O( K
ε ·d logT), from which

we can conclude that total regret is order Θ( K
ε ·d logT) for Rank-Comparison.

Theorems 3 and 4, whose detailed proofs can be found in the supplementary of Sui
and J. Burdick (2014a), show that our algorithm is optimal in terms of the expected
total regret.

Unlike the classical multi-armed bandit problem, which only focuses on expected
total regret, many applications must constrain the regret’s variation. In our context,
if a stimulus optimization algorithm provides good results in themajority of patients,
but bad results in a few, the variation is large. Such an algorithm is not practically
useful, even if total regret is small. By randomizing the choice of arms within
each test group, the randomized comparison strategy of Rank-Comparison provides
low-variance regret in expectation.

4.5 Experiments
Wefirst evaluate the algorithm by simulation. The reward for each arm bi is modeled
as a Gaussian distribution with mean µi and standard deviation σi. All arms are
independent with each other. Obviously, the distributions generated in this way
satisfies the Strong Stochastic Transitivity and Stochastic Triangle Inequality. Then
we sample the arms for each group and rank them by using the Rank-Comparison
algorithm. We calculated the expected regret rt = Rt/t (instead of total regret Rt)
where t is the number of tests. In the simulation, we consider the total number of
arms is 10 and we can get rank list with dimension no larger than 5. The reward
of each arm bi follows a Gaussian distribution with mean µi ∈ [0, 1] and standard
deviation σi = 0.2. Set the confidence parameter δ = 10−2.

Under this setting, the arms are hard to be distinguished from each other due to the
large variances. Figure 4.2 shows the mean regret rt vs. time t for Rank-Comparison
(blue curve) and Beat-the-mean (Yue and Joachims, 2011) (red curve) with fixed
horizonT = 1000. The blue curve is themean regret ofRank-Comparison, while the
red curve is the mean regret of Beat-the-Mean algorithm. For both algorithms, the
mean regret is high during exploration, and then drops quickly after the algorithms
converge to the optimum. We can see that Rank-Comparison finds the optimum
within 150 tests, and thereafter exploits it to reduce the mean regret. However,
Beat-the-Mean did not converge to the optimum within the time horizon for the
same parameter settings. We hypothesize that Rank-Comparison outperforms Beat-
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Figure 4.2: Mean Regret against Number of Tests

the-Mean because of the utility of finer feedback information.

4.6 Discussion and Conclusion
This chapter proposed a Rank-Comparison algorithm to efficiently solve a specific
bandit problem using subgroup rank feedback. This optimal strategy (Theorems 3
and 4) provides clinical recommendation which explores for optimal stimuli while
exploiting high performing stimuli for SCI therapy. The main advantages of Rank-
Comparison are:

• Faster convergence, which is a necessity for applications which are character-
ized by expensive explorations.

• Low variance of the reward/regret (RT ), which guarantees that the approach
performs uniformly on the majority of patients.

Rank-Comparison decomposes test group rankings into equally weighted compar-
isons. One might reasonably assume that arms far apart in rank may be more
distinguishable than adjacent ones, and thus employ different confidence parame-
ters as appropriate. This feature can reduce total regret under the same problem
setting. From the clinical point of view, this method avoids the varying effect of
human judgement by using robust comparisons instead of volatile quantitative val-
ues, which may be non-stationary in our application. However, the time varying
characteristics of human motor performance due to fatigue in the short term, and
spinal plasticity over the long term, is a real theoretical and clinical issue we must
address.
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Additionally, the classical bandit problem’s assumption of independent arms does
not hold for the spinal cord stimulation where anatomical principles and electrical
properties suggest a coupling occurs. Using a measure of similarity between stimuli
based on the physical properties, we can build a prior distribution on unknown arms
to guide our search.



63

C h a p t e r 5

THEORETICAL CONTRIBUTIONS: SAFE EXPLORATION

Usually, clinical experiments were performed having a human researcher to control
the stimulator and the recording system, while the algorithm performed an executive
or directing role. This architecture has a number of advantages, among them
that the human experimenter provides a fail-safe with respect to data acquisition
(e.g., if an element of the data processing fails, the observations of the human
experimenter can often be used to reconstruct the missing information) as well as
with respect to safety (if an unexpected condition arises, the human experimenter
can terminate stimulation, or, if a stimulus known to be painful is requested, the
human experimenter can refuse to perform the requested experiment). This latter
fail safe must be maintained in an automatic system.

In many applications, the guarantee of safety is crucial to the learning algorithm.
This chapter studies how to safely sample the input space towards global optimum
with real valued feedback. In this chapter, we consider sequential decision problems
under uncertainty, where we seek to optimize an unknown function from noisy
samples. This requires balancing exploration (learning about the objective) and
exploitation (localizing the maximum), a problem well-studied in the multi-armed
bandit literature. In many applications, however, we require that the sampled
function values exceed some pre-specified “safety” threshold, a requirement that
existing algorithms fail to meet. Examples include medical applications where
the patients’ comfort must be guaranteed; recommender systems aiming to avoid
user dissatisfaction; and robotic control, where one seeks to avoid controls causing
physical harm to the platform. We tackle this novel, yet rich, set of problems under
the assumption that the unknown function satisfies regularity conditions expressed
via a Gaussian process prior. We develop an efficient algorithm called SafeOpt, and
theoretically guarantee its convergence to a natural notion of optimum reachable
under safety constraints. We extensively evaluate SafeOpt on synthetic data, as
well as two real applications: movie recommendation, and therapeutic spinal cord
stimulation.
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5.1 Introduction
Many applications in recommender system or experimental design need to make
decisions online. Each decision leads to a stochastic reward with initially unknown
distribution, while new decisions are made based on the observations of previous
rewards. To maximize the total reward, one needs to solve the tradeoff between
exploring different strategies and exploiting currently optimal strategies within a
given set of strategies. However, when the sample space (set of strategies) is
not free to explore, classical bandit algorithms are no longer optimal. In some
applications, it is unacceptable to ever incur low rewards; it is required that the
reward of any sampled strategy be above some specified “safety” threshold.

We are aiming to sequentially optimize an unknown reward function while prevent-
ing to sample at low-rewarding places in the sample space. A threshold is set to
prevent low-rewarding sampling. Often, we have some known samples above the
threshold before we start the optimization.

Consider, for example, medical applications (e.g., in rehabilitation), where physi-
cians may choose among a large set of therapies. The effects of different therapies
are initially unknown and can only be determined through experimentation. Free
exploration, however, is not possible, since some therapies might cause severe dis-
comfort or even physical harm to the patient. Oftentimes, the effects of similar
therapies are correlated. Therefore, a feasible way to explore might be to start from
some therapies similar to those known to be safe, since their efficacy would not
be too different from the known ones. This way, more and more choices can be
established to be safe, facilitating further exploration. In Section 5.5, we address an
instance of such a problem, with the goal of choosing stimulation patterns (thera-
pies) for epidurally implanted electrode arrays to aid rehabilitation of patients that
have suffered spinal cord injuries. Similar challenges arise in robotic control, where
we aim to learn a controller by experimenting with the robot, yet some parameters
might lead to physical harm to the platform. The problem also arises in domains
like recommender systems, where we might wish to avoid recommendations that
are severely disliked by the user, an application we also consider in Section 5.5.

Related work. The tradeoff between exploration and exploitation is classically
studied in context of the (stochastic) multi-armed bandit problem. It models se-
quential decision tasks in which one chooses among a number of different decisions
(arms), each associated with a stochastic reward with initially unknown distribution.
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The goal of a bandit algorithm is to maximize the cumulative reward. In a variant
called “best-arm identification” (Audibert, Sebastien Bubeck, and Remi Munos,
2010), one seeks to identify the decision with highest reward with minimal trials.
Since its introduction by Robbins (1952), bandit problems have been widely studied
in many situations (cf., Sébastien Bubeck and Cesa-Bianchi (2012) for an overview).
Many efficient algorithms build on the work of Auer (2002), and their key idea is to
use upper confidence bounds to implicitly negotiate the explore-exploit tradeoff by
optimistic sampling. This idea naturally extends to bandit problems with complex
(or even infinite) decision sets under certain regularity conditions of the reward
function (Dani, Hayes, and Kakade, 2008; Kleinberg, Slivkins, and Upfal, 2008;
Sébastien Bubeck, RémiMunos, et al., 2008). Srinivas et al. (2010a) show how con-
fidence bounds can be used to address bandit problems with a reward function that
is modeled using a Gaussian process (GP), a regularity assumption also commonly
made in Bayesian optimization (c.f., (Brochu, Cora, and Freitas, 2010)), which is
closely related to best-arm identification. These approaches effectively optimize
long-term performance by accepting low immediate rewards for sake of exploration.
While this compromise is acceptable in certain settings, it makes these techniques
unsuitable in safety-critical applications. In particular, the GP-UCB algorithm uses
GP-inferred upper confidence bounds for selecting samples and has been shown
to achieve sub-linear regret. GP-UCB is an effective method to tackle the global
optimization problem. However, if we need to determine the set of points, for which
the function takes value above some given threshold level and restricts the new
sample points to be chosen only within the set which has function values above the
threshold, GP-UCB is no longer feasible. Running it leads us to points with function
values below threshold, which is not acceptable. Another problem that has been
studied, is that of active sampling for localizing level sets, that is, decisions where
the objective crosses a specified threshold (Bryan et al., 2005; Gotovos et al., 2013).
However, these approaches generally sample both above and below the threshold,
which makes them also unsuitable for safety-critical settings.

The problem of safe exploration has been considered in control and reinforcement
learning (Hans, Schäfer, and Udluft, 2008; Gillula and Tomlin, 2011; Garcia and
Fernandez, 2012). For example, Moldovan and Abbeel (2012) consider the problem
of safe exploration in MDPs. They ensure safety by restricting policies to be ergodic
with high probability, i.e., able to “recover” from any state visited. This is a more
general problem, which comes at a cost—feasible safe policies do not always exist,
algorithms are far more complex, and there are no convergence guarantees. In
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contrast, we restrict ourselves to the bandit/optimization setting, where decisions
do not cause state transitions, which leads to simpler algorithms with stronger
guarantees, even in the agnostic (non-Bayesian) setting.

Our contributions. We model a novel class of safe optimization problems as
maximizing an unknown expected-reward function over the decision set from noisy
samples. By exploiting regularity conditions on the function, which capture the in-
tuition that similar decisions are associated with similar rewards, we aim to balance
exploration (learning about the function) and exploitation (identifying near-optimal
decisions). The requirement to ensure safety leads to novel considerations, dif-
ferent from those addressed in bandits, where we must not only explore to reduce
uncertainty about the function, but also expand the set of decisions established as
safe.

Concretely, we propose a novel algorithm, SafeOpt, to balance this tradeoff. SafeOpt
models the unknown function as a sample from a Gaussian process (GP) prior, and
uses the predictive uncertainty to guide exploration. In particular, it uses confidence
bounds to assess safety of as yet unexplored decisions. We theoretically analyze
SafeOpt under the assumptions that (1) the objective has bounded norm in the Re-
producing Kernel Hilbert Space associated with the GP covariance function, and
(2) the objective is Lipschitz-continuous, which is guaranteed by many common
kernels. We establish convergence of SafeOpt to a natural notion of “safely reach-
able” optimum decision. We further extensively evaluate SafeOpt on two real-world
applications: movie recommendation, and therapeutic stimulation of patients with
spinal cord injuries.

5.2 Problem Statement
We consider a sequential decision problem, where we seek to optimize from noisy
samples an unknown reward function f : D → R defined on a finite set of deci-
sions D. Concretely, we pick a sequence of decisions (e.g., items to recommend,
experimental stimuli) x1, x2, · · · ∈ D, and, after each selection xt , get back a noise-
perturbed value of f , that is, we observe yt = f (xt) + nt (e.g., user rating, stimulus
response). Our goal is to identify a decision x∗ of maximum reward f , akin to
the problem of best-arm identification in multi-armed bandits (Audibert, Sebastien
Bubeck, and Remi Munos, 2010). As crucial difference, however, we wish to en-
sure that, for all rounds t, it holds that f (xt) ≥ h with high probability, where h

is a problem-specific parameter. We call decisions for which f (xt) ≥ h safe. In
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our recommender systems example, this means that we seek to identify items with
utility to the user, while guaranteeing that we never propose items the user strongly
dislikes. In our rehabilitation setting, we seek to guarantee that no painful stimuli
are applied. Importantly, since f is unknown, the set of safe decisions is initially
unknown as well.

Regularity assumptions. Without assumptions, this is clearly a hopeless task. In
particular, without any knowledge of f , we do not even know where to start our
exploration. Therefore, we assume that, before starting the optimization, we know a
“seed” set of at least one safe decision, which we denote by S0 ⊂ D. This establishes
starting points for our exploration. Without further assumptions on f , we would
never be able to identify new safe decisions to consider for exploration. In what
follows, we assume that D is endowed with a positive definite kernel function, and
that function f has bounded norm in the associated Reproducing Kernel Hilbert
Space (RKHS, cf., Schölkopf and Smola (2002)). Note that for finite decision sets
and any universal kernel, this assumption is automatically satisfied. This assumption
allows us to model our reward function f as a sample from a Gaussian process (GP)
(Rasmussen and Williams, 2006). A GP(µ(x), k(x, x′)) is a probability distribution
across a class of “smooth” functions, which is parameterized by a kernel function
k(x, x′) that characterizes the smoothness of f . We assume w.l.o.g. that µ(x) = 0,
and that our observations are perturbed by i.i.d. Gaussian noise, i.e., for samples at
points AT = [x1 . . . xT ]T ⊆ D, we have yt = f (xt) + nt where nt N(0, σ2). (We will
relax this assumption later.) The posterior over f is then also Gaussian with mean
µT (x), covariance kT (x, x′), and variance σ2

T (x, x′) that satisfy,

µT (x) = kT (x)T (KT + σ
2I)−1yT

kT (x, x′) = k(x, x′) − kT (x)T (KT + σ
2I)−1kT (x′)

σ2
T (x) = kT (x, x),

where kT (x) = [k(x1, x) . . . k(xT, x)]T and KT is the positive definite kernel matrix
[k(x, x′)]x,x′∈AT .

Why should this assumption help? The predictive confidence of the GP posterior
will allow us to reason about which points in D are safe with high probability. For
sake of our exposition and analysis, we will further assume that f is L-Lipschitz
continuous w.r.t. some metric d on D. This is automatically satisfied, for example,
when considering commonly used isotropic kernels, such as the Gaussian kernel,
on D.
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Optimization goal. Under the Lipschitz-continuity assumption, what is the best
solution that any algorithm might be able to find? Suppose our observations were
noise free. In this case, after exploring the decisions in our seed set S0, we can
establish any decision x as safe, if there exists a decision x′ ∈ S0, such that f ( ×
x′) − L · d(x, x′) ≥ h. Exploring these newly identified safe decisions will establish
further decisions as safe, and so on. Unfortunately our knowledge of f comes
from noisy observations, so even after experimenting with the same decision ×
x repeatedly, we are not able to infer f (x) exactly, but only up to some statistical
confidence f (x) ± ε . Based on this insight, we define the one-step reachability
operator

Rε (S) ..=S ∪
{

x ∈ D
�� ∃x′ ∈ S, f (x′) − ε − Ld(x′, x) ≥ h

}
,

which represents the subset of D that can be established as safe upon learning f up
to absolute error at most ε within S. Clearly, it holds that S ⊆ Rε (S) ⊆ D. Similarly,
we can define the n-step reachability operator by

Rn
ε (S) ..= Rε (Rε . . . (Rε︸          ︷︷          ︸

n times

(S)) . . .),

and its closure by R̄ε (S) ..= lim
n→∞

Rn
ε (S). It is easy to see that no algorithm that is

able to learn f only up to ε will ever be able to establish any x ∈ D \ R̄ε (S0) as
safe. Therefore, we cannot hope that any safe algorithm will be able to identify the
global optimum f ∗ = maxx∈D f (x). We consider, instead, our benchmark to be the
ε-reachable maximum

f ∗ε = max
x∈R̄ε (S0)

f (x). (5.1)

We know R̄ε (S0) is the largest subset we could explore in D. Our real problem is
to optimize the function within R̄ε (S0) instead of D to guarantee ε-safe. However,
we do not know R̄ε (S0) during the sampling process. We can only reach the sample
space St which is a subset of Rt

ε (S0) at iteration t. Starting from the seed set S0,
we need to optimize the reward function within the safe region and expand the safe
region towards R̄ε (S0) in the meantime.

From Lipschitz continuity, we can infer a safe set S1 ⊂ D which contains all the
points in D that have a guarantee that their sampled value will be above the threshold
h. We choose a point x1 ∈ S1 and get the function value perturbed by noise there:
y1 = f (x1)+n1 where n1 represents the noise at this sample. We have known y1 > h

since x1 is sampled from the current safe set. If the sampled value has high function
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value or locates near the boundary of the current safe set, it has the potential to
enlarge the safe set. We define

gt(x) ..=
���{x′ ∈ D \ St

�� ut(x) − Ld(x, x′) ≥ h
}���

to be the cardinality of the enlargement of the current safe set after we sample a new
point x. So we after each iteration, we have a new safe region St from which the
next sample point will be chosen.

Since we need to guarantee not sample at low-valued points, our sampling decisions
always be made within the safe set St which is a subset of the whole space D.
Obviously, St is a non-decreasing sequence. So what is the largest set St we could
reach when t → ∞ given the initial seed set S0? We first enroll the idea of ε-safe
point x by f (x′) − ε − Ld(x′, x) ≥ h, where ε is the safety margin to represent how
far the value at point x from above the threshold h. Larger margin ε means better
safety guarantee at point x.

Failure of naive approaches. There are a number of approaches for trading ex-
ploration and exploitation under the smoothness assumptions expressed via a GP.
One such approach is the Gaussian Process Upper Confidence Bound algorithm
(GP-UCB), which greedily chooses

xt = argmax
x∈D

µt−1(x) + β1/2
t σt−1(x) (5.2)

for a suitable schedule of βt . While this algorithm is guaranteed to achieve sublinear
cumulative regret (Srinivas et al., 2010a), it places no restrictions on the sampling
location, and hence neither theoretically guarantees safety, nor exhibits it in our
experiments. This is symptomatic of typical multi-armed bandit approaches when
applied to our problem. In the following, we will present an efficient algorithm,
SafeOpt, which, under the aforementioned assumptions, is guaranteed, for any ε > 0
and δ > 0, to identify a solution x̂, such that f (x̂) ≥ f ∗ε − ε , with probability at least
1 − δ. In Section 5.4, we will further provide a sample complexity bound on the
number of iterations required to achieve this condition.

5.3 SafeOpt Algorithm
We now introduce our proposed algorithm, SafeOpt, for the safe exploration for
optimization problem.
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Figure 5.1: Illustration of SafeOpt. (a) The solid curve is the (unknown) function to
optimize. The straight dashed line represents the threshold. The triangle is the safe
seed S0. The cyan bar shows the maximal safe region R̄0(S0) reachable w.r.t. the
seed set S0 and the square is the optimum within this safe region. (b, c) The solid
line is the estimated mean function after a number of observations, indicated by
crosses. The expansion set Gt is shown as the dark purple bars on the two ends of
St , and the set of candidate maximizers Mt is shown as the orange bar within St .

Overview. We start with a high-level description of SafeOpt. The algorithm uses
Gaussian processes tomake predictions about f based on noisy evaluations, and uses
their predictive uncertainty to guide exploration. To guarantee safety, it maintains
an increasing sequence of subsets St ⊆ D established as safe using the GP posterior.
It never chooses a sample outside of set St , while it balances two objectives within
that set: the desire to explore by expanding the safe region, and the need to localize
high-reward regions within St . For the former, it maintains a setGt ⊆ St of candidate
decisions that – upon potentially repeated selection – have a chance to expand the
reachable region. For the latter, it maintains a set Mt ⊆ St of decisions that are
potential maximizers of f . To make progress, in each round it greedily picks the
most uncertain decision x, that is, the one with largest predictive variance among
Gt ∪ Mt . We present pseudo-code of SafeOpt in Algorithm 11, and next explain its
workings in more detail.

Confidence-based classification. The classification of the domain into sets Mt ,
Gt , and St is done according to the GP posterior. In particular, in iteration t, it uses
the predictive confidence intervals

Qt(x) ..=
[
µt−1(x) ± β1/2

t σt−1(x)
]
, (5.3)

where βt is defined in Theorem 5. Based on the assumptions about f , the sampled
reward value at x lies in Qt(x) with high probability for all t. For technical reasons,
instead of using Qt directly, we use their intersection Ct(x) ..= Ct−1(x) ∩ Qt(x),
which ensures that confidence intervals are monotonically contained in each other.
Based on this notion, we define ut(x) ..= maxx∈D Ct(x) as a high-probability upper
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confidence bound on f (x), monotonically decreasing in t, and similarly, `t(x) ..=

minx∈D Ct(x) as a lower confidence bound, monotonically increasing in t. We also
define the width wt(x) ..= ut(x)− `t(x) of the confidence interval, which is monoton-
ically decreasing in t and captures the uncertainty of the GP model about decision x.

Having introduced the above notation, we define the essential sets of our algorithm,
St , Mt , and Gt . The decisions that are certified to be safe are given by the set

St =
⋃

x∈St−1

{
x′ ∈ D

�� `t(x) − Ld(x, x′) ≥ h
}
.

The potential maximizers are those decisions, for which the upper confidence bound
is higher than the largest lower confidence bound, i.e.,

Mt = {x ∈ St : ut(x) ≥ max
x′∈St

`t(x′)}.

In order to identify the set Gt , we first define the function

gt(x) ..=
���{x′ ∈ D \ St

�� ut(x) − Ld(x, x′) ≥ h
}���,

which (optimistically) quantifies the potential enlargement of the current safe set
after we sample a new decision x. Then, Gt is simply given by

Gt = {x ∈ St : gt(x) > 0}.

Sampling criterion. Given the classification of points presented above, the selec-
tion rule is very simple: SafeOpt just greedily selects the most uncertain decision
that could either be a maximizer (in Mt), or enlarge the reachable region (in Gt).
Formally, it selects decision xt by

xt ∈ argmax
x∈Mt∪Gt

wt(x).

Reducing the uncertainty within Gt will eventually lead to expansion, i.e., the
discovery of new safe decisions. In turn, sampling within Mt will reduce the
uncertainty about the location of f ’s maximum within St . The greedy selection
balances these two goals. An illustration of the sampling process is shown in
Figure 5.1. We start given a single seed decision and the initial singleton safe set S0

it generates. After several iterations, the safe set St grows, while SafeOpt picks new
points from Gt ∪Mt . After a large number of samples, Gt ∪Mt shrinks towards the
empty set and St converges toward the total safe region also finding a near-optimal
decision within it.
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Discussion. The sets St , Gt , and Mt exhibit some interesting dynamics. As men-
tioned above, the reachable region St is monotonically increasing, i.e., S0 ⊆ S1 ⊆
S2 . . . . The algorithm proceeds in stages, within each of which the set St does not
change (i.e., St = St+1). This is because not enough evidence has been accrued yet
to establish new decisions as safe. Within each such stage, the sets Gt and Mt keep
shrinking, due to the monotonicity of the confidence bounds used. However, as soon
as new decisions are identified as safe, Gt and Mt may increase again. Furthermore,
note that, even though we defined the optimization goal (5.1) with respect to some
accuracy parameter ε , this parameter is actually not used by the algorithm, although
it can be employed as a stopping condition. Namely, if the algorithm stops under
the following condition,

max
x∈Mt∪Gt

wt(x) ≤ ε,

then for the point x̂ = argmaxx∈St `t(x) it holds that f (x̂) ≥ f ∗ε − ε.

The safe/accuracy parameter ε does not effect the iteration process. It provides a
guarantee of accuracy after we finish some iterations. So for the infinite horizon
case, there is no need to set that ε beforehand.

We also considered an safely search version of GP-UCBwhich we call it Local-UCB
in Algorithm 12. Comparing to the GP-UCBwhich achieves the global optimization
problem, Local-UCB use the same combined strategy to choose xt :

xt = argmax
x∈St

(µt−1(x) + β1/2
t σt−1(x)).

The main difference is to choose a sample point from safe region St instead of total
space D. Also, St will be updated for each iteration.

5.4 Theoretical Results
We now establish the effectiveness of SafeOpt by theoretically bounding its sample
complexity. The two critical behaviors of SafeOpt are the expansion of the safe
region in search for the total safe region, and the optimization within the safe region.

Accuracy of confidence sets. The correctness of SafeOpt crucially relies on the
fact that the classification into sets St , Mt , andGt is accurate. While this requires that
the confidence bounds Ct are conservative, using bounds that are too conservative
will slow down the algorithm considerably. Tightness of the confidence bounds is
controlled by parameter βt in equation (5.3), the choice of which is crucial. This
problem of properly tuning confidence bounds in exploration–exploitation tradeoffs
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Algorithm 11 SafeOpt
1: Input: sample set D,

GP prior (µ0, k, σ0),
Lipschitz constant L,
seed set S0,
safe threshold h accuracy ε

2: C0(x) ← [h,∞), for all x ∈ S0
3: C0(x) ← R, for all x ∈ D \ S0
4: Q0(x) ← R, for all x ∈ D
5: for t = 1, . . . do
6: Ct (x) ← Ct−1(x) ∩Qt−1(x)
7: St ←

⋃
x∈St−1

{
x ′ ∈ D

�� `t (x) − Ld(x, x ′) ≥ h
}

8: Gt ←
{

x ∈ St
�� gt (x) > 0

}
9: Mt ←

{
x ∈ St

�� ut (x) ≥ maxx′∈St `t (x ′)
}

10: xt ← argmaxx∈Gt∪Mt
(wt (x))

11: yt ← f (xt ) + nt
12: Compute Qt (x), for all x ∈ St
13: end for

Algorithm 12 Local-UCB
1: Input: sample set D,

GP prior (µ0, k, σ0),
seed set S0,
safe threshold h,
accuracy ε

2: for t = 1, . . . do
3: St ←

⋃
x∈St−1

{
x′ ∈ D

�� `t(x) − Ld(x, x′) ≥ h
}

4: xt ← argmaxx∈St (µt−1(x) + β1/2
t σt−1(x))

5: yt ← f (xt) + nt
6: end for

involving Gaussian processes has been studied by Srinivas et al. (2010a). While
they consider the bandit problem, i.e., maximizing average reward, without safety
guarantees, we show below that their choice of confidence bounds can be generalized
to our setting. In particular, for our theoretical results to hold it suffices to choose

βt = 2B + 300γt log3(t/δ), (5.4)

where B is a bound on the RKHS norm of f , δ is the allowed failure probability, and
γt quantifies the effective degrees of freedom associated with the kernel function.
Concretely,

γt = max
|A|≤t

I( f ; yA)
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is the maximal mutual information that can be obtained about the GP prior from
t samples. For finite |D |, this quantity is always bounded by γt ≤ |D | log(1 +
σ−2t |D |maxx∈D k(x, x)), i.e., O(|D | log t |D |), but for commonly used kernels (such
as the Gaussian kernel), γt has sublinear dependence on |D | (Srinivas et al., 2010a).

Lemma 7 Suppose ‖ f ‖2k ≤ B, and suppose the noise nt is zero-mean conditioned
on the history, and uniformly bounded by σ for all t. Select βt as in (5.4). Then,
with probability at least 1 − δ, for all iterations t during the execution of SafeOpt
and for all x ∈ D it holds that f (x) ∈ Ct(x).

Proof. This lemma immediately follows from Theorem 6 of Srinivas et al. (2010a),
and our construction of the confidence sets Ct .

Convergence of SafeOpt. Given this result, we now present our main theorem,
which establishes that SafeOpt indeed manages to identify an ε-optimal decision,
while staying safe throughout.

Theorem 5 Assume that f satisfies ‖ f ‖2k ≤ B and f further is L-Lipschitz contin-
uous. Also, suppose S0 , �, and f (x) ≥ h, for all x ∈ S0. Fix any ε > 0 and
δ ∈ (0, 1). Suppose we run SafeOpt with seed set S0 under the same assumptions on
the noise nt and same choice of βt as in Lemma 7. Define x̂t = argmaxx∈St `t(x) and
let t∗ be the smallest positive integer satisfying

t∗

βt∗γt∗
≥

C1
(
|R̄0(S0)| + 1

)
ε2 ,

where C1 = 8/log(1 + σ−2). Then, the following jointly hold with probability at
least 1 − δ:

• ∀t ≥ 1, f (xt) ≥ h,

• ∀t ≥ t∗, f (x̂t) ≥ f ∗ε − ε .

The detailed proof of Theorem 5 is presented in the Appendix of this chapter. It
shows that with high probability, SafeOpt guarantees safety, and identifies at least
one ε-optimal decision among the ε-reachable set after at most t∗ iterations. The size
of t∗ depends on the largest size of safe region R̄0(S0), the accuracy parameter ε , the
confidence parameter δ, the complexity of the function B and the parameterization
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Figure 5.2: A 2-D function sampled from a GP

Figure 5.3: The regret of the three algorithms SafeOpt (solid line), Local-UCB
(green dashed line) and GP-UCB (red dashed line) v.s. number of iterations.

of the GP via γt . The proof is based on the following idea. Within a stage, wherein St

does not expand, the uncertainty wt(xt)monotonically decreases due to construction
of Mt and Gt . We prove that the condition maxx∈Gt w(x) < ε implies either of two
possibilities: St will expand after the next evaluation, i.e., the reachable region
will increase, and, therefore, the next stage shall commence; or, we have already
established all decisions within R̄ε (S0) as safe, i.e., St ⊆ R̄ε (S0). Similarly, we prove
that the condition maxx∈Mt w(x) < ε implies that we have identified an ε-optimal
decision within the current region St . Finally, to establish the sample complexity
we use a bound on how quickly wt(xt) decreases.
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Figure 5.4: Histogram of sampled function values after 50 iterations. The dashed
lines represent the threshold and diamonds indicate themean of the sampled function
values.

5.5 Experiments
We evaluate our algorithms on synthetic data as well as two real applications. In
our experiments, we seek to address the following questions: Does SafeOpt reliably
respect the safety requirement? How effective is it in localizing good solutions
quickly? How does it compare against standard (non-safe) bandit algorithms? In
particular, we compare SafeOpt against GP-UCB (Srinivas et al., 2010a), a multi-
armed bandit algorithm designed for Gaussian processes, which however does not
respect the safety constraint; and Local-UCB, a heuristic variant of GP-UCB, which
selects the sample maximizing the upper confidence bound (similar to GP-UCB),
however only among sampling locations that are safe with high probability according
to the GP posterior. In particular, it greedily selects

xt = argmax
x∈St

µt−1(x) + β1/2
t σt−1(x).
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Synthetic data. We first evaluate the algorithm with synthetic data. The purpose
of this experiment is to validate our theory, and demonstrate the convergence of
SafeOpt in situations that perfectly match our prior assumptions. Concretely, we
sampled a set of 100 random functions from a zero-mean Gaussian Process with
squared exponential kernel over the sample space D = [0, 1] × [0, 1], uniformly
discretized into 50× 50 points. One of the random functions is shown in Figure 5.2.
The threshold is set to be the −σ plane in the figure. For each random function, we
randomly pick 100 safe points, i.e., with values above the threshold. We estimate
the Lipschitz constant from the gradient of several random functions sampled from
the GP. Regarding each safe point as a separate seed set, we run both Local-UCB
and SafeOpt for T = 50 iterations. We report a notion of regret, defined by
rt = f ∗0 −max1≤i≤t f (xi). The regret values achieved by each algorithm are averaged
over the 100 seeds for each of the 100 random functions. As we can see from
Figure 5.3, SafeOpt achieves smaller regret than Local-UCB on average. This is
because for some cases Local-UCB fails to expand some low-rewarding boundary
points which are slightly above the safe threshold. So it gets stuck at a local optimum.
However, SafeOpt balances the localization of the optimal value within the current
safe set with the expansion of the reachable region. Since GP-UCB is searching
for the global optimum instead of the optimal value within the total safe region, it
in fact achieves negative regrets under our definition of regret. Figure 5.4 presents
the histogram of the sampled function values obtained by the three algorithms
after T = 50 iterations. As can be seen, SafeOpt and Local-UCB have very little
probability to sample at points below threshold, while a large proportion of points
sampled by GP-UCB are unsafe.

Safe movie recommendations. Next we consider an application in recommender
systems: how should we recommend movies, while aiming to ensure that the user
does not dislike any movies we propose? Concretely, we test the algorithms on the
MovieLens-100k dataset, which contains the (sparse) rating of 1682 movies from
943 customers. The main difference between our objective and commonly used
objectives such as cumulative reward is that we are not only looking for high scoring
movies, but also avoid low scoring ones. To put the problem into our framework,
we proceed as follows. We first partition the data by selecting a subset of users for
training. On the training data, we apply matrix factorization with k = 20 latent
factors. This provides a feature vector vi ∈ Rk for each movie i, and a feature
vector u j ∈ Rk for each user in the training set. We then fit a Gaussian distribution
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Figure 5.5: Safe movie recommendations

Figure 5.6: Safe spinal stimulation
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P(u) = N(u; µ, Σ) to the training user features. For a new user in the test set, we now
consider P(u) as prior, and use the Gaussian likelihood for their ratings for movie vi

as P(yi | u, vi) = N(vT
i u, σ2), where σ2 is the residual variance on the training data.

Thus, the ratings (yi)i form a Gaussian process (with linear kernel) with Gaussian
likelihood.

The safety threshold is set to be the mean of all ratings. We run SafeOpt, Local-UCB
together with GP-UCB which is not restricted within the safe region. Given that the
dataset only contains partial ratings, we restrict the algorithms only to the movies
the user actually rated. After each selection, the actual rating from the data set
is provided as feedback to the algorithms. The three algorithms run for T = 300
iterations.

The regret reaches zero quickly (within several iterations) since the ratings are
discrete from 1 to 5. Figure 5.5(a) shows the percentage of movies explored with
respect to the totally reachable set under the constraint that the algorithms will stop
after hitting the threshold (i.e., after the first unsafe selection). GP-UCB becomes
unsafe and stops much faster than the other two. As a particular example, we see the
recommendation for user #5 starting from the known fact that the user rated 5 for
the movie “Return of the Jedi”. Within the first 4 iterations, SafeOpt recommends
{→ The Empire Strikes Back → Stargate→ Star Wars→ Heavy Metal }, Local-
UCB recommends {→ The Empire Strikes Back → Star Wars → Star Trek →
Raiders of the Lost Ark}; all these movies score above the threshold. GP-UCB
recommends {→ Star Wars→ Men in Black→ A Close Shave→ So I Married an
Axe Murderer}. The last movie recommended by GP-UCB returns a score below
the threshold. The movies recommended by SafeOpt share some similarity with
those of Local-UCB due to the locality encouraged by safe exploration. GP-UCB
on the other hand recommends more diversely since there is no safety restrictions
for exploration. Although the average ratings are close, SafeOpt reaches a larger
set of movies than Local-UCB because it expands the current safe region more
aggressively. Figure 5.5(b) shows the same plots with no stopping criteria applied.
GP-UCB exceeds the top ceiling since it can explore beyond the total safe region
R̄0(S0). It reaches much more movies within the 300 iterations but its mean of
ratings is lower and the variance is larger than for the other two algorithms (as
in Figure 5.5(c)). This suggests that GP-UCB samples many low-rating movies
for exploration. Figure 5.5(c) shows the distribution of ratings of each algorithm.
SafeOpt and Local-UCB perform well in preventing the sampling of low-rated
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movies for each customer.

Safe exploration for spinal cord therapy. Our second application is in a very
different domain: spinal cord therapy (Harkema et al., 2011). We compare the
algorithms on a dataset of muscle activity triggered by therapeutic spinal electro-
stimulation in spinal cord injured rats. The clinical goal is to choose stimulating
configurations that maximize the resulting activity in lower limb muscles, as mea-
sured by electromyography (EMG), in order to improve spinal reflex and locomotor
function. Bad configurations have negative effects on the rehabilitation and are
often painful. So the configurations we choose must stay above some threshold.
We maximize the peak-to-peak amplitude of the recorded EMG waveforms (muscle
activities) from the right medial Gastrocnemius muscle. This objective function
measures to what degree the selected stimulus activates the interneurons which
control reflex activity. Electrode configurations were represented in R4 by the cath-
ode and anode locations on the array. A squared exponential ARD kernel was
fitted for this space using experimental data from 351 stimulations (126 distinct
configurations).

Figure 5.6(a) shows the percentages of reachable configurations by the algorithm
under the constraint that the algorithms stop after hitting the threshold. Obviously,
GP-UCB stops much faster than the other two. SafeOpt reaches larger sets of
configurations than Local-UCB. No algorithm dominates on the average activity
scores under this stopping criterion. Figure 5.6(b) shows the percentage of reached
decisions without stopping upon becoming unsafe. GP-UCB reaches much more
configurations, but its mean activity score is lower than the other 2 algorithms (as
in Figure 5.6(c)). This indicates that GP-UCB samples many bad configurations.
Figure 5.6(c) shows the distribution of muscle activity of each algorithm. SafeOpt
and Local-UCB perform well in preventing the sampling of bad configurations.

5.6 Conclusions
We investigated the novel problem of trading exploration and exploitation for func-
tion optimization under safety constraints. In particular, we proposed SafeOpt, an
efficient algorithm that balances the tradeoff between expanding, exploring, and
optimizing over the reachable safe region. We prove strong theoretical performance
guarantees for SafeOpt, bounding its sample complexity to achieve an ε-optimal so-
lution while guaranteeing safety with high probability. Our extensive experiments
demonstrate that SafeOpt indeed exhibits its analytical safety and convergence prop-
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erties. We believe that our result provides an important step towards employing
machine learning algorithms “live” in safety-critical applications.
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C h a p t e r 6

HUMAN EXPERIMENTS: ONLINE LEARNING FOR HUMAN
STANDING CONTROL

This chapter provides the online learning algorithm for human standing control and
the experimental results with patients. Two patients with severe spinal cord injury
were recruited as participants of this study. They satisfy the following conditions:

(1) stable medical condition without cardiopulmonary disease or dysautonomia that
would contraindicate standing or stepping with body weight support training;
(2) no painful musculoskeletal dysfunction, unhealed fracture, contracture, pressure
sore, or urinary tract infection that might interfere with stand or step training;
(3) no clinically significant depression or ongoing drug abuse;
(4) no current anti-spasticity medication regimen; (5) non-progressive spinal cord
injury above T10; (6) AIS A or B;
(7) no motor response present in leg muscles during trans-magnetic stimulation;
(8) not present or bilateral delay of sensory evoked potentials;
(9) no volitional control during voluntary movement attempts in leg muscles as
measured by EMG activity;
(10) segmental reflexes remain functional below the lesion;
(11) brain influence on spinal reflexes is not observed as measured by EMG activity;
(12) must not have received Botox injections in the previous 6 months;
(13) be unable to stand or step independently;
(14) at least 1-year post-injury;
(15) must be at least 18 years of age.

Finding the optimal stimulating pattern during the rehabilitation process is modeled
as a correlational dueling bandits problem, which is a variant of the dueling bandits
problem with the dependence of arms taken into consideration. Many clinical
problems with large volume of parameter selection and sequential decision making
could be facilitated by this algorithm which makes decisions to simultaneously
deliver effective therapy and explore the decision space. We propose an efficient
algorithm Correlational Dueling for this problem. After evaluating the convergence
of the algorithm in simulation experiments, we apply it to 2 paraplegic subjects
implanted with epidural arrays. Experimental results show the effectiveness and
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efficiency of the algorithm.

6.1 Introduction
In many online learning settings, particularly those that involve human feedback,
reliable feedback is often limited to pairwise preferences instead of real valued feed-
back. Examples include implicit or subjective feedback for information retrieval
and recommender systems, such as clicks on search results, and subjective feedback
on the quality of recommended care (Chapelle, Joachims, et al., 2012; Sui and J.
Burdick, 2014b). This setup motivates the dueling bandits problem (Yue et al.,
2012), which formalizes the problem of online regret minimization via preference
feedback. (e.g., choosing a pair of arms to be compared at each time step). Many
algorithms (Yue and Joachims, 2009; Yue and Joachims, 2011; Zoghi, Whiteson,
Remi Munos, et al., 2014; Ailon, Z. Karnin, and Joachims, 2014) have been devel-
oped for efficiently computing this problem with independent arms. However, these
algorithms are not efficient with many dependent arms. Specifically, when the time
horizon T is smaller than the number of arms K , it is hopeless to achieve low regret
without utilizing some notion of correlation among arms.

Figure 6.1: The Standing Experiment under spinal stimulation.

Figure 6.1 shows the clinical treatment procedure for stand-training under epidural
stimulation. During a treatment/optimization session, new stimuli parameters are
recommended to be applied and then tested. In the test, the patient attempts to stand
using the given stimuli, and the observing clinicians then quantify and compare the
patient’s resulting performances. Having these noisy comparisons as feedback, we
want to continue exploring for the optimal stimulus while also exploiting currently
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good ones. We must spend significant time dwelling on good performing stimuli
in order to provide the patient with a good therapeutic experience. Since clinical
training has a fixed time horizon, we must also maximize total performance during
the limited period within which we can search for the optimal solution.

We consider the problem of finding optimal stimuli based on the general setting of
the multi-armed bandit problem. The classical bandit problem trades off between
exploration and exploitation among a number of different arms, each having a
quantifiable, but stochastic, rewardwith initially unknown distribution. However, for
the clinical problem, the patient’s motor response to stimulation is hard to quantify.
Neither video motion capture nor electromyographic (EMG) recordings of muscle
activity can yet provide a consistent and satisfactory measure of motor skill under
stimulation. A good standing performance might map to numerous combinations of
muscle activities, and it is not a stationary process. While the patient’s performance
under a specific stimulus is hard to quantify, it can be compared to others. In
the clinical setting, we can obtain the comparisons of stimuli which are performed
within the short time period of one training session.

The dueling bandit problem formalizes online learning problems with preference
feedback instead of absolute rewards, and hence it can be used for problems with
unquantifiable reward. The total number of different stimulating configurations
is ∼ 4.3 × 107, due to the complexity of electrodes. It is not feasible to search
through the whole space since the configurations are correlated. The algorithm we
propose in this paper is a variant of the dueling bandit algorithmwhich is dictated by
the clinical demands of the application. In particular, we incorporate the standard
dueling bandit algorithm with the dependence of arms that can be captured by some
similarity function.

Contributions. This chapter study a novel class of dueling bandits problems –
correlational dueling bandits with dependent arms and noisy comparison feedbacks.
By adding the structure of correlation, we aim to achieve fast convergence for dueling
bandits.

Concretely, the chapter proposes a novel Correlational Dueling algorithm as the
incorporation of a Correlational Update subroutine and a Beat-the-Mean algorithm.
It takes advantage of the correlations among different arms to update the whole
active set of arms instead of only updating the two dueling arms. This achieves fast
convergence to the (near) optimal decisions regardless of the large decision space.
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Correlational Dueling is deployed as the first algorithmic approach to the control
of spinal cord stimulation in clinical experiments. Correlational Dueling could
find a group of optimal stimuli and help the paraplegic human patients to achieve
full-weight standing.

The algorithm we developed in this paper has the potential to incorporate any of the
previously mentioned MAB algorithms. Previous work has shown that dueling ban-
dits algorithms enjoy state-of-the-art empirical performance using Sparring (Ailon,
Z. Karnin, and Joachims, 2014) or RUCB (Zoghi, Whiteson, Remi Munos, et al.,
2014).

6.2 Related Work
Correlated Bandits
In many applications, the set of candidate actions is very large (or even infinite). In
such settings, dependence between the payoffs associated with different decisions
must bemodeled and exploited. Variousmethods of introducing dependence include
bandits on trees (Kocsis and Szepesvári, 2006a), bandits with linear correlations
(Dani, Hayes, and Kakade, 2008; Abernethy, Hazan, and Rakhlin, 2008; Abbasi-
Yadkori, Pál, and Szepesvári, 2011) or Lipschitz continuous payoffs (Kleinberg,
Slivkins, and Upfal, 2008; Sébastien Bubeck, Rémi Munos, et al., 2008), and
Gaussian payoffs (Srinivas et al., 2010b). In this paper we pursue a Bayesian
approach to bandits, where fine-grained assumptions on the regularity of the reward
function can be imposed through proper choice of the prior distribution over the
payoff function.

Dueling Bandits
Beyond the stochastic K-armed dueling bandits setting, other dueling bandit settings
include multi-way preference feedback (Sui and J. Burdick, 2014b), continuous-
armed convex dueling bandits (Yue and Joachims, 2009), contextual dueling bandits
which also introduces the vonNeumannwinner solution concept (Dudik et al., 2015),
sparse dueling bandits that focus on the Borda winner solution concept (Jamieson
et al., 2015), Copeland dueling bandits that focus on the Copeland winner solution
concept (Zoghi, Z. S. Karnin, et al., 2015), and adversarial dueling bandits (Gajane,
Urvoy, and Clérot, 2015). It would be interesting to study how to extend the analysis
to these other settings as well.

The dueling bandits problem can also be viewed as a special case of partial mon-
itoring problems (Cesa-Bianchi, Lugosi, and Stoltz, 2006). In partial monitoring,
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the feedback received is assumed to be only indirectly related to the actual re-
wards. However, generic algorithms for partial monitoring problems are generally
not competitive compared to algorithms specifically designed for the dueling bandits
problem.

6.3 Problem Setup
The classical dueling bandit problem receives feedback in the form of a comparison
between a pair of arms in each test. When the size of the decision set, K , is large, it is
unavoidable to carry out a very large number of tests before the algorithm converges
to its optimal solution. In some applications like the clinical example, each test is
expensive and time consuming. The number of tests – time horizon of an algorithm
– is often predetermined by clinical conditions. It is infeasible to apply the original
dueling bandit algorithms to these applications due to the large decision space.

The procedure can be described as follows. There are K arms {b1, · · · , bK}, and
a total number of T tests to be performed. In the clinical spinal cord application,
each test physically corresponds to a ∼90-second stimulation period with a specific
stimulus (arm) chosen from theK arms. T is determined beforewe run the algorithm.
The K arms are correlated and T ≤ K in general.

Following the the original notation of the dueling bandit problem, for two arms bi

and b j , where i, j ∈ {1, · · · ,K}, write the comparison factor as

ε(bi, b j) = P(bi � b j) − 1/2,

where P(bi � b j) is the probability that bi dominates b j and ε(bi, b j) ∈ [−1/2, 1/2]
represents the priority between bi and b j . We define bi � b j ⇔ ε(bi, b j) > 0. We
use the notation εi, j ≡ ε(bi, b j) for convenience. Note that ε(bi, b j) = −ε(b j, bi) and
ε(bi, bi) = 0. We assume the distribution of reward for each arm is stationary so
that all comparison factors converge in [-1/2,1/2]. We also assume w.l .o.g. that the
bandits are indexed in preferential order b1 � b2 � · · · � bK so that there is one
preferred arm.

The total reward is defined in terms of regret as in the classical bandit problem
setting. In the online setting, let b(t) be the arm chosen at test t. We define total
regret as follows:

RT =

T∑
t=1

ε(b1, b(t))

The total regret is zero, RT = 0, if we constantly choose b(t) = b1 during the
experiment. RT = Θ(T) is linearw.r .t.T if we constantly choose b(t) ∈ {b1, · · · , bK}.
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The problem of correlational dueling bandits takes the correlations among arms
into consideration. For any pair of arms bi and b j , we consider that the dependence
between them can be captured by some similarity function ri j ∈ [0, 1], and it satisfies:

• ri j = r ji

• ri j = 0 ⇐⇒ bi and b j are not correlated.

• ri j = 1 ⇐⇒ bi = b j .

We also inherit two properties of the comparison factors from the original dueling
bandit problem:

Strong Stochastic Transitivity. For any triplet of arms bi � b j � bk , we assume
εi,k ≥ max{εi, j, ε j,k}.

Stochastic Triangle Inequality. For any triplet of arms bi � b j � bk , we assume
εi,k ≤ εi, j + ε j,k . This can be viewed as a diminishing returns property.

In the application, we suppose that there exists an underlying utility function over the
arms which we cannot observe directly. The observations are the noisy comparisons
of utilities of different arms. These properties typically hold under the assumption.

Algorithm 13 Correlational Dueling
1: Input: B, T , (κ, τ)
2: Input: cδ(n) =

√
(1/n)log(1/δ)

3: Run: [Parameters-Initialization]
4: Run: [Active-Elimination]
5: return b∗ // Optimal arm

Algorithm 14 Parameters-Initialization
1: W1 ← B // set o f active arms
2: ` ← 1 // rounds
3: ∀b ∈ W`, nb ← 0 // comparisons
4: ∀b ∈ W`, wb ← 0 // priorities
5: ∀b ∈ W`, P̂b ≡ wb/nb, or 1/2 if nb = 0
6: n∗ ≡ minb∈W`nb
7: c∗ ≡ cδ(n∗), or 1 if n∗ = 0 // con f idence radius
8: t ← 0 // total number o f iterations
9: return all new parameters
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Algorithm 15 Active-Elimination
1: while |W` | > 1 and t ≤ T do
2: select bi, b j ∈ W` at random
3: compare selected arms (assume bi � b j)
4: for all bk ∈ W` do
5: update wk , nk by Correlational Update
6: end for
7: if minb′∈W` P̂b′ + c∗ ≤ maxb∈W` P̂b − c∗ then
8: b′← arg minb∈W` P̂b
9: ∀b ∈ W`, delete comparisons with b′ from wb, nb
10: W`+1 ← W`\{b′} // update working set
11: ` ← ` + 1 // new round
12: end if
13: end while
14: return b∗ = arg maxb∈W` P̂b

Algorithm 16 Correlational Update
1: Input: bk, bi � b j
2: wk ← wk + κ(bk ; bi, b j)
3: nk ← nk + τ(bk ; bi, b j)
4: return wk , nk

6.4 Algorithm
Our algorithm, Correlational Dueling , is a correlational dueling bandits algorithm
based on the Beat-the-Mean algorithm(Yue and Joachims, 2011). It uses observa-
tional feedback and the correlational structure to successively remove suboptimal
arms, while keeping the optimal one(s) in the sample space. The inputs to Cor-
relational Dueling are the set of arms B, the total number of iterations T , and
the correlational structure (κ, τ). κ(bk ; bi, b j) and τ(bk ; bi, b j) control the weighted
updates for bk influenced by the comparison between bi and b j .

Parameters-Initialization (Algorithm 14) defines the set of active arms W`, whose
size shrinks as more tests are completed. For each arm b, let nb be the total number
of comparisons between b and other arms, and let wb be the total number of wins
against all other arms. Let P̂b be the empirical average of P(b � b′) for all b′ in W`,
and let P̂b,n be the value of P̂b after n comparisons between arm b and any other
arms. Set the confidence interval of P(b � b′) as

Ĉb,n = (P̂b,n − cδ(n), P̂b,n + cδ(n)),

where cδ(n) =
√
(1/n)log(1/δ), and δ is the confidence that P(b � b′) lies in Ĉb,n.
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The function cδ(n) decreases as the number of comparisons n increases. By properly
setting parameter δ, the optimal reward can be reached within the fixed time horizon.

Active-Elimination (Algorithm 15) is the key part of Correlational Dueling . For
each pair of tests, two arms are randomly chosen fromW`. The randomized selection
method enjoys low-variance total regret in general. For each arm b, the values of
wb, nb and P̂b are updated, as is the corresponding confidence radius c∗. For any
pair of arms b and b′, one dominates the other if their confidence intervals do not
overlap, and the less superior arm is eliminated from W`. The algorithm runs until
the time horizon T is reached, or only one active arm remains.

Correlational Update (Algorithm 16) is the subroutine of Active-Elimination (Algo-
rithm 15) which updates the weights of bk by rules κ(·; ·, ·) and τ(·; ·, ·).

In the classical dueling bandits setting, we assume arms are independent. For
independent arms, if we have one comparison between bi and b j and gets bi � b j ,
we only update the weights for arm bi and b j :

wi ← wi + 1, ni ← ni + 1, (6.1)

w j ← w j, n j ← n j + 1. (6.2)

For large decision spaces (a lot of arms), even though some existing dueling bandits
algorithms achieve optimal cumulative regret, the whole process is still extremely
slow due to the independence among arms. When the arms are correlated and the
correlation between any pair of arms bi and b j is measured properly by ri j , we can
update all active arms at each iteration.

In general, as shown in Algorithm 16, we update for every arm bk after comparing
arms bi and b j (w.l .o.g. assume bi � b j) as follows:

wk ← wk + κ(bk ; bi, b j), (6.3)

nk ← nk + τ(bk ; bi, b j), (6.4)

where κ(·; ·, ·) and τ(·; ·, ·) represent the correlational structure. And it satisfies:

• 0 ≤ κ(bk ; bi, b j) ≤ τ(bk ; bi, b j) ≤ 1;

• if bk = bi, κ(bk ; bi, b j) = τ(bk ; bi, b j) = 1;

• if bk = b j , κ(bk ; bi, b j) = 0, τ(bk ; bi, b j) = 1.
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These updates are based on the assumption that κ(·; ·, ·) τ(·; ·, ·) is an unbiased
estimation of the dependent structure. The Correlational Update subroutine (Algo-
rithm 16) can efficiently update all arms at each iteration. So Correlational Dueling
enjoys fast convergence towards the near optimal arms.

Definition 1 ε-optimal arm. If arm b satisfies ε(b1, b) ≤ ε, then b is an ε-optimal
arm.

Proposition 1 If ∃µ > 0 such that τ(bk ; bi, b j) ≥ µ for every tuple (bi, b j, bk) ∈ B3.
then with high probability, the cumulative time to achieve purely ε-optimal arms
T(ε) is upper bounded by:

T(ε) = O
(

1
µε2 log

1
δ

)
.

Proof. Proposition 1 holds based on the Theorem 1 of Yue and Joachims, 2011.
After t iterations, since τ(bk ; bi, b j) ≥ µ, we have n∗ ≥ µt. Then c∗ = cδ(n∗) =√
(1/n∗)log(1/δ) ≤

√
(1/µt)log(1/δ). Notice c∗ is a function of time step t.

For any arm b which is not ε-optimal (satisfies ε(b1, b) > ε), with probability 1− δ,
P̂b1 − P̂b > εCδ holds for some fixed concentration parameter Cδ. Suppose arm b

has not been eliminated at iteration t. Then from elimination criterion Line 15 of
Algorithm 15 we have εCδ < P̂b1 − P̂b < 2c∗ ≤ 2

√
(1/µt)log(1/δ). The inequality

breaks when t ≥ 4
µε2C2

δ

log 1
δ = O

(
1
µε2 log 1

δ

)
.

Notice, the iteration time T(ε) in Propositions 1 does not depend on |B| = K , which
suggests the fast convergence of Correlational Dueling in large decision spaces.

Figure 6.2: Capture the correlations between two different stimulating configura-
tions.

For the epidural spinal stimulation application, we define the similarity of different
configurations to be the correlation coefficient of electrical potential fields generated
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by the two different electrode stimulation configurations. We only update with the
Correlational Update rule when r(·, ·) ≥ 0. The correlational property arises from
analysis of electric fields applied by the array as shown in Figure 6.2.

The standard notion of correlation coefficient, rXY = E[XY−E[X]E[Y ]]/
√

Var[X]Var[Y ],
is used in our experiments. However, one can use any measure as a basis for rXY as
long as rXY ∈ [0, 1], rXY = 1 when X = Y , and rXY = 0 when X has an “irrelevant”
relation to Y . The coefficient r can take negative values, but the algorithm doesn’t
use negative values to update Equations (5)(6).

For correlated arms, we perform an update for every arm k for which rik, r j k > 0 as
follows:

κ(bk ; bi, b j) ←
log r j k

log rik + log r j k
·

rik + r j k

1 + ri j
, (6.5)

τ(bk ; bi, b j) ←
rik + r j k

1 + ri j
. (6.6)

Proposition 2 If ∃µ > 0 such that ri j ≥ µ for every pair (bi, b j) ∈ B3, then with
high probability, the cumulative time to achieve purely ε-optimal armsT(ε) satisfies:

T(ε) = O
(

1
µε2 log

1
δ

)
.

Proof. If ri j ≥ µ for every pair (bi, b j) ∈ B3, since ri j ≤ 1, τ(bk ; bi, b j) =
rik+rjk
1+ri j

≥ 2µ
2 = µ for every tuple (bi, b j, bk). Substitute it into Proposition 1 and then

Proposition 2 holds.

The Correlational Update subroutine above updates the dueling pair bi, b j in the
same way as if they are independent since (5) and (6) will collapse to (1) and (2) for
bi and b j . For extreme cases, if bi � b j and arms bk is very close to b j , we have
r j k ' 1 and rik ' ri j , the updating rules for arm bk will be close to the updates of
arm b j . If bk is far from both bi and b j , (5) and (6) guarantees that the update for
bk is very small since we acquire little information about bk . Also, if bi and b j are
less dependent (with smaller ri j), we could acquire larger updates for the points in
between.

A Bayesian optimization version can also be applied under this framework. We
would assume the arms are sampled from aGaussian processwithGaussian noise. In
the experiments of this paper, we focus on the correlation coefficient as a compromise
between clinical constraints and an explicit Bayesian updates.
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6.5 Experiments
I first evaluated the algorithm on synthetic data. The algorithm was also applied to
a real clinical application: online optimization for spinal cord stimulation therapy.
The synthetic experiments seek to address the following questions: How does the
algorithm compare against standard dueling bandit algorithms? How effective is it
in terms of convergence? In particular, we compare the algorithm against Beat-the-
Mean, RUCB, and Sparring algorithm with UCB1. These three algorithms are the
representative dueling bandits algorithms designed for independent arms, which do
not however respect the correlational arms.

Simulation Experiments

Figure 6.3: Mean function sampled from a Gaussian process.

These experiments validate the algorithm, and demonstrate its quick convergence
when the arms are dependent. To generate correlated arms, a random functions is
sampled from a zero-mean Gaussian Process with squared exponential kernel over
the sample space D = [0, 1] × [0, 1], uniformly discretized into 50× 50 points. This
function defined the mean function for the 2500 arms, and σ = 0.5 was chosen as
the standard deviation of the arms. One of the random functions is shown in Figure
6.3. The mean function is not necessarily convex or simple. Within each iteration,
2 points in the active set were sampled and their sampling values were compared
to get the {0, 1} feedback of the duel. The duel is completed over for T = 100
iterations for 10000 trials for each of the 4 comparing algorithms. I report a notion
of regret as the stepwise regret instead of the cumulative regret. It converges to zero
as iteration number goes to infinity for every no-regret algorithm. As seen in Figure
6.4, Correlational Dueling converges much faster than the other 3 algorithms since it
takes the advantage of the dependent arms. The independent-armed dueling bandits
algorithms require an exhaustive searching period which is significantly larger than
the time horizon chosen here, before concentrating on the (near) optimal arms.
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Figure 6.4: Regret versus iteration.

Human Experiments
A demonstration of the system for stand training under spinal cord stimulation with
an spinal cord injury patient is shown in Figure 7.2. The subject practices standing
under spinal stimulation using a stand frame for assistant in balance. The training
processes largely follow the procedures in (Rejc, Angeli, and Harkema, 2015). Two
trainers on the left and right protect and assist the subject. Within each experiment, a
specific stimulating pattern (a combination of active electrode selections, the polarity
of the actively selected electrodes, and the stimulation amplitude and frequency)
is applied through the implanted electrode array and its controlling circuitry. An
anonymous short video1 shows the standing quality under different stimuli. The
first part shows a low quality bipedal standing and the second part shows a better
standing, both with electrical spinal cord stimulation. Different standings could
look similar for the non-specialist.

The participants are under stable medical condition and have no painful muscu-
loskeletal dysfunction that might interfere with stand training. They have no motor
response present in leg muscles during transcranial magnetic stimulation, indicating
that there are no strongly active neural pathways connecting cortex and lower limb
muscles. No volitional control can be achieved during voluntary movement attempts
in leg muscles as measured by EMG activity.

We also use clinical knowledge to restrict the decision space from around 4.3 × 107

to be on the order of 103 ∼ 104. It is still a very large decision space considering
the number of trials, or arm pulls, are on the order of 102.

A total of 414 experimental comparisons were done with two patients under the
Correlational Dueling algorithm. Each trial lasted for about 5 minutes. Within

1https://youtu.be/N9hK3ZagUSQ
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each trial, one stimulating pattern was generated by the 16-channel electrode. The
patterns were unchanged within each trial. For a fixed electrode configuration, the
stimulation frequency and amplitude were modulated synergistically in order to find
the best values for effective weight-bearing standing. We optimized the electrode
patterns with Correlational Dueling and did an exhaustive search for stimulation
frequency and amplitude over a narrow range.

Stimulation began while the patient was seated. Then the participant initiated the
sit to stand transition by positioning his feet shoulder width apart and shifting his
weight forward to begin loading the legs.

For the clinical experiments, we cannot create a direct plot for regrets since the
ground truth optimal stimulation is unknown. In the experiments, we observed
the convergence of Correlational Dueling , which is not possible for independent-
armed dueling bandits algorithms. The set of (near) optimal configurations found
by Correlational Dueling is shown in Figure 6.5. I compared the performance of
Correlational Dueling to the optimal selections found heuristically for each patient
by clinicians, which are shown in Figure 6.6. I found that the manual selection is a
subset of the algorithm’s selection, and there exist high performing configurations
(e.g., the 2nd in Figure 6.5) found by the algorithm which are not in the manual
selection. This shows that Correlational Dueling is performing no worse than
specialized therapists.

Figure 6.5: The set of (near) optimal configurations found by the algorithm for a
specific patient (in decreasing order in terms of performances).

Figure 6.6: The set of (near) optimal configurations found by physician’s manual
pick for that specific patient (in decreasing order in terms of performances).
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6.6 Conclusion and Discussion
The analysis and simulation demonstrate that Correlational Dueling indeed exhibits
fast convergence properties comparing to independent-armed dueling bandits algo-
rithm. This algorithm is demonstrated in clinical experiments for the control of
spinal cord stimulation and showed that Correlational Dueling performs no worse
than specialized physicians. This result provides an important step towards employ-
ingmachine learning algorithms in many problems with a large volume of parameter
selection and sequential decision making. These problems could be facilitated by
our algorithm, which simultaneously delivers effective decisions and explores the
decision space based on comparative feedback.

Correlational Update subroutine is easy to incorporate with Beat-the-Mean algo-
rithm to achieve efficient Correlational Dueling . Although we developed Corre-
lational Dueling specifically based on Beat-the-Mean, Correlational Update is a
more general approach which has potential to incorporate with the existing dueling
bandits algorithms. For instance, it can incorporate with RUCB to get a variant of
RUCB for dependent arms by updating the wins wi j with Correlational Update .

To my knowledge, this is the first applied algorithm towards spinal cord injury treat-
ments. The algorithm could find a proper set of optimal stimulating configurations
within the test time horizon. The approach achieved good performance in both
simulations and human experiments. The paraplegic human patients could achieve
full-weight standing under the stimulation provided by this algorithm.
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C h a p t e r 7

HUMAN EXPERIMENTS: UNDERSTANDING HUMAN
STANDING VIA EMG MEASUREMENTS

Chapter 6 describes a procedure to optimize stimuli based on simple ranking of
patient response. In order to get reliable measurements of performance beyond
comparisons, we need to represent the quality of human standing quantitatively.
Bipedal standing and walking are generally hard to achieve for both animals and
robots. A human being, as an exception, has advanced mechanical structure and
control system that is well-suited for bipedal movements. This chapter evaluates
the standing behavior of paralyzed patients under spinal cord stimulation using
Electromyographic recording (EMG). The quality of bipedal standing needs to be
quantified to achieve an automatic approach.

7.1 Introduction
Bipedal standing and walking have been studied for both understanding of biological
mechanisms and developing humanoid robots. Achieving stable standing is often
considered to be easy for healthy adults and bipedal robots. But it is not trivial
for young children when they are learning to stand. Our problem is motivated by
the clinical research which aims to help paralyzed patients to stand up. Recent
studies demonstrate the possibility of recovering motor function after severe SCI.
Previous research (Harkema et al., 2011; Rejc, Angeli, and Harkema, 2015) has
shown that electrical stimulation applied to the spinal cord via electrodes arrays
implanted in the epidural space over the lumbosacral area (as shown in Figure 7.1)
enables paralyzed patients to achieve full weight-bearing standing, improvements
in stepping, and partial recovery of lost autonomic functions. These patients can
only maintain standing under electrical spinal cord stimulation. We call this kind of
standing “stimulated standing” to distinguish from the natural standing of healthy
people. Compared to natural standing, artificial standing has several characteristics:
(1) Standing is mainly initiated by stimulation and sensory input instead of the pa-
tient’s own will.
(2) The activity and strength of major muscle groups can be very different from the
activity and strength under natural standing.
(3) Balance is much more difficult to achieve for standing. It requires fine tuning of
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the stimuli and training by physicians.

Figure 7.1: Spinal Cord Stimulation

As discussed in Chapter 6, a 16-electrode array is implanted for stimulation. The
stimulation consists of electrical pulse trains applied to selected electrodes. The
possible stimulus patterns (the choice of active electrodes and their polarity, the
pulse amplitude and width, and the pulse train frequency) generate a huge space
of parameters we can choose from. The choice of the parameters was optimized
over time by a bandit algorithm in previous chapters. This chapter explores how to
evaluate the stimulus response via 12-channel sEMG recording during the stimuli
testing experiments.

To the best of my knowledge, this work is the first attempt to quantify standing
performance of SCI patients using multi-channel sEMG. It is shown that even with
very limited number of features and simple linear predicting model, the 12-channel
EMG recording can provide accurate, fast and robust estimation for the quality of
bipedal standing. Moreover, the total number of sEMG channels can be significantly
reduced while keeping a high accuracy for estimation.
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7.2 Related Work
Electrical stimulation can be used in multiple ways to enable or improve motor
function in SCI. The data analyzed in this paper is relevant to the process of epidural
spinal stimulation for human standing recovery. It has been shown by (Harkema
et al., 2011; Rejc, Angeli, and Harkema, 2015) that when properly applied, this type
of stimulation can enable paralyzed patients to achieve full weight-bearing standing.
The results obtained in this intervention are not derived by direct stimulation of
specific postural muscles, but by excitation of natural postural control circuits.

Functional Electrical Stimulation (FES), where electrical currents are applied to the
intact peripheral motor nerves of paralyzed muscles to elicit muscle contractions,
can provide significant levels of motor function (Peckham and Knutson, 2005). It is
a widely used technique after SCI to enhancemuscle strength andmovements. EMG
signals are used for on-line control of FES (Frigo et al., 2000). Posture shifting after
spinal cord injury using functional neuro-muscular stimulation has been studied in
computer simulation (Audu et al., 2011). Unlike FES, which has a direct mapping
between neuro-muscular stimulation and muscle activity, the mapping between
spinal cord stimulation and muscle activity is largely unknown. However, EMG
activity is important to the use of both of these electrical stimulation modalities in
SCI.

Traditional methods such as time-domain and frequency-domain analyses have been
widely utilized in EMG pattern recognition (Phinyomark, Phukpattaranont, and
Limsakul, 2012) Using EMG to predict movement, and control of robotic prostheses
has been widely studied, as learning EMG control of a robotic hand (Bitzer and Van
Der Smagt, 2006) or a wrist exoskeleton (Khokhar, Xiao, and Menon, 2010). EMG
signals has also been used to control rehabilitation exoskeleton by paralyzed patients
(Yin, Fan, and Xu, 2012), but not under the condition of spinal stimulation.

Biomechanical models are often built to simulate human standing and movement.
They range from elegant inverse pendulum models (Winter, 2009), to more compli-
cated musculo-skeletal models such as (Geyer and Herr, 2010), (Wang et al., 2012),
and (Mordatch et al., 2013). Biomechanics and motor control of human move-
ment are studied for the understanding of biological mechanisms, the developing of
humanoid robots, and the virtual animation of human beings.

Healthy human plans for standing as a single task instead of the coordination of
multiple tasks has been considered. The motor control mechanisms of severe SCI
patients with spinal cord stimulation are largely unknown.
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7.3 Methods
Data Acquisition and analysis.

EMG and ground reaction forces data were recorded at 2000 Hz using a custom-
written acquisition software (National Instruments, Austin, TX). EMG activity of
right (R) and left (L) gluteus maximus (GL), medial hamstring (MH), rectus femoris
(RF), vastus lateralis (VL), tibialis anterior (TA), medial gastrocnemius (MG), and
soleus (SOL) was recorded by means of bipolar surface electrodes with fixed inter-
electrode distance. Bilateral EMG from the iliopsoas (IL) was recorded with fine-
wire electrodes. Two surface electrodes were placed symmetrically lateral to the
electrode array incision site over the paraspinal muscles in order to record the
stimulation artefacts, which were used as indicators of the stimulation onset (time
points when the stimulus pulses were applied). The time between stimulation onset
and the EMG response onset was defined as the latency time of the evoked response.
The amplitude of spinal cord evoked responses was quantified by peak to peak
amplitude. The differences in amplitude were statistically evaluated by Student’s
paired t-test. To investigate the variability of the spinal cord evoked responses
generated at different stimulation frequencies, the coefficient of variation (standard
deviation / mean) was calculated over 20 ms after the onset of the spinal cord
evoked responses (N = 20), which were selected within a representative portion of
continuous (not rhythmic) EMG recording. Ground reaction forces were collected
using a high-resolution pressure sensing mat (HR mat system, TEKSCAN, Boston,
MA).

Human Experiments
A demonstration of the spinally stimulated human stand training experiments with
an SCI subject is shown in Figure 7.2. The subject practices standing under spinal
stimulation using a stand frame for assistance in achieving balance. A specific
stimulating pattern is shown in the right part of Figure 7.2. Each stimulus is a
combination of active electrode selections (red and gray sites), the polarity of the
actively selected electrodes (red as anodes and gray as cathodes), and the stimulation
amplitude and frequency. Within each experiment, a different stimulus is chosen
by an active learning algorithm (Sui, Yue, and J. W. Burdick, 2017) and applied
through the implanted electrode array and its controlling circuitry. Throughout the
whole experiment, a variety of different stimulating patterns have been tested. The
standing quality under stimulation ranged from independent stand to max-assisted
standing as shown in Table 7.1. Multi-channel EMG signals were recorded and
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quantitative scores for standing were provided by physicians.

Figure 7.2: The Standing Experiment under spinal stimulation.

The participant is under stable medical condition and has no painful musculoskeletal
dysfunction that might interfere with stand training. He has no motor response
present in legmuscles during transcranial magnetic stimulation, indicating that there
are no strongly active neural pathways connecting cortex and lower limb muscles.
No volitional control can be achieved during voluntary movement attempts in leg
muscles as measured by EMG activity.

A total of 109 experimental trials were done with the same patient. Each trial
lasted around 5 minutes. Within each trial, one stimulating pattern was applied to
the 16-channel electrode. The patterns were unchanged within each trial. For a
fixed stimulating pattern, the stimulation frequency and amplitude were modulated
synergistically in order to find the best values for effective weight-bearing standing.
Different stimulating patterns are exploited along the trials in order to find the
most effective ones. Specific electrode configuration adjustments were defined
to seek improvements of different aspects of motor output. The guideline for
parameter-tuning is outlined in our previous literature along with results of previous
experiments performed on the same research participant. These constraints together
with machine learning algorithms built on top of Sui and J. Burdick, 2014b and Sui,
Gotovos, et al., 2015 were used to determine which electrode configurations, out
of those potentially available ( ∼ 4.3 × 107 combinations of electrodes), were to be
examined in order to seek improvements of motor function for standing.

All EMG signals were sampled and recorded at 2000 Hz. Signals from right (R)
and left (L) gluteus maximus (GL), medial hamstring (MH), vastus lateralis (VL),
tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) were recorded
by surface EMG electrodes. These six muscle groups are widely known to be
activated during standing and walking motion.
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The patient performed experimental and training sessions for standing using a custom
designed standing frame composed of horizontal bars anterior and lateral to the
individual. These bars were used for upper extremity support and balance assistance
as needed. If the knees or hips flexed beyond a safe standing posture, external
assistance was provided at the knees to promote extension, and at the hips to
promote hip extension and anterior tilt. Facilitation was provided either manually
by a trainer or by elastic bungee cords, which were attached between the two vertical
bars of the standing apparatus. Mirrors were placed in front of the participant and
laterally to him, in order to allow a better perception of the body position via visual
feedback, conditioned on the lack of proprioceptive sensory feedback.

Stimulation began while the subject was seated. Then the participant initiated the
sit to stand transition by positioning his feet shoulder width apart and shifting his
weight forward to begin loading the legs. As shown in Figure 7.2, the participant
used the horizontal bars of the standing apparatus during the transition phase to
balance and to partially pull himself into a standing position. Trainers positioned at
the pelvis and knees manually assisted the subject as needed during the sit to stand
transition.

During sitting, little or negligible EMG activity of lower limb muscles was induced
by epidural stimulation, showing that theweight-bearing related sensory information
was needed to generate sufficient EMG patterns to effectively support full weight-
bearing standing in spinally stimulated SCI.

Table 7.1 illustrates how did the clinicians quantify standing quality. Traditional
measurements like center of pressure(COP) and center of mass(COM) cannot char-
acterize the standing for paralyzed patients sufficiently. Typically, spinal cord injured
patients do not stand and balance like normal subjects. Since there are no widely
accepted quantitative measures for standing quality of paralyzed patients, we de-
veloped a 1-10 discrete scoring system. For scores 1 to 5, the standing is not
independent but with less and less assistance by bungees or trainers. With limited
experimental resources, the max/mod/min level of assistance is a robust measure we
could get from experienced assisting therapists. For scores 6 to 10, the standing is
independent and full-weight bearing. As the score increases, the standing is more
natural, stable and lasts a longer time. After every trial, a score on general standing
quality was assigned. Both video and multi-channel EMGwere recorded during the
experiments.

The research participants signed an informed consent for electrode implantation,
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Table 7.1: The Scoring Criterions

Score Descriptions
1-2 Assisted by bungees or trainers (max)
3-4 Assisted by bungees or trainers (mod)
5 Assisted by bungees or trainers (min)
6-7 Hip: Not assisted, back arched

Knee: Not assisted, loss of extension during shifting
8-10 Hip: Not assisted, back straight

Knee: Not assisted, extended during shifting

stimulation, and physiological monitoring studies approved by the University of
Louisville and the University of California, Los Angeles Institutional Review
Boards. The individuals described in this chapter have also given written informed
consent to publish these case details.

Standing Model
Figure 7.3 shows the musculoskeletal model of the legs and trunk used in this work.
It illustrates the locations of the uniarticular muscle tendon units (MTU) and the
joints they actuate. The hip joint is extended by the gluteal muscles (GL) and
flexed by the hip flexor muscles (HFL), while the knee joint is extended by the
vastus lateralis (VL) and flexed by medial hamstring (MH). The tibialis anterior
(TA) and the soleus (SOL) generate dorsiflexion and plantarflexion torques at the
ankle, respectively. Medial gastrocnemius (MG) is also taken into consideration.
The choice of muscles is based on previous clinical experiments and the planar
model proposed in Geyer and Herr, 2010.

For the control of standing, this model could be redundant subject to the skeletal
constraints. A subgroup of muscles {GL, VL, SOL, TA} might be enough to keep
the standing posture stable. We will experimentally evaluate the redundancy of
multi-channel EMG signals for predicting standing quality in the result section.

EMG Processing
Feature Selection. The 12-channel EMG signals of one experiment are shown in
Figure 7.4 and Figure 7.5 for a single trial of the experiment. Traditional methods
such as time-domain and frequency-domain analyses have been widely utilized in
EMG pattern recognition (Phinyomark, Phukpattaranont, and Limsakul, 2012), and
they have a good capability to track muscular changes. Other methods like Bayesian
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Figure 7.3: Musculo-skeletal Model.
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Figure 7.4: 12-channel EMG Signal. ’R GL’ represents muscle GL on the right leg,
etc. Amplitudes are not unified among figures for better representation.

estimations (Sanger, 2007) and linear filtering also achieves good estimations on
muscle forces. We first consider simple and robust linear models with one estimator
per channel. For each EMG channel, we calculate themean power within 50 seconds
at the early stage of standing and use it as the only feature for that channel. These 12
features were extracted in each trial and used in LDA and linear regression models
for simple and robust predictions.

For themulti-class SVM features selection, we drew inspiration from previous works
implementing machine learning techniques to predict forces applied at joints using
EMG signals for exoskeleton control (Khokhar, Xiao, and Menon, 2010). A 4th

order Auto-Regressive(AR)model was fit to a 250mswindow of each EMG channel
and the four coefficients (excluding the bias) were extracted as features. Thus, for
12-channels, a total of 48 features were extracted per observation. By performing
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Figure 7.5: 12-channel EMG Signal. ’R GL’ represents muscle GL on the right leg,
etc. Amplitudes are not unified among figures for better representation.

Figure 7.6: First 3 principal components of EMG dataset

10-fold cross validation on the optimumnumber of principal componentswe reduced
the training set to the top 19 dimensions which capture 98% of the variance. Figure
7.6 shows the standing scores plotted against the first three principal components of
the SVM training set. Even in 3-dimensions we see a high-degree of separability.

Model Selection.

As shown in Table 7.1, the data can be coarsely fit into 2 groups: good performances
(not assisted, with score > 5) and bad performances (assisted, with score ≤ 5).
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Linear discriminant analysis (LDA) is applied on the 2-class training data and
predict whether a new group of EMG signals represents good or bad standing
performance. A kernel-SVM model is trained for better accuracy. The SVM is
trained to directly predict the standing quality score by translating the problem to a
multi-class classification task with 10 classes (scores 1 − 10). Each standing score
corresponds to one class. A radial basis function with a scaling factor γ = 0.79 is
used for the SVM kernel and a box constraint level of C = 11 was used to control
the number of support vectors.

To show the robustness of EMG signals, the standing quality scores are estimated by
directly applying linear regression on the scores from physicians v.s. 12-dimension
power features.

7.4 Results
Estimating Standing Qualities
The original 12-channel surface EMG represents 6 muscle groups (GL, VL, MH,
TA, MG, SOL) for both legs. For one of the high-performing standing experiments,
the EMG waveform is shown in Fig. 7.5. ’R GL’ represents right leg muscle GL,
etc. The majority of muscles have strong and stationary EMG signals in this case.

First apply the LDA model with 12-dimension power features as input. The classifi-
cation of good or bad performances yields an accuracy at 89.91%, which is a quite
high rate conditioned on the limited number of features and simple LDA model.
This classifier is good enough to be used in practice for a fast and robust decision
on the quality of standing.

The kernel-SVM model yields 93.9% classification accuracy on the 10-class dis-
crimination task upon 10-fold cross validation which confirms our belief that EMG
signals are accurate predictors of bipedal standing. Moreover, using a more sophis-
ticated model enables us to achieve higher classification accuracy then the linear
model even with more classes. From the confusion plot in Fig. 7.7., one can see
that most predictions lie within the range of the super diagonals indicating that it is
highly unlikely for the SVM to mis-predict a score by a difference greater than 1.
The percentages indicate the rate of true positives (white) and false negatives (red).
The slots with rates less than 3% were omitted for succinctness. A standing score
of 4 is the most often mis-predicted class due to its similarity with score 5 which
can be attributed to the fact that these scores lie on the boundary between the mod
and min level of assistance.
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Figure 7.7: Confusion matrix of predictions made with SVM

To estimate the score for each experiment from EMG features, linear regression is
also applied with 12-channel power features as inputs. As shown in Fig. 7.8, the
x-axis represents true scores and y-axis measures the estimates by linear regression.
The red line represents perfect match y = x. Each dot represents the true and
estimated score of one experiment. The dots would be scattered close to the red
line if the estimator is good. Within the 109 experiments, 57.8% of the estimates
are within the region of true score ±1. And 93.6% of the estimates are within the
region of true score ±2. Also 98.2% of the estimates are within the region of true
score ±3. The standard deviation of estimating errors is 1.19, which is quite small
comparing to the 1-10 scoring range.
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Figure 7.8: Regression on the Scores with 6 pairs (12-channel) EMG.
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Reducing EMG Channels
Although more channels provide better estimation in general, in practice one may
not have access to as many channels for all experiments. Also, fewer channels makes
experiments efficient in time and budget. We investigate the possibility to reduce
the number of EMG channels while keeping a high accuracy rate.

To choose the optimal k ∈ {1, 2, 3, 4, 5, 6} sub-groups of muscles from the existing
6 muscle groups, we evaluate the classification/regression performance of the total(6

k

)
muscle combinations. The optimal combination of muscle groups for each k is

shown in Table 7.2. The single best muscle group for prediction is soleus (SOL).

Table 7.2: The Optimal Reducing Order of EMG Channels

Num. of Pairs Optimal Combinations of EMG Channels
6 GL, VL, MH, TA, MG, SOL
5 VL, MH, TA, MG, SOL
4 VL, TA, MG, SOL
3 VL, MH, SOL
2 VL, SOL
1 SOL

Notice, this reduction process is different from principal component analysis (PCA)
which reduces the feature space by picking the top independent components. Our
approach aims at achieving good classification/regression by using fewer number
of EMG channels. The chosen EMG channels may not be independent with each
other.

Table 7.3 shows the optimal classification results with different number of muscle
groups (channels) with 2-class LDA classification and 10-class SVM classification.
For both models, the accuracy is slowly decreasing as the number of chosen muscle
groups (k) decreases from k = 6 to k = 2. A quite high accuracy of 87.16% (for
LDA, and 89.5% for SVM) is maintained even at k = 2. The muscle groups vastus
lateralis (VL) and soleus (SOL) are the optimal combination for k = 2. One of
them (SOL) is ankle flexor and the other (VL) is knee extensor as shown in 7.3. The
accuracies drop significantly from k = 2 to k = 1. This makes sense since at lease 2
actuators are needed to control the 2 degrees of freedom. As a 2-class classification,
LDA keeps a higher accuracy rate than SVM at k = 1.
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Table 7.3: The Accuracies with Reducing Channels

Channels v.s.Accuracies LDA(2-class) SVM(10-class)
GL, VL, MH, TA, MG, SOL 89.91% 93.9%
VL, MH, TA, MG, SOL 88.91% 93.6%
VL, TA, MG, SOL 88.07% 93.0%
VL, MH, SOL 87.16% 92.7%
VL, SOL 87.16% 89.5%
SOL 80.73% 63.5%

7.5 Conclusions
Predictions
In this chapter, it is shown that multi-channel EMG recording can provide accurate,
fast, and robust estimation for the quality of bipedal standing under spinal stimula-
tion. I tested the effectiveness of spinal cord stimulation on a clinically sensory and
motor complete participant. I introduced a musculo-skeletal model containing the
major muscle groups that are involved in stable standing, and used it to explain the
feasibility of reducing EMG channels.

The potential for reducing EMG channels was experimentally evaluated, which con-
firms that the 12-channel EMG signals are highly redundant for predicting standing
quality. I showed the optimal combinations provide high scoring accuracy, and
this performance can be maintained at a high level even with few channels. This
fact contradicts to my initial assumption that multiple muscle group coordination is
essential, with no dominant component to be expected. However, better estimation
for the standing quality requires recording from larger number of muscle groups.

There are multiple ways to improve the accuracy of the predictions. This chapter
already demonstrated that using more elaborate features with an SVM achieves
high prediction accuracy even for the multi-class problem. Including even more
features from raw EMG signals and using finer picked/tuned models is one venue
for improvement. As mentioned in Section 7.1, the activity and strength of major
muscle groups in stimulated SCI patients can be very different from the activity
and strength under natural standing. Usually, it contains an early response strongly
modulated by the electrical stimulation and a late response which is more like
the EMG patterns from healthy subjects. Separating these two stages for feature
extraction should also improve the predictability. Under a budget constraint on the
number of channels, asymmetric placement of EMG sensors on left and right legs
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could also improve the accuracy assuming the stimulation effects equally for the two
sides. We could also consider adding more physical measurements for prediction
conditioned on the experimental environments.

In general, the scoring, proposed in this chapter estimators can provide reliable scores
on the quality of patient standing when experienced physicians are not available
during experiments.

Sensor Placement Efficiency
I have shown the optimal EMG channel combination subject to a budget constraint
on the number of channels. What if we have more EMG sensors to place? Previous
research (Gartman, 2008) suggested that the prime muscle targets should be a set
of 8 × 2 muscles supporting 42% of the standing postures. Coactivation of an extra
4 × 2 muscles increased the percentage of feasible postures to 71%. We can sample
from this larger space and it may reduce to a better group of 12 channels than the
current 12 channels.

Combining with Exoskeleton
A large group of people including spinal cord injured patients often need rehabilita-
tion robotic systems to provide functional gait therapies or assist their standing and
moving. Current assistive standing systems rarely takes feedback other that direct
force measurements from users. The automatic approach to quantify the quality of
bipedal standing by EMG could provide estimation of standing quality to the assis-
tive systems for better standing control. More efficient gait therapies and movement
control could be achieved by incorporating EMG measures into the rehabilitation
robotic systems.
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C h a p t e r 8

CONCLUSION AND FUTURE WORK

8.1 Conclusions
This dissertation develops a series of new algorithms for optimization in uncertain
environments: Rank-Comparison, SelfSparring-IW, SelfSparring, Correlational
Dueling , Local-UCB, and SafeOpt. The theoretical guarantees on the performances
for Rank-Comparison, SelfSparring, and SafeOpt are provided.

The algorithms have successfully managed the optimization process under uncer-
tainties. For spinal cord injury therapy, the online learning of spinal cord stimulation
has not previously been successfully executed by any algorithms with human pa-
tients. These results represent a substantial step toward both autonomously adaptive
neural stimulation for spinal cord injury and lower-cost EES-based therapies for
patients. These techniques may also be applicable to other multi-electrode neu-
ral stimulation problems, such as deep brain stimulation and functional electrical
stimulation, etc.

Optimization with relative feedback
Chapter 3 and Chapter 4 of this dissertation develop the simple and efficient Self-
Sparring and RankComparison algorithms for optimization with relative feedback.
These chapters also develop theoretical, high probability bounds on the regret of the
algorithms.

Safe exploration for optimization
Chapter 5 describes the safe optimization approach with Gaussian processes. We
investigated the novel problem of trading exploration and exploitation for func-
tion optimization under safety constraints. In particular, we proposed SafeOpt, an
efficient algorithm that balances the tradeoff between expanding, exploring and op-
timizing over the reachable safe region. We prove strong theoretical performance
guarantees for SafeOpt, bounding its sample complexity to achieve an ε-optimal
solution while guaranteeing safety with high probability.

In simulation studies, including both synthetic and real data, SelfSparring and
SafeOpt algorithms attained state-of-the-art performances.
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Therapy for spinal cord injuries
Chapter 6 studies the effectiveness of Correlational Dueling with human exper-
iments. It is the first applied algorithm on spinal cord injury treatments. The
algorithm could find a proper set of optimal stimulating configurations within the
test time horizon. This chapter shows good performances in both simulations and
human experiments. The paralyzed human patients could achieve full-weight stand-
ing under the stimulation provided by the algorithm.

Quantifying patient standing
Chapter 7 shows that multi-channel sEMG recording can provide accurate, fast and
robust estimation for the quality of bipedal standing. We tested the effectiveness
of spinal cord stimulation on a clinically sensory and motor complete participant.
It showed that the patient was able to stand over-ground bearing full body-weight
without any external assistance, using their hands to assist balance. This thesis
demonstrates a musculo-skeletal model containing the major muscle groups that are
involved in stable standing and uses it to explain the feasibility of reducing EMG
channels.

8.2 Future Works
Towards general Safe Optimization
This thesis considers the safe optimization problem within which the safety function
and reward function are the same. A more general framework would treat safety
constraint and reward function separately. It is also interesting to consider multiple
safety constraints simultaneously.

Towards more complex stimulation
The optimization over a high dimensional input space of stimulating configurations
is studied in this thesis. However, an even larger input space is waiting to be
explored if we consider stimulation in temporal space. A sequence of combined
configurations may enhance the performance more than single ones as we’ve already
seen in some pilot clinical experiments. Stimulation for multiple tasks is also an
important issue, as we are extending the control for standing to stepping and more
complex behaviors.
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Quantify the quality of human behaviors
For gait in particular, these techniques generally require extensivemanual annotation
of video recordings, which would necessitate a long feedback loop. If a rough but
sufficient analysis could be automated (e.g., pattern recognition on the raw motion
capture trajectories, or on the EMG activity), these activities could be used in real
time. We are looking forward to building an automatic grading system based on the
classification and regression of multiple measures of human behaviors.

Towards a full autonomous system
Another improvement in clinical experiments would be to make the entire system
fully autonomous. All experiments done by this thesis were performed with human
researchers controlling the stimulator and the recording system, while the algorithm
performed an executive or directing role. This architecture has a number of advan-
tages, among them that the human experimenter provides a fail-safe with respect
to data acquisition (e.g., if an element of the data processing fails, the observations
of the human experimenter can often be used to reconstruct the missing informa-
tion). Creating an integrated system in which the algorithm is controlling the data
acquisition in (nearly) real time would allow a substantial acceleration of the testing
process, and would constitute a very substantial step toward the goal of autonomy,
a crucial requirement for a home-use or implantable device. For real time data
acquisition and control, the electrode array should be controlled through software
interface instead of manual input. A safety system would have to be created, that
would allow the user to veto stimuli and terminate the delivery of stimuli which
were distressing to the patient.
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A p p e n d i x A

FURTHER EXPERIMENTS

Synthetic Functions. We evaluated on a range of 16-arm synthetic settings derived
from the utility-based dueling bandits setting of Ailon, Z. Karnin, and Joachims
(2014). For the multi-dueling setting, we used the following preference functions:

Name Distribution of Utilities of arms
1good 1 arm with utility 0.8, 15 arms with utility 0.2
2good 1 arm with utility 0.8, 1 arms with utility 0.7, 14 arms with utility 0.2
6good 1 arm with utility 0.8, 5 arms with utility 0.7, 10 arms with utility 0.2
arith 1 arm with utility 0.8, 15 arms forming an arithmetic sequence between 0.7 and 0.2
geom 1 arm with utility 0.8, 15 arms forming a geometric sequence between 0.7 and 0.2

Table A.1: 16-arm synthetic datasets used for experiments.



122

0 10000 20000
0

2500

5000

7500

10000
linear/1good

0 10000 20000
0

2500

5000

7500

10000
natural/1good

0 10000 20000
0

3000

6000

9000

12000
logit/1good

0 10000 20000
0

2500

5000

7500

10000
linear/2good

0 10000 20000
0

2500

5000

7500

10000
natural/2good

0 10000 20000
0

3000

6000

9000

12000
logit/2good

0 10000 20000
0

2000

4000

6000

linear/6good

0 10000 20000
0

2000

4000

6000

natural/6good

0 10000 20000
0

2500

5000

7500

logit/6good

0 10000 20000
0

2000

4000

6000

linear/arith

0 10000 20000
0

2000

4000

6000

natural/arith

0 10000 20000
0

2000

4000

6000

logit/arith

0 10000 20000
0

2000

4000

6000

8000
linear/geom

0 10000 20000
0

2000

4000

6000

8000
natural/geom

0 10000 20000
0

2000

4000

6000

8000
logit/geom

BTM

IF

Sparring UCB

Sparring EXP3

Double TS

IndSelfSparring

MergeRUCB

RUCB

RMED1

Figure A.1: Average regret vs iterations for each of 8 algorithms and 15 scenarios.
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Figure A.2: Scores v.s. Similarity

Figure A.3: Scores v.s. Configurations
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Figure A.4: Correlations between similarity measures and performance scores
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A p p e n d i x B

PROOFS

B.1 Proofs for Ch3
Lemma 3. If approximate linearity holds, competing with a drifting but converging
distribution of arms guarantees convergence for Thompson Sampling.

Proof. Let Dt be the drifting but converging distribution and Dt → D as t → ∞.
Let bT be the drifting mean bandit of DT after T iterations. Since Dt is convergent,
∃T > K so that

φ(sup
t>T

bT, inf
t>T

bT ) < φ(b1, b2)

where φ(b1, b2) is the preference between the best two arms. The mean value of
feedback by playing arm i is φ(bi, bT ). If bT is fixed, by Lemma 1, Thompson
sampling converges to the arm: i∗ = argmaxi φ(bi, bT ). For drifting bT , define
b+ = supt>T bT and b− = inft>T bT .

Thompson sampling convergence to the optimal arm implies that:

φ(b1, b+) > φ(bi, b−)

for all i , 1. Consider:
φ(b1, b+) − φ(b2, b−)

= φ(b1, b+) − φ(b2, b−) + φ(b1, b−) − φ(b1, b−)

= φ(b1, b−) − φ(b2, b−) + φ(b2, b+) − φ(b1, b−)

≥ γ · [φ(b1, b2) − φ(b+, b−)] > 0

by approximate linearity.

So we have φ(b1, b+) > φ(b2, b−). Since φ(b2, b−) > φ(bi, b−) for i > 2. Then we
have

φ(b1, b+) > φ(bi, b−)

holds for all i , 1. So Thompson sampling converge to the optimal arm.

Lemma 4. For the K-armed stochastic MAB problem, Thompson Sampling has
expected regret: E[RMAB

T ] = O
(K
∆

ln T
)
, where ∆ is the difference between expected

rewards of the best two arms. Proof. This lemma is a direct result from Theorem 2
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of Agrawal and Goyal (2012) and Theorem 1 of Kaufmann, Korda, and RémiMunos
(2012).

Lemma 5. Running IndSelfSparring with infinite time horizon will sample each
arm infinitely often. Proof. Proof by contradiction.
Let B(x;α, β) =

∫ x
0 tα−1(1 − t)β−1dt. Then the CDF of Beta distribution with

parameters (α, β) is
F(x;α, β) = B(x;α, β)

B(1;α, β) .

Suppose arm b can only be sampled in finite number of iterations. Then there exists
finite upper bound Tb for αb + βb. For any given x ∈ (0, 1), the probability of
sampling values of arm b θb greater than x is

P(θb > x) = 1 − F(x;αb, βb)

≥ 1 − F(x; 1,Tb − 1) = (1 − x)Tb−1 > 0

Then by running IndSelfSparring, the probability of choosing arm b after it has been
chosen Tb times:

P(θb ≥ maxi{θbi }) ≥
∏

i

P(θb ≥ θbi )

is strictly non-zero. That violates any fixed upper bound Tb.

Theorem 1. Under Approximate Linearity, IndSelfSparring converges to the opti-
mal arm b1 as running time t →∞: limt→∞ P(bt = b1) = 1.

Proof. IndSelfSparring keeps one Beta distribution Beta(αi(t), βi(t)) for each arm bi

at time step t. Let µ̂i(t) = αi(t)
αi(t)+βi(t) , σ̂

2
i (t) =

αi(t)βi(t)
(αi(t)+βi(t))2(αi(t)+βi(t)+1) be the empirical

mean and variance for arm bi.
Obviously, σ̂2

i (t) → 0 as (αi(t)+ βi(t)) = (Si(t)+Fi(t)) → ∞. By Lemma 5 we have
(Si(t)+Fi(t)) → ∞ as t →∞. That shows every Beta distribution is concentrating to
a Dirac function at µ̂i(t)when t →∞. Define µ̂(t) = [µ̂1(t), · · · , µ̂K(t)]T ∈ [0, 1]K to
be the vector of means of all arms. Then µ = {µi = P(bi � b1)}i=1,··· ,K is a stable
point for IndSelfSparring in the K dimensional mean space.

Suppose there exists another stable point ν ∈ [0, 1]K(ν , µ) for IndSelfSparring,
consider the following two possibilities: (1) ν1 = maxi{νi} and (2) ν1 < maxi{νi} =
ν j .

Since the Beta distributions for each arm bi is concentrating to Dirac functions at νi,
P(θi > θ j) ∈ [I(νi > ν j)− δ, I(νi > ν j)+ δ] for any fixed δ > 0 with high probability.
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If (1) holds, then ν1 will converge to 1
2 = µ1 and νi will converge to P(bi � b1) = µi.

Thus ν = µ. Contradict to ν , µ.

If (2) holds, then ν j will converge to 1
2 = µ1 and ν1 ∈ [P(b1 � b j) − δ, P(b1 �

b j) + δ] for any fixed δ > 0 with high probability. Since P(b1 � b j) ≥ 1
2 + ∆,

ν1 ∈ [P(b1 � b j) − δ, P(b1 � b j)+ δ] ≥ 1
2 +∆− δ . Since δ can be arbitrarily small,

we have ν1 ≥ 1
2 + ∆ − δ >

1
2 + δ > ν j . That contradict to ν1 < ν j .

In summary, µ = {µi = P(bi � b1)}i=1,··· ,K is the only stable point in the mean
space. As µ̂(t) → µ, P(bt = b1) → 1.

Define Pt = [P1(t), P2(t), ..., PK(t)] as the probabilities of picking each arm at time
t. Let P = {Pt}t=1,2,... be the sequence of probabilities w.r.t. time. Assume
IndSelfSparring is non-convergent. It is equivalent to say that P is not converging
to a fixed distribution. Then ∃δ > 0 and arm i s.t. the sequence of probabilities
{Pi(t)}t satisfies:

lim sup
t→∞

Pi(t) − lim inf
t→∞

Pi(t) > δ

w.h.p. which is equivalent of having:

lim sup
t→∞

µ̂i(t) − lim inf
t→∞

µ̂i(t) > ε

w.h.p. for some fixed ε > 0. This violates the stability of IndSelfSparring in the K

dimensional mean space as shown above. So as t →∞, µ̂(t) → µ, P(bt = b1) → 1.

Lemma 6. Under Approximate Linearity, selecting only one arm via Thompson
sampling against a fixed distribution over the remaining arms leads to optimal regret
w.r.t. choosing that arm. Proof. We first prove the results for m = 2. Results for
any m > 2 can be proved in a similar way.

Consider Player 1 drawing arms from a fixed distribution L. Player 2’s drawing
strategy is an MAB algorithm A.

Let RA(T) be the regret of algorithm A within horizon T . B(T) = supE[RA(T)] is
the supremum of the expected regret of A.

The reward of Player 2 at iteration t is φ(b2t, b1t). Reward of keep playing the
optimal arm is φ(b1, b1t). So the total regret after T rounds is

RA(T) =
T∑

t=1
[φ(b1, b1t) − φ(b2t, b1t)]

Since Approximate Linearity yields

φ(b1, b1t) − φ(b2t, b1t) ≥ γ · φ(b1, b2t)
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We have

E[RA(T)] = EEb1t∼L

[
T∑

t=1
[φ(b1, b1t) − φ(b2t, b1t)

]
≥ EEb1t∼L

[
T∑

t=1
γ · φ(b1, b2t)

]
= γ · E

[
T∑

t=1
φ(b1, b2t)

]
= γ · E[R(T)]

So the total regret of Player 2 is bounded by

E[R(T)] ≤ 1
γ
E[RA(T)] ≤

1
γ

supE[RA(T)] =
1
γ

B(T)

Theorem 2. Under Approximate Linearity, IndSelfSparring converges to the opti-
mal arm with asymptotically optimal no-regret rate of O(K ln(T)/∆). Where ∆ is
the difference between the rewards of the best two arms.

Proof. Theorem 1 provides the convergence guarantee of IndSelfSparring. Corol-
lary ?? shows one-side convergence for playing against a converging distribution.

Since IndSelfSparring converges to the optimal arm b1 as running time t → ∞:
limt→∞ P(bt = b1) = 1. For ∀δ > 0, there exists C(δ) > 0 such that for any
t > C(δ), the following condition holds w.h.p.: P(bt = b1) ≥ 1 − δ.

For the triple of bandits b1 � bi � bK , Approximate Linearity guarantees:

φ(bi, bK) < φ(b1, bK) ≤ ω

holds for some fixed ω > 0 and ∀i ∈ {2, · · · ,K − 1}. With small δ, the competing
environment of any Player p is bounded. If δ < ∆

∆+ω , (1− δ) · (−∆)+ δ · φ(b2, bK) <
0 = 1 ·φ(b1, b1). The competing environment can be considered as unbiased and the
theoretical guarantees for Thompson sampling for stochastic multi-armed bandit is
valid (up to a constant factor).

Then IndSelfSparring has an no-regret guarantee that asymptotically matches the
optimal rate of O(K ln(T)/∆) up to constant factors, which proves Theorem 2.

B.2 Proofs for Ch5
Note All following lemmas hold for any� ( S0 ⊆ D, h ∈ R, δ ∈ (0, 1), and ε > 0.

Define
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x̂t
..= argmax

x∈St
`t(x)

(
= argmax

x∈Mt

`t(x)
)

Lemma 8 The following hold for any t ≥ 1:

1. ∀x ∈ D, ut+1(x) ≤ ut(x),

2. ∀x ∈ D, `t+1(x) ≥ `t(x),

3. ∀x ∈ D,wt+1(x) ≤ wt(x),

4. St+1 ⊇ St ⊇ S0,

5. S ⊆ R⇒ Rε (S) ⊆ Rε (R),

6. S ⊆ R⇒ R̄ε (S) ⊆ R̄ε (R).

Proof. (i), (ii), and (iii) follow directly from their definitions and the definition of
Ct(x).

4. Proof by induction. For the base case, let x ∈ S0. Then,

`1(x) − Ld(x, x) = `1(x) ≥ `0(x) ≥ h,

where the last inequality follows from the initialization in line 11 of Algorithm
11. But then, from the above equation and line 12 of Algorithm 11, it follows
that x ∈ S1.

For the induction step, assume that for some t ≥ 2, St−1 ⊆ St and let x ∈ St .
By line 12 of Algorithm 11, this means that ∃z ∈ St−1, `t(z) − Ld(z, x) ≥ h.
But, since St−1 ⊆ St , it means that z ∈ St . Furthermore, by part (ii), `t+1( ×
z) ≥ `t(z). Therefore, we conclude that `t+1(z) − Ld(z, x) ≥ h, which implies
that x ∈ St+1.

5. Let x ∈ Rε (S). Then, by definition, ∃z ∈ S, f (z) − Ld(z, x) ≥ h. But, since
S ⊆ R, it means that z ∈ R, and, therefore, f (z) − Ld(z, x) ≥ h also implies
that x ∈ Rε (R).

6. This follows directly by repeatedly applying the result of part (v).
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Lemma 9 Assume that ‖ f ‖2k ≤ B and nt ≤ σ, ∀t ≥ 1. If βt = 2B+300γt log3(t/δ),
then the following holds with probability at least 1 − δ:

∀t ≥ 1∀x ∈ D, | f (x) − µt−1(x)| ≤ β1/2
t σt−1(x).

Proof. See Theorem 6 by Srinivas et al. (2010a).

Corollary 1 For βt as above, the following holds with probability at least 1 − δ:

∀t ≥ 1∀x ∈ D, f (x) ∈ Ct(x).

Note Where needed in the following lemmas, we implicitly assume that the as-
sumptions of Lemma 9 hold, and that βt is defined as above.

Lemma 10 For any t1 ≥ t0 ≥ 1, if St1 = St0 , then, for any t, such that t0 ≤ t < t1, it
holds that

Gt+1 ∪ Mt+1 ⊆ Gt ∪ Mt .

Proof. Given the assumption that St does not change, bothGt+1 ⊆ Gt and Mt+1 ⊆ Mt

follow directly from the definitions of Gt and Mt . In particular, for Gt , note that for
any x ∈ St , gt(x) is decreasing in t, since ut(x) is decreasing in t. For Mt , note that
maxx′∈St `t(x′) is increasing in t, while ut(x) is decreasing in t (see Lemma 8 (i),
(ii)).

Lemma 11 For any t1 ≥ t0 ≥ 1, if St1 = St0 and C1
..= 8/log(1+σ−2), then, for any

t, such that t0 ≤ t ≤ t1, it holds that

wt(xt) ≤
√

C1βtγt

t − t0
.

Proof. Given Lemma 10, the definition of xt
..= argmaxx∈Gt∪Mt

(wt(x)), and the fact
that, by definition, wt(xt) ≤ 2β1/2

t σt−1(xt), the proof is completely analogous to that
of Lemma 5.3 by Srinivas et al. (2010a).

Corollary 2 For any t ≥ 1, if C1 is defined as above, Tt is the smallest positive
integer satisfying

Tt

βt+Ttγt+Tt
≥ C1

ε2 , and St+Tt = St , then, for any x ∈ Gt+Tt ∪ Mt+Tt ,

it holds that

wt+Tt (x) ≤ ε .
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Note Where needed in the following lemmas, we assume thatC1 andTt are defined
as above.

Lemma 12 For any t ≥ 1, if R̄ε (S0) \ St , �, then Rε (St) \ St , �.

Proof. Assume, to the contrary, that Rε (St) \ St = �. By definition, Rε (St) ⊇ St ,
therefore Rε (St) = St . Iteratively applying Rε to both sides, we get in the limit
R̄ε (St) = St . But then, by Lemma 8 (iv) and (vi), we get

R̄ε (S0) ⊆ R̄ε (St) = St, (B.1)

which contradicts the lemma’s assumption that R̄ε (S0) \ St , �.

Lemma 13 For any t ≥ 1, if R̄ε (S0) \ St , �, then the following holds with
probability at least 1 − δ:

St+Tt ) St .

Proof. By Lemma 12, we get that, Rε (St) \ St , �, For equivalently, by definition,

∃x ∈ Rε (St) \ St ∃z ∈ St, f (z) − ε − Ld(z, x) ≥ h. (B.2)

Now, assume, to the contrary, that St+Tt = St (see Lemma 8 (iv)), which implies that
x ∈ D \ St+Tt and z ∈ St+Tt . Then, we have

ut+Tt (z) − Ld(z, x) ≥ f (z) − Ld(z, x) by Lemma 9

≥ f (z) − ε − Ld(z, x)
≥ h. by (B.2)

Therefore, by definition, gt+Tt (z) > 0, which implies z ∈ Gt+Tt .

Finally, since St+Tt = St and z ∈ Gt+Tt , we can use Corollary 2 as follows:

`t+Tt (z) − Ld(z, x) ≥ `t+Tt − f (z) + ε + h by (B.2)

≥ −wt+Tt (z) + ε + h by Lemma 9

≥ h. by Corollary 2

Thismeans that by line 12 ofAlgorithm11weget x ∈ St+Tt , which is a contradiction.
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Lemma 14 For any t ≥ 1, if St+Tt = St , then the following holds with probability at
least 1 − δ:

f (x̂t+Tt ) ≥ max
x∈R̄ε (S0)

f (x) − ε .

Proof. Let x∗ ..= argmaxx∈St+Tt
f (x). Note that x∗ ∈ Mt+Tt , since

ut+Tt (x∗) ≥ f (x∗) by Lemma 9

≥ f (x̂) by definition of x∗

≥ `t+Tt (x̂) by Lemma 9

≥ max
x∈St+Tt

`t+Tt (x). by definition of x̂

We will first show that f (x̂t+Tt ) ≥ f (x∗) − ε . Assume, to the contrary, that

f (x̂t+Tt ) < f (x∗) − ε . (B.3)

Then, we have

`t+Tt (x∗) ≤ `t+Tt (x̂) by definition of x̂

≤ f (x̂) by Lemma 9

< f (x∗) − ε by (B.3)

≤ ut+Tt (x∗) − ε by Lemma 9

≤ `t+Tt (x∗), by Corollary 2 and x∗ ∈ Mt+Tt

which is a contradiction.

Finally, since St+Tt = St , Lemma 13 implies that R̄ε (S0) ⊆ St = St+Tt . Therefore,

max
x∈R̄ε (S0)

f (x) − ε ≤ max
x∈St+Tt

f (x) − ε R̄ε (S0) ⊆ St+Tt

= f (x∗) − ε by definition of x∗

≤ f (x̂t+Tt ). proven above

Corollary 3 For any t ≥ 1, if St+Tt = St , then the following holds with probability
at least 1 − δ:

∀t′ ≥ 0, f (x̂t+Tt+t ′) ≥ max
x∈R̄ε (S0)

f (x) − ε .
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Proof. This is a direct consequence of the proof of the preceding lemma, combined
with the facts that both St+Tt+t ′ and `t+Tt+t ′(x̂t+Tt+t ′) are increasing in t′ (by Lemma 8
(iv) and (ii) respectively), which imply that maxx∈St+Tt+t ′ `t+Tt+t ′(x) can only increase
in t′.

Lemma 15 For any t ≥ 0, the following holds with probability at least 1 − δ:

St ⊆ R̄0(S0).

Proof. Proof by induction. For the base case, t = 0, we have by definition that
S0 ⊆ R̄0(S0).

For the induction step, assume that for some t ≥ 1, St−1 ⊆ R̄0(S0). Let x ∈ St ,
which, by definition, means ∃z ∈ St−1, such that

`t(z) − Ld(z, x) ≥ h

⇒ f (z) − Ld(z, x) ≥ h. by Lemma 9

Then, by definition of R̄0 and the fact that z ∈ R̄0(S0), it follows that x ∈ R̄0(S0).

Lemma 16 Let t∗ be the smallest integer, such that t∗ ≥ |R̄0(S0)|Tt∗ . Then, there
exists t0 ≤ t∗, such that St0+Tt0 = St0 .

Proof. Assume, to the contrary, that for any t ≤ t∗, St ( St+Tt . (By Lemma 8 (iv),
we know that St ⊆ St+Tt .) Since Tt is increasing in t, we have

S0 ( ST0 ⊆ STt∗ ( STt∗+TTt∗
⊆ S2Tt∗ ( · · · ,

which implies that, for any 0 ≤ k ≤ |R̄0(S0)|, it holds that |SkTt∗ | > k. In particular,
for k∗ ..= |R̄0(S0)|, we get

|Sk∗T | > |R̄0(S0)|

which contradicts Sk∗T ⊆ R̄0(S0) by Lemma 15.

Corollary 4 Let t∗ be the smallest integer, such that
t∗

βt∗γt∗
≥ C1 |R̄0(S0)|

ε2 . Then,

there exists t0 ≤ t∗, such that St0+Tt0 = St0 .



134

Proof. This is a direct consequence of combining Lemma 16 and Corollary 2.

Lemma 17 If f is L-Lipschitz continuous, then, for any t ≥ 0, the following holds
with probability at least 1 − δ:

∀x ∈ St, f (x) ≥ h.

Proof. We will prove this by induction. For the base case t = 0, by definition, for
any x ∈ S0, f (x) ≥ h.

For the induction step, assume that for some t ≥ 1, for any x ∈ St−1, f (x) ≥ h.
Then, for any x ∈ St , by definition, ∃z ∈ St−1,

h ≤ `t(z) − Ld(z, x)
≤ f (z) − Ld(z, x) by Lemma 9

≤ f (x). by L-Lipschitz-continuity

Proof.[Proof of Theorem 5] The first part of the theorem is a direct consequence of
Lemma 17. The second part follows from combining Corollary 3 and Corollary 4.


