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ABSTRACT 

In this work, all matrices are assumed to have complex entries. 

The cases of F(A)X - XA = 0 where F(A) is a polynomial over ~ in A and 

F(A) = (A*)-
1 

are investigated. Canonical forms are derived for 

solutions X to these equations. Other results are given for matrices 

-1 * of the form A A • 

Let a set of solutions {X.} be called a tower if X. 1 = F(X.). 
1 -- 1+ 1 

It is shown that towers occur for all nonsingular solutions of 

( * -1 A ) X - XA = 0 if and only if A is normal. In contrast to this, there 

is no polynomial for which only normal matrices A imply the existence of 

towers for all solutions X of P(A)X - XA = O. On the other hand, condi-

tions are given for polynomials P, dependent upon the spectrum of A, for 

which only diagonalizable matrices A imply the existence of towers for 

all solutions X of P(A)X - XA = O. 
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INTRODUCTION 

In this work, all matrices are assumed to have complex entries 

and all polynomials are assumed to have coef ficients in the complex 

field. Many of the results hold for other fields, but no mention or 

use of this will be made here . 

This work originated from a study of the matrix equation 

,1 • 1 ) 

where A and X are nXn complex matrices. This equation arose in the 

work of DePrima and Johnson [3] where it is shown that a matrix A is 

-1 * A = B B for some matrix B, if and only if there a cosquare, ie. 

exists a nonsingular solution X to (1.1 ). In the present investigation, 

all solutions of this equation are considered. 

In Chapter II, canonical forms are developed for solutions to 

(1 .1 ). It is also shown that if the condition of DePrima and Johnson 

is weakened to one requiring only the existence of a normal, singular 

solution X to (1.1) then there exist matrices B and C where B is 

a cosquare, but C is not a cosquare such that 

and 

-1 
* B X - XB = 0 

*-1 
c x - xc = o. 

Thus it is shown that this weakened condition does not imply the exis-

tance of a nonsingular solution to (1 . 1) and that even if a nonsingular 

solution of (1 .1) exists, there may still be interesting singular solu-
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tions to the equation. 

In the work of DePrima and Johnson [3] they study the matrices 

-1 * A and B where A = B B • In Chapter III we concentrate on all the non-

singular solutions to (1 .1 ), including those solutions X such that 

-1 * A= X X. Included are spectral restrictions on solutions to (l .l) in 

the case that A is a cosquare and conditions on the set of all solutions 

to (1 .1) which imply that A is unitary or normal. In [1] Choi has the 

-1 * 2 result that a cosquare A = B B is normal if and only if B is normal. 

In Chapter III we give another condition. In particular, the cosquare 

A is normal if and only if for each nonsingular solution X of (1 .1) it 
-1 

* follows that X is also a solution of (1 .1 ). This result may be used 

to prove the result of Choi without the use of the Fuglede-Putnam 

theorem [9] which Choi uses. In light of the above theorem, the follow-

ing problems arise. 

Consider the matrix equation 

1.2) P(A)X - XA = 0 

where P is a polynomial. 

Problem 1 .3: For what polynomials P does the fact that the set of all 

solutions to (1 .2) is closed under the operation x~ P(X) imply that A 

is normal? 

In Chapter IV we develop the tools to attack this problem by 

giving canonical forms for the solutions to (1.2). This chapter also 

gives spectral restrictions on such solutions. This work is an exten-

sion of the work of Drazin [5] who dealt with the equation 
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€AX - XA = 0 

where € is a complex scalar. 

In Chapter V Problem 1 .3 is answered negatively. Theorem 5 .2 

shows that there are no polynomials which satisfy the conditions of 

Problem 1.3. However, there are polynomials which satisfy the follow

ing revised problem. 

Problem 1 .4: For what polynomials P does the fact that the set of all 

solutions to ( 1 .2) is closed under the operation X ... P(X) imply that A 

is diagonalizable? 

We continue in Chapter V to give sufficient conditions on P, 

depending on the spectrum of A, in order that P satisfy Problem 1 .4. 

However, these conditions are shown to be not necessary. Other condi

tions are given whi ch are necessary, but not sufficient. 
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CHAPI'ER I 

NOTATIONS AND PRELIMINARIES 

The following definitions, notations and theorems are assumed 

in this work. 

Definition 1: Let A and B be square matrices, then the direct sum of 

A and B, denoted by A(±) B is the matrix 

Likewise, if A1 , ••• ,An are square matrices, then 

n 
@ A. 
i::l 1 ( 

n-1 ) = @A. (±> A • 
i=l i n 

Definition 2: The Kronecker product of A= (aij) and B = (bij), 

denoted by A® Bis the matrix, C = (cij) = (aijB). 

Definition 3: The spectrum of a matrix A is the set of eigenvalues of A 

and will be written o(A). 

Definition 4: The matrix A is called a cosquare if there exists a 

-1 * nonsingular matrix B such that A= B B. (As used in [1 ]). 

Definition 5: The matrix A is called a block monomial matrix if 

A= (A .. ) is a block matrix with at most one nonzero block in each 
1J 

row and column. 
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Definition 6: A matrix of the form 

... a 
lr 

or 
~ ..• 0 

81j for k > r 

~rr rxk 
0 

0 · .. 0 akr 
kXr 

is called upper triangular 

Definition 7: The matrix A is called nonderogatory if the Jordan 

normal form of A contains only one Jordan block for each distinct 

eigenvalue of A. Otherwise, A is called derogatory. 

Definition 8: A set of solutions {Xi} is a tower starting with x
1 

for 

the equation F(A)X - XA = 0 if X. 1 = F(X.) for all i. 
l+ l 

-1 
* -* Notation 1 : The matrix A will be denoted by A 

Notation 2: The nxn identity matrix will be denoted by I . 
n 

Notation 3: The nxn matrix consisting of ones in the (i,i+l) position 

for i = 1, .•• ,n-1 and zeroes elsewhere will be denoted by U. 
n 

Theorem 1 : The matrices A and B are similar if and only if A and B 

have the same elementary divisors. 

-1 * Theorem 2: , A is a cosquare if and only if A is similar to A . 

(see [3]). 
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Theorem 3: For given nxn matrices A and B, the map X ~ AXB, determines 

a linear transformation on the set of nxn matrices, that is, a vector 

space of dimension n2 • If the matrix Xis rewritten as an n
2

x1 vector 

of its columns, then the matrix representative of this transformation 

T can be expressed as B ®A. {see [10)). 

Theorem 4: Given matrices A and B, mXm and nXn resp., then the equation 

AX - XB = 0 

has a nontrivial solution X if and only if A and B have an eigenvalue 

in common. {see [10]). 

Theorem 5: -1 * 2 The cosquare A = B B is normal if and only if B is normal. 

(see [1 J). 

Theorem 6: Let A be a nonsingular complex nxn matrix. Let the eigen-

* 2 2 values of AA be A1, ••• ,An with A1 > O, ..• ,An > 0. Let y be a nonzero 

number. Then the matrix 

is similar to a diagonal matrix and its eigenvalues are 

(see [16]). 
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CHAPI'ER II 

-* THE EQUATION A X - XA = 0 

In the work of DePrima and Johnson [3] properties are derjved 

-1 * -1 * for the matrices A and B where A = B B . If A = B B then it is 

clear that Bis a nonsingular solution of the equation (1 .1) 

-* A X - XA = O. In this chapter we investigate all solutions of this 

equation both in the case that A is a cosquare and in the case that 

A is not. We also deal with special subsets of solutions other than 

-1 * the set of solutions such that A = X X • 

Theorem 2.1: Let A be an nxn normal cosquare with distinct eigenvalues 

for i = k+ 1 , •.. , s. 

Then, X is a solution of ( 1 • 1 ) if and only if X is uni tarily 

similar by the similarity diagonalizing A to the form 

where dim X. =dim Y. = m., the multiplicity of A. in A, for i = 1, ... ,k 
l. 1 l l 

and dim X. = m. for i = k+l, .•• ,s. Otherwise, X. and Y. are arbitrary. 
l l l. l 

Proof: By the work of DePrima and Johnson [3], A a cosquare implies 

that 

* -1 -1 
A = SA S 

for some matrix S. 
--1 

Thus if A. i s an eigenvalue of' A, t hen "- is also 
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an eigenvalue of A with the same multiplicity. Therefore, by a simul-

taneous unitary similarity of A and X, we may assume that 

['1 I 0 l 'A I 0 

A omlr; \.1 <±> • • • <±> 
k~ 

<±> Ak 1 I (!) • • • A I = 
- -1 + ~+1 s m 

0 A I s 
k ~ 

and 

x = [ xij] 

for i, j = i, ••. ,s where Xis partitioned according to the partition 

of A induced by the direct sum representation given above . 

-* Since A X - XA = O, 

- -1 A A. I 0 I 
l m. j m. 

1 ) l x .. - x .. J = lJ lJ - -1 
0 X.. I A . I 

i m. J m. l J 

for i, j = l, ••• ,k. 

- -1 X. . I 0 

[A jlmj] 
i m. 

2) l x . . - X .. 0 = lJ lJ 
0 A.I 

l m. 
l 

for i = 1 , .•• , k and j = k+1, ••• ,s. 

['i1mi] 
A I 0 

j m. 
3 ) X .. - X . . J = 0 

lJ lJ - -1 
0 ;...j rm. 

J 

for i = k+ 1 ' ... 's and j = 1 ' ... 'k. 

0 
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for i, j 
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[u ] X .. - x .. [u J = 0 
i m. lJ lJ J m. 

l J 

= k+ 1 ' ••. 's .. 

Furthermore, since the 1'.. are distinct for i r j, the only 
l 

solution of equations (1) - (4) is the zero matrix. If i = j, then 

equation (1) is satisfied if and only if 

x .. = 
ll 

where X. and Y. have dimension m.Xm. and are otherwise arbitrary, and 
l l l l 

equation (4) is satisfied for any arbitrary X . .• Therefore, Xis 
ll 

transformed into the required form. 

Conversely if A is diagonal end X is in the form derived above 

-* A X - XA = 0 

by the derivation above. Therefore, if U is eny unitary matrix 

* * (uxu ) (UAU ) = o. 

* * Thus, UXU is a solution of (1.1) for UAU. 

Theorem 2.2: Let A be an nxn complex, nonsingular matrix with distinct 

~-1 --1 I I 
eigenvalues A. 1 ,t.. 1 , .•• ,A.k,A.k ,>-.k+l'''''""s'"-s+l'''"'A.t where A.i f. 1 

for i = 1, ••• ,k, and lt..il = 1 for i = k+l, ... ,s, and A.s+l''" ' '""t not 

covered by the previous two cases. 

Then if Xis a solution of (1 .1 ), Xis congruent to 
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k 

x, = @ 
i=l 
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[o zi] 
Y. 0 

l 

where Y. and Z. are of dimensions p.Xm. and m.Xp. respectively with 
l l 1 l 1 1 

- -1 
mi and pi being the multiplicities of Ai and Ai in a(A) respectively, 

s 
(±) 

i=k+l 
z. 

1 

where the Z. are of dimension m.Xm., and [O] is of the proper dimension. 
l l l 

* Proof: Let S transform A into the direct sum of Jordan blocks 

t 
= ~ (Y. I + U ) . 1 i n. n. 

l= l l 

* where the Y. are the eigenvalues of A, not necessarily distinct. 
l 

Then, considering X as an 1xn2 vector x of its columns, the 

* equation X - A XA = 0 can be rewritten via Theorem 1 as 

Following the treatment of Davis [2], 

where 
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( - -1 -1 ) ( 8- -1 )X( 8- - 1 )*. and S @ S x corresponds to 

to consider 

equivalently 
t t 

X = [@Y.I + U )X((t)Y.I . 1 1 n. n. . 1 i n 
l= 1 1 l= i 

Thus, it is sufficient 

+ U T]. 
n. 

1 

Let X = (X .. ) be a partition of X corresponding to t he Jordan normal 
lJ 

form of A. Then, 

where 

* X . . = B.X .. B. 
lJ 1 lJ J 

B. = y .I 
1 1 n. 

1 

We may assume that the Jordan blocks of A are ordered according 

to the distinct eigenvalues of A and that the blocks corresponding to 

--1 
pairs A. and~. are adjacent. In otherwords, we may partition A into 

1 1 

the form 

k k 
(Ef)B . )Ef)( (±) B.) 
·11 " kll 1= l= + 

where 

Bi 1 0 

B. = 
1 

0 Bi2 

for i = 1, ••. ,k such that o(B. 1 ) ='A. and o(B.
2

) = }:~ 1 . 
l l l 1 
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Partition X = (Xij) according to the Bi. Then, Xij = 0 for 

i ~ j as in Theorem 2.1. 

natural partition of B., 
1. 

Then 

* 

Now partition each X .. according to the 
1.1. 

x .. = 
1.1. 

* (1 ) B .
1

A .. B.
1 1. 1.1. l. 

* (2) B.
1

A .. B.
2 l. l.1. 1. 

B.X .. B. = 
1. 1.1. 1. * (3) B.

2
A .. B.

1 1. l.1. 1. 

* (4) B.
2

A .. B.
2 l. l.1. 1. 

Thus X - A*XA = 0 implies that x~'.) and X~~) = 0 for i = 1, •• • ,k. 
1.1. 1.1 

Therefore, X is congruent to the desired form. 

Theorem2.3: There exists a nonsingular, normal matrix X satisfying 

( 1 • 1 ) if and only if A is uni tarily similar to a kxk block matrix 

A= (Aij) where k is the number of distinct eigenvalues A1, ••• ,\k 

X and the dimension of A .. is the multiplicity of \. , and letting 
11. l 

A-*= (Bij) for i,j = 1, ••• ,k be a conforming partition of A-* 

with Y .. = \,/\j for i,j = 1, •.• ,k. 
1.J l 

of 

Furthermore, the above similarity diagonalizes the nonsingular, 

normal solution X. 

Proof: Assume that there exists a nonsingular, normal solution X of 

(1 .1 ) . Then, by a unitary transformation of A and X, the matrix X may 
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be assumed to be in diagonal form with the eigenvalues of X ordered 

such that equal eigenvalues are adjacent on the diagonal. 

-* Partition A and A according to the blocks of equal eigen-

values in x. 

1 ) 

) -* Let A = (Aij and A = 

-* A D-DA=O 

Then ( l . 1 ) implies 

where A and D are the transformed A and X respectively. Thus 

A . . = ;\ ,/;\ . B . . 
1J J ]_ 1J 

where A. for i = 1, •.. ,k is the ordering of the eigenvalues of X 
]_ 

given by the particular unitary transformation. 

Conversely, let 

k 
X= @;\.I 

. 1 i m. 
l.= ]_ 

with ;\i distinct and nonzero for i = 1, ..• ,k. Let A be in the kXk 

block matrix form of the theorem. Then, 

-* A X - XA = O. 

If U is any unitary matrix, then 

* where A1= UAU * and x,= uxu. Furthermore, x,is normal. 

Theorem 2.4: There exists a normal, singular matrix X satisfying (1 .1) 

if and only if A is unitarily similar to 
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where A1 and A4 are square, nonsingular matrices and the dimension of 

-* A4 is the nullity of X and A is simultaneously similar to 

-* 
-* 

Al B2 

A = 
-* 0 A4 

-* -* where A is partitioned as A. Here A1 and A1 have the same structure 

-* as A and A in Theorem 2.3 with respect to the nonzero eigenvalues 

-* of X and A4 and A4 correspond to the zero eigenvalues of x. 

In addition, 

and 

Furthermore, the above similarity diagonalizes x. 

Proof: The proof of Theorem 2.4 follows that of Theorem 2.3 until 

) -* equation (1 A D - DA = O. In this case, 

D = ( ~\.I ) @ [o] = [Dl 
01 . 

i=l 
1 

mi 0 oJ 
Let 

A = 
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and 

-* A = 

-* be partitioned as D. Thus A D - DA = 0 implies that 

1 ) B1 D1 - D
1 

A1 = 0 

2) 0 - D1A2 = 0 

3) B3D1 - 0 = 0 

4) 0 - 0 = o. 

Equations (2) and (3) give the correct zero blocks in A and 

-* A , and the dimension of A4 is the multiplicity of 0 as an eigenvalue 

of X. 

Furthermore, 

Thus 

where 

and 

* -* -* * A A = A A = I. 

-* A = 

= 0 

-* Then (1) and the fact th~t B1 = A1 implies 
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-* -* Thus A1 and A1 have the same structure as A and A in Theorem 2.3 

for the nonzero eigenvalues of x. 

Conversely, let 

X = ( ~ f-.I ) <±) [o] 
. 1 l. m. 
l.= l. 

with all t-. distinct and nonzero for i = 1, ••. ,k. Let A have the block 
l. 

matrix form of the theorem. Then, 

-* A X - XA = O. 

If U is any unitary matrix, then 

* where ~ = UAU * and ~ = UXU • Furthermore, X is normal and singular. 

Corollary 2.5: Let X be a normal, singular matrix satisf'ying equation 

(1 .1) for some matrix A. Then there exist matrices Band C such that 

-* B X - XB = 0 

and 

-* c x - xc = 0 

with B a cosquare, but C not a cosquare. 

Proof: In Theorem 2.4, let A
3 

and B
2 

be zero matrices. Choose 
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with A1 and A4 cosquares. Then 

and B is a cosquare. 

Choose 

-* B X - XB = 0 

* u 

with A1 a cosquare and A4 nonsingular, but not a cosquare. Then 

-* c x - xc = 0 

but C is not a cosquare. 
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CHAPrER III 

COSQUARES 

The aim of this chapter is to apply the results of Chapter II 

-1 * to the special case of solutions X such that A = X X • Notice that 

this is a nontrivial restriction since for a cosquare A, there are 

) 1 -1 * always solutions Y of (1 .1 such that Ar Y Y. This is easily seen 

since in (1 .1) the set of solutions is closed under scalar multipli

-1 * cation, but the set of all matrices X such that A = X X is not closed 

under scalar multiplication. 

Theorem 3.1 is a special case of Theorem 2.1. This result is 

then used to derive spectral restrictions for the components of a 

cosquare. 

Theorem 3.1: -1 * Let N = A A then N is normal if and only if A is 

unitarily similar to 

k 
0 Yi Bi s 

(±) (±) (±) qi.I 
i=1 i=k+l 1 m. 

* 
]. 

B. 0 
]. 

where B. is a nonsingular matrix for all i, and 'V. all distinct and 
l l 

Yi and tfli nonzero for all i. 

-1 * Proof: By the work of DePrima and Johnson [3], N =A A implies 

* -1 -1 N = SN S for some matrix S. Thus if Y is an eigenvalue of N, 
__ , 

then y is an eigenvalue of N with the same multipl i city. Therefore, 
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since N is normal, N may be assumed, by a unitary similarity, to be of 

the form 

0 

0 

--1 
Y1 I 

ml 

® ... ® ® Sk l I ® . . . (f) s I 
+ ll\+1 s ms 

with y, ands. all distinct and IY.l ~ 1 and ls.I = 1. 
l 1 l l 

-1 -* -1 Notice that A N = NA , thus 

by Theorem 2.1. -1 -1 -* Furthermore, N A = A * -1 Therefore, B. = y . A. 
l l l 

-1 * 1 for i = 1, •.. ,k and ~i Ai= Ai for i = k+l, .•. ,s. Thus A- is unitar-

ily similar to 

k [ 0 A.l 
® -1 * l <±l 

i=l y. A. 0 
l l ....J 

s -1 
<±l q). I 

i=k+l 1 mi 

where coj = ~/sj and, A is unitarily similar to 

-* 
k 0 Y.A. 

l l s 
© (f) (f) ~.I 

i=l -1 
· 1 

A. 0 
i=k+l 

l 

* 

m. 
1 

Conversely, let UAU be of the form required by the theorem . 
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Then 

_, * * * _, * * 
UA AU = (UAU ) (UAU ) = 

( k [ 0 :] s 
= .(£) -1 * (£) (£) ~~'r ) 

i=k+l 1 m. 
1=1 y Bi l 

$ I l ( i~l -] [ 0 
B. s 

1 
<±> (±) - _, i m. y.B. 0 i=k+ 1 l 

l l 

Y.I 0 
k 

l m. 
<pk+l l s 

= (±) (±) (!) 
i=l -1 i=k+l <pk+l 

0 Y. I 
i m. 

l 

-1 * Therefore, A A = N is normal. 

Corollary 3. 2: -1 * Let N = A A be normal~ Then 

1 ) ( ) r -y-1 y -y-1 ~ F } 
a N = l y 1 ' 1 ' •• • ' k' k '-;,k+ 1 ' • .. ' "" s 

where ls.I = 1 for i = k+l, • • • ,s and 
l 

2) 

x 

= 

where j = 1 , ••• , m. and A. . • E R + for i = 1 , ••• , k and j = 1 , •.. , m . . 
l lJ J 

Proof: Part (1) follows from the work of DePrima and Johns on [ 3]. 

Part (2) follows f rom the theorem and Lemma 3. 5 of Thompson [16) (see 

Theorem 6 of chapter 1 above). 

The final two theorems of this chapter give necessary and 

suff i cient condit i ons for a cosquare to be normal or unitary in t erms 
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of the set of solutions of (1 .1 ). 

( -1 -* Theorem 3.3: Let A be a cosquare. Let O = X: X AX =A ). 

following are equivalent. 

1 ) 

2) 

3) 

A is unitary. 

-1 * There exists a pair of matrices S and S S E O. 

-1 * For each S E O, the matrix S S E O. 

Proof: Clearly, if either of (1) or ( 3 ) holds, then (2) holds. 

-* -1 
Conversely, let A = SAS then 

Thus 

Therefore 

or 

-1 -* -* -* * A = S A S and A = S A S • 

-* * -* -* -1 A = S AS and A = SAS . 

* -* -1 S AS = SAS 

Then the 

Therefore, if A-*= s-1s A(s-1s*)-l, then A-*= A and A is unitary . 

-1 * In otherwords, if there exists a single pair S and S S E O 

t hen A is un i tary. Therefore, (2) ~ (1 ). 

t hat 

or 

Let TE Obe another matrix. Then the above argument shows 

-1 * -1 * 
T 'f A = AT T 

-1 * -1 * -1 
T T A(T T ) = A. 
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However A is unitary. Thus 

-1 * ( -1 *)-1 -* T T A T T = A 

-1 * and T T E O. Therefore, (3) holds. 

Theorem 3.4: -1 * Let A = B B 

following are equi valent. 

1 ) A is normal. 

2) 2 . 1 B is norma . 

( -1 -* Let 0 = X: X AY.. = A } • 

3) -* For each X E G, the matrix X E O. 

Then the 

Proof: (1):;. (3). -1 
Taking the * of a solution preserves the struc-

ture required by Theorem 2.1. Therefore, for each XE O, the matrix 

-* X E (). 

(3) ~ (2). -* Since B is a solution of ( 1 • 1 ) , B is also a solu-

ti on of ( 1 • 1 ) • Therefore, 

( * -1 ) -* -*( -1 *) B B B - B B B = 0 

or 

( *)2 -1 -1( *)2 B B - B B = O. 

Thus 

* 2 * 2 B(B ) - (B ) B = O. 

Therefore, B2 i s normal. 

( 2 ) ~ ( 1 ) • From Choi [ 1 ] • 

Choi [l] shows that A i.s normal if and only if B2 i s normal. 

In his proo f he applies the Fuglede-Putnam theorem [9] to show that 
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(1) ~ (2). Theorem 3.4 gives an alternate proof of this result in the 

finite dimensional case without the use of the Fuglede-Putnam theorem 

[9]. 
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CHAPI'ER IV 

THE EQUATION P(A)X - XA = 0 

The aim of this chapter is to develop decomposition theorems 

like those of Chapter II for the matrix equation 

1 . 2 ) P( A )X - XA = 0 

where P is a polynomial. These results will be us ed in Chapter V to 

prove an analogue of Theorem 3.4. We also develop spectral restric-

tions for solutions of (1 .2). In all of these theorems, we will 

assume that there exists a nonsingular solution of (1 .2). As a result 

we will use the following lemma. 

Lemma 4.1: Let A be a matrix, P(X) a polynomial such that equation 

(1 .2) has a nonsingular solution. Then P(x) is a one - to - one 

mapping of cr(A) = tA.: i=l , ••. ,sand A. distinct} onto itself. In par-
1 l 

ticular, if P(Ai) = Aj then the multiplicity of Ai equals the multipl i 

city of Aj' and the Jordan normal forms of A and P(A) are the same . 

Proof: If P(A)X - XA = 0 has a nonsingular solution, then P(A) and A 

are similar. Therefore, (P(Ai): i=l , ... ,s} = tA.: i=l, ... , s} i nclu-
1 

ding multiplicit i es. Furthermore, the Jordan normal form is preserved. 

Theorem 4.2: Let A be a diagonalizable matrix, P(X) a polynomial such 

that equation (1 .2) has a nonsingular solution and cr(A) = tA .: i=l , . . . , s} 
l 

wi th A. distinct and the multiplic j ty of A. being m .. Let a be a per-
1 l l 

mutation of 1, ... ,s defined by P(A.) =A(')' with cycle decomposition 
1. a i 

a
1 

.• • ak. Assume that the eigenvalues of A are number ed accor ding 



25 

to this cycle decomposition. Let S be a similarity which diagonalizes 

A and preserves the ordering of the eigenvalues, A1, ••• ,As. 

-1 
Then X is a solution of (1 .2) if and only if SXS is some 

block monomial matrix corresponding to a with diagonal blocks of dimen-

sion m .• 
l 

Proof: The assumption that A is diagonalizable implies that, by a 

similarity S, the equation P(A)X - XA = 0 may be reduced to 

P(D)Y - YD = 0 

-1 
where Y = SXS and D is a diagonal matrix of the eigenvalues of A with 

eigenvalues arranged according to the ordering A1, ..• ,As· Partition Y 

into a block matrix (Y .. ) and D into (D.) according to the blocks of 
lJ l 

equal eigenvalues in D. Thus P(D)Y - YD = 0 implies 

P( A. )Y .. - Y .. /.. = 0 
l 1J 1J J 

for i, j = 1 , ••• , s. Therefore, Y .. = 0 for P(A . ) ft.., ie. j f a(i) 
1J l J 

and i,j = 1, .•• ,s. This is the desired form for Y and results in the 

desired form for x. 

Notice that the particular form of S is not used. Therefore, 

any similarity of this type results in the same decomposition. 

Conversely, if Y .. = 0 for j f a(i) and i,j = 1, ••• ,s, then 
lJ 

P( A . )Y. . - Y .. /. . = 0 
1 1J 1J J 

for i,j = 1, ••. ,s. Therefore, P(D)Y - YD= 0 and hence P(A)X - XA = 0 
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where X -1 = S DS for some matrix s. 

Theorem 4.3: Let A and P(A) be as in Theorem 4.2 except that A is not 

assumed to be diagonalizable. Let S be a similarity transforming A 

into Jordan normal form and arranging the Jordan blocks according t o 

-1 Then X is a solution of equation (1 .2) if and only if SXS 

= (Y.) is a block monomial matrix corresponding to a with diagonal 
l 

blocks of dimension m., and 
l 

P( A . )Y. - Y. A . = 0 
1 l lJ 

= 

for a(i) ~ j. Here A. is the submatrix of the Jordan normal form of A 
l 

consisting of the direct sum of the Jordan blocks corresponding to the 

eigenvalue A. •• 
l 

Proof: Let P(A)X - XA = o, then 

SP(A)XS-l - SXAS-l = 0 

or 

(SP(A)s-1 )(sxs-1
) - (sxs-1 )(SAS-

1
) = o. 

Therefore, A may be assumed to be in Jordan normal form with eigenvalue 

blocks arranged according to the ordering t..1, ..• ,A.s. P(A) will be in 

a corresponding block diagonal form. Partitioning A = (A.) and Y = (Y.j) 
l l 

according to the blocks of equal eigenvalues in A implies that 
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f or i, j = 1 , ••• , s . Then, Y .. = 0 for a(i) /= j, since in this case P(A.) 
1J 1 

and Aj have no eigenvalues in common. 

Conversely, i. f Y is a block monomial matrix corresponding to 

~,he permutation a and 

P(Ai)Y . - Y.A. = 0 
1 1 J 

ror a( i) = j where i, j = 1 , •.. , s then P( A )Y - YA = 0 and thus 

P(A)X - XA = 0 where X 
-1 = S YS. 

In (1 5 ], Taussky-Todd investigates the connection between equa-

t ion 1 .2 and Galois theory. The following example illustrates this 

connection. 

Example: Let s be a seventh root of unity, then s satisfies: 

x
6 

+ x5 + x
4 

+ x3 + x
2 

+ x + 1 = 0. 

!turthermore, a
1 

= s + ~ will satisfy: 

f(x) = x3 + x
2 

- 2x - 1 = 0 

and there exist rational polynomials p
1 

(x) and p
2

(x) such that f(x) has 

roots a
1

, p
1 
(a

1 
) , and p

2
(a

1 
) where 

2 
p

1 
(x) = x - 2 

and 

p1(x) and p
2

(x) act as cyclic permutations on the roots of f(x). Thus 

if A is any 3X3 matrix with characteristic polynomial f(x), then 

by the above theorem p.(A)X - XA = 0 has solutions X where 
1 
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0 xl 0 

-1 
0 0 s.xs. = x2 1 1. 

x3 0 0 

and 

al 0 0 

-1 
0 Pi (al ) 0 S.AS. = 

1 1 

0 0 p.(p . (al )) 
1 1 

with x
1

, x
2 

and x
3 

arbitrary, i=l,2. 

We will now derive spectral restrictions for the solutions of 

equation (1 .2). For this we need the following lemma. 

Lemma 4.4: Let A= (A .. ) be a block monomial matrix corresponding to 
1.J 

a cyclic permutation. Let the diagonal blocks of A be square of 

dimension n. for i=l, ••• ,s. Then 
1 

s-1 
- ( fl A. . l )A l ) • 

i=l 1,1+ s 

Proof: By a similarity transformation, we may replace A by 

0 A12 0 0 

0 

A' = 
-1 

SAS = 0 

0 A 
s-1 , s 

Asl 0 0 
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Then 

A.I -A12 nl 

0 

AI - A' = 

0 

-A sl 0 

Multiplying on the right by 

gives 

I O 
nl 

0 

0 

0 0 

0 

-A 

0 A. I 

0 

0 

0 I 

s-1, s 

n s 

n 
s 



AI 
nl 

0 

IA.r - A 'I ::;: 

0 

( 1 ) 
-Asl 

0 

30 

-A12 0 0 

0 

-A 

0 ).I 

s-1 , s 

n s 

where -A( 1
1 )::;: _,_-l A 

1 
A 

1
• Notice that the (s-1 )x(s-1) principal 

s s- ,s s 

submatrix of the right hand side is an (s-1 )x(s-l) block matrix of 

the same type as Al - A. Therefore, 

Al -A12 0 
n1 

0 

l).I-Al:::: 1~1 
ns 

I 

0 

-A ( 1 ) 
sl 0 

Iterating this procedure s - 2 times yields 

n+n 
1

+ ••• +n
3 = A. s s-

0 

0 

-A s-2,s-1 

0 A I 
n s-1 
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h A ( s-2 ) , -( s-2) 
were - sl = -h 

s-2 
Il (A. l . 

2
) A 1 • Multiplying 

i=1 1+ '1+ s 

on the right by 

gives 

Therefore, 

-A(s-2) 
sl 

-A{s-2) 
s1 

-A 
12 

0 

/..I - A X. - l A ( s-2 ) -A 
n1 12 sl 12 

= 

0 

n +n _
1

+ ••• +n
3 

n
2 = A s s A I AI 

nl 

n +n 1 + ••• +n
2 = A s s- I A.I -

nl 

- A. -1 A A ( s-2) I 
12 s1 = 

s-1 
-s+l 

t... n A .. 
1 

A 
1 
I 

i=1 1,1+ s = 

s-1 
Il A .. 1 . 1 l.,l.+ 

l.= 

Lemma 4.5: Let A and B be txt Jordan blocks for the eigenvalues ;.,
1 

and ;.,
2 

respectively. Let P(x) be a polynomial such that P(A.
1

) = A.
2

• 



Then X = {x .. ) is a solution of P(A)X - XB = 0 if and only if X satis
lJ 

fies the following. 

1 ) X is upper triangular. 

2) X .. = P'(>,1)X. 1 . 1 fori=1, ••. ,t-1. 
ll 1+ ,i+ 

3) x .. j 
i,i+ 

for i = 1 , ••. , t-1 and j = 1 , ••• , t- i-1 • 

Proof: Let J be the matrix consisting of all zeroes except for ones 
j 

on the jth upper diagonal. Then 

Thus P(A)X - XB = 0 implies 

• • • + 

or 

P(t-l )P·1) 

(t+l)! 
= 0 

Comparing the entries of the matrices on the left and right 

hand sides row by row, starting with the last row and working up, 

shows that X satisfies conditions (1), (2) and (3). 

Conversely, these conditions may be seen to be sufficient by 

multiplying out the left hand side. 
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Theorem 4.6: Let A and a be as in Theorem 4.2. In addition let n (i) 

be the multiplicity of any eigenvalue correspond i ng to the cycle a .. 
J. 

Let X be any particular solution of P(A)X - XA = O. Then there exist 

complex scalars bij for i = 1, .•. ,k and j 
( i) 

: 1, ... ,n such that 

la.I 
cr(x) = u ( u [A: A 

1 = bijl ) 
i j 

Conversely, for any set ofb .. EC, for i = 1, ••• ,k and 
J.J 

. 1 ( i ) th . t 1 t . y h . th . t . t J = , ... ,n ere exis s a sou ion 
1 

aving is se as J. s spec-

~ n(i) trum. In particular, for any prescribed set of ~ eigenvalues, 
i=l 

there exists a solution Y2 with cr(Y2 ) containing these eigenvalues. 

Theorem 4.7: Let A be as in Theorem 4.6 except that A is nonderogatory, 

but not assumed to be diagonalizable. Let X be any particular solution 

of P(A)X - XA = O. Then there exist complex scalars b . . for i = 1, ... ,k 
J.J 

d . 1 ( i) h th t an J = , ... ,n sue a 

a (X) 
la.I 

= U ( U [A: A 
1 

i j 
= b .. } ) • 

J.J 

Conversely, for any set of bij EC with i = 1, •.. ,k and 

(i) 
j = 1, ... ,n and 

b .. 
J.J 

la.I 
J. 

= n 
t=l 

( i) . 
'(' )n -J c . ,P 11..n 

J.1., lh 

where cit E ~, and Ait is the ordering of the eigenvalues of A based 

on the cycle decomposition ~l ••• ~, there exists a solution Y1 having 

this set as its spectrum. In particular, for any prescribed set of k 
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eigenvalues, there exists a nondiagonalizable solution y
2

, with cr(Y
2

) 

containing these eigenvalues. 

Proof of Theorem 4.6 and Theorem 4.7: As in Theorem 4.3, reduce X to 

the direct sum of block monomial matrices, each corresponding to a 

single cycle a .. A further permutation similarity will put each X(i) 
l. 

into the form 

0 0 0 

0 

0 

0 0 

where each X~i) is square, and sxs by Lemma 4.5. Therefore, Lemma 4.4 
J 

states that the characteristic polynomial of x(i) is 

n.-ja. lmi 
A. i i. la.I 

A. i. I 
s 

la. I c. > 
- ni. x. 1 

j=l J 

If A is diagonalizable, then the x3i) may be chosen arbitrarily 

and Theorem 4.6 follows. 

onal 

If A is nonderogatory, then each X(i) is triangular with diag
j 



( i) 
(cP'(A)n -l, 

35 

by Theorem 4.3 and Lemma 4.5. Therefore, is triangular and 

has diagonal 

la. I (.) 
l l 1 

( l1 c .. P'(A .. )n - , 
j=l lJ JJ 

. . . ' 

where c . . E ~. Thus Theorem 4.7 follows. 
lJ 

Theorem 4.8: Let A be as in Theorem 4.7 except that A is derogatory. 

In addition, let m. be the number of elementary divisors for any eigen-
l 

k 
value corresponding to the cycle a. and m = 

l 
E m . • 

i=1 l 

Then for any pre-

scribed set of rn complex numbers, there exists a matrix Y with 

P(A)Y - YA = 0 and o(Y) containing this set. 

Proof: Reduce X as in Theorem 4.3. Then, by Lemma 4.4, the charac

teristic polynomial of x(i) is 

n.-la. jm. 
>. i i i 

la.I la.I x< 1·_) 
'A 

1 
I - Il

1 

s j 
j=l 

where X~i) for j = 1, ... , la.I are the blocks of the block monomial 
J l 

matrix X(i) which are not required to be zero. By Lemma 4.1, these 

are all square and of the same dimension. Parti ti.on each X~ i) 
J 

according to the Jordan structure 

A. Then by Theorem 4.3 and Lemma 

of the corresponding eigenvalue in 

4.5, each block in X~i) is an 
J 



upper triangular matrix whose final column may be chosen arbitrarily 

and still give a solution of P(A)X - XA = O. 

In particular, by choosing the final columns of the lower 

blocks to be (O, ••• , o)T, the resulting matrix will be upper trian-

gular with each diagonal block contributing one arbitrary element to 

the diagonal. Therefore, m. of the eigenvalues of a solution may be 
1 

chosen arbitrarily for each cycle a .. Thus a matrix Y may be construc-
1 

ted with any set of m eigenvalues in cr(y) and P(A)Y - YA = 0. 
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CHAP!'ER V 

TOWERS IN P(A)X - XA = 0 

In this chapter, we wish to derive a result for the equation 

1.2) P(A)X - XA = 0 

which is analogous to Theorem 3.4. The natural analogue is to consider 

Problem 1 .3: For what polynomials P does the fact that there exists 

a tower for each solution of (1.2) imply that A is normal? 

To attack this problem, we derive conditi.ons on P which are 

necessary and sufficient for the existence of towers. 

Theorem 5.1: Let A be a diagonalizable matrix, P(X) a polynomial such 

that equation (1 .2) has a nonsingular solution, and cr(A) = (A.: i = 
l. 

= 1, ••• ,s} with A. distinct. 
l. 

Then there exists a tower for each 

solution of (1 .2) if and only if the following two conditions hold. 

1 ) 

2) 

P(A.) =A(') for some permutation a with order say t. 
i a i 

P(X) = ~ a.Xit+l for all solutions X of (1 .2). 
. 0 l. l.= 

Proof: Since P(A)X - XA = 0 for some nonsingular X, condition (1) is 

necessary. By Theorem 4.2, P(X) is a solution for all solutions X if 

and only if P(X) and X are simultaneously similar, by the similarity 

given in Theorem 4.2, to the same block monomial form. In other 

words, there exists a matrix S such that 



for all i,j = 1 , ... ,s with if a(j) and for all solutions X of (1 .2). 

t 
Let P(X) = E ck~ for t E I+. 

k=O 

k 
Each X must reduce to the same 

block monomial form as X and P(X). k -1 .1 Otherwise, ( SX S ) .. r 0 for 
l.J 

some i, j, k and X with i f a(j). However, since SXS-l is a block 

( k -1 ) monomial matrix, each block SX S .. is the product of blocks of 
l.J 

SXS-l. In particul ar, if (S~S-l ) .. f O, the blocks are some of the 
l.J 

-1 
nonzero blocks x

1
, ••• , Xs of SXS . However, by Theorem 4.2, these 

blocks may be chosen arbitrarily. Therefore, if (S~S-l ) .. f 0 for 
l.J 

this i and j, then P(X) = O. This is a contradi ction. Since ~ must 

reduce to the same block monomial form as X, we have k = it+l where 

+ t is the order of the permutation a , and i E I . Therefore, condition 

(2) is necessary. 

Conversely, conditions (1) and (2) result in a matrix P(X) 

which reduces to the same block monomial form as X. Therefore, by 

Theorem 4.2, P(X) is also a solution. 

Corollary 5.2: Let P be a polynomial and A be a normal matrix with 

o(A)=lA.:i=l, 
l. 

... ' s} with A.. distinct such that there exists 
l 

a tower for each solution of (1 .2). Then there exists a diagonaliz-

abl~ but nonnormal matrix B such that there exists a tower for each 

solution of P(B)X - XB = O. 

Proof: Since towers exist for solutions of P(A)X - XA = O, P satisfies 
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conditions (1) and (2) of the theorem for some permutation a and set of 

eigenvalues p .. : 
i 

i = 1, ••• ,s}. Let B be a nonnormal, diagonalizable 

matrix with the same spectrum as A. Then P satisfies conditions (1) 

and (2) of the theorem for cr(B) and a . Therefore, there exists a 

tower for each solution of P(B)X - XB = o. 

Corollary 5.3: Let A and P(X) be as in the theorem, except that A is 

not assumed to be diagonalizable. If there exists a tower for each 

solution of (1 .2), then conditions (1) and (2) of the theorem hold. 

Proof: In the proof of the theorem, to show the necessity of condi-

tions (1) and (2), we needed that there exists a nonsingular solution, 

X reduces to a block monomial form, and there exists a tower for each 

solution X. By Theorem 4.3, X also reduces to a block monomial form 

in the case that A is not assl.Ulled to be diagonalizable. Therefore, the 

proof of the theorem holds in this case. 

Corollary 5.2 shows that there are no polynomials which satisfy 

Problem 1-3. However, Theorem 5.1 does suggest another problem. 

Problem 1 .4: For what polynomials P does the fact that there exists 

a tower for each solution of (1 .2) imply that A is diagonalizable? 

To attack this problem, we need results like Theorem 5.1 for 

nondiagonalizable matrices. 

Theorem 5.4: Let P(X) and A be as in Theorem 5.1 except that A is 

nonderogatory, but not assumed to be diagonalizable. If there exists 
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R tower for every solution of (1 .2), then in add i tion to conditions 

(1) and (2) of Theorem 5.1, one of the f ollowing t wo conditions holds. 

1 ) 

2) 

P(x) = ax. 

For each t..., 
1 

a) p(k \ " . ) 
1 

b) P' ('A.) = 
1 

by a. 

= 

one of the following holds. 

0 for k=l, ••• ,m . -1. 
1 

and P(k)("A.) = 0 for k=2, ••• ,m.-1 and 1'. fixed 
1 1 1 

la'I ~ 
c) fl P'(t...)a =1. 

j=l J 

,,.,here mi is the multiplicity of "'Ai in A and is the set of all 

e igenvalues in the same cycle a' of a as t.. .• 
1 

Furthermore, there exists a tower for each solution of (1 .2) 

if, in addit ion to the conditions of Theorem 5.1, one of the following 

two conditions holds. 

1 ) 

2) 

P(x) = ax.. 

For each t..., 
1 

a ) p( k) p, . ) 
1 

b) P' (7'. ) = 
1 

by a. 

= 

one of the following conditions holds. 

0 for k=l, ••• ,m. -1 • 
1 

and P(k)(~.) = 0 for k=2, •.• ,m.-1 and 1'. fixed 
1 1 1 

la'I _lql 
c) n P'(t.. )la'T = 1 and P(k)(t...) = 0 for 

. 1 j J= 

k = 2, •.• ,m(t... ). 
1 

1 

Proof By Corollary 5.3, conditions (1) and (2) of Theorem 5.1 are 

necessary. 
s 

Let X = ~ 
i=l 

X. be in Jordan normal form and look at each X .• 
1 1 



41 

Let f.. = A. . , Y = (y .k) = X. where J
0

, k = 1 , .•• ,t and J, _,...., ' ........ l J l l 

1 I ) 

2 I) 

3 I) 

Y is upper triangular 

y .. = P'(A.)y. 
1 

. 
1

forj=1, .•. ,-f, -l 
JJ J+ ,J+ 

k+l 

Yj,j+k = P'(A.)yj+l ,j+k+l + ~ 
m=2 

p( m) ().,) 

m1 

for j = 1, ••. ,.f,-1 and k = 1, .•. ,.f,-j-1 

yj+m,j+k+l 

by Theorem 4.3 and lemma 4.5, where X. is the Y. of the theorem. 
l l 

In particular, the diagonal of Y equals 

We begin by considering the case of A. fixed by a. If A. is 

Then, 

fixed by a, then Y will lie on the diagonal of X. Therefore, the corres-

) 
-1 

ponding block of SP(X S is P(Y). Thus, the di agonal of P(Y) is 

The matrix P(Y) must also satisfy (2'). In particular 

Thus, since by condition (2) of Theorem 5.1 P has no constant term, 

0 or yl,J,. =0 or ,f, = 1 or P(X) = aX for some a such that a is 

an tth root of 1. However, Yu, is arbitrary. Thel'ef'ore, P'(7') = l ,O 

or A is a simple eigenvalue or P(x) = ax. 

Consider the off diagonal elements of Y. Let Y = D + C where 

D = (d.) is the diagonal of Y. There are two cases depending on P'(A.). 
l 
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Case 1 : Let P' (A.) = 1. Thus, (2') implies D = dt I. Then, ( 3') 

applied to Y impli e s 

4) 

Therefore, 

and the first upper diagonal of 
k-1 

dt C is the first upper diagonal 

k 
of (D + C) since C is upper triangular and has zero diagonal. There-

fore, 

(( D + C )k ) . . 1 = 
i,1+ 

Thus, by ( 3 ') it i s necessary that 

k-1 
d,f, c i' i + 1 = 

where d{ = (D + c)~z· 
Combining with (4) above, 

k-1 P( 2 )(A.) 
d, c . 1 . 2 + d, 

'V l+ ,i+ 2 'V 
= 

k-1 
d p c . . 1 

'V i,1+ 

k-1 p( 2 )(>,) 
d, c. 1 . 2 + d: 

'V l+ 'l+ 2 'V 
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or 

(k~l) k-1 p(2 )p.) 
dt 

= p(2\_~ di· dt 
2 2 

Thus, P( 2 )(A) = O =(k~ll k from consideration of or d.f, d-r,· However, 

k arbitrary, P( 2 )(A) the diagonals, d_f, = dt. Therefore, since dt is 

Proceed to the next upper diagonal where (3') now implies 

c .. 2 
1, l+ 

and a similar argument gives P( 3 )(A) = o. Likewise for each upper 

diagonal, P(i)(A) = 0 for i = 2, ... ,t-1. 

Case 2: Let P'(A) = O, then (2') implies the diagonal of Y is 

(o, ... ,o,d-t ). Thus, (-/ ) .{,...
2 

.{,... 1 = 0 for k>l . 
' 

From ( 3') 

Therefore, P( 2 )p .. ) = 0 for k.·>1. Substituting this back into Y and 

checking the next upper diagonal gives P( 3){\) = 0. Likewise, 

P( i) p,) = 0 for i == 1 , ••. , t-1 • '!his concludes the case of "A fixed 

by a. 

= 

Now consider the case of "A not fixed by a. Then, from condi

tion (2) of Theorem 5.1, P(X) = g(Xlal )X where g is a polynomial in 

xlal. Thus, using the fact that Y is a block monomial matrix, 

o. 
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la'I 
n Y 

i i=1 

where Y. for i = 1, ... , la 1 I are the blocks of sxs-1 
corresponding to 

l 

all the eigenvalue~ Ai in the same cycle a 1 of a as Y = Y
1 

and A= A
1

• 

j,k=1, ••• ,t. 

gular by (1 '). 

la' I illL 
( n Y. )la' I 

i=1 l 
and G = (gjk) = g(H) for 

Since X is a solution of (1 .2), ea ch Y. i s upper tr i an-
1 

P( Y1 ) . . = y .. g . . 
ll ll ll 

for i = 1, ... ,t. From (2') it is necessary that 

'(A )t-i Y· .g. · = p 1 yUgi·i·. ll l l 

Thus, again using (2'), 

Since Ytt and g.u_ are arbitrary, either 

or 

for i = 1 , ... , t. 

Since each Y. is upper triangular, 
l 



for i=l , .•• , . 

7) 
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g,. 
ll 

la'I la'I j~l,I 
""g(( rr P'(~.) II (Y.)u) ) 

j=l J j=l J 

Therefore, (6) implies 

la'I 
IT P'(t...) 

. 1 J J= 

]1~1., = 1. 

Therefore, the first set of conditions of the theorem are neces-

;.; ary for the existence of a tower for each solution of (1 .2) 

If P satisfies conditions (1) and (2) of Theorem 5.1, P(X) will 

reduce to the correct block monomial form. Therefore, let P(X) satisfy 

·the second set of conditions of the theorem and consider P(X) one block 

3t a time to show that condit i ons (1 '), (2'), and (3') hold for P(X). 

If P(x) = ax, then P(X) is clearly a solution for all solutions 

){. 

0 for k= 1 , ••• , m. - 1 , then by ( 1 ' ) , ( 2 ' ) , and ( 3 ' ) 
l 

Y. has the form 
l 

1 ) 0 

Yt 

where y. are arbitrary for i=l , ••• £. Since Y is a block monomial matrix, 
1 

P(Y). will consist of sums and products of blocks of this type. Thus, 
l 

P(Y). is again of this type. 
l 

If P'(f...) = 1 and P(k)(f...) = 0 for k=2, ... 1 m.-l and f... is fixed 
l l l 1 

by a, then it is clear from the proof of the necessity of these 

conditions that (1 '), (2' ), and (3') are satisfied. 

the correct form. 

Thus P( Y). is of 
l 
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la'I JQL 
If [II P'(1'.) )ja'f = 1 and P(k\1'.) 

. 1 J l J= 
=0fork::i2, .•. ,m.-1 then 

l 

P(Y). will consist of sums and products of the form 
l 

£-2 
P' (1')y£-1 £-1 

' 

2) 

P' (1' )y ££ 

By condition (2) of Theorem 5.1, P(X) = Xg(Xlal) and the products in g 

will consist of powers of the product of the blocks of Y i n t he same 

cycle of a as 1' .• Thus, it can be shown that if 
l 

la'! 14-
( II P'(1'.)]la'I = 

j=l J 

P(Y). will again be of type 2. 
l. 

Therefore, the second set of conditions of the theorem are 

sufficient to insure the ex i stence of a tower for each solution of 

equation 1 .2. 

Theorem 5.5: Let P(X) and A be as in Theorem 5.1, except that A is 

derogatory, not assumed to be diagonalizable. If there exists a tower 

for each solution of (1.2), then P satisfies condi t ions (1) and (2) of 

Theorem 5.1 and one of the following two conditions holds. 

1 ) 

2) 

P(x) = ax. 

For each eigenvalue 1'., one of the following holds. 
l. 
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a) p(k)(A.) = 0 for k=1, ••• ,m(1'.). 
1 1 

b) P'("- . ) = 1 and P(k)(A.) = 0 for k:::-2, ••• ,m(A.) and A. is 
1 1 1 1 

c) 

fixed by a and all the Jordan blocks of A corresponding 

to A. have the same dimension. 
l 

la' I j~l 1 
TI P' (1'.) ] = 1. 

j=l J 

where m(A.) + 1 is t he maximum dimension of the Jordan blocks of A 
1 

corresponding to A. and {A.} is the set of all e i genvalues in the same 
1 J 

cycle a' of a as 1' .• 
1 

Furthermore, there exists a tower for each solution of (1 .2) if, 

i n addition to conditions (1) and (2) of Theorem 5.1, one of the 

following two condit i ons holds. 

1 ) 

2) 

P(x) = ax. 

For each eigenvalue 1'., one of the following conditions holds. 
1 

a) p(k)(1' . ) = 0 for k=1, ••• ,m(1' . ). 
1 1 

b) P'(1'.) = and P(k\x . ) = O for k=-2, ••• ,m(\.) and"· is 
1 1 1 1 

fixed by a and all the Jordan blocks of A corresponding 

to 1' have the same dimension. 
i 

I a' I _l_gL_ 
c)[ n P'(1'.)]la'T=1andP(k)(1'.)=0for 

. 1 J 1 J= 

k=2, ••• ,m(1'.) and all the Jordan blocks of A 
1 



48 

corresponding to A. have the same dimension. 
1 

Proof: By Corollary 5.3, conditions (1) and (2) of Theorem 5.1 are 

necessary. By Theorem 4.3, it is necessary that P(A. )Y. - Y.A. = O 
1 1 1 J 

for a( i) • j, where A. is the submatrix of the .Jordan normal form of 
1 

A consisting of the direct sum of the Jordan blocks corresponding to A·• 
1-

Let Y be any of the Y., and let the corresponding A. and A. be 
1 1 J 

SI S 11 

k~l~ and t~l A~ respectively, where each Ak and At is a Jordan block. 

Then by Lemma 4.1, the resulting partitions of Ai and Aj above are 

the same. Let Y = (Ykt) be the corresponding partition of Y. Then 

P(Ak )Ykf, - YktA~ = 0 

fork= 1, .•• ,s' and t = 1, ... ,s'. Applying Lermna 4.5 to this equation 

implies that for each Z = Ykt = (zij) for i = 1, ••• ,m and j = 1, •.• ,n 

1 ") Z is upper triangular 

2") z . . = P'(A.)z . 1 . 1 fori=1, .•• ,min(m,n)-1 m-1,n-1 m-1+ ,n-1+ 

3") z . . t m-1,n-1+ = P' ( A.)z . 1 . 1 + m-1+ ,n-1+t+ 

t+l 
I: 

j=2 

p( j) ( /...) 
----Z 

m-1 +j,n-i+t+l j ! 

for i = 1, ••• ,min(m,n)-1 and t = 1, ••• ,min(m,n)-i-1. Thus, the final 

column of each Z is arbitrary. 

If there exists a tower for all solutions of (1 .2), then it is 

necessary that P(X) is a solution for all choices of the final columns 

of the Ykt • In particular, assume that A{ and A~' are the largest of 

the blocks Ak and A~ respectively, and choose the final columns of the 
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Ykt to be zero for all (k,t) /= (1, 1 ). Because of the relations (2") 

and (3"), this choice results in Ykt = 0 for all (k,t) f (1 ,1 ). Thus 

0 P(Yl 1 ) Q 

y = 
0 0 0 

and P(Y) = 
0 

Therefore, the problem of finding solutions P(Y) is contained 

in the problem of finding solutions P(Y
11 

). However, this is the 

case of Theorem 5. l~, since A{ and A~' are nonderogatory. Therefore, it 

is necessary that P(k)(A) = 0 fork= l , ••• ,m(A) 

or 
la'I j~l, 1 

[ . Il P' ( >J J = 1 or A is fixed by a and P' (A) = 1 and 
J=l 

P(k)(A) = O fork= 2, ... ,m(A) or P(x) =ax where m(A) + 1 is the 

maximum dimension of the Jordan blocks of A corresponding to A and 

[ t.. } is the set of all eigenvalues in the same cycle a' as A = A. • 
j 1 

Consider the case of P'(A) = l and t.. fixed by a and not all 

of the Jordan blocks of A corresponding to A having the same dimension. 

Again, we may choose the final colwnns of Ykt to be (o, ... ,o)T for all 

(k,t) f (1,1 ), (2,2), (1,2) or (2,1) where the dimension of Y11 is 

assumed to be greater than the dimension of Y22 • Then 
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.... 
Y11 

* * * 0 

Y11 

Y11 Y12 

* * 
0 . 0 

0 0 

Y11 Y12 

Y21 Y22 
* * . 

0 . . 0 
0 0 

Y21 Y22 

0 0 0 0 

where this is a new partition of Y obtained by partitioning Y
11 

into 

four blocks with the second diagonal block having the same dimension 

as Y22 • Let the dimension of Y11 and Y22 be nl and ~ for this new 

partition. Then 

(yk) .. 
11 

for i = 1, ••• ,n; and 

for i = n;+1, ••• ,n;+n2, where f is a polynomial in y12 and y21 with 

positive coefficients. 

Since it is necessary that (~) .. = (~). 1 . 1 for 
11 1+ ,1+ 

1. -- 1 n'+n' , ••• , . , 2' However, 
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f(y12 ,y21 ) f 0 for all y12 ,y21 if k > 1. Therefore, only P(x) = ax 

preserves the diagonal. Therefore, conditions(l) and (2) are neces-

sary. 

Conversely, as in Theorem 5.4, conditions (1) end (2) of 

Theorem 5.1 are necessary and it is only necessary to check that the 

transformation x~ P(X) preserves the internal structure of each Yk. 

If P(x) = ax then clearly towers exist for all solutions X. If 

P(k)(A) = 0 fork= 1 , ••• ,m(A), then all blocks Yk are of the form 

0 

where m' = m(A)+l. Sums and products of blocks of this type are again 

of this type. Therefore towers exist for all solutions X. If 

(k) 
P'(A) = 1 and P (A)= 0 for k=2, ..• ,m(A) and 1' is fixed by a, then 

all blocks Yk are of the form 

0 

where m' = m(A)+l. Sums and products of blocks of this type are again 

of this type. Therefore towers exist for all solutions X. If 
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la'I lal 
JI P'('A) ]f(i'f = 1 and P(k)('A.) = 0 for k=2, ••• ,m(1') then all blocks 

j=l 

Yk are of the form 

P'(1')m'-1 
Ym' 

P' (1' )m' -2 
Ym'-1 

Since condition (2) of Theorem 5.1 is satisfied, the sums and 

products of this type occuring in P(X) will be of this type. Therefore 

towers exist for all solutions X. 

For a polynomial P and a matrix A to satisfy Problem 1 .4, it is 

necessary that P and A satisfy the conditions of Theorem 5.1 but fail 

to satisfy the necessary conditions of Theorem 5.4 and Theorem 5.5. 



53 

Examples: Consider the following polynomials 

pl {x) = -x3 

P
2

(x) 1 3 3x) = -(x -2 

P
3

(x) = §(-3x5 + 10x3 - 15x) 

Each of these polynomials acts as a permutation of 1 and 

-1. Let A be any matrix with 1 and -1 as its only e i genvalues where 

the Jordan structures for 1 and -1 are the same. Then each of the 

polynomials above satisnes the conditions of Theorem 5.1. 

pl I ( 1 ) = -3 

pl I ( -1 ) = -3 

Therefore, P
1 

does not satisfy the necessary conditions of 

Theorem 5.4 and Theorem 5.5. 

P
2
'(1)=0 

p2 I ( -1 ) : 0 

p2"(1) = 3 

p2"(-l) = -3 

Therefore P
2 

does not satisfy the necessary conditions of 

Theorem 5.4 and Theorem 5.5 if there is a Jordan block in A with 

dimension greater than 2. In particular, P
2 

does not satisfy Problem 1 . 4 

if the dimension of A is less than or equal to 4. 



P
3
'(1)=0 

P
3

1 (-l) = 0 

P II (1) = 0 
3 

p II 

3 
( -1 ) = 0 

p (3)(1) 
3 = - 15 

p (3)(-1) 
3 = - 15 
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Therefore, P
3 

satisfies Problem 1 .4 if there exists a Jordan 

block in A of dimension greater than 3. 

In general, if Pis a polynomial of degree n then P(n)(A.) f O. 

Thus, if P'(A.) = 0 or 1 for some eigenvalue A. of A and the dimension 

of A is less than or equal to 2n, then P will not satisfy Problem 1 , 11 

for A. 

Theorem 5.6: 
t it+l 

Let 0 = [ ~ a.x with t,t EI+ and a. complex} . 
t . 0 1. l l= 

Let 

e a,t..,, ••• ,A.s = [P E Ola! : P(A.. ) =A. a(i) 
for i = 1, • • . ,s}. Let 

1. 

'!:' 
a,1..,, ••• ,A.s = [P : xP E Ola! and P(A..) = 0 for i = 1, ..• ,s}. Let 

1. 

~ a,A. , •.. ,A. 
1 s 

= [P E '!:' : a,t..,, •.. ,t..s P has minimal degree, q0 1 al}. Then 

= (P0 + xP1 % + x~) where po € e \ \ and a,l\,, ... ,l\s 

Q _ , Q_ E qi , , and xP1 E 0 I I . 
~ -vi a,/\ , ... ,/\ a 

1 s 

Proof: We drop the subscripts a,A.1, •.• ,A.
8 

for clarHy. First, i t i s 

clear that e = [p
0 

+ xQ: P
0 

E A and Q E Y}. Therefore, it is suffic i ent 

to show that '!:' = { P1 Q0 + ~ : xP1 E 0 and %' Q, E ~ } • 
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Let Q E 'f with degree qlal and % E .P. Let R1 = Q -

( q-q
0

)1 al 
- c

1 
x % where c

1 
is the leading coefficient of Q.. Then , R

1 
is 

in 'f and the degree of Rl is less than the degree of Q. Let R
2 

= 

(q-~-1 )lal 
= R1 - c

2
x % where c

2 
is the leading coefficient of R

1
, then 

t b.lal 
Rt = Rt-l E a . x i Q

0 
is of degree q

0
1al, the minimal degree. Let 

i=1 i 

t bilal 
Then ~ E q, and Q = E a ix Q0 + Q1 = P1 % + ~ with 

i=l 

Conversely, if xP1 E 0 and % E ~ then P
1 

Q
0 

E 'f. Furthermore, 

if ~ E ~ and ~ E 'f then ~ + ~ E 'f. Therefore, P1 % + Q1 E '¥ for 

all xP1 E 0 and %0., E .P. Thus'?'= (P1% + ~ : xP1 E 0 and Q0 Q1 E ~}. 
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