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ABSTRACT 

The flow of a frictional, cohesive solid through plane conver -

ging channels with Coulomb friction acting along the channel walls is 

investigated. The constitutive postulates used in the development of 

the solution are discussed and the solution is compared with those ob­

tained by earlier investigators. Velocity profiles, mass flow rates, 

and mean stress distributions along the channel walls predicted by the 

analysis are compared with experimental results. The solution cor -

rectly predicts the trend of the mass flow rate as a function of the 

channel opening angle as well as the magnitude of the n~as s flow rate in 

terms of the flow parameters. The solution also gives an accurate 

measure of the mean stress acting along the channel walls. 

The problem of predicting the size of the cavity formed below 

a cylinder in the transverse flow of a frictional, cohesionless material 

is investigated experimentally. A correlation which gives tlre lower 

separation angle as a function of the flow parameters is determined. 

Finally, the temperature distribution in the wake of a heated 

cylinder in the transverse flow of a granular material is investigated 

experimentally and spanwise temperature profiles are given as a 

function of downstream location. 

The information gained from the experimental investigation is 

intended to be of use in the design of heat exchanger equipment for 

granular media. 
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CHAPTER I - INTRODUCTION 

The general problem to which this investigation is directed 

concerns the flow of a frictional, cohesive solid through plane converg -

ing channels with Coulomb friction acting along the channel walls. Be -

cause of the large quantities of frictional, cohesive solids, such as 

coal 1 ores, grains, sand, etc. , transported each year, this problem 

has received considerable theoretical and experim.ental attention in the 

past. 

* Solutions have been presented [87, 92, 99] for the flow of a 

perfectly plastic, non-frictional material but these solutions have only 

limited applicability since the shear stresses acting along the walls 

are assumed constant. A more useful solution for the flow of a fric -

tional, cohesive solid, obeying the Jenike -S~1ield yield condition [ 4], 

was presented by Jenike [ 42]. The inertial terms in the equations of 

· motion were neglected, however, and as discussed in detail later, a 

unique velocity field could not be found. Sullivan [95] derived an exact 

solution for a frictional, cohesionles s material, obeying the Jenike -

Shield yield condition, for the particular case of radial gravity and 

frictionless channel walls. A unique velocity field was determined but 

the corresponding mass flow rate was larger than that observed in 

* Numbers in brackets indicate References listed at the end of the paper. 
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practice as a result of the assumption of frictionless channel walls 0 

Chapter 2 deals specifically with the problem of the flow of a 

frictional cohesive solid through converging channels o A brief descrip­

tion of the constitutive relations used in the development of the propos -

ed solution is given in Chapter 2, Section 1. The implications of as -

suming that the flow of a frictional material is perfectly plastic are 

discussed. The complete system of governing equations and appro­

priate boundary conditions for the problem are also giveno 

The solutions developed by Jenike [ 42] and Sullivan [95] are 

discussed in Chapter 2, Section 2o An approximate solution to the 

complete system of equations and boundary conditions is developed in 

Chapter 2, Section 3. Mass flow rates and velocity profiles given by 

the approximate solution for the flow of a frictional, cohesionless 

material through plane converging channels with Coulomb friction 

along the walls are compared with experimental results [ 14, 15, 9 5] o 

In addition to predicting the correct trend of the mass flow rate 'chan­

nel opening angle, the solution also gives a very accurate prediction of 

the magnitude of the mass flow rate in terms of the flow parameters. 

The mean stress acting along the channel walls given by the approxi­

mate solution is compared with experimental results [ 20, 38, 51] o 

Again the approximate solution gives an accurate prediction of the 

trend and magnitude of the experimental datao 



- 3 -

Chapters 3 and 4 deal specifically with problems related to the 

design of a granular heat exchanger in a contact-dominated flow. Heat 

transfer in a contact:...dominated flow where the pore fluid is transported, 

passively, along with the particles has wide industrial application 

where it is desired to heat, cool, or dry such mate rialso This prob­

lem differs greatly from the more familiar fluidized bed problem in 

which the solid particles are suspended in the fluid. Only a few inves -

tigators in the past have considered heat transfer in contact-dominated 

flows. 

The principal studies include a theoretical and experimental 

investigation by Brinn, et al, [ 105] of the heat transfer to granular 

material flowing through long heated tubes, and experimental work 

conducted by Kurochkin [107] and Donskov [106, 127] concerned with 

the heat transfer fro1n blunt bodies in the transverse flow of quartz 

sand. Even though in each of these studies the characteristic length 

associated with the heated solid surface was large compared to the 

mean particle size, contradictory results as to the effect of particle 

size were observed. Brinn, et al, [l 05] found that for purposes of 

heat transfer the material could be treated as a one -component con­

tinuum independent of particle size, while Kurochkin [107] and 

Donskov [106, 127] found that average heat transfer increased for de­

creasing particle size. 
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In a recent study by Sullivan (95], concerned with the heat trans -

fer from a flat plate in uniform flow, it was found that the influence of 

a particle size is determined by the size of a single parameter which 

may be interpreted physically as the ratio of the thermal boundary 

layer thickness to mean particle size. For large values of this para­

meter, as· in the case of a granular flow through a long heated tube, 

the distance over which a non-negligible temperature changes may 

occur is large compared to the particle size and hence the material 

may be treated as a continuum. However, for granular flow over 

heated blunt bodies this parameter is generally not large and thus non­

negligible temperature changes may occur over distances comparable 

to the mean particle size. 

Qualit<-.tive observ'ttions of the flow around a cylinder have 

revealed t:hat a stagnant region ahead of the cylinder and a cavity below 

the cylinde r are forrned. Surface temperature measurements taken by 

Kurochkin [ 10 7] for a heated cylinder show that substantially higher 

temperatures are reached in the stagnant and cavity regions than in the 

area of the cylinder that is "washed'' by the flowing material. Since 

the stagnant and cavity regions affect the velocity rlistribution around 

the cylinder as well as reduce the "effective'' heat transfer surface, 

the average heat transfer from a cylinder must be a function of the 

size of these r egions. 
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It has been shown that for flow over a blunt body the size of the 

stagnant and cavity regions may be greatly reduced by choosing a more 

streamlined tube shape [ 107]. For example, for the flow of a granular 

material over a double wedge, shown in Fig. 3. 1. 1, both the stagnant 

and cavity regions are absent. However, the added difficulty and cost 

in manufacturing non-circular heat exchanger tubes usually makes this 

approach unattractive. 

Chapter 3 deals specifically with the problem of predicting the 

size of the cavity formed below a cylindrical section in transverse flow 

as a function of the flow parameters. 

This information will be helpful in the design of granular heat 

exchangers. Furthermore, any knowledge of the size and location of 

the stagnant and cavity regions will be of importance for further 

analytical studies on the velocity and temperature fields around a 

cylinder. 

An additional experimental study was undertaken to determine 

the size and character of the wake of a heated cylinder as a function of 

the flow parameters. A complete description of this study as well as 

the experimental results is given in Chapter 4. 
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CHAPTER II - GRAVITY FLOW OF A FRICTIONAL, COHESIVE SOLID 

I. Constitutive Relations 

The problem to be considered is that of the gravity flow of a 

frictional cohesive solid through plane converging channels with 

Coulomb friction acting along the channel walls. A principal part of the 

problem concerns the particular constitutive postulates which relate 

the stresses and strain rates. The purpose of this section is to discuss 

the constitutive postulates for the continuous failure of a Coulomb solid 

proposed by Jenike and Shield [ 4], and then to develop the necessary 

system of equations that follow from these postulates for the above men-

tioned problem. In Section 2 of this Chapter two approximate solutions 

which were obtained by earlier investigators for this particular system 

of equations will be presented. In Section 3 a perturbation solution 

which was obtained in the course of the present study will be developed. 

The results are in good agreement with reported mass flow rates and 

mean stress data for frictional materials. 

The plane strain plastic flow of _a non-work hardening isotropic 

material in which the yield stress is independent of mean pressure is 

described by the system of equations given by Hill (92]. The equations 

of equilibrium, neglecting body forces for this discussion, are 

aax + o'fxy = 0 
ax oy in the x direction (2.1.1) 

and 
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oT oa 
~+_y=O 

ox oy 
in the y direction (2. 1. 2) 

where compressive stresses are taken as positive. The condition of 

isotropy which requires the axes of principal stress and strain rate to 

coincide is just 
0 0 

a - a e - e 
x y = _x=--_ _,_y 

Txy Exy 

where 0 OU 0 ov 0 1 (OU ov\ h £ h ex = ox; ey = oy; exy = 2 oy +ax; are t e components 0 t e 

strain rate tensor given here in terms of the Eulerian velocity compo-

nents u and v in the +x and +y directions, respectively. It has been 

assumed that the material is rigid-plastic, i.e. , a material that is rigid 

below the yield point, so that the total strain rate is equal to the plastic 

strain rate. The yield condition, for the case where the yield stress 

does not depend on mean pressure, is 

where 

y 
K--

J3 

2 
T 

xy 

for the Von Mises yield criterion and 

(2.1.4) 

y 
K =-2- for the Tresca yield criterion and Y is 

the yield stress in simple compression. The condition of zero volume 

change is expressed by a continuity equation, namely, 

(2.1.5) 

In principal stress space with the principal stresses 0 1, 02, a
3 
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-·­'•' (where a 
1 

> a
2

> a
3

) along the three coordinate axes, the yield condition 

Eq. 2.1.4 describes a regular hexagonal prism for the Tresca yield crite-

rion and a right circular cylinder for the yieid criterion ofVonMises. Both 

the prism of Tresca and the cylinder of Von Mises are centered about the 

hydrostatic axis a 
1 
= a

2 
= ay By the principle of noTmali.ty the incre­

mental strain rate vector for plastic flow must be normal to the yield 

surface. Hence it becomes obvious that for the above condition the 

strain rate vector must be perpendicular to the hydrostatic axis and, 

from isotropy, perpendicular to the axis E: 1 = e2 = € 3 so that plastic 

flow involves zero volume change. 

The above ideas developed for the flow of a perfectly plastic 

material, that is, a non-work hardening material, may be extended to a 

Coulomb solid by replacing the yield condition, Eq. 2, 1. 4, by a Mohr-

Coulomb relation, for example, 

2 a -a) x y 
( 2 . 

+ ,.2 
xy 

(ax +a \ 
= \ Y lsincp - c coscp

1 2 J 1 
(2.1.6) 

where cp
1 

is the angle of internal friction and c is the cohesion. 

Drucker [ 98] suggested that the Coulomb condition could be interpreted 

as either a generalization of the Tresca or Von Mises yield criteria in 

three dimensions. Such generalization transforms the yield surface de-

scribed by the prism of Tresca into a regular hexagonal pyr<?-mid or the cyl-

inder of Von Mises into a cone both centered along the hydrostatic axis with 

-·-
'''Since the material is assumed isotropic the principal axes of st:i;es s. 
and ~train rate coincide so that the axes of principal strain rate € 1, e: 2, 
and e:

3 
may be superiinposed,for the purpose of discussion, along l:he J 

al, 02; 03 axes. 
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vertex at a 
1 
= 0 2 = 0

3 
= -c cotcp

1
. 

The material is assumed to be isotropic so that in the principal 

stress diagram the axes of princ ipal strain rate may still b e taken to 

lie along the a x es of principal stress. The principle of n o rmality, re­

quiring the incremental plastic strain rate vector to be perpendicular to 

the yield surface, still applies. It is s e en that now however the incre­

mental str~in rate vector is no l onger perpendicular to the hydrostatic 

axis and hen c e no longer p e rpendic ular to the axis E: 1 = s 2 = e
3

. There­

fore, plastic flow must be acco1npanied by continuo us volume change. 

Since continuous dilation during plastic straining of a Coulomb 

solid is not obs e rve d in practice, the treatment of a Coulo mb solid as a 

perfectly plastic material satisfying a generalized Tresca or Von Mises 

criterion does not seem adequate. As a possible means of rectifying 

the problem of continuous volume change, Drucker, Henkel, and 

Gibson [3] suggeste d the treatment of a Coulomb solid as a work-hard­

ening material. 

Drucker, Henkel, and Gibsori [3] made the following physical 

observations. First, for a drained-triaxial test of a fully saturated 

· clay, yielding occurs for a stress state on the hydrostatic axis. This 

suggests that the g eneralization of either the Tresca or Von Mises 

criteria for a non-work hardening material, which would extend with­

out bound along the hydrostatic axis, to describe th.e yielding of a 

Coulomb material is perhaps inaccurate. Second, for a material 

loaded to point A, on the pressure-volume change curve in Fig. 2. 1. 1, 

and then unloaded to point R, r e loading, to first order will follow the 

unloading path back to point A and then continue along the initial 
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pressure-volume change curve. This too suggests a work-hardening 

type behavior. 

Considering [3], but extending the interpretation to three dimen-

sions, the Coulomb condition may be interpreted as a generalization of 

the Tresca or Von Mises criterion in three dimensions but 11 cut-of£11 at 

some point along the hydrostatic axis, by as yet an unspecified surface,>:' 

so that the instantaneous yield surface is descr.ibed by either a pyramid or 

cone, respectively, but of finite size. An increase in mean stress will 

result in an expansion of the yield surface about, and along, the hydro-

static axis. 

The vertex of the yield surface will lie along the hydro static 

axisatthepoint o 1 =o2 =o
3

=..;.ccotcp
1

. Sincethecohesion, c, isa 

function of mean pressure, the ab c:>ve expansion will result in a motion 

of the vertex of the yield surface along the hydrostatic axis in the ten-

sion direction. 

From the theory of plasticity, the plastic strain increment vec-

tor is normal to the yield surface at a smooth point, i.e. , a regular 

point, and within the directions of adjacent normals at a corner, i.e. , 

a singular point. Thus, if the point on the yield surface describing the 

stress state at failure is located on the end cap of the yield surface, 

plastic flow could be accompanied by a decrease, increase, or no 

change in volume depending on the direction of the strain increment 

':'From the theory of plasticity, the fundarn.ental definition of work hard­
ening and perfect plasticity lead to the requirement that all yield sur -
faces must be convex. Hence, while the yield surface used to "cut-0££11 

the prism of Tresca of the cone of Von Mises is unspecified, it must be 
convex. 
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vector relative to the hydrostatic axis. 

Shield [ 5] presents an alternate interpretation for the shape of 

the yield surface, as opposed to the pyramid of Tresca or the cone of 

Von Mises, describing the Coulomb condition in three dimensions. 

Shield de scribes the yield surface as a right irregular hexagonal pyra-

mid centered about the hydro static axis, again with the ve:rtex of the yield 

surface located on the hydrostatic axis at 0
1 

= 0 2 = 0
3 

= - c cotcp
1

. 

J enike and Shield [ 4] adopt the work hardening postulate of 

Drucker, et al, (3], however, the yield surface is taken to be the pyr-

amid of Shield [ 5] closed off with a base defined by the plane 

1 
0 = 3(01 + 0 2 + 0 3 ) as sho\vn in Fig. 2. 1. 2. 

Yielding can only occur for a stress point on the yield surface. 

For a point, D, on the pyramid base (Fig. 2. 1. 3), the strain rate 

vector, from the principle of normality, is perpendicular to the base 

resulting in an expansion of the yield pyramid giving an increase in 

-·­'" mean stress and a decrease in volume. Jenike refers to this process 

as consolidation. Since cohesion, c, is a function of mean stress, the 

expansion of the pyramid also involves a motion of the pyramid vertex 

along the hydrostatic axis in the tension direction. At a point, F, on 

the pyramid face, the strain rate vector, again normal to the surface, 

represents a shrinking of the yield pyramid accompanied by a decrease 

in mean stress and an increase in volume. Jenike refers to this pro-

cess as expansion. For a point, E, a unique direction for strain rate 

vector is not defined but from the theory of plasticity the vector must 

-·-'''For a fixed mass, a volume decrease represents merely an increase 
in bulk density. 
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lie between adjacent normals to the pyramid face and pyramid base. 

Depending on the particular orientation of the strain rate vector for a 

stress state at, E, yielding may be accompanied by an increase, de-

crease or no change in volume. 

Again following Jenike and Shield [ 4], the open pyramid in two 

dimensions is represented by the Coulomb yield. condition, namely, 

I I ~i---; 
-2 (0 +er ) + -- + 'T 

x y sinqy xy 
= 0 (2. I. 7) 

If it is assumed that the cohesion term may be written 

where 11 a 11 and 0
0 

are material constants, then the open pyramid may 

be closed off by writing 

+21(0 +er ) + I 
x y sincp1 

(2. I. 8) 

and 

(
er +er ) x y s; 

2 CJ 

where the inequality provides for the closing base of the pyramid. 

The yield surface in (er, T) coordinates and the corresponding 

Mohr diagram are given in Fig. 2 . 1. 4. The line A-E corresponds to 

the faces of the pyramid, and the Mohr circle through the point E to 
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the edge of the base of the pyramid. The angle betweem the T axis and 

the vector, ~, is cp . v Jenike and Shield [ 4] determine expressions for 

upper and lower bounds for cp depending on whether the flow involves 
v 

expansion or consolidation, respectively. The above expressions for 

the upper and lower bounds involve material properties relating to the 

variation of density with mean pressure. These properties were mea-

sured by Jenike, Elsey, and Woolley [30) to give the following bounds on 

cpv, namely, 

for plane strain. 

-2 ° 14 I <cp <2 o 4 I 
v 

Therefore, it seems justified to assume that cp ----0 
v 

so that the continuous failure of a Coulomb solid involves no volume 

change. This condition may be expressed by an equation of continuity, 

namely, 

(2. 1. 9) 

It is seen that the velocity field characteristics are located at 

±(rr I 2) / 2 from the axis of major principal strain rate, and since the 

material is isotropic, ±(rr/2)/2 fro.m the axis of major principal stress. 

During the expansion stage of flow, the stresses are continuously 

at one of the points E, and the stresses are represented by a Mohr 

circle through points E. Substituting the following expressions 

0 +a 
x y=(/ '\--

2 / 

sin cp = (l+a)sincp1 

C cotcp 

into the yield condition given by Eq. 2. 1. 8, the effective yield condition 
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is obtained, 

2 

(
a -0 ) 

x 2 Y + T~ -C cotcp == 0 

where cp is the effective angle of friction. Following J enike [ 42] the 

material constant a
0 

may be taken equal to zero so that the above 

yield condition reduces to 

(2. 1. 10) 

It should be noted that the effective friction angle cp coincides with the 

material internal friction angle, cp 1 , for a cohesionless material. 

It is seen that the characteristics associated with the stress 

field are located at :Q / ~(Tr/2- cp ) to the direction of major principal 

stress. 

Thus the constitutive postulates proposed for the continuous 

failure of a frictional cohesive solid due to Jenike and Shield [ 4] and 

expressed in cylindrical coordinates as used in the present analysis 

may be summarized as follows. The condition of zero volume change 

is expressed by a continuity equation 

(2.1.11) 

where it has been assumed that the material is rigid-plastic so that the 

plastic strain rates are equal to the total strain rates. Since the mate-

rial is isotropic the axes of principal stress and strain rate coincide 

which may be expressed by the equation of isotropy, 
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(2. 1. 12) 

Finally, the yield condition is given by the effective yield condition de-

rived earlier, namely, 

2 
'fr 8 

where cp is the effective friction angle. 

(2. 1. 13) 

The equations of motion for the geometry of Fig. 2. 3. 1 given by 

Sullivan [95] are 

_ (u OV t V OV t UV ) 
p or r a 8 r 

(2. l. 14) 

(2.1.15) 

in the r and 8 directions, respectively. The density p is the bulk 

density of the material, g is the acceleration of gravity acting verti-

cally, and u and v are the velocities in the r and 8 directions, 

respectively. 

The system of equations given by 2.1.11, 2 .. 1..12, 2.1.13, 2.1.14, 

and 2. 1.15 together with the appropriate boundary conditions properly 

define the problem for the determination of the three component stresses 

a r, a e, and 'fr e and the two velocities u and v. 

2. Solutions based on the Jenike-Shield Yield Criteria 

In this section two approximate solutions to the system of equa-

tions developed in Chapter II, Section 1 will be presented. The flow 
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material is assumed to be a rigid-plastic, frictional solid obeying the 

Jenike-Shield yield condition [ 4]. The material is permitted to exhibit 

finite cohesion but non-steady state flow effects such as dommg, arching, 

and piping are not permitted. Solutions are developed for steady grav-

ity flow of these frictional materials. In general the bulk density is a 

function of mean pressure but in the present analysis it will be assumed 

constant. 

The channel configuration is given in Fig. 2. 3. 1. For the anal-

ysis performed by Jenike the channel is not necessarily symm.etric so 

that the channel walls are in general located at +8
1 

and - 8
2 

with 
w w 

I e1 I not necessarily equal to 
w 

I e2 I. Also for the J enike solution the 
w 

problem is treated as an "initial value" proble1n and the boundary con-

ditions at the upper and lower surfaces are not considered. 

A. J enike Solution 

The solution developed by Jenike [ 42] will be briefly outlined. A 

discussion of the assumptions made in the development and their signif-

icance will follow. 

The system of equations for the gravity flow of a frictional, co-

hesive solid through plane channels that was developed in Chapter II, 

Section 1 is given below 

" J' 
- (u oXI'. +~ox+ uv\ 

p or r as r) 

(2. 2. 1) 

(2. 2. 2) 
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OU 1 av u 
or -r-ae-; = ...,,.-.,..,,.-----,,--

.!.(8v _ v + .!_ ou) 
2 or r r a 8 

OU -1- u + .!. av - 0 or . r r 88 -

(2. 2. 3) 

(2. 2. 4) 

(2. 2 . 5) 

The bulk density has been assumed to be constant, independent of mean 

pressure and cp represents the "effective'' friction angle to take into 

account the presence of cohesion. 

Jenike assumes that the inertial terms in the r and 8 equa-

tions of motion, Eqs. 2. 2. 1 and 2. 2. 2 respectively, are negligible com-

pared to the stress terms so that these equations may be replaced with 

the equations of equilibrium. With this assumption the problem for the 

determinati on o f the stress and velocity fields is separated, in that the 

stress field may be determined independently of the velocity field. The 

equations of equilibrium together with t:he Jenike-Shield yield condition, 

Eq. 2. 2. 3, and appropriate stress boundary conditions are sufficient 

for the determination of the stress field. 

The equation of isotropy, Eq. 2 . 2. 4, serves to re late the de -

rived stress field and the unknown velocity field. Isotropy together 

with the condition of incompressibility expressed by the eq·.iation of 

continuity, Eq. 2. 2. 5, provide a sufficient set of equations for the de-

termination of the velocity field . However, since the equation of iso -

tropy is homogeneous in both the velocities and the stresses, the stress 

field will determine the velocity field only to within a multiplicative 
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constant. That is, the constitutive relati ons d o n o t enfo rce uniqueness 

of the vel ocity field. 

F ollowing Sokolovski [87], the three component stresses are re-

placed by a mean stress, CJ , and a stress angle, ijr, through the set of 

relations 

CJ = CJ( 1 + sincpco s2 o/) 
r 

CJ 8 = CJ(l - sincpcos21jr) 

Tre = CJs in cp sin21jr 

(2 . 2.6) 

This system satisfies the Jenike-Shield yield condition identically . Sub·· 

stituting these relations into the equations of equilibrium, the problen1 

for the determination of the stress field reduces to a set of two hyper-

bolic partial differential equations for the mean stress CJ and the stress 

angle ljl. 

Again following Sokolo v ski [87] the mean stress is assumed to 

vary linearly w ith r, so that CJ may be written 

CJ = yrs(8) 

where y is the bulk specific weight and s (8) a function to describe the 

8 dependence of the mean stress. The stress angle, 1/1, is assumed to 

be independent of r, that is, 

1jr = 1/1(8). 

With these assumptions, the equations of equilibrium reduce to a set of 

ordinary, non-linear differential equations for the determination of 

s(8) and 1/I(8). The stress fields defined by these equations are re-

£erred to as radial stress fields by Jenike [42]. These equations may 

be solved (algebraically) for the derivatives of s and 1{f to give 
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dy 
dG = F(8, Y, s) = -1-(ms sinlp(l+sinlp)(cot8sin2Y+cos2Y-l) 

+ cos8 - sinlpcos(8+2Y) + s cos
2

cp]/[2s sincp(cos2W-sincp)] 

ds 
dG =G(8, 1/1, s) = 

s sin2ijl + sin(8+21/f) +ms sincp[cot8 (l+cos2tj.r) - sin21/I] 
cos21/f - sincp 

(2. 2. 7) 

where m = 0 for plane strain. Integrating these equations with re-

spect to 8 gives 
8 

tj.r ( 8) = o/(8°) + s F(t, ijl ( t) , s ( t )) d t 

and 
80 

8 
s ( 9) = s(8°) + l G(t, ijl(t), s(t))dt 

c' 
8 

o 

where 8 ° is the initial ray . 

As discussed earlier the equilibrium equations are two hyperbolic 

partial differential equations in r and 8 for the two stress functions 

a and y. For a real channel, boundary conditions exist for the stress 

functions at the entrance and exit planes of the channel. However, in 

this approach the pro bl em is actually treated as an initial value type 

pro bl em ·with initial values specified along the ray 8 = e 0 without 

considering boundary conditions at the upper and lower surfaces. 

The material is assumed to satisfy a Coulomb condition along 

the walls, namely 

'frA 
tan 0 

1 
along e 1 

and = = 8w ae 1 
8=8w 

(2. 2. 8) 

'f re 2 2 
2 = + tan 0 along 8 - ew ae e=e w 
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The set of Eqs. 2. 2. 7 cannot be solved in closed form for W and s 

and then the above wall conditions Eq. 2.2.8 applied. Therefore, it is 

necessary for the equations for W and s to be integrated numerically 

for a particular set of initial conditions and the corresponding values of 

the solution at the walls determined. The process is continued until the 

correct initial set is found to give the desired Coulomb condition along 

the walls. The solution procedure is analogous to knowing the magni-

tude of the solution to a differential equation at some time t = t
0 

and 

then choosing different initial values for the solution at time t = 0 un-

til the particular initial value that gives the correct value at t = t
0 

is 

found. 

Plots of W(8) and s(8) versus 8 are given by Jenike [45] for a 

variety of initial conditions. A complete set of these plots is given in 

references [20] and [22]. 

If it is assumed that the velocity field is of the form 

f(8) 
u =-­

r (2. 2. 9) 

that is, that the velocity field is radial, then the equation of continuity is 

-·-
s a ti sfi ed identically.,,, Substitution of the above radial velocity field into 

the equation of isotropy gives 

w = W(8). 

Hence, radial velocity fields and radial stress fields are 11 compatible. 11 

Sinc e W = ~(8) is determined from the solution to the stress 

,:, f{9) 
For u = the equation of continuity gives V = v{r). However, 

since V miist vanish at the walls, the solution must be V = 0 
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problem, the equation of isotropy actually gives an ordinary differential 

equation for the determination of f( 8). From Jenike [ 42], 

r 
f( 8) ::: A exp[ -(2+m) J tan 21jr (8)d8] (2.2.10) 

where m ::: 0 for plane strain and 1Jr(8) is given by the solution to the 

stress problem. 

By considering the partial differential equations of equilibrium in 

terms of a and "1 it is seen that the choice of 

a ::: yrs(8) and 

1jr ::: 1jr ( 8) 

reduces the equations to ordinary differential equations for a and 1Jr. 

The above scheme works because when the inertial terms are neglected 

all remaining terms that contain a involve division by r or differen-

tiation with respect to r, and the only term not containing a, the body 

force term, is independent of r . 

For the problem of the flow of a Newtonian fluid through conver-

ging channels a similar reduction is possible. A body force term is not 

· present, and it is seen that for the pressure of the form 

p ::: s ( 8) 
2 

r 

and the radial velocity of the form 

u ::: f ( 8) 
r 

the partial differential equations of motion reduce to ordinary 
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differential equations for s(8) and f(8). 

In the Jenike analysis the inertial terms in the equation of motion 

are neglected. However, at the ex it plane the radial velocity with a ~ 
r 

dependence must be at its maximum and for 11 reasonable" flow rates, 

hardly negligible. With a radial velocity of the form .f.IB, the inertial 
2 r 

terms in r equation of motion must be of the form f ~) which is not 
r 

compatible with the assumed radial stress field. Therefore, for non-

negligible inertial terms associated with a radial velocity field, a stress 

term of the form 

a~ s ~8 ) similar to the form of the mean 
r 

pressure in the Newtonian probl e m, is required to balance the inertial 

terms. 

The Jenike solution, because of the linear variation of mean 

stress w ith position r, cannot be extended upward to a traction free 

boundary, But as discussed above, the solution is valid near the exit 

plane only for the case of "small" flow rates and the predicted veloc-

ities are not unique. 
··­,,. 

Thus, while the J enike solution does represent a 

major step in the understanding of the gravity flow of frictional mate-

rials the solution has serious drawbacks . . Alternative solutions retaining 

the inertial terms will now be discussed. 

B. Sullivan Solution 

An alternate approximate solution to the system of equation de -

veloped in Chapter II, Section 1 was proposed by Sullivan [95]. The 

,:,The flow rate must be small enough that the inertial terms in the 
equations of motion are n~ gligible. 
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material was assumed to obey the Jenike-Shield yield condition. The 

material was also assumed to be cohesionless so that the effective an-

gle of friction in the J enike-Shield yield condition is just the internal 

friction angle. Bulk density was taken as constant at the value of the 

material density at the critical void ratio. 

The geometry of the channel is given in Fig . 2. 3. 1. The chan-

nel is symmetric with straight walls at +8 and -8 . In general, the w w 

material will satisfy a Coulomb condition along the walls, namely 

= -tano. 

8w 

However, the analysis described below will be valid only for the case of fric-

tionles s channel walls where o = 0. The entrance and exit planes at r =Rand 

r = r 0 are assumed to be traction free surfaces with Tr8 = a 8 =Gr = 0. 

It is also assumed that the channel walls are "sufficiently steep11 that 

the body force acts in a purely radial direction. The resultant solution 

is referred to by Sullivan as the radial body force solution. 

Following Sokolovski [ 87], the component stresses are expressed 

in terms of a mean stress a and a stress angle \jl through the follow-

ing relations 

Tr 8 = a sinC()sin2 ~ 

ae = 0(l-sinC()cos2~) 

a = 0(1 +si.nq:to s2 ~) 
r 

These relations satisfy the yield condition identically so that the system 

of Eqs. 2. 2. 1 to 2. 2. 5 reduce to a set of four partial differential 
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equations for the stress functions 0 and ~ and the radial and t angen-

tial v elocities u and v. 

A solution of the follo w ing form, valid for the case of steep, 

frictionless walls, is assumed. 

0 = S(r) 

1lr -~ 
'I' - 2 

u = u(r) 

-·--·-v = o. 

From continuity it is seen that u(r) must be of the form 

u(r) 
_ro 

=U­
r 

(2. 2. 11) 

(2. 2. 12) 

where u is the constant, and as yet undetermined, exit velocity. The 

isotropy equation and the 8 equation of motion reduce to identities. 

The r equati on of motion reduces to the following ordinary differen-

tial equation for the determination of the mean stress S(r), 

dS(l-sinCO ) 
dr · ' ~ S sincp + Pg 

r 

with the homogenous solution 

2 sin c:p 
1 -sinc:p s

8 
= c

1 
r 

-2 
(r 0u) 

= p 3 
r 

where c
1 

is an arbitrary constant, and a particular solution 

(2. z. 13) 

>!<With the assumption that ~ -? z, the r - 8 axes bec ome principal 
axes and thus T e = 0. Thus tfiis s olution r epresents the case where 
the shear is id e rftically zero al ong the walls. 
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pgr 
Sp= 3 sinCf.l -1 
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2 
u2 (r o\ 

P- -; 2 r 

2 
3 (r O\ u2 

Sp = 2 Pgr log r- P r) 2 

for sinCf.l /= ~ 

for sincp 
1 

= 3· 

Considering the case where sinlp -F -}, the expression for the 

mean stress becomes 

2sincp 
-2 

S(r) =SH+ Sp = clr 1-sinlp + Pgr - p u2 
3 sinlp-1 

2 

(~). (2. 2. 14) 

Applying the homogenous stress boundary condition at the upper surface 

r = R determines the constant c 1 so that S(r) may be written 

S( ) - p gr 
r - 3sinlp-l [ 

r f ~ ;n~~ 
1 J u 2 (r o)2 

[ r 1 - s~ncpJ 
l-(R) -p-z-r l-(R) 

(2. 2.15) 
applying the homogenous stress boundary condition at the lower surface 

r = r 
0 

determines a unique value of the exit velocity u, namely, 

u
2 2 

rog - 3sinlp-l 

3sinlp-l 
1- sincp 

(
ro) . 

1- R 
2 

1- sinCf.l 

1-(~) 

(2.2.16) 

For the particular case where sinlp 
1 = 3 the exit velocity becomes 

(2. 2. 17) 
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-2 
u 

The dimensionless exit velocity 
gr 0, 

is plotted versus dimen-

sionle s s head, r , 
R 

in Fig. 2. 2. l for various values of internal fric-
0 

tion angle cp. For sin cp > -} the exit velocity becomes independent 

R 
of head for lar2'.e 

~ r , 
0 

-2 
u = 

the limiting value being given by 

2 f . 1 d Rl or s1ncp> -
3 

an - arge 
3sincp-l ro 

(2. 2. 18) 

l 
for sincp ~ 

3 
the exit velocity continuously increases with increasing 

head analogous to fluid-like behavior. For cp -> 0, the exit velocity 

becomes 

= 

R 
- l 

2 
ro 

1- -
R 

(2. 2. 19) 

the result identical with that given by Bernoulli equation for a perfect fluid. 

For the limiting case where sincp > -
3
1 

and ~ is large and 
ro 

with the dimensionless exit velocity given by Eq. 2. 2. 18 above, exit 

-·-
velocity is plotted versus opening angle for cp = 35° in Fig. 2. 2. 2 '''. 

Also shown is flow rate data collected by Sullivan [ 9 5 J. !t ·is ~een that 

the radial body force solution predicts the correct trend in the data in 

regard to the dependence of dimensionless exit velocity on opening 

angle. However, the magnitude of the predicted flow rate for a given 

value of opening angle e is substantially above the experimental data. 
w 

The radial body force solution could be considered an exact so-

lution for the case of radial gravity and frictionless walls. The assumption 

, ., 
'I' 

The dimensionless exit velocity in Fig . 2. 2. 2 is based on the chan-
nel opening at the exit, D, which may be expressed in terms of the 
exit radius r 

0 
as 
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thatthe ~~~makes the r - 8 axes principal axes and Tr 8 =o. Thus, 

this solution represents the case where the shear stress is identically 

zero along the walls. The fact that the predicted flow rate is greater 

than that experienced in real channels is perhaps due to the retardation 

of the flow in real channels by the Coulomb shear stress acting along 

the walls. 

The Sullivan solution does represent a significant advancement 

from the work of J enike in that ( 1) it does determine a unique velocity 

field coupled with the stress field, (2) the rnean stress includes terms 

associated with body and inertial forces, and (3) the solution does satis-

fy boundary conditions at the entrance and exit to the channel. The ad-

dition of the Coulomb condition along the wall to account for wall shear 

and the addition of non-radial gravity would represent a significant ad-

vancement beyond the Sullivan solution. 

3. Perturbation Solution 

A. Complete Solution - Variable Wall Friction Angle 

An approximate solution, developed in the course of the present 

investigation, for the gravity flow of a frictional, cohesive solid through 

plane converging channels will now be presented. The system of equa-

tions developed in Section 1, along with a brief description, is given 

below. 

2 
:::: _ p (u ou +~ ou _.."'.:_) 

~or roe r 

P ( ov + v 3v + u v) 
- \uar r1f8 7 

(2.3.1) 

(2.3.2) 
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OU + ~ + .!_ ov = 0 
or r r 08 

(

(J +0 8) 
= r2 sin<:p (2.3.3) 

(2. 3. 4) 

(2.3.5) 

Equations 2. 3. 1 and 2. 3. 2 are the r direction and 8 direction equa-

tions of motion, respectively. Equation 2. 3. 3 is the assumed Jenike-· 

Shield yield condition, where cp is the effective angle of friction. For a 

cohesionless material the effective angle of friction proposed by Jenike 

and Shield [ 4] is equal to the internal friction angle defined in Appendix B. 

The material is assumed to be isotropic such that the directions 

of principal stress and strain rate coincide. The assumption is ex-

pressed by the isotropy condition, Eq. 2. 3. 4. 

Using the work-hardening model for a Coulomb solid proposed 

by J enike and Shield [ 4] and discussed in Section 1 of this chapter, con-

tinuous failure is permitted with negligible volume change. This condi-

tion is expressed by the equation of continuity Eq. 2. 3. 5. 

The channel configuration and boundary conditions are given in 

Fig. 2. 3. 1. The channel centerline is along the 9 = 0 line with the walls 

located at ±8 . Traction-free surfaces exist at r = R, the upper sur­
w 

face, and r = r
0

, the lower surface. Along the walls the tangential 

and normal stresses are related by the Coulomb condition 
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= (-tan 6) f ( r) 

e = e 
w 

where 6 is the wall friction angle. A function f(r) is included for gen-

erality so that the friction condition may vary as a function of position 

along the wall. The significance of variable wall friction angle will be 

discussed in detail later. 

The solution proposed by Sullivan [95] and discussed in detail in 

Section 2 was of the following form 

-- ()I-TI" _A 0 a a r , 1JI - 2 , u - r' v == 

The condition that ~ ->f makes the r - 8 directions principal direc­

tions, and thus along any ray (the walls of the channel for instance) the 

shear stress must be identically zero. The Sullivan solution could be 

considered an 11 exact11 solution for the case of radial gravity and fric-

tionle ss walls. A perturbation to Sullivan's solution is given in 

Appendix A. A perturbation approach in which the solution to the zeroth 

order equation is a solution to the complete system of equations only to 

order, e:, where e: is the perturbation parameter will be taken here. 

Following Sokofovski [87], the three component stresses are re-

placed by a mean stress, a, and a stress angle, o/, through the 

relations 

'rre = Gsin<:psin2o/, a 8 = a(l-sin::.pcos2o/), ar = cr(l+sincpcos2~). (2. 3. 6) 

The system Eq. 2. 3. 6 satisfies the Jenike-Shield yield condition, 

Eq. 2 . 3. 4, identically. The meaning ofthe functions a and o/ is best 

seen from a Mohr diagram, Fig. 2. 3. 2 . The Mohr Envelope is inclined at 

an angle of ±cp to the a axis. The Mohr Circle for a material at yield is 
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tangenttotheMohrEnvelope. The meanstress, CJ, givesthelocationof 

the center of the Mohr Circle and the stress angle 1jf gives the location of the 

particular stress state, in r- 8 coordinates, relative to the principal axes. 

For W ..... rr/2, CJ
8

->CJ 1 , CJr-+CJ
2 

andther-8 axes become principal axes. 

An expansion of the system variables CJ, 1jf, u, v of the follow-

ing form is assumed. 

v ,._, O + f321 (8 )vl + l322(E:)v2 +: 
(2. 3. 7) 

W,...., ~ + !331 (e) v l + !332(t.:)W2 + · 

In the analysis performed by Sullivan [9 5] for the case of steep 

frictionless channel walls, the stress angle 1jf is constant at the value 

Intuitively, for small deviations from this ideali<Z;ed case it seems 

reasonable that the perturbation in the value of the stress angle from 

~ should be small. For this reason the coefficient f3 .. is assigned the 
lJ 

value e:. 

terms of 

The size of the coefficients f3 .. may then be determined in 
lJ 

e: by substituting the relations. given in Eq. 2. 3. 7 into the 

complete system of partial differential equations. It will be shown by 

direct substitution that the values of the coefficients that result from 

this prodecure are just 

2 3 2 4 3 4 
f311"' 8 , 1321,..., 8 , {)31"' 8 • 1341""' 8 , l31z''' 8 , {)32"' 8 , !342""' 8 

h 
where e:,._, - and r 0 is taken as the reference length to be used in ro 
reducing the system of equations 

channel opening , h, is of order 

to dimensionless form. The half 

' h ro 8w 
r 0 8w so that -"'--""'8 ro ro w 
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The radial velocity is just 

Choose as a reference velocity, U >:', the average zeroth order exit 

velocity (the material velocity at the channel exit plane). The dimen-

sionles s radial velocity then becomes 

which may also be written 

In the discussion that follows, a function enclosed in double brackets 

will be taken to indicate the order of magnitude of that function and a 

bar over a function will be taken to indicate the dimensionless form of 

that function~ 
2 = e << 1. The dl.mension-

less radial velocity, u, may be written 

(2.3.8) 

In a similar fashion the dimensionless circumferential velocity, v, 

becomes 

where [3 22 ( e) has not yet been determined. 

The stress angle, is given in Eq. 2. 3. 7. ChoQse, 

(2.3.9) 

1T 

2 .' as 

the refer ence value of ~ so th a t the dimensionless ~ may be written 
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f = 1 + E: * 1 + e: 3f 2 + . . . (2. 3. 10) 

The second stress function, a, which is just the mean stress, 

is also given in Eq. 2. 3 . 7. Choose Pgr 0 , where P is the bulk densi­

ty' g the local acceleration of gravity' and ro the reference length 

described earlier, as the reference stress, so that the dimensionless 

mean stress may be written 

+ e: 2a + "'4a 0 = 0 o 1 "' 2 + · · · (2.3.11) 

In summary, the dimensionless form of the proposed perturbation solu-

tion is just 

2- 4-
u = Uo(r) + e: ul + e: u2 + . 

3-
v = 0 + e: vl + l322(e:)v2 + ... 

-;r;- - 3-
'!' = 1 + e:~ 1 + E: ~2 + .. 

(2. 3. 12) 

2- + ,..~ a = ao + e: 01 "' v2 +. 

r S 8 Let r = - and = 8 so that the equation of continuity, Eq. 2. 3. 5 
ro w 

given earlier, may be written in din1ensionless form as 

(2.3.13) 

Substitute for u and v from Eq. 2 . 3. 12 into Eq. 2. 3. 13 to obtain 
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"U1 1 °"li1J +-+---+. 
-r -r oe .. = 0 

2 
Thus, the zeroth order and € order equations of continuity are 

zeroth order 

and e2 
order 

dU
0 

U 0 
--t-=0 
dr r 

oul ul 1 ov 1 
--t-t--=0 - -
or r r ae 

(2. 3. 14) 

respectively. Higher order equations may be obtained in a similar 

fashion but for the present analysis the perturbation will only be carried 

2 
out to order E: • 

The equation of isotropy as given in Eq. 2. 3. 4 is 

Using the expressions fo 1· CJ r' a8 

above equation becomes ta~2 ~), 
and T e Eq. 2. 3. 6, the LHS of the 

r ' 

independent of the mean stress. 

With an additional substitution from continuity, Eq. 2. 3. 5, the equa-

tion of isotropy reduces to 

2
ou 
or 

ov - .:::::: + .!. OU 
or r r oe 

1 (2. 3. 15) = tan(2w) 

Writing the isotropy equation in dimensionless form and substituting for 

u, v, f in terms of the perturbation variables, Eq. 2. 3. 15 becomes 
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3(ovl vl) 1 aul OVz v2 31 8u2 5 
8 -=- - -=:-- + 8=-=- + f322-=- - -=- + E: =-=- + O(E: ) 

or r r ae or r r 08 

Equating terms with like powe rs of 
1 3 e:, the zeroth order, e: and e: 

order equations of isotropy are obtained 

zeroth order 0 = 0 

e
1 

order (2. 3. 16) 
roe 

3 
€ order 

ovl vl 1 8u2 
----+----
or r r 08 

/ _ \ 

dU Bu . 
2'IT--

0 l + l --1 ; = o 
d-X:-

2 1 or i 

The stresses a r' a e and T r8 may be written in terms of the 

perturbation variables by substituting for a and 1jr in the Sokolovski 

relations Eq. 2. 3. 6. Thus, 

(2. 3. 1 7) 

with terms of order e 5 for ~ and e6 for cr 
'" suppressed . .,, 

,:,Note: Use has been made of the following trigonometric identities 
cos (u + 8) = - cos e 

and sin (Tr+ 8) = - sin8 so that 

cos (2\jr) = c~s (2'IT+2eo/
1 

+2e
3 o/ 2 + • • •) = - cos (2eijr

1 
+2e

3
1jr

2 
+ • • ·-) 

s in ( 2 1jr ) = s in ( 2 'IT + 2 E: 1jr 
1 

+ 2 E: 
3 

1jr 
2 

+ • • ") = - s in { 2 e \jl 
1 

+ 2 € 
3 

1jf 
2 

+ • • • ) 
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Writing the 8-equation of motion, Eq. 2. 3. 2, in dimensionless form and 

substituting fort.1-i.e dimensi onless stresses the above expressions, the 

8 equation of motion becomes 

- - T T -
3{ raa0 __ a01 _ ) ,_ atV 2 _ aw 1 \ 1 oCJ2 ( \ 

E: -1T sincp\=""" W 2 +-=- * 1 - n sin cp \CJ 0 -=- +CJ 1 -=-) + =---=- 1 + sin cp ) 
or or or or r a 8 

- oCJ 
[ 

2 . a CJ - - 1 + sin cp 2 1- 2 J 
-n (l+smcp)-::iV1tlt2- 2 1T -=-'111 

ae oe 

+ [u ov 1 + UO v l'\ F2} + 0 ( e 5) = 0 
0 - - J r or r 

where F is the Froude number defined as F 
r r 

U':' = Kra · Before se-

parating the 8 equation of motion into equations of increasing order in 

e: , the r equation of motion will be considered. Following the same 

procedure outlined above for the 8 equation of motion, the r equation 

'"'•'Both sine and cosine of the perturbation variables have been expanded in 

a Taylor's series about the origin. Thus, (2 E:W + 2e3W + •• •)3 

s in ( 2 E: W 1 + 2 E: 3 W 2 + • ) = 2 E: W l + 2 E: 3 iV 2 + • • • - l 3 ! 2 + • • • 

3 (Ze* +2e
3

w + • • ·)
2 

( 2 ,,, + 2 ·' • ) -- 1 - l 2 cos E: 'il l E: ~I 2 + • ' 2 ! + • • • + 
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becomes 

2a1 7'\2 2 ( ou 1 dU0) . af2 o - · - s incp -
--- sincp--+F U --+u1-- -lT-- a --- 2 r 0- - - O-

r . or dr r Cl 8 

+ [lTsincp aao l3]} = 0 
6 ae 1 

Consider the Coulomb friction condition along the walls, 

'Tr 8 

o-e e = 
= ( - tan O) f ( r ) (2. 3. 18) 

8 w 

where o is the wall friction angle and f(r) is a prescribed function of 

r. Substituting the expressions for 'T re and a 8 in terms of cr and 1(1 

in Eq. 2. 3. 18 the wall condition becomes 

~ ; ,,,,_·L<-~ 

+ sincpc,osZo/ I 
1 - sincpcos2W 8 = 8 

w 
= - tanO f(r) 

independent of the mean stress, a. In terms of the perturbation vari-

ables 1(1
1 

and 1(1 2 the wall condition is just 
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where \f 1 le = 8w = f 1 (r, 8w). Expanding the sine and cosine functions 

in Taylor's series about the origin and considering the first order 

terms above, the boundary value for ll ! e = e is found to be 
w 

f (r e ) = ~ (tan6) f(r) (1 + ~ini:p) 
1 ' w rr e 2 s1ncp · 

iv 
1

, then, is a prescribed function of r along the wall. 

For the particular channel geometry considered, the 8 = O line 

is an axis of symmetry so that the shear stress must vanish 

along 8 = 0. Using the Sokolovski relations the shear stress is just 

- 2- 3 
'fre =+(00 +e 0 1 +· •)(sin'P)sin(rr+rre:l1 +rre: f 2 + •• •) 

or 

Again expanding the sine function in a Taylor's series, the shear stress 

1 
to order € becomes 

,,, ,,, 

but 0 is a function of 0 alone. Thus, in order for the shear stress 
0 

to vanish along e = 0 the boundary condition for iv 1 must become 

1jl 
1 

(;;-, 0) = 0. In summary, the boundary conditions for f 1 are 

1lr - e ) = ~ (tan6) f(r) 1 +sin'() 
'i'l(r, w 1T e 2sini:p 

at the wall and centerline, respectively. 

>!<The point will be discussed in detail in the consideration of the equa-­
tion of motion, 
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Now consider the zeroth order series of equations 

dr r 

0 = 0 

aa aq al 1 a0 
__ O (1 - sincp) - rrsincp - -- - 2sincp-=- + 1 
or r 08 r 

- - w 
2- dUo . 000 1il1 

+ F U -- _Tlsmcp -- -- = 0 
r 

0 
dr 38 r 

continuity 

isotropy 

8 equation of 
rnotion 

r equation 
of motion 

For the condition that must be independent of e. 
Since all terms in the r equation of motion are independent of 

0 0 3 1.Jr1 -e with the exception of -=- --=- , ijl 1 must be at most a linear 
r 88 

- - + 
function of 8. However, from the previous paragraph, o/ 

1 
(r, 0) 

and * 1 (r, 8w) are known, 

= 2 (ta~o \) f(r) 1 + sincp 
rr "' 2 sincp 

where f(r) is a prescribed function of r. Therefore, 'f1 must be 

of the form 

(2. 3. 1 9) 

Thus , the zeroth order problem becomes 



dU
0 

u
0 --+-=O 

dr r 
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(2.3.20) 

do-
0 

0 0 dU 
-- (1 - sincp) - rrsincp O l

1 
(r, 8 ) - 2 sincp _.Q. + 1 + F 2

ruO __ o = O 
dr r w r dr 

with boundary conditions 

and 

for the upper and lower traction-free surfaces, respectively. It should 

be noted that the first order term ljl 1 appears in the zeroth order sys­

tem of equations since, as seen from the complete r equation of mo-

tion, it influences both the zeroth order mean stress and the zeroth 

order radial velocity. 

Before discus sing the solution to the zeroth order system of 

equations, the equation for higher orders m E: will be listed. For or-

1 
der E: , the system becomes 
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r- as 
isotropy 

a al 
1 

_ 
1 

aa 
1 

- 'IT
2

sincp 
0 

fl -- e + --- (1 + sinC()) = 
r ae r ae 

0 
8 equation 

of motion 

and for order 8
2 

aul u:-1 1 av 1 
--+-+---=O or r r as 

continuity 

1 aa 1 
;rsincp - f -­- 1 -

r ae 

. cr1 af1 cr 1 82 2 (- ali1 _ du0\ 
;rs1ncp - -- - 2- sincp - 2 +Fr u0-=-+u1 -=-J r 08 r or dr 

a
0 

af2 
rrs incp -=---=- = 0 

r 08 
r equation 

of motion 

(2.3.21) 

(2. 3. 22) 

The boundary condition for both the 8 l . and 8
2 

order equation can 

only be discussed in a reasonable manner after considering the solution 

of the zeroth order system. The solution of the zeroth order system 

will now be c onsidered. 

"f1 (r, 8w) is a known function of r given by the Coulomb fric­

tion condition at the wall. Therefore, the zeroth order equations of 

continuity and r direction motion given in Eq. 2. 3. 20, represent a 

system of two equations for the determination of the radial velocity, 
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u 0 , and the mean stress, 0
0

. From continuity, the solution for the 

velocity must be of the form 

(2. 3. 23) 

Substituting this expression into the r- equation of inotion, the equa-

tion for the mean stress becomes, 

The equation for CJ 
0 

is a first order, ordinary linear differential equa­

tion. An integrating factor, l, may be found as follows 

Let 

then I -W = e 

w(r, cp, e ) = 
1 

2 
si_n cp J ~ (1 +~2 w1

(r, ew))dr 
w - s1ncp 

r 

The equation for 0
0 

becomes 

= 1 (Fr2 13 - 1) e-W 
1 - sincp _ 

r 

and the solution is written 

2 
Fr +w J -w ... 3 d-= l .cpe e f r- 1 - sin 

e+w J -w - +w 
. m e dr + c 1 e 

s1n't' 

The Froude number, Fr, which contains the unknown average exit 

velocity and the integration constant, c 
1

, are evaluated by applying 

the homogenous boundary conditions at the upper and lower surfaces. 
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At the upper surface, a (R) = 0 leads to 
ro 

2 ,. 
Fr 1 -W-3 -

1 · r() j e dr 
- s in't' 

1 s -W -
1 . r() e dr 

- Sln't' 

so that the solution may be written 

r -

S -W-3 - \ e dr - R 
r =-

rO 
1 - ---------

Je-w-3 dr 

2 
Fr tw r -W-3 -

cr0 = l . m e I e d r 
- Sln't' t! 

+w 
1 e . cp I e-Wdr 

- sin 

Je-wdr . - R 
r =­' ro 

1 - --------r e-Wdr 
J 

(2. 3. 24) 

The condition at the lower boundary leads to a unique value of the 

Froude number and hence a unique average exit velocity. Applying the 

lower boundary condition gives 

Je-wdr,_ R 
r =-

rO 
1 - ~-----~ 

Je-W d~ Ir= 1 
Fr

2 = -------------------

I -W-3 -1 R e dr -
r =-

rO 
1 ---------

Je-W-3 dr1-
r = 1 

f -W-3 -1 
j e dr r = 1 

(2.3.25) 

and the average exit velocity is just 

U >!< =,/gr 
0 

Fr (2.3.26) 

The mean stress is given by Eq. 2. 3. 24 with the Froude number given 
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by Eq. 2. 3. 25. The unique velocity field given by Eq. 2. 3. 23 and the 

stress field given by Eqs. 2 . 3. 19, 2. 3. 24, and 2. 3. 25 represent a so-

lution to the complete system of equations to order € O It should be 

noted that the effects of cohesion, frictional channel walls, non-radial 

gravity, and traction-free upper and lower boundaries have been 

included. 

1 
Consider next the e order equations, namely 

2 cro 0l1 1 acr1 
-rr sincp - l -- + 8 + ---(1 + sincp) = 0 

r 1 ae r ae 
and 

1 a;-1 dUO 
-- -2rrf -- = 0 - 1 -
r ae dr 

From the zeroth order set of equations, 

where f 1 (r, 8w) is a prescribe d function of r, 

r 

and 

where S(r) is the s olution given by Eq. 2. 3. 24. 
1 

From € order 

equation of isotropy 
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and integrating with respect to 8 gives 

{2. 3. 27) 

where K 1 {r) is an arbitrary function of r . 

The radial volumetric flow rate per unit depth, Q, at any lo-

cation r is just 

or in din1ensionless form 

8 
Q = 2 J w ru d8 

0 

1 
Q = 2 8 r U>!' I ur de 

w 0 0 

The problem considered above is for the steady flow of a frictional co-

hesionles s solid through straight plane channels. Therefore the volu-

metric flow rate defined above must be independent of r. For the 

- 1 
zeroth order solution u 0 = r' so that 

(2.3.28) 

or in words, the constant zeroth order flow rate equals the product of 

the exit area and the average exit velocity. 

The above argument can be used to evaluate the function K 1 (r). 

The perturbation voluinetric flow rate, Q 1 , associated with the per-

turbation radial velocity, u 1, is just 
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Substituting the expression for the perturbation velocity, u 1 , from 

Eq. 2. 3. 27 gives 

{2. 3. 29) 

The form of the function f 1 ("i=", 8w) was determined from the Coulomb 

condition at the wall. Assume that the function f(r) may be partitioned 

as follows 

where A is a constant independent of both r and 8. With this, the 

function f 1 (;, 8w) may be written 

f1(r, 8w) = (~) tano (1 + ~incp)(A+f (;:)) 
n e: 2smcr l 

Substituting this expression to Eq. 2. 3 . 29, the perturbation flow rate 

becomes 

Q = e:2Q [-~ (tano) 1 + .sincp (A + f (r)) - (-] 
l 0 3 e: 2 s mcp 1 + r K 1 r) ' 

In order for Q 1 to be independent of r, K 1 (r) must be 

- ~ (tano) l + sincp fl (r) 
Kl (r) - 3 e: Zsincp --

r 

so that the perturbation flow rate reduces to 

-·- constant . ,,,It has been assumed that terms of the form · are not included 

in the function K 1 (r) since this represents the leroth order solution. 
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2 1 + sincp 
= -3 tan<S(E:) 2sincp AQO (2. 3. 30) 

Thus only the constant part of the function 1jl 
1 
(r, 8w) along the wall 

affects the perturbation volumetric flow rate. The perturbation veloc-

ity' ul, becomes 

(2. 3. 31) 

1 
The 8 order 8 equation of motion can be solved for the par-

tial derivative of 0 1 , with respect to 8, 

801 do ) 'IT s incp 
__ af

1 'IT s incp (r- ~ + 20:0 l 1 --- 1 + sincp + 1 + sincp 
0 r--

ae 0 -
dr Clr 

2 sincp a l af r-e __ l + + 'IT 1 1 + sincp + sincp 0 1 ae 

Substituting the previously determined expressions for f 1 and 0
0 

into the e equation of motion yields 

'ITSincp 
= 1 + sincp (

- dS -\- - - 'ITsincp - df 1 (r, 9w) -
r -:::.+2Sj 1jll (r, 8w) 9 + l + sincp Sr 8 

dr dr 

which may also be written 
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= 
rrsincp 

l + sincp { (
- dS -\ -.- - - d -;r. -
r -= + 2 s) \jl l ( r , e w) + s r -= \jf l ( r , e ) 

dr dr w 

+ s o/ 2 (- e ) + ; } e rr l r' w rrsincp (2 . 3. 32) 

Integrating the above expression with respect to 8 gives 

+ rrS1J121 (r, 9 ) + ~ co } 822 + K2(r) 
W 'TiSln , 

where K 2 (r) is an a rbitrary function of r. 
001 - R 

Conside r the above e x pres s ion for along the upper , r = -, 
08 ro 

and lower, r = 1, surfa c es . Along the upp e r surface Eq. 2 . 3. 32 

reduce s to 

801 
Tr [:: *(~ e ) + i 1~ (2. 3. 33) = 

88 R 
l + sinCj) ' =~ lro' w rrsin'P ro 

r =-
ro 

since s(:-) = 0. If it is desired to keep the upper surface a stress 
0 

free surface, t hen choos ing 

l (_!3:_ 8 ) = __ -l __ 
l r ' w 

0 . r11 dS 
TfSlny -

(2. 3. 34) 

dr R 
r = 
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will ensure that the mean stress does not vary with e along the upper 

surface and choosing K 2 (_B-_) = 0 ro 
free. Since S(_B-_) = 0 and S for ro 

will keep the upper surface 

- R dS 
r <- is positive, ro dr 

stress 

must be less than zero . Therefore the condition given by Eq. 2. 3. 34 is 

for a positive value of ljrl(rR, 8 ). 
0 w 

Along the lower surface, however, Eq. 2. 3. 32 reduces to 

11 [ds \ 
= 1 + sincp dr \) -

r = 1 
1 ] 8 + . w) Trsmcp 

dS 
where now > 0. Thus, a positive value of f 1 (1, 8w) does not 

dr r = 1 
exist to make the lower surface a stress free surface. An alternate 

boundary condition might be attained by choosing 

~.t;· ,-)~ ..... ~y-:: 0 

-:"I{'" l' !) ·.- 0 

(2.3 . 35) 

which ensures the lower surface to be shear stress free. Therefore 

choosing 

Tr (R e \) = ___ -1 __ _ 
'f1 r' w 

0 . dS 
TrS1ncp -

dr R 
r = 

and 

K (_B-_) = 0 
2 ro 

and 

l (1 8 ) = 0 
1 ' w 

will keep the upper surface stress free and the lower surface shear 
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stress free to order 
4 

E: • 

B. Solution for Constant Wall Friction Angle 

The E: O and E: 
1 

order equations for the particular case of con-

stant wall friction angle will now be solved. For this case, l
1 
(r, e ) 

\V 

becomes 

= (1 + sinCtl")(tan6) f- f t· f . r() unc ion o r 
Tr S ln 't' E: 

(2. 3. 36) 

with the boundary value of f 1 along the center line unchanged at 

(2. 3. 37) 

The solution to the continuity equation is unchanged; the velocity is just 

(2. 3. 38) 
r 

Substituting this expression for the velocity into the zeroth order 

r equation of motion gives 

dCY CY Fz 
0 2 sinCfl ( Tr \ 0 1 ( r ) - - --- 1 +-2 f(r, 8w)

1 
i -_ = -1--- \ 3- - 1 · 

1 - sinCfl - sinCfl 
dr r r 

(2. 3. 39) 

with f 1 (r, 8w) given by Eq. 2. 3. 36. The integrating factor however 

now reduces to 

I= exp 
[

- 2si_ncr Jl (1 +2:!:. l +~inCfl tan6)dr] 
1 - smCfl - 2 TrsmCfl E: 

or 

I = r 

r 

-2sinCfl (i +.'!:!:. 1 + sinCfl tan6\ 
1 - sin':p 2 TrsinCfl E: J 
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Define 

w:::: 2sincp (i + rr 1 + ~incr tan6) 
1 - sincp 2 rrsmcp E: 

so that the r equation becomes, upon multiplication by the integrating 

factor, 

d (r -Wao) :::: __ l __ 
dr l - sincp 

( F 2r l 1)- -W 3 - r 
r 

Integrating with respect to r gives 

F2 
:::: r / -1) 1 0 

O 1 - s incp \w + 2 -2 
r ( 1 \ -+w 

1 - sincp 1 - wJ + c 1 r 

The Froude number, 

r 

F , which contains the unknown average 
r 

exit velocity, and the integration constant, c 1 , are evaluated by apply­

ing the .homogenous boundary conditions at the upper and lower surfaces. 

- R 
At the upper surface, 0 (-) :::: 0 

0 ro 
determines c 1 , 

l 
F2 (~) (~rw r 

cl = 1 - sincp 2 + ( 1 - W) 
( w+2)(~) 

ro 

ro 

so that the solution may be written 

00 = -2 
(1 - sinCj))(w + 2)r 

I - t:iz) - (I - si:cp)(l 'W) I - (:l\_) (2.3.40) 
[ 

w + 21 - [ w - ll 

The condition at the lower boundary leads to a unique value of the 

Froude number and hence a unique average exit velocity. Applying the 
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condition 0
0

(1) = 0 gives 
w - 1 

F2 = -(W + 2) {l - (~) } 
r ( 1 - w) w + 2 

1 - (~) 
(2.3.41) 

where 

w = 2 sincp 
1 - sincp [

l +Tr 1 + sincp tano] 
2 Tr sincp 8 

w 

The average exit velocity for the E: O order system is determined by 

the Froude number 

U>:' = ~ Fr (2. 3. 42) 

For the zeroth order solution, the mean stress, cr
0 

i.s given by 

Eq. 2. 3. 40 with the Froude number uniquely determined by Eq. 2.3.41. 

The mean stress vanishes at the upper and lower surfaces and its mag-

nitude at any location, r, is influenced by the following parameters; 

the effective angle of friction , cp, the wall friction angle, 6, the chan-

nel opening angle, 8 , andthedimensionlessmaterialheadratio _B:_. 
w ro 

Plots of mean stress versus position for an effective friction an-

gle of 35 ° and a material head of 2 with wall friction angle treated as 

parameter are given in Fig. 2. 3. 3 . The plot of mean stress versus 

position for 6 = 0 which corresponds to the 11 exact11 solution given by 

Sullivan [95] for frictionless channel walls is also given. Similar plots 

for dimensionless head ratios of 5 and 10 are given in Figs. 2. 3. 4 and 

2 . 3. 5, respectively. Plots of mean stress versus position for an effec-

0 

tive friction angle of 30 and material head ratios of 2, 5, and 10 with 

wall friction angle treated as parameter are given in Figs. 2. 3. 6, 

2. 3 . 7, and 2. 3. 8 respectively. Similar plots for an effeetive friction 
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angle of 25° are given in Figs. 2. 3. 9, 2. 3. 10, and 2. 3. 11. 

For the channel geometry defined in Fig. 2. 3. 1, the channel 

opening at the exit, D, may be related to the exit radius, r
0

, as 

follows 

D 
ro = 2tan e 

vV 

The average zeroth exit velocity U>:< given in Eq. 2. 3. 42 may be 

written 

·or in dimensionless forrri 

F 
r 

J2tan e w 

F 
r = -------

J2tan e 
w 

(2. 3. 43) 

Thus, as in the case of the mean stress, the average dimensionless 

R 0 e and --
' w' r 

0 
For an . exit velocity depends on the parameters er, 

0 

effective friction angle of 3 5 and a channel ope~ing of l 0 °, plots of 

average dimensionless exit velocity versus dimension head ratio with 

wall friction angle treated as parameter are given in Fig. 2. 3 , 12. 

Similar plots for effective friction angles of 30 ° and 25 ° are given in 

Figs. 2. 3. 13 and 2. 3. 14, respectively. In all cases it is seen that for 

sufficiently la ... ·ge ..B:.., the average dimensionless exit velocity is indepen­
r O 

dent of material head. This agrees with the well documented fact that 

exit velocity is independent of material head for sufficiently large (..B:_). 
ro 

For large, the Froude nurnber reduces to 
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with 

2 sincp w =----
1 - sincp [

l +~ 1 + sincp tan6 J 
2 1Tsincp e . 

w 

Thus the dimensionless exit velocity in the head independent flow re-

gime becomes 

~gD':' = J ~ ~ i .--1 __ 
/\/ g.u J2tan e 

w 

u-·-
Plots of ~ versus channel opening angle in the head independent flow 

/\/gD 
regime for various values of wall friction angle' are given in Fig. 2 . 3.15. · 

The exit velocity derived analytically by Sullivan [95] is also shown. 

Similar plots for effective friction angles of 30 ° and 25 ° are given in 

Figs. 2. 3. 16 and 2. 3. 17, respectively. 

Now consider the e: 1 
order equation for the case of constant 

wall friction angle. From the zeroth order solution 

f = (1 + ~incp)(tan6\ 8 
1 1TSmcp 8 j 

w 

where ~ 
1 

is now independent of r, 

1 

r 

and 

a
0 

= S(r) 

with S(r) the solution given in Eq. 2. 3. 40 to the zeroth order r equa-

tion of motion . 
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1 
The E: order 8 equation of motion can be solved for the par-

tial derivative of 0
1 

with respect to 8, 

d0 a~ 
nsincp (- 0 - ) Tr + rr sincp - - 1 

= r -=-+200 'fl 0 r --ae 1 + sincp dr 1 + sincp 0 OT 

2 . 0 af 
+ 1T smcp _Q. l __ l + re 

1 + sincp r 1 ae 1 + sincp 

Substituting the previously determined expressions for l 1 and 0
0 

into 

the 8 equation of motion yields 

which upon integrating with respect to 8 gives 

[ dS + zs)(t~n ii) + t dr w 
( 1 +_ sincp) S (tano\ + r. _o_ + K (-;) 2 - J 712 

smcp 8 J 1 + smcp 2 2 
w 

K 2 (r) will be taken as zero so that the perturbation mean stress along 
t " 

•I ( ·---··
1 ~ 

Li (-- -

the 8 axis will be zero. Thus, the perturbation stress becomes 

= ~r dS + 2s)(tan6) + (.1 +_sincp\) S (tano)
2 

+ r. J e2 
0

1 d- ~ \ smcp 8 1 + smcp 2 
r w w 

(2. 3 . 44) 

- - ~ l 
Define S 

1 
(r, o) as the solution to the E: order e equation of 

motion given in Eq. 2. 3. 44. Then the total dimensionless stress may 

be written 

0 = s(r) + e!, s 
1 
(r, 8) (2.3.45) 
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For a consta nt wall friction angle the perturbation stress s
1

, will not 

vanish at the upper and lower surfaces. 

surfaces for this case are free surfaces 

Therefore the upper and lower 

2 
only to order e Along the 

upper surface the total stress becomes 

and along the lower surface the total stress becomes 

CJ(l, 8) = 8~ s 1 (1, 8) 

The perturbation radial velocity which is obtained upon integrat-

1 
ing the e: order equation of isotropy is just 

= -n (l + ~incp\)(tan6) 8
2 

+ K (r) 
u 1 \ n s m cp ~ - 1 

w r 

With the assumption of steady flow, K 1 (r) = 0 for the flow to be inde-
, ,, 

pendent of r since l
1 
(r, 8 ) is independent of r "'. Thus the pertur-, w 

bation radial velocity becomes 

= -n(l + s_incp )(tan6) 8
2 

1TS1Ilcp 8 -w r 
(2.3.46) 

Substituting this velo c ity into the e2 
order equation of continu­

av1 
ity gives -=- = 0, which upon integrating with respect to 8 gives 

a8 

-·- constant . 
'''rt has been assumed that terms of the form are not included 

r 
in K

1 
(r) sinc e this term represents the zeroth order solution. 
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e = 0 so that K/:r) = 0 and 
w 

v
1 

= 0 (2 . 3. 47) 

Therefore, the perturbation velocity u, gives rise to no per-

turbation circumferential velocity. 

2 
The total radial velocity, correct to order E: , 

written 

where 

and 

1 

r 

. -2 
= -1T (1 + ~ incp\ (tan 6\ _§___ 

Ul 1TSlDCfl j 8 J -
w r 

The dimensionless exit velocity is just 

1 + E:2(-1T) 1 + sinCfl tan6 92 
1TSincp -e--

W 

and the average exit velocity just 

8 

may now be 

8 

8 I . sow rod8 2 
1 r w (- \ 

roew Jo ro u r = l) d8 = __ r_o_e_w __ -E: 

S w 2 
1 + sincp tano 0 roe dS 

sinCfl -8- roe 
w w 

and performing the integration gives 
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e 
1 J w (- I \ e -- r u - ;d = 

r 0 8w 0 0 r = L 
2 1 + sincp 

0 1 - 3 2sincp tan 8w 

Define the average total exit velocity, U>:,,:,, 2 
correct to order E: as 

so that 

But 

U*'' = U'' [I 
2 1 + sincp 

- 3 2sincp 

F 
=Jgi)--r­

J2tan 8 
w 

(tanfi) aw] . 

so that the total dimensionless exit velocity may be written 

F 
r =-----

J2tan 8 
w 

[
l - ~ 1 +. sinCP (tan6) 8 ] . 

3 2smcp w (2. 3. 48) 

R 
For - large, the total dimensionless exit velocity reduces to the form 

ro 

u,:,,:, = ;w + 21' 1 . l l - 23 1 2+ _si;cp (tano) e ] (2. 3. 49) 
,/gi) 'V W - J2tan 8 . sin . w 

w 

u .. , ........ 
Plots of _::.:.. versus channel opening angle for an effective fric-

JgD 
0 

tion angle of 35 with wall friction angle treated as parameter are given 

0 0 

in Fig. 2. 3. 18. Similar plots for effective friction angles of 30 and 25 

are given in Figs . 2. 3. 19 and 2. 3. 20, respectively. 

The effect of the fir st order solution on the results may be seen 

U ,,, U''"'' 
from Fig. 2. 3. 21. In this figure -"-' and _::.:.. are plotted versus 

JgD JiD 0 

opening angle for an effective friction angle of 3 5 with the wall friction 
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angle being treated as a parameter. 

Velocity profiles at the exit plant, mass flow rate, and mean stress 

acting along the channel walls are compared with experimental results. 

Bosley, et al, [32] conducted an experimental investigation of 

granular discharge from model hoppers. Photographic measurements 

were made of particle exit velocities at various angular locations across 

the exit plane. Experimental results in the form of measured particle 

velocity at various angular positions for sand with an effective friction 

-·-
angle of 3 5 ° and a hopper opening angle of 32~ 

0 

are given in Fig. 2. 3. 2i'' 

Also shown are plots of dimensionless exit velocity ur = 1 , given by 

the perturbation solution, versus angular position 8 for wall friction 

angles of 10 ° and 20 °. Also shown is the dimensionless velocity for 

the radial body force solution given by Sullivan [95] which corresponds 

to a wall friction angle of 0 °. It is seen that the perturbation solution 

predicts the correct trend in the exit velocity in regard to the variation 

of exit velocity with angular position. Also for 6 = 15 ° which corre-

sponds to measured values of wall friction angle for sand on plexiglass 

(see Appendix B,) the perturbation solution predicts the correct magni-

tude of the dimensionless exit velocity . Data collected by Bosley, et 

al, (32] for gravel with cp = 40 is presented in Fig. 2. 3. 23. Also 

shown is the dimensionless exit velocity for wall friction angles of 10 ° 

and 20 °, and the radial body force solution. 

-·-
,,,The measured particle velocity is made dimensionless be dividing by 
Jgf5 where D is the experimental hopper opening taken from Bosley, 
et al, [32] . 
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Several investigators [7, 8, 14, 15, 32, 95] have deterrnined ex­

perimentally the variation in mass flow rate, expressed here as average 

dirnensionles s exit velocity, with channel opening angle. Experimental 

results for an effective friction angle of 35 ° are given in Fig. 2. 3. 24. 

Also shown are plots of average dimensionless exit velocity versus 

opening angle for various values of wall friction angle. Similar results 

for an effective friction angle of 25 ° are given in Fig. 2. 3. 25. Again it 

is seen that the perturbation solution predicts the correct trend in and 

the correct magnitude of the experimental data. Hence, the solution 

should prove useful in predicting mass flow rates of frictional, cohesive 

materials from plane channels as a function of the flow parameters and 

system geometry. 

Measurements have been made of the mean stresses along the 

walls in converging channels (38, 51]. Experimental results in the 

form of mean pressure versus position from the hopper outlet are pre­

sented in Fig. 2.3.26 for a 25 ° channel opening angle. Also shown are 

plots of mean stress predicted by the perturbation solution as a function 

of position for various values of wall friction angle. In the region of the 

exit plane, the solution gives an accurate prediction of the trend in the 

mean stress, in regard to the variation in mean stress with position 

from the outlet, and the correct magnitude of the inean stress. 
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CHAPTER III - FLOW SEPARATION FOR A CYLINDRICAL SECTION 

1. Introduction 

Chapter 3 deals specifically with the problem of predicting the 

point of separation for the transverse flow of a granular material 

over a cylindrical section. Information on this separation point will be 

of importance in assessing the heat transfer from a cylinder and will 

also be required for any future work on analyzing the velocity and 

temperature fields around a cylinder. 

As discussed in Chapter 1 , the size of the stagnant and cavity 

regions may be greatly reduced by choosing more streamlined tube 

shapes [ 107], but the added difficulty and cost in manufacturing non­

circular heat exchanger tubes does not usually make this an attractive 

solution. Therefore, the study of flow separation for circular cylin­

ders is pertinent. 

2. Din1ensional Analysis . 

Prior to the start of any experiments, a brief dimensional 

analysis of the problem was made. This was done in order to deter­

mine what the pertinent parameters might be. These parameters are 

then to be used in planning the experiments as well as in interpreting 

the results. 

The separation point is defined as the point of contact of the 
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last particle in contact vvi th the cylinder o The separation angle, es, 

is the angle between the longitudinal axis passing through the centroid 

of the cylinder and line pas sing through the cylinder centroid and the 

separation pointo The particle diameter, the tube diameter, the chan-

nel opening, and the material head above the cylinder centroid are 

designated by DP, DT, D G' and DH, respectively o 

In Chapter II it was shown that the material exit velocity for the 

flow of a cohesionless, frictional material from plane channels is 

independent of material head as long as the head is sufficiently large o 

For real channels with a wall friction angle of around 10 degrees, head 

independent flow is attained for a dimensionless head, 
R 

r 
0 

of ap-

proximately 5, where R and r are the radii to the upper and low­
o 

er free surfaces, respectivelyo For most industrial applications a 

large supply hopper, corresponding to a large material head, is locat-

ed upstream of any heat exchanger so that the flow, in general, is head 

independento Thus, for a proper experimental design, DH should 

not affect the separation point and need not be considered in any pro-

posed correlation. 

The remaining quantities which are most likely to influence the 

separation angle may then be listed as follows 

where cp is the internal friction angle and 6 is the wall friction angle 
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between the granular material and the cylinder surfaceo From these 

quantities a set of dimensionless groups may be formed, and the 

separation angle may be expressed as a function of these groups by 

writing 

(3o2.l) 

These parameters are to be used both in planning and in interpreting 

the experiments. 

It should be mentioned that in the above development the void 

ratio was tacitly omitted from considerationo This quantity is defined 

as the ratio of the volume of the voids to the volume of the solids in a 

unit volume of materiaL For a random packing of spherical particles 

this ratio is independent of particle diameter o In addition, for the 

sand used in the present experiments the void ratio is approximately 

equal to that for the spherical particles a These conditions lead to the 

justification for excluding the void ratio from the list of variables. 

3. Experimental Apparatus 

The experimental apparatus, shown in Figo 3a3o 1, has three 

basic parts; (1) the supply hopper, {2) the test section, and (3) the 

gate valveo 

The volume of the supply hopper is determined by two require -

mentso First, the volume of the supply hopper must be large compared 
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to the volume of the test section to ensure head independent flow. 

Second, the volume of the supply hopper must be large enough to pro -

vide continuous, head-independent flow at a constant flow rate for a 

time large compared to the time required in the measurement of the 

separation angle. For the purpose of this investigation the supply hop­

per shown in Fig. 3. 3. 1 is entirely adequate. 

The test section was constructed of plexiglas s so that the flow 

could be viewed during approach and departure from the cylinder. 

The front and back plexiglass sections at the test section can be re­

moved to change the test cylinder. Plexiglass inserts were construct­

ed so that the channel opening could be varied independently. Channel 

openings of 2. 688, 1. 98, and 1. 44 inches are possible. 

Five different diameter aluminum and lucite cylinders with 

diameters of 1/2, 3/4, I, 11/4, and 11/2 inches were constructed. 

Both aluminum and lucite cylinders were constructed to represent 

cylinders with different surface friction angles. 

The gate valve consists of a moveable panel resting against a 

rubber membrane. The position of the panel may be adjusted to pro­

duce the desired mass flow rate in the upstream channel. Velocities 

of the order of • 05 to 1. 0 inches per second can be attained. The 

lower limit is that value below which steady flow without clogging can -

not be maintained; the upper limit is that value above which 
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discontinuous flow may occur. 

The separation angle is measured by taking a photograph of 

the lower half of the cylinder and the cavity. The photographic ar""' 

rangement consists of a large optical bench, a support panel for the 

camera, and a single lens reflex camera equipped with an extension 

tube for high magnification. The carnera support panel may be ad­

justed vertically to align the camera with the cavity below foe cylinder. 

The cavity photograph is taken at lOX to aid in the measurement of the 

separation angle. 

4. Measurement Technique 

A photograph of the flow of O. 023 inch diameter glass beads 

(P-0280) over a 1 l/4inch diameter lucite cylinder is shown in 

Fig. 3.4. la. A close-up, high magnification photograph of the separa­

tion point is given in Fig. 3. 4. 1 b. On each cylinder rays were very 

accurately inscribed at 10° intervals. These rays appear as heavy 

black lines in the photograph. Two additional lines have been drawn in 

on Fig. 3.4. lb. One line passes through the centroid of the cylinder 

and extends on the direction of the flow; one line passes through the 

centroid of the cylinder and the separation point. 

For each condition defined by material, approach velocity, and 

systemgeometry, i.e., channelopening, tubediameter, etc., asinglepho­

tograph is taken. The film is developed and an 8 inch X 10 inch print 
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madeo The angle measurement technique consists of constructing the 

two lines discussed above and then determining the magnitude of the 

angle from 10° markings on the cylindero The separation angle used 

in the correlation was the arithmetic mean of the left and right hand 

side separation angles on each photograph. 

The gate valve used for controlling the mass flow rate in the 

channel is not calibratedo The mass flow rate for any setting is deter -

mined by weighing the net mass output in a fixed time. The mass flow 

rate is then converted to approach velocity by dividing by channel area 

and material bulk density. The error involved in using this technique 

for determining approach velocity is usually less than 10% [9]. It 

should be noted that for each flow condition two measurements of mass 

flow rate are madeo The mass flow rate recorded is the mean value 

of the two measured flow rateso 

5. Procedure 

As discussed in Section 2, the separation angle may be expres -

sed as a function of five dimensionless groups; the Froude nurriber 

based on cylinder diameter (U/JgDT), the particle to cylinder diameter 

ratio, the particle diameter to channel opening ratio, the internal 

friction angle, and the cylinder surface friction angle. The functional 

relation may be written 
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as shown earlier. 

For a given granular medium, cylinder material (aluminum or lucite), 

cylinder diameter, and channel opening, all of the dimensionless groups 

in the above relation are fixed with the exception of the Froude number. 

Hence under these conditions, the variation of separation angle with 

approach velocity may be investigated. 

The test procedure for this investigation may be described as 

follows. The gate valve is closed and the test section and supply hop-

per are filled with the granular material. The gate valve is then open-

ed and a constant mass flow rate established. After approximately 

5 minutes, the mass flow rate is determined as described in the pre-

vious Section. A photograph centered on the cavity below the cylinder 

is then taken. Next, the gate valve is adjusted to give a new flow rate, 

and after a second 5 minute interval, the above procedure of flow rate 

measurement and cavity photograph are repeated. For each material 

it is possible to take approximately 5 photographs at different, increas -

ing flow rates before the supply hopper must be replenished. 

In the actual test, a minimum of 20 and a maximum of 60 photo-

graphs were taken, each photograph at a different mass flow rate, for 

each combination of granular medium, cylinder mate rial, cylinder 

diameter, and channel opening. Having completed this procedure 
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describing the effect of approach velocity on separation angle for one 

condition of material and geometry, the _<rant Plexiglass panel on the 

flow apparatus is removed, a different diameter cylinder secured in 

the test section, the panel replaced, and a second set of 20 to 60 

photographs, each at a different flow rate, are taken. This procedure 

is repeated in turn until a set of 20 to 60 photographs is obtained for 

each of the five cylinder diameters. Two sets of photographs were 

required at each diameter since both aluminum and lucite cylinders 

were used. This procedure which generates 10 sets of photographs 

for a given material was repeated for each of the granular materials 

·investigated. 

To investigate the effect of channel opening on separation angle 

the following procedure was adopted. The first set of Plexiglass in­

serts described in Section 3 which reduce the channel opening from 

2. 68 inches to 1. 98 inches are installed in the test section, a test 

cylinder is secured in the test section, the front Plexiglass panel re­

placed, and the gate valve closed. The test section and supply hopper 

are then filled with the chosen granular material and the gate valve 

opened to produce a constant flow rate. A photograph centered on the 

cavity below the cylinder is taken. 

In the actual test, 20 photographs were taken each at a differ -

ent flow rate for each cylinder diameter for both the aluminum and 
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lucite cylinder. This procedure wa.s repeated for each of the granular 

materials. The second set of Plexiglass inserts reducing the channel 

opening to 1. 44 inches were installed and the entire procedure des -

cribed above repeated. Prints (8 n X 10") were made of each of the 

cavity photographs. The measurement technique for the separation 

angle described in Section 4 was followed. The information giving the 

value of each of the five dimensionless groups and the corre s ponding 

measured separation angle was recorded on computer data cards for 

analysis. Additional separation angle measurements were made for 

several arbitrary cornbinations of material and system geometry as a 

check on measurement repeatibility. 

6. Granular Materials Investigated 

As described in Section 2 the proposed expression relating 

separation angle and the dimensionless flow parameters, Eq. 3.2.1, 

is valid for particles with near the same critical void ratio. 

A total of nine granular materials were used. Five of these 

consisted of different sizes of spherical glass beads ranging in dia­

meter from 10. 7 mils to 127. 2 mils. Fine, medium and coarse grain 

quartz sand were also used. Mustard seed (hard, ellipsoidal-shaped 

partides) was chosen to represent a material with a low thermal 
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For the experime nts performed, certain physical and mechan-

ical properties of these materials were required. The physical prop-

erties include bulk and particle specific gravity, void ratio, and 

particle size. The mechanical properties include internal and wall 

friction angle. The determination of these material properties is 

described in Appendix B. The physical and mechanical properties a r e 

summarized in Table B-1. 

7. Results, Discussion of Results, Conclusions 

From an initial analysis of the data on the separation angle, it 

was observed that the separation angle may be expressed by the follow-

ing function of the dimensionless groups 

where the constants, a.' 
l 

are found to be 

(3.7.1) 

It is seen from the value of the exponents of the product terms, the 

above relation may be simplified to give 

~< 
A material with a low thermal diffusivity is :important for the experi-

ment described in Chapter IV. 
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(3.7.2) 

The value s of the constants b. that best describe the complete set of 
1 

separation angle data for all materials investigated are 

bl=-16.9 'b2= 1.43' b3=0.98 , b4=0.78 

The Froude number based on particle diameter is just 

F 
r 

u (3.7.3) 

where, as discussed earlier, U is the mean approach velocity. 

* Define the modified Froude number, F , as 
r 

so that the above correlation may be written 

(3. 7.4) 

(3.7.5) 

The experimental results for the 23 mil diameter glass beads 

(P-0280) is presented in the form 8S versus modified Froude number 

in Fig. 3. 7. 1. 
:I,< 

The intercept at F = 0 is just a constant times the 
r 

internal friction angle for the material. The data for the other mate -

rials may be presented in the same manner with different intercepts 
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resulting from the different internal friction angles for the various 

materials. 

It is seen that the above correlation, given by Eq. 3. 7. 5, 

describes the variation of separation angle with flow parameter equal­

ly well for flow over aluminum and lucite cylinders. That is, the 

variation in measured separation angle resulting from a variation in 

surface friction is within experimental scatter. Therefore Eq. 3. 7. 5 

describes variation of the separation angle with -flow parameters for 

the flow of granular materials over lucite and aluminum cylinders 

with moderate surface friction angles. 

The proposed correlation, Eq. 3. 7. 5, may be given the fol­

lowing physical interpretation. As the mass flow rate of the granular 

material approaches zero, the separation angle is given as a constant, 

less than one, times the internal friction angle alone. It is seen from 

geometry that the separation angle, 8 S' is equal to an angle 

which could be thought of as the angle of repose of the small pile form­

ed below the cylinder. Thus, for vanishing flow velocity the separa­

tion angle should be given by the angle of repose, which as discussed 

by Taylor [ 86] ,is smaller than, but close to, the internal friction angle 

of the material. 

As the flow velocity increases from zero, the mean pressure 

in the granular material increases allowing the flow to remain 
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11 attached11 to the cylinder longer. Thus, the separation angle should 

decrease slightly as the mean approach velocity increases. This 

description and the above correlation should be valid as long as the 

flow is continuous. If the modified Froude number becomes too large, 

i.e., the channel opening D G becomes so small that the gap between 

the cylinder and wall behaves as an orifice, the flow will separate 

around 8 S = 9 0 °, and continue past the cylinder in free fall. Under 

these conditions the flow is no longer continuous since a large void 

region will occur extending across the entire channel below the 

cylinder. 

A comment should also be made regarding the stagnant region. 

No systematic investigation of this region was made but it has been 

observed that a stagnant region does develop under· certain circum-

stances. It has been found that this region is relatively insensitive to 

flow velocity but is greatly influenced by mean particle size. In fact, 

for particles with mean diameters greater than 20 mils the region 

seems to disappear completely [95, 10 7]. From qualitative observa­

tions made during the initial stages of this investigation it was con­

cluded that the size of the stagnant region depends on both the mean 

particle size and the surface friction angle between the particles and 

cylinder surface. For example, for the glass beads (see Appendix B 

for material propertie s) flowing over either the lucite or aluminum 
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cylinders the stagnant region was never greater than 3 particle dia -

meters. For the fine-grained sand (sand No. 1), however, a large 

stagnant region as may be seen in Fig. 3. 1. 3 was observed. 
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CHAPTER IV 

TEMPERATURE PROFILES IN THE WAKE OF A HEATED CYLINDER 

1. Introduction 

Chapter IV deals specifically with the problem of determining 

the size and character of the wake of a heated cylinder in the trans­

verse flow of a granular material. Some prior work on this type of 

problem has been done in connection with flow over a tube bundle 

[ 127]. However, it seems that the more basic problem concerning 

the region downstream of a single tube has not been treated so far. 

The spreading of the temperature in the wake will be an important 

factor in the design of granular heat exchangers as it will give an 

indication of the distance required to obtain a relatively uniform 

temperature increase throughout the medium. 

The problem was approached experimentally and an apparatus 

was constructed for the purpose of determining the spanwise tempera­

ture profile at three locations downstream of a heated tube. The pri­

mary variables were the tube diameter, the granular m .aterial pro­

perties, the heat input and the mean approach velocity. Two different 

diameter heated tubes and three granular materials were investigated. 

To obtain some additional understanding of the variables 

governing the temperature distribution in the wake an analytical 

solution is developed for the very simple case of a line source in 

two-dimensional, uniform flow of a one-component continuum. 
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2. Continuum Solution 

The problem to be considered is that of a line source in the 

two dimensional, steady, uniform flow of a one-component continuum. 

For the velocity field 

u = Ui + Oj (4. 2. 1) 

where U =constant and i and j are unit vectors in + x and + y 

directions, respectively, the energy equation given by 

DT 2 
Pc = -P" • u + "' + k'V T Dt v 'l' 

D 
where Dt is the substantial derivative, \J is the del ope r ator, and 

<l? is the dissipation function, reduces to 

oT 2 
pcU ox = kv T . 

The boundary conditions are 

~ oT 
( 1 ) q = lim - k .r r 0 r de at r = 0 

r->O 

where q is the source strength per unit depth, and 

(2) T = T
0 

at x->oo or y .... oo • 

Define a dimensionless temperature, 

T:;!:: = 
T-T 

0 

T':< • 

so that the energy equation may be written 

as 

(4. 2 . 2) 

(4. 2.3) 
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and condition (2) is replaced by the homogenous boundary condition 

T';' = 0 at x->ro or y ->OO • 

The solution to 4. 2. 3 is of the following form [ 13 0] 

Substitution of Eq. 4. 2. 4 into the energy Eq. 4. 2. 3 yields 

p~U {ae ax0 + e ax~~}=} e ax0 + 2ae ax~~ + e ax('i.720) 

which reduces to 

for 

pCU 
a = 2k · 

(4. 2. 4) 

(4. 2. 5) 

(4.2.6) 

Since the boundary condition at r = 0 is independent of 8, 0 is 

independent of 8 and Eq. 4. 2 . 5 becomes an ordinary differential 

equation, namely 

2 
d 02 + l_ ddO - a 20 = 0 . 
dr r r 

In terms of dimensionless radial position r defined as 

r 
r = L 

the above equation may be written 

2 
d 0 + 1 d~ - l p~ 0 = 0 
dr2 r dr 4 

where Pe is the Peclet number defined as 

Pe _ pCUL 
- k 

(4. 2. 7) 

(4.2.8) 
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Now consider the boundary conditions for the variable 0. 

Boundary condition (2) becomes simply 

0 = 0 at r _,co • 

Boundary con di ti on ( 1) may . be written 

which upon performing the differentiation becomes 

. { J; r cos 8 dQ } q =hm -kyT0re (Ocos8+dr)d8 . 
r->O 

Expanding the exponential term, 
r cos 8 

e in a Taylor 1 s series, 

about the origin, integrating the series term by terin and then taking 

the limit of the resulting expression as r -+O gives 

q = lim (-kT 0 2rrr ~~) . 
r->O 

Thus the problem may be written 

(4. 2. 9) 

with boundary conditions 

and 

1 -
(2) 0 = 0 at r ->co • 

Equation 4 . 2. 9 is in the form of a modified Bessel equation so that 

the solution is given by 

(4. 2. 10) 
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Applying the boundary condition (2) 
1 

it is seen that 

so that the solution reduces to 

(4.2.11) 

Applying boundary condition ( 1) 
1 

gives an expression for determining 

c 2 , namely, 

1 -
which for small values of -zPe r reduces to 

q = c 2 2rr k T0 ~~{r ~Per iPe} 

Thus, the constant c
2 

becomes 

c q 
2 = 2rr k TO (4. 2. 12) 

Therefore, the temperature distributi_on may be written 

J._ -
2Pe r cos 8 

1 
_ 

2rr f T 0 e KO ( 2 Pe r) (4. 2. 13) 

and the dimensionless temperature profile, which 

results from the line source is 

(4. 2. 14) 

d 
dx KO (x) =-Kl (x). Use has been made of the identity 

>:o:< Use has been made of the relation K 1 (x) == ~ for small x. 
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This analytical expression (4. 2. 14) can, of course, not be expected 

to agree exactly with the experimental measurements as the analyti-

cal model is a greatly simplified one. The solution suggests, how-

ever, that a single parameter may be used to present the experimen-

tal results and should indicate the behavior of the wake qualitatively. 

For this reason the analytical results are compared with those ob-

tained by measurements . 

3. Experimental Investigations 

A. Plan of Experiments 

The continuum solution developed in Section 2 indicates that 

the dimensionless temperature profile, 2rr k(T-To) ______ , at a particular 
q 

downstream location depends on a single parameter, the Peclet 

number defined as 

Pe= 
UL 

where et is the bulk thermal diffusivity, U the mean approach 

velocity, and L a reference length taken as the heated cylinder dialTI! -

ter in the flow experiments. The experiments were designed so that 

the temperature in the wake could be measured for a reasonably wide 

range of Peclet numbers. 

Medium-size spherical glass beads, coarse grain sand, and 

mustard seed, which represent granular materials with different 

thermal diffusivities, were chosen as the test materials. For each 

rn.aterial a temperature profile is determined at three downstream 

locations for three flow velocities. For the coarse grain sand these 

velocities are approximately 0. 10, 0. 20, and 0. 30 inches per second 
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which correspond to Peclet numbers of 200, 400 and 600. The three 

flow velocities for the glass beads and mustard seed are chosen so as 

to give Peclet numbers of 200, 400 and 600 also. 

In the experimental apparatus, the power supplied to the 

heated cylinder per cylinder length is related to the source strength, 

q, in the continuum solution. For the coarse grain sand, the power 

supplied per cylinder length for the low, medium and hi gh Peclet num.­

bers are 100, 140 and 180 wat~ s/ft . , respectiv ely. 

Two different diameter heate d cylinders, . 375 and . 750 inches, 

were used in the expe riments. Tempe rature profiles were deter­

mined at three downstream locations for Peclet numbers of 200, 400 

and 600 for each of the three granular materials. 

B. Experimental Apparatus 

The experimental apparatus, shown in Fig. 3. 3. 1, has already . 

been described in detail in Chapter III, Se::..i:ion 3 .. 

Certain modifications, however, were made for the present exper -

iments. Two different diameter, Ca l-Rod, electrically heated cylinders 

were used. Concentric Plexi glas s spa1cers, which fit flush with the 

inside channel surface, we re constructed to hold the different diame­

ter cylinders in position. Concentric insulation spacers were also 

constructed to be positioned between the heated cylinder and Plexi­

glass to minimize heat losses through the cylinder ends. The cylin­

ders are heated with a variable AC source with the power supplied 

being measured. 



- 81 -

Downstream temperature profiles are rneasured with a Bake­

lite thermocouple probe equipped with 5 copper-constantan thermo­

couples at -fz inch spacing. The probe may be positioned at 1-fz, 3 and 

4-fz inches below the centerline of the heated cylinder. The probe may 

also be adjusted to shift the overall spanwise position of the five 

thermocouples. A similar probe, equipped with a single thermo­

couple, is positioned 6 inches upstream of the cylinder to serve as a 

free stream reference. 

To determine the power dissipated in the cylinders the voltage 

across the heater circuit is measured by a true RMS voltmeter and 

this along with the known heater resistance serves to deterrrl;ine the 

power dissipated. In addition, a 250-watt full scale watt meter is 

connected in the heater circuit to provide a continuous reading of the 

power supplied. 

The five thermocouples in the lower thermocouple probe are 

referenced to the single thermocouple far upstream of the heated 

cylinder. Thus the measured potentials are proportional to the tem­

perature difference between the free stream flow and the wake. The 

potentials are measured with a sensitive voltmeter with an error less 

than 5%. 

The mass flow rate is determined by weighing the net rnas s 

output in a fixed time. The mass flow ra~e is then converted to 

approach velocity by dividing by channel area and material bulk den­

sity. The error involved in using this technique for determining 

approach velocity is usually less than 10% [ 9] . It should be noted 

that for each flow condition at least two measurements of mass flow 
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rate are made. The mass flow rate recorded is the m .ean value of 

the measurements made. 

C. Procedure 

The lower thermocouple probe is positioned 113 inches below 

the heated cylinder. The experimental apparatus is filled with one of 

the test materials and the gate valve is adjusted to give a Peclet num­

ber of 200. For the coarse grain sand this corresponds to a particle 

velocity of approximately 0. 10 inches per second. The heater power 

is then adjusted to provide a temperature difference of approximately 

20 degrees between the free stream and wake centerline. The tem­

perature at a particular point in the wake is recorded at one minute 

intervals to determine when steady- state conditions have been reached. 

The temperature at several points in the wake, the power supplied, 

and the mass flow rate are then recorded. During this process, usu­

ally taking 15 minutes, the supply hopper is refilled as required. 

Since the flow apparatus was designed to operate in the head indepen­

dent range, refilling has no effect on the channel mass flow rate. 

The gate valve is adjusted to give a moderate and then high 

Peclet number of 400 and 600, respectively, with the heater power in 

each case being increased to maintain a midstream temperature 

difference of approximately 20 degrees. Measurements are then made 

in the manner indicated before. 

In the actual experiments, the entire procedure outlined above 

was repeated for each of the test materials a minimum of four times. 

In addition, wake temperature measurements were made for several 
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arbitrary combinations of m a terial, probe location, and Pecle t num­

ber, as a check on measur e1nent repeatability. 

A total of three granular materials were us ed. These include 

spherical glass beads, coarse grain sand, and mustard seed with 

mean particle diameters of 23. 3, 26. 8 and 81. 4 mils, respectively. 

Mustard seed {hard, ellipsoidal-shaped particles) was chosen to repre­

s ent a material with low thermal diffusiv ity. 

For the experiments perform.ed, certain physical and thermal 

properties of these materials were required. The physical proper­

ties include bulk and particle specific gravity, void ratio, and parti­

cle size . The thermal properties include thermal diffusivity and con­

ductivity. The physical and thermal properties are summarized in 

Table B-1. 

D. Results, Discussion of Results, Conclusions 

The temperature profile in the wake as determined by the con­

tinuum solution is given in Eq. 4 . 2. 14. At any particular downstream 

location x and spanwise location y the temperature depends on the 

material Peclet number and the ratio of the power supplied to the bulk 

thermal conductivity. 

For each of the materials investigated, temperature measure­

ments were made at three downstream locations for Peclet numbers 

of 200, 400 and 600. For a g iven Peclet number and material, the 

power supplied was kept constant at all downstream locations. For 

the coarse g rain sand, the power supplied per unit cylinder length for 
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the low, moderate, and high Peclet numbers was 100, 140 and 180 

watts/ft., respectively. 

Experimental results are given in terms of dimensionless wake 

temperature excess versus spanwise location in inches with Peclet 

number and downstream location as parameters. Wake temperature 

measurements for the . 750 inch diameter cylinder for the three granu­

lar materials with a Peclet number of 200 and a downstream location of 

1 i! inches are given in Fig. 4. 3. 2. A symmetric curve representing 

the average measure of the wake temperature excess at each of the 

thermocouple locations for each of the three materials along w ith the 

continuum prediction is also shown. The results for Peclet numbers of 

400 and 600 at a downstream location of 1 i! inches are given in 

Figs. 4. 3. 3 and 4. 3. 4, respectiv ely. 

Experimental results for Peclet numbers of 200, 400 and 600 at 

a downstrearn location of 3 inches are given in Figs. 4.3.5, 4.3.6 and 

4.3. 7, respectively. Results for the three Peclet numbers at a down­

stream location of 4i!inches are given in Figs. 4. 3. 8, 4. 3. 9 and 4. 3.10. 

The temperature profiles in Figs. 4. 3. 2 to 4 . 3. 10 show a defi­

nite wake-like behavior. The profiles are "bell-shaped, 11 for given 

flow conditions the width increases with distance from the heated cylin­

der, and at a given location below the cylinder the profile narrows as 

the velocity is increased. In this general sense the profiles are simi­

lar to those obtained analytically for the line source in an idealized 

granular medium of uniform velocity. Any more quantitative agree­

ment was not to be e x pected because of the idealizations in the analyti­

cal model. 
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The analytical model was of help in defining the key parameters 

of the problem, that is, the dimensionless temperature (
2
n:6 TJ and the 

Peclet number (~L), which have been used in preparing the foregoing 

graphs. However, when examining the experimental data for the three 

granular materials it is seen that even when presented in the above 

manner, data fall on three different curves rather than on a single one. 

Fairly consistently the peak temperatures ofthe flowing musta'rd 

seed are the lowest of the three and those of the glass beads are the 

highest. Similarly, the wake seems to spread the fastest in the mus-

tard seed. 

When interpreting the data it has to be :::.-ealized, of course, that 

the experiments were exploratory in nature and that the measurements 

may well be in error by± 20%. The results are sufficiently consistent, 

however, to indicate that there may be additional parameters required 

for the full description of the wake formation. For example, it is to be 

realized that the idealized concept, which leads to the dimensionless 

temperature and Peclet number, did not acc0tmt for the velocity profile 

in the wake or ariy changes in the bulk thermal properties for a moving 

granular medium. Both of these factors may contribute to the lack of 

complete thermal and dynamic similarity in the wake. In particular, 

the concept of a conductivity for a moving granular medium may have to 

be examined in more detail. When the granules are in motion the air in 

the voids may be displaced relative to the granules and in this way the 

air may enhance the heat transport. In future investigations on the 

wake in a moving granular medium, these aspects will certainly have to 

be considered. 
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APPENDIX A - PERTURBATION TO 11 EXACT 11 SOLUTION 
DEVELOPED BY SULLIVAN [95] 

An alternate approximate solution to the system of equations 

developed in Chapter II, Section l will be presented here. This solu-

tion is a perturbation to the 11exact" solution of Sullivan [ 95] described 

in Chapter II, Section 2. Again it will be assumed that the material 

obeys the Jenike-Shield yield condition, the material is cohesionless, 

and that the material flows at constant bulk density. The problem con-

sidered is for the steady flow of a frictional cohesionless solid through 

plane symmetric channels with "small" wall friction. 

The geometry of the channel is given in Fig. A - 1. The mate-

rial is assumed to satisfy a Coulomb condition along the walls, namely, 

Tr8 

CY 8 
8=8 

w . 

= - tan(o) 

where o is restricted to being "small". The entrance and exit planes 

at r = R and r = r are assumed to be free surfaces with 
0 

T =a =a = 0. It is also assumed that the channel walls are suffi-r8 8 r 

ciently steep that the body force acts in a purely radial direction. 

Again the corr1ponent stresses crr, a
8 

and T rS are written in 

terms of a mean stress a and a stress angle 1jl such that the yield 

condition, Eq. 2. 1. 20, is satisfied identically. The relations are 

given in Eq. 2. 2. 6 . The solution developed by Sullivan for the steady 

flow of a frictional cohesionless material through plane channels with 

smooth walls and radial gravity described earlier may be written 
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a = S(r) 

w 
1T 

= -2 

r 
0 u u = u- = r 

v = 0 

where S(r) is given by Eq. 2 . 2. 15 and u is given in Eq. 2. 2. 16 

Following Courant and Hilbert [ 89], it will be assumed that 

from the stress and velocity state defined by the Sullivan solution the 

actual flow deviates only by small "quantities" such that second order 

terms in these 11quantities 11 and their derivatives may be neglected. A 

solution of the following form is assumed 

rv 

a = S(r) + a 

ijJ =;+~ 
(A. 1) 

rv 

u = U+u 

rv 

v = O+v 

where are the small 11quantities 11 that represent the per-

turbation from the radial body force solution. 

Substitution of the relations given by Eq. A. 1 into the equations 

of continuity, isotropy and motion and then the subsequent neglecting of 

second order terms in the perturbation variables yields the following 

linear system in the perturbation variables 



continuity 

isotropy 

e equation 
of motion 

r equation 
of motion 
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rv rv rv 

ov - :!.. + l. OU - 0 
or r r 08 -

rv rv 

Z dS ( . )'"!' Z . ~ 1 o a ( 1 + . ) 
- drsmcp lfl - Ssmcp 0 r+r1f8 srncp (A. Z) 

S . rv ov Uv 
( 

rv '"") 
- 4r(smcp)ljf = -p uai=" + r 

rv rv 

oa (l ) ZS . .Qi ZS . 8 (U,....,) - - sin co - - sin cp - - sin cp = - p <::1 r u 
or ' r oe r u 

The above system of equations, Eq. A. Z, may be written in matrix form 

as follows: 

rv 

( 1 - sin cp) 0 pU 0 
aa 

0 
-ZS sin SQ 

0 0 or r 

rv aa 
88 

rv 

0 - ZS sin cp 0 pU 
ow 1 +sin SQ 0 0 0 or 

+ 
r 

rv 
01)! 
88 + rv 

1 
0 0 0 1 

OU 
0 0 0 Fi=" r 

rv 

OU 
88 

rv 

0 0 1 0 
av 

0 0 0 
1 

or r 

rv av 
88 

2 dU rv 

- -sin cp 0 p dr 0 a 
r 

. (dS 2S) pU rv 

0 -2smcp dr +7 0 

"' 
r 0 = (A. 3) 

_
4 

dU 1 rv 

0 0 u 
dr r 

1 rv 

0 0 0 v 
r 

If the following definitions are made 

rv 
a 

x =vector = (A. 4 ) 
u 

v 
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0 -2S sincp 0 

l+sin cp 0 0 
B =matrix= 

0 0 1 

0 0 0 

1- sin cp 0 pU 

0 -2Ssincp 0 
A =matrix= 

0 0 0 

0 0 1 

- 2sin SQ 
0 

r 

0 . (dS 2S) 2smcp dr +r 
C =matrix= 

0 
_

4
dU 
dr 

0 0 

then the matrix Eq. A. 3 may be written 

Ax + ..!. B x
8 

+ c x = o 
-r r -

0 

0 
(A. 5) 

0 

1 

0 

pU 
(A. 6) 

1 

0 

dU 
0 Pdr 

0 
u p-
r 

(A. 7) 

0 
1 
r 

1 0 
r 

(A. 8) 

where here the subscripts of r and 8 refer to partial differentiation, 

with respect to r and 8 respectivel~r, and the zero on the right hand 

side of the matrix equation is a vector. Premultiplying by the inverse 

-1 
of matrix B, B , gives 

1 -1 - 1 
- x + B Ax + B C x = 0 
r -e -r 

(A. 9) 

It is initially assumed that the above system is hyperbolic. 

Following the method outl.ined by Courant and Hilbert [89] for reducing 
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a hyperbolic system to normal form, characteristic curves C: 

O(r, 8) = 0 are given by the differential equation 

or 

dr = + A 
rd8 

lo
8 

+ AD = o 
r r 

where le lS defined as the root of the algebraic equation 

(A. 10) 

(A . lOa) 

The scalar characteristic equation for le given by Eq. A. 11 is just 

which gives 

and 

( le 2 _ 1 ) (A. 2 _ 1 - s ~n co) = 0 
l+sm cp 

= ± J 1 - sin c.p 
A.3, 4 l+sin cp 

(A. 12) 

(A. 13) 

Hence, there exists four positive distinct eigenvalues and the system 

ls hyperbolic. 

In general, for the system of four partial differential equations 

defining both the velocity and stress fields, the characteristic direc-

tions (which for the present analysis are given l;y the A.' s defined 

above) associated with the velocity- field are 

G _ (2 ilf ±90) 
A.I 2 - tan 2 , (A. 14) 

and those associated with the stress field are 

A. G = tan(2 1]; ±(90-=:_SQJ) 
3' 4 2 

(A. 15) 
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The above result can be obtained by following for the general set of 

differential equations the general method outlined earlier. By refer-

ring to the Mohr diagram an.d Mohr Envelope, Fig. A - 2 , it is seen 

that the characteristic directions associated with the stress field are 

coincident with the lines of slip defined by the point of tangency of the 

Mohr Envelope to the Mohr Circle, and that the characteristic direc-

tion associated with the velocity field are coincident with the lines of 

maximum shear stress. These are obvious consequences of the Jenike 

constitutive postulates. 

It is seen that the characteristic directions for both velocity 

and stress field in the present analysis are given by 

and 

G 
"-1 2 = lim "-1 2 

, ¢-+O , 

respectively. That is, the characteristic directions for the linearized 

system of equations that describe a flow that deviates only 11 slightly" 

from a main flow given by the Sullivan solution are identical with the 

characteristic directions for the main flow . 

Smee the equations are linear, the characteristic directions 

are independent of the dependent variables, and thus the characteristic 

equations may be solved independently of the solution. The characteris-

tics for the velocity field are given by the solution to the ordinary 

differential equations 
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dr dr 
rd8 = A.I and rd8 = Az 

yielding 

+8 -8 
r=+c 1e and r=+c2 e for (A.16) 

the first and second velocity characteristics, respectively. The 

characteristics for the stress field are given by the solutions to the 

differential equations 

dr 
rd8 = 

yielding 
l+sin CQ e 
1- sin cp 

r = +c3 e and r = +c4 e 

l+sin Cf? e 
1- sin ep 

(A. 17) 

for the first and second stress characteristics, respectively. It is 
.J, 

seen that the characteristics for the system are logarithmic spirals.··· 

For the above set of eigenvalues, that is, the characteristic 

directions given by the A. 1 s, the eigenvector matrix for the hyperbolic 

system defined by the matrix _Eq. A. 9 lS found to be 

1 1 1 1 

-1 +I 
-/..

3
(1+sincp) +A. 3 (I+sincp) 

x = 
2S sin cp 2S sin cp 2S sin cp ZS sin cp 

+sin cp +sin SQ 
(A. 18) 

pU pU 0 0 

+sin co -sin co 0 0 
pU pU 

"' 
-·-For the case when the inertial terms are negligible, Sokolovski [ 87] 

found the stress characteristics as logarithmic spirals when 
''' = i)r = constant 'I' 0 • 
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-1 
and the inverse of the eigenvector matrix, X , is given by 

0 0 
-!c

3 
( l+sin cp) - !c

3 
( 1+ sin cp) 

pUS pUS 

0 0 
- !c

3 
( l+sin cp) +!c

3 
( l+sin cp) 

pUS 

- 1 1 -lc
3 

sin cp( l+sin cp) 2 . 2 +/c 3 (l+sincp) x = fXl + sin SQ 

p2U2S p2U2 pUS 

- lc
3 

sin cp( l+sin cp) 2 . 2 - sin SQ 
+!c

3
(1+sincp) 

p2U2S p2U2 pUS 

where IX I is the determinant of the m.atrix X given by 

Ix I= 
- 2/c

3
sincp(1 +sin cp) 

p2U2S 

Define a new vector variable, y_, by 

and 

x = Xy_ '-8 · e 

Substituting for the 

x = Xy_ then 

since X is independent of 8 

x=Xy+Xy_. -r r- r 

- 1 
x in Eq. A . 9 and premultiplying by X 

pUS 

1 
pUS 

-1 
pUS 

(A. 19) 

(A. 20) 

(A.21) 

1 -1 -1 -1 -1 -1 -1 -1 r X Xy_8 + X B AXry_ + X B AXy_r + X B CXy_ = Q 

However the eigenvector matrix X diagonalizes the matrix B- l A 

such that 
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"1 0 0 0 

0 "2 0 0 
X- l B - l AX :.: /\ = 

0 0 A.3 0 

0 0 0 A.4 

and the matrix equation for y_ becomes 

!x.e+/\yr+(X-lB- 1Axr+x·· 1B- 1CX)y = 0 . 

(A. 22) 

(A. 23) 

It was assumed that the actual flow of a frictional, cohesion­

less solid through converging channels deviates only slightly from a 

main flow defined by Sullivan 1 s ''exact 11 solution for smooth walls and 

radial gravity. It has been shown that the linear system of equations 

describing this "slight" deviation is hyperbolic and the characteristics 

for both the velocity and stress field coincide with those for the fric­

tionless flow. The characteristic equations were found and the charac­

teristics are logarithmic spirals from the origin. This agrees with 

Sokolovski [ 871 for negligible inertial terms and constant stress angle . 

The systei:c1. was then reduced to normal form which yields a system of 

four ordinary differential equations for the stress-velocity vector y_. 

The assumed form of the solution, Eq. (A. 3), implies that the 

perturbation quantities are uniformly small in that second order terms 

of all of these quantities may be neglected. However, by writing the 

complete system of equations in dimensionless form and assuming a 

form of solution not necessarily uniform in a perturbation parameter, 

the perturbation parameter may be found and it may be seen that the 

solution is indeed not UJ1iform in this parameter. This more general 

approach is followed in Chapter II, Section 3. 
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APPENDIX B -MATERIAL PROPERTIES 

The subject matter of the thesis concerns the flow of a 

frictional, cohesionless solid (dry granular materials which exhibit 

negligible cohesion for example) and the heat transfer from a heated 

surface to a flowing, frictional, cohesionless solid. For the experiments 

performed, certain physical, mechanical and thermal properties were 

required. The physical properties include bulk specific gravity, 

particle specific gravity, void ratio (which can be determined from 

the bulk and particle specific gravities under certain conditions), and 

particle size; the mechanical properties include internal friction 

angle and wall friction angle (the coefficient of friction between a 

granular material and a well-defined surface); the thermal properties 

include bulk thermal diffusivity and bulk thermal conductivity. 

A total of nine granular materials were used. Five of these 

consisted of different sizes of spherical glass beads ranging in 

diameter from 10. 7 mils to 127. 2 mils. Fine, medium and coarse 

grain quartz sand were also used. Mustard seed (hard, ellipsoidal­

shaped particles) was chosen to represent a material with a low 

thermal diffusivity. 

Most of the properties outlined above are bulk properties in 

that they depend on the particular arrangement of the grains (particles) 

in the granular mass. For example, a large variation in void ratio 

may be obtained by measurin.g the void ratio of the same materi a l in 

both a 11 loose 11 and 11dense 11 state. For this reason it is somewhat 
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important to establish an initial state or condition for each test sample 

for the material property evaluation. 

Briefly, it has been experienced i:hat if a given frictional 

cohesionless solid in the "loose" state undergoes shear deformation, 

the void ratio, which is defined as the ratio of the volume of the voids 

to the volurne of the solids, initially decreases but at large shear 

strains reaches and remains at a near constant value. Similarly, if 

the same friction a l, cohesionless solid in the 11dense 11 state undergoes 

shear deformation, the void ratio slightly decreases, increases, and 

then at large shear strains reaches and remains at a near constant 

value. It is possible to prepare a test sample of this same material 

with a particular initial void ratio such that under shear deformation 

the void ratio remains essentially unchanged. The void ratio for the 

solid in both the 11 loose 11 and "dense'i state approaches this constant 

void ratio a t large shear strains. This constant void ratio will be 

called the critical void r a tio. 

For the experiments considered in the thesis, it is assumed 

that the granular material behaves as a frictiona l, cohesionless 

solid continuously failing {implying sufficiently large shearing 

deformations that 11 state state" flow conditions, i. e. , constant void 

ratio, have been reached) at constant void ratio. Thus, the material 

properties a;·e desired and were determined a t the critical void ratio. 

The specific methods used in determining the material properties are 

described below. The material properties are surmnarized in 

Table B-1. 
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Bulk Specific Gravity, Particle Specific Gravity, and Void Ratio 

Specific gravity is defined a s the ratio of the density of a 

substance to the density of some reference substa nce, the reference 

substance usually being taken as distilled water at some specified 

temperature. Distilled water at 4 ° C which has a density of exactly 

1. 0 gm/ cc will be taken as the reference substance. Thus, the 

measured density of any substance will be numerically equal to its 

specific gravity. 

Bulk specific gravity at the critical or flowing void ratio is 

desi r ed. The bulk density of a dry granular material is easily 

determined by measuring, with a graduated cylinder, the volume 

occupied by a known mass of the test substance. The volume corre­

sponding to the critical or flowing state is achieved by capping and 

then slowly inverting (two inversions necessary) the filled cylinder. 

Denser states may be achieved by gently tapping the sides of the 

cylinder. 

Sullivan [7] discussed a method for determining particle 

specific gravity. However, failure to ·remove all interstitial air 

using his test procedure will result in large (non-negligible) error 

in the particle specific gravity measurement. A more refined test 

procedure is given by Taylor [ 4]. For this particular investigation 

not all particle specific gravities were measured. The specific 

gravities for the five glass beads and the three quartz sands were 

taken from the literature [ 1, 3, 4]. The particle specific gravity for 

the mustard seed was determined by us ing T aylor's method. 
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Void ratio is defined as the ratio of the vohnne of the voids to 

the volume of the solids. For a granular material with negligible 

water content (water content is defined as the ratio of the weight of 

water to the weight of solids in a unit volume of material), the void 

ratio may be determined from the particle specific gravity, Pp, and 

the granular bulk specific gravity, p B, in the following formula 

1 . 

Particle Size 

An arbitrary granular mass will consist of a random assort-

ment of three-dimensional, irregular shaped particles. If with each 

of these particles there can be associated some characteristic length, 

then this length can be taken as a measure of the particle size. Since 

for such a definition to be meaningful it must be possible to prescribe 

this characteristic length in a standardized manner (measurement 

method), the particle size will depend on the particular method or 

manner of measurement chosen. 

Normally in soil mechanics, the particle size distribution for 

a given granular mass is determined by performing a "sieve analysis". 

Briefly, the analysis consists of passing the given sample through a 

set of sieves (care must be taken in choosing the appropriate set of 

sieves) and weighing the amount of material retained on each sieve. 

Thus, in the sieve analysis the particle size is related to the me sh 

opening. A somewhat different approach, which is used in this 

investigation, is de scribed below. 
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The characteristic length used in this investigation is defined 

as the distance between two planes each plane being tangent to 

opposite sides of the particle. If an irregular granular particle is 

viewed using a light microscope, the above characteristic length 

becomes the distance, d, between two lines each line being tangent 

to the outline of the particle planform area. For the spherical glass 

beads, this distance is just the particle diameter. For the irregular 

shaped quartz sand particles and the ellipsoidal-shaped mustard seed 

particle, the distance, d, will depend on the particular particle 

orientation. However, if d is measured for a "sufficient" number of 

randomly oriented particles, then d should be representative of the 

particle size and independent of orientation. 

The light microscope used was equipped with a special 

eyepiece inscribed with parallel lines at~ mil spacing. The me a sure­

ment procedure adopted consists of slowly traversing a slide containing 

a large number of randomly oriented particles and measuring all 

particles coming into view. Approximately 100 particles for each 

of the nine materials were measured. Mean particle size, standard 

deviation, and particle size distribution were determined. The 

experimental set up is shown in Figure B 1. A typical particle size 

distribution is given in Figure B2 . 

Internal Friction Angle 

Static friction between two plane solid surfaces can be 

characterized by a coefficient of friction which is defined as the ratio 

of the available friction force, which acts along the interface, to the 
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normal force between the surfaces. The force is applied through one 

of the surfaces and reacted at the other. The resultant of the reacted 

normal force and the maximum available friction force will act at an 

angle, cp, (called the friction angle) to the surface normal. From 

geometry and the above definition it is observed that 

maximum available friction force 
= coefficient of friction = tangent(cp). 

normal force 

In a similar fashion the resultant of the applied normal force and 

applied tangent force will act at angle say, 8, to the surface normal. 

The angle 8 is usually called the obliquity of the applied force. For 

all values of 8 less than cp the system is stable in that there is no 

danger of slip between the solid surfaces. For 8 =cp, however, slip 

is imminent. Thus, for this system failure or instability occurs when 

the obliquity of the applied force is maximum and equal to the friction 

angle. 

The ideas developed above for solid friction can be used to de-

scribe slip, or more appropriately the resistance to slip, on a speci-

fied plane in a granular mass. The problem here is more complicated 

in that resistance to slip is not due to merely sliding friction between 

solid surfaces but to a combination of sliding and rolling friction be 

between grains as well as an interlocking of the irregular surfaces of 

the individual grains. 

The shear stress, T, on a particular plane, analogous to the 

applied tangent force above, may be related to the applied normal 

stress, 0, through an obliquity angle, 8, as follows 

'T=0tan8. 
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Failure or slip is ilnminent when 8 reaches its maximum value which 

is given by the internal friction angle, cp. The internal 

friction angle, cp, must be taken to be a measure of the overall 

resistance to slip due to the three mechanisms mentioned. The 

shear strength, s, which is just the shear stress at failure, 

is given by 

s = CY tanc.p . 

Thus in normal stress -shear stress coordinates, the shear strength 

is represented by two straight lines through the origin with slopes 

+tanc.p and -tanc.p which define what is called the Mohr Envelope. 

For a particular stress state defined by a Mohr's circle, failure or 

slip is imminent when the Mohr circle is tangent to the Mohr Envelope. 

A direct shear type of apparatus was chosen to measure the 

internal friction angle for the test materials. Basically a direct 

shear test consists of shearing the test material along a particular 

(well-defined) plcme and measuring the applied normal load and reactive 

shear load on the failure plane. The ratio of the maximum shear load 

achieved to the applied normal load corresponds to the peak-point 

internal friction angle. A brief description of the sample preparation, 

the direct shear machine, and the test procedure follows. 

The sample, loaded into a shear box, is constrained peri­

pherally by an upper and lower metal ring separated by approximately 

~ grain diameter and is constrained from above and below by two 

porous stones. For each test, the sample weight and test volume are 

measured to determine the initial void ratio. Each sample is prepared 

such that the initial void ratio is ''near'' the critical void ratio. 
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The direct shear machine, shown rn Fig. B3, consists of three 

maJor parts: ( 1) a spring loaded apparatus to apply a known normal 

load to the test sample, (2) a constant speed motor to displace the 

upper half of the test sample relative to the lower half, and (3) a metal 

proving ring to measure the reactive shear load on the lower half of 

the test samples . The test procedure consists of applying a given 

normal load to the test sample, applying (through the constant speed 

motor) a shear displacement to the upper half of the test sample, and 

measuring the instantaneous shear displacement of the upper half and 

the instantaneous reactive shear load on the lower half. A typical plot 

of the ratio of shear load to normal load versus shear displacement is 

given in Fig. B4. The peak point friction angle corresponds to the 

maxi1num value of this ratio; the ultimate friction angle corresponds 

to the value of this ratio at large shear displacement. Since, as may 

be seen in Fig. B4; the difference in the peak point and ultimate values 

for this particular void ratio is not large, and since it is fairly 

common practice in soil mechanics to use peak point values from lab­

oratory tests for analyses of problems in nature [ 4], peak point values 

were used in this investigation. A typical plot of peak shear load ver­

sus applied normal load is given in Fig. BS. The slope of the peak shear 

load versus applied normal load curve is just tangent (cp). The complete 

set of results is given in Table Bl. 

Generally the internal friction angle for cohesionless material 

is not a very strong function of applied normal load but is very .sensi­

tive to the initial void ratio. For the five sizes of glass beads tested, 

the variation is initial void ratio (test void ratio which was near the 
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critical void ratio) was not large. There was, however, an increase in 

internal friction angle with increase in standard deviation in particle 

diameter. This is perhaps related to the greater amount of interlock­

ing taking place in the material with a larger variation in particle di­

ameter. Interlocking might also explain the higher internal friction 

angles observed for the irregular-shaped sand particles. 

Surface Friction Angle 

One problem investigated experimentally and discussed in the 

thesis deals with the flow of a frictional cohesionless solid over a cylin­

drical surface. For these experiments two sets of cylinders were used. 

The first set were lucite with a smooth (as formed) surface finish; the 

second set were aluminum with a diamond knurl finish. Photographs of 

the 1 11 lucite and 1 11 aluminum cylinders are given in Figs. B6 and B7, 

respectively. 

It was desired to determine the effective friction coefficient 

(or friction angle) for each individual test material and surfaces repre­

sentative of each of the cylindrical surfaces. A very simple apparatus 

was designed and built to measure the surface friction angle. Basically 

the apparatus consisted of an open box (8 X 12 X 4n deep) to contain the 

test material, two test pads with surfaces representative of the cylin­

drical surfaces (photographs of the pad surfaces are given adjacent to 

the cylindrical surface photographs in Figs. B6 and B7), a pully 

attached to the box, a weight pan, and two sets of weights. The actual 

test apparatus is shown in Fig. BS. 

The test procedure consists of applying a normal load to the 

test pad and then increasing the shear load by applying successive 



- 114 -

weights to the test pan until slip is imminent. This is actually an 

iterative process in that often the final shear load increment will sur­

pass the load necessary for slip requiring the test to be repeated with 

a decrease in the final load increment. T!:ie shear load required for 

slip was determined for eight normal loads for each of the nine materi­

als. A typical plot of required shear load versus applied norm.al load 

is given in Fig. B9. The slope of the required shear load - applied 

normal load curve is just tangent (6), where 6 is the surface friction 

angle. 

Thermal Diffusivity 

The unsteady- state method for measuring thermal diffusivity of 

a granular mass proposed by Brinn [6] and used by Sullivan [7] was 

adopted. The method requires a simple test apparatus and a relativel~r 

short data acqus ition time. 

·The apparatus consists of a 1 ~inch diameter copper tube wound 

with electrical resistance heater tape connected to a variable AC power 

source. One thermocouple is embedded in the wall of the copper tube 

to provide wall temperature; one thermocouple is positioned along the 

tube centerline to provide centerline temperature; one thermocouple is 

positioned in an ice-water bath to act as a reference junction. A 

schematic of the test apparatus is shown in Fig. BlO. 

The test material is loaded into the copper tube and the ends 

are capped. The test procedure consists of raising the wall tempera­

ture to approximately 50 ° F above the initially uniform temperature of 

the granular mass, and then measuring the t e rnperature difference 
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between the wall and centerline at one minute intervals while keeping 

the wall temperature essentially constant. 

For a cylindrical body initially at uniform temperature T 
0 

with a wall at radius R raised instantaneous at t = 0 to temperature 

T 1 (wall temperature at T 
1 

constant for all t> 0), the centerline tern-

perature is given by 

T 1-T c oo t J 0(0) ( a~t)J e ( t) = T -T = 2 I a J (a ) • exp - Ot -2 
1 0 n=l n 1 n R 

where J 0 and J 1 are Bessel functions and the an's are the zeros of 

J 0 . For increasing Ct't/R 
2 

successive terms in the infinite expansion 

are of decreasing importance. 
2 

Thus for large 0tt/R the slope of 

log 10 (T 1 - Tc) I (T 1 - To> should approach a straight line with slope 

2 
-2. Scx/R . As discussed by Sullivan [7] the second term in the expan-

sion is negligible with respect to the first for (01t/R 
2

)>. 3 which should 

be reached on the order of 10 minutes for a typical granular material 

in this test apparatus. 

A typical plot of log 10 (T 1-Tc)/(T 1-T
0

) versus time is given in: 

Fig. Bl 1. A summary of the thermal diffusivity data for the nine gran-

ular materials is given in Table Bl. The data for therm.al diffusivity of 

quartz sand agrees well with the data given by Jumkis [8]. 

Thermal Conducti v:!:_!y 

The thermal conductivity was not measured directly. Instead 

the specific heat of the particles was measured and then ,;!:he thermal 

conductivity was found using the definition 

k=pcet 

where p and et are the previously determined bulk density and ther -

mal diffusivity, respectively. 
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The same apparatus as use~ in the diffusivity test was used 

here with the wa.11 condition changed from constant temperature to 

constant heat flux. To effect this change the apparatus was wound 

with a second electrical resistance tape heater to act as a guard heater, 

the two heaters being separated by a {6 inch section of cardboard. In 

addition to the wall and centerline thermocouples, one thermocouple 

was positioned on each side of the cardboard section. The inner and 

other heaters were connected tc• separate variable AC power sources. 

The test material was loaded into the copper tube and the ends 

were capped. The entire apparatus was then wrapped with rock wool 

insulation to minimize heat losses from portions of the apparatus not 

covered with the guard heater. The test procedure consists of apply-

ing a known AC voltage to the inner heater, and then measuring the 

wall temperature and the difference in temperature between the wan 

and centerline at one minute intervals while keeping tht temperature 

difference across the cardboard less th:cn i ° F. 

Neglecting the heat capacity of the copper tube, the exact 

solution for the radial temperature distribution for a cylindrical 

section with a constant heat flux, q 11
, at r = R is given by Cars law 

anqJaeger [5] as 

2 
For large O't/R 

((O't/R}>. 5) the terms in the infinite expansion are negligible compared 

to the term linear in time. Thus a plot of (T 
1

-T
0

) versus time 
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should approach a linear asymptote with slope 2q 11 Ip cR which may be 

used to find c. 

The heat capacity of the copper cylinder does have an effect on 

the terminal slope of the temperature-time plot. According to 

Sullivan [ 7] the terminal slope is given in terms of the total heat 

added to the cylinder by 

where M
1 

and Mp are the mass of the cylinder and granular material 

respectively and c
1 

the specific heat of the copper. 

A typical temperature time plot is given in Figure Bl2. A 

plot of T 1 -T c is also given. The measured specific heats of the 

glass beads and quartz sand agreed quite well with published data 

[ 8, 9]. 
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PRESSURE 

Figure 2. 1. 1 Hydrostatic pressure versus volume change for 
the drained, triaxial test of a saturated clay. 

c cot <P
1 

Figure 2. 1. 2 Jenike - Shield pyramid yield surface. 
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A 

):ccot~1 
Figure 2. l. 3 Growth (contraction) of yield surface for 

the process of consolidation (expansion). 

A 

c cot cf> 

c cot ¢1 ---
u 

Figure 2. 1. 4 Yield locus and Jenike - Shield effective 
yield locus in ( 0, 'T) coordinates. 
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UPPER FREE SURFACE 

R 

LOWER FREE SURFACE 

Figure 2. 3. 1 Plane, symmetric converging channel. 
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T 

o-, 

Figure 2. 3. 2 Mohr diagram and Mohr envelope 
with effective friction angle, cp. 
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Figure 3. 1. 1 Flow of a fine grain sand over a double wedge . 
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Figure 3. 1. 2 Initiation of flow over a cylinder. 
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Figure 3. 1. 3 Stagnant region and cavity for the flow of 
a fine g rain sand over a cylinder. 
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Figure 3. 3. 1 Schematic diagram of the flow apparatus. 
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Figure 3. 4. lb High magnification of separation point. 
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Figure A-1 Plane, symmetric converging channel. 
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Mohr diagram and Mohr envelope 
with effective friction angle, cp. 
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Figure B-1 Microscope used in particle size determination. 
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Figure B-8 Surface friction angle test apparatus. 
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