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Abstract

This thesis aims to investigate two rather separate issues: network reliability and
traffic analysis. The first concerns the reliability for unreliable systems, including
communications networks with possible link failures, and more general fault-tolerant
systems. The second concerns the traffic characteristics specifically in ATM networks
with respect to the performance of statistical multiplexers.

One way in which we studied the reliability issue is via mean time to failure
(MTTF) which considers systems that have component failures and repairs with ex-
ponential distributions. Such systems can be modeled by continuous-time discrete-
state Markov chains. We investigated the MTTF from a more general framework
of fault-tolerant systems (FTS), and developed two systematic approaches, the all-
path-weight approach and the signal-flow-graph approach, to compute the MTTF. We
also derived a simple asymptotic formula for estimating the MTTF, and obtained
asymptotically the optimal networks in terms of the MTTF.

The other way in which we studied the reliability issue is via reliability polynomials
for a system with component failures with certain fixed probability that is independent
of time, but a function of the size of the system. No repair is allowed. We modeled
such systems by random graphs, and analyzed reliability polynomials in a framework
of random graph theory. We specifically focused on certain regular random graphs
and analyzed the evolution of the regular random graphs, by showing a transition
phenomenon when such a regular random graph evolves from edge probability zero
to probability one because of the expansion of graph size, and identified its threshold
function. Our work extends the study of the evolution of random graphs to regular
random graphs which do not appear in the literature of random graphs, and our
results are generalizations of some famous previously known results in random graph

theory.

As for the second issue of traffic analysis in ATM networks, we first studied,
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via the approach of generating functions, Markov on-off traffic and the performance
behavior of a statistical multiplexer with such traffic. We developed a heuristic pro-
cedure which allowed us to compute the expected buffer occupancy of a statistical
multiplexer with Markov on-off traffic, and obtained closed form formulas showing
that the expected buffer occupancy under such traffic not only depends on the in-
coming traffic intensity, but also largely on the burstiness of incoming traffic. The
expected buffer occupancy becomes unbounded with large enough traffic burstiness,
even though the traffic intensity is small. These results showed that burstiness control
of traffic was very critical in designing ATM networks.

We then introduced a class of burst-constrained traffic sources, the periodic inter-
changeable (PI) traffic, and applied generalized Ballot theorems to analyze the buffer
occupancy in a statistical multiplexer with PI traffic. We derived closed form formu-
las for survivor functions, expected buffer occupancy, and simple asymptotic formula
that can be used as a rule of thumb for dimensioning buffer size in designing a sta-
tistical multiplexer. The results obtained could shed light on the study of worst case

performance of statistical multiplexers for burst-constrained traffic sources in ATM

networks.
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Chapter 1 Introduction

This thesis studies two topics: topic one concerns the reliability of general networks;

topic two concerns traffic and performance behavior of statistical multiplexers in ATM

networks.

1.1 Network Reliability

Reliability theory is the study of the overall performance of a system built from
failure-prone components. That is, the components of the system are not perfect in
operation, but their failure is assumed to be governed by certain probabilistic statis-
tics. It is thus of interest to describe the statistical behavior of the system in terms
of the characteristics of its components. Not only are the reliabilities of individual
components important, but the manner in which they are assembled can have a sig-
nificant influence on the overall performance of the system. For example, Moore and
Shannon [34] over forty years ago showed that it is possible to obtain a reliable system

by properly configuring unreliable components via the use of redundancy.

The problem of determining the reliability of a complex system, whose components
are subject to failure, has received considerable attention in the statistical, engineer-
ing, and operations research literature. Reliability analysis can be applied to a variety
of practical systems, ranging from large-scale telecommunication, transportation, and

mechanical systems, to the microelectronic scale of integrated circuits.

We are mainly concerned here with network reliability, in which the underlying system
arises from the interconnection of various components in the form of a network, or
graph, such as is exemplified by telecommunication, distribution, and computer net-
works. For example, the nodes of a computer communication network might represent

the physical locations of computers and its edges might represent existing commu-
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nication links between computer sites. In realistic situations, the components of a
network, its nodes and edges or both, are subject to failure. At any instant, each
component is either working or failed, and as a result, the network itself is also either
working or failed. In the computer communication example, working might mean

that a computer is able to communicate over operational links of the network with

another computer.

There are mainly two models considered in real systems for reliability study.

(1) Systems with component failures and repairs with exponential distributions. Such
a system can be modeled by a continuous-time discrete-state Markov chain, in which
there is a so-called failure state in the Markov chain representing that the system is
failed (according to certain objective), due to the failures of components. The relia-
bility measure in such systems is usually the mean time to failure (MTTEF) [40] [10]
[27] [25], which is the average time for the system to migrate from its perfect state

(no component failure) to the failure state.

(2) Systems which allow component failures with a certain “fixed” probability p that
is independent of time, but no repair. Such a system can be modeled by a random
graph [11]. The reliability measure in such systems is usually the reliability polynomial
in p [13] [39], which is the probability that a certain objective (e.g., there exists an

operational path between any two distinct nodes) for the system is maintained.

1.2 Traffic Analysis in ATM Networks

ATM is a standard that is recognized throughout the world [35] [36], which pro-
vides for the first time a method for universal information exchange, independent of
the end systems and the type of information (data, audio, video). ATM stands for
asynchronous transfer mode. It is the most modern telecommunications switching
technique. It is a highly efficient switching technique which is able to switch connec-

tions for a wide range of different information types at a wide range of different rates.
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ATM networks provide a Quality of Service (QOS) guarantee to user connections.
The QOS parameters include: cell error ratio, cell loss ratio, cell transfer delay, mean
cell transfer delay, and cell delay variation, etc. The method used by ATM networks
to provide QOS is by maintaining a contract between network user and network ser-
vice provider. When a connection is required by a network user, there is a contract
set-up between the network and the user. The user describes the connection in terms
of its traffic parameters and QOS requirements. A traffic parameter is a specifica-
tion of a particular traffic aspect. Three main traffic parameters are Peak Cell Rate
(PCR), Sustainable Cell Rate (SCR), and Mazimum Burst Size (MBS). After the
user describes its traffic parameters and QOS requirements, the network uses a con-
nection admission control scheme to determine if the connection can be admitted to
the network, while providing that QOS required to the incoming connection and also
to maintain the QOS to the other connections that have already set up. If the new
connection violates the traffic parameters in the contract, the violated cells will be

dropped by the network.

One characteristic of ATM traffic is its burstiness. The burstiness of a traffic is defined
as the ratio of the peak traffic rate to the average traffic rate. A traflic source is said
to be “bursty” when this ratio is much larger than one. Bursty traffic sources do not
require fixed allocations of bandwidth at their peak rates from ATM networks. The
ATM scheme makes efficient use of bandwidth by statistically multiplexing a large
amount of bursty traffic sources. One of the most important components in ATM
technology is the statistical multiplezer, which is a multiplexer that combines a num-
ber of traffic sources over a single output path such that the transmission bandwidth
(capacity) of the output path is not permanently allocated to any given input chan-
nel, but instead transmits (“serves”) the incoming cells on a first-come-first-served
(FCFS) basis. Cells from incoming traffic sources are multiplexed into an output
link. Because the aggregate cell arrival rate may temporarily exceed the bandwidth

of the output link, a buffer is provided at the output port to hold cells during overflow

periods.
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Since ATM networks provide QOS guarantee to user connections, it is very impor-
tant to study ATM traffic with certain “typical characteristics”, and the performance
behavior (e.g., the distributions of buffer occupancy and the expected buffer occu-
pancy) of statistical multiplexers with such traffic. There are two types of ATM
traffic sources we have investigated in this thesis: Markov on-off traffic sources which
are not burst-constrained, and periodic interchangeable (PI) traffic sources which are

burst-constrained.

A Markov on-off traffic source is described by a two-state (state 1 and state 0)
continuous-time Markov chain such that, when the source in state 1 (“on” state),
it sends one cell per time slot; while in state 0 (“off” state), it sends nothing. When
many Markov on-off traffic sources are superimposed, we obtain homogeneous Markov
on-off traffic (when all Markov chains are identical), or heterogeneous Markov on-off
traffic (when all Markov chains are not identical). Markov on-off traffic is not burst-
constrained, that is, it can generate an infinitely long sequence of consecutive cells.
We will develop a heuristic procedure to compute the expected buffer occupancy for

a statistical multiplexer with homogeneous and heterogeneous incoming traffic.

A periodic interchangeable (PI) traffic source is one such that all the cells are gener-
ated periodically with certain period, and within a period, the sequence of random
variables are interchangeable, so that the summation of the random variables is not
a random number, but a deterministic number. A sequence of random variables is
called interchangeable if all the permutations of the sequence of random variables
is equally likely. A PI source is burst-constrained, that is, it can never generate an
infinitely long sequence of consecutive cells. We will show how to apply generalized

Ballot theorems to analyze the buffer occupancy for a statistical multiplexer with PI

traffic.

1.3 The Contributions of the Thesis

The contributions of the thesis can be briefly summarized as following:
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e We studied reliability in terms of the MTTF for systems that allow component
failures and repairs with exponential distributions, in the more general frame-
work of fault-tolerant systems. We developed two systematic approaches, the
all-path-weight approach and the signal-flow-graph approach, to compute the
MTTF for fault-tolerant systems. With these approaches, we derived simple
asymptotic formulas for estimating the MTTF, and identified asymptotically

the optimal networks in terms of the MTTEF.

e We studied reliability in terms of the reliability polynomials for systems that
allow component failures with certain time-independent probabilities, but no
repair. We modeled such systems by random graphs, and analyzed reliability
polynomials in a framework of random graph theory. We specifically focused on
certain regular random graphs and analyzed the evolution of them, by proving
the transition phenomenon when such a regular random graph evolves from edge
probability zero to probability one because of the expansion of graph size, and
identified the associated threshold function. Our work extended the study of
the evolution of random graphs to regular random graphs which do not appear
in the literature of random graphs, and our results are generalizations of some

famous previously known results in random graph theory.

e We studied Markov on-off traffic and the performance behavior of a statistical
multiplexer with such traffic in ATM networks using the approach of generating
functions. We developed a heuristic procedure which allowed us to compute
the expected buffer occupancy of statistical multiplexers with Markov on-off
traffic, and showed that the expected buffer occupancy under such traffic not
only depends on the incoming traffic intensity, but also on the burstiness of the
incoming traffic. These results showed that burstiness control of traffic is very

critical in designing ATM networks.

e We introduced a class of burst-constrained traffic sources, the periodic inter-
changeable (PI) traffic, and applied generalized Ballot theorems to analyze the

buffer occupancy in a statistical multiplexer with PI traffic, which resulted in
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closed form formulas for survivor functions, expected buffer occupancy, and a
simple asymptotic formula that can be used as a rule of thumb for dimension-
ing buffer size in designing a statistical multiplexer. Our results could shed
light on the study of worst case performance in statistical multiplexers with

burst-constrained traffic in ATM networks.

1.4 Structure of the Thesis

In this introduction, we have provided a general introduction to the two general
problems we address in this thesis: network reliability and traffic analysis in ATM

networks. The remainder of the thesis is organized as follows.

In Chapter 2, we study reliability in terms of the MTTF for systems that allow
components failed and repaired with exponential distributions, in the more general
framework of fault-tolerant systems. Some efficient algorithms are developed and

asymptotic analysis is performed.

In Chapter 3, we study reliability in terms of the reliability polynomials for systems
that allow components failed with certain time-independent probability, but no repair.
We model such systems by random graphs, and analyze their reliability polynomials
in a frame work of random graph theory. We specifically focus on certain regular
random graphs and analyze the evolution of the regular random graphs, by proving a
transition phenomenon when such a regular random graph evolves, and identify the

associated threshold functions.

In Chapter 4, we analyze Markov on-off traffic and the performance behavior of a
statistical multiplexer with such traffic in ATM networks. We develop a heuristic
procedure which allows us to compute the expected buffer occupancy of statistical
multiplexers with Markov on-off traffic. The results show that burstiness control of

traffic is very critical in ATM networks.

In Chapter 5, we introduce a class of burst-constrained traffic sources, the periodic
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interchangeable (PI) traffic, and show how to apply generalized Ballot theorems to
analyze the buffer occupancy in a statistical multiplexer with PT traffic. These results
shed light on the study of worst case performance of statistical multiplexers with

burst-constrained traffic sources in ATM networks.

In Chapter 6, we summarize and conclude our results.



Chapter 2 Network Reliability and
MTTF

2.1 Introduction

Many systems in the engineering world consist of independent components which are
imperfect. Each component can be in one of two states: working or failed. The system
is capable of performing a large and complex task, even if some of its components
have failed. A communications network including imperfect processors and links is

an example of such a system. A major issue for such a network is its reliability.

In this chapter, we first give an overview of network reliability. We introduce some
network models and performance measures. We analyze network reliability in terms
of a figure-of-merit, mean time to failure (MTTF), by considering a more general
class of systems, namely, fault-tolerant systems. There has been extensive previous
research on the MTTF for fault-tolerant systems [40] [10] [27] [25], but computation-
ally efficient methods for computing, and asymptotic analysis for the MTTF are not

readily available.

We then develop several techniques for computing and estimating the MTTF, which
we have obtained by combining techniques from linear systems, Markov processes, di-
rected weighted graphs, and signal-flow-graphs. We develop two techniques, namely
the all-path-weight approach and the signal-flow-graph approach, for computing the
MTTF exactly. In real systems, the repair rate is usually much larger than failure
rate, and the safety factor, defined as the ratio of the repair rate to the failure rate, is
therefore a large number. We obtain good approximations for the MTTT for systems
with large safety factors. We finally apply the techniques developed to analyze com-

munication networks whose edges are subject to failure but whose vertices are not,



9
and for which the criterion for network failure is network disconnection. We derive a
simple asymptotic formula for computing MTTF of the network, and show that the
Harary graphs [20], which have the largest edge connectivity for a given number of

edges and nodes, are asymptotically optimal networks, with respect to MTTF.

2.2 Overview of Network Reliability

Reliability theory is the study of the overall performance of a system comprising of
failure-prone components, i.e., the components of the system are not perfect in oper-
ation, but their failure is assumed to be governed by certain probabilistic statistics.
Reliability analysis can be applied to a variety of practical systems, ranging from
large-scale telecommunication, transportation, and mechanical systems, to the mi-

croelectronic scale of integrated circuits.

We are mainly concerned here with network reliability, in which the underlying sys-
tem arises from the interconnection of various components (e.g., computers) in the
form of a network, or graph. For example, the nodes of a computer communication
network might represent the locations of computers and its edges might represent
existing communication links between computers. In realistic situations, the compo-
nents of a network, its nodes and edges or both, are subject to failure. At any instant,
each component is either working or failed, and as a result, the network itself is also
either working or failed. In the computer communication example, working might
mean that a computer is able to communicate over operational links of the network

with another computer.

2.2.1 Network Models

We use a simple model for topology of computer networks, the probabilistic graph. A
probabilistic graph G = (V, E) is a set V' of n nodes, together with a collection E of m
edges. The graph incorporates information about the network’s topology, but does not

include information about component failure. A probabilistic graph has, in addition,
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a probability of operation associated with each component (node and Jor edge). There
are two major probabilistic laws of component failure considered in this paper. Firstly,
we allow failed components to be repaired. Specifically, each component of the system
is subject to failure, and repair, according to independent exponential distributions.
This model is analyzed in this chapter through considering more general systems,
called fault-tolerant systems. Secondly, each component is subject to failure with a
certain probability, and no repair is allowed for failed components. This model is

analyzed in next chapter via the celebrated random graph approach.

2.2.2 Performance Measures

Reliability is concerned with the ability of a network to carry out a desired operation.
An important first step is to identify network objectives and the performance measures
associated with the objectives. A common objective is communication from a source
node s to a destination node t. For a probabilistic graph G and specified nodes s
and t, we define a measure, the two-terminal reliability to be the probability that
there exists at least one operational path from s to ¢. Another common objective in
networks is communication from any node to any other node, or overall connectivity.
We define another measure, the all-terminal reliability, or simply reliability, to be the
probability that for any pair v; and ve of nodes there is an operational path from
v1 to v9. In other words, this is the probability that the graph contains at least a
spanning tree. For a network in which each edge is subject to failure, and repair,
according to independent exponential distributions, and in which the objective is to
maintain overall connectivity, a figure-of-merit, called the mean time to failure, ie.,
the expected time it takes for the system to migrate from perfect state to disconnected

state, is another subject of major interest.

2.3 Fault-Tolerant Systems and MTTF

We consider a large system composed of many interdependent components, in which

each component can be in one of two states: working or failed. The system is capable
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of performing a large and complex task, even if some of its components have failed, i.e.,
it is a fault-tolerant system (FTS). The fault-tolerant systems considered here allow
the failed components to be repaired. Specifically, every component of the system
is subject to failure, and repair, according to independent exponential distributions.
When the configuration of failure components is such that the system can no longer

operate properly, we say that the system is in the failure state.

A fault tolerant system can be modeled by a continuous-time, finite-state Markov
chain. Assume the system starts in a state in which no component has failed. The
time until the system first enters the failure state is called the time to failure (TTF),
a random variable. An important measure of the reliability of a fault tolerant system

is the mean time to failure (MTTF).

2.3.1 Markov Process Models

In a fault-tolerant system, we assume each system component is in either one of two
states: working or failed. A component is subject to failure if it is in the working
state and repair if it is in the failure state, according to independent exponential dis-
tributions. The states of all components are statistically independent. The “atomic”
state of the system is defined to be the list of states of its components. It is frequently
possible to find equivalences among the atomic states, thereby simplifying the system
state diagram, and in many of our examples, we shall utilize the fact. In any case,
the equivalence classes must be such that if a and o’ are equivalent atomic states,
written @ = o/, and if b and b are atomic states corresponding to single component
failures in a and @', then b = &’. Such a system can be modeled by a Markov chain.

The states of the Markov chain are of the three kinds :

(1) The pristine state 1, in which no components of the system are failed.
(2) The failure state F, in which the system is failed, because of component failures.
(3) The warning states, in which there are some component failures but the system

is still operating.
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A Markov chain corresponding to the state diagram can be specified by the transi-
tion rates between states. The transition rate from a state to another state which
corresponds to a failure (repair) event is called the uplink (downlink) rate, respec-
tively, in the state transition diagram. Note that if there exists a positive uplink rate
between two states, there must also exist a positive downlink rate, and vice versa.
Our problem is to evaluate how long a system can avoid the failure state F' if it is
initially in the pristine state; we allow no transitions from failure state £’ to any other
state, which makes the failure state F' an absorbing state. Furthermore, there can

be no transition from a state to itself, i.e., the Markov chain for the system has no

self-loops.

Consider a Markov chain for a fault-tolerant system with a state transition rate dia-
gram with pristine state 1, n — 1 warning states, numbered 2, ...,n, and failure state

F. Let us define the n x n matrix

—air Q2 Gip
21 —Q2z2 - Q2p
A= , (2.1)
Qni An2 Unn

where

transition rate from state i to state j if ¢ # j
Q5 = (22)
total flow out of state ¢ ife=7

for 1 < i,j < n. Figure 2.1 is an example of Markov chain for a fault-tolerant system
with three warning states. Note that the matrix A is the transition rate matrix for
the Markov chain ezcluding the failure (absorbing) state F, which is called the tran-
sition rate matriz for the fault-tolerant system. Our first task is to show that A is

nonsingular. We begin with a fact:



Figure 2.1: A fault-tolerant system with three warning states.

Fact For the transition rate matriz A in an FTS,
ag > ) aj (2:3)
J#
for 1 < i < n. Furthermore, there exists at least one 1, 1 < i < n, such that

Qi > D ji Qi -
Proof. Since, by definition, as; is the total flow out of state 4, we have

= 34 Qi if state ¢ does not connect to the failure state F' 2.4)
(0773 .
> >4 Oij if state 7 connects to the failure state F'.

Since there is at least one state in the diagram which connects to the failure state,

there is at least one inequality that does not hold for equality. W
To prove the non-singularity of A, we need the following definitions [21].

Definition 1. Let M, = (my;) for 1 < 4,5 < n. The matrix M, is said to be

diagonally dominant if

Ima| > |mij) (2.5)
J#

for all 1 < i <mn. It is said to be strictly diagonally dominant if no equality holds in

(2.5).
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Definition 2. The directed graph of the matrix M, denoted by I'(M,,), is the directed
graph on n nodes v1,. .., U, such that there is a directed edge in T'(M,,) from v; to v;

if and only if m;; # 0.

A directed graph T is strongly connected if between every pair of distinct nodes v;, v;
in T there is a directed path of edges from v; to v;. Note that our assumptions about
the system state diagram imply that it is strongly connected, since any non-failure
state can be reached from the pristine state and vice versa. For diagonally dominant

matrices, we have the following theorem [21]:

Theorem 2.1 (Gersgorin’s Theorem) Let M, = (my;) for 1 <4,j <n. If M, is
strictly diagonally dominant, then M, is invertible; if M, is diagonally dominant and

I'(M,) is strongly connected, then M, is invertible. B

By (2.3), the matrix A for a system is diagonally dominant, though possibly not
strictly diagonally dominant. The directed graph T'(A) is the transition rate diagram
excluding the failure state F', which is strongly connected. Therefore, by Gersgorin’s

Theorem, we have proved the following theorem:

Theorem 2.2 The transition rate matriz A for an FTS is nonsingular. B

2.3.2 Fundamental Theorems on MTTF

Consider a Markov chain for an FTS with n — 1 warning states. State 1 is the pristine

state, states 2,...,n are warning states. Let us define

Q(t) = (Q1(t), @2(2), ..., Qu(D)), (2.6)

where Q;(t) is the probability that the system is in state ¢ at time ¢, and has not
yet been in the failure state. Then the state equation describing the Markov chain

(excluding the failure state F) is [40]

d
Za() = QA 27)
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The MTTF is defined as the average length of time it takes a system to migrate from
the pristine state 1 to the failure state F. Therefore, by a known formula [40],

MTTF = [7(Qult) +Qalt) +-- + Qu(t)dt

-y

=1

. (2.8)

3

N

where

n:Aw@mﬁ (2.9)

for 1 <i<mn. Let T = (T4, Ty,...,T,). Integrating equations (2.7) from ¢ = 0 to

t = oo, we obtain

—T.A=0Q(0) = (1,0,...,0). (2.10)

By Theorem 2.2, it follows the linear system (2.10) has a unigue solution, simply,

Q(0) - (—A)~!. Hence we have proved the following fundamental theorem:

Theorem 2.3 For an FTS with an n X n transition rate matriz A, the MTTF for

the system is given by the formula

MTTF = > T;, (2.11)

i=1
where T = (Ty, T, ..., Ty) is the unique solution for the linear system (2.11). W

Theorem 2.3 says that the system MTTF is the sum of the entries in the first row
of the matrix (—A)~!. The formula in Theorem 2.3 was developed in [10], but the
non-singularity of matrix A was not shown. Furthermore, by Cramer’s rule 2], we

have the following corollary:

Corollary 2.1 For an FTS with an n X n transition rate matriz A, the MTTF for

the system is given by the formula

1 & .
MTTF = —— Y (—1)"det 4; .
detA;( Yedet A;, (2.12)
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where A;, 1 < i < n, denotes the matriz obtained by removing the first column and

the ith row of A. B

Now we define matrix B as follows:

_1 ai2 e in
ari arl
a2 _1 ... @n
B=| o az2 (2.13)
ani Gm2 ... _]
Ann Ann

Note that if the diagonal elements of B are all zeros, it is the transition probability

matrix for the Markov chain excluding the failure state F. We call B the pseudo-

transition probability matrix for the FTS. Consider the following linear system
~T7'-B=(1,0,...,0). (2.14)

N e’
n

Tt can be easily shown that the solution 7" = (T7,...,T},) for the linear system (2.14)
and the solution T' = (T, ..., Ty) for the lincar system (2.10) are related as follows:

Ti’ = a; - T; (2.15)

for i = 1,...,n. Hence we have an alternate way to compute the MTTF, which we

will exploit in the next section.

Corollary 2.2 For an FTS with an n x n pseudo-transition probability matriz B,

the MTTF for the system is given by the formula

MTTF = > —*. (2.16)

i—1 Qi
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2.4 Techniques for Computing MTTF

The theorems in preceding section require computing the inverse of a matrix (A1 for
Theorem 2.3 and Corollary 2.1, B! for Corollary 2.2). We want to develop techniques
to calculate the MTTF without explicitly computing the inverse of a matrix. From
Corollary 2.2, the major task in computing the MTTF is to solve the linear system
(2.14). We present two approaches to get the solution 7' " for the linear system without
explicitly computing B~!. The new techniques developed also allow us to compute
an asymptotic approximation to the MTTF for very general fault-tolerant systems

under certain conditions, which will be shown in later section.

2.4.1 The All-Path-Weight Approach

Consider an edge weighted directed graph D with weight function w(-). Figure 2.1 is
an example of an edge weighted directed graph where the weights are the transition
rates. If v = ejeq... e is a path of length %, then the weight of the path is defined
by

w(y) = w(e)w(er) - wlex). (2.17)

For vertices v; and v;, denote I‘fj the set of all paths connecting v; to v; with length
k. Define
my(k) = Y w() (2.18)

veFZ
for k > 0. Then my;(k) is the sum of path weights for all paths of length & from
vertex v; to vertex v;. For k = 0, we define m;;(0) = ;. For k =1, F}j is simply the

set of all edges which directly connect v; to v;.

For an edge weighted directed graph D with n vertices, define an n X n matrix

M = (m;;), where the (7, j)th entry of M is given by

[
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where the sum is over all edges e from vertex i to vertex j. The matrix M is called

the adjacency matriz for D. We have the following fundamental theorem [43]:

Theorem 2.4 The (i, 5)th entry of M* is equal to my;(k) for any non-negative integer
k. B

Now back to our problem. For an FTS, consider the state transition probability
diagram (excluding the failure state F'), with the pseudo-transition probability ma-
trix B defined in (2.13), as an edge weighted directed graph (the weights are the

corresponding transition probabilities). Define
C=B+1, (2.20)

where I is the identity matrix. Then

O ai2 P Qin
a1l all
agt () ... G
c=| az2 (2.21)
anil an2 R O
ann Ann

Note that C is simply the transition probability matrix for the Markov chain ezcluding
the failure state F for the FTS. C is also the adjacency matrix M when the state
transition probability diagram (excluding the failure state F') of the FTS is viewed
as a weighted directed graph. From (2.14) and (2.20), we have

7' =(1,0,...,0)- (I -C)"". (2.22)
| —
It follows that,
T'=(1,0,...,0)- > C*, (2.23)
e L—0

n

since (I —C)™t = 352, C*.

By Theorem 2.4, the ¢jth entry in the matrix C* is the sum of the weights of all paths
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of length k from state i to state j in the state transition probability diagram. Hence
the ijth entry in the matrix 352, C* is the sum of weights for all possible paths from
state 7 to state j. Therefore, T} is the summation of weights for all possible paths

2

from state 1 to state ;. Applying Corollary 2.2, we obtain the following theorem:

Algorithm 2.1 The MTTF for an FTS is the summation of all path weights from the

pristine state to every state, except the failure state, in the state transition probability

diagram for the system. M

2.4.2 The Signal-Flow-Graph Approach

Another way to compute 7" for the linear system (2.14) is to view the transition
probability diagram as a signal-flow-graph, which is just an edge weighted directed
graph. Each node i in the graph is identified with a signal z;. A source of a signal-
flow-graph is a node having only outgoing edges; a sinkis a node having only incoming
edges. A forward path is a path from source to sink along which no node is encountered
more than once. A loop is a closed path. For a signal-flow-graph, there is one source

and at least one sink. The node signals are related by the following equations:

for all j. If we denote the source signal by z¢ and the sink signal by z,, then Mason’s

formula [33] can be used to compute the signal transfer function G = z,/zo:

Theorem 2.5 (Mason’s Formula) Let G denote the transfer function of a signal-

flow-graph. Then
S, FEAR

G A, (2.25)

where

(1) F%) = weight of the kth forward path from source to sink,

(2) A=1—%0 P+ 3Xm P2 — X0 Prs+ -,

where P, is the weight product of the mth possible combination of r non-touching

loops in the graph. /A is called the determinant of the signal-flow-graph, and
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(3) A®) = the value of A for the part of the graph not touching the kth forward path
(i.e., removing the kth forward path from the graph). A

In fact, Mason’s formula can be used to compute the ratio of signals from any node
(not necessarily the sink) to the source. For example, if we want to compute /g
for some node i, we can attach an artificial node ¢, and make an edge from node
i to node i’ with edge weight 1. Then node ¢ becomes a sink in the signal flow
graph, and z; = zy. Note that this does not change any quantity in Mason's formula.
Hence when we apply Mason’s formula to compute z; /o, we actually obtain z;/xo.
Therefore, every node can be considered as a sink in a signal-flow-graph, and the

transfer function from this node to any other node can be computed by Mason’s

formula.

Let X = (%1,Z2,...,%,). By (2.24), it is easy to check that a signal-flow-graph

without self-loops is equivalent to the following linear system:

X W =(0,0,...,0), (2.26)

where W = (w(i5)) is the transition weight matrix of the graph in which w(ir) = —1
for all 5. Note that the matrix W is exactly the pseudo transition probability matrix
if the signal-flow-graph is viewed as a transition probability diagram. Therefore,

Mason’s formula can be used to compute the ratio z;/z; in a linear system (2.26).

For a system with n — 1 warning states, let us add an artificial state 0 and make
an edge, with edge weight 1, from this state 0 to the pristine state 1 in the state
transition probability diagram for the system. The resulting diagram is called the
modified state transition probability diagram for the system. If a modified transition
probability diagram is viewed as a signal-flow-graph, with z, = 1, then the signal-

flow-graph corresponds to the linear system:

X' W' =(1,0,0,...,0), (2.27)

n
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where X' = (1,21, 29,...,2,) and
1 0
W' = : (2.28)
0w
The above linear system is equivalent to
-T"-B=(1,0,0,...,0), (2.29)
A
where 77 = X' and
-1 0
B =-W'= : (2.30)
0o W

The matrix B’ is exactly the pseudo transition probability matrix for the modified
state transition probability diagram, i.e., the linear system (2.29) is the same as the
linear system (2.14) that we want to solve. Hence, the transfer functions T are
the same 7! as in Corollary 2.2 which we need to compute. Since zg = 1, if we
apply Mason’s formula to compute the transfer function T} = 2,1 <1 < n, for the

modified state transition probability diagram, we obtain the value T;. Therefore, we

have showed the following algorithm:

Algorithm 2.2 The MTTF for an FTS with n — 1 warning states can be computed

by

MTTF = -, (2.31)

i—1 Gii
where T!, 1 < i < n, is the signal transfer function (x;/x) from the sink i (node i) to
the source 0 (the artificial state) in the modified state transition probability diagram

(considered as a signal-flow-graph), which furthermore can be computed by Mason’s

formula:
R AR
7y = 2o S0 e (2.32)

where the sum is over all forward paths from the artificial state (node) 0 to the state

(node) i, Fo(f) is the weight of the kth such forward path, A is the determinant of the
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signal-flow-graph (node 0 as the source and node i as the sink), and Agf) is the value

of A for the part of graph by removing the kth forward path (from node 0 to node i).

Note that the determinant A can be computed by
k) A (K
A=Y FRAR, (2.33)
k

where the sum is over all forward paths from the artificial state O to the failure state
F, Fé? is the weight of the kth such forward path, and Agg is the value of A of the
signal-flow-graph (node 0 as the source and node F as the sink) for the part of graph
by removing the kth forward path (from node 0 to node F').

2.4.3 Examples

We apply the theorems developed in the preceding section to compute the MTTF for

two typical fault-tolerant systems.

e Parallel-Type State Systems

Consider a fault-tolerant system which has the ring topology of n nodes and n edges.
Assume edge i in the ring has failure rate ); and repair rate y;, and if we define
state 7 to be the state in which the ith edge, and no other, has failed and define
network failure as disconnection, then the ring can be illustrated by a fault-tolerant
system with a parallel-type state transition diagram with n warning states, as shown

in Figure 2.2. The transition rate matrix for such a system is

—21 )\1 )\2 R /\n
1 — 2 0 e 0

A=1| g 0 -z -~ 0 , (2.34)

be 00 ez
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(Fa11ure State)

n=1 (Pnstme State)

A Ring Topology FTS Transition Rate Diagram
Figure 2.2: The ring topology and its parallel-type state transition diagram.

where
™A 1=1
2 = 21 (2.35)
pic1+ N 2<i<n+1,
and
Air= Y. N (2.36)
i1

for 2 < i < n+ 1. We have the following theorem for computing the MTTE:

Theorem 2.6 For a parallel-type FTS with n warning states with the state rate tran-
sition diagram shown in Figure 2.2, the MTTF of the system is given by the formula

1+30
MTTF = ———— s : (2.37)

A
=1 >\z+1Fz )

where z; and \ip are defined in (2.85) and (2.36).
Proof. We give two proofs for the theorem.
Proof 1: Apply Corollary 2.1.

To calculate the determinant of the matrix A, we multiply the jth column, 2 < j <
n+1, by f“z—“l and then add it to the first column to make the lower entries of the
J

matrix zero. Then the determinant of the matrix A is the product of the diagonal

(Warning States}
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entries, i.e.,
n+1 i1 n+1
det A = —21 + Z /\j 1 I ) H(ij)
j=2 Zj j=2
n+1 ) n—i—l

= nHZ*Z/\J

Define 4;, 1 <i < n + 1, the matrix obtained by removing the first column and the

ith row of A. We have

n—+1 n+1
det Al = H(_Zi) - (—l)n H Zi.
i=2 i=2

Note that the (i — 1)th column in 4;, 2 < i <n+1, is A;_; followed with all zeros.

Expanding at (¢ — 1)th column in A;, we get

detAZ- = (—1)(i_1)+1Ai_1' H (—Z])
J#LgF

_ (_1)i+n71/\i41 H Zj

AL

for 2 < i < n+ 1. Hence, by Corollary 2.1, it follows that

1 n+1 )
MTTF = —1)* det A;
Jor A 2 (1) det A
_ (DRI A+ X (1) '( )”"‘1/\1 U Tz %
(=) Hl(z — SN )Hn 2 Zi
_ TS 2 + S0y )\z 1H ;éz];él Zj
(21 ZnH )H? 2 i

H;n 2 Zz En+ >\z 1 H];éz j#L Zj
( (1_Z+1) )Hn2zl

14y, 2 =

Zz lAl—f—lF

Zi41

Proof 2: Apply the signal-flow-graph technique (Algorithm 2.2).
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There are n loops in the modified state transition probability diagram for the system,

with the loop weights:

21 %+l
for 1 < i < n. These loops all touch each other. Hence, the determinant of the signal

flow graph is

A:1—Zﬁ- Hi |

o1 A1 Rt

Foi =

and

for 1 < i <n+ 1. Hence, by (2.31) and (2.32),

il Ry A
MTTF = Z_ u
zlzZ

_+Zn+211_ Ai—1

21

1—57 AL B

=1 21 21
1+ 23y 2
AT I
1437

As
Zi:1 /\z+1FZ i1

zlz_H

As a special case, consider a system with ring topology as shown in Figure 2.2 such
that all edge failure and repair rate are equal, i.e., A; = X and p; = p, then z; =

g+ (n — 1)A. By Theorem 2.6, we obtain

1,1 1 w/A
MTTF = —(= . .
1 )\(n+n—1+n(n—1)) (2.:38)
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Figure 2.3: The chain state transition diagram.

e Chain-Type State Systems

Consider a fault-tolerant system which can be modeled by a transition state diagram
with n warning states arranged in a chain, as shown in Figure 2.3. Such an FTS is

called a chain-type FTS. The transition rate matrix for such a system can be written

as
—21  Ap o --- 0 0 0
1 —2Z9 Ag s 0 0 0
0 —Zq - 0 0 0
a=| O moE T (2:39)
0 0 Hn—1 —2Zn >\n
0 0 O Hn —Zn+1
where
A1 1=1
7 = (2.40)

fic1+ A 2<e<n+1.
Note that the matrix A is a tridiagonal matriz with the property that a;; = 0 if

li — 7] > 1.
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Applying Corollary 2.1, we can prove the following theorem:

Theorem 2.7 For a chain-type FTS with n warning states with the state rate tran-

sition diagram shown in Figure 2.3, the MTTF of the system is given by the formula

n+l

MTTF = 3 ‘;— (2.41)
i=1 "M
where the w; satisfy the following recursive relation:
1 1=1

1+ picwir 2<i1<n+1,

wherepi:ﬁ—zforlgignJrl.

Proof. We prove the theorem by applying Corollary 2.1. To compute the determinant
of the matrix A in Corollary 2.1, we transfer the matrix A into an upper diagonal
matrix by row and column operations. In particular, we add the 1st column of A
to the 2nd column, then add the 2nd column to the 3rd column, ..., finally add the
nth column to the (n + 1)th column, which makes the upper diagonal entries of the

matrix all zeros. Hence,
n—+1

det A = (—1)n+121)\2 R An+1 = (_1)n+1 H )‘z
i=1

Now we want to compute det A; for 1 < i < n + 1. Recall that A; is the matrix ob-
tained from A by removing the first column and the ith row. Applying row operations

to make the upper diagonal entries of the matrix A; all zeros, we obtain

det, An+1 = )\1 T )\n

I
—
>

and
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for 1 <17 < n, where Ay = 1 and z] satisfy

Zi+1

Now let us define a function

(Me<i1 M)(=200)(=2i2) - (=25) 1<i<jsn+l

Y (i, j)

AL Ay

for 1 <i<j<n+ 1. Hence,

the following recursive relation:

j=i+1
i+l1<j<n+1.

T (2.43)
i= ]

det Ai = Y(Z, n + 1)

for 1 <i<mn+ 1. Now we need to have the following lemma:

Lemma 1 The function Y (4, 7) defined in (2.43) can be expressed as

Viid) = (TG

7 /\i+1

Pifi+1
Ai+2

. Ly PPy
Aj

where p; = & for 1 <i<n and p; =0 fori > j.

The lemma can be proved by mathematical induction. See appendix A for the proof.

From the lemma, it follows that

det4; = Y(i,n+1)
L p | pips piPig1 P
= (=1t A ) (— + 2 4 mf Ly Pl T ey
Y § EL WD WD PR
Now applying Corollary 2.1, we obtain
1 n+1 ]
MTTF = (—1)*det A,

det A =
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n+1

1 pi | PiPit1 PiPit+1 """ Pn
;(/\i Aiy1 Aige Ant1 )
n+1l Wi
priilt

where

w; =14+ pic1+picaipi—2t+ -+ pi1- - p1

for 2 < i < n+ 1. Finally, it is easy to check that w; satisfy the following recursive

relation:
1 1=1
W; =
1+ piawizr 2<i<n+1,

which completes the proof. Il
As a special case, let \; = A\, u; = p, then p; = p = &. Hence, w; = 11—__% By
Theorem 2.7, the result is

1 n+l p(l—prth

MTTF = —
PN

). (2.44)

Note that when p — oo, MTTF ~ p"/A.

All modern computers have memories built from VLSI RAM chips. A chip “failure”
means any situation in which one or more of the bits written on the chip cannot be
reliably read. These failures are traditionally classified as either hard failures, which
means that the affected memory cells are permanently damaged, or soft failures, which
means that the damage is only temporary. Almost all large computer memories are
protected by error-correcting codes {7] and hence computer memories can be viewed
as fault-tolerant systems. The result of Theorem 2.7 can be applied to evaluate the
reliability of computer memories with soft-error scrubbing and protected with error-

correcting codes.
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2.5 Asymptotic Analysis of MTTF

Consider an FTS in which the repair rate is much larger than failure rate. This is
the case for real situation. We want to evaluate certain asymptotic behavior of the
MTTF for an FTS under this condition. Assume the failure rate from state i to state

4 is A;; and the repair rate from state j to state 7 is u;;, and furthermore, assume

/\’ij = CYij/\

(2.45)
pii = Btk
where a;; and (3;; are constants, while A and p are variables. Define
W
== 2.46
p A, ( )

which is called the safety factor for the FTS. For a real system, normally p is much
larger than 1. We want to see how the MTTF behaves as p — co. Let us consider
the modified state transition probability diagram (as introduced in section 2.3.2) of
the FTS. The edge weights (state transition probabilities) of the state diagram for

the F'TS are given by

1 i=0j=1

w(ij) =4 22 jis a failure transition (2.47)

Qig

Byl i ig a repair transition,

(2213

where a;; is the sum of total rates out of state ¢. It is easy to check that

a; = O(N) i=1 (2.48)
O(\) + O(p) otherwise.
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The transition probability diagram can be viewed as a signal-flow-graph (see Section

2.4.2). Hence, for any loop L in the graph, if |L] is the length of loop L, then we have

O(2) if |L| > 2, or |L| =2 and L does not touch state 1
w(L) = a (2.49)
O()\) if |L| =2 and L touches state 1.

Since any forward path in the graph includes state 1, any loop weight in computing
Ag; (the determinant for the part of graph by removing a forward path from node 0
to node 1) by Mason’s formula, ¢ # 1, will be O(%) Hence,

A

1
for i # 1. Furthermore, it is easy to check that the weight of any forward path from
node 0 to node 7 is as follows:

1 1=1
Fos = ¢ O()\) state i is adjacent to state 1 (2.51)

O(2) otherwise.
n

Denote Féf) the kth forward path from node 0 to node 7. Then, by (2.31) and (2.32)
in Algorithm 2.2, and by (2.50), we can compute

P F(@Ag;)

MTITF = Y
i=1 Qi
1 1 k) A (k 1 k) A (K 1
- LS Ry« LS A o L EYA)
ail A a922 k Ann A
1+0(2)
Y
A (2.52)

By (2.33) and (2.50),

A
A=SFEAR = F{a+ O(2): (2.53)
k k
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where the sum is over all forward paths from state 0 to state F', and Fé? is the weight
of the kth such forward path. Note that a;; is the total rate out of the pristine state
1, and Fé? = Fl(’}) because the weight from the artificial state 0 to the pristine state 1

is one. Therefore, we have proved the following fundamental theorem on asymptotic

MTTEF:

Theorem 2.8 For an FTS with the state transition rate diagram such that the rates

are defined in (2.45) and the safety factor p defined in (2.46), when p — oo,

14+ 03
MTTF = = G)

. , 2.54
R v, FR(1+0() (259

where the sum is over all forward paths from the pristine state 1 to the failure state
F in the corresponding state transition probability diagram of the FTS, R s the total
rate out of the pristine state 1, and Fl(’}) is the k-th forward path weight. B

It is easy to check that the weight of a long forward path is smaller than the weight
of a short forward path at least by a scale of O(1/p) in the state transition prob-
ability diagram. When p is sufficiently large, the shortest forward paths play the
dominant role in computing MTTF in Theorem 2.8. The following corollary follows

immediately:

Corollary 2.3 For an FTS with the state transition rate diagram such that the rates
are defined in (2.45) and the safety factor p defined in (2.46), when p — oo,
1

MTTF = — - - : (2.55)
R v FE1+0(3)

where the sum is over all shortest forward paths from the pristine state 1 to the failure
state F in the corresponding state transition probability diagram of the FTS, R is the
total rate out of the pristine state 1, and Fl(;) is the k*th shortest forward path weight.
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2.6 Network Reliability and Optimal Networks

Now we study the reliability for connected communication networks which are sub-
ject to edge failure, and repair, according to exponential distributions. We apply
the asymptotic formulas derived in the preceding section to analyze the MTTF for
communication networks. The following theorem gives an asymptotic formula for the
MTTF for any such network in terms of the edge connectivity and the number of
minimum cut-sets. A cut-set in a graph G is a set of edges, which, when removed

from the graph, disconnects the graph, and the edge connectivity of G is the smallest

cardinality of any cut-set.

Theorem 2.9 For a network which is represented by a graph with edge connectivity

k, and which has Cumin cut-sets of size k, if the failure rate for every edge is A and

repair rate u, then as p = pu/X — 0o,

MTTF = = - 2 + 0(p"2). (2.56)

Proof. Assume there are m edges in the graph G, among which v edges are contained
in at least one minimum cut set. These v edges are called cut-set edges. We enumerate
the edges of the graph in such a way that the v cut-set edges are numbered as
€o, €1, ..., e,—1. Define the Cpi, minimum cut-sets of the network by 51, .5s,. .., Scp. -

Then
|Si| = & (2.57)

for 1 < i < Cpin. Assume the cut-set edge e;, 0 < ¢ < v — 1, is contained in m;

minimum cut-sets 7}, ...,7;™. Let
T, = {T},..., T}, (2.58)

Then
Cmin

v—1
=0

i=1



34
There are 2™ atomic states for the system, but we can simplify the system state
diagram by defining equivalence classes of atomic states. Let us define the system
states and the state transition diagram of the network in the following manner:
(i) the pristine state 1 represents no edge failure in the network.
(ii) the failure state F' represents all subgraphs which are disconnected.
(iii) state ¢, 2 < ¢ < K — 1, represents i — 1 edge failures in the network, so that the

failure rate from state i to state i + 1 (uplink) is
Nigp1 = (m—i+1)- A (2.60)
for 1 < i < k — 2, and the repair rate from state i + 1 to state ¢ (downlink) is
Wiv1i =15+ [ (2.61)

for1<i<skx-—1.

(iv) state k +14, 0 < i < v — 1, represents those subgraphs obtained by removing
(k — 1) cut-set edges from each T?,1 < j < m; and only edge e; is remained in each
Tij . Clearly, every state k + 7 actually represents m; connected subgraphs which all
contain the edge e;, and further removing the edge e; will result in the m; subgraphs

disconnected. Hence, the failure rate from state x + ¢ to the failure state F' is
An+i,F = Mm; - A (262)

for 0 <i<wv-—1 (v)states k +v,k+v+1,..., N, for certain integer N, represent
all those subgraphs obtained by removing (x — 1) edges from G such that’removing
any one more edge will not disconnect the graph. The state transition rate diagram

is illustrated in Figure 2.4.

Clearly, among the states 1,...,k —1,k,k+1,...,k+v—1,x+v, .. N, only the v
states K, k+1,...,k+v—1 are directly connected to the failure state F. Now we need

to compute the failure rate Ax_1 .4; and the repair rate fieysx-1, 0 <2 <v —1. Let



¢st warning state

Figure 2.4: The state diagram for the proof of Theorem 2.9.

G,. 1 denote the set of all subgraphs with x—2 edges removed. Clearly |G.-1| = (:_12).

Hence, the state x — 1 represents the set G,_1, and

and

foro<i<v-—1.

)\nfl,n—i—i

Hrtin—1

> > Printhig

J1€Gr—1 J2€T;

m; - (:‘i— ].)/\

()

Z Z Pr{jl}/ujl,jz

J1€T; jo€G -1
m; - (k= 1)p

(2.63)

(2.64)
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There exist v shortest paths Pl(}z ={1,....(k=1),(k+1),F},0<e<v—1,of
length x from the pristine state 1 to the failure state F'. Note that

m- A 1=1
Qi = ' (2.65)

The path weight for the shortest path Pl(}) ={0,1,...,(k—=1), (k+7), F},0 <i <v—1,

in the corresponding state transition probability diagram is

—2
1 )\"1 An—lni )\niF
Fo(j«z _ (H J(]jr))' (r—1)(k+3) (.Jr) ‘
j=1 %j A(r—1)(r—1)  Qn+i)(k+i)
my-(k—1)A
N e S Ty S oy R
mx 03 Tx Bt o) (5 D+ 00) me (s— U+ O()
1 m;
= —- . 2.66
m o1+ O(p?) (2.66)
Applying Corollary 2.3 and (2.59), we obtain
1 1+0(+
MTTF = — ———0 (p) :
a3y Fop(1+0(3))
1 14+ 0(;)
omA LY IO
_ 1 T 400"
A Yo ™
1 pn—l o
~ . O(p"
)\ K/Cmin + (,0 )7

which completes the proof of the theorem. W

As an example, let us consider a network which is represented by a complete graph
with 4 vertices. Then x = 3 and Cpyn = 4. Assume every edge has failure rate A
and repair rate p. There are 25 = 64 atomic states for this system. If we let each
warning state represent a set of isomorphic induced connected subgraphs (which is
an equivalence class), and let the failure state F' represent the set of all induced

disconnected subgraphs, then we obtain a state diagram including the pristine state
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(state 1) , five warning states (states 2, 3, 4, 5, and 6), and the failure state F, as
shown in Figure 2.5. In the figure, the pristine state 1 indicates that all the six edges
of the network are all working; state 2 represents a set of six isomorphic subgraphs,
each of which is obtained by removing one edge from the network; state 3 represents a
set of four isomorphic subgraphs, each of which is obtained by removing one edge from
a subgraph represented by state 2; and so on. Applying Theorem 2.9, we immediately

have the asymptotic formula

MTTF = < - 2— 1 0(* %) = < - &+ 0(p). (2.67)

We can check this result by computing the exact MTTF by Corollary 2.1. The state

transition rate matrix (excluding the failure state F') is given by

—6 ) 0 0 0 0
g —(5A+p) A A\ 0 0
] 0 20 —(4X\ +2p) 0 ) 0
0 20 0 —(4X + 2p) 2 A
0 0 " 2 —(3X + 3p) 0
0 0 0 3 0 —(3X\ + 31)

On the other hand, we can apply Corollary 2.1 to compute the MTTF, After

considerable computation, we obtain

636 + 1211p + 859p° + 299p° + 61p* +6p° 1( 1 5 133 (1))

1
MTTF = < 1. 5 18 ,
) 720 + 1144p + 552p2 + 723 NP YLART

127 24" " 108
(2.68)

which agrees to the result from (2.67) that was obtained much easier from Theorem

2.9.

From Theorem 2.9, we can see that the MTTF for a network is, asymptotically,
determined by the edge connectivity x and the number of minimum cut-sets Cpin of

the network with large safety factor p. The MTTF increases as x increases and Chin
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6 H

Figure 2.5: The state diagram for the complete graph with four nodes.

decreases, which agrees with intuition. Since the MTTF increases exponentially as
k increases, we see that the most important determiner of the reliability is the edge

connectivity of the network.

A regular graph is one for which each node has the same degree, i.e., the same number
of edges incident to the node. For a graph with a given number of nodes v and edges e,
Harary [20] showed that the maximum edge connectivity is Kmaz = [2”—6} whene > v—1,
and 0 when e < v — 1. Harary gave a construction of regular graphs with degree [%],
now called Harary graphs, which achieve the maximum edge connectivity. A Harary
graph H(n,r) is one with n vertices and degree r. Figure 2.6 is an example of a two
non-isomorphic Harary graphs H(9,4). To check the two graphs are non-isomorphic,
one only need to check that any vertex in the left graph is contained in three triangles
of the graph, while any vertex in the right graph is contained in two triangles of the
graph.
By Theorem 2.9, the following corollary follows:
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Figure 2.6: Two non-isomorphic Harary graphs H(9,4).

Corollary 2.4 The asymptotic MTTF for a network with v nodes and e edges, such
that the failure rate for every edge is X, repair rate ji, and the safety factor p = /A,
is bounded by the following formula:

2e7_
_p[ -1

[z_ve]v +0(p¥12), (2.69)

MTTF <

>| =

where equality is achicved asymptotically if the network is a Harary graph. W

2.7 Concluding Remarks

In this chapter, we studied network reliability in terms of the MTTF for fault-tolerant
systems with exponential rates of component failure and repair. We have recast the
problem as a linear system problem, and proved that the linear system has unique
solution. We have developed two systematic approaches, the all-path-weight ap-
proach and the signal-flow-graph approach, to solve the linear system and compute
the MTTF without explicitly computing the inverse of a matrix. The significance of
the two approaches developed is not only to provide new techniques for computing
the MTTF for fault tolerant systems, but also to provide insight. The techniques de-
veloped resulted in a simple asymptotic formula for estimating the MTTF when the
safety factor is large, which is usually the case for real systems. Finally, we studied

communication networks with link failure and repair, we derived a simple asymptotic
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formula for computing the MTTF for such networks, and showed the Harary graph
networks, which have the largest edge connectivity for the given number of links and

nodes, are asymptotically the optimal networks in terms of the MTTF.
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Chapter 3 Random Graphs and
Reliability Polynomials

3.1 Introduction

The theory of random graphs was founded by Erdds and Renyi [16] after Erdds had
discovered that probabilistic methods were often useful in tackling extremal problems
in graph theory. Since then, random graphs have been investigated extensively [11].
In the set of all possible graphs with a given number of vertices, there are two natural
ways of estimating the proportion if graphs have a certain property. One may ob-
tain exact formulas using combinatorial enumeration. This approach is deterministic.
The other approach has little connection with enumeration. One is not interested in
(or it is too difficult to find) exact formulas but rather in approximating a variety
of exact values by appropriate probability distributions and using probabilistic ideas,
whenever possible. As shown by Erdos and Renyi [16], this probabilistic approach is

often more powerful than the deterministic one.

A communication network consists of nodes and edges. We assume edges, but not
nodes, are subject to failure, and no repair is allowed. We are interested in the ability
of the network to carry out a desired network objective, e.g., the connectedness of
the network. Assume each edge operates independently with probability p, or fails
with probability 1 — p (p = p, is usually a function of n, the number of nodes of the
network). Then the probability that the network is connected can be expressed by a
polynomial in p, which is called the reliability polynomial of the network. It has been
shown [5] that the calculation of reliability polynomials is one of the hardest compu-
tational problems, in fact, it is #P-complete as explained in Section 3.2.3. Hence,

it is very unlikely there exists a good algorithm which computes general reliability
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polynomials effectively.

In this chapter, we study reliability polynomials for a special type of networks, regular
graph networks, using the approach of random graph theory. We will investigate a
special class of random graphs, i.e., regular random graphs, which is much less studied
in the literature of random graph theory. We analyze the evolution (as the number of
nodes n of a graph increases) of the class of regular random graphs and prove a series
of theorems regarding to reliability polynomials of networks based on the regular ran-
dom graphs. We will show that the expected value of the number of isolated vertices
plays a crucial role in determining the connectedness of the regular random graphs.
We will also show an interesting phenomenon, called transition phenomenon, when a
regular random graph evolutes, i.e., the number of vertices increases, and when edge
probability p increases from 0 to 1, the reliability polynomial of the graph will jump
from 0 to 1 at certain moment, which is called phase transition. We identify the
so-called threshold function for the special type of regular random graphs. Finally we
will introduce a slotted model to easily compute the approximate MTTF for regular

graph networks from the reliability polynomials we obtain.

3.2 Reliability Polynomials

3.2.1 The Definition of Reliability Polynomials

Consider a communication network consisting of nodes and edges. Assume edges, but
not nodes, are subject to failure, and no repair is allowed. The reliability is concerned
with the ability of the network to carry out a desired network objective. The model
for this network is a probabilistic graph, G = (V, E), where V is the set of n nodes
together with a collection E of m edges. We define a state of G to be the subset
S C E, which means that all edges in S are operational and all edges in £ — S are
failed. The universe of possible states is then just the powerset 27 of E. Hence, a
network objective is specified by defining a set OP(G) C 2%, where OP(G) is the
set of states considered to be operational. We call the members of OP(G) pathsets.
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Specifying the pathsets for G defines the network objective. An alternate approach
is to employ cutsets, which is a set S C E for which £ — S is a failed state. In other
words, for a state S, either S is a pathset (operational state) or E — S is a cutset
(S is a failed state). Minimal pathsets are called minpaths and minimal cutsets are

called mincuts. Therefore, reliability is the probability of obtaining a pathset.

The objective of the network considered here is that for every pair vy, v, of nodes
in G there is an operational path from vy to vy. The reliability of a network is
then defined as the probability that for every pair of nodes in the network there is
an operational path connecting them. Under this objective, a pathset is hence a
node-induced subgraph of G which contains a spanning tree, and the reliability is the
probability that the graph G contains at least a spanning tree as a subgraph. Assume
each edge operates independently with probability p (or failed with probability 1—p).
Then a pathset with ¢ edges will occur with probability

pz(l - p)m—i,

where |E| = m. Let N; be the number of i-edge pathsets, C; be the number of i-edge
cutsets, and x be the edge connectivity of the network. Then the reliability Rel(G))

of the network G is given by

Rel(Gp) =Y Np'(1—p)™ P =1->_ Ci(1 —p)'p™ " (3.1)
i=0 i=K

Rel(G,) is a polynomial in p with degree at most m, called the reliability polynomial.
Clearly, the problem of computing reliability is equivalent to computing the sequence

of numbers Ny, ..., N, for the graph G.

3.2.2 Exact Algorithms

We briefly examine some exact algorithms for computing the network reliability

(State-Space Enumeration algorithm, and Transformations and Reductions algorithm
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[39], Inclusion-Ezclusion algorithm [13]).
e State-Space Enumeration

This algorithm simply enumerates all states, that is, all possible subgraphs, and then
determines which are pathsets, and sums the occurrence probabilities of each pathset.
The enumeration of all possible states is just the enumeration of all subsets of E. To
determine whether a state is a pathset is accomplished by checking if the pathset
provides the objective for the network. For example, in our all-terminal reliability
problem, a state (subgraph) is a pathset if it contains a spanning tree. Finally, the
probability of obtaining a pathset is the product of the operational probabilities of
edges in the pathset and the failure probabilities of edges not in the pathset.

Another way of viewing state-space enumeration comes from the binary nature of the
states assumed by each edge. Rather than fully specifying the states of all m edges
at the same time, we can instead choose a particular edge e € E and ‘condition’ on
the status of e, either perfect (p. = 1) or failed (p. = 0). Then, we obtain two new
systems, G /e in which edge e is perfect, and G — e in which e is failed. This results

in the pivotal decomposition formula:
Rel(G) = p.Rel(G/e) + (1 — p2)Rel(G —e).

This formula shows how reliability computation for a given system can be decomposed
into that for two smaller systems. By properly selecting the edges for conditioning,

sometimes, substantial computational savings can be achieved.
e Transformations and Reductions

(1) Parallel reduction: suppose that G contains b parallel edges ey, ..., e, from node
v; to vy, with operation probabilities py, ..., ps. Then it is easy to verify that we can

transfer G to a graph which replaces the b edges by an edge e (between nodes vy and
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vy ) with an operation probability

b

1— H(l — i)

i=1

This parallel reduction ensures that algorithms need only consider simple graphs.

(2) Series reduction: suppose that G contains b edges in series, with operation prob-
abilities p1,...,pp. Then it is easy to verify that we can transfer G to a graph which
replaces the b edges (and the intermediate nodes) by an edge e (between the first and

last nodes) with an operation probability

DP1P2 - Do-

e Using Minpaths: Inclusion-Exclusion

Recall that in the case of all-terminal reliability, minpaths are spanning trees. We
describe an inclusion-exclusion algorithm for generating a spanning tree. For a given
graph G = (V, E), select a “root” node s and set X = {s} initially. X is the set
of nodes already in the spanning tree; 7" is the (initially empty) set of edges in the
spanning tree so far; C C FE is the (initially C = FE) set of edges which remain as
candidates for inclusion in the spanning tree. The following is a procedure stgen to

generate a spanning tree.

stgen(X,T,C):

(i) if X =V, output T and exit.

(1i) locate an edge e = {z,y} in C withz € X andy eV — X.

(11i) if e is a cutedge in (V,TUC), set X = X U{y},T =T U{e}, and goto (i).
(iv) call stgen(X U{y}, T U{e},C — {e}).

(v) call stgen(X,T,C — {e}).

Note that the number of calls to stgen is linear in the number of spanning trees, and

each call to stgen requires time which is linear in the size of G.
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Now suppose that the minpaths Pi, ..., Ps have been listed. Let E; be the event that
all edges in minpath P; are operational. Then the reliability is just the probability

1

that at least one of the events {E;} occurs. Note that {£;} are not disjoint events.

Hence,
3

Rl(G) = (-1 Y Pr{E),
j=1 IC{1,..8}, =)
where Ej is the event that all paths P, with ¢ € I are operational. This is the standard

inclusion-exclusion expansion [13].

3.2.3 Computational Complexity

The previous section describes several algorithms for calculating network reliability.
It has been shown that all known algorithms have a running time that grows expo-
nentially with problem size. Network reliability problems are intrinsically difficult, in
fact among the most challenging of all computational problems, namely, # P-complete

problems [19].

Ideally, one would like an algorithm whose running time grows polynomially with the
“size” of the input (for our case the number of nodes and edges in the network). A
decision problem is one that asks whether a certain property holds or not for the input
instance: e.g., whether a given network contains a Hamiltonian cycle (which visits
every node exactly once). If a decision problem can be decided by an algorithm with
complexity function f(z) bounded by a polynomial in z, then the problem belongs to
the class P. A presumably broader class N P consists of those decision problems with
the property that a proposed solution can be verified, though not necessarily found,
in polynomial time. The N P-complete (or N P-hard) problems represent the most dif-
ficult problems in N P; any polynomial-time algorithm for solving one N P-complete
problem would enable all problems in the class NP to be solved in polynomial time.
However, no one has discovered a polynomial-time algorithm for any N P-complete

problem, although the list of such problems is large and expanding.

Reliability problems are not normally cast as decision (yes/no) problems, but rather
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as computations of probabilities. A more appropriate problem class is that denoted by
# P, consisting of all counting problems associated with decision problems in NP. For
example, counting the number of Hamiltonian cycles in a network falls into the class
#P. In fact, this specific problem is as hard as any problem in #P. It belongs to the
class called # P-complete (or # P-hard), characterized by the fact that a polynomial-
time solution algorithm for such a problem could be efficiently transformed into a
polynomial-time algorithm for all problems in #P. Clearly #P-complete problems
are at least as difficult as N P-complete problems, since knowing the number of solu-
tions to a decision problem easily settles the existence question. It can be shown [5]
that the calculation of the reliability is # P-complete, which indicates that it is very
unlikely that there exists a good algorithm for computing general reliability polyno-

mials.

Because of this, in the rest of the chapter, we will focus on a class of specific networks,
namely reqular graph networks, to analyze their reliability polynomials. We will study
a special class of regular random graphs using the approach of random graph theory

to compute reliability polynomials in an asymptotic sense.

3.3 The Models of Random Graphs

3.3.1 The Models and Threshold Functions

The two most frequently occurring models of random graphs are G(n, M) and G, 5 [1]
[11]. The first model consists of all graphs with vertex set V = {1,2,...,n} having
M edges, in which the graphs all have the same probability. Let N = (Z) Then
G(n, M) has (j&) elements and each element occurs with probability (ﬁ)il. Almost

always M is a function of n : M = M,,.

The second model G, consists of all graphs with vertex set V = {1,2,... ,n} in

which the edges are chosen independently and with probability p. In other words, if
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Gy is a graph with vertex set V' and it has m edges, then
Pr(Go) = p™(1 - p)" ™.

Usually, p is a function of n : p = p,. This is the probabilistic way to view Gnp-
Another equivalent dynamic way to view G, is to imagine G, as having no edges
at time 0; at each time unit a randomly chosen edge is added to G, Then G,y
evolves from empty to full. It can be shown that, in most situation, the models
G(n,M) and G,, are practically interchangeable (i.e., they are identical models),
provided M is close to pN. In most investigations, it is much easier to work in Grp

than in G(n, M). In the rest of the chapter, we will only work in the model Gn .

A special case of G, is Ggp, where H is a fixed graph. In this case, we select
the edges of H with probability p independently of each other, and the edges not
belonging to H are not selected. In fact, the graph H is called the initial graph for
building the random graph Gp,. Clearly, G, , is a random graph built on the initial

graph K™, the complete graph, i.e., Ggn , is the same as G, p.

Ggn p represents the set of all subgraphs from the complete graph K™. We call a
subset Q of G,, a property of graphs of order n if G € Q, H € Gpp and G ~ H
(G and H are isomorphic) imply that H € Q. A property () is called monotone
increasing or simply monotone if whenever G € ) and G C H then also H € Q.
Thus the properties, such as containing a certain subgraph, and the connectedness of
all vertices, are monotone. Erdds and Renyi [16] [17] discovered the important fact
that most monotone properties appear rather suddenly: for some p = p, almost no
Gnp has property @ while for ‘slightly’ larger p, almost every G, p has Q. Given a

monotone increasing property @, a function pZ is said to be a threshold function for
Q if

(i) limp—oo B = 0 implies lim, o0 Pr(G,, has Q) = 0;

(ii) limp—eo g—" = oo implies lim,, o Pr(G,,p, has @) = 1.

*
n
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|
[

1 P =Dn
Figure 3.1: The transition phenomenon of a property Q.

0

Property Q Threshold Functions pj,
Contains path of length k n~kF1/k

Is not planar 1/n

Contains a Hamiltonian path | (Inn)/n

Is connected (Inn)/n

Contains a clique on k vertices | n=2/*~1)

Table 3.1: The examples of threshold functions for certain properties

Set f(p) = fo(n) = Pr(Gn, has Q). When p}, is a threshold function, the function
f(p) jumps from zero to one around p = p,, for n large. Equivalently, in the dynamic
view, the graph G,, almost certainly does not have property () when there are
<< pn? edges, and almost certainly does have property () when there are >> pin?
edges, so G,, attains property @ at some time pin?. Figure 3.1 illustrates the
transition phenomenon. Table 3.1 shows some examples of threshold functions for
certain properties [42].

Random graphs based on the complete graph as the initial graph have been exten-
sively investigated, while random graphs based on other initial graphs are relatively
less studied. In the rest of the chapter, we will focus on studying random graphs
based on a special class of regular graph as initial graphs, and prove a series of the-

orems regarding to the reliability polynomial for the special type of regular random
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graphs.

3.3.2 Definitions and Auxiliary Theorems
We first give some definitions related to (undirected) graphs.

Definition 3.1 For a given graph G with vertez set V, an induced subgraph of S C 'V
is the subgraph which consists of all vertices of S and those edges of G, each of which
has two end vertices that belong to S. The order of a subgraph is the number of its

vertices.

Definition 3.2 A set of vertices S in a graph G is called independent if there are no

edges of G connecting any two vertices in S; otherwise, they are called dependent.

Definition 3.3 A component of a graph G is a connected subgraph; a nontrivial

component is one which has order at least two.

For later use of showing some converging distributions, we introduce the following
notations. We write p(X) for the distribution of a random variable X. Given integer-
valued random variables X and Y, the total variation distance of (X ) and p(Y') is
defined as

d(u(X), u(Y)) = sup{|P(X € A) — P(Y € A)| : AC 2}, (3.2)

where Z is the domain of all integers. Let X, X;, X,,... be non-negative integer
valued random variables. We say that the sequence of random variables X,, tends to

X in distribution, denoted as

X, % X,

if im,_,o P(X, = k) = P(X = k) for every k. Clearly, X, 4 X if and only if
d(X,,X) — 0. Define (z), = z(x — 1)--- (z — r + 1). The rth factorial moment of a

random variable X is defined as

E.[X]|=E[(X),]=FEX(X-1)--- (X —r+1)]. (3.3)



51
Note that if X denotes the number of objects in a certain class, then E,[X] is the

expected number of ordered r-tuples of objects of that class.

A random variable X is Poisson distributed with rate v, denoted by u(X) = P(v), if
P X =1i)= Z.—fe‘” for any ¢. To show a sequence of random variables { X, } converges

to a random variable with Poisson distribution P(7), we have the following theorem.

Theorem 3.1 ([11]) Lety = v, be a non-negative bounded function on N. Suppose

the non-negative integer valued random variables X1,Xs, ... are such that
,}LI{,IO{ET[X"] -4"}=0, r=0,1,... (3.4)
Then
d(u(Xn), P(7)) = 0. (3.5)
[

For a given graph G, the following theorem guarantees that a set of nodes in the

graph has at least a certain lower bound for the number of vertices adjacent to the

set.

Theorem 3.2 ([12]) Let G be a graph of order n and suppose the maximum degree
A(G) < A, 2e(G) = nd (i.e. d is the average degree of G), and A+1 <u <n—A-1.
Let T(U) = {z € G: zy € e(G) for some y € U}. Then there ezists a u-set U,
|U| = u, of vertices such that

u(A+1)

(1 - eap(~ ). (3.6)

>l a

INU)| =UUTU)| =n

Let V be the vertex set of a graph G. For any set S, 7' C V, let E(S,T) denote the
set of all edges connecting S and T, and £(S) stand for £(S,S). Then |£(S)] is the
number of inter-connecting edges among vertices in set S, and |E(S,V \ §)| is the

number of external-connecting edges from vertices in set S to vertices in set V' \ S.
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E(S,V\ 8) is called the edge boundary of S, denoted by B(S5). For a r-regular graph
G, with n nodes and degree 7, select a set of vertices S from the graph with |S| = s.

It is easy to see that

21€(8)| + IB(S)| =7 - s. (3.7)

We define b(s) = min(|B(S)]). For a graph G with n vertices, let us randomly select
a vertex set S of size s from the graph. Assume every vertex of G is selected equally
likely, i.e., with probability 1/n. Then the size of edge boundary of S is a random
variable. The following theorem gives the expected value for the size of edge boundary

for a set of vertices in a regular graph.

Theorem 3.3 For a r-regular graph G, ., let S be a set of vertices with |S| = 5 > 2,

then

Ew@ﬂ:rﬂl—%) (3.8)

In particular, when 2 < s < 3,
TS

Elb(s)} =z - (3.9)

Proof. We color the n vertices of the graph with two colors, R(red) and B(blue).
Color the s vertices of the set S the color R, the rest n — s vertices the color B. Then

the probability of a vertex being colored by R is

Pr(R) =

S
!
T

and the probability of a vertex being colored by B is

n—s

Pr(B) = "

Hence, the probability of an edge connecting two red vertices is

Pr(RR) = (2)%
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and the probability of an edge connecting two blue vertices is

n—=s

Pr(BB) = ( )2

n

Therefore, the probability of an edge connecting two vertices with different colors,

i.e., an edge in the edge boundary B(S), is

Pr(RBUBR) = 1—Pr(RR)—Pr(BB)

= 1= (- ()
25(n—3).

2

n

Since there are totally rn/2 edges in the graph, it follows that the expected value of
the size of the edge boundary B(S) is

Elb(s)] = % : -2—5—(’;2;5) — rs(1— %).

> 1, and hence, E[b(s)] > 2. W

Furthermore, when 2 < s < Z, we have 1 — 5

s
— 27 n

3.4 The Reliability Polynomial of Regular Ran-
dom Graphs

A regular graph G, ,, is a graph with n vertices in which every vertex has degree
rn. Clearly G, ,, has nr,/2 edges. Taking G, ,, as the initial graph, we can obtain
a random graph G, ., . by choosing every edge of G, ,, with probability p,. The
resulting regular random graph G, ,, is our object to analyze. A regular random
graph is also called a regular graph network when it represents a network such that
G, 18 its underlying topology graph, and 1 — p, is the edge failure probability in
the network. Our objective is to study the reliability polynomial for a regular graph

network.
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3.4.1 The Isolated Vertices of Regular Random Graphs

Consider a regular random graph G,, ., »,.. Define a random variable

1 if vertex 7 is isolated

0 if not.
Let
n—1
Xn= Xni, (3.10)

=0
the number of isolated vertices in G, ., »,.. We first prove the following theorem which

computes the expected value and variance of X:

Theorem 3.4 For a reqular random graph G ,, ». and random variables X, as de-

fined, the number of isolated vertices of the random graph satisfies

ElXa]=n(l—p.)™, (3.11)
and
2rp, + 1)p, — 1
Var[X,] = n(l —p,)™ + Cr ;L_); n(l —pp)*™. (3.12)

Proof. Since each vertex i has degree r,,, the probability that vertex i is isolated is
PI‘{XnJ‘ = 1} = (1 — pn)r".
Clearly, we have
E[Xn,z] = PI‘{XTM' = 1} = (1 — pn)T",

and also

BIX2] = (1 - pa)™.

Hence,

Var[X,,;] = E[X3] = BlXn)? = (1= pa)™ — (1= pa)™™.

n,%
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Note that

(1) when vertex ¢ and vertex j are not adjacent in the original graph, X,,; and X, ;
are independent, which results in E[X,,; X, ;] = E[Xn,] - E[Xn;] = E[X0]%.

(2) when vertex i and vertex j are adjacent in the original graph, X ; and X, ; are
dependent, which results in E[X,; X, ;] = (1 —p,)™" 1 = (1—py)*™ "

Hence,

COV(Xn,i, Xn,j) = E[Xn,anJ‘] — E[Xn,l] . E[Xn’]]
0 if 7 and j are not adjacent

(1 —=pp)? 1 —(1—p,)* if i and j are adjacent

Therefore,

and

Var(X,) = > Var(Xn;) +2> Cov(X,;, X, )

i#]
= n-[(1=pa)™ = (L=pa)*™] +2n 77 [(1 = pa)*™ " = (1= pa)™]
, 2r, + 1)p, — 1 ,
= n(l—pn)"+( 1—)p -n(1 = p,)*™.

We next define

Hence, v, = E[X,], which is the expected number of isolated vertices in the random

graph. We can write

pn=1- (%)”T”- (3.14)

Define
Rel(Gnr, p,) = Pr{Gnr, p. is connected}, (3.15)
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the usual reliability polynomial for the graph Gn,, .. We now prove the following

theorem, which is one part of our main theorem.

Theorem 3.5 For a reqular random graph G, . and 7y, as defined in (3.18), if

the parameters r, and p, are such that v, — 00 as n — oo, then

lim Rel(Gpr,p,) = 0. (3.16)

n—oo

Proof. By Chebyshev’s inequality,

Var( X,
Pr{X, = 0} < Pr{|X,, — E[X,]| > E[X,]} < f[_)((—]j
It follows from Theorem 3.4 that
1 _
Pr{X, =0} < 1L (2rn + 1)p, — 1
n(l=p,)™ n 1—p,
1 1 2pnTn
2PnTn
= ——— +o(l).
n(1 —pn) (1)
Now we consider the following two cases:
(i) ra = o(n)
From (3.13), it follows
_ Tn 1/r
1—pn) =n(—=)"".
n(1 - po) = n(2)
Then,
2pnTn  2pa T'n 2r, (1)

S—py) U i < i

and hence Pr{X, = 0} = o(1).

(ii) r, = O(n).
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Recall that we have the condition v, — oco. Combining with the condition 7, = O(n),

the equation (3.13) implies p, = o(1). Then,

2 n'n 2 n
Pnln P 5(1),
n<1_pn) 1_pn

and hence again Pr{X,, = 0} = o(1). Therefore,

Rel(Grrppn) < 1—Pr{Guy,p, contains isolated vertices}
= Pr{X, =0}

= o(l).

We give an example for the parameters r,, and p, satisfying the conditions in Theo-

rem 3.5. Let r, = kInn for some constant k, and p, =1 — e~ 7. Then
Yo =n(1 —pp)™ =n- emmknn — g em VR = /s o0,

as required.

Theorem 3.5 says that when p, = 1 — (777”)1/’"" with v, — o0 as n — 00, Gy, p, 1S
disconnected with probability one. It in fact implies that if p, or r, is fairly small
(i.e., the random graph grows not too fast), the graph is asymptotically disconnected,
which is intuitively clear. The following theorem shows that the number of s isolated
vertices in Gy, ,, asymptotically converges to Poisson distribution P(v,) under cer-

tain conditions.

Theorem 3.6 For a reqular random graph G, .. ,, With r, = o(n) and v, as defined
in (8.13), the number of isolated vertices X, in the graph is asymptotically Poisson

distributed with the mean v,, t.e.,

d(pu(Xn), P(m)) — 0. (3-17)
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Proof. Let us evaluate the s-th factorial moment of X,. Recall that Es[X,] is the

expected number of ordered s-tuples of isolated vertices in the regular graph. Hence,
rns_(n)s 1 — ™ \S _ A8

E[Xa] > (n),[(1 = pa)"]" = (0l = pn)™)* = 7 + 0(1). (3.18)

nS

Now we want to compute an upper bound for E,[X,]. Let E{Y[X,,] be the expected
number of ordered s-tuples of isolated vertices (vi,v2,...,vs), which consist of an
independent set in the initial graph G,,. Let EéZ){Xn} be the expected number
of ordered s-tuples of isolated vertices (vi,vs,...,v,), which induce a subgraph of
the random graph G, . containing at least one nontrivial component (i.e., the s
vertices in G, ,, are dependent). It then follows that

E,[X,) = EV[X,] + EP[X,]. (3.19)

8 ]

We evaluate above two terms separately.

(1) Clearly,
EMX,] <n(n —s) (1 —pa)™]" < n°[(1—pa)™]" = 75 (3.20)

(2) For s dependent vertices (v1, va, . . ., Us), assume the subgraph induced by (vy, vy, - . ., vs)

has 7, 1 < 7 < [§], nontrivial connected components of orders t1, s, ..., t,, where
t1+t2+---+tT:w (321)

for some w, 27 < w < s. Figure 3.2 illustrates the situation. Now let us consider

the jth component, 1 < j < 7. The probability that each vertex of the component is

isolated is
t5(t5-1)

thl - pn)rn]tj(l - pn)“ 2
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So the jth component can be chosen in at most

Nrn(rn—1) - (rp — 1) <nré

(t;—1) terms

different ways. Therefore, the probability of having the jth component P;is

b A Ik A |
P < tj[(l —Pn)""] (11— Pn) 2 nr]
Atj(tj—l)

= n[(1—py) ™) r (1 —pa) 7 2

There are s — w independent vertices in the subgraph, which exists with probability

[(1 — pn)™]* . Hence, the probability of having this subgraph P, is

[n[(1 = pa)™ )51, (1 — p) = [(1 = pa) ]

Py <

T

7
T TRiPo_ ti g (1) Y TR1S—w
=TI = pay S e S (g ) (1 - pa) T S (1= p))

< nT[(1—pp)"Pre Tt t) (L —pa) T 7
1 w(w—1)

w—T

— 5, Aty t (1 —p,) 2
BT e ) (L= o)

Therefore, since 27 <w < 8, t; <w < s for 1 <4 < 7, and since 7, = o(n),

51 &
1 w{w—1
EOX] < 33 = Tt ) (1= pa)
T=1w=2T1 nr
) (2] omt) T,
< Y (et =pa)T T ()
T=1w=27 n
= v -o(1). (3.22)

It then follows that

Es{Xn} = Es(l)[Xn] + Es(2) [Xn]
< (L +o0(1)) + 5 - o(1)

— 45 (1+0(1)). (3.23)



Figure 3.2: An illustrated figure for the proof of (3.22): 7 nontrivial components
induced by vertices vy, v, ..., Us.

Therefore, by (3.18) and (3.23), we obtain
JL%{ES[XR} —}=0s=0,1,...

and the proof is completed by Theorem 3.1. H

Theorem 3.6 showed that the number of isolated vertices X, in the special regular
random graph Gy, ,. is Poisson distributed with mean v,. In the next section, we
will show that it is (asymptotically) because of the isolated vertices that cause the

random graph disconnected.

3.4.2 The Components of Regular Random Graphs

It is fascinating that the obstacle for some random graphs to be connected is asymp-
totically the existence of isolated vertices [17] [12]. The probability that those graphs
contain components with size at least 2 and at most [§] vertices tends to zero. We
now prove the following theorem which shows that this is also the case for the regular

random graphs we consider.

Theorem 3.7 For a reqular random graph Gy, ., assume v, = O(logn) and p, =

1 - (jnﬂ)?ln_ for some finite number ~y,. Let Cs be the family of induced connected
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subgraphs with size s, and C = U[i]g C,. Then

lim » Pr(T) =0.

Proof. Let T, € C,, with edge boundary B(T;) and |B(T%)|
Pr(T,) < (1 — p,)"").

Define

wl:

i Mm:

Z =) Pr(T)= Z > Pr(T,

TeC =2T,€eCs

Then proving the theorem is equivalent to showing
Z =o(1).

We first give two upper bounds for |C|. Clearly we have

el < (1) ~ (T

-

(3.24)

= b(T,). Tt is clear that

pn)2 T8 (3.25)

(3.26)

On the other hand, let us count the ways to choose each vertex for a connected

subgraph T, of size s. After relabeling the vertices of T in a certain order, we can see

that there are at most n ways to choose the first vertex, at most r, ways to choose

the second vertex, at most 2r, ways to choose the third vertex,.. .,

ways to choose the ith vertex,.... Hence,

ICs| <n-sl-rst ~n-27s- (z)s sl

at most (i — 1)r,

(3.27)
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Note that (3.26) is a better estimation for large s, while (3.27) is a better estimation

for small s. Let b(s) = min(b(T})), from (3.25), we then have

(3] ¥l

Z < ICH —pa) =3 1C -

s 5=2

w3

b(s)

) (3.28)

3|Q

H

We now evaluate the number Z in the following four ranges for s.
Case 1: 2 <s<1,/2

Define
/2

Z 1Cs] - ( (3.29)

For a vertex set S of size s in a regular graph G, p,, there are at most (;) edges

among the vertices of 5. Hence,

b(s) > rns—2<2> = s(r, —s+1).

Therefore,
rn/2
Z1 < Z n-gl. 7,,;—1 . (ﬁ)%(rn—s+l).
s=2 n

Let ay =n-sl-ri=t. ()7 ) then
n

. TnS®y Tn8° [ Ry N N (D)
log (o N ) = log( " st-r? (?) n )
= log(rs-s*-m- (12)m(mmriy)
n
= slogr, + slogs+logn + ;(rn — s+ 1)(log vy, —logn)
—1 -1
< 2510grn+10gn+s(1—s )log%—s(l—s )logn
r'fl; T’I’L
s—1 -1
= 2slogr, + s(1 — )log7n+[1—s(1—8 )] logn
1 o
= 2510grn—|—s(1—8 )log%—(s—l)(r s) logn
n Tn
~1 —1
< 2510g7’n+s(1—S )10g%,_3 logn
< 0,
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[

for n sufficiently large. Hence a; - = < 1,0or ay < SS—' . %, and

. = 0(1)1
=2 8% Ta
since r,, — oo. Therefore,
71 = o(1). (3.30)
Case 2: 1,/2 < s < O(folg/i)
Define s
(Togm)

Zo= 5 3 (1—pu)h™) (3.31)

s=rpn/2 Ts€Cs
Since |Cs| < n-s!-rit ~n-v2mrs- (2)* it and by Theorem 3.3, Eb(Ty)] > =2,

11

it follows that

C|- (1 — p) BT < . v/2ms - (Zye . pst (g)%
[

nt/3

1
logn

since r, = O(logn) and s < O(£—). Therefore, it follows that

Zy = o(1). (3.32)
Case 3: O(Z2) < s < O(v/n)
Define
O(v/m) -
Zs= Y S (1-p ) 5, (3.33)

n1/3)TsEcs

logn

s=0(

We consider the following two subcases:

log s + logrn )

Subcase 1: Assume C; is the family of Ty satisfying b(T;) > rps(1 — ool + ).



Then

Subcase 2:

Then,

b(T,) + s[ra(

75

IA

IA

Assume C7 is the family of T, satisfying b(7}) < rps(1

64

(1 - pn)b(Ts)
S:2Ts€cs_
(5] o 5
2 <n>'<7—">5(1 )
5—2 S n
log
[%} 1 logrr‘bn
en ., Y s
Ey - ()
s=2 n logn
log Ty
[%} 677174_ logn
( )?
5—=2 T
3 4
()" = o). (3.34)
s=2 'T

_ log s + logrn)
logn logn /°

logs logry,

)] < rps.

logn  logn

Let d be the average degree of the component Ty, since b(T;) + s - d = ry,s, it follows

d > 7y

logs logr,

logn  logn’

Let u = 3s/r,. By Theorem 3.2, in component 75, there exists a subset U, \U| = u,

such that

(N

>

2

n(

n(

S

NG
log Togn)? log Tn)(l B 6_3u¢1)

logs log rp,

1-— s
logn  logn ) )
logs logry (1— 6_317;_#)
logn  logn

logn logn

This shows that the set 7}, in C] can be selected as follows: first we select u vertices,

which determines s/3 vertices that are connected with each other, then we select the
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other 2s/3 vertices. Hence,

AN AL N%u'Zﬂen%:enrnU_iSc;nzg_s
e< () (1) ~ e Gre = e G

3 U

and

enr, 3en. 2 Vo s
< (ZZmyu (220 y L (IR
< (S (¥ (B!

(1 — ) ERT]
C/ |- (1 —pn) "

enryn(logn)?. s Bem’n(logn)%% (%)5
n

S N A W
er,(logn)? . ss Sern(logn)Q)z_s

= (RN (ETIERE ()

(11

since r, = O(logn), v, is finite, and s > O(ﬁlg/fl). It follows that

)

O(yn
7= 3 X (1-p) ™ = o).
s=0(2M3) TueCs

logn

Therefore, from (3.34) and (3.35), we obtain
Zy =78 + 7P = o(1).

Case 4: O(y/n) <s<n/2

Define

3s

sn2rn

kA
6

(3.35)

(3.36)

(3.37)
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since s > O(y/n) implies ﬂzﬁ < 1. Hence,
Zy = o(1). (3.38)
Therefore, by (3.30), (3.32), (3.36), and (3.38), we have shown that
Z <7+ Zy+ Zy+ Zy = 0(1),

which completes the proof of the theorem. W

Theorem 3.7 says that, for a regular random graph G, ., p, as defined, the probability
that it contains connected subgraphs (components) with size between 2 and [3] is
asymptotically zero. Therefore, the random graph decomposes with probability one
into a “giant” connected subgraph and a set of isolated vertices. Hence, the reliability
of the random graph is actually the probability of no isolated vertices, as we state in

the following corollary:
Corollary 3.1 For a regular random graph G, . such that r, = O{logn) and
pn=1-— (%)% for some finite number v,

Rel(Gpyr, pn) = Pr{Gn,, p,. contains no isolated vertices}, (3.39)

for n sufficiently large. B

3.4.3 The Main Theorem

Now we present the following theorem which is another part of our main theorem.

Theorem 3.8 For a regular random graph G, ., », with r, = O(logn),

. e ifp,=1-— )7 for nite v, = v >0
lim Rel(Gay, ) = G Jor finite on = (3.40)
1 if po =1 — ()™ for v, — 0.
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(1) pn=1— (jnﬂ)% for finite v, = v > 0. By Corollary 3.1 and Theorem 3.6,
Rel(Gprnpn) = Pr{Gn . p. has no isolated vertices} — ™.
(2) pn=1— (%)% for v, — 0. Since
Pr{G,.,,, contains isolated vertices} = Pr{X, > 0} < E[X,] = 7, = o(1),
it follows, by Corollary 3.1, that

Rel(Grrnpn) — Pr{Gn,,p, contains no isolated vertices}
= 1-—Pr{Gn,,p, contains isolated vertices}

— 1.

Finally, combining Theorem 3.5 and Theorem 3.8, we obtain the main theorem of the

chapter:

Theorem 3.9 For a regular random graph Gp . 5., if Pn = 1 — (%)%, then ~y, is

the expected number of isolated vertices in the random graph, and

0 if Y —> 00
dim Rel(Gryrop,) = €77 if yo = > 0 4s finite and v, = O(logn) (3.41)

1 if vn = 0 and r, = O(logn).

Theorem 3.9 in fact exhibits the transition phenomenon when the regular random
graph evolutes from p, = 0 to p, = 1, when n increases. The reliability polynomial
Rel(Gn s, pn) jumps from 0 to 1 around p; =1 — (%‘)i for some function w,: when

wy — 00, the graph is disconnected; when w, — 0, the graph is connected; when
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w, = w > 0 is finite constant, the graph is connected with probability e™.

Corollary 3.2 For a reqular random graph Gn, p, withrn, = O(logn), the threshold
function 1s
w 1
=1 () 3.42
ph=1-(22) (3.42)
for some function w,, and the reqular random graph is asymptotically surely connected

when w, — 0; it is asymptotically surely disconnected when w, — 00; and it is

asymptotically connected with probability e when w, = w > 0 4s a constant. W

Theorem 3.9 actually shows that, no matter what p,, is, the probability that a regular
random graph G, . ,. with r, = O(logn) is connected asymptotically approaches
e~ = ¢ FlXn] where X, is the number of isolated vertices in the graph. Therefore,
the expected value of the number of isolated vertices in such a regular random graph
Gornpns M(1 — pp)™, is the most crucial quantity in determining the connectivity of

the random graph.

Corollary 3.3 For a reqular random graph G, . with r, = O(logn),

lim Rel(Gn,rmpn) = lim e ™17P)™, (343)

00 n—ro0

Let us consider an example. Assume we want to design a network with n = 9 nodes
and m = 18 lines. To achieve the maximum connectivity, we design the network using
the Harary graph H(9,4), as shown in Figure 2.6. Assume each line of the network
fails with probability ¢ = 1 — p = 0.1. Then

Rel(H(9,4)) = 1—3 Ci(l—p)ipm
=4
~ 1- n(l _ p)dpm—é
= 1-9(0.1)%0.9)"

= 0.9992181,



69

whereas,
e~ = e~m1-P)" — 90-D* — ) 9991004.

Hence, Theorem 3.9 indeed gives a quite accurate estimation for the network relia-

bility.

Theorem 3.9 also implies a famous known result for a special class of regular random
graphs, the n-cubes. An n-cube C™ is a regular graph with 2" nodes such that each
node has degree n — 1. Clearly, for the C", we have v, = E[X,] =2"(1—p,)" =
(2(1 — p,))™. From Theorem 3.9, it follows that Pr{C™ is connected} — e~ (G
and hence, Pr{C™ is connected}— 0 when p, < 0.5; ¢! when p, = 0.5; 1 when

p, > 0.5, which is the main result in [17] [12].

3.5 The Slotted Model and MTTF

In Chapter 2, we introduced MTTF, the figure-of-merit which is commonly used to

measure the reliability of a network. MTTF can also be defined as [40]
MTTF = / T R(t)dt, (3.44)
0

where

R(t) = Pr{a network has not yet failed at time t}.

We developed several algorithms and asymptotic formulas for computing MTTF in
Chapter 2, but MTTF is generally difficult to compute. We now propose a model,
which can be used to compute the MTTF for a regular graph network G,, with
much less difficulty, by applying reliability polynomials. The model is called the

slotted model, and we define it as follows:

(1) All edges fail according to an exponential distribution, with the failure rate A =
1/7;. (Note that 7y is actually the MTTF for a single edge).

(2) The time scale is divided into “slots”, i.e., time intervals, with length 7; all repairs
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occur spontaneously at slot boundaries. Hence, the repair rate is 1 = 1/T.

Typically, 7; >> 7, i.e., p = /A = 7¢/7 >> 1. Hence, in each time slot, every edge

fails with probability
(3.45)

Let

7 = Pr{a network failure occurs in a given slot}. (3.46)

Then
7 =1—Rel(Gp,p)-

Since the sequence of system failures during time slots is a binomial sequence, and

since 1/7 is the waiting time before the first failure occurs in a time slot, the MTTF

for the slotted model is given by

1 T
MTTFgotteqa =7 — = . 4
lotted =T 2 T Rel(Gr rp) (3.47)

For a network G, ., from (3.13), the expected number of the isolated nodes is given
by
v=n(l—p)" =n(r/7)".

From Theorem 3.9,

Rel(Gppp) e = e /M), (3.48)

Hence, we have
-

Tty (3.49)

MTTFslotted ~

When 7/7; is small (or p is large), we have 1 — e ™/ ~ n(r/74)" = 2+ Hence,

by (3.49), we obtain MTTF gt1eqa = % . %ﬂ Therefore, we have proved the following

theorem:
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Theorem 3.10 For a network with a r-reqular graph topology under the slotted model

as defined above, if p = T7f >> 1, and the size of the network n is large enough, then

r—1
N (3.50)

MTTFslotted ~
n

> =

Denote k to be the connectivity of a network with a r-regular graph topology, then

k = r. From (3.50), we then have

1 r—1 1 K—1 K
MTTFstea & 5 - o % T+ Lo s (S Coia). (3.51)

Comparing (3.51) with (2.56) in Chapter 2, we can see that the MTTF for the slotted
model is almost the same as that for general case, except for a factor ZCui,, the
number of minimum cut-sets. Hence, the slotted model introduced improves the

MTTF for a system by a factor of £Cpny,.

As an example, let us design a network based on the Harary graph H(9,4) as shown
in Figure 2.6. Assume 7; = 1 month, and 7 = 1 day. By (3.45), the probability of line
failure in the network is¢g=1—-p~ 316' Therefore, by Theorem 3.9, the probability
that the network is connected is as e (1P = ¢ 5% = 0.9999888, and by Theorem
3.10, the MTTF of the network ~ % = 90000 days ~ 246 years, which indicates the

network is extremely reliable.

3.6 Concluding Remarks

In this chapter, we studied reliability polynomials for communication networks. We
briefly introduced some well-known algorithms for computing reliability polynomials
exactly, and pointed out that the reliability polynomial problem is an #P-complete
problem, among the most challenging of all computational problems. We then took
a totally different approach to analyzing reliability polynomials from a framework of

random graph theory. We focused on a special class of random graphs, namely the
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regular random graphs, and analyzed the evolution of regular random graphs in terms
of the expansion of network size. We proved that the number of isolated vertices
in a regular random graph is asymptotically Poisson distributed. We also showed
that the probability that a regular random graph contains an non-trivial component
is asymptotically zero, and therefore, the expected value of the number of isolated
vertices plays the most crucial role in determining the connectedness of a regular
random graph. We showed a transition phenomenon when the regular random graph
evolutes from edge probability zero to probability one, and identified the associated
threshold functions, which completely characterized the evolution of the special class
of regular random graphs. Finally, we introduced a “slotted model” for networks that
have regular graph topology, by which the MTTF of such networks can be easily,

asymptotically, computed by the reliability polynomial formula we developed.
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Chapter 4 ATM Networks and Markov
On-Off Traffic

4.1 Introduction

ATM is a standard which is recognized throughout the world [36]. It provides for
the first time a method for universal information exchange, independent of the end
systems and the type of information (data, audio, video). The architecture of ATM
(53-byte cells) supports the design of massive parallel communication architectures
and enables the implementation of networks with transfer rates in the gigabit range.
With these high speed networks, it is possible to send huge amounts of data generated
by the latest applications (video-mail, interactive TV, telemedicine etc.) at low cost
in a real-time framework. Furthermore, ATM is suitable for local area networks as
well as wide area networks. Thus the historical separation of local and wide area
data transport, which has resulted in complex networks with numerous Internet com-
ponents, such as routers, gateways, etc., will disappear in the future. The ability
of ATM to emulate traditional LAN and WAN architectures will ensure a smooth

transition from today’s computer network infrastructure to ATM-based high speed

technology.

The problem of analyzing buffer performance for a single link statistical multiplexer
with Markov on-off traffic in ATM networks has been extensively studied [4] [8] [30].
The problem is challenging because of the bursty characteristics of the traffic sources.
The reason for analyzing Markov on-off traffic is because it is widely believed, al-
though without rigorous mathematical proof but vast numerical support, as the traf-
fic which would result in worst case performance for ATM networks. A method using

a concept of “effective bandwidth” has been designed to analyze buffer behavior [29]
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(23] [48]. Using this method, Markov on-off traffic was proved [23] to be the worst case

traffic in terms of overflow probability, for large number of incoming traffic sources.

In this chapter, we will first give a brief introduction to ATM and B-ISDN. We explain
the fundamentals of ATM, and the advantages of ATM compared to other existing
network technologies. We will focus on statistical multiplezers, one of the most impor-
tant issues in ATM technology. We focus on studying homogeneous and heterogeneous
Markov on-off traffic. These two types of Markov on-off traffic consist of the super-
position of many single Markov on-off traffic sources, each of which is described by a
Markov two-state Markov chain. We will use a generating function approach to study
the performance of the buffer occupancy for a statistical multiplexer. We will derive
closed form formulas for certain conditional generating functions of cells generated by
homogeneous and heterogeneous Markov on-off traffic, and develop a heuristic pro-
cedure, which allows us to compute the expected buffer occupancy for homogeneous
and heterogeneous Markov on-off traffic. A simple closed form formula can be devel-
oped for the expected buffer occupancy in the case of homogeneous Markov on-off
traffic. The analysis and numerical results show that the expected buffer occupancy
not only depends on the incoming traffic intensity (utilization), but also on the bursti-
ness of the incoming traffic. In particular, the expected buffer occupancy becomes
unbounded when the burstiness is large enough, even though the traffic intensity is

not close to one. This shows that “burst control” is indispensable in ATM networks.

4.2 Fundamentals of ATM

ATM stands for asynchronous transfer mode. It is the most modern telecommunica-
tions switching technique. It is a highly efficient switching technique which is able
to switch connections for a wide range of different information types at a wide range
of different rates. It allows a network to be used simultaneously for the transfer of
different signal types, such as telephone, data, video, etc. It is the integrated switch-

ing technique which will form the basis of the Broadband Integrated Services Digital
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B-ISDN Services

Interactive Services Distribution Services
Conversational No Individual With Individual
Services User Control User Control
(e.g. Telephone) (e.g. broadcast) (e.g. video-on-demand)
Messaging Retrieval Service
Services (e.g. on-line
(e.g.email) database)

Figure 4.1: The service types offered by B-ISDN

Network (B-ISDN) [36].

B-ISDN is the most modern type of telecommunications network which offers si-
multaneous switching of different information types, for the carriage of multimedia
applications. The services offered by B-ISDN can be classified into two categories:
interactive services and distribution services, as shown in Figure 4.1.

B-ISDN is a complete network and management control architecture, and ATM
is the switching technique at the heart of B-ISDN. The terminology transfer mode
means that ATM is a telecommunications transport technique, i.e., a method by
which information may be transferred (switched and transported) from one side of a
network to the other. In ATM, user information is transmitted between communi-
cating entities using fixed-size packets, referred to as the ATM cells; every cell is 53

bytes, consisting of 48-byte information field and 5-byte header.

4.2.1 Asynchronous and Synchronous

The term asynchronous distinguishes the technique from synchronous transfer tech-
niques. Synchronous transfer mode (STM) is the method used in high speed trans-

mission systems, such as SONET, synchronous optical network. In STM, the line
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capacity (bit rate) is structured in a strictly regular, and repeating pattern. Thus a
155 Mbit /s line transmission system, for example, is actually composed of a frame of
2430 bytes repeated 8000 times per second. There are no gaps between the frames, so
the same part of the frame can be expected in the same place every 125 microseconds,

i.e., the system is synchronous.

In ATM, frames (called cells) of information are only sent when necessary. Thus, for
example, cells are only sent across the network to represent the alphabetic charac-
ters which one is typing and only when one types something. In between, nothing is
sent. By comparison, STM would convey frames all the time, empty frames at times.

Therefore, ATM is potentially the more efficient telecommunications transport tech-

nique.

4.2.2 Transfer Modes

The transfer mode defines how information supplied by network users is eventually
mapped onto the physical network. We present various transfer modes [6] used in
the current networks and discuss the motivation behind the concepts introduced with

ATM.
(1) Clircuit Switching:

Circuit switching is mainly used for telephone networks. A circuit is established
between the two entities to exchange information for the complete duration of the
connection. Each channel has a fixed bandwidth, for example, 64 Kbps for telephony.
A number of channels can be multiplexed onto a link and switching is performed by
translating the incoming channel to the outgoing channel number. Before data starts
to transmit, a collection of consecutive channels are reserved from sender to receiver
by signaling. Once the circuit is established, the traffic flows continuously during the
duration of the connection. This transfer mode is called circuit switching. Circuit

switching minimizes the end-to-end delay of connections.
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Circuit switching is not suitable to support all B-ISDN applications, where different
applications have significantly varying bandwidth requirements, ranging from 1 Kbps

to 140Mbps. Also, it would waste network resources for applications with variable

bit rates.
(2) Message Switching:

For data applications such as electronic mail, file transfer, and transaction processing,
it is more efficient to treat each information unit as a logical entity (referred to as a
message) that is transmitted in the network independently of other umits. This can
be done via adding a header to each message that defines the destination. Then when
an intermediate node receives a message, it processes the message (including looking
at the header and determining the next node to send towards its destination) and
transmits the message. This transfer mode is called message switching. Note that
no circuit establishment is required in message switching. The major disadvantage
of this transfer mode is that it is not suitable for real time or delay-sensitive applica-

tions, such as voice, since the delay in such a network is quite unpredictable.

(3) Packet Switching:

Packet switching is an attempt to combine the advantages of both circuit switching
and message switching. It is essentially the same as message switching except that the
size of the information unit transmitted in the network is limited to some maximum
value (a few Kbytes), called a packet. Each user message may be segmented into
packets before they are transmitted. This transfer mode is called packet switching.
Packet switching reduces the end-to-end delay of user message. The main disadvan-
tage of packet switching is that it requires more overhead (packet headers) to transmit

a message, thereby reducing the effective resource utilization in the network.

There are two approaches to handle packet streams in packet switching networks. The
first method is called datagram, by which, each packet is treated independently and

may follow different paths to its destination. The main disadvantage of this approach
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Figure 4.2: The ATM protocol reference model.

is that packets may arrive at the destination out of order and ordering packets to form
information units is a processing intensive operation. The second method is called
virtual circuit. An end-to-end logical connection is established before the transmis-
sion starts and all packets of a message follow the same path in the network. This
guarantees the sequential delivery of packets to the destination, but requires a call
set-up phase. One major problem introduced in packet switching with variable length
packets is the complexity of the switching fabrics and the buffer management schemes

as the transmission rates increase.

ATM is an attempt to combine all the advantages of existing transfer modes in a
unique way. It is a virtual-circuit packet switching scheme in which all packets (called

cells) have the same size.

4.2.3 ATM Protocol Reference Model

The ATM protocol model describes how two end systems communicate via ATM
switches. As shown in Figure 4.2, the key layers are the ATM adaptation layer, the
ATM layer, and the physical layer [35].

e Physical layer: This defines the physical transmission types which are suitable
for ATM. Its specifications define the electrical, optical and transmission char-

acteristics which should be used, as well as the interface required by the ATM
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layer.

e ATM layer: This is the next higher functionality added to the physical trans-
mission. Its specifications define the 53-byte cell format, shown in Figure 4.3.
It multiplexes and demultiplexes cells of different connections. Multiplexing
refers to the process of taking several different data streams and consolidating
them into a fast-flow data stream. At the other end of the communication path,
demultiplexing reverses the process and directs the data back to its appropriate
data stream and towards its final destination. It is also responsible for pro-
viding the appropriate routing information for cells in the form of VPI/VCI
values, which are part of the control information found in a cell’s 5-byte header.
It translates VCI and/or VPI values at the switches. The VPI/VCI values (local
to a specific switch) ensure that the cell will exit the correct switch output port.
Finally, the ATM layer implements a flow control mechanism at the universal
network interface (UNI) by using the general flow control (GFC) bits in the

header.

o ATM adaptation layer: This provides services to the higher layers that support
classes of service for transported data. Its specifications define how cells may be
used to create connections suitable for a wide range of end-users (e.g., constant
bit rate (CBS) connections, voiceband signal transport, data transport, etc.). It
also performs the segmentation and reassemble of data. It takes this data and

splits it up to multiple 48-byte cells.

The part of the layered architecture used for end-to-end data transfer is known as
the user plane (U plane). The control plane defines higher-level protocols used to
support ATM signaling, and the management plane (M plane) provides control of
an ATM node and consists of two parts: plane management and layer management.
The plane management function manages all other planes and the layer management

function is responsible for managing each of the ATM layers.
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Figure 4.3: The ATM cell format.

4.2.4 Traffic Parameters and Quality of Service

A traffic parameter is a specification of a particular traffic aspect. Three main traffic
parameters are Peak Cell Rate (PCR), Sustainable Cell Rate (SCR), and Mazimum
Burst Size (MBS).

e Peak cell rate: This is defined as the inverse of the minimum interarrival time
between two consecutive cells. PCR provides an upper bound of the cell rate of

a connection.

e Sustainable cell rate: This is defined as the long term average cell rate of a

connection.

e Mazimum burst size: This is defined as the maximum length of cell burst trans-

mitted in a connection.

ATM networks provide a Quality of Service (QOS) guarantee to user connections.

The parameters defined for QOS include: cell error ratio, cell loss ratio, cell transfer
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delay, mean cell transfer delay and cell delay variation, etc. The method used by
ATM networks to provide QOS is by maintaining a contract between network user
and network service provider. When a connection is required by a network user,
there is a contract set-up between the network and the user. The user describes
the connection in terms of its traffic parameters and QOS requirements. Then the
network uses a connection admission control scheme to determine if the connection
is to be admitted to the network, while providing the QOS required by the incoming
connection and also to maintain the QOS to the other connections that have already
set up. Once the connection is granted, it is important for the network to ensure that
the connection is abiding by the contract. This is done by policing the connection to
monitor the traffic parameters in the contract. One scheme of doing this for bursty
connections is by means of the leaky bucket or generic cell rate algorithm [24] [41].
This algorithm allows cells to pass at the mean rate with burstiness constrained. If
the new connection violates the traffic parameters in the contract, the violated cells

will be dropped by the network.

4.3 'Traffic Sources and Statistical Multiplexers

In order to study the performance of a network, the first step is to characterize the

various traffic types that the network must support.

(1) CBR sources: traffic sources that produce information at fixed rates. Pulse code
modulated (PCM) voice, digitized modem traffic, uncompressed video are examples

of constant bit rate (CBR) traffic sources.

(2) VBR sources: traffic sources that produce information at varying rates. Image
and video codec traffic, high definition TV (HDTV) sources, and high-speed data file

transfer traffic are example of variable bit rate (VBR) traffic sources.

One characteristic of VBR traffic is its “burstiness,” which represents the variation

of traffic streams. The burstiness of traffic is defined as the ratio of the peak traffic
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Figure 4.4: The statistical multiplexer in ATM networks.

rate to the average traffic rate. A traffic source is said to be “bursty” when this ratio
is much larger than one. Most VBR traffic sources are also correlated, i.e., there
exists dependence among the time-varying traffic rates or between the interarrivals of
cells. The autocorrelations between traffic interarrival cells have a dramatic impact

on network performance [32].

Bursty sources and VBR traffic do not require fixed allocations of bandwidth at their
peak rates. The ATM scheme can make cfficient use of bandwidth by statistically
multiplexing a large amount of bursty and VBR traffic. A statistical multiplezer is a
multiplexer that combines a number of virtual channels (traffic sources) from separate
virtual paths over a single output virtual path such that the transmission bandwidth
(capacity) of the output path is not permanently allocated to any given input channel,
instead transmitting (“serving”) the incoming cells on a first-come-first-serve (FCFS)
basis, as shown in Figure 4.4. The information flows from individual sources may
vary unpredictably, but the multiplexed traffic may exhibit a more regular, hence
more predictable behavior. The saving in transmission bandwidth achieved is called
the statistical multiplexer gain.

Cells from incoming traffic sources are multiplexed into an output link. Because
the aggregate cell arrival rate may temporarily exceed the bandwidth of the output
link, a buffer is provided at the output port to hold cells during overflow periods.
For a statistical multiplexer to be stable, the average aggregate rate for incoming
traffic should be less than output link bandwidth. The number of cells in the buffer
fluctuates over time, but it should be empty often enough to achieve a satisfactory
performance. A significant issue in the design of ATM networks is the analysis of the

buffer occupancy behavior in a statistical multiplexer.
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4.4 Multiplexing Markov On-Off Traffic in ATM

The problem of analyzing buffer performance for a single link statistical multiplexer
with Markov on-off traffic in ATM networks has been extensively studied. The prob-
lem is challenging because of bursty characteristics of the traffic sources. Markov
on-off traffic is widely believed to be the traffic, without burstiness constrained, which

would cause worst case performance to ATM networks.

The generating function approach is one of the widely used methods to study statis-
tical systems, especially queuing systems and communication networks [31] [30] [9]
[44] [53]. This method can be used to derive generating functions for variables of
interest for any statistical system modeled by a Markov chain. The method has been
applied successfully for many classical queuing systems, especially for Poisson process
systems. Unfortunately, for general input process systems, the generating function
approach often leads to an infinite number of linear equations with infinite number
of unknown functions to be solved, which makes it difficult to obtain closed form
formulas on variables of interests, such as the distribution of buffer occupancy of a
statistical multiplexer in ATM networks. However, in many practical applications, we
are satisfied if we can obtain an explicit formula for the expected values of interests.
In the next sections, we will analyze, using the generating function approach, the

buffer occupancy for a statistical multiplexer with Markov on-off traffic.

4.4.1 The Model and Generating Functions

Let us consider a discrete time system where the time axis is divided into fixed-length
slots. A statistical multiplexer, as shown in Figure 4.4, with infinite size buffer with
N incoming traffics and one output channel, which has the fixed-length transmission
rate (or service time) which is one slot of time, is considered. It is assumed that the
service of a traffic cell can start only at a slot boundary, i.e., the transmission of cells
in the output channel is synchronized to the occurrence of slot boundaries. Assume

each of IV incoming traffic sources for a statistic multiplexer is on-off traffic, described
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by a two-state continuous Markov chain. Two types of on-off traffic, homogeneous

and heterogeneous traffic, will be specifically considered in the next section.

Let Aj denote the number of cells entering the buffer of the multiplexer during the

k-th time slot. The r.v.’s {A;} form a discrete Markov chain with the transition

probabilities
pij = Pr[Apsr = jlAx =1, (4.1)

independent of time k. Let P;(z) denote the conditional generating function of the

number of cell arrivals in a time slot which is proceeded by a time slot with 7 arrivals:
Pz) = Y. pig?. (4.2)
7=0
The stationary probabilities of the Markov chain are denoted by
p(j) = Pr[j arrivals during a slot in the steady state]. (4.3)

Then, we have the following equilibrium equations:
p(3) =Y _p(i)piy, (520).

1=0

Define the generating function for the stationary probabilities p(j)

P(z) = ;)p(j)zj- (4.4)
Then,
P(z) = ;p(z)R(Z)

Two classes of traffic sources, namely, homogeneous and heterogenecous sources, will
be considered. They will be used as incoming traffic sources to a statistical multiplexer
in an ATM network. We will study the buffer occupancy of the statistical multiplexer

under such situation.
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Figure 4.5: The statistical multiplexer with homogeneous on-off traffic.

4.4.2 Homogeneous and Heterogeneous On-Off Traffic
(1) Homogeneous On-Off Traffic

Assume there are N incoming traffic sources to a statistical multiplexer, each of
which is identical to a two-state Markov on-off source, i.e., each traffic source can
be described by a two-state continuous-time Markov chain, as shown in Figure 4.5.
When the source is in state 1 (“on” state), it sends a cell per time slot; while in state
0 (“off” state), it sends nothing. The state transition probabilities are o from state 0
to state 1 (1 —a from state 0 to itself), and 8 from state 1 to state 0 (1 — 3 from state
1 to itself). These N traffic sources are called homogeneous Markov on-off sources.
Assume that there are A, = ¢ sources in the “on” state in slot k, i.e., there are i
cell arrivals in slot k. Ay is a discrete time Markov chain, taking values 0, 1, 2, ...,

N. The utilization of each source is ﬁﬁ’ and the total utilization is

No

] (4.5)

p:

In order to have a stable system, we need to have p < 1. As defined in (4.1), p;; is
the probability of having j cell arrivals, or j sources in the “on” state during time
slot k£ + 1 such that there are i cell arrivals during time slot k. We can compute
B (- s (e 0<i o< e
otherwise.

(4.6)

(note that, by definition, (]’) = 0 for any negative 4,5, or j > i). The conditional
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generating function for the number of cell arrivals in a time slot which is proceeded

by a time slot with 7, 0 <@ < N, cell arrivals can be computed as

o [ i gimg [V T8 i (N—i)—(G31) 53
RG) = ZZ()( ~ g (N - ) e
— i Z ( ) ]161 Ji (;V;—]Z) (az)J 31(1 _a)(N~i)—(j—j1)
iy o (N (N—i)~(5—51)
— Z( ) J1ﬁz J12<J_]>(az)1 71(1_@) 1=
N—ithi — . .
— Z ( ) 2)1 3 {Y: (jv_ jj) (az)™ 11(1_a)(N—z)-(J—11)

N —1

iﬂlﬂ <j B h) (az) 91 (1 — @) N0 0=)]
Jo-

_|_

Jlﬁl J1 [((1 _ Oé) =+ az)N—i

=N
J1= 0(

+ }j (N‘”)maﬂﬂa—ayﬂ4fmy

=N M T

Since N — i > j — j; implies 5 < N — i + j;. it follows that the second sum in the

above square bracket is zero, Therefore,

RE) = 3 ( )((1 ~ B IR (1 a) +02)"

ji=0 \J1

= (B+(1-5)2)((1—a)+az)"

Thus, we have proved the following theorem:

Theorem 4.1 The conditional generating function of the number of cell arrivals in
a time slot which is proceeded by a time slot with i, 0 < 7 < N, arrivals for N

homogeneous on-off sources is given by

Pz) = (84 (1 - B2)((1 — 0) + az)¥ (4.7)
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Figure 4.6: The statistical multiplexer with heterogeneous on-off traffic.

(2) Heterogeneous On-Off Traffic

Assume there are N; + N, incoming traffic sources to a statistical multiplexer. The
traffic consists of two types of homogeneous on-off sources: N; homogeneous Markov
on-off sources with transition probabilities oy and i, called type-1 sources, and N,
homogeneous Markov on-off sources with transition probabilities ay and 5, called
type-2 sources, as shown in Figure 4.6. These N; + N, traffic sources are called
(two-type) heterogeneous Markov on-off sources.

Since A; denotes the number of cells generated by the heterogeneous sources in

time slot k, or the total number of sources in the “on” state from two-type sources, Ay

is a discrete time Markov chain, taking values 0, 1, 2, ..., Ny + Ny. The utilizations
are oiVll‘szall for type-1 sources, é;%"ﬂz—z) for type-2 sources, and in total
Nia Noa
p— 11 (4.8)

T+ B art B

Again we need p < 1 to have a stable system. Let pg}j) and pg? be the transition

probabilities for type-1 sources and type-2 sources, respectively, given by (4.6) for
their corresponding parameters; let Pi(l) = Y720 pz(}j)zj and Pz@) = 3720 pfj) 27 be
conditional generating functions for type-1 sources and type-2 sources, respectively.

Note that the probability of having ¢; type-1 sources on and i, type-2 sources on,
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given ¢ = i3 + i3 sources on in total, is

() ()

@)
Hence, the transition probabilities for the heterogeneous traffic sources can be ex-
pressed by

Ni) (N2 j N2

AT N c) [ RO

(N1+N2> ph,leZz,m (N1+N2) leale’L 11,5 =J1

7

piaj:

i1tz =i, j1 +i2=] 1=051=0

for 0 < j1 < Ny, 0 < jo < Np. The conditional generating function of the number of

cell arrivals in a time slot which is proceeded by a time slot of 4 cell arrivals can be

computed as

0o i (M) (e .
Pz(z) - Z i%}%% Ell?jlpl(i)ilyj‘jlzj

%

i(zj: (zl)(W) (1) Zjlp() ) ZJ Jl)

N1+N2> pwl i—i1,j—J1

By changing the order of summation, 372, 2]1 0 T 2fim0 2ajegys WE obtain

P(z) = io io i ((N1)+(1V2))p117)31 leg )zl,j lej 11)
55 B £
(D)

0
(N1+N2) pllv]lzh]DZ ( ))
0

_ Z(i

= i &wpﬂ )(Z)P(Q) (2).

[T ANE A
31=0 i

Therefore, we have proved the following theorem:

Theorem 4.2 The conditional generating function of the number of cell arrivals in
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a time slot which is proceeded by a time slot with arrivals for heterogeneous on-
off traffic sources, consisting of N1 type-1 homogeneous on-off sources and Ny type-2
homogeneous on-off sources, is gien by

ma:—i—SZOﬂ(M)meﬁu% (410)

(NhiLNz) o\ 1— 11

where Pz-(ll)(z) and Pﬁil(z) are conditional generating functions for the two types ho-

mogeneous sources respectively, i.e.,

POGE) = (Bi+ (1= B2 (L~ o) + a0

1

PP, (2) = (B+ (1= F2)2) (1 - az) +ap2)™ (70

—1i1

(4.11)

Theorem 4.2 is a generalization of Theorem 4.1. As a check, let oy = ay = «,

B, = B2 = 3, and Ny + Np = N, then from Theorem 4.2,

P() = e Y <N1> (M) B+ (1 - B2 (1 -a)+an)¥"

Ni1+N.:
( 1i 2) i1=0 21 19

Applying the well-known Vandermonde convolution identity [8]:

£(65) -7

we then obtain Theorem 4.1.

For heterogeneous on-off sources which consist of more than two types of homoge-
neous on-off sources, the formulas of conditional generating functions can be naturally
generalized from the formula (4.10) in Theorem 4.2, provided changing binomial co-
efficients to multinomial coefficients and adding more dimensions of summation. We
will see that the conditional generating functions are crucial in buffer occupancy

analysis in the next section.
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4.4.3 Buffer and Expected Buffer Occupancy Analysis

Define X, as the buffer occupancy just after slot k. The evolution of the buffer

occupancy is described by the following equation
Xk+1 = Ak—H + (ch — 1)+ (412)

for all k, where ¥ denotes max(0,z). Note that X, and Ayy; are not statistically
independent, since both of them depend on Ag. Hence, { X} is not a Markov chain.
However, if we describe the state of the system just after time slot & by (X, Ax), we
obtain a 2-dimensional Markov chain. The Markovian nature of the arrival process
implies that the knowledge of Ay suffices to characterize the probability distribution
of A1, while Ag .1 and X together determine the probability distribution of Xy,

as clearly shown from (4.12).
(1) Buffer Occupancy of a Statistical Multiplexer

The analysis of buffer occupancy using the generating function approach has been

extensively studied. The following is a standard analysis summarized from [9].

Define the transition probabilities of the 2-dimensional Markov chain (X}, A;) as
Qn,l[z‘,j = PI‘[X]H_I = 7n, Ak+1 = ”Xk = i, Ak = ]J (413)

Since the number of cells in the buffer just after a time slot can never be less than
the number of arrivals during the slot, we have X, > A; for all k. Thus, the state

space of the Markov chain is
§={64)li=z7j =0}
Hence,

Qn,l}z’,j = PI'[Ak_H = lIXk = ’L,Ak = ]} 4 PI‘[X]H_l = TL\A}H_l = l,Xk = ’L’Ak = ]]
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= ij . 5(n — l — (’L — 1)4“)‘1

where §(-) denotes the Kronecker delta function. Define the steady state probabilities

of the 2-dimensional Markov chain (X, Ax) as
’ k—o0

Then,

dnl = Z Anllig " Gig = Z Y2 d(n—1—(i— 1)+) “ g
(4,4)€8 (4,4)€8

for all (n,l) € S. This shows

_ n—I41 .
qnl — Zjl':[) 'Pj,l *Qn—-i+1,5 (’I’L > l) (415)
Q= im0 2j—0Pji iy

Define the partial generating function for the steady state probabilities g, as
o0

Qu(z) =) Gni2" (4.16)

n=I

for all [ > 0. Applying (4.15), and rearranging terms, we obtain

Oi(2) = 271 = P(D))poulz — 1) + 3 pus(2) (4.17)

5=0

for all I > 0. It can be shown [9] that P’(1) is the utilization factor of the statistical
multiplexer. Finally, let us define X(Z) to be the generating function for the steady

state probability of buffer occupancy, i.e.,
X(z) =Y Pr[X =nlz". (4.18)
n=>0

Then it is easy to check that

X(z) =Y Qi) (419)
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In general, an explicit solution for @;(z) is difficult to obtain; it generally involves
solving an infinite number of linear equations in (4.17). Hence, a closed form formula
for the generating function of buffer occupancy X (z) in (4.19), and hence the buffer

occupancy distribution for the statistical multiplexer, is in general difficult to obtain.

(2) Expected Buffer Occupancy of a Statistical Multiplexer

The explicit solution for the buffer occupancy distribution is generally difficult to
derive. However, we can compute the expected buffer occupancy, which is also an

important parameter of great interest in practical network design.

Denote ) as the expected buffer occupancy. Then, by (4.19),

dX(z)
dz

0-2 S o) (4.20)
=0

From (4.17), we compute

Qé(l) = (1 - Pl(l))po,l + ipj,lQ;‘(l) + (l - 1) ipj,le(l)
§=0 j=0

= (= PO+ Xpau@(1) + (= 1p() (4.21)
and
D) = 3 pia@(1) + 20— DQYL) — 1~ 1p(). (1.2)

Summing (4.22) over all [ > 0, we obtain
X"(1)=X"(1)+2>_Q)(1)l —2Q — P"(1),
1=0

or
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where 7, is defined as the k-th moments of @(1), i.e., for £ > 0,
= Q(1)IF (4.23)

Now define the k-th moments of p,; (defined in (4.1)) and p(l) (defined in (4.3)) as

My(§) = pul® (4.24)
=0
and
My, =" p()i*. (4.25)
=0

Note that My = 1. It is easy to check that
M = " p(i) Mili). (4.26)
Combining (4.23) and (4.21), we obtain
= (0 POMAO) + S QOMO) + (Mo = M) (420
=
From (4.4) and (4.24), we obtain P”(1) = M, — M, and thus,

Q =T — %(MQ — Ml) (428)

From (4.28), we need to compute M;, My, and r; to obtain Q. By (4.26), we need
to know My () to obtain My, particularly to obtain M; and M,. But note that from
definitions (4.2) and (4.24), we can compute My(j) from the conditional generating

function P;(z) (which are known). In fact, by (4.2), we have

PI) = S pyal(l = 1)+ (1 k= 1).
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Combining with (4.24), all My(j) can be iteratively derived. Here are the first several
Mi(j):
Mi(j) = F;(1)
My(j) = F/(1)+ F(1)
Ms(j) = Pj"(1)+3P/(1) + Pi(1)

(4.29)

Computing r; in (4.28) is a harder problem. We first need to make some assumptions
on Mi(j). With the following assumptions, we can design a heuristic algorithm to

compute 71, and hence Q. In particular, we need

For the functions My (j) defined in (4.24), there exists an integer () > 0 such that

Assumption 1 M;(j) is a polynomial in the variable j with degree at most 1,
Q
Mi(5) =Y ma(n)j", (4.30)
n=0

for 1 <k<Q, and
Assumption 2 Mq,1(j) is a polynomial in the variable j with degree at most Q+1,

Q+1
Ma:1(j) = Z mat1(n)j", (4.31)
n=0

where all the coefficients mg(n), 1 <k <Q+1,0<n <Q+1, are known.

With the above assumptions, applying (4.26) (4.30) (4.31), we obtain

M, = 2 me(n)M, for1 <k<Q
{ k a0 (1) == (4.32)

Mo = foi&maﬂ(n)Mn

From the © + 1 linear equations in (4.32), we can solve all My, 1 < k < Q + 1.

Therefore, under the assumptions, all My become known.

From (4.27), applying (4.30) with the facts that P'(1) = My, ro = Q, and M,(0) =
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mg(0), the unknown quantities 7, can be computed as

Q
ri = mp(0)(1 — My + Q) + (My1 — Mi) + > mi(n)ra (4.33)
n=1
for 1 < k < Q. From the  equations in (4.33), rx can be expressed in terms of @, as
well as the quantities M and my(n) (which are all known). This is particularly true

for r,. Thus we can derive 71, and plug it into (4.28), @ is then finally determined.
The above computation can be presented in the following heuristic procedure:

(i) Start with P;(z), as given in (4.7) or (4.10).

(ii) Compute My(5) from (4.29); check if assumptions (4.30) and (4.31) are satisfied;
obtain Q and my(n).

(i1i) Compute My, 1 <k <Q+1, from ({.52).

(iv) Compute ry from (4.53).

(v) Compute Q from the result of (i) and (4.28).

Theoretically, this heuristic approach is applicable if the number of cell arrivals per
slot is limited to a finite number of different values, which results in a finite integer
Q) that satisfies the assumptions. Practically, the complexity of computation (or the
“feasibility” ) for applying this approach depends on 2. In general, the approach could

be applied to those traffic sources which result in relatively small (2.

Example: Now let us consider a special case: suppose that a traffic has Q =1, ie.,

{M@)-Jyn = ma(0) +my(1)] w3

My(j) = PI1)+PAL) = ma0) + ma(1)j + ma(2)5%

Since
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it follows
M, = _m(0)
{ it (o (4.35)
o mi m2 —my ma
M, = (1~-m1(1))(1-m2(2))
From
r = m1(0>(1 - M1 + Q) -+ (MQ - Ml) + ml(l)T‘1
Q = 7 —5(My— M),
we obtain

o= ™ O = M) + 41 +my(1)( = M)
1-— ml(()) — ml(l)

. (4.36)

4.4.4 The Expected Buffer Occupancy for Homogeneous Traf-
fic

We now consider a statistical multiplexer with N homogeneous on-off traffic sources,
as introduced in Section 4.4.2. We can compute the expected buffer occupancy for the

statistical multiplexer, by applying the approach developed in the previous section.

First, by Theorem 4.1, we can compute

P(1) = Na+(1-a-p)j
P/(1) = N(N-1a*+(2Na—(1+a-8)1—a-p)j (4.37)
(1 -~ 5)%5

Hence, by (4.34), we obtain

{AAU) Na+(1—a-B)j
My(j) = Ne(l+(N-1Da)+2Na—(a-8)1-a-8)j+ (1 —a— 8)*52

Clearly, the assumptions (4.30) and (4.31) in the previous section are satisfied with
=1, and

{ml(O) = Na
m(1) = 1—a—40,
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m2(0) = Na(l+ (N —1)a)
my(1) = (@2Na—(a—-0F))(1—a-p)
m() = (1-a-@p

Applying (4.35), we obtain

_ Na

M, = No(+W-lej(etB)+Na((2N—1)e+8)(1-a-F)
2 = (o+B8)(1—-(1—-a—5)%) )

Finally, by (4.36), we get the expected buffer occupancy

g _ Nal28 + (2N - 1) - BN ~5))a— 3(N ~ 1)a’]
a 2(a+ B)*(B— (N —1)a) '

Therefore, we have shown the following theorem:

Theorem 4.3 The expected buffer occupancy in o statistical multiplexer for N ho-
mogeneous on-off traffic sources is given by

Na262 + (2(N — 1) — (3N —5)8)a — 3(N — 1)a?]

“- 2t 975~ (N - 1)a) -0

where a and (3 are transition probabilities for the on-off traffic. A

Since the expected number of cell arrivals per time slot, or the utilization in this

unit-slot service rate case, for the homogeneous on-off sources is p = QNT“B, we can

rewrite
~ P 3N -1 (N=-1(N—-p) 1
Q*E(l“ oN p+ N2 P"ﬁ') (4.39)

Clearly, @ depends not only on p, but also on 3 (or a). In fact, when p is fixed,
@ increases as (3 decreases, and even Q — oo as § — 0. Note that 1/6 is the
expected burst-length of a single two-state on-off source. This result thus shows that
Q increases as the expected burst-length increases, as expected. Figure 4.7 shows an
example of the expected buffer occupancy for homogeneous traffic with N = 10 on-off
sources. () increases as p increases, and goes to infinity when the traffic utilization

p approaches to one. The plot also shows that when § increases, i.e., the burstiness



98
of each on-off source decreases, @ also decreases. Therefore, the control of traffic

burstiness is very significant in the design of ATM networks.

N=10
80 7
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[=3
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{— beta=0.1
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Figure 4.7: The expected buffer occupancy with homogeneous on-off traffic.

4.4.5 The Expected Buffer Occupancy for Heterogeneous Traf-
fic

The expected buffer occupancy for heterogeneous on-off traffic which consists of two-
type homogeneous on-off traffic source, as introduced in Section 4.4.2, can be com-
puted in exactly the same way for homogeneous on-off traffic, as in the previous

section.

By Theorem 4.2, we can compute

JiJ\i—j

PI) = gy Sheo (5) (5) (P00 + 2P, O )P, O(1) + P, (1)),

J1/) \Jg—n J—Jj1

B = gy Sheo (5) (5180 + Py, O(0)]
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where Pj(l)(z) and Pj(2)(z) are conditional generating functions for homogeneous on-
off traffic with parameters (a1,1) and (a2, 52), as given in (4.11). Hence, we can
apply (4.37) to compute (4.40). After some algebraic manipulation, we can show
this is also the case that satisfies the assumptions (4.30) and (4.31) with Q = 1.
Following the procedure as what we did for homogeneous traffic, the expected buffer
occupancy can be computed. However, the computation involves much elementary
algebra manipulation. Unlike the simple formula (4.38) we obtained for homogeneous
traffic, the general formula of Q for heterogeneous traffic is too complicated to write.
Nevertheless, following the procedure, we can always compute @ for any numerical

example.

To illustrate this, let us consider a simple example: a two-type heterogeneous traffic
with N; = 1 type-1 on-off source with parameters (a1, 81), and Ny = 2 type-2 homo-
geneous on-off sources with parameters (ag, 32). Note that the utilization factor for

this example is
(051 20[2

+ - .
a1 +61 ay+ B

p:

Following the procedure described in previous section, we can compute

m1(0) = ay + 2
mi(1) = (1 —o1—B1) +2(1—0az— Fs))

mg(O) = o + 20(2 + 40[10[2 + 204%
ma(1) = 1[(6as+26; — 1)(1 — a1 — f1) + (4on + 5az + B2 + 1)(1 — ap — Bo)]
me(2) = 320 —a1—B)(1——B)+ (1 — 0z — 52)%].

Hence, M; and M, can be computed by (4.35), and then @ can be computed by (4.36).
The final formula for @ is too long to write. We plot some curves for the example in
Figure 4.8. In the example, we assume (3 = 23, and a1 = 2a,. The figure shows Q
versus p for different values of 3;. The curves are similar to those for homogeneous

case. Again, it shows that @Q increases as p increases, and @ can be unbounded even

when p is not close to one, as long as [, is small enough. Hence, the values of 3, and
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B¢ play a very important role in the performance of the buffer. Burstiness control is
indispensable in ATM networks. In the next chapter, we will introduce a special class
of burstiness controlled traffic, called Periodic Interchangeable Traffic, and study the

performance of a statistical multiplexer with such traffic.

N1=1, Ne=2

35¢ T T T T T T T ‘
[

——beta2=0.3 : /|

30 |
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Figure 4.8: The expected buffer occupancy with heterogeneous on-off traffic.

4.5 Concluding Remarks

In this chapter, we first gave a brief introduction to ATM and B-ISDN. We focused
on the performance analysis of buffer occupancy in a statistical multiplexer, which
is one of the most important issues in ATM technology. We then especially focus on
the homogeneous and heterogeneous Markov on-off traffic, and derived closed form
formulas for certain conditional generating functions for cells generated by homoge-
neous and heterogeneous on-off traffic. We applied a generating function approach
to study the performance of the buffer occupancy for a statistical multiplexer, and
developed a heuristic procedure for computing the expected buffer occupancy, which

allowed us to compute the expected buffer occupancy for homogeneous and hetero-
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geneous on-off traffic. Simple closed form formulas for expected buffer occupancy are
derived for the case of homogeneous on-off traffic. The analysis and some numerical
results showed that the expected buffer occupancy not only depends on the incoming
traffic intensity (utilization), but also largely on the burstiness of cells for incoming
traffic. The expected buffer occupancy becomes unbounded with large enough traffic
burstiness, even with small traffic intensity, which showed that burstiness control of
traffic was very critical in ATM networks. Furthermore, since an important class of
traffic in ATM networks can be modeled by Markov on-off traffic, and since numer-
ical and asymptotic analysis suggests that on-off traffic is the worst case traffic, the
simple result obtained here for on-off traffic is significant for dimensioning buffer size
for a statistical multiplexer, as well as for the issues such as call admission control
and bandwidth allocation, in designing ATM networks under the scenario of worst

case performance.
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Chapter 5 Periodic Interchangeable
Traffic in ATM Networks

5.1 Introduction

An important concept in ATM networks is the efficient sharing of link capacities
through statistical multiplexing of variable-rate traffic sources. Buffering is provided
at a statistical multiplexer to manage traffic fluctuations when the instantaneous rate
of the aggregate incoming traffic exceeds the capacity of the outgoing link. To provide
quality-of-service (QOS) guarantees to customers in ATM networks, it is essential to
estimate the buffer performance, which is especially important for designing higher

level network management issues such as call admission, buffer allocation, and traffic

control.

As we showed in the previous chapter, expected queue occupancy for a statistical
multiplexer with Markov on-off sources, which are not burst-constrained, could be
unbounded, even when the utilization factor (traffic intensity) is strictly less than
one. Hence, traffic sources must be regulated entering an ATM network, and so

performance analysis for a statistical multiplexer for burst-constrained traffic is very

important.

A widely applied scheme for obtaining burst-constrained traffic is the leaky bucket,
or (o, p) regulator [14] [41]. In this chapter, we introduce a special type of burst-
constrained traffic, namely, periodic interchangeable (P1) traffic, in which each traffic
source is periodic with the same period. We will introduce a well-known combinato-
rial theorem, the classic Ballot Theorem, and show how to apply generalized Ballot
theorems to analyze the buffer occupancy in a statistical multiplexer for such traffic

sources. We then specifically consider the uniform PI (UPI) traffic, in which each
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traffic source generates cells which are uniformly distributed within a period. This
traffic model is a generalization of the periodic traffic discussed in [15] [22] [28] [3§],
in which each source generates a single cell within a period. This type of special UPI
traffic is called unit UPI (UUPI) traffic here. The periodic traffic model is neither
stochastic, since all the cells are generated periodically, nor deterministic, since cells
are generated in a random phase within a period. So we consider the traffic model
semi-deterministic. We hope that our study can shed light on the worst case perfor-

mance of a statistical multiplexer with burst-constrained traffic in ATM networks.

The analysis in this chapter is based on a study of generalized ballot theorems in [22],
which originated from the classic Ballot Theorems. The rest of the chapter is orga-
nized as follows. In Section 5.2, we introduce the classic ballot theorem and some
generalizations from Takacs [46] [47]. We also introduce a special type of random
variables, (cyclically) interchangeable random variables. In Section 5.3, we introduce
a traffic model for a special class traffic sources, namely, the periodic interchangeable
(PI) traffic. In Section 5.4, we show how to apply the generalized Ballot theorems
to compute the distribution of buffer occupancy and expected buffer occupancy for
a statistical multiplexer with PI traffic. We also consider a special kind of PI traffic,
uniform PI (UPI) traffic, and compute the survivor functions and the expected buffer
occupancy. Specifically, we will derive simple asymptotic formulas for the survivor
function and expected queue occupancy for unit UPI (UUPI) traffic. In Section 5.5,
we will show that, asymptotically, the UUPI traffic is the worst among all UPI traffic
when the number of sources is sufficiently large. Numerical results are given, imply-
ing that UUPI traffic might be the worst traffic among all UPI traffic, even when the

number of traffic sources is small. Finally, in Section 5.6, we make our conclusions.
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5.2 The Ballot Theorems and Interchangeable Ran-

dom Variables

The following theorem is originated in 1887, usually called Bertrand’s classic Ballot

Theorem [46] [47]:

Ballot Theorem. If in a ballot candidate A scores a votes and candidate B scores
b votes and if a > b, then the probability that throughout the counting the number of

votes registered for A is always greater than the number of votes registered for B is

given by
a—b

Pla,b) = - (5.1)

3

provided that all the possible voting records are equally likely. W

The Ballot Theorem can be proved either by mathematical induction [46] or by a
clever method called the reflection principle [18]. The theorem is remarkable in that,
under certain condition (“equally likely voting records”), the final outcome (“num-
bers a and b”) of a certain process can completely determine the likelihood of an
event which is a collection of sample paths that run through the whole process. The

following interesting theorem is equivalent to the classic Ballot Theorem [46]:

Theorem 5.1 Let a;, 1 <1 < M, be nonnegative integers with Zfil a;, =N < M.
Then among the M cyclic permutations of (a1, a2, ,am), there are exactly M — N

for which the sum of the first r elements never reaches r for all r € [1, M]. B

There is a class of important discrete time random processes, in which the random
variables at different time moments within a time period are not independent, but
have joint distribution invariant to permutations of the random variables. More pre-

cisely, we have the following definition:

Definition. Random variables (X1, Xs,---, Xy) are cyclically interchangeable if
(X1, X5,-++,Xy) take the value (21,22, -, Zn), then they have the same proba-

bility for each of cyclic permutations of (z1, 22, -,z ). Similarly, they are called
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O»—‘Or—l»—l}
i—‘Or—*Or—-tlgB
H»—lO»—koo}
c:»—l)--—tob—-kg>
—| o= =l o2

O | | DN =

Table 5.1: An example of cyclically interchangeable random variables

interchangeable if they have the same probability for each of all permutations.

Takacs [46] made a further interesting generalization of the classic Ballot Theorem,

which applies to cyclically interchangeable random variables.

Theorem 5.2 If (Ay, Ay,---, Ay) are cyclically interchangeable random variables

such that ¥M, A; = N, then

i N
Pr{d A; <i,Vie[l,M]} = w YN<M (5.2)

j=1 0 otherwise.

Example: Consider cyclically interchangeable random variables (A;, As, A3, A4, As),
N = 3 and M = 5, such that the five sequences in Table 5.1 occur with the same
probability 1/5. It is easy to check that only sequences 3 and 5 satisfy the condition
iy Aj < i,Vi € [1,5]. Hence, Pr{X¥}_; A; < i,Vi € [1,5]} = 2/5, which is exactly

the number computed from Theorem 5.2.

With the generalized theorem, Takacs [47] was able to compute the distribution of
busy period in a queue and the distribution of the number of incident vertices for
a given subset of vertices in a random graph. The following theorem follows from

Takacs’ generalized theorem [22]:
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Theorem 5.3 If u > 0 is an integer and (Ay, As,- -, Apy) are interchangeable ran-
dom variables taking on nonnegative values such that ¥, A; = N < M + u, then

: . . M- N+u

j=1 r=1

Pr{i A, =r+u}. (5.3)

When u = 0, we then simply have

: N
Pr{d A;<iVie[1,M]} =1— 7

=1

Theorem 5.3 provides a method for computing the survivor functions in a queue
system when the arrival process to the queue is interchangeable, as defined in the
next section. In fact, the theorem can be used to specify the partial-sum fluctuation
in the context of random walks. We will show how to apply the theorem to analyze
the buffer occupancy of a statistical multiplexer with certain traffic sources, namely,

the periodic interchangeable (PI) traffic sources.

5.3 Periodic Interchangeable Traffic

An ATM traffic source can be considered as a discrete-time random process. Time is
slotted, and during each time slot, a cell is either generated or not. Hence, during a
period of time, a traffic source can be represented by a discrete-time random process
which consists of a sequence of random variables taking values zero or one only. If
the random variables are independently identically distributed (iid), then the traffic
is a sequence of Bernoulli random variables, and the buffer occupancy of a statistical
multiplexer with such a traffic source can be ecasily analyzed [26]. It is a more chal-
lenging problem when the random variables are not independent, such as the Markov

on-off traffic studied in Chapter 4.

We consider a special class of traffic sources, namely, the Periodic Interchangeable

(PI) traffic sources. A PI source is one such that all the cells are generated periodi-
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cally with certain period, and within a period, the sequence of random variables are
interchangeable, and the sum of the random variables is not random, but determin-
istic. When the period is M and the sum is N, the source is called a PI source with
parameters (M, N). It is easy to show that the superposition of any number of PI

traffic sources is also a PI source.

The reason we study PI traffic is due to its burst constraint properties. The bursti-
ness of a PI source with parameters (M, N) is no more than N during a period of M
time slots. Even though the traffic model may look artificial at first, it does capture
the fundamental issue, that is, the cell burst within a period of time is always con-
strained to that deterministic number. The buffer behavior of a statistical multiplexer
with such PI traffic may therefore shed light on the performance of statistical multi-
plexers for more general burst-constrained traffic. The property of interchangeability
actually implies the “random phase” for each traffic source presented to a statistical
multiplexer. Furthermore, the simplicity of the traffic model allows us to apply the
combinatorial theorems introduced in the previous section to do the exact analysis.
In fact, we will derive closed form formulas for the survivor functions and expected
buffer occupancy in this case, and also some simple asymptotic formulas, which can

serve as rules of thumb for the design of statistical multiplexers in ATM networks.

5.4 Multiplexing Periodic Interchangeable Traffic

In this section, we consider a statistical multiplexer with PI traffic sources. We will
show how to apply the generalized Ballot Theorem to analyze the buffer occupancy
of a statistical multiplexer with such traffic sources. We then consider some special
type of PI traffic, and derive simpler closed form formulas which characterize the

performance of statistical multiplexers.
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5.4.1 The Queueing Model and Buffer Occupancy

Consider a statistical multiplexer with K input traffic sources which generate cells
independently. Time is slotted, and it takes one slot for the transmission line (the
server) of the statistical multiplexer to transmit a cell, i.e., the capacity of the system
server is one. The cells arriving to the multiplexer are served in a first-come-first-

served (FCFS) manner.

We assume each of the K sources is a PI traffic source such that source i, 1 <17 < K,
generates n; cells according to certain distribution among a period of M slots, and
produces cells periodically with the period M. That is, source ¢ is a PI source with

parameters (M, n;). Define

K
i=1

the number of total cells arriving to the multiplexer during a period of M slots. Note
that the number N is fixed, not a random variable. Clearly, if N > M, the total
input traffic exceeds the multiplexer capacity and congestion will occur. For stability

of the queueing system, we need N < M, so if we define the utilization factor (or

traffic intensity) as

then, p < 1. In our analysis of the queueing system, we assume that the departures

take place at the beginning of slots. Let us define

@, = buffer occupancy at the end of the kth slot

Ar = number of arriving cells in the kth slot.

Then, by the PI assumption for each traffic source, the accumulated traffic is PI traffic
with parameters (M, N), and the random variables Ay, As,---, Aps are interchange-

able. Clearly, we have



109
Now we want to compute the buffer occupancy for the statistical multiplexer under

the situation. The evolution of the buffer occupancy is described by
Qr = max(Qp_1 — 1,0) + Ay (5.8)

for £ > 0. Since the arriving pattern is periodic, hence Ay = Ai mod as. Let us assume

Qo = 0, then by iterating on & in (5.8), we obtain

Qr = max(Ag, Ay + Qr—1 — 1)
= max(Ag, Ax + Arm1 — 1L, A+ Ap1 + Q2 — 2)

k
= max( ), 4 (5.9)

j=k—1
for k > 0. Since the arriving pattern is periodic and K < M, for k£ > M a maximum
must occur for ¢ < M, hence,

k
Qr= max ( Y A;—

<
0<i<M i

for k > M. Therefore, (), is also periodic with period M. Without loss of generality,
we can focus on the buffer occupancy at time M, denoted simply by @, which can be

expressed as

= max Z A; —1i) (5.10)

<
01<M M —i

Hence, the survivor function can be computed as

PHQ>q} - 1-P{Q<q}
= 1—Pr{max Z A; —1) <gq}

j=M-—i

= 1—Pr{max( Z. Aj—i+1) <q}
J=M-(i-1)
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= 1- Pr{lrgi%}]% ZAM i+ — 1) < g}
Recall that
M

i=1

for ¢ > 0. Applying Theorem 5.3, we obtain the following theorem:

Theorem 5.4 The survivor function for the buffer occupancy in a statistical multi-

plexer, with K incoming PI traffic sources with parameters (M, N), is given by

N—q - N r
Pr{Q>q¢} = > yr—'—qPr{z Aj=q+r}. (5.11)
r=1 j=1

Specifically, when ¢ =0, Pr{Q >0} = & =p. W

Assume K > 1. Since A; < K, ¢+ r < Kr, hence r > [z ]. To obtain nonzero

survivor function, since N — ¢ > r, it follows ¢ < | £2LN|. Therefore, the maximum

buffer occupancy is
K—1
max — L—K-—NJ S N. (512)

Define @ to be the expected buffer occupancy of the statistical multiplexer (excluding
the cell in transmission). Note that the utilization factor p is the expected number

of cells in transmission (i.e., the expected number of “customers” in service). Then
gmax gmax

Q= Pr{Qu>q}—p=> Pr{Qu > g}
g=0 g=1

Hence, we have the following theorem for the expected buffer occupancy:

Theorem 5.5 The expected buffer occupancy in a statistical multiplezer, with K in-

coming PI traffic sources with parameters (M, N), is given by

Gmax N —q

Q=> > MN:QP {ZA =q+r}. (5.13)

g=1 r=1
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Hence, from Theorem 5.4 and Theorem 5.5, we can compute exactly the survivor
functions and expected buffer occupancy of a statistical multiplexer with PI traffic,
as long as we know Pr{>7_, A; = g+r} for all 7. In the next section we will consider
a special type of PI traffic, namely, uniform PI (UPI) traffic, and investigate the

buffer occupancy for a statistical multiplexer with such traffic sources.

5.4.2 Uniform Periodic Interchangeable Traffic

Consider a special type of K PI traffic sources: each source 2, 1 < ¢ < K, generates

n; cells uniformly among a period of M slots. The class of traffic is called uniform PI

(UPI) traffic.

Let us consider a binary vector of length M. Suppose the weight of the vector is n
where the n 1’s are uniformly distributed among the vector. Define a(” as the sum
of any consecutive r bits of the vector, then the random variable a(") satisfies the

hypergeometric distribution [18], namely,

Pr{a =m} = M (5.14)

(%)
Since the K sources are independent, we have
r K
Pr{d A;j=qg+r} = Pr{>_ af"” =g+ r}
j=1 i=1

S s R,

my 4+ mg =q+r
0<m <n,1<i<K

Hence, by Theorem 5.4, we obtain the following theorem.
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Theorem 5.6 The survivor function for the buffer occupancy in a statistical multi-

plezer, with K incoming UPI traffic sources with parameters (M, N), is given by

Pr{Q > q} = ;q VMA} ]j: g 3> 1 ——7(’“)((;)’”) (5.16)

my+--+Mmg=qg+7
0<m;<n;,1<i:<K

Denote n;, = maxj<i<x n;. If ¢ > N —ny, then

mr+N—np = mL+Zni
1AL
Z m1+---+mK
= q—|—r

> N—np+r,

which implies my > r, hence Pr[Q) > q] = 0. Therefore, the maximum queue occu-
pancy is

Gmax = N — 1211342](( n;. (517)

Therefore, by Theorem 5.5, we obtain the following theorem:

Theorem 5.7 The expected buffer occupancy for a statistical multiplexer with K UPI

traffic sources with parameters (M, N), is given by

Q - =5 M —r Z P W— (518)
my+etmg =g+

0<m<n,1<i<K
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5.4.3 Unit Uniform Periodic Interchangeable Traffic

Now we further restrict the UPI traffic such that n;, = 1, 1 < i < K, for each source.
Hence, there is one and only one cell generated during a period of time by each source.
This special class of UPI traffic is called unit UPI (UUPI) traffic. Clearly, for UUPI
traffic, N = K, and ¢uax = K — 1. Furthermore,
r T M—r
P A; = = o <_m&*m_>
T{Z j=q+r} = Z H (M>
J=1 i=1 n;
m1+...+mK:q+r
0<m; <n;,1<i< K
AT e\ E—(g+7)
_ ( K ) 6

M K
e (7)
_ (K (Lya+r(1 — —yK-(atn),
g+r) M M

Hence, by Theorem 5.7, we obtain

Koy — K K
Pr{Q > ¢} = Zl Tj—q— (q N 7,)(%)‘””(1 — %)K‘(W). (5.19)

The formula (5.19) has been derived in [22] and [38]. Since Pr{Q > 0} = &% = £ = p,
we have the identity

Zl Afw__[: (I:) (%Y(l - —A%)K’T = % (5.20)

Hence, we have proved the following theorem:
Theorem 5.8 The expected buffer occupancy for a statistical multiplezer, with K

UUPI traffic sources with period M, is given by

Vi T yarr(q — yE=(ain), (5.21)

M M
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The formula (5.21) can be simplified, especially when the number of traffic sources

K is sufficiently large. Since M = %, we can rewrite formula (5.21) as

) CEM-K+q( K r r
= - gt ] — — K—(g+7) 99
Q r=1 q:l M—T <Q+T>(M) ( M) (5 )
-y i M- Kts—rik ( 4 )S(l_L)K~s
—= r=1 s=r+1 M——’[“ s M M
K-1 K S — pr K pr or
— 1 o S 1 _pr K
= (1—p) filK,p)+p- f2(K,p), (5.23)
where
K-1 K K or, or L,
r=1 s=r+1
and
K-1 K §—pr K pr or
K = Plyscy _ PTyK—s |
fQ( 7p) ~ S§1K—pr<s>(K) ( K) (525)
When p < 1, we can show that
afl —aK*1
hle < p—iﬁ_)’ (5.26)
where
ospet (5.27)

(See appendix B for the proof). Note that o < 1 when p < 1. Define the function

n
so1ip) = ()=o) (5.29
Then we can show that
K-1 r 7
(K0 = Y Zblr K = 1;52), (5.29)
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(See appendix C for the proof). We now consider two cases.
(1) p=1

When p = 1, from (5.23) and (5.29), it follows

K-1

— r r
Q = fQ(K’p) = Z ?b(T,K— 17?)

r=1

Note that b(r, K;p) = b(K — r,K;p). Assume K is even. Then

Kl r K1y r
—b(r,K —1;,—) = —b(r,K; —
,’Z::l K (r7 ’K) 7;1 K (T7 3 K)
K/2-1 K-1
r r 1. K 1
= Z —b(T’,K, )+ Z b(T,K,—)+—b(—,K; )
o K K iaa K K 272 2
Kpt r.o 1, K 1
= b(r,K;—)+ =b K
7;1 (7"7 ’K) + 2 ( 2 b 72)
1 K2 Kl 1 K 1
= [ Y on K )+ Y b K+ Sh(5 K g)
2 A K r=K/2+1 K 272 2
1 K-1
2 ; (T> ’K) (5 30)
From [45], we have the following formula
X (KN, i, i\ ki K 1
)1 — =) = — — = +0o(1). 5.31
> (§)gra— =5 — 5o (531
Therefore, we have shown
- 1, /7K 1
= (4= — = 1). :
G =50/ —3)+o) (532

Note that, from above formula, the expected queue occupancy is proportional to the
square root of the number of traffic sources. Thus the expected queue occupancy

approaches infinity when the number of sources K approaches infinity.

(2) p<1
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When p < 1, we can show the following upper bound

pa(l — aK_l)( T 1

2(1 — ) sk~ a1 to(). (5.33)

f2(K7p) S

(See appendix D for the proof). By (5.23), (5.26), and (5.33), we obtain the upper

bound for the expected queue occupancy:

_ 1 [ 1 pa(l —af 1)
<(A—p+=y/m=p——=p) L 34
Q<I-p+5y5pP~ cgP) T (5.34)

Note that when K — oo,
0 < pa(l — p)
11—«

(5.35)

b

i.e., the expected queue occupancy is always upper-bounded by a constant, indepen-

dent of K. In summary, we have proved the following theorem:

Theorem 5.9 The expected buffer occupancy for a statistical multiplezer, with K
UUPI traffic sources with period M, is given by

o = HE-D o) - -
< (1 1 [m 1 pa(1—aX=1) _ pa(l—p) )
=~ ( —p + 2 é_Ep ﬁ—l{-p) ' l—-a — l—o p < 1’

when K is sufficiently large. B

From Theorem 5.9, the expected buffer occupancy for a statistical multiplexer with
UUPI traffic is O(v/K). This serves as a rule of thumb in dimensioning buffer size of
a statistical multiplexer with traffic sources which are not “worse” than UUPI traffic.
We will show the UUPI traffic is asymptotically, when the number of traffic sources
is sufficiently large, the worst among all UPI traffic in next section. In fact, our
numerical results in Figures 5.1, 5.2, 5.3, and 5.4 show that UUPI seems always the

worst among general UPT traffic, even when K is small.
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5.5 Asymptotic Analysis

Theorem 5.7 provides an exact formula for computing the expected buffer occupancy
for general UPI traffic sources. Unfortunately the formula is rather complicated. We
want to see what happens when the number of sources is large. Note that the hy-

pergeometric distribution can be approximated by Poisson distribution under certain

conditions [18]. Let

n
A=r-— .
T (5.37)
then we have
(G5 e F e 538
(%) mt |
when M is large enough. Hence, by Theorem 5.6,
N—q _ LZinln’ —T-ZzK=1m1 mi ., K
PHQ>q) ~ 3 ol > - ) A
~ M- myl--mp!
Z£1 m;=gq+r
m; < min(r, n;)
Nzapr - N+q N, T ni't - onpX
= o gtr 1 K (539
2=, ¢ 2 T ma (839
Simi=q+r

m; < min(r, n;)

Now if all the sources have the same rate, i.e., n; = n, 1 < i < K, then we have

N = Kn, and
Pr{@ > ¢} NZ N+q _%( r ot Z e
r ~ T
q 2 e 7 o
Zf; m; =q+r
m; S min(r, nz)
g qM N+q rN T 1
- TH ()9 petT 1
—r ¢ P 3 —

=1

-3

K
= 1mz—Q+T

m; < min(r, n;)
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g N—QM—N+q_€_%(m)q+r' Katr

- = M-r M (g+7)!

- N-apf—N+gq ' e—%(%)qw

= M-r (g+r)!
NSO —N+g N r 7

~ — 1. — )9 (1 = —)N-letn), 5.40
MR (Y - (5.40)

The last expression is exactly the formula (5.19) for the survivor function for the UUPI
traffic when the number of traffic sources equals N. Therefore, when p is fixed, and
when M is sufficiently large and hence K is sufficiently large, the survivor functions
and expected buffer occupancy for any UPI traffic will asymptotically approach those
for UUPI traffic. So the result in Theorem 5.9 in fact gives the worst case buffer
performance among all UPI traffic sources in asymptotic sense. Indeed, the numerical

results in Figures 5.1, 5.2, 5.3, and 5.4 show this is the case, even when K is small.

Survivor Functions (Uniform M=5,N=4,K=23,4)

107 ¢ T T T

P{Q>q}

Figure 5.1: The survivor functions for UPI traffic (I).
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Survivor Functions (Uniform M=10,N=8,K=2)

Figure 5.2: The survivor functions for UPI traffic (II).

5.6 Concluding Remarks

In this chapter we first introduced a special type of random variables, (cyclically)
interchangeable random variables, and a class of burstiness constraint traffic sources,
periodic interchangeable (PI) traffic. We introduced a celebrated combinatorial the-
orem, the classic Ballot Theorem, and then showed how to apply generalized Ballot
theorems to analyze the buffer occupancy in an environment of statistical multiplex-
ers in ATM networks for PI traffic sources. Explicit formulas for the distribution of
buffer occupancy (survivor functions) and the expected buffer occupancy were derived
for uniform PI (UPT) traffic, which is a special form of PI traffic sources. In partic-
ular, we obtained simple asymptotic formulas for survivor functions and expected
buffer occupancy in a statistic multiplexer for unit UPI (UUPI) traffic sources, a
special type of UPI traffic sources. Furthermore, we showed that UUPI sources cre-
ate asymptotically the largest buffer occupancy for a statistical multiplexer among
all UPI traffic with the same utilization factor (traffic intensity), when the number
of traffic sources is sufficiently large. Numerical results implied that UUPI sources

might be the worst traffic sources among all UPI sources, even when the number of
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Survivor Functions (Uniform M=10,N=8 K=3)
10 T T T T T

n1=6,n2=n3=1 ~

. ni=B 2
107k : S . ]
: ni=4,n2an3=2:0 :

N

=

A ¥ N
o0k : N=42=3 311 A
o : : X

\
X

10 "k R : : \\ ~
ni=n2=3,n3=2 K=8

Figure 5.3: The survivor functions for UPI traffic (III).

traffic sources is small. The result of this chapter sheds light to the study of buffer oc-
cupancy for worst case traffic sources with burst-constrained and buffer management

in a statistical multiplexer in ATM networks.
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Expected Queue Ocupancy
6 T T T T T T

C3r

0 10 20 30 40 50 80 70 80 90 100

Figure 5.4: The expected buffer occupancy for UUPI traffic.
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Chapter 6 Summary and Conclusions

This thesis aims to investigate two rather separate issues: network reliability and
traffic analysis. The first concerns the reliability for unreliable systems, including
communications networks with possible link failures, and more general fault-tolerant
systems. The second concerns the traffic characteristics specifically in ATM networks

regarding to the performance of statistical multiplexers.
(1) Reliability in terms of the MTTF

One way in which we studied the reliability issue is via the MTTF, which considers sys-
tems that have components failures and repairs with exponential distributions. Such
systems can be modeled by continuous-time discrete-state Markov chains. In Chapter
2, we studied reliability in terms of general fault-tolerant systems with exponential
rates of component failure and repair. We developed two systematic approaches, the
all-path-weight approach and the signal-flow-graph approach, to compute the MTTF
for fault-tolerant systems. The significance of these two approaches is not only to
provide new techniques for computing the MTTF, but also to provide insight. The
techniques developed allowed us to obtain a simple asymptotic formula for estimating
the MTTF when a so-called safety factor is large, which is usually the case for real
systems. The methods developed for general fault-tolerant systems were applied to
study communications networks with link failure and repair. We derived a simple
asymptotic formula for computing the MTTF for such networks. We were able to
show that the networks based on Harary graphs, which have the largest edge con-
nectivity for the given number of lines and nodes, are asymptotically the optimal

networks in terms of the MTTF.

(2) Reliability in terms of reliability polynomials
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The other way we studied the reliability issue is via reliability polynomials for net-
works, with component failures with certain fixed probabilities that are independent
of time, but a function of the size of the network. No repair is allowed in such systems.
In Chapter 3, we modeled such networks by random graphs, and analyzed reliability
polynomials for such networks from a framework of random graph theory. We specifi-
cally focused on regular random graphs and analyzed the evolution of regular random
graphs in terms of the expansion of network size. We proved that the number of iso-
lated vertices in a regular random graph is asymptotically Poisson distributed. We
also showed that the probability that a regular random graph contains a nontrivial
component is asymptotically zero, and therefore, the expected value of the number
of isolated vertices plays the most crucial role in determining the connectedness of
a regular random graph. We showed the transition phenomenon when the regular
random graph evolves from edge probability zero to probability one because of the
expansion of network size, and identified the associated threshold functions. Our
work accomplished the study of the evolution of regular random graphs which do not
appear in the literature of random graphs, and our results are generalizations of some
famous previously known results in random graph theory. Finally, we introduced a
realistic slotted model for fault-tolerant systems that have a regular graph topology,
by which the MTTF of such fault-tolerant system can be easily, asymptotically, com-

puted using the reliability polynomial formula we developed.
(3) Markov on-off traffic

One traffic model we analyzed in ATM networks is homogeneous and heterogeneous
Markov on-off traffic. In Chapter 4, we studied the buffer occupancy in a statisti-
cal multiplexer with such Markov on-off traffic. We applied a generating function
approach and derived closed form formulas for certain conditional generating func-
tions of cells generated by such traffic. We developed a heuristic procedure which
allowed us to compute the expected buffer occupancy for homogeneous and heteroge-
neous Markov on-off traffic. This analysis, and some numerical calculations, showed

that the expected buffer occupancy under such traffic was not only dependent on
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the incoming traffic intensity, but also on the burstiness of the incoming traffic. The
expected buffer occupancy becomes unbounded with large enough traffic burstiness,
even though the traffic intensity is small. These results showed that burstiness con-
trol of traffic is very critical in ATM networks. Furthermore, since a great deal of
traffic in ATM networks can be modeled by Markov on-off traffic, and since much
numerical and asymptotic analysis suggested that Markov on-off traffic is the worst
case traffic, the result obtained here would be significant for dimensioning buffer size
for a statistical multiplexer, as well as for the issues such as call admission control

and bandwidth allocation, in designing ATM networks under the scenario of worst

case performance.
(4) Periodic interchangeable traffic

Since burstiness control of traffic is critical to quality of service guarantees in ATM
networks, the analysis of burst-constrained traffic, and hence the performance of a
statistical multiplexer with burst-constrained traffic is important. In Chapter 5, we
introduced a class of burst-constrained traffic sources, namely, the periodic inter-
changeable (PI) traffic sources, and applied generalized Ballot theorems to analyze
the buffer occupancy in a statistical multiplexer with PI traffic. We derived ex-
plicit formulas for the distribution of buffer occupancy (survivor functions) and the
expected buffer occupancy for such traffic sources. We further considered special
classes of PI traffic, UPI and UUPI traffic, and obtained simple asymptotic formulas
for survivor functions and expected buffer occupancy. We showed that UUPI sources
create asymptotically the largest buffer occupancy for a statistical multiplexer among
all UPI traffic with the same utilization factor (traffic intensity), when the number
of traffic sources is sufficiently large. Numerically results implied that UUPI sources
might be the worst traffic sources among all UPI sources, even when the number of
traffic sources is small. Our results shed light on the study of worst case performance

of statistical multiplexers with burst-constrained traffic in ATM networks.
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Appendix A The proof of Lemma 2 in
Section 2.4.3

Lemma 2:

Z Pi PiPi+1 PiPi+1 " Pi-1
Y J /\ et oy, e Pyl
(.3) = H 2 Az- RV WO S VI

b

Wherepizfj‘—zfor1§i§nandpi:Of0ri2j.

Proof: We prove the lemma by mathematical induction.

(i) The claim is true for ¢ = j, since
i 1 i—1
= HAk(erO) = II
k=1 ‘ k=1

(ii) The claim is true for j =i+ 1, since

Y(e,i+1) = (I 2)(—2i1)
k<i—1
Zz-H
= H M)
k<i+1 )‘)‘Z+1
— H /\k ,uz_*_)‘z—f—l
k<i+1 )\AH‘I
— z+1 z H /\k )
k<i+1 /\Z )‘1+1

(iii) Assume the claim is true for Y'(i,j — 1) and Y (4,5 — 2) for j > i + 2, to prove it

for Y (4, j), we proceed as follows.

Y(i,j) = kH A)( z+1 Z+z)"'(—2§-)
= (T M) (—2n) - (2 ) (= (2 — pyr 2371

k<i—1 7—1
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= Y(i,7 1) (=2) = Y(5,7 - 2) - (j—1Aj-1)

j—1 1 . s
j—1—i Pi Pi " Pj—2
= (1)1 M) (— + NI R o - W GV
( ) (kl;ll k)()\z /\H—l Aj_l ) ( g)
j-2-i = 1 Pi Pi " Pj—3
—(=D)7HII A+ e ) ()
k=1 Ai A Aj2
i T 1. p Pit pi-s | PittPim2y %
= GO+ — ) (30
( kl;ll Ai i Aj—2 Aj—1 Aj
g 1 Pi Pi Pj-3 Hi—1
T MG+ o )< ()
kI:Il A Ain Aj—2 A
g 1 O PipPi3 2 — i1
= (=1 M) (= + ot =) - (=
IG5 Ay (Bt
PiPi-2 %
TRAA. S )
Aj,1 )‘j
j—1 ! 1 Pi Pi Pi-3 Pi Pj—2 ,u]—l‘f‘/\
= ()T A+ o e PP P i i)
kI:Il /\z /\i+1 )\j—2 )\j—l /\j
i 1 p it Pi—s | PittPi—a | Pitcc i
= -1 J—t )\ — + 4+ -+ J + J + J ,
( ) (k];[l k)()\l Ai+1 >\j~2 )\jfl )\j )

so that the claim is true for Y (4, ).

Therefore, from (i), (ii) and (iii), we have proved the claim is always true for Y (i, 1)

and for Y (4,7 + 1) and hence for Y (7,7 + 2), which completes the proof of the claim.
|
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Appendix B The upper bound for
fi(K, p) in Section 5.4.3

When p < 1, we want to obtain an upper bound for the following function:

fi(K,p) = il <K>(%)S(1 ~ %)Kﬂ_

K (K\  pr pr
< s o B K—s —p(r+1—s)
N s:;& (S>(K) ( K)
K\ pr Prik_s _
< mYs(q s p(r+1)
< £ (M)geru-fre
— (%e“ +1— %)K . e Hr+1)

Define a function

_ (P PT\K _—pu(r+1)
K = (et 41— LYK . grulrt])
9(K, p, jt) (Ke + K) e

Taking the derivative with respect to v,

pr

(K, p,p) = K(FZet 41

Let ¢'(K, p, u) = 0, when r < K — 1, we have

DK = pr)
or(K—r—1) "

— _p1>K,1 P op pnlrt1) (ﬂeﬂ+ 1— ﬂ)K (r+ 1)e*u(r+1).
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Hence,
pr (r+ 1)(K = pr) pr. g (r+1)(K —pr),
K < pr P . (r+1)
I=pr+1 4, 1
_ 1 r . _—T‘-f-l' r+1
( +K—r—1) (1 7°+1) P

< e(lfp)rntl . e—l . pr+1

= p-(pe'?)

_ r
- p'au

where o = pe' ~”. Therefore,

fill,p) < p-a’ +

IN
™
Q

s
+
>
®

IA
i M
°
Q‘Z
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Appendix C The derivation of formula
(5.29)

We want to simplify the function

K-1 K
s—pr (K\ pr pT\ K
K,p) = =1 —-=)"c
pip =% 3 w0 (V) -5
Note that
= K K 0 K
s -s __ - K K1
SZ:;)S (S>pq 5Pt p(p +4q)
Hence,

s=0
which results in
Ko
fa(K,p) = 2 K_pTh(K,p,r),
where
bl pir) = Slor = o) ) G = e
Since

) = oS (M) mra - G- (T - e

and
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por or or or
= (1—=)b(s, K —1;—= Zb(s — 1. =
( K) (87 1K>+ Kb(‘; 1’K 1’ K)?
it follows,
T pr por or
h(K = 1—-—= b(s, K—1,—)—bls—1,K —1,— g
( ’p7/r) p/r[( K)S:1( (87 ’K) (S 3 ﬂK))+b(O7K7K)]
pr or or or
= or(1- %)b(r,K —1; "—KT).
Therefore,
LS| pr pr
K = cor(1 — EVb(r K — 1 ==
K-1
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Appendix D The upper bound for
fo(K, p) in Section 5.4.3

We have
pr

K-
szz

When p < 1, we want to derive an upper bound for the function. Rewrite

Nl‘

i = B[ )ro- g

r=1
Lt (K—1\ 7, T K1_r or/ K .
= ¥ 2 (- e R
o T —r/K
Since
1—pr/K g1 (1—p)r K= )(1-
S et kel ro— (1 =P p)r
) (14 2SR
< e ')
< e(l_p)T’
it follows,
K—1 r+1
prrfK—1\ r, " \K—1—r _(1-p)r
K —)(1—-—= . P
pic) < % D) Gora - et
Kl r(K—-1\,6r r
— ro (1 — K—1-r
oy (T Gra -5
KL v (K\, 7., T\ Kr
- oy o (N )@=
Clearly, al’) = o" is a decreasing function of r. It is easy to verify that to show

aSP) = %(f)(%)T(l — %)K_T is an increasing function of r for 1 < r < K — 1 is

equivalent to show (1 + 1/2)**(1 —1/(K —z))** ' >1for 0 <z < K — 1. The
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latter inequality is clearly true when one realizes that (1 + 1/z)'"® is a decreasing
function with the limit e (the lower bound), and (1 — 1/(K — z))%~*"! is also a

decreasing function with the limit ¢ (the lower bound).

Now recall the following Chebyshev’s inequality: if 0 < agl) < agl) < .- < all and

agQ) > agf) > ... >a® >0, then

n 1 n n
Zal(l)a 2) < E(Z a(l)) . (Z a(Q))
=1 =1 i=1
Therefore,
1 K oy (KN r r
K < - Ty, o — V(1 — — K—r
pke) < pey (2 o) (8 2 (F)qra- fre
1 — K-1 1 K-1
- pllma ) b K L),
1l—a K—-1—7 K K

Applying (5.30), we obtain

(K, p) < - 'K—I'E( T*§+0(1))
pa(l—of 1) 7
21— o) Wag ~ 30/ +o)
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