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ABSTRACT 

The holographic stereogram, a hologram synthesized from ordinary 

stereoscopic component photographs, is investigated as an alternative to classical 

holograms and to previous types of stereograms for three-dimensional perfect 

imagery. The process is partly holographic in nature, but it provides images of 

naturally illuminated objects, and its application is not limited by the technology 

of laser illumination. The pinhole camera stereogram and the fly's eye lens 

stereogram are also analyzed, since the principles of their operation are similar. 

Pinhole camera stereogram imagery is shown to have several deficiencies, among 

which is the necessity for small camera-object distances. The fly's eye lens is 

much superior, but is limited in practice by aberrations, a difficulty which the 

holographic stereogram overcomes. Also treated are the full-color, the focused­

type, and the distortionless-scaled holographic stereogram, and optical spatial 

filtering of holographic stereogram images. 

The achromatically imaged Fresnel zone plate is analyzed as a technique 

of very general applicability which compensates for source incoherency in two­

beam type holographic arrangements. The emphasis is on physical interpretation 

rather than mathematical formulation. Two simple graphical mnemonics are 

developed for rapid analytical inspection of the effects of, respectively, temporal 

and spatial incoherence of the source in any achromatically imaged zone plate 

or Gabor in-line type holographic system. 

The scalar wave function approximation of physical optics is used 

throughout. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction to Holography 

The work described here is an application of holography. There is very 

little consideration of the holographic process itself - extensive literature is al­

ready available on this subject. l-S Holography is treated here merely as a tool 

for the reconstruction of optical fields and images; when it is necessary to 

physically recall a field which had previously existed, the operation is treated 

quite casually. The holographic processes required here are quite simple and easy 

to perform. ' In fact, one of the main difficulties in holography - the require-

ment of extreme mechanical stability - is avoided; because of the small size of 

the component holograms of the holographic stereogram, high concentration of 

even weak laser beams ( ........ 1 mw. output) permits exposure times of less than one 

second. 

For the benefit of the reader completely unfamiliar with holography, a 

very brief qualitative description of the simplest types of holograms is presented 

here this should be a sufficient basis for understanding the remainder of this 

thesis. 

Consider an object, illuminated with a coherent light beam, which is 

viewed through a glass plate. The plate is additionally illuminated with a plane 

(reference) wave derived from the same light source, and the "cross - product" 

term of the intensity is thus proportional to the object (reflected from the 

object) beam. If the resulting interference pattern is photographically deposited 
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and then illuminated with an identical plane wave, the object beam is recon­

structed beyond the plate. If the reference beam is introduced from the same 

side of the plate as the object beam , we obtain a "transmission" hologram 

which is then viewed by looking through the plate in the direction toward the 

source in order to observe the perfect* and virtual "true" image. If the object 

and reference beams strike the plate from opposite sides, the perfect virtual true 

image is viewed through the plate with the source shining over the viewer's 

shoulder, and this is called for obvious reasons a "reflection" hologram. If 

either a transmission or reflection hologram is viewed from the "wrong" side, 

with illumination also from the "wrong" side, a pseudoscopic but perfect real 

image can be observed which is generally called the "conjugate", as opposed to 

true, image. The conjugate image phenomenon is quite easily interpreted - the 

wave exciting the hologram is propagating backwards (time-reversed, if you wish) 

and the excited conjugate image wavefronts are merely the true image waves 

propagating backwards to the apparent object position. 

1.2 Introduction to Three-Dimensional Perfect Imagery 

This thesis describes an application of holography to three dimensional 

imagery of incoherently illuminated scenes. The method is applicable to the 

imagery of large scenes, where the use of classical holographic techniques is pre­

cluded by the technical limitations of laser illumination. The "holographic 

stereograms" described here provide better images than those of previous types 

* congruent with the object. 
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of stereograms, but which are generally not as finely resolvable as those of 

classical holograms of similar dimensions. 

The methods here described permit an "almost-perfect" imaging of a 

three-dimensional object space. Every curve of the object space is geometrically 

similar to a curve lying within the bounds of its slightly non-stigmatic, or non-

sharp, image. An everyday example of perfect imaging is that of a pair of good 

quality mirrors, which provide an image which is almost indistinguishable from 

its object; such a system is called an absolute instrument. 
6 

The slightly de-

graded image resulting from a light condensation of steam on one of the mirrors 

could be called almost-perfect. 

Many previous methods of 3-D photography do not produce 3-D images. 

In the viewing of a stereo pair, for example, one's eyes focus at a fixed distance-

the degree of binocular convergence exerted to eliminate parallax between the 

two-dimensional retinal images is mentally translated into a distance interpretation. 

In contrast, the viewer of a holographic stereogram must also accommodate the 

power of the lenses of his eyes. 

The basic principles of image formation used here are easily understood 

m terms of geometrical optics. Stigmatic images exist where all rays intersect 

which emanate from a given object point. Ray intensities are proportional to 

object brightness, and image brightness is proportional to the intensities of the 

associated rays. If we specify all the rays passing through the entrance pupil, 

or any other pupil, of an optical system, then all the rays in the image space 

are determined (by any of the standard ray tracing. methods). We can, there­

fore, by recording and later reconstructing the rays passing through a surface of 

an absolute instrument, so reconstruct a perfect image of 'the object. 
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It is obvious that a thin window is an absolute instrument, since the 

virtual image seen through the window. is congruent. with the object. Holographic 

wavefront reconstruction on a thin plate of glass,* therefore, provides us with a 

perfect image. A similar image results from ray reconstruction on a plate com-

prising the holographic stereogram, although there are several fundamental 

differences. 

The classic hologram comprises an almost exact reconstruction of the 

optical wavefront emanating from a coherently illuminated scene. This wavefront 

is a coherent superposition of spherical waves whose sources are microscopic 

radiators on the surface of the object, when the object is opaque. A ray is 

defined as a line whose direction is everywhere normal to the associated spherical 

wavefront; hence the rays from each object point are a continuum of radially 

directed straight lines. 

In the first step of synthesizing a stereogram, the superimposed spherical 

wavefronts from an incoherently illuminated scene are measur~d on small segments 

of a reference surface, and there is no mutual coherence between measurements 

·on different segments. In Section 4.5 it is shown that in general the data so 

obtained are insufficient to permit faithful reconstruction of the spherical wave-

fronts, and one cannot precisely determine their centers of curvature. Stated 

differently, the ultimate angular resolution of the reconstructed scene, observed 

from the point of view of a given segment, is of the order of A. /2a, where A. 

is the wavelength of light and 2a is the segment width. The data are collected 

*The conjugate image of a thick plate hologram is also perfect, but the true 
image is not, since sphericity of a wavefront is not generally preserved upon 
traversal of a thick piece of glass. 
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by means of two dimensional images and in practice a resolution somewhat worse 

than /... /2a is typically attained. In contrast, the angular resolution of a classi­

cal hologram can in principle be of the order of f.../W, where W is the holo­

gram width. We see that, although the rays of a hologram reconstruction are 

radially directed, some blurring inevitably occurs, and we must use physical optics 

to fully describe the image on a microscopic scale. We shall also have to use 

physical optics to understand the stereogram, but, keeping in mind the limitations 

on image resolution, a description in terms of ray optics is appropriate if the 

rays in the following discussions are interpreted as having a width of the order 

of d f... /2a, where d is the distance from the point of the ray's intersection 

with the reference surface; the use of this artifice will be justified in Sections 

2.3 and 3.3. 

Another distinction from ordinary geometrical optics and the hologram 

is that we here reconstruct a discrete number of rays from any given point on 

the surface of the object. The image is no less well defined for this, however, 

since such discreteness does not preclude intersection of the rays at the image 

· point. 

To summarize, we reconstruct a 3-D unage by recording and recon­

structing the rays emanating from each object point, on a reference surface com­

prised of a discrete number of segments. From any object point, we recon­

struct one ray for each surface segment (unless the respective rays are obstructed 

by other portions of the object scene). 

Several methods have been used to construct stereograms or integral 

photographs, each of which uses a different means for reconstructing, on segments 

of a reference surface, the rays associated with each object point. The word ray 
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is used in the loose sense, and it will be shown that under certain circumstances 

rays of width ,...,, d t.../2a can be reconstructed using each of the methods. The 

pinhole camera array, the fly's eye lens array and its adaptation to holography 

due to Pole, and the holographic stereogram are described here. 

1.3 Summary of Text 

In Chapter Two, the concepts of geometrical cues and diffraction cues 

are put on firm analytical ground and applied to a study of the stereogram com­

prised of an array of pinhole cameras. It is shown that a rather unsatisfactory 

compromise between image resolution, image sharpness, and the completeness of 

the cone of rays contributing to a reconstructed image point must be reached, 

and also that the pinhole camera array must · be placed close to the object. 

In Chapter Three, the geometrical cue concept is extended to that of 

the focus cue, which is then applied to the fly's eye lens stereogram as well as 

to the general problem of photographic depth of focus which it resolves with an 

extremely simple mnemonic. While the fly's eye lens stereogram overcomes the 

limitations of the pinhole camera, it is found to be severely limited by aber­

rations in most practical cases. 

In Chapter Four we describe the holographic stereogram, which over­

comes the problem of aberrations. A practical stereogram camera whose mam 

component is a wide angle eyepiece is described. The exact form of the recon­

structed image is derived for the special case of a relatively flat object. 

The achromatically imaged Fresnel zone plate is analyzed in Chapter 

Five. This is a technique of very general applicability in holography which 



7 

compensates for source incoherency. Similar techniques have previously been 

described m mathematical form - the present treatment is more physical in 

contrast. Simple graphical mnemonics are derived which facilitate rapid analytical 

inspection of the effects of source incoherency in any imaged zone plate or 

Gabor in-line type holographic system. The results are applied specifically to 

the holographic stereogram system. 

In Chapter Six are briefly discussed some notable advantages of the 

holographic stereogram over the hologram or the fly's eye lens stereogram, or 

both. In addition to simple practical matters we treat here the color stereogram, 

the distortionless scaled stereogram, the focused stereogram, and spatial filtering 

of stereogram images. 

Conclusions are presented m Chapter Seven. 
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CHAPTER TWO 

THE PINHOLE CAMERA STEREOGRAM 

2.1 Introduction 

The first practical test of the principle of the stereogram, or integral 

7 
photograph, was made by the pinhole camera method by P . P. Sokolov. Of 

the many variations of the pinhole camera m\:!thod, we consider one which re-

sults in the reconstruction of a pseudoscopic real image congruent with the object 

position. By using other variations, we could obtain images which are identical 

except for being orthoscopic, virtual, or reflected across the reference surface. 

The present case is chosen for its simplicity. Furthermore, measurements are 

facilitated by mechanical access to the real image - a telescope would be re­

quired for close scrutiny of a virtual image. For further simplification of the 

presentation, we shall treat opaque objects immersed in a homogeneous medium 

(air) - the extension to more general cases is obvious. 

In Fig. 1 is shown a typical segment i:: of the reference surface on 

which rays are recorded by the pinhole camera. The segment L: , which we 

consider to be very small, comprises the aperture of the camera. A ray from 

point 0 on the object's surface which enters the camera through L: leaves 

a latent image point on the film at I. If, after reversal development, we return 

the film to its place and illuminate it from the side opposite L: , some of the 

light from I will pass through L: • This ray of light will obviously intersect 

the point 0, where the object had previously been located. We say that the 
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ray 02:: has been reconstructed, although the direction of propagation has been 

reversed. 

If n pinhole cameras are located on the reference surface, 

2::1, 2::2, , L: n' there will result n rays z::
1

0, L: 
2 

0, . . . , L: n 0 which inter-

sect at the point 0. * This happens similarly for each point on the surface of 

the object and hence a real image is formed. The image is pseudoscopic, since 

the rays have been reversed in direction. 

2.2 The Pinhole Camera and Diffraction Focusing 

It is very convenient to understand the imaging properties of the pinhole 

camera, and indeed of any camera system, in terms which are as completely di-

vorced as possible from the details of the phenomena occurring on the film plane. 

To this end we shall develop the concepts of the geometrical cue and diffraction 

cue for the pinhole camera. Scalar theory is used. 

Consider a pinhole camera used to image an object contained in a plane 

. perpendicular to the optic axis. A point object at a transverse coordinate X 

close to the axis produces a circularly symmetrical image which is centered at 

the point x on the film. We find that x = M X, where M is a constant, 

the magnification. Thus, the intensity at x due to a unit point object at 

x 
0 

may be described as g(x,X ) = g( Jx - x J ), where 
0 0 

x = MX , and if we 
0 0 

*This statement must be qualified. The ray L: iO will not exist if the line L: iO 

f ' ' intersects another portion o the object in the point 0 , where the ray l:i 0 is 

unobstructed. If all the rays z: 10, L: 2o, ... , L:n 0 are obstructed, then an 

image of 0 is not formed. This is a phenomenon common to systems which 
image opaque objects. 
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weren't aware of the camera's intrinsicly blurred imagery, we would conclude 

that the object was not a point, but the intensity pattern G( Ix - x I) 
0 

=cg (MIX- X j), c a constant. 
0 

The function G( IX - X I ), the apparent shape of the point object, 
0 

is most important. If the approximate radius of this function is r, then a 

picture will not resolve two points spaced more closely. Fortunately, 

G( IX - X j) is quite easily calculated. From electromagnetic theory, we know 
0 

that a unit point source at x 
0 

will give rise to an intensity 

on the object plane; this follows from the symmetry of the Green's function. 

Thus, · by placing a point source in the film plane and determining the radiation 

pattern outside the camera we immediately find the apparent shape into which 

a point object at a given distance is transformed. Of course this shape depends 

upon the focal length and pinhole size. 

The pinhole camera with a circular aperture may be considered a 

special case of a camera utilizing a well- corrected lens; a point source on the 

focal plane produces a wavefront at the aperture which is spherical, i.e. un-

aberrated. The pinhole does not reconverge the wavefront to a point however, 

which is analogous to an unfocused camera. Born and Wolf have analyzed the 

unfocused, well-corrected lens using a Kirchoff integral formulation in which path 

length differences associated with the spherical waves are approximated by quad-

. f . 8 rat1c unctions. This approximation is appropriate for the pinhole camera if 

the points to be imaged are not much closer to the aperture than, say, f/10. 

(The close range on the other hand is probably governed by geometrical optics.) 

The exact form of solution is valid only for small field angles. 
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Born and Wolf's results are reproduced graphically in Fig. 2. The 

abscissa u is the normalized curvature of the wavefront with respect to a 

reference sphere centered on the observation point and intersecting the wave-

front in the center of the aperture. The ordinate v, to the degree of approxi-

mation involved, is the normalized distance of the point of measurement from 

the center of the radiation pattern, transverse to the optical axis. Only points, 

say, to the right of the origin are relevant to the pinhole camera. The lines 

Iv I = u are the limits of the geometrical shadow of the aperture cast by the 

point source on the film plane. 

The normalization of the intensity plotted in Fig. 2 is inappropriate 

for our problem, however. We are interested in the camera's resolving capabili-

ties and to this end in Fig. 3 we plot the approximate width of the radiation 

pattern. The coordinates are given by 

2TT a 
2 

( 1-+ l._) u = --
A. d f 

(1) 

v = 2TT(~)r 
A. d 

(2) 

where: A. - wavelength of light 

a = pinhole radius 

f = focal length of camera 

d = axial distance of point of measurement from center of pinhole 
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r = approximate radius of the pattern measured, in the transverse 

direction, from the extension of the straight line which connects 

the point source in the focal plane with the center of the 

aperture. 

Roughly speaking, Fig. 3 may be described by the equations: 

V ~ TT , u < ,.....,, 2TI (3) 

v ~ u, u > 2 
~ 

(4) 

There is a smooth transition between the two domains in the vicinity of u = 2IT. 

Equations (3) and (4) may be respectively put into the forms (5) and (6): 

r 

r ~ 

Yi !:. d 
a 

d 
a(l + f) 

~ d > a(l + : )· 

~ d < a(l + 1) 

(5) 

(6) 

If we are somewhat sloppy with factors of 2, we may thus interpret 

the radiation pattern as a combination of a geometrical shadow ( 6) and of a 

diffraction limited field ( 5), the net pattern being approximately equal to the 

larger of the two contributions; in any imaging problem we should optimize 

(with respect to aperture size) the resolution by balancing the one against the 

* other. 

* We disregard here the possibility of optical spatial filtering (see Section 6.6 ). 
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A manifestation of the factor of 2 mentioned above is diffraction 

focusing. For example, in imaging a plane object at a fixed distance, we may 

improve the resolution by up to ........ 30% by using an aperture ,....... 30% greater 

than that suggested by a geometrical-diffraction balance. In the case of more 

complicated objects and imaging systems, less than 30% can be gained in this 

manner.* Diffraction focusing is a phenomenon common to all the optical 

systems we shall describe, and its small effect should of course be considered 

in practice. However, we shall neglect it here, for a simple presentation. 

Another detail which we shall not consider explicitly in our simpli-

fied analysis is the fact that the stereogram requires a two step process, i.e. 

both imaging and projection. If the same optical system is used for both steps, 

the spatial impulse response of the entire process is given by the spatial auto-

correlation of that of the imaging step. We shall assume that the second step 

has the effect of increasing the blur by a factor of approximately ./2, as 

would be exactly the case for a gaussian impulse response. If in practice dif­

fraction focusing is effectively utilized, it will almost cancel the two-step effect. 

2.3 Three-Dimensional Imagery with the Pinhole Camera Stereogram 

In stereogram applications of the pinhole camera, d >> f. Then the 

radius of the geometrical shadow, or cue, is r g ~ yd, and that of the diffraction 

pattern, or cue, is rd = ~ d. The best aperture radius choice is therefore 

*we disregard here the possibility of optical spatial filtering (see Section 6.6). 



A.f Yi 
-) 
2 

and from substitution into ( 1) we have 

,...., 
u = 

. f 
TT (1 + - ) 

d 
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Except for d = 00
, the geometrical cue is then always dominant, if only 

slightly so. (A slightly larger value of u would be used if diffraction 

(7) 

(8) 

focusing were considered.) As shown in Fig. 4, the resolvable object element 

is of width 8 , where 

,...., 
8 = 

A. Yi 
d( -) 

2f 
(9) 

except for small d, where a is the limit of resolution. Thus, for given f, 

we have 

8 >a:!_ A. d 
2 8 

The maximum d or depth of focus , d , 1s given by 
max 

d 
max 

2 
28 

A. 

(10) 

( 11) 

where e is the required (maximum) resolution element.* While this value is 

*The depth of focus is infinite if we only specify angular resolution (which is 

related to picture sharpness). 
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typical of all stereogram systems, we should note that the pinhole camera, unlike 

the other systems, must be located within this depth of focus region. 

The number N of discernible line elements across the picture 1s 

approximately equal to the ratio of the spacing s between adjacent pinholes 

to the aperture radius a. 

N,....., s/a (a 
,....., A.f Yi 

(- ) ) 
2 

(12) 

This is easily seen by noting that the geometrical shadow of the aperture cast 

onto the film by a point object at d >>f is a circle of approximate radius 

a, and that the total image size cannot exceed the spacing s. We may define 

an approximate F number of the cone of rays contributing to a real image 

point 

F = 1 = d 
(13) 

2 tan i/J ns 

,...., 
(n > 2 , i/J tan ljJ) 

where n is the number (in one dimension) of apertures contributing, and i/J 

is the half angle of the cone. Since the aperture radius subtends, from the 

b. f 1 A. h o ~ect, an arc o "2 8 , we ave 

N -;; ( 2 i/J)/( !_ ~ ) = 4 E: i/J 
n 2 E: nA. 

(14) 
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The half field angle of the camera 1s obviously approximately equal to tf; , i.e., 

2f t/I . 

Since the camera cannot function well at extreme angles, 

and from (13) and (16) 

s ,$ d (n = 2) . 

Also, note from ( 13) and ( 14) that 

28 
N ,$ T ' 

(15) 

(16) 

(17) 

(18) 

For t/J ~ 1, the limit of d ~ s -;; f also corresponds roughly to the closest 

!-. 
point at which an angular resolution of 

2a 
is attained (cf. ( 5) and ( 6) ). --

The number of resolvable lines N is significant for the virtual 

image. But for the real image, since many cameras contribute, n is more 

important, Since ~ is the smallest resolvable angle, 

8 

d 
= ( 2t/I ) 

N 
(19) 
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From (10), (14), and (19), we find 

2 

n = 2 e; "' 

A d 
e; 

(20) 
a 

Therefore, if the camera system is designed to be just within the depth of focus 

of the object (cf. (11)), or just close enough to resolve the line width e; , n 

is of the order of unity. If the camera is designed to be closer, n becomes 

proportionately larger, at the expense of the useful depth of focus. However, 

n is independent of the field angle l/J. Equation (14) can be put in the form 

2 (21) 

Here we see plainly how the relative resolution ( ]: ) determines a real-virtual 
e; 

quality product n X 
N 
2l/J). 

The choice of s, the camera spacing which determines the field 

angle if; can proceed somewhat independently of the other parameters of the 

system. For the virtual image, the desirability of a large field angle is balanced 

2 
against the accompanying increase of "dead space" ratio (s/a) ; in the case of 

the real image, spreading the n contributing rays over a large angle l/J lends 

precision to measurements at the expense of the unnatural "dead space" 

contained in the image-forming cone. 

2 
(s/a) 

In conclusion, the pinhole camera must be located within a distance 

2 
,....z e I A, or within the depth of focus, of the object. The maximum possible 

number of resolvable lines N in the picture is ,..., 2 e /A , where e is the 
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specified line width. Equally significant is the fact that the cone of rays involved 

in forming, say, a real image is severely incomplete. The filling ratio in one 

dimension is approximately 
1 
N 

The number in one dimension of rays forming 

the image is given by the inverse of the utilized fraction of the available depth 

of focus. 
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CHAPTER THREE 

THE FL Y'S EYE LENS STEREOGRAM 

3.1 Introduction 

A . d . f h d b L" 9 
n rmprove version o t e stereogram, propose y 1ppmann, 

utilizes a fly's eye lens in place of the pinhole camera array. As the name 

implies, the fly's eye lens is an array of small lenslets closely packed side-by-

side. Each lenslet, comparable in size to the pinholes previously proposed, 

acts in a similar manner in conjunction with its film plane to reconstruct rays 

on the fly's eye reference surface. A hexagonal close-packed arrangement may 

be used, so that the individual lenslets may be considered to be roughly circular 

m shape. 

The fly's eye lens represents two important improvements over the 

pinhole camera stereogram. The first is the elimination of dead space between 

adjacent camera apertures. This is accomplished by using a lenslet focal length 

short enough to compress the size of each picture to a size approximately equal 

. to the lenslet diameter. Thus, adjacent lenslets touch each other and the result 

is a more natural appearing virtual image which exhibits a relatively small 

"screen" effect due to the small amount of dead space (near the borders of the 

lenslets). Also, the cone of rays contributing to a portion of the · real image is 

nearly completely filled out. 

The second important advantage of the fly's eye lens arises from the 

focused geometrical cue - the radiation pattern from a (image) point source on 

the focal plane is relatively concentrated at the conjugate (object) point. We 

may thus diminish the diffraction cue, which is analytically identical to that of 
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the pinhole camera, by increasing the camera aperture, without compromising 

the geometrical cue radius at the conjugate point. As a result, we need not 

restrict the camera location to within the depth of focus of the object 

field, i.e. to within 
2 

,..., 4 8 /)... where is the required resolution. 

The region of object space within which resolution of 8 can be attained 

2 
is however always limited to depth "' 4 8 /'A • 

However, presently available fly's eye lenses are constrained by 

technology to rather simple design and for this reason are subject to 

severe aberrations. These aberrations can be controlled, but at the expense 

of the field angle, (or ray cone angle), which is therefore usually quite 

small. 

10 
The fly's eye lens has previously been analyzed by Burckhardt, 

but aberrations were neglected in that treatment. 

3.2 The Focus Cue and General Photographic Applications 

In Fig. 5 is shown the diffraction cue and geometrical, or focus 

cue for a perfect (aberrationless) lens. These may be derived, as for the 

pinhole camera, by assuming symmetry of the scalar Green's function and 

determining the far field radiation pattern resulting from a point source in 

the film plane. This source yields a converging spherical wavefront immedi-

ately outside the camera, centered upon the conjugate point. 

In the far field the diffraction cue is a cone axially aligned with 

the source's conjugate point, with vertex in the center of the entrance 

aperture, whose half-angle of divergence is 
A. 

""' - where a is the lens 
2a ' 

radius. This is the locus of points whose Kirchhoff integral contributions 
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from extreme opposite portions of the spherical wavefront in the associated 

tangential plane of the aperture differ in phase by approximately 2 TT • 

The focus cue is a double cone which intersects the entrance aperture 

circumference and whose vertex is at the conjugate, or object point of focus. 

This is the locus of points for which the stationary phase part of the Kirchhoff 

integral arises from portions of the spherical wavefront on and near to the aperture 

edge. Simply stated, the focus cue is the boundary of the geometrical shadow 

of the aperture cast by a point source in the focal plane. 

The cues are interpreted the same way as for the pinhole camera. The 

apparent shape into which an object point at any distance is transformed under 

imaging is a blur of dimensions approximately equal to the cross section of the 

larger of the cues at that distance, We must also include in our considerations 

a third cue, that due to aberrations. The cues are not additive in any strict 

sense - we merely determine which is dominant for a given situation. 

In general our resolution criteria may vary throughout the object space, 

and it is best to proceed in an ad hoc manner. However, two cases of special 

·interest are presented here. The first is of interest for scenic photography - a 

simple method is given for visualizing the hyperfocal distance. The second case 

often arises in the process of almost - perfect imagery. 

In ordinary photographic work, the lens-film system is typically designed 

for relatively high speed. The compromises involved in the design of the lens 

leads to aberrations, and high speed films are limited in their resolving capabilities. 

For example, suppose we use a 2 inch lens with a resolution of about 70 

lines/mm. with a film whose modulation transfer function cuts off near 70 

lines/mm.. Convolving the response of the film with that of the lens yields a 
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resolution of approximately 50 lines/mm. or 1/2500 radian. Suppose the lens 

is set at f/2 and focused at infinity. The focus cue is then a 1/2 inch radius 

cylinder extending to infinity, and beyond 1250 inches the associated blurring is 

less than 1/2500 radian - hence objects beyond 1250 inches cannot be imaged 

any more sharply by more careful focusing. However, by focusing the lens at 

1250 inches, the hyperfocal distance, objects from half this distance to infinity 

are resolved with resolution of 1/2500 radian. A graphical interpretation of the 

hyperfocal distance for the general case is given in Fig. 6. 

3.3 Choosing Parameters for the Fly's Eye Lens 

Lenses for stereogram applications are frequently diffraction-limited, 

and under appropriate circumstances aberrations may be neglected. Furthermore, 

high resolution films are used when necessary, so film associated image degra­

dations are often negligible.* The analysis may therefore proceed similarly to 

that for the pinhole camera, as a balance between the diffraction and focus 

cues. 

Suppose we specify € , the width of an object element to be re-

solved, constant throughout some depth L of object space. Then, since the 

focus cue is symmetrical with respect to the object plane of focus, we may 

minimize the "worst" radius of the cue by focusing at a distance midway into 

the object depth L. The half angle a. of the focus cue is given by 

*No optical system is capable of resolving an element smaller than the wavelength 
of light, and there are films which can do approximately this well, e.g. Kodak 649F. 
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a. = a/d , (22) 

where d is the distance from the focused plane to the camera. The radius 

of the diffraction cue at the midplane of the object is 

= = 
A. 

2a 

If the camera to object distance d 1s considerably larger than the object 

(23) 

depth L, we may consider rd to be essentially constant. We may arrange 

for this condition to exist by increasing d, and also a in proportion -

thus keeping a , the significant parameter, fixed. In this way, the diffraction 

cue tends toward a cylinder. Not only is computation simplified, but a better 

balance against the focus cue is possible since the diffraction cue acqmres 

approximate symmetry about the plane of focus. The worst focus blur: 1s 

L ( Z ) ex.; the best balance against diffraction, A. /2 ex., occurs for 

a = 

e: = 

A. Yi 
L ) 

L -)a 
2 ' 

1 Yi 
= 2 ( L A.) 

(24) 

(25) 

The camera-object distance d, as was suggested earlier, 1s relatively unimportant. 

Notice however that the depth of focus 1s 

L = 
2 

4 e: 
A. (26) 
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just twice that of the pinhole camera. Alternatively, if we wish to image with 

the best possible angular resolution an object extending from d to infinity, we 

again balance the focus and diffraction cues. By referring to Fig. 6 we find 

that the angular resolution w cof determined by the focus cue 1s 

w = o:>f 

while that of the . diffraction cue 1s 

The best resolution occurs for 

a 
2d 

A. 

2a 

Vi 
a = ( A. d) , 

= 

Notice that the resolution element E: d at distance d is 

8 
a = -

d 2 

2 

and d = ~ 
A. 

which is analogous to (26). 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 
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3.4 Aberrations of the Fly's Eye Lenslet 

It is our purpose in this section to determine, first, under what con­

ditions the degrading effects of aberrations are negligible, and second, what these 

effects are when aberrations are dominant in the fly's eye stereogram. But the 

matter of aberrations is not as straightforward as focus and diffraction cues, and 

some preliminary remarks are in order. 

Unlike the previously considered blurring phenomena, aberrations depend 

upon the details of the lens design. So many parameters and economic consider­

ations are involved in the pursuit of an "optimum" lens, however, that we will 

probably never find it, nor know how good it might be. Our approach will be 

based upon some arbitrary but reasonable assumptions which closely follow 

Lippman's proposals. Each lenslet is assumed comprised of a single element 

the film emulsion contacts the back surface of the lenslet, and hence the front 

of the lens is the only refracting surface. This assumption is based upon the 

technical limitations of fabricating small lenses, and also upon economics. The 

. front lens surface is spherical, though a better situation might be achieved with 

aspheric optics at increased expense. In theory at least, the spherical shape 

permits the use of self correcting methods of polishing - in any case, we con­

sider the refracting surface to be perfectly shaped and polished. The back 

(emulsion) surface may be curved to minimize the effects of field curvature. 

Glass of index 1.5 will be assumed, and we shall assume quasi-monochromatic 

illumination, so that color effects are negligible. 

Since adjacent lenslets touch each other, and because aberrations 

generally decrease with decreasing numerical aperture (N.A.), it is advantageous 
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* to use a sufficiently long focal length to cause adjacent pictures to just touch. 

Assuming fairly small field angles, the lenslet F number is equal to the in­

verse of the total field angle 

1 1 
= 

2 l/I 
(33) F = 

2(N.A.) 

where l/J is the half-field angle. Then aside from the curvature of the back 

of the lens, which affects only the field curvature and is of minor overall 

importance, there are only two independent parameters, e.g. the lens diameter 

and field angle. We also recall that angular aberrations are independent of a 

scaling of the optical system, and hence depend only upon the maximum field 

angle in a well-designed f1y's eye lens. 

Mathematical modeling of the aberration blurring presents further diffi-

culties. The first, of describing the wavefront emergent from the refracting 

surface, is easily dispensed with. We assume that the wavefront and ray tra-

jectories are adequately described in terms of the third order Seidel aberrations 

· which are the lowest order terms of an expansion of the wavefront phase in 

powers of the field angle and of the aperture coordinates. These low order 

:+-If the conjugate distances become comparable in magnitude, as for extremely 
Iona focal lengths, aberrations increase; as will be shown, however, this is a 
patholoaical case which seldom if ever arises (cf. Section 3. 5). An increase in 
F nur~ber may be thought by the reader to necessitate a longer exposure time. 
However, the accompanying expansion of the picture permits the use of faster , 
lower resolution film. We require interception of a given number of photons 
from each resolution element (depending upon signal to noise requirements) . 
Only the lens diameter and film quantum efficiency of absorption are important 
for this. 
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terms, which would be balanced against higher order terms in a complex and well­

designed lens, are dominant in our simple lens · for moderate values of field angle 

and numerical aperture. 

We have seen that the focus cue is essentially the geometrical shadow 

of the aperture, and as such has a well-defined width. The diffraction cue being 

merely a slight extrapolation in three dimensions of the Airy pattern also has a 

fairly well-defined width of well-known dependence upon physical parameters. 

The shapes of aberration spots, however, are much more complex, and their 

widths are thus more difficult to pin down analytically. Neither is there a 

simple relation between spot size and resolution - the dependence of aberrations 

upon field angle suggests a non-spatially-invariant optical system to which the 

application of modulation transfer function (M.T.F.) concepts is not strictly valid. 

We shall assume, however, that an M.T.F. could be defi,ned, if only over suf­

ficiently localized portions of the field. 

A commonly used method for visualization of the Seidel aberrations is 

to plot the locus of intersections with the focal plane of rays originating from various 

radii of the aperture, as a function of field angle, using geometrical optics. If we try to 

extend this technique slightly, to determine the intensity within the spot by 

adding coherently or incoherently the contributions from the various rays, trouble 

arises in the form of singularities. These are only apparent, however; as will 

be shown in Section 4.5 , the (spatial) spectrum of the spot is band limited. 

By using a more satisfactory treatment based on the diffraction theory 

of aberrations we would not find these singularities, but this is unnecessarily 

complicated for ·our purposes. In our treatment, the geometrical theory of 
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aberrations is used in a way typical in optical design work* - we estimate the 

radius of the smallest circle into which the rays from a reasonable percentage, 

say 80%, of the total aperture fall. The sum of such radii calculated from each 

primary aberration coefficient separately is often taken as a conservative (large) 

estimate of the total aberration blurring; we use a root of sum of squares value. 

The smallest circle through which 100% of the rays pass is not located in the 

gaussian focal plane, and its radius is typically of the order of 1/3 the distance 

from the gauss1an image point to the intersection with the focal plane of the rays 

from the extreme portions of the lens; the smallest circle through which 80% of 

the rays pass, however, is closer to the focal plane and smaller by a factor of 

11 
the order of 1/ 3. Therefore, somewhat arbitrarily, we shall use as an estimate 

of the blurring of each aberration a disc of radius 1/9 the distance of the ex-

treme ray from the gaussian image point. 

For moderately small N. A., the plane of the ap1ces of the fly's eye 

lenslets may be taken as the aperture stop position. With this assumption, the 

primary aberrations may be calculated in a straightforward manner (see Appendix 

I), and a cue associated with each of the aberrations may be drawn with vertex 

in the lenslet aperture. The half-angle of divergence of each of the cues is 

given in Table 1. These values are for the "worst case", both with respect to 

contributing rays and field position. Distortion is not considered because it is 

cancelled in the two step process. Several values ( 0, ~. Yi) of Y , the ratio of 

*This approach is most appropriate for spherical aberration. It will be shown 
that this is the dominant aberration (cf. Tables 1,2). 
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the respective distances from the lens apex to the conjugate points, are included. 

For most stereogram applications, y << 1 . 

In Table 2 the aberrations are given for a well-designed fly's eye lens, 

1.e. N.A. = l./J . The values here include the above referred to factor of 1/9 as 

well as a factor of .f 2 to account for the two step nature of stereogram 

imagery. Also given is the root of the sum of the squares of the individual 

aberrations, which we shall take as representative of the total aberration blurring. 

This angular blur is given by 

and ~ ~ 0.16. 

3 
~(Y) l./J . For almost all interesting cases Y << 1, 

Suppose we have an object of transverse dimension h, longitudinal 

depth L, at an approximate distance d from the lens array, and d ,2: L. 

The depth of focus and diffraction limit the angular resolution w to (cf. 
oL 

(25 )) 

w 
oL 

= 
d 

Yi 
(LA.) 

2d 

. if € is minimized with respect to lens diameter and focus. 

"" h l./J = Zd , we are limited by aberrations to angular resolution 

w 
a 

Comparing the two, we have 

= ~ 

8 

(34) 

However, since 

w of 
a 

(35) 
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0.04 ( cl ) 

38 

(36) 

Alternatively, if we consider an object extending from d to infinity, of half-

field angle l/J, we focus on the hyperfocal distance and 

= 

w a ,..., 3 
= 0.04 (2 if;) w 

0 co 

d Yi 
(-) 

"-

where w is the angular resolution in the absence of aberrations. 
oco 

(37) 

(38) 

The ratio w I w becomes worse (larger) as the size of the scene 
a oL 

increases, but can be decreased by backing the lenslets away from the object so 

as to decrease the (full) field of view h/d. For example, an object of dimensions 

h = L = 10 cm. at distance d = 10 cm. yields w /w ~ 18. By pulling back 
a oL 

0 
to about 42 cm., this can be decreased to unity, with full field of 13 . As 

another example, a scene extending from 1 meter to infinity yields 

W /W
0

co ~ 2.4 
a 

Clearly, 

0 0 
for a full field of 20 , w I W0 ~ 19 for 40 . 

a co 

aberrations limit the performance of the fly's eye lens m many 

typical applications, particularly where wide angle fields are desired. 
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In addition to aberrations, the fly's eye lens is subject to several other 

problems. First is the matter of film registration - a slight shrinkage of the 

emulsion might have a severe cumulative effect across the full width of the array 

of lenslets. Another problem is that the 3-D image is pseudoscopic. This can 

be overcome by using yet another fly's eye array to invert the image back to 

an orthoscopic one by making a second stereogram of the image of the first one, 

as proposed by Lippmann. Of course, this results in further degradation of the 

image quality. 

R. V. Pole utilized the principle of holographic wavefront reconstruction 

to reverse to orthoscopic the fly's eye image.
12 

The holographic step here re-

places Lippmann's second stereogram and has the advantage that the amount of 

image degradation introduced is negligible. Other problems arise, however. The 

first stereogram must be projected with coherent light, and a coherent reference 

beam must also strike the hologram plate. In practice, this has meant that the 

hologram plate must be separated by a considerable distance from the fly's eye 

lens, which has the unfortunate result that the viewer of the resulting hologram 

seems to look through the "tunnel" formed by the hologram and (image of) the 

fly's eye lens - the result of this is a further restriction upon the angle of view. 

The fly's eye lens seems to be a promising method of 3-D imagery if 

the technical limitations are overcome. In particular, the author believes that 

much improvement is possible by applying holographic methods. For example, 

it may be possible to synthesize holographic lenslets which are as well corrected 

for aberrations as multi-element lens systems. 
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3.5 Comparison of Stereogram Imagery with Ordinary Photography 

It was noted above that y << 1 for most cases. It is simple to 

show that the number n of fly's eye lenslets (in one dimension) contributing 

to, say, a real image point is given by 

1 
n = y (39) 

Thus, if y becomes comparable to unity, n becomes quite small and one 

can then hardly refer to the result as a stereogram. 

We might ask what is gained by making n large. Suppose we take 

an ordinary photograph of an object, with a focus cue of half-angle a. . The 

2 
resolution element is e: = A. /2 a. , and the depth of focus L = A./2 a. (cf. 

(20) , (21)) . 

If we replace the camera with a fly's eye system of m x m lenslets, 

the focus cue will have half-angle a. /m. The resolution element becomes 

e: = m A. /2 a. The depth of focus is 
2 2 

L = m A. /2 a. with respect to an 

individual ray, or lenslet. But the blur which arises· in the real image when we 

move from the correct position is due to the m lenslets (in one direction) 

and the blurring is m times worse . Therefore the longitudinal resolution 

element is 
2 

L/m or m A. /2 a. , and there are m resolvable elements of 

depth. Thus, while the linear size of the resolution element increases in both 

the transverse and longitudinal directions by the factor m, we gain a factor of 

m in the number of elements in the longitudinal direction. But the number 

of resolvable elements of'volume decreases by m. The fly's eye lens is of 
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course subject to aberrations which further decrease the number of elements, 

though, as we shall see, the holographic stereogram overcomes this problem. 
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CHAPTER FOUR 

THE HOLOGRAPHIC STEREOGRAM 

4.1 Introduction 

An alternative approach to the fly's eye lens is the holographic stereo-

gram. The focus cue and diffraction cue are the same as for the fly's eye lens, 

but aberrations are negligible. Also, an orthoscopic image is obtained directly 

without any tunnel effect. The price paid for these advantages, and others 

which will be discussed later, is that the process is inherently slower. The com­

ponent photographs of the fly's eye stereogram may be taken simultaneously, 

while those of the holographic stereogram must be taken sequentially (cf. Section 

6.1). 

Within the Seidel approximation, astigmatism is_ proportional to the 

2 3 
N.A., coma to (N.A.) , spherical aberration to (N.A.) . A straightforward method 

to reduce the aberrations therefore is to reduce the N.A.. We have seen that the 

N.A. of the fly's eye lenslet cannot be made smaller than the half-field angle l/J , 

in order that adjacent component photographs not overlap. The restriction against 

image overlap however, is based upon classical concepts of image deposition onto 

films - we assume that a double exposure, as it were, cannot in general be re-

solved back into its components. Of course, this restriction can be overcome with 

holography. Under appropriate illumination for projection of the 3-D image, each 

of the component photographs, regardless of overlap, may be made to reconstruct 

rays which traverse only its respective lenslet. Even with a simple lens, therefore, 

we may arbitrarily decrease the N .A. and the aberrations by increasing the focal 
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length. But this approach based upon the fly's eye lens is unnecessarily 

restrained, and it is interesting to take a more general approach. 

4.2 Description of the Holographic Stereogram Process* 

The method of the holographic stereogram involves two steps. In the 

first step, a sequence of ordinary photographs is taken of the incoherently 

illuminated object, providing a stereoscopic record. -Each photograph is taken 

from a different segment of a reference plane. In the second step, a holographic 

transformation of each photograph is recorded on the corresponding segment of 

a hologram plate which is placed in the reference plane. This requires a laser 

and other appropriate holographic equipment. 

For clarity, we shall first consider a very simple form of implementation. 

Fig. 7 illustrates the taking of a typical photograph from a segment of the obser-

vation plane z = z ob ; a mask is placed in this plane with a pinhole aperture 

centered at p Behind the mask and aligned with the aperture are placed a 
a 

well-corrected convex lens and a sheet of photographic film. The lens-film system 

is focused to record the image, at P,, of the object· point P . For convenience 
1 0 

the aperture diaphragm has been placed in front of the lens** in order to be 

physically accessible as a light mask in step 2. 

Just as in the case of the fly's eye lens, the focus cue and diffraction 

cue effect the resolution, and are determined by the aperture size. Except for 

*For additional description, see Appendix II. 

**see Section 6.2 for other cases. 
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distortion, which is inconsequential, aberrations are negligible since the lens is 

well corrected and used at small N.A. (see Sections 4.3, 4.4). 

The film is processed and returned to the original position. As shown 

in Fig. 8, a coherent plane wave is beamed through an auxiliary lens, at z 
c 

onto the transparency. The position of this lens, z , is adjusted to concentrate 
c 

the light energy onto the pinhole. If the aperture is placed in the front focal 

plane of the camera lens, no auxiliary lens is required; if a larger or smaller 

separation is used, a concave or convex lens is required, respectively. (The result 

is that, within a phase factor which moreover is negligible for objects well within 

the depth of focus, the electric field across the plane of the aperture is equal to 

the Fourier transform of the amplitude transmittance of the photographic image 

if moderate field angles are used.) Illumination of the image point P. will 
1 

cause a light ray to propagate through the small aperture to the object point 

P . We may, as shown in Fig. 8, interrupt this ray with a high-resolution photo-
0 

graphic plate, immediately to the left of the aperture. When the image point is 

coherently illuminated, and the aperture additionally illuminated with a coherent 

·reference beam, at an angle 8 , the ray is holographically recorded at the point 

P of the high resolution plate. The object is not present in this step. 
a 

If one were to view this hologram, the normal illumination for the two­

beam configuration of Leith and Upatnieks is used, 
13 

i.e. a coherent plane wave 

is beamed onto the plate at angle 8 , as shown in Fig. 9; the reconstructed 

ray emanates from P to the point P . The sensitivity of the reconstruction 
a o 

with 8 is small, as described in the literature. 
14 

The entire process may be repeated at point P ' on the high-resolution 
a 

plate, after translating pinhole, lens, and all, to align the system along P' 
a 
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Fresh film is used to take the corresponding photograph. As shown in Fig. 9, 

the coherent plane wave illumination will then also result in a ray propagating 

toward P 
0 

from the point P 1 on the plate. 
a 

The process is repeated for all points of a two-dimensional lattice on 

the high-resolution plate. When the developed plate is plane wave illuminated, 

the many rays convergmg at the point p 
0 

will form an observable pseudo-

scopic real image there, of the object point. All object points are reconstructed 

this way. If we illuminate the developed plate from the opposite direction, the 

orthoscopic virtual image is observed almost trivially. 

4.3 The Wild Eyepiece as a Holographic Stereogram Camera 

While it is possible in theory to completely eliminate aberrations from 

the holographic stereogram, it is of interest to determine how nearly we may 

approach this limit in a practical system. We shall consider the use of a wide 

angle eyepiece as the main component of the camera lens. The use of an eye-

. piece is suggested by the convenience noted above of having the aperture stop 

located external to the lens elements, which of course is a feature peculiar to 

eyepieces. For our application, the aperture stop or pinhole is placed in the 

plane normally used for the eye position. 

A good eyepiece is not necessarily the optimum lens for stereogram 

applications. Several eyepiece design criteria are of no importance for our use, 

and the additional flexibility which would be introduced if the constraints im­

posed by these criteria were relaxed would presumably yield a better lens. In 

particular, distortion is irrelevant to the operation of the lens, as has been noted. 
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Since the holograms are formed by monochromatic light, we may also eliminate 

the effects of chromatic aberrations by using a band-pass filter in taking the 

component photographs. Spherical aberration and coma, which depend strongly 

on the N .A. are also negligible since we usually use a very small N .A.. Even in 

normal operation where the eye pupil acts as the limiting aperture of the eye­

piece, a small N.A. is encountered; however, typical eyepiece designs allow for 

considerable movement of the eye (transverse and lateral) and we do not require 

this feature. Furthermore, the eye relief may be reduced considerably but 

subject to the necessity of introducing the reference beam. And if an imaged 

zone plate reference beam arrangement 1s used (cf. Section 5.2), the eye relief 

may be completely eliminated. With the flexibilities thereby introduced, it should 

be possible to build extremely wide angle objectives with a minimum of field 

curvature and astigmatism. These two aberrations (usually taken together as a 

single aberration) remarn as the most serious when we use a standard eyepiece 

as our objective. 

In Fig. 10 is given the design data for a Wild eyepiece. The aberrations 

· are given in Figs. 11 and 12 for an eyepiece of this design of 1 inch focal 

length. We can decrease the aberrations by choosing a longer focal length, but 

for the moment we consider this particular lens. 

As expected, we find that field curvature is dominant for small aper­

tures (diameter < .3 cm.). The sagittal image surface has greater curvature than 

the tangential image surface, leading us to expect that the skew rays will intersect 

the focal plane with a greater deviation from the Gaussian image point than the 

meridional rays. This is confirmed from examination of Fig. 11. A very good 

fit to these data is gotten by using the expression 
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Calculated meridional and skew fans for the Wild eyepiece of one 
inch focal length. Ray aber~.tions arc given for various field angles. 
Meridional aberration Y k - Y k is given as function of coordinate of 
intersection y 1 of ray with aperture, skew aberration xk as 
function of intersection coordinate x 1. All dimensions are given in 
cm. Data are for rays entering left of lens through exit pupil from 
source at infinity. (From Military Standardization Handbook "Optical 
Design," MIL-HDBK-141, p. 14-19, 5 Oct. 1962.) 
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Fig. 12 

0 .1 cm -16% -12% -8% -4% 0 -0.015 -.01 -.005 0 cm 

Calculated sagittal (S) and tangential (T) fields, distortion , and lateral 
color curves for the Wild eyepiece of one inch focal length. Dashed 
curves are from third order analysis. (From Military Standardization 
Handbook "Optical Design," MIL-HDBK-141, p. 14-19, 5 Oct. 1962.) 
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2 
w = .18 t/; (N.A.) 

cW 
(40) 

for the half angle of divergence w of the aberration cue associated with 
cW 

the worst ray of field curvature of the Wild eyepiece, where t/; is the half-

field angle. These data pertain to objects located at infinity. However, we 

shall assume that they are also approximately valid for objects at finite, but reason-

ably large distances (say > 10 f). 

The expression for blurring due to curvature and astigmatism for the 

Wild eyepiece is only very slightly smaller than that of the fly's eye lenslet (cf. 

table 1). This is somewhat misleading however. The fly's eye aberrations are 

derived from third order theory, and at large angles do not fully account for 

0 
image degradation. Equation (40), though, is valid even for t/; = 35 . Second, 

2 
the expression .22 1./) (N.A.) given for the fly 's eye aberration is based upon 

the least circle of confusion radius. In the fly's eye lens we may form the 

emulsion as an integral part of the lens and it is relatively easy to curve the 

emulsion surface to minimize the degradation due to field curvature. But we 

assume that the Wild eyepiece is used with flat film, which cannot lie in the 

curved least circle of confusion surface. On the other hand, coma and spherical 

aberration are negligible here. Most important though is the fact that we may 

use values of N.A. < t/; and still get completely filled bundles of rays in the 

stereogram. 

Distortion is considered in some detail m Appendix III. According to 

the results obtained there, we shall consider the effects of distortion to be 

negligible. 
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4.4 Choosing Parameters for the Holographic Stereogram Camera 

The resolution of the fly's eye lens, as we have seen, is nearly always 

limited by aberrations. Furthermore, if we wish the ray cones to be completely 

filled, an optimized fly's eye lens obeys the relation ( 33), l/J ';: N .A., and the 

aberration-limited angular resolution is therefore determined solely by the half­

field angle l/J. The N .A. of the lens used for stereogram applications, however, 

is usually much smaller than l/J and may be varied. In particular, after 

determining from Section 3.3 the aperture size which balances the diffraction 

cue appropriately with the focus cue, we may then choose an eyepiece which 

is sufficiently largely scaled (i.e. with large enough focal length) to decrease the 

N.A. to the extent that aberrations are no worse than the blurring associated 

with these cues. We shall derive in this section the minimum focal length which 

must be used to accomplish this. If we use an eyepiec!= of too short focal 

length so that aberrations are significant, it is advantageous to decrease the aper-

ture size, and hence aberrations, until the resulting diffraction effects become 

. comparable. We shall investigate this case also, and find the degradation caused 

by a small eyepiece. 

First consider a finite object, of height ,..,., h, depth ,.._, L, at a 

distance ,...., d from the camera aperture. For this case we wish to minimize 

the linear element of resolution € • The approximate half-field angle ''' is 'l"L 

given by 

h 
l/J = L 2d 

( 41) 
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so that the half-angle of the aberration cue W lS 
cL 

h 2 
wcL = ~ ( 2d) (N.A.) (42) 

for sufficiently small (N.A.), where ~ is a constant dependent upon the lens 

design. For the Wild eyepiece, S = 0.09. This value is one half of 0.18, the 

value given in ( 40) -- it is assumed that the film is located closer to the lens 

than the Gaussian image plane by a distance equal to half of the axial distance 

occupied by the curved image surface, thus reducing the associated worst blurring 

by a factor of ,...., 2. The amount of shift of the film depends, of course, upon 

the half-field angle which we choose. Setting (N.A.) = a/f, where a is the aper-

ture radius and f the focal length, and solving for the value of f such that 

Yi 
w = w , where w = (LA.) /2d is the resolution limit from (34), we 

cL oL oL 

find 

f = 
oL 

(43) 

as the mmrmum focal length for which aberrations are negligible. We should 

also note that the numerical aperture for this value of f, (N .A.) , is given 
oL 

by (cf. (24)) 

a 
(N.A.) = f-

oL 

ad 
= -f-

oL oL 

d 
f 
oL 

A.Yi 2 d \'l'i L 1h 
(-) = ;;-(h-) (-) (-) 

L I-' h h 
(44) 

In practice, we must verify that (N .A.) is sufficiently small (;S 0.1 for the 
oL 

Wild eyepiece) so that ( 42) is valid. For example, for S ""0.1 and h ""'L, 
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oL 

h 
, and if 

20 
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for h ,2: 7'' . Therefore, the Wild 

eyepiece described in Figs. 10 - 12 performs almost perfectly for objects in the 

range ;S 20 ' ' , In the extreme close range our specification of the aberration 

blurring is not precise because of the finite conjugates; however, this effect is 

probably offset by the use of smaller N.A. here. 

In the event that we must . use an eyepiece of shorter focal length f, 

we balance the diffraction blurring 

w 
c 

or 
h 2 

~ ( 2d ) (N .A.) = 

which yields 

(N.A.) 

and 

for 

f < f 
- oL 

w diff against the aberration blurring w : 
c 

w diff 
( 45) 

2f(N.A.) 
( 46) 

(47) 

(48) 
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Next consider a scene which extends from a distance d to infinity, 

of half-field angle lj! , so that the half angle w of the aberration cue is 
c 00 

(49) 

for sufficiently small N.A.. Here we wish to optimize angular resolution. 

Solving for the value of f for which w = w , where w cco ooo oco 

is the resolution limit from (30), we obtain 

f 
Ooo 

2 
= 2lj; Sd 

= A. Yi 
Yi (-) 

d 

(SO) 

as the mmrmum focal length for which aberrations are negligible. The N.A. 

for this value of f, (N .A.) .· , is given by (cf. ( 2 9)) 
0 co 

a 
(N.A.) 

oco 
= 

f 
oco 

1 A. :Y2 
= -(-) 

2 d 
2 lj; s 

( 51) 

The N.A. must be sufficiently small in order that (49) be valid. For the one 

inch Wild eyepiece in particular, imaging is essentially aberrationless for scenes 

m which d < 20 11
, from (50). 

If a focal length shorter than f is used, we balance diffraction 
0 co 

against aberrations (cf. ( 46)): 

2 
Stf; (N.A.) 

2f (N.A.) 
(52) = 
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The solution of this is 

f Y2 
OCO 

N.A. = (N.A.) (-f-) 
OCO 

(53) 

and 

f Yi 
0 co 

= = w (-f-) 
ooo 

(54) 

for 

f < f 
0 co 

4.5 Exact Form of the Holographic Stereo gram Image 

It is of interest to express the image in exact form; m terms of the 

object and lens characteristics. This is generally very difficult to do, but can 

be done if these characteristics are of very simple nature. In particular, we 

shall assume that the aberrations of the wavefronts caused by the lens system 

are negligible, so that we deal only with spherical wavefronts. As we have done 

previously, most of the discussion will center upon object rather than image 

space. Matters are simplified by this, since no propagation through glass occurs 

between the aperture and the object. 

First, let us determine the conditions required in order that the wave 

aberration be negligible. We consider propagation of light from a point in image 

space to its conjugate point in object space, and we wish to determine the 

optical distance between the wavefront which intersects the center of the aper-

ture, and the reference sphere centered on the conjugate point which also intersects 
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the center point of the aperture. We measure the distance normal to the wave-

front, and assume that the object point is close to axis, so that a ray intersects 

the aperture plane, wavefront, and reference sphere at almost the same distance 

from the optical axis. We assume that the reference sphere and wavefront are 

nearly coincident - the wavefront aberration is thus the same even if we inter-

change the source and conjugate point. 

It can be shown that to a good approximation the optical path differ­

ence or wave aberration <J!(p) associated with the aperture coordinate p is 

. by15 given 

<J!(p) = 
p 

s T:. (p' ) 
R 

dp' (55) 
0 

where 6 ( p) is the transverse ray aberration associated with a ray from the 

point in image space passrng through the aperture at the point p rn a co-

ordinate system in which p = 0 is the center point of the aperture. R is 

the aperture to object distance, so that the angular aberration 

·defrned by 

T:. (p) 
R 

is 

(56) 

For the paraxial case, 6 ( p) and w ab ( p) lie in a plane transverse to the 

al f. ld al A (-p ) 11 -p 16 ; h . f optic axis. For ie curvature one, L..\ t e existence o some 

astigmatism and small residuals of other aberrations changes this slightly, but if 

in accordance with ( 42) and ( 49) we set 
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(57) 

we shall obtain an approximate upper limit for <ll( p ). From (55), (56), and 

(57) we obtain 

fl> ( IP"I 
2 (N.A.) 

= a)= S l/J f J (N.A.)' d(N.A.)r (58) 
0 

2 
2 (N.A.) 

= s l/I f 
2 

Suppose we wish to image a finite object and we set f and (N.A.) to the 

values (cf. ( 43) and ( 44) ) necessary to reduce aberrations to the resolution 

limit. We then have for the maximum wavefront aberration 

<ll oLmax ( IP"! = a) = ( 59) 

The notation is analogous to that of (43) and (44). Similarly, using the values 

of f and (N .A.) given by ( 40) and ( 41) for a scene extending from d to 

infinity, 

<ll ( IP" I = a) = 
o oomax 

A. 
4 

(60) 

Therefore, in these cases, the Rayleigh criterion for a perfect wavefront is met. 

Of course, we may further increase f and proportionally decrease <I!( Ip I = a). 

It may be recalled from Section 2.3 ' that the pinhole camera is best 

used m the range u "-J TT (cf. (8) ). For the holographic stereogram, since 
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the depth of focus extends on both sides of the vertex of the focus cue, it can 

be shown that the depth of focus is given by -2 TT < u < 2TT • By referring 

to Fig. 2 we find that the v-dependence of the intensity of the image of a point 

source is nearly independent of u for I u I ,.:S TT • It can be shown that for 

this range of u, corresponding to approximately one half the depth of focus 

region for a finite object, setting u = o yields a wavefront error of A. /4 at 

most in any contribution to the Kirchhoff integral.
17 

For u = o, i.e. the 

Fraunhofer limit, the image of the point source is simply the Airy pattern. The 

treatment here will be limited to cases for which this approximation is valid. A 

generalization to arbitrary values of u is straightforward. The treatment is also 

0 
limited to object points close to the optical axis (say l/J < 10 ). A generalization 

"-' 

to extreme angles is straightforward - the aperture is then seen obliquely from 

the object point; for u = o the Airy pattern merely assumes elliptical rather 

18 
than circular symmetry. 

Subject to the conditions stated above, a point source m image space 

yields an Airy diffraction pattern in object space, of constant phase (except for 

negative values) over a spherical surface centered on the aperture center point. 

Thus aside from a phase factor dependent only upon the source position in image 

space we have a spatially invariant impulse response from the film plane to any 

(paraxial portion of) spherical surface, lying well within the depth of focus , which 

is centered upon the aperture center point. Thus the scalar Green's function is 

given by 

G( *'· ¢~ W,¢,R) (61) 



where 

= 

¢ = 

IV',¢'= 
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the first order Bessel function 

azimuthal angle, measured from optical axis, of observation 

point, in spherical coordinate system in object space with 

origin at aperture center point 

meridional angle of observation point m same coordinate 

system 

are coordinates on the film plane such that a source at 

( W ', ¢ ') would be imaged at ( t = \jl: ¢ = ¢ ') if all image 

degradations except distortion were absent 

6 = azimuthal angle in object space of the observation point, 

measured in a spherical coordinate system also centered at 

the aperture center point, but in which 6 = 0 corresponds 

to \jl = IV ' , ¢ = ¢ ' 

R = distance from aperture center to measurement point 

k = optical wave number. 

The phase dependence upon the source position is given by m( \jl '), in which 

circular symmetry is assumed. 'The optical path length along a ray from (IV ', ¢ ') 

on the film plane to the aperture center is equal to m( \jl ')/k. A slight 

asymmetry of the optical system could result in a ¢' dependence of m, 
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however. M( ~ ') is a slowly varying amplitude gradation which accounts for 

field variations of glass transmittance, obliquity factors, etc., and also contains 

other uninteresting constants. 

Since only paraxial imaging is considered here, we may approximate 

the segment of the sphere of radius R as a plane, and transform to rectilinear 

angular coordinates e = x/z and e = y/z : 
1 2 

i[kR( e , e ) + m(w')l 
M(O) 1 2 = --e 
z 

0 

0 2 IT a 
Jl(-;;:-) 

6 2 rra 
(-~-

(62) 

where x, y, and z are linear coordinates fixed in object space and we have 

replaced, where appropriate, M( ~ ') by its paiaxial value, and R by the z 

coordinate z of the sphere segment apex measured from an origin in the 
0 

aperture plane. The exact value of R ( 8 , 8 ) 
1 2 

must be retained in the 

exponential, however; We also have: 

= ( e - er )2 
1 1 

+ ( e - e' )2 

2 2 
(63) 

where ( 8 ~, 8 1
2

) is the image point corresponding to ( e ' e ) ' in transformed 
1 2 

image space coordinates. It is assumed that the Green's function ( 62) is 

symmetrical under the coordinate inversion ( 8 1 
, 8 1 

) i ( 8 , 8 ). 
1 2 1 2 

Suppose an 

approximately (no micron-like precision necessary) plane object is located in the 

paraxial region of the plane in question, and is incoherently illuminated to have 

brightness 



B( e , e ) 
1 2 

= 
x 

B(--
z 

0 

64 

(64) 

th 
Then if we expose the i component photograph, the resulting intensity on the 

film plane is given by the convolution: 

where 

1( e' e' ) = 
li' 2i 

= 

(65) 

2 V2 
+ T] ) ] 

2 

2 Yi 
( 66) 

+ T] ) ] 
2 

and a factor which is independent of ( 8 ~i' 8 '
2

i) has been dropped. The sub-

script is used to explicitly remind us that. the origin of the coordinate 

system e I e I lies at a different position With respect tO the optical axis 
li' 2i 

for each component photograph. The origin of e ' " e ;i lS at the image of 

th 
11 

·the point ( 8
1 

= 0, 8 
2 

= 0, z = z 
0

) m the i component photograph. It 

1s obvious from ( 65) and ( 66) that because of the spatial band-limited nature of 

t we cannot determine, or hope to reconstruct, the function B exactly with-

out some a priori knowledge , e.g. that B is appropriately band-limited (cf. 

Section 6.6 ). This limitation obviously also applies when aberrations are present. 

The film is processed to provide amplitude transmittance proportional 

to I( 8 '., 8' .) , returned to position, and coherently illuminated as described in 
11 21 

Section 4.2. If the illumination is by a plane wave normally incident on the 

film , the resulting amplitude in the plane z = z 
0 

is, neglecting uninteresting 
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constants, 

ikR.( e , e ) 
Ai( e 1' e 2) L=z 

1 1 2 
((~-I) * t } = e ( e i' e 2) 1 

0 

ikRi( 8
1

, 8
2

) 
2 

= e ([ ~. (B * It I ) 1 *t}(8,8), 
1 1 2 

(67) 

where 

~ (8' e' ) im( ~') 
( 68) = e T . 1·' 2· 1 1 1 1 

and R ( 8 8 ) is the distance from the aperture center to the measurement 
i 1' 2 

point. T is a translation operation which transforms W' to the respective 

e' e' ) 
( li' 2i coordinate system. 

The function ~. 
1 

may be effectively reduced to unity by illuminating 

the processed film with a wavefront proportional to ~im( W ') This is the 

purpose of the auxiliary lens of Fig. 8. From the ray path length interpretation 

of m( ~ 1 ) in ( 61) , we may also note that the auxiliary lens serves to focus 

the coherent illumination at the aperture center point when the transparency 1s 

not yet in place - with the transparency in place, the electric field in the 

aperture plane is proportional to the Fourier transform of the transparency 

amplitude transmittance for paraxial objects and images. Accordingly, we set: 



Q (8' 8' ) 
f.J. 1·' 2· 1 1 1 

= 

66 

1 ( 69) 

The amplitude A/ 8
1

, 8 
2

) is recorded holographically, as described in Section 

4.2 , and the operation is repeated for all aperture locations. Under holographic 

wavefront reconstruction, the electric field, measured in the plane where the 

object had been located, is the sum of contributions from each pinhole location: 

where 

A( 8 , 8 ) \ 
1 2 z=z 

0 

2 

= 

= [B * It 1
2 

* t } ( 8 , 8 ) 
1 2 

0 

2 
n ikRi(8

1
, 8

2
) 

I: e 

i=l 

2 
n is the number of (holographic) apertures contributing. 

(70) 

The functl.on eikRi( 81,82) fl .dl . h all uctuates very rap1 y wlt sm 

changes m R and since no micron-like precision is maintained in positioning 

2 
of the aperture, 1s a pseudo-random function. Therefore, for large n the 

ensemble average intensity is given by 

2 

<IA(81'82)lz=z) 

0 

2 
where a constant proportional to n 

(71) 

is omitted. If we denote the spatial 

Fourier transforms of the respective fux:ictions by a"' , and recall that t 1s 

real and circularly symmetrical, we have 
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<-W) = 

(72) 

where 

,...._,* - -..> -

- B (-w) = B ( w) (73) 

and w is the spatial frequency coordinate. The band width of this signal 

is equal to that of 
2 /t' / . Thus, the system behaves much like an incoherent 

imaging system. 

These results are considered further 111 Section 6.6. 
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CHAPTER FIVE 

THE A CHROMATICALLY IMAGED FRESNEL ZONE PLATE 

5.1 Introduction 

The holographic stereogram is an array of minute holograms (refer to 

Figs. 8, 9). These component holograms can be made by nearly any of the 

well known procedures described in the holography literature. In particular, the 

discussion of Section · 4.2 was based upon the use of the two-beam configuration 

of Leith and Upatnieks. In the holographic recording step, we are essentially 

making holograms of transparencies, and for this it is not necessary to have as 

highly coherent a source as that required for an extended object - this consider-

. h b d' d . d ail 19 - 23 Th al . £ all h at1on as een stu ie m et . e gener requirement or sm pat 

length differences between the object and reference bearris is easily satisfied m 

our case because of the small portions of the holographic plate individually 

exposed. 

An elegant way to mm1mize the path length differences when source 

coherency is limited is the achromatically imaged grating technique of Leith and 

Upatnieks 
22 

(hereinafter referred to as L&U) in which a diffraction grating acts 

as the beam splitter to divide the object and reference beams. Recently Kato 

and Suzuki
23 

(hereinafter referred to as K&S) have used a configuration similar 

to that of L&U, but in which a zone plate is substituted for the diffraction 

grating in order to obtain Fourier transform, rather than Fresnel transform 

holograms. 
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24 
As has been previously noted, an adaptation of L&U's method can 

also be used for the holographic stereogram. An achromatically imaged zone 

plate is utilized, and Fourier transform holograms are produced. The arrangement 

is quite different from that of L&U or of K&S. The reduction in coherency 

requirements is not so great, however; partly because, as was noted above, the 

requirements here are not severe to begin with. 

In addition to reducing coherency requirements, imaged gratings, or 

more generally imaged zone plates, provide a very neat method which could be 

utilized in many hologram arrangements for providing a reference beam. The 

discussion here is more physical than mathematical m emphasis, while no less 

rigorous than the previous treatments. The aim is to provide a method for 

visualizing by brief inspection the ·effects of source incoherence. It is hoped 

that this will be more useful for purposes of synthesis. The present method 

of analysis can easily be applied to the configurations of L&U and of K&S -

the same results are obtained regarding coherency requirements. 

The discussion is divided into two parts. In the first part it is shown 

that a two-beam holographic system in which the object beam is provided by 

the zeroth diffracted order of an achromatically imaged zone plate and the 

reference beam is provided by the first diffracted order has the same require-

ments for temporal and spatial coherence of the source as the same system 

used in the in-line mode, i.e. without the grating. Of course, the advantages 

of the two-beam process are retained; namely that the object transparency 

need not be nearly entirely transparent, and that in reconstruction the true 

image is separate from the illuminating beam and conjugate image. The analysis 
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could also be used to show that source coherency requirements are more severe 

if instead the first order diffracted wave is used as the object beam, as L&U 

have shown. 

Having demonstrated the equivalence to operation m the in-line mode 

insofar as source requirements are concerned, the second part of the discussion 

is devoted to closer examination of the in-line mode of operation of the system. 

A method for visualization by inspection of the effects on image resolution of 

the source incoherency is described. 

5.2 Application to the Holographic Stereogram System 

The imaged zone plate configuration of the optical system used for 

the holographic stereogram is shown in Fig. 13. The purpose is to make a 

hologram in the aperture plane (plane e) of a transparency which is located a 

distance 
a 

behind the back focal plane of the achromatic lens L . 
1 

This 

arrangement is used to perform the second step of the holographic stereogram 

process, as described in Section 4.2 and as such is like Fig. 8, except that the 

coherent illumination is replaced by partially coherent illumination. Another 

difference is that the beam used to illuminate the transparency is not focused 

to a point in the aperture plane - therefore the general form of the function 

~. ((68) rather than (69)) must be retained in the analysis of Section 4.5. 
1 

As shown in Fig. 13, the light from an incoherent source of pinhole 

dimensions is collimated by a lens LS of focal length FS. The light strikes 

an offset Fresnel zone plate in plane a, and the undiffracted light is used to 
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illuminate the transparency in plane b. The zone plate is designed to focus 

the first order wave to a point in the back focal plane of lens L , plane 
1 

This is transformed into a plane wave after propagation through the lens and 

is used as a reference beam for recording the hologram in plane e. The 

* c. 

location of the transparency at a distance 6 behind the back 
a 

corresponds to a focus plane in object space at a distance 
2 

F /6 
1 a 

focal plane 

from the 

front focal plane, from the Newtonian form of the image equation. For 

6 = 0, Fourier transform holograms are produced and film resolution require­
a 

ments are reduced. Similar advantages are gained 

6 . The zone plate has focal length F 
2 

/ 6 * * 
a 1 b' 

in general for small values of 

where is the distance 

from the front focal plane d to the aperture plane e. The other first 

order diffracted wave from the zone plate is focused to a point midway between 

planes d and e and can be nullified by a small stop placed here if the 

object transparency is not in place, or otherwise by auxiliary components to 

the left of the transparency. If higher order waves are present, additional stops 

may be necessary. 

If the object transparency is of uniform density, i.e. without any 

detail, the hologram is simply the interference pattern between the first order 

*The light focused by the zone plate may pass through a clear portion of the 
transparency, in order to minimize path length differences. 

** An elegant way to make the zone plate is by putting a photographic plate in 
plane a, and shining a plane wave at the desired angle back through lens L 1. 
If a left-traveling plane wave is provided at plane a, the exposed plate, when 
developed, is a holographic zone plate of the correct focal length. 
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wave and the attenuated but otherwise unperturbed zeroth order wave. This 

pattern is that of a Fresnel zone plate. In fact, we find from the Newtonian 

form of the image equation that plane e is the conjugate of plane a, so 

that this interference pattern is the image of the zone plate there. Therefore 

this pattern is independent of source coherency! Because of our use of stops 

and the attenuating transparency, this result is not quite trivial, but it is 

easily derived in Appendix IV. 

5.3 Equivalence with Respect to Source Coherency Requirements of the Imaged 

Zone Plate to Gabor In-Line Holography 

Referring again to Fig. 13, the in-line or Gabor holography mode of 

operation is as follows: the zone plate is removed from the system so that 

only the zeroth order wave 1s involved, and the transparency must be such 

that in the aperture plane e the AC portion of the field due to picture 

detail is much smaller in amplitude than the DC portion due to the average 

(usually high) transmittance of the transparency. The AC field is considered 

to interfere with the DC field and, as is well known, the relief of the recon-

structed holographic image is reversed from that of the transparency. The 

image is degraded by the overlapping conjugate image. 

5.3.1 Temporal Incoherence 

The effect of temporal incoherence is studied by using a point source 

of approximate wavelength A. and spe~tral Width 6A. << A. • We require that 
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the optical path length along a ray from the source to the transparency and 

from there along another ray to a point on the aperture plane differ by no 

2 
more than A /4 n 6 A. from the optical path length of the appropriate 

reference beam with which it interferes. The reference beam associated with 

that point has traversed the same optical distance regardless of whether through 

the zeroth or first order beams, because of the imaging condition. And since 

the shape and - more important - the path lengths associated with the object 

wavefront are the same for a given picture for the in-line and imaged zone 

plate cases, we conclude that the two are equivalent with respect to temporal 

coherence requirements. Of course the imaged zone plate case is not restricted 

to low AC/DC ratios; this requirement is replaced by the need for low zeroth 

order to first order ratio which is satisfied by using a sufficiently dense trans-

parency or by other means of attenuation. 

We have implicitly assumed that it is sufficient to treat each portion 

of the transparency separately. This is valid because of the linearity of the 

holographic process; reconstructed field amplitudes are linearly related to the 

object fields. 

S.3.2 Combined Spatial and Temporal Incoherence and the Modulated Zone Plate 

Image Concept 

If the pinhole-sized source is self luminous, it exhibits spatial incoherence 

unless the pinhole is of infinitesimal dimensions. This phenomenon may be 

modeled by considering the source to be comprised of a number of mutually 

incoherent point sources uniformly distributed across the pinhole , each radiating 
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at the same wavelength. Each of the point sources m conjunction with a 

portion of the transparency produces an interference pattern in plane e; the 

sum of the intensities of the respective patterns is recorded as the hologram 

of this portion of the transparency. Of course the effects due to different 

parts of the transparency add linearly. However, t:he holographic patterns due 

to each of the respective point sources are displaced slightly from each other, 

and as a result the fine detail is blurred in the hologram. 

While the details need not concern us here, it may be noted that the 

holographic pattern due to one of the point sources, together with an image 

point, is of the nature of a zone plate; and the fine detail thus corresponds 

to light diffracted far from the center of this pattern and therefore to trans­

parency detail. In fact, temporal incoherence of the self-luminous source can 

be similarly treated. We can consider each point source to be comprised of 

a sum of monochromatic radiators of different wavelengths. The discussion of 

Section 5.3.1 is equivalent to this. 

The important point is that each additive component of the hologram 

is the interference pattern between the appropriate object wave and either the 

zeroth order or first order diffracted beam of the imaged zone plate. Because 

of the 1magmg condition, however, the zeroth and first order beams differ by 

a phase factor, ¢ [ r ( r' )] of Appendix IV, which is independent of the source 

and transparency. The true image components of the holographic patterns of 

the in-line and imaged zone plate cases therefore differ merely by a multiplicative 

factor ¢ [r(7' )] which obviously carries no information (Q.E.D.). The imaged 

zone plate hologram may then be interpreted as a modulation of the function 
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- -, 
¢[ r ( r ) ] by the in-line hologram pattern. Thus we have the concept of a 

modulated zone plate image, analogous to the modulated grating image concept 

of L&U. 

5.4 Source Coherency Requirements for Imaged Zone Plate and Gabor In-Line 

Holograms 

5.4.1 Temporal Incoherence Effects 

According to the above discussion, we need only consider operation m 

the in-line mode. The method of inspection for temporal incoherence is by 

direct comparison of the optical path length of the zero order wave which can 

be measured from the point of convergence m the front focal plane d in Fig. 

13, and that of the object wave which can be measured from a point on the 

transparency. For small path differences, the comparison is effected by measure-

ment of the distance between the two associated spherical wavefronts. The wave-

fronts have a point in common where the ray connecting the transparency point 

.with the convergence point intersects the hologram plane e. 

5.4.1.1 A Method for Quick Inspection 

The method is illustrated in Fig. 14. The zero order wavefront 1s 

centered upon the convergence point , and has radius of curvature ,....., 6 b' The 

object wavefront has radius of curvature s, where s is the distance from the 

hologram to the plane of focus in object space. 

2 
path length difference A. /4nt::.A., the effective 

Based upon the maximum 

aperture radius a 
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~ s ob Yi 
A. [ ] 

2n6A.(s + o ) 
b 

(74) 

and the associated angular blur w 
t 

m the hologram reconstruction 1s given 

by (from an analogous diffraction problem) 

w = 
t 

A. 

2a 
t 

and since s > > O b , 

= 
ob) Yi 

----] 
s ob 

n6A. (s + 

n6A. Yi 
(-0-) 

b 

5.4.2 The Effects of Finite Source Size 

As was noted in Section 5.3.2, the restriction on source size is 

(75) 

(76) 

determined by the condition that the detail in the hologram must not be 

destroyed by what was envisioned there as a superposing of the differently 

displaced interference patterns of the point source components of the finite 

source. 

The center of the pattern due to each conceptual point source and 

an image point on the transparency lies on the ray connecting these points, 

and therefore a translation of the image point will also effect a displacement 

of the pattern. ·The relative effects of source and image point displacements 
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are found by noting what image point displacement is required to counteract 

the effect of a source movement so that the ray connecting the two does not 

move on the hologram plane. A ray projection, through a point on the 

hologram, of the (circular) source pinhole onto the transparency plane is a 

disc , and the effect of the finite pinhole is therefore identical to convolution 

of the image with a disc of this diameter. The effect of the finite pinhole 1s 

not severely degrading if the smallest picture element is of linear dimension 

equal to the radius of the disc. 

5.4.2.1 A Simple Mnemonic 

The ray projection construction described above is most easily per-

formed with respect to an image of the source pinhole, if such an image lies 

closer to the hologram plane than the pinhole itself. In the holographic 

stereogram application, such an image lies . in the front focal plane d. The 

construction is illustrated in Fig. 15. The source image is of radius ! 
r s 

the angular blur w , caused by spatial incoherence for a self-luminous 
s 

source is given by 

w = 
s 

r 
s 

o­
b 

(77) 

and 

The similarity of this construction to that of the focus cue should be noted 

as a mnemonic. However, the physical basis of the construction is entirely 
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different from that of the focus cue. In particular, making 

does not cause diffraction blurring of the image. 

We may define an effective aperture radius 

S.S An Example 

a 
s 

A. 
2 w 

s 

a 
s 

r I infinitesimal 
s 

(78) 

Suppose we wish to use a white light source of brightness B m 

conjunction with an optical bandpass filter of width !J.A. and approximate 

wavelength A. to form a hologram. The image of the filtered source has 

brightness -v ( !J.~ )B, neglecting transmission losses. The intensity I of the 

reference beam on the hologram surface is therefore given by 

I = 

We would normally arrange to have 

would be approximated by 

so that 

~ 2 
w = (w + 

t 

2 Yi 
w ) 

s 

6 
b 

B~ 

w = 
t 

2 
w 

t 

2 
w 

s 
(79) 

w , and the total blurring effect 
s 

(80) 



I 
B 

4 

6 
b 

"-
4 

w 

82 

(81) 

Since w = w , we have a = a . Because contributions on a given 
t s s t 

hologram from different transparency points are not coincident, some overlap 

of adjacent holograms may be useful for providing completely filled out cones 

of rays in the stereogram image. The overlap factor N is, using (75), (76), 

and (80) , 

t/J 0 

N 
,...,. b ,...., 
= = (82) 

at 

and we have used the fact that the zero order wave convergence half angle 

lS ""'t/J• 
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CHAPTER SIX 

OTHER FEATURES OF THE HOLOGRAPHIC STEREOGRAM 

6.1 Introduction 

We have seen that the fly's eye lens stereogram represents a marked 

advantage over the pinhole camera stereogram. We have also noted some rm-

portant differences between the fly's eye lens and the holographic stereogram. 

These include: 

Speed. An important advantage of the fly's eye lens hologram over 

the holographic stereogram is that it is a much quicker process. The holographic 

stereogram process is sequential in nature. A bank of cameras could be used to 

take the component photographs, but even then the process would be slower 

2 
than the fly's eye lens by a factor of [ ~ /(N.A.)] , where ~ is the half-field 

angle and N.A. is the numerical aperture used in the camera. However, the 

condition ~ > N .A. is chosen sol~ly for the purpose of reducing aberrations, 

so that the slower process yields a better resolved image. For given designs of 

the fly's eye lenslet and of the holographic stereogram lens, one would in 

general have to decide to what degree resolution should be increased at the 

expense of time - completely aberrationless operation may be impractical. 

Aberrations. This advantage of the· holographic stereogram has been 

well noted. It should also be noted here that a disturbing effect of fly's eye 

lens images is the appearance of an anomalous image at angles ~ > l/; = N.A., 

where N.A. is the numerical aperture of the fly's eye lenslet. Typically, the 

image appears to jump about when one varies his position for viewing. This 
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effect can be eliminated by the use of baffles between adjacent lenslets which 

however adds complexity to manufacture of the lens. 

Tunnel effect. This effect is actually a disadvantage of Pole's direct 

application of holography to fly's eye lens stereoscopy. It can be overcome if 

reflection rather than transmission holograms are made by Pole's method. 

There are several other features of the holographic stereogram and 

ways for using it which deserve special mention. Each of these features 

represents an advantage of the holographic stereogram over the classical hologram, 

the fly's eye lens stereogram, or both. 

6.2 Practical Advantages of the Process 

The holographic stereogram is m many ways easier to make than the 

fly's eye lens stereogram. In the first place, it is quicke.r to obtain a single 

lens of arbitrary design than to tool up for production of a special fly's eye 

lens. Conventional components can be used for imaging and for such auxiliary 

purposes as illumination, making the design much more flexible; a good 

example of this is the achromatically imaged zone plate. In fact almost any 

photographic lens may be used, even with a between-the-lens aperture. However, 

if the aperture stop is not m the hologram plane, some overlapping of adjacent 

component holograms may be necessary in order to assure completely filled out 

ray cones m the reconstruction. This effect was noted in connection with the 

25 
imaged zone plate, and there are associated problems of increased film noise. 

Obviously, greater precision is possible with the holographic stereogram, both in 

lens fabrication and film registration. Furthermore, arbitrarily fine resolution can 
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be achieved with any type of film by using sufficiently large component images. 

It is inevitable that some portions near the edges of the fly's eye lenslets are 

inactive in imaging. This problem can also · be overcome with the holographic 

stereogram; by close fitting or overlapping of adjacent component holograms 

the associated screen effect can be reduced. 

6.3 The Full-Color Stereogram 

The holographic stereogram is basically an array of simple holograms, 

and most of the well known holographic techniques may be applied to these 

holograms. In particular, they may be made as full-color holograms. Problems 

exist in color holography, but good full-color reconstructions are possible if the 

reference beams associated with the primary colors are introduced from different 

angles, or if thick holographic material is used. A distinct advantage over the 

use of color film in, say, a fly's eye stereogram, is the greater color saturation 

due to the use of spectral lines. 'An alternative approach which by-passes the 

problems of color holography and is well suited to stereograms is spatial color 

multiplexing. Each component photograph is taken through a filter of an 

appropriate primary color, and filters are incorporated into the component 

holograms for viewing. In a hexagonal close packed lattice of holograms, for 

example, there are three different and equivalent lattices, each one of which 

could be used for one primary color. The color saturation advantage is retained 

if narrow-band-pass filters are used with any of a variety of possible illumination 

sources. Spatial multiplexing can also · be used with classical holograms. lt 

should also be noted that component holograms of the holographic stereogram 
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can easily be made at a variety of wavelengths; by use of the achromatically 

imaged zone plate, a partially coherent ·source other . than a laser may be used. 

6.4 Distortionless Scaling 

The operation of distortionless scaling is applicable to the holographic 

stereogram but not, to the author's knowledge, to either fly's eye lens stereo­

grams or classical holograms. This subject is treated in detail in Appendix V. 

6.5 The Focused-Type Holographic Stereogram 

One difficulty with a typical hologram of a small object is that the 

viewer must move close to the hologram and look through it, as through a 

small window. The image typically appears somewhat behind this window, 

and if the viewer moves back he cannot see the image unless its apparent 

position 1s in his line of sight with the hologram. Also, incoherency in the 

illuminating source yields an apparent angular blur from the point of view of 

the hologram plane, and hence considerable linear blur may appear if the image 

location is far from the hologram plane. A solution to both problems is to 

make the hologram so that the image is approximately in coincidence with the 

hologram plane , and this is called a focused-type hologram. 

The author is not aware of any method for directly making a focused 

hologram in which the image extends front and back of the hologram plane. 

To do so would seem to require placing the object and hologram plate 
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simultaneously in the same location.* Even making a focused hologram in which 

the image is partly in contact with the hologram plane but not extending 

through seems precluded by the apparent impossibility of providing a reference 

beam, for a transmission hologram. An obvious way to obtain a focused holo-

gram is to "take" a second hologram of the perfect real image of an unfocused 

hologram. In addition to image degradation, however, this approach leads to a 

"tunnel" effect - no rmage is seen unless the viewer's line of sight intersects 

both the (second) hologram and the virtual (first) hologram. Somewhat similar 

problems arise if we try to make a focused-type stereogram with a fly's eye 

lens. 

In making a holographic stereogram, the object is not present to block 

the reference beam in the holographic step. As a result, reflection and 

transmission-type stereograms with the object partly in contac·t with the holo-

gram plane are easily made. Some problems exist for illumination, but these 

are overcome in practice by using an eyepiece camera shaped like a cone with 

the aperture at the point around which illumination is easily provided. 

The illumination problem can be overcome in another way which 

moreover permits direct synthesis of stereograms with the image extending 

through the stereogram plane. The camera aperture is imaged into object space, 

so that no physical aperture is present as an obstruction. Two identical lenses 

without spherical aberration are used, being placed symmetrically with their front 

*Distorted (i.e. non-perfect) imagery can be accomplished by projecting a real 
image of the object onto the hologram plate. We are considering, throughout 
this work, only perfect or almost-perfect imagery, (cf. Section 1.2). 
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focal planes in coincidence, and the camera aperture placed at the back focal 

point of one. The aperture is imaged to the back focal point of the other 

lens, and there is somewhat less than one focal length of space available for 

the object beyond the (imaged) aperture plane. While lenses of sufficient focal 

length may not be available, a pair of parabolic mirrors may also be used; m 

this case the camera axis is offset from that of the mirrors and some tilting of 

the film plane may be used to compensate for field curvature in the mirrors. 

6.6 Spatial Filtering of Holographic Stereogram Images 

Because the response of the holographic stereogram can be spatially 

invariant, spatial filtering methods are easily applied, and the possibilities are 

26 - 28 
unlimited. Let us treat a simple example, based on the discussion of 

Section 4.5. We do not consider noise here. 

Suppose the brightness pattern B we wish to record is band-limited 

to spatial frequencies w such that I w I < w . We then choose the aperture 
0 

SlZe a so that t the Fourier transform of t , is (dropping an uninteresting 

normalization. constant) 

t = 1 

= 0 

1.e., 

w 
0 

~-
2 

w 
lwl > 

0 

2 
(83) 
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w A. z 
0 0 

2 TT 
(84) a = 

The Fourier transform of the recorded intensity 1s (cf. (65) ) 

I= B(t*t) (85) 

of bandwidth W (i.e. I w I < w ) . 
0 0 

Suppose the film is reversal developed with appropriate gamma to 

obtain amplitude transmittance I. The resulting signal is processed in a 

"" holographic, or complex spatial filter of spectral response 1/(t * t) and 

the signal B is obtained:* 

1 
... B (86) ,...., 

t * t 

The sigllal B 1s again reversal developed with appropriate gamma to obtain 

fB. Since /B and t have bandwidth w /2, the use of the image ./B 
0 

to project the holographic stereogram yields (cf. ( 71) ) the ensemble average 

intensity: 

*This filter's response is infinite for W = W0 • In practice, this problem is 
overcome by using a system in which the v,Yue ,..gf w 

0 
is slightly larger than 

the band limit of B, so that the filter 1/ ( t * t ) need not be accurate all the 
way to W

0 
• 
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2 2 
( I A I z=z > = I /"B * t I 

b 

j/B j2 = 

= B . (87) 

Thus, if B is band-limited, the system can be made to image perfectly. 
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CHAPTER SEVEN 

CONCLUSIONS 

The techniques of holography have been found to provide an elegant 

means for obtaining highly resolved and perfect three-dimensional images of a 

large class of objects. However, due to limitations imposed by laser technology 

and the need for objects to maintain micron-like stability during exposures, 

classical holograms cannot always be made, particularly in the imagery of very 

large objects. To fill such needs and also to provide a less expensive method 

for imaging objects for which holography is possible, a study was undertaken 

of the holographic stereogram, a method for obtaining less highly resolved but 

otherwise perfect three-dimensional images. As the name implies, the process 

is partly holographic in nature, but it provides images of naturally illuminated 

objects. The holographic stereogram is also readily applied to computer 

generation of 3-D images, since the component photographs could be artificially 

synthesized. 

Besides these anticipated results, several further advantages over the 

classical hologram were discovered. Readily available partially coherent sources 

can be used to make full-color stereograms, most notably in connection with 

spatial multiplexing and/or the achromatically imaged Fresnel zone plate, In 

contrast to holograms, holographic stereograms of the focused type may be 

made which do not display the tunnel effect and hence are conveniently viewed 

from a distance. Finally, distortionless scaling of the image is possible. 
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The concepts of diffraction cues and geometrical or focus cues were 

developed for the analysis of stereograms, · and were found to be quite useful 

for general photographic purposes. A graphical mnemonic was devised which 

greatly simplifies all depth of focus considerations and an example was treated 

which clarifies the concept of hyperfocal distance. 

The pinhole camera stereogram, historically the first attempted method 

for almost-perfect* stereogram imagery, was studied from a ray reconstruction 

point of view. As with all stereogram systems, objects were found to possess 

an inherent depth of focus L, given by 

"' L 
2 

2 8 /A. ( 11) 

where 8 is the linear resolution element desired and /.. is the wavelength 

of light. Image reconstruction with the pinhole camera stereogram requires that 

the pinhole camera array be placed within the available depth of focus of the 

object, and the number n of rays contributing to a real image is given by the 

inverse of the utilized fraction of the available depth of focus. The filling ratio 

of the cone of rays contributing to the real image is given by 1/N, where N 

is the number of resolvable lines in the virtual image, which is limited by the 

relation 

N < ( 18) 

*Perfect except for resolution limitations. 
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The relation 

2 ( 21) 

shows the mutual interaction between n, the number of rays contributing to a 

real image point; (N/21/J ), the "sharpness" of the virtual image; and (A. I€ ), 

the relative resolution. 

The fly's eye lens stereogram of Lippmann, which also predates the 

holographic stereogram, was studied and found to have several important ad-

vantages over the pinhole stereogram. The ray cones are nearly completely 

filled out, and the fly's eye lens is optimally placed outside the depth of focus 

of the scene, so that the entire depth may be utilized. However, the fly's eye 

lens was found to be subject to aberrations which in typical cases reduce reso-

lution by one or two orders of magnitude. For a finite object the degrading 

factor ( w I w ) is given by 
a oL 

w 
a 

w 
oL 

= 
h 2 

.04 (y) 
h Yz 

(-) 
L 

h Yz 
(-) 

A. 
(36) 

for w > w , where h is the object dimension transverse to the optical 
a oL · 

axis, L the dimension parallel to the optical axis, d the lens to object 

a 
the angular blur due to aberrations, and w the best 

oL 
distance, w 

possible angular resolution in the absence of aberrations. In the case of a 

scene extending to infinity, the degrading factor is given by 
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w 
a 

(38) --w 
oco 

where lJ; is the half-field angle. The fly's eye lens 1s therefore limited to 

small field angles. 

The holographic stereogram has been shown to exhibit the same 

advantages over the pinhole stereogram as the fly's eye lens and the associated 

camera system can be scaled to eliminate aberrations for even extreme field 

angles. The Wild eyepiece camera was specifically treated, and the necessary 

focal lengths f 
oL 

and f to eliminate aberrations for finite and infinite 
0 co 

scenes respectively are 

f 
~h2 

= 
oL 2L 

(43) 

f 
2 

= 2~lj;d 
oco 

(50) 

,...., 
where ~ 0.1. If a shorter focal length f must be used, the respective 

degrading factors are 

w f f 
c oL Yi 0 co ¥2 

(from (48), (54)) - (-) (-) 
w f f 

0 

for w > w 
c 0 



95 

where w is the aberration-limited angular resolution. The exact form of the 
c 

aberration-free image was derived for a relatively flat object. This form is 

interesting in itself, but it was further shown that by optical spatial filtering 

the stereogram can be made to behave like a low-pass system of the same band-

width as for incoherent imaging, but in which the response is unity up to the 

spatial cutoff frequency. (The object intensity function must be band-limited 

for this result.) 

Other notable features were found to set the holographic stereogram 

apart from the fly's eye lens. Such matters as scaling, the focused-type stereo-

gram, and spatial filtering were noted above. The image jumping effect is 

absent and the screen effect can be eliminated. The choice of optical com-

ponents and film is, of course, more flexible, and there is no great problem 

of precision. The tunnel effect is not present as it sometimes is in Pole's 

application of holography to the fly 's eye lens. Also, the methods utilizing 

partially coherent light are not directly applicable with Pole's method. 

The problem was considered of replacing a high quality photographic 

lens by a fly's eye array of m x m lenslets of equal total area, or by the 

holographic stereogram equivalent. This reduces the 

factor of m, and increases the depth of focus by 

transverse resolution by a 

2 
m - each of the resulting 

m elements of depth is m times as deep as the initial depth of focus. 

Finally, the achromatically imaged Fresnel zone plate was treated. This 

is a technique of very general applicability in holography which compensates for 

source incoherency. A specific example of a holographic stereogram camera was 

treated. But the most important result was the development of two simple 
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graphical mnemorncs for rapid analytical inspection of the effects of, respectively, 

temporal and spatial incoherence of the source in any achromatically imaged 

zone plate or Gabor in-line type holographic system, The author believes that 

these mnemonics will be very useful for purposes of synthesis. 

Several simplifications were introduced into the analyses, and the results 

obtained are therefore in many cases not exact - this has been indicated by the 

use of approximate equalities where applicable. The results are precise only for 

paraxial objects and images, both because of our use of small argument approxi-

mations for trigonometric functions, and because of the use of scalar electro-

magnetic theory. 
0 

For extreme angles (half-field angle tJ; ,..., 35 ) the results are 

probably inaccurate by ,..., 15%. In addition, as was noted, diffraction focusing 

was not accounted for in the parameter optimizations, for the sake of clarity m 

the presentation. The phenomenon was briefly described; m extreme cases, 

practical utilization of diffraction focusing could effect as much as a 25% 

increase in resolution, but usually only about half this much. The specification 

of the radii of the blur discs associated with aberrations was somewhat 

arbitrary. Finally, quasi-monochromatic illumination was generally assumed, and 

if broad-band illumination is used. the formulas must be appropriately integrated 

over the spectrum, 
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APPENDIX I 

ABERRATIONS OF THE FL Y'S EYE LENSLET 

The radii of the blur circles associated with each of the aberrations 

spherical 

* coma 

3 
Bp 

2 
F WP 

. . ** ast1gmat1sm 
2 c lj! p 

where p = radius of entrance ·pupil 
(1-1) 

~ = field angle in radians, measured from runs m object 

space. 

h b ffi by30 £ h al B, F, C are t e respective a erration coe 1cients, given ( or a sp eric 

lens): 

4 2 1 1 
B = %h K (-- -) 

ns 1 s 

2 2 1 1 
F = %h K(l + kh K) (-, - ---1 (1-2) 

ns s 

2 2 1 1 c = %(1 + h kK) (-, - -) 
ns s 

*radius of circle contributed by outermost zone of lens 

**radius of circle of least confusion (geometrical), which equals ¥.i length of 
astigmatic line. 
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where -s, s ' are the object, image distances from the lens surface, n is 

the index of refraction, and K is the Ab be invariant given by 

1 1 
K = n [- - - ] 

r SI 
(I-3) 

where r · is the radius of curvature of the lens. When the entrance pupil 

coincides with the lens surface, the parameters k and h are given by 

k = 0 (I-4) 

h = -1 . (I-5) 

Using the symbol y = -s 1 /s, we have 

n+y 1 
K = n[ I -, ] 

(n-l)s s 

= 
n (1 +Y) 

(n-1) s' 
(I-6) 

and the respective aberration radii a.t'.e given by 

n 2 3 
spherical - 2 3] (l+y) (l+Yn) p 

2(n-1) SI 

1 2 
coma - (l+y)(l +yn) if; p (I-7) 

2 
2(n-l)s 1 

1 2 
astigmatism [-2-,] (l+yn) if; p. 

ns 
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Finally, to obtain the expressions in Table 1, we substitute N.A. = pn/s ', 

and ~ = tjJ , the half-field angle. 
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APPENDIX II 

Reprinud from 

Volume 12, Number APPLIED PHYSICS LETTERS 

HOLOGRAPHIC STEREOGRAM FROM SEQUENTIAL COMPONENT 
PHOTOGRAPHS* 

J. T. MrCrirknd and ,\'ir/111/a.1 (;ro,.~1· 
C:;1lil11rni;i l11,1i1111t· 111 Tn 11110111~~ 

l';1,;1dt·11a. <:alilor11i;1 ~11 Jfl~I 

(H.t"t'c.•in·d !i St·p1t·mlw:r l~ll)i : iii lin;1J lorm '!.7()(1ohc:r 1~1(}7) 

HologTams of naturally illuminated ol~jcns arc synthcsi1.cd in 1wo steps . A stcrl"t>Sn>pi<· caml'ra ted1niquc i~ 

used to rcrord tlw ol~jct: 1s' parallax qualities in white lig-IH; 1his photohrraphir inform;11ion i~ tran~formcd into 
a holo>,1Tam with rohcrcnt liglu. The imagt.' quality is cxl·cllcnl. ~md the method ~ccms prani<"al for making- full· 
c:c>l<>r rcn>nsrruc:ti(ms using Sll'fC<>sn>pic: phot<>).,'Taphs takc: n with n>i<>r film . 

:\ llrn-stcp method is described for holographi­
cally recording '.\-D images of inrnhnently il­
luminate-cl objects. R. V. l'ok has previously dem­
onstrated another method for this, using a "fly's 
eye" lens.' Both methods arc applic;uions of holog­
raphy to stereoscopic photography."' particularly 
of the type proposed by Lippmann.' In the tech­
niques described below, an ordinary ramcra lens 
is used to record the component photographs in 
sequence. rather than simultaneously as in the 
"fly's eye .. lens tase. This has two important conse­
quences. First, the tomponcnt photoh•Taphs can 
be made much larger, and any kind of film can be 
used without loss of resolution. Second. the prior 
problem of screen effect caused by dead space be­
tween adjacent lenses of the "fly's eye" is elimi­
nated. 

The method involves two steps. In the first step, 
a scquente of ordinary photographs is taken of the 
incoherently illuminated object, providing a stereo­
scopir record. Each photograph is taken from a 
different segment of a reference plane. In the 
second step. a Fourier transform hologram of each 
photograph is recorded on the corresponding 
segment of a hologram plate which is placed in the 
reference plane. This requires a laser and other 
appropriate holographic equipment. 

Figure I illustrates the taking of a typical photo­
graph from a segment of the observation plane, z = 
z.,0 ; a mask is placed in this plane with a pinhole 
aperture centered at P., . Behind the mask and 
aligned with the aperture are placed a convex lens 
and a sheet of photographic film . The lens-film 
system is focused to record the image. at P,. of the 
object point P 0 . For convenience the aperture 
diaphragm has been placed in front of the lens in 
order to be physically accessible as a light mask in 
step 2. 

•Research supported in pan by the Elcctronio Division of the 
Air Force Office of Scientific Research. 

10 

The resolution of the picture is afl'encd by the 
aperture size, which is chost·n small enough to 
provide adequate depth of focus. hut · not of wa\T­
length dimensions, so that diffranion effens due· 
to this aperture arc minimal. 

If the film is processed and returned to the origi­
nal position, illumination of the image point /', 
will cause a light ray to propagate· through the small 
aperture to the objen point /'.,. \\'e '""'._ as shown 
in Fig. '.!. interrupt this ray with a high-resolution 
photohri·aphic plate, immediately to ihe kft or the 
aperture. When the image point is rnhcn·nth· il­
luminated. and 1hc aperture addi1ionall\· illumi­
nated with a coherent 1'cfcrencc beam. at an angle 
0, the ray is holographically recorded at the point 
I',. of the high resolution plate . The ohjcn is not 
present in this step. 

If one were to view this hologram. the normal il­
lumination for the two-beam confihri.iration of Le ith 
and Upatnieks is used .' i.e., a coherent plane wave 
is beamed onto the plate. at angle IJ. as shown in 
Fig. :1: the reconstructed ray emanates from P,. to 
the point P 0 . The sensitivity of the reconstruction 
with (J is small, as described in the literature.' 

The entire process may be repeated at point P' ,. 
on the high-resolution plate, after translating 

INCOH(R(NT 
ILLt.'tAINAT~ 

,)I 

MASI< C~V(X L(~S 

P, 

"" 
Fig. I. Taking a typical pbotognph through pinhole aper­

ture in the plane J =- I.ob• (Len1·6lm·pinholc aystcm shown in 
exaggerai..d ocale.) 
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pinhole, lens, and all, 10 align 1he sysiem along P' 0 • 

Fresh film is used 10 1ake the corresponding photo­
graph. As shown in Fig. 3, the coherent plane wave 
illuminalion will then also result in a ray propagat­
ing toward P0 from the point P'0 on the plate. 

The process is repeated for all points of a two­
dimensional la1tice on the high-resolution plate. 
When 1he developed plate is plane wave illuminated, 
the many rays converging at the point P0 will form 
an observable pscudoscopic real image there, of the 
object point. All object points are reconstructed 
1his way. If we illumina1e the developed pla1e from 
1he opposi1c direction, 1he desired onhoscopic vir­
tual image is observed. 

Several holograms have been made by this 
method. The sequence of pho1ographs is taken with 
a 16 mm motion piciure camera, with a 0.05" pin­
hole aperture mounted in front o"r its Switar !?.~ mm 
lens. The camera is mounted on a two-dimensional 
translator to facilitate movement to sequential 
points of view, which are spaced 0.05" apan; and, 

P1N HOl[ 
AP(RTlftE 

P, "'-

LIGH 

MASK 

I 
z .. 

AUXILIARY 
LENS 

z, 

Fig. 2. Syntheaia of bolognm oo high-resolution photo­
graphic plate-

REAL 
IMAG(~ 

'" ,/ I\ /.-- Rfl:C~<ST~EO 
l~ \ 'r: '~/ RAYS 
........... -J,I Po 

z .. 

EMULSION 
5'0€ 

~> 
"" COHERENT 

"' PLANE 
"' WAVE 

Fig. 3. Holographic -vefrool rttomtnlctioo of paevdo­
ocopic real imap. 

II 

of course, all of the step phoiographs arc taken 
in sequence, and then the slep 2 holograms are 
made. Adequate registry is ob1ained with the un­
modified film transport mechanism of 1hc 16 mm 
camera. Kodak Plus-X reversal film is used. 

The holograms are made u,~ing 1he same lens and 
pinhole mounted on a 16 mm projector, whose op­
tical sysiem has been modified to permit illumi­
nation of the photographs with a He-Ne Laser. As 
shown in Fig. 2, a plane wave is beamed through 
an auxiliary lens, at z,, onto the transparencies. 
The position of this lens, z,, is adjusted to concen­
tra1e the light energy onto the pinhole. If the aper­
ture is placed in the front focal plane of the camera 
lens, no auxiliary lens is required; if a larger or 
smaller separation i~ used, a concave or convex lens 
is required. respectively. Rather than move the pro­
jector, the high-resolution plane is mounted on the 
translator for this synthesis. Many possibilities exist 
for eliminating dead space between adjacent holo­
grams, e.g., close spacing to provide extreme over­
lap; or precise fitting with a square aperture. 

This me1hod of holography is applicable to large 
objects which are naturally illuminated, and we have 
found the quality of plates made by this process to 
be very good due to the uniformity of exposure over 
the entire plate. Moreover, color holograms made 
with this method seem practical' using any standard 
color transparency film, e.g. Kodachrome Type II, 
in step . I of the process and either a multiline laser 
such as the krypton-ion white light laser or a multi­
color nonlaser spectral source for the illumination 
in step 2. In viewing, the same multicolor source 
may be used for illumination. In making a hologram 
of a transparency, as in step 2, it is not necessary to 
have as highly coherent a source as that required 
for an extended object; these considerations have 
recently been studied in detaiJ8 .9 - the general re­
quirement for small paih length differences between 
the object and .reference beams is easily satisfied in 
our case because of the small portions of the holo­
gram individually exposed. An elegant way to mini­
mize the path length differences when source 
coherency is limited is the imaged-grating technique 
of Upatnieks and Leith." We have found an imaged 
zone plate to be compatible with step ·2 of the color 
process described here, in which a plane wave ref­
erence is used; the requirement on source co­
herency is similarly reduced. 

'R. V. Pole. Appl. Phys. u/WJ 10, 20 (1967). 
1 A. W. Judge, Slrmw:opic PhologTOphy, 3rd ed. (Chaprrum & 

Hall Ltd., London, 1950), p. 288. 
'N. A. Valyu1, SlntOJCOfry (lzdatel'atvo Alr.ademii Nauk SSSR. 



102 

Volume 12, Number I APPLIED PHYSICS LETTERS I January 1968 

Moskv;,, 1962; EnKli!ih 1ran~la1ion. Foc<1l Pn;~s Ltd .• London, 
1%6), pp. 88- !J.I . 

'G. (jppmann. Compt. Hn1d. 146, 446 ( 1908). 
'E. N. Leith and J. Upatni<hj. Opt. So<. Am. 53, 1377 (1%:1). 
•N. Grorg<:andJ. W. Mallh<w•.Appl. Ph_.,. &ttm 9, 212 (1%li). 

1 Unpuhlished. 
11 A. W. Lohmann . ). Opt. So<. Am. 55, 1!'"15!'"> ( l ~Ui!l) . 

•j. Uparnicks and E. N. Leith, prt'~n1cd at 1hc: April Plll7, 
Columbus. ()hio llll'l'ting of the Optical S.Ji(:it·ty r•f Amt·ric a, .J. 
Opt. Sn<. Am. 57 (1%7). 
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APPENDIX III 

THE EFFECTS OF EXTREME DISTORTION - A SIMPLE EXAMPLE 

The effect of distortion in the Wild eyepiece may be characterized by 

a non-linear transformation of coordinates from object to rmage space. A good 

approximation for this transformation (cf. Fig. 12) is 

e = e (1 - .34 e 2
) 

0 0 
(III-1) 

1 

8 8 < Yi 
0 

where . 8 is the angle from the optical axis of the object point, ;md 8 
0 

is the angle of the image point. 

In general the effects of the individual aberrations cannot be separated. 

Therefore, although it is an inherent property of the holographic stereogram that 

lens distortion is unimportant by itself, we should also investigate its effect when 

combined with other forms of image degradation, particularly since distortion is 

independent of N.A. and is usually severe in eyepieces. A correct treatment 

of this problem would use the diffraction theory of aberrations. We shall treat 

a grossly simplified problem from a point of view based upon geometrical 

aberration theory, merely to illustrate the order of magnitude of the effect. 

Consider an idealized one dimensional imaging system, where an object 

point at 8 produces an image g( 8' - 8 '. ), symmetrical about 
0 1 

8' 
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The unprimed coordinate refers to object space, the primed to image space, and 

the distortion is represented by 

8 I 
1 

8 

= 

8 
0 

8 2 

8 
0 

(1 - -3-) 
0 

< Yi. 

Further, assume that a reverse imaging of a point at 

(III-2) 

8 yields the image 

h ( 8 - 8 ), symmetrical about 8 , for any 8 '. , 8 related by (III-2) . 
0 0 1 0 

(Note that the implied Green's function is not generally symmetrical to an 

interchange . of 8 ~ 8 ' . ) After a two step imaging process analogous to that 

of the holographic stereogram, an object point at 8 is transformed into 
0 

the function 

f(8, 8) = Jg(8'- 8'.) h (8 -¢) d8t 
0 1 0 

(III-3) 

where ¢ is related to 8' by 
0 

If we expand 

d8 ' 
d¢ as 

d¢ 
0 

8', ¢ <¥2 
0 

2 

(8'- 8'. ) 
1 

m powers of ( ¢ 

we may rewrite (III-3) as 
0 

(III-4) 

0 
- ¢ ) 

0 
and express d 8' 
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If we assume that the function g has approximate width 6. << 1 (i.e. 6. 

is analogous to the angular resolution), and that g' r>J 0 (g(0)/6.), then 

g ( 8 '- 8'.) and d 8' /d ¢ can be expanded in powers of (¢ - 8 ). If 
1 0 0 0 

we keep only the lowest order terms in ( ¢ - 8 ), (III-5) becomes 
0 0 

f(8,8) = 
0 

2 2 
( 1 - 8 ) S g [ ( ¢ - 8 ) ( 1 - 8 ) 1 h ( 8 - ¢ ) d¢ 

0 0 0 0 0 0 

2 2 2 
- 8 ( 1 - 8 ) S [ ( ¢ - 8 ) g' [ ( ¢ -8 ) ( 1- 8 ) 1 } h ( 8-¢ ) d¢ 

0 0 00 00 0 0 0 

-28 JIT¢-8) 
0 0 0 

2 
g [(¢ -8 )(1-8 )]} h(8-¢) d¢ 

0 0 0 0 0 
(III-6) 

The first integral is the convolution of an even function with another even 

function, and is therefore even in ( 8 - 8 ) for a given 8 . The second 
0 0 

and third integrals however are convolutions of odd functions with an even 
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function , and hence are odd in ( e - e ) for given 
0 

e - these two 
0 

contributions result in an asymmetry of the responsG of the system, so that 

the center of gravity of f(8,8) 
0 

does not fall precisely on e . These 
0 

contributions are smaller than the first integral, however, by a factor of the 

order of !::. • The shift of the center of f ( 8, 8 ) from 8 is there-
o 0 

fore smaller than the width of f by a similarly small factor and is therefore 

negligible. Accordingly, we shall consider the effects of distortion to be 

negligible, 
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APPENDIX IV 

ACHROMATIC INCOHERENT IMAGERY OF A FRESNEL ZONE PLATE 

WITH ONE OF THE FIRST ORDER DIFFRACTED WAVES ELIMINATED 

The amplitude transmittance of a zone plate 1s given by 

= - * -a + b¢( r) + b ¢ ( r) (IV-1) 

where a ~ 2b and ¢ is a phase factor associated with a spherical wave-

front. The position on the zone plate is denoted by r . Suppose we pass 

a monochromatic plane wave, or more generally a spherical wave through the 

plate, then through a uniform transparency and a lens which achromatically 

images the plate onto a conjugate plane. The wave due to a on the conju-

gate plane is 

wave 
a 

= aa¢ 1 [-;(i1
)] 

where a is a constant dependent upon the lens and transparency, and 

(IV-2) 

¢ 1 
[ ~{1 )] is a phase factor dependent upon the conjugate plane coordinate 

r'. The image point of -; is given by the function ;- 1 (r-°) and ;(;,-') 

is the inverse of this. Similarly, the wave due to b ¢ (-;-) on the conjugate 

plane is 

wave = (IV-3) 
b ¢( r) 
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In practice a < ~ , due to the transparency density. The wave due to 

b ¢ * (7) is blocked, according to the discussion of Section 5.2. ' The intensity 

on the image plane is, in abbreviated notation, 

I( r') = 
2 I aa¢' + ~b¢"l 

2 2 
= a a 2b2 b * * + ~ + aa ~ (¢'¢" + ¢' ¢"). (IV-4) 

Due to the imaging arrangement, the optical path length from r to -;- i ( ;-) 

is independent of the path, and therefore 

(IV-5) 

Thus we may write 

I(r') =a'+ b' ¢[-;(;;)] + b' ¢* (;(-;-')] (IV-6) 

where 

a' = (IV-7) 

b' = (IV-8) 

and 

a > 2b 
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Comparison with (IV-1) yields 

I(~') = c Ta' I c, b' I c [ r ( r ')] (IV-9) 

The intensity is proportional to the image of the amplitude transmittance of a 

zone plate equivalent to T a,b ( r ) , i.e. having the same .associated spherical 

wavefronts. The constant c may be chosen so that a' + 2b' < c, which 

is the condition for realizeability of the equivalent zone plate. 

These results are independent of the exact form of the spherical 

wavefront. A spatially incoherent source, which may be viewed as a summation 

of incoherent monochromatic point radiators therefore yields essentially the 

same result. Furthermore, the results are independent of wavelength, and 

temporal incoherence is also unimportant. 
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APPENDIX V 

SCALING AND RESOLUTION OF 

SCENIC HOLOGRAPHIC STEREOGRAMS 

~eprint from: Society of Photo-Optical Instrumentation 

Engineers Seminar Proceedings 15, 161-165 (1968). 

by 

Nicholas George, J. T. McCrickerd, and M. M. T. Chang 

California Institute of Technology 

Pasadena, California 

Abstract 

Scaling of holographic stereograms in 
the ratio d/d' can be accomplished by using 
a spacing , d, between component photographs 
and a different spacing, d', between corres­
ponding holograms. Scaling down of scenic 
holograms is desirable in order to increase 
visual imp·ression of 3 dimensionality. Up­
scaling of stereograms is called for to 
decrease the perspective of very small 
objects. Our analysis of resolution and 
depth of field shows the projector lens 
diameter to be t he crucial factor in down­
scaled stereograms, while the camera 
aperture i s crucial in the up-scaled case. 
In d/d' scaling of a scene which extends 
from s 1 to oo , the optimum projector 
aperture is given by (2t.s1/(d/d')J'l.t; the 
component photographs should be taken with 
an aperture of (2>.s 1 J11

.1, which may be 
altered by the root of the scale factor, by 
( d/ d' J '{Zwithout seriously degrading the 
scaled-down stereogram's resolution. In the 
text numerical examples are given to illus­
trate the wide applicability of ordinary 
photographic apertures in making these 
down-scaled stereograms. Both linear and 
two-dimensional arrays of scaled-down 
scenic holograms have been made and these 
are described. 

Introduction 

An optical hologram of a scene has an 
ultimate r esolution limit on the order of 
a wavelength. Often, as is the case for 
pictorial scenes, such a precise record is 
not particularly us eful. In this paper we 
describe a generalized holographic-stereogram 
which is more practical in many cases than 
a hologram, and we discuss in some de t ail a 
useful scaling law relating the scene to 
i mage size as well as the choice of camera 
lens (f and 0) and of related projector 
lens (f and D'). The depth of focus and the 
effect of scaling on an object at an 
arbitrary distance is treated in terms of 
basic photographic principles. We conclude 
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with a description of some scenic stereograms 
which have been made of Yosemite Valley and 
also of the city of Pasadena using as a 
2-dimensional platform the 9-story Millikan 
Library. 

These stereograms are made by holograph­
ica lly recording an ensemble of ordinary 
photographic transparencies of the scene on 
a high resolution film plate. Our method 
is similar to that of R.V. Pole (Ref. l); 
but as we have described earlier it differs 
in the respect that our photographs are 
taken sequentially (Ref. 2). This is of 
some advantage when the distance between 
component photographs need not be small, as 
with scenery; and of course it is essential 
to the scaling methods which we describe 
below. With th is freedom of choice between 
aperture size, photograph size, and spacing, 
our stereograms are not resolution limited 
in the same phys ical manner as in integral 
photographs taken with t he fly's-eye lens, 
although the general mathematical theory 
is applicable (Ref. 3). 

Scaling of Holographic Stereograms 

Photographs a re taken of a scene from a 
regularly spaced array of points, such as 
the one-dimensional sequence shown in Fig. 1. 
Incoherent light received from the object 
points, P1 , P2 , P3 , is imaged on the film 
with the frames l, ... , n recording the 
objects' parallax qualities. The camera, 
focal length f and diameter D, is focused at 
infinity; and, for simplicity, in the dis­
cussion of scenic photography, we assume 
that t he object points are far enough removed 
from the camera to be sharply focused. 
Positives are made from the photographs, and 
th ese transparencies are projected as shown 
in Fig. 2 using a projector lens of focal 
length f and diameter D'. Frames 1 through 
n are projected sequentially using a mono­
chromatic source (not shown) and recording 
ho lograph ically (at plane H in Fig. 2) as 
described in Ref. 2. A plane wave reference 
beam (not shown) is used. 
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FRAME 
(1) jf--------s, 

P, 1 

FILM 

(n) 

Pin 
FILM! T 

D 

For scenic stereograms, nd must be large 
enough to provide interesting perspective 
change; and yet, d should be small enough to 
approximate a continuous distribution of 
component photographs. In the taking sequence, 
the Plk image of point P1 occurs off of the 
frame center a distance ylk • (k - l)fd/s1 . 
In projection, the ray Pik intersects Pi1 at 
a distance from the lens plane given by 
sik • f'd's 1/(fd) which we see is independent 
of the frame number k. Selecting the projec-

(1) 

(n) 

T 
o' H 

I 

S1 

162 

~p 
~ 3 

Fig. 1. Taking typical sequence of photo­
graphic frames (1 and n are shown) for 
incoherent source objects P1 , P4, P3. Camera 
with lens (f, D) focused at infinity and 
translated a distance d betwee" frames. 

tion focal length f' ~ f, one sees that the 
scene is scaled in the ratio d'/d, i.e., 
s'/s • d'/d or Fig. 1 is similar to Fig. 2. 
If enlargement of the component photographs 
is included, i.e., m •Yi /y k and lens to 
film distances s 2 , sz ins~eaa of oo focus, 
then a more general scaling results, si/s • 
szd'/(s

2
dm) and we see that interesting 

angular distortions can be made by choosing 
si/s

1 
different from d'/d . An image is still 

formed. 

p' 
2 

Fig. 2. Projection sequence for making 
holographic stereogram at H (frames 1 and n 
are shown). Projector with lens (f, D'); 
translation d' between frames. Scale factor 
in reconstruction is d/d'. Coherent illumin­
ation is used. 
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LFOCUS CUE FOR ro FOCUS ---------
(a) D I(f-=-=--=--=--=-:E.=-__ _ 

--~~~~~-h~~~~~--
c::: - - ---------

rFOCUS CUE FOR h FOCU~----------

(b) Q -- la lb _J--' ja = 
~h/2 .. 1. h/2--l ------------

Fig. 3. (a) Determination of hyperfocal dis­
tance, h, based on desired angular resolution, 

OC, and lens diameter D, using the focus cue 
for oo focus. (b) With lens focused at 
hyperfocal distance, depth of focus extends 
from half-hyperfocal distance to infinity. 
Degree of blurring, diameter b, at h/2 
corresponds to same angular resolution (1. 

aa at infinity . 

Photographic Depth of Focus and 

Resolution Considerations 

A very simple to use, yet rigorously 
correct, concept for depth of field calcul­
ations is that of the focus cue. This cue is 
defined as the cone which intersects the 
effective lens circumference and has its 
vertex in the object plane of focus. The 
degree of blurring in any plane closer or 
more distant than the focused plane is equal 
to the diameter of the focus cue in that plane. 
For example, a one inch lens set at f/4 has a 
focus cue of diameter 1/4" at the lens. If 
the lens is focused at 10 feet, the cue has 
zero blurring there, but has 1/8" diameter · 
blur at either five feet or fifteen feet . 
Alternatively, if the lens is set to f/2 
and focused at infinity, a blurring of 1/2" 
will occur regardless of the object distance, 
since the focus cue in this case is a cylinder 
of 1/2" diameter extending to infinity. 

For photographic purposes, one is 
frequently interested in angular, rather than 
absolute resolution. If, for example, we 
specify an angular resolution of 1/1000 
radian, then the one inch f/2 lens focused at 
infinity will provide sufficient angular 
resolution beyond 500 inches, and we refer 
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to this as the hyperfocal distance, h, see 
Fig. 3a. However, by focusing at h, the 
lens has sufficient angular resolution from 
h/2 to infinity, as shown in Fig. 3b. 

While the angular resolution determines 
the apparent sharpness of a photograph, the 
absolute resolution is of ten easier to specify 
in a particular imaging problem. For example, 
if we wish our camera to resolve a person's 
eyes at 100 feet, we simply specify that the 
focus cue have a diameter of :>.. 1 inch at 
this distance .. For a specified «bsolute 
resolution, it is also easy to use the focus 
cue concept to show that the lens should 
optimally be focused at the middle plane of 
the object's total depth. 

At a given aperture, the lens resolu­
tion also restricts the photograph's angular 
resolution. This, ana the film's resolution, 
impose limits on the amount of sharpening 
possible by stopping down of the lens 
aperture. For example, if film limitations 
are negligible and the lens is diffraction 
limited, the absolute diffraction blurring 
is ~ ?t.lr1- , where ;l is the wavelength of 
light, and °'is the angle of divergence of 
the focus cue. Focusing at the center of the 
object of depth L, the maximum depth-of-focus 
blurring is ~11.L/2. An optimum focus cue, 
therefore, has a divergence CG = (2 iVL] 'Ii, 
and if s is the camera-object distance, the 
optimum aperture is - s ( 2 7'/L) '12.., correspond­
ing to an angular resolution of (l/s)(~L/2)YL 
radians. Similarly, if one wishes to 
optimize angular resolution, it can be shown 
that the camera should be focused at 
s • 2s 1s 2/Cs 1 + s 2) using an aperture of 
[}..s(s 1 .f s 2>/Cs 2 - s 1)J'lz.to attain an an­
gl,\lar resolution of [ ;>1.(s 2 - s

1
)/(2s

1
s

2
) ]'la 



where s is the minimum obj ect distance, 
and s ihe maximum. In either case , the 
optim3m aperture size increases as the half 
power of the scale of the record ed scene, and 
the angular blurring of the optimized system 
decreases by the same quantity. 

Stereog r am Resolution and 
(Distortionl ess) Scaling 

The holographic stereogram process in­
volves two stages of imaging to which the 
above cons iderations apply. The only dif­
ference is that t he blurring is multiplied 
by a "factor such as f"2 to account for the 
two stages. 

Scaling of the stereogram requires addi­
tional considerations, however. Since the 
angular blurring decreases like the half 
power of the scaling of the scene, the reso­
lution of an optimized scaled stereogram is 
determined primarily by the lens arrangement 
used f or the smaller scale. Therefore, the 
lens size used in the larger scale may vary, 
up or down, by a fActor of the half powe r of 
the scale ratio without seriously affecting 
resolution. Therefore, the lens size for 
the larger scale may be the same as for the 
small scale, as is also obtained from more 
restrictive considerations based solely on 
diffraction; or it may increase by as much 
as the scale factor, which is the anticipated 
result if diffraction is ignored and all of 
the focus cues are scaled along with the 
scene. And although the film may sometimes 

COHERENT 
PLANE 
WAVE 

lnl 

~~ 
COHERENT F1 F2 
WAVE 

R 

R 

T 
o' H 

p ' 
tn 

th Fig. 4. Detail of hologram (H) for n frame: 
transform width (w) if coherent plane wave 
illumination (upper) or wider pencil of rays 
a', b' if frosted glass diffusers F1 , F

2 
are 

used (lower). Projected rays from only one 
image point Pln are shown. 
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limit the attainable r eso lution in photograph­
ing a scene, this limi ta ti on is usually no more 
stringent than the r eso lution limitations of 
the small scale projtction step and can often 
be disregard ed . 

This analysis has been based on a com­
promise between depth of focus blurring a nd 
diffraction blurring. It should be noted, 
however, that tt is possible to eliminate 
depth of focus blurring for particular planeo 
of interest by te chn iques similar to those 
recently describ ed in the literature. (Ref . 
4, 5). If this approach to stereogram view­
ing is taken, it will be advantageous to 
optimize the information content by using 
even larger apertures throughout. 

Experiments 

Several scenic holograms have been made 
in order to study scaling effects. The 
component photographs have been taken with a 
16mm. motion picture camera and also with a 
35mm. single lens reflex camera. A single 
frame of the projection sequence is illus­
trated in Fig. 4. If the film record has 
fine detail of Ylines/mm. recorded near 
p then the transform width w for the co-
ln' 11 ' i i ' herent plane wave i uminat on s approxi-

mately given by w a 2AfV. With picture 
detail V • 20 lines/mm. and fa 50 mm., this 
width is only about 1 mm. However, in the 
projection the rays holographically recorded 
can certainly extend as far as D' a d'D/d in 
the transform plane; this is the previously 
described limit obtained by directly scaling 
the focus cues, _a - bin Fig. 1 in proportion 
to a' - b' in Fig. 2 as d/d'. 

In our experiments, typically, this 
optimum value of D' greatly exceeded the 
transform width. In principle, this optimum 
width can be obtained by filling in or nest­
ing a cluster of repeated exposures of the 
same hologram of width w within the diameter 
D' . In practice this incoherent-transform­
hologram is easily obtained experimentally 
using a ground glass diffuser in back of the 
film transparency. The most uniform distri­
bution of light in the transform plane 
resulted from the cascade shown: F

1 
is a 

piece of non-glare glass intended for 
framing portraiture; and F2 is frosted glass. 
I"he non-glare glass is too regular to be used 
alone, but in cascade it can be positioned to 
adjust the angular spectrum and t he level of 
the illumination. It should be emphasized 
that the hologram plate need not be located 
physically in the transform plane of the lens. 
This is important, practically, since the 
front focal plane of many excellent photo­
graphic lenses is located less than 1 cm. 
from the first lens element and introduction 
of the· planar reference beam R would be 



awkward. 
A two-dimensional stereogram is shown 

in Fig. 5. together with two one-dimensional 
arrays printed to different scales, d/d'~ 
The first array serves to illustrate the 
lattice relatio~ship of the component 
photographs (elimination of the diffuser 
enhances the deleterious edge or screen 
effect and is done here for clarity of pre­
sentation only). The two linear arrays show 
the effect of varying amounts of overlap 
using the same component photographs, see 
Fig. 6. Important detail in this scene occurs 
beyond 300 feet, thus with a 20:1 scale the 
corresponding detail in the reconstruction 
is beyond 15 feet. Excellent stereo effects 
are observed using a 6 foot base line with 
d in the range from one to four inches. A 
one-inch spacing provides a sampling interval 
of one minute of arc at 300 feet which is 
virtually continuous for visual observation 
(Ref. 6). 

An extremely wide angle lens is a good 
choice for taking the component photographs, 
since distortions cancel in the projection 
sequence .if the same lens is used, see Figs. 
1 and 2. Panorami c effect can also be 
achieved with a normal photographic lens by 
taking several component photog raphs with 
overlapping fields of view at each point of 
the array. These are easily superimposed 
holographically in the projection sequence. 
It is important to preflash the hologram 

. . . . . . . . ~ . . . . . . . .. . . . . . . .... ' ..... ' 

~!!ji . ¥0$ - ASu. fO •• ~ i . '7J 

~ ~ .. _..... ... ·-'· ............. ..________~ ,,::/ ~ 

~..,-- ~, 

, ~- L~ __ ,_ ..•. _, __ , ...... _ ...... ~--· , _ _, -·-.. ;l 
Fig. 5. Holographic Stereograms: Two­
dimensional array (upper) without diffuser, 
twenty frame overlapping stereogram of 
Yosemite Valley scale ratios 20:1 (middle) 
and 13.3 : 1 (lower). 
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Fig. 6. Half Dome, Yosemite National Park; 
component photograph for the stereogram of 
Fig. 5 . 

plate in order to obtain equal brightness in 
reconstructions from overlapping or super­
imposed holograms made with a fixed expos­
ure (Ref. 7) . 

Conclusions 

The proposed method for scaling holo­
graphic stereograms has been applied with 
considerable success to down-scaling of an 
object of large dimensions. The use of 
sequential component photographs is essential 
to this scaling, as well as being a rather 
practical way of attaining high picture 
quality. Stereoscopic reconstructions 
exhibiting sharp focus and negligible screen 
effect have been made using multiply over­
lapping component holograms made with a 
diffuser and a relatively large diameter 
lens in the projection step. 

The authors would like to acknowledge 
helpful discussions with J.W. Matthews. 
The research was supported in part by the 
Electronics Division of the Air Force Office 
of Scientific Research. 
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