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ABSTRACT

The holographic stereogram, a hologram synthesized from ordinary
stereoscopic component photographs, is investigated as an alternative to classical
holograms and to previous types of stereograms for three-dimensional perfect
imagery. The process is partly holographic in nature, but it provides images of
naturally illuminated objects, and its application is not limited by the technology
of laser illumination. The pinhole camera stereogram and the fly’s eye lens
stereogram are also analyzed, since the principles of their operation are similar.
Pinhole camera stereogram imagery is shown to have several deficiencies, among
which is the necessity for small camera-object distances. The fly’s eye lens is
much superior, but is limited in practice by aberrations, a difficulty which the
holographic stereogram overcomes. Also treated are the full-color, the focused-
type, and the distortionless-scaled holographic stereogram, and optical spatial
filtering of holographic stereogram images.

The achromatically imaged Fresnel zone plate is analyzed as a technique
of very general applicability which compensates for source incoherency in two-
beam type holographic arrangements. The emphasis is on physical interpretation
rather than mathematical formulation. Two simple graphical mnemonics are
developed for rapid analytical inspection of the effects of, respectively, temporal
and spatial incoherence of the source in any achromatically imaged zone plate
or Gabor in-line type holographic system.

The scalar wave function approximation of physical optics is used

throughout.
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CHAPTER ONE

INTRODUCTION

1.1  Introduction to Holography

The wotk described here is an application of holography. There is very
little consideration of the holographic process itself — extensive literature is al-
ready available on this subject.l-5 Holography is treated here merely as a tool
for the reconstruction of optical fields and images; when it is necessary to
physically recall a field which had previously existed, the operation is treated
quite casually. The holographic processes required here are quite simple and easy
to perform. ‘In fact, one of the main difficulties in holography — the require-
ment of extreme mechanical stability — is avoided; because of the small size of
the component holograms of the holographic stereogram, high concentration of
even weak laser beams ( ~ 1 mw. output) permits exposure times of less than one
second.

For the benefit of the reader completely unfamiliar with holography, a
very brief qualitative description of the simplest types of holograms is presented
here — this should be a sufficient basis for understanding the remainder of this
thesis. |

Consider an object, illuminated with a coherent light beam, which is
viewed through a glass plate. The plate is additionally illuminated with a plane
(reference) wave derived from the same.light source, and the ‘“‘cross — product”
term of the intensity is thus proportional to the object (reflected from the

object) beam. If the resulting interference pattern is photographically deposited



and then illuminated with an identical plane wave, the object beam is recon-
structed beyond the plate. If the reference beam is introduced from the same
side of the plate as the object beam, we obtain a “transmission” hologram
which is then viewed by looking through the plate in the direction toward the
source in order to observe the perfect’ and virtual “true” image. If the object
and reference beams strike the plate from opposite sides, the perfect virtual true
image is viewed through the plate with the source shining o§er the viewer’s
shoulder, and this is called for obvious reasons a “reflection” hologram. If
either a transmission or reflection hologram is viewed from the “wrong” side,
with illumination also from the “wrong” side, a pseudoscopic but perfect real
image can be observed which is generally called the ‘“conjugate”, as opposed to
true, image. The conjugate image phenomenon is quite easily interpreted — the
wave exciting the hologram is propagating backwards (time-reversed, if you wish)
and the excited conjugate image wavefronts are merely the true image waves

propagating backwards to the apparent object position.

1.2 Introduction to Three-Dimensional Perfect Imagery

This thesis describes an application of holography to three dimensional
imagery of incoherently illuminated scenes. The method is applicable to the
imagery of large scenes, where the use of classical holographic techniques is pre-
cluded by the technical limitations of laser illumination. The “holographic

stereograms” described here provide better images than those of previous types

* g 3
congruent with the object.



of stereograms, but which are generally not as finely resolvable as those of
classical holograms of similar dimensions.

The methods here described permit an “almost-perfect” imaging of a
three-dimensional object space. Every curve of the object space is geometrically
similar to a curve lying within the bounds of its slightly non-stigmatic, or non-
sharp, image. An everyday example of perfect imaging is that of a pair of good
quality mirrors, which provide an image which is almost indistinguishable from
its object; such a system is called an absolute instrument:.6 The slightly de-
graded image resulting from a light condensation of steam on one of the mirrors
could be called almost-perfect.

Many previous methods of 3-D photography do not produce 3-D images.
In the viewing of a stereo pair, for example, one’s eyes focus at a fixed distance-
the degree of binocular convergence exerted to eliminate parallax between the
two-dimensional retinal images is mentally translated into a distance interpretation.
In contrast, the viewer of a holographic stereogram must also accommodate the
power of the lenses of his eyes.

The basic principles of image formation used here are easily understood
in terms of geometrical optics. Stigmatic images exist where all rays intersect
which emanate from a given object point. Ray intensities are proportional to
object brightness, and image brightness is proportional to the intensities of the
associated rays. If we specify all the rays passing through the entrance pupil,
or any other pupil, of an optical system, then all the rays in the image space
are determined (by any of the standard ray tracing. methods). We can, there-

fore, by recording and later reconstructing the rays passing through a surface of

an absolute instrument, so reconstruct a perfect image of the object.



It is obvious that a thin window is an absolute instrument, since the
virtual image seen through the window.is congruent. with the object. Holographic
wavefront reconstruction on a thin plate of glass,* therefore, provides us with a
perfect image. A similar image results from ray reconstruction on a plate com-
prising the holographic stereogram, although there are several fundamental
differences.

The classic hologram comprises an almost exact reconstruction of the
optical wavefront emanating from a coherently illuminated scene. This wavefront
is a coherent superposition of spherical waves whose sources are microscopic
radiators on the surface of the object, when the object is opaque. A ray is
defined as a line whose direction is everywhere normal to the associated spherical
wavefront; hence the rays from each object point are a continuum of radially
directed straight lines.

In the first step of synthesizing a stereogram, the superimposed spherical
wavefronts from an incoherently illuminated scene are measured on small segments
of a. reference surface, and there is no mutual coherence between measurements
‘on different segments. In Section 4.5 it is shown that in general the data so
obtained are insufficient to permit faithful reconstruction of the spherical wave-
fronts, and one cannot precisely determine their centers of curvature.  Stated
differently, the ultimate angular resolution of the reconstructed scene, observed
from the ploint of view of a given segment, is of the order of \/2a, where 2

is the wavelength of light and 2a is the segment width. The data are collected

*The conjugate image of a thick plate hologram is also perfect, but the true
image is not, since sphericitzr of a wavefront is not generally preserved upon
traversal of a thick piece of glass.



by means of two dimensional images and in practice a resolution somewhat worse
than X/2a is typically attained. In contrast, the angular resolution of a classi-
cal hologram can in principle be of the order of A\/W, where W is the holo-
gram width. We see that, although the rays of a hologram reconstruction are
radially directed, some blurring inevitably occurs, and we must use physical optics
to fully describe the image on a microscopic scale. We shall also have to use
physical optics to understand the stereogram, but, keeping in mind the limitations
on image resolution, a description in terms of ray optics is appropriate if the
rays in the following discussions are interpreted as having a width of the order
of d\/2a, where d is the distance from the point of the ray’s intersection
with the reference surface; the use of this artifice will be justified in Sections
2.3 and 3.3.

Another distinction from ordinary geometrical optics and the hologram
is that we here reconstruct a discrete number of rays from any given point on
the surface of the object. The image is no less well defined for this, however,
since such discreteness does not preclude intersection of the rays at the image
" point.

To summarize, we reconstruct a 3-D image by recording and recon-
structing the rays emanating from each object point, on a reference surface com-
prised of a discrete number of segments. From any object point, we recon-
struct one ray for each surface segment (unless the respective rays are obstructed
by other portions of the object scene).

Several methods have been used to construct stereograms or integral
photographs, each of which uses a different means for reconstructing, on segments

of a reference surface, the rays associated with each object point. The word ray



is used in the loose sense, and it will be shown that under certain circumstances
rays of width ~ d)\/2a can be reconstructed using each of the methods. The
pinhole camera array, the fly’s eye lens array and its adaptation to holography

due to Pole, and the holographic stereogram are described here.

1.3 Summary of Text

In Chapter Two, the concepts of geometrical cues and diffraction cues
are put on firm analytical ground and applied to a study of the stereogram com-
prised of an array of pinhole cameras. It is shown that a rather unsatisfactory
compromise between image resolution, image sharpness, and the completeness of
the cone of rays contributing to a reconstructed image point must be reached,
and also that the pinhole camera array must be placed close to the object.

In Chapter Three, the geometrical cue concept is extended to that of
the focus cue, which is then applied to the fly’s eye lens stereogram as well as
to the general problem of photographic depth of focus which it resolves with an
extremely simple mnemonic. While the fly’s eye lens stereogram overcomes the
.limitations of the pinhole camera, it is found to be severely limited by aber-
rations in most practical cases.

In Chapter Four we describe the holographic stereogram, which over-
comes the problem of aberrations. A practical stereogram camera whose main
component is a wide angle eyepiece is described. The exact form of the recon-
steucted image is derived for the special case of a relatively flat object.

The achromatically imaged Fresnel zone plate is analyzed in Chapter

Five. This is a technique of very general applicability in holography which



compensates for source incoherency. Similar techniques have previously been
described in mathematical form — the present treatment is more physical in
contrast. Simple graphical mnemonics are derived which facilitate rapid analytical
inspection of the effects of source incoherency in any imaged zone plate or
Gabor in-line type holographic system. The results are applied specifically to
the holographic stereogram system.

In Chapter Six are briefly discussed some notable advantages of the
holographic stereogram over the hologram or the fly’s eye lens stereogram, or
both. In addition to simple practical matters we treat here the color stereogram,
the distortionless scaled stereogram, the focused stereogram, and spatial filtering
of stereogram images.

Conclusions are presented in Chapter Seven.



CHAPTER TWO

THE PINHOLE CAMERA STEREOGRAM

2.1 Introduction

The first practical test of the principle of the stereogram, or integral
photograph, was made by the pinhole camera method by P . P. Sokelow’ Of
the many variations of the pinhole camera method, we consider one which re-
sults in the reconstruction of a pseudoscopic real image congruent with the object
position. By using other variations, we could obtain images which are identical
except for being orthoscopic, virtual, or reflected across the reference surface.
The present case is chosen for its simplicity. Furthermore, measurements are
facilitated by mechanical access to the real image — a telescope would be re-
quired for close scrutiny of a virtual image. For further simplification of the
presentation, we shall treat opaque objects immersed in a homogeneous medium
(air) — the extension to more general cases is obvious.

In Fig. 1 is shown a typical segment L of the reference surface on
which rays are recorded by the pinhole camera. The segment ¥ , which we
consider to be very small, comprises the aperture of the camera. A ray from
point 0 on the object’s surface which enters the camera through ¥ leaves
a latent image point on the film at I If, after reversal development, we return
the film to its place and illuminate it from the side opposite I, some of the
light from 1 will pass through £ . This ray of light will obviously intersect

the point 0, where the object had previously been located. We say that the
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ray OZ has been reconstructed, although the direction of propagation has been
reversed.

If n pinhole cameras are located on the reference surface,
21,22, S ,Zn, there will result n rays 210, 22

sect at the point 0. This happens similarly for each point on the surface of

0, . ., Z‘.nO which inter-

the object and hence a real image is formed. The image is pseudoscopic, since

the rays have been reversed in direction.

2.2 The Pinhole Camera and Diffraction Focusing

It is very convenient to understand the imaging properties of the pinhole
camera, and indeed of any camera system, in terms which are as completely di-
vorced as possible from the details of the phenomena occurring on the film plane.
To this end we shall develop the concepts of the geometrical cue and diffraction
cue for the pinhole camera. Scalar theory is used.

Consider a pinhole camera used to image an object contained in a plane
. perpendicular to the optic axis. A point object at a transverse coordinate X
close to the axis produces a circularly symmetrical image which is centered at
the point x on the film. We find that x = M X, where M is a constant,
the magnification. Thus, the intensity at x due to a unit point object at

Xo may be described as g(x,Xo) = g(|x - xol ), where x = MXO, and if we

*This statement must be qualified. The ray Z;0 will not exist if the line X ;0
intersects another portion of the object in the point 0 , where the ray ZiO' is
unobstructed. If all the rays 210, Z50, . . ., Zno are obstructed, then an

image of 0 is not formed. This is a phenomenon common to systems which
image opaque objects.
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weren’t aware of the camera’s intrinsicly blurred imagery, we would conclude
that the object was not a point, but the intensity pattern G(|X - Xol)
=cg M|X- XOI), € a constant.

The function G(|X - Xol ), the apparent shape of the point object,
is most important. If the approximate radius of this function is r, then a
picture will not resolve two points spaced more closely. Fortunately,

G(|x - XOI) is quite easily calculated. From electromagnetic theory, we know
that a unit point source at X will give rise to an intensity ClG( Ix - X0|)
on the object plane; this follows from the symmetry of the Green’s function.
Thus, by placing a point source in the film plane and determining the radiation
pattern outside the camera we immediately find the apparent shape into which
a point object at a bgiven distance is transformed. Of course this shape depends
upon the focal length and pinhole size.

The pinhole camera with a circular aperture may be considered a
special case of a camera utilizing a well-corrected lens; a point source on the
focal plane produces a wavefront at the aperture which is spherical, ie. un-
aberrated. The pinhole does not.reconverge the wavefront to a point however,
which is analogous to an unfocused camera. Born and Wolf have analyzed the
unfocused, well-corrected lens using a Kirchoff integral formulation in which path
length differences associated with the spherical waves are approximated by quad-
satle Suneploms, T approximation is appropriate for the pinhole camera if
the points to be imaged are not much closer to the aperture than, say, f/10.
(The close range on the other hand is probably governed by geometrical optics.)

The exact form of solution is valid only for small field angles.
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Born and Wolf’s results are reproduced graphically in Fig. 2. The
abscissa u is the normalized curvature of the wavefront with respect to a
reference sphere centered on the observation point and intersecting the wave-
front in the center of the aperture. The ordinate v, to the degree of approxi-
mation involved, is the normalized distance of the point of measurement from
the center of the radiation pattern, transverse to the optical axis. Only points,
say, to the right of the origin are relevant to the pinhole camera. The lines
|v]=u are the limits of the geometrical shadow of the aperture cast by the
point source on the film plane.

The normalization of the intensity plotted in Fig. 2 is inappropriate
for our problem, however. We are interested in the camera’s resolving capabili-
ties and to this end in Fig. 3 we plot the apProximate width of the radiation

pattern. The coordinates are given by

2
2 1, L
o e W

;:.2_”.(
A

(2)

o.le
SN
L2}

where: )\ = wavelength of light
a = pinhole radius
f = focal length of camera

d = axial distance of point of measurement from center of pinhole
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r = approximate radius of the pattern measured, in the transverse
direction, from the extension of the straight line which connects
the point source in the focal plane with the center of the

aperture.

Roughly speaking, Fig. 3 may be described by the equations:

;:u,uzZ . (4)

There is a smooth transition between the two domains in the vicinity of u = 2T,

Equations (3) and (4) may be respectively put into the forms (5) and (6):

e st 2d, 4w oan ey, (5)
T a a
rwafl+ 2y , E2d gansl (6)
f a f

If we are somewhat sloppy with factors of 2, we may thus interpret
the radiation pattern as a combination of a geometrical shadow (6) and of a
diffraction limited field (5), the net pattern being approximately equal to the
larger of the two contributions; in any imaging problem we should optimize
(with respect to aperture size) the resolution by balancing the one against the

*
other.

*We disregard here the possibility of optical spatial filtering (see Section 6.6).
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A manifestation of the factor of 2 mentioned above is diffraction
focusing. For example, in imaging a plane object at a fixed distance, we may
improve the resolution by up to ~30% by using an aperture ~ 30% greater
than that suggested by a geometrical-diffraction balance. In the case of more
complicated objects and imaging systems, less than 30% can be gained in this
manner.” Diffraction focusing is a phenomenon common to all the optical
systems we shall describe, and its small effect should of course be considered
in practice. However, we shall neglect it here, for a simple presentation.

Another detail which we shall not consider explicitly in our simpli-
fied analysis is the fact that the stereogram requires a two step process, i.e.
both imaging and projection. If the same optical system is used for both steps,
the spatial impulse response of the entire process is given by the spatial auto-
correlation of that of the imaging step. We shall assume that the second step
has the effect of increasing the blur by a factor of approximately /2, as
would be exactly the case for a gaussian impulse response. If in practice dif-

fraction focusing is effectively utilized, it will almost cancel the two-step effect.

2.3  Three-Dimensional Imagery with the Pinhole Camera Stereogram

In stereogram applications of the pinhole camera, d>>f. Then the

radius of the geometrical shadow, or cue, is rg ‘= %—d, and that of the diffraction
i
& ~ )\- . . .
pattern, or cue, is 1, = - d. The best aperture radius choice istherefore
a

*We disregard here the possibility of optical spatial filtering (see Section 6.6).
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A B
(5 ) (7)

1R¢

and from substitution into (1) we have

) - (8)

Except for = @, the geometrical cue ié then always dominant, if only
slightly so. (A slightly larger value of u would be used if diffraction
focusing were considered.) As shown. in Fig. 4, the resolvable object element
is of width € , where

~ .\

¢ d(o)" (9)

except for small d, where a is the limit of resolution. Thus, for given f,

we have

ol p
e>a® 2 d (10)
The maximum d or depth of focus, d_, is given by
max
9 2
g = EEL (11)
max A

where € is the required (maximum) resolution element.” While this value is

“The depth of focus is infinite if we only specify angular resolution (which is
related to picture sharpness).
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typical of all stereogram systems, we should note that the pinhole camera, unlike
the other systems, must be located within this depth of focus region.

The number N of discernible line elements across the picture is
approximately equal to the ratio of the spacing s between adjacent pinholes

to the aperture radius a.
sla (a;(z))g (12)

This is easily seen by noting that the geometrical shadow of the aperture cast
onto the film by a point object at d >>f is a circle of approximate radius
a, and that the total image size cannot exceed the spacing s. We may define
an approximate F number of the cone of rays contributing to a real image

point

Fr
1R
=
ne
[N

2 tan V¥ ns (13)

(n >2, ¢ = tanyy) ,

where n is the number (in one dimension) of apertures contributing, and ¥
is the half angle of the cone. Since the aperture radius subtends, from the

object, an arc of % % , we have

~

I

JE (14)

NE (2Lt

a
2

j=]
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The half field angle of the camera is obviously approximately equal to i/ , i.e.,

~

FEv. (15)

Since the camera cannot function well at extreme angles,

vy <1, (16)
and from (13) and (16)

s $d (n=2). (17)
Also, note from (13) and (14) that

N 3

2¢
e (18)

~

For 1[/: 1, the limit of d = s f also corresponds roughly to the closest
A
point at which an angular resolution of ~ N is attained (cf. (5) and (6)).
1
The number of resolvable lines N is significant for the virtual

image. But for the real image, since many cameras contribute, n is more

. i (A s
important. Since 3 is the smallest resclvable angle,

s
d
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From (10), (14), and (19), we find

2
£
d

~ ~~

n

>N

= (20)
a

Therefore, if the camera system is designed to be just within the depth of focus
of the object (cf. (11)), or just close enough to resolve the line width ¢, n
is of the order of unity. If the camera is designed to be closer, n becomes
proportionately larger, at the expense of the useful depth of focus. However,

n is independent of the field angle /. Equation (14) can be put in the form

~

™| >

) g . (21)

N
n('z-i/)(

Here we see plainly how the relative resolution ( —Z—;—) determines a real-virtual
=)
2y 7

The choice of s, the camera spacing which determines the field

quality product n x

angle 3 can proceed somewhat independently of the other parameters of the
.system. For the virtual image, the desirability of a large field angle is balanced
against the accompanying increase of ‘“‘dead space” ratio (s/a)z; in the case of
the real image, spreading the n contributing rays over a large angle 3y lends
precision to measurements at the expense of the unnatural “dead space” (s/a)2
contained in the image-forming cone.

In conclusion, the pinhole camera must be located within a distance
~2 62/ A, or within the depth of focus, of the object. The maximum possible

number of resolvable lines N in the picture is ~ 2 €/A , where € is the
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specified line width. Equally significant is the fact that the cone of rays involved
in forming, say, a real image is severely incomplete. The filling ratio in one
dimension is approximately % . The numbe; in one dimension of rays forming
the image is given by the inverse of the utilized fraction of the available depth

of focus.
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CHAPTER THREE

THE FLY’S EYE LENS STEREOGRAM

3.1 Introduction

An improved version of the stereogram, proposed by Lippmann,9
utilizes a fly’s eye lens in place bf the pinhole camera array. As the name
implies, the fly’s eye lens is an array of small lenslets closely packed side-by-
side. Each lenslet, comparable in size to the pinholes previously proposed,
acts in a similar manner in conjunction with its film plane to reconstruct rays
on the fly’s eye reference surface. A hexagonal close-packed arrangement may
be used, so that the individual lenslets may be considered to be roughly circular
in shape.

The fly’s eye lens represents two important improvements over the
pinhole camera stereogram. The first is the elimination of dead space between
adjacent camera apertures. This is accomplished by using a lenslet focal length
short enough to compress the size of each picture to a size approximately equal
“to the lenslet diameter. Thus, adjacent lenslets touch each other and the result
is a more natural appearing virtual image which exhibits a relatively small
“screen” .effect due to the small amount of dead space (near the borders of the
lenslets). Also, the cone of rays contributing to a portion of the real image is
nearly completely filled out.

The second important advantage of the fly’s eye lens arises from the
focused geometrical cue — the radiation pattern from a (image) point source on
the focal plane is relatively concentrated at the conjugate (object) point. We

may thus diminish the diffraction cue, which is analytically identical to that of
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the pinhole camera, ny increasing the camera aperture, without compromising
the geometrical cue radius at the conjugate point. As a result, we need not
restrict the camera location to within the depth of focus of the object
field, ie. to within ~ 4 ¢ 2/)\ where € is the required resolution.
The region of object space within which resolution of € can be attained
is however always limited to depth ~ 4 €2/)\ ;

However, presently available fly’s eye lenses are constrained by
technology to rather simple design and for this reason are subject to
severe aberrations. These aberrations can be controlled, but at the expense
of the field angle, (or ray cone angle), which is therefore usually quite
small.

The fly’s eye lens has previously been analyzed by Burckhardt,lo

but aberrations were neglected in that treatment.

3.2 The Focus Cue and General Photographic Applications

In Fig. 5 is shown the diffraction cue and geometrical, or focus
cue for a perfect (aberrationless) lens. These may be derived, as for the
pinhole camera, by assuming symmetry of the scalar Green’s function and
determining the far field radiation pattern resulting from a point source in
the film plane. This source yields a converging spherical wavefront immedi-
ately outside the camera, centered upon the conjugate point.

In the far field the diffraction cue is a cone axially aligned with
the source’s conjugate point, with vertex in the center of the entrance
aperture, whose half-angle of divergence is ~ ZL , where a is the lens

a
radius. This is the locus of points whose Kirchhoff integral contributions
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from extreme opposite portions of the spherical wavefront in the associated
tangential plane of the aperture differ in phase by approximately 21 .

The focus cue is a double cone which intersects the entrance aperture
circumference and whose vertex is at the conjugate, or object point of focus.
This is the locus of points for which the stationary phase part of the Kirchhoff
integral arises from portions of the spherical wavefront on and nearto the aperture
edge. Simply stated, the focus cue is the boundary of the geometrical shadow
of the aperture cast by a point source in the focal plane.

The cues are interpreted the same way as for the pinhole camera. The
apparent shape intb which an object point at any distance is transformed under
imaging is a blur of dimensions approximately equal to the cross section of the
larger of the cues at that distance. We must also include in our considerations
a third cue, that due to aberrations. The cues are not additive in any strict
sense — we merely determine which is dominant for a given situation.

In general our resolution criteria may vary throughout the object space,
and it is best to proceed in an ad hoc manner. However, two cases of special
‘interest are presented here. The first is of interest for scenic photography — a
simple method is given for visualizing the hyperfocal distance. The second case
often arises in the process of almost — perfect imagery.

In ordinary photographic work, the lens-film system is typically designed
for relatively high speed. The compromises involved in the design of the lens
leads to aberrations, and high speed films are limited in their resolving capabilities.
For example, suppose we use a 2 inch lens with a resolution of about 70
lines/mm. with a film whose modulation transfer function cuts off near 70

lines/mm.. = Convolving the response of the film with that of the lens yields a
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resolution of approximately 50 lines/mm. or 1/2500 radian. Suppose the lens
is set at f/2 and focused at infinity. The focus cue is then a 1/2 inch radius
cylinder extending to infinity, and beyond 1250 inches the associated blurring is
less than 1/2500 radian. — hence objects beyond 1250 inches cannot be imaged
any more sharply by more careful focusing. However, by focusing the lens at

1250 inches, the hyperfocal distance, objects from half this distance to infinity

are resolved with resolution of 1/2500 radian. A graphical interpretation of the

hyperfocal distance for the general case is given in Fig. 6.

3.3 Choosing Parameters for the Fly’s Eyve Lens

Lenses for stereogram applications are frequently diffraction-limited,
and under appropriate circumstances aberrations may be neglected. Furthermore,
high resolution films are used when necessary, so film associated image degra-
dations are often negligible.* The analysis may therefore proceed similarly to
that for the pinhole camera, as a balance between the diffraction and focus
_cues.

Suppose we specify €, the width of an object element to be re-
solved, constant throughout some depth L of object space. Then, since the
focus cue is symmetrical with respect to the object plane of focus, we may
minimize the “worst” radius of the cue by focusing at a distance midway into

the object depth L. The half angle & of the focus cue is given by

*No optical system is capable of resolving an element smaller than the wavelength
of light, and there are films which can do approximately this well, e.g. Kodak 649F.
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a = a/d , (22)

where d is the distance from the focused plane to the camera. The radius
of the diffraction cue at the midplane of the object is

ry = % = E%« ¢ (23)
If the camera to object distance d is considerably larger than the object
depth L, we may consider r d to be essentially constant. We may arrange
for this condition to exist by increasing d, and also a in proportion —
thus keeping « , the significant parameter, fixed. In this way, the diffraction
cue tends toward a cylinder. Not only is computation simplified, but a better
balance against the focus cue is possible since the diffraction cue acquires
approximate symmetry about the plane of focus. The worst focus blur is

( % ) a; the best balance against diffraction, X /2 &, occurs for

A
% = (E) ’ (24)
(L) . (25)

The camera-object distance d, as was suggested earlier, is relatively unimportant.

Notice however that the depth of focus is

L = \ ; (26)
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just twice that of the pinhole camera. Alternatively, if we wish to image with
the best possible angular resolution an object extending from d to infinity, we
again balance the focus and diffraction cues. By referring to Fig. 6 we find

that the angular resolution w determined by the focus cue is

f

w — T
of 2d ’ o
while that of the.diffraction cue is
N
= —, 28
The best resolution occurs for
1
a = (M), (29)
R
= = 1 Py
wmf wmd Ya( d) , (30)

Notice that the resolution element € d at distance d is

= 4 31
e = L, (31)
462
sl d=—Td—, (32)

which is analogous to (26).
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3.4 Aberrations of the Fly’s Eye Lenslet

It is our purpose in this section to determine, first, under what con-
ditions the degrading effects of aberrations are negligible, and second, what these
effects are when aberrations are dominant in the fly’s eye stereogram. But the
matter of aberrations is not as straightforward as focus and diffraction cues, and
some preliminary remarks are in order.

Unlike the previously considered blurring phenomena, aberrations depend
upon the details of the lens design. So many parameters and economic consider-
ations are involved in the pursuit of an “optimum” lens, however, that we will
probably never find it, nor know how good it might be. Our approach will be
based upon some arbitrary but reasonable assumptions which closely follow
Lippman’s proposals. Each lenslet is assumed comprised of a single element —
the film emulsion contacts the back surface of the lenslet, and hence the front
of the lens is the only refracting surface. This assumption is based upon the
technical limitations of fabricating small lenses, and also upon economics. The
front lens surface is spherical, though a better situétion might be achieved with
aspheric optics at increased expense. In theory at least, the spherical shape
permits the use of self correcting methods of polishing — in any case, we con-
sider the réfracting surface to be perfectly shaped and polished. The back
(emulsion) surface may be curved to minimize the effects of field curvature.
Glass of index 1.5 will be assumed, and we shall assume quasi-monochromatic
illumination, so that color effects are negligible.

Since adjacent lenslets touch each other, and because aberrations

generally decrease with decreasing numerical aperture (N.A.), it is advantageous
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to use a sufficiently long focal length to cause adjacent pictures to just touch.”
Assuming fairly small field angles, the lenslet F number is equal to the in-

verse of the total field angle

ik
2(N.A.) 2¢ (33)
where 3/ is the half-field angle. Then aside from the curvature of the back
of the lens, which affects only the field curvature and is of minor overall
importance, there are only two independent parameters, e.g. the lens diameter
and field angle. We also recall that angular aberrations are independent of a
scaling of the optical system, and hence depend only upon the maximum field
angle in a well-designed fly’s eye lens.

Mathematical modeling of the aberration blurring presents further diffi-
culties.  The first, of describing the wavefront emergent from the refracting
surface, is easily dispensed with. We assume that the wavefront and ray tra-
jectories are adequately described in terms of the third order Seidel aberrations
"which are the lowest order terms of an expansion of the wavefront phase in

powers of the field angle and of the aperture coordinates. These low order

If the conjugate distances become comparable in magnitude, as for extremely
long focal lengths, aberrations increase; as will be shown, however, this is a
patﬁological case which seldom if ever arises (cf. Section 3.5). An increase in
F number may be thought by the reader to necessitate a longer exposure time.
However, the accompanying expansion of the picture permits the use of faster,
lower resolution film. We require interception of a given number of photons
from each resolution element (depending upon signa% to noise requirements).
?nly the lens diameter and film quantum efficiency of absorption are important
or this.
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terms, which would be balanced against higher order terms in a complex and well-
designed lens, are dominant in our simple lens for moderate values of field angle
and numerical aperture.

We have seen that the focus cue is essentially the geometrical shadow
of the aperture, and as such has a well-defined width. The diffraction cue being
merely a slight extrapolation in three dimensions of the Airy pattern also has a
fairly well-defined width of well-known dependence upon physical parameters.
The shapes of aberration spots, however, are much more complex, and their
widths are thus more difficult to pin down analytically. Neither is there a
simple relation between spot size and resolution — the dependence of aberrations
upon field angle suggests a non-spatially-invariant optical system to which the
application of modulation transfer function (M.T.F.) concepts is not strictly valid.
We shall assume, however, that an M.T.F. could be defined, if only over suf-
ficiently localized portions of the field.

A commonly used method for visualization of the Seidel aberrations is
to plot the locus of intersections with the focal plane of rays originating from various
radii of the aperture, as a function of field angle, using geometrical optics. If we try to
extend this technique slightly, to determine the intensity within the spot by
adding coherently or incoherently the contributions from the various rays, trouble
arises in the form of singularities. These are only apparent, however; as will
be shown in Section 4.5, the (spatial) spectrum of the spot is band limited.

By using a more satisfactory treatment based on the diffraction theory
of aberrations we would not find these singularities, but this is unnecessarily

complicated for our purposes. In our treatment, the geometrical theory of
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aberrations is used in a way typical in optical design work® — we estimate the
radius of the smallest circle into which the rays from a reasonable percentage,
say 80%, of the total aperture fall. The sum of such radii calculated from each
primary aberration coefficient separately is often taken as a conservative (large)
estimate of the total aberration blurring; we use a root of sum of squares value.
The smallest circle through which. 100% of the rays pass is not located in the
gaussian focal plane, and its radius is typically of the order of 1/3 the distance
from the gaussian image point to the intersection with the focal plane of the rays
from the extreme portions of the lens; the smallest circle through which 80% of
the rays pass, however, is closer to the focal plane and smaller by a factor of
the order of 1/3.11 Therefore, somewhat arbitrarily, we shall use as an estimate
of the blurring of each aberration a disc of radius 1/9 the distance of the ex-
treme ray from the gaussian image point.

For moderately small N. A., the plane of the apices of the fly’s eye
lenslets may be taken as the aperture stop position. With this assumption, the
primary aberrations may be calculated in a straightforward manner (see Appendix
1), and a cue associated with each of the aberrations may be drawn with vertex
in the lenslet aperture. The half-angle of divergence of each of the cues is
given in Table 1. These values are for the “worst case”, both with respect to
contributing rays and field position. Distortion is not considered because it is

cancelled in the two step process. Several values (0, %, %) of Y, the ratio of

“This approach is most appropriate for spherical aberration. It will be shown
that this is the dominant aberration (cf. Tables 1,2).
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the respective distances from the lens apex to the conjugate points, are included.
For most stereogram applications, y <<1 .

In Table 2 the aberrations are given for a well-designed fly’s eye lens,
ie. N.A. = Y. The values here include the above referred to factor of 1/9 as
well as a factor of /' 2 to account for the two step nature of stereogram
imagery. Also given is the root of the sum of the squares of the individual
aberrations, which we shall take as representative of the total aberration blurring.
This angular blur is given by B(Y)I,D3. For almost all interesting cases Y << 1,
and B= 0.16.

Suppose we have an object of transverse dimension h, longitudinal
depth L, at an approximate distance d from the lens array, and d 2 L.

The depth of focus and diffraction limit the angular resolution G, (cf.

(25))

ale
e
2/ 8

. —— (34)

if e is minimized with respect to lens diameter and focus. However, since

PR |
Y = Sq » We are limited by aberrations to angular resolution w  of
a

3

=

w :’B{P3 :-S—

a

5 (35)

(oW

Comparing the two, we have
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o h 2 h% h%
=0 () L) 5] (36)

Alternatively, if we consider an object extending from d to infinity, of half-

field angle ¥, we focus on the hyperfocal distance and

v
w = BN, (37)
(ol d
o] =004 29)° (S) 38
wooo . (\l/) (-X) 9 ( )

where W is the angular resolution in the absence of aberrations.

The ratio u)a/ w becomes worse (larger) as the size of the scene
increases, but can be decreased by backing the lenslets away from the object so
as to decrease the (full) field of view h/d. For example, an object of dimensions
h =L =10 cm. at distance d = 10 cm. yields wa/woL = 18. By pulling back
to about 42 cm., this can be decreased to unity, with full field of 13°. As
another example, a scene extending from 1 meter to infinity yields
wa/ wom: 2.4  for a full field of 200, wa/ womg 19 for 40°,

Clearly, aberrations limit the performance of the fly’s eye lens in many

typical applications, particularly where wide angle fields are desired.
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In addition to aberrations, the fly’s eye 1ens is subject to several other
problems. First is the matter of film registration — a slight shrinkage of the
emulsion might have a severe cumulative effect across the full width of the array
of lenslets. Another problem is that the 3—D image is pseudoscopic. This can
be overcome by using yet another fly’s eye array to invert the image back to
an orthoscopic one by making a second stereogram of the image of the first one,
as proposed by Lippmann. Of course, this results in further degradation of the
image quality.

R. V. Pole utilized the principle of holographic wavefront reconstruction
to reverse to orthoscopic the fly’s eye image.12 The holographic step here re-
places Lippmann’s second stereogram and has the advantage that the amount of
image degradation introduced is negligible. Other problems arise, however. The
first stereogram must be projected with coherent light, a}nd a coherent reference
beam must also strike the hologram plate. In practice, this has meant that the
hologram plate must be separated by a considerable distance from the fly’s eye
lens, which has the unfortunate result that the viewer of the resulting hologram
.seems to look through the “tunnel” formed by the hologram and (image of) the
fly’s eye lens — the result of this is a further restriction upon the angle of view.

The fly’s eye lens seems to be a promising method of 3—D imagery if
the technical limitations are overcome. In particular, the author believes that
much improvement is possible by applying holographic methods. For example,
it may be possible to synthesize holographic lenslets which are as well corrected

for aberrations as multi-element lens systems.
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3.5 Comparison of Stereogram Imagery with Ordinary Photography

It was noted above that y << 1 for most cases. It is simple to
show that the number n of fly’s eye lenslets (in one dimension) contributing
to, say, a real image point is given by

~

n

: (59)
Y

Thus, if Yy becomes comparable to unity, n becomes quite small and one

can then hardly refer to the result as a stereogram.

We might ask what is gained by making n large. Suppose we take
an ordinary photograph of an object, with a focus cue of half-angle @ . The
resolution element is €= X /2a, and the depth of focus L = A/2 0(,2 (cf.
(20), (21)).

If we replace the camera with a fly’s eye system of m x m lenslets,
the focus cue will have half-angle «/m. The resolution element becomes
€=mA/2a . The depth of focus is L = mz)\/2 (12 with respect to an
individual ray, or lenslet. But the blur which arises  in the real image when we
move from the correct position is due to the m lenslets (in one direction)
and the blurring is m times worse. Therefore the longitudinal resolution
element is L/m or m\/2 az, and there are m resolvable elements of
depth. Thus, while the linear size of the resolution element increases in both
the transverse and longitudinal directions by the factor m, we gain a factor of
m in the number of elements in the longitudinal direction. But the number

of resolvable elements of volume decreases by m. The fly’s eye lens is of
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course subject to aberrations which further decrease the number of elements,

though, as we shall see, the holographic stereogram overcomes this problem.
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CHAPTER FOUR

THE HOLOGRAPHIC STEREOGRAM

4.1 Introduction

An alternative approach to the fly’s eye lens is the holographic stereo-
gram. The focus cue and diffraction cue are the same as for the fly’s eye lens,
but aberrations are negligible. Also, an orthoscopic image is obtained directly
without any tunnel effect. The price paid for these advantages, and others
which will be discussed later, is that the process is inherently slower. The com-
ponent photographs of the fly’s eye stereogram may be taken simultaneously,
while those of the holographic stereogram must be taken sequentially (cf. Section
6.1).

Within the Seidel approximation, astigmatism is, proportional to the
N.A., coma to (N.A.)z, spherical aberration to (N.A.)3. A straightforward method
to reduce the aberrations therefore is to reduce the N.A.. We have seen that the
N.A. of the fly’s eye lenslet cannot be made smaller than the half-field angle 1/,
in order that adjacent component photographs not overlap. The restriction against
image overlap however, is based upon classical concepts of image deposition onto
films — we assume that a double exposure, as it were, cannot in general be re-
solved back into its components. Of course, this restriction can be overcome with
holography. Under appropriate illumination for projection of the 3—D image, each
of the component photographs, regardless of overlap, may be made to reconstruct

rays which traverse only its respective lenslet. Even with a simple lens, therefore,

we may arbitrarily decrease the N.A. and the aberrations by increasing the focal
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length. But this approach based upon the fly’s eye lens is unnecessarily

restrained, and it is interesting to take a more general approach.

4.2 Description of the Holographic Stereogram Process*

The method of the holographic stereogram involves two steps. In the
first step, a sequence of ordinary photographs is taken of the incoherently
illuminated object, providing a stereoscopic record. Each photograph is taken
from a different segment of a reference plane. In the second step, a holographic
transformation of each photograph is recorded on the corresponding segment of
a hologram plate which is placed in the reference plane. This requires a laser
and other appropriate holographic equipment.

For clarity, we shall first consider a very simple form of implementation.
Fig. 7 illustrates the taking of a typical photograph from a segment of the obser-

vation plane z = z a mask is placed in this plane with a pinhole aperture

ob ’
centered at Pa . Behind the mask and aligned with the aperture are placed a
well-corrected convex lens and a sheet of photographic film. The lens-film system
is focused to record the image, at Pi’ of the object- point Po. For convenience
the aperture diaphragm has been placed in front of the lens"™ in order to be
physically accessible as a light mask in step 2.

Just as in the case of the fly’s eye lens, the focus cue and diffraction

cue effect the resolution, and are determined by the aperture size. Except for

*For additional description, see Appendix II.

*k .
See Section 6.2 for other cases.
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distortion, which is inconsequential, aberrations are negligible since the lens is
well corrected and used at small N.A. (see Sections 4.3, 4.4).

The film is processed and returned to the original position. As shown
in Fig. 8, a coherent plane wave is beamed through an auxiliary lens, at z
onto the transparency. The position of this lens, z_ is adjusted to concentrate
the light energy onto the pinhole. If the aperture is placed in the front focal
plane of the camera lens, no auxiliary lens is required; if a larger or smaller
separation is used, a concave or convex lens is required, respectively. (The result
is that, within a phase factor which moreover is negligible for objects well within
the depth of focus, the electric field across the plane of the aperture is equal to
the Fourier transform of the amplitude transmittance of the photographic image
if moderate field angles are used.) Illumination of the image point Pi will
cause a light ray to propagate throﬁgh the small aperture to the object point
PO. We may, as shown in Fig. 8, interrupt this ray with a high-resolution photo-
graphic plate, immediately to the left of the aperture. When the image point is
coherently illuminated, and the aperture additionally illuminated with a coherent
reference beam, at an angle 8, the ray is holographically recorded at the point
Pa of the high resolution plate. The object is not present in this step.

If one were to view this hologram, the normal illumination for the two-
beam configuration of Leith and Upatnieks is used,13 ie. a coherent plane wavé
is beamed onto the plate at angle 6 , as shown in Fig. 9; the reconstructed
ray emanates from Pa to the point PO. The sensitivity of the reconstruction
with 6 is small, as described in the literature.1

The entire process may be repeated at point P' on the high-resolution
a

plate, after translating pinhole, lens, and all, to align the system along P'
a
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Fresh film is used to take the corresponding photograph. As shown in Fig. 9,
the coherent plane wave illumination will then also result in a ray propagating
toward Po from the point Pa' on the plate.

The process is repeated for all points of a two-dimensional lattice on
the high-resolution plate. When the developed plate is plane wave illuminated,
the many rays converging at the point PO will form an observable pseudo-
scopic real image there, of the object point. All object points are reconstructed

this way. If we illuminate the developed plate from the opposite direction, the

orthoscopic virtual image is observed almost trivially.

4.3 The Wild Eyepiece as a Holographic Stereogram Camera

While it is possible in theory to completely eliminate aberrations from
the holographic stereogram, it is of interest to determine how nearly we may
approach this limit in a practical system. We shall consider the use of a wide
angle eyepiece as the main component of the camera lens. The use of an eye-
piece is suggested by the convenience noted above of having the aperture stop
located external to the lens elements, which of course is a feature peculiar to
eyepieces. For our application, the aperture stop or pinhole is placed in the
plane normally used for the eye position.

A good eyepiece is not necessarily the optimum lens for stereogram
applications. Several eyepiece design criteria are of no importance for our use,
and the additional flexibility which would be introduced if the constraints im-
posed by these criteria were relaxed would presumably yield a better lens. In

particular, distortion is irrelevant to the operation of the lens, as has been noted.
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Since the holograms are formed by monochromatic light, we may also eliminate
the effects of chromatic aberrations by using a band-pass filter in taking the
component photographs. Spherical aberration and coma, which depend strongly
on the N.A. are also negligible since we usually use a very small N.A.. Even in
normal operation where the eye pupil acts as the limiting aperture of the eye-
piece, a small N.A. is encountered; however, typical eyepiece designs allow for
considerable movement of the eye (transverse and lateral) and we do not require
this feature. Furthermore, the eye relief may be reduced considerably but
subject to the necessity of introducing the reference beam. And if an imaged
zone plate reference beam arrangement is used (cf. Section 5.2), the eye relief
may be completely eliminated. With the flexibilities thereby introduced, it should
be possible to build extremely wide angle objectives with a minimum of field
curvature and astigmatism. These two aberrations (usually taken together as a
single aberration) remain as the most serious when we use a standard eyepiece
as our objective.

In Fig. 10 is given the design data for a Wild eyepiece. The aberrations
“are given in Figs. 11 and 12 for an eyepiece of this design of 1 inch focal
length. We can decrease the aberrations by choosing a longer focal length, but
for the moment we consider this particular lens.

As expected, we find that field curvature is dominant for small aper-
tures (diameter < .3 cm.). The sagittal image surface has greater curvature than
the tangential image surface, leading us to ekpect that the skew rays will intersect
the focal plane with a greater deviation from the Gaussian image point than the
meridional rays. This is confirmed from examination of Fig. 11. A very good

fit to these data is gotten by using the expression
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it } < e : 0.02

S .- e Meridional
' N R ——Skew e e L)

Fig. 11

Calculated meridional and skew fans for the Wild eyepiece of one
inch focal length. Ray aberrations are given for various field angles.
Meridional aberration Y — Y} is given as function of coordinate of
intersection Y4 of ray with aperture, skew aberration Xy as
function of intersection coordinate Xq- All dimensions are given in
cm. Data are for rays entering left of lens through exit pupil from
source at infinity. (From Military Standardization Handbook “Optical
Design,” MIL-HDBK-141, p. 14-19, 5 Oct. 1962.)
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Calculated sagittal (S) and tangential (T) fields, distortion, and lateral
color curves for the Wild eyepiece of one inch focal length. Dashed
curves are from third order analysis. (From Military Standardization
Handbook “Optical Design,” MIL-HDBK-141, p. 14-19, 5 Oct. 1962.)
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_ 2
w = A8Y (NA) (40)

for the half angle of divergence ® of the aberration cue associated with
the worst ray of field curvature of the Wild eyepiece, where Y is the half-
field angle. These data pertain to objects located at infinity. However, we
shall assume that they are also approximately valid for objects at finite, but reason-
ably large distances (say > 10 f).

The expression for blurring due to curvature and astigmatism for the
Wild eyepiece is only very slightly smaller than that of the fly’s eye lenslet (cf.
table 1). This is somewhat misleading however. The fly’s eye aberrations are
derived from third order theory, and at large angles do not fully account for
image degradation. Equation (40), though, is valid even for Y = 35°. Second,
the expression .22 1{/2 (N.A.) given for the fly’s eye aberration is based upon
the least circle of confusion radius. In the fly’s eye lens we may form the
emulsion as an integral part of the lens and it is relatively easy to curve the
emulsion surface to minimize the degradation due to field curvature. But we
‘assume that the Wild eyepiece is used with flat film, which cannot lie in the
curved least circle of confusion surface. On the other hand, coma and spherical
aberration are negligible here. Most important though is the fact that we may
use values of N.A. < 3/ and still get completely filled bundles of rays in the
stereogram.

Distortion is considered in some detail in Appendix III. According to

the results obtained there, we shall consider the effects of distortion to be

negligible.
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4.4 Choosing Parameters for the Holographic Stereogram Camera

The resolution of the fly’s eye lens, as we have seen, is nearly always
limited by aberrations. Furthermore, if we wish the ray cones to be completely
filled, an optimized fly’s eye lens obeys the relation (33), ¥ = N.A., and the
aberration-limited angular resolution is therefore determined solely by the half-
field angle . The N.A. of the lens used for stereogram applications, however,
is usually much smaller than 3/ and may be varied. In particular, after
determining from Section 3.3 the aperture size which balances the diffraction
cue appropriately with the focus cue, we may then choose an eyepiece which
is sufficiently largely scaled (i.e. with large enough focal length) to decrease the
N.A. to the extent that aberrations are no worse than the blurring associated
with these cues. We shall derive in this section the minimum focal length which
must be used to accomplish this. If we use an eyepiece of too short focal
length so that aberrations are significant, it is advantageous to decrease the aper-
ture size, and hence aberrations, until the resulting diffraction effects become
‘comparable. We shall investigate this case also, and find the degradation caused
by a small eyepiece.

First consider a finite object, of height ~h, depth ~1L, at a
distance ~ d from the camera aperture. For this case we wish to minimize
the linear element of resolution € . The approximate half-field angle WL is

given by

YR ’ (41)
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so that the half-angle of the aberration cue W I is
c
= 8 { h 2 N A. (42
Ror \ﬁ) (N.A.) (42)

for sufficiently small (N.A.), where 8 1is a constant dependent upon the lens
design. For the Wild eyepiece, B = 0.09. This value is one half of 0.18, the
value given in (40) — it is assumed that the film is located closer to the lens
than the Gaussian image plane by a distance equal to half of the axial distance
occupied by the curved image surface, thus reducing the associated worst blurring
by a factor of ~ 2. The amount of shift of the film depends, of course, upon
the half-field angle which we choose. Setting (N.A.) = a/f, where a is the aper-

ture radius and f the focal length, and solving for the value of f such that

1
w _ = ®w _, where w _= (L)\)/Z/Zd is the resolution limit from (34), we
cL oL oL
find
2
h
S w
oL 2L

as the minimum focal length for which aberrations are negligible. We should
also note that the numerical aperture for this value of f, (N.A.)OL, is given

by (cf. (24))

a ad d A% 2 d % L%
= — = o=l = — — —_— —_— o 44
Tl i E BT SO RE S (44)
oL oL oL
In practice, we must verify that (N.A.) r is sufficiently small (<0.1 for the
o

Wild eyepiece) so that (42) is valid. For example, for B~0.1 and h ~L,
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h d :
~— ,and if —~3, (N.A) <01 for h> 7" . Therefore, the Wild
oL 20 h oL™ .
eyepiece described in Figs, 10 — 12 performs almost perfectly for objects in the
range < 20" . In the extreme close range our specification of the aberration
blurring is not precise because of the finite conjugates; however, this effect is

probably offset by the use of smaller N.A. here.

In the event that we must use an eyepiece of shorter focal length f,

we balance the diffraction blurring w dife against the aberration blurring w :
i c
2 4
Ye Y it B}
h 2 Y
=5 B B | 46
o Plag) WA= rRNAy (46)
which yields
fL %
2d A Y al. *
NA) = (57) (g ) = NA) L () (47)
and
f %
= . oL
Yo T Yar - %YoL ( £ ) (48)
for
f <¢

oL
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Next consider a scene which extends from a distance d to infinity,

of half-field angle 3/, so that the half angle w  of the aberration cue is

cC®

w =B 11/2 (N.A.) (49)

for sufficiently small N.A.. Here we wish to optimize angular resolution.

1
Solving for the value of f for which Weg = W o where W, = Y (-):—i)/2
is the resolution limit from (30), we obtain
2
£ = 29 8d (50)

O

as the minimum focal length for which aberrations are negligible. The N.A.

for this value of f, (N.A.) _, is given by (cf. (29))
[e) ©

% 2 _a (Kd)l/z_ 1 A Y ”
A T - 2 gl =
o® ow® 2B

The N.A. must be sufficiently small in order that (49) be valid. For the one
inch Wild eyepiece in particular, imaging is essentially aberrationless for scenes
in which d < 20", from (50).

If a focal length shorter than f is used, we balance diffraction

Q ©
against aberrations (cf. (46)):

2 N _ "
By (N.A.) = 2 (NA) (52)
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The solution of this is

£ %)
NA = 2 A" s Ay (22 (53)
o Y 2BF o
and
f Y
A\ ®

o, = wg = Ve = () (54

for
t <¢

4.5 Exact Form of the Holographic Stereogram Image

It is of interest to express the image in exact form, in terms of the
object and lens characteristics. This is generally very difficult to do, but can
be done if these characteristics are of very simple nature. In particular, we
shall assume that the aberrations of the wavefronts caused by the lens system
are negligible, so that we deal only with spherical wavefronts. As we have done
previously, most of the discussion will center upon object rather than image
space. Matters are simplified by this, since no propagation through glass occurs
between the aperture and the object.

First, let us determine the conditions required in order that the wave
aberration be negligible. We consider propagation of light from a point in image
space to its conjugate point in object space, and we wish to determine the
optical distance between the wavefront which intersects the center of the aper-

ture, and the reference sphere centered on the conjugate point which also intersects
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the center point of the aperture. We measure the distance normal to the wave-
front, and assume that the object point is close to axis, so that a ray intersects
the aperture plane, wavefront, and reference sphere at almost the same distance
from the optical axis. We assume that the reference sphere and wavefront are
nearly coincident — the wavefront aberration is thus the same even if we inter-
change the source and conjugate point.

It can be shown that to a good approximation the optical path differ-
ence or wave aberration @(p) associated with the aperture coordinate p is
) 15
given by
SN 5
— ' :
&(p) = j‘ 8\p/ dp' , (55)

R
O

where A(p) is the transverse ray aberration associated with a ray from the
point in image space passing through the aperture at the point p in a co-
ordinate system in which p = 0 is the center point of the aperture. R is

the aperture to object distance, so that the angular aberration w b( p) s
a

‘defined by

(56)

For the paraxial case, A (p) and W b(;) lie in a plane transverse to the
a
—16
e

optical axis. For field curvature alone, A(p) ; the existence of some

astigmatism and small residuals of other aberrations changes this slightly, but if

in accordance with (42) and (49) we set
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- 2
(p) =B ¥ (NA) T (57)

we shall obtain an approximate upper limit for &(p). From (55), (56), and

(57) we obtain

_ 5 (N.A.)
@(lp| =aByt [ (NA)' d(N.A) (58)

(o]

2
(N.A.)
2

2
=pyf

Suppose we wish to image a finite object and we set f and (N.A.) to the
values (cf. (43) and (44) ) necessary to reduce aberrations to the resolution

limit. We then have for the maximum wavefront aberration

— A
= = — ; 59
oLmax (1Pl =8 = & (59)
The notation is analogous to that of (43) and (44). Similarly, using the values
of f and (N.A.) given by (40) and (41) for a scene extending from d to
infinity,
- A
@ (lel =a) = — . (60)
O ®max 4 _
Therefore, in these cases, the Rayleigh criterion for a perfect wavefront is met.
Of course, we may further increase f and proportionally decrease @(|p| = a).
It may be recalled from Section 2.3 ‘that the pinhole camera is best

used in the range u~ T (cf. (8) ). For the holographic stereogram, since
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the depth of focus extends on both sides of the vertex of the focus cue, it can
be shown that the depth of focus is given by -2m<wu < 2m. By referring
to Fig. 2 we find that the v-dependence of the intensity of the image of a point
source is nearly independent of u for |u| <m. It can be shown that for
this range of u, corresponding to approximately one half the depth of focus
region for a finite object, setting u = o yields a wavefront error of A\/4 at
most in any contribution to the Kirchhoff integral.17 For u = o, i.e. the
Fraunhofer limit, the image of the point source is simply the Airy pattern. The
treatment here will be limited to cases for which this approximation is valid. A
generalization to arbitrary values of u is straightforward. The treatment is dlse
limited to object points close to the optical axis (say < 100). A generalization
to extreme angles is straightforward — the aperture is then seen obliquely from
the object point; for u = o the Airy pattern merely assumes elliptical rather
than circular symmetry.18

Subject to the conditions stated above, a point source in image space
yields an Airy diffraction pattern in object space, of constant phase (except for
negative values) over a spherical surface centered on the aperture center point.
Thus aside from a phase factor dependent only upon the source position in image
space we have a spatially invariant impulse response from the film plane to any
(paraxial portion of) spherical surface, lying well within the depth of focus, which

is centered upon the aperture center point. Thus the scalar Green’s function is

given by
) 62
AR T e
G(U" o' = . I
(eshemr) = o T Y v (61)
=g
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where

J. = the first order Bessel function

{ = azimuthal angle, measured from optical axis, of observation
point, in spherical coordinate system in object space with

origin at aperture center point

¢ = meridional angle of observation point in same coordinate
system
V',¢'= are coordinates on the film plane such that a source at

(¥,¢") would be imaged at (V= V) ¢=¢") if all image

degradations except distortion were absent

8 = azimuthal angle in object space of the observation point,
measured in a spherical coordinate system also centered at

the aperture center point, but in which 6 = 0 corresponds

to V=14, ¢ =¢'
R = distance from aperture center to measurement point
k =  optical wave number.
The phase dependence upon the source position is given by m( '), in which
circular symmetry is assumed., *The optical path length along a ray from (y',¢")

on the film plane to the aperture center is equal to m(V')/k. A slight

asymmetry of the optical system could result in a @' dependence of m,
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however. M(V{'") is a slowly varying amplitude gradation which accounts for
field variations of glass transmittance, obliquity factors, etc., and also contains
other uninteresting constants.

Since only paraxial imaging is considered here, we may approxim.ate
the segment of the sphere of radius R as a plane, and transform to rectilinear

angular coordinates 91 = xfz and 6 5 = ylz :

{TKR( 6 i 62ma
e oy TER(8 8 ) my)) T ()
( b) ’ ’ e )R) - € T (62)
1" 20 17 2 z 02 ma
o g

where x, y, and 2z are linear coordinates fixed in object space and we have
replaced, where appropriate, M(Vy') by its paraxial value, and R by the =z
coordinate z  of the sphere segment apex measured from an origin in the

o
aperture plane. The exact value of R (91, 92) must be retained in the
exponential, however. We also have:

2 2 2
&6 = (8 =-8"' + (6 - 8' , 6

(8- 87)° + (8- 8" (63

where (6 '1, 8'2) is the image point corresponding to ( 91, 62), in transformed
image space coordinates. It is assumed that the Green’s function (62) is

symmetrical under the coordinate inversion ( © '1, 6')&(6.,6 ). Suppose an

2 1" 2
approximately (no micron-like precision necessary) plane object is located in the
paraxial region of the plane in question, and is incoherently illuminated to have

brightness
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- 2% bj
B( 81,9 ) = B(—z-— . z—) , (64)

o (o]

th

Then if we expose the i  component photograph, the resulting intensity on the

film plane is given by the convolution:

2

6' . 8'y = -y

(6], 8)) {B x|t| b (8,0 (65)
where
2 TTa _2 2%

i I, f== | 1 54 ] 5
Uy n,) = 2, 2% ’ (66)

[ N (nl nz) ]

and a factor which is independent of (6'11, 9'21) has been dropped. The sub-
script 1 is used to explicitly remind us that the origin of the coordinate
system 9'1i, 6'21 lies at a different éosition with respect to the optical axis
for each component photograph. The origin of 9'1i, eéi is at the image of
‘the point (61 =0, 6 5 = 0, z = zo) in the i component photograph. It
is obvious from (65) and (66) that because of the spatial band-limited nature of
t we cannot determine, or hope to reconstruct, the function B exactly with-
out some a priori knowledge, e.g. that B is appropriately band-limited (cf.
Section 6.6). This limitation obviously also applies when aberrations are present.
The film is processed to provide arﬁplitude transmittance proportional
to I(el'i, S'Zi), returned to position, and coherently illuminated as described in

Section 4.2. 'If the illumination is by a plane wave normally incident on the

film, the resulting amplitude in the plane z = z  is, neglecting uninteresting
o
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constants,
ikR (6., 8 )
1" 2 .
A(00,)] = (g1 =t (88,
o
ikR.(6_,6,)
i1 2 2
= e (BB x [e] )] = t}(8,0)),
(67)
where
voar oy o m( V)
Bi(e 1i’62i) = & Ti (68)

and R,(el, 92) is the distance from the aperture center to the measurement
i
. . . . . ] .
point. T, 1is a translation operation which transforms {' to the respective
i
(9 "9’ .) coordinate system.
1i

21
The function B, may be effectively reduced to unity by illuminating
i

the processed film with a wavefront proportional to éim(ljl')' This is the
purpose of the auxiliary lens of Fig. 8. From the ray path length interpretation
of m(y') in (61), we may also note that the auxiliary lens serves to focus
the coherent illumination at the aperture center point when the transparency is
not yet in place — with the transparency in place, the electric field in the

aperture plane is proportional to the Fourier transform Of the transparency

amplitude transmittance for paraxial objects and images. Accordingly, we set:
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3 = I . (69)

et’l
Byl 1i821

i
The amplitude A,(Gl, 92) is recorded holographically, as described in Section

i
4.2 , and the operation is repeated for all aperture locations. Under holographic
wavefront reconstruction, the electric field, measured in the plane where the

object had been located, is the sum of contributions from each pinhole location:

2
n
A(8_,8 ) = L A (6,86,)
1 2 z=2 =1 1 1 2 -
o o
2
n~ ikR (6,6 )
2 D i 1 2
= {B * |t| *c}(el,ez) e , (70)
i=1

where n  is the number of (holographic) apertures contributing.

ikRy(61,6,)

The function e fluctuates very rapidly with small

changes in R, and since no micron-like precision is maintained in positioning
i

. 2
of the aperture, is a pseudo-random function. Therefore, for large n  the

ensemble average intensity is given by

2

)| (71)

2 2
<|A(el,ez) y = [ {B * [tl * t}(el, 92

z=z
(¢]

where a constant proportional to n  is omitted. If we denote the spatial
Fourier transforms of the respective functions by a~ , and recall that t is

real and circularly symmetrical, we have
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—_
<]A(el,e ) 2y (W) =
BIE«DH «BTE*D) (w) (72)
where
B (w) = B (-w) = B(v), (73)

and w is the spatial frequency coordinate. The band width of this signal

' 2
is equal to that of rtl |“. Thus, the system behaves much like an incoherent
imaging system.

These results are considered further in Section 6.6.



68

CHAPTER FIVE

THE ACHROMATICALLY IMAGED FRESNEL ZONE PLATE

5.1 Introduction

The holographic stereogram is an array of minute holograms (refer to
Figs. 8, 9). These component holograms can be made by nearly any of the
well known procedures described in the holography literature. In particular, the
discussion of Section 4.2 was based upon the use of the two-beam configuration
of Leith and Upatnieks. In the holographic recording step, we are essentially
making holograms of transparencies, and for this it is not necessary to have as
highly coherent a source as that required for an extended object — this consider-

ation has been studied in detail.19 - 42

The general requirement for small path
length differences between the object and reference beams is easily satisfied in
our case becéuse of the small portions of the holographic plate individually -
exposed.

An elegant way to minimize the path length differences when source
coherency is limited is the achromatically imaged grating technique of Leith and
Upatnieks22 (hereinafter referred to as L&U) in which a diffraction grating acts
as the beam splitter to divide the object and reference beams. Recently Kato
and Suzuki23 (hereinafter referred to as K&S) have used a configuration similar
to that of L&U, but in which a zone plate is substituted for the diffraction

grating in order to obtain Fourier transform, rather than Fresnel transform

holograms.
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24 .
As has been previously noted, an adaptation of L&U’s method can

also be used for the holographic stereogram. An achromatically imaged zone
plate is utilized, and Fourier transform holograms are produced. The arrangement
is quite different from that of L&U or of K&S. The reduction in coherency
requirements is not so great, however; partly because, as was noted above, the
requirements here are not severe to begin with.

In addition to reducing coherency requirements, imaged gratings, or
more generally imaged zone plates, provide a very neat method which could be
utilized in many hologram arrangements for providing a reference beam. The
discussion here is more physical than mathematical in emphasis, while no less
rigorous than the previous treatments. The aim is to provide a method for
visualizing by brief inspection the -effects of source incoherence. It is hoped
that this will be more useful for purposes of synthesis. The present method
of analysis can easily be applied to the configurations of L&U and of K&S —
the same results are obtained regarding ‘coherency requirements.

The discussion is divided into two parts. In the first part it is shown
that a two-beam holographic system in which the object beam is provided by
the zeroth diffracted order of an achromatically imaged zone plate and the
reference beam is provided by the first diffracted order has the same require-
ments for temporal and spatial coherence of the source as the same system
used in the in-line mode, ie. without the grating. Of course, the advantages
of the two-beam process are retained; namely that the object transparency
need not be nearly entirely transparent, and that in reconstruction the true

image is separate from the illuminating beam and conjugate image. The analysis
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could also be used to show that source coherency requirements are more severe
if instead the first order diffracted wave is used as the object beam, as L&U
have shown.

Having demonstrated the equivalence to operation in the in-line mode
insofar as source requirements are concerned, the second part of the discussion
is devoted to closer examination of the in-line mode of operation of the system.
A method for visualization by inspection of the effects on image resolution of

the source incoherency is described.

5.2  Application to the Holographic Stereosram System

The imaged zone plate configuration of the optical system used for
the holographic stereogram is shown in Fig. 13. The purpose is to make a
hologram in the aperture plane (plane e) of a transparency which is located a
distance 63. behind the back focal plane of Athe achromatic lens ng This
arrangement is used to perform the second step of the holographic stereogram
process, as described in Section 4.2 and as such is like Fig. 8, except that the
coherent illumination is replaced by partially coherent illumination. Another
difference is that thé beam used to illuminate the transparency is not focused
to a point in the aperture plane — therefore the general form of the function
Bi ((68) rather than (69)) must be retained in the analysis of Section 4.5.

As shown in Fig. 13, the light from an incoherent source of pinhole
dimensions is collimated by a lens LS of focal length Fg. The light strikes

an offset Fresnel zone plate in plane a, and the undiffracted light is used to
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illuminate the transparency in plane b. The zone plate is designed to focus
the first order wave to a point in the back focal plane of lens Ll, plane c.”
This is transformed into a plane wave after propagation through the lens and

is used as a reference beam for recording the hologram in plane e. The
location of the transparency at a distance 8  behind the back focal plane

a
corresponds to a focus plane in object space at a distance Flzléa from the
front focal plane, from the Newtonian form of the image equation. For
63. = (, Fourier transform holograms are produced and film resolution require-
ments are reduced. Similar advantages are gained in general for small values of

2
8 . The zone plate has focal length F1 /5b,**

where Gb is the distance
a

from the front focal plane d to the aperture plane e. The other first
order diffracted wave from the zone plate is focused to a point midway between
planes d and e and can be nullified by a small stop placed here if the
object transparency is not in place, or otherwise by auxiiiary components to
the left of the transparency. If higher order waves are present, additional stops
may be necessary.

If the object transparency is of uniform density, ie. without any

detail, the hologram is simply the interference pattern between the first order

*The light focused by the zone plate may pass through a clear portion of the
transparency, in order to minimize path length differences.

kK . - 2

An elegant way to make the zone plate is by putting a photographic plate in
plane a, and shining a plane wave at the desired angle back through lens L;.
If a left-traveling plane wave is provided at plane a, the exlposed plate, when

developed, is a holographic zone plate of the correct focal length.
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wave and the attenuated but otherwise unperturbed zeroth order wave. This

pattern is that of a Fresnel zone plate. In fact, we find from the Newtonian
form of the image equation that plane e is the conjugate of plane a, so

that this interference pattern is the image of the zone plate there. Therefore
this pattern is independent of source coherency! Because of our use of stops
and the attenuating transparency, this result is not quite trivial, but it is

easily derived in Appendix IV.

5.3 Equivalence with Respect to Source Coherency Requirements of the Imaged

Zone Plate to Gabor In-Line Holography

Referring again to Fig. 13, the inline or Gabor holography mode of
operation is as follows: the zone plate is removed from the system so that
only the zeroth order wave is involved, and the transparency must be such
that in the aperture plane e the AC portion of the field due to picture
detail is much smaller in amplitude than the DC portion due to the average
(usually high) transmittance of the transparency. The AC field is considered
to interfere with the DC field and, as is well known, the relief of the recon-
structed holographic image is reversed from that of the transparency. The

image is degraded by the overlapping conjugate image.

5.3.1 Temporal Incoherence

The effect of temporal incoherence is studied by using a point source

of approximate wavelength X and spectral width AN << A . We require that
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the optical path length along a ray from the source to the transparency and
from there along another ray to a point on the aperture plane differ by no
more than }\2/4TTA)\ from the optical path length of the appropriate
reference beam with which it interferes. The reference beam associated with
that point has traversed the same optical distance regardless of whether through
the zeroth or first order beams, because of the imaging condition. And since
the shape and — more important — the path lengths associated with the object
wavefront are the same for a given picture for the in-line and imaged zone
plate cases, we conclude that the two are equivalent with respect to temporal
coherence requirements. Of course the imaged zone plate case is not restricted
to low AC/DC ratios; this requirefnent is replaced by the need for low zeroth
order to first order ratio which is satisfied by using a sufficiently dense trans-
parency or by other means of attenuation.

We have implicitly assumed that it is sufficient to treat each portion
of the transparency separately. This is valid because of the linearity of the
holographic process; reconstructed field amplitudes are linearly related to the

object fields.

5.3.2 Combined Spatial and Temporal Incoherence and the Modulated Zone Plate

Image Concept

If the pinhole-sized source is self luminous, it exhibits spatial incoherence
unless the pinhole is of infinitesimal dimensions. - This phenomenon may be
modeled by considering the source to be comprised of a number of mutually

incoherent point sources uniformly distributed across the pinhole, each radiating
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at the same wavelength. Each of the point sources in conjunction with a
portion of the transparency produces an interference pattern in plane e; the
sum of the intensities of the respective patterns is recorded as the hologram
of this portion of the transparency. Of course the effects due to different
parts of the transparency add linearly. However, the holographic patterns due
to each of the respective point sources are displaced slightly from each other,
and as a result the fine detail is blurred in the hologram.

While the details need not concern us here, it may be noted that the
holographic pattern due to one of the point sources, together with an image
point, is of the nature of a zone plate; and the fine detail thus corresponds
to light diffracted far from the center of this pattern and therefore to trans-
parency detail. In fact, temporal incoherence of the self-luminous source can
be similarly treated. We can consider each point source to be comprised of
a sum of monochromatic radiators of different wavelengths. The discussion of
Section 5.3.1 is equivalent to this.

The important point is that each additive component of the hologram
is the interference pattern between the appropriate object wave and either the
zeroth order or first order diffracted beam of the imaged zone plate. Because
of the imaging condition, however, the zeroth and first order beams differ by
a phase factor, ¢ [r(r")] of Appendix IV, which is independent of the source
and transparency. The true image components of the holographic patterns of
the in-line and imaged zone plate cases therefore differ merely by a multiplicative
facto; 0) [—1.:-(?')] which obviously carries no information (Q.E.D.). The imaged

zone plate hologram may then be interpreted as a modulation of the function
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¢[?(:')] by the in-line hologram pattern. Thus we have the concept of a
modulated zone plate image, analogous to the modulated grating image concept

of L&U.

5.4 Source Coherency Requirements for Imaged Zone Plate and Gabor In-Line
Holograms

5.4.1 Temporal Incoherence Effects

According to the above discussion, we need only consider operation in
the inline mode. The method of inspection for temporal incoherence is by
direct comparison of the optical path length of the zero order wave which can
be measured from the point of convergence in the front focal plane d in Fig.
13, and that of the object wave which can be measured from a point on the
transparency. For small path differences, the comparison is effected by measure-
ment of the distance between the two associated spherical wavefronts. The wave-
fronts have a point in common where the ray connecting the transparency point

with the convergence point intersects the hologram plane e.

5.4.1.1 A Method for Quick Inspection

The method is illustrated in Fig. 14. The zero order wavefront is

The

centered upon the convergence point, and has radius of curvature ~ & L’
object wavefront has radius of curvature s, where s is the distance from the

hologram to the plane of focus in object space. Based upon the maximum

2
path length difference A /4mAN, the effective aperture radius a s
t
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N ] (74)

and the associated angular blur ~® in the hologram reconstruction is given
t

by (from an analogous diffraction problem)

mhk(s + &)

Ao~
wt " 2a = s § ] ’ (7)
t b
and since s >> & |
- AN Yo
w, T () (76)
' b

5.4.2 The Effects of Finite Source Size

As was noted in Section 5.3.2, the restriction on source size is
‘determined by the condition that the detail in the hologram must not be
destroyed by what was envisioned there as a superposing of the differently
displaced interference patterns of the point source components of the finite
source.

The center of the pattern due to each conceptual point source and
an image point on the transparency lies on the ray connecting these points,
and therefoye a translation of the image point will also effect a displacement

of the pattern. The relative effects of source and image point displacements
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are found by noting what image point displacement is required to counteract
the effect of a source movement so that the ray connecting the two does not
move on the hologram plane. A ray projection, through a point on the
hologram, of the (circular) source pinhole onto the transparency plane is a
disc, and the effect of the finite pinhole is therefore identical to convolution
of the image with a disc of this diameter. The effect of the finite pinhole is
not severely degrading if the smallest picture element is of linear dimension

equal to the radius of the disc.

5.4.2.1 A Simple Mnemonic

The ray projection construction described above is most easily per-
formed with respect to an image of the source pinhole, if such an image lies
closer to the hologram plane than the pinhole itself. In the holographic
stereogram application, such an image lies in the front focal plane d. The
construction is illustrated in Fig. 15. The source image is of radius rS'. and
the angular blur w , caused by spatial incoherence for a self-luminous

S

source is given by

The similarity of this construction to that of the focus cue should be noted

as a mnemonic. However, the physical basis of the construction is entirely
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different from that of the focus cue. In particular, making ré infinitesimal
does not cause diffraction blurring of the image.

We may define an effective aperture radius a
s

®
1l
>
—
~J
Co
e

5.5 An Example

Suppose we wish to use a white light source of brightness B in
conjunction with an optical bandpass filter of width AN  and approximate
wavelength A to form a hologram. The image of the filtered source has
brightness ~ (A—i\)B, neglecting transmission losses. The intensity I of the

reference beam on the hologram surface is therefore given by

6
I:nA)‘BwZ:B 2 wzwz (79)
(T ) s A t S '
We would normally arrange to have wo=w, and the total blurring effect
s
would be approximated by
W= (0, W, ), (80)

so that
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b w 81
4 . ( )

Since. w = w, we have a = a . Because contributions on a given
t s s t

hologram from different transparency points are not coincident, some overlap

of adjacent holograms may be useful for providing completely filled out cones

of rays in the stereogram image. The overlap factor N is, using (75), (76),

and (80),

and we have used the fact that the zero order wave convergence half angle

is ~y .
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CHAPTER SIX

OTHER FEATURES OF _THE HOLOGRAPHIC STEREOGRAM

6.1 Introduction

We have seen that the fly’s eye lens stereogram represents a marked
advantage over the pinhole camera stereogram. We have also noted some im-
portant differences between the fly’s eye lens and the holographic stereogram.
These include:

Speed. An important advantage of the fly’s eye lens hologram over
the holographic stereogram is that it is a much quicker process. The holographic
stereogram process is sequential in nature. A bank of cameras could be used to
take the component photographs, but even then the process would be slower
than the fly’s eye lens by a factor of | W/(N.A.)]z, where { is the half-field
angle and N.A. is the numerical aperture used in the camera. However, the
condition {§ >N.A. is chosen solely for the purpose of reducing aberrations,
so that the slower process yields a better resolved image. For given designs of
the fly’s eye lenslet and of the holographic stereogram lens, one would in
general have to decide to what degree resolution should be increased at the
expense of time — completely aberrationless operation may be impractical.

Aberrations.  This advantage of the holographic stereogram has been
well noted. It should also be noted here that a disturbing effect of fly’s eye
lens images is the appearance of an anomalous image at angles § >y = N.A,,
where N.A. 'is the numerical aperture of the fly’s eye lenslet. Typically, the

image appears to jump about when one varies his position for viewing. This
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effect can be eliminated by the use of baffles between adjacent lenslets which
however adds complexity to manufacture of the lens.

Tunnel effect.  This effect is actually a disadvantage of Pole’s direct
application of holography to fly’s eye lens stereoscopy. It can be overcome if
reflection rather than transmission holograms are made by Pole’s method.

There are several other features of the holographic stereogram and
ways for using it which deserve special mention. Each of these features
represents an advantage of the holographic stereogram over the classical hologram,

the fly’s eye lens stereogram, or both.

6.2 Practical_ Advantages of the Process

The holographic stereogram is in many ways easier to make than the
fly’s eye lens stereogram. In the first place, it is quicker to obtain a single
lens of arbitrary design than to tool up for production of a special fly’s eye
lens. Conventional components can be used for imaging and for such auxiliary
purposes as illumination, making the design much more flexible; a good
example of this is the achromatically imaged zone plate. In fact almost any
photographic lens may be used, even with a between-the-lens aperture. However,
if the aperture stop is not in the hologram plane, some overlapping of adjacent
component holograms may be necessary in order to assure completely filled out
ray cones in the ;econstruction. This effect was noted in connection with the

25
imaged zone plate, and there are associated problems of increased film noise.

Obviously, greater precision is possible with the holographic stereogram, both in

lens fabrication and film registration. Furthermore, arbitrarily fine resolution can
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be achieved with any type of film by using sufficiently large component images.
It is inevitable that some portions near the edges of the fly’s eye lenslets are
inactive in imaging. This problem can also be overcome with the holographic
stereogram; by close fitting or overlapping of adjacent component holograms

the associated screen effect can be reduced.

6.3 The Full-Color Stereogram

The holographic stereogram is basically an array of simple holograms,
and most of the well known holographic techniques may be applied to these
holograms. In particular, they may be made as full-color holograms. Problems
exist in color holography, but good full-color reconstructions are possible if the
reference beams associated with the primary colors are introduced from different
angles, or if thick holographic material is used. A distinct advantage over the
use of color film in, say, a fly’s eye stereogram, is the greater color saturation
due to the use of spectral lines. "An alternative approach which by-passes the
problems of color holography and is well suited to stereograms is spatial color
multiplexing. Each component photograph is taken through a filter of an
appropriate primary color, and filters are incorporated into the component
holograms for viewing. In a hexagonal close packed lattice of holograms, for
example, there are three diffe;ent and equivalent lattices, each one of which
could be used for one primary color. The color saturation advantage is retained
if narrow-band-pass filters are used with any of a variety of possible illumination
sources. - Spatial multiplexing can also be used with classical holograms. It

should also be noted that component holograms of the holographic stereogram
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can easily be made at a variety of wavelengths; by use of the achromatiéally

imaged zone plate, a partially coherent -source other.than a laser may be used.

6.4 Distortionless Scaling

The operation of distortionless scaling is applicable to the holographic
stereogram but not, to the author’s knowledge, to either fly’s eye lens stereo-

grams or classical holograms. This subject is treated in detail in Appendix V.

6.5 The Focused-Type Holographic Stereogram

One difficulty with a typical hologram of a small object is that the
viewer must move close to the hologram and look through it, as through a
small window. The image typically appears somewhat behind this window,
and if the viewer moves back he cannot see the image unless its apparent
position is in his line of sight with the hologram. Also, incoherency in the
illuminating source yields an apparent angular blur from the point of view of
‘the hologram plane, and hence considerable linear blur may appear if the image
location is far from the hologram plane. A solution to both problems is to
make the hologram so that the image is approximately in coincidence with the
hologram plane, and this is called a focused-type hologram.

The author is not aware of any method for directly making a focused
hologram in which the image extends front and back of the hologram plane.

To do so would seem to require placing the object and hologram plate
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simultaneously in the same location.” Even making a focused hologram in which
the image is partly in contact with the hologram plane but not extending
through seems precluded by the apparent impossibility of providing a reference
beam, for a transmission hologram. An obvious way to obtain a focused holo-
gram is to “take” a second hologram of the perfect real image of an unfocused
hologram. In addition to image degradation, however, this approach leads to a
“tunnel” effect — no image is seen unless the viewer’s line of sight intersects
both the (second) hologram and the virtual (first) hologram. Somewhat similar
problems arise if we try to make a focused-type stereogram with a fly’s eye
lens.

In making a holographic stereogram, the object is not present to block
the reference beam in the holographic step. As a result, reflection and
transmission-type stereograms with the object partly in contact with the holo-
gram plane are easily made. Some problems exist for illumination, but these
are overcome in practice by using an eyepiece camera shaped like a cone with
the aperture at the point around which illumination is easily provided.

The illumination problem can be overcome in another way which
moreover permits direct synthesis of stereograms with the image extending
through the stereogram plane. The camera aperture is imaged into object space,
so that no physical aperture is present as an obstruction. Two identical lenses

without spherical aberration are used, being placed symmetrically with their front

*Distorted (i.e. non-perfect) imagery can be accomplished by projecting a real
image of the object onto the hologram plate. We are considering, throughout
this work, only perfect or almost-perfect imagery, (cf. Section 1.2).
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focal planes in coincidence, and the camera aperture placed at the back focal
point of one. The aperture is imaged to the back focal point of the other
lens, and there is somewhat less than one focal length of space available for
the object beyond the (imaged) aperture plane. While lenses of sufficient focal
length may not be available, a pair of parabolic mirrors may also be used; in
this case the camera axis is offset from that of the mirrors and some tilting of

the film plane may be used to compensate for field curvature in the mirrors.

6.6 Spatial Filtering of Holographic Stereogram Images

Because the response of the holographic stereogram can be spatially

invariant, spatial filtering methods are easily applied, and the possibilities are
... 426 - 28 . . .

unlimited. Let us treat a simple example, based on the discussion of
Section 4.5. We do not consider noise here.

Suppose the brightness pattern B we wish to record is band-limited
to spatial frequencies W such that , (&)I < ® . We then choose the aperture

o

size a so that t , the Fourier transform of t , is (dropping an uninteresting

normalization. constant)

w
~ — o
t = 1 lwl By = ’
2
w
— O
= & , lw| > - (83)

ie.,



89

a = — . (84)

The Fourier transform of the recorded intensity is (cf. (65) )

~ ~ o~ A~

I = B(t=x*xt) , (85)

of bandwidth W (ie. |w|<w)
o o
Suppose the film is reversal developed with appropriate gamma to
obtain amplitude transmittance 1. The resulting signal is processed in a
holographic, or complex spatial filter of spectral response 1/’(\5 *Nt') and

the signal B is obtained:™

The signal B is again reversal developed with appropriate gamma to obtain

/B. Since VB and t have bandwidth W /2, the use of the image VB
o

to project the holographic stereogram yields (cf. (71) ) the ensemble average

intensity:

“This filter’s response is infinite for W =W . In practice, this problem is
overcome by using a system in which the value of "w  is slightly larger than
the band limit of B, so that the filter 1/(t * T) need not be accurate all the

way to UJO .
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<|A'2 ) - /B« t|”
Z=Zo
3k
= B. (87)

Thus, if B is band-limited, the system can be made to image perfectly.
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CHAPTER SEVEN

CONCLUSIONS

The techniques of holography have been found to provide an elegant
means for obtaining highly resolved and perfect three-dimensional images of a
large class of objects. However, due to limitations imposed by laser technology
and the need for objects to maintain micron-like stability during exposures,
classical holograms cannot always be made, particularly in the imagery of very
large objects. To fill such needs and also to provide a less expensive method
for imaging objects for which holography is possible, a study was undertaken
of the holographic stereogram, a method for obtaining less highly resolved but
otherwise perfect three-dimensional images. As the name implies, the process
is partly holographic in nature, but it provides images of naturally illuminated
objects. The holographic stereogram is also readily applied to computer
generation of 3—D images, since the component photographs could be artificially
synthesized.

Besides these anticipated results, several further advantages over the
classical hologram were discovered. Readily available partially coherent sources
can be used to make full-color stereograms, most notably in connection with
spatial multiplexing and/o; the ach;omatically imaged Fresnel zone plate. In
contrast to holograms, holographic stereograms of the focused type may be
made which do not display the tunnel effect and hence are conveniently viewed

from a distance. Finally, distortionless scaling of the image is possible.
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The concepts of diffraction cues and geometrical or focus cues were
developed for the analysis of stereograms, and were found to be quite useful
for general photographic purposes. A graphical mnemonic was devised which
greatly simplifies all depth of focus considerations and an example was treated
which clarifies the concept of hyperfocal distance.

The pinhole camera stereogram, historically the first attempted method
for almost-perfec'c>k stereogram imagery, was studied from a ray reconstruction
point of view. As with all stereogram systems, objects were found to possess
an inherent depth of focus L, given by

LY o2e (11)
where ¢ is the linear resolution element desired and \ is the wavelength
of light. Image reconstruction with the pinhole camera 'stereogram requires that
the pinhole camera array be placed within the available depth of focus of the
object, and the number n of rays contributing to a real image is given by the
inverse of the utilized fraction of the available depth of focus. The filling ratio
of the cone of rays contributing to the real image is given by 1/N, where N
is the number of resolvable lines in the virtual image, which is limited by the

relation

N < 2¢x . (18)

Perfect except for resolution limitations.
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The relation
n(z—) (&) = 2 (21)

shows the mutual interaction between n, the number of rays contributing to a
real image point; (N/2¥), the “sharpness” of the virtual image; and (X /€),
the relative resolution.

The fly’s eye lens stereogram of Lippmann, which also predates the
holographic stereogram, was studied and found to have several important ad-
vantages over the pinhole stereogram. The ray cones are nearly completely
filled out, and the fly’s eye lens is optimally placed outside the depth of focus
of the scene, so that the entire depth may be utilized. However, the fly’s eye
lens was found to be subject to aberrations which in typical cases reduce reso-
lution by one or two orders of magnitude. For a finite object the degrading

factor ( an/ woL) is given by

2 IVLINE P e 36
o = (7)) ) (36)
oL
for w > w £ where h is the object dimension transverse to the optical
a o :

axis, L the dimension parallel to the optical axis, d the lens to object
distance, W  the angular blur due to aberrations, and W the best
a : o

possible angular resolution in the absence of aberrations. - In the case of a

scene extending to infinity, the degrading factor is given by



” d
T T 0429 () (38)

where ¥ is the half-field angle. The fly’s eye lens is therefore limited to
small field angles.

The holographic stereogram has been shown to exhibit the same
advantages over the pinhole stereogram as the fly’s eye lens and the associated
camera system can be scaled to eliminate aberrations for even extreme field
angles. The Wild eyepiece camera was specifically treated, and the necessary
focal lengths f " and fooo to eliminate aberrations for finite and '}nfinit(i

(¢]

scenes respectively are

2
o= B (43)
oL 2

2
f = 28yd (50)
o®

where B = 0.1. If a shorter focal length f must be used, the respective

degrading factors are

f £
W
c ol % oo %
w— = ; , : (from (48), (54))
o
for wo> W
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where UJC is the abepration—limited angula; resolution.  The exact form of the
aberration-free image was derived for a relatively flat object. This form is
interesting in itself, but it was further shown that by optical spatial filtering

the stereogram can be made to behave like a low-pass system of the same band-
width as for incoherent imaging, but in which the response is unity up to the
spatial cutoff frequency. (The object intensity function must be band-limited
for this result.)

Other notable features were found to set the holographic stereogram
apart from the fly’s eye lens. Such matters as scaling, the focused-type stereo-
gram, and spatial filtering were noted above. The image jumping effect is
absent and the screen effect can be eliminated. The choice of optical com-
ponents and film is, of course, more flexible, and there is no great problem
of precision. The tunnel effect is not present as it sometimes is in Pole’s
application of holography to the fly’s eye lens. Also, the methods utilizing
partially coherent light are not directly applicable with Pole’s method.

The problem was considered of replacing a high quality photographic
lens by a fly’s eye array of m x m lenslets of equal total area, or by the
holographic stereogram equivalent. This reduces the transverse resolution by a
factor of m, and increases the depth of focus by m — each of the resulting
m elements of depth is m times as deep as the initial depth of focus.

Finally, the achromatically imaged Fresnel zone plate was treated. ‘This
is a technique of very general applicability in holography which compensates for
source incoherency. A specific example of a holographic stereogram camera was

treated. But the most important result was the development of two simple
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graphical mnemonics for rapid analytical inspection of the effects of, respectively,
temporal and spatial incoherence of the source in any achromatically imaged
zone plate or Gabor inline type holographic system, The author believes that
these mnemonics will be very useful for purposes of synthesis.

Several simplifications were introduced into the analyses, and the results
obtained are therefore in many cases not exact — this has been indicated by the
use of approximate equalities where applicable. The results are precise only for
paraxial objects and images, both because of our use of small argument approxi-
mations for trigonometric functions, and because of the use of scalar electro-
mégnetic theory. For extreme angles (half-field angle Y/ ~ 350) the results are
probably inaccurate by ~ 15%. In addition, as was noted, diffraction focusing
was not accounted for in the parameter optimizations, for the sake of clarity in
the presentation. The phenomenon was briefly described; in extreme cases,
practical utilization of diffraction focusing could effect as much as a 25%
increase in resolution, but usually only about half this much. The specification
of the radii of the blur discs associéted with aberrations was somewhat
‘arbitrary. Finally, quasi-monochromatic illumination was generally assumed, and
if broad-band illumination is used the formulas must be appropriately integrated

over the spectrum.
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APPENDIX I

ABERRATIONS OF THE FLY’S EYE LENSLET

The radii of the blur circles associated with each of the aberrations

29
are

: . 3

spherical — Bp
* 2
coma — Fip
astigmatism — CUl p
: (I-1)
where p = radius of entrance pupil
y = field angle in radians, measured from axis in object
space.

0
B, F, C are the respective aberration coefficients, given by ~ (for a spherical

lens):

4 2 1 1
B = %h K e —]
ns S
2 2 11
F = %h'K(1 + kh'K) (— - —) (1-2)
ns S
2 2 1 1
C = %1 +hkK) (—- )
ns S

*radius of circle contributed by outermost zone of lens

radius of circle of least confusion (geometrical), which equals % length of
astigmatic line.
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where -s, s' are the object, image distances from the lens surface, n is

the index of refraction, and K is the Abbe invariant given by

1
K = a[—-—] (1-3)

where r' is the radius of curvature of the lens. When the entrance pupil

coincides with the lens surface, the parameters k and h are given by

k = 0 (1—4)

h o= -1. (I-5)

Using the symbol vy = =s'/s, we have

1’1+'Y

1
(n-1)s” ~ s' ]

K = nf

n (1
) (n—(1)+ :)' =5

and the respective aberration radii are given by

2
spherical — [ ] (1+Y) (1+Yn) p3

2 .3
2(n-1) s
1 2
coma — [ ] (I)(1*yn) Yo (1-7)
2(n-1)s'
astigmatism — [ ! -1 (1+Yn)1{/2p.

2ns
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Finally, to obtain the expressions in Table 1, we substitute N.A. = pn/s',

and y =3 , the half-field angle.
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HOLOGRAPHIC STEREOGRAM FROM SEQUENTIAL COMPONENT

PHOTOGRAPHS*

J- T. McCrickerd and Nicholas George

California Instutute of Technology

Pasadena, California 91100

(Received 5 Seprember 19670 in final form 27 October 1967)

Holograms of naturally illuminated objects are synthesized in two steps. A stercoscopic camera technique is
used o record the objects” parallax qualities in white light: this photographic information is transformed into
a hologram with coherent light. The image quality is excellent, and the method seems practical for making full-
color reconstructions using stereoscopic photographs taken with color film.

A two-step method is described for holographi-
cally recording 3-D images of incoherently il-
luminated objects. R. V. Pole has previously dem-
onstrated another method for this, using a “fly's
eye™ lens.' Both methods are applications of holog-
raphy to stereoscopic photography,** particularly
of the type proposed by Lippmann.* In the tech-
niques described below, an ordinary camera lens
is used to record the component photographs in
sequence, rather than simultancously as in the
“fly's eye” lens case. This has two important consc-
quences. First, the component photographs can
be made much larger, and any kind of film can be
used without loss of resolution. Second, the prior
problem of screen effect caused by dead space be-
tween adjacent lenses of the “fly's eye” is elimi-
nated.

The method involves two steps. In the first step,
a sequence of ordinary photographs is taken of the
incoherently illuminated object, providing a stereo-
scopic record. Each photograph is taken from a
different segment of a reference plane. In the
second step, a Fourier transform hologram of each
photograph is recorded on the corresponding
segment of a hologram plate which is placed in the
reference plane. This requires a laser and other
appropriate holographic equipment.

Figure 1 illustrates the taking of a typical photo-
graph from a segment of the observation plane, z =
2,5; @ mask is placed in this plane with a pinhole
aperture centered at P,. Behind the mask and
aligned with the aperture are placed a convex lens
and a sheet of photographic film. The lens-film
system is focused to record the image, at P;, of the
object point P,. For convenience the aperture
diaphragm has been placed in front of the lens in
order to be physically accessible as a light mask in
step 2.

*Research supported in part by the Electronics Division of the
Air Force Office of Scientific Research.
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The resolution of the picture is affected by the
aperture size, which is chosen small enough 1o
provide adequate depth of focus, but not of wave-
length dimensions, so that diffraction eflects due
to this aperture are minimal.

If the film is processed and returned o the origi-
nal positon, illumination of the image point P,
will cause a light ray to propagate through the small
aperture to the object point Py, We may, as shown
in Fig. 2, interrupt this ray with a high-resolution
photographic plate, immediately to the left of the
aperture. When the image point is coherenty il
luminated, and the aperture additonally illumi-
nated with a coherent reference beam, at an angle
6, the ray is holographically recorded at the point
P, of the high resolution plate. The object is not
present in this step.

If one were to view this hologram, the normal il-
lumination for the two-beam configuration of Leith
and Upatnieks is used® i.e., a coherent plane wave
is beamed onto the plate, at angle 6, as shown in
Fig. 3: the reconstructed ray emanates from P, to
the point P,. The sensitivity of the reconstruction
with 8 is small, as described in the literature.*

The entire process may be repeated at point P’,
on the high-resolution plate, after translating

MASK CONVEX LENS
INCOMERENT PHOTOGRAPHIC
ILLUMINATION FILM
/ PIN HOLE
APERTURE AT A
,/ PONT OF VIEW e R, .
P~ J - = P,
0BJUECT, LIGHT .-~ 4]
P
|
2oy
Fig. 1. Taking a typical photograph through pinhole aper-

ture in the plane z = z,,. (Lens-film-pinhole system shown in
exaggerated scale.)
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pinhole, lens, and all, to align the system along P’,.
Fresh film is used to take the corresponding photo-
graph. As shown in Fig. 3, the coherent plane wave
illumination will then also result in a ray propagat-
ing toward P, from the point P’; on the plate.

The process is repeated for all points of a two-
dimensional lattice on the high-resolution plate.
When the developed plate is plane wave illuminated,
the many rays converging at the point P, will form
an observable pscudoscopic real image there, of the
object point. All object points are reconstructed
this way. If we illuminate the developed plate from
the opposite direction, the desired orthoscopic vir-
tual image is observed.

Several holograms have been made by this
method. The sequence of photographs is taken with
a 16 mm motion picture camera, with a 0.05" pin-
hole aperture mounted in front of its Switar 25 mm
lens. The camera is mounted on a two-dimensional
translator to facilitate movement to sequential
points of view, which are spaced 0.05" apart; and,

LU gaxson
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Fig. 2. Synthesis of hologram on high-resolution photo-
graphic plate.
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Fig. 3. Holographic wavefront uction of pseud
scopic real image.
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of course, all of the step 1 photographs are taken
in sequence, and then the step 2 holograms are
made. Adequate registry is obtained with the un-
modified film transport mechanism of the 16 mm
camera. Kodak Plus-X reversal film is used.

The holograms are made using the same lens and
pinhole mounted on a 16 mm projector, whose op-
tical system has been modified to permit illumi-
nation of the photographs with a He-Ne Laser. As
shown in Fig. 2, a plane wave is beamed through
an auxiliary lens, at z., onto the transparencies.
The position of this lens, z., is adjusted to concen-
trate the light energy onto the pinhole. If the aper-
ture is placed in the front focal plane of the camera
lens, no auxiliary lens is required; if a larger or
smaller separation is used, a concave or convex lens
is required, respectively. Rathier than move the pro-
Jjector, the high-resoh}(ion plane is mounted on the
translator for this synthesis. Many possibilities exist
for eliminating dead space between adjacent holo-
grams, e.g., close spacing to provide extreme over-
lap; or precise fitting with a square aperture.

This method of holography is applicable to large
objects which are naturally illuminated, and we have
found the quality of plates made by this process to
be very good due to the uniformity of exposure over
the entire plate. Moreover, color holograms made
with this method seem practical” using any standard
color transparency film, e.g. Kodachrome Type II,
in step_1 of the process and either a multiline laser
such as the krypton-ion white light laser or a multi-
color nonlaser spectral source for the illumination
in step 2. In viewing, the same multicolor source
may be used for illumination. In making a hologram
of a transparency, as in step 2, it is not necessary to
have as highly coherent a source as that required
for an extended object; these considerations have
recently been studied in detail®®—the general re-
quirement for small path length differences between
the object and reference beams is easily satisfied in
our case because of the small portions of the holo-
gram individually exposed. An elegant way to mini-
mize the path length differences when source
coherency is limited is the imaged-grating technique
of Upatnieks and Leith. We have found an imaged
zone plate to be compatible with step 2 of the color
process described here, in which a plane wave ref-
erence is used; the requirement on source co-

herency is similarly reduced.

'R. V. Pole, Appl. Phys. Leters 10, 20 (1967).

*A. W. Judge, Stereoscopic Photography, 3rd ed. (Chapman &
Hall Ltd., London, 1950), p. 288.

*N. A. Valyus, Stereascopy (lzdatel'stvo Akademii Nauk SSSR,
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Moskva, 1962; English translation, Focal Press Lid., London,
1966), pp. 88-94.
*G. Lippmann, Compt. Rend. 146, 446 (1908).
*E. N. Leith and J. Upatniceks, J. Opt. Soc. Am. 53, 1377 (1963).
®N. George and |. W. Matthews, Appl. Phys. Letters 9, 212 (1966).

"Unpublished.

*A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).

*]. Upatnicks and E. N. Leith, presented at the April 1967,
Columbus, Ohio meeting of the Optical Society of America, /.
Opt. Soc. Am. 5T (1967).
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APPENDIX III

THE EFFECTS OF EXTREME DISTORTION — A SIMPLE EXAMPLE

The effect of distortion in the Wild eyepiece may be characterized by
a non-linear transformation of coordinates from object to image space. A good

approximation for this transformation (cf. Fig. 12) is

2
6 = 8 (1-.34 87, (I11—1)

1 (o] [e]

6,6 < u

¢ s
1 o

where 60 is the angle from the optical axis of the object point, and ei
is the angle of the image point.

In general the effects of the individual aberrations cannot be separated.
Therefore, although it is an inherent property of the holographic stereogram that
lens distortion is unimportant by itself, we should also investigate its effect when
Acombined with other forms of image degradation, particularly since distortion is
independent of N.A. and is usually severe in eyepieces. A correct treatment
of this problem would use the diffraction theory of aberrations. We shall treat
a grossly simplified problem from a point of view based upon geometrical
aberration theory, merely to illustrate the order of magnitude of the effect.

Consider an idealized one dimensional imaging system, where an object

point at O  produces an image g( 8' = 6' ), symmetrical about '
o i i
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The unprimed coordinate refers to object space, the primed to image space, and

the distortion is represented by

D
]
D
—~
—
|
\!_/

, (111-2)

Further, assume that a reverse imaging of a point at 6  yields the image
i

h(6- 6 ), symmetrical about 6 , for any 6', 8§ related by (III-2).
o o i o

(Note that the implied Green’s function is not generally symmetrical to an

interchange of 6&6'.) After a two step imaging process analogous to that

of the holographic stereogram, an object point at 6  is transformed into

o
the function
5 ) = Loy _ r _
£(6,6) = [g(6-8)h (o -0)do' , (11-3)
‘where ¢  is related to 6' by
o
2
o' = 1 o (I11—4)
- ¢O ( = 7) 5
8', ¢O < W

If we expand (6'- 6' ) in powers of (¢ ~-¢ ), and express dg'
o' i o o

as —d—¢— d¢ o 8 V8 3y rewrite (III-3) as

o
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™ 2
(¢ -6)
db o d o
f(e>e ) = ‘F g (¢o_eo) d¢ 02
° ¢o=eo d¢o ¢ =6
o O
(¢ e>3 3
de’ de’
P Ch(-6) S dg . (mI-5)
6 d 3 o d(bo o
¢o ¢ =6
o o

If we assume that the function g has approximate width A <<1 (ie. A

is analogous to the angular resolution), and that

g'~ O(g(0)/2), then

ted

g(0"-0") and d6'/d¢p can be expanded in powers of (¢ -6 ). If

i o o o
we keep only the lowest order terms in (¢ - 6 ), (III-5) becomes
o o
f(e,8) =
o
= 9 = -
(-0 [gls, -6)a-0"11h(e-0)ds

2 2 2
-8 (1-8 ) [ {(e-8) g [(s-6)(1-08 )] Jh(6-¢) dp
(@] O (o] O (@] [e] (0] (0] (e}

2
28 [U9-0) g (6. -8)1-8 )1} h(6-p ) dp .  (U-6)

The first integral is the convolution of an even function with another even

function, and is therefore even in (6-6 ) for a given © . The second
o o

and third integrals however are convolutions of odd functions with an even
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function, and hence are odd in (6- 60) for given 60 — these two
contributions result in an asymmetry of the response of the system, so that
the center of gravity of f( 6, 90) does not fall precisely on 60. These
contributions are smaller than the first integral, however, by a factor of the
order of A. The shift of the center of f( 8, 90) from 6 o is there-
fore smaller than the width of f by a similarly small factor and is therefore

negligible. Accordingly, we shall consider the effects of distortion to be

negligible.
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APPENDIX IV

ACHROMATIC INCOHERENT IMAGERY OF A FRESNEL ZONE PLATE

WITH ONE OF THE FIRST ORDER DIFFRACTED WAVES ELIMINATED

The amplitude transmittance of a zone plate is given by
T (1) = ax bp(r) + bo ™ (r) (IV-1)

where a > 2b and ¢ is a phase factor associated with a spherical wave-
front. The position on the zone plate is denoted by . Suppose we pass
z; monochromatic plane wave, or more generally a spherical wave through the
plate, then through a uniform transparency and a lens which achromatically

images the plate onto a conjugate plane. The wave due to a on the conju-

gate plane is
wave = Qa¢' [?(r—')] g (IV=2)

where @ is a constant dependent upon the lens and transparency, and
Qb'[;z-r_')] is a phase factor dependent upon the conjugate plane coordinate
T'. The image point of T is given by the function r '(r) and r(r')

is the inverse of this. Similarly, the wave due to b (r) on the conjugate

plane is

wave _ = Bbg"[r(r"] . (IV-3)
bo(r)



108

In practice o < B , due to the transparency density. The wave due to

b ¢ (r) is blocked, according to the discussion of Section 5.2 The intensity

on the image plane is, in abbreviated notation,

I(r")

Due to the imaging arrangement, the optical path length from

is independent of the path, and therefore

a

¢'[r(r')]

Thus we may write

where

-

b 1

and

1l

v

2
IC(,aQ‘)' & Bb¢nl

a

¢"* [r(r')]

22 2, 2
+ B b + aaBb(¢'¢H * + ¢1*¢H).

I(r')=a" +b'g¢[r(c')] + b

2 2 2
b {1+ ()
aagb
2b

(IV—5)

(IV—6)

(IV—7)

(IV—8)
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Comparison with (IV—1) yields

I(r') = ¢ [r(r')] . (IV—-9)

Ta'/c, b'/c

The intensity is proportional to the image of the amplitude transmittance of a
zone plate. equivalent to Ta (-;) , i.e. having the same associated spherical
s

wavefronts. The constant ¢ may be chosen so that a' + 2b' < ¢, which
is the condition for realizeability of the equivalent zone plate.

These results are independent of the exact form of the spherical
wavefront. A spatially incoherent source, which may be viewed as a summation
of incoherent monochromatic point radiators therefore yields essentially the

same result. Furthermore, the results are independent of wavelength, and

temporal incoherence is also unimportant.
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Abstract

Scaling of holographic stereograms in
the ratio d/d' can be accomplished by using
a spacing, d, between component photographs
and a different spacing, d', between corres-
ponding holograms. Scaling down of scenic
holograms is desirable in order to increase
visual impression of 3 dimensionality. Up-
scaling of stereograms is called for to
decrease the perspective of very small
objects. Our analysis of resolution and
depth of field shows the projector lens
diameter to be the crucial factor in down-
scaled stereograms, while the camera
aperture is crucial in the up-scaled case.
In d/d' scaling of a scene which extends
from s; toco , the optimum projector
aperture is given by [2as1/(d/d')]“2; the
component photographs should be taken with
an aperture of [2)\sl]’iz , which may be
altered by the root of the scale factor, by
[d/d')Y2without seriously degrading the
scaled-down stereogram's resolution. In the
text numerical examples are given to illus-
trate the wide applicability of ordinary
photographic apertures in making these
down-scaled stereograms. Both linear and
two-dimensional arrays of scaled-down
scenic holograms have been made and these
are described.

Introduction

An optical hologram of a scene has an
ultimate resolution limit on the order of
a wavelength., Often, as is the case for
pictorial scenes, such a precise record is
not particularly useful. In this paper we
describe a generalized holographic-stereogram
which is more practical in many cases than
a hologram, and we discuss in some detail a
useful scaling law relating the scene to
image size as well as the choice of camera
lens (f and D) and of related projector
lens (f and D'). The depth of focus and the
effect of scaling on an object at an
arbitrary distance is treated in terms of
basic photographic principles. We conclude

with a description of some scenic stereograms
which have been made of Yosemite Valley and
also of the city of Pasadena using as a
2-dimensional platform the 9-story Millikan
Library.

These stereograms are made by holograph-
ically recording an ensemble of ordinary
photographic transparencies of the scene on
a high resolution film plate. Our method
is similar to that of R.V. Pole (Ref. 1);
but as we have described earlier it differs
in the respect that our photographs are
taken sequentially (Ref. 2). This is of
some advantage when the distance between
component photographs need not be small, as
with scenery; and of course it is essential
to the scaling methods which we describe
below. With this freedom of choice between
aperture size, photograph size, and spacing,
our stereograms are not resolution limited
in the same physical manner as in integral
photographs taken with the fly's-eye lens,
although the general mathematical theory
is applicable (Ref. 3).

Scaling of Holographic Stereograms

Photographs are taken of a scene from a
regularly spaced array of points, such as
the one-dimensional sequence shown in Fig. 1.
Incoherent light received from the object
points, P,, Py, P3, is imaged on the film
with the %rames 1, ..., n recording the
objects' parallax qualities. The camera,
focal length f and diameter D, is focused at
infinity; and, for simplicity, in the dis-
cussion of scenic photography, we assume
that the object points are far enough removed
from the camera to be sharply focused.
Positives are made from the photographs, and
these transparencies are projected as shown
in Fig. 2 using a projector lens of focal
length f and diameter D'. Frames 1 through
n are projected sequentially using a mono-
chromatic source (not shown) and recording
holographically (at plane H in Fig. 2) as
described in Ref. 2. A plane wave reference
beam (not shown) is used.
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For scenic stereograms, nd must be large
enough to provide interesting perspective
change; and yet, d should be small enough to
approximate a continuous distribution of
component photographs. In the taking sequence,
the Pl image of point P, occurs off of the
frame center a distance yj; = (k - l)fd/s
In projection, the ray P, intersects P.

a distance from the lens plane given by

o% the frame number k.

Fig. 1. Taking typical sequence of photo-
graphic frames (1 and n are shown) for
incoherent source objects P,, P,, P,. Camera
with lens (f, D) focused at infinity and
translated a distance d betweeu frames.

tion focal length f' = f, one sees that the
scene is scaled in the ratio d'/d, i.e.,

/s = d'/d or Fig. 1 is similar to Fig. 2.
I% enlargement of the component photographs
is included, i.e., m = y and lens to
film distances s,, s ins ofoo focus,
then a more general scaling results, s)/s =
s!d'/(s,dm) and we see that interesting
angular distortions can be made by choosing

Pn[

(n)

= f'd's /(fd) which we see is independent s /s different from d'/d. An image is still
Selecting the projec- formed
o S|
" :
P
v
/
11
/
(n-1)d o
i o 2
3
Fig. 2. Projection sequence for making

mj\/

D’ | H
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holographic stereogram at H (frames 1 and n
are shown). Projector with lens (f, D');
translation d' between frames. Scale factor
in reconstruction is d/d'. Coherent illumin-
ation is used.
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Fig. 3. (a) Determination of hyperfocal dis-
tance, h, based on desired angular resolution,
*, and lens diameter D, using the focus cue
for oo focus. (b) With lens focused at
hyperfocal distance, depth of focus extends
from half-hyperfocal distance to infinity.
Degree of blurring, diameter b, at h/2
corresponds to same angular resolution &

as at infinity,

Photographic Depth of Focus and

Resolution Considerations

A very simple to use, yet rigorously
correct, concept for depth of field calcul-
ations is that of the focus cue. This cue is
defined as the cone which intersects the
effective lens circumference and has its
vertex in the object plane of focus. The
degree of blurring in any plane closer or
more distant than the focused plane is equal
td the diameter of the focus cue in that plane.
For example, a one inch lens set at f/4 has a
focus cue of diameter 1/4" at the lens. If
the lens is focused at 10 feet, the cue has
zero blurring there, but has 1/8" diameter’
blur at either five feet or fifteen feet.
Alternatively, if the lens is set to £/2
and focused at infinity, a blurring of 1/2"
will occur regardless of the object distance,
since the focus cue in this case is a cylinder
of 1/2" diameter extending to infinity.

For photographic purposes, one is
frequently interested in angular, rather than
absolute resolution. If, for example, we
specify an angular resolution of 1/1000
radian, then the one inch f/2 lens focused at
infinity will provide sufficient angular
resolution beyond 500 inches, and we refer
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to this as the hyperfocal distance, h, see
Fig. 3a. However, by focusing at h, the
lens has sufficient angular resolution from
h/2 to infinity, as shown in Fig. 3b.

While the angular resolution determines
the apparent sharpness of a photograph, the
absolute resolution is often easier to specify
in a particular imaging problem. For example,
if we wish our camera to resolve a person's
eyes at 100 feet, we simply specify that the
focus cue have a diameter of <£ 1 inch at
this distance.. For a specified absolute
resolution, it is also easy to use the focus
cue concept to show that the lens should
optimally be focused at the middle plane of
the object's total depth.

At a given aperture, the leas resolu-
tion also restricts the photograph's angular
resolution. This, and the film's resolution,
impose limits on the amount of sharpening
possible by stopping down of the lens
aperture. For example, if film limitations
are negligible and the lens is diffraction
limited, the absolute diffraction blurring
is ~A/u , where A is the wavelength of
light, and « is the angle of divergence of
the focus cue. Focusing at the center of the
object of depth L, the maximum depth-of-focus
blurring is ~®L/2. An optimum focus cue,
therefore, has a divergence « = [2 A/L]Y2,
and if s is the camera-object distance, the
optimum aperture is ~s(2 A/L)'/2, correspond-
ing to an angular resolution of (1/s) (AL/2)Y2
radians. Similarly, if one wishes to
optimize angular resolution, it can be shown
that the camera should be focused at
5 = 2515 /(s, + 32) using an aperture of
[As(s1 3 sz}/(s2 - 8,)]2to attain an an-
gular resolution®of [‘A(s, - 81)/(28182)]V1



where s, is the minimum object distance,

and s %he maximum. In either case, the
optimum aperture size increases as the half
power of the scale of the recorded scene, and
the angular blurring of the optimized system
decreases by the same quantity.

Stereogram Resolution and
(Distortionless) Scaling

The holographic stereogram process in-
volves two stages of imaging to which the
above considerations apply. The only dif-
ference is that the blurring is multiplied
by a‘factor such as V2 to account for the
two stages.

Scaling of the stereogram requires addi-
tional considerations, however. Since the
angular blurring decreases like the half
power of the scaling of the scene, the reso-
lution of an optimized scaled stereogram is
determined primarily by the lens arrangement
used for the smaller scale. Therefore, the
lens size used in the larger scale may vary,
up or down, by a factor of the half power of
the scale ratio without seriously affecting
resolution. Therefore, the lens size for
the larger scale may be the same as for the
small scale, as is also obtained from more
restrictive considerations based solely on
diffraction; or it may increase by as much
as the scale factor, which is the anticipated
result 1f diffraction is ignored and all of
the focus cues are scaled along with the
scene. And although the film may sometimes

R
(n) T .
i l A _ \_ ,:}’/’ Pln
COHERENT ——= RV Fw
PLANE FiLM H
WAVE .
R
a’ P’
W 5////i::::: ()
=k [l
COHERENT F,  F, g, "

WAVE

Fig. 4. Detail of hologram (H) for nth frame:
transform width (w) if coherent plane wave
1llumination (upper) or wider pencil of rays
a', b' if frosted glass diffusers F., F, are
used (lower). Projected rays from only one

image point Pln are shown.
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limit the attainable resolution in photograph-
ing a scene, this limitation is usually no more
stringent than the resolution limitations of
the small scale projection step and can often
be disregarded.

This analysis has been based on a com-
promise between depth of focus blurring and
diffraction blurring. It should be noted,
however, that it is possible to eliminate
depth of focus blurring for particular planes
of interest by techniques similar to those
recently described in the literature. (Ref.

4, 5). If this approach to stereogram view-
ing is taken, it will be advantageous to
optimize the information content by using
even larger apertures throughout.

Experiments

Several scenic holograms have been made
in order to study scaling effects. The
component photographs have been taken with a
16mm. motion picture camera and also with a
35mm. single lens reflex camera. A single
frame of the projection sequence is illus-
trated in Fig. 4. If the film record has
fine detail of »lines/mm. recorded near
P. , then the transform width w for the co-
herent plane wave illumination is approxi-
mately given by w = 2Af». With picture
detail ¥ = 20 lines/mm. and f = 50 mm., this
width is only about 1 mm. However, in the
projection the rays holographically recorded
can certainly extend as far as D' = d'D/d in
the transform plane; this is the previously
described limit obtained by directly scaling
the focus cues, a - b in Fig. 1 in proportion
to a' - b' in Fig. 2 as d/d'.

In our experiments, typically, this
optimum value of D' greatly exceeded the
transform width. In principle, this optimum
width can be obtained by filling in or nest-
ing a cluster of repeated exposures of the
same hologram of width w within the diameter
D'. 1In practice this incoherent-transform-
hologram is easily obtained experimentally
using a ground glass diffuser in back of the
film transparency. The most uniform distri-
bution of light in the transform plane
resulted from the cascade shown: F. is a
piece of non-glare glass intended for
framing portraiture; and F, is frosted glass.
The non-glare glass is too regular to be used
alone, but in cascade it can be positioned to
adjust the angular spectrum and the level of
the illumination. It should be emphasized
that the hologram plate need not be located
physically in the transform plane of the lens.
This is important, practically, since the
front focal plane of many excellent photo-
graphic lenses is located less than 1 cm.
from the first lens element and introduction
of the planar reference beam R would be



awkward.

A two-dimensional stereogram is shown
in Fig. 5. together with two one-dimensional
arrays printed to different scales, d/d'g
The first array serves to illustrate the
lattice relationship of the component
photographs (elimination of the diffuser
enhances the deleterious edge or screen
effect and is done here for clarity of pre-
sentation only). The two linear arrays show
the effect of varying amounts of overlap
using the same component photographs, see
Fig. 6. Important detail in this scene occurs
beyond 300 feet, thus with a 20:1 scale the
corresponding detail in the reconstruction
1s beyond 15 feet. Excellent stereo effects
are observed using a 6 foot base line with
d in the range from one to four inches. A
one-inch spacing provides a sampling interval
of one minute of arc at 300 feet which is
virtually continuous for visual observation
(Ref. 6).

An extremely wide angle lens is a good
choice for taking the component photographs,
since distortions cancel in the projection
sequence if the same lens is used, see Figs.
1 and 2. Panoramic effect can also be
achieved with a normal photographic lens by
taking several component photographs with
overlapping fields of view at each point of
the array. These are easily superimposed
holographically in the projection sequence.
It is important to preflash the hologram
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Fig. 5. Holographic Stereograms: Two-
dimensional array (upper) without diffuser,
twenty frame overlapping stereogram of
Yosemite Valley scale ratios 20:1 (middle)
and 13.3 : 1 (lower).
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Fig. 6. Half Dome, Yosemite National Park;
component photograph for the stereogram of
Fig. 5.

plate in order to obtain equal brightness in
reconstructions from overlapping or super-
imposed holograms made with a fixed expos-

ure (Ref. 7).
Conclusions

The proposed method for scaling holo-
graphic stereograms has been applied with
considerable success to down-scaling of an
object of large dimensions. The use of
sequential component photographs is essential
to this scaling, as well as being a rather
practical way of attaining high picture

. quality. Stereoscopic reconstructions

exhibiting sharp focus and negligible screen
effect have been made using multiply over-
lapping component holograms made with a
diffuser and a relatively large diameter
lens in the projection step.

The authors would like to acknowledge
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The research was supported in part by the
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