A MATHEMATICAL MODEL FOR CALCULATION

OF THE RUN-UP OF TSUNAMIS

Thesis by

Kenneth Leon Heitner

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1969

(Submitted May 19, 1969)



ii
ACKNOWLEDGEMENT
The author wishes to acknowledge the guidance of Dr.
George W. Housner in carrying out the work discussed in this
thesis. He also wishes to acknowledge the financial support

of the National Science Foundation, the State of California,

and the R. C. Baker Foundation



iii
ABSTRACT

To understand the engineering implications of possible wave
run-up resulting from tsunamis, a formulation of the run-up pro-
cess capable of giving quantitative answers is required. In this
thesis, a new mathematical run-up model suitable for computer
evaluation is proposed and tested. The two-dimensional model uses
a flow constrained so that the horizontal velocity is uniform in depth.
However, unlike the usual shallow water theory, the terms repre-
senting the kinetic energy of the vertical motion are retained. It is
shown that this formulation allows a solitary-like wave to propagate
as well as giving a more accurate indication of wave breaking. An
'artificial viscosity' term is used to allow the formation of hydraulic
shocks., The effects of bottom friction are also included. The
model is derived for a linear beach slope, in Lagrangian coordinates.
A finite element formulation of the problem is derived that is suitable
for digital computer evaluation.

Calculations with the model agree satisfactorily with experi-
mental results for the run-up of solitary waves and bores., The model
is used to obtain run-up data on tsunami-like waves, which show the
danger of large run-up from low initial steepness waves on shallow
slopes. However, the data also show that bottom friction values can
significantly attenuate run-up, especially on shallow slopes.,

Waves generated by a dipole-like displacement of the simu-
lated ocean floor show that the run-up is usually larger when the upwards
displacement is nearest the beach than when the downwards displace-

ment is nearest the beach,
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INTRODUCTION

The consideration of tsunamis (seismic sea waves) is com-
paratively new in the engineering of man-made structures. In-
creased population and increased construction, particularly of
nuclear reactor power plants, has led engineers to give more
attention to protection against earthquakes and related natural
phenomena,

Tsunamis are large ocean waves generated by movement
of the ocean floor in undersea earthquakes, These waves propagate
to the ocean shoreline, where they are capable of doing great dam-
age., Large ocean waves, generated by earthquake induced land-
slides, as referenced by Wiegel (25), are also classed as tsunamis.

At present, the ocean shoreline regions are the sites of a
high degree of development. They are the locations for large power
plants and other industries desiring to use the ocean as a thermal
sinke They are the interface between waterborne and land trans-
portation systems, and they are also regions of great population
centers, In order to prepare suitable structural designs for these
areas, one should know about the probabilities of tsunamis at a cer-
tain site and the depth of inundation and water velocities that could
be expected if a tsunami did occur., Then, valuable or vital structures
could be protected from the tsunami or designed to resist it with
acceptable levels of damage. However, the desired infor mation is
very difficult to obtain because of the complexity of the overall

tsunami problems.



Tsunamis may be generated unpredictably in many areas of
undersea earthquake activity., The basic generating mechanism
is a tectonic displacement of the ocean floor which displaces the
water from its equilibrium with respect to the gravity field. Studies
by Iida (6) indicate that an average of one tenth of the seismic energy
is coupled into the tsunami wave energy, and that significant tsunamis
are to be expected only with earthquakes of magnitude greater than
B0 5y

The displacements are usually small with respect to the depth
of the water, measured in tens of feet, so that equivalent problems
of elevations or depressions in the water's surface may be considered.
Since the tectonic displacement is estimated to occur with a velocity
of approximately one foot per second, the displacements occur rapidly
compared to the time needed by the water to flow away. There is an
extensive literature on tsunami generation and propagation and the
papers of Carrier (2) and Keller (10) are typical works dealing with
the theory of tsunami generation by considering simple geometries
of bottom deformation.

Experimental studies of tsunami generation have also been
made. Wiegel (25) studied waves generated by initial elevations
and depressions in the water's surface, as well as block masses,
simulating landslides, entering the water, Takahasi (20) studied
waves from single circular sources and arrays of circular sources.

The generation of actual tsunamis is quite complex and is
not well known, only the most basic features have been identified,

The typical dimensions of a significant tsunami can be deduced from



the data compiled by Iida (6), on many tsunamis. The height of the
tsunami at generation is of the order of the vertical bottom displace-
ment, which for a large earthquake typically is 1-10 feet, but may be
as much as 50 feet., The water is usually deep, one to two miles,

or 104 feet, The characteristic length is of the order of the size of
the disturbed area, which for a very large earthquake may be 50-200
miles across, or 105 to 106 feet, This means the longest wave lengths
in the tsunami waveform are of this size.

Because the wave height is much less than the depth, small
amplitude theory may be used to study the wave motion in mid-ocean.
The longer wave lengths travel at the upper limiting velocity \/—g_c_i,
where d is the ocean depth, which in mid-ocean is approximately
500 feet per second. Destructive tsunamis may travel long distances,
for example, the tsunami generated just offshore by the Chilean earth-
quake of May 1960 caused destruction and loss of life in Hawaii and
in Japan., However, the travel time of the tsunami is slow enough to
allow the evacuation of distant areas where the tsunami is expected
to strike if there is an efficient warning systems.

The shorter wave lengths will propagate slower, be more sub-
ject to internal damping, and contain less energy than the longer
waves, and they probably can be neglected far from the tsunami
source,

The propagation of the tsunami across the ocean is often
studied by drawing refraction diagrams based on the ocean bottom
contours. Wadati (23) gives examples of these diagrams used to calcu-

late the travel times of tsunamis for the purposes of the Pacific



Tsunami Warning System. Such refraction charts also give the mag-
nification of the wave height due to refraction, assuming the energy
between rays is conserved. Refraction diagrams are also drawn for
regions near shore to examine the wave behavior there,

The largest gap in knowledge about the generation and propa-
gation of tsunamis is the lack of full scale measurements on a
tsunami in the deep ocean. However, as described by Vitousek (21),
the problems of obtaining such measurements via pressure trans-
ducers on the ocean floor are not simple,

As the tsunami approaches a shoreline, the wave grows in
height, especially if the depth transition is gradual and only a small
fraction of the wave energy is reflected seaward. Kajiura (7) gives
a thorough discussion of this problem for a wide range of transition
geometries,

Depending on the particular coastline, two things may happen.
First local resonances may be excited. These are often seen in the
frequency spectrum of local tide gauge records obtained during the
disturbance. These resonances are caused by energy being trapped
between steep depth transitions and steep (highly reflective) shore-
lines. They also occur in harbors, bays, and other relatively en-
closed bodies of water excited by the tsunami. Numerous calculations
of resonant frequencies have been made with the hope of finding a
correspondance with the peaks of the tide gauge spectrum, but the
analysis of the three-dimensional problem is very difficult.

Where the tsunami impinges on a beach, the so called run-up

problem occurs. This is of practical importance because additional



magnification of the wave occurs and it may climbupthe beach a con-
siderable distance. Also, this process determines what sort of
reflected wave occurs, an important consideration in trying to study
resonances. If one of the boundaries of a resonant cavity returns
only a small fraction of the energy it receives, the accumulation of
energy in the cavity can only be very slow and may not even occur at
all.

In trying to evaluate the engineering implications of the
tsunami problem, it was felt that a better formulation of the run-up
process would be of value. It would be very informative if the
characteristics of distant or local tsunamis were known or could be
assumed, the waves produced used as input to the run-up process,
and the run-up heights and velocities calculated. Comparisons between
two sites could be made to determine which would be more desirable
in the event of such a projected tsunami; or the influence of bottom
friction on run-up could be evaluated, etc, The available mathematical
models seemed unsuitable for this purpose. Hence the objective of
the research described in this thesis was to develop a model by means
of which practical results could be calculated. This would then com-
plement experimental models in investigating tsunami run-up.

The model would have to be more complete in its description
of the hydrodynamics of run-up than present mathematical models
in order to provide practical information on run-up heights and water
velocities, This would require numerical solution techniques, since
analytic solutions for these problems are quite limited. However,

the model would not be an attempt to completely reproduce the hydro-



dynamics of the prototype, as is often done in scale model experi-
ments. Approximations that would obscure the less significant
detailed flow phenomena would be acceptable and useful in keeping
the amount of numerical computation within reasonable limits. The
result would be a useful tool for studying the implications of tsunami

run-up on structural design.



THE RUN-UP PROBLEM

The run-up problem can be defined as what happens when
waves on the free surface of the ocean impinge on a shoreline,
The most general form of this problem can be posed mathematically,
as done by Stoker (19) as a general free surface flow in a vessel of
arbitrary shape. However, a general solution to this problem,
either analytically or numerically, is at present impossible. Even
modelling such a problem experimentally is a large and difficult job.
The usual first step in simplifying this problem is to elim-
inate the horizontal dimension parallel to the beach., The shoreline
is made straight and the wave motion is perpendicular to it. This
means that certain refraction, diffraction, and reflection phenomena
cannot be studied. However, in many cases these processes occur
separately from the actual run-up and can be studied by themselves.
Even this reduced problem is usually further simplified by
having an incoming wave in a region of constant depth, joined by a
linear slope as the profile of the beach. A number of studies of this
problem have been made, as summarized by LeMé&hauté (13). They
reflect the two usual approaches to any problem in that both experi-
mental models and mathematical models are discussed.
Experimental results basic to the run-up problem are given
by Savage (17) and Saville (18), who measured the run-up of periodic
waves on beaches of varying slope, roughness, and permeability.
The results, however, are for waves which are rather steep com-

pared to tsunami waves and for beaches which are steep compared to



continental slopes along many shorelines. It is difficult to model
waves of very small steepness accurately, especially on very small
slopes. On the smaller scale of the model, the frictional effects
are quite different from those of the prototype. Also, surface ten-
sion and the wetting action of the beach material introduce many
complicating factors. Large models avoid these problems, but
require more costly facilities.,

Hall and Watts (5), and Kishi and Saeki (11) measured the
run-up of solitary waves, which are steep. Recently, Miller (14)
measured the run-up of bores moving towards the beach, These data
are not of direct application to the tsunami run-up problem, but they
do provide results against which to test a run-up theory.

Mathematical analysis of the run-up problem usually leads to
expansion solutions for certaintypes of waves, i.e., small amplitude
or shallow water waves. In general, small amplitude theory is used
offshore, with (nonlinear) shallow water theory used near the beach.
A typical example of this is the work of Carrier (2), in which the
tsunami is assumed to originate from a point disturbance and the
resulting run-up is calculated. Keller (10) gives results for sinu-
soidal wave run-up based on small amplitude theory, Howeve.r, all
these results have the common limitation of not allowing the wave to
break and form a bore. Breaking can be predicted, but the flow after
breaking is not given., Also only frictionless cases can be treated,
and only linear slopes.

To allow for the breaking waves, numerical solutions have



been attempted where the bore was 'fitted' between the incoming
wave and the undisturbed water. This was first done by Keller,
Levine, and Whitham (9) for a bore approaching a beach., It was a
test of the approximation of Whitham (24) which allowed the vari-
ation in the strength of a bore to be derived from the shallow water
theory and the associated shock conditions. Freeman and LeMé&hauté
(4) used this 'fitted' shock to study the run-up of solitary waves.,

Amein (1) used this method to study long waves running up on
a beach, as well as separate theoretical calculations of the strength
of the bore. Additional methods of dealing with breaking waves are
summarized by LeM#&hauté (13),

In attempting to improve on the run-up models available, it
is thought a new model should include the kinetic energy of the vertical
component of the flow, which had not been included in prior model
studies., It should also model the effects of bottom friction and be
extendable to a general beach profile. The model should also allow
for breaking waves., Assuming such a model could be derived and
that it was suitable for numerical calculations, it then would be
tested against known results, as well as used to study aspects of the
tsunami run-up problem.

The discussion of the development of the new model is broken
down into several steps, First, the theoretical background and justi-
fication of the model is given. Then a finite element version of the
model is derived and its numerical evaluation is discussed. Last,
the model is shown to reproduce known results indicating its useful-

ness, It is then used to investigate some features of tsunami run-up.
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PROPOSED MODEL THEORY

Simplifying Assumption

In considering how to analyze the run-up problem, it becomes
clear that the vertical dimension (water depth) cannot be an indepen-
dent variable as this hopelessly complicates the problem, but neither
can it be eliminated from the problem completely. One must make a
suitable assumption about the flow which allows the equations to be
integrated (averaged) vertically, yet preserves the physics required
to model the run-up process. One way to achieve this is to approxi-
mate the horizontal velocity distribution by a finite number of terms
in the vertical direction, i.e.,

i=N

abey,) = ) yhu G (1)

i=0
where N is a small integer like 0, 1, 2, or 3, u is the horizontal
velocity, x is the horizontal coordinate, y is the vertical coordi-
nate, and t is time. The equations then can be integrated vertically,
since the y dependence is now explicits The resulting problem, in
one space dimension and time, is reasonable to solve numerically, as
demonstrated by work in flood waves and other problems, see Stoker
(19) and Richtmyer (15),

The simplest assumption is that the flow is constrained so the
horizontal component of fluid velocity is constant over the depth, i.e.,
N = 0, and this forms the basis for the present study. This is reason-
able for long waves approaching a beach, since it is a basic result of

long wave (shallow water) theory. For steeper waves, such as solitary
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waves, the distribution of horizontal velocity is not constant and the
assumption of constrained flow is more approximate, However, a
comparison of the solitary wave theory of Laitone (12) (which has no
constraint) with a solitary-like wave from the constrained flow
equations shows the approximation in profile shape is good, see
Figure I, also Appendix B. Only near the limiting solitary wave,
H/d ~ 0,71 - 0,72, does any appreciable difference show up.

An important point is that the kinetic energy of the vertical
flow is not neglected as it is in shallow water theory. It has been
noted by LeMé&hauté (13) that shallow water theory tends to predict
breaking sooner than is observed experimentally; in fact, it causes
every waveform to break. On the other hand, the constrained flow
gives more realistic results in that it allows a solitary-like non-
breaking waveform. Hence, it should give a better indication of
breaking, since it includes the effects of the vertical kinetic energy
of the flow,

Obviously, the constrained flow becomes invalid for short
surface waves, which have a non-constant distribution of horizontal
velocity with depth, however, these are not of interest here,

The equations of constrained flow are readily derived from
the general equations of motion and continuity. The flow is incom-
pressible so the density is constant and this allows the equations to
be simplified by setting the density equal to unity. The flow in
Figure II, where the horizontal velocity u is not a function of the
vertical coordinate y, (i.e., u = u(x,t)), then is described by the

continuity equation
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u +v._=0 (2)

where v is the vertical velocity and x is the horizontal coordinate.

This integrates to
yu, + v = f(x,t) (3)

where f is an arbitrary function of x and t. Since v=0 at y=0

for a flat bottom, then

(4)

v=-yu

Substituting in the vertical momentum equation and including a gravity

field -g, one has

dv/dt = -g-(dp/0y) (5)

where p is the pressure.

Equation (4) can be differentiated

dv/dt = y(uxz -u - uuxx) (6)

and combined with (5), and since the y dependence is explicit and
p=0 and y = h(x,t), the free surface, two integrations will give the

total force P on a vertical section

2 3, 2
P=gh“/2 +h (ux -, - uuxx)/3 (7)

The second integration averages the pressure distribution
vertically., If this pressure distribution were allowed to act on uncon-
strained fluid, it would cause the horizontal fluid velocity to vary over

the depth., This would violate the original constraint placed on the
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flow. Thus the approximation involved in averaging the vertical
pressure distribution is consistent with the constrained flow.
When the pressure force P and the horizontal momentum of
the fluid in a vertical section (uzh) are considered, the average
horizontal momentum equation results

(ub), + (u’h+ P)_=0 (8)

The well known shallow water continuity equation is valid
ht % (uh)X = (9)
Note that equation (8) is the momentum equation for shallow

water flow with additional terms representing the vertical kinetic

energy of the constrained flow.

'Artificial Viscosity' Term

Equations (8) and (9), however, will still not provide a correct
model for the run-up flow, as they represent a system with no energy
dissipation. In real run-ups, the waves may become steep and break,
forming hydraulic shocks with high energy dissipation. The detailed
flow within these shocks is complex but we are interested only in its
overall effect on the flow preceeding and following it. Hence, we do
not try to model the dissipation mechanism within the shock, but
merely try to represent its gross effects.

Analytically, this could be done by considering the shock as
a discontinuity in the solution between two essentially separate
problems, with momentum and continuity preserved across the
shock. Numerically, this requires a complex shock 'fitting' proce-

dure. It is somewhat simplified if the shock is progressing into
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still water, as does an initial wavefront, but it would yet be neces~-
sary to consider return flows and the formation of subsequent shocks.
A more useful approach introduces an 'artificial viscosity'
term. In this method, a suitable term is added to the momentum
equation which represents the energy dissipation in the regions of
sharply changing flow quantities, i.e., shock discontinuities, The
term selected here is in effect an 'artificial viscous force' F at any

cross section, whose magnitude is
F = £%h(8u/0x%) 2 (10)

A more general term would be proportional to density, so as to make
the shock width independent of it. Here, the density is taken as unity

to be consistent with equations (2) to (9). Equation (9) now reads

(uh),c‘*'(uzh +P+F) =0 (11)

The motivation for selecting this form for the term is made
plausible by examining the profile of a shock. The fluid enters the
shock in Figure III(a) from the right at high speed and its velocity
drops as it flows through the shock region. The gradient of the
velocity (absolute value) has a profile as shown in Figure III(b). This
gives a characteristic profile to the curve for F (Figure III(c) ); i.e.,
F is small away from the shock region, but has a sharp peak in the
region of rapidly varying flow. The choice of exponents for (8u/9x)
and the factor h merely are weightings to make the shock width
independent of strength, as shown in Appendix A,

The factor 12 controls the width of the shocks that form.
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This also can be seen in Appendix A, where the 'artificial viscosity'
term is solved with the shallow water equations to give a shock-like
solution, whose slope width is 2£. In the actual examples solved
numerically, the presence of the additional terms for the kinetic
energy of the vertical flow complicates the effect of the 'artificial
viscosity' term. However, larger values of 22 still give wider
shocks,

The gradient of the force, FX, Fig, III (d) ), is the force
field the fluid must work against, with local energy dissipation
FXu (Figure III(e)). The net energy dissipated will be positive,
thus accounting for the losses in the shock,

Away from the shock,’ du/dx is very small and the 'artificial
viscosity' term has negligible effect. The net force across the shock
is zero, so the momentum equation still represents conservation of
momentum across the shock. The continuity equation is unmodified
and still valide Hence the shock conditions for an infinitesimal
(width) shock are preserved in this finite shock.

Velocity gradients also occur in expansion waves where there
is no dissipation, but in this case the 'artificial viscosity' term
should have no effect, i.e., it should be small or zero. Hence, a

modified term
2 2
F = £ “h(0u/0x) “He(-0u/ox) (12)

gives the desired results, where He, the Heavyside function is equal
to unity for arguments greater than zero and equal to zero for argu-

ments less than zero,
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Numerical solutions for the constrained flow with the 'arti-
ficial viscosity' term show that they give the desired modeling of the
overall shock structure in the flow. Figures IV(a,b) show typical
shock profiles obtained with different values of the shock width coef-
ficient £. In Figure IV(b), larger oscillations downstream of the
shock are noticed. These oscillations represent energy produced
in the shock, not dissipated by the 'artificial viscosity' term, propa-
gating away from the shock as waves. The 'artificial viscosity' term
coefficient must be large enough to reduce these trailing waves to
acceptable amplitudes, as in Figure IV(a). This behavior is due to
the terms for the kinetic energy of the vertical flow being present.

It is not seen in the solution in Appendix A, where the shock width
decreases with the shock width coefficient, but remains constant in
shape,

A possible explanation of this phenomena is that the vertical
velocity of the fluid as it rides up the crest of the wave is too large
for a smooth flow and it tends to overshoot and excite the trailing
oscillations. In a real wave this overshooting is directed forward
and produces the breaking of the wave.

Figure V shows that the shocks generated behave almost as
the theoretical infinitesimal (width) shocks do in terms of the
relationship between shock strength and shock velocity., The points
representing the calculations lie very close to the theoretical curve,
indicating the accuracy of the 'artificial viscosity' method.

The 'artificial viscosity' method was originally developed by

Von Neuman and Richtmyer (22) for the analysis of shock waves in
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gasdynamics. The term used here agrees with that recommended by
Richtmyer (15), but it has been modified for hydraulic flow for this
investigation. Richtmyer (15) gives detailed discussion on how the

method approximates theoretical results for gasdynamics.

Bottom Friction Term

A further significant influence on the hydrodynamics of the
run—.up is the bottom friction, however, the friction laws operating
here are not well known. A simple friction rule is used in this study
with the hope of simulating some of the basic effects of the bottom

friction. The local shear stress T at the bottom is taken to be

T = Kuz (13)

The friction coefficient K is calculated from the friction rule for
steady flow in an open channel of a given depth and bottom roughness.,
K is thus a function. of the depth of the water and the bottom material
properties, The details of how this is applied are covered in the
cases discussed.

This particular rule was chosen primarily because it allows
comparison with the usual steady flow definitions of friction coeffi-
cients and friction factors. However, the formulation of the problem
does not preclude the use of more accurate friction laws as they are

defined.

Lagrangian Coordinates

In visualizing the solution of a run-up problem, it is obvious
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that the physical domain of the problem changes as the solution pro-
gresses., In an Eulerian coordinate system, this causes complica-
tions in numerical calculations, as mesh points have to be added
and subtracted during the solution. On the other hand, for modeling
a wave tank, or any fixed quantity of fluid, a Lagrangian scheme is
more natural. The Lagrangian independent variable is attached to
the fluid particles, which are conserved. Hence, the domain of the
problem is constant and the numerical calculation simplified.

The Lagrangian scheme also has the advantage that one de-
pendent variable, (x, the instantaneous horizontal coordinate of a
particle whose location at t =0 was a, i.e., x(a,0) = a), defines
the solution for all time. The continuity equation is thus eliminated.

It should be pointed out that previous computational work for

the run-up problem has been in Eulerian coordinates.,

Summary

The purpose of the section has been to define the approxima-
tions of the run-up hydrodynamics used in the model formulation, so
as to allow them to be distinguished from the errors in solving the
model equations numerically, The basic approximations are the re-
placement of the general two-dimensional flow by the constrained
flow, and the allowance of discontinuous shock solutions by means of
an 'artificial viscosity' term. Also, a simple friction law is used to
approximate bottom friction effects.

In the next chapter, these approximations are applied directly

to the flow to allow the specification of a system of finite elements,
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whose equations serve as a mathematical analog for the flow. The
finite eloments help to keep the physics of the process in view and
the resulting equations lend themselves to numerical solution
methods. This is in lieu of first deriving the continuum equations
to represent the approximated flow, and then proceeding to solve
them with a numerical solution technique, which may not be well

defined for the resulting systems,
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DERIVATION OF FINITE ELEMENT SYSTEM

Definition of a Typical Element

When making a numerical solution of a physical problem
there is a conceptual advantage in formulating the problem by means
of finite elements. In the problem under consideration, a finite
element is a particular mass of fluid whose internal flow field is
specified so as to facilitate a numerical solution of the problem.
Initially, before the fluid has been disturbed, the finite element is
the mass of fluid between the vertical plane at X, and the vertical

plane at x.

i+ =xi+DX.

When the fluid is disturbed by wave propagation we consider
the front and back faces of the finite element to displace and to de-
form out of plane., The fluid particles adjacent to one of these faces
will experience a horizontal velocity which can be approximated by
equation (1)

i=N
u(x,y,t) = Z yiui(x,t) (1)
i=0
where as noted earlier, N is a small integer like 0, 1, 2, or 3.
The vertical velocity will be determined by integrating the equations
of flow vertically, since in the approximate expression for u, y
is explicit.

To obtain an accurate solution it is desirable that the fluid

motion specified within the finite element be as near as possible to

the true fluid motion, On the other hand, to simplify the numerical



29

solution it is desirable to specify a simplified flow pattern within
the element. The aim is to obtain a satisfactory accuracy with a
minimum amount of computing.

It appears for this problem that a reasonable compromise is

the simplest case, N = 0, giving

u(x,y,t) ® u(x,t) (14)

that is the constrained flow discussed in the previous section.
However, for certain future investigations, it may be necessary to
prescibe a more complex element deformation, where the series in
equation (1) is carriedto N =2 and N = 3,

To be able to derive the equations governing the motion of
the elements, it is necessary to be able to specify the fluid flow
within the element so the fluid's kinetic and potential energies are
specified, preferably in terms of the displacement of the element's
vertical boundaries. The equations of motion can then be derived by
means of Lagrange's equation.

To examine how this is done, one first considers Figure VI(a),
where the vertical element boundaries are shown in a general con-
strained flow over a linear beach slope. The element boundaries do
not affect the constrained flow and remain vertical, The location of
these boundaries define where the fluid is, and can serve as a
Lagrangian variable that describes the fluid flow.

However, the specification of the fluid motion in Figure VI(a)
is not complete, since the free surface shape is unknown. The only

way the internal flow of the element can be prescribed is to simplify
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its shape by approximating the top and bottom boundaries with simple
functions.

In Figure VI(b), the approximating function is linear. It
provides an exact description of the bottom contour in this case of
a linear beach slope. However, even this simple function does not
allow complete specification of the element by its vertical bound-
aries, If the vertical boundaries are fixed, the free surface can
still rotate to different slopes, though mass conservation (or conti-
nuity) requires the center (average height) to remain fixed. Thus
there is a fluid motion not described by the vertical boundary
positions.

Only the very simplest element form, shown in Figure VI(c),
allows specification of the element in terms of the vertical boundary
positions. The approximating function is a constant. Since the
position of the lower boundary of the element is determined by the
contour of the beach, continuity determines the height of the fluid in
the element in terms of the vertical boundary positions. Thus, the
shape of the element is completely determined. This simple element
is the basis of all the calculations done in this model,

A higher order element could be defined so that it was com-
pletely specified by the vertical boundaries of the element, but this
would involve the numerical evaluation of considerably more compli-
cated expressions in application. To achieve a given over-all
accuracy in solving the equations, the trade-off to be considered is

evaluating a simple expression more often than a more complicated
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higher order expression. It usually favors the simple expression,
which is easier to derive and program into the computer. The
investigation of higher order elements should be considered in
future work,

While the equations for the element could be derived for a
general beach contour, the equations are somewhat simpler for a
linear beach slope, as shown so far. Since most experimental
results are for linear slopes, it was not felt necessary to investigate
general profiles at this time,

Thus Figure VII(a) defines the 'ith' element used for the
calculations, It is a rectangular mass of fluid between the two
boundaries located at X, and Xi4q The centerline of the element,
at %(Xi + Xi+1) , intersects the beach slope at the bottom of the

element, The top of the element is hi above that level.

Derivation of the Equations of Motion

If there is some fixed quantity of fluid, ¢, in the element,
the position of the fluid is defined by the Lagrangian coordinates X,

and x. The height (hi) of the fluid above E 1is obtained from

i+l”

the continuity equation

hi(xiﬂ—xi) =c; (15)

since c; is constant. For any smaller section of the element, for

example, up to the line HJ

y(xiH-xi) = constant (16)
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Figure VII(a). " The 'ith' Element.
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also.

Differentiating (15) and (16) with respect to time gives

hi(xi+1 - Xi) + hi(xi+1— x.) =0 (17)

V(Xi+1_xi) + y(xi_,_i—xi) =0 (18)

From this it can be seen that hi and fli are functions of the

o
Xi's and the xi's.

By = e;/tx;10-x)) (19)
R = 0% - 2R, -] (20)
i it T i i
Also seen is that the dependence of v on y is explicit, i.e.,
v = hiY/hi (21)

However, this has neglected the vertical motion of the point E as
it moves along the slope with velocity —%(;{i+1+;(i) horizontally.

Adding in the vertical component one has
° 1,0 °
v = hiY/hi +—Z(xi+1+ Xi) tan o (22)

To derive the equations of motion, one can write the Lagrangian
for this finite degree of freedom system. The horizontal kinetic
energy is taken to be the kinetic energy of the fluid moving with the
velocity of the mass center; the kinetic energy of motion with respect
to the mass center is not included as this is a relatively small quantity

for the problems considered here,



KE = %ci[ w }] (23}

hor.
i

The vertical kinetic energy is a result of the vertical velocity

(v) distribution:

hi
1 2
vert. -Z(X +1 xl)g vy

i o

1 . 2 1 2,:2 02 2
=5C (xi+x.+1) tan"a - [Zci(x _H—x.l)tana/] /(x.+1 Xi)

1 3,2 e 2 4
R R VACTTRE (24}

The potential energy is the mean height of the element times
its weight

_ 1 1
PE‘.l = gci{ > hi + [ (Xi+x.

> ;+4) - R] tan a} (25)

where R 1is the intercept of the slope and the x-axis, In terms of

the x.'s
i

1 1
PE, = gci{g Ci/(xi+1_xi) + [ -?:(xi+1 -xi) -R]tan @} (26)

The total Lagrangian is formed by the 'ith' box

= + -
L, KEhori KEverti PE, (27)

By inspection, only Li L., and Li+

s L. contribute to the 'ith' equa-
-1 1

1

tion, which if we define the entire Lagrangian LT as

LT = z L, (28)‘
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is of the form
d(ai—T/a;;i)/dt = LT /ox, (29)

This leads to a typical equation of motion of the form

{ci(i ttan®e)/4 - ci:’/[S(xi+1-Xi)4]} & n

#{(e;/a e, /4t +tan®a) +e? /[30xy -2 ] el /130 % )* ]

tana//[Z(xi - Xi—i)z] }32

2 2 2
+ ¢ tana//[Z(xiH-xi) ] = ;. i

1

+ {ci_i(i +tan2a)/4 - c?_i/[3(xi— Xi—1)4]} ;i—l

= 2Ci3 (;<i+1_;{i)2/[3(xi+1—Xi)S]— C?g/[Z(Xi+1'Xi)2]

3 e e 2
- ZCi_i(x.— Xi—i) /[3(Xi- Xi—i)

1 5]

- cf‘_ig/[z(xl— Xl_i)z]

§ <2 3
- ci(xiH—xi) tan a/[Z(xiH-xi) ]

20 o ° 2 3 i
- ci_i(xi- Xi—i) tan /[ Z(Xi— Xi—i) ] - E(ci+ci_1)gtana (30)

At the end of a sloping beach, where the fluid surface inter-
sects the bottom, a different approximation is used for the element
shape. The free surface is still considered as level, but the actual
beach slope is used for the element bottom. The resulting element,
defined by Figure VII(b), is triangular in shape. Its position is
defined by the coordinate X of its vertical boundary and it moves
without distortion.

This simplifies the calculation of the Lagrangian. With

reference to Figure VII (b), if the volume is c then
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2
cn—hn/(Z tan @) (31)
KE - (32)
hor n n
n
and
=c (x tanOZ)2 (33)
vertrl n n

The potential energy is still the weight of the element times the

height of the centroid of ABC above the datum

PE
n

gcn[(xn—R)tan a + Zhn/3]

T}

gcn{(xn—R)tan o+ [Z(ZCntan 01)1/2/3]} (34)

When this Lagrangian is used, the 'nth' equation is found to
be slightly different from equation (30). It only includes X and

X 40 and their derivatives,

'Artificial Viscosity' and Bottom Friction

The 'artificial viscosity' and bottom friction terms may be
added to the finite element equations as additional forces contributing
to the equilibrium of the 'ith' vertical boundary. From the continuum
form for the 'artificial viscosity' term, F = ﬁzh(au/ax)ZHe(—Bu/ax),

2

L% is allowed to be a constant (K'), specified in the numerical solu-

tion to give a certain shock width, For the 'ith' element

- %) (35)
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and
Bu/ox = (x, 4 - %,)/(x, 4y - ) (36)

Since (x.

L4~ %) >0, He(-9u/6x) may be represented by He(ii— ;{i

+1)°
Acting on the 'ith' boundary is a negative force from the 'ith'

element and a positive force from the '(i-1)th' element, The direc-

tion of these forces is the same as the pressure forces acting on the

boundary. Hence, the following terms are added to the right-hand

side of equation (30), the basic element equation of motion

—xi)ZHe(;ci— ;ci_H)/(x 3

1+ %)

+ Ci—i(;{i— ;ci_i)ZHe(}'ci_ 7 ;{i)/(xi- Xi—1)3] (37)

The bottom friction is considered in a similar manner., The
shear stress is a function of the horizontal velocity and the friction
coefficient, i.e., T = Kuz. The friction is considered only to act
in the horizontal direction. This is an approximation on a sloping
beach, but since the slopes in question are small, it is acceptable,
The friction force acting on each element is taken as DX Kuz,
where DX is the initial width of an element. This produces two
additional force terms on the right-hand side of equation (25) re-

sulting from the friction force on each element being transmitted to

the boundaries of that element. They are

— ° ° 2 i ° ° ° o 2 . ] L
~K(DX) [(x; 44+ x,) Signle, o+ %) + (k%) “signlk, + %, )]

(38)
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where
1if a=0

sign a = {39)
-1if a<o0

The use of the sign function indicates that the friction force

opposes the flow,

Use of the Finite Elements in a Model Tank Analog

In order to use the scheme so far described to study wave
run-up, a model tank was considered, typically as shown in Figure
VIII{(a)s This tank consists of a flat section with a sloped beach,
However, for other calculations, a simpler tank with just a flat
bottom and a vertical wall at the far end was used. In still a third
case, the entire length of the tank was sloped. The derivation of
the finite element equations covers all of these cases with only minor
changes.,

In any case, the tank is divided into n elements, DX wide,
for an initially level free surface, The constants in the finite element
equations, i.€0, c; (i=1,.0s,n), tan @, R, etc,, are evaluated for
the system of equations based on the dimensions of the tank and how
it is divided., This includes the bottom friction and 'artificial
viscosity' coefficients, This system of equations becomes the mathe-
matical analog of the wave tank in question.

Because of the interest in the solution in the vicinity of the
intersection of the free surface and the beach slope, it would seem

logical to use a finer element size there, However, the large vari-
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ations in the local depth in this region causes the element width to

become very small at times, This requires very small time steps
to integrate the equations stably, as will be seen later. The use of
smaller elements would only worsen this situation, so the uniform

initial element width was maintained,

Using the Model Tank Analog

In order to produce waves in the tank, Xy is prescribed as
a function of time, It acts as a piston wavemaker and by controlling
its motion a wide variety of waveforms can be produced. The motion
of the wavemaker is usually deduced from the known results about
horizontal fluid particle motion for various waveforms, These will
be described in the specific cases of interest,

For solutions of the system of ordinary differential equations
to exist, initial values of X, and ;{i’ i=1,.e0,N, must be given,
In all cases, the calculations were begun with a still tank and all of
the excitation was supplied by the wavemaker input. Thus, the initial
conditions were simply, x, = DX, ;{i = 0

This system of equations must then be solved. In this work,
the solution was by digital computer and will be discussed in the next
chapter. The solution consists of the xi's as functions of time,

However, it is desirable to recover the free surface profile
as a function of time, because its behavior is most often recorded in
experiments and used as a basis for theoretical discussion. The

surface profile at any time is defined by the xi’s and obtained by

calculating the hi's from the continuity equation (15). Since this is
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in reference to the bottom of the tank, a sloped region has

h. = c./(x. —Xi) +[—1-

g & By iy 5 (%447 %) - Rl tan @ (40)

See Figures VII(a,b)s The free surface profile is then defined as a
curve passing through the points (% (Xi+1+xi) ’hi)" For the end point
defined by the 'nth' element on a sloping beach, the intercept of

the beach slope and the top of the element is used. A smooth curve

can be passed through the points by an appropriate interpolation pro-

cedure,

Treatment of Multiple Slopes

One limitation of the derivation given for a linear beach slope
is in its direct application to modeling a tank with two regions of
different slope, such as shown in Figure VIII(a). As the solution
progresses, sufficiently large horizontal displacements of the
elements may take place so that an element defined on one slope may
be on another. In this case, the equations referring to that element
would be in error, the error size depending on how far the element
went into the other region.

Fortunately, this can be overcome in an actual numerical com-
putation by having the computer check at each time step which region
the element is in and modify the numerical evaluation of the element
equations accordingly. The location of an element is defined by its

center, i.e., —12:(};i +xi) for the 'ith' element.

+1

Even with this correction, error still results from the equa-
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tions being solved stepwise in time. In the course of one time step,
an element may cross into a new region., However, the equations
are not modified until the next time step, and are in error for part of
the one time step. This manifests itself as small error waves,
generated at transitions between different slopes. In most cases,
these waves were considerably smaller than the phenomena of
interest, and did not affect the results, However, in certain cases,
dealing with small wave amplitudes, these were very definitely
noticeable and interferred with the waves under study.

This is illustrated in Figure VIII(b), where in the original
tank a certain wave is generated, but is smaller than the error wave
generated at ihe transition. The most direct cure to this problem is
to modify it so it can be studied on a single slope. This means
transforming the wave to the correct size for the greater depth of the
modified tank using small amplitude theory.

An alternative method of dealing with the error is to reduce the
element size, This is a natural way of reducing errors from the

'finiteness' of the system, but must be paid for in computer time,
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Figure VIII(b), Elimination of Transition Using a Tank
with One Slope.
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COMPUTATIONAL PROCEDURES

Solution Mechanics

In order to solve the finite element system of second order
nonlinear ordinary differential equations, the system is viewed as

follows

[AGe %)%} = Bx,x)} + {£(t)} (41)

Equation (41) represents the n equations of motion, where
[A] is a matrix function of the xi’s and the ;(i's, while {xl}
consists of the accelerations arranged as a vector. {B} and {f(t)}
are the right-hand sides of the equations of motion and the driving
function arranged as vectors.

The system is converted to first order by defining

1 = {x.} (42)

i+n i
so that
[AG %, V% )} = {Blx;,x, )} + {£(8)} (43)

Since at any given time the matrix [A] can be numerically inverted,

we essentially have
{x;, ) = [a171{B} + (a1 {5(1)} (44)

([A] is a tridiagonal matrix and so the inversion is not difficult,)
Equations (42) and (44) then represent a first order system of 2n

equations in standard form for numerical solution.
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The actual integration is by Adam's method, with Runga-
: e
Kutta starting, The truncation error for the schemes used was DT,

where DT is the time step size,

Stability Criteria

The numerical integration of this system is restricted by a
stability criteria. This is because the system is essentially hyper-
bolic, in that it propagates disturbances at a finite speed. The

time steps must be sufficiently small so that
DT < Cons (DX/c) (45)

Here DX is the width of an element, DX = (xiH-xi) , and c 1is the
local small wave speed, (c = 1/_g7:1, where d is the local depth.)
Cons 1is a constant of order one which depends on the exact scheme
and which is affected by the presence of the 'artificial viscosity'
term. See Richtmyer (15). Also, in Lagrangian coordinates, DX
varies locally as the solution progresses, the smallest value being
critical. It was found prudent to use K = 1/10 to 1/50 for ¢ = \/EE,
where d was the initial maximum depth and DX the initial element

width, to determine a safe ﬁ for all time.

Details on Computation

The computer is programmed to do most of the work in any
given investigation, Usually, only numerical values of parameters

are fed in as data, with functional forms involved specified by the
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program, Several different subroutines defining specific tank
geometries and waveforms were used to investigate specific prob-
lems. The computer facilities can provide graphical outputs as
well as numerical outputs for these problems,

Since the computer times for such calculations are not trivial,
they may be estimated on the following basis. To evaluate one equa-
tion for one time step requires about 200 operations (additions and
multiplications), which take about ten microseconds apiece on the
IBM 7094 computer used. Thus, such a step takes about two milli-
seconds,

From this, the time to do a problem is determined. The tank
is divided into n elements » which determines the element width —Iﬁ,
The stability criteria, taking into account the depth (and hence, wave
speed), gives a maximum size for the time step. If the wave propa-
gation is to be studied for a certain time, usually until reflected
waves interfere, the number of time steps (NT) is determined, (This
is also related to the depth and wave speed.) The computer execution

time is approximately n(NT)/500 seconds.
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DISCUSSION OF SPECIFIC CALCULATIONS WITH MODEL

Checks on Wave and Shock Propagation

The complete computer model can be tested to see if it repro-
duces the phenomena associated with water waves., A typical check
is to produce small amplitude long waves, These are found to propa-
gate undistorted with constant velocity as predicted by the linear
wave equation. If generation of short surface waves is attempted,
the model would not give such good results because the surface waves
have a large variation in horizontal velocity with depth, which the
model cannot allow.

For larger amplitude long waves, the nonlinear effects become
significant, with the waves steepening into shocks, Shocks may also
be generated directly by moving the wavemaker piston at constant
velocity into the tank, Figures IV(a,b) show the results of such cal-
culations done to test the shock behavior. It is noted that for larger
values of the 'artificial viscosity' coefficient the shock tends to a
smooth transition, with the required energy being dissipated in the
jump. As the value of the coefficient is decreased, the transition
has small waves on the downstream side, These seem to result from
the fact that the shock does not dissipate enough energy and the excess
energy tends to propagate downstream in the little waves, However,
the motion of the waves is attenuated and they become smaller away
from the shock,

Weak hydraulic shocks tend to propagate waves downstream in

a similar manner, However, for stronger shocks, where the flow is
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unsteady in reference to the shock coordinates and is complicated
by rotation and air entrainment, a direct comparison with the
'artificial viscosity' shocks is of doubtful value.

Other comparisons between the computed shocks and the real
shocks should only concern their overall properties. From the
basis given in Chapter III, 'Proposed Model Theory,' it seems clear
the shocks should behave as the infinitesimal (width) shocks, It is
pointed out that the use of the 'artificial viscosity' term essentially
allows the momentum and continuity conditions to be satisfied across
the shock., Again, this is indicated by Figure V, showing how the
computed shocks agree with the theory in the relation between shock
height ratio and Froude number,

The only other parameter of the shock would be its thickness,
as influenced by the choice of the 'artificial viscosity' coefficient, 22,
As seen in Appendix A, this determines the approximate width of the
shock to be about 2f, Experimental data from Chow (3) indicate
that the width of the shock region is three to five times the height of
the jump for Froude numbers from 2,0 to 8.5, Since the thickness
of the computed shocks can be varied, this criteria could be met in
the generation of any particular shock.

However, all of this is based on steady flow patterns (in refer-
ence to the shock coordinates), In wave run-ups, the shocks form
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