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ABSTRACT 

To understand the engineering implications of possible wave 

run-up resulting from tsunamis, a formulation of the run-up pro­

cess capable of giving quantitative answers is required. In this 

thesis, a new mathematical run-up model suitable for computer 

evaluation is proposed and tested. The two-dimensional model uses 

a flow constrained so that the horizontal velocity is uniform in depth. 

However, unlike the usual shallow water theory, the terms repre­

senting the kinetic energy of the vertical motion are retained. It is 

shown that this formulation allows a solitary-like wave to propagate 

as well as giving a more accurate indication of wave breaking. An 

'artificial viscosity' term is used to allow the formation of hydraulic 

shocks. The effects of bottom friction are also included. The 

model is derived for a linear beach slope, in Lagrangian coordinates. 

A finite element formulation of the problem is derived that is suitable 

for digital computer evaluation. 

Calculations with the model agree satisfactorily with experi­

mental results for the run-up of solitary waves and bores. The model 

is used to obtain run-up data on tsunami-like waves, which show the 

danger of large run-up from low initial steepness waves on shallow 

slopes. However, the data also show that bottom friction values can 

significantly attenuate run-up, especially on shallow slopes. 

Waves generated by a dipole-like displacement of the simu­

lated ocean floor show that the run-up is usually larger when the upwards 

displacement is nearest the beach than when the downwards displace­

ment is nearest the beach. 
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INTRODUCTION 

The consideration of tsunamis (seismic sea waves) is com­

paratively new in the engineering of man-made structures. In­

creased population and increased construction, particularly of 

nuclear reactor power plants, has led engineers to give more 

attention to protection against earthquakes and related natural 

phenomena. 

Tsunamis are large ocean waves generated by movement 

of the ocean floor in undersea earthquakes. These waves propagate 

to the ocean shoreline, where they are capable of doing great dam­

age. Large ocean waves, generated by earthquake induced land­

slides, as referenced by Wiegel (25), are also classed as tsunamis. 

At present, the ocean shoreline regions are the sites of a 

high degree of development. They are the locations for large power 

plants and other industries de siring to use the ocean as a thermal 

sink. They are the interface between waterborne and land trans­

portation systems, and they are also regions of great population 

centers. In order to prepare suitable structural designs for these 

areas, one should know about the probabilities of tsunamis at a cer­

tain site and the depth of inundation and water velocities that could 

be expected if a tsunami did occur. Then, valuable or vital structures 

could be protected from the tsunami or designed to resist it with 

acceptable levels of damage. However, the desired information is 

very difficult to obtain because of the complexity of the overall 

tsunami pro bl em. 
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Tsunamis may be generated unpredictably in many areas of 

undersea earthquake activity. The basic generating mechanism 

is a tectonic displacement of the ocean floor which displaces the 

water from its equilibrium with respect to the gravity field. Studies 

by Iida (6) indicate that an average of one tenth of the seismic energy 

is coupled into the tsunami wave energy, and that significant tsunamis 

are to be expected only with earthquakes of magnitude greater than 

6. 5. 

The displacements are usually small with respect to the depth 

of the water, measured in tens of feet, so that equivalent problems 

of elevations or depress ions in the water's surface may be considered. 

Since the tectonic displacement is estimated to occur with a velocity 

of approximately one foot per second, the displacements occur rapidly 

compared to the time needed by the water to flow away. There is an 

extensive literature on tsunami generation and propagation and the 

papers of Carrier (2) and Keller (10) are typical works dealing with 

the theory of tsunami generation by considering simple geometries 

of bottom deformation. 

Experimental studies of tsunami generation have also been 

made. Wiegel (25) studied waves generated by initial elevations 

and depressions in the water's surface, as well as block masses, 

simulating landslides, entering the water. Takahasi {20) studied 

waves from single circular sources and arrays of circular sources . 

The generation of actual tsunamis is quite complex and is 

not well known, only the most basic features have been identified. 

The typical dimensions of a significant tsunami can be deduced from 
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the data compiled by Iida (6), on many tsunamis. The height of the 

tsunami at generation is of the order of the vertical bottom displace-

ment, which for a large earthquake typically is 1-10 feet, but may be 

as much as 50 feet . The water is usually deep, one to two miles, 

4 or 10 feet. The characteristic length is of the order of the size of 

the disturbed area, which for a very large earthquake may be 50-200 

miles across, or 1 o5 to 10 6 feet. This means the longest wave lengths 

in the tsunami waveform are of this size. 

Because the wave height is much less than the depth, small 

amplitude theory may be used to study the wave motion in mid-ocean. 

The longer wave lengths travel at the upper limiting velocity fgd, 

where d is the ocean depth, which in mid-ocean is approximately 

500 feet per second. Destructive tsunamis may travel long distances, 

for example, the tsunami generated just offshore by the Chilean earth-

quake of May 1960 caused destruction and loss of life in Hawaii and 

in Japan. However, the travel time of the tsunami is slow enough to 

allow the evacuation of distant areas where the tsunami is expected 

to strike if there is an efficient warning system. 

The shorter wave lengths will propagate slower, be more sub-

ject to internal damping, and contain less energy than the longer 

waves, and they probably can be neglected far from the tsunami 

source. 

The propagation of the tsunami across the ocean is often 

studied by drawing refraction diagrams based on the ocean bottom 

contours. Wadati {23) gives examples of these diagrams used to calcu-

late the travel times of tsunamis for the purposes of the Pacific 
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Tsunami Warning System. Such refraction charts also give the mag­

nification of the wave height due to refraction, assuming the energy 

between rays is conservedo Refraction diagrams are also drawn for 

regions near shore to examine the wave behavior there. 

The largest gap in knowledge about the generation and propa­

gation of tsunam is is the lack of full scale measurements on a 

tsunami in the deep oceano However, as described by Vitousek (21}, 

the problems of obtaining such measurements via pressure trans­

ducers on the ocean floor are not simple. 

As the tsunami approaches a shoreline, the wave grows in 

height, especially if the depth transition is gradual and only a small 

fraction of the wave energy is reflected seaward. Kajiura (7) gives 

a thorough discussion of this problem for a wide range of transition 

geometrieso 

Depending on the particular coastline, two things may happen. 

First local resonances may be excited o These are often seen in the 

frequency spectrum of local tide gauge records obtained during the 

disturbanceo These resonances are caused by energy being trapped 

between steep depth transitions and steep (highly reflective} shore­

lines. They also occur in harbors, bays, and other relatively en­

closed bodies of water excited by the tsunamio Numerous calculations 

of resonant frequencies have been made with the hope of finding a 

correspondance with the peaks of the tide gauge spectrum, but the 

analysis of the three-dimensional problem is very difficult. 

Where the tsunami impinges on a beach, the so called run-up 

problem occurs. This is of practical importance because additional 
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magnification of the wave occurs and it may climb up the beach a con­

siderable distance. Also, this process determines what sort of 

reflected wave occurs, an important consideration in trying to study 

resonances. If one of the boundaries of a resonant cavity returns 

only a small fraction of the energy it receives, the accumulation of 

energy in the cavity can only be very slow and may not even occur at 

all. 

In trying to evaluate the engineering implications of the 

tsunami problem, it was felt that a better form ulation of the run-up 

process would be of value. It would be very informative if the 

characteristics of distant or local tsunamis were known or could be 

assumed, the waves produced used as input to the run-up process, 

and the run-up heights and velocities calculated. Comparisons between 

two sites could be made to determine which would be mo re desirable 

in the event of such a projected tsunami; or the influence of bottom 

friction on run-up could be evaluated, etc. The available mathematical 

models seemed unsuitable for this purpose. Hence the objective of 

the research described in this thesis was to develop a model by means 

of which practical results could be calculated . This would then com­

pleme nt experimental models in investigating tsunami run-up. 

The model would have to be more complete in its description 

of the hydrodynamics of run-up than present mathematical models 

in order to provide practical information on run-up heights and water 

velocities . This would require numerical solution techniques, since 

analytic solutions for these problems are quite limited. However, 

the model would not be an attempt to completely reproduce the hydro-
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dynamics of the prototype, as is often done in scale model experi­

ments. Approximations that would obscure the less significant 

detailed flow phenomena would be acceptable and useful in keeping 

the amount of numerical computation within reasonable limits. The 

result would be a useful tool for studying the implications of tsunami 

run-up on structural design. 
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THE RUN- UP PROBLEM 

The run-up problem can be defined as what happens when 

waves on the free surface of the ocean impinge on a shoreline. 

The most general form of this problem can be posed mathematically, 

as done by Stoker (19) as a general free surface flow in a vessel of 

arbitrary shape. However, a general solution to this problem, 

either analytically or numerically, is at present impossible. Even 

modelling such a problem experimentally is a large and difficult job. 

The usual first step in simplifying this problem is to elim­

inate the horizontal dimension parallel to the beach. The shoreline 

is made straight and the wave motion is perpendicular to it. This 

means that certain refraction, diffraction, and reflection phenomena 

cannot be studied. However., in many cases these processes occur 

separately from the actual run-up and can be studied by themselves. 

Even this reduced problem is usually further simplified by 

having an incoming wave in a region of constant depth, joined by a 

linear slope as the profile of the beach. A number of studies of this 

problem have been made, as summarized by LeM~haute (13). They 

reflect the two usual approaches to any problem in that both experi­

mental models and mathematical models are discussed. 

Experimental results basic to the run-up problem are given 

by Savage (1 7) and Saville (18), who measured the run-up of periodic 

waves on beaches of varying slope, roughness, and permeability. 

The results, however, are for waves which are rather steep com­

pared to tsunami waves and for beaches which are steep compared to 
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continental slopes along many shorelines. It is difficult to model 

waves of very small steepness accurately, especially on very small 

slopes. On the smaller scale of the model, the frictional effects 

are quite different from those of the prototype. Also, surface ten­

sion and the wetting action of the beach material introduce many 

complicating factors. Large models avoid these problems, but 

require more costly facilities. 

Hall and Watts (5), and Kishi and Saeki {11) measured the 

run-up of solitary waves, which are steep. Recently, Miller (14) 

measured the run-up of bores moving towards the beach. These data 

are not of direct application to the tsunami run-up problem, but they 

do provide results against which to test a run-up theory. 

Mathematical analysis of the run-up problem usually leads to 

expansion solutions for certain types of waves, i.e., small amplitude 

or shallow water waves. In general, small amplitude theory is used 

offshore, with (nonlinear) shallow water theory used near the beach. 

A typical example of this is the work of Carrier (2), in which the 

tsunami is assumed to originate from a point disturbance and the 

resulting run-up is calculated. Keller (10) gives results for sinu­

soidal wave run-up based on small amplitude theory. However, all 

these results have the common limitation of not allowing the wave to 

break and form a bore. Breaking can be predicted, but the flow after 

breaking is not given. Also only frictionless cases can be treated, 

and only linear slopes. 

To allow for the breaking waves, numerical solutions have 
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been attempted where the bore was 'fitted' between the incoming 

wave and the undisturbed water. This was first done by Keller, 

Levine, and Whitham {9) for a bore approaching a b~ach. It was a 

test of the approximation of Whitham (24) which allowed the vari­

ation in the strength of a bore to be derived from the shallow water 

theory and the associated shock conditions. Freeman and LeMehaute 

(4) used this 'fitted' shock to study the run-up of solitary waves. 

Amein (1) used this method to study long waves running up on 

a beach, as well as separate theoretical calculations of the strength 

of the bore. Additional methods of dealing with breaking waves are 

summarized by LeMehaute (13). 

In attempting to improve on the run-up models available, it 

is thought a new model should include the kinetic energy of the vertical 

component of the flow, which had not been included in prior model 

studies. It should also model the effects of bottom friction and be 

extendable to a general beach profile. The model should also allow 

for breaking waves. Assuming such a model could be derived and 

that it was suitable for numerical calculations, it then would be 

tested against known results, as well as used to study aspects of the 

tsunami run-up problem. 

The discussion of the development of the new model is broken 

down into several steps. First, the theoretical background and justi­

fication of the model is given. Then a finite element version of the 

model is derived and its numerical evaluation is discussed. Last, 

the model is shown to reproduce known results indicating its useful­

ness. It is then used to investigate some features of tsunami run-up. 
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PROPOSED MODEL THEORY 

Simplifying Assumption 

In considering how to analyze the run-up problem, it becomes 

clear that the vertical dimension (water depth) cannot be an indepen-

dent variable as this hopelessly complicates the problem, but neither 

can it be eliminated from the problem completely. One must make a 

suitable assumption about the flow which allows the equations to be 

integrated {averaged) vertically, yet preserves the physics required 

to model the run-up process. One way to achieve this is to approxi-

mate the horizontal velocity distribution by a finite number of terms 

in the vertical direction, i.e., 

i=N 

u{x, y, t) ~ l yiui (x, t) 

i=O 

( 1) 

where N is a small integer like 0, 1, 2, or 3, u is the horizontal 

velocity, x is the horizontal coordinate, y is the vertical coordi-

nate, and t is time. The equations then can be integrated vertically, 

since the y dependence is now explicit. The resulting problem, in 

one space dimension and time, is reasonable to solve numerically, as 

demonstrated by work in flood waves and other problems, see Stoker 

{19) and Richtmyer (15). 

The simplest assumption is that the flow is constrained so the 

horizontal component of fluid velocity is constant over the depth, i.e., 

N = 0, and this forms the basis for the present study. This is reason-

able for long waves approaching a beach, since it is a basic result of 

long wave (shallow water) theorye For steeper waves, such as solitary 
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waves, the distribution of horizontal velocity is not constant and the 

assumption of constrained flow is more approximate. However, a 

comparison of the solitary wave theory of Laitone {12) (which has no 

constraint) with a solitary-like wave from the constrained flow 

equations shows the approximation in profile shape is good, see 

Figure I, also Appendix Bo Only near the limiting solitary wave, 

H/d,.., Oo 71 - Oo 72, does any appreciable difference show upo 

An important point is that the kinetic energy of the vertical 

flow is not neglected as it is in shallow water theory. It has been 

noted by LeM~haut~ ( 13') that shallow water theory tends to predict 

breaking sooner than is observed experimentally; in fact, it causes 

every waveform to break. On the other hand, the constrained flow 

gives more realistic results in that it allows a solitary-like non­

breaking waveformo Hence, it should give a better indication of 

breaking, since it includes the effects of the vertical kinetic energy 

of the flowo 

Obviously, the constrained flow becomes invalid for short 

surface waves, which have a non-constant distribution of horizontal 

velocity with depth, however, these are not of interest here. 

The equations of constrained flow are readily derived from 

the general equations of motion and continuity. The flow is incom­

pressible so the density is constant and this allows the equations to 

be simplified by setting the density equal to unity. The flow in 

Figure II, where the horizontal velocity u is not a function of the 

vertical coordinate y, {ioe., u = u(x,t) ), then is described by the 

continuity equation 



0.
8 

(y
-d

) 
t-1

 -
-

--
=

 

0
.6

 
-
-
-

.....
 =

-.::
:.-:

::::
-.;:

.. _
_

 _
 

---
.:::

::::
-::

:.-
::::

:--
---- -

---
-::

 .:::
:--
--

H
id

• 
0

.7
 

0.
4 

0
2

 

0.
6 

(
y
-
d
)
~
 

0.
4 

0.
2 

-
-

..... 
c - -
- --

--
--

--
--

--
-

--
--

--
--

--
-

B_
....

.. 

_ 
L

_
_

_
_

_
 

• 
I 

, 

1.
0 

2.
0 

x 
3.

0 

S
o

lit
a

ry
 

w
ov

e 
I 

st
 

o
rd

e
r 

2 
nd

 

C
on

st
ra

in
ed

 
fl

o
w

 
th

e
o

ry
 

(A
) 

(C
) 

(8
) 

--
-

H
id

• 
0

.5
 

_
c
 

-
-
-
-

-
-
-
-
-

...
. 
-
"
'"

-
-.

...
 ._

._
 =

-"
'-

-=
.:

:.
.-

::
::

 =-
=-

.=
:.=

 =-
-

--
-

8 
.....

. 

--
1.

0 
2

.0
 

x 
3.

0 

F
ig

u
re

 
I.

 
C

o
m

p
a
ri

s
o

n
 o

f 
S

o
li

ta
ry

 W
a
v

e
 T

h
e
o

ry
 a

n
d

 C
o

n
s
tr

a
in

e
d

 F
lo

w
 T

h
e
o

ry
 

.....
.. 

N
 



y 

p 

13 

Free surface 

~-h(x,t)\ 

lv(x,y,t) 

u (x, t) 

Figure II. Basic Flow Quantities 

x 



14 

u + v = 0 x y (2) 

where v is the vertical velocity and x is the horizontal coordinate. 

This integrates to 

yu +v=f(x,t} (3) 
x 

where f is an arbitrary function of x and t. Since v = 0 at y = 0 

for a flat bottom, then 

(4) 

Substituting in the vertical momentum equation and including a gravity 

field -g, one has 

dv/dt = -g-(8p/8y) (5) 

where p is the pressure. 

Equation (4) can be differentiated 

2 
dv /dt = y(ux - uxt - uuxx) (6) 

and combined with (5), and since the y dependence is explicit and 

p = 0 and y = h(x, t), the free surface, two integrations will give the 

total force P on a vertical section 

2 3 2 P = gh /2 + h {u - u t - uu ) /3 x x xx 
(7) 

The second integration averages the pressure distribution 

vertically. If this pressure distribution were allowed to act on uncon-

strained fluid, it would cause the horizontal fluid velocity to vary over 

t he depth. This would violate the original constraint placed on the 
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flow. Thus the approximation involved in averaging the vertical 

pressure distribution is consistent with the constrained flow. 

When the pressure force P and the horizontal momentum of 

the fluid in a vertical section (u2h) are considered, the average 

horizontal momentum equation results 

2 
(uh)t + (u h + P)x = 0 (8) 

The well known shallow water continuity equation is valid 

(9) 

Note that equation (8) is the momentum equation for shallow 

water flow with additional terms representing the vertical kinetic 

energy of the constrained flow. 

'Artificial Viscosity' Term 

Equations (8) and (9), however, will still not provide a correct 

model for the run-up flow, as they represent a system with no energy 

dissipation. In real run-ups, the waves may become steep and break, 

forming hydraulic shocks with high energy dissipation. The detailed 

flow within these shocks is complex but we are interested only in its 

overall effect on the flow preceeding and following it. Hence, we do 

not try to model the dissipation mechanism within the shock, but 

merely try to represent its gross effects. 

Analytically, this could be done by considering the shock as 

a discontinuity in the solution between two essentially separate 

problems, with momentum and continuity preserved across the 

shock. Numerically, this requires a complex shock 'fitting' proce-

<lure . It is somewhat simplified if the shock is progressing into 
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still water, as does an initial wavefront, but it would yet be neces-

sary to consider return flows and the formation of subsequent shocks. 

A more useful approach introduces an 'artificial viscosity' 

term. In this method, a suitable term is added to the momentum 

equation which represents the energy dissipation in the regions of 

sharply changing flow quantities, i.e., shock discontinuities. The 

term selected here is in effect an 'artificial viscous force' F at any 

cross section, whose magnitude is 

2 2 
F = .R. h{8u/ox) ( 10) 

A more general term would be proportional to density, so as to make 

the shock width independent of it. Here, the density is taken as unity 

to be cons is tent with equations (2) to (9). Equation (9) now reads 

(11) 

The motivation for selecting this form for the term is made 

plausible by examining the profile of a shock. The fluid enters the 

shock in Figure III{a) from the right at high speed and its velocity 

drops as it flows through the shock region. The gradient of the 

velocity (absolute value) has a profile as shown in Figure III(b). This 

gives a characteristic profile to the curve for F (Figure III{c) ); i.e., 

F is small away from the shock region, but has a sharp peak in the 

region of rapidly varying flow. The choice of exponents for (ou/ox) 

and the factor h merely are weightings to make the shock width 

independent of strength, as shown in Appendix A. 

The factor .R. 
2 

controls the width of the shocks that form. 
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Figure III (a , b). Profiles of 1 Artificial Viscosity' Terms 
Through a Shock 
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Figure III (c, d). Profiles of 1 Artificial Viscosity' Terms 
Through a Shock 



19 

t 
; 

(e) 

x 

Figure III (e). Profiles of 1 Artificial Viscosity' Terms 
Through a Shock 
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This also can be seen in Appendix A, where the 'artificial viscosity' 

term is solved with the shallow water equations to give a shock-like 

solution, whose slope width is 21. o In the actual examples solved 

numerically, the presence of the additional terms for the kinetic 

energy of the vertical flow complicates the effect of the 'artificial 

viscosity 1 term. 
2 

However, larger values of .R. still give wider 

shocks. 

The gradient of the force, F , Fig. III (d) ) , is the force x 

field the fluid must work against, with local energy dissipation 

F u (Figure III (e)). The net energy dissipated will be positive, x 

thus accounting for the losses in the shock. 

Away from the shock, ou/ox is very small and the 'artificial 

viscosity' term has negligible effecto The net force across the shock 

is zero, so the momentum equation still represents conservation of 

momentum across the shock. The continuity equation is unmodified 

and still valid. Hence the shock conditions for an infinitesimal 

(width) shock are preserved in this finite shock. 

Velocity gradients also occur in expansion waves where there 

is no dissipation, but in this case the 'artificial viscosity' term 

should have no effect, i. eo , it should be small or zero. Hence, a 

modified term 

2 2 
F = 1. h(ou/ox) He(-ou/ox) ( 12) 

gives the desired results, where He, the Heavyside function is equal 

to unity for arguments greater than zero and equal to zero for argu-

ments less than zeroo 
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Numerical solutions for the constrained flow with the 'arti­

ficial viscosity' term show that they give the desired modeling of the 

overall shock structure in the flow. Figures IV(a, b) show typical 

shock profiles obtained with different values of the shock width coef­

ficient i.. In Figure IV(b), larger oscillations downstream of the 

shock are noticed. These oscillations represent energy produced 

in the shock, not dissipated by the 'artificial viscosity' term, propa­

gating away from the shock as waves. The 'artificial viscosity' term 

coefficient must be large enough to reduce these trailing waves to 

acceptable amplitudes, as in Figure IV(a). This behavior is due to 

the terms for the kinetic energy of the vertical flow being present. 

It is not seen in the solution in Appendix A, where the shock width 

dee rease s with the shock width coefficient, but remains constant in 

shape. 

A possible explanation of this phenomena is that the vertical 

velocity of the fluid as it rides up the crest of the wave is too large 

for a smooth flow and it tends to overshoot and excite the trailing 

oscillations. In a real wave this overshooting is directed forward 

and produces the breaking of the wave. 

Figure V shows that the shocks generated behave almost as 

the theoretical infinitesimal {width) shocks do in terms of the 

relationship between shock strength and shock velocity. The points 

representing the calculations lie very close to the theoretical curve, 

indicating the accuracy of the 'artificial viscosity' method. 

The 'artificial viscosity' method was originally developed by 

Von Neuman and Richtmyer (22) for the analysis of shock waves in 
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gasdynamics. The term used here agrees with that recommended by 

Richtmyer (15) , but it has been modified for hydraulic flow for this 

investigationo Richtmyer {15) gives detailed discussion on how the 

method approximates theoretical results for gasdynamics . 

Bottom Friction Term 

A further significant influence on the hydrodynamics of the 

run-up is the bottom friction, however, the friction laws operating 

here are not well knowno A simple friction rule is used in this study 

with the hope of simulating some of the basic effects of the bottom 

frictiono The local shear stress 'T at the bottom is taken to be 

2 
'T = Ku ( 13) 

The friction coefficient K is calculated from the friction rule for 

steady flow in an open channel of a given depth and bottom roughness. 

K is thus a function. of the depth of the water and the bottom material 

properties o The details of how this is applied are covered in the 

cases discussed. 

This particular rule was chosen primarily because it allows 

comparison with the usual steady flow definitions of friction coeffi­

cients and friction facto rs o However, the formulation of the problem 

does not preclude the use of more accurate friction laws as they are 

define do 

Lagrangian Coordinates 

In visualizing the solution of a run-up problem, it is obvious 
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that the physical domain of the problem changes as the solution pro­

gresses. In an Eulerian coordinate system, this causes complica­

tions in numerical calculations, as mesh points have to be added 

and subtracted during the solution. On the other hand, for modeling 

a wave tank, or any fixed quantity of fluid, a Lagrangian scheme is 

more natural. The Lagrangian independent variable is attached to 

the fluid particles, which are conserved. Hence, the domain of the 

problem is constant and the numerical calculation simplified. 

The Lagrangian scheme also has the advantage that one de­

pendent variable, (x, the instantaneous horizontal coordinate of a 

particle whose location at t = 0 was a, i.e., x(a,O) = a), defines 

the solution for all time. The continuity equation is thus eliminated. 

It should be pointed out that previous computational work for 

the run-up problem has been in Eulerian coordinates. 

Summary 

The purpose of the section has been to define the approxima­

tions of the run-up hydrodynamics used in the model formulation, so 

as to allow them to be distinguished from the errors in solving the 

model equations numerically. The basic approximations are the re­

placement of the general two-dimensional flow by the constrained 

flow, and the allowance of discontinuous shock solutions by means of 

an 'artificial viscosity' term. Also, a simple friction law is used to 

approximate bottom friction effects. 

In the next chapter, these approximations are applied directly 

to the flow to allow the specification of a system of finite elements, 
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whose equations serve as a m athematical analog for the flow. The 

finite e 1cments help to keep the physics of the proc es s in view and 

the resulting equations lend thems elves to numerical solution 

methods. This is in lieu of first deriving the continuum equations 

to represent the approximated flow, and then proceeding to solve 

them with a numerical solution technique, which m ay not be well 

defined for the resulting system. 
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DERIVATION OF FINITE ELEMENT SYSTEM 

Definition of a Typical Element 

When making a numerical solution of a physical problem 

there is a conceptual advantage in formulating the problem by means 

of finite elements. In the problem under consideration, a finite 

element is a particular mass of fluid whose internal flow field is 

specified so as to facilitate a numerical solution of the problem. 

Initially, before the fluid has been disturbed, the finite element is 

the mass of fluid between the vertical plane at x. and the vertical 
l 

plane at xi +1 = xi + DX. 

When the fluid is disturbed by wave propagation we consider 

the front and back faces of the finite element to displace and to de-

form out of plane. The fluid particles adjacent to one of these faces 

will experience a horizontal velocity which can be approximated by 

equation (1) 

i=N 

u(x,y,t) =I 
i= 0 

l y u . (x,t) 
l 

(1) 

where as noted earlier, N is a small integer like 0, 1, 2, or 3. 

The vertical velocity will be determined by integrating the equations 

of flow vertically, since in the approximate expression for u, y 

is explicit. 

To obtain an accurate solution it is desirable that the fluid 

motion specified within the finite element be as near as possible to 

the true fluid motion. O:a the other hand, to simplify the numerical 
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solution it is desirable to specify a simplified flow pattern within 

the element. The aim is to obtain a satisfactory accuracy with a 

minimum amount of computing. 

It appears for this pro bl em that a reasonable compromise is 

the simplest case, N = 0, giving 

u(x,y,t) ~ u(x,t) ( 14) 

that is the constrained flow discussed in the previous section. 

However, fo 1· ce rtain future investigations, it may be necessary to 

prescibe a more complex element deformation, where the series in 

equation (1) is carried to N = 2 and N = 3. 

To be able to derive the equations governing the motion of 

the elements, it is necessary to be able to specify the fluid flow 

within the element so the fluid's kinetic and potential energies are 

specified, preferably in terms of the displacement of the element 1 s 

vertical boundaries. The equations of motion can then be derived by 

means of Lagrange's equation. 

To examine how this is done, one first considers Figure VI(a), 

where the vertical element boundaries are shown in a general con­

strained flow over a linear beach slope. The element boundaries do 

not affect the constrained flow and remain vertical. The location of 

these boundaries define where the fluid is, and can serve as a 

Lagrangian variable that describes the fluid flow. 

However, t he specification of the fluid motion in Figure VI(a) 

is not complete, since the free surface shape is unknown. The only 

way the internal flow of the element can be prescribed is to simplify 



x.
 I

 
I- I 

X.
 

X.
 
I 

x. 
I 

I-
I 

I 
I 

I 
x. 

I 
I+

 

I 

F
ig

u
re

 V
I 

{a
) 

G
e

n
e

ra
l 

E
le

m
e

n
t 

o
n 

L
in

e
a

r 
S

lo
p

e 
{b

) 
'L

in
e
a
r 

S
lo

p
e 

1 
E

le
m

e
n

t 
o

n
 L

in
e
a
r 

S
lo

p
e 

(c
) 

'S
im

p
le

s
t

' 
E

le
m

e
n

t 
o

n
 L

in
e
a
r 

S
lo

p
e
. 

, 

X.
 
I 

I- I 

, , , 
, 

x.
 I I 

, 
, (c

) 

x. 
I 

I- I 

, , 
l..N

 
0 



31 

its shape by approximating the top and bottom boundaries with simple 

functions. 

In Figure VI(b), the approximating function is linear. It 

provides an exact description of the bottom contour in this case of 

a linear beach slope. However, even this simple function does not 

allow complete specification of the element by its vertical bound­

aries. If the vertical boundaries are fixed, the free surface can 

still rotate to different slopes, though mass conservation (or conti­

nuity) requires the center (average height) to remain fixed. Thus 

there is a fluid motion not described by the vertical boundary 

positions. 

Only the very simplest element form, shown in Figure VI{c), 

allows specification of the element in terms of the vertical boundary 

positions. The approximating function is a constant. Since the 

position of the lower boundary of the element is determined by the 

contour of the beach, continuity determines the height of the fluid in 

the element in terms of the vertical boundary positions. Thus, the 

shape of the element is completely determined. This simple element 

is the basis of all the calculations done in this model. 

A higher order element could be defined so that it was com­

pletely specified by the vertical boundaries of the element, but this 

would involve the numerical evaluation of considerably more compli­

cat ed expressions in application. To achieve a given over-all 

accuracy in solving the equations, the trade-off to be considered is 

evaluating a simple expression more often than a more complicated 
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higher order expression. It usually favors the simple expression, 

which is easier to derive and program into the computer. The 

investigation of higher order elements should be considered in 

future work. 

While the equations for the element could be derived for a 

general beach contour, the equations are somewhat simpler for a 

linear beach slope, as shown so far. · Since most experimental 

results are for linear slopes, it was not felt necessary to investigate 

general profiles at this time. 

Thus Figure VII(a) defines the 'ith' element used for the 

calculations. It is a rectangular mass of fluid between the two 

boundaries located at xi and xi +1. The centerline of the element, 

at 4 (xi +xi +1), intersects the beach slope at the bottom of the 

element. The top of the element is h. above that level. 
l 

Derivation of the Equations of Motion 

If there is some fixed quantity of fluid, c. in the element, 
l 

the position of the fluid is defined by the Lagrangian coordinates x. 
l 

and xi+1 • The height (h.) of the fluid above E is obtained from 
l 

the continuity equation 

h.(x.+1 -x.) = c. 
l l l l 

( 15) 

since c . is constant. For any smaller section of the element, for 
l 

example, up to the line HJ 

( 16) 
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also. 

Differentiating (15) and (16) with respect to time gives 

h.(x.+1-x.) + h.(~-+ 1 -~.) = 0 
l l l l l l 

( 1 7) 

( 18) 

From this it can be seen that h . and h. are functions of the 
l l 

0 

x.'s and the x.'s. 
l l 

h. = c./(x. +1-x.) (19) 
l l l l 

• 0 0 2 
h . = -c.{x.+1-x.)/(x.+1-x.) (20) 

l l l l l l 

Also seen is that the dependence of v on y is explicit, i.e. , 

v = h.y/h. 
l l 

(21) 

However, this has neglected the vertical motion of the point E as 

it moves along the slope with velocity ~ (~i +1 +xi) horizontally. 

Adding in the vertical component one has 

0 1 0 0 

v = h .y/h. +-2 (x.+1 + x . ) tan a 
l l l l 

(22) 

To derive the equations of motion, one can write the Lagrangian 

for this finite degree of freedom sys tem. The horizontal kinetic 

energy is taken to be the kinetic energy of the fluid moving with the 

velocity of the mass center; the kinetic energy of motion with respect 

to the mass center is not included as this is a relatively small quantity 

for the p roblems cons idered here. 
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(23) 

The vertical kinetic energy is a result of the vertical velocity 

(v) distribution: 

h. 

1 s l 2 
KEvert. = 2 (xi +1 - xi) v dy 

l 0 

(24) 

The potential energy is the mean height of. the element times 

its weight 

1 1 } PE.= gc.{-
2 

h. + [-
2

(x.+x.+1) - R] tan O! 
l l l l l 

(25) 

where R is the intercept of the slope and the x-axis., In terms of 

the x. 1s 
l 

1 1 } PE. = gc. {-
2 

c ./(x. +1 - x.) + [ -2 (x .+l - x.) - R] tan O! 
l l l l l l l 

The total Lagrangian is formed by the 'ith' box 

L. = KE + KE - PE. 
i hor. vert. i 

l l 

(26) 

(27) 

By inspection, only Li_ 1 , Li' and Li+1 contribute to the 'ith' equa­

tion, which if we define the entire Lagrangian LT as 

LT= l 
all i 

L. 
l 

(28) 
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is of the form 

d{o LT /a~.) /at = a LT /ox. 
l l 

(29) 

This leads to a typical equation of motion of the form 

{c.{1 +tan
2

a-)/4 - c~ /[3(x.+1 - x.)
4 J} x. 

1 l l l l l+ 

{ 2 3 4] 3 [ 4] + (c./4 +c. 
1

/4){1 +tan a-) +c. /[3{x.+1-x.) +c. 1 / 3{x.-x. 
1

) 
l 1- l l l 1- l 1-

2 2 2 2 00 

+c.tana-/[2{x.+1-x.)] -c. 
1

tana-/[2(x. - x. 
1

) ]}x. 
l l l 1- l 1- l 

2 3 4] • 0 

+ {c. 
1

(1 +tan a-)/4 - c. 1/[3{x.-x. 
1

) } x. 1 1- 1- l 1- 1-

3 • • 2/[ 5] 2 /[ 2] = - 2c. {x.+1 -x.) 3{x.+1- x.) - c.g 2(x.+1 -x.) 
l l l l l l l l 

3 • • 2/[ 5] 2 [ 2] - 2c. 1{x.-x. 
1

) 3{x.-x. 
1

) - c. 1g/ 2{x.-x. 
1

) 
1- l 1- l 1- 1- l 1-

2. • 2 I [ 3J - c.(x.+1-x . ) tan a- 2{x.+ 1-x.) 
l l l l l 

2 • • 2 3 1 
-c . 

1
(x.-x . 

1
) tana-/[2(x.-x. 

1
)] --

2
{c . +c. 

1
)gtana- (30) 

1- l 1- l 1- l 1-

At the end of a sloping beach , where the fluid surface inter-

sects the bottom , a different approximation is used for the element 

shape . The free surface is still considered as level, but the actual 

beach slope is us ed for the element bottom . The resulting element , 

defined by Figure VII{b) , is triangular in shape. Its position is 

defined by the coordinate x of its vertical boundary and it moves 
n 

without distortion. 

This simplifies the calculation of the Lagrangian. With 

reference to Figure VII (b), if the volume is then 
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Figure VII(b). The 'nth' E l e ment. 
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2 
c = h /(2 tan a) 

n n 

KEh or 
n 

0 2 = c x /2 n n 

. 2 
KE = c (x tana) 

vert n n 
n 

The potential energy is still the weight of the element times the 

height of the centroid of ABC above the datum 

PE = gc [(x -R)tan a + 2h /3] n n n n 

1/2 = gc {(x -R)tan a+ [2(2c tan a) /3]} 
n n n 

(31) 

(32) 

{33) 

(34) 

When this Lagrangian is used, the 'nth' equation is found to 

be slightly different from equation (30). It only includes 

x 1 , and their derivatives. 
n-

1 Artificial Viscosity' and Bottom Friction 

x and 
n 

The 'artificial viscosity' and bottom friction terms may be 

added to the finite eleme nt equations as additional forces contributing 

to the equilibrium of the 'ith' vertical boundary. From the continuum 

form for the 'artificial viscosity' term, F = i. 
2
h(ou/ox) 2He(-ou/ox), 

i. 2 is allowed to be a constant (K'), specified in the numerical solu-

tion to give a certain shock width. For the 'ith' element 

(3 5) 
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and 

(36) 

Since (xi +1 - xi)> 0, He(-ou/ox) may be represented by He(\- ;"ci+
1

). 

Acting on the 'ith' boundary is a negative force from the 'ith' 

element and a positive force from the 1 (i-1)th 1 element. The di rec-

tion of these forces is the same as the pressure forces acting on the 

boundaryo Hence, the following terms are added to the right-hand 

side of equation (30), the basic element equation of motion 

• • 2 • • 3 
+c. 

1
(x.-x. 

1
) He(x. 

1
-x.)/(x.-x. 

1
)] (37) 

i- l 1- i- l l l-

The bottom friction is considered in a similar manner. The 

shear stress is a function of the horizontal velocity and the friction 

ff . . . K 2 coe ic1ent, i.e., T = u o The friction is considered only to act 

in the horizontal direction. This is an approximation on a sloping 

beach, but since the slopes in question are small, it is acceptable. 

The friction force acting on each element is taken as TIX Ku2 , 

where DX is the initial width of an element. This produces two 

additional force terms on the right-hand side of equation (25) re-

sulting from the friction force on each element being transmitted to 

the boundaries of that element. They are 

( -) [(" • )2 · (" • ) (" o )2 · n(o o )] -KDX x.+1 +x. s1gnx.+1+x. + x.+x. 
1 

s1g x.+x. 
1 l l l l l l- l 1-

{38) 
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where 

iif a>o 
sign a = (39) 

-1 if a < 0 

The use of the sign function indicates that the friction force 

opposes the flowo 

Use of the Finite Elements in a Model Tank Analog 

In order to use the scheme so far described to study wave 

run-up, a model tank was considered, typically as shown in Figure 

VIII{a). This tank consists of a flat section with a sloped beach. 

However, for other calculations, a simpler tank with just a flat 

bottom and a vertical wall at the far end was used. In still a third 

case, the entire length of the tank was sloped. The derivation of 

the finite element equations covers all of these cases with only minor 

changes. 

In any case, the tank is divided into n elements, DX wide, 

for an initially level free surfaceo The constants in the finite element 

equations' io eo ' c. (i = 1, ••• ,n), tan a, R, etc. , are evaluated for 
l 

the system of equations based on the dimensions of the tank and how 

it is divid ed. This includes the bottom friction and 'artificial 

viscos ity' coefficients. This system of equations becomes the mathe-

rna tical analog of the wave tank in question. 

Because of the interest in the solution in the vicinity of the 

intersection of the free surface and the beach slope, it would seem 

logical to use a finer element size there. However, the large vari-
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ations in the local depth in this region causes the element width to 

become very small at times. This requires very small time steps 

to integrate the equations stably, as will be seen later. The use of 

smaller elements would only worsen this situation, so the uniform 

initial element width was maintainedo 

Using the Model Tank Analog 

In order to produce waves in the tank, x 1 is prescribed as 

a function of timeo It acts as a piston wavemaker and by controlling 

its motion a wide variety of waveforms can be producedo The motion 

of the wavemaker is usually deduced from the known results about 

horizontal fluid particle motion for various waveforms. These will 

be described in the specific cases of interesto 

For solutions of the system of ordinary differential equations 

0 

to exist, initial values of x. and x., i = 1, ••• ,N, must be given. 
l l 

In all cases, the calculations were begun with a still tank and all of 

the excitation was supplied by the wavemaker input. Thus, the initial 

conditions we re simply, x. = iDX, ~- =0. 
l l 

This system of equations must then be solved. In this work, 

the solution was by digital computer and will be discussed in the next 

.chapter. The sol u -:: ion consists of the x. 1 s as functions of time • 
l 

However, it is desirable to recover the free surface profile 

as a function of time, because its behavior is most often recorded in 

experiments and used as a basis for theoretical discussion. The 

surface profile at any time is defined by the x. 1 s and obtained by 
l 

calculating the h. 's from the continuity equation (15). Since this is 
l 



43 

in reference to the bottom of the tank, a sloped region has 

h. = c./(x. +1 - x.) + [-
2
1 

(x. +1 + x.) - R] tan a 
l l l l l l 

(40) 

See Figures VII(a, b)o The free surface profile is then defined as a 

curve passing through the points (i (xi+1 +xi) ,hi)o For the end point 

defined by the 'nth' element on a sloping beach, the intercept of 

the beach slope and the top of the element is used. A smooth curve 

can be passed through the points by an appropriate interpolation pro-

cedureo 

Treatment of Multiple Slopes 

One limitation of the derivation given for a linear beach slope 

is in its direct application to modeling a tank with two regions of 

different slope, such as shown in Figure VIII(a). As the solution 

progresses, sufficiently large horizontal displacements of the 

elements may take place so that an element defined on one slope may 

be on anothero In this case, the equations referring to that element 

would be in error, the error size depending on how far the element 

went into the other regiono 

Fortunately, this can be overcome in an actual numerical com-

putation by having the computer check at each time step which region 

the element is in and modify the numerical evaluation of the element 

equations accordinglyo The location of an element is defined by its 

cen ter, io e. , i (xi +1 +xi) for the 1 ith 1 element. 

Even with this correction, error still results from the equa-
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tions being solved stepwise in time. In the course of one time step, 

an element may cross into a new region. However, the equations 

are not modified until the next time step, and are in error for part of 

the one time step. This manifests itself as small error waves, 

generated at transitions between different slopes. In most cases, 

these waves were considerably smaller than the phenomena of 

interest, and did not affect the results. However, in certain cases, 

dealing with small wave amplitudes, these were very definitely 

noticeable and interferred with the waves under study. 

This is illustrated in Figure VIII(b), where in the original 

tank a certain wave is generated, but is smaller than the error w a ve 

generated at Lhe transition. The most direct cure to this problem is 

to modify it so it can be studied on a single slope. This means 

transforming the wave to the correct size for the greater depth of the 

modified tank using small amplitude theory. 

An alternative method of dealing with the error is to reduce the 

element size. This is a natural way of reducing errors from the 

'finiteness 1 of the system, but m ust be paid for in computer time. 
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Original way /Slope transition 

Original tank 

I Modified wave 

Modified tank 

Figure VIII(b). Elimination of Transit ion Using a Tank 
with O.ae Slope. 
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COMPUTATIONAL PROCEDURES 

Solution Mechanics 

In order to solve the finite element system of second order 

nonlinear ordinary differential equations, the syste 1n is viewed as 

follows 

[ A(x. ,~.)]{ ~.} = {B(~. ,x.)} + {f(t)} 
l 1 1 1 1 

(41) 

Equation (41) represents the n equations of motion, where 

[A] is a matrix function of the x.'s 
1 

and the ~. 's, while {x.} 
l l 

consists of the accelerations arranged as a vector. {B} and {f(t)} 

are the right-hand sides of the equations of motion and the driving 

function arranged as vectorse 

The system is converted to first order by defining 

(x.+ } = (x.} 
i n i 

(42) 

so that 

[A.(x.,x.+n)]{x.+n} = {B(x.,x.+n)} + {f(t)} (43) 
1 1 1 1 1 

Since at any given time the matrix (A] can be numerically inverted, 

we essentially have 

(44) 

([A] is a tridiagonal matrix and so the inversion is not difficult.) 

Equations (42) and (44) then represent a first order system of Zn 

equations in standard form for numerical solutione 
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The actual integration is by Adam 1 s method, with Runga-

-4 
Kutta starting. The truncation error for the schemes .used was DT , 

where DT is the time step size. 

Stability Criteria 

The numerical integration of this system is restricted by a 

stability criteria. This is because the system is essentially hyper-

bolic, in that it propagates disturbances at a finite speed. The 

time steps must be sufficiently small so that 

DT <Cons (DX/c) (45) 

Here DX is the width of an element, DX ::: (xi +1 - xi), and c is the 

local small wave speed. (c ::: -{gd, where d is the local depth.) 

Cons is a constant of order one which depends on the exact scheme 

and which is affected by the presence of the 'artificial viscosity' 

term. See Richtmyer (15). Also, in Lagrangian coordinates, DX 

varies locally as the solution progress es, the smallest value being 

critical. It was found prudent to use K::: 1/10 to 1/50 for c::: ../gd, 

where d was the initial maximum depth and DX the initial element . 

width, to determine a safe DT for all time. 

Details on Computation 

The computer is programmed to do most of the work in any 

given investigation. Usuallyf only numerical values of parameters 

are fed in as data, with functional forms involved specified by the 
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program. Several different subroutines defining specific tank 

geometries and waveforms were used to investigate specific prob­

lems. The computer facilities can provide graphical outputs as 

well as numerical outputs for these problems. 

Since the computer times for such calculations are not trivial, 

they may be estimated on the following basis. To evaluate one equa­

tion for one time step requires about 200 operations (additions and 

multiplications), which take about ten microseconds apiece on the 

IBM 7094 computer used. Thus, such a step takes about two milli­

seconds. 

From this, the time to do a problem is determined. The tank 

fs divided into n elements, which determines the element width DX, 

The stability criteria, taking into account the depth (and hence, wave 

speed), gives a maximum size for the time step. If the wave propa­

gation is to be studied for a certain time, usually until reflected 

waves interfere, the number of time steps (NT) is determined. (This 

is also related to the depth and wave speed.) The computer execution 

time is approximately n(NT) /500 seconds. 
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DISCUSSION OF SPECIFIC CALCULATIONS WITH MODEL 

Checks on Wave and Shock Propagation 

The complete computer model can be tested to see if it repro­

duces the phenomena associated with water waves. A typical check 

is to produce small amplitude long waves. These are found to propa­

gate undistorted with constant velocity as predicted by the linear 

wave equation. If generation of short surface waves is attempted, 

the model would not give such good results because the surface waves 

have a large variation in horizontal velocity with depth, which the 

model cannot allow. 

For larger amplitude long waves, the nonlinear effects become 

significant, with the waves steepening into shocks. Shocks may also 

be generated directly by moving the wavemaker piston at constant 

velocity into the tank. Figures IV( a, b) show the results of such cal­

culations done to test the shock behavior. It is noted that for larger 

values of the 'artificial viscosity' coefficient the shock tends to a 

smooth transition, with the required energy being dissipated in the 

jump. As the value of the coefficient is decreased, the transition 

has small waves on the downstream side. These seem to result from 

the fact that the shock does not dissipate enough energy and the excess 

energy tends to propagate downstream in the little waves. However, 

the motion of the waves is attenuated and they become smaller away 

from the shock. 

Weak hydraulic shocks tend to propagate waves downstream in 

a similar manner. However, for stronger shocks, where the flow is 
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unsteady in reference to the shock coordinates and is complicated 

by rotation and air entrainment, a direct comparison with the 

'artificial viscosity' shocks is of doubtful value. 

Other comparisons between the computed shocks and the real 

shocks should only concern their overall properties. From the 

basis given in Chapter III, 'Proposed Model Theory, 1 it seems clear 

the shocks should behave as the infinitesimal (width) shocks. It is 

pointed out that the use of the 'artificial viscosity' term essentially 

allows the momentum and continuity conditions to be satisfied across 

the shock. Again, this is indicated by Figure V, showing how the 

computed shocks agree with the theory in the relation between shock 

height ratio and Froude number. 

The only other parameter of the shock would be its thickness, 

as influenced by the choice of the 'artificial viscosity' coefficient, .R. 
2

• 

As seen in Appendix A, this determines the approximate width of the 

shock to be about 21. Experimental data from Chow (3) indicate 

that the width of the shock region is three to five times the height of 

the jump for Froude numbers from 2. 0 to 8. 5. Since the thickness 

of the computed shocks can be varied, this criteria could be met in 

the generation of any particular shock. 

However, all of this is based on steady flow patterns (in refer­

ence to the shock coordinates). In wave run-ups, the shocks form 

from steepening waves and their strength continually varies in time 

as the flow progresses. One can only assign nominal widths to the 

shocks at the beginning of a calculation and see if the results look 

reasonable. If not, then a new choi.ce of shock width is made. Usually 



51 

this is not a very critical matter. The shock width does not affect 

the flow around the shock very strongly, since the amount of energy 

dissipated in the shock is not a function of its width. 

The shock width assigned must be large enough so the transi­

tion covers several elementso Otherwise, the 'artificial viscosity' 

term is not evaluated and instability results since the energy sup­

posed to be dissipated in the shock is not accounted for properly. 

It usually appears as rather large oscillations downstream of the 

transition. The elements become very narrow (in attempting to 

represent the large amplitudes) and the stability criteria is violated, 

causing the numerical calculation to fail. 

However, if the shock width is made overly large, it will 

interfere with the flow. In the prototype flow, the shocks are narrow 

compared to the other significant wave lengths. If the shock width 

coefficient £ was the same size as a wave that should propagate 

unattenuated, the 'artificial viscosity' term would incorrectly cause 

this wave to loose energy. Thus £ must be smaller than the sig­

nificant wave lengths in the problem. 

The usual proceduce is to assign shock widths close to the 

minimum required for stable computation, i.e., several element 

widths. This may produce wider shocks than would actually occur in 

a real flow, but they are still much shorter than the significant wave 

lengths in the problem and do not cause unrealistic attenuation of the 

des ired wave motion. 
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Solitary Waves - Generation 

To examine how the model would work for predicting run-up 

results, it was first used to study solitary wave run-up. Solitary 

wave calculations could be conducted with a minimum of computer 

time and the results of experimental investigations in this field were 

available for comparison. 

However, several drawbacks should be noted. First, the 

experimenters do not give data on the bottom friction involved in 

their studies, only descriptions of the materials used for the beach 

slope. Also, the flows were in tanks narrow enough so that the wall 

friction might have a significant effect. Thus, the friction coefficient 

for the experiments is difficult to deduce. 

Another difficulty is that in a finite time, only an approxi­

mation of the solitary wave is produced by a wave generator. This 

tends to produce a profile with a 'bump, 1 as shown in Figure IX . 

The 'bump' falls behind the main wave as they propagate away from 

the wavemaker and in a long tank the two will separate. This results 

in a good solitary wave profile. However, this requires a great deal 

of computer time. Therefore, in this calmlation the solitary wave 

is not given sufficient time to separate itself entirely from the 'bump, 1 

and this may have some small influence when the wave reaches the 

beach slope. 

The solitary wave is generated by a finite displacement of the 

wavemaker, theoretically over an infinite period of time. The first 

order motion of Laitone (12), where the horizontal velocity is constant 

over the depth is of the form 



y 

I 
I 

B
u

m
p

 

_ ..
. 

... 

T
h

eo
ry

 

R
ea

l 
W

av
e 

W
av

e 
M

ot
io

n 

--
- x 

F
ig

u
re

 I
X

o
 

S
o

li
ta

ry
 W

a
v

e
, 

R
e
a
l 

v
so

 
T

h
e
o

re
ti

c
a
l 

P
ro

fi
le

s
 (

A
ft

e
r 

G
e
n

e
ra

ti
o

n
)o

 

U
"l

 
V

J 



54 

x = A tanh Bt (46) 

where A and B are parameters of the wave. This includes the 

approximation that x is small compared to t, i. e. , x ~ 0, used 

when the theoretical velocity expression is integrated with respect to 

time to get the wavemaker motion. 

The following truncation of this function is used so that the 

wavemaker motion requires only a finite time 

x= 

-A if Bt < -10 

A t anh Bt if I Bt I < 10 

A if Bt > 10 

(4 7) 

From Figure X, it is seen that the main part of the function is pre­

served, but the infinite 'tails' are cut off. 

A solitary wave of any particular H/d can be generated with 

the above wavemaker motion. An example is shown in Figure XI. 

The computed wave is lower in amplitude than the second order theory 

it is compared with, since it is generated from the first order theory 

which has less area under its profile. (Refer to FLgure I.) This 

tends to redistribute its elf so the resulting profile is consistently 

lower in amplitude, but more similar in shape to the second order 

curve. For practical comparisons, the difference is small. How­

ever, one can always get the H/d of the generated wave by measure­

ment and use that in lieu of the nominal value. The results here use 

the nominal value. 
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The generation procedure could have been improved by having 

the wavemaker motion based on the constrained flow theory given in 

Appendix B. However, the solitary wave investigations were com­

pleted before this was found and computing costs prevented repeating 

the calculations. However, even in this case some gene ration error 

will still result from the time truncation required. 

Solitary Waves - Run-up Profiles 

Figures XII(a to i) show a sequence of profiles for a solitary 

wave run-up calculation. The 'bump' behind the wave can clearly be 

seen in Figure XII(b). As the solution progresses, it can be seen 

that the run-up takes place mainly in a thin sheet of water expanding 

up the beach, as shown in Figures XII(e,f). In Figures XII(g,h), 

the thin sheet of water should return down the beach. However, the 

function used to interpolate between the discrete elements to obtain 

a smooth curve gives an incorrect profile, (shown in dashes), 

especial! y in Figure XII(g}. This is because too few points define 

the profile, a common numerical problem. 

Importance of the Vertical Kinetic Energy 

The same problem was recalculated with the terms for the 

vertical kinetic energy reduced by a factor of ten. This is shown m 

the sequence, Figures XIII(a to c). Figure XIII(a) corresponds to 

Figure XII( a) in time, and so on. The wave that results is different, 

thus indicating that the vertical kinetic energy terms have a significant 

influence on the waveform. Note that in XIII(c), the front of the wave 
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has steepened and the back slope has become quite gentle. In XII(c), 

the basic symmetry of the solitary wave is still evident. This shows 

that when the vertical kinetic energy is neglected the waves tend to 

steepen and break earlier than they should. It bears out LeM~haut~'s 

(13) observation that the shallow water theory, with no representation 

of the vertical kinetic energy, tends to predict breaking too early. 

Comparison of Experiments and Computation for Solitary Wave Run-up 

The experimental results for the run-up of solitary waves on 

smooth beaches of constant slope are summarized by Kishi and Saeki 

(11}o The results are given by 

R/d = K(H/d} 
0 (48) 

where d is the still water depth, H the generated solitary wave 

height, and R is the run-up. K and o are functions of the beach 

slope and are given by Kishi and Saeki for their work, as well as for 

that of Hall and Watts (5) and Kaplan (8). Examining how well this 

law compares with the data of Hall and Watts, one sees that the 

scatter of data points is only a few per cent. Thus, this law can be 

considered a good summary of the experimental data and useful for 

comparison purposes. 

The computer model was tested on slopes of 0. 3, O. 1, and 

o. 03, which covered the mid- range of the data available. Figures 

XIV(a, b, c) give the computed points obtained with various values of 

the bottom friction and the 'artificial viscosity' parameters. The 
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straight line represents the experimental results. 

In examining the results, it should be noted that the values 

of the parameters used are reasonable for trying to reproduce the 

experimental data. The friction coefficient can be estimated from 

the following considerations. For rough boundaries in open channel 

flow Rouse ( 16) gives the friction coefficient f as 

1/{f = 2.03 log10 (d/r) + 2.11 (49) 

where d is the depth and r the roughness of the surface. For 

comparatively smooth surfaces used for the experiments, an r = 10-4 

feet seems reasonable. If one estimates the friction force on the 

elements in the shallow water near the beach, i.e., on the triangular 

element, the depth is about O. 1 feet. Hence 

::::: 8 or f::::: 1/64 (50) 

The friction shear stress is T = £u
2 
/8. Since the element is of unit 

width the coefficient of the friction term is::::: (1/64)(1/8) = 2 X 10- 3 • 

This is of the same order as the values shown in the results. 

Of course, this friction calculation is approximate in several 

respects. First, the experimental model was on such a small scale, 

the flow along the bottom was probably laminar. However , the 

friction rule used to calculate f is for turbulent flow. Also, the 

flow here is unsteady, while the rule is for steady flow. Last, the 

coefficient is evaluated for the shallow water near the beach. The 
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friction coefficient would be smaller in the deeper water, away from 

the beach. However, the same coefficient was used for the entire 

flow, thus overestimating the friction in deeper water. This is not 

serious, since the friction force there is much smaller than the other 

forces in the deeper water. (It is obvious the inertial and pressure 

forces increase with depth.) Thus, estimating the friction correctly 

for the shallow water is probably the best compromise. 

The shocks in these run-up flows are usually fairly weak. 

Their thickness is about the same as the water depth, i.e. t one 

foot. The shock width of U = 1. 0 gives i. 
2 = O. 25. Thus , 'artificial 

viscosity' coefficients of O. 1 and O. 01 used here are reasonable. 

For steeper slopes, the effects of these quantities can be seen 

to be small anyhow, since the points change only slightly as the quan­

tities are varied. Most of the error here in calculating the run-up 

is probably due to the flow being constrained. For shallower slopes, 

the errors become small compared to the variations in the run-up 

caused by the 'artificial viscosity' and bottom friction coefficients. 

The effects of these terms is quite clear, more dissipation of energy 

results in smaller run-ups. However, the 'correct' choice of these 

parameters can provide good agreement with experiments. 

Some of the computations were repeated with more elements 

to test for truncation error, which for those cases was found to be 

small. Extra runs were also made with different lengths between the 

wave generator and the beach slope. The run-ups were slightly smaller 

due to the wave losing more energy to the dissipative terms before 

reaching the shoreline~ 
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Bore Run-up Results 

In addition to the solitary wave results, comparisons were 

made with the experimental results of Miller (14) for the run-up of 

bores. In these calculations, as in the experiments, the wavemaker 

piston is moved with constant velocity to generate a shock of a given 

Froude numbero The relations used to give the piston velocity are 

based on the theory of infinitesimal (width) shocks, again, as in the 

experimentso The friction factor f was evaluated for the experi-

ments by Miller. The slight difference between the friction factor 

values of Miller and those used in the computations are not important, 

since Miller's data indicated the run-up was not very sensitive to the 

bottom friction. 

Figures XV(a,b,c) summarize the calculations. The results 

0 0 for the 15 and 5 slopes are reasonably good . Some error is due 

to the way the computer output was evaluated in these cases. For 

the 2° slope, only partial results were obtained. When very strong 

shocks, i.e. , higher Froude numbers, were attempted, large vari-

ations in the local depth near the beach resulted. This caused the 

local element width to become very small, and would have required 

very small time steps to satisfy the stability criteria. This would 

have required very long computer times to obtain the run-up data. 

The only variable in the numerical calculation that is not in 

the experiment is the shock width. This does not seem to be an im-

portant factor if the choice of coefficient allows the formation of a 

reasonably smooth transition with small downstream undulations. 

Figures XVI{a to i) show the sequence of a bore running into a beach 
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using an adequate 'artificial viscosity' term. Figures XVII(a to i) 

show the same problem with a considerably smaller coefficient and 

the resulting oscillations downstream of the shock. Surprisingly, 

the resulting run-ups are nearly the same. 

Tsunami-like Wave Run-up 

In addition to these checks with known experimental results, 

the model was used to investigate some aspects of a tsunami prob­

lem. The problem proposed was the investigation of the run-up pro­

duced by possible offshore bottom faulting on the continental shelf. 

The proposed motion of the bottom is shown in Figure XVIII, assum­

ing the bottom to have been level initially. The negative of this 

motion was also considered, giving rise to waves of the opposite sign 

in amplitude. 

Since the continental shelf depths vary, different cases were 

considered with water depths of 30, 100, and 300 feet. For simplicity, 

the bottom deformation was considered to produce only a vertical 

motion of the water, and so the surface profile appears with the same 

shape as the bottom. This is approximately correct when the defor­

mation is small compared to the depth and the length of the deforma­

tion is large compared to the depth. In fact, the bottom deformation 

may be neglected in studying the propagation of the wave resulting 

from this initial free surface shape. 

In small amplitude linear wave theory, an initial surface pro­

file may be considered as the sum of two waves of one-half the above 
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Figure XVIII. Bottom Deformation for Sample 
Tsunami Calculation. 
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amplitude. After t = 0, they move apart in the opposite direction 

as two separate but superposed solutions. One moves seaward and 

is not included in the analysis. The other is considered to propa­

gate to a sloping beach where the run-up is investigated. Slopes of 

1/10, 1/ 30, 1/100, and 1/ 300 were considered. 

In investigating some cases, the errors involved near the 

transition from the flat bottom to a steep slope were found to be as 

large as the wave itself. This could have been resolved by using 

more elements , to reduce essentially the truncation error. How­

ever , this is costly in terms of computer time. To avoid this prob­

lem, a tank of uniform slope was considered. However, this meant 

the depth of the wavemaker was different than the original case. 

This was compensated for by transforming the wave to the correct 

proportions for that depth, so its effect would be the same as the 

original wave . 

The shock width in these problems was made about 2 to 3 

times DX, the initial element width. In some cases , narrower 

shocks would have been more realistic, but as pointed out earlier, 

the numerical results tend to become unstable if the shock widths 

are made too small. 

The bottom friction was initially left out of these calculations 

except as noted later. 

The tabulated results are presented in Table I. In most cases, 

a leading positive wave produces a larger run-up than a leading nega­

tive wave . When the negative portion is first, a shock develops from 

the positive crest that follows which seems to dissipate the energy 
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TABLE I 

Run-up for Tsunami-like Waves 

(No Friction) 

De;eth Offshore in feet 

Slope 300 ft. 100 ft. 30 ft. 

1/10 3.8 

7.9 

1/30 10.2 7.1 

7.5 8.7 

1/100 2.9 9.0 

10 2 4.0 

1/300 4.9 

Note: Run-up in feet. Top number is for positive 
leading wave. Bottom number is for negative 
leading wave. 

7.5 
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in the wave. 

To try to see if the results had any significance, the deep 

water size of the waves were calculated and the results plotted on 

the dimensionless plot (R/d vso Slope, Figure XIX) used by Savage 

(1 7) to consolidate experimental data on the run-up or periodic 

(sinusoidal) waves. The deep water size is calculated on the basis 

that the wave is sinusoidal with the same wave length and height, 

using small amplitude theorye For comparison, the results of 

Savage are shown, along with the theoretical run-up of nonbreaking 

waves given by Keller (10). 

The results appear to fit in as an extention of the results of 

Savage for small H /L o That is, for a given initial wave steepness 
0 0 

(in deep water), the run-up increases (along the non-breaking curve) 

with decreasing beach slopeo However, at a given slope (smaller 

for less steep waves), the wave begins to break, reducing the run-up 

on even shallower slopes. Hence the c u r ves for constant H /L 
0 0 

fall below the non-breaking curve, when breaking occurs. 

Of course, this is only an approximate comparison, since the 

computed wave is not sinusoidal in shape and not part of a periodic 

train. However, the model could be used to investigate sinusoidal 

wave run-up for these low initial steepness waves. The important 

thing to note is that the large run-up tends to result from low steep-

ness waves on shallow slopes. 
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Frictional Effects on Tsunami-like Run-up 

To examine the effects of friction on such potential tsunami 

run-ups, certain solutions were recomputed with two values of the 

friction coefficient. This, it was hoped, would show the beginning 

of frictional effects and represent realistic values in a ;real problem. 

(It should be remembered the friction factor £ is related to the 

friction coefficient K by £ = BK.) 

The results are summarized in Table II. The run-up is seen 

to be more sharply reduced by friction on shallow slopes. This is 

similar to the results for solitary waves. It is especially important 

because on shallow slopes, the run-up can approach the large values 

of magnification indicated by the non-breaking wave theory, if little 

or no friction is present. The friction is the main means of reducing 

these large values. 

The results for the same wave, on one slope, but generated 

at different depths, do not indicate any strong relationship between 

the initial wave steepness and the run-up reduction due to friction. 

Tsunami-like Wave Run-up Profiles 

To conclude this section, Figures XX (a to i) are presented. 

This is a sequence of profiles for the tsunami run-up on a 1/30 slope 

with an initial depth of 300 feet. It should be noted that the plot em­

phasizes the vertical. In Figure XX(a), the tsunami wave is seen to 

enter from the left (top). There is a small truncation error at the 

right near the beach, but this will be lost in the incoming wave. By 

Figure XX(£), the positve portion of the wave has been concentrated 
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TABLE II 

Reduction in Run-up Due to Friction 

(As a Fraction of Zero Friction Value) 

At Constant Depth of 100 Feet 

Friction 
Beach Slope 

Coefficient 1/300 1/100 

10-4 
0.90 0.94 

10- 3 o.so 0.72 

At Constant Slope of 1/100 

Friction 
Depth in feet 

Coefficient 300 ft 100 ft 

10-4 
0.99 0.94 

10-3 
0.89 0.72 

1. 0 

0.98 

30 ft 

0.97 

a.so 
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at the beach. It surges upwards, and then a backflow occurs. No 

breaking or bore formation seems to take place here. However, 

this is not surprising. The results for this case plot on the Savage 

run-up chart very close to the solution line for the non-breaking 

wave theory. Since that is based on shallow water theory, all of 

which is included in the formulation of this model, the model can 

account for this case perfectly. 
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A mathematical model was developed for computing the run­

up of long waves on a sloping beach. The model approximates the 

flow perpendicular to the beach by one in which the horizontal 

velocity is constrained to be constant in depth. This approximation 

gives good results for long (shallow water) waves and is also shown 

to give good results for the propagation and run-up of solitary 

waves. The formulation includes the kinetic energy of vertical 

motion, which is not included in formulations commonly used for 

studying the run-up problem. It is shown that the inclusion of this 

kinetic energy leads to equations that allow the propagation of a 

solitary-like wave. The inclusion of this kinetic energy also modi­

fies the wave shape and gives a more realistic determination of the 

breaking of the wave than is given by the commonly used shallow 

water theory. 

The model can treat hydraulic shocks by including an 'arti­

ficial viscosity' term in the equations. This allows energy dissipa­

tion in the shock, but conserves mass and momentum across the 

shock. It is shown that the proposed model approximately repre­

sents the formation and propagation of shocks. 

The effect of bottom friction is taken into account in the 

model and it is shown that even small values of bottom friction can 

significantly effect the wave run-up on shallow slopes. This indi­

cates that methods of increasing bottom friction may provide practi­

c al means for reducing the potential danger of tsunami run-up. 
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Calculations were made of the run-up of tsunami-like waves 

of very small initial steepness and it was found that these waves 

had relatively large run-upso These waves were generated by a 

dipole-like displacement of the simulated ocean floor and it was 

found that a positive leading wave generally causes a larger run-up 

than a negative leading waveo 

For further systematic studies of various aspects of the run­

up problem, it is felt that this model will complement experimental 

model studies by virtue of its special properties. One is its flexi­

bility, in that by reprogramming the computer, a variety of wave­

forms and flow regions can be examined. Also, the computer model 

can go beyond the constraints of real experiments, especially in 

examining very small initial steepness waves on very small slopes. 

On the other hand, the computer model requires much care 

in its use to avoid computational errors. Careful choice of the 'arti­

ficial viscosity' and bottom friction coefficients is important. It 

seems more work needs to be done in this area, especially in an 

improved bottom friction ruleo 

The numerical analysis of the problem and the actual algorithms 

used also need to be restudied with the intent .of reducing the compu­

tational time. This would mean obtaining an algorithm requiring the 

fewest operations to integrate over one time step, as well as deter­

mining the time step size adequate to satisfy the stability criteria 

without being wastefully small. Improvements in computers in terms 

of speed, memory size, and 'parallel' processing capability will tend to 

improve the relative merits of using this model to inve stigate run-up 
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problems. 

More complicated contours can be studied by extending the 

present model derivation to a general bottom profile, which adds 

terms to the equations and increases the numerical computations . 

Perhaps a slightly more complex situation, where the flow is still 

constrained, but has more 'degrees of freedom,' such as 

2 
u(x, y, t) = uo(x, t) + yul(x, t) + y u2(x, t) ( 51) 

should be looked at as a basis for a m ore advanced model. 

The present equations could be used to obtain solutions for 

the steady state periodic wave run-up. The analysis used here for 

transient waves would not be very efficient for getting this solution, 

but a modified analysis aimed particularly at steady state solutions 

should be developed. 
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APPENDIX A 

Shock Thickness Using 'Artificial Viscosity' 

with the Shallow Water Equations 

The equations governing the constrained flow, where the 

vertical kinetic energy is neglected, but the 'artificial viscosity' 

term is added are 

(A. 1) 

(A. 2) 

These equations are valid for a coordinate system moving at 

any fixed speed. Fixing the coordinates to a shock, the flow appears 

steady and the flow quantities are functions of x only, i.e. , h = h(x), 

u = u(x), giving 

{uh}' = 0 (A. 3} 

(A. 4) 

as two O. D . E . 's to be solved. These can be integrated at once to 

A+uh=O (A. 5) 

(A. 6) 

where A and B are constants. For a shock-like solution, it is 

desired that far away from the shock {centered at x = 0), the flow 

quantities become constant values. Hence, the following conditions 
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are imposed. 

As x- -oo u-u 

x- 00 u- u 

This leads to the shock conditions 

i 

2 

h-h 
i 

which may be solved for hi in terms of ui and u 2 

The constants A and B are evaluated 

2 i 2 
B = - (ui hi + 2 ghi) 

2 2 2 2 
= - ( 2ui uz(ui + ui u22 + uz) ) 

g(ui +uz) 

Since 

H = -A/u 

then 

u' - 0 

u' - 0 

(A. 7) 

(A. 8) 

(A. 9) 

(A. i 0) 

(A. ii) 

(A. i 2) 
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3 2 2 2 2 2 
2 2 -u (u

1 
+u

2
) - u

1
u 2 + u (u

1 
+u

1
u

2
+u

2
) 

i. (u') = u(u
1 

+u2) 

(A. 13) 

To get a rough idea of the solution, we plot 

(A. 14) 

between u
1 

and u 2 , assuming u
1 

> u 2 • See Figure A. We can also 

plot its inverse -dx/du. See Figure B. If at x = 0, u = (u
1 

+u2)/2, 

then x( u) looks like Figure C, where from the original boundary 

conditions we know the asymptotes. A more conventional represen-

tation of the shock profile is given in Figure D. 

The so-called 'slope width' of the shock o, can be evaluated 

by using the value of du/dx at x = 0 

du 
dx = 

1 
i. 

(A. 15) 

The quantity 1 + 2u
1 

u
2
/(u

1
+u2)

2 
varies between 1. 0 and 1. 25, so 

(A. 16) 

Thus the 1slope width' o is found 

(A. 17) 

(A. 18) 

This shows the basic nature of the 'artificial viscosity' term. 
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(A) 

(8) 

Figures A and B. 

I\ : \ 
I \ u 

u 
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-x 
(C) 

u 

~--

(D) 

x= 0 x 

Figures C and D. 
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The shocks tend to be constant in width and independent of the shock 

strength when this term is usedo 
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APPENDIX B 

Permanent Waveform for Constrained Flow 

The equations of motion for constrained flow can be inte-

grated to give a solution for a permanent waveform. So far as is 

known this solution has not been derived before. The equations for 

constrained flow as de rived are 

(B. 1) 

(B. 2) 

These equations are valid when translating at any fixed speed. 

If we choose the coordinates moving with the wave of permanent form, 

the flow is steady and u = u(x), h = h(x). The equations become 

O.D.E.s 

(uh)'=O (B. 3) 

( 
2 1 2 1 3( 2 ) I u h + 2 gh + }h (u'} - uu" ) = 0 (B. 4) 

which are integrated to 

uh - A= 0 (B. 5) 

(B. 6) 

At x = ± oo, one lets the flow approach a uniform flow u = u , h = h , 
0 0 

and u" = u' = 0. 

Thus 

A= u h 
0 0 

(B . 7) 
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Rewriting the equations 

1/h = u/A 

Eliminating h 

4/ 2 3/ 3 (, 2 ) 3u A +3gu/A - 3Bu A -~:u') -uu" = 0 

Since x does not appear explicitly, using 

u" = u '{du 1 /du) 

reduces the order of the equation • Rearranging, one obtains 

Integrating 

...i.. f ~)2 = 
du \u 

6u 6B +~ 
A 2 - A 3 Au2 

( 
u' ·) 2 3u

2 
6Bu 6D' - = -:-7 - -- - _.::.J:2.._ + constant 

u A A 3 Au 

(B. 8} 

(B. 9) 

(B. 10) 

(B.11) 

(B. 12) 

since at x = ± ro, u = u and u' = 0, we can evaluate the constant. 
0 

If on the right-hand side, the values of A and B are substituted, 

2 
and c = gh is defined, then 

0 0 

3 
2 

(u h ) . 
0 0 



or 

..(3 
(u') =Uh 

0 0 
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{B.13) 

The branch selected is such that u 1 > 0 for (c 2 /u ) < u < u , so 
0 0 0 

that the profile is some sort of positive wave, with h > h • 
0 

If we take the crest of the wave at x = 0, the du/dx = 0 

there. 2 Since the other zero is at x '= ± ro, u = u , then u = c /u 
0 0 ' 0 

at x = 0. Thus the integral can be written 

2 
c 

0 

u 
0 

..f3 dx 
uh 

0 0 

to find the function u(x). Both sides may be integrated 

1 -1 
co sh ( 

2u (uu - c
2

) 
0 0 0 + 1) 

(u - u)c
2 = Uh 

0 0 
0 0 

Inverting gives 

u 
1 + cash ( :..[~ ~u! - c!) 

0 0 -= 
u 

0 
2 

2 _2. + cosh u ( ') 
2 

1 

The wave profile 

h 
h 

0 

c 
0 

h(x) is found by using 
2 

2u ( . 
--[ + cosh ) - 1 

c 
0 = 

1 + cosh ( ) 

hu =uh 
0 0 

{B. 14) 

(B.1 5) 

(B.16) 
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Since at x = 0, the maximum height of H + h is obtained because 
0 

cosh (O) = 1, then 

H + h u
2 

0 0 
-h--= 2 

0 c 
0 

(B. 17) 

This gives the speed of the permanent wave as a function of its size 

( 
H)1/2 ( H 1/2 

uo=co 1 +11 =.Jgho 1 +11) 
0 0 

T h e profile can then be found as 

h - h = H 
0 

1 + c.;osh 

2 

( ../3x rH") 
-h-~ffi=h 

0 v 0 

(B.18) 

(B. 19) 
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APPENDIX C 

Notation 

constant 

system matrix function (square matrix) 

constant 

system right-hand side (column matrix) 

local wave speed (in general and at infinity) 

volume (ith and nth elements) 

constant 

still water depth 

time step size 

initial element width 

friction factor 

driving function (column matrix) 

'artificial viscosity' force at a cross section 

Froude number 

gravity constant 

depth of water (in general and at infinity) 

depth of water (upstream and downstream of shock) 

depth of water (ith and nth element) 

height of solitary wave above still water 

deep water height of wave above still water 

Heavyside function 

friction coefficient, constant 

' artificial viscosity' coefficient 
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KEhor' KEvert kinetic energy (horizontal and vertical) 

L . 
l 

L 
0 

LT 

N 

NT 

p 

p 

PE 

r 

R 

s 

t 

u 

v 

y 

shock width parameter 

Lagrangian of ith element 

deep water wave length of wave 

total Lagrangian 

number of elements 

number of time steps 

pressure 

total horizontal pressure force at a vertical cross section 

potential energy 

roughness 

intercept of beach slope on x-axis, run-up above still 
water level 

beach slope 

time 

horizontal velocity 

vertical velocity 

horizontal coordinate (in general, ith and nth elements) 

vertical coordinate 

angle of beach from horizontal 

constant 

shear stress on bottom 
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