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ABSTRACT

Landau's equations for the two-fluid model of liquid helium II
are used as the basis for an investigation of the properties of thermal
wave propagation, A number of assumptions are made which reduce
the four original equations to a system of two non-linear partial dif-
ferential equations valid to first order in the relative velocity of the
two components, These equations are analogous to Riemann's equa-
tions which describe pressure waves in a classical fluid,

This system of equations, when reduced to just one space
dimension is shown to be hyperbolic and a set of characteristics and
invariants is found. A particularly simple, one-dimensional problem
is then formulated and an explicit solution is given., This solution is
then studied in detail to show the distortion of a temperature pulse as
it propagates and also to show effects such as non-linear breaking.

Subsequently, the restrictive assumptions are eliminated
individually and the equations are then valid to second order in the
relative velocity; the effects of including thermal expansion and using
the relative velocity as a thermodynamic variable are given., Also,
some effects due to the interaction of first and second sound are
investigated. In all cases, the results are compared with other
results based on equations differing from the Landau equations and
with results found by using perturbation techniques,

Finally, equations based on the same Landau equations are
derived and discussed which describe steady state shock (discontin-
uous) solutions,

Suggestions for further theoretical and experimental work are

made,
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CHAPTER I

INTRODUCTION

A, A SURVEY OF LIQUID HELIUM

Liquid helium displays many very unusual and interesting prop-
erties that have no analogies in any other fluid. In fact, it has been
likened to a '"fourth'' state of matter in addition to the usual three[ L] ;
This uniqueness is due in part to the fact that in the low temperature
regions of liquid helium the quantum nature of the liquid is important on
a macroscopic scale,

Kamerlingh Onnes was the first to liquefy helium in 1908[ 4 ;
There is an additional transformation which separates liquid helium in-
to two distinct phases; helium I, the higher temperature phase, is sim-
ilar to other liquids in that it obeys the classical hydrodynamic equa-
tions., The lower temperature phase, heliﬁm II, is the '"quantum liquid"
which will be of interest here,

These two phases are separated by the X\ -line which intersects

3]

the saturated vapor pressure curve at the N -point (T, =2. 172°K)[

N

This is not the usual phase transition in that there is no latent heat
associated with it nor is there a discontinuity in the density. Instead,

it is a second order transition in which the second partial derivatives

of the Gibbs potential are discontinuous at the \ —line[4] . This transi-

tion manifests itself by a logarithmic discontinuity in the specific heat

(3]

and a discontinuity in the slope of the density curve The terms
'\ -line'" and "\ -point" arederived from the shape of the specific heat

curve which resembles the Greek letter '""\ ",
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Some other unusual properties of helium are readily discern-

[11,03]

ible from the phase diagram in the P, T-plane To begin with,
He Il remains a liquid even at zero temperature unless the pressure
is raised above approximately 25 atmospheres; thus the liquid state
must possess as much thermal order as the solid state at zero tem-
perature, Also, there is no solid, liquid, gas triple point because
the He Il region separates the melting curve and the saturated vapor
pressure line,

Among the many unusual properties of Hell itself are

1. Superfluidity, the ability to flow with no apparent viscous
drag. Measurements using fine capillaries have shown that the flow
velocity depends very weakly on the pressure force but has a strong
dependence upon the bore of the capillaries[ 51,[6] . In direct con-
trast to this are measurements of the damping of oscillating bodies
which have shown that He Il possess the usual drag characteristics
associated with a viscous fluid[ 7] . Thus,it is clear that a description
of He Il using something other than the usual coefficient of viscosity is
needed,

This introduction of superfluidity as flow without friction is
complicated by the fact that there exists a critical vglocity which

(81,091

limits the range of velocities of superfluid motion Properties
of He II which are dependent on the Quantum state are still found to be
present even when the critical velocity is exceeded so that the concept
of a critical velocity is associated with a breakdown in the ability to

flow without friction and not with the destruction of the basic quantum

nature of HeIl. The concept of a critical velocity is still ill-defined
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and not very well understood at this time, The exact value of the
critical velocity is dependent on the flow geometry in a very complica-
ted manner[ 1] . Generally speaking one interpretation is that the
critical velocity is exceeded whenever there is enough energy present

[11].

in the flow field to create quantized vortex lines H

2, The thermomechanical effect or fountain effect[ 12] , which
demonstrates that, in He II, heat and mass can flow in opposite
directions simultaneously., In a simplified experiment to demonstrate
this effect two reservoirs filled with He Il are connected by a capil-
lary and both have a free surface at the same height. Heating the
liquid in one of the reservoirs will cause a rise of the level of the
liquid there. The name '"fountain effect"” comes from the fact that if
the reservoir which is heated is simply a capillary then the liquid
will shoot out of the top in a type of '"fountain.'" Obviously the heated
vessel is at a higher temperature than the other one yet fluid flows
into the heated vessel; this is just opposite to what would happen in an
experiment with an ordinary liquid. Relatively large convection rates
can be produced by very small temperature differences between the
two reservoirs,

A different demonstration of the same effect occurs when He Il
flows out of a vessel through a capillary under the force of gravity.
The result is that the temperature of the fluid remaining in the vessel

[151,198] 4

rises., This is often called the mechanocaloric effect
this latter case a pressure difference and accompanying flow give

rise to a temperature difference. This is just opposite to the cause

and effect relationship occurring in the fountain effect, In either case,
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heat and mass transfer are definitely not related to each other in the
classical manner for fluids and, once again, the conclusion is that a
complete description of He Il is not possible within the framework of
ordinary fluid mechanics; and

3. The propagation of thermal Waves[ L5 . L] . The ability
of temperature waves to propagate virtually undamped with a finite
speed shows that temperature must obey a hyperbolic wave equation
rather than a parabolic diffusion equation as in other media, These
thermal waves exist in addition to the usual pressure waves and
travel with a velocity which is an order of magnitude smaller than the
velocity of propagation of pressure waves[ 1e] . Hence, this phenom-
enon is definitely distinct from ordinary sound waves and not just a
different manifestation of them. There is no analogy to this type of
wave propagation in classical fluid mechanics,

These phenomena, and others, all inescapably lead to the con-
clusion that an entirely new hydrodynamic description is required for
HeIl, one that is based on new basic principles and not derived from
equations within the frame of reference of classical hydrodynamics,
The most comprehensive and successful theory to date is the two-
fluid model.as first prOpo.sed by Tisza[ 15] L 3] and developed by

[17]

Landau

B. THE HYDRODYNAMICS OF HELIUMII
The two-fluid theory is an attempt to create a consistent
macroscopic description of He II which can give a satisfactory theo-

retical explanation of the large number of unusual and sometimes
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contradictory experimental results, This continuum model can be
interpreted on the basis of two distinct microscopic theories but a
comprehensive and consistent derivation of it from these theories is
not possible at this time, It is not necessary or desirable to wait for
this link to be completed before investigating in detail the implications
of the two-fluid model. Moreover, it should be emphasized that all
of the consequences of the two-fluid theory can be considered as
derived from a basic set of postuates wholly independent of any micro-
scopic interpretation,

The justification for this theory, as for any theory, is how
accurately it describes observed phenomena and how well predictions
based on this theory are borne out by further experimentation, As
far as these aspects go the two-fluid model has proven remarkably
successful, Hence any further sophistication of present theories, or
any entirely new approach, aimed at explaining the behavior of HelIl
must contain the two-fluid theory as an accurate first approximation,

The following assumptions form the basic framework of the
two -fluid model:

1. Hell is composed of two mutually interpenetrating parts,
called the '"normal' and '"'superfluid'’ parts, each of which has its
own density and velocity fields. These two parts are neither compon-
ents nor phases in the usual sense, For one reason, the fluid can
not be separated into the two parts in any .way. Secondly, a given
fluid element can not be said to contain either the normal or super-
fluid part no matter how small that element may be defined, In other

words, from a continuum point of view two densities and two
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velocities can be specified at each point in the fluid volume.
All quantities corresponding to the normal part are denoted by
a subscript ''n'" while an ''s'" denotes those quantities associated
with the superfluid part. The sum of the normal density, Py and
the superfluid density, Py gives the total macroscopic mass density
of HeIl., Figure 1 shows the temperature dependence of Pr and p

[18]

as first measured by Andronikashvili .

0.8
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Figure 1 - Normal and Superfluid Density

The normal and superfluid parts may move in a manner that is
completely different from, although not independent of each other;
each part requires a separate differential equation to describe its
motion,

2. The entire superfluid component is assumed to be a macro-

scopic manifestation of a single quantum state as opposed to a thermal
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average over all existing states. Since there is no possibility of
thermal collisions within the superfluid part it follows that the vis-
cosity of the superfluid part is zero. This is not to say that the super-
fluid and normal parts do not interact. Indeed, there are PyE=P
interactions, for instance due to temperature changes, but the super-
fluid part still remains a single quantum system. Another consequence
of this assumption is that when PPy interactions do occur they
can not change the local superfluid velocity since this would imply a
change in the entire quantum state, Hence the quantum state and thus
the superfluid state are determined by the macroscopic boundary con-
ditions,

3. The entropy of the entire liquid is assumed to be contained

in the normal part. Thus

ps :ann . (1-1)

Here s and s represent the specific entropy of the bulk liquid and
normal part respectfully., This normal part is analogous to a clas-
sical viscous fluid. The normal velocity, ;n’ in contrast to ;s,
is a thermal average so the normal fluid has viscosity, The origin of
the name ''"normal' is now clear., This third assumption is not abso-
lutely essential to the two-fluid model and London[ 1] discusses some
of the consequences of allowing the superfluid to have entropy.

Even with this cursory introduction to the two-fluid model one
can gain an intuitive understanding of some of the properties of He II
which were discussed in Section A, For instance, it is the normal

part which causes the damping of immersed oscillating bodies and the
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sup.erfluid part which flows freely through narrow capillaries,
A brief and heuristic discussion of the two main microscopic
theories of liquid helium provides an interesting illustration of the
origin of some of the basic assumptions in the two-fluid model.

[19],[20]

London treats liquid helium as an imperfect gas in which

intermolecular forces can not be entirely neglected while

Landau[ 21], [ 22}

treats it as a solid in which the atoms are very
weakly bound to the lattice sites, These approaches are in sharp
contrast but they both assume a particular molecular picture and then
attempt to explain liquid helium in terms of that picture.

London based his approach on the fact that a condensation and
higher order phase transition occur in a Bose-Einstein gas which are
qualité.tively similar to the N\ -transition, The validity of this theory
is further strengthened by the fact that He* atoms are somewhat like
hard spheres-as in a perfect gas and must obey Bose-Einstein statis-
tics since they are composed of an even number of fundamental parti-
cles, In addition, He3, which does not exhibit a \ -transition, is com-
posed of atoms that do not contain an even number of fundamental
particles so they are not Bosons and, as such, do not obey Bose-
Einstein statistics. This approach automatically provides an explana-
tion for the N\ -transition and a method for identifying the two parts of
HeIl. The atoms which have condensed into the ground state are
associated with the superfluid part while those atoms still in excited
states correspond to the normal part;

From the other point of view, Landau proposed a scheme of

quantized excitations for quasi-particles or thermal excitations,
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These excitations,which he called ""phonons'' and ""rotons'’, are assum-

3]

ed to have an effective mass and momentum. Feynman has pro-

posed a quantum mechanical wave function which gives this type of

[1]

excitation spectrum. I.ondon argues that phonons alone are cap-
able of representing the liquid. The correspondence with the two-
fluid model is made by associating the normal part with these excita-
tions while the superfluid part is composed of the remaining mass,

Actually these two approaches are complementary rather than
contradictory since the first supplies a reasonable mechanism to
explain the N\ -transition while the latter one is able to account for the
existence of a critical velocity, Also, it has been explicitly shown
that phonon excitations correspond to the lowest excited states in a
hard-sphere Bose gas[ o . Both approaches have faults and defi-
ciehcies and neither one can be said to be the correct one with the
exclusion of the other; both need a great deal of additional work before
they represent the actual situation in liquid helium. In any case, the
two-fluid model provides an excellent description of Hell, at least
from a phenomenological point of view, and it will be assumed valid
in all further discussions of the hydrodynamics of He II,

Several different approaches have been taken in an attempt to
formulate a set of hydrodynamic equations and concomitant boundary
conditions that will adequately describe the flow of He II. Complete
agreement on the final form of the equations has not been reached yet
so a rigorous derivation of them can not be given, At the present

time virtually all hydrodynamic theories of liquid helium are based

on continuum mechanical arguments and their development is guided
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by intuitive relationships with microscopic theories, Direct analo-
gies to classical hydrodynamics are also very important.

A complete derivation actually has two distinct steps that
must be performed sequentially, First, a set of local macroscopic
variables must be chosen that are adequate to describe the complete
flow field. In ordinary hydrodynamics this is a very simple task to
do. One variable is almost always the mass flux velocity and the
remainder are two thermodynamic variables, usually pressure, ' P,
and temperature, T, or density, p, and entropy, s. However,
this step is a matter of some importance and difficulty for Hell. We
have already seen that more than three local variables are needed to
describe He II. Some of the various possibilities for Hell are Vn,
\73, Pns Pgr Ps Ss P, T, or other combinations of these variables;
it is possible that additional variables are necessary for a complete
flow description,

The second step is the derivation of the equations of motion
describing the time and spatial history of the chosen variables. The
type of derivation is somewhat determined by which variables are
chosen as basic flow quantities, As mentioned previously, one
Vparticular microscopic picture is usually chosen as a guide to the
selection of the appropriate macroscopic variables then the deriva-
tion proceeds from there making use of ideas borrowed from the
derivation of the equations of motion of classical hydrodynamics,

All of these derivations can be classified as being based on
either variational principles or conservation laws; incidentally this

is true for ordinary hydrodynamics as well as for HeIl, However
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the variational approach is beset by difficulties particular to Hell
as described by the two-fluid model, When variational principles are
applied to a continuum the Lagrangian density must be integrated over
all volume elements moving with the fluid. Yet there are two distinct
velocities at each point in He Il so it is manifestly impossible to
integrate over avolume elementmoving with the fluid since this is a
meaningless phrase in terms of the two-fluid model. This is not a
minor difficulty overcome by a reformulation of the two-fluid model;
in fact,London questions ", ., ., whether the two-fluid concept is
actually compatible with the principles of classical particle mechan-
ics"[ 1]. In addition, p ==p_ interactions combined with the fact
that a given fluid element can not be said to contain either normal or
superfluid parts leads to the conclusion that Hamilton's principle can
not be applied to He II, Zilsel[ 28} has recognized this inherent
obstacle and uses an entirely different variational principle first
stated by Eckart[ 26]. This principle uses an integration over volume
elements fixedin space rather than moving mass elements and con-
sequently avoids the objections raised above, Even this new varia-
tional principle restricts the class of solutions which can be used to
satisfy the resulting equations of motion,

One very important point that must be taken into consideration
by all types of derivations concerns any assumptions made on the
vorticity of the superfluid part. Restrictive conditions on the vortic-
ity must be explicitly stated before the derivation can proceed to
completion, The derived equations of motion can not resolve this

question because the derivation itself is not generally valid until some
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assumption is made on the vorticity. The question whether the super-
fluid part can rotate is a very complex one and has almost become a
field of study unto itself[ a7} 5

One of the three following approaches to the problem is usual-
ly taken:

1. Most simple theories assume that the superfluid part has

zero vorticity everywhere, i.e.

vxvs:o. . (1.2)

Landau['?‘l] proposed the first complete set of non-linear equations

of motion, KhalatnikOV[ 28] later derived this set of equations using
the two-fluid model, conservation laws, the Galilean relativity prin-
ciple, and assumption (1.2). Another implicit assumption is that
there is no momentum exchange between the two parts except for

P =Py interactions, The derivation starté by neglecting all irrever-
sible processes and writing differential equations in a fixed frame of
reference which express the conservation of mass, momentum,
entropy, and energy plus an equation for Vs which insures that con-
dition (1.2) is satisfied for all time. These equations are not all
independent and contain unknown scalars and vector and tensor fluxes.
Next, these quantities are transformed to a frame of reference where
VS = 0. In this frame all quantities are assumed to behave like clas-
sical hydrodynamic variables, Fiﬁally, the interdependence of the
conservation laws is used to obtain explicit expressions for the un-
known quantities in the moving frame which can then be transformed

back to the original, fixed reference frame, The resulting equations,
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called the Landau equations, are

_g_g.-i-v-p;:o (1-33-)
" v = w e P VT Pnfs ¢ w* I'w (1.3b)
pn_t_—+( Vn)n Y T PgS - g e :
a;‘°’+(v Wl ==ee P 4p sVT + n’s g w (1.3c)
Ps| Bt VelVs| = Ps 2
%%E-FV-ps;£::O (1.3d)
where
_ P, _  Ps_
Y= —F 4=y (1.4)
p n p s

- the relative velocity of the two parts,

8pn _ aps _
I“= -at— + Va ann = —('— +v'psvs) (1.6)

- a source term due to pnr—’ ps

interactions, and

s = specific entropy.

Equation (1. 3a) is the usual conservation of mass equation, Egs,
(1.3b) and (1.3c) are conservation of momentum equations for the ;n
and Vs ‘velocities, and Eq. (l.3d) expresses the fact that entropy
flows with the normal part only and is conserved. In addition, three

equations of state are needed to make a complete formulation; for
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instance, these equations can take the form

p = p{P, T,w) (1.7a)

s =s(P,T,w) (1.7b)
P, =P (P, T, W) . (1.7¢)

Notice that w serves as a thermodynamic variable in addition to
being a mechanical velocity. This fact makes Eqgs. (1.3) consider-
ably more complicated than they first appear to be, The I' term ap-
pears only in the equation for ;n due to the assumption stated ear -
lier that ;s represents a single quantum state and not a thermal
average,

It should be emphasized that these equations are not a unique
result of the derivation as outlined unless VX ;s = 0, This deriva-

[29]

‘tion has a number of faults and is criticized by Clark who also
shows that these same equations can be uniquely derived without as-
suming VX ;s = 0 if a literal interpretation of the two-fluid model

is assumed, He also gives an excellent review and critique of almost
all other derivations of the equations of motion and shows some pos-
sible generalizations of some existing derivations,

Equations (1.3) are the same ones obtained by Zilsel[zs]

using a variational approach, However, his formulation also includes

a restrictive equation on the curl of ;n;
VXV =Vs XVp
n n

where s, is defined by Eq. (1.1)and B 1is a Lagrangian multiplier,

Another drawback to the variational approach is that it can not deal
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with irreversible flows., Nevertheless ILandau's equations can be
generalized to include viscous terms by following the same general
procedure outlined above with the additional requirement that dis-
sipation terms due to viscous effect be positive., The Landau equa-
tions have been well verified experimentally and usually serve as a
starting point for further hydrodynamic analysis,

2, A different approach is to assign a special role to the
vorticity of the superfluid part. One way of doing this is to assume
that VX VS = 0 everywhere except on singular lines in the fluid[ a5 ;
These vortex lines can then be quantized using arguments based on
the necessary symmetry of the wave function for the helium atoms.
This approach has additional appeal because these vortex lines can be
intuitively related to the rotons in Landau's microscopic theory.  Hall

[30]

and Vinen have succeeded in developing a set of macroscopic
hydrodynamic equations based on this approach,

Another line of reasoning is taken by Bekarevich and
Khalatnikov L1 in which they assume that w = |V X ;sl is an ad-
ditional thermodynamic variable and that the internal energy of a
rotating superfluid depends on w, The hydrodynamic equations result-
ing from this approach are the same as those derived by Hall and
Vinen,

3. Finally, a completely different approach .has been taken
by Lin[ 5] . He rejects the two—flqid model altogether and attempts
to write a hydrodynamic theory of He Il without recourse to any micro-
scopic theory which is a generalized one-fluid version of ordinary

[34]

hydrodynamics. This line of reasoning has some drawbacks
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and, at best, offers no advantages over the other approaches based
on the two-fluid model. Even so, the equations of motion which result
from this approach are equivalent to the Landau equations.

Another important point to keep in mind is that the Landau
equations represent the true flow situation only in the very simplest
situation, that is, when all irreversible processes are negligible and
when \75 is less than the relevant critical velocity, Whenever these
conditions are not met Eqs. (1.3) must be modified by adding new
terms to represent mutual friction between the two flows and ir-
reversible processes. The nature and origin of these additional
mutual friction termsare avery complex problem and their exact
form has not been completely agreed upon and is an open question,
The Hall-Vinen and Bekarevich-Khalatnikov equations mentioned
above are the identical results of two different attempts to take these
additional complications into account. Still another version of the
equations of motion which include mutual friction is the semi-
empirical Gorter-Mellink formulation[ L . Both of these sets of
equations reduce to the Landau equations in the limit of reversible
flow with negligible mutual friction. These principal theories have
been concisely summarized by Hsieh[ el .

The last important question cpncerning a complete hydro-
dynamic theory deals with boundary conditions, The appropriate
boundary conditions that should be used depend on the particular set
of governing equations of motion that are being used to describe the
flow field. Nevertheless, most formulations have certain points in

common, For instance, at a fixed, solid boundary there ‘usually is
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a no-slip condition on ;n and requirements that the perpendicular
component of the mass flux is zero and that the heat flux is continuous
across the boundary; these conditions are all analogous to those in
ordinary hydrodynamics, However, when heat flows from a solid in-
to liquid helium it is accompanied by a temperature discontinuity
known as the Kapitza boundary effect[ 35]; on the other hand, no dis-
continuity is found when the heat flux is directed from the fluid into
the solid., The magnitude of the discontinuity is proportional to the
heat flux per unit area. This effect has also been observed in
He3[ »] where the phenomena associated with superfluidity do not ap-
pear so that it does not depend on the quantum nature of He Il for its
existence. The boundary conditions imposed on T’s depend strongly
on the particular formulation which is chosen to represent the flow,

In summary, a continuum formulation exists which can be
derived in a number of different ways and which has good experi-
mental support, However this formulation is valid only under a
limited set of conditions and more comprehensive theories are need-
ed. The entire field of study, from a microscopic theory with its
connection to a complete continuum model on to a satisfactory deriva-
tion of the thermohydrodynamic equations of motion and boundary con-

ditions, is certainly open to further theoretical and experimental

study.
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CHAPTER II

SELECTED APPROACHES TO THERMAL WAVE PROPAGATION

A, SOME ELEMENTARY ASPECTS OF THERMAL WAVES

The propagation, rather than.the diffusion of temperature
variations is probably the most unusual characteristice of He II, This
type of wave motion is usually called '"second sound'' to distinguish it
from the familiar propagation of pressure waves which is called
"first sound'' in HeIl. The existence of these temperatures waves can
be easily explained on the basis of the two-fluid theory. Since there
are two distinct densities each with its own velocity field, two sep-
arate modes of energy transport exist as compared to only one ve-
locity énd one mode of energy transport by wave motion in ordinary
one-fluid hydrodynamics, This additional mode in Hell is heat
transport by a purely mechanical process which is the second sound
phenomenon,

It is possible to deduce a number of the fundamental properties
of second sound from a linear perturbation analysis of Eqs, (1.3).
The procedure that will be used here is the same as employed by
[1].[28]

Atkins[ 10] among others Consider a stationary bulk of

He Il at equilibrium; write all thermodynamic variables as

P=P +e¢P +.
O 1

T=T 4&T +. .. o (2.1)
O 1

tTEep.. T o« o, efC )

pn = pno m

The subscript "'o'" indicates a constant, equilibrium value and
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a subscript '"1" labels all variable perturbation quantities, Also,
since both velocities have a zero equilibrium value,
v =gyt
n ni
_ _ (2.1)
v =ev__ +
s S1

Substituting Eqs. (2.1) into Eqs, (1.3) and keeping only order ¢
terms will give the desired equations for the perturbation quantities,

By its definition, I is order e so the first order equations are

9p

1 o =
Fra pnov Yog * pso\_/'vm = 0 (. 22}
8;nl Pro
Prho Tt T~ _;: VPI h psosoVTl (2.2Db)
v P
sl _ _ SO
Pso 7ot~ P VPI ¥ pSOSOVT1 (2. 2¢)
Os dp
1 1 S
P T * S0 B2t PoS Y Ty = O (2.24)

Differentiating (2.2a) and (2, 2d) with respect to time and using

the other two equations to eliminate derivatives of ;n and .\75 gives

aZ

P 2
tzl = V2P (2.3a)
5 1
8% s p

L _ _89g2y2p (2.3b)
ot2 . Pno © L

Equation (2, 3a) is the same as the equation which describes pressure
waves in classical hydrodynamics while Eq. (2.3b) is the new equation

which governs second sound waves, Writing the equations of state in
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the form P = p(p,s) and T = T(p,s) implies

oP)
8sp1

P :(—g—g)—) p *+
1 Pyt
and

0T oT
£ -(82] o+ 58
1 dp Spl as | °

Using these equations in (2. 3) gives two coupled wave equations for

and s ;
P 1

82p
L (gf) V3o + (@Eg) Vs
52 plg 1 " 1
3%s p p
Lo 80, 2 (0T) g2 4 B0, 22T g2,
ot? Pho © P 1 Ppo © Pls y

Plane wave solutions to this set of equations having the form

s - ae;loo('c—x/u)

and

o = beioo(t—x/u) -

are possible if

ot {22] (- 41 (28] [- 25

u
P ; p z
(iw)fa = =2 SOZ(E_?SI) (' =la+ 2% 2(82 (_ .1.9_) b
Pno o u Pho ©l0plg u
which is equivalent to
(u®-u?)b -(?—E) a=0
1 ds
; p (2.4)
o ?‘(E) b+(uz-uz)a:0
Pao © V0P g &
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where
uzz(a—P) (2.5)
1 dp 5
p
0 = s sl(a—T) (2.6)
2 pn ds

Setting the determinant of Eqs. (2.4) equal to zero gives

e e

where CP and CV are the specific heats at constant pressure and
volume, respectively. If the right hand side of Eq. (2.7) is neglected

then

u =u, the velocity of first sound
1
or

u =u, the velocity of second sound.
2

As London shows
- oo 2
Ky = gy 0
where ap is the coefficient of thermal expansion, Hence, Egs. (2.3)

are de-coupled if the thermal expansion is negligible, At T =1,5°K

PC CV_7><10
P

so the coupling is very small and can be neglected as a valid first

approximation, ZFigure 2 shows the variation of u with tempera-
2

(3]

ture For the purpose of comparison u equals 235 m/sec at
1

1.5°K and 218 m/sec at the X\ -point, Below ,9°K u rises rapidly
2

and apparently approaches 190 m/sec as T goes to 0° K[ 37]
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Additional properties of the two types of wave propagation can
be found from further analysis of Eqs, (2.2); for the sake of definite-
ness neglect the linear coupling between first and second sound by
assuming ap= 0. To begin, consider the properties of first sound
by choosing the root u = u1 of Eq. (2.7). Then, by Eq. (2.4), a=0
so this root represents the familiar pressure and density oscilla-
tions at constant entropy usually found in ordinary hydrodynamics,
With T1 = 0 in Eqgs. (2.2b) and (2.2c), these two equations imply,

for first sound, that \—;n = ?f-s or

w=0 . (2.8)

This means that the normal and superfluid parts move together in
phase during first sound propagation.

Similarly, we can discover some of the properties of second
sound by taking the root u = u. Then b = 0 so the density and pres-
sure are constant, Now, Eqgs, (2.2b) and (2. 2c) with p1 = 0 combine

to yield

Pno¥m + Pso’s1 Vl =0 (2.9)

Thus, we have the result that the mass flux velocity is zero during
second sound propagation or, in other words, second sound is a type
of heat transfer without an accompanying mass transfer, Under these
same conditions it is possible to show that heat flow is proportional
[35]

to, and in phase with, the temperature Given the traveling

wave solution for the entropy in the form



it follows that

Set P = 0 and use this expression for T1 in Eq. (2.2b);
1

avm X oT iw iw(t-x/uz)
Pno ot =T psosoa(gg) (- a |®
or
va,x 4 Pso 5T 1w(t-x/uz)
= 225 [ [iwe ]
2 pnO
Therefore
s
Vo X:—s-l-u ) (2.10)
) o 2

The entropy flux is ps?n [ see Eq. (1.4d)] so the heat flux is

Q :pSTVn
In this scheme
Ql ,x—po oTon,x
s
= Ps oo —é}—u
o 2
Q =p T us T (2,11)
1, X O O 2 1 1

This is the desired result; the striking difference between (2,11) and
ordinary hydrodynamics, where heat flux is proportional to the

gradient of temperature, arises because temperature satifies a
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hyperbolic equation here rather than a parabolic equation as it does
in other fluids,

It should be emphasized that the above results regarding the
basic properties of first and second sound are valid only as long as
thermal expansioh is negligible. In actual fact, there are small
fluctuations in entropy and temperature carried along with a first
sound wave and, conversely, small changes in the pressure and
density accompany a second sound wave, Even so, a natural division
of the variables into two distinct sets seems to be suggested here,
One group contains P, v, p and other variables which have a strong
pressure dependence; it is these variables which are of primary
importance in a first sound situation. The other group contains T,
w, s and other temperature dependent variables whose variation is
of most concern in a second sound problem,

B. PREVIOUS SECOND SOUND INVESTIGATIONS AND A SUMMARY
OF THIS WORK

Several investigators have already used a variety of approach-
es in addition to the straightforward linear analysis given above to
study the nature of second sound. The best review of the most
important properties of second sound and an extensive bibliography
are containedin the book by Atkins['lo] . The detailed temperature
dependence of the amplitude-independent velocity of propagation,
energy flow theorems, attentuation, and the effects of various types
of boundary conditions are sbme of the points of interest that are
discussed; an analogy between second sound propagation and an

[39]

equivalent electrical circuit which was first proposed by Dingle
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is also developed further. The discussions of the amplitude-depend-
ent velocity of propagation and the distortion of a pulse type waveform,
two of the properties which will be of particular interest in this paper,
are based on the theories of Khalatnikov[ 28] . He derives expressions
for the velocity of propagation of both first and second sound which
are valid to first order in the relative velocity, w. This derivation
is open to some criticism and will be repeated and discussed in
detail in Appendix B in order to clarify it. Khalatnikov uses a rela-
tively simple linear perturbation analysis which is encumbered by a
minimum number of restrictive assumptions so his results will pro-
vide a valuable check on the formulae derived herein by a non-linear
analysis. Unfortunately, Khalatnikov includes very little detailed
discussion of his results along with the analysis,

[40]

Temperley has done the only non-linear analysis up to
this time but his work is not based on the Landau equations; his work
is also reviewed in Appendix B, A procedure similar to the one used
by Temperley will be used here but the results are not comparable
because different equations of motion are used. Temperley only
derives the equations which specifically govern the motion of second
sound but, like Khalatnikov, does not discuss any of the consequences
of these equations in detail,

In both the theoretical investigations mentioned above the
authors have been explicitly concerned with solutions which are con-
tinuous functions of time and spatial dimensions, Nevertheless, .

: 28 4
Khalatmkov[ ] and Temperley, in the same paper, also consider

discontinuous (shock) solutions, Both use a perturbation scheme
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although Khalatnikov has done a more general analysis; their general
conclusions are virtually the same even though Temperley does not
use the Landau equations. The most important results based on their
analysis deal with the propagation speed of the discontinuity and with
order of magnitude estimates which relate the size of the jump of the
important variables across the discontinuity. These estimates are
made for both pressure and temperature discontinuities,

A large amount of experimental data has been collected con-
cerning all the various aspects of second sound but only two experi-
ments are of direct interest as far as this paper is concerned. One
of them entailed the use of a pulse technique by Osborne[4l] to clear-
ly demonstrate the phenomenon of non-linear '""breaking'' of a given
pulse type temperature waveform. The method consisted of genera-
ting a heat pulse at one end of a tube filled with He II and photograph-
ing oscillascope traces representing the temperature waveform which
pictorially show the deformation of a pulse as it travels down the tube.
Qualitative measurements of the attenuation of the size of the pulse
as a function of the distance traveled were taken for various tempera-
tures and heat inputs. These experiments were the first direct
experimental confirmation of some of the non-linear aspects of
temperature wave propagation,

The other experimental investigation was specifically concern-
ed with obtaining quantitative measurements of the temperature varia-
tion of the amplitude-dependent propagation speed; this series of
experiments also used pulse techniques[42] . The theoretical pre-

dictions of Khalatnikov and Temperley were expressed in terms of a
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convenient dimensionless parameter which was indirectly measured
experimentally for small heat pulses, For temperafures above
1.4°K the two theoretical results were found to be virtually identical
and were verified by the experimental data. Since experimental ver-
ification was sought for predictions based on a linear theory, the
magnitude of the total change of temperature in the heat pulse was
kept very small so no non-linear effects were observed,

| All but one of the analyses that have been done up to the
present time are based on some perturbation procedure in which the
relative velocity, w, is the small parameter. And yet the Landau
equations are definitely non-linear in character so, by analogy with
ordinary hydrodynamics where linear and non-linear theories of
pressure waves can be strikingly different, a non-linear approach
will be taken here with one goal being the comparison of the results
for small w with the previous theories. However, additional
complications are present in He II which prevent even a non-linear
analysis from being»valid outside a rather limited range of conditions,
One of these limitations is the existence of a critical velocity as
mentioned earlier,

A second motivating purpose behind this work is the desire

to apply the general theory of second sound to a specific problem and
to discuss the flow in some detail. This type of additional analysis
and detailed discussion of the results has not been done previously and
will yield new insight into the nature of second sound. In particular,
we will consider the behavior of a temperature pulse as it propagates

through HeII., As mentioned, this type of flow situation has been used
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to measure certain characteristics of second sound so it is of more
than just academic interest., Moreover, this point of view provides
a contract to analyses based on a sinusoidal temperature variation,

Keeping in mind the goal of attempting to describe in detail
" the nature of second sound, a number of simplifying assumptions will
be made so that all considerations which appear to be second order
effects are neglected and in order to theoretically isolate second
sound from first sound. Also, all irreversible effects are implicitly
neglected since the Landau equations, which do not include viscous
effects or mutual friction, are used. Then the '""Riemann theory of
second sound'' will be developed with the ultimate objective being a
set of characteristics and invariants which describe the flow in a
large class of problems., This approach is used because it works so
well for the description of wave propagation in ordinary hydrodynamics
and is especially suited to non-oscillatory driving functions.

This set of characteristics and invariants will then be used to
obtain an explicit solution for the problem of the propagation of a
temperature pulse in a semi-infinite, one-dimensional channel, This
solution has some properties usually associated with pressure waves
in classical hydrodynamics and other new features that have no
analogy at all with wave motion in ordinary media. Subsequently,
the initial assumptions will be dropped individually in order to study
their relative importance and the order of magnitude of their effect
on the first solution., This includes considering the interaction of
first and second sound. Finally, to complete the theoretical investiga-

tion, the complete non-linear conservation laws describing the motion
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of discontinuous solutions are derived, These equations are extreme-
ly complex and are discussed from a general point of view since a
perturbation analysis has already been done,

All these results are then summarized and some concluding
remarks are made about the nature of second sound as well as about
the advantages and disadvantages of the procedures used in the pre-
ceeding analysis, Several new areas of theoretical and experimental
investigation are suggested by this work and some of these are dis-
cussed in detail. It is also shown that it might be worthwhile to re-
consider some of the previous theoretical work that has been done so
some suggestions for additional research are also made along this

line,
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CHAPTER III

THE RIEMANN THEORY OF SECOND SOUND

A. SIMPLIFICATION OF THE LANDAU EQUATIONS

The Landau equations serve as the starting point for this
analysis of thermal waves. Within the other limitations mentioned
earlier, this basic set of equations is valid from approximately 1°K
up to the X\ -point. Below this lower limit the normal density is very
small - - p_/p is less than ,0086 for temperatures below 1°K - - so
mean free path effects are becoming increasingly immportant, This leads
to the conclusion that a two-fluid, continuum theory of Hell is not
valid at these very low temperatures and a different approach, possib-
ly one similar to rarified gas dynamics, is needed.

The Landau equations as they are now written in Egs. (1. 3)
are not in a convenient form for an analysis of first and second sound.
"They are much more amenable to.a Riemann analysis when they are
written entirely in terms of variables which can clearly be put into one
of the two groups mentioned on page 25 in Chapter II. The mass flux
velocity, v, and the relative velocity, w, are the mechanical ve-
locity variables that will be used. In addition the totai mass density,
p, and the normalized relative density, 6, will be used as the inde-

pendent thermodynamic variables; 6 1is defined by

§ = . (3.1)

The motivation for choosing this variable rather than P, OF Pg

comes from the linear analyses of Khalatnikov ahd Temperley where
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it has been shown that the temperature where Py = Pgr OF where

6 = 0, 1is of particular importance, Thus it might be necessary to
expand our results for small 6 hence the choice of the normalized
relative density and also its symbol ''6.,'" The relative density varies
between -1 and +1 as the temperature ranges from zero to the \ -
point and is a very weak function of pressure.

The transformation equations relating p, §, v, and w to P

p , v. and v_ are
s n S

p=pn+ps 6:Pn‘Ps
p
3.2a
_ e oo _ L ( )
Vz-—vVv + —v W=V -V
p n P s n s
and
_ 146 _1-6
Ph="2 P Pg =72 P
(3.2b)
= J8 1-6 — - = 146 —
¥V =¥ —— W VS-—V———Z W

When the transformations (3.2b) are substituted into Eqgs. (l.3) the

resulting equations can be written in the following form

%f— + Vepv = 0 (3.3a)
%;L_ +Vepvv = - VP - Vo 1‘152 pWW (3. 3Db)
IR A i R e T
202 4 Vepsv = - VoI5 osw (3.3d)
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The left hand side of each of these equations is the material
derivative moving with the mass flux velocity v of a scalar or vector
quantity, The right hand side of the equations describing the motion
of v and w contains forces due to the gradient of a thermodynamic
variable plus additional terms involving the relative velocity, w .
These equations clearly show that a pressure gradient is the important
thermodynamic force accelerating v while a temperature gradient is
the most important thermodynamic force as far as w is concerned.
This explains the natural pairing of P and v, and T and w for the
first and second sound respectfully, Nevertheless, there is a coupling
between the two velocities and thermodynamic gradients by the other
forcing terms involving w.

Equations (3. 3) constitute a set of eight equations for eight
dependent variables which we will sssnmas 1o be p, 6, v, and w.
Three additional equations of state are necessary to make this formula-

tion complete; assume these equations take the form

P = Plp,6,w) (3.4a)
T = Tlp,8,w) (3. 4b)
s =s(p,6,w) . (3.4c)

If it is assumed that w = 0 then Eq. (3.3c) implies that temperature
is a constant, entropy is conserved by Eq. (3.3d) and the remaining
equations including Eqs. (3.4) form the classical set of inviscid hydro-
dynamic equations,

It is now necessary to make the following three assumptions in
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order to reduce these equations as much as possible and still not
destroy their ability to describe temperature waves,

1. Consider only those solutions for which v = 0, This
restriction makes it impossible for first sound to be generated so that
the interaction of first and second sound is neglected and we will be
dealing strictly with thermal waves,

2, Assume S the specific entropy of the normal part, is
constant, This is an empirical fact and not the consequence of some
fundamental principle. This assumption is a very good first approx-
imation for temperatures between about 1.4°K and the \ -point but is
only a crude approximation for temperatures less than 1°K,

3. Assume it is possible to neglect the w dependence of the
thermodynamic variables in Eqs. (3.4). The dependence of these
variables on w should be weak but one of the objectives of subsequent
analyses will be to calculate the effects of this dependence,

Equations (3. 3) are considerably simplified by these assump-
tions, If the total mass density is a constant, say Py, atsome time
everywhere in a given volume of the fluid then Eq. (3. 3a) combined
- with the first assumption imply that p = o for all time. The assump-
tion that v = 0, when used in conjunction with Eq. (3.3b) also yields

a restrictive condition on the pressure:

1 ~§%
Z

VP.+p Ve ww=0 . - (3.5)

Under the first and third assumptions, Eqs., (3.4) have only a 6
dependence

P=P6) , T=T(6) , s=s(6) . (3.6)
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Thus, Eq. (3.5) is considered to be a restrictive condition which
limits the class of functions P = P(6) that are allowable when the
above assumptions are valid, Notice that a pressure gradient will
accompany second sound even though it has been assumed that no first
sound is present, Because its existence depends directly on a non-
zero w, this type of pressure variation will move with the relative
velocity or, in other words, a pressure wave propagates with the
velocity of thermal waves in a purely second sound flow,

The definition of sn can be written

p
__Ils_l+5s
p

s = = —
n 2 n

Consequently, under all the above assumptions, Eq. (3.4d) becomes

an equation for 6;

9 (1+6) N P - g
srlz |tV —w =0
Finally, Eq. (3.3c)is
1+6 ow —| o (1+5) 1-6% —
2 5t W[}B—t— R AR T R
146 W2 146 146 — 1-6§2

The bracketed term vanishes by the previous equation,

In summary, under the three simplifying assumptions VP is
a quadratic function of w, and 6 is the most convenient thermo-
dynamic variable, and Landau's equations reduce to the following

set of equations for & and w;



ow 2 w? e g _

8—t-— + m—- sVT +V —2—— - 6(W'\7)W— '2— wweVe =0 (3.83)
88 18" G % 5w .V = 0 (3. 8b)
ot 2 ¥ ’

x-(31] 5]
= 17 *(5 |
and
2 VT = 1%62 w2 Vo (3.9)

where u 1is defined by Eq. (2.6); in this scheme n = uz(é). Equa-
2

tions (3.8) can be further reduced by considering a one-dimensional
problem., Then all variables depend only on one space dimension, for

instance x, and time. Also

-~

w = w(x, ’c)eX

Thus, Egs. (3.8) written in matrix form are

ow 2 2 1 5 ow
gt | |0 T 2Tz Y| X
+ =0 . (3.10)
2
2_5 1-6 - bw a8
t 2 ox

= - wr (3.11)
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B. DERIVATION AND APPLICATION OF THE CHARACTERISTICS

AND INVARIANTS

Having derived the basic equations which describe thermal
waves, Eqs., (3.10), we willnow study them in detail to deduce some
of the basic features of second sound. The following analysis is based
on the theory of hyperbolic equations as discussed in Appendix A, The
important details in this analysis and in the solution of the problem
following it are explicitly shown in order to clearly illustrate the
method which is being used. For subsequent analyses similar to this
one we will only point out the essential differences between the two
systems of governing equations and then quote the final results by
analogy to this procedure,

In this instance there are only two unknown dependent variables,
6 and w, so n =2, Also, the matrix A in Eq. (A2) is the unit

matrix, I, so the condition determining the characteristics is

(1-6)w-c

- = W
1 -52 T2
I -g*

> -6w - cC

Expanding this determinant gives the following quadratic for c;
1
c? - (1-26)wc - u§-+ Z—(362-46+1)“J =0 (3.12)

Therefore, the characteristic lines are

i

. dx _ +_1 _) (2 4 i/ 2)2
L+ (d—t-—] = € _(Z 6|lw + u2+z<5w

o~ 3

f il . '_(l—é)w—(z 1 22)
L_ .(dt) =cC =i7 : u2+16W
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Since the c's are always real and distinct the system of Eqs. (3.10)
is always hyperbolic. This means that the temperature always prop-

agates with a finite speed rather than obeying a diffusion equation,

In this case the equation for the left eigenvectors reduces to

I—kB _ ckl—k

or

fkb = C:l:fi.
i 4] J

Using the second column of the B matrix these equations are

1
2 uZ_l_Wzli:Lwi(uz 1 zzzﬂi
1-52 2 2 1 2 2+21—6W 2
Pick
2
pF o L8
1 2
i
k1 2.1 z2. 21"
ﬂz——zwd: uz-i-zl—éw

Since A =1, the invariants are given by
1¥aw,_ +12¥ds_ =0
1 % z

with 2% and % given above. In these equations dw 6 represents
1 2

the differential of w taken along the Ld: characteristic, respectively,

A similar interpretation holds for déi. These results are summar -

ies in the following table,

1
2
2. 2

-‘lraw) (3.13)

L, : Characteristic, (é—}i) :(l -6)w +(uZ +
+ dt " 2 2

i
. idw-iw-(z+lﬁzz)2da—o314)
nvariant, > +7|3 uz 7z o'W 35 (3,
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(NI

L : Characteristic, 3—:—) :(é— -6) W -(ui‘ + Zlf 5ZWZ) (3.15)

1
. 1-8% 1 g * 1 .2 31?
Invariant, —— dw _-|> W +(u + = 6°w ds =0 (3.16)

Z < B . ,

This set of characteristics and invariants provides a useful tool for
solving a large class of problems for which Eqs. (3.10) are adequate
to describe the flow,

We will now apply these results to a simple problem to illus-
trate the procedure by which characteristics and invariants are used
to obtain a-solution and to discover some of the basic features of
second sound., Suppose a semi-infinite, one-dimensional channel filled
with He II  is initially at a uniform temperature TO and assume the
fluid is at rest. At the one end, which we will take to be x = 0, the
temperaturev is a given function of time. It will be implicitly assumed
that this boundary condition is some general temperature pulse. The
set of equations which describe this problem has been formulated and
vanalyzed above using 6, rather than T, as the independent thermo-
dynamic variable. However, 6 is a monotonically increasing function
of temperature so there is no difficulty in reformulating the initial and
boundary conditions in terms of 6. It will also be a simple matter to
write the final results in terms of either 6 or T. Initially, the fluid
in equilibrium is represented by w = 0 and 6 = 60 = 5(TO). The
boundary condition is now & = §[ T(t)] = 6(t) for t> 0. A complete
solution is known when the variables w(x,t) and 6(x,t) are known
for all => 0, £t>0 in terms of 60 and the given boundary condition
6 (t).

A type of iteration scheme will be used to find this solution,
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We begin by considering a point P near the x-axis as shown in

Fig. 3.

Figure 3

By evaluating the coefficients of the differentials in the invariants on

the x-axis we can write,

1-62
. o —
Along L+ P dw++ uz(éo)d6+~ 0
1-52 (3.17)
. e
. _ ds -
Along L_: — dw _ uz(éo) 6 =0

Since P has been chosen so that Li are short line segments, we

can also write

-6o+d6+ . W(P):O+dW+

Along L+ v 6(P)

Along L_: §6(P) 6O+d6_ , W(P)=0+dw_

The requirement that the solution be single-valued at P implies that

dw+ :dw_ = dw

and
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=dé§ =
d5+ dé dé

Equations (3.17) now give the solutions dw = 0 and dé = 0; hence

6 (P) :ao (3.18a)

and

w(P) =0 . (3.18b)

This result is valid for all points P whose domain of depend-
ence is restricted to just the x-axis., This in turn is determined by
the slope of the L+ characteristic which passes through the origin of
the x, t-plane; by Eqs, (3.18) this characteristic, called the '""wave-

front'', is a straight line, We will call the slope of this line u’;
2

u :uz(éo) =u [6(".[‘0)] . (3.19)
Hence, the equation for the wavefront is
5
dt 2
or
x -u’t=0 . (3.20)
2

Thus far we have found the expected result that there is no disturb-
ance éhead of the wavefront whose slope in the x,t-plane is determined
by the velocity of second sound at the initial temperature,

Next, consider some time T on the t-axis closeto t =20
(see Fig. 4). Some characteristic L_ must exist which intersects

the t-axis at 7 and which goes into the equilibrium zone ahead of the
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I
0
§=8(t) WS
4 L- w=0
i 3 =738,
L1 —
w=0, &=38, X
Figure 4

wavefront, Reasoning as before, we can write

1-62
Along L_ : —— dw_ - u;’dé_ =0
Also
6(T) = 60 +dé _
and

w(T) = 0 + dW_

In this instance, however, 6(7) is known by the given boundary con-
dition so the above equations combine to give an expression for w(T)

for small T,
WiT) = & memeae § . (3.21)
The next step is to consider a point P which is close to both

the t-axis and the wavefront as shown in Fig. 5. Using the same

arguments as before
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f
WFE
P L
ol _
Lj;’/ ¥ w=0
T-/ - 8 < 80
w=0, 8=38, X
Figure 5
2 2
1-62(T) w(T) [ 2 1 .2 ] -
Along L, S dw, - [uz('r) + 7 63T)wA(r)| pdb, =0
1-62
Along L >~ dw_-u’ds_=0
" - A
and
Along I_,+ : 6(P) :_6(T)+d6+ . w(P) = w(T) + dw_l_
Along L _: 6(P):6O+d6_ : w(P) =0 +dw_

Again the unknowns are w(P)and 6(P) while w(7T) is now known
from Eq. (3.21). Eliminating dw__t and déi from these equations

gives two equations for 6(P) and w(P) which have solutions

and

Consequently, the L+ characteristic emanating from the t-axis at 7
is a straight line and the values of w and & on this characteristic

are constant and equal to their values on the t-axis.
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Finally, consider two neighboring I_,+ characteristics which
intersect the t-axis at 7 and 7 and assume that 7 and 7T are
1 2 1 2
close to each other. Following the general scheme used in the pre-

ceeding calculations it is possible to show that all L+ characteristics

are straight with w and 6 constant along them. In addition we find

o=

6"6 W l
W = =2 =2 1—1—+[u?‘(6)+4-62w2:|
2 1 1-52 2 2 1 b 3
1

where the subscripts ''1'"" and '"2'"" indicate that the variables are

evaluated at 7 and 'rZ respectfully on the t-axis. Now let 7> 7 ;
1 : 2 1

from the above expression we get an ordinary differential equation

relating w and 6 at the boundary x = 0,

1
2

1-6% dw _ w T
¥ 5_2—+u2+4—6w‘ & (3-22)

Since u is a known function of é this equation can be solved in
2
principle, to give w =w(6) = w[6(t)] = w(t) on the t-axis, or equiva-

lently, at the end of the tube. With w now known the slope of the L+

characteristic intersecting the t-axis at 7 is given by

1
2

%;L = ¢(T) :[é— - a(ﬂ}ﬂ—r) +[u§(6) + % 62(7)w2('r)J . (3.23)

This can be directly integrated to give an explicit equation for L+;
x - c(T)(t-7) =0 (3.24)

We now have a complete solution, It can be summarized as

follows:
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0 for x>u’et
w(x,t) = 2 (3.25a)
w(T) for x<u’ut
2
and
6 for x>u’st
o 2
6(x,t) = (3.25b)
6(t) for x < u;’-t

where, for a given point (x,t), 7 1is implicitly given by Eq. (3.24)
with c¢(7) given by Eq. (3.23), 6(7) is the boundary condition at

u =u(é) is a given function, and w(T) is determined from
2 2

x =0,
Eq. (3.22)[ see Appendix D],
Only Eq. (3.22) needs to be modified when the temperature is

used as the fundamental thermodynamic variable, We can relate w

to T rather than 6 by writing

dw _[(BT}dw
a6 166 /dT
Since Sn is a constant
06\ _ 2 |0s\ _ _ s
57)= o\ a7 = 1-0) = (3.26)
n u
2
s0
1
d_w__Z_ s |1 2 1 (2 22
= =T E—[zw+(uz+zéw) , (3.27)
2

The other parts of the solution remain unaltered except for the fact
that 6 and u are now considered to be functions of T,
2
There are places in the derivation of this solution where

significant difficulties could arise. For instance, it might be possible
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to obtain different solutions than the one found for Eq. (3.17) if the
determinant of that system of equations vanishes, However, it is a
simple matter to show that this can not occur and Eqs, (3.18) do
indeed represent a unique set of solutions,

Another point of concern arises in connection with Fig. 4 where
we have shown an L_ characteristic intersecting the t-axis. It is
possible that the L_ lines may either intersect each other before
crossing the t-axis or they may curve away from it completely and
become vertical at some point., In either case Eq. (3.21) would no
longer be valid. It is subsequently shown, however, that both w and
6 are constant along all L+ lines so that all members of the L _
family of characteristics are parallel at the point where they cross
the line x - c(7)(t-7) = 0. Since this is true for all 7, the L_
characteristics never do intersect,

Equation (3.15) is the differential equation for the L _charac-
teristics. If an L_ line ever does become vertical in the x, t-plane

then at that point

dx
(at_)_:o , (3.28)
Thus
_]_2._
1 B3 b mE T
(—Z-é)w—(u-kzéw =0
or

A study of these equations shows that w> 2/3 u if Eq. (3.27) is
2

true. But the original assumption that w is not important as a
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thermodynamic variable (assumption 3) is no longer valid if this in-
equality is true, Therefore this consideration is not a limiting factor
as far as the validity of the derivation of the solution is concerned,

It is also possible that the L+ characteristics will intersect
each other with the result that the one parameter family of L+ lines
forms an envelope and discontinuities appear in the solution, This
actually does occur and will be discussed in detail in the next Section,

One final point should be made here concerning this entire
analysis and much of the work containéd in the next Section, It has
been mentioned previously that the Landau equations represent the
actual flow only under a very restrictive set of circumstances. In
particular, they are valid only to order w?; in addition, terms of
the same order of magnitude have been neglected as a result of the
assumption that w 1is not an important thermodynamic variable.
Consequently, all of the above calculations are valid to order w, at
best., It is more correct, then, to rewrite the differential equation

giving w at the boundary as

_582
el A L S PO (3.29)
2 (S 2 Zu 2
2 u
2
or
d_w___Z s 1l w w
dT ~ 1+¢ ﬁz—[l Ty +O(—;H (3.30)
2 u

and the slope of the L, characteristics as

c(r) = {1&(;— . a)uﬁ +0
2
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However, a numerical analysis has shown that neglecting the higher
order terms has very little actual effect on the solution, The result
of the numerical integration of Eq. (3.30) to give w(T) for different

values of To is shown in Fig. 6 for [w] < o The values for uz

and s were taken from Donnelly[ 2] and it was assumed that

Pn
T

Ty

which London[ l] has shown to be true in the same region where srl

T)S-é

is a constant. These results differ from those obtained by integrating
Eq. (3.27) rather than Eq. (3.30) by less than 1 meter/sec for all

initial temperatures and for w less than u .
2

Equation (3.31) is the only one that can be verified to O(w)
by Khalatnikov's linear theory. We can reduce Eq. (B7) so that it is
consistent with this theory by
op

1. Neglecting —5—%1 so the expansion of the thermodynamic

variables is not included,
2, Setting v =0 and hence u—>c, and
3. Assuming 5. is a constant.

Under the third assumption

and the quadratic for c is
c? - (1-26)wec -u? =0
2

which is the same as Eq. (3.12) if O(w?) terms are neglected.
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C. THE NATURE OF THE SOLUTION

Equations (3.25) represent the time and spatial dependence of
the flow parameters 6 and w for the propagation of a temperature
fluctuation given at the end of a semi-infinite tube containing He II,
Although this solution has a limited range of validity it displays many
of the important characteristics of second sound and will serve as a
basis of comparison with more general solutions derived later and
with other theoretical results. It also has the distinct advantage of
being an explicit solution and can therefore be studied in detail with
the use of some relatively simple analytical tools,

By inspection of this solution it is clear that it represents the
undamped propagation of 6 and w with ¢, as defined by Eq. (3.23),
being the propagation speed. In this approximation c¢ 1is a function

[

of temperature only. As Temperley =] has pointed out, the terms
involving w have a much greater influence on the temperature
dependence of the velocity of propagation than the temperature varia-
tion of LS itself. This is in contrast to the case in ordinary gas
dynamics where just the opposite situation occurs. It is not surpris-
ing that there is no attenuation since all irreversible processes and
the interaction of first and second sound have been neglected.

Some non-linear aspects of this solution such as the deforma-
tion of a given temperature pulse as it propagates through Hell are
found by considering the temperature dependence of the velocity of

propagation, c. Since the L+ characteristics are straight lines and

¢ measures their slope with respect to the t-axis, it is clear that

two adjacent L+ lines will converge towards each other andintersect
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if
dc
! e k
c(1) = 3=>0 . (3.32)

If this condition is met then the L+ lines will form an envelope,
Equation (3.23) is the equation for these L+ lines;

x - c(T)(t-T) = 0 (3.23)

To find the equation of the envelope differentiate this equation with
respect to the parameter T,

c(t) - c'(T)(t-7) =0
and combine these two equations to write the parametric equation for

the envelope as

t=17+ f,(("T)) = t(T) (3.33a)
c?(T) '
X = T T) = x(T) (3.33b)

These equations can also be written

=1

t -7 = -C-l[di'r (cfl_)]

Therefore, if

dT )| dT

then the envelope has a cusp at



P & i
tC =T + =TT (3. 34a)
. - C"‘(f) . (3. 34b)
¢ ')

The pair (xc, tc) is the point in the x, t-plane where a discontinuity
first appears in the solution given by Eqgs. (3.25) and this solution is

no longer valid.

In order to write Eq. (3.32) as condition on the temperature,

define the function F by

F(T) = 25 (3.35)

so c'(t)> 0 if

F(T) d—?rl =F(T)T' >0 . (3.36)

Using Eq. (3.27) to eliminate g—\TN we can write F as

2 U-Z
2
. 1
(1-6)(1436) w I 2wi\2 1 o w_
2(155) = l+46 - 26u {3.57)
u 2
2
s 1-26 (1-6)(1+436) w _;_\12
‘E{“ 75 TeEe e (4. 39)
2 2 u
2
where
u [0u
__2|_z2
h = 5| BT {3.39)

This function h is dimensionless and provides a measure of the

importance of the temperature dependence of u . The function h(T)
2
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is shown in Fig. 7. This function must vanish at the \ -point since

uZ(T)\

h—=> -0 as T = 0, This is to be expected since s > 0 by the third

) = 0 and all other factors are finite., Also, it appears that

law of thermodynamics but the detailed T dependence of | must be
known before this can be stated as a certainty.

Solving Eq. (3.27) for the function w = w(T) involves using
the condition w =0 at T = TO to eliminate the integration constant,
Hence, the influence of TO on condition (3. 32) comes only through
the dependence of w on TO in F(T). Notice that this condition
depends on T, To’ and the sign of T' but not on the magnitude of
T'. However, if the L+ characteristics do converge both X and
tC - T are inversely proportional to the magnitude of T'.

We can now state that a discontinuity will appear in the solution
if

= for TV> 0
(T} : (3, 40)
<0 for T'< 0

This leads one to define a ''critical' temperature TC by

F(TC):O (3.41)

with its corresponding critical 6 = 6C = 6(TC). This critical tempera-
ture is important because, for a given initial temperature, it divides
the temperature range of interest into separate regions in which the
nature of the solution is quite different, Using this concept of the

critical temperature we can write Eq. (3.40) as a condition directly

on the temperature as follows:
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>< TC when T' 2 0 for F(T) 2T )% 0
T (3.42)
2 T, when T'SO for F(TZ2T_)S O,

Equation (3.41) is considerably simplified at the initial con-

ditions, Defining £(T) as F(T) when w =0, Eq. (3.4l) reduces

to
s(TC) l—Z(SC
f(TC) = u‘z———(’T:){h(Tc) + m—;—} = O 3 (3,43)

This f(T) is strictly a function of T and does not depend on the
detailed solution given by Eq. (3.25). Although ¢ = u2 when w = 0,

this equation shows that

since

W+ 0 at Te T,

If the inequalities stated by Eq. (3.42) with T = To and F replaced

by f are valid initially, then the discontinuity will first appear at the

wavefront, If we could neglect the temperature dependence of u, h
2

would be identially zero and

6_=1/2 or T =2.11°K . (3.44)

This first estimate of the critical temperature could have been made
directly from Eq. (3.31) with u a constant,
2

The function f(T) is shown in Fig, 8, Again there is only one

critical temperature; it has a value of
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T =2.02°K . (3.45)
Since (T % T_)S 0, Eq. (3.42)is simply

To Z TC when TO' 2 0o . (3.46)

For example, if T < 2. 00°K then a discontinuity will appear at the
wavefrvont if TO', the initial time rate of change of T at the bound-
ary, is positive.

The complete function F(T) does depend on the specific solu-
tion and this is shown in Fig. 9 for various initial temperatures.
Again F(T % TC) % 0 so Eq. (3.46) is still the condition that deter-
mines whether a discontinuity will appear in the solution. As in Fig,
6 only the results for the temperature range where lwi < uZ are
shown. When the initial temperatur.e is less than 1,75°K there is no
critical temperature and, by Eq. (3.36) a discontinuity will appear in
the solution only if T'> 0. For T_> 1.80°K there is a critical
temperature which is a function of TO as shown in Fig, 10, However,
the low temperature portion of each F(T) curve is also pointed
toward the abscissa so, in a better theory, we might expect the exist-
ence of two critical temperatures for each TO if this trend is con-
tinued. At T = 2,01°K, the initial and critical temperatures have the
same value, The temperature at which To = Tc, which will be
defined as T*, is a very important one because it, like the critical
temperature, separatés regions of différent flow characteristics., In

fact, the prediction of this temperature is one of the major objectives

of this theory. We will discuss this point in greater detail in the next
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section,

D. MORE GENERAL ANALYSIS

We have now developed the Riemann theory of second sound in
some detail and have discussed most of the important features of the
propagation of these thermal waves. However, it is desirable to
develop the same type of theory but one that has a greater range of
validity. This can be done by eliminating the restrictive assumptions
stated on page 34 ., We will thereby also gain a quantitative measure
of the relative importance of these assumptions; the qualitative
features of second sound as presented above will still remain the
same,

It is relatively easy to drop the assumption that s is a con-
stant and not specify any dlirect relationship between 6 and s as
implied by Eq. (1.1). One of the consequences of this is that Eq.
(3.3d) does not reduce to an equation for 6. Retaining the other two
assumptions that v = 0 and that the thermodynamic importance of w
is negligible means that the density is still a constant and Eq. (3.5)
is still valid, Therefore, we must again start by simplifying Eqs.

(3.3c) and (3.3d). In one dimension these equations are

146 ow 1 96 T L =" dw 1438 5 96

——-‘2 T + > Wé—a-t—'f‘s 5—;{—-'**3 -————-4 W g}—{- - —————4 W 5;:0(3,473.)
0s 1-68 Os 1-6 ow 1 06

T TRt e . Sl

It is more convenient to use T as the independent thermodynamic

variable so we will assume 6 = 6(T), s = s{(T) and write



s 2
o 26 &7 (3.48)

146 1 @_) Bw
Z 218T ot
+
0 1-6 s oT
146 2 ot
u
2
5 1-82 .. 1438 86, ow
4 4 0T ox
=0 . (3.49)
1-6 1_[(_1'_5)_2_1_(%)]“, oT
2 2 1+6 2 oT 0x
2

The analysis to be done on these equations is based on the
theory presented in Appendix A and is quite similar to the analysis of
Eq. (3.10). Therefore, we will eliminate the details and simply quote

the results based on the previous work, The quadratic equation for

the characteristic speeds is
2
u 3 "
c* +[—l-— S—Z(—a—é—) -2(1—6)}WC -ut +0O(w?) =0
2

Under the appropriate assumptions this is identical to Eq. (B7),
Khalatnikov's result, The roots of this equation are
\.12 9
Sy +[<1-5> e —Z(a;‘,r)] w+ O(w?) . (3.50)
As before, there are two distinct roots so the system of Eqs. (3.49)
is hyperbolic and the solution as given by Egs. (3.25) with T(7), the

given boundary condition, replacing 6(7) in Eq. (3.25b) is still valid.
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However, the expression for the temperature dependence of w, for

instance, must be modified; from Eq. (3.50) it is clear that the

velocity of propagation is given by

O] |N$:N

c=u +{(1-6) -

(——)}m'+-0(wz) . (3.51)
I

The differential equation for w(T) at the boundary is

2
dw _ 2 s 1|6 82486 w
aT = T u 1+Z{_1-5 Hor)* ¢ g+

32-) . (3.52)
2 2

u
2

The result of the numerical integration of this equation is shown in
Fig. 11 for [w] < uz. This temperature dependence of the relative
velocity is qualitatively similar to that shown in Fig., 6 for the case
where S, is a constant, And, as expected, the differences are more
pronounced at lower temperatures although there is some change over
the entire temperature region of interest. The most important differ-
ence is that w does not vary as rapidly with T and, consequently,
the region over which this analysis is valid is greater than before,

Finally, the expression for F is

2
a u
146 1 96
F=—2(h+2 b s _éw.__)
s 1-6 1-52 S 0T
2 4
{z u-op 2 Yjee) 6 Teep
2 146 146 s 10T (1 6)2(1+(5) 2 10T
2
1 196 1 1 % 0% \|w w?
~ g Bl = g AP Y g o T
| 1-62 s?lpT2lY, u?

where h is defined by Eq. (3.39). This function is depicted in Fig.
12 and the dependence of the critical temperature on the initial tem-

perature on the initial temperature is shown in Fig. 13; these
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correspond to Fig., 9 and Fig. 10, respectively. There is a signif-
icant change in F at all temperatures as compared to the previous
theory. The temperature where TO :'TC is 1.95°K, which coinci-
dentally, is also the temperature where 6 = 0, In addition, a critical
temperature exists for initial temperatures as low as 1,60°K, These
results are unexpected since thé assumption that 5. is a constant is

[1],(42]

considered to be a very good approximation for T > 1,4°K

Since s = EE, we can conclude that F and,consequently, the crit-
n

ical temperature are very sensitive to the total entropy and/or the

normal density which, in turn, means that they are very sensitive to

the thermodynamic functions s = s(T) and 6 = 6(T). This has been

previously observed as far as the critical temperature is concern-

ed[42].

In summary, we have seen that it is possible to generalize the
original equations and yet not need an entirely new analysis to study
the new solution and its basic characteristics. With this in mind, we
will now generalize the first system of equations, Eqs, (3.8), in a
number of different Ways and still retain the same fundamental solu-
tion; nevertheless, some imporfant changes will be observed., It will
be possible to isolate and compare the relative importance of the
effects of the different generalizations in the final results.

In particular, wewant to study the importance of w as a
thermodynamic variable. To do this, choose P and T as the

independent thermodynamic variables and rewrite Egs. (3.4) as

p=p(P,T,w) (3.53a)



s =s(P,T,w) (3.53b)

5 =6(P, T,w) . (3.53c)

The lowest order terms in the expansion of p and s in terms of w

are given by Egs. (B2);

Bao Qg —
S = SO o ﬁ- '2— + O(W ) (3, 546.)
da T2
1 1 o|w —4
g ———ap) -+ O(w%) . (3.54b)

A subscript '""o'' is used to denote quantities depending only on P
and T. Since w is a thermodynamic as well as a mechanical variable
even a non-linear analysis is valid, at best, for |\7vl < w when the
expansions above are used to represent the role of w as a thermo-
dynamic variable. Using these expansions, it should be possible to
extend the preceeding analyses so that they are valid to O(w?). And
yet, it can be seen from Eq. (B7) that the O(w?) terms in Eqs. (3.54)
affect the velocity of second sound to first order so these terms are
more than just a second order correction,

| To avoid repetition of the previous work, it will again be as-

sumed that sn is a constant;

Faloeasi
s
n
and hence
1 86Zo
_ =) =4
6 = (‘SO + —sn 57| W + O(w) (3.54c)

where
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B md w1
O S
n

In this notation Eq. (3.26) is written

860 sO
3T = 1% =
u
2
and _'1
l—cSO 850
2 _ 2
Y S 156 %0 |BT
o
Similarly
06 1+6 146
(__o_)_ 0o 1) " g
aP S 8T po po U.Z
2
where
u? 8p us
= 2 = By 3
g = pOsO(BT) s, “p 3. 85}

in which ap is the coefficient of thermal expansion. The function g
provides a measure of the importance of thermal expansion and is

shown as a function of temperature in Fig, 14, Equation (3.54) can .

now be written

1-6_ = B
s =s [1 t — e, o O(w'*)} (3.56a)
2
u
2
146 =
p = po[l T8 —+ O(w‘*)} (3.56b)
u
2
k=B,
_ e "
6=6_+ — 2+O(w)‘. (3.56¢)

Once again assuming that v = 0 implies that p(P, T,w) is a
constant, Eq., (3.11) is still valid, and Eqgs. (3.8) serve as the basic

equations for this analysis, Consider the term by using

85,
ot’
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Eq. (3.56c) it can be written

Therefore, the pressure variations must be considered in this anal-

ysis, By Eq. (3.11) we can write

L ® 1-6 —2 3
oP e} ow o we 90T w ’
8t ~ ~ T2 R Bt * 2 6oposo 2 ot t & 3 ) ’ (.57}
u u
2 2

Consequently, Eqs. (3.8) can be Written only in terms of w and T

derivatives, In one space dimension, these equations are

2
lﬁ[l-(ua)g]w &l = 1—[6-(1+5)6g+(1+a)h]-w— I
2 2 . 2 Bt
u
2 +
1 0 o1
3t
146 3 - aw\
2
=0 .(3.58)
2 1-6%2 wt 9T
(1-5)W _1+5 S(l- 4 u—z—-) -a-;
2

All O(w?) terms have been retained in these equations and, for con-
venience, the subscript ''o'" has been dropped.

As before, there are two distinct characteristic speeds for
this set of equations and Eqs. (3.25) with T(7) replacing 6(7),
represent the solution. Consequently, the introduction of w as a
thermodynamic variable does not give rise to any attenuation of second

sound. The velocity of propagation is



(3.59]

By comparison with Eq. (3.31) it is clear that the inclusion of therm-
al expansion and w in Eqs. (1.7) affect ¢ to O(w). Once again,
this result is consistent with Eq. (B9) when g = 0.

The differential equation for w(T) is obtained by the same

procedure as before; it is

dw 2 s 146 w . 1]1+46°2
T = Tor e il e z[ 7~ - (116)(4-d)g
2 2
2 2 3
s {19EYE 4 (1;”5) gZJV_"_ e 5 E_) : (3. 60)
L

There is also a first order change in this expression as compared to
Eq. (3.30) even for g = O; The temperature dependence of w is
shown in Fig., 15. In this approximation w varies more rapidly with
T as compared to w(T) as given by the first theory. This is just
opposite to the effect noticed when the assumption that s, equals a
constant was eliminated; the order of magnitude of the change is the
same é.nd is also more pronounced at lower temperatures., The effect
of thermal expansion on w (T) is very small, less than #+.1
meters/sec at all temperatures, which is also the same as the order
of magnitude of the error,

The other quantity of interest, F, is no longer defined by
Eq. (3.35) because the effe;:t of the variation in the pressure must be

considered. In this theory



72 -

oxnjeaadwa] snsiop £}100[0A 2a13R[OY - 6] 2andig

(o) L
02 8°l 9l vl 2’| o'l

| 1 I I I

00"g2=°L

1

1

_

_
11
|

_

Gl1=°1
0G'l=°1

g2’l=°1
00’ =°1

(09S/ W) M



SO

i _(a_c)d_'l; . a_c)c_l_P_’
dr oT!| dT oP| dt

By combining Eqs. (3.57) and (3.60) we can write

dP 1-6 w w w? | dT
2 2 u
2
Therefore F 1is defined by
dc 1-6 W wl([0c
F:(a—,f)———z—-ps 2 +{2-6-(1+6 )g] E‘J (é-f, : (3.61)
2 2

If we assume g and h are functions of T only, this becomes

s 5 3446 -36° 3-6
F=39% 15 +g+hT+[ Z(6) T Tz 8

2
1+6 7, dg w w?
t 7 ar Thy - UBkp[g- 107 8 b2)
2 u
2
where 2 Bu
T S
hT_h— s T
ou
_ 2
by =P, 55

The dimensionless function hP measures the importance of the
pressure dependence of u ; this variation of u is shown by
2 2
[ 3] . [10] . .
Donnelly and Atkins . In the temperature region of interest
hP is the same order of magnitude as g so it represents a small
effect., This F is shown in Fig. 16 and the critical temperatures in

Fig., 17, As before, the temperature dependence of F is quite sen-

sitive to the functions 6(T), s(T), and u (T). There is an appreciable
: 2
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.
difference between these curves and the ones in Fig. 9, particularly
above approximately 1,25°K. For temperatures less than this, drop-
ping the assumption that s is a constant has a greater effect on F
than the inclusion of w as a thermodynamic variable,

One of the important differences is the appearance of a second
set of critical temperatures at low temperatures as was anticipated
earlier, This is a different branch of the function TC = TC(TO) but
there is no additional temperature where Tc = TO. However, this
may not be the case in a more refined theory. On the upper branch
T" = 1.89°K.

The most significant change from the previous theories is in
the zeroth order term of F. Compare Eq. (3.62) with g = 0 and

Eq. (3.28), the expression for F in the first analysis:

cefreolz] o
2
F = f’—[h " lig +o( )] (3. 62)

2

Hence, it is clear that including the second order terms in Eqs. (3.56)
changes the zeroth order term in F. This difference is not a result
of taking the pressure variations into account because, by Eq. (3.61)
this can only change the first and higher order terms. Rather, it is
because the velocity of propagation is changed to first order and F

is defined as a linear sum of partial derivatives of c¢. In a similar
manner, the O(w%) terms in Eqs. (3.56) will affect F to O(w?) so
Eq. (3.62) is valid only to first order in w as shown,

There have been no previous direct experimental investigations
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of either w(T) or F(T). Motivated by the other linear theories
[42]

Dressler and Fairbank used a pulse technique to indirectly meas-

ure the dimensionless quantity y where

The relative velocity, defined by w = I:I/pSsT where H 1is the heat
current density, was kept small enough so that w was on the order
of 1% of uZ so that a linear theory is sufficient todescribe the results,
The only quantity of interest here that has been directly measured by
this experiment is T* which corresponds to the point where vy = 0,
It was found that y =0 at T =1.873+ .005°K and .946+ .01°K,
The higher value is very close to the value predicted here while it is
felt that the lower temperature is out of the range of validity of this
theory. The critical temperatures as shown in Fig, 17are accurate
to about +£0.1°K due mostly to the uncertainty in the thermodynamic
data.

We can now dvescribe in detail the propagation of a temperature

pulse and illustrate the change in the nature of the flow at the critical

temperatures. Assuming a second, lower temperature exists where

3¢

T = To there are three distinct temperature regions to be considered.
(<0 for T<T,
F{>0  for Tl <TZ Tu (3.63)
<0 for T.<T

b u

where



T8 =

.95°K (experimentally)

H‘
0

1.89°K (theoretically)

H
n

Since the sign of F determines whether the L+ characteristics are
converge.nt or divergent for a given boundary condition T(t), the
solution as given by Egs. (3.25) can now be explicitly shown. The
sequence of events shown below illustrates the nature of the solution
for an arbitrary pulsé shape. The first curve shows the temperature
pulse which is given at the end of a tube. The subsequent curves show
the spatial distribution of the pulse at later times as it propagates

down the tube,
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If TO > TC(TO) > Ti then the rear edge of the pulse steepens
as shown above for TO o TC(TO) % Tj; . In all temperature regions a
negative temperature pulse will also steepen into a shock but the
opposite edge of the pulse as compared to a temperature rise is the

one where the discontinuity appears. For instance, the following

sequence will occur for T > T (T )> T,
o c'"o u

The next two sets illustrate what happens when the critical

temperature for a given initial temperature is exceeded during a

positive pulse,
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Summarizing these solutions, we can conclude that a tempera-
ture pulse, either positive or negative, always degenerates into a dis-
continuity which can appear at either the front or rear of the pulse.
This discontinuity first occurs at the inflection point of the boundary
condition c(t) [ see Appendix C]. Furthermore, if a critical tempera-
ture is exceeded during the pulse two separate shocks, one positive
and the other negative, appear in the solution.

These conclusions have been qualitatively verified by the
experiments performed by Osborne[4l] . However, no observations
were attempted which would have verified the prediction that a pulse
may deform into two shocks since this was not known then. Using
parameters for typical pulses used in these experiments in Eq. (3.34b)
for the distance traveled by a pulse before it becomes discontinuous,
we find that x_ = 9.1 cm. for a positive pulse at T _ = 1.2°K and
B, = 8.55 cm, for a negative pulse at the same initial temperature; at
TO =2,1°K, X, = 3.68 cm. These distances are the same order of
magnitude as indicated by the experimental results, A possible
explanation for the anomalous short range behavior of positive pulses

at T = 2.12°K has been made by Dressler and Fairbank[ =l :

E. THE INTERACTION OF FIRST AND SECOND SOUND

It has previously been assumed that v was identically zero
in order to rule out the excitation of first sound and to concentrate on
the basic properties of second sound. This procedure also served to
sufficiently simplify the equations of motion so that an explicit solu-

tion representing the propagation of a temperature pulse could be found
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and studied in detail. We will now eliminate this assumption and
investigate the interaction of first and second sound. Hence, the
solution that, up to now, has served as a basis for the study of pure
second sound is no longer valid and a new one must be derived from
the Landau equations,

A system of equations valid to second order in w that des-
cribes the propagation of both pressure and temperature waves can be
derived from Eqgs, (3.3) by making the following simplifications:

1. With the goal in mind of applying the results to the same
physical problem as before, assume that all variables depend only on
x and t.

2, Assume s is a constant in order to simplify the calcula-
tions as much as possible,

3. Include w as a thermodynamic variable but neglect the
effects of thermal expansion so the equations of state are given by
Egs. (3.56) with g = 0,

These assumptions can be removed in more general analyses
but provide here the simplest set of equations for the study of the
interaction of both types of wave propagation in He II. This set of

equations is

9P oP 2 O

-a—t—'+ v 'é—}z + pul -5; = O (3.64&)
v ov 1 1-6%2 w?|oP 1-6 w? 8T 1-6% ow
st TVttt Tz _2)8?"_2 08 —= 5 T °3 ox = 0
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2
where
uZ :(—g—-E
1 ps
uzau)
_ 2 2
s oT

and all thermodynamic variables do not depend on w ( in other words,
the subscript '"'o'' in Egs. (3.56) has been dropped). The partial
derivative of uZ with respect to T appears in these equations be-
cause the lowest order terms in the expansions of p and s contain
. The temperature derivative of u1 would appear only if the higher
order terms in these expansions were also included.

The Riemann analysis of these equations is also based on the

theory presented in Appendix A and differs from the previous work in
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that there are four equations for the four unknowns P, v, T and w
instead of just two equations as before., The quartic equation for the

characteristic speeds is

g 3 ) 2, 1-36% 5. .2 2 22 1-6% 5 5
U* +26wU0° -({u” +u° + > we U - 26u“wU + u“u® - u‘w
« & 2 1 12 4 2
2
-*-%.é_ huzwz_ L*%E_(_S_ uZWZ:O (3'65)
1
where
U=e ~-v¢ . (3.66)

The differences between this equation and Eq. (Bl1l), Hsieh's result,
are a result of including w as a thermodynamic variable and keeping
all O(w?) terms.

The differential equations for the characteristics are found by

solving Eq. (3.65) for ¢

2o [
2 3u“+u 2
L S P =vru £ 6 L. 2. 4 o(w”) (3.66)
dt 1 8 2 2 u
12 u -u 1
/7 1 2
2 2
u“+3u 2
d¥) M oviu -swi S (L8 T 2 W)W owd). (3.67)
dt 2 4 2 2 2 u
34 u ‘UZ 2
1

The corresponding invariants can be written in the form

dP
ﬁLZ IZZ + Bl,zu dV + ﬁllZSdT + BlJzu dW = 0 (3. 68)
1 p 2 1 1.2 3 i,2 4 1 1)2
3,4 34 34 34 4
L i + ) d + ) dT + 3;' d = 0 3. 6
B1 p ﬁ'2 uz V3)4 B3 ° 3,4 53 uz W3,4 ( 9)

where
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We can state by analogy to the previous application of a similar
set of characteristics and invariants that the propagation speedsl of
first and second sound are given by Eqs, (3,66) and (3.67) using the
upper signs. These results agree with those of Khalatnikov to first
order and show that these propagation speeds are affected to O(w?)
by the interaction of pressure and témperature waves., They also il-
lustrate that both types of waves move relative to the mass flux veloc-
ity, wv.

This set of characteristics and invariants can be applied to the
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same physical problem as before. However, the initial and boundary
conditions must be stated more completely. At the end of the tube the
temperature is still a given functioh of tiﬁe but we also require the
mass flux velocity to be zero at x = 0, Initially, the equilibrium
stated is defined by T = To and P = Po plus the requirement that
both v and w vanish,

The procedure for solving this problem is very much like the

one employed previously until the stage shown below is reached.

j !
B
@3
= —9= —_—
T, ¥ A
Figure 18a Figure 18b

The lines L are defined by x =u -t, Up to this point it has been
L2 1,2

d

shown that P = Po’ T = To and v =w =0 in region A, Also, itis

known that

P(r) = P, (3.70)
S
w(T) = Tff?s: :O- [ T(r)-T ] (3.71)

2

where 7 represents some time on the t-axis close to the origin, We

now want to consider a point Q close to both the t-axis and the L
1
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line. This can be done in either one of the two ways shown in Fig.
18 above. The distinguishing feature is whether the 4 characteristic
first intersects the t-axis or the I_,I line, This, in turn, is deter-
mined by whether Q 1is above or below the I_,Z line separating region
B and C.

. The values of the variables at Q are markedly different in
these two different cases; the calculations in both cases proceed

similarly to the ones used previously. It can be shown that through-

out region B

T(Q) = T w(Q) = 0
PQ) - P_ = poul°v(Q) , (3.72)
2 2 : 2
V(Q) = 63 (TZ)SZ(TZ—TO) % B4(7_2)111(72)“/ J

W BT )u (T )BA(T )
1 1 2 1 2 2 2

where a subscript "2'" denotes quantities evaluated at 7 and w
2 2
is given by Eq. (3.71) with 7=7 . However, since the B's contain
2
powers of w , this expression for v(Q) must be expanded so that it
2

includes only O(w?) terms. The resultis very complicated and can

be summarized as

v(Q) =0+ O[(AT )?]
& (3.73)
P(Q) =P, +O[(AT )]

where

Therefore, we can conclude that no second sound has been excited in

region B and that the magnitude of first sound in this region is
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O(w?).
2
In region C both first and second sound waves are excited.

At the point Q in Fig., 18b, it can be shown that

2 o

wiQ) = 75— — [TQ) - Tl
o u
2
or, equivalently
> S
W(Q) - W = 1+ [T(Q) = T4]
ou’
2
and, as in region B
P(Q) - P = poul‘/(Q)

viQ) =0 + O (ATZ)Z]

Therefore, the magnitude of first sound is still O[ (AT)] but w is
O(AT) or, in other words, w 1is an order of magnitude larger than
v in the region where both first and second sound exist. Another
importaﬁt difference between regions B and C is the fact that the
2 characteristic is a straight line in region B but not in region C,.
This means that the velocity of first sound in region B depends only
on the given boundary condition T(t) but in region C both propaga-
tion speeds depend not ovnly on the boundary condition but also on how
far down the tube the pulse has traveled.

The same iterative procedure as illustrated in Fig. 18 can, in
principle, be used to find the complete solution in region C. How-
ever, there are two main difficulties that have already been mentioned

which prevent the details of the calculations from being completely
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carried out. First of all, any expression which contains w or AT
in the denominator, such as the one for v(Q) in Egs. (3.72), must
be expanded so that only O(w?) terms are retained in the solution,

This creates unmanageably long expressions and the algebra of the

problem itself becomes prohibitively complex.

The other difficulty is of a more serious and fundamental
nature. When the equations describing pure second sound were
studied, we were able to find a family of straight line characteristics
with the deéendentv&riables being constant along these lines; this is
the only reason why we were able to obtain an explicit solution and
discuss it in detail. But when the interaction of first and second sound
is considered, there are four different families of characteristics
none of which is a set of straight lines. This fact prevents us from
extending the iterative scheme beyond one single step at a time. Con=
sequently, it is impossible to find a useable, analytic representation
for the solution or to obtain any thing more than a qualitative meas -
ure of the magnitude of both first and second sound. Nevertheless,
the set of characteristics and invariants provides a very convenient
tool which can be used to numerically study the problem and to obtain
quantitative results for a given set of initial and boundary conditions.
Finally, it should be pointed out that if a solution is sought which is
valid to only C(w) then the entire problem reduces to one that has
already been solved because the magnitude of first sound is O(w?) so
the distinction between rvegions A and B’ disappears and a non-
trivial solution exists only in region C, This is exactly the type of

solution depicted in Fig, 4,
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A review of the qualitative results obtained above shows that
there are two distinct wavefronts separating three distinct regions in
the x, t-plane each of which has a different type of solution, There is
no disturbance ahead of the first sound wavefront L1 in region A.
Only pressure waves have propagated into region B ahead of the
second sound wavefront L2 while in region C both first and second
sound exist, the pressure waves being an order of magnitude smaller

than the temperature waves,

F. DISCONTINUOUS SOLUTIONS

Throughout the preceeding analyses of second sound it has
always been implicitly assumed that the given boundary condition T(t)
and the accompanying solution were both continuously differentiable
and single-valued. However, we have shown that there is some point
in the x, t-plane where the solution possesses neither one of these
properties for a pulse type boundary condition, Physically, this
means that a shock is formed.

The hydrodynamic theory of shocks in Hell has been discussed
by Khalatnikov[ a5 and Temperley[4o] . The shock is idealized by
assuming that it has zero thickness and is manifested by a jump in
the quantities across it. One method of deriving the equations which
describe the discontinuity and its motion is illustrated below. The
conservation of mass equation, Eq, (3.3a), written in one~dimension-

al, integrated form is

d b b
-—-5 pdx + pv
dt

a

=0 (3.74)

a
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Suppose the discontinuity is at x = X(t) and is moving with speed
U = X(t). Let a— X from the left and b~ X from the right in

Eq. (3.74). Then

-Ulp] +[pv] =0 (3.75)

where [Q] =Q - Q, the jump in Q across the discontinuity. The
2 1
subscript ''2'' denotes quantities in front of the shock and a 1"

those quantities behind it. Be defining
q. =v, - U , i=1,2 (3.76)
Eq. (3.75) can be written as
Pd =pq . (3.77)

We can analyze all of the Landau equations, written in a form
somewhat modified from Eqs. (3.3), in a similar manner. The con-
servation of mass and momentum as expressed by Egs, (3. 3a) and
(3.3b), respectfully, will be retained as they are. It is possible to
write the conservation of energy law based on the Landau equations[ 1]

as

where e is the specific internal energy. Finally, the equation of

motion for v is

;2
—-—+V([J,+ s):O (3.78)
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where U is the specific chemical potential. This relation may be

called a ''conservation of zero vorticity' equation. It can be shown

that[ 29]

el

_l_n
2 p

[J,:e'i-P/p—ST— w?

Writing these four conservation laws in one dimension and analyzing
them as illustrated above gives the following equations describing the

motion of a discontinuity in He II:

= = t. 3.79a
P, %, =0, 4, =eoms {3, 79a)
p_.p
P +p qz 4 K2 B2 w* - sonst, (3.79b)
Z 2 pz 2 .
p P p__P
e+—2—sT——1—q —iz—qw—l—nzSZ w? = const. (3.79c)
2 P 272 2 P 2 2z & 2
2 2z P
2
P p...pP
2 2 Ny Sz 2+ ny' sz 3 _ t.
(pzqz + pszwz)s ) P q w2 qzw — W cons
2 pZ
(3.794)

where p, e etc., depend on w. Given the conditions ahead of the
shock, these are four equations for both the state behind it and the
shock speed U. By the definition of q; these equations are invariant
under a Gallilean transformation since w itself is invariant. Putting

W1 = WZ = 0 reduces the first three equations to the classical ones

while the fourth one implies that entropy is conserved.
It can be shown that these equations are the same as those
derived by Khalatnikov when w =0, Temperley finds a different set

1

not only because equations other than the Landau equations are used
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but also because he has imposed the conservation of entropy law
across the discontinuity rather thab Eq. (3. 79)_ Entropy is not con-
served across a shock in an ordinary media and it is expected that
the same result is true in He II; consequently, there are fundamental
doubts about his shock front theory.

The ideal procedure to follow from this point would be to
derive a function analogous to the Hugoniot[ 44 relation describing
the shock transition in ordinary gas dynamics and to deduce the basic
properties of shocks in He Il f'rom this function. This is exceedingly
difficult to do because w appears in Eqgs. (3.79) both as a thermo-
dynamic variable and as a mechanical velocity. Thus, unlike the
case in ordinary hydrodynamics, it is impossible to eliminate both
v and w from any single equation and obtain a relation only on the
therrﬁodynamic variables. This increased complexity is due to the
fact that Egs. (3.79) describe both 'first and second shocks'' where-
as in the classical case a small entropy rise is merely '‘carried
along'' with a pressure shock,

It is possible to obtain some results by assuming that the jump
of the variables across the discontinuity is small and following a
perturbation procedure. This is the method used by Khalatnikov; the
most important results will be quoted here, In the limit of a weak
pressure or temperature discontinuity the shock propagates with a
velocity equal to the small-amplitude sound wave velocity. Consider-
ing only temperature discontinuities (liquid helium cavitates before a

pressure discontinuity can be established) it can be shown that the

jump in pressure is a second order quantity relative to w;
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pnps 1 2.2
AP={ Sz PR, 3P

“sz (3.80)

W, (3.81)

These results are for a second shock moving into a state where w =0
1
and w = w , the relative velocity behind the shock. The order of
2
magnitude relationshipsvbetween AT, AP, and w in Eqgs. (3.80) and

(3.81) are the same as those for continuous solutions. The velocity

of the discontinuity is

where y 1is defined by Eq. (B8) and it has been assumed v = ¥, & 0.
1
Therefore the first order change in the velocity of propagation is one-

half of its value for continuous solutions. These results include the

lowest order expansions of p and s for small w, Egs. (3.56).
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CHAPTER 1V
CONCLUDING REMARKS

A. A REVIEW OF THE RESULTS

The preceding work has clarified and extended the linear
theories of second sound and exhibited the deficiencies in the previous
Riemann analysis. In addition, the detailed behavior of the propaga-
tion of a temperature pulse has been given. Some of the important
results and conclusions will be discussed further here and additional
improvements in the theory will be suggested.

In general, the two-fluid model has provided a very useful and
accurate continuum theory to describe the hydrodynamics of He II
-and, in particular, the propagation of thermal waves. The Riemann
theory of second sound as presented in Chapter III can be better im-
proved by refining the analysis within the two-fluid concept rather
than by seeking a better continuum description of He II. Within this
model, the Landau equations are the basic set of equations of motion
upon which other, more general ones are based and, hence, are the
natural starting point for an analysis of second sound. As with the
two-fluid model, a better description of thermal waves can be found
more readily by refining the Landau equations rather than by using a
completely new set of equations of motion.

By making a number of simplifying assumf)tions we derived
Egs. (3.10), the simplest set of non-linear equations which describe
the propagation of only thermasl waves in He II; these equations were
then used to study a particular physical problem. Under these as-

sumptions a temperature pulse is propagated without attenuation
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down a one-dimensional channel and all quantities connected with
this flow are functions of temperature only. In particular, the rela-
tive velocity is related to the temperature by a first order ordinary
differential equation. The numerical integration of this equation
shows that the rate of change of w with respect to T is always posi-
tive and w is nearly a linear function of temperature. Even though
the density is a constant and no first sound exists in this approxima-
tion, a pressure variation which is second order in w travels with
the velocity of thermal waves along With the temperature pulse.

Due to the non-linear nature of the Landau equations any
given temperature pulse deforms as it travels down a channel and
eventually degenerates into a temperature discontinuity, or a shock
wave. The non-linear breaking occurs at the front or rear edge of
a given temperature pulse depending on whether the initial tempera-
ture is greater or less than 1.89°K. This value agrees with the one
determined experimentally. Since this breaking always occurs, care
must be exercised in the use of pulses to measure the amplitude-
dependent velocity of propagation of second sound to insure that a
shock is not formed.

By subsequently eliminating the assumptions mentioned above
we were able to study their qualitative and quantitative effects on the
theory of second sound. Excluding the interaction of first and second
sound, it was found that the basic description of the flow is not
changed by making these assumptions but there are a number of
differences which lead to some important conclusions. Any theoret-

ical description of thermal waves must include the relative velocity
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as a thermodynamic variable to be valid to order w. This conclu.sion
is the principle source of errors in Temperley's analysis.,

Furthermore, it was shown that the lowest order term of F,
the function which determines the critical temperature, is changed by
the inclusion of w as a thermodynamic variable. This naturally leads
to the question of whether other important parameters might be simi-
larly affected. For instance, the expression for the shearing stress
on a surface contains the derivative of v or, equivalently, the de-
rivative of w and thus this quantity might be strongly affected by this
consideration. In any case, a complete hydrodynamic theory must
include the thermodynamic effects of w and,- consequently, it is neces-
sary to review other theories in light of this conclusion.

It has been stated that the function F, and as a consequence
Tc_and T*, are very sensitive to the exact temperature dependence
of §, s, and ug. It can also be seen by comparison of Fig. 9 and
Fig. 16 that the inclusion of the lowest order terms in the expansion
of the thermodynamic variables in w also changes F significantly.
Therefore it might be necessary to use some higher order terms in
these expansions to get a good theoretical prediction of the critical
temperatures depending on the magnitude of these additional terms.
In other words, detailed knowledge of both the equations of state as
given by Eqgs. (3.53) and the function u; = uy; (P, T) is necessary for
accurate theoretical results.

Except for the discussion of the interaction of first and
second sound, the same type of solution as given by Eqgs. (3.25) was

valid for all the analysis and, thus, no attentuation is present.
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Therefore, we can conclude that effects such as thermal expansion
do not cause any attenuation if first sound is negligible. However,
these same effects may contribute to attenuation when both pressure
and temperature waves are considered. Other effects which have
not been considered here such as thermal conduction contribute to
the attenuation of temperature waves whether both types of waves
are considered or not.

When the interaction of first and second sound is considered
the entire analytical description of wave propagation in He II is
changed and a completely new one must be developed. At the level
of analysis completed here it is only possible to write explicit ex-
pressions for the velocity of propagation of both pressure and tem-
perature waves and to deduce the order of magnitude of the amplitude
of the two types of waves. Clearly, any theoretical description of
wave motion in He II must include both modes of propagation if it is
to be valid to order w=.

The amplitude-dependent velocity of propagation of second
sound is altered in two different ways by the consideration of first
sound. First of all, it is now measured with respect to the mass
flux velocity v; this is a small correction in the type of physical
problem considered here because it is mainly temperature waves
that are excited. Secondly, the coefficient of the order w® term is
different. This is also a small correction because the change is

2

O( %%—) and u, is an order of magnitude smaller than u, throughout
1

3

the temperature range of interest. There is also an order w° change

in the velocity of fir st sound. These changes are completely different
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from the corrections of the amplitude—independent propagation speeds

[ ] In his

u; and uz due to thermal expansion as given by London
linear theory, first and second sound are decoupled if thermal ex-
pansion is negligible.

Further results cannot be stated until the complete solution is
known and yet, due to the complexity of the calculations, it appears to
be impossible to give any analytic expression for the solution. This
type of approach to the interaction of first and second sound gives the
complete description of the flow and, as such, cannot be handled as
in the other, simpler cases. Therefore, within this analysis, some
additional approximations or a numerical solution is called for.

A similar situation exists in the study of discontinuous solutions.
The pressure jump across a temperature discontinuity cannot be com-
pletely neglected but the complexity in anything but a perturbation
analysis makes the problem almost intractable. In this case, an ex-

tension of the procedures used in ordinary gas dynamics or a com-

pletely new approach must be used.

B. PROPOSALS FOR FURTHER RESEARCH

Since this work is the first and, to some degree, complete non-
linear theory of second sound only the essential features of the theory
and its application to a physical problem have been considered in detail.
Many other aspects of first and second sound need to be investigated
using both the analytical approach taken here and also entirely differ -
ent procedures before any hydrodynamic theory of wave propagation

in He II can be considered to be complete.
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There are four distinct places in this work where additional
analysis can be done within the framework of the theory presented
here. To begin with, it has been shown that the dependence of the
thermodynamic variables on the relative velocity is very important
and that the lowest order terms in the expansions of these variables
in w have a significant effect on the solution. Hence, it would be
worthwhile to include the next, higher order terms and investigate
the importance of their effect on the results. These higher order
terms are not known at the present time but, once known, they can
be treated by the Riemann theory just as the lowest order terms were
handled in Chapter III. The dependence of the thermodynamic vari-
ables on the relative velocity has never been experimentally investi-
gated; some work needs to be done along this line due to the evident
importance of this dependence.

Secondly, the analysis of pure second sound should be done
without assuming s is a constant and including both the effects of
thermal expansion and the dependence of the thermodynamic variables
on the relative velocity simultaneously. This would not exhibit any
new phenomena not already found in the other analyses but would be
the most accurate theory for the prediction of quantities such as the
critical temperature when first sound can be neglected. This exten-
sion of the current theory presents no inherent difficulties; this is not
true, however, of the last two areas of investigation, the interaction
of first and second sound and discontinuous solutions, that should be

studied further.
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As mentioned previously, the set of characteristics and in-
variants is difficult to use for detailed analviic work but it does pro-
vide a very useful tool for a numerical analysis of both pressure and
temperature waves. However, discontinuities will still appear in
the solution for almost any type of temperature pulse which means
that derivatives in the x, t-plane become unbounded. This is not an
insurmountable difficulty as far as a numerical solution is concerned
but it is sufficient reason for using caution in setting up an iterative
scheme and for carefully considering the possible errors in the solu-
tion. The possibility of further analytic work should not be com-
pletely ruled out.

Just the opposite situation exists in the case of discontinuous
solutions where additional analytic results beyond those which are
derived from the existing perturbation analyses are necessary before
any numerical calculations are needed to complete the study of shocks.
Rather than using the two-dimensional P, 1/p - space to study the
shock transition as in ordinary gas dynamics, it will probably be
necessary to generalize this to the three-dimensional s, T, w -space
in order to study the properties of a temperature shock in He II.
Questions about quantities such as the determinacy of the transition,
the shock speed, and attenuation of a temperature shock should be
considered. It has been shown that under certain conditions it is
possible for a temperature pulse to degenerate into two distinct
shocks. It would be interesting to study the relative motion of these
two shocks to see if they converge or diverge and to question what

happens if one of the shocks does overtake the other.
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Another wide range of new problems that can also be treated
by a similar Riemann analysis concerns various generalizations of
the Landau equations. For instance, the effects of the viscosity of
the normal part and of thermal conduction may be important in vari-
ous temperature ranges and would cause attenuation of a temperature
pulse even if first sound were neglected. The previous calculations
and conclusions may be altered considerably in the temperature
ranges where the attenuation becomes large. We can also speculate
about an effect of viscosity other than attenuation that arises due to
the strong temperature dependence of the normal viscosity, uft (This
dependence is shown in London,[l] Fig. 28 and Atkins,[loj Fig. 39;
the function N, (T) is qualitatively the same but these authors dis-
agree on the temperature where the derivative of nis very large by
about .5°K.) In any case, a small fluctuation of the temperature in a
second sound wave will cause a considerable change in the viscosity
at that temperature where the viscosity varies very rapidly. Hence,
the normal part will experience less drag at the higher temperature
phases of the second sound wave. Thus, the normal and superfluid
parts will be driven out of phase which will manifest itself by the ap-
pearance of first sound or, as Hsieh1 has suggested by the har-
monic generation of thermal waves. This phenomenon has not been
discussed theoretically nor observed experimentally. A detailed
study of viscosity and thermal conduction effects constitutes one of

the most important supplements to this current Riemann analysis.

Private Communication
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Another way in which the Landau equations can be general-
ized is to include the mutual friction terms. This would not only
add additional attenuation to the system of equations but also another
mode of interaction of first and second sound. An analysis of the
generalized Landau equations would also provide an additional method
for contrasting the different formulations of the mutual friction terms.

Still another area of interest deals with the boundary condi-
tions used to supplement the equations of motion. One important
point concerning the specific physical problem studied here is the
existence of the Kapitza boundary effect, the temperature jump that
occurs at a solid-liguid interface in He II when the heat flow is direct-
ed from the solid into the liquid. This effect was completely neglect-
ed here because it is a small correction when the heat current is
small. However, this effect cannot be neglected for a large positive
heat pulse but, since no temperature discontinuity exists when the
heat flows from the liquid into the solid, the conclusions of Chapter
IIT are unchanged by the inclusion of this effect for negative tendper-
ature pulses. This is a very complicated problem because the mag-
nitude of the temperature jump depends on the heat current, the tem-
perature, the compositi‘on-of the solid, and the smoothness of the
interface. A better way to write the boundary condition is to require
that the heat flux be continuous at the interface rather than specify-
ing some condition on the temperature itself.

There are numerous different problems, and boundary condi-
tions, that can be studied with the use of a set of characteristics and

invariants in addition to the one considered here. For instance, the
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deflection of thermal waves off of a solid boundary can be studied by
considering a tube of finite length rather than the semi-infinite one
as in Chapter III. This certainly corresponds more closely to an
actual experimental situation. This second boundary could be held
at constant temperature or the temperature of the boundary could
follow that of a given second sound wave impinging upon it as in the
case of an extremely thin piece of copper foil opposite the boundary
where the temperature is given. A completely different method of
exciting second sound is to place a plug which is only porous to the
superfluid part in a channel filled with He II. Pressure waves on one
side of such a plug will give rise to both pressure and temperature
waves on the other side because v = 0 and Ve #0 at the solid-liquid
interface so neither v or w is zero there. In this case, and in con-
trast to the one we have studied, the two velocities are known at-
the boundary and the temperature is derived from them.

A different set of boundary conditions is used when a second
sound wave impinges on a liquid-gas interface. This situation is
realized experimentally in a container filled with He II and having a
free surface. When thermal waves are generated at the bottom of
the container they create a fluctuation of temperature at the surface
causing the vapor pressure to change. Therefore, pressure waves
are generated in the helium vapor. This experiment has been suc-

Ed and Khalatnikov[28] has derived expres-

cessfully performed
sions for the transmission and reflection coefficients at the liquid

surface for a sinusoidal second sound wave.
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The boundary conditions may enter in yet another way if
the channel is narrow. In this case the boundary conditions along
the walls of the channel become important; usually a no-slip condi-
tion is imposed on the normal velocity, i.e., L 0 on the walls of
the channel. In the limit of very narrow channels v, 1s zero through-
out the liquid. The wave motion when the normal component is com-
pletely clamped by the walls has been briefly discussed by Atkins[45]
and he calls the resulting mode of wave propagation 'fourth sound.’
The general situation must be analyzed in two space dimensions.

This problem is important not only because of the new type of bound-

ary conditions but also because there is some knowledge of the criti-

cal velocity in narrow channels. (Notice -that there is no known rela-

tionship between the critical velocity as discussed in the first chapter
and the critical temperature defined later in this work; the names

are coincidental.) Thus, narrow channel flow provides an opportunity
to study the relationship between second sound and the critical veloc-
ity.

There is at least one other type of flow problem that is of
interest in connection with second sound; this is the propagation of
thermal waves through rotating He II. The equations best suited to
an analysis of this type of problem are the generalized Landau equa-
tions using the HVBK[34] formulation for the mutual friction. This
is a very complex problem because the problem of the rotation of
He II is, by itself, very complicated. It is known that second sound
experiences additional attenuation when propagated through a rotating

fluid as compared to a fixed mass of He II.E%:I Because quantized
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vortex lines exist and are important in all considerations of rotating
He II, a classical continuum approach may not be able to describe
this problem in detail and the quantum nature of the flow must be ex-
plicitely taken into consideration.

There are two other areas of interest to the propagation of
waves in He II that cannot be adequately described by the two-fluid
model and the Landau equations. One stated limitation of the entire
analysis in Chapter III is that the continuum approach is not valid
at very low temperatures. As mentioned earlier, a new set of equa-
tions of motion must be developed to describe the hydrodynamics of
He II and, in particular, the propagation of second sound for temper-
atures between 0° K and appr oximately 1° K. Very little work has
been done in this area. Again, the quantum nature of the elementary
excitations at these low temperatures is quite important and an ade-
quate set of continuum equations which describe the hydrodynamiés
of He IT are not known.

Finally, a whole new field of investigation is introduced when
He® - He* mixtures are considered. A new variable, the concen-
tration of He®, is introduced and this considerably enriches the class
of solutions to the hydrodynamic equations. It is known that concen-
trations of He® less than 4.5% have a very considerable effect on
the amplitude-independent velocity of propagation.[47] Only simple
periodic solutions to a linearized set of thermo-hydrodynamical
equations have been found so this is virtually an open field of inves-

tigation.
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APPENDIX A

THEORY OF HYPERBOLIC EQUATIONS

FOR FUNCTIONS OF TWO VARIABLES

We will present a brief discussion of characteristics and
invariants, A detailed discussion of the general theory of hyperbolic
equations and some examples of applications to fluid dynamic prob-
lems is contained in several different booksl, Specifically, we are
interested in a quasi-linear first order system of n partial differ-
ential equations with dependent variables u., i=1,2, . . « . The

two independent variables are x and t. Write this system of equa-

tions as
auj 8uj
or
xAxut + Bux = 1) (A2)

where u is the column vector of the unknowns u.,

and A and B are nX n matrices which can depend on x, T, 0.

1

For example, R. Courant and K, O, Friedrichs, Supersonic Flow
and Shock Waves (Interscience Publishers, Inc,, New York, 19487},
Chapter 2 and 3,
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By forming a linear combination of Eqs, (Al) it is possible to
rewrite this system so that the total derivatives of all the unknowns
are taken in the same direction in the x,t-plane. This linear combina-

tion, called the '""normal form!' of Eq. (A2), is

ou. ou.

._‘].. -—‘].
TR ol T -

L.
i

and we want this to be in the form

Buj Buj
¢ Bt il ox )—O

L.
i
This is possible if

L.a.. =od. and £2.b.. = BL,

By combining these two equations into a single condition we can

write
Bl.a.. = al.b..
9 43 i 1j
or
ﬂi(bij - Caij) =0 (A3)
where
5 = i
o
Non-trivial eigenvectors £ = (L ,4, . . . En) exist if
12
DET{B-cA} =0 . (A4)
This equation determines the eigenvalues, ck sk =142, . . i By

and Eq. (A3) determines the corresponding left eigenvectors, £
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If n real, distinct eigenvalues and eigenvectors exist then the sys-
tem of Egqs. (A2) is said to be "hyperbolic,

Now the normal form can be written

1 5 ]

ot € 3%

ou. ou.
=0 (A5)

.a_ .
iuj
This is formally similar to a linear sum of the derivatives of u,

along a '"characteristic direction'' defined by

dx
(at—) =cC . (Aé)
The '"invariants' along the characteristics are given by Eq. (Ab);

ﬁiaijduj =0
or

fAdu = 0 (A7)
Equations (A4), (A6), and (A7) are the explicit formulae for the

characteristics and invariants of system (A2),
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APPENDIX B

A REVIEW OF OTHER THEORIES

The perturbation analysis done by Khalatnikov[ 38]will be
reviewed in detail since it serves as a basis of comparison with the .
results derived throughout the main body of this work., Only the as-
sumptions and analysis will be discussed in this Appendix in order to
clarify the essential features of the theory. The final results are con-
sidered in detail when they are compared with those derived in
Chapter III.

The equations of motion used by Khalatnikov are the same as

Egs. (1.3) under the assumption that

vx%‘s:o . (B1)

His theory also includes the second order expansion of p and s;

_ 8.a/ \—R-/Z -
(B2)
i 1 da '\—N—Z —4
. 513) 5~ + 0lw)
where

pn
@ = —
p

and the subscript "o'' denotes quantities which are only functions of

the independent thermodynamic variables P and T and not dependent

on w. The partial derivatives g—f} and -g—(; have been underlined

to indicate that they originate from the expansion of p and s.
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Following Khalatnikov, assume all quantities are functions of (x-ct)

and write v and w in the following form:
v =v_(x-ct)e. + v (x-ct)é
x X y

w

w_(x-ct)e +w (x-ct)é
X X y

where e and e&_ are unit vectors in a cartesian coordinate system.

By substituting these forms for the velocities into Egs. (1. 3)

and neglecting all order w? terms we obtain the following equations

for the primed variables:

, 9&) v (?.P_) - 2_8.0‘_) |
U( R I LA

F)
- 29_@_ ! -
pO(-{a—)UWW +pOX_O

P
P Uvi+P +2 22522 w w! =0

X X

(o]
- g Tk 4 nofso ,+pnopso ' o
= Py y x Po Xy

& dp s

- UIO_S_).{_ = ! [_ 8_5_
[Po 5B] *|7op WX}P o PoYlaT

“Pno o

. iﬁ) w_UP'+p w_v! =0
Pol3P X Pno x * Pno y -

P.o”P

_ no "so - %) i

Pro U + o » WY po(at w UT
P o P

-p 9a w UP'+p w_v! el w'!=0

oloP y no v Po y X
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where

U = ¢=v
X

and a prime denotes differentiation with respect to the argument
(x-ct). It should be re-emphasized that the plain and underlined «
derivatives are actually identical but the underlined ones arise from
the expansion of s or p while the others arise from the differentia-
tion of « in the equations of motién_ All but the last of these equa-
tions correspond with, but are not identical to, Eqgqs. (1) - (5). Equa-
tion (6) comes from one component of Eq. (Bl) while the Ey- com-
ponent of the equation for w is not used. Equation (Bl) is a restrict-
ion on the class of solutions to Landau's equations and not an equa-
tion of motion so including it in the set of Eqs, (1) - (5) has no
a priori justification. There are other significant differences be-
tween the two sets of equations,

The determinant of this set of equations must vanish for non-
trivial solutions to exist; partially expanding this determinant and

dropping the subscript 'o'' gives the following condition on U:

Py~P

p

n S

U|u +

WX) Det = 0 (B3)

where
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8p 99_) 2 _93}
75| U ke P {@___ Wl P
P P
1 0 r AL pU
P X
Det=
o Yo Ps
o [55) vl PHﬁ)WXU'S} Pn(‘” > Wx) Pn ¥
dp_s dp_s
0s S 0s s o
P ﬁ)U‘TP)WX P(ﬁ)U“(‘—‘aT Vx P(a“_T)WXU'PsS 0

However, since we are neglecting O(w?) terms throughout this calcula-

tion, Eq. (B3) can also be written

P
U- —=w

pn
U+ — w_|Det=0 (B4)
X p X

Thus, the fact that all O(w?) terms are being neglected does not allow
two of the roots for U to be uniquely determined to O(WX) and Egs.
(8) and (10) are not necessarily valid, Also note that there are no

terms in Det which contain wy.

Equation (7) can be derived by setting Det = 0 with
9P\ .1JPnjas PnPsia

b b b R )

{ 5o 17\ plaT /Y 7| * o 13T

»-s(%]-s(gﬁ,ﬂwu-f—s-sz =0 (B5)

. da da
Notice that both (5—1—3) and (@—) no longer appear in the equation for

U. Two of the roots of Eq. (B4) are
U = u"'1 + O(wW?) (B6)

and we can write the remaining factor as



Lo e

+ *n
6T

Bpn 0
3T T

root is concerned. By assuming v = 0 and neglecting the distinction

Therefore, are equally important as far as this

and (

op dp
LI Y .. Khalatnikov solves this equation to first

between 5T 5T

order in WX to find

c =y Ty (B8)
where
P { Ps S (apn)(aTU
y = A I | v | (B9)
s p Py oT /| 0s
and
Ps
v = — W
nx P x

Finally, Khalatnikov shows the temperature dependence of vy for.
0T T)\ . However, this dependence should only extend to approxi-
mately 1°K since this is the lower temperature limit for the validity
of any continuum approach. In conclusion, although there are a
number of questionable points in his analysis, Khalatnikov does have
the correct results and conclusions,

Hsieh[ 4] has also derived an equation similar to Eq. (B5)
from the Landau equations but with an entirely different procedure.
He first assumes P = P(p), T = T{s), and that S, is a constant;
therefore he has neglected thermal expansion and the dependence of
P and T on w. Then, by seeking non-trivial solutions for the jump

of the independent variables across a characteristic surface, it is found

that the characteristic speed c¢ is either Vi Vg OT must satisfy
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" 3 2 _ 1o 2
ct + (3vn+vs)c + [(2+a/)vn (1 a/)vs

v

+7v v -ut -u?]c? + {av’ + (4-a)v?
n s 1 2 n n's

2 3 _ T 2

+ (1 —a/)vnvS - (l—a/)vs [(3 ZOz)vn (1 Za)vs]ul
2 3 _ 2. 2

- 2[avn + (l—oz)vs] uz} ctav v+ 2(1 a/)vn v

- (l—a/)vnvs3 - [Z(I—Q)Vn - (l-Zoz)vs]vnu:‘

" [avnz + (l-oz)vsz]uz 4 ufuzz = (B10)
where
Pn
a = —
p

The roots L and L confirm that Eq. (B4) rather than Eq. (B3) is
the correct one and that Khalatnikov is indeed correct,.
Defining
U=c-v

and using the transformations defined by Eqs. (3.2a), Eq. (B10) can be

written
1 2
<2
- (1-28)wiu® +1—4£- w?| U + u?u?
1 12
2
_ _ _c2 -
[ 5)511 36) qu?.l _ 145 quzz_l_ (1 15 ) -0
or
Ut + (1-28)wU® - (W + U.ZZ)UZ - (1-26)wu?U +u?u? =0 (B11)
X 1 1 2

where we have correctly neglected all O(w?) terms in Eq. (Bl1).

Comparison of Egs, (B10) and (Bl1l) clearly shows the distinct
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advantage of using v and w rather than P and Ve Thus result
is the same as Eq. (B5), Khalatnikov's result, when s is a constant
da )| .
and (E) is neglected.
[40] S g .
Temperley has done a hrief introduction to a Riemann

theory of second sound based on equations of motion which are derived
in an Appendix to his main theory. In addition to the conservation of

mass and entropy equations as given by Eqs, (1.3a) and (1. 3d) he uses

the following two equations to describe the motion of v, and ¥ o

.E.)_Yﬁ.i. aVn_ W asn+ 3Sn+£9—+ pisgz—()

at Yn Tox 2s_| Ot Vn ox p ox p x
n n

avs avs Po w asn 8sn 1 9p oT

et Y, e = e s | e Y g = -8 = =0

ot S 0x B an ot n 0x p 0x 0x

These are Eqs. (A8) and (A9) in his paper. By comparison with Eqgs.

PnPs wt
(1.3b) and (1. 3c) it can be seen that the term 5 \% = has been left

out. Thus, Temperley's equations can not reduce to the Landau equa-
tions under any simplifying assumptions and there is no ground for
comparison between his theory and the one presented in this paper.
By making the same simplifying assumptions as discussed on page 34
[ which means that he has neglected O(w?) not O(w’) terms ]
Temperley derives the following two equations which describe the

propagation of pure second sound:

go W(ps-pn) ow ow

nEET R =T oE =7
o 2w MPsPnles ae
2 0x P x t

where



Therefore Temperley and Khalatnikov find the same result for the
amplitude ~-dependent velocity of propagation to first order in w if
s_ is a constant. But this is purely coincidental since neither the
equations of motion nor the simplifying assumptions are the same in

the two analyses,
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APPENDIX C

A BRIEF DISCUSSION OF NON-LINEAR BREAKING

It will be shown in this Appendix that the discontinuity in the
solution first appears at the inflection point of the velocity of propaga-
tion, c(T).

When the temperature is given as a function of time at the
boundary x = 0 then it has been shown that the pressure and relative
velocity are also known and, consequently, all quantities are known
as a function of time on the boundary. In particular, the propagation
speed is known and we can speak about c(t) being given at the
boundary.

The one-parameter family of L+ characteristics is given by
x -c(7T)(t-1) =0 (3.23)

and the solution by Eqgs. (3.25). Calculate g—i— by

By using Eq. (3.23) and denoting derivatives by a subscript, we can

write this as

06 C
= —= — = 6T
6‘5 ot c-(t—’r)cT

Therefore the solution has a discontinuity (c‘it —- ) if
c - (t-'T)CT =0

which, using Eq. (3.23), is
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t:'r+c/cT (3, 33a)

and

— il :
X =c /CT : (3.33Db)

Thus we have illustrated a different method for finding the envelope of
the L+ lines, Eqgs. (3.33),
Henceforth, it will be easier to use § rather than T as the

parameter in Eq. (3.23)

|
o7y
>

By definition

or
£ = Tc(T) . (Cl)
" Thus
¢, = ng'r = cg(c-i-'rc,r)
and
ele) ‘
7 = T—Ti— : (c2)

We will also need the second derivative
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Crr T T |\ T-7c, (efwe, |
S
_1/ag)?
- e Ceg LEEy

The parametric equationé for the envelope in terms of § are

L
=
c-Ec
X = P g
€
Therefore, the cusp of the envelope - - the point in the
x,t-plane where a discontinuity first appears - - which occurs when

t has a minimum, is at the point where C§ has a maximum;

@ (eg)=0

or

d®c
d¢?

= 0

By Eq. (C3) this is By & 0, which is the inflection point on the

boundary condition c(7).



-120-
APPENDIX D

PROOF THAT v =0

Equations (3.25) represent the solution to Eqs. (3.10) for the
chosen physical problem and its boundary conditions, It will be shown
here that any solution to Eqs. (3.10) with v = 0 at a given point implies
that v is identically zero.

Consider Eqs. (3.3c) and (3.3d), two of Landau's equations. If
we assume s is a constant then these equations, in one dimension,

can be written

ow 3 ow 2 2 _ L 2| 88 9y
at+[v+(l §)w] $+L-52 w -Z—W] aXi-'\fvgg—o (D1)
86 86 1-6% aw , 1-6* 1 3p

Now assume we know any solutions w = w(x,t) and 6 = §(x,t) which

satisfy Eqs. (3.10). Then these equations can be used to simplify

Eqs. (Dl) and (D2); the result is

ow ov
L RS
, (D3)
96 1-6 1 8p _

Equation (D3) implies that

vw = const,

Thus, for a non-zero w if v 1is zero anywhere, for instance at a

boundary, then it vanishes identically.
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