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ABSTRACT 

Landa u 1 s e quations for the two-fluid mode l of liquid h e lium II 

a r e us e d as the basis for an investig ation of th e prope rties of th e rmal 

w a v e pr o pagation. A numb e r of a ssumptions ar e made which r e duce 

th e four origina l e quations to a syste m of two non-linea r partial dif­

f e r e ntial e quations valid to fir st order in the relative velocity of the 

two components. These equations are analogous to Riemann's equa­

tions which describe pressure waves in a classical fluid. 

This system of equations, when reduced to just one space 

dimension is shown to be hyperbolic and a set of characteristics and 

invariants is found. A particularly simple, one -dimensional problem 

is then formulated and an explicit solution is given. This solution is 

then studied in detail to show the distortion of a temperature pulse as 

it propag ates and also to show effects such as non-linear breaking. 

Subsequently, the restrictive assumptions are eliminated 

individually and the equations are then valid to second order in the 

relative velocity; the effects of including thermal expansion and using 

the relative velocity as a thermodynamic variable are given. Also, 

some effects due to the interaction of first and second sound are 

investigated. In all cases, the results are compared with other 

results based on equations differing from the Landau equations and 

with results found by using perturbation techniques. 

Finally, equations based on the same Landau equations are 

derived and discussed which describe steady state shock (discontin­

uous) solutions. 

Suggestions for further theoretical and experimental work are 

made. 
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CHAPTER I 

INTRODUCTION 

A. A SURVEY OF LIQUID HELIUM 

Liquid helium displays many very unusual and interesting prop-

ertie s that have no analogies in any other fluid. In fact, it has been 

likened to a "fourth" state of matter in addition to the usual three[ 
1
]. 

This uniqueness is due in part to the fact that in the low temperature 

regions of liquid helium the quantum nature of the liquid is important on 

a macroscopic scale. 

Kamerlingh Onnes was the first to liquefy helium in 1908[ 
2
]. 

There is an additional transformation which separates liquid helium in-

to t.wo distinct phases; helium I, the higher temperature phase, is sim-

ilar to other liquids in that it obeys the classic al hydrodynamic equa-

tions. The lower temperature phase, helium II, is the "quantum liquid" 

which will be of interest here. 

These two phases are separated by the A. -line which intersects 

the saturated vapor pressure curve at the A. -point (TA. = 2. l 72°K)[ 
3
]. 

This is not the usual phase transition in that there is no latent heat 

associated with it nor is there a discontinuity in the density. Instead, 

it is a second order transition in which the second partial derivatives 

of the Gibbs potential are discontinuous at the A. -line[ 
4
]. This transi-

tion manifests itself by a logarithmic discontinuity in the specific heat 

and a discontinuity in the slope of the density curve[ 
3
]. The terms 

""--line" and "A. -point" are derived from the. shape of the specific heat 

curve which resembles the Greek letter "A. 11 • 
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Some other unusual properties of helium are readily discern­

ible from the phase diagram in the P, T-plane[ 1 J ' [ 3 ] . To begin with, 

He II remains a liquid even at zero temperature unless the pressure 

is raised above approximately 25 atmospheres; thus the liquid state 

must possess as much thermal order as the solid state at zero tern-

perature. Also, there is no solid, liquid, gas triple point because 

the He II region separates the melting curve and the saturated vapor 

pressure line. 

Among the many unusual properties of He II itself are 

1. Superfluidity, the ability to flow with no apparent viscous 

drag. Measurements using fine capillaries have shown that the flow 

velocity de.pends very weakly on the pressure force but has a strong 

dependence upon the bore of the capillarieJ 5 J' [ b]. In direct con-

trast to this are measurements of the damping of oscillating bodies 

which have shown that He II possess the usual drag characteristics 

associated with a viscous fluid[?]. Thus,it is clear that a description 

of He II using something other than the usual coefficient of viscosity is 

needed. 

This introduction of superfluidity as flow without friction is 

complicated by the fact that there exists a critical velocity which 

limits the range of velocities of superfluid motion[ SJ' [ 9J. Properties 

of He II which are dependent on the quantum state are still found to be 

present even when the critical velocity is exceeded so that the concept 

of a critical velocity is associated with a breakdown in the ability to 

flow without friction and not with the destruction of the basic quantum 

nature of He II. The concept of a critical velocity is still ill-defined 
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and not very well understood at this time. The exact value of the 

critical velocity is dependent on the flow geometry in a very complica­

ted manner[ 
1 O]. Generally speaking one interpretation is that the 

critical velocity is exceeded whenever there is enough energy present 

in the flow field to create quantized vortex lines[ 
11

]; 

2. The thermomechanical effect or fountain effect[ 
12

], which 

demonstrates that, in He II, heat and mass can flow in opposite 

directions simultaneously. In a simplified experiment to demonstrate 

this effect two reservoirs filled with He II are connected by a capil-

lary and both have a fre.e surf ace at the same height. Heating the 

liquid in one of the reservoirs will cause a rise of the level of the 

liquid there. The name 11 fountain effect" comes from the fact that if 

the reservoir which is heated is simply a capillary then the liquid 

will shoot out of the top in a type of "fountain." Obviously the heated 

vessel is at a higher temperature than the other one yet fluid flows 

into the heated vessel; this is just opposite to what would happen in an 

experiment with an ordinary liquid. Relatively large convection rates 

can be produced by very small temperature differences between the 

two reservoirs. 

A different demonstration of the same effect occurs when He II 

flows out of a vessel through a capillary uncier the force of gravity. 

The result is that the temperature of the fluid remaining in the vessel 

rises. This is often called the mechanocaloric effect[ 13 ] ' [ l 4 ]. In 

this latter case a pressure difference and accompanying flow give 

rise to a temperature difference. This is just opposite to the cause 

and effect relationship occurring in the fountain effect. In either case, 
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heat and mass transfer are definite ly not related to each other in the 

classical m a nner for fluids and, once again, the conclusion is that a 

complete description of He II is not possible within the framework of 

ordinary fluid mechanics; and 

3. 
. [15) [16) 

The propagation of thermal waves ' . The ability 

of temperature waves to propagate virtually undamped with a finite 

speed shows that temperature must obey a hyperbolic wave equation 

rather than a parabolic diffusion equation as in other media. These 

thermal waves exist in addition to the usual pressure waves and 

travel with a velocity which is an order of magnitude smaller than the 

velocity of propagation of pres sure waves[ 
16 ]. Hence, this phenom-

en.on is definitely distinct from ordinary sound waves and not just a 

different manifestation of them. There is no analogy to this type of 

wave propagation in classic al fluid mechanics. 

These phenomena, and others, all inescapably lead to the con-

clusion that an entirely new hydrodynamic description is required for 

He II, one that is based on new basic principles and not derived from 

equations within the frame of reference of classical hydrodynamics. 

The most comprehensive and successful theory to date is the two­

fluid model .as first proposed by TiszJ l 3 ] ' [ lS] and developed by 

Landa) l ?] . 

B . THE HYDRODYNAMICS OF HELIUMII 

The two-fluid theory is an attempt to create a consistent 

macroscopic description of He II which can give a satisfactory theo-

retical explanation of the large number of unusual and sometimes 
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contr a dic tory e xperime ntal r e sults. This c ontinuum model can b e 

inte rpr e t e d on the basis of two distinct microscopic th e ories but a 

compr eh e nsive and consiste nt d e rivation of it from these theories is 

not possible at this time . It is not necessary or desirable to wait for 

this link to be completed before investigating in detail the implications 

of the two -fluid model. Moreover, it should be emphasized that all 

of the consequences of the two-fluid theory can be considered as 

derived from a basic set of postuates wholly independent of any micro­

scopic interpretation. 

The justification for this theory, as for any theory, is how 

accurately it describes observed phenomena and how well predictions 

based on this theory are borne out by further experimentation. As 

far as these aspects go the two-fluid model has proven remarkably 

successful. Hence any further sophistication of present theories, or 

any entirely new approach, aimed at explaining the behavior of He II 

must contain the two -fluid theory as an accurate fir st approximation. 

The following assumptions form the basic framework of the 

two -fluid model: 

1 . He II is composed of two mutually inter penetrating parts, 

called the "normal" and 11 superfluid11 parts, each of which has its 

own density and velocity fields. These two parts are neither compon­

ents nor phases in the usual sense. For one reason, the fluid can 

not be separated into the two parts in any way. Secondly, a given 

fluid element can not be said to contain either the normal or super­

fluid part no matter how small that element may be defined. In other 

words, from a continuum point of view two densities and two 
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velocities can be specified at each point in the fluid volume. 

All quantities corresponding to the normal part are denoted by 

a subscript "n" while an "s" denotes those quantities associated 

with the superfluid part. The sum of the normal density, and 

the super fluid density, p s, gives the total macroscopic mass density 

of He II. Figure 1 shows the temperature dependence of p and p n s 

as fir st measured by Andronikashvili [ 
18

]. 

1.0 
_& 
p 

0.8 

0.6 

0.4 

0.2 

0 0.5 1.5 2.0 TA 2.5 

T( 0 k) · 

Figure 1 - Normal and Superfluid Density 

The normal and superfluid parts may move in a manner that is 

completely different from, although not independent of each other; 

each part requires a separate differential equation to describe its 

motion. 

2. The entire superfluid component is assumed to be a macro-

scopic manifestation of a single quantum state as opposed to a thermal 
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average over all existing states. Since there is no possibility of 

thermal collisions within the superfluid part it follows that the vis -

cosity of the superfluid part is zero. This is not to say that the super-

fluid and normal parts do not interact. Indeed, there are pn~Ps 

interactions, for instance due to temperature changes, but the super-

fluid part still remains a single quantum system. Another consequence 

of this assumption is that when pn~ p s interactions do occur they 

can not change the local superfluid velocity since this would imply a 

change in the entire quantum state. Hence the quantum state and thus 

the superfluid state are determined by the macroscopic boundary con-

ditions. 

3. The entropy of the entire liquid is assumed to be contained 

in the normal part. Thus 

( 1 . 1 ) 

Here s and s represent the specific entropy of the bulk liquid and 
n 

normal part respectfully. This normal part is analogous to a clas -

sical viscous fluid. The normal velocity, v n' in contrast to vs' 

is a thermal average so the normal fluid has viscosity. The origin of 

the name 11 normal" is now clear. This third assumption is not abso­

lutely essential to the two-fluid model and London[ l] discusses some 

of the consequences of allowing the superfluid to have entropy. 

Even with this cursory introduction to the two-fluid model one 

can gain an intuitive understanding of some of the properties of He II 

which were discussed in Section A . For instance, it is the normal 

part which causes the damping of immersed oscillating bodies and the 
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superfluid part which flows fr ee ly through narrow capillaries. 

A brief and heuristic discussion of the two main microscopic 

theories of liquid helium provides an interesting illustration of the 

origin of some of the basic assumptions in the two-fluid model. 

London[ 19 ] ' [ 20 J treats liquid helium as an imperfect gas in which 

intermolecular forces can not be entirely neglected while 

Landa) 
21

] ' [ 
22

] treats it as a solid in which th~ atoms are very 

weakly bound to the lattice sites. These approaches are in sharp 

contrast but they both assume a particular molecular picture and then 

attempt to explain liquid helium in terms of that picture. 

London based his approach on the fact that a condensation and 

higher order phase transition occur in a Bose -Einstein gas which are 

qualitatively similar to the A. -transition. The validity of this theory 

is further strengthened by the fact that He4 atoms are somewhat like 

hard spheres as in a perfect gas and must obey Bose -Einstein statis -

tics since they are composed of an even number of fundamental parti-

cles . In addition, He3
, which does not exhibit a A. -transition, is com-

posed of atoms that do not contain an even number of fundamental 

particles so they are not Bosons and, as such, do not obey Bose-

Einstein statistics . This approach automatically provides an explana-

tion for the A. -transition and a method for identifying the two parts of 

He II. The atoms which ha-:e condensed into the ground state are 

associated with the superfluid part while those atoms still in excited 

states correspond to the normal part. 

From the other point of view, Landau proposed a scheme of 

quantized excitations for quasi-particles or thermal excitations. 
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These excitations, which h e called "phonons" and 11 rotons 11 , are as sum-

[ 2 3] 
ed to have an e ffective mass and momentum. Feynman has pro-

posed a quantum mechanical wave function which gives this type of 

excitation spectrum. London[ 
1

] argues that phonons alone are cap-

able of representing the liquid. The correspondence with the two-

fluid model is made by associating the normal part with these excita-

tions while the superfluid part is composed of the remaining mass. 

Actually these two approaches are complementary rather than 

contradictory since the first supplies a reasonable mechanism to 

explain the t.. -transition while the latter one is able to account for the 

existence of a critical velocity. Also, it has been explicitly shown 

that phonon excitations correspond to the lowest excited states in a 

hard-sphere Bose gas[ 
24

]. Both approaches have faults and defi-

ciencies and neither one can be said to be the correct one with the 

exclusion of the other; both need a great deal of additional work before 

they represent the actual situation in liquid helium. In any case, the 

two -fluid model provides an excellent description of He II, at least 

from a phenomenological point of view, and it will be assumed valid 

in all further discussions of the hydrodynamics of He II. 

Several different approaches have been taken in an attempt to 

formulate a set of hydrodynamic equations and concomitant boundary 

conditions that will adequately de scribe the flow of He II. Complete 

agreement on the final form of the equations has not been reached yet 

so a rigorous derivation of them can not be given. At the present 

time virtually all hydrodynamic theories of liquid helium are based 

on continuum mechanical arguments and their development is guided 
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by intuitive relationships with microscopic theories. Direct analo-

gies to cl as sic al hydrodynamics are also very important. 

A complete derivation actually has two distinct steps that 

must be performed sequentially. First, a set of local macroscopic 

variables must be chosen that are adequate to describe the complete 

flow field. In ordinary hydrodynamics this is a very simple task to 

do. One variable is almost always the mass flux velocity and the 

remainder are two thermodynamic variables, usually pressure, P, 

and temperature, T, or density, p, and entropy, s. However, 

this step is a matter of some importance and difficulty for He II. We 

have already seen that more than three local variables are needed to 

describe He II. Some of the various possibilities for He II are v , 
n 

vs' pn' ps' p, s, P, T, or other combinations of these variables; 

it is possible that additional variables are necessary for a complete 

flow description. 

The second step is the derivation of the equations of motion 

describing the time and spatial history of the chosen variables. The 

type of derivation is somewhat determined by which variables are 

chosen as basic flow quantities. As mentioned previously, one 

particular microscopic picture is usually chosen as a guide to the 

selection of the appropriate macroscopic variables then the deriva-

tion proceeds from there making use of ideas borrowed from the 

derivation of the equations of motion of classic al hydrodynamics. 

All of these derivations can be classified as being based on 

either variational principles or conservation laws; incidentally this 

is true for ordinary hydrodynamics as well as for He II. However 
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the variational approach is beset by difficulties particular to He II 

as described by the two-fluid model. When variational principles are 

applied to a continuum the Lagrangian density must be integrated over 

all volume elements moving with the fluid. Yet there are two distinct 

velocities at each point in He II so it is manifestly impossible to 

integrate over a volume element moving with the fluid since this is a 

meaningless phrase in terms of the two-fluid model. This is not a 

minor difficulty overcome by a reformulation of the two-fluid model; 

in fact,London questions 11 . . whether the two -fluid concept is 

actually compatible with the principles of classical particle mechan­

ics"[ 1 ]. In addition, p ~ p interactions combined with the fact 
n s 

that a given fluid element can not be said to contain either normal or 

superfluid parts leads to the conclusion that Hamilton's principle can 

not be applied to He II. Zilsel [ 
25

] has recognized this inherent 

obstacle and uses an entirely different variational principle first 

stated by Eckart[ 26 ]. This principle uses an integration over volume 

elements fixed in space rather than moving mass elements and con-

sequently avoids the objections raised above. Even this new varia-

tional principle restricts the class of solutions which can be used to 

satisfy the resulting equations of motion. 

One very important point that must be taken into consideration 

by all types of derivations conc.erns any assumptions made on the 

vorticity of the superfluid part. Restrictive conditions on the vortic-

ity must be explicitly stated before the derivation can proceed to 

completion. The derived equations of motion can not re solve this 

question because the derivation itself is not generally valid until some 
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as s umption is mad e on th e vorticity. The question whe ther the super-

fluid part can rotate is a very complex one and has almost become a 

field of study unto itself[ 
2 7

]. 

One of the three following approaches to the problem is usual-

ly taken: 

1. Most simple theories assume that the superfluid part has 

zero vorticity everywhere, i.e. 

\/Xv ::0 
s 

( 1 . 2) 

Landa) 
21

] proposed the first complete set of non-linear equations 

of motion. Khalatniko) 
28

) later derived this set of equations using 

the two-fluid model, conservation laws, the Galilean relativity prin-

ciple, and assumption (1. 2). Another implicit assumption is that 

there is no momentum exchange between the two parts except for 

p ~p interactions . The derivation starts by neglecting all irrever-
n s 

sible processes and writing differential equations in a fixed frame of 

reference which express the conservation of mass, momentum, 

entropy, and energy plus an equation for v which insures that con­
s 

dition (1. 2) is satisfied for all time. These equations are not all 

independent and contain unknown scalars and vector and tensor fluxes . 

Next, these quantities are transformed to a frame of reference where 

v ::: 0. In this frame all quantities are assumed to behave like clas -
s 

sic al hydrodynamic variables . Finally, the interdependence of the 

conservation laws is used to obtain explicit expressions for the un-

known quantities in the moving frame which can then be transformed 

back to the original, fixed reference frame. The resulting equations, 
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called the Landau equations, are 

~ + v. pv = o 
8t 

p -2. pJ~n + (VVn)Vn] PnPs 
= _.::VP - p s sY'T - 'V :!!_ 

2 

p .[:,vs + (VVS )Vs] 

where 

p p 

p PnPs w2. 
= ~ Y'P + p sY'T +--Y'-

p s p 2 

~- + V'. psv = o ot n 

Pn - p s -
v=-V +-v 

p n p s 

- the mass flux velocity, 

w = v - v n s 

- r-w 

- the relative velocity of the two parts, 

r = : P n + V'. p v = -(: P s + 'V • p v ) 
· ut n n ut s s 

- a source term due to p +!== p 
n s 

interactions, and 

s = specific entropy. 

(1. 3a) 

( 1. 3b) 

(l.3c) 

(l.3d) 

( 1. 4) 

( 1. 5) 

( 1 . 6) 

Equation (1. 3a) is the usual conservation of mass equation, Eqs. 

(1. 3b) and (1 . 3c) are conservation of momentum equations for the 

and v velocities, and Eq. (1. 3d) expresses the fact that entropy 
s 

v 
n 

flows with the normal part only and is conserved. In addition, three 

equations of state are needed to make a complete formulation; for 
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instance, these equations can take the form 

p=p(P,T,w) (1. ?a) 

s = s(P, TI w) (1. 7b) 

= P (P, T. w) 
n 

(1. 7c) 

Notice that w serves as a thermodynamic variable in addition to 

being a mechanical velocity. This fact makes Eqs. ( 1. 3) consider -

ably more complicated than they first appear to be. The r term ap-

pears only in the equation for v due to the assumption stated ear -
n 

lier that v re pre sen ts a single quantum state and not a thermal 
s 

average. 

It should be emphasized that these equations are not a unique 

result of the derivation as outlined unless VX v = 0. This deriva­
s 

Hon has a number of faults and is criticized by Clark[ 29 ] who also 

shows that these same equations can be uniquely derived without as-

suming V X v = 0 if a literal interpretation of the two-fluid model 
s 

is assumed. He also gives an excellent review and critique of almost 

all other derivations of the equations of motion and shows some pas -

sible generalizations of some existing derivations. 

Equations (1. 3) are the same ones obtained by Zilsel[ 
25

] 

using a variational approach. However, his formulation also includes 

a restrictive equation on the curl of v ; 
n 

VXv =Vs XV~ 
n n 

where s is defined by Eq. ( 1. 1) and ~ is a Lagrangian multiplier. 
n 

Another drawback to the variational approach is that it can not deal 
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with irreversible flows. Nevertheless Landau 1 s equations can be 

generalized to include viscous terms by following the same general 

procedure outlined above with the additional requirement that dis -

sipation terms due to viscous effect be positive. The Landau equa-

tions have been well verified experimentally and usually serve as a 

starting point for further hydrodynamic analysis . 

2. A different approach is to as sign a special role to the 

vorticity of the superfluid part , One way of doing this is to assume 

that VX v = 0 everywhere except on singular lines in the fluid[ 
23

]. 
s 

These vortex lines can _then be quantized using arguments based on 

the necessary symmetry of the wave function for the helium atoms. 

This approach has additional appeal because these vortex lines can be 

intuitively related to the rotons in Landau's microscopic theory. Hall 

and Vinen[ 
3

0) have succeeded in developing a set of macroscopic 

hydrodynamic equations based on this approach. 

Another line of reasoning is taken by Bekarevich and 

Khalatnikov [ 
3
l] in which they assume that w = jV Xv j is an ad­

s 

ditional thermodynamic variable and that the internal energy of a 

rotating superfluid depends on w. The hydrodynamic equations result-

ing from this appro2.ch are the same as those derived by Hall and 

Vin en . 

3. Finally, a completely different approach has been taken 

by Lin[ 
32

]. He rejects the two-fluid model altogether and attempts 

to write a hydrodynamic theory of He II without recourse to any micro-

scopic theory which is a generalized one-fluid version of ordinary 

hydrodynamics. This line of reasoning has some drawbacks[ 
34

] 
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and, at best, offers no advantages over the other approaches bas e d 

on the two-fluid model. Eve n so, the equations of motion which result 

from this approach are equivalent to the Landau equations. 

Another important point to k ee p in mind is that the Landau 

equations represent the true flow situation only in the very simplest 

situation, that is, when all irreversible processes are negligible and 

when v is less than the relevant critical velocity. Whenever these 
s 

conditions are not met Eqs. ( 1 . 3) must be modified by adding new 

terms to represent mutual friction between the two flows and ir -

reversible processes. The nature and origin of these additional 

mutual friction terms are a very complex problem and their exact 

form has not been completely agreed upon and is an open question . 

The Hall-Vinen and Bekarevich-Khalatnikov equations mentioned 

above are the identical results of two different attempts to take these 

additional complications into account. Still another version of the 

equations of motion which include mutual friction is the semi­

empirical Gorter-Mellink formulation[ 
33

]. Both of these sets of 

equations reduce to the Landau equations in the limit of reversible 

flow with negligible mutual friction . These principal theories have 

been concisely summarized by Hsieh[ 
34

]. 

The last important question concerning a complete hydro-

dynamic theory deals with boundary conditions. The appropriate 

boundary conditions that should be used depend on the particular set 

of governing equations of motion that are being used to describe the 

flow field. Nevertheless, most formulations have certain points in 

common. For instance, at a fixed, solid boundary there usually is 
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and requirements that the perpendicular 

component of the mass flux is zero and that the heat flux is continuous 

across the boundary; these conditions are all analogous to those in 

ordinary hydrodynamics. However, when heat flows from a solid in-

to liquid helium it is accompanied by a temperature discontinuity 

known as the Kapitza boundary effect[ 
35

]; on the other hand, no dis -

continuity is found when the heat flux is directed from the fluid into 

the solid. The magnitude of the discontinuity is proportional to the 

heat flux per unit area. This effect has also been observed in 

He3
[ 

36
] where the phenomena associated with superfluidity do not ap-

pear so that it does not depend on the quantum nature of He II for its 

existence. The boundary conditions imposed on v depend strongly 
s 

on the particular formulation which is chosen to represent the flow. 

In summary, a continuum formulation exists which can be 

derived in a number of different ways and which has good experi-

mental support. However this formulation is valid only under a 

limited set of conditions and more comprehensive theories are need-

ed. The entire field of study, from a microscopic theory with its 

connection to a complete continuum model on to a satisfactory deriva-

tion of the thermohydrodynamic equations of motion and boundary con-

ditions, is certainly open to further theoretical and experimental 

study. 



-18 -

CHAPTER II 

SELECTED APPROACHES TO THERMAL WAVE PROPAGATION 

A. SOME ELEMENTARY ASPECTS OF THERMAL WAVES 

The propagation, rather than the diffusion of temperature 

variations is probably the most unusual characteristice of He II. This 

type of wave motion is usually called "second sound" to distinguish it 

from the familiar propagation of pressure waves which is called 

"first sound" in He II. The existence of these temperatures waves can 

be easily explained on the basis of the two-fluid theory. Since there 

are two distinct densities each with its own velocity field, two sep-

arate modes of energy transport exist as compared to only one ve-

locity and one mode of energy transport by wave motion in ordinary 

one-fluid hydrodynamics. This additional mode in He II is heat 

transport by a purely mechanical process which is the second sound 

phenomenon. 

It is possible to deduce a number of the fundamental properties 

of second sound from a linear perturbation analysis of Eqs. (1. 3 ). 

The procedure that will be used here is the same as employed by 

Atkins[ 
1 

OJ among others[ 1 ] ' [ 28 ]. Consider a stationary bulk of 

Hell at equilibrium; write all thermodynamic variables as 

P=P+eP+. 
0 l 

T=T +ET+ ..• 
0 l 

(2. 1 ) 

P = p + E p + . . . , etc. n no m 

The subscript "o" indicates a constant, equilibrium value and 



-19-

a subscript 11 l" labels all variable perturbation quantities. Also, 

since both velocities have a zero e quilibrium value, 

V =EV +. 
n ru 

} ( 2. 1 ) 
V =EV +. 

S SI 

Substituting Eqs. (2 . 1) into Eqs. (1. 3) and keeping only order e 

terms will give the desired equations for the perturbation quantities. 

By its definition, r is order E so the first order equations are 

op 
nt 1 + p \l•v + p \1.v = 0 
u no ru so s1 

(2 . 2a) 

ov 
Ill 

Pno -at= 
Pno 

- -- \JP - p s 'VT 
Po l so o l 

(2. 2b) 

3v 
Sl 

Pso -at = 
Pso 
-- 'VP + p s 'VT 

p 0 1 so 0 1 
(2.2c) 

os op 

Po ot
1 

+so ot
1 

+ poso\7.vni = O (2. 2d) 

Differentiating (2. 2a) and (2. 2d) with respect to time and using 

the other two equations to eliminate derivatives of 

o2 
S 

__ l_ = 
otz 

v 
n 

and v gives 
s 

(2. 3a) 

(2.3b) 

Equation (2. 3a) is the same as the equation which describes pressure 

waves in classical hydrodynamics while Eq. (2. 3b) is the new equation 

which governs second sound waves . Writing the equations of state in 
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the form P = p(p,s) and T = T(p, s ) implies 

p -(~) + (oP) s 
l - op P1 os l 

s p 

and 

T -(oT) + (oT) s 
l - op P1 os l 

s p 

Using these equations in (2. 3) gives two coupled wave equations for 

p and 
l 

s ; 
l 

Plane wave solutions to this set of equations having the form 

and 

are possible if 

s = ae 
l 

iw(t-x/u) 

- b iw(t-x/u) 
p = e 

l 

which is equivalent to 

} (2 . 4) 
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z -( aP) u - a 
l p s 

u l. 

l 
= ~ sz.(oT) 

p as 
n p 

Setting the determinant of Eqs. (2 . 4) equal to zero gives 

(2. 5) 

(2. 6) 

(2. 7) 

where Cp and St are the specific heats at constant pressure and 

volume, respectively. If the right hand side of Eq. (2. 7) is neglected 

then 

or 

u = u, the velocity of fir st sound 
l 

u = u, the velocity of second sound. 
l 

As London shows 

where ap is the coefficient of thermal expansion. Hence, Eqs. (2. 3) 

are de -coupled if the thermal expansion is negligible. At T = 1. 5 ° K 

c - Cy 
p . = 7 x 10-4 

Cp 

so the coupling is very small and can be neglected as a valid first 

approximation. Figure 2 shows the variation of u with tempera­
z 

ture[ 
3

] . For the purpose of comparison u equals 235 m/ sec at 
l 

1. 5 °K and 218 m/ sec at the /...-point. Below . 9° K u rises rapidly 
l 

and apparently approaches 190 m/ sec as T goes to O ° K[ 
37

]. 



- 22 -

L-~~~~~...l-L-~~~~-L-~~~~~---'-~~~~~--''--~~~~--
l.(') 

N 
0 
N 

0 0 

(:)oS/W) 2n 

CD 

w 

~ 

N 

q 

'D 
~ 
;J 
0 

{/) 

'D 
~ 
0 
u 
(\) 

{/) 

4-< 
0 - >-.::.::. .µ 

0 
.,..., 
u .__, 
0 ....... 

r- (\) 

> 
N 

(\) 

1-< 
;J 
bl) .,..., 
~ 



-23 -

Additional properties of the two types of wave propagation can 

be found from further analysis of Eqs. (2 , 2); for the sake of d efinite-

ness neglec t the linear coupling between first and second sound by 

assuming ap = 0, To begin, consider the properties of first sound 

by choosing the root u = u of Eq. (2. 7) . Then, by Eq. (2. 4), a= 0 
l 

so this root represents the familiar pressure and density oscilla-

tions at constant entropy usually found in ordinary hydrodynamics. 

With T = 0 in Eqs. (2. 2b) and (2. 2c ), these two equations imply, 
1 

for fir st sound, that V =V n s 
or 

W=O (2. 8) 

This means that the normal and superfhi.id parts move together in 

phase during first sound propagation. 

Similarly, we can discover some of the properties of second 

sound by taking the root u = u . Then b = 0 so the density and pres -
2 

sure are constant. Now, Eqs. (2. 2b) and (2. 2c) with p = 0 combine 
l 

to yield 

Pnovm + Psovsl = vl = 0 (2. 9) 

Thus, we have the result that the mass flux velocity is zero during 

second sound propagation or , in other words, second sound is a type 

of heat transfer without an accompanying mass transfer. Under these 

same conditions it is possible to show that heat flow is proportional 

to, and in phase w:lth, the temperature[ 
35

] . Given the traveling 

wave solution for the entropy in the form 
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iw(t-x/u) 
z. 

Set P = 0 and use this expression for T in Eq. (2. 2b); 
l l 

av 
. nl ,,X 

Pno at 

or 

Therefore 

av 
nl,X 

at 

= 

= 

v 
Ill ,x 

(
a Tl . iw(t-x/u ) 

s ~ [ iwe z. ] 
0 us 

s 
= _l_ u 

so z 

p 

The entropy flux is p sv [see Eq. (1. 4d)] so the heat flux is 
n 

o = psTv 
n 

In this scheme 

Q = p s T v 
l ,x 0 0 0 nl ,x 

Q = p T u s O::T 
l,X 0 0 Z. l l 

(2. 10) 

(2. 11) 

This is the desired· result; the striking difference between (2. 11) and 

ordinary hydrodynamics, where heat flux is proportional to the 

gradient of temperature, arises because temperature satifies a 
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hyperbolic equa tion h e r e rather than a parabolic e quation as it does 

in other fluids. 

It should be emphas iz e d that the above results regarding the 

basic prope rties of first and second sound are valid only as long as 

thermal expansion is negligible. In actual fact, the re are small 

fluctuations in entropy and temperature carried along with a first 

sound wave and, conversely, small changes in the pressure and 

density accompany a second sound wave. Even so, a natural division 

of the variables into two distinct sets seems to be suggested here. 

One group contains P, v, p and other variables which have a strong 

pressure dependence; it is these variables which are of primary 

importance in a fir st sound situation . The other group contains T, 

w, s and other temperature dependent variables whose variation is 

of most concern in a second sound problem. 

B. PREVIOUS SECOND SOUND INVESTIGATIONS AND A SUMMARY 
OF THIS WORK 

Several investigators have already used a variety of approach-

es in addition to the straightforward linear analysis given above to 

study the nature of second sound. The best review of the most 

important properties of second sound and an extensive bibliography 

t . d . . [ 10) . 
are con aine in the book by Atkins . The detailed temperature 

dependence of the amplitude -independent velocity of propagation, 

energy flow theorems, attentuation, and the effects of various types 

of boundary conditions are some of the points of interest that are 

discussed; an analogy between second sound propagation and an 

equivalent electrical circuit which was first proposed by Dingle[ 
39

] 
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is a l s o d e v e lope d furth e r. The di scussions of the amplitude -de p e nd-

ent v e locity of propagation and th e distortion of a puls e type wave form, 

two 

are 

of th e properties which will be of particular interest in this paper, 

based on the theori e s of Khalatniko) 
33

]. He derives expressions 

for the velocity of propagation of both fir st and second sound which 

are valid to first order in the relative velocity, ,w. This derivation 

is open to some criticism and will be repeated and discussed in 

detail in Appendix B in order to clarify it. Khalatnikov uses a rela-

tively simple linear perturbation analysis which is encumbered by a 

minimum number of restrictive assumptions so his results will pro-

vide a valuable check on the formulae derived herein by a non-linear 

analysis. Unfortunately, Khalatnikov includes very little detailed 

discussion of his results along with the analysis. 

[ 40] ' . 
Temperley has done the only non-lmear analysis up to 

this time but his work is not based on the Landau equations; his work 

is also reviewed in Appendix B. A procedure similar to the one used 

by Temperley will be used here but the results are not comparable 

because different equations of motion are used. Temperley only 

derives the equations which specifically govern the motion of second 

sound but , like Khalatnikov , does not discuss any of the consequences 

of these equations in detail. 

In both the theoretical investigations mentioned above the 

authors hav e b e en explicitly concerned with solutions which are con-

tinuous functions of time and spatial dimensions . Nevertheless, 

Khalatniko) 
28 J and Temperley, in the same paper, also consider 

discontinuous (shock) solutions , Both use a perturbation scheme 
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although Khalatnikov has done a more general analysis; their general 

conclusions are virtually the same even though Temperley does not 

use the Landau equations. The most important results based on their 

analysis deal with the propagation speed of the discontinuity and with 

order of magnitude estimates which relate the size of the jump of the 

important variables across the discontinuity. These estimates are 

made for both pressure and temperature discontinuities. 

A large amount of experimental data has been collected con-

cerning all the various aspects of second sound but only two experi-

ments are of direct interest as far as thiE paper is concerned. One 

of them entailed the use of a pulse technique by Osborne[ 
41

] to clear -

ly demonstrate the phenomenon of non-linear "breaking" of a given 

pulse type temperature waveform. The method consisted of genera-

ting a heat pulse at one end of a tube filled with He II and photograph-

ing oscillascope traces representing the temperature waveform which 

pictorially show the deformation of a pulse as it travels down the tube. 

Qualitative measurements of the attenuation of the size of the pulse 

as a function of the distance traveled were taken for various tempera-

tures and heat inputs. These experiments were the first direct 

experimental confirmation of some of the non-linear aspects of 

temperature wave propagation. 

The other experimental investigation was specifically concern-

ed with obtaining quantitative measurements of the temperature varia-

tion of the amplitude -dependent propagation speed; this series of 

experiments also used pulse technique) 
42

]. The theoretical pre -

dictions of Khalatnikov and Temperley were expressed in terms of a 
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convenient dimensionless parameter which was indirectly measured 

experimentally for small heat pulses. For temperatures above 

1. 4°K the two theoretical results were found to be virtually identical 

and were verified by the experimental data. Since experimental ver -

ification was sought for predictions based on a linear theory, the 

magnitude of the total change of temperature in the heat pulse was 

kept very small so no non-linear effects were observed. 

All but one of the analyses that have been done up to the 

present time are based on some perturbation procedure in which the 

relative velocity, w, is the small parameter. And yet the Landau 

equations are definitely non-linear in character so, by analogy with 

ordinary hydrodynamics where linear and non-linear theories of 

pressure waves can be strikingly different, a non-linear approach 

will be taken here with one goal being the comparison of the results 

for small w with the previous theories. However, additional 

complications are present in He II which prevent even a non-linear 

analysis from being valid outside a rather limited range of conditions. 

One of these limitations is the existence of a critical velocity as 

mentioned earlier. 

A second motivating purpose behind this work is the desire 

to apply the general theory of second sound to a specific problem and 

to discuss the flow in some detail. This type of additional analysis 

and detailed discussion of the results has not been done previously and 

will yield new insight into the nature of second sound. In particular, 

we will consider the behavior of a temperature pulse as it propagates 

through He II. As mentioned, this type of flow situation has been used 
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to measur e certain characteristics of second sound so it is of more 

than just academic inte r e st. Moreover, this point of view prov ides 

a contract to analyses based on a sinusoidal temperature variation. 

Keeping in mind the goal of attempting to describe in detail 

· the nature of second sound, a number of simplifying assumptions will 

be made so that all considerations which appear to be second order 

effects are neglected and in order to theoretically isolate second 

sound from fir st sound. Also , all irreversible effects are implicitly 

neglected since the Landau equations, which do not include viscous 

effects or mutual friction, are used. Then the "Riemann theory of 

second sound" will be developed with the ultimate objective being a 

set of characteristics and invariants which describe the flow in a 

large class of problems. This approach is used because it works so 

well for the description of wave propagation in ordinary hydrodynamics 

and is especially suited to non-oscillatory driving functions. 

This set of characteristics and invariants will then be used to 

obtain an explicit solution for the problem of the propagation of a 

temperature pulse in a semi-infinite , one-dimensional channel. This 

solution has some properties usually associated with pressure waves 

in classical hydrodynamics and other new features that have no 

analogy at all with wave . motion in ordinary media. Subsequently, 

the initial assumptions will be dropped individually in order to study 

their relative importance and the order of magnitude of their effect 

on the first solution. This includes considering the interaction of 

first and second sound. Finally, to complete the theoretical investiga­

tion, the complete non-linear conservation laws de scribing the motion 
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of discontinuous soluJ ions ar e d e rived. These equations are e xtreme -

ly cornpl e x and are · discussed from a general point of view since a 

perturbation analysis has alr e ady been done. 

All these results are then summarized and some concluding 

remarks are made about the nature of second sound as well as about 

the advantages and disadvantages of the procedures used in the pre­

ceeding analysis. Several new areas of theoretical and experimental 

investigation are suggested by this work and some of these are dis -

cussed in detail. It is also shown that it might be worthwhile to re -

consider some of the previous theoretical work that has been done so 

some suggestions for additional research are also made along this 

line. 
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CHAPTER III 

THE RIEMANN THEORY OF SECOND SOUND 

A. SIMPLIFICATION OF THE LANDAU EQUATIONS 

The Landau equations serve as the starting point for this 

analysis of thermal waves. Within the other limitations mentioned 

earlier, this basic set of equations is valid from approximately l ° K 

up to the A. -point. Below this lower limit the normal density is very 

small - - pn/p is less than. 0086 for temperatures below 1 °K - - so 

mean free path effects are becoming increasingly irrportant. This leads 

to the conclusion that a two -fluid, continuum theory of He II is not 

valid at these very low temperatures and a different approach, possib-

ly one similar to rarified gas dynamics, is needed. 

The Landau equations as they are now written in Eqs. (1. 3) 

are not in a convenient form for an analysis of first and second sound. 

· They are much more amenable to a Riemann analysis when they are 

written entirely in terms of variables which can clearly be put into one 

of the two groups mentioned on page 25 in Chapter II. The mass flux 

velocity, v, and the relative velocity, w, are the mechanical ve-

locity variables that will be used. In addition the total mass density, 

p, and the normalized relative density, 6, will be used as the inde -

pendent thermodynamic variables; 6 is defined by 

6 = 
pn-ps 

p 
( 3. 1 ) 

The motivation for choosing this variable rather than p or p 
n s 

comes from the linear analyses of Khalatnikov and Temperley where 
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it has been shown that the temperature where p = p , or where 
n s 

o = 0, is of particular importance. Thus it might be necessary to 

expand our results for small o hence the choice of the normalized 

relative density and also its symbol 116." The relative density varies 

between -1 and +l as the temperature ranges from zero to the A. -

point and is a very weak function of pres sure. 

The transformation equations relating p, o, v, 

p , v and v are 
s n s 

p = Pn + Ps 0 
pn-ps 

= p 

Pn - Ps -v = -v + -v w .= v - v 
p n p s n s 

and 

and w to p , 
n 

} (3. 2a) 

l +o 1 -0 
Pn = -2- p PS = -2- p 

1+6 - . } 
(3. 2b) 

l -o 
v = v + -2- w v = v - -2-w n s 

When the transformations (3. 2b) are substituted into Eqs. (1. 3) the 

resulting equations can be written in the following form 

~ + v. pv = o at 

apv 1-0 2 

ot + \lopvv = - VP - \lo - 4- pww 

a ( 1 +o _) 1 +o -- " I +o p'7 :w
2

z. Ft - 2- pw + \l o -
2

- pwv = -p s v T - -
2

- v 

l +o (- \') ( - l +o -) - - 2- p w•v v - -
2

- w v .01-0' , 4 pww 

oos - 1-o lft + 'V • psv = - \l·-2 - psw 

(3. 3a) 

(3.3b) 

(3.3c) 

(3. 3d) 
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The l eft hand side of each of these e quations is the material 

d e rivative moving with the mass flux velocity v of a scalar or vector 

quantity. The right hand side of the equations describing the motion 

of v and w contains forces due to the gradient of a th e rmodynamic 

variable plus additional t erms involving the relative velocity, w . 

These equations clearly show that a pressure gradient is th e important 

thermodynamic force accelerating v while a temperature gradient is 

the most important thermodynamic force as far as w is concerned. 

This explains the natural pairing of P and v , and T and w for the 

first and second sound respectfully. Nevertheless, there is a coupling 

between the two velocities and thermodynamic gradients by the other 

forcing terms involving w. 
Equations (3. 3) constitute a set of eight equations for eight 

dependent variables which we will assume to be p , 6, v, and w. 

Three additional equations of state are necessary to make this formula­

tion complete; assume these equations take the form 

P = P(p,6 , w) 

T=T(p,6,w) 

s = s (p' 6' w) 

(3. 4a) 

(3.4b) 

(3. 4c) 

If it is assumed that w = 0 then Eq. (3. 3c) implies that temperature 

is a constant, entropy is conserved by Eq. (3. 3d) and the remaining 

equations including Eqs . (3. 4) form the classical set of inviscid hydro­

dynamic equations. 

It is now necessary to make the following three assumptions in 
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order to reduce these equations as much as possible and still not 

destroy their ability to describe t empe rature waves. 

l. Consider only those solutions for which v = 0. This 

restriction mak e s it impossible for first sound to be gene rated so that 

the interaction of first and second sound is neglected and we will be 

dealing strictly with thermal waves. 

2. Assume the specific entropy of the normal part, is 

constant. This is an empirical fact and not the consequence of some 

fundamental principle. This assumption is a very good first approx-

imation for temperatures between about 1. 4 ° K and the A. -point but is 

only a crude approximation for temperatures less than l °K. 

3. Assume it is possible to neglect the w dependence of the 

thermodynamic variables in Eqs. (3.4). The dependence of these 

variables on w should be weak but one of the objectives of subsequent 

analyses will be to calculate the effects of this dependence. 

Equations (3. 3 ) are considerably simplified by these as sump-

tions. If the total mass density is a constant, say p
0

, at some time 

everywhere in a given volume of the fluid then Eq. (3. 3a) combined 

· with the first assumption imply that p = p for all time. The assump­
o 

tion that v = 0, when used in conjunction with Eq. (3. 3b) also yields 

a restrictive condition on the pressure: 

(3. 5) 

Under the first and third assumptions, Eqs. (3. 4 ) have only a o 

dependence 

P = P(o) T = T(o) s = s(o) (3. 6) 
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Thus, Eq. (3. 5) is considered to be a restrictive condition which 

limits the class of functions P = P(6) that are allowable when the 

above assumptions are valid. Notice that a pressure gradient will 

accompany second sound even though it has been assumed that no first 

sound is pre sent. Because its existence depends directly on a non-

zero w, this type of pressure variation will move with the relative 

velocity or, in other words, a pres sure wave propagates with the 

velocity of thermal waves in a purely second sound flow. 

The definition of s can be written 
n 

s = s 
n 

l +o = -z- s 
n 

Consequently, under all the above assumptions, Eq. (3. 4d) becomes 

an equation for 6; 

~(1+o)+v.14-oz w =O at z 

Finally, Eq. (3.3c)is 

l+o aw+ w[~ (1+6) + \J.1-62. w]- _ s'VT 
2 at at z 4 -

1+6 'V v;;z + l+o (w·'V) 1+6 
2 2 -z- 2 w-

1 -62. 
- 4- (w·'V)w 

The bracketed term vanishes by the previous equation. 

. (3. 7) 

In summary, under the three simplifying assumptions VP is 

a quadratic function of w, and o is the most convenient thermo-

dynamic variable, and Landau 1 s equations reduce to the following 

set of equations for 0 and w; 
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aw 2 w 2 
- l --at + 1 to s Y' T + Y' 2 - o ( w · V )w - 2 w w • "Vo = o 

00 l -o 2 

at + - 2- v. w - ow .\lo = o 

We can use the second of Eqs. (3. 6) to write 

"VT =(~;)(~~)vo 

= l~o s ( ~;)\70 

2 
sY'T i +.o = 

(3.8a) 

(3.8b) 

(3. 9) 

where u is defined by Eq. (2. 6 ); in this scheme u = u (o ). Equa-
z 2. 2 

tions (3. 8) can be further reduced by considering a one-dimensional 

problem. Then all variables depend only on one space dimension, for 

instance x, and time. Also 

w = w(x, t)e 
x 

Thus, Eqs. (3. 8) written in matrix form are 

aw 
( l -o )w 

2 uz - 1 2. ow 
at 

1 -o 2 2. 
2w ox 

+ 
00 1 -6 2 

-ow 00 
at -2- ox 

= 0 (3. 10) 

In addition, the one-dimensional, integrated form of Eq. (3. 5) is 

P-P 
0 1 -6 2 

= - -4-.- (3.11) 
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B. DERIVATION AND APPLICATION OF THE CHARACTERISTICS 

AND INV ARI ANTS 

Having derived the basic equations which describe thermal 

waves, Eqs. (3. l 0 ), we will now study them in detail to d educe some 

of the basic features of second sound. Th e following analysis is based 

on the theory of hyperbolic equations as discussed in Appendix A. The 

important details in this analysis and in the solution of the problem 

following it are explicitly shown in order to clearly illustrate the 

method which is being used. For subsequent analyses similar to this 

one we will only point out the essential differences between the two 

systems of governing equations and then quote the final results by 

analogy to this procedure. 

In this instance there are only two unknown dependent variables, 

o and w, so n = 2. Also, the matrix A in Eq. (AZ) is the unit 

matrix, I, so the condition determining the characteristics is 

(1 -o )w-c 

1 -6 2 

-2-

2 

1 -6 2 

uz 1 wz 
2 - 2 

- ow - c 
= 0 

Expanding this determinant gives the following quadratic for c; 

c 2 - (1-26 )we - u~ + ~ (36 2-46+1 )w2 = 0 (3.12) 

Therefore , the characteristic lines are 

1 

Lt : ( ~) = c + = ( ~ -o) w + ( u
2 + 

1 o2w2 )2 
4 + 2 1 

L : (~~) =(~ -o)w-(u: + 
1 ozv.,z ) 2 = c 4· 
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Sinc e the c' s are a lway s r eal and distinct the system of Eq s. (3. l 0) 

is always hyperbolic. This means that the temperature always prop-

agates with a finit e speed rather than obeying a diffusion equation. 

In this case the equation for the left eigenvectors reduces to 

or 

± f .b .. 
1 lJ 

= ±n± c x . 
J 

Using the second column of the B matrix these equations are 

) [ 

1 
1 2.± 1 2. 2± 

- - w P. = - w ± (u 1 z z) JP. 2 l 2 z+ 4 ow z 

Pick 

1± = 1 -6 2 

l 
-2-

1 

P. ± = ~ w ±( u: 1 
62w2) 

2 
- + 4 2 

Since A = I, the invariants are given by 

+ £±do 
2 ± 

= 0 

with 1± and £± given above. In these equations dw represents 
1 2. ± 

the differential of w taken along the 

A similar interpretation holds for do 
± 

ies in the following table . 

L 
± 

characteristic, respectively. 

These results are summar -

Characteristic, ( dx) =(.!__ -o} w +(u2 + .!__ 
dt + 2 2. 4 

(3.13) 

Invariant, 
1t dw+-[i w -(u; + l o'w')~]ao+" o (3.14) 
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l 

L Characte ristic, (~~) =(} -o) w -(u~ + ~ o2
w

2
)

2 
(3.15) 

Invariant, l ~ 62 dw _ -[ ~ w +( u: + ~ 62w 2 )~ J d6 _ = 0 (3. 16) 

This se t of characteristics and invariants provides a useful tool for 

solving a large class of problems for which Eqs. (3. 1 0) are adequate 

to describe the flow. 

We will now apply these results to a simple problem to illus-

trate the procedure by which characteristics and invariants are used 

to obtain a ·solution and to discover some of the basic features of 

second sound. Suppose a semi-infinite, one -dimensional channel filled 

with He II is initially at a uniform temperature T and assume the 
0 

fluid is at rest. At the one end, which we will take to be x = 0, the 

temperature is a given function of time. It will be implicitly assumed 

that this boundary condition is some general temperature pulse. The 

set of equations which describe this problem has been formulated and 

analyzed above using o, rather than T, as the independent thermo-

dynamic variable. However, 6 is a monotonically increasing function 

of temperature so there is no difficulty in reformulating the initial and 

boundary conditions in terms of 6. It will also be a simple matter to 

write the final results in terms of either 6 or T. Initially, the fluid 

in equilibrium is represented by w = 0 and 6 = 6 = 6 (T ). The 
0 0 

boundary condition is now 6 = 6 [ T(t)] = 6 (t) for t > 0. A complete 

solution is known when the variables w(x, t) and 6 (x , t) are known 

for all x > 0, t > 0 in terms of 6 and the given boundary condition 
0 

6 (t). 

A type of itera.tion scheme will be used to find this solution. 
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W e b eg in by considering a point P n e ar the x-axis as shown in 

Fig . 3. 

t 

8 = 8( t ) 

Figure 3 

By evaluating the co e fficients of the differentials in the invariants on 

the x-axis we can write , 

l -o 2 

Along L+ 
0 

d w + u ( & )do = o 

} 
-z- + 2 0 + 

1 -o 2 (3.17) 

Along L 
0 dw - u (o )do = 0 -2- - z 0 -

Since P has been chosen so that L are short line segments, we 
± 

can also write 

Along L + ·· o (P) = o 
0 

+ do+ w(P)=O+dw+ 

Along L o (P) = o + do 
0 

w(P) = 0 + dw 

The requirement that the solution b e single -valued at P implie s that 

dw = dw = dw + -
and 
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do = do ::: do + -

Equations (3. 1 7) now give the solutions dw = 0 and do = 0; hence 

and 

o (P) = 0 
0 

(3. l8a) 

w(P) = 0 (3. 18b) 

This result is valid for all points P whose domain of depend-

ence is restricted to just the x-axis. This in turn is determined by 

the slope of the L+ characteristic which passes through the origin of 

the x, t-plane; by Eqs. (3. 18) this characteristic, called the "wave-

front", is a straight line. We will call the slope of this line u 0
; 

z 

u 0 = u (o. ) = u ( o (T )] 
z z 0 z 0 

Hence, the equation for the wavefront is 

or 

dx 0 

-=u 
dt z 

x-u 0 •t=0 
z 

(3.19) 

(3. 20) 

Thus far we have found the expected result that there is no disturb-

ance ahead of the wavefront whose slope in the x, t-plane is determined 

by the velocity of second sound at the initial temperature. 

Next, consider some time T on the t-axis close to t = 0 

(see Fig. 4). Some characteristic L must exist which intersects 

the t-axis at T and which goes into the equilibrium zone ahead of the 
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t 

8=8(t) 

T 

w = 0 i 8 = 80 

Figure 4 

wavefront . Reasoning as before , we can write 

Along L 

Also 

and 

1 -o 2 

0 
dw -z- - U 

0 d0 
2 

0 (T) = 0 + do 
0 -

w(T) = 0 + dw 

= 0 

x 

In this instance, however, o(T) is known by the given boundary con-

dition so the above equations combine to give an expression for w(T) 

for small T , 

O(T)-o 
0 

w(T) = 2 ---
1 -o 2 

0 

0 

u 
2 

(3.21) 

The next step is to consider a point P which is close to both 

the t-axis and the wavefront as shown in Fig . 5 . Using the same 

arguments as before 



t 

Along L+ 

Along L 

and 

Along L+ 

Along L 
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w = o, 8 = 80 x 

Figure 5 

1-0~(T) dw + -{w1T ) +:(r) + ~ O'(r)w'(r)J~} d6 + = 0 
1 -o 2 

--
0 

dw - u 
0

do = O 
2 2 

o(P) = o(r)+do . + 

o (P) = o + do 
0 

w(P) = w(T) + dw 
+ 

w(P) = 0 + dw 

Again the unknowns are w(P) and o (P) while w(T) is now known 

from Eq. (3. 21 ). Eliminating dw and do from these equations ± . ± 

gives two equations for o (P) and w(P) which have solutions 

w(P) = w(T) 

and 

o(P)=o(T) 

Consequently, the L + characteristic emanating from the t-axis at T 

is a straight line and the values of w and o on this characteristic 

are constant and equal to their values on the t-axis . 
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Finally, consider two neighboring L+ characteristics which 

intersect the t-axis at T and T and assume that T and T are 
l 2 l 2 

close to each other. Following the general scheme used in the pre-

ceeding calculations it is possible to show that all L characteristics 
+ 

are straight with w and 6 constant along them. In addition we find 

{ l} 6 -6 w 1 2 
w -w =2 2 1 

.-
1 +[u2 (6 )+-6 2w 2

] 
2 1 1 -62 2 2 1 4 1 1 

l 

where the subscripts 11 l11 and 11 2 11 indicate that the variables are 

evaluated at T and T respectfully on the t-axis. Now let T -+ T 
l 2 . 2 1 

from the above expression we get an ordinary differential equation 

relating w and 6 at the boundary x = 0. 

1 

1 -6
2 

dw w ( 2 1 2 2)
2 

-2- do = 2 + u 2 + 4 6 w (3. 22) 

Since u is a known function of 6 this equation can be solved in 
2 

principle, to give w = w(o) = w[ 6 (t)] = w(t) on the t-axis, or equiva-

lently, at the end of the tube . With w now known the slope of the L+ 

characteristic intersecting the t-axis at T is given by 

(3 . 23) 

This can be directly integrated to give an explicit equation for L+; 

x - c(T){t-T) = 0 (3, 24) 

We now have a complete solution. It can be summarized as 

follows: 



w(x,t) = { 
and 

O(x,t) = { 

-45-

0 

w(T) 

6 
0 

6 (T) 

for 

for 

for 

for 

x>u 0 •t 
2 

x<u 0 • t 
2 

x>u 0 •t 
2 

x < u 0
• t 

2 

(3. 25a) 

(3.25b) 

where, for a given point (x, t), T is implicitly given by Eq. (3. 24) 

with c(T) given by Eq. (3. 23 ), 6 (T) is the boundary condition at 

x = 0, u = u (6) is a given function, and w(T) is determined from 
2 2 

Eq. (3. 22) [see Appendix D]. 

Only Eq. (3. 22) needs to be modified when the temperature is 

used as the fundamental thermodynamic variable. We can relate w 

to T rather than 6 by writing 

Since s is a constant 
n 

(~;)= f(~~) =(1-6) 
n 

so 

dw 2 
dT = 1 +6 

s 

uz 
2 

(3.26) 

(3 . 27) 

The other parts of the solution remain unaltered except for the fact 

that 6 and u are now considered to be functions of T. 
2 

There are places in the derivation of this solution where 

significant difficulties could arise. For instance, it might be possible 
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to obtain different solutions than the one found for Eq. (3. l 7) if the 

determinant of that system of equations vanishes. However, it is a 

simple matter to show that this can not occur and Eqs. (3. 18) do 

indeed represent a unique set of solutions. 

Another point of concern arises in connection with Fig. 4 where 

we have shown an L_ characteristic intersecting the t-axis. It is 

possible that the L lines may either intersect each other before 

crossing the t-axis or they may curve away from it completely and 

become vertical at some point. In either case Eq. (3 . 21) would no 

longer be valid. It is subsequently shown, however, that both w and 

6 are constant along all L + lines so that all members of the L 

family of characteristics are parallel at the point where they cross 

the line x - c(T)(t-T) = 0, Since this is true for all T, the L 

characteristics never do inter sect. 

Equation (3 .15 ) is the differential equation for the L charac-

teristics. If an L line ever does become vertical in the x, t-plane 

then at that point 

{ :i = 0 (3.28) 

Thus 

1 

1 
- 6) w - ( u~ + 

1 6zwzJ2 0 2 4 = 

or 

(1 -36 )(1 -6) wz = uz 
4 z 

A study of these equations shows that w > 2/3 u if Eq. (3. 27) is 
z 

true. But the original assumption that w is not important as a 
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thermodynamic variable (assumption 3) is no longer valid if this in-

equality is true. Therefore this consideration is not a limiting factor 

as far as the validity of the derivation of the solution is concerned. 

It is also possible that the L+ characteristics will intersect 

each other with the result that the one parameter family of L+ lines 

for ms an envelope and discontinuities appear in the solution. This 

actually does occur and will be discussed in detail in the next Section. 

One final point should be made here concerning this entire 

analysis and much of the work contained in the next Section. It has 

been mentioned previously that the Landau equations represent the 

actual flow only under a very restrictive set of circumstances. In 

particular, they are valid only to order w 2
; in addition, terms of 

the same order of magnitude have been neglected as a result of the 

assumption that w is not an important thermodynamic variable. 

Consequently , all of the above calculations are valid to order w, at 

best. It is more correct, then, to rewrite the differential equation 

g1v1ng w at the boundary as 

or 

1-02 dw = uz[l + -2- do 

and the slope of the L+ characteristics as 

c(T)=u,[1 +(~ -o)~ +o(::)] 
2 

(3. 29) 

(3. 30) 

(3.31) 
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Howeve r, a numerical analysis has shown that n eg l e cting the higher 

order terms has very little actual e ffect on the solution. The result 

of the numerical integration of Eq. (3. 30) to give w(T) for different 

values of T is shown in Fig. 6 for 
0 

·[ w/ < u . The values for u 
2 2 

and s were taken from Donnelly[ 
3

] and it was as surned that 

p; =Rr 
which London[ 

1 J has shown to be true in the same region where s 
n 

is a constant . These results differ from those obtained by integrating 

Eq. (3. 27) rather than Eq. (3 . 30) by less than 1 meter/sec for all 

initial temperatures and for w less than u . 
2 

Equation (3 . 31) is the only one that can be verified to O(w) 

by Khalatnikov' s linear theory. We can reduce Eq. (B 7) so that it is 

consistent with this theory by 

l, Neglecting ( Oap;) so the expansion of the thermodynamic 

variables is not included, 

2. Setting v = 0 and hence u-+ c, and 

3. Assuming s is a constant. 
n 

Under the third assumption 

uz (a P ) 1 p2s a; = 
s 

and the quadratic for c is 

c 2 
- (1 -26 )we - u 2 = 0 

z. 

which is the same as Eq. (3. 12) if O(wz.) terms are neglected. 
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C. THE NATURE OF THE SOLUTION 

Equations (3. 25) represent the time and spatial dependence of 

the flow parameters o and w for the propagation of a temperature 

fluctuation given at the end of a semi-infinite tube containing He II. 

Although this solution has a limite d range of validity it displays many 

of the important characteristics of second sound and will serve as a 

basis of comparison with more general solutions derived later and 

with other theoretical results . It also has the distinct advantage of 

being an explicit solution and can therefore be studied in detail with 

the use of some relatively simple analytical tools. 

By inspection of this solution it is clear that it represents the 

undamped propagation of o and w with c, as defined by Eq. (3. 23 ), 

being the propagation speed. In this approximation c is a function 

of temperature only . As Temperley[ 
4

0] has pointed out , the terms 

involving w have a much greater influence on the temperature 

dependence of the velocity of propagation than the temperature varia-

tion of u itself. This is in contrast to the case in ordinary gas 
z 

dynamics where just the opposite situation occurs. It is not surpris -

ing that there is no attenuation since all irreversible processes and 

the interaction of fir st and second sound have been neglected. 

Some non-linear aspects of this solution such as the deforma-

tion of a given temperature pulse as it propagates through He II are 

found by considering the temperature dependence of the velocity of 

propagation , c. Since the L + characteristics are straight lines and 

c measures their slope with respect to the t-axis, it is clear that 

two adjacent L+ lines will converge towards each other and inter sect 
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c 1 (7) 
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= de > 0 
dT 

(3. 32) 

If this condition is met then the L + lines will form an envelope. 

Equation (3. 23) is the equation for these L+ lines; 

X - c(T)(t-T) = 0 (3,23) 

To find the equation of the envelope differentiate this equation with 

respect to the parameter T, 

c(T) - c'(T)(t-T) = 0 

and combine these two equations to write the parametric equation for 

the envelope as 

t 
c(T) 

= 'T + c'(T) = t(T) (3. 33a) 

x 
CZ ( 'T) = x(T) = C1(7) 

(3. 33b) 

These equations can also be written 

[ 
d -1 J-l 

X = - dT ( c , ) 

Therefore, if 

at T = T 

then the envelope has a cusp at 



x 
c = 

-52 -

(3. 34a) 

(3. 34b) 

The pair (x , t ) is the point in the x, t-plane where a discontinuity 
c c 

first appears in the solution given by Eqs. (3. 25) and this solution is 

no longer valid. 

In order to write Eq. (3. 32) as condition on the temperature, 

define the function F by 

SO c 1(T)> 0 if 

8c 
F(T) = 8T 

F(T) ~~ = F(T)T 1 > 0 

Using Eq. (3. 27) to eliminate ~; we can write F as 

where 

F(T) = :,( 1 + 

(1-o)(lt3o) 
2(1+6) 

~ 02 w
2 )-~{ht 1-20 _ 

4 z 1 to 
u 

2 

1 

1 2 w
2 

)
2 

1 t:;ro - -26 
uz 

2 

U
s

2 

[h t 1 -2o = ~ -
(l-o)(lt3o) 

2 ( 1 to) 

h = ~ ( 8u2) 
s 8T 

:J} 

(3.35) 

(3. 36) 

(3. 37) 

(3.38) 

(3. 39) 

This function h is dimensionless and provides a measure of the 

importance of the temperature dependence of u . The function h(T) 
2 
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is shown in Fig . 7. This function must vanish a t the A. -po int since 

u
2

(TA.) = 0 and all other facto r s are fin ite . Al so, it appears that 

h -+ - oo as T -+ 0. This is to be expec t e d since s -+ 0 by the third 

law of thermodynamics but the d e taile d T depe nde nce of u must be 
z 

known before this can b e stated as a certainty. 

Solving Eq. (3 . 27) for the function w = w(T) involves using 

the condition w = 0 at T = T to eliminate the integration constant. 
0 

Hence, the influence of T on condition (3. 32) comes only through 
0 

the dependence of w on T 
0 

in F(T). Notice that this condition 

depends on T, T , and the sign of T 1 but not on the magnitude of 
0 

T'. Lt c haracteristics do converge both 

t - T are inversely proportional to the magnitude of T'. 
c 

However, if the x 
c 

and 

We can now state that a discontinuity will appear in the solution 

if 

J > 0 

F(T)l 

< 0 

for 

for 

T' > 0 

(3. 40) 

T' < 0 

This leads one to define a "critical" temperature T by 
c 

F(T) = 0 (3.41) 
c 

with its corresponding critical o = o = o (T ). This critical tempera-
c c 

ture is important because, for a given initial temperature, it divides 

the temperature range of interest into separate regions in which the 

nature of the solution is quite different. Using this concept of the 

critical temperature we can write Eq. (3. 40) as a condition directly 

on the temperature as follows: 
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T 1 =< 0 

T 1 § 0 

f o r F(T) Z T )=< 0 
c 

(3. 42) 

for 

Equa tion (3. 4 1) is conside rably simplifi e d at the initi a l con-

ditions . Defining £(T) as F(T) when w = 0, Eq. (3,41) reduces 

to 

s(T )[ 1-26] 
f(T c) = u (; ) h(T c) + l +6 c = 0 

2 c c 
(3,43) 

This f(T) is strictly a function of T and does not depend on the 

detailed solution given by Eq, (3. 25). Although c = u when w = 0, 
2 

this equation shows that 

since 

OU oc 2 

&T * &T 

dw 
dT f O at T = T 

0 

If the inequalities stated by Eq. (3 . 42) with T = T and F replaced 
0 

by f are valid initially, then the discontinuity will first appear at the 

wavefront. If we could neglect the temperature dependence of 

would be identially zero and 

o = 1I2 
c 

or T =2: . ll°K 
c 

u, 
2 

h 

(3. 44) 

This first estimate of the critical temperature could have been made 

directly from Eq . (3 . 31) with u a constant, 
2 

The function f (T) is shown in Fig . 8 . Again there is only one 

critical temperature; it has a value of 
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T = 2. 02 ° K 
c 

Since f(T~ Tc)§ 0, Eq. (3.42) is simply 

T ~ T 
0 c when 

(3.45) 

(3. 46) 

For example, if T 
0 

< 2. 00° K then a discontinuity will appear at the 

wavefront if T 1
, the initial time rate of change of T at the bound­

o 

ary, is positive. 

The complete function F(T) does depend on the specific solu-

tion and this is shown in Fig. 9 for various initial temperatures. 

Again F(T ~ T ) ~ 0 so Eq. (3. 46) is still the condition that deter -
c 

mines whether a discontinuity will appear in the solution. As in Fig. 

6 only the results for the temperature range where j w j < u are 
2 

shown. When the initial temperature is less than 1. 75°K there is no 

critical temperature and , by Eq . (3 . 36) a discontinuity will appear in 

the solution only if T' > 0. For T > 1. 80° K there is a critical 
0 

temperature which is a function of T as shown in Fig. 10. However, 
0 

the low temperature portion of each F(T) curve is also pointed 

toward the abscissa so, in a better theory, we might expect the exist-

ence of two critical temperatures for each T if this trend is con­
o 

tinued. At T = 2. 01 °K, the initial and critical temperatures have the 

same value. The temperature at which T = T which will be o c' ,., 
defined as T' is a very important one because it, like the critical 

temperature , separates regions of different flow characteristics. In 

fact, the prediction of this temperature is one of the major objectives 

of this theory . We will discuss this point in greater detail in the next 
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section. 

D. MORE GENERAL ANALYSIS 

We have now developed the Riemann theory of second sound in 

some detail and have discussed most of the important features of the 

propagation of these thermal waves. However, it is desirable to 

develop the same type of theory but one that has a greater range of 

validity. This can be done by eliminating the restrictive assumptions 

stated on page 34 We will thereby also gain a quantitative measure 

of the relative importance of these assumptions; the qualitative 

features of second sound as presented above will still remain the 

same . 

It is relatively easy to drop the assumption that s is a con­
n 

stant and not specify any direct relationship between 6 and s as 

implied by Eq . (l. 1 ). One of the consequences of this is that Eq. 

(3. 3d) does not reduce to an equation for 6. R etaining the other two 

assumptions that v = 0 and that the thermodynamic importance of w 

is negligible means that the density is still a constant and Eq. (3. 5) 

is still valid. Therefore, we must again start by simplifying Eqs. 

{ 3 . 3 c ) and { 3 . 3 d ) . In one dimension these equations are 

1+6 ow 1 06 oT + 3 
1 -6 2 ow 1 +36 86 -z Ft+ 2 w Ft+ s w2 0 (3 . 47a) ox -4- w ox - -4- ax = 

~+ 1 -6 OS 1 -6 aw 1 06 
0 (3. 4 7b) ot -z- w ox + -z- s ox - 2 SW ax = 

It is more convenient to use T as the independent thermodynamic 

variable so we will assume 6 = 6{T), s = s(T) and write 
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(3.48) 

Equations (3. 4 7) can now be written in the following form: 

i +o 1 ( 80 l ow 
-2- 2 oT w at 

+ 

0 
1 -6 s 8T 
1 +c5 uz at 

2. 

3 
1 -6 2 1 +36 8 6 wz ow 
-4-w s - -4- oT ox 

= 0 (3.49) 

1 -6 .!...[ (1 -6 )2. s -(~~)]w oT 
-2- 2 1 +o uz ox 

2 

The analysis to be done on these equations is based on the 

theory presented in Appendix A and is quite similar to the analysis of 

Eq. (3. 10 ). Therefore, we will eliminate the details and simply quote 

the results based on the previous work. The quadratic equation for 

the characteristic speeds is 

c 2 +[-
1

- u~ (~)-2(1-6)]wc - u 2 + O(w2
) = 0 

l -6 s o T z 

Under the appropriate assumptions this is identical to Eq. (B 7 ), 

Khalatnikov 1 s result. The roots of this equation are 

c± = ±U +r(l-6) - ..!... - 1- u: (~)] w + O(w2 ) 
2 I 2 l -6 s 0 T L . 

(3. 50) 

As before, there are two distinct roots so the system of Eqs. (3. 49) 

is hyperbolic and the solution as given by Eqs. (3. 25) with T(T), the 

given boundary condition, replacing 6 (T) in Eq. (3. 25b) is still valid. 



- 62 -

Howe ve r, th e expr e s s io11. for the t e m p e r a tur e depe nde nc e of w , for 

insta n c e, must b e mod ifi e d ; from Eq. (3. 50) it is cl e ar that the 

v e locity of propagation is give n b y 

c = u + [ ( i -o ) - .!._ - 1- u ~ I ~ I] w + o ( w 2 
) 

2 2 i -o s I a Ti 
(3.51) 

The differential equation for w(T) at the boundary is 

dw = ~ ~{1 + I._[_j_ u~ I~)+ (1-o )]~ + o(w2)} 
dT l+ou 2 1-o SlaT u 2 

2 2 u 
2 

(3. 52) 

The result of the numerical integration of this equation is shown in 

Fig. 11 for I w I < u . This temperature dependenc e of the relative 
2 

v e locity is qualitatively similar to that shown in Fig. 6 for the case 

where s is a constant. And, as expected, the differences are more 
n 

pronounc e d at lowe r t e mperatures although there is some change over 

the entire temperatur e region of interest. The most important differ-

ence is that w does not vary as rapidly with T and, consequently, 

the region over which this analysis is valid is greater than before. 

Finally, the expression for F is 

2 

2 
1+6 1 u2 80 
1-o -

1
_

0
2 --s(aT) 

2 

( i - o )2 
_ _2 _ ~ ( ~ \ _ 

l+o l+o s 8TJ 
0 

2 

i u ao ) 1 
- 1-o h-f(aT -2 

4 

~(~)2 
2 BT s 

wher e h is defined by Eq. (3 . 39). This function is depicted in Fig . 

12 and the dependence of the critical temperature on the initial tern-

perature on the initial temperature is shown in Fig, 13; these 
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corr es pond t o Fig . 9 and Fig . 10, r es pective ly. The re is a signif-

icant c hange in F at all t e mperatures as compared to th e previous 

theo r y. The t e mp e ratur e wher e T = T is 
0 c 

l.95°K, which coinci-

dentally, is al s o the tempe rature where 6 = 0. In addition, a critical 

temperature exists for initial temperatures as low as 1. 60°K. These 

results are unexpected since the assumption that s is a constant is 
n 

considered to be a very good approximation for T > 1. 4 ° K[ 1] ' [ 
42

]. 

Since s 
n 
=~ 

p ' n 
we can conclude that F and,consequently, the crit-

ical temperature are very sensitive to the total entropy and/ or the 

normal density which, in turn, means that they are very sensitive to 

the thermodynamic functions s = s(T) and 6 = o(T). This has been 

previously observed as far as the critical temperature is concern­

ed[ 42] . 

In summary , we have seen that it is possible to generalize the 

original equations and yet not need an entirely new analysis to study 

the new solution and its basic characteristics. With this in mind, we 

will now generalize the first system of equations, Eqs . (3. 8), in a 

number of different ways and still retain the same fundamental solu-

tion ; nevertheless, some important changes will be observed. It will 

be possible to isolate and compare the relative importance of the 

effects of the different generalizations in the final results . 

In particular, we want to study the importance of w as a 

thermodynamic variable . To do this, choose P and T as the 

independent thermodynamic variables and rewrite Eqs. (3. 4) as 

p=p(P, T,w) (3. 53a) 
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s = s(P, T,w) (3. 53b) 

o = o(P, T,w) (3. 53c) 

The lowest orde r terms 1n the expansion of p and s in terms of w 

are given by Eqs. (B2); 

(aa ) -2 0 w -4 
s = s + oT 2 + O(w) 0 

(3. 54a) 

1 l I OQ i-2 0 w -4 - = - - - + O(w) 
p Po 

ap 2 (3.54b) 

A subscript 11 0 11 is used to denote quantities depending only on P 

and T. Since w is a thermodynamic as well as a mechanical variable 

even a non-linear analysis is valid, at hest, for lwl < u when the 
. 2 

expansions above are used to represent the role of w as a thermo-

dynamic variable. Using these expansions, it should be pas sible to 

extend the preceeding analyses so that they are valid to O(w2 
). And 

yet, it can be seen from Eq. (B7) that the O(w2
) terms in Eqs. (3. 54) 

affect the velocity of second sound to first order so these terms are 

more than just a sec::ond order correction. 

To avoid repetition of the previous work, it will again be as -

sumed that s is a constant; 
n 

and hence 

where 

0 = 2 
s 

s 
n 

- 1 

(3. 54c) 
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s 
6 = 2 ° - 1 

0 s 
n 

In this notation Eq. (3. 26) is written 

and 

Similarly 

where 

(a:~) = ( l -6 ) 
0 

s 
0 

u2 
2 

( ~)=- ~(~-1)= 8P s 8T p 
. 0 0 

u2 u2 
- _2_(~ )- _l Q' 

g - p s 3T - s P 
0 0 0 

1 +o 
0 _g_ 

Po u2 
2 

(3. 55) 

in which ap is the coefficient of thermal expansion. The function g 

provides a measure of the importance of therm.al expansion and is 

shown as a function of temperature in Fig. 14. Equati on (3. 54) can 

now be written 

so [1 
1-0 -z ] 

s = + __ o :!:!_ + O(w4) 
4 2 

u 
.2 

p = 
[ 1+0 -, ] 

Po l + T g :2 + O(w4) 

2 

1 -6 2 
-2 

0 w 
6=o +-4--o u2 

2 

(3. 56a) 

(3. 56b) 

(3. 56c) 

Once again assuming that "V = 0 implies that p (P, T, w) is a 

constant, Eq . (3 . 11) is still valid, and Eqs . (3. 8) serve as the basic 

80 . . 
equations for this analysis . Consider the term Ft; by using 
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Eq. (3. 5 6c) it can be written 

~ -(
06

o)3T (
86 0) aP 

at - a T at + ap at + · · · 

Therefore, the pressure variations must be considered in this anal-

ysis. By Eq. (3. 11) we can write 

8P 
at o(~) (3. 57) 

2 

Consequently, Eqs. ( 3. 8) can be written only in terms of w and T 

derivatives. In one space dimension, these equations are 

1 +6 [ 1 -2- 1-(1 +6 )gj w +-
1 

(1;o {1-0[~ +(l+o )g ]~'} 

\ (I -0 )w 

}[ 6 -(1 +6 )6 g+(l +6 )h] wz} 
uz 

2 

0 

- 6sw 

1-6
2 

w
2

) 
4 2 

u 
. 2 

aw 
at 

aw\ ax 

+ 

::: 0 . (3. 58) 

All O(w2
) terms have been retained in these equations and, for con-

venience, the subscript 11 0 11 has been dropped. 

As before , there are two distinct characteristic speeds for 

this set of equations and Eqs. (3. 25) with T(T) replacing o(T), 

represent the solution. Consequently , the introduction of w as a 

thermodynamic variable does not give rise to any attenuation of second 

sound. The velocity of propagation is 
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1 +o w 1 +o I 1 -o + 0 _ h _ 1 +o -z- g u- --rc-z- g -z-
2. 

(3. 59) 

By comparison with Eq. (3. 31) it is clear that the inclusion of therm-

al expansion and w in Eqs. (1 . 7) affect c to O(w). Once again, 

this result is consistent with Eq. (B9) when g = 0. 

The differential equation for w(T) is obtained by the same 

procedure as before; it is 

dw 
dT 

= _z_ ~{ 1 +(l- l+o g)~ + J.[1+4oz _ (l+o)(4 -o)g 
l+o u z u 4 2 

2. 2. 

- ( l +o )h + ( 1 +o )z 
2 + o(:; )} (3. 60) 

There is also a first order change in this expression as compared to 

Eq. (3. 3 0) even for g = 0. The temperature dependence of w is 

shown in Fig. 15. In this approximation w varies more rapidly with 

T as compared to w(T) as given by the fir st theory. This is just 

opposite to the effect noticed when the assumption that s equals a 
n 

constant was eliminated; the order of magnitude of the change is the 

same and is also more pronounced at lower temperatures . The effect 

of thermal expansion on w (T) is very small , less than ±. 1 

meters/sec at all temperatures, which is also the same as the order 

of magnitude of the error . 

The other quantity of interest, F , is no longer defined by 

Eq. (3. 35) because the effect of the variation in the pressure must be 

considered . In this theory 
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c = c(T) = c[ P(T), T(T)] 

so 

dd
7
c ={~) dT + (~) dP oT dT oP dT 

By combining Eqs. (3. 5 7) and (3 . 60) we can write 

dT = 
1-6 w { - ps - 2 +[2-6 -(1+6)g] 

2 u . 
2 

3!._ + O (w2 )~dT 
U z dT 

2 u 
2 

dP 

Therefore F is defined by 

F =[~~)- l;O ps u~{2 +[2-6-(l+o)g] u~J}(~~) (3.61) 

If we assume g and h are functions of T only, this becomes 

s { 6 [3+46 -36
2 

F = u 
2 

- z 1 +6 + g + h T + 2 ( l +6 ) 

+ 1 +6 - 2- j_g + h - ( l -6. )h :!!.__ 
uz J 

2 s dT T · P u 

where 
u 2 ou 

hT =h =-fa; 
OU 

hp = puz oPz 

2 

(3.62) 

The dimensionless function hp measures the importance of the 

pres sure dependence of u ; this variation of u is shown by 
2 2 

Donnelly[ 
3

] and Atkins[ 1 O]. In the temperature region of interest 

hp is the same order of magnitude as g so it represents a small 

effect . This F is shown in Fig. 16 and the critical temperatures in 

Fig. 1 7. As before , the temperature dependence of F is quite sen-

sitive to the functions 6 (T), s(T), and u (T). There is an appreciable 
2 
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difference between these curves and the ones in Fig. 9, particularly 

above approximately 1. 25°K. For t emperatures less than this, drop-

ping the assumption that s is a constant has a greater effect on F 
n 

than the inclusion of w as a thermodynamic va riable. 

One of the important differences is the appearance of a second 

set of critic al temperatures at low temperatures as was anticipated 

earlier . This is a different branch of the function T = T (T ) but 
c c 0 

there is no additional temperature where Tc = T 
0

. However, this 

may not be the case in a more refined theory. On the upper branch 

:::c 

T = l.89°K. 

The most significant change from the previous theories is in 

the zeroth order term of F. Compare Eq. (3. 62) with g = 0 and 

Eq. (3. 28), the expression for F in the first analysis: 

F = ~[h+ 1-26 +o(:!!_)] 
u 1+6 u 

z z 
(3.38) 

F = ~[h -~ + 0 (..:!!...)]. 
u 1+6 u 

2 z 
(3.62) 

Hence , it is clear that including the second order terms in Eqs. (3. 56) 

changes the zeroth order term i.n F: This difference is not a result 

of taking the pressure variations into account because, by Eq. (3 . 61) 

this can only change the fir st and higher order terms. Rather, it is 

because the velocity of propagation is changed to first order and F 

is defined as a linear sum of partial derivatives of c. In a similar 

manner , the O(w4
) terms in Eqs. (3. 56) will affect F to O(wz) so 

Eq. (3. 62) is valid only to fir st order in w as shown . 

There have been no previous direct experimental investigations 
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of either w(T) or F(T). Motivated by the other linear theories 

Dressler and Fairbank[ 
4

ZJ used a pulse technique to indirectly meas -

ure the dimensionless quantity '{ 

'{ = 

where 

c-u 
2 

v 
n 

The relative velocity, defined by w = H/ p s T where H is the heat 
s 

cur rent density, was kept small enough so that w was on the order 

of 1 % of u so that a linear theory is sufficient to describe the results. 
2 

The only quantity of interest here that has been directly measured by 

this experiment is which corresponds to the point where '{ = 0. 

It was found that '{ = 0 at T = 1. 873 ± . 005°K and . 946 ± . 01 °K. 

The higher· value is very close to the value predicted here while it is 

felt that the lower temperature is out of the range of validity of this 

theory. The critical temperatures as shown in Fig. 1 7 are accurate 

to about ±0. l °K due mostly to the uncertainty in the thermodynamic 

data. 

We can now describe in detail the propagation of a temperature 

pulse and illustrate the change in the nature of the flow at the critical 

temperatures. Assuming a second, lower temperature exists where 

:i:c 
T = T there are three distinct temperature regions to be considered. 

0 

< 0 for T< 
:i:c 

T .e 

"' :i;c 
F > 0 for '< T<T (3.63) Ti u 

< 0 for T 
>}: 

< T 
u 

where 
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T ':~ ::: . 95°K (expe rimentally) 

>:' 
T = 1. 89° K (theoretically) 

u 

Sinc e the sign of F determines whether the L character istics a re 
+ 

conve rgent or divergent for a giv en boundary condition T(t}, th e 

solution as given by Eqs. (3. 25} can now b e explicitly shown. The 

sequence of events shown below illustrates the nature of the solution 

for an arbitrary pulse shape. The first curve shows the temperature 

pulse which is given at the end of. a tube. The subsequent curves show 

the spatial distribution of the pulse at later times as it propagates 

down the tube. 

T 

T 

r* u 

To 
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.:::::: 

If T > T (T ) > T then the r ea r edge of the p'1lse steepens 
0 c 0 u 

"' as shown above for T < T (T ) < T 'n. In all temperatur e r egions a 
0 c 0 .l'. 

negative ternperature pulse will also steepen into a shock but the 

opposite edge of the pulse as compared to a temperature rise is the 

one where the discontinuity appears. For instance, the following 

sequence will occur for '" T > T (T ) > T.,. 
0 c 0 u 

T 

The next two sets illustrate what happens when the critical 

temperature for a given 'initial temperature is exceeded during a 

positive pulse. 

T 

T; -- - - - - -

-~ --=-- ~ _C\_ ::::----
_/ ___ ~ _ _J_ ___ ~_ 

T 
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Surnma ri z ing these solut i o n s , we c an con c lude tha t a t e mp e r a -

ture puls e , e ither positive or negative , always d ege n e rate s into a dis -

continuity which can a pp e ar a t e ithe r the front or rear of the puls e . 

This discontinuity fir s t occurs at th e infle ction point of the boundary 

condition c(t) [s e e Appendix C] . Furthermore, if a critical tempera-

ture is exceeded during the pulse two separate shocks, one positive 

and the other negative, appear in the solution. 

These conclusions have been qualitatively verified by the 

experiments p e rforme d by Osborne [ 
41 J. However, no observations 

w e re atte mpted which would have verified the prediction that a pulse 

may deform into two shocks since this was not known then. Using 

parameters for typical pulses used in these experiments in Eq . (3. 34b) 

for the distance traveled by a pulse before it becomes discontinuous, 

w e find that x = 9. 1 cm . for a positive pulse at T = 1. 2 ° K and c 0 

x = 8. 55 cm. for a negative pulse at the same initial temperature; at 
c 

T = 2. l ° K, x = 3. 68 crri. These distances are the same order of 
0 c 

magnitude as indicated by the experimental results. A possible 

explanation for the anomalous short range behavior of positive pulses 

at T = 2. l2°K has been made by Dressler and Fairbank[ 
42

]. 
0 

E. THE INTERACTION OF FIRST AND SECOND SOUND 

It has previously been assumed that v was identically zero 

in order to rule out the excitation of first sound and to concentrate on 

the basic properties of second sound. This procedure also served to 

sufficiently simplify the equations of motion so that an explicit solu-

tion re pre sen ting the propagation of a temperature pulse could be found 
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and studied in detail. We will now eliminate this assumption and 

investigate the interaction of first and second sound. Hence, the 

solution that, up to now, has served as a basis for the study of pure 

second sound is no longer valid and a new one must be derived from 

the Landau equations. 

A system of equations valid to second order in w that des -

cribes the propagation of both pressure and temperature waves can be 

derived from Eqs. (3. 3) by making the following simplifications: 

1 . With the goal in mind of applying the results to the same 

physical problem as before, assume that all variables depend only on 

x and t. 

2. Assume s is a constant in order to simplify the calcula­
n 

tions as much as possible. 

3. Include w as a thermodynamic variable but neglect the 

effects of thermal expansion so the equations of state are given by 

Eq s . ( 3 . 5 6) with g = 0. 

These assumptions can be removed in more general analyses 

but provide here the simplest set of equations for the study of the 

interaction of both types of wave propagation in He II. This set of 

equations is 

3P 3P z ov 
at+ v ox + pu

1 
ox = O (3 . 64a) 

av 
+v 

av 
+ ~ ( 1 

1 -oz wz) ap 1 -o OS 
wz oT 1 -oz aw 

0 at ox + -4- -z-tSX - -z- OX + -z- w ox = 
u uz 

1 z 

(3 , 64b) 
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1+0 ( l + 3 ~ w 2
) 8w + l -0 w 8T t l t o av 

2 4 z a t 
-2- s 

uz at -2-w ox 
u 

2 2 

l -6 2 l wz 8P 
t l ;o ( v t 3 ~wt3 ~v w

2 
)aw t -4- - ax p uz 2 4 2 OX 

u 

where 

+-

l 

vw t 1 -0 
-2- 2 

u 
2 

36 1 -0 wz) ~ = 0 
4 2 ox 

u 
2 

~21 o t ( 1 to )h] wz} 8 T t w ow t 1 
uz at at p uz 

2 l 

~ 0 ::1 ~: + J~O +-Ow 
2 

- l_ v [ o t ( 1 t o )h] wz} 
0 

T = 0 
2 2 ax 

u 
2 

u (au l h--2 __ 2 
- s 8T 

2 

8P 
w ax 

(3.64c) 

(3.64d) 

and all thermodynamic variables do not depend on w ( in other words, 

the subscript 11 0 11 in Eqs . (3. 56) has been dropped). The partial 

derivative of u with respect to T appears in these equations be-
2 

cause the lowest order terms in the expansions of p and s contain 

u . The temperature derivative of u would appear only if the higher 
2 l 

order terms in these e x pansions were also included. 

The Riemann analysis of these equations is also based on the 

theory presented in Appendix A and differs from the previous work in 
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that ther e are four e quations for the four unknowns P, v, T and w 

instead of just two equa tions as befor e . The quartic equation for the 

charac teristic speeds is 

(3. 65) 

where 

u = c - v (3. 66) 

The differences between this equation and Eq. (Bll) , Hsieh's result, 

are a result of including w as a thermodynamic variable and keeping 

all O(w2) terms. 

The differential equations for the characteristics are found by 

solving Eq. (3. 65) for c 

l 2 
,I 

+ O(w3
) (3. 66) 

( 

u 2+3u2 
3 4 - 1 +6 12-6 1 2 =c" =v±u

2
-ow+-;r-

u2-u2 
1 2 

- hl ~ + 0 ( w
3 

) • ( 3. 6 7 ) 

The corresponding invariants can be written in the form 

dP 
13 !. 2 _1.d. + 131,2 u dv + 131,2sdT + 131,2u dw = 0 

1 p 2 1 1_,2 3 lJ2 4 1 l,Z 
(3. 68 ) 

dP 
13 3,4 -2...!. + 133_,4u dv + 133_,4sdT + 131 4u dw = 0 

l p 2 2 34 3 34 3 2 3,4 
.I ) 

(3. 69) 

where 
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f3 11 2 l ± 
w l -6 2 w2 

= - -8-
1 u uz 

l 

[31,2=± l 
w 

+ 
2 u 

1 

[331,2 = ±(1 -6) _2_w_2-[u1 
u -u 

l 2 

1 

- l 
+ 2 

6u4 -(2-36 )u2u 2 +2u4 

1 1 2 2 

u2 - uz 
l 2 

[31,2 = 
4 

1 _62 u w [ 1 (4-36 )u~-(4+6 )u~ 

-2- u/-u2 l ± 2 u2 - u2 u~ ] 
l 2. l 2 

2 2 2 
l +6 u2 u1 +u2 

= + -2- --
u2 u2-u2 

l 1 2 

u2 
f3 3,4 =-(1 +6) __ 2 __ 

2 uz -u2 
l 2 

± 2 
1 

(1-26)u2 -(1+26)u2 

1 2. 

u2 - uz 
l 2 

w ] 
u2 

2 

133,4 1-6 w 
3 = 1 ± -2- u + 

.!__[(1-6 ) 2u~+(l+o )(3-56 )u~ 
4 2. 2 J 

wz 
- ( 1 +6 )h 

2 

3 l +26 ( 1 ± 3 -6 w f3 ,4 = ± 
4 -2- u 

2 

u - u 
l 2. 

+ 3 1-6 ~ 2 ·i 
4 2 

u 
2 

uz 
2 

We can state by analogy to the previous application of a similar 

set of characteristics and invariants that the propagation speeds of 

first and second sound are given by Eqs . (3. 66) and (3. 67) using the 

upper signs. These results agree with those of Khalatnikov to fir st 

order and show that these propagation speeds are affected to O(wz) 

by the interaction of pres sure and temperature waves. They also il-

lustrate that both types of waves move relative to the mass flux veloc-

ity, v. 

This set of characteristics and invariants can be applied to the 
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same physical problem as before . However, the initial and boundary 

conditions must be stated more completely. At the end of the tube the 

ten1perature is still a given function of time but we also require the 

rnass flux velocity to be zero at x = 0 . Initially, the equilibrium 

stated is defined by T = T and P = P plus the requirement that 
0 0 

both v and w vanish. 

The procedure for solving this problem is very much like the 

one employed previously until the stage shown below is reached. 

t t 

P :: Po , T == To, v = w = 0 

Figure 18a Figure l 8b 

The lines L are defined by x = u • t. 
1, 2. 

Up to this point it has been 
l, z. 

shown that P = P , T = T and v = w = 0 in region A. Also, it is 
0 0 

known that 

w(T) 

.P(T) = P 
0 

s 
= - 2 

-
0 

[ T(r)-T ] l+o -0 o 
0 u 

z. 

(3. 70) 

(3.71) 

where T represents some time on the t-axis close to the origin. We 

now want to consider a point Q close to both the t-axis and the L 
l 
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line. This can be done in e ith e r one of the two ways shown in Fig. 

18 above. The distinguishing feature is whether the 4 characteristic 

first inters.ec ts the t-axis or the L line. This, in turn, is deter-

mined by whether Q is above or below the 

B and C. 

L line separating region 
2. 

The values of the variables at Q are markedly different in 

these two different cases; the calculations in both cases proceed 

similarly to the ones used previously. It can be shown that through-

out region B 

T(Q) = T w(Q) = 0 
0 

P(Q) - P = p u 0 v(Q) 
0 0 l 

(3.72) 

where a subscript "2" denotes quantities evaluated at T and w 
2. 2. 

is given by Eq. (3. 71) with 7 =7 
2. 

However, since the f3 1 s contain 

powers of w , this expression for v(Q) must be expanded so that it 
2. 

includes only O(wz.) terms . The result is very complicated and can 

be summarized as 

v(Q) = 0 + O[ (ll.T )z.] 
2. 

P(Q) = P 
0 

+ 0 [ (ti. T z. l] } (3.73) 

where 

~T = T - T 
2. 2. 0 

Therefore, we can conclude that no second sound has been excited in 

region B and that the magnitude of fir st sound in this region is 
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In r e gion C both first and second sound waves are excited. 

At the point Q in Fig. 18b, it can be shown that 

or, equivalently 

w(Q) = 2 
T+6 

0 

w(Q) - w 
4 

2 so 
= 1+6-

0 
[T(Q) - T] 

0 u 4 

2. 

and, as in region B 

P(Q) - P = p u 0 v(Q) 
0 0 1 

v(Q) = o + 0 [ (6. T )z] 
2. 

Therefore , the magnitude of first sound is still O[ (6. T)2 J but w is 

0(6. T) or, in other words, w is an order of magnitude larger than 

v in the reg ion where both first and second sound exist. Another 

important difference between regions B and C is the fact that the 

2 characteristic is a straight line in region B but not in region C. 

This means that the velocity of first sound in region B depends only 

on the given boundary condition T(t) but in region C both propaga-

tion speeds depend not only on the boundary condition but also on how 

far down the tube the pulse has traveled. 

The same iterative procedure as illustrated in Fig . 18 can , in 

principle, be used to find the complete solution in region C. How-

ever, there are two main difficulties that have already been m e ntioned 

which prevent the details of the calculations from being completely 
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carried out. First of all, any expression which contains w or l:i. T 

in the denominator, such as the one for v(Q) in Eqs. (3. 72 ), must 

be expanded so that only O(w2
) terms are retained in the solution. 

This creates unmanageably long expressions and the algebra of the 

problem itself becomes prohibitively complex. 

The other difficulty is of a more serious and fundamental 

nature. When the equations describing pure second sound were 

studied, we were able to find a family of straight line characteristics 

with the dependent variables being constant along these lines; this is 

the only reason why we were able to obtain an explicit solution and 

discuss it in detail. But when the interaction of first and second sound 

is considered, there are four different families of characteristics 

none of which is a set of straight lines. This fact prevents us from 

extending the iterative scheme beyond one single step at a time. Con­

sequently, it is impossible to find a useable , analytic representation 

for the solution or to obtain any thing more than a qualitative meas -

ure of the magnitude of both first and second sound. Nevertheless, 

the set of characteristics and invariants provides a very convenient 

tool which can be used to numerically study the problem and to obtain 

quantitative results for a given set of initial and boundary conditions. 

Finally, it should be pointed out that if a solution is sought which is 

valid to only O(w) then the entire problem reduces to one that has 

already been solved because the magnitude of first sound is O(w2
) so 

the distinction between regions A and B disappears and a non­

trivial solution exists only in region C. This is exactly the type of 

solution depicted in Fig. 4. 
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A review of the qualitative results obtained above shows that 

there are two distinct wavefronts separating three distinct regions in 

the x, t-plane each of which has a different type of solution. There is 

no disturbance ahead of the first sound wavefront L in region A. 
l 

Only pres sure waves have propagated into region B ahead of the 

second sound wavefront L while in region C both first and second 
2. 

sound exist, the pressure waves being an order of magnitude smaller 

than the temperature waves . 

F. DISCONTINUOUS SOLUTIONS 

Throughout the preceeding analyses of second sound it has 

always been implicitly assumed that the given boundary condition T(t) 

and the accompanying solution were both continuously differentiable 

and single -valued. However , we have shown that there is some point 

in the x, t-plane where the solution possesses neither one of these 

properties for a pulse type boundary condition. Physically, this 

means that a shock is formed. 

The hydrodynamic theory of shocks in He II has been discussed 

. [28] [40] 
by Khalatmkov and Temperley . The shock is idealized by 

assuming that it has zero thickness and is manifested by a jump in 

the quantities across it. One method of deriving the equations which 

describe the discontinuity and its motion is illustrated below . The 

conservation of mass equation, Eq. (3. 3a), written in one-dimension-

al, integrated form is 

- d Sb lb 
dt a p dx + p v a = 0 (3. 74) 
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Suppose the discontinuity is at x = X(t) and is moving with speed 

. 
U = X(t). Let a-.. X from the left and b-.. X from the right in 

Eq. (3. 74). Then 

- U[ p] + [ pv] = 0 (3. 75) 

where [ Q] = Q - Q , the jump in Q · across the discontinuity. The 
2 1 

subscri:pt 11 2 11 denotes quantities in front of the shock and a 11 1 11 

those quantities behind it. Be defining 

qi = vi - u i = 1' 2 (3. 76) 

Eq. (3. 75) can be written as 

p q = p q 
2 2 1 1 

(3. 77) 

We can analyze all of the Landau equations, written in a form 

somewhat modified from Eqs. (3. 3), in a similar manner. The con-

servation of mass and momentum as expressed by Eqs. (3. 3a) and 

(3. 3b), respectfully, will be retained as they are. It is possible to 

write the conservation of energy law based on the Landau equationJ l] 

as 

+ psT(v -v) + - ~ VJ = O 
- - 1 p p ] 

n · 2 p 

where e is the specific internal energy. Finally, the equation of 

motion for v is 
s 

(3. 78) 
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wh e r e µ is th e specific ch e mical potential. This r e lation may b e 

calle d a "conservation of z e ro vorticity" equation. It can be shown 

that[ 29 ] 

1 Pn 
µ = e + p I p - s T - 2 p w2 

Writing these four conservation laws in one dimension and analyzing 

them as illustrated above give s the following equations describing the 

motion of a discontinuity in He II: 

p p 
p +p qz + nz sz 

2 2 2 p 2 

wz 
2 

z Pnz p Sz 
(p q + p w )s T + p q; w + 2 

z z s z z z z nz z z P 
2 

= canst. 

= canst. 

(3.79a) 

(3. 79b) 

w 2 =canst. (3. 79c) 
2 

~ PnzP sz 3 
q, w .. + ---- w = canst. 

z z pz 2. 

2 

(3. 79d) 

where p , e etc. depend on w. Given the conditions ahead of the 

shock, these are four equations for both the state behind it and the 

shock speed U . By the definition of qi these equations are invariant 

under a Gallilean transformation since w itself is invariant. Putting 

w = w = 0 reduces the first three equations to the classical ones 
1 2 

while the fourth one implies that entropy is conserved. 

It can be shown that these equations are the same as those 

derived by Khalatnikov whe n w = 0 , Temperley finds a different set 
l 

not only because equations other than the Landau equations are used 
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but also because he has imposed the conservation of entropy law 

across the discontinuity rather thab Eq. (3. 79). Entropy is not con-

served across a shock in an ordinary media and it is expected that 

the same result is true in He II; consequently, there are fundamental 

doubts about his shbck front theory. 

The ideal procedure to follow from this point would be to 

derive . 1 h . [ 43 ] 1 . d "b" a function ana ogous to t e Hugon1ot re ation escr1 ing 

the shock transition in ordinary gas dynamics and to deduce the basic 

properties of shocks in He II from this function. This is exceedingly 

difficult to do because w appears in Eqs . (3. 79) both as a thermo-

dynamic variable and as a mechanical velocity. Thus, unlike the 

case in ordinary hydrodynamics, it is impossible to eliminate both 

v and w from any single equation and obtain a relation only on the 

thermodynamic variables. This increased complexity is due to the 

fact that Eqs. (3. 79) describe both "first and second shocks'' where-

as in the classical case a small entropy rise is merely "carried 

along" with a pres sure shock. 

It is possible to obtain some results by assuming that the jump 

of the variables across the discontinuity is small and following a 

perturbation procedure. This is the method used by Khalatnikov; the 

most :i.mportant results will be quoted here. In the limit of a weak 

pressure or temperature discontinuity .the shock propagates with a 

velocity equal to the small-amplitude sound wave velocity. Consider-

ing only temperature discontinuities (liquid helium cavitates before a 

pressure discontinuity can be established) it can be shown that the 

jump in pressure is a second order quantity relative to w ; 
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while there is a linear relation between !::::,. T and w, 

l:::,.T = 
u 

2 

s 
w 

(3. 80) 

(3. 81) 

These results are for a second shock moving into a state where w = 0 
I 

and w = w , the relative velocity behind the shock. The order of 
2 

magnitude relationships between l:::,.T, !::::,.P, and w in Eqs. (3.80) and 

(3. 81) are the same as those for continuous solutions. The velocity 

of the discontinuity is 

l 
c 2 = u 2 + 2 .'1 ( v n1 + vs l ) 

where 'I is defined by Eq. (B8) and it has been assumed v = v = 0. 
l 2 

Therefore the first order change in the velocity of propagation is one-

half of its value for continuous solutions. These results include the 

lowest order expansions of p and s for small w, Eqs. (3. 56). 
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CHAPTER IV 

CONCLUDING REMARKS 

A . A REVIEW OF THE RESULTS 

The preceding work has clarified and extend e d the linear 

theories of second sound and exhibited the deficiencies in the pr e vious 

Riemann analysis. In addition, the detailed behavior of the propaga­

tion of a temperature pulse has been given . Some of the important 

results and conclusions will be discussed further here and additional 

improvements in the theory will be suggested. 

In general, the two-fluid model has provided a very useful and 

accurate continuum theory to describe the hydrodynamics of He II 

and, in particular, the propagation of thermal waves. The Riemann 

theory of second sound as presented in Chapter III can be better im­

proved by refining the analysis within the two-fluid concept rather 

than by seeking a better continuum description of He II. Within this 

model, the Landau equations are the basic set of equations of motion 

upon which other, more general ones are based and, hence, are the 

natural starting point for an analysis of second sound. As with the 

two-fluid model, a better description of thermal waves can be found 

more readily by refining the Landau equations rather than by using a 

completely new set of equations of motion . 

By making a number of simplifying assumptions we derived 

Eqs. (3 .10), the simplest set of non-line ar equations which describe 

the propagation of only therm;:;.l waves in He II; these equations were 

then used to study a p articular physical problem. Under these as -

sumptions a temperature pulse is propagated without attenuation 
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down a one-dime nsional channe l and all quantities connected with 

this flow are functions of t empe ratur e only. In particular, the r e la­

tive ve locity is r e lated to the t e mperature by a first order ordinary 

differ e ntial equation . The numerical integration of this equation 

shows that the rate of change of w with respect to Tis always posi­

tive and w is nearly a linear function of temperature. Even though 

the density is a constant and no first sound exists in this approxima­

tion, a pres sure variation which is second order in w travels with 

the velocity of thermal waves along with the temperature pulse. 

Due to the non-linear nature of the Landau equations any 

given temperature pulse deforms as it travels down a channel and 

eventually degenerates into a temperature discontinuity, or a shock 

wave. The non- linear breaking occurs at the front or rear edge of 

a given temperature pulse depending on whether the initial tempera­

ture is greater or less than 1. 89° K . This value agrees with the one 

determined experimentally. Since this breaking always occurs, care 

must be exercised in the use of pulses to measure the amplitude­

dependent velocity of propagation of second sound to insure that a 

shock is not formed. 

By subsequently eliminating the assumptions mentioned above 

we were able to study their qualitative and quantitative effects on the 

theory of second sound . Excluding the interaction of first and second 

sound, it was found that the basic description of the flow is not 

changed by making these assumptions but there are a number of 

differences which lead to some important conclusions . Any theoret­

ical description of thermal waves must include the relative velocity 
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as a thermodynamic variable to be valid to order w. This conclusion 

is the principle source of errors in Temperley's analysis. 

Furthermore, it was shown that the lowest order terrn of F, 

the function which determines the critical temperature, is changed by 

the inclusion of w as a thermodynamic variable. This naturally leads 

to the question of whether other important parameters might be simi-

larly affected. For insfance, the expression for the shearing stress 

on a surface contains the derivative of v or, equivalently, the de­
n 

ri vati ve of w and thus this quantity might be strongly affected by this 

consideration. In any case, a complete hydrodynamic theory must 

include the thermodynamic effects of wand,. consequently, it is neces-

sary to review other theories in light of this conclusion. 

It has been stated that the function F, and as a consequence 

T and T':', are very sensitive to the exact temperature dependence 
c 

of o, s, and u 2 • It can also be seen by comparison of Fig. 9 and 

Fig. 16 that the inclusion of the lowest order terms in the expansion 

of the thermodynamic variables in w also changes F significantly. 

Therefore it might be necessary to use some higher order terms in 

these expansions to get a good theoretical prediction of the critical 

temperatures depending on the magnitude of these additional terms. 

In other words, detailed knowledge of both the equations of state as 

given by Eqs. (3. 53) and the function~= u2 (P, T) is necessary for 

accurate theoretical results. 

Except for the discussion of the interaction of first and 

second sound, the same type of solution as given by Eqs. (3. 25) was 

valid for all the analysis and, thus, no attentuation is present. 
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Therefor e , we can conclude that effects such as thermal expansion 

do not cause any attenuation if first sound is negligible. However, 

these same effects may contribute to attenuation when both pressure 

and temperature waves are considered. Other effects which have 

not been considered here such as thermal conduction contribute to 

the attenuation of temperature waves whether both types of waves 

are considered or not. 

When the interaction of first and second sound is considered 

the entire analytical description of wave propagation in He II is 

changed and a completely new one must be developed. At the level 

of analysis completed here it is only possible to write explicit ex-

pressions for the velocity of propagation of both pressure and tern-

perature waves and to deduce the order of magnitude of the amplitude 

of the two types of waves. Clearly, any theoretical description of 

wave motion in He II must include both modes of propagation if it is 

to be valid to order w2 • 

The amplitude-dependent velocity of propagation of second 

sound is altered in two different ways by the consideration of fir st 

sound. First of all, it is now measured with respect to the mass 

flux velocity v; this is a small correction in the type of physical 

problem considered here because it is mainly temperature waves 

that are excited. Secondly, the coefficient of the order w 2 term is 

different. This is also a small correction because the change is 
2 

0( ~) and ~ is an order of magnitude smaller than Ui throughout 
U1 

the temperature range of interest. There is also an order w 2 change 

in the velocity of fir st sound. These changes are completely different 
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from the corrections of the amplitude-independent propagation speeds 

u1 and u z due to thermal expansion as given by London [l J. In his 

linear theory, fir st and second sound are decoupled if thermal ex-

pansion is negligible. 

Further results cannot be stated until the complete solution is 

known and yet, due to the complexity of the calculations, it appears to 

be impossible to give any analytic expression for the solution. This 

type of approach to the interaction of fir st and second sound gives the 

complete description of the flow and, as such, cannot be handled as 

in the other, simpler cases. Therefore, within this analysis, some 

additional approximatfons or a numerical solution is called for. 

A similar situation exists in the study of discontinuous solutions. 

The pressure jump across a temperature discontinuity cannot be com-

pletely neglected but the complexity in anything but a perturbation 

analysis makes the problem almost intractable. In this case, an ex-

tension of the procedures used in ordinary gas dynamics or a com-

pletely new approach must be used. 

B. PROPOSALS FOR FURTHER RESEARCH 

Since this work is the fir st and, to some degree, complete non-

linear theory of second sound only the essential features of the theory 

and its application to a physical problem have been considered in detail. 

Many other aspects of first and second sound need to be investigated 

using both the analytical approach taken here and also entirely differ -

ent procedures before any hydrodynamic theory of wave propagation 

in He II can be considered to be complete. 
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There are four distinct places in this work where additional 

analysis can be clone within the framework of the theory presented 

here. To b egin with, it has be en shown that the dependence of the 

thermodynamic variables on the relative velocity is very important 

and that the lowest order terms in the expansions of these variables 

in w ha.ve a significant effect on the solution. Hence, it would be 

worthwhile to include the next, higher order terms and investigate 

the importance of their effect on the results. These higher order 

terms are not known at the present time but, once known, they can 

be treated by the Riemann theory just as the lowest order terms were 

handled in Chapter III . The dependence of the thermodynamic vari-

ables on the relative velocity has never been experimentally investi-

gated; some work needs to be done along this line due to the evident 

importance of this dependence. 

Secondly, the analysis of pure second sound should be done 

without assuming s is a constant and including both the effects of 
n 

thermal expansion and the dependence of the thermodynamic variables 

on the relative velocity simultaneously. This would not exhibit any 

new phenomena not already found in the other analyses but would be 

the most accurate theory for the prediction of quantities such as the 

critical temperature when fir st sound can be neglected. This ext en-

sion of the current theory presents no inherent difficulties; this is not 

true , however, of the last two areas of investigation, the interaction 

of first and second sound and discontinuous solutions, that should be 

studied further . 
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As mentioned pr e viously, the set of characteristics and in­

variants is difficult to us e for detailed anal:/ i:ic work but it does pro­

vide a very useful tool for a numerical analysis of both pressure and 

temperature waves . However, discontinuities will still appear in 

the solution for almos t any type of temperature pulse which means 

that derivatives in the x, t-plane become unbounded. This is not an 

insurmountable difficulty as far as a numerical solution is concerned 

but it is sufficient reason for using caution in setting up an iterative 

scheme and for carefully considering the possible errors in the solu­

tion. The possibility of further analytic work should not be com­

pletely ruled out. 

Just the opposite situation exists in the case of discontinuous 

solutions where additional analytic results beyond those which are 

derived from the existing perturbation analyses are necessary before 

any numerical calculations are needed to complete the study of shocks . 

Rather than using the two-dimensional P, l/p - space to study the 

shock transition as in ordinary gas dynamics, it will probably be 

necessary to generalize this to the three-dimensional s, T, w - space 

in order to study the properties of a temperature shock in He II. 

Questions about quantities .such as the determinacy of the transition, 

the shock speed, and attenuation of a temperature shock should be 

considered. It has been shown that under certain conditions it is 

possible for a temperature pulse to degenerate into two distinct 

shocks. It would be interesting to study the relative motion of these 

two shocks to see if they converge or diverge and to question what 

happens if one of the shocks does overtake the other. 
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Anoth e r wide range of new proble ms that can al s o b e tr e at e d 

by a similar Ri emann ana lysis conc e rns various g e n e ralizations of 

the Landau e qua tions. For instanc e , the e ffe cts of the viscosity of 

th e normal part and of the rmal conduction may be important in v a ri-

ous t emperatur e rang e s and would cause atte nuation of a t emp erature 

puls e e ven if first sound w e re negl e cted. The previous calculations 

and conclusions may be altered considerably in the temperature 

ranges where the attenuation becomes large. We can also speculate 

about an effect of viscosity other than attenuation that . arises due to 

the strong temperature dependence of the normal viscosity, 71 . (This 
n 

dependence is shown in London,[!] Fig. 28 and Atkins,[).O] Fig. 39; 

the function Tl (T) is qualitatively the same but these authors dis­
n 

agree on the temperature where the derivative of nis very large by 

about . 5°K.) In any case, a small fluctuation of the temperature in a 

second sound wave will cause a considerable change in the viscosity 

at that temperature where the viscosity varies very rapidly. Hence, 

the normal part will experience less drag at the higher temperature 

phases of the second sound wave. Thus, the normal and superfluid 

parts will be driven out of phase which will manifest itself by the ap­

pearance of first sound or , as Hsieh
1 

has suggested by the har-

manic generation of thermal waves. This phenomenon has not been 

discussed theoretically nor observed experimentally. A detailed 

study of viscosity and thermal conduction effects constitutes one of 

the most important supplements to this current Riemann analysis. 

1 
Private Communication 
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Another way in which the Landau equations can be general­

ized is to include the mutual friction terms. This would not only 

add additional attenuation to the system of equations but also another 

mode of interaction of fir st and second sound. An analysis of the 

generalized Landau equations would also provide an additional method 

for contrasting the different formulations of the mutual friction terms. 

Still another area of interest deals with the boundary condi­

tions used to supplement the equations of motion. One important 

point concerning the specific physical problem studied here is the 

existence of the Kapitza boundary effect, the temperature jump that 

occurs at a snlid-li'-:l.uid interface in He II when the heat flow is direct­

ed from the solid into the liquid. This effect was completely neglect­

ed here because it is a small correction when the heat current is 

small. However, this effect cannot be neglected for a large positive 

heat pulse but, since no temperature discontinuity exists when the 

heat flows from the liquid into the solid, the conclusions of Chapter 

III are unchanged by the inclusion of this effect for negative temper­

ature pulses. This is a very complicated problem because the mag­

nitude of the temperature jump depends on the heat current, the tem­

perature, the composition of the solid, and the smoothness of the 

interface. A better way to write the boundary condition is to require 

that the heat flux be continuous at the interface rather than specify­

ing some condition on the temperature itself. 

There are numerous different problems, and boundary condi­

tions, that can be studied with the use of a set of characteristics and 

invariants in addition to the one considered here. For instance, the 
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d e flection of the rmal w aves off of a solid boundary can be studied by 

considering a tub e of finite length rathe r than the semi-infinite on e 

as in Chapter III. This c e rtainly corresponds mor e closely to an 

actual experime ntal situation. This s ec ond boundary could b e h e ld 

at constant temperature or the t emperature of the boundary could 

follow that of a given second sound wave impinging upon it as in the 

case of an extremely thin piece of copper foil opposite the boundary 

where the temperature is given. A completely different method of 

exciting second sound is to place a plug which is only porous to the 

superfluid part in a channel filled with He II. Pressure waves on one 

side of such a plug will give rise to hath pressure and temperature 

waves on the other side because v =· 0 and v r 0 at the solid-liquid 
n s 

interface so neither v or w is zero there. In this case, and in con-

trast to the one we have studied, the two velocities are known at 

the boundary and the temperature is derived from them. 

A different set of boundary conditions is used when a second 

sound wave imprnges on a liquid-gas interface. This situation is 

realized experimentally rn a container filled with He II and having a 

free surface . When thermal waves are generated at the bottom of 

the container they create a fluctuation of temperature at the surface 

causing the vapor pressure to change. Therefore, pressure waves 

are generated in the helium vapor. This experiment has been sue -

cessfully performed[44 J and Khalatnikov[ZS] has derived expres-

sions for the transmission and reflection coefficients at the liquid 

surface for a sinusoidal second sound wave. 
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The boundary conditions may enter in yet another way if 

the channel is narrow. In this case the boundary conditions along 

the walls of the channel become important; usually a no- slip condi-

tion is imposed on the normal velocity, i.e., v = 0 on the walls of 
n 

the channel. In the limit of very narrow channels v is zero through­
n 

out the liquid. The wave motion when the normal component is com­

pletely clamped by the walls has been briefly discussed by Atkins [45 J 

and he calls the resulting mode of wave propagation "fourth sound." 

The general situation must be analyzed in two space dimensions. 

This problem is important not only because of the new type of bound-

ary conditions but also because there is some knowledge of the criti-

cal velocity in narrow channels. (Notice that there is no known rela-

tionship between the critical velocity as discussed in the first chapter 

and the critical temperature defined later in this work; the names 

are coincidental.) Thus, narrow channel flow provides an opportunity 

to study the relationship between second sound and the critical veloc-

ity. 

There is at least one other type of flow problem that is of 

interest in connection with second sound; this is the propagation of 

thermal waves through rotating He II. The equations best suited to 

an analysis of this type of problem are the generalized Landau equa­

tions using the HVBK[34J formulation for the mutual friction. This 

is a very complex problem because the problem of the rotation of 

He II is, by itself, very complicated. It is known that second sound 

experiences addition~l attenuation when propagated through a rotating 

fluid as compared to a fixed mass of He II.E± 6 J Because quantized 
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vortex lines exist and are important in all considerations of rotating 

He II, a classical continuum approach may not be able to describe 

this problem in detail and the quantum nature of the flow must be ex-

plicitely taken into consideration. 

There are two other areas of interest to the propagation of 

waves in He II that cannot be adequately described by the two-fluid 

model and the Landau equations. One stated limitation of the entire 

analysis in Chapter III is that the continuum approach is not valid 

at very low temperatures. As mentioned earlier, a new set of equa-

tions of motion must be developed to describe the hydrodynamics of 

He II and, in particular, the propagation of second sound for temper­

atures between 0° Kand approximately 1° K. Very little work has 

been done in this area. Again, the quantum nature of the elementary 

excitations at these low temperatures is quite important and an ade-

quate set of continuum equations which describe the hydrodynamics 

of He II are not known. 

Finally, a whole new field of investigation is introduced when 

He 3 
- He 4

. mixtures are considered . A new variable, the concen-

tration of He 3
, is introduced and this considerably enriches the class 

of solutions to the hydrodynamic equations . It is known that concen­

trations of He 3 less than 4. 5 % have a very considerable effect on 

the amplitude-independent velocity of propagation.[
4 7 J Only simple 

periodic solutions to a linearized set of thermo-hydrodynamical 

equations have been found so this is virtually an open field of inves-

tigation. 
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APPENDIX A 

THEORY OF HYPERBOLIC EQUATIONS 

FOR FUNCTIONS OF TWO VARIABLES 

We will present a brief discussion of characteristics and 

invariants. A detailed discussion of the general theory of hyperbolic 

equations and some examples of applications to fluid dynamic prob­

lems is contained in several different books
1

. Specifically, we are 

interested in a quasi-linear first order system of n partial differ-

ential equations with dependent variables u . , i = 1, 2, . . . n. 
1 

The 

two independent variables are x and t. Write this system of equa-

tions as 

au. OU. 
a _J_+b _J_=O 

ij at ij ox 

or 

where u is the column vector of the unknowns 

u = 

u 
l 

u 
2 

u 
n 

(Al) 

(A2) 

and A and B are n X n matrices which can depend on x, t, u. 

1 
For example, R. Courant and K. 0. Friedrichs, Supersonic Flow 

and Shock Waves (Interscienc e Publishers, Inc., New York, 1948), 
Chapter 2 and 3. 
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By forming a line ar combination of Eqs. (Al) it is possible to 

rewrite this system so that the total derivatives of all the unknowns 

are taken in the same direction in the x, t-plane. This linear combina-

tion, called the "normal form" of Eq. (AZ), is 

[ 

ou. ou. ) 
P.. a .. ~ +b .. ~ = 0 
1 lJ ut lJ ux 

and we want this to be in the form 

[ 
ou. ou. ) 

1 i a ot J + r3 OXJ = 0 

This is possible if 

.~.a . . =ed. 
1 lJ J 

and 1. b . . = r?>P.. 
1 lJ J 

By combining these two equations into a single condition we can 

write 

or 

where 

r?>P.. a. . = aP.. b . . 
1 lJ 1 lJ 

1!.(b .. - ca .. )= 0 
1 lJ lJ 

c = ~ 
a 

(A3) 

Non-trivial eigenvectors 1 = (P. , P. , 
l z 

• • 2- ) exist if 
n 

DET{B-cA} = 0 (A4) 

This equation determines the eigenvalues, 
k 

c ,k =1,2, ... n, 
_k 

and Eq. (A3) determines the corresponding left eigenvectors, 1 
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1£ n real, distinct eige nvalues and eigenvectors exist then the sys-

tern of Eq s. (A2) is said to be "hyperbolic. '·' 

Now the normal form can be written 

( 
au . au . ) 

£.a . ~a J + c ~a J = o 
l UJ t X 

(AS) 

This is formally similar to a linear sum of the derivatives of u. 
l 

along a "characteristic direction" defined by 

(~) = 
k 

k 
c (A6) 

The "invariants" along the characteristics are given by Eq. (AS); 

or 

£.a .. du. = 0 
l lJ J 

°IAdu = 0 (A7) 

Equations (A4), (A6), and (A 7) are the explicit formulae for the 

characteristics and invariants of system (A2 ). 
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APPENDIX B 

A REVIEW OF OTHER THEORIES 

The perturbation analysis done by Khalatniko) 
3

BJ will be 

reviewed in detail since it serves as a basis of comparison with the 

results derived throughout the main body of this work. Only the as -

sumptions and analysis will be discussed in this Appendix in order to 

clarify the essential features of the theory. The final results are con-

sidered in detail when they are compared with those derived in 

Chapter III. 

The equations of motion used by Khalatnikov are the same· as 

Eqs. ( 1. 3) under the assumption that 

'VXv =0 
s 

(Bl) 

His theory also includes the second order expansion of p and s; 

s = s +( ~;) 5' + O(w4
) 

} 
0 

-[ ~~ t (B2) 
1 1 wz 

+ O(w4
) - = 2 p Po 

where 

a = 

and the subscript 11 0 11 denotes quantities which are only functions of 

the independent thermodynamic variables 

on w. The partial derivatives and 

P and T and not dependent 

00' oP have been underlined 

to indicate that they originate from the expansion of p and s. 
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Follow ing Khalatnikov, a s surne all quantities are fu nctions of (x - ct ) 

and write v and w in the following form: 

v = v (x - ct)e + v (x - ct)e 
x x y y 

w = w (x-ct)e + w (x-ct)e 
x x y y 

where e and e are unit vectors in a carte s i an coordinate s y stem. 
x y 

By substituting these fo r ms for the velociti es into Eqs. (1. 3) 

and neglecting all order w2 terms we obtain the fo llowi ng equations 

for the primed variab les: 

- u(~) P ' - u(*) T ' z(oa )u , - p - - w w 
o 8T x x 

0 0 

l ( 00' ) Uw w' + p VI 0 - Po 8 P = y y 0 x 
- o 

Uv' + P ' + 2 
PnoPso 

w w' 0 - Po x 

p p 
_ Uv 1 + no so 

Po y p 
0 

Po 

w w' 
y x 

= x x 

PnoPso 
+ ---- ww ' 

x y 

[-pou(;~J.f:~·i.wx]P' +[- pou(;~J. 

= 0 

+ ( O: ~) W ] T 1 + r p S - p U ( ~ Cl' ) W J W 1 - p U ( OCl' ) W W 1 = 0 
\ x l so o o u T x x 0 8 T y y 

0 0 - 0 

-p (u _ 3 Pso w ) w 1 + p [s -(
8a) w u ]T ' no p x x o o 8 T x 

0 0 

- p ( OCl' ) w U P 1 + p w v I + p w w I = 0 
o 8 P x no x x no y y 

0 

( 
p - p ) 

- p U + no so w w' - ( oa) w U T ' 
no p x y p 0 at y 

0 0 

- f~ ) w U P ' 
Po\ 8 P y 

0 

Pnopso 
+p wv'+ ---- ww ' =O 

no x y p
0 

y x 
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u = c-v 
x 

and a prime denotes differentiation with respect to the argument 

(x-ct). It should be re-emphasized that the plain and underlined a 

derivatives are actually identical but the underlined ones arise from 

the expansion of s or p while the others arise from the differentia-

tion of a in the equations of motion. All but the last of these equa-

tions correspond with, but are not identical to, Eqs. (1) - (5). Equa-

tion (6) comes from one component of Eq. (Bl) while the e - corn­
y 

ponent of the equation for w is not used. Equation (Bl) is a restrict-

ion on the class of solutions to Landau's equations and not an equa-

tion of motion so including it in the set of Eqs. (l) - (5) has no 

a priori justification. There are other significant differences be -

tween the two sets of equations. 

The determinant of this set of equations must vanish for non-

trivial solutions to 8xist; partially expanding this determinant and 

dropping the subscript 11 0 11 gives the following conditi::m on U: 

( 
pn-ps ) 

U U + p w x Det = 0 (B3) 

where 
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(Hs)u (~)u z/ 8a) 
p 18P wxU p 

1 0 
PnPs 

2 --w 
p x pU 

Det= 

P(~~)wxU p[I ~~) wxu-s] p (u-3 ~ w ) n p x 

p(~~)u-[
0

:~)wx 8 ) (ap s) P(a~ u- a; wx p(~)w U-p s oT x s 
0 

However, since we are neglecting O(wz.) terms throughout this calcula-

tion, Eq. (B3) can also be written 

(B4) 

Thus, the fact that all O(w2
) terms are being neglected does not allow 

two of the roots for U to be uniquely determined to O(w ) and Eqs. 
x 

(8) and (10) are not necessarily valid. Also note that there are no 

terms in Det which contain w . 
y 

Equation (7) can be derived by setting Det = O with 

[ u' ( ~:J-1W; ( ~~ )u' -[ 4 P;: s ( ~~) 

- s(~T) -s( ~~hu - P: s'} = O (BS) 

Notice that both ( ~~) and ( ;; ) no longer appear in the equation for 

U . Two of the roots of Eq. (B4) are 

uz = u 2 + O(w2
) (B6) 

1 

and we can write the remaining factor as 



-11 3 -

{ 

Ps 
U2 

- u 2.2. - w x u 4 p i!s[( :;) +(°:;JJ}= 0 (B 7) 

( 33pTn) and Therefor e, (a :nT) u are equally important as far as this 

root is concerned. By assuming v = 0 and neglecting the distinction 

ap 
between 

ap 
n 

3T 
and n 

oT' 
Khalatnikov solves this equation to first 

order in w to find 
x 

where 

and 

c = u + yv 
z nx 

Ps 
v = w 

nx p x 

Finally , Khalatnikov shows the temperature dependence of y for 

(BS) 

(B9) 

0 < T < TA . However, this dependence should only extend to approxi­

mately 1 °K since this is the lower temperature limit for the validity 

of any continuum approach. In conclusion, although there are a 

number of questionable points in his analysis, Khalatnikov does have 

the correct results and conclusions . 

Hsieh[ 
34

] has also derived an equation similar to Eq. (BS) 

from the Landau equations but with an entirely different procedure. 

He first assumes P = P(p), T = T(s}, and that s is a constant; 
n 

therefore he has neglected thermal expansion and the dependence of 

P and T on w. Then, by seeking non-trivial so lutions for the jump 

of the independent variables across a characteristic surface, it is found 

that the characteristic speed c is either vn' vs' or must satisfy 



- l l 4-

c4 + (3v +v )c3 + [ (2+a')v 2 
- (l -a')v 2 

n s n s 

+ 7 V V - U 
2 

- U 
2 J C 

2 + { Q'V 3 + ( 4 - Q' )v 2 V 
ns l 2 n ns 

+ (1-a')v v 2 
- (1-Q')v 3 

- [(3-2a')v - (l-2a')v Ju2 

n s s n s 1 

- 2[ Q'V + (1 -Q')V J u 2 
} C + Q'V 3 v + 2(1-Q')V 2 v 2 

n s 2 ns ns 

- (1-Q')v v 3 
- [ 2(1-a')v - (l -2a')v ] v u 2 

n s n s n l 

- [Q'v 2 + (1-a')v 2 ]u2 + u 2u 2 = 0 
n s z i 2 

where 

Q' = 

(Bl 0) 

The roots v and v confirm that Eq. (B4) rather than Eq. (B3) is 
n s 

the correct one and that Khalatnikov is indeed correct. 

D efining 

u = c - v 

and using the transformations defined by Eqs. (3. 2a), Eq. (BlO) can be 

written 

(1 -26 )w ( u~ + 
1 -6 2 

w 2
) U + u 2 u 2 

- 4-
l 2. 

2. 
(1-6)(1-36) 

w 2 u 2 1 -6 2 
2. 2 + 

( 1 - 6 2 ) w4 0 
4 

--WU 16 = 
l 4 2. 

or 

u4 + (l-26)wU3 
- (u2 + u 2 )U2 

- (l-26)wu2 U + u 2 u 2 = 0 
l 2. l l 2. 

(Bl 1) 

where we have correctly neglected all O(w2
) terms in Eq. (Bl 1 ). 

Comparison of Eqs. (Bl 0) and (Bl 1) clearly shows the distinct 



-115-

advantage of using v and w r athe r than v and v . Thus result 
n s 

i s the sarne as Eq. (BS ), Khalatnikov 1 s r esult, when 

a n d ( ~~ ) i s neglecte d. 

s i s a constant 
n 

Temperley[ 
4

0] has donP a hrie f introduction to a Riemann 

theory of second sound based on equations of motion which are derived 

in an Appendix to his main theory. In addition to the conservation of 

mass and entropy equations as given by Eqs. (1. 3a) and (1. 3d) he uses 

the following two equations to describe the motion of v and 
n 

8T 
ox 

v : 
s 

= 0 

8~vts +vs ov s - ~~I osn + v osn) + ~ ~ - s ~ = 0 
u ox Ps 2sn ot n ox p ox ox 

These are Eqs. (AS) and (A9) in his paper. By comparison with Eqs. 

PnP s v? 
(1. 3b) and (1. 3c) it can be seen that the term -p- \l T has been left 

out. Thus, Temperley' s equations can not reduce to the Landau equa-

tions under any simplifying assumptions and there is no ground for 

comparison between his theory and the one presented in this paper. 

By making the same simplifying assumptions as discussed on page 34 

[which means that he has neglected O(wz) not O(w3
) terms] 

Temperley d e rives the following two equations which describe the 

propagation of pure second sound: 

where 

u . z 
OCY + w(p s-pn) ow + aw = 0 
OX p OX at 
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dp 
n 

The characteristic velocities for th e se equations are 

c = u ± 
2. 

Therefore Temperley and Khalatnikov find the same result for the 

amplitude-dependent velocity of propagation to first order in w if 

s is a constant. But this is purely coincidental since neither the 
n 

equations of motion nor the simplifying assumptions are the same in 

the two analyses. 
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APPENDIX C 

A BRIEF DISCUSSION OF NON-LINEAR BREAKING 

It will be shown in this Appendix that the discontinuity in the 

solution first appears at the inflection point of the velocity of propaga-

tion, c(T). 

When the temperature is given as a function of time at the 

boundary x = 0 then it has been shown that the pressure and relative 

velocity are also known and, consequently, all quantities are known 

as a function of time on the boundary . In particular, the propagation 

speed is known and we can speak about c(t) being given at the 

boundary. 

The one -parameter family of L+ characteristics is given by 

X - c(T) (t-7) = 0 (3. 23) 

and the solution by Eqs. (3. 25 ). Calculate ;~ by 

ao do aT 
at= dT at 

By using Eq. (3. 23) and denoting derivatives by a subscript, we can 

write this as 

= 00 c 6 'T 
Ot at= c-(t-T)c 

T 

Therefore the solution has a discontinuity (o t - ir.o) if 

which, using Eq. (3. 23), is 

C - (t-T)c = 0 
'T 
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t=T+c/c 
T 

x = c 2 I c 
T 

(3. 33a) 

(3. 33b) 

Thus we have illustrated a different ~nethod for finding the envelope of 

the L+ lines, Eqs. (3. 33). 

Henceforth, it will be easier to use s rather than T as the 

parameter in Eq. (3. 23) 

t 

x 

By definition 

-s + C (T)T = 0 

or 

S = Tc(T) (Cl) 

Thus 

and 

(C2) 

We will also need the second derivative 
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cl [ c cs ) c = (c+TcT) 
TT ds i -Tes 

(C3) 

The parametric equations for the envelope in terms of s are 

t 
1 

= 
ct, 

x = 
c-scs 

cs 

Therefore, the cusp of the envelope - - the point in the 

x, t-plane where a discontinuity first appears - - which occurs when 

t has a minimum, is at the point where cs has a maximum; 

or 

= 0 

By Eq. (C3) this is c = 0, which is the inflection point on the 
TT 

boundary condition c (T). 
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APPENDIX D 

PROOF THAT v = 0 

Equations (3. 25) represent the solution to Eqs. (3. l 0) for the 

chosen physical problem and its boundary conditions. It will be shown 

here that any solution to Eqs. (3. l 0) with v = 0 at a given point implies 

that v is identically zero . 

Consider Eqs. (3. 3c) and (3. 3d), two of Landau 1 s equations. If 

we assume s is a constant then these equations, in one dimension, 
n 

can be written 

(Dl) 

a6 ao + l -6 2 ow + l -6 2 
.!__ ~ 

at+ (v- 0 w) ax 2 ax -2- w p ax = 0 (D2) 

Now assume we know any solutions w = w(x, t) and 6 = 6 (x, t) which 

satisfy Eqs. (3. l 0). Then these equations can be used to simplify 

Eqs. (Dl) and (D2); the result is 

v aw+ w 
ax 

av - 0 
ox -

(D3) 
a6 

+ 
1 -6 2. .!__~ 0 v ax -2- w = p ax 

Equation (D3) implies that 

vw = const. 

Thus, for a non-zero w if v is zero anywhere, for instance at a 

boundary, then it vanishes identically. 
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