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ABSTRACT

NONLINEAR AND ANISOTROPIC EFFECTS IN MAGNETICALLY

TUNED LASER AMPLIFIERS

Using semiclassical radiation theory and a density matrix
formalism we analyze the nonlinear characteristics of a gas laser
amplifier operating with two optical frequency signals of arbitrary
polarization and having an axial magnetic field. Both perturbational
solutions, valid for relatively weak intensities and solutions wvalid
for arbitrarily strong fields are obtained for two nonlinear effects:
the saturation interaction of the electromagnetic waves, and the
generation of combination tones. An arbitrary amount of Doppler
broadening is considered throughout.

The detailed treatment of J = 1L to J = O model yields the
frequency, magnetic field and polarization dependence of the non-
linear effects. The results are presented analytically and graphically
and are discussed using physical arguments. It is found that only
saturation but no combination tone generation occurs for two opposite
circularly polarized input signals while both are, in general, present
for two arbitrary linearly or ellipticaelly polarized fields. For
two opposite circular waves the interaction is found to comprise three
parts, each with a different behavior: self saturation, common level
mutual saturation and a coherent double quantum interaction. The
total interaction (coupling) between the two fields 1s always weak.
The limiting case of a single linearly polarized field is considered

separately, the zero magnetic field "dip" and the nonlinear behavior
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of the Faraday rotation is discussed.

For two linearly (or elliptically) polarized waves the three
nonlinear processes listed above take place between opposite circular
components. In addition a modulation of the population inversion
densities occurs due to the presence of two different frequencies with
the same circular polarization. This results in the generation of new
frequencies and also contributes to the coupling between the input
fields. The coupling depends on the magnetic field, and on the fre-
quency separation and the polarization states of the signals. The
limiting case of zero magnetic field is examined. It is found that the
medium is made effectively anisotropic by the nonlinear interactions.
The polarization vectors of two linearly polarized fields rotate apart
unless the angle between them is zero or 90 degrees.

The results are extended to the general Ja to J£ transition.
In zero magnetic field the nonlinear effects are found to depend on
AJ, while for nonzero magnetic field resonances in the interaction
occur whenever the frequency difference between two opposite circularly
polarized transitions that have common level equals the frequency
separation of the input fields. Combination tone generation takes

place for all but two opposite circularly polarized signals.
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CHAPTER ONE
INTRODUCTION

It is a well-known fact that in a medium which is population
inverted with respect to two of its atomic levels, an electromagnetic
field resonant with the transition frequency between these two levels
experiences negative absorption or gain (1). This amplification is
brought about by induced transitions of the atoms between the laser
levels. For very weak intensities the number of induced transitions
is so small that the populations of the levels remain essentially un-
changed. This is the linear case and, under such conditions, there exists
no interaction between various spectral components of the field. As
the intensities grow the number of stimulated emissions increases to
measurably influence the level populations. Under these conditions
the electromagnetic field couples nonlinearly to the medium, as a
result of which there exist various nonlinear interactions between the
spectral components of the field. In the following chapters we shall
study these nonlinear interactions when the electromagnetic field con-
sists of travelling waves containing several nearly monochromatic com-
ponents with various polarization properties. We are primarily
interested in effectsthat take place within a fairly narrow bandwidth
of the original optical frequency inputs. That is to say we are not
concerned with harmonic generation and coherent mixing, but with sat-
uration, competition between two frequencies in the input, and side-
band or combination tone generation. We are also interested in invest-

igating the effects of an applied D.C. magnetic field and of the



Doppler broadening of the transition. Thebasis of our calculations

is semiclassical radiation theory, as formulated by Kramers (2). The
induced polarization of the medium is calculated by finding the dipole
moment of the atoms constivuting the medium. The induced polarization
then is used in Maxwell's equations to study the.behavior of the
fields.

A number of authors have studied nonlinear effects of optical
frequency electromagnetic waves recently. Armstrong, Bloembergen,
Ducuing and Pershan (3) treated the interaction of travelling waves
in nonlinear dielectrics including both crystals and gaseous media.
Damping processes and Doppler broadening were not considered and no
polarization effects were studied in any detail. Bloembergen and Shen
(4) included the effects of atomic dissipation. Only stationary atoms
were examined and no polarization effects were considered.

Lamb has treated nonlinear effects in laser oscillators
in cons;derable detail (5). He used scalar cavity waves and did not
attempt a treatment of polarization effects. Most of his results are
applicable for the case of strong Doppler broadening only, although the
case of stationary atoms was also considered briefly. The induced
polarization was calculated to the third order in the fields and the
properties of the laser oscillator were studied extensively.

Close (6,7) has used a similar approach for travelling waves.
He has studied the effects of intermediate Doppler broadening and those
of strong saturation. The generation of combination tones was examined

in some detail. In addition, an attempt was made to treat polarization



effects by using vector fields and a method of averaging over possible
atomic dipole orientations. Haken and Sauermann (8,9) considered
similar effects using similar techniques but did not treat combination
tone generation or consider strong saturation.

Strong saturation in gas laser amplifiers with a single,
scalar input field was studied by Gordon, White and Rigden (10) using
a method based on rate equations. Only the case when the input field
frequency is at line center is treated although the extension to
arbitrary tuning is straightforward and has been done by Hotz (11).

Using still another approach based on the Kramers-Kronig
relations, Bennett (12) has studied saturation in Doppler broadened
gas lasers. The powerful concept of "hole burning" developed in his
work will be made use of at times in our work, in a somewhat extended
form, for a physical understanding of some results.

In all of the above references a single atomic transition
between two nondegenerate levels was considered. In order to properly
account for the effects of arbitrary polarization properties of the
fields it is essential to consider the degeneracy of the levels. Since
the degeneracy is removed by the application of a DC magnetic field to
the medium, such a treatment leads naturally to the study of magnetic
fields effects as well. This is what is done in our work. In order to
place this aspect too in a proper perspective we list the works
published on magnetic field effects as well.

Fork (13) has calculated the dielectric susceptibility

tensor for a.gaseous medium with an inverted population subjected to



a magnetic field, using Kramers-Kronig relations. A J =1 toJd =0
transition was treated in detall and formulae for generalizing the
results given. Only the linear case was considered. Culshaw and
Kannelaud in their early work on magnetic field effects in laser
oscillators (14, 15) used a simplified quantum mechanical approach to
study mode pulling and coherence effects. Faraday rotation in a
population inverted medium has been examined by Tobias and Wallace
(16) who have calculated the Verdet constant for a general J, to

Jb transition using a linear theory only.

Tang and Statz (17) have used a density matrix approach to
study nonlinear pulling effects in a laser oscillator with Zeeman
splitting of the levels by calculating nonlinear susceptibilities for
a d=1 to J =0 transition. Only the time dependence of the fields
was included and the effects of oppositely travelling waves constitut-
ing cavity modes therefore could not be included. Likewise, they did
not consider different relaxation rates of the upper and lower laser
levels. In the same work they also treated some polarization effects
for linearly polarized waves and two nondegenerate levels by a method
similar to that of Haken and Sauermann (8) and of Close (6).

To study the nonlinear properties of Zeeman laser oscillators
Lamb's theory has been extended recently, to vector electromagnetic
fields interacting with levels that are eigenstates of the angular
momentum, by several authors. Fork and Sargent (18) have considered

competition and beat frequencies between two opposite circularly

polarized modes within a single cavity resonance for a J =1 to J =0



transition and an axial magnetic field. They did not, however con-
sider other polarization states.

Culshaw and Kannelaud have considered the effects of cavity
anisotropy as well as the behavior of the beat frequencies for a
simple J = 1/2 to J = 1/2 model and axial magnetic field (19).

More recently they have extended their results to cover the J =1

to J = 0 transition and transverse magnetic field (20). Corney

(21) has obtained some linear and nonlinear results for both oscillators
and amplifiers by considering only the "classical" Zeeman effect for
an axial magnetic field.

Heer and Graft (22) have considered an arbitrary J, to I
transition, arbitrary direction of the magnetic field and both cavity
and travelling waves. Although the fundamental approach is very gen-
eral actual results were obtained only for the case of a single
linearly, circularly or elliptically polarized wave. The case of a
single mode laser oscillator operating on a transition between levels
of arbitrary J values was also examined by de Lang and Bouwhuis (23)
and by Polder and Van Haeringen (24) who have shown that the polariza-
tion state of the mode depends on AJ . The effects of intermediate
Doppler broadening or combination tone generation were not treated in
these works or in references 17 through 22.

More recently there have appeared two other works that are
related to ours. Doyle and White (25) have examined a laser oscillator

with a general Ja to Jb transition in which the magnetic sublevels

are completely degenerate, i.e., zero magnetic field. Two modes with



arbitrary elliptical polarizations were considered, covering all possible
combinations of polarization states for two frequency operations.

Strong Doppler broadening was assumed and combination tone generation
was also considered briefly.

Schlossberg and Javan (26) have studied a J =1 to
J = 0 +transition with extension to more complex level structures.
Particular emphasis was put on the resonant behavior of the nonlinear
polarization and the effects of double quantum transitions on this.
Both travelling and standing waves were included and intermediate
Doppler broadening was also examined. The electromagnetic field was
taken to be a scalar field and consequently polarization effects were
not included.

There are various other references that deal with related
ideas, such as other nonlinear effects we are not considering and
with the Stimulated Raman Effect. Some of these, when appropriate,
will be mentioned during the discussion of our results. Others will
be listed in the concluding chapter where we discuss the relationship
to other nonlinear effecﬁs.

Experimental work on the subject has closely followed the
development of the theoretical knowledge. Gordon, White and Rigden
(9), and Bennett(11l) have included experimental results with their
work. Several aspects of Lamb's theory (5) have been experimentally
investigated (27, 28, 29). Close has reported observations of combina-
tion tones in a saturated amplifier (30). On the effects of magnetic
fields, Fork and Patel (31) have reported first observation of Faraday

rotation in a population inverted medium. Measurement of the beats



within a single cavity resonance as well as of the variation of output
power with magnetic field and observation of coherence effects were
reported by Culshaw and Kannelaud (13, 14, 20, 32) and by Paananen,
Tang and Statz (33). Independent measurement of the variation of
low frequency beats with magnetic field has been done by Bolwijn (34).
Doyle and White have reported observation of high order combination
tones within a single resonance of a laser oscillator (35) and have
recently verified some of their analytical results (25) for laéers
oscillating on transitions between higher J values (36). De‘Lang
and Bouwhuis have carried out experiments on the polarization state
of a single mode laser oscillator in a magnetic field (23, 27). The
work of Fork, Tomlison and Heilos (38) should also be mentioned in
which they reported hysteresis effects that are not explainable by
present theories. Very recently Schlossberg and Javan reported measure-
ments of the hyperfine structure of Xenon (29) utilizing their theory
(26) of the saturation behavior of magnetically tuned complex level
structures.

In the work that follows we use an approach that is generally
similar to that taken by Lamb (5), Close (6,7) Heer and Graft (22),
and other authors on magnetic field effects. A simple J =1 +to
J = 0 model is presented in chapter two and the equations of motion
for the atoms and the vector electromagnetic fields are derived. For
the four chapters that follow this simple model is considered. An

1

integral equation "solution" is developed in chapter three, and in

chaepter four the nonlinear effects expected for various polarization



states of the input fields are discussed qualitatively using physical
arguments and the results of chapter three. In chapter five detailed
results for the case of two opposite circularly polarized fields are
derived. Both first and third order iterative solutions, wvalid for
relatively weak fields and some solutions valid for arbitrarily high
intensities are found. The important limiting case of a single linear-
ly polarized field is also treated in some detail. In chapter six

the case of two linearly or elliptically polarized fields is examined.
Most of the nonlinear results are third order, valid for relatively
weak fields only, but some semiquantitative expressions for arbitrary
intensities are also obtained. Featured are the frequency and polar-
ization dependence of the interactions, the effects of the magnetic
field, induced anisotropies of the medium and combination tone genera-
tion. In chapter seven the results are extended to an arbitrary Ja
to Jb transition and additional results different from those for the
simple model are obtained. Finally in chapter eight we suﬁmarize the
results and discuss applications and extensions of the theory. Through-
out the work an arbitrary amount of Doppler broadening is considered
although we also obtain results for the limiting cases of very strong
Doppler broadening and natural broadening. We do not however, tfeat
the effects of collisions or of boundary conditions. Likewise, the

noise properties of the laser amplifier are ignored.



CHAPTER TWO

THE MODEL FOR THE ATOMIC SYSTEM AND THE EQUATIONS OF MOTION

2.1 Introduction

The purpose of this chapter is to introduce a suitable
model for calculating the interaction of optical frequency electro-
magnetic waves with a population inverted medium. For that purpose
we first find the equations of motion for a system consisting of
a single atom and an electromsgnetic field. The description of
the atom will be quantum mechanical, i.e., described by the
Schroedinger wave equations, while the electromagnetic field is
treated classically. A simplified modei of a single atom is des-
cribed in section 2.2 and the electromagnetic field is treated
in section 2.3. The interaction of these two and the resulting
equations of motion are covered in section 2.4. Only the dipole
interaction between the field and the atomic system is considered.
In the subsequent chapters the single atom equations will be
solved and macroscopic solutions will be obtained by summing

over the atoms constituting the laser medium.

2.2 The Model for the Atomic System

Any given atom of the laser medium is fully described by
its time independent eigenstates which are solutions of the Schroedinger

equation
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H|o =Ele (2.1)

where H;= P2/2m + V and E is the energy eigenvalue. P is the
momentum operator and V 1s the potential energy of the electrons.
The energy levels are eigenstates of the total angular momentum J .
In the absence of an external magnetic field these eigenstates are
degenerate in the magnetic quantum number. An applied D.C. magnetic
field is a stationary perturbation that removes the degeneracy and
splits a given level into 2J+1 sublevels according to the well
known Zeeman formula

ehB
AE = —;r-gMj 5 (2.2)

Y]

where AE is the change in energy of the Mﬁ sublevel and g is

the g factor of the level (L40).

For our purposes we shali consider only two of tﬁe eigen-
states, those which are population inverted and have a transition fre-
quency resonant or nearly resonant with the electromagnetic field.

In order to keep the calculations from becoming too complex the model
used in the first part of this work will be the simplest possible
that approximates an actual laser system. This is one in which the
upper level has total angular momentum quantum number J = 1 and

is thus threefold degenerate while the lower level is nondegenerate

with J = 0 . There are several neutral gas laser systems capable
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of CW oscillations between J =1 and J = O levels, among others
the 2.65u line of Xe and the 1.52u line of Ne are well known (41).
For these systems this model is an exact description. It is evident
that with trivial modifications the model is also correct for the
J=0=J=1 transition of which the 3.99u Xe 1line is an example. (41).
The theory will be extended to transitions between levels with arbitrary
J values in Chapter Seven where additional results that are in some
cases different from those obtained for the simple model will be de=~
rived. The effects of the nuclear spin and isotopes will alsc be
considered in that chapter. The magnetic field is taken to be such
magnitude that the Paschen-Back region is not reached.

The other eigensolutions of equation 2.1 enter into our
calculations only by establishing the decay rates Ya and Yb for
the two levels. In reality the decay rates are also influenced by
the atoms' surroundings, radiation trapping etc., but no attempt will
be made here to treat these effects. Instead the decay rates will be

introduced phenomenologically into the atomic equations of motion.

2.3 The Electromagnetic Field and Its Equations of Motion

We assume the electromagnetic field as a sum of nearly
monochromatic travelling waves propagating in the =z direction. In
view of the extremely narrow spectral width of laser signals this is
very reasonable. The waves are also assumed to be transverse and
nearly Plane, that is to say transverse derivatives in the region of

interest are assumed negligible. This second assumption is also
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reasonably well satisfied in practice. The laser medium is usually
a discharge tube and the input signals can usually £i11 up the tube with
only small variation of intensity across the diameter.

It will be found convenient to assume circularly polar-

ized fields, and to define the vector base system as

E= T (-1)%Ee_ & (2.3)
i B m -m
where
&, =FE= (6 +18 )eand & =2
+ /2 ‘ox Yy o zZ
and

For a magnetic field in the axial direction on the laser
amplifier, i.e., in the direction of propagation of the field, the
coordinate system of the atoms and of the field coincide. For other
directions of the magnetic field a rotation matrix is necessary to
relate the two coordinate systems. We shall consider only axial
magnetic fields. The electromagnetic field is

: i(k (v)z-v_t+p )
E(t,z) =Re T T & _E (z,t) e ™ N (- )
v met "B Vm
where Evm(z,t) and mm are slowly varying functions of position and

time in this approximate expansion. Arbitrary linearly, circularly
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or elliptically polarized waves result by choosing the magnitude and irdtial

phase of the left and right circular components appropriately.

The field is governed by Maxwell's wave equations which for

a nonmagnetic medium with no free charge can be written in MKS units

as

2 -~ 3E . 1 oP
CVXB—B-E'i-eg_E >
o
_ - .1 —
vV.E e V.P |,
o
V-§=O,

vwhere P 1is the macroscopic polarization of the medium.

combined to give

3% 1 82§
)

= 1
VXVxXxE-=-— - .
02 Jt > 02 Btg

.0
After using the vector identity

2

VxVxE=-VE+V(V.E),

and 2.kc, equation 2.5 can be rewritten as

(2.5a)

L850 ]

(2.5¢)

(2.54)

These can be

(2.6)

(2.7)



&

2
PE+LEE. L g .5 . L 88 (2.8)
¢~ ot o e ¢~ Ot

o

o/
n

Since we are considering a system near resonance, the polarization of
the medium has both real and imaginary parts. It is well-known that
the imaginary part is responsible for the loss or gain in the medium
while the real part causes a phase shiftt or index of refraction.
Accordingly we assume the following form for the induced polarization

P:

_ i(kmz-vmt+cpm)
P(z,t) = Re T T (Pvcm-vasm)e 5 (2.9)
vV m

where the summation runs over the same set as for the electromagnetic
field. Since the phase wm was assumed to be space and time dependent,
the complete nonlinear phase shift suffered by the wave as it travels
through the medium could be taken care by it and km could be assumed
equal to the free space propagation constant vm/c . Since, however,

we shall separately, albeit briefly, consider the linear results it

will be convenient to define a real index of refraction by

v
m
v = V) — °
k (v) =m (v) = . (2.10)

The index of refraction is convenient to use for linear results. For
calculations that include nonlinear effects, however, the accumulated
phase @, is more suitable. It is of course possible to reserve
@m for the nonlinear corrections only and keep nm for the

linear part. We have considerable freedom of choice in the
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matter, and both will be included in the equations. Note also that we
neglected the effect of the other, non-resonant transitions. These
contribute a small index of refraction that is essentially constant
through the small range of frequencies (the width of the resonance)
considered, and can thus be taken into account by adding a small
cohstant term to no

We can now substitute the polarization of the medium into
Maxwell's equation. Transverse derivatives are set equal to zero and

the equation for one harmonic component is thus

d3\> /.. d\ 3 d%E . d° 3o\ OE

o e BB 521 Byn - 2o W 2 1) 2

L13%E, 1% m| attEavEi) | L Ple e ) SR )
02 ot c2 Bt2 - e 02 S

where the subscripts wvm have been omitted for convenience. The
second derivative of P has been set equal to -v2P since we know
that P 1s nearly monochromatic at an optical frequency v . The
assumption of slow spatial and time variation will now be used to

neglect the terms.

Pop, 20 3% 1 Py 1 w39 1 3%
32 ’ 3z 0z’ | 2’ 2 52 23—37@’ g..2 °
A . c o0t at

To justify this more quantitatively we note that we must have, for

example,
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2
OE OE
S o« x b and (2.124)
Bzg ’

2 .
O°E OE
—= <<V . (2.12p)
St e

If we assume linear amplification of the fields, then, the spatial
variation of E can be expressed roughly as E = Eoéa?n Using k =

2.12a becomes for optical frequencies

@ << 2 1%/, (2.13a)

which is very well satisfied since the highest known « in lasers is
of the order of 5. For a rough estimate on the validity of 2.12b
let us assume that the time variation of E is E = E cos Avt , where
Av is the total bandwidth over which the input signals are distributed.
Then 2.12b becomes

%\1 «<1 , (2.13v)
which is again very strongly satisfied, typical values of Av/v

being less than 1077 .

Replacing k by V/c and K e = (x+v/c)(k-v/c) by
2
2 %(k- %) = D 25 (n-1), and equating real and imaginary parts we
c

obtain the two equations.

amv l B@

oz te (n l)] Bom = 2e e Evem (2.14a)
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aEvm 1 aE\)m \Y
Sz ¢ ot 2e_c Fosm # _ (2.140)

where the subscripts vm have been restored where they are significant.
These are the electromagnetic field equations in a form suitable for
calculations of nonlinear interactions in the laser medium. The value
of P will be calculated by considering the interaction of the field

with the atoms of the medium.

2.4 Interaction of the Atoms and the Electromagnetic Field

The interaction Hamiltonian between the atoms and the fields
is taken to be H' = QEoE. where p 1is the dipole moment operator
and E is the electric field. Magnetic dipole, electric quadrupole

etc. interactions are neglected. Figure 1 shows schematically our

model of an atom interacting with a classical electromagnetic field.

= =+
|3,=1, M_=+1)
/)
|3.=1, M= 0)
/
|T =1, M =-1)
a a
' 1] 1
i 2 o ol
v \
|7.=
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In the subsequent sections the subscript a and b will refer
to the three upper levels and the one lower level respectively. The
subscripts +, 0, -, are used to indicate the M = +1, 0, -1, sublevels
of the upper level a. When the latter are used it is understood that
we mean the upper levels, and the subscript a is left out.

We need the solutions of the time dependent Schroedinger

equation H|y) = ih %% ; (2.15)
It will be convenient to use the density matrix formalism.

The perturbed wave function is expanded as
|4 = ? . (t) lo) (2.16)

v
where the ‘¢k> s are the stationary unperturbed states. The density

matrix is defined by the operator |y){¥|, i.e.

Py = ol H]w)) = cicj* . (2.17)
The equations of motion for the density matrix can be derived by

Ro (el + 1o 28w

= -(Hp - pH) = (2.18)

]
Since the |¢k) s are the time independent wave functions H 1is
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the total Hamiltonian H; + H' . Equation 2.18 is valid only if
the complete set of wave functions are included. For our purposes
we have limited the atomic model to two energy states, Ja + J5
stationary wave functions we must truncate the density matrix to
include only these. The other wave functions are taken into account
by introducing the phenomenological decay rates Ta s rb . In the
equations for the density matrix this has the effect of adding the

anticommutator
1
it E(Fp + oI')

to the RHS of equation (2.18) (42 ). The equation of motion for

the density submatrix is
\f 1
itp = (Ho —ihl"/2)p-p(H°+th"/2)+H p+ pH (2.19)

That T is always diagonal in the energy representation and is given
by binj has been shown by Lowen (43). For the Jya=1l, JH =1
model used in the first part of this work the matrix elements of equa-

tion 2.19 are given by



-0

00

o




2l

' 1%
1 i 1 * s
Since these matrices are all Hermitian, pij pji and Hij Hji
The polarization of an atom, i.e., the expectation of the dipole
moment from the definition of p is
P iom = LTace Lop] . (2.20)

To obtain the macroscopic polarization we must sum over

all the atoms

P=3 Trace [ pp)
all atoms
= Trace [p Pl (2.21)
where pm = 5 Pp « In the following chapter we derive closed
' all atoms

form expressions for the elements of the macroscopic matrix pm .
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CHAPTER THREE

SOLUTIONS OF THE ATOMIC EQUATIONS OF MOTION

3.1 Introduction

In this chapter we obtain formal solutions for the atomic
equations of motion. These "solutions'" are actually a conversion of the
differential equations into a set of integral equations from which
perturbational and other approximate solutions can be easily obtained.
The treatment is similar to that of Lamb (5) and of Close (6,7) for twonm-
degenerate. atomic levels. We discuss the initial conditions necessary
for the integration of the differential equations in section 3.2 and the
integrated equations for one atom with a given initial condition are
obtained in 3.3. Formal solutions for the macroscopic density matrix
are derived in section 3.4. The basic assumption in this treatment is
that the velocity of the atom remains constant during the time required
for the atom to decay. Another assumption is that the field amplitudes
change slowly compared to the decay rates of the levels Tgr Tpe
Actually, the validity of the first assumption is somewhat marginal and
under certain conditions collision effects can be quite important. This

topic will be more fully discussed in section 3.3.1.

3.2 Initial Conditions and Excitation

The simplest initial condition that can be assumed for a

given atom is that at some time t =t it is in one of the two
(o]

stationary states that we are considering, i.e. either in one of. the
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magnetic substates of the upper J=1 level or in the lower J=0 state.
Mathematically thislis described by an initial value of the density
matrix in which all but one of the diagonal elements is zero and the
value of the latter is unity. The differential equations for the
density matrix elements can then be integrated. To obtain the macro-
scopic polarization of the medium it will be necessary to sum over all
the atoms that are involved. To account for all the relevant atoms we
assume an excitation (or pumping) process whereby a certain number of
atoms get excited per unit volume of the medium and unit time interval
to each of the four sublevels. In reality, of course, the atoms are
excited to various mixtures of the eigenstates. The assumption that the
excitation is to one level at a time is equivalent to an assumption of
randomness in the possible superposition of the eigenstates at t = to.
We must of course take into account the motion of the atoms. This is
done by assuming that any given atom has a velocity v at the time of
excitation, t = to, and assuming a velocity distribution for the
ensemble of atoms. Thus the number of atoms excited to the levels of

interest per unit time and unit volume is given by the quantities
)L+W(;), )\W(G), RW({I), and )"bW(;;)
. 2
We have taken the velocity distribution to be the same for all levels.

32 2
In all subsequent calculations we shall assume either W(v)= <—£§> e‘é%l,
U

a Maxwellian distribution, or W(v) = 8(v), i.e., stationary or
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very slow moving atoms. These initial conditions describe many laser
systems well, particularly the neutral atom lasers. In most ion lasers,
because of the D. C. current carried by the lasering atoms, the velocity
distribution is non Maxwellian, which must be taken into account. Other
than the simple initial conditions assumed here are also possible. For
example, the atom is initially in a specific coherent superposition
of the upper states. We might encounter such behavior in a laser
excited by absorption of strongly polarized light. No attempt will be

made here to treat these various special cases.

3.3 Formal Solutions for One Atom

3.3.1 Simplifying Assumptions and Their Validity

Let us consider an atom that gets excited with velocity v to
one of the four pertinent levels at time t = tc and at the position
r = fo. The interaction time is roughly the time it takes the atom to
decay, i.e. l/ra or l/*rb for levels a and b respectively. This being
of the order of 10_7 sec. we can make three important simplifying
assumptions viz. that during the interaction time
1.) the velocity v of the atom does not change
2.) the states are not perturbed by collisions, and
3s) ﬁhe amplitude of the electromagnetic field remains constant.

The validity of the first two of these assumptions depends on the decay

rates Ya’ Yb being larger than the collision frequency, which condition

is not always satisfied. Typically in a He-Ne laser the collision
6

frequency varies from about 10-7 sec. to about 10~ sec., while
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the decay times l/ra, l/rb are of the order of 10-7 sec. There is thus

a region of overlap and for certain operating conditions collision effects
cannot be ignored. For lasers without magnetic field and restricted to
one linear polarization (e.g. by Brewster angle windows) Pollack and

Fork (29) have shown that collision effects can be well accounted for by
a simple modification of Lamb's theory. In their work the simple damped

resonant atomic response [Yab+i(w-v)]-l is replaced by the form

eic/[réb+i(ws-v)]-l where ¢, ¥, and @ -0 are linear functions of
pressure. On the other hand Szdke and Javan (28) were able to fit their
data for the single mode central tuning dip by considering only the
velocity shift effects of collisions. Some attempts have been made to
include both effects (L44) but these lead to very involved calculations.
For our more complicated model (basically a three level instead of a
two level system) consideration of pressure effects is even more
difficult. In addition to causing velocity shifts and modifying the
“atomic response curves, collisions can cause decay from one magnetic
sublevel to another. Collision induced coupling between substates
have been tentatively identified as the explanation for the strong in-
teraction (hysteresis) effects observed in a J=1 - J=0 Xe laser, for
certain values of pressure, by Fork, Tomlison and Heilos (38). In
this work we will ignore collision effects entirely and concentrate
instead on a full description of the nonlinear effects resulting from
the presence of strong electromagnetic fields alone.

Finally the validity of the last assumption depends on the

gain of the laser not being excessively large. The distance traveled
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by an atom before it decays is roughly (l/Ya b) - lO-h m. For
h J

Vthermal
a small-signal gain of 80 db/meter this corresponds to about .1% increase
in the field intensity which can indeed be neglected. For most laser
systems the gain is actually much less. We shall not, in fact, make use
of the last assumption in this chapter but only in chapter five where

specific forms of the fields are substituted into the interaction matrix.

3.3.2 The Single Atom Solutions. Axial Magnetic Field.

The ten equations implied by 2.19, simplify considerably for
axial magnetic field on the laser. For this case the coordinate systems
of the atoms and of the optical frequency field coincide. Since the
electromagnetic field is considered transverse and the expectation of
the dipole moment operator between states of equal magnetic quantum
numbers is polarized in the 2z direction, the perturbation connecting

such states is indentically zero. Then, the pertinent equations are:

° " X

b = WP *(Vp Ly - Vopey) (3.1a)
iy = -Tap+++i(Vibp+b A (3.1b)
b= (v v } AV _
Pob = TpPop ™ W pPy T VpPpo/ TPV g Pay - V+bpb+) (3.1c)

il

S x* %
-(Ya"-lw.*__) p+_+i V-bp+b-l V+bpb_ (3'ld)
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-(Yab+ﬂb_b) O_b+1 V_b(p'_ - pbb)+i V#bp-+ (3.1e)

~(rpHm . ) Pl V(o =P B V.0 (3.1f)

where Y. = %(Ya+rb), the natural linewidth, w, = (Ea<M - il)—Eb)/h 3
the atomic transition frequencies, , =, -® . , and Vig = Hij/h .
The perturbation Vij is, naturally, calculated by using the value of
the electric field at the location of the given atom. Thus if the

atom's position at time to is ;L s then at time +t it is located at

T=1 +v(t-t ). Thus
(o] (o]
— T + v - ® L
Vi vij(r° v(t-t ), t) (3.2)
Equations 3.la-f can be integrated. We denote the density matrix

element pij of an atom excited to the level q , at time t = to 5

and position T = Tr with velocity Vv , by p§§) (?o, t v, t) which
o
will at time for simplicity be abbreviated as p§§)(t, to). Since

p§§)= 1l if i =J = q and zero otherwise we get for a typical member of

the density matrix

5
-r_(t-t_) T (t'-t)
B 9.4 i dt' e &

o

pE:>(t, to) = e

W[y (B18 IV (BH7(-t ), 1) = p (87,8 )V (T4%(t'-t ),80) ]| .

(3.3)
It will be found convenient to express the V's in a form such that they

are functions of t, t', T and v but not of ;;, t . Since E;=';-v(t-t°)
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v, (t', T+v(t'-t )) = V. (t', T - v(t-t')). Then after subtracting
iJ o o ij

pbb from P__ and substituting the expression for pib and p+_ into the

resulting equations we obtain the following set of integral equations

= t- ! " B
pf:)(t,to)-pég)(t,to) = e T to)_Idt.Idt..[era(t t)+e‘”b( t)]

(r o )(E"-t") )
x€ Vﬁ_(t's r

v (6=8')) V_ (8", T - v(t-t"))

%! t'-t +im, . )(t"-t"
Idt' cht" erb( )e(rab 1) ( )

[+ (o]

Lol ) - ol )6 )]

H1

V(6 F = 56t )V, (87 F - 5068 08061, )L (67,8 )]

(61-0), ry(t=6)y (rgio ) (-4

%
dt'idt"\:e & e v, (6" T - ¥(t-t'))

t hof ? " '
T (6'=t) (v +iw,_ )(t"-t')
n .z = " = 1] " b b +b
xV,q (8", =¥ (5t ))pf+)(t ,to)-idt‘idt g M. g - B
[¢] o]

xV5+(', r ~ v(t-t')) V_g(t", T - v(t—t"))pi:)(t",to) + complex conj.

(3.4)



es
t ! 'V 1
p*(_:_)(t,to) i pl();)(t,to) _ -l{lidt'Idt" [e‘fa(t ’C)+ eYb(t t)—]

o o

(v, +iw  )(t"-t") - -
xeg .20 b Vo (87 T - V(68" )V, (8" T - V(t-t"))

t b
(t7=t) (v Ho )(t"-t")
x[pf_:)(t", t ) - pfﬂ'))(t",to )] - idt'idt" erb e Tan™

(] (]

xV, (6% - v(t-t') V_ (", T - V(t-t")[pfz)(t",to)-pé,;)(t",to )]

t t!

r "[
J dtdrdt e
t, b

T, (t'-t) Yb(t'-t)—| (v tim,, )("-t")
+e Je

Vo (8, r-v(t-t")

(o]

><V_b (t",;-;(t-tiv )pﬁ_: ) (t", _bo ) "'j:dt 'J‘dt"e‘fb(t 1ot )e (Yab+:m)_b ) (t -t! )

(] o

(6, F(8-t1) Vo (87, T5(6-6"))p ;) (67,8 ) + complex cong.

(3.5)
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) PTG, )(61t) (ry e )(67-40)
p V(6,6 ) = -jat'lat" e & 7T g =
e I
o

[+

xVy _(6',7-v(t-") Vo (£",-v(t-t")) [p£;>(t",t°) - pﬁg)(t",to)]

t'
(v +iw, )(t'=t) (v, -iw . )(t"~t") _
at'|at" e & *T g W P V,o (', 7-7(t-t"))

(] ©

et——=5 ¢tv

+,

]

t
xV, _(t",r-v(t-t") )[p_(_:)(t",’co )-pt();)(t",tg]-idt'j[dt"e

[}

(v +io, )(t'-t)

"ot -iw t'-t
x[ew‘ﬂ’ﬂmﬁ’)(JG >vb_(t",'£-'x?(t-t'))v_b(t",’f-?(t-t"))+e(Tab )t )
xV;b(t',?-?(t-t'))V5+(t",?i3(t-t"))] pﬁj)(t",to) ’ (3.6)

t

(o H tr-t
o), ) = 1fatre a0 )v_b(t',;;V(t-t'))[pf:)(t',to)

t

4 i Y0tk \

-pg,;)(t',to )]+i£dt' e(m“D ) V+b(t',_f-w—r(t-t'))pE;)(t',to)

(3.7)
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(1 o+ )(57-8)

o) (6,5 ) = afatt e Vo (6, 5-3(6-61)) [pl )81, )
t

%

( i £t
- pt()b)(t',to)] +ildt' e Va0 ) )v_.b(t' r-v(t-t"')) p_f_ )(t',to),
t

° (3.8)

and similar sets of equations for atoms initially in the M = +1 upper

and the J = O lower state. The only difference is that. in the first
-r, (t-t )
a

® term appears in front of the integrals in the

(+) _ (+) et}
equation for p . - Py 2 while in the second case e %

(®)_ () . (b) ()

appears in the equations for both p Pob Pop °

case the e

3.4 Formal Solutions for the Medium

To obtain the macroscopic solutions we must sum up over all
the relevant atoms, that is over all atoms which at some time are
excited to any one of the levels we are considering. The density

matrix for the medium is thus given by

o(5,6) =2 [ ol G, 6, % 0) a5 ) WE) ¥ at - (3.9)
q

The to integral is from t +to =, the space integral over the volume of
o]

the medium, and the v integral over all velocity space. We also define

o Via,e,9) = [ oY @, ¢, % 0, A (F,s%) W) a’r at ,
| (3.10)
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and p(r, t, v) = T p(Q)GE, o (3.11)
q

In the description of the electromagnetic field we have
already specified variation in the z direction (along the length of
the tube) only. Provided that )\i is independent of x and y, that is
to sé‘y the excitation is uniform across the tube, we can eliminate the
X,y part of both the space and velocity integrals. We simply re~
place T and ?0 with z and zo respectively and use LR in place of V.

Finally it is necessary to make one more assumption. This
is that the quantity )\q(zo,to) W(v) the number of atoms excited to the
q level varies so slowly compared to the "interaction interval" l/Ya,
l/}fb and with distance that it can be evaluated at zo =2, t =t

o

Interchanging the orders of integration such that

t t t t "
J‘dz Jd‘bo !rdt‘ rdt" - |dt’ jd - Jdto drdzo, we note that neither
o) J o
=00 t o =00 )

o o
the V's nor the exponentials in the integrals of equations 3.4-3.8 are

functions of Zo’ t and the integration over these variables is trivial.
(o]

Since
v
r -7 (t't )
jat e - L =Tl " (3.32)
e} o a,b

we get after using 3.9, defining new variables tl = t-t' and

t2 = t'-%t" and finally performing the summation over q
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(o0}
> % vt vt -(y. o )t
1 i -
N . (z,t,v) = N° W(v)-Jdt tdt re 81y, PL], "Tdb i
-b <b 2L el B
va_(t-tl, z-vtl) V_b(t-tl-tz, z—v(t 2))N (Z,t . )

® R Ty =y e
-|dt, 'dt e e 2Vb +( t-t., z-vtl)V +b( t-tl-te’ z-v(tl+t2)

B ) [+]

R by Tty (gt )0
<N, (25 by =65, v) = Jdtlj at (e Lea 1

o

va_(t-tl, z-’cl) V+b(t-tl-t2, z-v(tl+t2))p_+(z, t-t, -t v)

? .7 “Tpby ~(Tgtiny, )t
-édtlét atye °le V. (b=t 2ove IV (-t =t 2-v(t+t,))
xp+_(z,t-tl-t2,v) + complex conj. - (3.13)

N;b(z,t,v) = game as N_b(z,t,v), but with + and - interchanged in all

subscripts;
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[oo]

-(v_tiw,_ )t
-— a +-
Py (zyt,v) = = fdtl idtz e lvb-(t'tl’ z-vtl)
o
-y .+ ®
ab
AV, (b=t -ty 2v(t,+8,)) e 2N;b(z,t-tl-ta,v) - Jdtl Idtg
-(y +iw, )t -(r_, -iw . )t
™ ab -b’ 2
% lV4b(t-tl,z-vtl) V, (b=t =ty 2-v(t +5,)) e
© © .
xN_b(z,t-tl-tE,v) Idtl jdt, e 1V5_(t-tl,z-vtl)
[+
-(y , +iw )t
ab +b’ 2
xV_ (t-tl-tz,z-vtl+t2) e p+_(z,t—tl-t2,v)
T =l )t
-Jdtl |dt, e lv (t -, 5 2=V6, )v (t t tz,z-v(tl+t2))
o o
-(r . -iw )t
b B
xe a b 2p+-(z,tdtl-t2, V) bl (301’4‘)
and finally,

-(r .+
(z,t,v) = 1 fdt e 3v+b(t-t -vt3) N+b(z,t-t3,v)

372

+ i idtS e 3V_b(t-t3,z-vt3) p+h(z,t—t3,v) . (3.15)

p_b(z,t,v) = same as p+b(z,t,v) but with + and - interchanged in all

subscripts.
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In thexabove equations Nib(z,t,v) = pii(z,t,v)-pbb(z,t,v) and

+
N; = ?r - ?r-are the excitation densities relative to the + and -
a b

sublevels respectively. We note that the population inversion
densities at any point in the amplifier are proportional to the
excitation densities at the same point. This is a consequence of
the fact that although we are considering moving atoms, the excited
atoms travel only a very short distance during the interaction time
Ya’ Yb' Note also that while the space coordinate of Nib and P,

on the RHS of equations 3.13-3.15 has been, for convenience, written

as 2z it is actually z-v(tl+t2) or z-vt same as the space

3
coordinate of the V's appearing alongside.
These are the formal solutions, actually a set of coupled
integral equations, for the macroscopic density matrix. In the
subsequent chapters we will substitute specific expressions for the
perturbation matrix V for various types of electromagnetic fields.
Then, after finding approximate solutions and using the formula
P = Trace (55), where p is now the macroscopic density matrix, and
finally performing the v integration we will find the polarization
of the medium. First, however, we will examine the integral equations
and draw some qualitative conclusions regarding the interaction be-
tween two waves‘of various polarizations in a laser medium which has

an axial magnetic field.
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CHAPTER FOUR

INTERACTION OF WAVES OF VARIOUS POLARIZATIONS IN A LASER MEDIUM

L,1 Introduction

In this chapter we examine qualitatively the type of non-
linear effects produced by two optical frequency electromagnetic
waves in a laser amplifier which may have a nonzero axial magnetic
field. In particular we are interested in predicting how the inter-
actions depend on the polarization states of the two signals. The
integral equations of the previous chapter, derived for the simple
J=1-J =0 model will be utilized together with physical arguments.
In the subsequent chapters quantitative calculations of these effects
will be performed and the results checked against the predictions

made here.

4,2 Saturation

The most obvious nonlinear effect is saturation of the gain.
Population inversion of the medium means the existence of gain for
waves resonant with the inverted transition. The inversion is accomp-
lished by some sort of pumping process and in the absence of fields
has the value sz = kiY;l- vagl as defined in the previous chapter.
For very weak fields the population inversions stay essentially constant

at this value and the gain is not influenced by the field intensities.
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This is the linear case which will be briefly examined in the
following chapter. For somewhat stronger field intensities, however,
the number of stimulated emissons is large enough to spoil the popu-
lation inversions densities. On Figure 2 is shown schematically

the J =1-=J =0 transition interacting with an electromagnetic
field E(z,t). The polarization vector of the expectation value of
the dipole moment is indicated for each transition. The left and
right circular components of the total field interact with different
transitions which,terminate on a common level. The non-

linear saturation effects are several kinds. Each compone