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Abstract 

Let F be a field which admits a Dedekind set of spots (see 

0' Meara, Introduction to Quadratic Forms) and such that the integers 

ZF of F form a principal ideal domain. Let KIF be a separable 

algebraic extension of F of degree n. If M is a ZF-module contained 

in K, and o-1 , o-2 , ••• , o-n isa Z'F-basisfor M, the matrix D(Q:)= 

(traceK I F(o-io-j)) is called a discriminant matrix. We study modules 

which have an integral discriminant matrix. When F is the rational 

field, we are able to obtain necessary and sufficient conditions on 

det D(a) in order that M be properly contained in a larger module hav-

ing an integral discriminant matrix. This is equivalent to determining 

when the corresponding quadratic form 

f = ~ 
i,j 

a . . x.x. 
lJ l J 

(a .. =a .. ), 
lJ Jl 

with integral matrix (a .. ) can be obtained from another such form, with 
lJ 

larger determinant, by an integral transformation. 

These two main results are then applied to characterize normal 

algebraic extensions K of the rationals in which ZK is maximal with 

respect to having an integral discriminant matrix. 



iv 

Part Title Page 

Acknowledgements 11 

Abstract 111 

I In tr oduc ti on 1 

II A Characterization of RA.- matrices 4 

III · Almost-Fundamental Modules 11 

IV The Discriminant of Almost-Fundamental Modules 30 

v Normal Almost-Fundamental Fields 39 

References 45 



1 

I. Introduction 

Let K j F be a separable algebraic extension of a field F of 

degree n. For each aE K, the trace of a over F will be denoted by 

If al> a 2 , ••• , a is a basis for KjF, 
n 

and X.EK, then 

Dx_(a) will denote the nXn F-matrix (SKjF(X.aiaj)). Matrices of this 

type have appeared in the work of Faddeev [5], Taus sky [11] and 

Bender (2] in connection with representations. In the special case X. = 1, 

the matrix D(a) = (SK jF(aiaj)) is called a discriminant matrix. 

Taus sky [13] has studied the characteristic roots of discriminant matrices 

when K j F is an algebraic number field. The main purpose of this thesis 

is to study integral discriminant matrices. 

In Chapter II we generalize, slightly, a theorem of 0. Taussky 

[11], but the main result is a characterization of the representation 

matrices Rx. (a) defined by the e qua ti on 

R (a)· a = X.a (for A.EK}, 
A.- - -

where g denotes the column vector 

a= 

Specifically, we prove that, if 

a 
n 

II •• , is the dual basis, then 

RA.(a) =(SKI F(X.C\aj<)). This clarifies the connection between DX. and 

RA.- matrices. This result appears in [2], but the proof given here is 

independent of [2]. 
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In Chapters Ill through V we make additional assumptions about 

K jF. We assume that F admits a Dedekind set of spots [10, p; 42] and 

that the integers ZF of F form a principal ideal domain. If M is 

any ZF-module of K with an n-element CT 
n 

we define the discriminant dK jF(M) to be the ideal in F generated by 

det D(~). Since K j F is separable, dK l F(M) :f. ( 0). We study condi

tions under which D(~) is integral. In particular, we assume that our 

modules M contain ZK (the integers of K). We call M almost

fundamental if D(CT) is integral and M is not contained in a larger 

ZF-module which has an integral discriminant matrix (it is easy to 

see that this is a property which does not depend upon the basis chosen). 

Let A KjF be the set of all ZF-modules which contain ZK and have 

an integral discriminant matrix. We construct an ideal which is maxi-

mal with respect to belonging to AK j F and we show that this ideal· 

contains every other ideal in AK jF' We then discuss some special 

fields in which this ideal is almost-fundam.ental; e.g. quadratic fields, 

cubic fields and cyclotomic fields. 

In Chapter IV we obtain necessary and sufficient conditions on 

dK jF(M) in order that M be almost-fundamental. We adopt a proof 

similar to the method used by G. Pall (unpublished) to study the dis -

criminant of a fundamental quadratic form. In the theorem. we prove 

here, the ground field F is assumed to be either the rationals or a 

p-adic field. 

In Chapter V the results of the previous sections are applied to 

characterize normal extensions K jF for which Z. K is almost-funda

mental. The ground field here is assumed to be either the rationals or 
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a field complete with respect to a p-adic valuation. When F is the 

rational field, K must be either quadratic or biquadratic. 

The material prerequisite to reading this thesis can be found in 

LeVeque [9], Artin [l] and Zariski, Samuel [14]. The treatment of the 

local theory is based on the concepts and notation of 0 1Meara [10]; and 

the properties of the Hilbert symbol and Hasse symbol used in Chapter 

IV can be found in the appendix of [2], in 0 1Meara [10] or B. W. Jones 

[8]. 
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II. A Characterization of RA. - matrices 

Let KjF be a separable algebraic extension of F of degree n. 

Then there is some element 0 in K such that K .= F( 0). If 0=fl(
1

), 

aU·}, •.. , e(n} are the conjugates of e, the mapping e - e( i) sends 

each element Ci. into its i th conjugate 

belong to K, 
(i) 

we let Ci. (i = 1, 2, .... ' 
(i) 

Ci.1 

( i) 
Ci. = 

( i) 
Ci. 2 

"'(i). N "f ..... ow, i Ci.1, a.2 , e • • j 

n) denote the colum.n vector 

Ci. 
n 

and we let Ci.(l) = a. The n Xn matrix whose i th column is Ci.(i) will 

be denoted by M( Ci.). From now on we assum.e that Ci. is a basis for 

K over F. Then det M(Ci.):F 0 since KIF is separable. Also, if 

a 
~:c: 

is the dual basis (i.e., SKj F(a..a*:" } = o .. ), a simpl~ calculation shows . 1 J lJ 

that 

M(a*) M'( ~) = I 

where A 1 is the transpose of the matrix A, and I is the identity 

matrix. 

In this chapter we are interested in matrices of the type defined 

below. 

2.1 Definition . Let ~ and ~ be two bases for KjF. For each A.EK 

~set TA.(Q.~) = (SKjF( ACi.ii3j)}, and~ let !(~'.~_} be the set of all 

of these matrices, --------
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These matrices are F-matrices, and it is clear that T (Q'.,.§.) 

can be regarded as a vector space of dimension n over F since each 

TA.(~,~) can be uniquely expressed as an F-linear combination of the 

matrices TQ'. , Ta , ... , TQ'. . In the special case where ~ = Q'., we 
I z n 

obtain the DA. (g) matrices. We note that 

where J(A.) = diag [A. (i), A. (2), ••• , A. (n)]. This result appears in a paper 

of 0. Taus sky [11]. 

The purpose of this chapter is to develop the connection between 

the DA. -matrices and the RA-matrices, and we begin with the following 

lemma. 

2.2 Lemma. For each 

Proof: Let S = (s .. ) (s .. E F) be the matrix, relative to Q'. *, of the linear 
lJ lJ 

transformation of K deter-mined by Ci..* - A.a. (i = 1, 2, ..• , n). Then 
1 1 

and so 

A. ai = ~ s ik a: ' 
k 

A. a. a. 
1 J 

By taking traces in the last expression, we obtain sij =SK I F(A.aiaj). 

Therefore we have 

When A. = 1, this becomes 
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* D(~) Ci. = Ci. 

hence, in general, we obtain 

and the proof is complete. 

As a consequence of 2.2 we have the next corollary. 

-1 
2.3 Corollary. R>-..'(Q) = Dµ (Q'.) RA.(Q)Dµ(q)for each pair >-..,µEK. 

Proof: Let A.,µE K, and set p = >-..µ. Then 

D (Ci.) = R, (ex.) D (Ci.) = R, (Ci.) D (Ci.). 
p - /\.µ - µ - /\. - µ -

Now take the transpose of both sides to obtain 

Multiply both sides of the last expression by D~\Q) to complete the proof. 

0. Taus sky [11] proved that if F is the rational field every 

matrix S which satisfies the hypotheses of theorem 2.4 below must be 

of the form S =DA. (Q), for some A.EK. In 2.5 we prove a converse for 

the more general setting. 

2.4 Theorem. Let · A be an integral matrix with characteristic poly

nomial f(x) which is irreducible ~the rationals Q. Let 8 be a 

zero of f(x). Then~ Q-matrix S satisfies 

if and only if S = DA.(~) for some. A.EK; where ~ is an integral basis 

for some ideal contained in Z
0

[e], the ring of polynomials in e with 

rational integral coefficients. 
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Proof: In (11] it was shown that Ci. could be chosen to be a character-

istic vector of A, and so Aa = 8 · .a. Hence A= R
8

(a). The proof 

follows from the remark preceding the statement of 2.4, and from 2.3. 

The converse to 2.4 can be proved in a more general setting: 

2.5 Lemma. Let A= (a .. ) be an F-matrix such that lJ -- ----

A' = D-
1 

(a) AD (a) 
µ - µ-

holds for all µEK . Then there exists a A.EK such that A= RA. (a). 

Proof: The hypothesis is equivalent to the condition that AD fJ. (Q'.) be 

symmetric for each µEK. 

Now let A. 1 , A. 2 , ••• , A. be determined by the equation 
n 

Ci.I 

~ 
A I Ci.I 

Ci.2 Az C'i.z 
A· = 

) 
. 

Ci. A. a 
n n n 

We must show that A. 1 = A. 2 = = A. . To do this we set AD (a) = n . µ-
(µ) 

(C .. ), where 
lJ 

(µ) 
c .. 

lJ ~ aiksK \ F(µ~aj) 

= 8K \ F(µCi.j ~ aik~) 
k 

Now , we are assuming that C~~-d = C.(_µ) for all i,j and all µEK and 
lJ Jl 

therefore we obtain 
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SK I F (µa. a . (A.. - A. . ) ) = o . 
1 J 1 J 

Since the trace is non-degenerate, A. . = A.. and the lemma is proved. 
1 J 

We now consider the set T(g_,f}_) . 

2.6 Lemma. T(g_,fi) is a field containing the F-scalar matrices if and 

* only if there is~ yEK such that M(J2) = M(Q' )J(y). 

Proof: (I) Suppose T(a,fl) is a field. Choose any A., µEK, then there 

is a pEK such that T, T = T . But for any A.EK we have 
/\. µ p 

and so 

TATµ= M(a) J (A.) M' (J2) M(a) J (µ) M 1 (fl) = M(a) J (p) M' (fl). 

It follows that M 1 (fl) M(a) = J(y), where y = p/A.µ. Since 

>l< 
M(a ) M(a) = I ' 

we obtain 

>l: 
M(J2) = M(a') J(y). 

(II) Suppose that the last equation holds for some yE K; then 

M 1 (fl) M(~) = J(y). Let A., µEK , then 

Hence T(~, fl) is closed under multiplication, and T, T = T T,. More-
l\. µ fJ· /\. 

over , each TA has an inverse in T(~,fl). For we let µ = l/yA., and 

then 
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:::: M(Ct')J(y-
1
)M'(§J 

-1 

= M(Q'.)M-
1

(a)[M'(.\2)] M 1 (m 

- I - n· 

In view of the remark following 2.1, the proof is complete 

The next theorem is the principal result of this chapter . 

2. 7 Theorem. Let Q'. be ~ basis for KIF and let a* be the dual 

basis. If J1 is any basis of KIF , then T(a,J1) coincides with the set 

of all RA. (Ct') matrices if and only if there is ~ yE K such that fi =ya*. 

Moreover, Rf...(Ct') = (SK IF(f...Ct'iCt'/)). 

Proof: In view of 2.6 it is sufficient to show that if f(g,.J1) is a field 

then it coincides with the set of RA. (Ct') matrices; and because of 2.5 it 

is sufficient to show that for any µEK, 

for then T(Q'.,f}_) is contained in the set of RA. (Q'.) matrices, and since 

T(Q'., f}_) is a vector space of dimension n over F, the two sets must 

coincide . We therefore assume that T(a,f}_) is a field; and then 

* M(f}_) = M(Ct' ) J(y) 

for some y EK. We have 

D~1 (q_) TA. (a,f}_) Dµ (Q'.) = [M' (a)J-l [J(µ)J-
1 

[M(Q')J-
1 

M(Q'.)J(A.)M 1 (£2)M(Q'.)J(µ)M' (Q'.)= 

[M'(a)J-
1 

J(yf...)M'(Q'.). 

On the other hand, 
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T~(Q,.£2.) = M(Q)J(A)M'(9') 

= [M' (Q)J- l J(yA) M' (Q). 

This establishes the first part of the theorem. 

To prove the last assertion of 2. 7, we take * {i.=Q. Then 

* * TA (Q,Q) D(a) = M(a) J(A) M' (a) M{Q) M' (a) 

= M(q_) J(A) M' (Q) 

>'< 
By 2.2 we obtain TA (Q,Q') = RA (a). 

According to this theorem both the DA -matrices and the RA -

matrices can be obtained from the TA -matrices by taking fl = a and 

* .§. = Ci , respectively. We can prove the following rather interestiJ?-g 

corollary. 

* 2.8 Corollary l. Let a be a field basis for and let Ci be the 

dual basis. l * Then Ci.Ci. = 1. 
l l 

Proof: For each AE K, we have 

that 

Therefore 

SK I F(A) = ~ SK I F(aid~A) 

= SK I F(A laia). 

i 

'\"' * SK[F(/.-(1- Li aiai)) = 0 

Hence we see 

for all AE K. The corollary follows since the trace is non- degenerate, 

::l< 1 This follows directly from the equation M(a ) M' (Ci} = I. 
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III. Almost-Fundamental Modules 

1. Introduction and Definitions. We shall now assume, in addition to 

the separability of K \ F, that F admits a Dedekind set of spots [10, 

p. 42], and we let ~ denote the set of all extensions of spots on F to 

K. We also assume that the ring of integers Z F of F is a principal 

ideal domain, in which case ZK has an n-element ZF-basis [14,p.265]. 

The discriminant of the field K \ F is the discriminant of ZK; and we 

write, for short, ~\F = dK\F(Li{). The following lemma will be used 

repeatedly: 

3.1 Lemma. If~ is any ideal in K \ F, then 

Proof: [l, p. 133]. 

In the remaining chapters we will study ZF-modules which have 

an integral discriminant matrix; in particular we will be interested in 

modules which are maximal with respect to this property. Let M be 

a module with basis ![_, then with M we cari associate a quadratic form, 

which may be written as follows: 

f(x) = ~ a .. x.x., 
lJ 1 J 

i,j 

a .. = a .. , 
lJ Jl 

where aij = SK\ F(O""io}· The discriminant matrix is integral if and 

only if each a.. is integral. G. Pall has called a quadratic form 
lJ 
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fundamental if its coefficients are integral and it cannot be obtained 

from another integral form of smaller determinant by an integral trans -

formation. Our condition that the a.. be integral is stronger than 
lJ 

requiring f(x) to have integral coefficients; however, in any field for 

which 2 is a unit the two conditions are identical. We are thus led to 

make the following definition, 

3.2 Definition. Let M be~ Z F-module with~ n-element ZF-basis 

Jr. We call M almost fundamental if D(cr) is integral, and M is not 

properly contained in any Z F-module with this property, 

We will generally assume that M contains ZK and so we 

define the set A K [ F below. 

3. 3 Definition. Let AK IF be the set of all z F-modules M which 

satisfy the two conditions: 

(a) M =:i ZK 

(b) If a, f3 € M, then SK [ F(a,B) € Z. 

3.4 Lemma . Let ~K[F be the different of K\F. Then 

- l 
Proof: Since ~KIF is defined by 

the first part of the lemma is obvious. 
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Now let w be an integral basis for ,ZK, 
>~ 

then the dual basis w 

is a ,ZK-basis for 

integral. Now, 

-1 

~KjF· 

* :i:~ * 
D(~ ) = M(w ) M'(~ ) 

= [M'(~)] -1 [M(~)] -1 

- 1 
= D (w). 

Therefore ~~IFEAKIF if and only if dKIF = zF. 
Since ,ZF is a principal ideal domai~, and ZK has an n-element 

basis, it follows that every module in AK jF has an n-element ,ZF-basis 

(and so condition (b) in 3. 3 is equivalent to requiring that M have an 

integral discriminant matrix). Suppose now that 

M c M 2. C · · · l_ 

is a chain of elements from AKjF' and let 

M* =l l mi 
finite 

j m.EM. i 
l d 

>'< 
for (a) is obvio_us, and if .Q'., f3 E M

0 

there is some k 

for which a, f3E Mk ; hence (b} is satisfied. By Zorn's lemma, we see 

that flKjF contains almost-fundamental modules. In the remainder of 

Chapter III we study modules belonging to AKIF' 

2. The Lar gest Ideal in AKlF" We would like to say something about 

the almost-fundamental modules in AK IF . This seems to be difficult, 

but we can say something about the ideal in AKI F . In this section, 

therefore, we study the ideal which are maximal with respect to the 
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property of belong ing to AKjF 

3. 5 Lemma2, L e t MEAK j F . If M is an ideal then M 2 C ~~1 1 F. If 

M is almost-fundamental it i!. ~ideal if and only Ji M 2 C ~~1 jF· 

Proof: (I) Suppose M is an i deal, and let a, f3 EM. Then f3M S M, 

and so 
-1 

~KjF · 

(II) Suppose M is almost-fundamental, and suppose 
2. -1 

M C~KjF· 

Let aE M and consider the ZF-module aZK + M = M 1 • Clearly 

M 1 ~ ZK. Let ax+ m 1 and ay+ m 2 (x,yELK; m 1,m2 EM) be any 

two elements of M 11 then 

(ax+ m 1) (ay+ m 2 ) = a 2 xy + am1y+ m 1 m 2 + am2x 

and 

So M 1 EAK IF . But M is almost-fundamental and hence M 1 = M, which 

implies that aZK C M. Therefore M is an ideal. 

2a. The Local Case . We now consider the case where F is complete 

with respect to a single spot. 

3. 6 Theorem. L e t KjF ~~extension of the complete field F and 

let 13 denote the prime ideal in K ; also, let ~KIF =J3°. Then the 

ideal M~ ='fJ -[o/ 2] belongs to AK IF. Here [x] denotes the greates t 

2 The main theorems of this chapter can be proved directly from lemma 
3. 5. However, we wish als·o to develop the connection between the 
local and global theory; therefore no attempt has been made here to give 
the shortest possible proofs. 
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inte ge r in x. 

Proof: Since there is only one prime ideal /3, and every ideal of K is 

a power of the prime ideal, it is sufficient to show that 1j3 =p -[o/2.] is 

the largest ideal in .AK IF . 
Let rI be a prime element and let n = ef, where e is the 

ramification index and f is the inertial index. Then there are units 

Wp w2 , • • • j wf in K such that 

[l, p. 84]. 

ZK =TT ZF willj, 

l~i~f 

l~j~e 

Now clearly Mp ~ ZK. So suppose 

so that 

MfSEJiKjF. 

Suppose J3s 

for e 

from 3. 5, 2s ~ o, 

is the largest ideal in AK jF 

and so s = [o/2]. 

The proof is complete, 

and write 

then s ~ [ o/2]. But 
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3.7 Corollary. The discriminant of the ideal M}3 of 3.6 is 

d fM ) = (N (~))(6-2[6/2]) 
KIF'?> KIFj-J . 

Proof: The discriminant of KIF is (NK IF~)) 6 . The corollary follows 

by applying 2.1. 

Now suppose that T is the largest unramified extension of F 

contained in K, so that f = [T:F] and e = [K:T]. 

3.8 Lemma. If M is a LT-module contained in AK IT' then ME~ IF" 

Proof: Clearly M is a LT-module containing ZK, and so it is 

sufficient to verify that (b) of 3.3 is satisfied. If Ci, !3E M then 

Proof: We have M :=:> ZK :=:> 7 T . Now suppose Ci, [3E M. Since M is 

a 7 T-module, [3LT CM, and so SK I F(Ci.[3,ZT) C ZF. But 

SKIF(Ci.[3,l'T) = STIF(SKIT(Ci[3LT)) 

= ST I F(SK I T(Ci [3) LT) 

Therefore, since TI F is unramified, 

ZT. Hence M satisfies (a) and (b) of 3 .3. 

We now need the concept of the complementary module 

3.10 Definition. If M is a ZF-module, the complementary module 

((M) is defined to be the following set: 
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are true 

(a) has ari n-element basis * ..Q:., then <J is a basis for 

((M1). 

(b) If M 1 C M 2 then ((M1 ) ~ ((M2 ) 

( c) ( ( ( M1 ) = M1 

(d) If M 1 is an ideal, then~ is ((M1 ) 

(e) If M 1 is~ ideal, then ((M1 )M1 = ~~ \ F 

Proof: See [14] • 

3.12. Lemma. Let M be a 7 F-module containing ZK. Then MEi{K\F 

if and only if ((M) ~ M. 

Proof: If ME.AK\F' then for each mEM, SK\F(mM) C ZF and so 

mE ((M). The converse is obvious. 

Note that 3.10 through 3.12. hold for the general extension K \ F. 

We can now prove the following theorem. 

3 .13 Theorem. Let K \ F be an extension of the complete field F, and 

'J3 be the prime ideal. Let T be the largest unramified extension of F 

contained in K; and let ~K \ F = !J 6 , (6 is called the differential 

exponent of "(3 [14, p. 2.98] ), with M'fi the ideal of 2..6. Then M/j 

the largest ZT-module contained in !IK \ F . 

If 2. di vi des the differential exponent of '/!>, then Mjj is 

almost-fundamental. Also if K \ F is unramified or fully ramified, 

is 
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is almost-fundamental. 

Proof: Suppose that M'f3 is properly contained in a ZT-moduie N. 

We show that this leads to a contradiction. By 3.9 both M,B and N 

belong to i4K IT. Also KIT is fully ramified, and so NK I T('{J) =~ , 

the prime ideal in T. 

Now, because of (e) in 2.11, we see that 

If N ~ Mf-i , then 

M,E if 2 Io 
( (M)3) = 

p - [6/2] -1 
otherwise. 

((N) ~ ((M,!3 ), and by 3.12 we obtain 

((Ml)) =i ( (N) =i N =:i Mn 

// * * * !...J 

If 2 di vi des 6 this is not possible. Since this contradiction can also 

be obtained if N is only a ZF-module, the second assertion of the 

theorem is proved. Now suppose 2 does not divide 6. Since 

must differ by at least a fourth power of.4 We use 3.1 to obtain 

d (M)= -2(6/2].A/o=b 
KIT /3 ~ ~~ ~~ ' 

and 

d (f(M·))-=,.L/-2(6/2] .-2 o_ -1 
KIT \..., 73 --;,~ ·~ -=~ . 

Comparing the two discriminants, we obtain a contradiction. Therefore 

Mf-? = N. 
To complete the proof we notice that if KIF is unramified, then 
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-1 77 I ~KIF = MJ-3 = LK , and so M/3 is almost-fundamental. If K F is 

fully ramified, then T = F and again MJ3 is almost-fundamental. 

The proof is complete. 

2b, The General Case. We return to the general case. For each 

"/3 E ~ let KJ-3 be the completion of K at fJ , and let %t' denote the 

completion of F in K,E so that ~ I~ . 

F 
~ 

K 

F 

Let .7:r3 and Z~ denote the integers of K/J _and ~ respectively. 

We will also let /3 denote the prime ideal in KJ3 , and set '(3 = J3n ZK' 

the prime ideal in K determined by ~ . Now if_,/()Z,, is any ideal in K, 

then it can be factored uniquely into a product of prime ideals 

= n 
where or13 /(Jl is the 

divide~. Finally, if U is any ideal in KTJ, 
exponent of the highest power of fj which 

~ ~ (ord~U) 

we let U ="[3 f-l . 

The method of this section is to consider KIF at each of its 

completions K,R I~ and apply the results of 2a to K,13 I~ Hence 

we must now establish the connection between the general case and the 

local case. 
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3. 14 Definition. If N is a -Z'F-module rn K, we let Nf3 = N ~ . 

(Then N~ is a Z -module in K}3 . ) 

We will need the following lemma. 

3. 15 Lemma. Z13 = ZK z~ . 
Proof: Let z be the quotient .ring 

!J-
7 /3 = [a /b J a , b E ZK ; b ~ '(3 } , 

and let be the quotient ring 

7-_-7 = [a/bja,bEF;b~~}. 
The inclusion relations are diagrammed below: 

Now, it is known ([3], P· 13) that Z13 = 7 K z~ and we 

see that 

7 ---73 
7 7 c 7 7 
- - -K -_~/ K -;Jt - .r 

Since Zn is the closure in Kn of ,7._ , it will be sufficient to show 
e !-' -73 

that 7 K £~ is closed. Let w be an integral basis for Z K ; then 

ZK 7 = ~ w. ;z . 
-;:L i 1 -;Y-

Consider Z"f3 as a topological g;roup under.addition. 

closed, compact subgroup of 7 -p_ , and so is w. Z. . 
{./ 1 ~ 

Then 7 is a -:-:;::: 
Therefore, 
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?K £.;fa'.- is closed ([7], p. 48). 

3. 16 Lemma. LetA be an ideal in K. Then for each '(3 E dSJ , ~"(3 

is an ideal in 1<;3 ; and 

__,,{)-{_ = rr ---07_ 
J3 Ec1) /3 

Proof: It is clear that~ is an ideal since 

---0-C f3 L 'f3 = /()7.. !!_ j£ L K Z-1L £ __A>L/3 
In order to complete the proof, we must show that__,A?Z'/3 = 

( o rd J3 ,,,{)[_} 
fJ . Now 

( ord;Q .47.) 
__Arl."(3 c ~ /.J = [x E K{J I orc;a x ~ ord'(5 --0-C} ; 

but__AJ[~ contains an element a. with ordE a. = ord%> All, andA12 
/.J ( orc;3 ,,oz) /:J e 

an ideal, so we must have_,A)z',8 = '(3 • . 

We now study the connection between AK\ F and /IK IF • 
"{J ~ 

is 

3. 17 Lemma. Let~ be an ideal in K , and suppose that/O'ZEAKjF• 

Then ,,(J? 
-;/~~ 

Proof: First, 

Now let a,, f3 E/0?-;J ; we wish to show that (write Sf3 j.y for 

SKE I FcY- ) sfJ lj( (a., (3) E z.A/ . Since any element o:yir0 is a finite 

sum of terms of the form uv (u EA, v E .7 -jt. ) , it is clearly suffi-

cient to assume a. = a 1 'Y , j3 = 13 1 6 , where a 1, 13 1 SAY[ and 'Y• o E £_# . 

Then 
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We will be finished if we can show that sf; I~ (a1/31) E z--;1£ . 

be the principal ideal generated by a 1 /3 1 in K, and let 

Let U 

U= rrD'z,,. 
J3' Ed\! p 

It is known ([6], p. 430) that SK\F(U) is integral if and only if 

SfJ '\~ 1 (Up
1

) is integral for all "(3' EJ9. But SK\F(a. 113 1 ) is inte

gral, and so S{J \j'.' (a. 113 1 ) must be integral also. 

This completes the proof of the lemma. 

We can now prove one of the main theorems of this chapter. 

3. 18 Theorem. For each J3 E d9 , let ME be the ideal determined 

in 3. 6 . _T_h_e_s_e_t_o_f_i_d_e_a_l_s_i_n II KIF has a unique maximal element 

M = rr ~ 
f3E J9 M(3 

Proof: From 3. 4 and the fact that F has only finitely many ramified 

primes, we see that ~ = 7?-i 
an ideal in K. Moreover, since 

that M ~ L K. Now 

:;;. = 
K\F 

for almost all . /i E J9 . Hence, Mis 

M :::) 77 for all f3 - 73 f3 E J9 , we see 

2 -1 
and M ~ :;;..'/3\~ (by3.5). M 2 c -1 

So :;;.K \ F , and, again by 3. 5, 

M E.A'K\F • 

Suppose thay07 is an ideal in AK IF. Then, by 3. 16 , at each 

is an ideal, and by 3. 1 ~7.2 EA K IF ; hence, 
e fJ -'Y-

~ M/j because of 3. 6. Therefore,pz c M , and the proof is 

complete. We have, in fact, proved that M contains every ideal be-

longing to II K \ F • 
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The previous theorem generalizes 3. 6 , and the next theo-

rem is a generalization of 3. 7. But before stating the theorem, we 

introduce some notation. For each '/3 E J9 let f( '(3 l-:1- ) be the inertial 

index of ~ IF~ , let e ( f3 I~) be the ramification index of K73 IF-;$( , 

and let 6((3 1--;;t) be the differential e~ponent of J3 (see 3. 13). Let 

µ(,B I~) be defined by 

0 if 21 0 ( 73 1-;t ) 
µ(/9 I j() = 

1 otherwise. 

3. 19 Theorem. Let M be the ideal determined in 3. 18. Then 

where 

Proof: By 3. 1 we have 

and 

NKIF(M) = rr NKIF( M7)) = ~TT NK IF (MJQ) 73 E J9 /J ~ E J9 ~ _.,,_,/- f-J 

_ rr TT N K 
1 
F ( M"/3 ) . 

~ I dK I F E 1-;t- 73 ~ 

The last expression is obtained since M/3 = J3 if ·jL f dKIF • 

Also, 

([6], p. 429). Hence, we obtain 
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dKIF(M) = rr 1T N~ 
I Fjt 

(~ ) • dK IF 
~idKIF 7311L 13 13 -;£ 

= rr Tf 11- f ( 13 1 ·~d µ ( ,73 I ~ ) 
·7£ jdKI F ,731 ;1 

= rr d-;z 
~ idKIF 

by applying 3. 1 and 3. 7 • 

We will use this theorem in the next section. 

3. Special Fields. We shall consider the following question: when is 

the ideal of 3. 18 almost-fundamental? As we show in chapter IV, it 

is not always almost-fundamental; but it is in the special fields we 

investigate in this section. In theorem 3. 13. , the ideal M;B was 

seen to be almost-fundamental if the differential exponent is divisible 

by 2 , or if K"/3 IF~ is either unramified or totally ramified. The 

question of whether or not ME is almost-fundamental in the remain-

ing case is still open. In this section, we shall investigate quadratic, 

cubic, and cyclotomic number :fields over the rationals, and show 

that in each case the ideal of 3. 18 is almost-fundamental. The 

problem of determining for what other number fields the ideal is 

almost-fundamental is still open. 

3a. Quadratic Fields 

3. 20 Theorem. Let K = Q(JD) be a quadratic extension of the 

rational field Q . Then there is exactly one almost-fundamental 

module, call it M , containing .ZK ; and 

(a) If D = 1 (mod 4) , then M = Z. K • 
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(b) If D = 2 (mod 4) , then 

M = 7 QEB ~ ZQ . 

(c) If D = 3 (mod 4) , then 

M - z EB 1 +JD - Q 2 

In each case M is an ideal. 

Proof: If D = 1 (mod 4), then dKIQ = D is square-free, and so ZK 
is the only almost-fundamental module in /iKIQ. We assume, there

fore, that D ¥ 1 (mod 4). 

Let p be an odd prime and suppose /31 p. Then, since 

p II dK IQ or p ~ dK J Q , it is clear that K)3 J Qp is unramified and so 

MJ3 = ~ • Now we consider the cas.e p = 2 , and suppose 

2r II dKIO. 
2 

The prime 2 ramifies, and (2) = f3 ; the local ex-

tension is fully ramified, and so the differential exponent o is either 

2 or 3 (also note that o = r ). Thus, 

where J Ip is a valuation determined by J3 . 
it is clear that 

Now, in view of 3. 18, 

M = [ x ~ K I I x I p ~ 1 if p i- 2 ; I x I 2 ~ Ji. } . 

In particular, M =f. Z'K , and it follows from this that M is almost

fundamental, since dK IQ (M) is obtained from dK J Q by dividing out 

the square factor. 

We now determine an integral basis for M. The defining 

polynomial of JD is f(x) = x 4 -D , and 
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~ ~lJ Q has 1 I 2 , JD/ 2D 

-1 
~ K I Q ; s 0 if a. E M > 

as an integral basis. 

a' b' 
a. = 2 + 2D JD ; a'' b ' E l' Q • 

Now, by 

Now M is an ideal and M ::::> ZK, so 2a.-a' = ~ Jf5 E M. Suppose that 

p (p-:/. 2) is a prime divisor of D; then 

'~JD' = Jb'lpJr)' p 

and this is larger than 1 unless p divides b. Therefore, every odd 

prime divisor of D must divide b. 

Case I: Suppose D = 2 (mod 4). Then, in view of the last remark, 

we can write a. in the form 

o:. = ~ + ~ JD , with a, b E Z. Q • 

Now, !~I = 2 I a j 2 and j ! JD j = 2,j2 Jb j 2. Thus, we must have 
2 2 

2 j b and 21 a • So 

but every element of the module on the right side of this expression 

belongs to M, and so we have equality. 

Case II; Suppose D = 3 (mod 4). Then we can write a. in the form 

= a + bJ.5 o:. 2 ; a, b E 1!. Q • 

Now, j ~I = 2jaj 2 and I ~JD j = 2jbl 2 ; hence, a= b (mod 2), for 
2 2 

otherwise Io:. l 2 > J2 . Therefore, 

M c 77 (1'\ l+./D z 
- /L. Q w 2 Q . 
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In order to establish equality, it is sufficient to show that (1 +Jfj)/2 

...1 11 +Jf51 ..... belongs to M. If p -t 2, then "" 1. Suppose p = 2 ·; then 
2 p 

l+Jfj ,. = 
2 2 

since D = 3 (mod 4). Therefore, 

M - 77 ffi l+Jfj 
- - £.Qw 2 

The analysis used above can be applied to any z 0-module in 

AK\ Q to show that it must be contained in M. The proof is complete. 

3b. Cubic Fields 

3. 21 Theorem. Let K be a cubic extension of the rationals Q. Then 

the ideal, M, determined by 3. 18 is almost-fundamental. 

Proof: By 3. 19 we have 

r.-:'/ 1 
I d 

fJ \P. p 

where 

We will 

d 
p 

~ f ( 13 I P )µ ( ,8 I P ) 

= pJ3\p 

show that dK\Q(M) is square-free. 

Let p \ dK\Q, and suppose 

p = rr P.~ 
'f3\p p 

is the factorization of p in 7 K, and suppose r is the number of 

terms in the product. Now, at least one /3 
Hence, we have the following possibilities: 

> 1 and so r ~ 2 . 

3 
These results, in the case of a quadratic field, can also be 

obtained without p-adic analysis. 
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or 
~ 3 

p = ~ 1 • 

~ ~ 2 
Suppose p = 1J 

1 
'(3 2 . Since e(/j 1 Jp) = l, µ(,8 1 \p) = 0, and 

d = p 
p 

f ( 73 2 I p )µ ( 73 2 I p ) 

Now, f(/3 
2 

\p) = l, for otherwise er(3 
2 

Jp) = 1; hence, the exponent of 

-Q 3 dp is at most 1. Suppose p = p 1 . Then 

d = p 
p 

f ( /J 1 I P )µ V3 1 I P ) 

But f(',B 1 Jp) • e(J3 1 Jp) = 3, and so f( '(3 1 \p) = 1; therefore, the ex-

ponent of d is again at most 1. The proof is complete, since this is 
p 

true for every prime divisor of dK IQ . 

3c. Cyclotomic Fields 

3. 22 Theorem. Let K be a c y clotomic extension of Q of de g ree p-1 

(where p is an odd prime). Then the ideal, M , determined by 3. 18 

is principal and almost-fundamental . 

Proof: The field discriminant is given by 

p-1 

d I = (-1)_2_. p-2 
K Q p • 

Hence, if q is a prime and q =f. p, then for anyfl"j E ~ 

divides q, M-"'! = Z.-4"/ • Now suppose 

p = rr ~ e(fj \p) 

,73 Ip 

such that 

is me rnc-i;onzat.wn u.i. p in K. Then e(J.3 IP) S: p-1, sop f e{ '(J \p). 

It follows ([ 14] , P· 302) that o(/3 Jp) = e('(J IP) - 1. Hence, we obtain 
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p-2 = 

= 

29 

6 f(/3 Jp)(e(,8 Jp)-1) 
/51P 

6 f(/3 Jp)e(J3 Jp)- 6 f(J3 jp) 
731P 'j3 IP . 

= (u-1)- 6f('i.Jlp) , 
~ J3Jp f-> 

p-1 = 6 f('/J Jp)e(,73 IP). 
731P 

,() .y)p-l 
So f(p Jp)= 1, and p= p • We then see that d =p and d = 1. 

p q 
-h 

Therefore, dKJQ(M) is square-free. Moreover, M = (1-C) , where 

C is a primitive p th root of unity and h = (p-3 )/ 2. This follows 

since "(J = ( 1-C ), and o ('13 I p) = p ~ 2 , s o [ o I 2 J = (p - 3 ) I 2 . 
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IV. The Discriminant of Almost-Fundamental Modules 

Throughout this chapter we shall assume that F is either the 

rational field Q or a p-adic field. If a, b E F, then (a, b) will de
p 

note the Hilbert symbol of a and b with respect to p; and if A is an 

F-matrix, C (A) will denote the Hasse-symbol of A. The Hilbert 
p 

symbol, the Hasse symbol, and their properties are presented in [8]; 

we assume these properties . We shall also make use of the following 

technical lemma. 

Lemma. .!£A= diag[a 1, a 2, ••• , an], then 

C (A) = T( (a., a.) . 
p "5:" l J p 

l J 

Proof: We will need this only for odd primes p, and so we assume 

that p is odd. We have 

C (A)= (-1,A) rr (A.,-A.+l), 
P n p i<n i i p 

where A . is the determinant of the principal i-rowed minor. When A 
l 

is diagonal, 

so 

(A., -A.+l) = 
l l p 

= 

= 

Also, 

( 

A. = 
l 

rr ak' 
k5: i 

n ak, 
k 5: i 

( rr ak' 
k5:i 

T( a • 
k5:i k 

ai+l)p 

-n a)(rr ak' ai+l)p k5: " k p k 5:. l - l 

ai + 1 )p = rr (ak, ai+ 1 )p . 
k5:i 
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(-1, - rr a ) 
k~n k P 

= n' (ak' -1) 
k~n P 

= 

Hence, 

C (A) = rr rr (ak' a.) rr (a., a.) 
p l p J J p 

l<i~n k<i j~n 

= rr rr (ak' a.) = rr (a., a.) . 
i~n k~i l p j~i 

J l p 

In order to prove the main theorem of this chapter, we apply 

a method used by G. Pall to prove a similar result in case F = Q. 

Although Pall 1s proof is as yet unpublished, the result appears in [ 4], 

and the technique was sketched for me by D. Estes. 

4. 1 Theorem. Suppose that M is a Z F-module with an n-element 

? F-basis a , and suppose that D(~:) is integral. Then M is almost

fundamental if and only if the following conditions are satisfied: 

(a) li_ p is an odd prime, p 
3 ~ dK j F(M} ; and if p 

2 
j dK j F(M), 

then C (D(cr)) =· - 1 • 
-- p -

(b) If 2.t jj dKjF(M), then O~t~ 1. 

Proof: (I) First define an 11 inner product" (· , • ) on K in the follow-

ing way. For each x, y E K , let 

We see that M is not almost-fundamental if and only if the following 

condition holds: there is an m EK, m $ M such that (m, M) S Z F 

and (m, m) E :,Z F. 
,., 

For then the module M' = M + m Z F properly 

contains M and the trace of the product of any two elements of M,:, is 

* ~ integral. Since M ::i M, the module M,, has an n-element Z. F-basis 

and so must have an integral discriminant matrix. We wish to ex-
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press this condition in terms of the matrix D(a) and therefore we will 

express the inner product (x, y) as follows. For each x E K write 

Then let x denote the column vector 

" x = 

x 
n 

Since D(a) = (SKJ F(C\O"j)) , an easy calculation shows that 

( 4. 2) (x,y) = x 1 D(~)y. 

Now suppose that there is an element m EK , m ~ M and such 

that (m, M) c Z F and (m, m) E Z. F. Write 

m = d 

where the x. and d belong to 
1 

+ x O" 
n n 

and d does not divide every x . • 
1 

Let p be a prime divisor of d and let d = pd 1
• Now set m 1 = d 1m. 

Then m 1 $ M but x = pm 1 ~ M. The following conditions are then 

fulfilled: 

(i) x =/. 0 (mod p) (that is, not every entry is divisible by p) 

(ii) (x, M) = 0 (mod p) 

(iii) (x, x) = 0 (mod p 
2

) . 

Conversely, suppose we can find an x E M which satisfies (i), (ii), 

and (iii) for some prime p. Then let m = x/p. Clearly, m ~ M but 

(m, M) c .Z F and (m, m) E 7 F. Therefore, we see that M is al

most fundamental if and only if conditions (i), (ii), and (iii) cannot be 
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satisfied for any prime p and any x E M. By (4. 2) conditions (i), (ii), 

and (iii) can be written as 

( 4. 3) 

x ~ 0 (mod p) 

x'D(a) = 0 (mod p) 

x'D(cr)x = 0 (mod p
2

) . 

Hence, we have shown that M is almost-fundamental if and only if (4.3) 

does not hold for any prime p and any integral vector x . Note that 

(4. 3) has a rational integral solution x if and only if it has a p-adic 

integral solution y, for we can write y = x + pa. z where x is a ra-

tional integral vector and z is a p-adic integral vector. If we choose 

a.~ 2, then x must satisfy ( 4. 3 ). Therefore, M is almost-funda-

mental if and only if there is no prime p such that ( 4. 3) has a p-adic 

integral solution x. It is this last formulation that we will use 

throughout the remainder of the proof. 

(II) Suppose M is almost-fundamental. We now show that (a) 

and (b) are necessary. F irst, suppose p is an odd prime . Then there 

is an integral (p-adic integral) unimodular matrix U such that 

U'D(cr )U is diagonal ([8], p. 84). Now (4. 3) has an integral solution if 

and only if it does with D(cr) replaced by U' D(2:)U. And the Hasse 

symbol remains invariant under this transformation. Hence, we can 

assume D(cr) is diagonal. 

If p
3 

divides detD(2:) , then D(cr) is one of the following: 

al 0 al 01 
a2 a2 

3 or 
0 p a 0 pan-1 n 2 

p a 
n 



0 

34 

0 

pa 
n 

where, in the last case, a 2, a 1 , and a are not divisible by p. n- n- n 

In the first two cases it is evident that 

" x = 

0 

0 
1 

will satisfy 4. 3 • In the third case, there will be an x satisfying 

4. 3 if the congruence 

2 2 2 
a 

2
x + a 

1 
y + a z :: 0 (mod p) 

n- n- n 

has a non-trivial solution. But this congruence can be rewritten as 

and since (-a , a 
2

, -a a 1 ) = 1 , the congruence does have a non-
n n- n n- p 

trivial solution. Therefore, p 
3 

{ det D(cr) . 

Assume that p 
2 II <let D(cr). Then D(cr) is one of the following: 

~I 
0 

2 
p a 

n 

, or 

pa 
n 

where no a. is divisible by p. By the argument used above, D(cr) 
l 

must be of the second form. In the second case, M is not almost-

fundamental if the congruence 

2 2 
a 1x + a y - 0 (mod p) 
n- n 
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has a non-trivial solution. There are non-trivial solutions if and only 
-a a 

if ( n;l n) = 1 , where (p) is the Legendre symbol. We can ex-

press this condition in terms of C (D(a)) as follows. Since D(a) is 
p -

diagonal, we apply the lemma at the beginning of the chapter to obtain 

C (D(a)) = 11 (a.,pa 1) · 
P - i:5: n - 2 1 n - P 

11 (a .,pa) (pa 
1
,pa 

1
) (pa ,pa) (pa 

1
,pa) 

i:5:n- 2 . 1 n p n- n- p n n p n- n p 

So it is necessary that C (D(a)) = -1. 
p -

Now suppose that p = 2. We cannot assume that D(a) is 

diagonal, but we may take ( [ 8], pp. 84, 85) 

A 0 

D(a) = 

0 

where A, B 
1

, B 
2

, . . . are integral block matrices. The matrix A is 

diagonal, and the B. are 2X 2 blocks of one of the following types: 
1 

t . t. -1 t. -1 
2 1 2 1 0 2 1 

or 
t. -1 t. t. -1 

2 1 2 1 2 1 0 

If 2
2 

divides det A, then A can be written in one of the following 

forms: 

0 al 0 

a2 

or 

0 

. 
2ak-l ak-1 

2 
2 ak 0 2~ 
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where in the second case a and a are not divisible by 2. In the 
n-1 n 

first case it is clear that 

" x ::: 

0 
0 

1 

0 

( h th 1 . h kth . . ) . 1 . f 4 3 w ere e occurs in t e position is a so ution o • . 

second case, we can find a solution x if the congruence 

2 2 
ak_ 1x + aky = 0 (mod 2) 

In the 

has a non-trivial solution. Since ak- l and ak are both odd, it does 

have a non-trivial solution. We therefore reach a contradiction un-

less at most one entry in A is divisible by 2. 

or 

If, for any block B. , t. > 1 , then 
i i 

t. 2 t. t . 2 
2 ix + 2 ixy + 2 iy = 0 (mod 4) 

t . 
i 

2 xy - 0 (mod 4) 

has a non-trivial solution, and hence 4. 3 does also. Therefore, 

each t. = 1, and j det B . j = 1 . Hence, if zt jJ det D(a) , then 
l i 

(III) Now assume that (a) and (b) are satisfied. We must show 

that there is no prime p and no integral x which satisfies 4. 3. 

Again, if p = 2 we may take 

A 
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Then each of the blocks B. must be such that t. = 1 ; hence, if 
1 1 

t > 0, one of the entries in A must be divisible by 2, and A must 

have the form 

0 

0 

• t 
2 a 

n 

with each ai = 1 (modZ), and O:S:t:S: 1. For A, B 1, B
2

, ... satis

fying these conditions, it is not possible to find an x which will satisfy 

4. 3 . 

.If p is odd, and p r det D(a) , then D(cr) has the form 

a 
n 

where each a . =/. 0 (mod p). Clearly, there is no x which satisfies 
1 

4.3 . If p II <let D(~) a similar argument suffices to show that there 

is no x satisfying 4. 3 • Finally, suppose p 
2 II <let D(~). Then 

C (D(a)) = -1 , and D(CY) can be put into one of the fallowing forms: 
. p -

al l al 
az az 

or 2 
pan-1 

panJ 

p a 
n 

where each a . =/. 0 (mod p). By computing the Hasse-symbol for 
1 

each of these forms, we see that D(a) must be of the first type. Now 

there is an x satisfying 4. 3 only if 

2 2 
a 1x + a y = 0 (mod p ) 
n- n 
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has a non-trivial solution; but in view of the condition C (D(cr )) = -1, 
p -

this is not possible. 

We have proved 4. 1 • 
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V. Normal Almost-Fundamental Fie lds 

Suppose that K J F is an extension of F which satisfies the 

conditions imposed in Chapter Ill. 

5. 1 Definition. The field K J F is said to be almost-fundamental if 

7 K is almost-fundamental. 

5. 2 Theorem. is an extension of the complete field F 

then K is almost-fundamental if and only if the differential exponent 

satisfies 

Proof; Immediate from 3. 6. 

In the remainder of this chapter we assume that F = Q, the 

rational field, and we study normal almost-fundamental extensions. 

The results of section 3a are restated in the next theorem. 

5. 3 Theorem. If KI Q is quadratic, then K is almost-fundamental if. 

and only if K = Q(JD), where D = 1 (mod 4). 

We now prove the following theorem. 

5. 4 Theorem. If Kj Q is normal and almost-fundamental, then Kj Q 

is quadratic or non-cyclic of degree four. 

Proof: For any almost-fundamental extension K j Q we have, in view 

of 3. 19 , 

for each prime divisor p of the discriminant dKj Q. 

the definition (p. 33) of µ(J3 jp), it is clear that 

Now in view of 
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µ('(3 jp) s: o(J3 jp) 

Hence, 

o = I: f('j3 jp)[o(,E jp) - µ(}3 jp)J 

,B Ir 
implies that 

µ((3 Ir) = o([3 jp) . 

Now ( [ 14], p. 302) 

6(/J jp) ~ e(/J jp) - 1 ~ 0 

with equality on the left if and only if p does not divide e ( -;J j p). We 

see that if o(p j p) is even it must be zero, and then e ("/3 j p) = 1 • 

If 0((3 jp) is odd then o(/!> jp) = 1 ' and e(p jp) = 2. In this case 

p :/- 2. 

Now assume that Kj Q is a normal extension. Then for every 

pair p , Arj of divisions of p, e C'/3 j p) = e (,ffi j p) and f ( B j p) = -I I . 

f(-.-Oj'jp). It follows that e(;E jp) = 2 for every ,E jp. But if e and f 

are the common values of e ('(!; j p) and f("/3 j p), respectively, and g is 

the number of divisors of p, then 

n = [K:Q] = efg , 

and so 2 must divide [K:Q] . Now by 3. 19 and 4. 1 we must have 

I: f(/3 jp)6(/3 jp) = I: f(/3 jp) s: 2. 

'fJ Ir f3 Ir 
So the possible factorizations of p in Z. K are the following: 

(a') p 

(b I) p 

f(-rJ jp) = 2 or 1 

f(,23ijp) = 1. 

Since n is even, we see that n = 2 or n = 4. The case n = 2 has 

been dealt with in 5. 3 ; we therefor~ suppose that n = 4. 
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Let L be a quadratic subfield of K. Then L must be almost-

fundamental, for ~ K j Q = ~K j L · ~L j Q , and by taking norms we 

obtain 

( 5. 5) 

Since 2 does not divide dK j Q, and dKj Q has at most square factors, 

it follows that 2 does not divide dL j Q and so dL j Q is square-free. 

We now show that K must contain more than one quadratic 

subfield. Suppose it is not true, and let L be the unique quadratic 

subfield. For each ?> Ip we have shown that e (/3 j p) = 2, and so 

since e('j3 IP) is the degree of K over the inertial field of~ ([14], 

p. 292), and L is the unique quadratic subfield, it follows that L 

must be the inertial field of J3 . In view of (a 1
) and (b'), we see that 

p factors in 7 L in one of the following ways: 

p = 13 
or 

p = 731 132 . 

In either case, p is unramified in L. But in view of 5. 5 , we see 

that it is possible to choose p so that p divides both dKIQ and 

dL IQ, in which case p must ramify in L. Hence, we are led to a 

contradiction. Therefore, K contains two distinct quadratic sub-

fields: L. = Q($), D. = 1 (mod 4), (for i = 1, 2). 
l l l 

If (D
1

, D
2

) = 1, we can prove the following: 

5. 6 Theorem • . If D
1 

and D
2 

are relatively prime, then the field 

K = Q(5i, ~) is almost-fundamental if and only if the following 

conditions are satisfied: 



42 

(a) D 1 and DZ = 1 (mod 4) 

(b) If p and q are primes such that p divides DZ and ·q 

divides D
1 

, then 

-D 
(-1 

p 

-D 
= (-z) = -1 . 

q 

Proof: We have already shown that condition (a) is necessary. In 

order to show that (b) is necessary, we now determine an integral 

basis for KI Q . 

Since D
1 
= 1 (mod 4), then ( 1, 

l+~ 
Z ) is an integral 

basis for L
1
!a . Further, we shall show that it is also an integral 

basis for KI Lz. Let 

l+~ 
z 

The discriminant matrix of A)-[_ over Lz is 

z 1 

1 

it is integral, and dKI LZ {,(Jl) = (D 1 ) is square-free in Q. 

(D
1

) has no square factors in 7 L , for we can write 
2 

D 1 ?' Q = (p 1)(p2) .. . (pr ) ' 

where the p . are distinct primes; hence 
1 

Further, 

Now pi does not divide dL
2 

j Q = DZ and so is unramified in 7 Lz ; 

therefore the prime ideal factors of D 1 ZL are distinct. 
2 

Novy{JZ ~ ?' K, and we have just shown that dK j Lz (AJZ) is 
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square-free, so/{. cannot be properly contained in a Z L -module 
2 

with integral discriminant. 
4 Therefore~= Z. K. From this, it 

follows that 

1 ' 
1 +J"D"i" 

2 

l+~ 
2 

is an integral basis for KI Q. 

1 +J"D"i" 
2 

l+~ 
2 

Using the results of the preceding paragraph, we are able to 

compute the discriminant of the field: 

2 
dK I Q = NL 1 I Q ( dK I L 1 )d L 1 I Q 

2 2 
= NLl jQ(D2)Dl = (DlD2) 

We now apply 4. 1 to the matrix 

2 2 

2 1 

D(~) = 
2 1 

1 

l+Dl 
-2-

l+D2 
-2-

1 
l+Dl 
--2-

l+Dl l+D2 
-2- -2-

where w is the integral basis for KI Q which was determined above. 

Let o. be the principal i-rowed minor determinant; then 
1 

and [8] 

4 

2 o1 =4, o
2 

= 4D
1

, o
3 

= 4D 1D 2 , o
4

= (D
1

D
2

) , 

Although 7 K may not have a 2-element ZL -basis, one can 

define its discriminant as in [3 J, page 11. Then the c'6nclusion above 

follows from [3], proposition 4, page 12. 
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3 

C (D(w)) = (-1, -o
4

) rr (o., -o.+l) 
p - p i= 1 1 1 

If qjD1 , then 
-D 

C (D(w)) = (-2 
q - q 

and if p j D
2 

, then 
-D 

C (D(w)) = (-1 ) 
p - p 

In view of 4. 1 , we must have 

-D 
_l) = 

p 

-D 
(-2) = 

q 
-1 . 

. 

The sufficiency of conditions (a) and (b) follows from 4. 1 and 

the fact that we can use the argument above to show that dK IQ= 
2 

(DlD2) • 

5. 5 Example. Q(,/5, ,/I3) is almost-fundamental, but Q(,/IT, ,/Pf) 

is not. 
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