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ABSTRACT

In the first half of this thesis a local electrodynamics of
media in given non-inertial framesﬁ within Maxwell-Einstein classical
field theory, is constructed_in terms of observable EM fields and
co-moving local physical media parameters. Localization of tensors to
observables 1s introduced and justified, and a relation is obtained
connecting tensor transforms to instantaneous Lorentz transforms for
observers in different frames. A constitutive tensor, explicitly
expressed by the four-velocity and the local properties in co-moving
frame of a linear medium, is found for the first time. Previous mis-
takes in confusing the tensors, in which forms the physical quantities
combine with the non-flatness of frames to be used in covariant equa-
tions and thus make geometrical quantities, with observables .are
cleared. Also a Lagrangian formulation for both lossless and lossy
media is constructed, and boundary conditions, local conservation laws,
and energy momentum tensor are obtained.

The second half concerns application to motions in SRT, such
as uniform linear (hyperbolic) acceleration and steady rotation. For
these local Maxwell equations in co-moving frames are obtained, and
approximate solutions are found for special cases. An EM wave
propagating in the direction of acceleration is studied in the
accelerating frame. The first order propagation shows a frequency
shift and amplitude change which have very simple physical signifi-

cances of instantaneous Doppler shift and photon density in media

%
The contribution of EM field to guv is neglected.
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and which agree with familiar results in the vacuum limit. A particle
model for this wave shows that the "mass dressed" photon is dragged by
the medium and does not follow a geodesic path. In the rotating medium
case a plane wave scattered by a rotating sphere is solved by an inte-
gral iteration method in the laboratory frame. The scattered field
purely associated to the rotation of the medium is separated from the
Mie scattering. Its first order amplitudes are found and plotted for
incidences perpendicular and parallel to the rotation axis. Particular
symmetry and shapes of scattering amplitude in the results agree with

intuition and resemble radiation patterns of aporopriately induced

traveling electric and magnetic dipole sheaths.
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L. INTRODUCTION

The theory and application of electrodynamics of media in
inertial and non-inertial motions are subject to the recent interest of
many authors (1-6,10,11,13). The purpose of this thesis is to construct
a local electrodynamics, within Maxwell-Einstein's classical field
theory (7,12,14,18,27,36) directly in terms of the observable EM fields
and the rest-frame physical constitutive properties of a medium in a
non-inertial frame. This may be produced either by a non-inertial
motion in SRT, or by the presence of a tidal gravitation. Then appli-
cation to simple problems in SRT is examined.

For a simple medium moving with uniform velocity, Lee and Papas
(1-3) recently found the time harmonic Green's function and showed
that dipole radiation in it has a forward-tilted far-zone Poynting
vector. The time-dependent Green's functions are obtained by ‘other
workers (4,5). Many more studies (5,29,30) deal with different theo-
retical approaches and applications. The theory being used is
Maxwell;s theory and special relativity.

For media in non-inertial frames less work has been done (6,10,
11,13,25). Since macroscopic "photoné'do not follow null paths nor
geodesics in this case, in order to get any information of EM
phenomena, we must start from Maxwell's equations. Then two problems
arise which were not encountered in the previous inertial motions.

The first concerns the physically observable EM fields to observers in
a non-inertial frame and how it enters into the postulated covariant

equations which govern the EM field space-~time evolution. The second
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concerns a covariant formalism of the macroscopic media constitutive
relations, which can only be determined locally in the medium co-moving
frame and which should be constructed and built into the field equa-
tions.

In the first concern, Einstein's tetrad physics (1L4,20,33) and
covariant Maxwell equations in general relativity are used to obtain a

relation of the form

A §) 9
ea A( )(_6_) e ( )_é_ "2'{',7 - 6@4 (l)
[1] &) [2] ox
(a) _ (a) .8 . .
where A = e A localizes the tensor components to be physi-

cally observable in a general frame. Equation 1 reduces the tensor
transform to instantaneous Lorentz transform for observables of

observers in different frames. It explicitly states the form in which
physical observables, whose measurements locglly in GRT are identical

with that of SRT, combine with the non-inertialness of the frame
and/or space-time to make the physics laws in a covariant form. This
localized transform is important and very useful, especially when one
is interested in the local physics, e.g., electrodynamics in media,
for which general local Maxwell equations are obtained later. These
equations also show the extent of the approximation in using the usual
3-vector Maxwell equations for a neighborhood of non-inertial space-

time.

In the second concern, based on a covariance assumption for

medium EM equations, a constitutive tensor expressed by the h-velocity

u and the rest-frame local properties e(l)(J),K(l)(j) of linear medium
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is constructed for the first time,

Cu\)OLB ==K (%u)u\)Y aB3 + [ua(e\)suu - EUB )

ve (%u)

=

L
2

- uBeVY - M%) (2)

nvap

such that "’ = ¢ F .

oB

Previous errors and confusions (6,10) in considering an example and not
distinguishing physical observables from their tensors, and thus lead-

af

ing to misinterpretations of cHV as physical properties of media,
are all cleared. With this covariant formalism to build the constitu-
tive parameters of media into EM theory, we also find the Lagrangian
formulations for the lossless and lossy media, the boundary conditions,
local conservation laws, and energy momentum tensor.

In the latter half of this work applications to motions of
media in SRT such as uniform linear (hyperbolic) acceleration and
steady rotation are considered. For both cases exact local Maxwell
equations in co-moving frames are found. In the rotational case the
error in a previous work (11) is corrected. Then special problems are
solved in detail.

In a uniform linear-accelerated simple medium the EM wave
propagating along the direction of acceleration is studied by co-moving
observers. The first order solution gives two terms that correspond
to traveling against and traveling with the apparent gravitation in
that frame. A frequency shift and amplitude decrease (or increase)

result for this first order propagation and have the simple meanings of
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equivalent gravitational red (or blue) shift and instantaneous

"photon" density. The coordinate phase velocity is time dependent.

If we identify the instantaneous frequency and phase velocity of the
wave as energy and velocity of the corresponding ''mass-dressed" photon*
(2Lk), then the photon has a time-dependent mass and does not follow a
geodesic. Physically it means photons are dragged by the non-inertial
motion of the medium.

In the rotational case a plane wave scattered by a rotating
simple sphere is studied by using integral iteration method in the
laboratory frame. The scattered field purely due to the rotation of
the medium is separated from the Mie scattering (35) . This is the
only scattering, providing that the rotating medium is the same as
its surrounding medium. The first order amplitude of this rotational
scattered field is evaluated and plotted for incidences perpendicular
and parallel to the axis of rotation. Particular symmetry and the
shapes of scattering amplitude result; they agree with intuition and
resemble the radiation patterns of appropriately induced traveling
electric and magnetic dipole sheaths.

Part IT is the general theory in which II.1 introduces locali-
zation and equation 1 for frame co-moving observers; II.2 constructs
a formalism for the constitutive relations; II.3 derives local equa-
tions, least action formalism, and boundary conditions, and investi-

gates local conservation laws and energy momentum tensor. Part III

*
In media, even in an inertial frame, this identification is arbitrary

and a * sign is included in the definition of the dressed mass. Also
it is obvious that the path is not null.
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gives the application: III.1 on linear accelerated medium and III.2
on steady rotating medium. Appendices contain remarks and some
derivations. Fundamental knowledge of GRT and tensor calculus is
assumed and some references are given (15—23). Also geometrized

unit is used in the text for convenience and A-1l shows conversion to

mks units.
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L1s THEORY

IT.1 Local Physical Tensors of Frame Co-Moving Observers and their

Trans forms

From the principle of equivalence, local physical bases and
their tensor components as corresponding physical observables are
introduced (14,20,26,33). For co-moving observers in different frames
physical bases reduce tensor transforms to instantaneous Lorentz trans-
forms.

IT.1.1 Reviews and coordinate bases vectors. Consider a

4-dimensional differentiable manifold Sh labelled with permissible
coordinate frame {xu} ¥ which represents a space-time continuum. An
affine connected geometry is constructed in the following usual way (21-
23): Define parallel transport of vectors¥*¥ by a set of affine numbers

g g’ then define geodesic as a path generated by parallel transport
o

dxu ; define geometrical scalar distance ds2 = guv dxu dxv between
neighboring points by symmetric metric tensor guv and define path of
extreme length by ¢ J ds = 0; then identify the path of extreme length
to geodesic. This so-constructed geometry is identified with physics

space-time by the postulate that free-falling neutral particles follow

- . KK
a geodesic

*If {x"}, {x"} are two coordinates of S),» then both M= x*(x")  and

x¥ = XE(XU) exist and are differentiable. Also, u = 0 for time, and
u=1i=1,2,3 for space. Minkovskian signature Z+,-,-,-) and coordinate
frame {x"} = {xM} are used.

*%¥Vectors and tensors defined in their usual transform senses.

¥¥%¥This is possible because Etvos' experiment showed Vi = Y/ e
N grav inertial

present accuracy, 10711,
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- Now at a point P(xu) the coordinate contravariant and

covariant basis vectors (AWO, {gu} and {gP} of {x"} are defined by

dx = ax" = ax e, i o= 0,152,3 (1)

e
M H

where dx = g dx” thus e" = guv e and dax" are infinitesimal
H HV - %
coordinate increments of x" at P(xu) . The scalar length

d52 = dx - dx = - ax" ax” then implies the scalar products of basis

vectors satisfy:

5 Mo,V WY uo, N
_e_,\)"gu\)s_e_ € g E € S (2)

o

e
=

N

Thus &y is a vector with length |g I pointing in the coordinate

uu

tangent direction of x" for {x"} . Compare eq. 1 in {xu} to eq. 1,
then, o
30X u Bxu o
e, =——e ; g =~—¢e (3)
i 3x" & a
90X

a. %
where {e—3 , {e”} are basis vectors to {x"} at the same point P .
S =
Similar to equation 1, now any vector field V at P can be
expressed as
v=vle = v &" ()
= = § =
then equation 2 implies
H M
V- =V - V =V -
V-e > w T By (5)

*
Notice that the "u" for basis vector labelling is not a contra- or

a co-variant temsor components labelling; it only describes the coor-
dinate direction to which €, is tangent. The super and subscript positions
are used to keep sum convention and distinguish the two sets.



and equation 3 implies

u -
_ 9x v« 9x (6)

Thus contra- and co-variant vectors are actually components of a vector
on the respective coordinate basis as in equation 4. The above equa-
tions 4 - 6 apply to tensors of higher ranks with more indices written,
€.8.»

- Tuva Eu Ew Ea , Tuva - ea ev eu_._ 7 (7)

i3

IT.1.2 Localization of tensor to observable on physical basis

of frame co-moving observers. Consider a flat space-time (curvature

femsor IT;MF 0, no tidal gravitation) in which an inertial K frame
with Cartesian coordinates {Xﬁ} such that g;;-i Ny exists*; we

can also describe this space-time by a {xu} so its co-moving observers
{0} with world lines {I} = {x" = const., x° varies} are in a non-
inertial frame K . Now consider an O observer passing an inertial
0 of X momentarily at P . The equivalence principle states that in
a small neighborhood of P +the physics of 0O 1is identical to that of
an instantaneously inertial co-moving O0' with Minkovskian {Xu'} and
{gu,} whose physics is related to O by a Lorentz transform. Thus a

vector dx observed by 0 as dx" will be observed by O as

*
+ -1 0 Notice that the local spatial orthogonalization

n~; = -1 to time must be done for geometrical model to
B 0 -1 coincide with physics; spatial orthogonality is

just a convenient choice.

Also, spatial normalization means length measured with the same unit
of rule; time normalization means constancy of light propagation.
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s () p! W g% o Mo X Ao A (W) (8)
a (5 A (04

1
where A" ) is a Lorentz transform using the relative instantaneous

velocity and spatial axes orientation of 0' to O . Thus equation 8

(u)

provides a relation between the observed quantity dx and the con-

travariant components dx" of a vector dx in {x"} for its co-moving
{0} . This applies to any vectors and tensors representing physical

()

quantity; we call it localization and define e A by

o
OO OO S (DR DI > (9)
A A o A
9x
: : U _ _ k! - (n)
From equations 1 and 2 we have dx" e = dx = &X e & dx e s
= " ~(1)
then equation 9 implies
(v) v (u) (v) _ mv
° = . - 6 s e . = n
S) TEW) T Moy Hu) T = u - =
A A A A
e(u))\ - _e_(u) ‘e, 9(u) - _e_(u) et ey Tyt e (10)
Sn T ) T A
and
A (a)
dx = e (a) ax (ll)
= 3 m = 1
where g(u) = gu, and gu, g1 = nu,x, of 0' have been used.

Thus we see that to physically observe or medsure a vector or tensor
quantity by some {0} in a frame {x"} is to observe its local
components as equation 8 on a local Minkovskian basis {g{u)} of {0} .

But this local result also applies to {6} in K , thus we do not
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need K to be inertial, i.e., we do not need to be in a flat space-

time. In that case equation 9 becomes

dX( ) = e (U)__ d.X-;\- , dx(l—l) - e(l—l) dX)\ (12)
(2] * (] A
and equation 8 becomes
W _ @ =B
dx B [Z] 5 dx (13)
or, with equation 11,
o R (w) _ (o) (11)

== A v
B [l](U) (OL) [:] B

for arbitrary frames co-moving observers {0} , {0} with physical

tetrad basis { = )}, { g(—)} in {x"} , {x"} respectively, which

S F-Ti
explicitly states measurements in GRT are locally identical with SRT,
and localizes tensor transforms to instantaneous Lorentz transforms
- for observables of any tensor. Equation 1L is an important and very
useful relation, especially when local physics is emphasized, e.g.,
electrodynamics in media. Analogous relations of equation 11 or 12

hold for observations on any vector V or temsor T by {0} in

{xu} with {E(U)} local physical basis

Fig. 1 graphically sketches equation 1.
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Localization Localization
ool _ A

[l] B [Z](U)

Lorentz transform

{x"}

9X
tensor transform s

9X

Fig.l. A sketch representing equation ik, T, ?;_are world lines

of 0,0 which are co-moving in {x"},{x"} respectively.
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To find {g( )} for {0} , first, for a co-moving observer in
u

{xu} , his proper time during a coordinate time lapse dt = ax° is

dt = ds = /g__ ax® , thus

e = e = u 16

Ho)T G S T B 16}
Then local time direction for {0} is the coordinate time direction
there, only physically rescaled by ~l——-; here u 1is the bh-velocity
of 0O . Since the locally pure spatigfo {g(i)} are orthogonal to

S(o) thus to &, > and they are orthonormalized for convenience, thus

within the restriction of equation 10 it follows that

]

oi
e
~0
0o

} *(17)

o
P

which are defined within a spatial rotation, and gi are just time

orthogonal triads.

IT.1.3 Coordinate transport of co-moving basis. Now equations

16 and 17 specify {g(o)} but leave free the ways {0} can carry
{g(i)} along their {I'} . 1In order to have simple formalism for local
physics, the medium-fixed observers should also keep their {g(i>} as
a whole not rotating with respect to the medium. Thus the simple

* %

Fermi transport of {g(i>} which preserves {g{u)} but fixes {e(i)}

directions with respect to distant stars is not convenient. Later
studies on motions in SRT reveal that for frame {x"} with (Appendix

IT)

%
0.N. = orthonormal combinations of.
¥¥Appendix IV.
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4 4, (18)

i

—3d = tipe independent, Y.
Yorse ij

Neighboring co-moving observers will not see each other's {g(i)}

rotating if {g(i)} is carried along {Ir'} of {0} Uy

{g<.>} = 0.N. {n;} , with time independent coefficients and (19)
o conditions (eq. 10) 4

where n, are Just the Fremet-Serret normals to T *
Du
Ds - 1P
Dn
long T — 2 a.u + a.n
& Ds - "= %2fp
Dn
_2
—_— = + . S -
5 8ol *ajly > Byt ny 5l (20)

Thus the medium-co-moving-frame-attached observers should coordinate

transport Qg(i)} as equation 19, such as to have a locally non-rotating

spatial triad with respect to the frame. By equation 14, the coeffi-

cients in equation 19 can be chosen to make {e }  as the instant-
=(u)

aneous Lorentz transform of the {g<g>}of some frame {x"} which has
particular simple geometry, although it may not co-move with the medium.

If in  {x"} equation 18 does not hold, the frame of the medium

to which {x"} co-moves is not "locally rigid", e.g.

*
a, are curvatures of T in n, directions. Also, equation 20

implies %g-gs = -ash,
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= position dependent in the case of motion in SRT, where uu are

Llo | Iﬁr—h[

components in an inertial {X"} of u of {0} in {x"}. Then it is im-

possible to have any orthogonal {g(i)} for {0} which also hold

un-rotated to their neighbors in {x"} . In this case we still coordi-

nate transport {§<i)} as equation 19 to keep it orthonormal and

least local rotated.

IT.2 Electromagnetic Descriptions of Media as Tensors

The formalism to enter the phenomenological media properties into
EM theory is thoroughly investigated and a constitutive tensor expressed
on the Lk-velocity and rest-frame local physical parameters of a linear

medium is constructed for the first time.

15.2.1 Physical constitutive relations. Splitting the interac-

tion -J" Au between EM field and microscopic charge-current of matter
into one part for the macroscopic neutral medium and the other part for
free net charges, and then averaging each spatially (8,28) gives the
macroscopic medium EM field R . % and explicit charge-current (p,{)

as a result. This procedure averages the inertial frame vacuum Maxwell

equations
VeE = p YxB=J+<ig (21)
~ = ~ N 0T ~

into the medium equations
VD =p ¥R He T wen (22)
el v 2 ¥ n ny BT'\,

and leaves
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a

the same form for both cases, with the understanding that all quanti-

ties in the media equations are macroscopic ones, Now the dependence

of R 5 E on %, B ¥ for most media at rest and over particular ranges
Ny

of fields E , B can be characterized by linear relations with con-
. ] *%
() (@)

) 5 W

stants

e RN - b (o)

which are the so-called constitutive relations that actually approximate
the medium's response to the EM field to the first order. The e(l)(j),

K(l)(j> are the constitutive parameters which can only be obtained

by experiments or detailed microscopic consideration of the medium.
Since only when an observer has no motion with respect to the medium
can he obtain the intrinsic properties of it, and in general the form
equation 24 holds only for media at rest, so physically the medium

co-moving frame is the natural frame to start its EM investigation and
(i) (i) : .

€ (3)° K (1) in that frame is the only set of numbers that

describes the EM properties of a linear medium.

*
These 3-vector symbols %,B,R,% only stand for local observable EM

fields with components (E l), E(2>, E(3)) throughout this work;
similar remarks apply to other 3-vectors.

¥¥This particular way of writing indices is Jjust to keep up with the
sum convention.
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For a medium in a non-inertial frame, the observer {0}
attached to it can still locally perform his experiment or theoretical
considerations in his neighborhood, and since local physics is not
affected by the presence of an equivalent gravitation, {0} can
determine the constitutive parameters locally for the medium in equa-
tion 24 as if he were in an inertial frame. Now the EM field observed
by {0} 1is the physical field at his location (xi), and it is these
co-moving physical constitutive parameters he so obtained as equation
2L that we should use as a basis to formulate a tensor for media
properties.

Notice that equation 24 can be rewritten in terms of electric

and magnetic polarization z and % as

D = E+P

Ny n AV}

H = B-M (25)
n V] n,

which is equivalent to equation 24. But equation 24 is much simpler in

general formulation and provides a clearer physics, so we adopt it.

IT1.2.2 Tensor representation of linear media. With the

principle of covariance of physics laws, the covariance of % 3 %

" g Y
Maxwell equations implies a vacuum EM tensor Fu . Now that we postu-
late the covariance of the R " % Maxwell equations implies a media

uv

EM tensor¥* G But in a non-Minkovskian frame {xu} , as explained

in Chapter II.l, the physical observable EM fields to any observer {0}

®
See Chapter II.3



in {x"} are not ', "V, but F<U)<v)

Now consider a medium co-moving in {x"} , then equation 24 is

(i) (o) (i) (3) (o)
e e53 ¥ _

=&t (2 (3 (0)
which, since By) = (1,0,0,0) for {0} , can be written as
(1)) agyy €(1)(J) F(3)(v) a,y
(xg) (1) (V) By = K(i)(j) (3 (V) .- (26)
Now expand equation 26 to a L-local tensor form by defining some E(U)(\))
K(u)(\)) =
o (W) _— E(U)(A) (V) w
(xg) (R (V) _— K(u)(” (M) (V) w) (27)
What is e(“)(v), K(“)(\)) ? Since equation 27 must contain equation 26

we have the pure spatial parts of e<u)(v) and K(U)(v) identically

*%
As a trivial example, the FMVY in a Cartesian coordinate transformed

into a cylindrical coordinate {x"} by tensor transform yields FHY 5

we see immediately that
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(1)

equal to the thysical constitutive parameters e(l)(J) and K (3)

aefined in equation 24k. Now u = 0 in equation 27 implies

™
—
e
~

111

(@)

(28)

=~
—
[ N
~

1

(@]

(1) (1)

Also, since we know that all physics is contained in € (3)° K (3)

(i) (1)

and equation 26 implies ¢ (0)° K (o) play no role at all in

physics, we can assign arbitrary values to them; for simplicity

™
—
O
~
1

(29)

=
—
(e}
~
1t
(@]

o)

Now whatever e( (o) is, physics is not altered. In order to have
simple notations for local isotropic media 3€(U)(v) = eéuv 5
K(U)(v) = Kéuv and treat all spatial directions with simple symmetric

footing in their time participations, we put

—~
O
~
-
—~
™
—~
}_J
~
—~
N
~
-+
—~
w
~

™
—
O
~
w

> e g
@)
1

1, (1) (2) (3)
K70y T 5 KTy KT oy B g) (30)

Thus equation 27 provides a local tensorial description of the medium in

(u) (u)

its co-moving frame, with € {v)? K o given by equations 24, 28,

29, and 30 in terms of physical, measurable, media parameters.
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Since local tensors between observers of different frames are

instantaneous Lorentz transform related, from equation 27 it follows

(u) (w)
S

that if in any {x"} we define e ()

(u) (u)

L .t <4 Fal
ous Lorentz transform of ¢ (v) K Py from {g(u)} of {0} +to

;) to be the instantane-

{e,—} of {0} , then
~(3)

RO IV %(3)
CT1CO N ¢y BN GO 1 ¢
(%G) u(-\;) = M (7\")( F) ¥ u(—\)-) (31)
are the thysical constitutive relations in any {XE} , Where u(s) is

the L-velocity u of {0} observed by {0} .

Now that equation 31 in general is mixed coupled in E}E' to

g}gi , we want to construct a physical tensor formula 3
(w)(v) () (v) (o) (B)
G =C F 2
(o) (8) a8
which gives R,% directly in terms of %,% in {xu} and thus in
all {x"} . In constructing C(U)(v)(a)(s), first we know that e<u>

K (3) contain all physics for media at rest; for moving media the

() (V) () (8)

only additional physics is its velocity u . Also for
linear media should be independent of field intensities, thus it should
be made of u, g, K .

Comparing equation 32 with equation 27 in the medium co-moving

{(x"} reveals



= Bg
2

() (2) (m) (n)

- _ 1 oikf mnoj
= -2 Ky ™ n

all other components = O (33)

where nu\)OLB =1 if w(pvaB) = even w(0123), -1 if w(uvap) =
odd m(0123), and 0 if neither of previous cases; and the symmetric

parts of C<U)(V>(a)(8) in (u - v) , (o b8 B) which enter into no

physics has been set at O . Thus we have

o(0)(1)(0)(3) =%E' 1) (o), oy

(v)(B8). (u) (a)

i-s u ‘u
2

(W) (v)(a)(8)y n

g-part

antisymmetrizing w.r.t.

i=part - H
Similarly,
(k)(2)(m)(n) . — L (w) (V) (a) (B) =1 i Boj
c in (33) [f )ﬁ:partm §.K(i>(j)n01uv 0BoJ
locate index O S
(C(u)(\))(OL)(B))£ I - % K(Y)((S)(*u)(“)(\))(Y)(*u)(a)(s)(d)

Thus for {0} we have constructed for equation 32
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e ®) 0 8 (V) () s gy (35)

which, being a local tensor expression, is valid for {0} in any {x"}
with all indices " " (barred) as the instantaneous Lorentz transform
of equation 35. The proof of validity of equation 35 is straightforward
by using equation 27.

Either equation 27 or equations 32 and 35 provide a complete
local tensorial description for linear mediaf The corresponding tensors
(global tensors) are obtained simply by de-localization with equation

15, thus in {x"} we have

Guv u = au FAV u
Vv A Vv
(x¢)" V% = K“k ter1 g (36)
Vv
or
Guv cu\)OL8 F
uvap _ 1 uvy aBS  1lp o, VB U up v
c 2KY(S(*u) (%u) +2[ (e u et u)
- uB(e\)auu e uv)] (37)

where {ea(u)} of {0} 1is used to de-localize. In any {x"} the

"indices barred" equivalent of equations 36 and 37 is obtained by tensor

transform of equations 36 and 37 from (x"} to {x"} , or by de-

localization of equation 31 and the local "barred" equations 32 and 35

in that frame {x"} itself, i.e., using equation 1k.

* Appendix X .
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As special cases, if we consider a co-moving-local-isotropic

medium D in the rest frame

K(u) o = Kéuv E(U)(v) = 6uv (38)

then equations 36 and 37 take the respective simple forms

GUV u_ = € Fuv u
v v
uv Hv
* =
(%6)" = K (+P)™ (39)
oMV o MY L L ok ooV _ &V
o8 5T s B (u e) [u (s g $ 8 ua)
VU M *
u (8 o Ug ~ 8 8 uq)] (Lo)
in any frame; which for vacuum uy =1 = ¢ yields Cuv = l‘éuv s
aB 2 af

¢*V = ¥V follows independent of the observers frame. For loss-

L) (1))

less media the . , and thus Euv’ KUV are symmetric

thus

uvap

(Appen. V), then C is symmetric with respect to (uv) 2 (aB)

All losses in a lossy medium are due to the antisymmetric part of
Euv, Kuv, or the (uv) s (aB) antisymmetric part of CuvaB.

Thus we construct a tensor formalism to enter the local consti-
tutive properties of linear media into EM theory. No pure theoretical
parameters are involved. Equation 27 or 35 tells the constitutive

physics directly. Equation 36 or 37 tells the form the physics combine

with frame and/or space-time non-inertialness to enter global tensor

%
= L
PEX
with the p-index.

here as permeability constant should not cause any confusion



.

formalism in EMT; any direct interpretation to the elements of this
uvoB : P : : : :
g . as 1lntrinsic physical properties of the medium is wrong. All

the above result from the postulations of the covariance of macroscopic

Maxwell equations in media.

II.3 General Formalism of Local Electrodynamics in Medis

Maxwell-Einstein equations in their local forms are found in the
medium co-moving frame and arbitrary frames. A least action principle
is constructed for lossless and lossy media, and boundary conditions

and local conservation laws are obtained.

IT.3.1 ZLocal Maxwell eguations in medium co-moving frame. If

in an inertial frame {X"} = {T,X,Y,Z}, then equations 21 and 23 can

be rewritten as

FHV = _g¥ (41a)
SV
(«sP)"Y = 0 = F =4 - A (41b)
2V v Tveu T T,
where
)
(), = () (122)
2 oX
L T L W o (42b)
(x7)MY = RS nuvaB F (Lac)
2 aB
0 —EX —EY —EZ
" EZ 0 —BZ +BY
- y - y (L2a)
E B 0 -B
EZ —BY BX 0

The SRT covariance of physical laws postulates that Maxwell equations



Dl

in vacuum in the form of equations 41 and L2 holds for all inertial

v : 5
are Lorentz tensors. Now in a medium,

frames and implies that A“, J
we postulate the above for the macroscopic EM fields, then equations

22 and 23 still result in the same forms except that equation Ula is

replaced by

o - oY p?
- 0 —H o
G = (43v)
pf A 0 -
3% B 7 0

Equations 4lb - 43 are SRT Maxwell equations in media, with equation

36 or 37 for linear media.

Now in GRT, in a general coordinate {x"} the Einstein-Maxwell

theory postulates in vacuum the equations L1 still hold but with

n n

n,n
5 )

partial derivatives replaced by covariant derivatives and

Hvaf uvo
n 3 naB replaced by € 5 gaB
H — M H a
=V + v
Vi N ™
uv — MMV 4 M A ua .
Iy 3 = T A it a m T AaT , etc (4lh)

guvaB o (_g)—l/2 nuvaB

where the Christoffel symbols are defined by the metric guv of {xu}
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UA

u
o8 =8 Tylag

r

[

=~ |

T las =2 Bra,s * Brga = Bag,n) (45)

Then postulating the same for EM field in media gives

G“V_\) - _ g¥ (L6a)

Uy _

*F = 0 <> A F = A - A =A - A

(+F) 3V JA 2 Fu T A T Ay T AL T Ay
as macroscopic Maxwell-Einstein tensor equations for any frame {x
But now the observable EM field and current by observers {0} co-moving
in {x"} along {T: x* = fixed, x° = varying} are the locally mea-

(w)(v) L))

sured F , G y & on their {g(u)} , with equations L2b,d

and 43b no longer valid, but

0 - =i _5(3)
BN Q. i3 ne
p00 (V) o (@ 3 o _5(1)
g3 _z(2) o] .
(47)
§ gt _pi2) _p(3)
(1) (3) (2)
s (V) _ . 0 - f
ph2) A3 g (1)
Wk -y (1) 5
;0 (o, 7 72) 7030y

which enter the postulated covariant simple-formed tensor equations L6
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by using equation 15 such that the EM system is described by a set of
differential equations in {x"} which, in principle, can be integrated
to determine its global space-time evolution. The local constitutive
physics for a linear medium is just equatioh 24 in its co-moving frame
and equation 31 or 35 in any frame {x;3 , and the tensor formalism of
it is equation 36 or 37 where u 1is the h-velocity of the part of the
medium under consideration.

Now suppose a {x"} is the medium co-moving frame in order to

find the EM equations for observables in equation 47 of {0} in x"}

first, equations 16 and 17 or 19 imply for {0} in x"}

_ i
(g_(o))u = e(o)u = ;é::j—'(l,0,0,0)
e]6]
(20010 = %(o)y = = & (48)
H U /goo M
(Brayds Top13e = @

Then substituting equation 4T into 46 with equation 15 gives the local
Maxwell equations for {0} at rest with respect to the medium (Appen.

III) as follows:

J D
[Vg e ;) el (1) %(3) w)!,e
(e]e]
= g (2= + g e 10) (ha)
— (i)
gOO




3 B ijk o L _
[/'_ge (l) /g__ ],J == [‘/‘—g— nOl e(i) e(J) E<k)]’2 =0 (l#9C)
- 00
v oik% . (i)
e 1) S Byl,vm L8 ey’ “—‘—/1.3__ ] o (kod)
gOO
pidd €<i)(j) Ad ] ’ gldd K(i)(J) gl d (49e)

Physically in equation 46a the mix of local current density J into
charge density p and the presence of the curl-like term of g compen-
sate for the fact that the coordinate divergence of R is not taken
purely spatially; similar remarks apply to equations 49b,c,d. In fact,

if we express coordinate differential operators by local differential

operators through equation 11, the local flat equations

(u)(a)

3G (u)
= - J (50a)
55 @) -
(u)(a)
3(*F)
aem) (50b)
ax (%)

are valid in a small enough neighborhood only after the space-time

dependence of guv is neglected (Appen. III).

-

Wnen the {x"} has synchronous metric g,; =0 all *

(o)
(0)i (o)

e(o)i’ e 5 € 5 vanish, we can rescale time by letting goo

It
(=

and define 3-spatial operator Zx and Z' according to equation 49 3

V «D=p
N
9D
VeH= J+—=+aqa D
N ¥ N ot Ay n
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Ve«B = 0
V) V]
| 03
A RES N (52)
where
(3) e 55 k
o (i) & e = ()/-:Ee (i)),O

If this {x"} has even simpler 8.y £ functions of time, then equation
51 just reduces to the ordinary 3-vector equations 22, 23 in curvilinear

coordinates.

II1.3.2 Local Maxwell equations in frames not co-moving with

‘media. For {0} in a {x"} not medium-co-moving, all results obtained
in the previous section still hold only with {g(u)} replaced by
{E(E)} and equation 49e replaced by equation 31 or 32. The velocity for

instantaneous Lorentz transform from {0} to {0} is just

V(l) = u(l)/u(o). Although coordinate conditions (15, 20, 27) can be

imposed to {xa} to simplify the local equations 49a,b,c,d in it, in
general such a frame is not medium co-moving and the mixed constitutive
relations then make it difficult to decouple the equations. Also, the
physics is obscured because the relative motion of the coordinate-
conditioned frame with respect to the medium enters the equations. The

wave equations of potentials A: in any frame {Xu} expressed by the

uvap

constructed ¢ in a linear medium, from equation 46, are

U oMV OB,y

¢ = gle Aa,B);\) (52)
in which a gauge condition can be used on the divergence of A . For

the special case of a medium as equation 38 and a frame in which



Duu
— = 0 , then equation 52 becomes
Dx
Loamsv ool Vv H3B LM o (L )rBMWY
DliA +(u—e)u§1A hv+[uR +(U €)R udx]AA
= = [Ju + (g‘-—a) Hu JB] (53)
u B
where an invariant gauge condition of the form
1, 1_ v b b
S A v (u €) ugu A o 0 (54)

was used. The Ru\)OLB and RYY = RA“Av are the Riemann and Ricci cur-
vature tensors respectively (26, p.43). Equations 53 and 54 in the

Minkovski limit of inertial frames reduce to the equations T7-105,106

of Ref. 19.

IT.3.3 Lagrangian formulation of EM fields in media, boundary

conditions, local conservation laws, and energy momentum tensor. Whether

lossy or not, Maxwell equations 46 can be obtained from an invariant
integral as follows:

A. Lossless media. For a lossless linear medium

gHVeE o caBuv(Appen. V); then the Maxwell equations 46 can be obtained

from

SIEJZ/———g—dhx=O (55)

by varying only the EM potentials AU 3 in equation 55 the expressions

are

2 =X _ + £ +oiint+a@g

em matter

L - %;G“" F , G L b g

em uv of



-30-

&

int U

|
]
ey

0
2

Zg (55")

Xﬁmatter: for that of matter, except above,

with F = A - A serving as a definition of potentials, since
v v, U sV

equation 46b is valid with or without media. Thus equation 55 gives

6 J (£, +4 ) /g ax = 0 Pss )
or
" oy a"ﬁin“(: a‘72fem
g dx [—— A +——3 =0
J g d'x [—53 WA Ay ol (56D)
Now we have
3,
int. _ _ JH
0A
U
v L 3"Zfem % /-—~a¥€em s ag%m
J -8 4'x 53 GAU’V = J acr” [(V/-g =K GAU),V -(V-g e )’ GAU ]
HsV HsV HeV "V
* a‘I:em aaﬁ
. - ¢ * e em
= J as GAU(/"E = ),v-+§ dzv(/”é' 5 ) oA
H,yV HsV

(57)

in which the last integral vanishes because GAU = 0 at the initial and
final x° = const. 3=hypersurfaces and Au = 0 on the space-time

3-volume evaluated at spatial infinity; also Gauss' theorem

J ™V ar* = % oV g5®
sV Vv

\ \
: 3 (58)
az* = n 8 dxu ax Vv ax ¢ dx B = dhx if we choose coor-
e [o] [1] [2] [3] dinates as differ-

ential legs
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Thus, calculating

afB
afem ) 1 oG FOLB _ 1 [GW " oBuUV P GU\)
3A_ ¥ T T T2 ¢ (e
U,V H,V
equations 56 and 57 give
J Vo5 i [0 = o 0™y ] = @ (59)
v-g
which immediately implies media EM equation L46a.
B. Lossy media. In a lossy medium the above éi;m only picks
5z WY : . (u)(v)
up the part of G corresponding to the symmetric part of € 3

K(U)(V); the "antisymmetric'"part of ¢"Y  should be introduced by a
lossy term in the Lagrangian 2 to have the total GUV in the medium

EM equations. Fortunately, we can decompose

(1) _1,.(i) L)y o Ly (2} (i), (1) (i)
@z Tm e VR e T e W
(1) - L1(i) (1)) . 1, (1) (1)) . (i) (1)
Ky T2 ) TR D R ) Ky I T By
S A
(60)

or similarly decompose Euv . gHY by using equation 15, or equivalently

decompose

cMvaB o LoouvaB o aBuvy %(CuvaB _ OBV _ uvaB, (uva (60")

N

S A

. . v .
and associate all losses to the"antlsymmetrlc"part of g" which has
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the form (Appen. v)*

= L UV
dwloss T2 % GFuv
uv o uvagB
G =e Fog (61)
A A

Then the action principle in lossy media can be stated as

= f &% /g (L - W

loss

=0 (62)

where gﬁ is given by equation 55J.

Performing as before, from equation 62 we have

(@]
1]

J /:—g—dhx (gL = 8W, )

S8

i

TR TF o 1 L 1 v
V=g d x [+ - — (/ b = (V=g ¢"Y) ] aa (63)
J R A

and the vanishing of the integrand in the above square bracket gives

the required equations. From equation55' we have

Spﬁ_ u
Ey
M
B S g Lo SRS Ny Vo M A T Y
‘/:E BAU’\) sV ‘/':g— BAU,\) ‘E afB Y

S

V Vo
= oM B

=
jny
o
(2]
@
()]
g =
|

FaB

S S

* _uv . T8Y) :
G*v &r y has meaning only through G (5Fuv/dt)dt as energy density
u
A

loss at a fixed point in {(x"} during 6xo, thus the covariant form of

Gwloss does not mean energy loss is a scalar,
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then equation 63 gives

L

= (g "+ g etY) =0 (64)
A 3

=8 A S

which are the required equations L6a after rewriting them by using

identity

(Vg ™) =/ o+ /gt o (65)

sV sV U)\

Now the conservation of physical charge to {0} in any {x“}

is just rewriting Ju_u = 0y 1€y
p 0J (i) i (3)
% ety O =~ (e*,.\ J g 66
( & (1) );o ( L) );1 a5
€00
or in integral form
* X * a B
=g v= J a B~ a axY
g § 8 6% 4 ’ Z % Magy &, < (67a)
(11 [2] [3]
which, 1f taken between two x° = const. space-like 3—hypersurféces,
gives
vorel = 3 3 3 (1)
conserved = J g a°x J° = J V-g a°x ( + g% ©(1)3 skl
charge Vg J
fole)
= J /—det(gij5 0 d3x if {x"} time orthogonal (67p)

The boundary conditions at the interface of two different media
are obtained by integrating Maxwell equations over appropriate infini-
tesimal spatial and time-spatial 3-volumes and making use of Gauss'

theorem



=3

n |+

foomaf o [ s ot ()

Y M
Y
V2 3
If we choose a time orthogonal frame, the immediate results can be

expressed by local physical quantities for observers {0} in that

frame as (Appen.VI) their usual forms

n .((D-=-D) = g
n v} N
II I
n .. (B-B) = 0
o n LAV
II I
n +{(BE~8B) = 0
n n n
II I
n «(H-H) = k (69)
aV] V] n Y
ITI I

where n is unit normal of the intersurface pointing from medium II
to medium I and 0,% are the physical surface charge and current
densities on that surface to {0} . But equation 69 as a local
result then holds for any observer. So the boundary conditions of
the observable EM field for observers in any frame are given by equa-
tion 67, which is being anticipated since the geometry guv is con-
tinuous without abrupt changes and thus contributes nothing to local
limiting processes.

The energy momentum tensor of EM field in media (15) has meaning

only in a limited sense, since the EM field includes averaged
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interaction with media and is not a closed system. Physically,
extrapolation of static cases and intepretation of energy relation in

SRT to

D oB

g ° = ° o———’y- vo-——'\'
ve ExH=E-J+(E-—5p+H -

enable us to interpret l{% . R + % . E) as macroscopic EM energy

2
(o) (o)

density T in lossless time independent media (Appen.V).

Rewriting the relation as®

3_

wT =B -y B 5

N[+

3
(+B B: “ERgr g (T0)

XN

*%
leads w to identify E X g as EM field momentum density

(0)(1)

m _ (%X%)(i)

(71)

and the last term in equation TO as power stored in media to maintain a
fixed EM field during a change o media properties. Now an infinitesi-
mal displacement of the medium will give the force acted on it by EM

field, through

dfd3X-l—(H-B+E-D)=-Jd3Xf-6X (12)
2 'n n N N n n
which gives (Appen. VII)
£=pE+J % B + =1 (7K): BE— (Fe)eBE) +=2 (D x B) (73)
N n N o 2 vy AV e A 0T 'n ~

%
A1l 3-vector notations are done in 3-vector conventions.

*¥%¥By definition, a momentum density must associate with an energy flux

(3L).
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Now the form of T(O)(O), T

() (v)

components of a T

(0)(i)

can be written as the (o)(v)

(1—‘)(\)> = (0‘)(8) (7)4)

I
< Sy ryn ¥ G(a)(p)

Furthermore, if we compute T(l (3) of equation T4, we will
b

20 ()

obtain exactly the f of equation T3. Thus of form Th

meets the requirements of an energy momentum tensor for the EM field in

(o) (u) T(o)(u) (1)(3)

media in its meaning on T T only. Its
. ’ ,(u)? k3 ) J

non-symmetry just results from our forcing an energy momentum concept
to a non-closed system in which an arbitrary averaged interaction is
included in the EM field through e(l)(j), K(l)(J). In GRT, a use of

equation 15 immediately gives

A LV v _aB

wo_ 1
==-F G \ te

G (75)

F B

T

as a tensor. Other formal ways to obtain ™V are either by rear-

ranging terms in the explicit Lorentz force density or directly varying
" + ;ﬁ ; s .

the Lagrangian <Z;m Yt with respect to metric guv (Appen VIIT)

which lead either to equation 75 or its symmetrization; but the

@) o)) a1 o

9

physical significance is only in T ;
» (1 s (43

equation Th.
If we assume equation T5 for lossy media, since the anti-
symmetric part of ¢,K 1is cancelled out in equation TO, i §till

have the same interpretations as in the lossless case. But now we have
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Hv CaBYG V) caBYG F T

3V 0B YS aB Y85y
° A (76)

™ =Pt o+ g

i
! A 2 =

which means, in addition to an explicit Lorentz force and an averaged
conservative force to the medium, the EM field supplies another power-

force to the medium losses.

N I Discussions of EM theory in media in non-inertial

frames. For media in inertial frames the assumption of covariance of
R ’ % equations and their G"Y tensor and thus the whole formalism
actually does not assume any new law of macroscopic EM physics, even if
observed in an accelerated frame. The formalism is just a convenient
way to present the well-accepted rest-frame physics in equations 22, 23,
24 to other frames by using "Y' as an intermediate concept. But for a
medium in a non-inertial frame, equation 4ba is an additional assumption
on the behavior of the averaged medium-EM interactions even in the medium
co-moving frame. One reason for us to make this assumption is that the
so-formulated theory surely holds for non-inertial observers moving with
respect to a medium at an inertial frame; the principle of relativity (12)
then suggests this assumption.

The path of a charged particle free falling under EM and gravita-

tional forces, if we neglect collision in the medium, is still

u
Du™ _ HV
mg—= qF " u (77)

which also can be derived from a variational integral (Appen. IX)
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III. APPLICATIONS TO MEDIA MOTIONS IN SRT

ITTI.1 Medium in Linear Uniform Acceleration

In this section local EM field equations are first formulated
for general media in hyperbolic motion in a SRT space-time; then propa-
gation along the direction of acceleration in a simple medium is
studied in detail.

- %
IT1T.1.1 Formulations. Let {X“} be an inertial Minkovskian

frame. A uniform accelerational motion is described by

(cosh at - 1)

3
1
o |-

(sinh at) (1)

H
i
o |-

where a 1is the constant acceleration, <t 1is the proper time of the
accelerated point. If a medium is in uniform linear acceleration, its

co-moving frame can be described by an {x"} related to {X"} through

T = ;-sinh at
a
i
X = g(cosh at - 1) + x
Y = ¥y
7 (2)

* —_—
{x"} = {7,X,Y,2} - {x"} = {t,x,y,2z} in this section.
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u
¥ K: {x"}
b - §
K {x")
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Q\\\ o
—
X v=tanh at
Fig. 2a. Linear accelerated medium
X
s
_w¢ __.-{—oo

at t = 0 it begins to accelerate, whence the
propagation obeys a new law

Fig. 2b. EM-wave propagation in an accelerated simple medium
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where origins have been adjusted such that at t = 0 =T they have
zero relative velocity and {x“} is co-moving in the sense that each

point of fixed (xl) has X-uniform-accelerational motion

v = tanh at (3)

with respect to {X"} . The {xX"} metric Ly implies the metric

v . .
g 5 gu and the time orthogonal spatial metric Yij of {xM} as:

uv

1 -sinh at 0 0
- sinh at -1 0 0 —cosh2at 0 0
g e
# 0 0 <. 0].%,= 0 e 0
s i
0 0 0 -1 0 0 -1
1L 1 -sinh at 0 0
Hv cosh2at -sinh at -1 0 0
g =
0 0 -1 0
0 0 0 -1 (L)

This {x“} is just a convenient frame describing the medium métion and
it is neither synchronous nor static. However, t 1is the proper time
of a medium co-moving observer {0} . The observable value of a
tensor to {0} in {xu} on a conveniently coordinate transported
{g(u)} is obtained either by choosing {g(u)} 3 it is the instantane—

ous Lorentz transform of the {e(—ﬁ of K
—\u

=) T~ %o

e = ——;.__ ( + 4 h

=(1) cosh at '= T Sin e EO)
2(2) T %
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Space~time diagram of accelerated medium
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or by the tensor transform BXa/axB and instantaneous Lorentz transform

A () which are

cosat O @O 2 © menes [ O
= 8 cosh at
0X~ _ | sinh at 1 0 0 9x _ | -tanh at 1 0 0 (6)
e , —— =
axs 0 0 1 0 8 & 0 0 i 0
X
0 0 0 1 0 0 0 i1l
cosh at sinh at 0 0
5 sinh at cosh at 0 0
B sy = 0 0 10 (7)
0 0 0 1

because of the relation I-14. With these formulas the current Ju and

UV UV

field tensors F ,G in the medium-co-moving {x“} are connected to

their respective local physical quaﬁtities as

_at o w (d) ) (1)
™ --—%5 ¥y 9 or J" = e“(x) i
X
" x) 3% ) (2)
=> J = {p + tanh at J* ", e TR A ) (8)
v @ B () Ve v g(e)(8)
TS s T or % () (8)
ax” ox
=% 0 -:Eéfz—- —(E(y)+'tanh at B(Z)) —E(Z)+ tanh at B(y)
i cosh at
_glel 5(2)
- 0 cosh at cosh at
ol 5 _B(x)
2 (9)¥

- in the matrix means negative values of the upper-right elements of
the matrix.
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Similarly, we have

(x)

~D
0 —(D(y)+ tanh at H(Z)) ) tann at 1)
cosh at
. _H(Z) H(y)
cosh at ) cosh at
uv
G =
0 - g
0

(10)

The physical explanation of equations 8, 9, 10 can easily be seen from
the space-time diagram, Fig. 3.

Now in {x"} the only non-zero Christoffel symbols are

e}

" = a tanh at , T'! = a sech at, r = -a cosh at;
00 00 1]oo
thus Guv = —JU with equations 8 and 10 gives the local Maxwell equa-

3V

tions in the accelerated frame:

) 5 (x) (y), 3 _(2) 9 .(z) 3 (y)
————-——coshat—&-DX+—a—;Dy+5;DZ+tanhat[3;HZ-BZH ]
= p + J(X) tanh at (11a)
o (z) 8 . (y)_ (x), 28 . (x)
e A (11b)
5 . (x) 1 3 . (z) (z) 3 _(z)
EHX“_—_—coshat_aSZHz w BEE —tanhat-—aT_:HZ
= é—-D(y)+ J<y)+ a tanh at - D<y) (11c)




Al

18 (y) 3 .(x) (v) 2 &)
o o By B+ e+ tanh at . 5o H
= 3%D(z) i J(z)+ s tanh at * D(z) o

( 1 3 9 0 )

With a particular convention that Z = s seper il 5;3 37 and.
g% do not act on {§<i>} , then equation 11 can be written in the
3-vector form*
VeD+Ve(VxH) = p+V.J : (12a)
v N V] N L4V Y] 4V
VxH+axH+Vx—H=J+2D-vx(axD) (12vb)
N n VI no ot A N ot v VY
where 3-vectors are componented on {E{i)} and X = tanh at Sz}t
2 s a g(x> . Similar equations for (*F)uv.v = 0 are obtained just by
bl

replacing (Q, %) by (E,—%) and putting J =0 in equation 12, i.e.,

VB = V +VXxE (13a)
ny o n, V] ny

x 13) (13b)

The local form of the continuity equation Ju.u = 0 implied by equation
2

12 now reads

ct

I P P L I T (14)
n NN "N ot n 0T n N "

which as seen in Appen. IIT and Fig. 3 again shows the non-orthogonality

of the coordinate {x'} and the non-constancy of its metric. Also

*
Here all 3-notations are the 3-vector analysis ones, including X

and ¢ .
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quation 13b implies 13a.

In addition to equations 12 and 13, since {x'"} 1is the medium
o-moving frame, the constitutive relations are simply described by
quation II.24. The values of e(i)(j), K(i)(j) are determined locally
'or the medium by co-moving {0} just as if there is no acceleration,
hich, if neglecting the effect due to mechanical accelerational strain
n the medium, are simply equal to their values when the medium is in an
nertial frame. Equations 12, 13 and II.2L4 describe the local EM fields

n the co-moving {x"}

Now the electric and magnetic constitutive tensors in {xu} are

(0)(1), () n2at

(a)(B) sech at-tanh at-g(l)<l)

€

Vv _ M v _
) - (&Je (8)8 tanh at'e(2>(l)
tanh at °€(3)(1)
sech at - tanh at -e(l)<l) tanh at -e(l)(g) tanh at 'e(l)(B)
secheat-e(l>(l) sech at -e(l)(g) sech at -e(l)(3)
sech at.e(2)(l) 8(2)<2) €(2)(3)
sech at-e(3)(l) 6(3)(2) €(3)(3) s
k*Y = (same as equation 15 with e(a)(s) replaced by K(a)(s)) (16)
Then the KH;; EE;- in any {xﬁﬁ is simply obtained by tensor transform-

CuvaB

ing equations 15 and 16 into {x"} and thus is constructed

according to equation II.37 with u as the h-velocity of the medium.

a
In particular, for the inertial laboratory frame {X } , we have



wliBe

o

- o
9 X 1 o
o= ———'u“ = —— —— = (cosh at, sinh at, 0, 0) (17)
B o
90X Vgoo 90X

Then substituting equation 17 and KGB, saB into equation II.36 or II.37T

yYields the constitutive relations in the laboratory frame which, since
3 . *
8;; = nuv , directly gives

(1) (1)

€ (l) cosh at « ¢ (2)
(Di) = cosh at -€(2)<l) (coshQat '5(2)(2)— sinhgat °K(3)(3))
cosh at '5(3)(1) (coshgat'€(3)(2)+ sinhat -K(z)(B))
cosh at (l)(3)
(coshaat (2)<3)+ sinh2at K(3)(2)7 : (El) + sinh at.
(cosh2at (3)(3)- sinhzat K(g)(g))
(1) 1)
e ) & (2)
(3) (3) (2) (3) (2) e
Tw T @t e e (e B
(2) (2) (3) (2) (3)
£ Ky T )R 3 ()
(18)
and
() = 8y s x ) e R R an e 28)
(19)

®
Egqs. 18 and 19 can also be obtained by substituting instantaneous
Lorentz transform into equation II.37 and solving

Dl,Hl in the laboratory, because of equation II.1lk.
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Equations 18, 19, and the ordinary Maxwell equations II.22,23 describe

the EM field in the inertial laboratory {Xu} with respect to which
the medium is X-direction uniformly accelerated as equation 3.

The boundary conditions equation II.69 directly apply to
observable EM fields in the accelerated frame. If there are no local

surface charge and current, then the gquantities
n+D, n+*B, nxE, nxH (20)
Y L5V, v V] v V] Y N

are continuous across the boundary of different media. In particular,

if the boundary is perpendicular to the x-direction (2 || g(x)) 5

(z) L(y) ,(z)

then D(X), B(X), E(y), E s H , H are continuous; if the

boundary has its normal in the y-direction (2 || g(y)), then D(y),

B(y) E(X) E(Z) H(X) H(Z)

5 > N . are continuous.

ITI.1.2 Wave propagation in the co-moving frame along

direction of acceleration for simple medium. For a simple accelerated
mediumyin its co-moving frame the constitutive relation is equation

II.38. Then in the sourceless region equation 12 becomes

Ve E+3=V . (LxB) = 0 (21a)
" N HE n o N
\7xB+axB+Vx§——B=ue(§—E-Vx(axE)) (21b)
~ N N n N ot ot ~ N n

Consider now & plane-like wave propagating along the x-direction; the
medium homogeneity leads to the assumption that nothing is y,z depen-

dent. Then equations 13a and 2la become
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so E 5B = are spatial constants; but no source can produce a time
varying field which is spatially uniform, thus they are space-time con-
stants and we can put it to be O. Then the other Maxwell equations of

this transverse TEM wave are®

3 ) e ) ‘
(sech at -5 ta +tanh at 8t> i(x)><% = —(sznka tanh at) g (23a)

)

(sech at 2—-+an+tanh at :

3
= m = ue(at-+a tanh at) % (23b)

2m
]
X
o
I

Now for abbreviation define operators

_ _ ) )
2 =) (x) = i(x)(sech at ot at tanh at at)
_ )
Y = ng + a tanh at) (2k)

2 ad d 1
(o3} = i — —_——
[ ,V] a sech at (s1nh at 3 cosh at 3 - )

Rewrite equation 23

¢ xE=-19y3B

Y Y v

® X B = +ueyE (25)
v Y Y]

We see that g,w are the natural corresponding operators of Z, 7T in
an inertial frame. We thus solve the problem approximately with res-

pect to these operators. From equations 24 and 25 we have

(02mpey?) E=lo,9] g xB

%
See footnotes on p. 44 and convention in equations 12, £(y) same as e/,

except 3/3x" does not act on it and 3-vector convention is used.



e
(0%~ nev?) B = -uclo,p] e X E (26)

from which (@ + Yuey) will give the +x traveling wave and (o - Yuey)
will give the -x traveling wave. We solve equation 26 using the follow-
ing approximation scheme: First neglect the mixed effect corresponding-
to interaction of opposite traveling waves [?,y] on the right side of
equation 26 which is of order a and approaches to zero for large (at)
as secheat; obtaining this E,B as the first approximation, then put it
back into the right side of equation 2 and proceed to solve for the
next approximation, and so on. Now assume that when the medium is at

rest with respect to the laboratory at t = 0, a plane wave is propagat-

ing in the +x direction, i.e., E,B ~ ei(kx—mt) at t v 0 . Rewrite
LA VI V)

equation 26 as

(¢ - Yue p)(e + Yuey) E = [2,0] (~/ucE + & x B) (27a)

(¢ = vue 9)(® + Vuey) B = -vue [0,¥] (§+ uee, xig) (27b)

(y) .(z) o
Now neglect [¢,y], solve E or EV', E by substituting the
v

Fourier transform of E into equation 27Ta and breaking it into two
v

first order d.e.'s, thus

(¢ - Yue ) F(k,t) = 0 (28a)
(¢ + Vue v) E(k,t) = g(k,t) (28b)

where 3/3x 1is replaced by 1k in ¢ . Then their solutions are
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ik
_ a(cosh at - Vue sinh at)+ ik 4
sinh at - /¢ cosh at
(29a)
Flk,t) = o e
LAY ~
t
_ J a(cosh at + Yue sinh at) + ik s
0 sinh at + Vue cosh at
Blkt) = e [B +
N LY
J ac ik+a(cosh af +Ype sinh af)
t F(k,n) sinh a& + Yue cosh ag
" 0
+ J e dn
0 VYue + tanh an
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