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ABSTRACT 

In the first half of this thesis a local electrodynamics of 

media in given non-inertial frames~ within Maxwell-Einstein classical 

field theory, is constructed in terms of observable EM fields and 

co-moving local physical media parameters. Localization of tensors to 

observables is introduced and justified, and a relation is obtained 

connecting tensor transforms to instantaneous Lorentz transforms for 

observers in different frames. A constitutive tensor, explicitly 

expressed by the four-velocity and the local properties in co-moving 

frame of a linear medium, is found for the first time. Previous mis­

takes in confusing the tensors, in which forms the physical quantities 

combine with the non- flatness of frames to be used in covariant equa­

tions and thus make geometrical quantities, with observables . are 

cleared. Also a Lagrangian formulation for both lossless and lossy 

media is constructed, and boundary conditions, local conservation laws, 

and energy momentum tensor are obtained. 

The second half concerns application to motions in SRT, such 

as uniform linear (hyperbolic) acceleration and steady rotation. For 

these local Maxwell equations in co-moving frames are obtained, and 

approximate solutions are found for special cases. An EM wave 

propagat ing in the direction of acceleration is studied in the 

accelerating fr ame . The first order propagation shows a frequency 

shi~ and ampli t ude change which have very simple physical si gnifi­

cances of instantaneous Doppler shi~ and photon density in media 

* The contribution of EM field to is neglected. 



- iv-

and which agree with familiar results in the vacuum limit. A particle 

model for this wave shows that the "mass dressed" photon is dragged by 

the medium and does not follow a geodesic path. In the rotating medium 

case a plane wave scattered by a rotating sphere is solved by an inte­

gral iteration method in the laboratory frame. The scattered field 

purely associated to the rotation of the medium is separated from the 

Mie scattering. Its first order amplitudes are found and plotted for 

incidences perpendicular and parallel to the rotation axis. Particular 

synunetry and shapes of scattering amplitude in the results agree with 

intuition and resemble radiation patterns of ap~ropriately induced 

traveling electric and magnetic dipole sheaths. 
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I. INTRODUCTION 

The theory and ~pplication of electrodynamics of media in 

inertial and non-inertial motions are subject to the recent interest of 

many authors (1-6,10,11,13). The purpose of this thesis is to construct 

a local electrodynamics, within Maxwell-Einstein's classical field 

theory (7,12,14,18,27,36) directly in terms of the observable EM fields 

and the rest-frame physical constitutive properties of a medium in a 

non-inertial frame. This may be produced either by a non-inertial 

motion in SRT, or by the presence of a tidal gravitation. Then appli­

cation to simple problems in SRT is examined. 

For a simple medium moving with uniform velocity, Lee and Papas 

(l-3) recently found the time harmonic Green's function and showed 

that dipole radiation in it has a forward-tilted far-zone Poynting 

vector. The time-dependent Green's functions are obtained by·other 

workers (4,5). Many more studies (5,29,30) deal with different theo-

retical approaches and applications. The theory being used is 

Maxwell's theory and special relativity. 

For media in non-inertial frames less work has been done (6,10, 

11,13 ,25). Since macroscopic 11photons11 do not follow null paths nor 

geodesics in this case, in order to get any information of EM 

phenomena, we must start from Maxwell 's eQuations. Then two problems 

arise which were not encountered in the previous inertial motions. 

The first concerns the physically observable EM fields to observers in 

a non-inertial frame and how it enters into the postulated covariant 

eQuations which govern the EM field space-time evolution. The second 



-2-

concerns a covariant formalism of the macroscopic media constitutive 

relations, which can only be determined locally in the medirun co-moving 

frame and which should be constructed and built into the field equa-

tions. 

In the first concern, Einstein's tetrad physics (14,20,33) and 

covariant Maxwell equations in general relativity are used to obtain a 

relation of the form 

e 
[2] 

(6) 
s = (1) 

where A (a) = e 
(a) 

localizes the tensor components to be physi-

cally observable in a general frame. Equation 1 reduces the tensor 

transform to instantaneous Lorentz transform for observables of 

observers in different frames. It explicitly states the form in which 

physical observables, whose measurements locally in GRT are identical 

with that of SRT, combine with the non-inertialness of the frame 

and/or space-time to make the physics laws in a covariant form. This 

localized transform is important and very useful, especially when one 

is interested in the local physics, e.g., electrodynamics in media, 

for which general local Maxwell equations are obtained later. These 

equations also show the extent of the approximation in using the usual 

3-vector Maxwell equations for a neighborhood of non-inertial space-

time. 

In the second concern, based on a covariance assumption for 

medirun EM equations, a constitutive tensor expressed by the 4-velocity 

u and the rest-frame local properties 
(i) (i) 

E (j)'K (j) of linear medium 



-3-

is constructed for the first time, 

= ! K (* )µvy ( )aBo l[ a( vB µ "'\JB uv) 2 yo U *U + 2 U E U - ~ 

B( va \1 µa v)] - U E U - E U (2) 

such that 

Previous errors and confusions (6,10) in considering an example and not 

distinguishing physical observables from their tensors, and thus lead­

ing to misinterpretations of CµvaB as physical properties of media, 

are all cleared. With this covariant formalism to build the constitu-

tive parameters of media into EM theory, we also find the Lagrangian 

formulations for the lossless and lossy media, the boundary conditions, 

local conservation laws, and energy momentum tensor. 

In the latter half of this work applications to motions of 

media in SRT such as uniform linear (hyperbolic) acceleration and 

steady rotation are considered. For both cases exact loca l Maxwell 

equations in co-moving frames are found. In the rotational case the 

error in a previous work (11) is corrected. Then special problems are 

solved in detail. 

In a uniform linear-accelerated simple medium the EM wave 

propagating along the direction of acceleration is studied by co-moving 

observers. The first order solution gives two terms that correspond 

to traveling against and traveling with the apparent gravitation in 

that frame. A frequency shi~ and amplitude decrease (or increase) 

result ' for this first order propagation and have the simple meanings of 
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equivalent gravitational red (or blue) shift and instantaneous 

"photon" density. The coordinate phase velocity is time dependent. 

If we identify the instantaneous frequency and phase velocity of the 

wave as energy and velocity of the corresponding "mass-dressed" photon* 

(24), then the photon has a time-dependent mass and does not follow a 

geodesic. Physically it means photons are dragged by the non-inertial 

motion of the medium. 

In the rotational case a plane wave scattered by a rotating 

simple sphere is studied by using integral iteration method in the 

laboratory frame. The scattered field purely due to the rotation of 

the medium is separated from the Mie scattering (35) This is the 

only scattering, providing that the rotating medium is the same as 

its surrounding medium. The first order amplitude of this rotational 

scattered field is evaluated and plotted for incidences perp~ndicular 

and parallel to the axis of rotation. Particular symmetry and the 

shapes of scattering amplitude result; they agree with intuition and 

resemble the radiation patterns of appropriately induced traveling 

electric and magnetic dipole sheaths. 

Part II isihe general theory in which II.l introduces locali-

zation and equation 1 for frame co-moving observers; II. 2 constructs 

a formalism for the constitutive relations; II.3 derives local equa_ 

tions, least action formalism, and boundary conditions, and investi-

gates local conservation laws and energy momentum tensor. Part III 

* In media, even in an inertial frame, this identification is arbitrary 
and a ± sign is included in the definition of the dressed mass. Also 
it is obvious that the path is not null. 
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gives the application: III.l on linear accelerated medium and III.2 

on steady rotating medium. Appendices contain remarks and some 

derivations. Fundamental knowledge of GRT and tensor calculus is 

assumed and some references are given (15~23). Also geometrized 

unit is used in the text for convenience and A-1 shows conversion to 

mks units. 
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II. THEORY 

II.l Local Physical Tensors of Frame Co-Moving Observers and their 

Transforms 

From the principle of eQuivalence , local physical bases and 

their tensor components as corresponding physical observables are 

introduced (14,20,26,33). For co-moving observers in different frames 

physical bases reduce tensor transforms to instantaneous Lorentz trans-

forms. 

II.l . l Reviews and coordinate bases vectors. Consider a 

4-dimensional differentiable manifold 8
4 

labelled with permissible 

coordinate frame {xµ} * which represents a space-time continuum. An 

affine connected geometry is constructed in the following usual way (21-

23): Define parallel transport of vectors** by a set of affine numbers 

rµo.S , then define geodesic as a path generated by parallel transport 

define geometrical scalar distance ds
2 = between 

neighboring points by symmetric metric tensor g and define path of 
µv 

extreme length by 8 f ds = O; then identify the path of extreme length 

to geodesic. This so-constructed geometry is ident ifiEJd with phys ics 

space- time by the postulate that free-falling neutral particles follow 

, . *** a geoaesic 

* -If {xµ}, {xµ} are two coordinates of 84, then both xµ= xµ(xµ) and 

xµ = xµ( xµ) exist and are differentiable. Also, µ = 0 for time, and 

µ = i = 1,2 ,3 for space . Minkovskian signature ( + ,- ,- ,- ) and coordinate 

frame {xµ} = {xµ} are used. 

**Vectors and tensors defined in thei r usual transform senses. 

***This is possible because Etvos ' experiment showed fJ'h = fJ?1 t• 1 ; grav iner ia 
present accuracy , lo- 11. 
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·Now at a point P(xµ) the coordinate contravariant and 

· t b · t (A 2) { } and{~µ} of {xµ} covarian asis vec ors Ff· , ~ are defined by 

dx dxµ e 
µ 

- dx 
µ 

µ 
e µ = 0,1,2,3 (1) 

where dx 
µ 

thus and are infi nitesimal 

coordinate increments of xµ at P(xµ) The s cal ar l ength 

ds
2 = dx • dx = g dxµ dxv then i mplies the s cal ar p r oduct s of bas i s - µv 

vectors satisfy: 

e 
--µ 

. e 
-v 

µv = g 

1 

= 

Thus e is a vector with length lg 1
2 pointing in the coordinate 

--µ µµ 

(2) 

tangent direction of xµ for {xµ} . Compare eQ . 1 i n {xµ} to eQ. 1 , 

then , 

where {e - } , {ea} are basis vectors to {xµ } at the same poi nt P 
- a 

Similar to eQuation 1, now any vector fie l d V at P can be 

expressed as 

v - vµ e - v eµ 
--µ µ 

then eQuation 2 implies 

vµ = v . µ 
e v = v . e µ --µ 

* Notice that t he "µ" for basis vector labelling i s not a contra- or 

( 3) 

* 

( 4) 

( 5) 

a co- vari ant tensor components labelling; it onl y describes the coor­
dinate direction to which ~ is tangent. The super and subscript positions 
are used to keep sum convention and distinguish the two sets. 
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and equation 3 implies 

vf- = V­
a 

(6) 

Thus contra- and co-variant vectors are actually components of a vector 

on the respective coordinate basis as in equation 4. The above equa-

tions 4 - 6 apply to tensors of higher ranks with more indices written, 

e.g.' 

T = Tµva. e e e 
- -µ-v-a 

(7) 

II.1.2 Localization of tensor to observable on physical basis 

of frame co- moving observers. Consider a flat space- time (curvature 

te"'sor Kvo1.~= 0, no tidal gravitation) in which an inertial K frame 

with Cartesian coordinates {Xµ} such that g:-:-:-:- = n exists*; we 
µv µv 

can also describe this space-time by a {xµ} so its co-moving observers 

{O} with world lines {r} = {xi = const . , x 0 varies} are in a non-

inertial frame K . Now consider an 0 observer passing an inertial 

0 of K momentarily at P The equivalence principle states that in 

a small neighborhood of P the physics of 0 is identical to that of 

an instantaneously inertial co- moving O' with Minkovskian 
µ' 

{X } and 

{e ,} whose physics is related to 0 by a Lorentz transform. Thus a 
-µ 

vector dx observed by 0 as dxµ will be observed by 0 as 

* 
n­

µv - 1 

o ) Notice that the local spatial orthogonalization 
to time must be done for geometrical model to 

_
1 

coincide with physics; spatial orthogonality is 
just a convenient choice. 

Also, spatial normalization means length measured with the same unit 
of rule; time normalization means constancy of light propagation. 
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( 8) 

where 
)J r 

A - is a Lorentz transform using the relative instantaneous 
a 

ve locity a nd s pat ial axes orientation of O' to 0 . Thus equation 8 

provides a relation between the observed quantity 
( )J ) 

dx and the con-

travari ant components dxµ of a vector dx in {xµ} for its co- moving 

{O} . This applies to any vectors and tensors representing physical 

quantity; we call i t localization and define e(µ) by 
;\ 

e
(µ) ;\ 

;\ dx , 
( )J ) A(µ)_ axa (9) e ;\ -

a ai 

dxµ dx 
)J I 

e ,:: dx(µ) e = = dX ~( )J) -µ -µ 
From equations l and 2 we have 

t hen equation 9 implies 

~( )J) • ~(v) = 

e ( µ) e ( µ ) = 
;\ 

and 

where ~( )J) -

n)JV 

• e 
- ;\ 

= 

e I 
fl 

( v) 
~( µ) 

. e = 
I 

( µ) ;\ e ( µ) e = • e 
' 

;\ dx(a) 
e (a) 

and e I • e, I --µ - /\ 

0 
v 

)J 

;\ 

of 

(v) µv 
• e = n 

;\ 
= ~( µ) • e 

O' have been used. 

(10) 

(11) 

Thus we see that to physically observe or megsure a vector or tensor 

quantity by some {O} in a frame {xµ} is to observe its local 

components as equation 8 on a local Minkovskian basis {~(µ)}of {O} . 

But this local result also applies to {O} in K , thus we do not 
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need K to be inerti al , i.e., we do not need to be in a flat space-

time. In that case equation 9 becomes 

dx (µ) = e (µ)_ dx~ 
[ 2 J A 

(12) 

and equation 8 becomes 

/\ ( )1) - (~) 
(a) [~] B 

(13) 

or, with equation 11, 

(14) 

for arbitrary frames co- moving observers {O} {O} with physical 

tetrad basis { ~( ) } , { ~(-)} in {xµ} , {xµ} respectively ~ which 
[l] )1 [2] )1 

explicitly states measurements in GRT are locally identical with SRT, 

and localizes tensor transforms to instantaneous Lorentz transforms 

for observables of any tensor. Equation 14 is an important and very 

useful relation, especially when local physics is emphasized, e.g., 

electrodynamics in media. Analogous relations of equation 11 or 12 

hold for observations on any vector v or tensor T by {O} in 

{xµ} with {~(µ)} local physical basis 

Va= ea v(B) 
( B) 

(a) ( B) Tyo = e y e 6 
a B T(y)(6) 

= e (y) e (o) etc. (15) 

Fig. 1 graphically s ketches equation 14. 
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Localization 
.A 

[~](µ) 

Lorentz transform 

A
(µ) 

(a) 

r of o 

ax" 
tensor transform 

13 ax. 

Fi g .l A sketch representing equation 14. r, r are world lines . -
of 0,0 which are co-moving in {xµ},{xµ} respectively. 



-12-

To find for {O} , first, for a co-moving observer in 

{xµ} his proper time during a coordinate time lapse dt = dx0 is 

dT = ds = .;g-- dx
0 

, thus 
00 

!:.( 0) = 
1 

/goo 

e 
-0 

u (16) 

Then local time direction for {O} is the coordinate time direction 

there , only physically rescaled by 1 here is the 4-velocity u 
lg 

of 0 Since the locally pure spatia~0 {!:_( i ) } are orthogonal to 

!:.( 0) 
thus to e , and they are orthonormalized for conveni ence , thus 

-0 

within the restriction of equation 10 it follows that 

= O.N. {d. 
-'J.. 

goi 
_ e. - - - e } 

-'l. goo -o 
*(17) 

which are defined within a spatial rotation, and d. 
-'J.. 

are just time 

orthogonal triads. 

II.1.3 Coordinate transport of co- moving basis. Now equations 

16 and 17 specify {!:_(o)} but leave free the ways {O} can carry 

{!:_(i)} along their {r} . In order to have simple formalism for local 

physics , the medium- fixed observers shoul d also keep their {!:_(i)} as 

a whole not rotating with respect to the medium. Thus the simple 
·:Hf 

Fermi transport of {!:_(i)} which preserves {!:_(µ)} but fixes {e( i )} 

directions with respect to distant stars is not convenient. Later 

studies on motions in SRT reveal that for frame {xµ} with (Appendix 

II) 

* O.N. = orthonormal combinations of. 
**Appendix IV . 
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- d. 
-i 

• d 
-j 

Neighboring co-moving observers will not see each other's {;:_(i)} 

rotating if {;:_(i)} is carried along {r} of {O} by 

O.N. {n.} 
-i 

, with time independent coefficients and 
conditions (eq. 10) 

where n. are just the F~e~et-Serret normals to r * 
-i 

along r 
Dg_l 

al~+ Ds - a2~ 

D~ 
-1 - -a2g_l + a3g_3 n. . n. -Ds 

, 
-i -i 

(18) 

(19) 

(20) 

Thus the medium- co-moving-frame-attached observers should coordinate 

transport {;:_(i)} as equation 19, such as to have a locally non-rotating 

spatial triad with respect to the frame. By equation 14, the coeffi-

cients in equation 19 can be chosen to make { !:.( µ )} as the instant­

aneous Lorentz transform of the {;:_(µ)}of some frame {xµ} which has 

particular simple geometry , although it may not co-move with the medium. 

If in {xµ} equation 18 does not hold, the frame of the medium 

to which {xµ} co- moves is not "loc ally rigid", e.g. 

* a. are curvatures of r in n. directions. Also, equation20 
l -i 

implies 
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i u position dependent in the of -= case motion in SRT, \1 whe re u are 
0 u 

components in an inertial {X\1} of u of {O} in {x\1}, Then it is im-

possible to have any orthogonal {~(i)} for {O} which also hold 

un- rotated to their neighbors in {x\1} In this case we still coordi -

nate transport {~(i)} as eQuation 19 to keep it orthonormal and 

least local rotated. 

II.2 Electromagnetic Descriptions of Media as Tensors 

The formalism to enter the phenomenological media properties into 

EM theory is thoroughly investigated and a constitutive tensor expressed 

on the 4-velocity and rest-frame local physical parameters of a linear 

medium is constructed for the first time. 

II.2.1 Physical constitutive relations . Splitting the interac-

tion - J\1 A between EM field and microscopic charge- current of matter 
]l 

into one part for the macroscopic neutral medium and the other part for 

free net charges, and then averaging each spatially (8,28) gives the 

macroscopic: medium EM field D , H and explicit charge- current (p,J) 
~ ~ ~ 

as a result. This procedure averages the inertial frame vacuum Maxwell 

eQuations 

I/ • E = p 
~ 

into the medium eQuations 

and leaves 

I/ • D 
~ 

= p 

I/ x B = J + _a_ E 
""' ~ ~ aT ~ 

I/ x H 
~ 

=J+LD 
~ aT ~ 

(21) 

(22) 
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'V x E 
~ '\, 

(23) 

the same form for both cases, with the understanding that all quanti-

ties in the media equations are macroscopic ones. Now the dependence 

of D , H on E B * for most media at rest and over particular ranges 
'\, '\, '\, , '\, 

of fields E , B can be characterized by linear relations with con-

st ants (i) K(i) 
E: (j)' (j) 

** 

(i) E(j) 
E: ( j ) 

K(i) B(j) 
( j ) 

(24) 

which are the so-called constitutive relations that actually approximate 

( i) 
the medium's response to the EM field to the first order. The E: ( j ) , 

K(i) 
( j ) 

are the constitutive parameters which can only be obtained 

by experiments or detailed microscopic consideration of the medium. 

Since only when an observer has no motion with respect to the medium 

can he obtain the intrinsic properties of it, and in general the form 

equation 24 holds only for media at rest, so physically the medium 

co-moving frame is the natural frame to start its EM investigation and 

(i) (i) 
E: (j)' K (j) in that frame is the only set of numbers that 

describes the EM properties of a linear medium. 

* These 3-vector symbols 

fields with components 
similar remarks apply to 

E ,B,D,H only stand for local observable 
'\, 'Y '\, '\, 
(E\l), E(2), E(3)) throughout this work; 
other 3-vectors. 

EM 

**This particular way of writing indices is just to keep up with the 
sum convention. 
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For a medium in a non-inertial frame, the observer {O} 

attached to it can still locally perform his experiment or theoretical 

considerations in his neighborhood, and since local physics is not 

affected by the presence of an equivalent gr a vi tat ion, { 0} can 

determine the constitutive parameters locally for the medium in equa-

tion 24 as if he were in an inertial frame. Now the EM field observed 

by {O} is the physical field at his location (xi), and it is these 

co-moving physical constitutive parameters he so obtained as equation 

24 that we should use as a basis to formulate a tensor for media 

properties. 

Notice that equation 24 can be rewritten in terms of electric 

and magnetic polarization p 
'\, 

D = E + P 

H = B 
'\, '\, 

M 
'\, 

and M 
'\, 

as 

(25) 

which is equivalent to equation 24. But equation 24 is much simpler in 

general formulation and provides a clearer physics, so we adopt it. 

II.2.2 Tensor reuresentation of linear media. With the 

principle of covariance of physics laws, the covariance of E , B 
'\, '\, 

Maxwell equations implies a vacuum EM tensor Fµv . Now that we postu-

late the covariance of the D , H Maxwell equations implies a media 
'\, '\, 

EM tensor* Gµv But in a non-Minkovskian frame {xµ} , as explained 

in Chapter II,l, the physical observable EM fields to any observer {O} 

* See Chapter II.3 
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are not 
)1\! )1\! 

F , G , but 

Now consider a ·medium co-moving in {xll} , then equation 24 is 

which, since u(;\) = (1,0,0,0) for {O} , can be written as 

G(i)(v) = ( i) F(j ) (v) u 

{ u(v) E: ( j ) ( \)) 

( *G ) ( i ) ( v ) u ( v ) K( i) F(j)(v) = u(v) ( j ) 

Now expand equation 26 to a 4-local tensor form by defining some 

( ).J) 
K ( v) 3 

G(µ)(v) 

\ ( *G) ( µ )( v) 

(µ) F(A)(v) 
= E: (A) u(v) 

= K(µ) F(A)(v) 
(A) u(v) 

(26) 

( )1 ) 

E: ( \)) 

(27) 

What is E:(µ) (v)' K(µ)(v) ? Since equation 27 must contain equation 26 

we have the pure spatial parts of 
( )1 ) 

E: (v) and identically 

** As a trivial exarr~le, the FllV in a Cartesian coordinate transformed 

into a cylindrical coordinate {xll} by tensor transform yields Fµv , 

we see immediately that 
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equal to thep-iysical constitutive parameters 
( i) 

E: ( j ) and K( i) 
( j ) 

defined in equation 24. Now µ = 0 in equation 27 implies 

( 0) 
E: ( i ) - 0 

K(o) 
( i) - ·O (28) 

Also, since we know that all physics is contained in (i) K(i) 
E: (j)' (j) 

and equation 26 implies E:(i) K(i) play no role at all in 
(o)' (o) -

physics, we can assign arbitrary values to them; for simplicity 

( i) 
E: (o) - 0 

K(i) 0 
( 0) - (29) 

Now whatever 
(o) 

E: (o) is, physics is not altered. In order to have 

simple notations for local isotropic media 

K(µ) = Koµ and treat all spatial directions with simple symmetric ( \)) \) 

footing in their time participations, we put 

( 0) 
E: ( 0) 

1 ( (1) + (2) + (3) ) 
- 3 E: (1) E: (2) E: (3) 

K(o) 
(o) 

_ 1 (K(l) + K(2) K(3) ) 
3 (1) (2)+ (3) (30) 

Thus equation 27 provides a local tensorial description of the mediillll in 

its co-moving frame, with (µ) K(µ) 
E: (v)' (v) given by equations 24, 28, 

29, and 30 in terms of physical, measurable, media parameters. 
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Since local tensors between observers of different frames are 

instantaneous Lorentz transform related, from equation 27 it follows 

that if in any {xµ} we define s(il") - K(µ) -
(v)' (v) to be the instantane-

ous Lorentz transform of s(µ) (v)' K(µ) (v) from 

{~(;)} of {O} , then 

(µ) F(\) (v) 
€ (\) u(v) 

K(µ) - (*F) (\) (v) 
(A) u(v) 

are the ]:hysical constitutive relations in any {xµ} , where 

the 4-velocity u of {O} observed by {o} . 
Now that equation 31 in general is mixed coupled in 

E,B , we want to construct a physical tensor formula 3 
'\, '\, 

G(µ)(v) _ C(µ)(v)(a)(S) F 
- (a)(S) 

u(v) 

D,H to 
'\, '\, 

which gives D,H directly in terms of E,B in {xµ} and thus in 
'\, '\, '\, '\, 

I t .... c(µ)(v)(a)(S) f' t n cons ruc~ing , irs we know that 

( 31) 

is 

(32) 

(µ) 
s (A) 

K(µ) (A) contain all physics for media at rest; for moving media the 

only additional physics is its velocity u . Also c(µ)(v)(a)(S) for 

linear media. should be independent of field intensities, thus it should 

be made of ~' ~' ~ . 

Comparing equation 32 with equation 27 in the medium co-moving 

{xµ} reveals 
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1 (i)(j) 
= 2 £ 

1 
2K(i)(j) 

all other components 0 

oik9, 
n 

mnoj 
n 

where nµva 6 = 1 if n(µva6) =even n(Ol23), -1 if n(µva6) = 

odd n(Ol23), and 0 if neither of previous cases; and the symmetric 

parts of C(µ)(v)(a)( 6) in (µ-:_ v) , (a:_ 6) which enter into no 

physics has been set at 0 . Thus we have 

c(o)(i)(o)(j) = l E(i)(j) 
2 

(o) (o) 
u u 

(C(µ)(v)(a)(6)) 
~-part 

"'1 (v)(6) (µ) (a) 
- E U U 
2 

antisymmetrizing w.r.t. 

(µ"tv), (a 1- 6) 

Similarly, 

(33) 

c(k)(i)(m)(n) in ( 33 ) --7 (C(µ)(v)(a)(6)) "'-1 oiµv a6oj 
[ part 2 K ( i ) ( j ) n n 

locate index 0 

( C ( µ ) ( v ) ( a ) ( 6 ) ) = + 1 K ( *u ) ( µ ) ( v ) ( Y ) ( * ) ( a ) ( 6 ) ( 6 ) 
[ part 2 ( y ) ( 6 ) u 

( 34b) 

Thus for {O} we have constructed for equation 32 
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C(µ)(v)(a)(B) = ~ K(y)·(o) (*u)(µ)(v)(y)(*u)(a)(B)(6) 

+ l[(E(v)(B)u(µ) - E(µ)(B)u(v)) u(a) - (a1- B)] (35) 
2 

which, being a local tensor expression, is valid for {O} in any {xµ} 

with all indices "-" (barred) as the instantaneous Lorentz transform 

of eQuation 35. The proof of validity of eQuation 35 is straightforward 

by using eQuation 27. 

Either eQuation 27 or eQuations 32 and 35 provide a complete 

* local tensorial description for linear media. The corresponding tensors 

(global tensors) are obtained simply by de-localization with eQuation 

15, thus in {xµ} we have 

(36) 

or 

Gµv µvaB F f = c aB 

L c µ va B = 1 K ( ) µ vy ( ) a B 6 + l [ a ( v B µ µ B v ) 2 YO *U *U 2 U E U - E U 

B( va µ µa uv)] 
- U E U - E (37) 

where {ea(µ)} of {O} is used to de-localize. In any {xµ} the 

"indices barred" eQui valent of eQuations 36 and 37 is obtained by tensor 

transform of eQuations 36 and 37 from {xµ} to {xµ} , or by d~-

localization of eQuation 31 and the local "barred" eQuations 32 and 35 

in that frame {xµ} itself, i.e., using eQuation 14. 

* Appendix X 
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As special cases, if we consider a co-moving-local-isotropic 

medium 3 in the rest frame 

K(µ) = 
(v) KcY 

\) 

( jJ ) 

s (v) = E: 

then equations 36 and 37 take the respective simple forms 

c jJ \) 

a.B = 1 
2µ 

(38) 

( 39) 

u -
B 

*(40) 

in any frame; which for vacuum µ=l=s yields 

thus Gµv = Fµv follows independent of the observers frame. For loss-

less media the s(µ)(v), K(µ)(v), and thus JJ v KJJ v 
E: ' are symmetric 

(Appen. V), then Cµva.B is symmetric with respect to (µv) t (a.B) 

All losses in a lossy medium are due to the antisymmetric part of 

jJ \) 
E: KJJ v, or the (µv) -+ 

+- (a. B) antisymmetric part of µ va. B c . 

Thus we construct a tensor formalism to enter the local consti-

tutive properties of linear media into EM theory. No pure theoretical 

parameters are involved. Equation 27 or 35 tells the constitutive 

physics directly . Equation 36 or 37 tells the form the physics combine 

with frame and/or space-time non-inertialness to enter global tensor 

* 1 µ _ K here as permeability constant should not cause any confusion 

with the µ- index. 
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formalism in EMT; any direct interpretation to the elements of this 

µvaB 
c as intrinsic physical properties of the medium is wrong. Al l 

the above result from the postulations of the covariance of macroscopic 

Maxwell equations in media. 

II . 3 General Formalism of Local Electrod.ynamics in Media 

Maxwell- Einstein equations in thei r l ocal forms are found in the 

medium co- moving frame and arb i trary frames. A least action pr incipl e 

is constructed for l oss l ess and l ossy medi a , and boundary conditions 

and loc a l conservation laws are obtai ned. 

II.3 . 1 Local Maxwell equations in medium co- moving frame. If 

i n an inertial frame {Xµ} = {T,X,Y , Z} , t hen equations 21 and 23 can 

be rewritten as 

(4la) 

+-+ F = A 
µv v , µ 

A 
µ ) \) 

(4lb) 

where 

d 
- (42a) 

) \) ClX v 

Jµ x Jy Jz) - ( p ,J ) ) ( 42b) 

(*F)µv 1 µvaB F - 2 n aB 
(42c) 

0 -~ - Ey - Ez 

Ez 0 - Bz +By 
Fµv -

Ey BZ - BX 0 
(42d ) 

Ez -By BX 0 

The SRT covariance of physical laws postulates that Maxwell equations 
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in vacuum in the form of equations 41 and 42 holds for all inertial 

frames and implies that are Lorentz tensors. Now in a medium, 

we postulate the above for the macroscopic EM f i elds, then equations 

22 and 23 still result in the same forms except that equation 4la is 

r eplaced by 

( 43a) 

0 - DX -Dy - Dz 

DX 0 -Hz Hy 
Gµv -

Dy Hz _If 
( 43b) 

0 

Dz -Hy If 0 

Equations 4lb - 43 are SRT Maxwell equations in media, with equation 

36 or 37 for linear media . 

Now in GRT, in a general coordinate {xµ} the Einstein- Maxwell 

theory postulates in vacuum the equations 41 still hold but with 

fl, fl partial derivatives replaced by 

µvaB 
n J naB replaced by 

vµ - vµ + rµ Va 
;\ ,\ \a 

Tµv - Tµv + rµ Tav + 
; \ ,A. A.a 

µvaB (-g)-1/2 µvaB 
E: - n 

fl • 11 

' 
covariant derivatives and 

rv Tf.la 
A.a ' etc. 

where the Christoffel symbols are defined by the metric of 

(44) 
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rAlaB (45) 

Then postulating the same for EM field in media gives 

(46a) 

A A ::: A A 
\); µ µ; \) \) 'µ µ '\) 

( 46b) 

as macroscopic Maxwell-Einstein tensor eq_uations for any frame {xµ} 

But now the observable EM field and current by observers {O} co-moving 

µ i 0 in {x } along { r: x = fixed, x = varying} are the locally mea-

s , F(µ)(v) G(µ)(v) J(µ) ureQ , , on their {~( µ)} , with eq_uations 42b ,d 

and 43b no longer valid, but 

0 -E(l) -E(2) -E(3) 

F(µ)(v) 
E(l) 0 -B(3) B(2) 

= E(2) B(3) -B(l) 0 

E(3) -B(2) B(l) 0 

(47) 

0 -D(l) -D(2) -D(3) 

G(µ)(v) 
D(l) 0 -H(3) H(2) 

= D(2) H(3) -H(l) 0 

D(3) -H(2) H(l) 0 

J ( µ) = (p' J(l)' J(2)' J(3)) 

which enter the postulated covariant simple-formed tensor eq_uations 46 
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by using equation 15 such that the EM system is described by a set of 

differential equations in {xµ} which, in principle, can be integrated 

to determine its global space- time evolution. The local constitutive 

physics for a linear medium is just equation 24 in its co-moving frame 

and equation 31 or 35 in any frame {xµ} , and the tensor formalism of 

it is equation 36 or 37 where u is the 4- velocity of the part of the 

medium under conside r ation. 

Now suppose a {xµ} is the medium co- moving frame in order to 

f i nd the EM equations for observables in equation 47 of {O } in {xµ} 

first, equations 16 and 17 or 19 imply for {O} i n {xµ} 

(~( 0)) µ 
µ 1 

(1,0,0,0) - e(o) 
:: 

r;;-
goo 

(~( 0)) µ 
1 (48) - e(o)µ 

:: goµ 
/goo 

(e(.)) - e(i)o 
:: 0 

-i 0 

Then substituting equation 47 into 46 with equation 15 gives the local 

Maxwell equations for {O} at rest with respect to the medium (Appen. 

III) as follows : 

:: ;:::;; ( p + J(i) 0) 
- g e(i) 

/goo 
(49a) 

( i) j 
;::g J e(i) 

( 49b) 



B ( i) 
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[ r-- oijk o fl ] 
v-g n e ( i ) e ( j ) E ( k) , fl = 0 

Physically in eQuation 46a the mix of local current density 

charge density p and the presence of the curl-like term of 

(49c) 

(49d) 

(49e) 

J into 
'\, 

H compen­
rv 

sate for the fact that the coordinate divergence of D is not taken 
'\, 

purely spatially; similar remarks app ly to eQuations 49b,c,d. In fact, 

if we express coordinate differential operators by local differential 

operators through eQuat ion 11, the local flat eQuations 

( 50 a) 

0 ( 50b) 

are valid in a small enough neighborhood only after the space-time 

dependence of gj.l \) i s neglected (Appen. III). 

When the {xJ.l} has synchronous metric - 0 all 

e(o)i' e 
(o)i 

e 
( 0) 

i 
vanish, we can rescale time by letting - 1 

and define 3-spatial operator 'i/x 
'\, 

and according to eQuation 49 3 

ClD 
+~+ Ct 

Clt F\i 
D 
'\, 
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l 
'\/ . B = 0 
'V 'V 

ClB 
'\/ x E 

'V 
B = - at - a . 

'V 'V % 'V 
(51) 

where 

If this {xµ} has even simpler gµv t functions of time, then equation 

51 just reduces to the ordinary 3-vector equations 22, 23 in curvilinear 

coordinates. 

II . 3.2 Local Maxwell equations in frames not co- moving with 

media. For {O} in a {xµ} not medium- co-moving, all results obtained 

in the previous section still hold only with {~(µ)} replaced by 

{~(µ)} and equat ion 49e replaced by equation 31 or 32. The velocity for 

instantaneous Lorentz transform from {O} to {O} is just 

V(i) _= u(i)/u(o). ( ) Although coordinate conditions 15, 20, 27 can be 

imposed to {xµ} to simplify the local equations 49a,b,c,d in it , in 

general such a frame is not medium co-moving and the mixed constitutive 

relations then make it diffi cult to decouple the equations. Al so, the 

physics is obscured because the relative mot i on of the coordinate-

condit i oned frame with respect to the medi um enters the equat i ons. The 

wave equat i ons of potentials A- in any frame 
µ 

expressed by the 

µvaS 4 constructed c in a linear medium, from equat i on 6, are 

= 2(cµ v a 8 A- ·- ) -
a' 8 ; v 

( 52) 

in which a gauge condition can be used on the divergence of A . For 

the special case of a medium as equation 38 and a frame in which 
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\1 
DuA = 0 , then equation 52 becomes 
Dx 

where an invariant gauge condition of the form 

(53) 

(54) 

was used. The Rµv = R \JA v 
A. 

are the Riemann and Ricci cur-

vature tensors respectively (26, p.43). Equations 53 and 54 in the 

Minkovski limit of inertial frames reduce to the equations 7-105,106 

of Ref. 19. 

II.3.3 Lagrangian formulation of EM fields in media, boundary 

conditions, local conservation laws, and energy momentum tensor. Whether 

lossy or not, Maxwell equations 46 can be obtained from an invariant 

integral as follows: 

A. Lossless media. For a lossless linear medium 

cµvaB = caBµv(Appen. V); then the Maxwell equations 46 can be obtained 

from 

by varying only the EM potentials 

are 

A 
\1 

(55) 

in eq~ation 55 the expressions 

- ;t_ + £ + £.i. nt + of:._,g em matter 

L em G µ v µ va B F 
= c aB 
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= ( 55' ) 

/, · for that of matter, except above, matter· 

with F = A - A serving as a definition of potentials, since 
µv v,µ µ,v 

equation 46b is valid with or without media . Thus equation 55 gives 

0 f (£, + ..C. ) r-g d4x = 0 em int ( 56a) 

or 

f Cg d4x 
a.e. t ax 

[ in CA + 
em CA ] = o 

ClA µ ClA µ '\) µ µ '\) 
( 56b) 

Now we have 

aL 
int . - Jµ = 'dA 

µ 

I l-g d4x 
a£ 

= f 
a£ em 

CA dl:* [ ( ;::g em 
ClA µ '\) ClA 

µ ' \) µ '\) 

acf.. 
CA ) -(/:g~) CA 

µ ,v ClA , µ 
µ,v v 

aL aol 
= - J dl:* CAµ ( /:g ClA em)' v + f dl:: (/::g A em) CAµ 

µ,v µ,v 
(57) 

in which the las t integral vanishes because oA - 0 at the initial and 
µ 

final x0 = const. 3- hypersurfaces and A - 0 µ 
on the space-time 

3- vol ume evaluated at spatial infinity; also Gauss ' theorem 

dx \) dx a 

[l] [ 2 J 

( 58) 

if we choose coor­
dinates as differ­
ential legs 
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Thus, calculating 

d ;{ 
em - -'dA . 

)l '\) 

equations 56 and 57 give 

( 59) 

which immediately implies media EM equation 46a. 

B. Lossy media. In a lossy medium the above L only picks 
em 

v (µ)(v) 
up the part of G Jl corresponding to the symmetric part of £ , 

K( Jl )( v); the 11 antisymmetric"part of Gµ v should be introduced by a 

lossy term in the Lagrangian 3 to have the total Gµv in the medium 

EM equations. Fortunately, we can decompose 

( i) 
£ ( j ) 

l ( (i) + (i) l (i) (i) - (i) (i) 
- 2 £ { j ) £ ( j ) ) + 2( £ ( j )- £ ( j ) ) = ~ ( j ) + ~ ( j ) 

K( i) 
( j ) 

- l( K ( i ) + K ( i ) ) + l( K ( i ) - K ( i ) ) 
2 (j) (j) 2 (j) (j) K

( i) K( i) 
- (j)+ (j) 

S A 

(60) 

or similarly decompose sµv , Kµv by using equation 15, or equivalently 

decompose 

cµva B = ~(cµvaB + ca Bµv ) + ~(cµvaB _ caBµv) _ cµvaB+ cµvaB ( 60 I ) 

S A 

· th 11 t· t · 11 t of Gµv and associate all losses to e an isymme ric par which has 
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the form (Appen . . v)* 

6W = 1. Gµv 6F 
loss 2 A µv 

µvaS 
- c Fas (61) 

A A 

Then the action principle in lossy media can be stated as 

6I :: 6 J (62) 

where 1., is given by eq_uation 55·'. 

Performing as before, from eq_uation 62 we have 

J 
4 (o L - 6W

1 
) 0 = ;:g d x 

oss 

J 
4 [a/., - 1 ( ;:g aL) _l_ (/:"iGµv) J = cg d x 6A ( 63 ) ClA r-g ClA ;:::; ,v }.! µ }.! 'v ,v - g A 

and the vanishing of the integrand in the above sq_uare bracket gives 

the req_uired eq_uations. From eq_uation 55' we have 

* 

a L --= 
ClA µ 

1 ;:-;; a£, 
( - g ClA ) v 

l::g µ,v ' 
_l_ [ ~g _a - (- ~ cflS F ) ] 
r-- ClA 4 aS , v v-g µ,v s 

where µvaS 
- c Fas 

s s 

Gµv 6F has meaning only through Gµv(6F /6t)6t as energy density 
A µv A µv 

loss at a fixed point in {xll} during 6x0
, thus the covariant form of 

6W does not mean energy loss is a scalar. 
loss 
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then equation 63 gives 

-J).l - 1 (./::gGµv + ./-iGµv) = 0 ( 64) 
r-g ' \) 

A s 

which are the required equations 46a after rewriting them by using 

identity 

(65) 

Now the conservation of physical charge to {O} in any {xµ} 

is just rewriting J µ = 0, i· e . . ' 
; )1 

oj ( i) 
(-P- + g e (i )j J ) ;o 

/goo 

or in integral form 

0 = 1 * dI: /.. - dx 8 

[2] 
dx Y 

[ 3] 

(66) 

(67a) 

which, if taken between two 0 x = const. space-like 3-hypersurfaces, 

gives 

total 
conserved 

charge 
= J 

r- 3 0 v-g d x J J 
3 . (i) = vCgd X (-p-+ gOJ e(i)j J ) 

/goo 

= J /-det(g .. ) p d3x if {xµ} time orthogonal 
1. J 

( 67b) 

The boundary conditions .at the interfac'e of two different media 

are obtained by integrating Maxwell equations over appropriate infini -

tesimal spatial and time - spatial 3-volurnes and making use of Gauss' 

theorem 
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If we choose a time orthogonal frame, the immediate results can be 

expressed by local physical quantities for observers {O} in that 

frame as (Appen.VI) their usual forms 

n 
'V 

L 

r 
'V 

(D - D) 
'V 'V 

II I 

(B - B) 
'V 'V 

II I 

(E - E) 
'V '\, 

II I 

(H - H) 
'V 'V 

II I 

= 0 

= 0 

= 0 

= k 
'V 

(68) 

(69) 

where n is unit normal of the intersurface pointing from medium II 
'V 

to medium I and 0,k are the physical surface charge and current 
'\, 

densities on that surface to {O} But equation 69 as a local 

result then holds for any observer. So the boundary conditions of 

the observable EM field for observers in any frame are given by equa-

tion 67, which is being anticipated since the geometry g \J \) is con-

tinuous without abrupt changes and thus contributes nothing to local 

limiting processes. 

The energy momentum tensor of EM field in media (15) has meaning 

only in a limited sense, since the EM field includes averaged 
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interaction with media and is not a closed system. Physically, 

extrapolation of static cases andintepretation of energy relation in 

SRT to 

aD aB 
·-v . 

"\, 
(E x H) = E • J + (E • _.'.l.!. + 

aT ~ • a~) 
"\, "\, "\, "\, "\, 

enable us to interpret l(E · D + B • H) 
2'V "\, 'V 'V 

as macroscopic EM energy 

density T(o)(o) in lossless time independent media (Appen.v). 

Rewriting the relation as* 

L T(o)(o) = 
aT 

-E . J 
'V 'V 

leads lB to identify E x H 
'V 'V 

1 a a 
\J • ( E x H) + -

2 
( + B B: -;;-T K - E E: "T t.:) 

rv 'V 'V 'V'V o ~ 'U'Vo % 

** 
as EM field momentum density 

T(o)(i) = (Ex H)(i) 
'V 'V 

(70) 

(71) 

and the last term in e~uation 70 as power stored in media to maintain a 

fixed EM fie ld during a changed' media properties. Now an infinitesi-

mal displacement of the medium will give the force acted on it by EM 

field, through 

8 J d3X l (H • B + E • D) = - I d3X f . ox 2 'V "\, 'V "\, 'V 'V 
(72) 

which gives (Appen. VII) 

f = e E + J x B + l ( ( llK) : BE- (llE:):EE) . a ( D x B) +-
'V 'V "\, 'V 2 "\,~ 'V "\, "\,~ 'V 'V aT "\, 'V 

(73) 

* All 3-vector notations are done in 3-vector conventions. 

**By definition, a momentum density must associate with an energy flux 
( 34). 
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Now the form of T(o)(o) T(o)(i) 
' can be written as the (o)(v) 

components of a T(µ)(v) 

T(µ)(v) ::: - F(µ)(\) G(v)(') + 1
4 

n(µ)(v) F(a)(S) G (74) 
I\ (a)(S) 

Furthermore, if we compute T(i)(j) 
' ( j ) 

of equation 74, we will 

obtain exactly the f, of equation 73, Thus of form 74 

meets the requirements of an energy momentum tensor for the EM field in 

media in its meaning on T(o)(µ) T(o)(µ) T(i)(j) 
' ,(11)' (•) .... ' J 

only. Its 

non-symmetry just results from our forcing an energy momentum concept 

to a non-closed system in which an arbitrary averaged interaction is 

included in the EM field through €(i)(j), K(i)(j). In GRT, a use of 

equation 15 immediately gives 

(75) 

as a tensor. Other formal ways to obtain Tµv are either by rear-

ranging terms in the explicit Lorentz force density or directly varying 

the Lagrangian i + ~ t with respect to metric g11 v (Appen. VIII) 
em in .... 

which lead either to equation 75 or its symmetrization; but the 

physical significance is only in T(o)(µ), T(o)(µ) ,(µ)' T(i)(j) ,(j) of 

equation 74. 

If we assume equation 75 for lossy media, since the anti-

symmetric part of £,~ is cancelled out in eQuation 70, T
0

µ still 

have the same interpretations as in the lossless case. But now we have 
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FµA J l µv aSYo l µv a 0 Yo = +-
4

g c FF g cµ FF 
A ;v aBYo-2 aSYo;v 

s A (76) 

which means, in addition to an explicit Lorentz force and an averaged 

conservative force to the medium, the EM field supplies another power-

force to the medium losses. 

II. 3. 4 Discussions of EM theory in media in non-inertial 

frames . For media in inertial frames the assumption of covariance of 

D , H equations and their Gµv tensor and thus the whole formalism 
'V 'V 

actually does not assume any new law of macroscopic EM physics, even if 

observed in an accelerated frame. The formalism is just a conveni ent 

way to present the well - accepted rest-frame physics in equations 22, 23, 

24 to other frames by using Gµv as an intermediate concept. But for a 

medium in a non-inertial frame, equation 46a is an additional assumption 

on the behavior of the averaged medium-EM interactions even in the medium 

co-moving frame. One reason for us to make this assumption is that the 

so-formulated theory surely holds for non-inertial observers moving with 

respect to a medium at an inertial frame; the principle of relativity (12) 

then suggests this assumption. 

The path of a charged particle free falling under EM and gravita-

tional forces , if we neglect collision in the medium, is still 

Duµ 
m --= 

Ds 

which also can be derived from a variational integral (Appen. IX) 

(77) 
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III. APPLICATIONS TO MEDIA MOTIONS IN SRT 

III.l Medium in Linear Uniform Acceleration 

In this section local EM field equations are first formulated 

for general media in hyperbolic motion in a SRT space- time; then propa-

gation along the direction of acceleration in a simpl e medium is 

studied in detail. 

-* 
III.1.1 Formulations. Let {Xµ} be an i ne r tial Minkovskian 

frame. A uniform accelerational motion is described by 

X = 1 (cosh aT - 1) 
a 

T = 1 
(sinh aT) 

a 
(1) 

where a is the constant acceleration, T is the proper time of the 

accelerated point. If a medium is in uniform linear acce l erat i on , its 

co- moving frame can be described by an {xµ} related to {Xµ } through 

T = 1 . h - sin at a 

l 1) x = - (cosh at - + x 
a 

y = y 

z = z (2) 

* 
{xµ} - {t,x,y,z} in this section. 
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y 

Fig. 2a. Linear accelerated medium 

at t = 0 it begins to accelerate, whence the 
propagation obeys a new law 

x 
s 

x 

v= tanh at 

~+oo 

Fig. 2b. R~-wave propagation in an accelerated simple medium 
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where origins have been adjusted such that at t = 0 = T they have 

zero relative velocity and {xµ} is co-moving in the sense that each 

point of fixed (xi) has X-uniform- accelerational motion 

with respect to {Xµ} 

v = tanh at 

The {Xµ} metric n~ implies the metric 
µ \) 

µ \) 
gµv , g and the time orthogonal spatial metric y .. of { xµ} as: 

lJ 

l -sinh at 0 0 

- sinh at -1 0 0 

( 
2 

0 

-~) 
-cosh at 

gµv = 
0 0 -1 0 Y.j = 0 -1 

' l 
0 0 0 -1 0 0 

1 1 -sinh at) 0 0 
2 -sinh at -1 0 0 µ \) cosh at 

g = 
0 0 -1 0 

0 0 0 -1 

( 3) 

( 4) 

This {x µ} is just a convenient frame describing the medium motion and 

it is neither synchronous nor static. However, t is the proper time 

of a medium co- moving observer {O} The observable value of a 

tensor to {O} in {xµ} on a conveniently coordinate transported 

{~( µ)} is obtained either by choosing {~( µ)} 3 it is the instantane-

ous Lorentz transform of the 

~(o) = e 
-0 

1 
( e1 + sinh at e ) ~(l) = 

co sh at - -0 

~(2) = ~2 

~( 3) = ~3 ( 5) 



T 

- 41-

t 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 

Fig. 3 . Space- time diagram of accelerated medium 

/ 
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or by the tensor transform axa/ax8 and instantaneous Lorentz transform 

a 
A (A) which are 

co sh at 0 0 0 
1 

0 0 0 
cosh at 

axa sinh at 1 0 0 dX B - tanh at 1 0 0 
--= --= (6) 
ax 8 0 0 1 0 dXa 0 0 1 0 

0 0 0 1 0 0 0 1 

cosh at sinh at 0 0 

sinh at cosh at 0 0 
a 

A (A ) = 0 0 1 0 
(7) 

0 0 0 1 

because of the relation I - 14 . With these formulas the current Jµ and 

f . ldt FµvGµvi.nthe d" · { JJ} ie ensors , me ium- co- moving x are connected to 

their respective local phys i cal Quant i ties as 

* 

0 

or J
µ µ (A) 

= e (A) J 

J µ = ( p + t anh at J ( x ) , J ( x ) J ( y ) , J ( z ) ) 
cosh at' 

µv µ v (a)(8) 
or F = e (a )e (B) F 

- E(x) 
- (E(y \ tanh at B ( z ) ) - E(z) + tanh at B (y ) 

cosh at 

0 
- B(z) B ( z) 

cosh at cosh at 

0 - B(x) 

0 

( 8) 

( 9 )* 

- in the matrix means negative values of the upper-right e l ements of 
the matrix . 



Similarly, we have 

0 
-D(x) 

cosh at 

0 
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-H(z) 

cosh at 

0 

H(y) 

cosh at 

0 

The physical explanation of equations 8, 9, 10 can easily be seen from 

the space-time diagram, Fig. 3. 

Now in . {xµ} the only non-zero Christoffel symbols are 

r0 = a tanh at , rt = a sech at, 
00 00 r

1100 
=-a cosh at; 

(10) 

thus Gµv = -Jµ with equations 8 and 10 gives the local Maxwell equa­;v 

tions in the accelerated frame: 

= p + J(x) tanh at 

l_ H(x)_ 1 ~ H(z) 
3z cosh at 3x 

aH(z) - tanh at·~ H(z) at 

(lla) 

(llb) 

(llc) 
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(lld) 

With a particular convention that and 

at do not act on {~(i)} , then eQuation 11 can be written in the 

3-vector form* 

V • D + V • (V x H) = p + V J (12a) 
'V 'V 'V 'V 'V 'V 'V 

( 12b) 

where 3-vectors are componented on {~( i)} and v :: tanh at ~(x)' 'V 

a = a ~(x) . Similar eQuations for (~F)µv = 0 are obtained just by 
'V ;v 

replacing (D' H) by (B,-E) and putting J = 0 in eQuation 12, i.e. , 
'V 'V 'V 'V 

V • B = (13a) 
'V 'V 

3 
VxE+axE+Vx-E 
'V 'V 'V 'V 'V Clt 'V 

Cl at ~ + ~ x (~ x ~) (13b) 

The local form of the continuity eQuation implied by eQuation 

12 now reads 

- V • J - a • J = ~t p + V • ...1. J + p a • V 
'V 'V 'V 'V 0 'V (lt 'V 'V 'V 

(14) 

which as seen in Appen. III and Fig. 3 again shows the non-orthogonality 

of the coordinate {xi} and the non-constancy of its metric. Also 

* Here all 3-notations are the 3-vector analysis ones, including x 

and 
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quation 13b implies 13a. 

In addition to equations 12 and 13, since {xµ} is the medium 

o-moving frame, the constitutive relations are simply described by 

quation II. 24. The values of E:(i)(j) K(i)(j) 
' are determined locally 

'or the me di um by co-moving {O} just as if there is no acceleration, 

hich, if neglecting the effect due to mechanical accelerational strain 

n the medium, are simply equal to their values when the medium is in an 

nertial frame. Equations 12, 13 and II.24 describe the local EM fields 

n the co-moving {xµ} 

Now the electric and magnetic constitutive tensors in are 

µv 
E: 

µ v (a)(B) _ 
= e ( o1.,) e ( B) E: -

E:(o)(l)+ E:(l)(l)tanh2at 

(1)(1) 
sech at·tanh at·E: 

tanh at• E:( 2 )(l) 

tanh at • E: ( 3 ) ( 1 ) 

sech at · tanh at 
(1)(1) tanh at· E:(l)( 2 ) 

sech at· E:(l)( 2 ) 

(2)(2) 

sech2at·E:(l)(l) 

sech at·E:( 2 )(l) 

sech at ·E:( 3 )(l) 

E: 

E: 

E: 
(3)(2) 

t anh at · E: ( 1 ) ( 3 ) 

sech at · E:(l)( 3 ) 

(2)(3) 
E: 

E: 
(3)(3) 

(15) 

µv ( ,_(a)(B) replaced by K(a)(B)) K = same as equation 15 with ~ (16) 

Then the Kµv, E: 
µv 

in any {xµ} is simply ootained by tensor transform-

ing equations 15 and 16 into {xµ} and thus c 
µva B is constructed 

according to equation II.37 with u as the 4-velocity of the medium. 

a 
In particular, for the inert ial laboratory frame {X } , we have 
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a axa ~ l axa 
u = - u = -- -- = (cosh at, sinh at, O, 0) 

dXB ;g- Clxo 
00 

(17) 

Then substituting equation 17 and KaB, saB into equation II.36 or II.37 

yields the constitutive relations in the laboratory frame which, since 

* ~ = nµv ' directly gives 

(1) 
E: ( 1) 

( 1) 
co sh at • E ( 2 ) 

(2) 
co sh at • E ( 1 ) (cosh2at • s(

2 ) (
2

)- sinh2at • K( 3 ) (
3

)) 

( 3) 
co sh at • E ( 1 ) 

2 (3) . 2 (2) 
(cosh at •s ( 2 )+ sinh at• K (

3
)) 

cosh at 
( 1) 

( 3) 

2 (2) . h2 K( 3) ) (Ei) + (cosh at (3)+ sin at 
(2) sinh at· 

2 ( 3) 2 K(2) ) ( cosh at (3) - sinh at 
(2) 

0 
( 1) 

E: ( 3) 
(1) 

-E: (2) 

K( 3) ( K( 3) + 
(2) K( 3) 

(2) ) . 
(1) ( 2. ) E: (3)' (3)- E: ( 2) 

cosh at 
K(2) K( 2) + (3) (2) ( 3) 

- (1) - (2) E (3) ,-K (3)- E: ( 2) 

and 

(Bj) 

(18) 

(i) (i) K(i) (i) 
= (s (j)-+ K (j)' (j)-+ E (j)' ~-+~, ~-+ -~ in eq. 18) 

(19) 

* Eqs . 18 and 19 can also be obtained by substituting instantaneous 
L~reE_tz transform into equation II.37 and solving 

Di ,Hi in the laboratory, because of equation II.14 . 
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EQuations 18, 19, and the ordinary Maxwell eQuations II.22,23 describe 

the EM field in the inertial laboratory {Xµ} with respect to which 

the medium is X-direction uniformly accelerated as eQuation 3. 

The boundary conditions eQuation II.69 directly apply to 

observable EM fields in the accelerated frame. If there are no local 

surface charge and current, then the Quantities 

n • D 
'V 'V 

n • B 
'V 'V 

n x E 
'V 'V 

n x H 
'V 'V 

(20) 

are continuous across the boundary of different media. In particular, 

if the boundary is perpendicular to the x- direction (~ II ~(x)) , 

then are continuous; if the 

boundary has its normal in they-direction(~ JI ~(y)), then D(y), 

B(y) E(x) E(z) H(x) H(z) are continuous. 
' ' ' ' 

III. l. 2 Wave nropagation in the co- moving frame along 

direction of acceleration for simple medium. For a simple accelerated 

medium,in its co-moving frame the constitutive relation is eQuation 

II.38. Then in the sourceless region eQuation 12 becomes 

I/ E 
l 

(I/ x B) 0 . +-V . = 
/'V 'V µs 'V ~ 'V 

(2la) 

a a (a x E)) I/ x B + a x B + v x - B = µs(- E - V x 
'V 'V 'V 'V at 'V at 'V 'V 'V 'V 

( 2lb) 

Consider now a plane-like wave propagating along the x- direction; the 

medium homogeneity leads to the assumption that nothing is y,z depen-

dent . Then eQuations 13a and 2la become 

_J_B(x)=O 
ax 

-1._ E(x) = 0 
ax 

(22) 
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so are spatial constants; but no source can produce a time 

varying field which is spatially uniform, thus they are space-time con-

st ants and we can put it to be 0 . Then the other Maxwell equations of 

this transverse TEM wave are* 

d d . 
(sech at a;z+a +tanh at at) Z(x) x ~ 

d = - (at+ a t anh at ) ~ 

d d 
(sech at a;z+a+tanh at at) ~(x) x ~ 

d = µE:(at+ a tanh at) ~ 

Now for abbreviation define operators 

~(x) (sech <P = <P ~(x) -
'\, 

d 
lj; - (at + a tanh at) 

[<P,lj;] 2 = a sech at 

Rewrite equation 23 

<P x E 
'\, '\, 

= - lj; B 
'\, 

<P x B = + µ E: lj;E 
'\, '\, '\, 

(sinh at 

d d at -+ a + tanh at at) dX 

d 
cosh at d 1 

at ) dX - at cosh 

We see that are the natural corresponding operators of 

(23a) 

( 23b) 

(24) 

(25) . 

in 

an inertial frame. We thus solve the problem approximately with res-

pect to these operators. From equations 24 and 25 we have 

[<P, lj;] e x B 
'\,X '\, 

* See footnotes on p. 44 and convention in equations 12, ~(i) same as ~(i) 

except a/a~~ does not act on it and 3-vector convention is used. 
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x E 
'\, 

(26) 

from which (¢ + /µEW) will give the +x traveling wave and (¢ - /µEW) 

will give the -x traveling wave. We solve equation 26 using the follow-

ing approximation scheme: First neglect the mixed effect corresponding 

to interaction of opposite traveling waves [¢,W] on the right side of 

equation 26 which is of order a and approaches to zero for large (at) 

2 as sech at; obtaining this E,B as the first approximat i on, then put it 

back into the right side of equation 2 and proceed to solve for the 

next approximation, and so on. Now assume that when the medium is at 

rest with respect to the laboratory at t = O, a plane wave i s propagat-

ing in the +x direction, i.e., i (kX-wt) E,B -v e at t -v 0 . Rewrite 
'\, '\, 

equation 26 as 

(¢ - ~ lji)(¢ + ~\jl) E = (27a) 
'\, 

( ¢ - ~ \jl) ( ¢ + /µ"; lji) B = - /µ"; [ ¢,\jl] (B + /µ; e x E) 
'\, r\)C '\, 

(27b) 

Now neglect [ ¢, \jl] , solve E or by substituting the 
'\, 

Fourier transform of E into equation 27a and breaking it into two 

first order d.e. ' s, thus 

(¢ - /µ;lji) F(k,t) = 0 (28a) 
'\, 

(¢ + ;µ; lji) E(k,t) ... F (k, t) ( 28b) 
'\, '\, 

where a/ax is replaced by ik in ¢ . Then their s olutions are 



F(k,t) = 
'V 'V 

E(k,t) = 
'V 'V 

a e 
'V 

e 
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t 
r a( cosh at - ~ sinh at)+ ik dt 
6 sinh £?,t - /µ€ cosh at 

t 

J 
a( cosh at + /µ€ sinh at) + ik dt 

sinh at + ~ cosh at 
0 

t 

f d~ 
ik+a(cosh a~+~ sinh a~) 

t 

+ J 
F(k,n) 

0 
sinh a~ + ~ cosh a~ 

an] 'V 
e 

/µ"E" + tanh an 0 

( 29b) 

Examining the behavior near t ,,..._, 0 reveals that the F term of E in 
'V 'V 

eQuation 29b represents a -x traveling wave with increasing amplitude 

as t ;;::, 0 . Since initially we have only +x traveling wave and the 

boundary conditions, eQuation 20, preclude reflected waves for propaga-

tion along the direction of acceleration in a simple medium, then a = 0 
'V 

and we can orient yz axis to have the solution 

t 

-J 
\ dk e ikx S ( k) e 0 
j 2n 

as the first approximation 

a(cosh at + !µ; sinh at)+ ik dt 

(sinh at + ~ cosh at) 

the corresponding B is obtained by 
'V 

(30a) 
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equation 27 with an initial 
ik x 

B(z) = ~ e o and no y ,x components: 

0 ' 0 ' ( 30b) 

Higher Nth order solution is obtained by substituting equation 30 into 

the right side of equation 27 and sol ving the two first order d . e. 's 

similar to equation 28. 

If near t 'V 0 the propagation is single wave-lengthed 2n/k ' 0 

then we have B (k) = 2no (k-k ) and E(y ) is 
0 

J -ik J dt l+ ~ tanh at 
dt ik x sinh at + lµE cosh at -a 

/i1E + tanh at E(y) 
0 

0 0 0 = e e e 

t > 0 (31) 

This i s the first order (neglecting [ ~.~]) steady state wave propagation 

in an accelerated simple medium with its phase and amplitude chosen with 

respect to an arbitrary origin of coordinate time t, namely t = 0 at 

which time the physical wavelength to all {O} is 2n/k . 
0 

Physical l y 

we can interpret that for t < 0 a w - k //µE plane wave has alr eady 
0 0 

been propagating in the inertial simple medium, then at t = 0 the 

medium is a- accelerated and the wave begins to obey the new law, equa-

tion 26. Since no reflection exists whether there is acceleration or 

not , it propagates according to equation 31 i n first order; a l so for 

region x > x 
s 

in which the wave has not reached t = 0, a step func-

ti on S (x - x - w ( t)) is multi plied to equation 31. Here 
s 

w(t) 1 

~ cosh at + sinh at 
(32) 

is the new coordinate phase velocity, but its physical value to {O} is, 
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by using a relation as eQuation 8 for d.x 

(x) 
w = 1 (3 3) 

which shows to local observers acceleration does not affect the phase 
ik x 

0 
velocity. Since if the wave is once e x-dependent, it is always 

so, the acceleration can begin at any time t < 0 and eQuation 31 

still holds with normalization fixed with respect to that t = 0 

arbitrarily. The instantaneous red shi~ed freQuency to {O} is 

w = 
k 

0 

/µEcosh at + sinh at 

at -+ large 2k 
0 ---e 

l+ ;µs 
-at (34) 

which results as propagating in the simple medium against an eQuivalent 

gravity. The constant phase wave front can propagate a maximum coor-

dinate distance 

!::.x) 
max == J 

0 

w(t) dt = 2 
a 

2 
a 

tan 
-1~ 
~+l 

lµs -1 

-1 /i-µE: 
tanh 

if 

l+ ;µs 

µs > 1 

-------if llE: < 1 

µs -+ 1 
1 
a 

which shows in the eQui valent gravitation an EM wave can propagate 

(35) 

arbitrarily far into a medium iff µs -+ 0 which is case of infinite 

phase velocity in the rest frame of the medium. 



The third term in eQuation 31 

t 

-a J 
1 + /µ; tanh at 
~~~-~~~~~ dt 

0 
/µ( + tanh at 

e = 
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1 

h t 
1 . h t cos a + -- sin a 
~ 

( 36) 

shows 81Ilplitude decreasing, which can be interpreted as the slowing 

down of the coordinate phase velocity which reduces the number of waves 

in unit time to {O} , or as the decrease of the "dressed photons" 

density with respect to the initial one, using instantaneous Lorentz 

transform (eQuation 7) to velocity eQuation 33 (Appen. XI). The 

special case for vacuum limit µE ~ 1 of eQuation 31 is clearly 

nothing but an instantaneous Lorentz transform of the vacuum plane 
i(k X - k T) 

0 0 
wave e to the hyperbolically accelerated observers {O} 

Also, eQuation 31 reveals that polarization of this propagation is not 

affected by acceleration. 

Finally, if we want to make a particle-like photon model for this 

wave, then with 

w 

= 

= proper energy of photon 

1 w -= 
0 

w 

dx
1 

--= 
dxo 

w(t) 

where w is the 4-velocity, we get a dressed mass 

m = 

and or 

k /µE-1 
0 

~( .!µ€" cosh at+ sinh at) 

= p •u = p 
0 

(37a) 



= -( cosh at + /µ£ sinh at) 

/µE - l 

which, since gµv independent of 

-54-

or 

1 
x 

-k (cosh at+ l\lE" sinh at) 
0 

( 37b) 
l\lE" (l\JE" cosh at+ sinh at) 

implies w
1 

= constant for a 

massy particle and P
1 

= constant for a massless particle along their 

geodesics (2.6), shows that this "photon in accelerated media" does not 

propagate along a geodesic, nor is it massless and path null. This 

just demonstrates again that a wave in a non-inertial moving medium is 

dragged by it. 

All these results are caused partly by the particular behavior 

of the accelerated coordinate and partly by the presence of the medium. 

If we instantaneously Lorentz transform equation 31 to {Xl-l} (Appen.XII) 

then 

y 

E 
~ + tanh at 

T 

- ik A(T) 
0 

e (38) 

where A(1) is given in Appendix XII and approaches /'i:iE for small at . 

The instantaneous phase velocity in {Xl-l} then is (see Fig. 3) 

dX) 
dT constant phase 

x ( 38 ' ) 

which approaches l in vacuum limit and is dragged along by the medium 

increasing (or decreasing ) from l/~ to l from T = 0 to T = 00 

as a result of the fact that when the medium velocity approaches +l as 



-55-

T ~ 00 then any velocity in its rest frame approaches l in K . The 

instantaneous frequency w in K is just equation 38' multiplied by 

k which shows it changes from w (= k ;;µ-z) to w ;µ-z as the medium 
0 0 0 0 

accelerates infinitely fast. The amplitude of Ey changes from the 

initial l to as T ~ oo Compare (Appen. XII) the above effects 

at small V = tanh at ~ aT 

w 
w 

0 

l + y;µ-z -

y 
IE I = l + v/µE - _v_ + o(v2 ) 

~ 

as V ~ 0 ( 39a) 

to the corresponding results of observing in K a steady x-propagating 

EM plane wave of frequency w
0

, amplitude l in a simple medium co­

moving in K which has a small constant velocity 8 in +x direction 

relative to 

w 
w 

0 

K 

( 39b) 

We see that only when the medium is "dense" ( ;µ-z » l) can it drag 

the wave along with it more. But however fast the medium can 

accelerate, there is a limit to this dragging effect. 
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III.2 Medium in Rotation 

General local electrodynamics formalism is constructed for a 

steady rotating medium in this section, then rotational scattering of 

a plane wave by simple dielectric sphere in rigid rotation is solved. 

III.2.1 Formulations. Consider an inertial frame K with 

spatial cylindrical coordinate frame {Xµ} = {T,R,<P,Z} , then the trans-

form 

T = t 

l R = r 
<P = 0 + Q(r )t 

z = z (40) 

carries {Xµ} to a steady rotating frame {xµ} = {t,r,0,z} in the 

sense that a fixed (xi) point in {xµ} rotates with a time-independent 

angular velocity 

rt - d~) 
dT f' d i ixe x 

= rt(R) (41) 

about the z-axis in K Because it is impossible to have Q = canst. 

rigid rotation for large media,..Cl(r) is used in eQuation 40 ~ 

r.D.<l for all r For a most possible "rigid-like" continuous rota-

tion Q(r) should be 

rt(r) = Q + 0 (rt r) if Q r << 1, SI. =canst. 

f n(r)-:/ r 

0 0 0 

if r -+ 00 

(42) Q(r
1

) > rt(r2 ) if rl < r2 

Now as a simplest analogue to the non-relativistic rigid rotation with 
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centrifugal acceleration 2 
a = rQ , if we require the proper centrifugal 

c 

acceleration of a Q- rotating observer to be proportional to r wi t h 

proportionality constant 

Q(r) = 
Q 

0 

Q 2 ; then 
0 

(43) 

s atisfies equation 42 and can be thought of as a simplest rigid- like 

rotation for a medium. 

Now in the rotating frame {xµ } of equat i on 40 we have met ric 

1 - r2Q2 - r 2t QQ ' 2 - r Q 0 

- r 2t QQ' -(1 + Q'2r2t2) 2 
-r t Q' 0 

gµv = (44 ) 
2 2 2 -r Q - rt Q' - r 0 

0 0 0 - 1 

and tetrad for co- moving observers {O} in a similar way as we did in 

Sect i on III.1 .1 , see Fig. 4, 

1 
~(o) = ~ 

Ji _ r2Q2 

~(l) = ~ - Q't ~ 

Ji - r2Q2 2Q 

~(2) = (~ + r 2 2 ~) r 1- r Q 

~( 3) = e (45) 
-z 

Here equation II- 12 is used and ~(l)' ~( 2 ) are so combined out of the 



T 
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Lorentz 
localization 
t l 

transform 
s caling 

at some 
t > 0 

\ i 
~( <P ) 

i 
x-- ... 

y.:::;___-l:>-----~--1--c.---------------~ R 

~ & ~( r ) 
at 

Fig . 4. Space- time diagram and physical pi cture showi ng r e lation 

&"'llong {e( )} , {e } and {e- } 
- µ -µ -µ 
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time orthogonal d. of eQuation II.17 that they are parallel to the 
-:i. 

instantaneous coincident Lorentz transform of respectively, 

which is possible because of eQuation II.14. 

Now consider a rotating medium described by eQuation 40 ;l {xµ } 

is its co-moving frame and eQuation 45 is the l ocal tetrad for co-moving 

observers {O} . Then similar to the way of obtaining eQuation :rrr. 8,9, 

10, we get 

(46) 

.Q.(-E(r) -E(r/J)/r - .Q.(E(z) 
0 +rJ2.B (z)) +.Q,Q't (E(r )_r!JB(z)) +r!JB ( r)) 

-.Q,( - E(r) 
0 

-B ( z) B ( r/J) 
+r!JB(z)) r 

Fµ v = 
E(r/J)/r B ( z) 

0 
- B(r)/.Q,r 

- .Q.!J't(E(r) _r!JB(z)) .Q,r - !J'tB( r/J) 

.Q.(E(z )+r!JB(r )) -B (r/J) 
B (r) I .Q.r 

+!J' t B ( r/J) 0 

(47) 

Gµv = (same form as eQuation 47 with (E,B)-?-(D , H) ) 
'V 'V 'V 'V 

(48) 

expressing the tensor current and EM field in terms of their local 

physical values to {O} , where Now the only non-

vanishing is 
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r \1 -rt 
2st ' 2 2 

rst't rilO -rstst 't = r 22 = = 

r\2 -rst't 2 r stst 't r2 = l +rst'2t2 = r 20 = 
21 r 

( 49) 

Thus the local Maxwell equations to {O} follows as 

(51) 
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The behavior of the co-moving local {~(µ)} and coordinate {e } 
--µ 

with respect to the inertial K directions can be easily visualized 

from Fig. 4 which explains the mixing and scaling of the tensors to 

make their respective physical values to {o} as in equations 46, 47 

and 48. Since {O} is mediurn-corotating, the physical constitutive 

relations II.24 hold, together with which equations 50 and 51 complete 

the local EM equations for the rotating linear medium with respect to 

its co-moving . { 0} . The local continuity equation in the rotating 

frame from II.66 is 

~ J ( r) = _ Q, ~( P + r~J ( 0 ) ) 
a0 at 

(52) 

and the B.C. at the interface of media I,II is II.69 for their local 

EJ'v'.l fields. 

Now the electric and magnetic tensor parameters £,K for the 

rotating linear medium have their values in the corotating {xµ} 

obtained similar to equations 15 and 16 

(1)(1) 
E: 

E: 
(3)(1) 
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n 1 2t2 ( 1) ( 1) rt 1 t ( ( 1) ( 2) ( 2)(1) ) 
" E: - ~ E: +E: 

+ _l_ E:(2)(2) 
£2r2 

-rt' t E: ( 1 ) ( 3) 

+ L E:(2)(3) 
£r 

Kµv = (same form as equation 53, with E:(µ)(_v_)~---,~K(µ)(v) 

With these expressions the total constitutive tensor µvaS 
c can be 

(53) 

(54) 

directly constructed by equation II.37 in terms of the local intrinsic 

properties of the medium with respect to its co- moving {O} . Equation 

II. 46 and this 
µ vaS 

c present an observer-independent covariant 

formalism. 

Consider the special case of a rotating medium which has rrt < 1 

for all its parts and rotates rigidly. Thus for the co-moving . {O} 

rt' = 0 and the simplified equations 50,5/ 1 5l can be written in 

* 3-vector forms respectively 

I/ x H + Cl [(rtxr) xH] + £2 
Q, at 

1: 
'\, '\, '\, '\, 

Q, 
2D · rt x ( Q x r ) . D = p + 

'\, '\, '\, '\, '\, '\, 

* 

rt x [rtx(rxH)J~ ~ +9., ~t ~ '\, '\, '\, '\, 

2 (l+Q, )rt •H+rtxr • (J - I/ x H) 
'\, '\, '\, '\, '\, '\, '\, 

(55) 

Here r stands for cylindrical r adial vector and do not act on 
'\, 

basis vectors 1 is in ~(z) direction. 
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[ J x E + Q, ~[ ( Q x r) x E J + Q, 
2

n x [ Q x ( r x E) J = -£. ~ B I " , at , , , , , , , at , 

V • B £.
2
B•Qx(Qxr) = -(1+£.2 )n~E+Qxr•VxE (56) 

'V 'V 'V'V 'V'V "\J'V'V'V~'V 

a 
V • J = -Q. -;:;-t ( p + J • Q x r) (57) 
'V 'V a 'V 'V 'V 

in which the familiar 3-vector analysis symbols in cylindrical coordi-

nates have been identically adopted to achieve the above simple form; 

except a particular convention that 1 a I a¢ replaces in the 

symbol of usual notations. If the co-moving local cons ti tuti ve proper-

ties of II.24 are known, equations 55 and 56 are directly subject to 

mathematical analysis for the physical EM field observed by corotating 

observers. 

III.2.2 Plane wave scattering by a simple rotating dielectric 

sphere. For a simple dielectric sphere in rigid Q' = 0 rotation, if 

we neglect its deformation due to centrifugal and coriolis forces, then 

D = sE B = µH macroscopically holds with respect to corotating 
'V 'V' 'V 'V 

observers. Now the natural co-moving frame to fit its boundary and thus 

* to simplify the mathematics is a spherical corotating frame {t,r,G,¢} 

defined with respect to {T,R,8,~} of the inertial laboratory K by 

T = t , R = r , 8 = Q ' ~ = ¢ + Qt , Q = const. (58) 

The co-moving observers {O} for this spherical rotating frame are the 

same as those for the previous cylindrical rotating frame, but their 

* The spherical r used in this section should not be confused with the 
'V 

previous cylindrical r which is denoted by r 
'V 'UC 

from here on. 
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spatial physical bases are locally rotated in respective cases just the 

way the familiar cylindrical and spherical coordinate unit vectors were 

in K . Thus the local Maxwell equations in {t,r,G,0} of equation 58 

a.re just equations 55 and 56 reinterpreted in 3-vector analysis for a 

spherical coordinate, with the adopted convention of 1 a I a¢ replacing 

a 3¢" (Appen. XIIJ:). 

Now consider that the simple rotating sphere of radius a sur­

rounded by a µ ,E medium at rest in 
0 0 

K ?nc 
/'-

scatters a plane wave 

as shown in Fig. 5 for two ki nds of incidences. The scattered field due 

to pure rotational effect in addition to the non- rotat i ng Mie scattering 

part is sought. 

Substituting D = EE , B = µH, J = 0 in equation 55 gives (Appen. 
~ ~ ~ ~ ~ 

x:rrr) 

a 

1 

~ '. E~ + £ t-0 ( ~ x ~c ) x ~ J 

v £ 2E • st x (st x r ) = l 
~ ~ ~ ~C µE 

+ £ 
2 st x [st x ( r x B) J 
~ ~ ~c ~ 

Xr 
~c 

Thus equations 56 and 59 describe the wave propagation to rotating 

(59) 

observers at r < a . But instead of solving EM field for rotating 

observers, we are interested in the scattered fie l d in K . Thus we 

must find the Maxwell equations in K obtained from equations 56 and 

59 by substituting tensor and Lorentz transforms: 

E = ~I I + i("E + v x B) 
ax" 

~ ~J_ ~ ~ 

a a -- = 
axa axa ax>-

B ~II + £(!i- - v x E°) ( 60 ) = 
~ ~ ~ 



z i (k Y - wT) 
E = e o 

r~ 
BX 

X i (k
0

Z - wT) 
E = e 

- 65-

z 

Fig. 5A 

Fig. 5B 



where 

and ~I I · ~ 

= 

1 

0 

0 

0 
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0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

are the parallel. and perpendicular parts of E 
'V 

relative 

to * Then equation 59 gives in K spherical coordinates 

R < a: 

v x B = - ( Q _a E - v v • E) + 
"' a<P "' "' "' 

EV • E - -
'V 

+ £
2 (µE-l) v x B] 

"' 'V 

and equation 56 just gives the ordinary equations. 

- a -

rx E - - 3T ~ 'V 

all R 

I/ . B = 0 
'V 'V 

(6la) 

( 61b) 

(62a) 

( 62b) 

as it should. Since no coefficients are time ~ependent, we can put 

-iwT 
e time dependence to 

the wave equation for E 
'V 

* 

E,B 
'V 'V 

and then obtain from equations 6la, 62a 

The a/a<P here does not operate on the coordinate unit vectors. 
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or simply rewriting as 

R < a 

where 

- a a 2 vv Q,
2 st 

S - [V I/+ (µE-1 )Q ~ U) + (µE-1) (-iw + Q -)[(£ -1) (U - ~)+ - A 
% ~ ~ o~ % acp % v2 wi % 

~ - nni t eyadic = ( ~ : ~ ) 

-a/H 0 . e a sin - -aR 
A 0 -a/a<P a/ae (sin 8) ' k2 = 2 

- W ]JE 

% 

0 0 0 

(64) 

( 65) 

Compared to the wave equation in simple medium at rest, now outside the 

rotating sphere in R > a region 

k 
2 

E 
0 ~ 

= 0 , R > a (66) 

we see that the S in equation 64 is zero either whe')'I., the sphere is 
% 

not rotating Q = 0 or there is nothing but µ = 1 = E vacuum being 

rotated, thus S is purely a medium rotating effect. 
% 

Now the d. e.' s (equations 64 and 66) with outward-going radiation 

condition on the scattered field at R = 00 and B,C.'s at R = a which 

are now implied by equation II.69 in rotating K and laboratory K 
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B(R), E(G), E(~) = continuous across R = a 

_l_ B(G)) 
µ R=a+ 

0 

+ R=a 

= 

B(G) V(t. - l)] 
jJ -R=a (67) 

form a B.V.P. It is difficult to solve in a closed form because the 

inside wave cannot be expanded as simple sum of spherical partial 

waves with arbitrary constant coefficients. We solve it by using an 

integral iteration method. 

First combine eQuations 64 and 66 to be 

V x V x E - k 2 E = p(R)~k2- k 2 )u + iw S(R)] •E 
"" "-' 'V 0 'V 0 % %"' 'V 

(68) 

where p(R) = 1 for R < a, = 0 for R > a . Now, making use of the 

well-known dyadic radiation-condition-includeJ Green's function 

f(R,R') of eQuation 68 (Ref. 19, p.32) 
% 'V 'V 

r(R,R') 
% 'V 'V 

1 - -= (U + 2 "!__ Y) 
~ k 

0 

ik IR - RI I 
e "' "' 
4rr JR - R' J 

'V 'V 

we can change eQuation 68 into an integral eQuation 

(69) 



E(R) 
'\, '\, 

= ~omo(R) + I d3R' 
'\, '\, 

R' <a 

-69-

r (R ,R' ) . [ (kSk 2 )U + iw s (R' ) ] • E(R' ) 
:t"'"' 0 ~ %"' '\,'\, 

all R 
'\, 

(70) 

The }fomo is the wave propagated in the µ ,£ medium without the 
'\, 0 0 

scatterer rotating µ,£ dielectric sphere, so 'E11omo = ':E1nc . Thus 
'\, /'-

equation 70 is an integral equation for R < a, the solution of which 

then serves as a source of current density 

yequivalent(R) = 
'\, '\, 

l 
iwµ 

0 

S(R)] •E(R), R( a (71) 
%"' 'V'V 

to determine the scattered radiation field at any R > a . The B.C. 

in equation 67 implied by the d.e. 's is included in solving the integral 

equation. 

Now equation 70 can be solved using iteration approximation. 

First, roughly approximate the inside E(R) 
'\, '\, 

by incident wave and get 

first order total solution, then put it inside the integration to get 

the next order solution, and so on, assuming the iterating series con-

verges. This gives 

E(R) 
'\, 

::'S~C + . ie 
+ i5.~ + E5c 

'\).Vlixed "'rotating medium 
(72) 

where we have split the scattered field due t.o different effects; 

namely, the difference of media, the rotation of the spherical medium, 

and their mixed effect as follows 



?c 
rv Mie 

= (k2- ko2) f d3R' 

R' < a 

f f 
R' ,R" <a 

-70-

[r(R' ,R") · S(R" )+ S(R') 
%"' 'V %"' %"' 

=sEc . f = l w 
rv rotation 

R' <a 

+ (iw)2 f f 
R' ,R 11 <a 

+ •••• 

r(R' ,R")J·°E1nc(R") + 
% 'V 'V 'V 'V 

+ 0 •••• 

The i'c 
rv Mie 

is the well-known (35) Mie scattering of a plane wave 

propagating in a simple medium hitting a sphere of different medium 

expressed in different form from the Mie 's spherical partial Hertz 

(73a) 

(73b) 

(74) 

wave expansion. The 
-SC 
E t . rv ro ating 

is the scattering caused purely by 

the "something rotating 11 which occurs even if the rotating sphere is 

made of the s&~e 

does not exist. 

µ
0

,s
0 

medium as its surrouhdings and the Mie scatter 
' -SC 

E . d is the scattered field caused by the mixed 
rV mixe 

effects of both the "medium rotation" and the "medium difference 11 which 

is a second-order effect. 
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We can graphically represent equations 72, 73 and 74 as follows. 

Draw R'~R for r(R·,R ' ) as a propagator for waves going from R' 
'V 'V % 'V 'V 'V 

to R draw x for (k
2

- k 2) u as a Mie scatterer at R'. draw 0 
' 'V 0 'V 'V 

'V 

for iw s (R I ) as a rotating-medium scatterer at R' . 
' and draw .--? as 

~ 'V 'V 

a propagator for direct propagation . Then equations 72 , 73 and 74 can 

b e represented as, with integration understood, 

i ={-===?-+ [ x~> + 

+ [~+~+~+~ 

+~-r ~ • .• J 

+ [~+~t~t····} 

where only the double drawn propagator can propagate to all R . 
tu 

Now 

obvious l y we can interpret the total field at any R as the sum of 
'V 

these incident waves which directly go through and hit nothing ; which 

are Mie scattered in the sphere once and propagate there; whi ch are 

rotationally scattered once and propagate out; which are rotationally 

scattered, propagate to other points i n the sphere , Mie scattered and 

then propagate out; etc. 

From equations 64 and 66 the order of magnitude of the ratio 

.,.,SC 

.e; Rot 

Esc 
Mie 

(µE: - 1) ~ aQ 
0 0 

(µE: - )J E: ) 
0 0 

(76) 



is small if aQ << 1, unless 
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)JE: 'V \J E: 
0 0 

In either case the second 

order mix-scattering can be neglected and the first order ?c 
"-' Rot 

will 

give a physical picture on rotational scattering. Now consider two 

kinds of E?-nc polarizations as in Fig.5. 
'V 

A. Incident E is parallel to axis of rotation; then from 

eQuation 74 and Fig. 5a 

E?-nc = 
'V ~z e 

i(k Y - wT) 
0 

I 
i(k Y'-wT) 

f~ot,1st order- iw d
3
R' ~(~ ,~') ·~(~') ·~e 0 

(77) 

But for R >> R' 

r(R,R')"'(U 
'V 'V 'V 'V 
'V 'V 

R' <a 

e 
ik R 

0 

--,....-- e 
47TR 

-ik e ·R' 
0 ,\,R 'V (78) 

Thus the first order far zone rotational scattered field is 

Esc = 
/"V Rot,1st,Far zone 

x 

ik R 
0 

e47TR iw(µE:-1)(~ - ~ ~) 
R' <a 

ik (Y'-e ·R') 
qi'_ ik v' cos 2

qi
1)] }e 0 t\,R "' 

0 

(79) 

Evaluating the terms of order Q gives (Appen. XIII), neglecting 

i (k0 R-wT) 
Esc 
~Rot. ,far zone,1st 

= i87T _e _ __,.... __ _ 
4TIR 

Qa2 2 
f ( 0 ' qi ) ~0) + 0 ( Q ) 

;µ-;-
n n 



f(8,¢) = 

where 
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6 - k a /2(1 . sin 8 sin ¢) 
0 

(80) 

The antisymmetry of this first order rotational scattering with respect 

to the Y-Z plane is a result of opposite rotational motion of the sphere 

as seen at the - Y axis of incidence; its symmetry about the 8 = n/2 

plane results from the fact that the upper and lower halves of the 

sphere are in identical motion with respect to the incident wave. Plots 

of eQuation 80 show that (Fig. 6A) on the 8 = n/2 plane it has a resem-

blance to Quadrupole radiation such that it can be simply interpreted as 

radiation from successive electric Quadrupole sheaths at IY I .= canst =a 

caused by induced electric polarization at the sphere, with 

forward bending lobes as the effect from traveling wave antennas which 

is caused by the traveling of the inducing incident wave. There is no 

scattering at backward ¢ = -n/2 and forward ¢ = n/2, but the main 

lobes bend from side-ends toward forward direction more as 

k a~ larger. EQuation 80 has only a 8-component as the first order 
0 

Mie scattering, although the latter has a dipole pattern for scatter 

amplitude. Also , there is no Doppler frequency shift since the motion 

of the scatterer is tangential to its boundary and the scattered wave is 

in the same 11\.t:di um as the incident wave. 

B. 

neglecting 

Consider the incident wave as in Fig. 5b)from eQuation 74 

£
2-1 · we have 

' 



'V 
~x e 

i(k Z- wT) 
0 
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ik R 
0 l 

Einc = 

?c 
rv Rot,1st,far zone J 

-ik R' • e 
3 Orv rv R 

. d R ' e ( ~ - ~R ~R ) = iw(JJE-1) e 
4TIR 

.\_ e Si + l rvY 

k V' 
0 

w 

R' <a 

i(k Z'-wT) 
(iw sin cp'- Si cos cp')ZzJe 

0 

Now consider Si/w << 1 and keep order Si term only, the integral 

gives (Appen. XIV) 

i(k R- wT) 
?c e o 3 
rv Rot,1st,far zone= --4-1T-R--4·1Ta (µE-1) iwSi(~-~R%R) 

(81) 

(82) 

where 
8 ~...,.-----

61 :: 2k
0

a sin 
2 

, 62 :: k
0

a /2 (1-cos 8) • Expressed in spheri-

cal components this rotational scattering has an amplitude, with a 

constant factor a 3 (µE:-l)iwSi 

f(G,<!>) = - e ( ) . 
'V 8 

sin 
sin 8 - oleos 01 

<!> [cos 8 ---
1-----

03 
1 

2 2 (3-o~)sin o2- 3o2cos o2 + (k a) sin 8 -----------] 
0 05 

2 
sin 

( 83) 



-75-

d · Fi'gs. 6B. The E(G) ~ si'n ~ which is plotte in ~ and 

¢-dependences which are just opposite to those of the corresponding Mie 

scattering (35), change the polarization of the total scattering. Unlike 

the previous case where the induced V x ~ ~ ~ x (~ x ~) ~ O, this 

scattering has contributions from both the P-like and M- like i nduced 

pol arizations P ~VB sin <jl 
~z and V x M ~ stE ~y 

~ ~ ~ 

and can be interpreted accordingly. The p l ots show on the 

0 = rr/2 
( e ) 

~ sin <!J from p and a E( <!J) ~ cos <jl from M plane a E 
~ ~ 

on the 
_J<P) n. 

X- Z plane only a E v constant from ~ 
1 

on the Y-Z plane a 

sin 0 from P and a E(G) ~ cos 0 
~ 

from M; 
~ 

all are forward 

' 

dri~ed or bent from the traveling wave effect as before. The forward 

and backward rotational scattering which is 90° rotated with respect to 

the Einc and in Y-direction are perpendicular to the X-polarized Mi e 

scattering and elliptically polarize the total scattered fie l d. 

I II. 3 Summary 

Applying the theory of Part II to media in linear acceleration · 

and rotation finds electrodynami c equations for local observable EM 

fields and sources with physical constitutive rel ations in these co- moving 

non- inertial frames. Studying in detail wave propagation in a s i mple 

accelerated medium reveals that EM wave is dragged by the medium with 

its amplitude changed, frequency shifted and phase velocity dragged 

along reasonably; its path is neither null nor a geodesic. Scattering 

of a plane EM wave by a rotating sphere is solved by an integral 

iteration in the laboratory frame. The rotational scattering is 

separated from the Mie scattering, and its first order scattering for 
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incidences parallel and perpendicular to the rotation axis are evaluated 

and plotted which agree with intuition and can be interpreted simply as 

radiation from properly induced traveling electric and magnetlc polariza-

tion sheaths. 

Also as the simplest case of II.19, it turns out that the local 

physical tetrads for co-accelerating and co-rotating observers chosen as 

the instantaneous Lorentz transforms of the basis of the natural labora-

tory coordinates are just the unit tangents and Fre~et normals of these 

observers along their world lines. One can easily show that for {e(i)} 

of equation 5 

a = a a2 = 0 a3 = 0 1 
(84a) 

and for {~( i)} of equation 45 

- r 0,2 
c 0, 

0 al = a2 = a3 = 
1-r 

2 0,2 1-r 
2 0,2 

( 84b) 

c c 

where a. are the curvatures defined in equation II.20. 
l 
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Fig. 6A. Plot of 

f(G,<ll) A/ E(e)sc 

rot,18 t,far zone 

of equation III.80. 
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Fig. 6A-2 
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x 

k a = 0.1, 8 
0 

'TT = 2 , scale• 
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x 

Fig. 6A-3 ka = 1 , 0 
TI = 2 , scale: 
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z 

k a = 5 ~ = 50° 0 , , 

scale: x 10-1 

~ = 230° , scale: x 10-2 
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Fig. 6A-6 k a = 20 0 = L 
0 , 2 

scale x 1 



-83-

(Y) 

I 
0 0 
(\J rl rl 

II x x 

al Q) Q) 

0 rl rl 

0 ~ al al 

r<) 
() () 

!fl !fl 

t'--
I 

+ 
<!! 0 0 

'° 0 0 
co '° ("-.! 

bD II II 
·rl 

0 µ.. o0< o0< 

II 
(\j 

"" 

N 

0 

<3 
(\J 

II 

"" 



-84-

z 

Fig. 6B Plots of II.83 

Fig. 6B.l f(~) at ~ = O,n, k a'= 0.1, 1 
0 

scale: x io-2 



Fig. 6B.2 
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z 
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z 

Fig, 6B.4 <jl = Tr 3Tr 
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k a 5 1 x io-2 
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APPENDIX I 

** CONVERSION TABLE FROM GEOMEI'RIZED TO mks UNITS 

M =Meter, Kg = Kilogram, S =Second, Q =Coulomb, in 

geometrized unit c = 1 , G = 1, k = l; in mks units 

G = 6.67 x l0- 11 , k = 1.3805 x l0- 23 

QUANTITY mks DIMENSION GEOMETRIZED 
__ ,___ 

l ength Q, M Q,* = Q, 

time t s t* = ct 

= 2.997925 x l08t 

Kg m* G mass m = 2m 
c 

-27 = 0.742 x 10 m 

charge q Q q* = q L{i;-
2 E c 0 

= 3. 042 x l0-17q 

t emperature T OK T* = Gk T 
4 

c 
x l o- 67T = 1.14 

force F Kg - M F* = Q_ F 
s2 4 

c 
(Newton) = 0 . 826 x lo- 44F 

~ p* G pressure p = 4 P 
MS2 c 

c Kg - M2 
'C,* 

G e, energy = 4 s2 c 
(Joule) 

1 f* f/c frequency f - = s 
**Mechanical parts from Ref . 26. 

DIMENSION 

M 

M 

M 

M 

M 

dimen-
sionl ess 

M - 2 

M 

M 
- 1 
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QUANTITY mks Dn1ENSION GEOMETRIZED DIMENSION 

mass p ~ P* G - 2 = - M dens ity m M3 m 2 
c 

2 dimen-entropy s 
Kg- M 

S* = S/k 
s2_oK sionless 

(Joule/°K) = 7.2435 x lo22s 

Planck 
2 

Q_il M2 1'l 
Kg-M 

11* = constant s 3 c 
x l0- 70 = 2.61 

velocity v M 
V* V/ c 

dimen-= 
'\, s '\, 

'\, s i onl ess 

power w Kg- M
2 

W* = Q_ w dimen-
s3 c5 

x lo- 52w 
sionl ess 

(Watt) = 0.275 

current i 
g_ 

i* i Lfe dimen-= s c3 Eo sionless 
(Amp) 

= 1.014 x lo- 25 i 

current Q J* J-1.. / G - 2 
J = M 

density '\, 
S - M

2 '\, "'· c3 Eo 

volume g_ L/ G - 2 
electric Pq p* = p M 

charge M3 q 2 E c 0 

density 

surface g_ 
0 L~ - 1 

electric oq o* = M 

charge M2 q q 2 E c 0 

density 

electric Kg-M 
IEG 

- 1 
E* 

0 
E = E M 

field '\, Q - S2 
'\, '\, 2 

c 

(Newton/ 2.68 l0-28E -1 = x M 
Coulomb) '\, 
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QUANTITY mks DIMENSION GEOMETRIZED DIMENSION 

magnetic Kg N -1 
flux B B* = 

B __ o_ M 
density 

'\, s - Q '\, '\, c 
(Weber/M2 ) l0-19B = o.8n x 

'\, 

electric 5L 
DLf;-

-1 
displacement D M2 D* = M 

'\, '\, 'V 2 E c 0 

magnetic -2._ J.lo 
H H* = H-~ 

intensity '\, S-M '\, '\, c 0 

L~ -1 
= H M 

'\, 3 E c 0 

2 
v 12 ·hoG 

dimen-
volt v 

Kg-M v* = 
Q -S2 

sionless 
c 

(Joule/ 
Coulomb) 

conductivity 
Q2- s CJ* 

1 -1 CJ = CJ --
M3- CE M 

Kg 0 

102 CJ = 3,768 x 

dielectric Q2- s2 
e:* 

E 36n X 109E E = -= 
constant 3 E 

Kg -M 0 

(Farad/M) dimen-
sionless 

permeability 
Kg - M µ* = .L = 107 

J.l 
Q2 J.lo 

J;;J.1 

(henry /M) 
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APPENDIX II 

PROOF OF TENSOR PBOPERTIES OF e , eµ AND DERIVATION OF II-18 
µ 

By definition, II- 1 implies 

e -µ = e -
- ·a (AII-1 ) 

Now the contravariant components of e 
-iJ 

are (e )a= (l ,O,O,O ) . 
-iJ 

Tensor transforms these components to {xµ} and we get 

which, by AII- 1 are 

{xµ} So e is a 
-iJ 

are all eµ Their 

2 ax 
dXO 

indeed the contra variant components of e 

vector. Thus 

components are: 

v 
e = 

e 
-µ 

for all 

8 v 
µ 

-0 

µ ar e vectors, 

in 

and so 

e • e = 
fl -v 

(AII- 2) 

At a fixed point (x i - ) . fixed i n {xµ } , the local spati al 

(time orthogonal) coordinate vectors are 

d. 
-i 

If the coordinate is rigid, then {d. } do not change direction with 
-i 

respect to each other, i.e., they can only change their magnitudes and 

adjust their contravariant time components to keep the time ortho-

gonali ty, but 

d. d . y .. 
- 1 -J liJ constant in time (AII- 3 ) - = 

Id. • d . Id.· d . ly . . yjj -i -i -J - J ll 
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APPEND IX I II 

DERIVATION AND LOCAL APPROXIMATION OF II-49 

From tensor equation II-46a we have 

or 

r-- µ (a) 
-v-g e (a) J (AIII-1) 

Thus we obtain for µ = 0 

(AIII-2) 

but the le~ side with the help of II-48 and the dual of G(a)(B) is 

thus AIII-2 becomes II-49a 

9, 

[ C::::g e(i) D(i)J + [ !::" oijk o 9, J 
v-g ,9, v-g n e(i) e(j) H(k) ,9, 

./goo 

= + ~g [ 1 0 J(i) J v-g P + e (i) 
/goo (AIII-3) 

Similarly, for µ = i in AIII-2 we have 
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( r i v G(a)(B)) r- i (j) 
vg e (a) e (B) ,v = -v-g e (j) J (AIII-4) 

and the left can be simplified as 

( r- i o G(J·) (o)) [ r-_g ei (J') ev(k) njkoQ, (*G(o) ( ")] ,v = v-g e (j) e (o) ,o v-rz x, 

Thus AIII-4 becomes II-49b 

j ( i) 
+ .r::g e (i) J (AIII-5) 

EQuations II-49c,d are derived similarly. 

Now express the coordinate differential operators locally with 

dx - dxµ e - dX( µ) 
~( µ) --µ 

- dx eµ -
dX e (µ ) 

µ - ( µ) -

then 

"I a: ox ax ( µ) 
~( µ) = 

ax ( µ) 
e e = ~( µ) - a -u axa 

e(µ) ax ( µ) a a: axa: e(µ) (AIII-6) = e e = 
ax(µ) axa 



and 

= ~( )J) 

Then in the le~ side of II-49a 

v • e 
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dXV 
= 

ClX ( JJ ) 

r- . 1 (i) r- 1 . () (i) 
( v-g eJ (") --) . D + v-g r-- eJ (i) - D 

l ;;;-g ,J v g (lxj 
00 00 

(AIII-7) 

( ;::;; ojik o Q, ) ;::;; ojik o Q, Cl 
+ -g n e (j) e (i) ,Q, H(k)+ -g n e(j) e(i) :;:- H(k) 

the underlined terms become 

r- 1 Cl D(i) o Cl D(i)) r- ojik o Cl H 
= v-g lg (ClX(i) - e (i) Clxo + v-g n e (j) ClX(i) (k) 

00 

Then II-49a can be rewritten as 

r- 1 [ClD(i) J r- o [ ojik __,3,.......,-H __ CJ_D(j)_ J(j)J 
v-g ;;;- CJX(i) - P + v-g e (j) n ClX(i) (k) ClXo 

goo 

( r- j 1 ) D ( i ) + ( r- oj ik ci Q, ) 
+ v-g e (i) ;;;- ,j v-g n e (j) e (i) ,i H(k) = 0 

goo 
(AIII-8) 

Similarly, II-49b can be rewritten as 
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( ;-:::;; j 1 ) D(i)+ (Gg noik£ j v ) 0 - -g e (i) ;;;-- ,o e (i) e (k) ,vH(£) = 
goo 

(AIII .9) 

Then we can clearly see that the local Cartesian equations II-50a are 

approximations when the change of g in a small enough neighborhood 
µ \) 

is neglected. The same remarks apply for II-50b. 

APPENDIX IV 

FERMI TRANSPORT OF THE {~( i)} J. ~ALONG r 

D 
(~( i)) µ -uµ (~(i) \ 

Dul. 
= Ds Ds 

then the preservation of keeping ..L~ is achieved by adjusting their 

orientations with respect to the time direction ~ ; but spatially they 

are parallel transported, i.e., spatial directions are fixed with 

respect to distant stars. 
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APPENDIX V 

LOCAL EM ENERGY DENSITY AND 

SYMMETRY PROPERTIES OF Eµv, Kµv, CµvaB FOR LOSSLESS AND LOSSY MEDIA 

From the local energy balance in SRT, if the medium is lossy, 

then the average loss per cycle of field is 

oW = f E • dD + f ~ • dB loss '\, '\, '\, 

- f E d(D + D) + f (H + H) dB (AV.l) '\, '\, '\, '\, '\, '\, 

s A s A 

where 

D (i) (i) E(j) ( i) = E ( j ) 
( i) 

- E ( j ) E ( j ) 
s s s s 

D ( i) :: (i) E(j) ( i) = -E (j) 
( i) 

E ( j ) E ( j ) (AV.2) 
A A A A 

Similar .definitions apply for H , in that we separate the symmetric 

and antisymmetric part of 
( i) 

K (j) • Then, for time-independent linear 

medium 

(ow ) f ( i) dE(j )+ f E(i) ( j ) 
= E E(i)(j) E(i)(j) dE loss ~ part 

s A 

= f ~ . dE f ~ . dE 
'\, '\, 

s A 

= I • , (D - D) • da 
"'E '\, '\, 'VE 

aE s A 



= 

= + f 

-9 (ow ) 
loss ~ part 

Similarly, we have 

ijk 
n 
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E: (j)(k) • d~E 
A 

(ow ) = 1 ¥ · dB 
loss B part 'f v 

A 

Thus the loss to media for oB, oE change 

ow 
loss = H 

'V 

A 

oB - D • oE 
'V 'V 'V 

A 

'V 'V 

l G(µ)(v) = 
- 2 oF ( µ) ( v) 

A 

• da 
rvE 

(AV.3) 

(AV.4) 

(AV.5) 

is totally due to the antisymmetric part of E:(i)(j) K(i)(j) 
' ' 

thus due 

to the antisyrrL.~etric part of 

metric part of 
µvaS 

c 

µv µv 
E: K , or the 

-+ 
(µv) +- (aS) antisym-

Now for a lossless medium . owl = 0 ' then oss 
( i) 

E: (j) - 0 ' 

K(i) (j) = 0 and the stored energy is, from AIV-1 

A 

T 

u = f 
ClD ClE 

dT ( E • ~ + H • ~ ) 
rv ClT rv ClT 

0 

A 

Consider the E,B being built from 0 to E,B during time 
'V 'V 'V 'V 

also s uppose that 
(i) (i) 

E: (j)' K (j) are time independent. 

(AV.6) 

0 to T· 
' 

Being 
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lossless, the E.~ energy storage is only a function of final field 

states and we can break AIV-6 into three parts: 

l. E(l) is built from 0 to E(l) , with E(2) = 0 = E( 3 ). 

2. E(2) is built from 0 to E ( 2)' wi th E(l ) = canst., E( 3 )= o. 

3. E(3) is built from 0 t o E(3 ) with E( l ) = canst . , E(2 )=const . 
' 

Then the electric part of AIV- 6 is 

E(l) E(2) 

u J ( i) dE( l )+ J E( i ) (2) = E E(i)(l) E(i)(2) dE e 
0 

E(3)0 

+ f E(i) 
E(i) (3) dE 

(3) 

0 

l (1) 2 
= 2 E(l)(l)(E ) + 

l (2) 2 (1) (2) 
2 E(2)(2)(E ) + E( l )(2) E E J 

l (3) 2 (1) (3) (2) (3) 
+ [ 2 E(3)(3)(E ) + E(l)(3) E E + E(2 ) (3 ) E E J 

= 1_ E E(i)E(j) = 1_ D • E 
2 (i)(j) 2"'"' 

(AV.7) 

and similar result holds for the magnetic part. Thus 

u = 1
2 

( D • E + H • B ) :: l( D • E + H • B ) 
"' "' "' "' 2 "' "' "' "' 

(AV.8) 

s s 

stands for local stored EM energy density in loss l ess medi a. For l ossy 

media it stands for the stored part of the energy, since the l osses cor-

responding to D H are deleted in AIV- 8. 
"' "' A A 
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APPENDIX VI 

DERIVATION OF EQUATION II.69 

1I 

I 

·~~~~~~---;.-

~(I} 

~(3) 

Insert (iCg Gµv) = -r-i Jµ into equation II.68: 
'\) 

f (-/:g Jµ)dE*µ = ~f (AVI. l) 

v3 v2 

Now choose a small spatial 3-volume, as shown below, at the boundary 

I 

x' 

3 its normal n from I to II points in a..x2 
direction, then 

'U 

{+
dE*µv = ±. nµv31 dx3d.xl 

at bottom and - at top surface 

and 
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f f 

(AVI.2) 

where the side integrals are shrunk to vani .sh first. Shrink the end 

surfaces, then 

= 

then obviously if n points in general direction, we have 
'V 

dx = (Gio 

"' II 

which, expressed locally in a time orthogonal frame, is 

(AVI. 3) 

(AVI.4) 

a = p n • dx = (D 
'V 'V 'V 

II 

D) • n 
'V 'V 

I 

a - local surface charge density 

on the spatial surface J_ n 
'V 

(AVI.5) 
Similarly, we have 

0 = (B - B) • n 
'V 'V 'V 

(AVI. 6) 

II I 

Now choose another small space-time v
3 

as 
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with 

* 0 l 2 
dL µ = - nµ 012 dx dx dx 

= + n a..x0 a..x1 
)l\J ]JV01 

for 

+ 
top 
bottom 

Perform simi larly to first case, b ut shrink t he dummy dx0 af'ter shri nk-

ing the thickness of the smal i vol ume 

(AVI. 7 ) 

Then obviously for a general surface direction n we have 
'V 

n • j 
(j 

'V 
"' "' n) In • n j "' ~ 
'V 'V 

• dx = nx(h 
'V 'V 'V 

II 

which, in time orthogonal frame, l ocal ly i s 

n . J 
k (J 

'V 'V 
n) dx (H - H) - n . = n x 

'V 'V n . n 'V 'V 'V 'V 'V 'V 
'V 'V II I 

Similarly, we have 

0 = ~ x (~II - ~ I ) 

h) ' 
'V 

I 

h 
'V 

j 
'V 

-

-

(- G23 ,Gl3, - Gl 2) 

(Jl, J2, J3) 
(AVI.8 ) 

k - local surface c ur­
rent density on 
spatial surface ..L n 

'V 

(AVI. 9) 

(A VI.10) 
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APPENDIX VII 

DERIVATION OF EQUATION II.73 

Physically as shown by the graph we have 

1 f d3x (E • D) ~f d3x ( oE • E) - 0 = • D + oD 2 'V 'V 'V 'V 'V 'V 

= ~ f d3x (2D • oE + E E • od 
'V 'V 'V 'V ~ 

f d3x (Y,E(~ • D) 1 
'\/ E •• ) ox = + 2 E.E. . 

'V l J ~ lJ 'V 

f d3x [D VE + D x '\/ x 1 
'Vt..j] ox = . E + 2E.E. . 

'V ~rv 'V 'V l J ..... l 'V 

f d3x [-('\/ • D) 
3B 

1 = E - D x -2 + 2 EiEj '\/ E •• J . ox 
"' 'V 'V 'V 3T ~ lJ 'V 

Similarly, 

l 0 f d3x H . B 
2 'V 'V 

= f d
3x 

Thus we get 

(-J x B -
'V 'V 

3D 
~x 
3T B 

'V 
'VK .. ) • ox 
- lJ 'V 

d 1 
f = pE + J x B + -;;--T (D x B) + -2 (B.B.'VK .. - E.E. 'Vt. .. ) 
'V 'V 'V 'V 0 'V 'V l J~lJ l J "'lJ 

AVII.l) 

(AVII.2) 

( AVII. 3) 
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APPENDIX VIII 

ENERGY MOMENTUM TENSOR OF E.M. FIELD IN A MEDIUM 

1° Consider a Lorentz force 

then 

µ/.. l µv aBY8 =-F J, + -4 g c F F 
/\ ; v aB yo (AVIILl ) 

in which the last term is zero for vacuum or l ossless media , so we 

identify the express i on in parenthesis as Tµv . 

2° In SRT consider 

.;(_,I - 1 GaB F - J Aµ 
4 aB µ of equation I I .55 

and from* 

sf.a 1-.aoe_ A , t.. a t 1 + f/..aB - - n I + 'dA , B µ 
µ,a 

, we obtain 

Now we can just arbitrarily interpret the first bracket as 

(AVIII. 2) 

(AVIII . 3) 

T (em) 

and the second bracket as that of explicit interaction T(int) whi ch 

* See Landau , (27), p . 87. 
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obeys the conservation law as a whole. 

u 
µ \) 

* Consider expression 

2 aA"ul 
;:g a µ v 

g ,.A 

(AVIII. 4) 

as energy momentum tensor of a system with Lagrangian L; substitute;/_, 

to be ,;!, + L. t, then we obtain em in 

u 
µ \) 

+ [-(A J + A J ) + g A Ja] 
µ v v µ µv a 

and its physical significance comes at 

(Avrn. 5) 

(AVIII.6) 

where t is defined by equation 4 with ;;:::_ for . the whole system µ \) 

except ;L + .f. t em in 
This first bracket in equation 

5 can also be called the energy momentum tensor of EM field in media, 

which is just the symmetrization of equation II.75 

In general for a system, if an energy momentum tensor which 

obeys conservation law or expresses a physical meaningful 

power-force throughout a volume on the enclosing boundary cannot be 

obtained, then the concept of the energy momentum tensor is arbitrary 

and has only limited physical meaning. 

* See Landau, ( 27) , p. 311. 
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APPENDIX IX 

DERIVATION OF EQUATION II.77 

(AIX . 1) 

Here A is an arbitrary parameter a l ong the worl d line . Now 

o J ds 
r d A µ \J a uµo u \)) - J (gµ\J,a u u ox + 2gµ \J ry;-

2/u u
0 

\) 

f 
d(u ox ) 

dA [g uµu\J - 2 ~Au ] oxa 
\) 

= + 

Juouo 2~ 
µ\J , a a 

r:/.. ,r).0.) 
o( x; (/.,) 

(AIX. 2 ) 

= f OA dxµ + A odxµ 
µ µ 

+ (A - A ) ox dx f 
a µ 

. µ,a a,µ 
(AIX.3) 

thus choosing A to be arc l ength such that uµ u - 1 , then equations 
µ 

1, 2, and 3 give . 

= 0 (AIX.4 ) 

or 

Dua 
-- = 
Ds 

(AIX. 5) 



-108-

APPENDIX X 

t:µv, I\yv EXPRESSED BY CµvaB 

If we begin formally with equation II.32, then no mix of B in 

D and E in H implies 

in the medium-rest frame 

i c(o)(µ)(i)(j) -

l c(i)(j)(o)(µ) = 

0 (AX. la) 

0 
(AX.lb) 

Then compare equation II.32 to II.27 in co-moving frame and de-localize 

as before; we can get 

such that 

(la) & (2a) 

(lb) & ( 2b) 

= 2CµavB u u 
µ \) 

(AX.2a) 

(AX. 2b) 

(AX. 3) 

Thus in any frame equation 2 effectively serves as a formula expressing 

the reverse of equation II.37. The non-consistency of equation 2 and 

II.37 just shows the freedom of assigning convenient values to the non-

physics dummy elements in respective expressions. 
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APPENDIX XI 

I NTERPRETATION OF EQUATION III.36 

k 

K,K inertial frames 

v 

If a series of particles spaced 6x apart and travelling with A 

in K frame, then in a K with respect to which K moves with V in 

+X direction, the particles are travelling in +X with velocity A 

and spaced ~ apart , where 

J1- v2 
= 6x ----

1 + AV 

Now think of these particles as photons in medium in K with . 

A = l//µ'E , then in K 

I 

E ~(number of photons per unit length.~)2 

1 
~ -- ~ 

6x 
l+-1-V 

/µ'E 

E • 

l+lv 
10€ 

Applying these to instantaneous local quantities in accelerated-medium 

frame K gives equation III.36 

E(t) ~ E(t=O) 
1 

cosh at + _l_ sinh at 
10€ 
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APPEND IX XII 

DERIVATION OF EQ,UATIONS III. 38 AND III. 38' 

Ey = /i:i€( l + /i:i€ t anh at) • 

~ + tanh at 

l 
ik (X - - cosh at) - ik A(t) 

o a o 
e e 

is obtai ned by Lorentz transform III.31 instantaneously from {O} to 

A(t) 

1 [ tanh-1(~)- tanh-1 (~ e- at ) ] 

=l _a2 /i- µE: l+ & l+/µ£ 

l [ -l (fµE: - 1) - 1(/µE: - l -at)] --- tan - tan e 
a /µE:-1 l+~ l+~ 

if µE: > l 

2 

From this we h a ve the expected 

µ E:-+ l)' 
ik (X- T) 

0 

Ey { 
e 

ik (X 
T 

a -+ 0 > 
--) 

0 
& e 

a s it should. The intantaneous phase ve l ocity of Ey in K is 

dX) = L(l cosh at + A(t)) 
dT dT a 

phase constant 

Substituting 
- at 

e = 
l -----;::====- and di fferentiating , we have equation 

aT + /i+a2T2 

I 
III. 38 . 
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APPENDIX xm 

MAXWELL EQUATIONS IN ROTATING SPHERICAL FRAME IN COMPONENT FORM 

Re-interpret eQuations III.55 and III.56 in spherical rotating 

{t,r,G,¢} of eQuation IIT.58, then 

[-1- _Cl ( £r2D ( r) ) + 1 Cl ( £ sin 
( £r2 Cir £r sin G CIG 

+ Q sin G -1~ ~(£r3H(G))- Q G ~G (sin2G £ H(r)) 
£r2 Cir £ sin o 

= p + rQ sin G J(¢) 

n '"' H(G) ~ H(r) 
:::_ [-o ( r ) _ _ o (-) J = 
r Cir £ CIG £ 

[_l __ Cl ( £r2B ( r) )+ 1 Cl ( 
2 '"' n. ('\-;:;-G£ £r or Nr sin ~ o 

sin 

[ Cl (. ('\ E(¢))- !__Cl E(G)J 
G aG sin ~ £ Cl¢ 

1 
r sin 

£ 2-- B(G)_ ~rQ sin G -8 E(r) 
cit at 

n ~ (('\) ~ E(r) 
.!::.. [-o (.!'.. E ~ )- o ( ) J 
r Cir£ aG -£-

where the {~}, {~(µ)} of {O} are related to {~} _ {~, ~' ~' ~} 
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of the inertial K by 

1~ 
= ~ + ~~ S:..( t) = Q,~ 

e. = e-:- S:..( r) = e 
"""'.!. -i -r 

1 
S:..( g) = -e 

r~ 

1 Q,y~ sin g ~+ 
1 

S:..( ¢) = g~ Q, - Q.r sin 

J1 - r2~2sin2G 

APPEND IX XIV 

DERIVATION OF EQUATION III.80 

From equation I I I .79 the integral i s , neglecting the ( t
2

- l) 

term, 

I - d3R1 ik V' [2 cos~·+ ~( -ik V' cos 2 ~ 1 + ~sin~· )]e 0 ~ .\,R f 
-ik (R' •e - Y') 

0 lW 0 

R' <a 

Thus for 
~ 

<< 1 the first order term in is 
w 

a n 

2ik0~ J dR' R13 J 
-ik R'cos 0 cos 0 ' 

dG' sin2e• e 0 

0 0 

l - ik R' sin 8 ' [sin 8 cos(~--~·)- sin ~· J 
x J d~' cos ~· e 

0 

Now integrate from rear 

1 d~ ' = t d~' cos ~· - D.A sin( o + ~·) 
e 



where >, 

then 

1T 

J 
der 

0 

- k Rrsin e r 
' A -

0 

tan 0 
sin e 

- -1 + sin 

(-2ni) 
sin e cos <!> = A 

( - 4ni) 
sin e cos <!> = A 
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sin e cos <!> = - 2ni J l (>-A) --A---

V1 + sin
2

e - 2 sin e sin <!> 

cos <!> 

e s in <!> 

1T 

J 
der . 2e• - ia cos e r 

J l (S sin Sln - e 

0 

n/ 2 

e') 

f der sin
2

e 1 Jl(S sin 0' ) cos ( a cos 

0 

er ) 

= ( - 4ni ) ~sine cos <!> 
1 

h(l - sine sin <!>) 

x 
-1/2 

( k R r ./:,....2 ...,..( 1- - -s-i_n_e-- -s -in- <1>-.) 
0 

J
3

(k
0

R' h(l - sine sin <!>)) 

2 

where a - k R ' cos e , S - Ak R' and page 743 . 2 of Ref. (28) is used ; 
0 0 

then 

n11 
.L 

J dR ' - 4ni N sine cos 
l l 

J 
2 = <!> 4 du u J

3
(u ) 

12(1- sinG sin~ n 0 2 

k a5sin e cos <!> 
2 

-41Ti 0 u} = {(3 - u ) sin u - 3u cos 
( na) 5 u = na.. 



where n - k 12(1 
0 
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sin 8 sin qi) ; then 

I = -8rri(k a)n a4sin 8 cos qi (3-o2)sin 8 - 38 cos 8 
0 05 

where 8 = k a /2(1 - sin 8 sin qi) • Substitute this in equation 
0 

III.79 and get equation III.80. 

where 

Now 

DERIVATION OF EQUATION III.82 

From equation III.81 the integral is 

I2 

I = Q f 

-

J 

-ik (R' •e - Z' ) 
- Q d3R1 (-e )e 0 ~ ~ = 

~y 

Q 

8 2k a sin 
0 2 

a 

ik 
J 

dR'R 13 e 
0 ~z 

0 

TI 

f d8'sin28'e 

0 

4rra3 
-e ~~(sin 81- oleos ol) 
~y 8 3 

1 

-ik R'(cos 
0 

8 - 1) cos 8' 

f 
-ik R'sin 8 sin 8' cos (qi - qi I ) 

dqi' 0 
sin qir x e 

Integrate from rear as before 

f d<P' = -2rri sin qi J 
1 

(>,) 

then 

A - k R'sin 8 sin 8' 
0 



J d0 ' = 

= 

= 

where a -

then f dR ' 

1T 

- 2ni sin qi I 
0 

- 4ni s i n qi 

n/2 

f 
0 

· ~ sin 
- 4ni 2 

h (l 

k R' (cos 0 -
0 
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.d0 ' 
. 2

0
, - ia cos 0 ' 

J l( B s in 0 ' ) sin - e 

d0' sin20 1 cos(a cos 0 ' ) J 1 (Bsin 0') 

0 s i n qi - 1/2 
J3 (n) • n 

0 ) - cos 

1 ) , B - k R's in 
0 

a 

2 

0 n - k R' / 2 (1 - cos 0 ) 
0 

- 4ni ~ sin 0 sin qi 

I 
dR ' R' 3 n-1 /2 J l ( n ) = 

h( l - cos 0) 
0 2 

k a 5 sin 0 sin qi [( 3- o
2

2 )s i n 0 - 3o2cos 62] 
- 4ni 0 2 = 

0 5 
2 

where o
2 

~ k
0

a /2 (1 - cos 0) • Thus combine r
1 

+ r
2 

and get 

equation III.82. 
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