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ABSTRACT 

The charge-control relations are rigorously derived from the 

carrier transport and continuity equations for a bipolar transistor 

with an arbitrary three-dimensional geometry, arbitrary base impurity 

distribution, arbitrary recombination mechanisms (including spatial 

nonuniformity), and for both low and high injection levels. A one-to

one correspondence is maintained between internal processes and the 

charge-control parameters, so that conceptual understanding of, and 

insight into, device operation is enhanced. In the absence of recom

bination, the average carrier velocity is used to obtain the average 

carrier transit time across the base region. The current is then ob

tained as the ratio of injected base charge to the average transit 

time. In the presence of recombination, the injected carriers are 

divided into two groups according to whether they recombine or are 

collected. The collected current is then obtained as the ratio of the 

collected charge to the average transit time of the collected carriers. 

The Beaufoy-Sparkes "collector time constant" is related to the carrier 

transit time and is given a conceptual interpretation as a collection 

lifetime in analogy with the recombination lifetime. A recombination 

transit time is introduced in analogy with the colleGtion transit time. 

The theory, which is generally valid up to frequencies of the 

order of the reciprocal transit time, is extended to include high in

jection levels and some second-order phenomena, such as the Early effect 

and nonideal base contacts. It is pointed out that the integration of 

the basic equations over the base region may lead to a loss of detailed 

information, so that the charge-control theory may accurately describe 
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only the average behavior of the device; a solution of this difficulty 

is suggested. The Ebers-Moll circuit relations are derived from charge

control principles so that a charge-control interpretation of the Ebers

Moll parameters and an electrical interpretation of the charge-control 

parameters is obtained. This leads to the conclusion that the short

circuit saturation currents are of more fundamental significance than 

are the open-circuit saturation currents. 

Finally, the separation of injected carriers into recombining 

and nonrecombining components is used to obtain a conceptually clear 

derivation of the principle of reciprocity for a transistor. 
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CHAPTER I 

INTRODUCTION 

In 1957, Beaufoy and Sparkes [1,2] presented the basic con

cepts for consideration of the junction transistor as a charge-control

led, rather than a current controlled, device. Their analysis was 

strictly applicable only to a uniform-base transistor under the condi

tions of spatially uniform recombination, one-dimensional current flow, 

and low injection levels. In addition, the excess minority carrier 

distribution in the base was assumed to be approximately linear with 

position, even in the presence of recombination. This model was highly 

mathematical in that each time constant introduced was defined as the 

ratio of stored (injected) base charge to the relevant current, and no 

conceptual interpretation was attached to this ratio . Johnson and Rose 

[3] introduced the ideas of charge in transit and transit time, and de

fined the current gain in terms of the effective ·lifetime of the minority 

carriers (which was undefined) and the transit time . Their analysis is 

quite general and involves no assumptions as to geometry, recombination, 

injection level, or base region impurity di stribution. 

Other workers [4-12] have extended and refined the cha.rge

control concepts, but many questions have been left unanswered. Moll 

and Ross [13] calculate the minority carrier transit time, but intro

duce a velocity which is given no conceptual meaning. Varnerin [4] 

attempts to over come this objection by referring to the r atio of excess 

(injected) charge in the base to the emitter current as the average time 

spent per carrier in the base (in the absence of recombination), so that 

this ratio can be called a transit time . Baker [7] limits the recom-
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bination rate to be spatially uniform in the base region, while Sparkes 

[8] indicates the limitations of the one-dimensional analysis. Sparkes 

also extends the analysis to graded-base transistors, states that the 

collector time-constant is equal to the mean transit time if the de

pletion layer width variation with voltage [14] can be neglected, and 

discusses the effect of high level injection on the transit time. Baker 

and May [9] extend the high frequency usefulness of charge-control anal

ysis by deriving a time-dependent transit time to account for delay 

effects, but fail to mention the inherent breakdown of the concepts at 

transit-time frequencies. Schmeltzer [ll] extends the analysis to 

three dimensions, combines surface and bulk recombination in an effec

tive lifetime, and includes tLme dependence from the beginning, but he 

defines time constants mathematically with no clear relation to carrier 

motions or processes occurring within the device. den Brinker, et al. 

[12] separate the injected current into two components: the current lost 

by recombination near the injecting junction, and the current which is 

collected. They then neglect the first component and treat the second 

component as IC = cxIE. 

From the foregoing it can be seen that the charge-control 

method of transistor analysis is generally limited to low-level in

jection and one-dimensional current flow in a uniform base transistor. 

Although some attempts have been made to overcome these restrictions, 

there is no single, comprehensive, coherent theory which eliminates all 

of them simultaneously. Further, the velocities and time constants in

troduced by various workers are mathematical quantities, with little or 

no conceptual meaning. In addition, those workers who refer to a 
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"transit time" fail to explain of what it is the transit time if there 

is recombination, when not all of the injected carriers are collected. 

As is pointed out by Narud, Hamilton, and Lindholm [15,16], and Koehler 

[17,18], the charge-control concepts lie somewhere between a physical 

model (such as that of Linvill [19]) and an electrical model (such as 

that of Ebers and Moll [ 20]). 

As originally proposed [1, 2], the charge-control method was 

primarily employed for large-signal analysis of transistor operation, 

although it has been extended to small-signal and transient conditions. 

Beaufoy [5], Scbmeltzer [11], den Brinker, et al . [12], and others have 

given examples of circuit design and analysis using the charge-control 

method, and techniques for measuring the charge-control parameters have 

been presented by Beaufoy and Sparkes [l], Sparkes [ 6,8], and Boothroyd 

[10]. A comparison of the charge-control method with other large-signal 

models of the transistor has been given by Narud~ et al . [15, 16] and 

Koehler [17, 18]. 

It is the purpose of this work to present a coherent theoret

ical foundation for the charge-control methods. General charge-control 

results will be derived for a bipolar transistor with arbitrary three

dimensional geometry, arbitrary impurity distribution, arbitrary re

combination mechanisms (including spatial nonuniformity), and for any 

inj ection level. The parameters involved in the theory will be clari

fied by relating them to conceptual processes occurring within the de

vice. This will allow the theory to be used for obtaining understand

ing of, and insight into, device operation, for DC as well as low fre

quency AC and slow transient conditions . The parameters will also be 
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given electrical (circuit) interpretations where appropriate, and the 

usefulness of these electrical and conceptual interpretations will be 

demonstrated. These results will be used to obtain a derivation of 

transistor reciprocity which is based on conceptual processes occurring 

within the device. Some fundamental and practical limitations of the 

theory will be presented. Primary concern will be with DC and low fre-

quency AC steady-state conditions. The displacement current will be 

neglected throughout this work. 

In Chapter II the charge-control parameters are rigorously and 

logically derived from the transport and continuity equations. Each 

parameter is given a clear conceptual significance by relating it to 

conceptual processes occurring within the transistor. This is accom-

plished mainly by separation of the injected charge into the charge 

that recombines and the charge that survives (i. e. does not recombine). 

This leads to the introduction of two new parameters: o, the fraction of 

charge that recombines and t , the recombination transit time. Some 
r 

limitations, fundamental and otherwise, of the charge-control theory 

are presented in Chapter III and some applications and extensions of the 

theory are given in Chapter DI. In Chapter V the Ebers-Moll equations 

are derived from the charge-control theory so far developed, allowing 

both an electrical (circuit) interpretation to be given to the charge-

control parameters and a charge-control interpretation to the Ebers-

Moll parameters. Finally, in Chapter VI the separation of injected 

charge into recombining and nonrecombining (surviving) components is 

used in a derivation of the principle of reciprocity for a bipolar 

transistor. 
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In the appendix the conventional (one-dimensional) derivation 

of the current relations for a diode under high-injection conditions is 

presentedG 
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CHAPTER II 

BASIC CHARGE-CONTROL CONCEPTS 

In their original paper, Beaufoy and Sparkes [l] treat a one-

dimensional transistor with a uniformly doped base. They introduce time 

constants, each of which is defined as the ratio of injected charge to 

the relevant current, but fail to attribute any conceptual meaning to 

them. Under the assumptions of one-dimensional current flow and no re-

combination, but with a nonuniform impurity distribution allowed, Moll 

and Ross [l3] derive an expression for carrier transit time but, as 

Varnerin [4] points out, they introduce a velocity with no direct con-

ceptual significance . In addition, it is not obvious how to extend 

their results to three dimensions or to include recombination. 

In general (DC or AC, steady-state or transient) the carrier 

transport current through a surface is given by the time rate of flow 

of charge through that surface 

dQ, 
I = dt (2.l) 

In the DC steady-state the current is constant, so that Eq. 2.l may be 

integrated as 

'f Q, 
I J dt = J dQ, (2.2) 

0 0 

IT = Q, (2 .3) 
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(2.4) 

where Q is the total amount of charge passing through the surface in 

time T. Equation 2.4 is valid for any time T and its associated 

charge Q in the DC steady-state. Furthermore, if this same charge 

passes through another surface some distance removed from the first 

* surface , Eq. 2 .4 gives the current through that surface also. 

In the case of time-varying signals, Eq. 2.4 does not give 

exactly the current through the two different surfaces. The reason for 

this is that, so far, the nonzero time taken by the charge to travel 

between the two surfaces has not been accounted for. It is clear how-

ever, that if the signal frequency is sufficiently low then this effect 

can be neglected. This represents a (frequency) limitation of the 

theory and is discussed further in Chapter III. 

Charge-control theory, as developed from the Beaufoy-Sparkes 

model, starts from Eq. 2.4 and declares that the total excess minority 

charge in the base is a convenient value for Q and that T is what-

ever is required to obtain the proper current value. For the base 

current, T is the recombination lifetime if it is uniform throughout 

the base. For the collector current (for emitter injection) in the 

absence of recombination, T is the average time taken by carriers 

to travel from the emitter to the collector (the transit time). Un-

fortunately, T is given no conceptual interpretation at the injecting 

* For instance, the emitter and collector junctions of a bipolar 
transistor with no recombination. 
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junction, or at the collecting junction in the presence of recombination. 

In this chapter Eq. 2.4 will be derived from the carrier 

transport and continuity equations in such a way that not only the 

convenience, but also the limitations of using the excess minority 

charge for Q will become obvious. The associated time T will be 

obtained simultaneously with the charge from the same equations, so that 

its significance will be clear. No restrictions will be made on geometry 

or impurity distribution, and nonuniform, although linear, recombination 

rates will be allowed. For the sake of definiteness an NPN transistor 

will be considered, with the positive (hole) current directions as 

shown in Figure 2 .1. Note that electron flow from emitter to collector 

represents a positive emitter current but a negative collector current. 

For conciseness of notation, the following convention will be 

adopted. If there is no subscript to indicate whether hole (p) or 

electrons (n) are being considered, then the parameter in question 

refers to either or both. A current (density) I (j) with a single 

subscript (E, B, C) indicates the total flow through the emitter, base, 

or collector due to all mechanisms being considered. The symbol 

µIv (µj) refers to the current (density) th.rough surface \J due to 

injection at surface µ. Although the discussion will be primarily in 

terms of electrons injected into the base from the emitter of an NPN 

transistor, the principles also hold for holes as the current carrier 

(majority or minority), injection from the collector, or for a PNP 

trans is tor. 
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COLLECTOR 

BASE ® 
EMITTER ® 

@ 

Fig. 2.1 Definition of positive current directions. Holes 

flow in direction of arrows, electrons flow 

opposite from arrows for positive currents. 
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2.1 Three Dimensions, No Recombination 

2.1.1 Velocities 

* The electron transport current density can be expressed 

as [21] 

U=OO 

j = e J u dn(u) (2.5) 
U=-oo 

where u is the component of individual electron velocity along the 

direction of current flow (;1/j) and can be either positive or nega-

tive according to whether the velocity is parallel or anti-parallel 

to the net carrier flow, and dn(u) is the density of electrons with 

velocities between u and u + du. The integration is to be carried 

out over the total density of electrons at the point at which the 

current density is to be evaluated. The quantities j, u, and dn 

may vary with position, but the total current must be independent of 

position for the DC steady-state since the condition of no recombination 

has been specified. 

The electron density and the velocity may each be expressed 

as the sum of two terms: that which is due to conditions existing in 

* The quantity j (as defined by Eq. 2.5) is the negative of the 
conventionally defined electron current density, so that Eq. 2 .5 
must be considered as the electron charge flux density. To avoid 
minus signs, Eq. 2.5, rather than its negative, will be used 
throughout this work, and j will be referred to as a current 
density. For holes, a similar relation to Eq. 2.5 will be used, so 
that both j and j are positive for positive carrier velo
cities. Th;:;R the totRl current density is j - j rather than 
the usual j + j • P n 

p n 
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equilibrium (subscript o), and that which is due to a change in boundary 

conditions such as an increase in applied voltage (primed). Then 

Eq. 2.5 becomes 

j=eJ(u +u')(dn +dn') 
0 0 

ro 
= e J u dn (u ) + 

U =-ro 0 0 0 
0 

ro 

+ e J u 'dn' (u') 

ro 
e J u'dn (u') + 

. 0 
U I =-ro . 

ro 
e J udn'(u) 

U =-ro 0 0 
0 

(2.6) 

(2.7) 

where u is that part of the individual electron velocity u which 
0 

can be attributed to random thermal motion and drift in a built-in 

electric field. Thus the velocity u 
0 

can be attributed to conditions 

which exist in thermal equilibrium, and it will be referred to as the 

equilibrium velocity of individual electrons. The velocity u' is 

that part of the individual electron velocity u which can be attri-

buted to nonequilibrium conditions, such as an electric field which is 

caused by the injected carriers (i.e. due to a breakdown of quasi-

neutrality at high injection levels); this velocity component will be 

referred to as the excess velocity of individual electrons. The 

parameters u and u' 
0 

are algebraic quantities, with a positive or 

negative value indicating whether the velocity component is parallel 

or anti-parallel t .o the direction of net carrier flow o 

The first two terms to the right of the equal sign in Eq. 2.7 
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are to be integrated over the equilibrium electrons with the indicated 

velocity ranges. The last two terms are to be integrated over the 

excess electrons with the indicated velocity ranges. 

The first term on the right of Eq. 2.7 is the equilibrium 

* current and is of course zero • The second tern is the current due to 

a change in velocity of the equilibrium carriers, as in the un-pinched-

off region of a junction field effect transistor [22,23] or in an 

ordinary resistor. This term is also important for high injection 

levels in diodes and transistors. The third term is the current due 

to injected (excess) carriers traveling at equilibrium velocities u 
0 

(positive or negative), as in a junction diode or transistor under low-

level injection conditions. The last term is the current due to the 

injected carriers traveling at excess velocities u' which are deter-

mined, in part, by the injected carriers (or external bias conditions). 

This term is important in a diode or transistor at high injection levels 

and is the entire current in the pinched-off region of a junction field 

effect transistor [24, 25]. In this work low-injection conditions in a 

diode or transistor will be of primary interest, and so attention will 

be focussed on the third term in Eq. 2.7. However, in Chapter IV, 

Section 4.2, high injection levels will be explicitly considered, and 

the second and fourth terms will be included4 Although attention will 

be restricted to PN junction diodes and bipolar transistors, the prin-

ciples herein developed are also applicable (with some modifications) 

* In equilibrium there are as many 
there are carriers with velocity 
gral is zero without either u 

0 

carriers 
-luol' 

or n 
0 

with velocity + ju I as 
so that the first :liite

being zero. 
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to other types of devices, as demonstrated by Johnson and Rose [3] and 

Middlebrook [26]. 

In order to eliminate the integrations from Eq. 2. 7, we make 

the following definitions: 

dn 
0 

n' = J dn' 

n = n + n' 
0 

00 

l 
v =-, J udn'(u) 

o n u =-00 o o 
0 

l 
v' = - J u'dn(u') 

n u'=-oo 

(2.9) 

(2.lO) 

(2 .ll) 

(2.l2) 

where the integrations in Eqs. 2.8 and 2.9 are carried out over all 

equilibrium or excess electrons respectively, regardless of their 

individual velocities, the integration in Eq. 2.ll is carried out over 

all excess electrons, and the integration in Eq .• 2 .l2 is carried out 

over all electrons. 

From Eq . 2.11 it is seen that v 
0 

is the average value of 
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* the individual equilibrium velocity for excess electrons at a point • 

The velocity v will be referred to as the point-average equilibrium 
0 

velocity of excess electrons and will later be related to the ensemble 

velocity of a group of electrons (see Eqs. 2.l5 and 2 .l6). Millman 

and Seely [27] have shown that electrons injected from a metal into a 

vacuum obey the Maxwell-Boltzmann distribution function in the vacuum 

if they were Fermi-Dirac distributed in the metal and the barrier 

potential (work function) is more than a few kT above the Fermi level. 

This result also holds for injection from the emitter into the base 

region of a transistor, if the density of carriers in the base is suf-

ficiently small that the Pauli exclusion principle can be ignored in 

determination of the electron energy distribution. If this condition 

is satisfied, then the energy distribution of injected electrons is 

unaffected by the electrons already in the base region, so that the 

injected electron energy distribution is the same as if the electrons 

were injected into a vacuum except that the effective mass, rather than 

the free-electron mass, must be employed. Thus, if the density of in-

jected electrons is sufficiently large that a statistical analysis is 

* This is an average over all excess electrons at a point in space 
and is independent of time in the DC steady-state. It may be 
imagined that we obtain v

0 
by adding ~lgebraically the velocities 

of excess electrons crossing a small surface area normal to the 
current flow, dividing by the total density of electrons involved, 
and taking the limit as the element of surface area becomes infini
tesimal. The quantity v is to be distinguished from the time
average velocity of an inBividual electron, which is zero in the 
absence of an electric field and is the drift velocity if there is 
an electric field. 
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* valid , it may be concluded that the point-average equilibrium velocity 

v of injected electrons is independent of the density n' of inject
o 

ed electrons. 

From Eq. 2.l2 it is seen that v' is the average value of 

the individual electron excess velocity u' for all electrons. The 

quantity v' will be referred to as the average excess velocity of 

electrons. 

With the use of Eqs. 2.8 - 2.12, Eq. 2.7 may be rewritten as 

(since the first term is zero) 

j = env' + en'v (2.l3) 
0 

** For low injection levels the first term is negligible so that we have 

j = en'v (2.l4) 
0 

where j is the transport current density in the direction of current 

flow, n' is the density of excess or injected electrons, and v 
0 

is 

the point-average equilibrium velocity of the injected electrons. Thus, 

* For very low injection levels, the injected density will be too 
small to yield a meaningful statistical average, so that Eq. 2.ll 
will not be a particularly useful expression. For the remainder 
of this work, we will always consider a sufficiently high injection 
level that statistical averages will be meaningful. 

** This can be seen by comparing the two terms with the aid of Eqs. 4.6-
4.8 for the velocities and Eq. A.4 for the current density. 
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since all terms in Eq. 2.14 have a clear conceptual meaning, Varnerin's 

objections [4] to using Eq. 2.14 as a starting point for the derivation 

of the charge-control parameters have been overcome. 

An alternative interpretation of the velocity v 
0 

can be obtained 

from the usual expression for electron current density in low injection 

ii = - e µ E n' - eD V'n' 
n"'O n "' 

(2.15) 

where E is the electric field due to any impurity gradient. Com-
"'O 

parison of Eq. 2.14 (:in vector form) and Eq. 2.15 shows that 

V'n' 
Xo = - µn~ - Dn ll' (2.16) 

so that v can be interpreted as the component,. in the direction of 
0 

current flow, of the vector sum of drift and diffusion velocities. 

Under low-injection conditions (for which Eqs. 2.14 - 2.16 are valid), 

the shape of the spatial distribution of excess electrons is independent 

of the magnitude of n' (or the externally applied bias). Hence, it 

may be concluded that v 
0 

as given by Eq. 2.16 is independent of the 

:injected electron density, as it must be if Eqs. 2.14 and 2.15 are to 

give the same result. The velocity v can be considered either as 
0 

the point-average equilibrium velocity of individual electrons or as 

an ensemble velocity. The former interpretation was used in the dis-

cussion of Eq. 2.ll, while the latter description is more appropriate 

here. Since the excess density gradient is of opposite sign (and may 

be of different shape and magnitude) for emitter and collector injection, 
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v 
0 
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is not the same for emitter and collect-

(2.17) 

where v is the ensemble velocity of carriers that were injected at 
µ 0 

surface µ. 

Equation 2.16 leads to the conclusion that v becomes in
o 

finite when n' becomes zero if the excess density gradient approaches 

zero at a slower rate than does n' 
' 

or remains nonzero. This is, of 

course, impossible. There are three conditions which may cause the in-

jected electron density to become zero at a certain position: first, the 

trivial case of zero applied voltage or current: second, the condition 

of infinite recombination rate, which is excluded here; and finally, the 

condition of a forward-biased emitter and a reverse-biased collector. If 

the collector injection is considered to be negative, the net injected 

density will go through zero in the base region, while the gradient re-

mains nonzero. In this case, the problem of an infinite velocity can be 

eliminated by retention of the distinction between emitter and collector 

injection. In this way a v 
0 

can be defined for each injecting junction, 

neither of which becomes infinite. Alternatively, the distinction be-

tween injected and equilibrium carriers could be eliminated and only the 

total electron density (which is never zero) considered. Unfortunately, 

this does not lead to easily understandable results. Conventional first-

order theory contradicts the above argument by assuming that the density 

of emitter-injected electrons is zero at the collector. This is impos-

sible and will not be considered further. (See Middlebrook [28,29] for 
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a discussion of this point.) 

2.1.2 Characteristic Times and Charges 

To simplify the analysis in a general three-dimensional 

geometry, it will be convenient to introduce a set of orthogonal flow

tube coordinates. In this system, x is defined to be the position 

coordinate along the axis of a flow tube of current (i.e. along the 

direction of current flow iiJj), and y and z are the position coordi

nates, orthogonal to each other, lying in the surface normal to the 

flow tube (i.e. on a constant quasi-Fermi level surface). This coordi

nate system is illustrated in Figure 2.2. It may be noted that this 

coordinate system reduces to the familiar Cartesian system if the base 

region is rectangularly shaped and the impurity gradient is appropriately 

directed. 

With this definition of coordinates, Eq_. 2.14 may be written 

as (for emitter-injection only) 

where n' 
E 

(2 .18) 

is the excess electron density due to injection from the 

emitter, Evo is the ensemble velocity of electrons injected from the 

emitter, and j(x,y,z) is the current density along a flow-tube. 

(Similar notation will be used for collector injection and for holes.) 

Rearrangement of Eq_. 2.18 and integration over the base volume leads to 
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BASE 
y 

--/-~-....\\DIRECTION 
OF 

CURRENT 
FLOW 

Fig. 2. 2 Example of a flow-tube coordinate system. 
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JJJ j(x,y,z) dxdS = JJJ eEn'(x,y,z)d(vol) 
Base Evo(x,y,z) Base 

(2.19) 

where dS is the cross-sectional area of a flow tube and is not 

necessarily constant along a flow tube. Bince recombination has been 

excluded, the current must be constant along a flow tube, so that 

j(x,y,z)dS must be independent of position x along the flow tube. 

Thus, Eqo 2~19 can be rewritten as 

[
W(y, z) dx ~ 

rfj(x,y,z) J v (x z) dS = rff eEn'(x,y,z)d(vol) 
S o E o 'y, 'B'ase 

(2.20) 

where W(y,z) is the length of a flow tube from the emitter to the 

collector, and the surface integration may be carried out over any sur-

face that crosses all of the flow tubes in the base region. The x 

integral on the left-hand side of Eq. 2.20 yields the emitter-to-collector 

transit time for a particular flow tube 

W(y,z) dx 
t (y, z) - J e c - Ev (x,y,z) 

0 0 

(2.21) 

This is essentially the same expression for transit time as given by 

Moll and Ross [13] except that here it has been generalized to an arbit-

ra:ry three-dimensional geometry and the velocity has been given a clear 

conceptual interpretation as the point average equilibrium velocity of 



21 

excess electrons (Eq. 2.11) or the ensemble velocity of excess electrons 

(Eq. 2.16). Recognizing that the right-hand side of Eq. 2.20 is the total 

excess charge of electrons in the base due to injection from the emitter 

EQ,', we have 

Q, I 
E 

The average transit time can now be defined as 

JJj(x,y,x) etc(y,z) dS 

= < t > =-s ______ _ 
e c £f j (x, y, z) dS 

(2.22) 

(2.23) 

so that Etc is the average emitter-to-collector transit time per flow 

tube, weighted by the current carried by the flow tube. It is important 

to note that, since v 
0 

is different for emitter and collector injec-

tio~ the average emitter-to-collector transit time is not equal to the 

average collector-to-emitter transit time: 

(2.24) 

Since recombination has been excluded, the current through any 

surface S is the same as the current through any other surface (delay 

time neglected), so that the denominator of Eq. 2. 23 is simply the total 

current. If we substitute Eq. 2 . 23 into Eq. 2.22 and rearrange, we 

arrive at the desired result 



22 

E~ (2.25) 

This is the usual charge-control result. However, the reason for using 

the total excess (injected) electron charge Q' 
E 

in the base is now 

clear: this quantity arises "naturally" from integration of the equation 

of carrier transport over the entire base volume (a "natural" choice for 

the integration region). Furthermore, the "time constant" involved in 

the result has been directly related to internal processes (i.e. carrier 

transport) rather than being defined as the ratio of charge to current. 

The charge Q' 
E 

may be given either of two interpretations. 

The usual description is that Q' 
E 

is the total excess electron charge 

stored in the base; however, this implies a static condition which does 

not exist (any steady-state condition which may exist is a dynamic steady-

state). A dynamic interpretation is that Q' 
E 

is the electron charge 

injected into the base. In the absence of recombination, as here, Q' 
E 

is also the collected charge and the charge in transit associated with 

one transit time. That is, a total charge Q' 
E 

the emitter to the collector in one transit time. 

2.2 Three Dimensions, Recombination 

crosses the base from 

In this section only Shockley-Read [30] or similar recombination 

mechanisms will be considered. 

2 .2.l Velocities 

The presence of recombination in no way affects the discussion 

of velocity in Section 2.l.l. The point-average equilibrium velocity of 

the injected electrons (v ) 
0 

is unchanged and is to be associated with 
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an electron as long as it exists in the base. 

2.2.2 Characteristic Times and Charges 

As in Section 2.1.2, the electron current density due to in

jection at the emitter (for low-injection) may be written 

(2.26) 

However, in the presence of recombination, the current is no longer 

* constant along a flow tube , so that Eq. 2. 26 cannot be integrated as 

was Eq. 2.18. In order to overcome this difficulty the injected charge 

is separated into two components, 1) the density of emitter-injected 

(E) electrons at point (x,y,z) that are destined to recombine (r) before 

reaching the collector En'r(x,y,z), and 2) the density of emitter

injected (E) electrons at point (x,y,z) that are destined to reach the 

collector (C) En'c(x,y,z). If collection by the base contact were to 

be accounted for, it would be necessary to add another component En'B' 

but this current will be neglected here. These components are shown 

schematically in Figure 2.3. Clearly we have 

(2.27) 

(2.28) 

* We consider the electron flow tubes only. The hole flow from the 
base contact does not affect the electron flow tubes under low in
jection conditions. 
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BASE 

ELECTRONS 

Fig. 2.3 Schematic diagram showing the 

destinations of emitter-injected 

electrons in the DC steady-state. 

Similar diagrams can be made for 

holes or for injection from other 

surfaces. 
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(2.29) 

if En'B is neglected, where C indicates the x coordinate at the 

collector. 

The current density of nonrecombining (collected) electrons 

may now be written as 

(2.30) 

and the current density at the emitter as 

(2.3l) 

where it has been assumed that the electrons that·recombine and those 

that survive (do not recombine) have the same energy and velocity dis-

tribution, so that the same average velocity may be used for both. 

The separation of the injected charge into two components has 

led to an expression for the collected current density which can be 

integrated in the same way as was Eq. 2.l8 with no recombination . This 

is possible because EjC(x,y,z) is the current density of the electrons 

that do not recombine and hence can be treated as though there were no 

recombination. Thus, Eq. 2.30 becomes 

(2.32) 



where 

and 
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EQ'c = JfJe En'c(x,y,z)d(vol) 
Base 

W(y,z)dx 
t (y,z) - J e c - Ev (x,y,z) 

0 0 

Equation 2.34 can also be rewritten as 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

It can be seen from Eq. 2.36 that under conditions of low injection 

level and neglect of the Early effect [14], Etc is independent of the 

applied current or voltage . 

Under DC conditions, EQ'c is the charge that is collected in 

one transit time, or is the charge in transit across the base associated 

with one transit time. 
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It is seen that EQ'c is the total electron charge that is removed 

from the base by collection in one transit time. Thus, it is clear 

that EQ'c, rather than EQ', is the relevant charge for determination 

of the collected current. 

The quantity Etc is the weighted average emitter-to-collector 

transit time of the injected electrons that reach the collector. That 

is, any electron injected at the emitter either reaches the collector 

in an average time Etc or does not reach the collector at all (i.e. 

recombines). 

The emitter current may be obtained by integration of Eq. 2.33 

over the emitter junction 

We now define 

JJJeEn'(x,y,z)d(vol) 
_ Base 

ET= fJeEn'(x,y,z)Ev
0

(x,y,z)d.S 

(2.37) 

(2.38) 

so that substitution of Eq. 2.38 into Eq. 2.37 yields the expression 

where 

Q' E I 
EE= ET (2.39) 
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EQ' = JjJ eEn'(x,y,z)d(vol) 
'.Base 

(2.40) 

which is the usual charge-control relation for the emitter current under 

DC conditions. A conceptual interpretation of ET (the emitter injec

tion time) will be given in Section 2.2.5. Again, the reason for use of 

the total injected charge in the expression for the emitter current is 

clear. This charge enters "naturally" from integration of the carrier 

transport equation over the entire base volume (a "natural" choice for 

the integration region). Also, Q' 
E 

is the total charge injected in 

one emitter injection time. 

The total injected electron charge that recombines may also 

be obtained by integration of the density of injected electrons that 

are destined to recombine before being collected: 

(2.41) 

This result will be used in Section 2.2.4. 

2.2.3 Average Recombination Lifetime in the Base 

The DC continuity equation for electrons is 

2·~ = e U (2.42) 

Integration of Eq. 2.42 over the base volume and use of Gauss' theorem 

leads to 



~ = rJJ e U d(vol) = R 
'.F.fase 
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where R may be considered to. be the recombination rate of excess 

(2.43) 

charge for the entire base volume, while U is the recombination rate 

of excess carriers for an infinitesimal volume. In analogy with the 

point lifetime, which Shockley and Read [30] define as 

( ) = n' (x, y, z) 
T x,y,z - U( ) nr x,y,z 

(2.44) 

the recombination lifetime for the entire base (for injection from the 

emitter) may be defined as 

(2.45) 

Use of Eqs. 2.43 and 2.44 in Eq. 2.45 gives 

n' 
rf J ~ d(vol) 
'.Base nr (2 .46) =£ff En' d(vol) 

ase 

* so that ETnr may be interpreted as the average excess electron life-

time in the base for injection from the emitter, weighted by the density 

* l/T is related to the probability of capture [30]; it is really 
the~robability that is averaged. 
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of electrons subject to a particular recombination rate (lifetime, or 

probability of capture). 

If the recombination rate is spatially uniform and independent 

of the carrier density (low-injection), then 

'f = 'f 
E nr nr ( 2 .47) 

and 

(2.48) 

On the other hand, if the recombination rate is not spatially 

uniform or if high injection conditions exist, Eq. 2.47 is not valid. 

In general, 

(2.49) 

so that the reciprocal lifetime is not averaged with the same weighting 

function for both emitter and collector injection. Hence, in general 

(2.50) 

2.2.4 Collection Lifetime and Recombination Transit Time 

In the previous section the collector current was obtained in 

terms of the collected charge and its transit time. In contrast, Beaufoy 

and Sparkes [l,2], Sparkes [8], Baker and May [9], Gray, et al. [31], 

and others, express the collector current in terms of the total injected 
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charge to define a collector time constant 

* to which they give no conceptual interpretation • 

(2.5l) 

In this section, we 

will give a conceptual interpretation to ETC and show that it is ana

logous to the recombination lifetime ETr. 

Ignoring microscopic details, we may say that recombination 

and collection in a transistor base are similar mechanisms in that 

they both serve to remove injected carriers f'rom the base region. Thus, 

since the recombination lifetime is given by (see Section 2.2.3) 

T 
E r 

Q' 
E 

=E~ (2.52) 

we may, be comparing Eqs. 2.51 and 2.52, consider ETC to be a transit 

or collection lifetime. That is, ETr is the mean time required for a 

carrier to be removed f'rom the base by recombination alone, and ETC is 

the mean time for a carrier to be removed f'rom the base by collection 

alone . 

Furthermore, in analogy with Eq. 2.32 for the collected current, 

we may define a recombination time constant by 

* Gray, et al. [31] show that ETC= w2/2D in a one-dimensional, 
uniform-base transistor if recombinationnis neglected, but fail to 
identify this term as the carrier transit time . 
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(2.53) 

Since Etc is the mean time for a carrier to travel from the injection 

point to the collection point (where it is removed from the base), Etr 

may be interpreted as the mean time for a carrier to travel from the 

injection point to the recombination point (where it is removed from the 

base). Thus Etr is the recombination transit time for injection at 

the emitter. It is obvious that the recombination lifetime is equal to 

or larger than the recombination transit time, or 

'f > t 
Er - Er (2.54) 

since the carriers with longer recombination transit times are collected 

before they can recombine and are not included in the determination of 

Etr. A similar argument for the collection times leads to the conclusion 

that the collection lifetime is larger than or equal to the collection 

transit time, or 

'f > t 
E C - E C 

If we define 

(2.55) 

(2.56) 
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* as the fraction of injected charge that recombines , then the integrated 

form of Eq. 2.27 yields 

(2.57) 

Furthermore, Eqs. 2.32 and 2.51, and Eqs. 2.52 and 2.53, together with 

Eqs. 2.56 and 2.57, lead to 

(2.58) 

and 

(2.59) 

from which Eqs. 2.54 and 2.55 follow immediately, since Eo :5 1. 

The foregoing results may be interpreted as follows. The 

entire injected charge is to be associated with the lifetimes, both 

recombination and collection, whereas only the charges involved in the 

particular mechanism are to be associated with the transit times. Since 

ETr is related to the probability per unit time of recombination [30], 

it may be said that E~C is related to the probability per unit time of 

collection. Also, Q, ' can be interpreted as the charge removed from E r 

the base by recombination in one recombination transit time. In the DC 

* The quantity o can also be interpreted as the probability of 
recombination for minority carriers injected at the emitter. 



steady-state, this charge is also the majority charge injected through 

the base contact in one recombination transit time Etr. 

2.2.5 Base Current and Injection Time 

To complete the solution of the transistor, the base current 

must be obtained. If we use Eqs. 2.32 and 2.39 to obtain ~ as the 

sum of collector and emitter currents, the result will be valid only 

under DC conditions since we have, in those equations, not accounted 

for the increase in excess charge in the base region due to the nonzero 

emitter-to-collector transit time. In the derivations in Section 2.2.2 

an instantaneous redistribution of charge after a change in the boundary 

conditions was assumed, whereas, of course, a nonzero time is required. 

During this time there is a component of base current consisting of 

majority carriers being injected at the base contact at a rate equal 

to the rate of increase in minority carriers due to emitter injection. 

There are two ways to account for this base current component. The 

tedious method is to include the time delay when calculating the emitter 

and collector currents so that they can be used to obtain the total (time-

varying) base current. The easier method is to use the charge-control 

approach to obtain the base current from the continuity equation. 

Furthermore, this approach will lead, in a straightforward manner, to 

the inclusion of the recombination lifetime in the result. 

For emitter injection, the electron continuity equation is 

(2.60) 
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where the recombination lifetime T includes both bulk and surface 
r 

recombination [3 2-35] and may vary with position or carrier density. 

Integration of Eq. 2. 60 over the volume of the base, and use of Gauss' 

theorem in the left-hand side, leads to 

e n' d 

SJ ii,·~ = JJJ +-- d(vol) + dt r;s eEn 1 d(vol) 
Base Base r ~ase 

(2 .61) 

On the assumption that electrons do not cross the base contact (i.e. ideal 

base contact), so that the left hand side of Eq. 2. 61 is the difference 

between the emitter and collector electron currents (which is just the 

base hole current), this result can be written as 

(2.62) 

This is the usual charge-control expression for the base current [7,9], 

except that it has been extended to nonlinear, nonuniform, and surface 

recombination. 

We can now obtain an expression for the (time-varying) emitter 

current accounting for the increase in excess charge in the base, and 

thus extend Eq. 2. 39, by using Eqs. 2.32 and 2.62 . Thus 

( 2. 63) 

(2.64) 
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From Eqs. 2.39, 2.57 and 2.64 it is seen that (for DC conditions) 

1 - 6 
E (2.65) 

The numerator of the transit time term is explained by the fact that 

only a fraction (1 - E6) of the injected charge is to be associated 

with the transit time, whereas all of the injected charge is associated 

with the recombination lifetime and the emitter injection time, as dis-

cussed in Section 2.2.4. From Eq. 2.65 it is seen that T 
E 

is the 

parallel combination of the recombination and collection lifetimes. 

This is in accordance with intuition since the two mechanisms for re-

moval of carriers from the base operate independently and simultaneously 

on all carriers. It is now seen that the emitter injection time ET' 

as defined by Eq. 2.38, has the significance that· in the time T all 
E 

of the injected carriers are removed from the base and replaced by new 

carriers (in the steady-state). 

2.3 Conclusions 

The basic charge-control parameters have been derived from the 

carrier transport and continuity equations in a clear and logical fashion. 

No restrictions have been made as to geometry or impurity distribution, 

and spatially nonuniform recombination (bulk and surface) has been in-

eluded. Most of' the detailed discussion is for low injection levels, 

but the concepts are also applicable to high injection levels; this 

extension will be made explicit in Chapter IV. Throughout the discussion, 

a one-to-one correspondence has been maintained between charge-control 
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parameters and conceptually clear processes. In this way the original 

Beaufoy-Sparkes model, which is more mathematical than conceptual (as 

has been pointed out by Hamilton, et al. [16] and Koehler [18] ), has 

been converted into a model which can be used to obtain an understanding 

of and insight into device operation for DC as well as low frequency AC 

and slow transient conditions. 

The major obstacle to a clear conceptual interpretation of the 

charge-control parameters has lain in the meaning of the transit time 

in the presence of recombination, as has been pointed out by one of the 

originators of the charge-control model [36]. The separation of the 

injected charge into that which is collected and that which recombines 

removes this obstacle and allows a clear conceptual understanding of the 

transit time and carrier velocity to be obtained, with or without re

combination. A conceptual interpretation of the Beaufoy-Sparkes [l] 

collector time constant, which heretofore was a strictly mathematical 

para.meter, is also obtained. Two new parameters have been introduced: 

the recombination transit time, and the fraction of charge that recombines. 
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CHAPTER III 

LIMITATIONS OF CHARGE-CONTROL CONCEPTS 

In the previous chapter the basic charge-control parameters 

were defined and derived without an indication of the range of conditions 

over which they are meaningful. It is generally understood that the 

charge-control concepts are valid for sufficiently slow variations in 

the external boundary conditions [31], and that this frequency limitation 

is in some way connected with the carrier transit time across the base 

[3]. However, this connection is not always fully explained. 

In this chapter some frequency limitations of the charge

control concepts will be presented. Some other limitations of usefulness 

or convenience will also be discussed which, while not fundamental, are 

of importance. One of these limitations will be overcome by a modifica

tion of the theory. 

3.1 Continuity and Transport Equations 

All derivations of charge-control relations [1,8,9,16,18], 

including those in the present work, assume the validity of the carrier 

transport and continuity equations. This is true also for the Ebers

Moll [20] circuit model and Linvill's [19] lumped model. Thus, all of 

i:hese results are limited to conditions in which these equations are 

valid, as has been pointed out by McKelvey, et al. [37], McKelvey [38], 

and Hamilton, et al. [16] . 

If the transport and continuity equations are to be valid, then 

the concepts of drift and diffusion must be meaningful. This requires 

that the mean time to recombination (lifetime) be large compared to the 

mean time between collisions, and that the dimensions of the base region 
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be large compared to a mean free path [l6,37,38]. 

For most devices, these restrictions are almost always satis-

fied, so that this limitation will not be further considered. 

3.2 First-Order Approximation 

The charge-control relations obtained in Chapter II are valid 

within, and limited by, the usual first-order approximations made in 

conventional transistor analysis. In particular, it has been assumed 

that the device can be separated into fully depleted regions and quasi-

neutral regions, with abrupt boundaries between them. It has been 

assumed that the density of injected minority carriers is zero at the 

collecting junction; that is, the collecting junction is an infinite 

sink for minority carriers. Also, carrier generation and recombination 

within the depletion layers and the emitter and collector regions has 

been neglected, as have any other phenomena which may occur outside the 

quasi-neutral base region (such as charge storage in the collector region). 

3.3 Delay Time 

In Chapter II, in the expressions for the emitter, base, and 

collector current, it was assumed that all of the currents could be ex-

* pressed in terms of the same charge EQ'. This assumption is clearly 

violated for a time-varying signal. Account must be taken of the fact 

that the collector current at time t is not determined by the charge 

being injected into the base at time t, but rather by the charge that 

was injected approximately one transit time earlier • . This is the delay 

* This is essentially the assumption of instantaneous redistribution 
of charge that appears in the literature [5,16-18]. 
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time which must be used in the boundary conditions in the solution of 

the continuity or diffusion equation. For sufficiently low frequencies 

and signal levels that the injected charge does not change greatly 

during one transit time, this effect can be neglected. It is thus re-

quired that 

t << T 
delay 

2n (3 .1) =-

in order that the delay time should be negligible, where w is the 

signal frequency, T is the signal period, and t delay is the delay 

time, which is of the order of magnitude of the transit time. 

For a one-dimensional, uniform-base transistor, Baker and May 

[9] have determined the delay time as 

t 
t _ E C 
delay - b (3. 2) 

However, instead of associating the delay time with the charge in transit, 

they consider it as a time-dependent transit time. Mathematically this 

is perfectly valid, since in an equation of the form 

(3 .3) 

where s is the Laplace transform variable, it is arbitrary as to 

whether F(s) is associated with Q' (s) 
E C or with Etc. However, it 

is clear that association of F(s) with EQ'c(s) would more closely 
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represent the process involved. 

The delay time limitation can be circumvented by evaluation 

of the transport current as 

Q 
I= -

'T 
(3.4) 

where 'T is sufficiently small that the current and charge are approx-

imately constant during the time 'T. For T < tt (where tt is the 

average transit time) a time interval can always be chosen (e.g. T/100) 

such that I is approximately constant during 'T. If this is done, 

however, then 'T has no direct conceptual significance and is a direct 

function of the applied signal. In this case charge-control no longer 

gives simple, understandable results: it is valid, but not useful. This 

approach will ultimately lead back to 

I = ~~ (3 .5) 

for sufficiently high frequencies and small 'T. 

3.4 Displacement Current 

As usually formulated, the charge-control relations assume a 

sufficiently low signal frequency that the displacement current can be 

neglected. This is tantamount to the assumption that the period of the 

signal T is large compared to the relaxation time t . 
relax 

Since the 

transit or injection time is usually larger than the relaxation time, the 

effects described in the previous section limit the validity of the re-

sults . to a lower frequency, so that the displacement current can be 



neglected. This assumption will be made throughout this work. However, 

if 

t > t 
relax - t 

(3 .6) 

where tt is the average transit time, then the displacement current 

must be accounted for. 

3.5 Other Frequency Effects 

So far, only phenomena which are fundamentally involved in 

the operation of a transistor have been considered. However, other 

effects must sometimes be taken into account. In particular, for suf-

ficiently large applied biases and/or small .base widths, the depletion 

layer widening effect on the base width may be significant [14]. This 

can introduce an additional time dependent term into the transit time 

and must therefore be accounted for. Its effect, through the change in 

base volume, on the injected charge and charge in transit must also be 

included, as must the time delay between a change in the external signal 

and the attendant depletion layer change in width. 

In general, most second-order effects have some frequency 

dependence associated with them which must be conside~ed in determination 

of the region of validity of the charge-control equations. These are 

generally not fundamental to transistor operation (but may be of practical 

importance) and can more or less easily be accounted for. These effects 

will not be considered, 

3.6 Loss of Simplicity 

The discussion of charge-control in Chapter II was mainly 



concerned with first-order effects encountered under low-iDjection 

conditions, although high-injection was explicitly allowed for in a 

few places. This was not intended to imply any basic limitation of the 

theory, but rather to simplify the discussion; in Chapter IV the theory 

will be extended to high-injection conditions and other phenomena. In 

this section it will merely be noted that, while the charge-control 

concepts and methods can be extended to some higher order phenomena (ex

cept possibly high frequency effects), such an extension is almost 

always accompanied by an attendant increase in complexity of the para

meters and concepts . This, of course, is also true of other models. 

For high injection levels or base width variations with voltage, for 

instance, the transit time is no longer a constant dependent only on the 

device structure, but becomes a (possibly complex) function of applied 

bias, injection level, or time. If the restriction to low-injection 

Shockley-Read recombination is eliminated, then the lifetime also be

comes a function of injection level. It is to be emphasized, however, 

that the charge-control principles are valid and useful under these 

conditions, although the low-injection simplicity is lost. 

3,7 Differential Versus Integral Results 

A limitation of the charge-control theory arises in switching 

applications . This is due to what Gray, et al. [31] refer to as charge 

storage in the remote regions of the base (see Figure 3.1). In transistor 

switch-off operation (i.e. removal of all injected charge from the base) 

the first charge to be removed is that which is physically between the 

emitter and collector junctions, in the active region. This is because 

the time for these carriers to reach the emitter junction is less than 
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EMITTER 

® 
REMOTE 

I \ 
ACTIVE REMOTE 

COLLECTOR 

Fig. 3 .1 Remote and active regions of the 

base in a planar transistor. 

(

PREDICTED BY CHARGE-CONTROL 

\ OBSERVED . 

' 

BASE 

Fig. 3 .2 Emitter current during switching from 

the saturation to the off condition, 

illustrating the "wiggle" effect. 

(After Gray, et al. [31]) 



that for the carriers in the remote regions. After the rapid removal 

of charge from the active region, the charge from the remote regions 

diffuses and drifts into the active region, causing an increase in 

current. Thus, the current waveform is similar to the solid curve 

shown in Figure 3.2. However, the theory as developed in Chapter II 

combines the active and remote region transit times into one average 

transit time, so that this "wiggle" effect is not predicted by the 

theory; only the average behavior is predicted (dashed curve in Figure 

3.2). 

The above result is inherent in the charge-control approach, 

in which only the gross, average, or integrated behavior of the device 

is represented. Integration of the transport and continuity equations 

results in the loss of detailed information, but the average behavior 

* is correctly predicted • This loss of detailed information may be 

important in certain applications, and thus const·itutes a limitation on 

the range of applicability of the theory. 

For the specific situation referred to above, of remote charge 

storage in the base, it is possible to modify the theory to overcome 

this limitation. Instead of the total injected charge and one transit 

time (for each injecting junction) being considered, the injected 

charge and transit time may be divided into "active" and "remote" com-

ponents so that the (possibly) very different transit times in the two 

regions can be accounted for . By this means, the concepts of a lumped 

* Hamilton, et al. [16] claim that the integrated equations represent 
an approximation, but this is incorrect; they represent an accurate 
average. 
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model [19,39] can be adapted to the concepts of the charge-control 

model, and a synthesis of the two thereby obtained. 

3.8 Conclusions 

Limitations to the validity of the charge-control concepts 

have been discussed. The most fundamental restriction is the assumption 

of the validity of the transport and continuity equations; without these 

equations, all else is meaningless, even for DC. Also of great import

ance is that the theory is only valid within the framework of the first

order approximations of conventional transistor analysis. The most 

important frequency limitation is that imposed by transit (or delay) 

time, although relaxation time effects may be important, especially for 

switching or transient analysis. Second-order frequency effects must 

also be considered. 

Other limitations of the theory are related more to convenience 

or utility than to validity. In the attempt to include high injection 

levels and second-order effects, the parameters and concepts lose their 

simplicity, and the entire theory may lose its attractiveness, although 

not its validity. This, however, is also true of other models. 

By integration of the basic equations and consideration of 

only average behavior, detailed information is lost, as in the case of 

remote charge storage in the base. This constitutes only a loss of 

information, not a loss of accuracy; the average behavior is accurately 

described. By combination of some of the concepts of the lumped model 

with the charge-control model, this limitation can be overcome at the 

cost of added complexity. 



CHAPTER IV 

APPLICATIONS AND EXTENSIONS OF THE CHARGE-CONTROL THEORY 

In this chapter it will be shown how the basic concepts of 

charge-control, as developed in Chapter II, can be used to determine 

device capabilities and performance. The theory will also be extended 

to high injection levels and second-order phenomena, and a relation 

between the injected charge and the applied voltage will be obtained. 

4.1 Common-Emitter Current Gain 

In this section an expression for the DC common-emitter current 

gain ~ will be obtained, under the assumption that majority carrier 

injection from the base into the emitter can be neglected (unity emitter 

efficiency). Then 

(4.1) 

Using Eqs. 2.32 and 2.62 in Eq. 4.1 we obtain 

(4.2) 

Equation 2.57 for EQ'c yields 

(4.3) 

(4.4) 



where Eq. 2.58 for 'f 
E C 
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has been used . Gray, et al. [31] have obtain-

ed the same result under the restriction of a one-dimensional, uniform-

base transistor, without giving a clear interpretation of the parameters. 

The result obtained here is valid for an arbitrary geometry and impurity 

distribution. 

If E'fC is considered as a collection lifetime, Eq. 4.4 

indicates that ~ is the ratio of recombination to collection lifetimes. 

If the fraction of recombined carriers Eo is sufficiently small, the 

current gain approaches the ratio of recombination lifetime to collection 

transit time. 

4.2 High Injection Levels 

In this section the results of Chapter II will be extended to 

the case of high injection levels. It will also be shown that the 

usual high-injection equations can easily be derived from charge-control 

principles. 

For high-injection, the electron current density can be written 

as (from Section 2.1.1) 

J. = en'v + env' + en'v 
n nDo nD nd (4.5) 

where 

(µn~o) " v - . x nDo (4.6) 

v' (µ E') . " = - x 
nD n"' 

\7n I 

(Dn "'n,) " vnd = - . x (4.8) 



and x is a unit vector in the direction of current flow, so that Eqs. 

4.6 - 4.8 represent the component of the velocities along a floW tube. 

to obtain 

* For the case of no recanbination Eq. 4.5 can be integrated 

I 
n = 

Q + Q' no n 
t' nD 

+ Q' 
n 

1 l 
(-+-) 
tnDo tnd 

(4.9) 

where Qno and Q'n are the equilibrium and excess electron charge, 

respectively, and 

l 

1 

l v- = 
nD 

ffen'vnnodS 
s 

Q' n 

Q' 
n 

Q = Q + Q' n J:lo n 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

* The methods of Section 2.2.2 can be used in the presence of re
comb ina ti on. 
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Since recombination has been neglected, the integrations can be carried 

out over any surface that crosses all of the flow tubes in the base 

region. It is clear that Eq. 4.9 could have been written down imrnedi-

ately (without starting with Eq. 4.5) from a knowledge of the various 

forces and pseudo-forces (diffusion, equilibrium drift, excess drift) 

acting on the equilibrium and excess carriers , and the charge-control 

principles. 

A comparison of Eqs. 4.lO - 4.12 with Eq. 2.36 indicates that 

tnDo and tnd are the transit times due to the built-in field and 

diffusion, respectively, while t' 
nD 

can be considered as the transit 

time due to the injection-caused field. This interpretation of t'nD 

leads to the conclusion that Q /t' represents a shift in the dis-no nD 

tribution of equilibrium carriers. This is not to be taken literally 

since all electrons are indistinguishable, but it may be a useful con-

cept. 

For low injection levels, the injection-caused field (or 

velocity) is negligible, so that 

I = Q' n n 
1 1 (- + -) 

tnDo tnd 

For high-injection Q'n >> ~0 , leading to 

1 1 1 
I = Q' (-- + - + ---r-) 
n n tnD t _ t nD o na. 

(4.14) 

(4.15) 

Thus it is seen that for both low and high injection levels, the equilib-
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rium minority charge contributes a negligible amount to the total 

current. For medium injection levels, where the above approximations 

are not valid, this term cannot be neglected. 

The hole current can be similarly expressed as 

(4.16) 

where the terms are analogous to those of Eq. 4.9. 

An expression for the electron current (assumed the minority 

carrier current) that does not contain the transit time due to injected 

carriers (or the injection-caused field) will now be obtained. 

First, it is noted that since the hole and electron drift 

velocities differ only by the mobility ratio, the transit times of in-

dividual holes and electrons will differ only by the mobility ratio. 

Therefore the average drift transit times must also differ only by the 

mobility ratio. Thus 

under all conditions. 

Solution of Eq. 4.16 for t' pD 

(4.17) 

and use of Eq. 4.17 leads to 

(4.18) 



Substitution of Eq. 4.18 for t' nD 

current and rearrangement, yields 
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into Eq. 4.9 for the electron 

Equation 4.19 is essentially the integrated form of Eq. A.4 

(appendix) generalized to arbitrary geometry and a three-dimensional 

impurity distribution. 

The assumption of quasi-neutrality r.esults in 

n I :: pl (4.20) 

Q' == Q' n p 
(4.21) 

Under these conditions, the diffusion velocities (Eq. 4.8) also will 

differ only by the mobility ratio, so that 

(4.22) 

With substitution of Eqs. 4.21 and 4.22 into Eq. 4.19, the electron 

current is obtained as 

Q'n ~ Q'n Qn µn Qn 
I = -t (1 + -Q ) + --(1 - -) + - - I 
n nd p tnDo \ µP \ P 

(4.23) 
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which is the integrated, three-dimensional, generalized form of Eq. A.7. 

For high injection levels n ~ p, so that 

and Eq. 4.23 becomes (compare with Eq. A.9) 

I n 

(4.24) 

(4.25) 

which shows the usual multiplicative factor of 2 as compared with the 

low-injection result [40,41] (see the appendix). Since the conventional 

interpretation is that high-injection causes the diffusion constant 

(and hence the carrier diffusion velocity) to double, it is seen that 

the diffusion transit time can be considered as halved. 

Equation 4. 25 (together with the results of Section 4.6 below) 

is the usual first-order high-injection diode or transistor solution, 

except that it is more general" The solution presented here is valid 

for any geometry or impurity distribution, whereas the usual results 

are strictly valid only in one dimension with uniform doping, although 

they are usually assumed valid in three dimensions. The generalization 

to three dimensions has been obtained at no cost of added complexity as 

compared to the conventional solution, while the generalization to non-

uniform doping is equally simple by either method. 

When neutrality breaks down at the diode contact [42] or the 

collector junction [28,29] for very high injection levels, then for 



Eqs. 4.20 - 4.25 to be valid, the Q's must represent the charge in 

the quasi-neutral region and the t's must refer to the transit times 

across the quasi-neutral region. 

The above derivation is for a diode or transistor with no re-

combination. However, recombination can be included, and the device 

treated as either a transistor or diode according to whether the re-

combination current is considered as a separate (base) current or is 

combined with the collected current [2l,26]. 

4.3 Nonlinear Recombination Rates 

In Chapter II only Shockley-Read [30] recombination mechanisms 

were considered; however, regardless of the type of recombination, a 

lifetime can always be defined as 

n' 
Tnr =u 

n 
(4.26) 

Further, an average recombination lifetime can always be defined as in 

Section 2.2.3 (for injection from surface µ) 

T 
µ nr 

Q' 
µ n ---------,.,.,. ( ) 

jjj Und vol 
Base 

(4. 27) 

This average lifetime can be used throughout the charge-control 

equations, but it is only in the case of a linear recombination rate 

(U ~ n') that T is independent of the injected density. For high 
n µ nr 

injection levels and nonlinear recombination rates, T is a function 
µ nr 

of the injected charge and the expressions for recombination current 
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become correspondingly complex. 

4.4 Early Effect 

So far in the analysis, the base volume and the length of a 

flow tube have been assumed to be independent of the applied bias. 

Unfortunately for the simplicity of the model, the depletion layer 

width varies with the voltage across it and hence affects the base 

width, as Early pointed out in 1952 [14]. As Gray, et al. [31] have 

noted, this variation of base layer width affects both the transit 

times and the total charges. 

One way of accounting for these effects is to introduce a 

voltage (or time) dependent base volume (or width) into the integral 

expressions for the various characteristic times (transit time, average 

lifetime, injection time) and charges (injected charge, recombined 

charge, charge in transit). However, this complexity is not always 

necessary. 

The flow tube length can always be represented as 

(4 . 28) 

where W
0 

is the initial value and w1 is the change (positive or 

negative) due to the depletion layer variation. The transit time per 

flow tube may also be written 

where t 

t 
e c 

e co 

= t + t 1 e co e c 

is the initial value and 

(4.29) 

t 
e cl is the change (positive or 



negative) due to the depletion layer variation. If w1/w
0 

is suffi

ciently small that the ensemble velocity can be considered unaffected, 

then t 
e cl is merely the transit time across the distance w

1
. In 

general, however, the change in base width will affect (through the 

diffusion equation) the injected density gradient and injected density 

in such a way as to change the ensemble velocity. In this case, t 
e cl 

will include both effects. Similarly, the average transit time may be 

written as 

(4.30) 

As expressed above, w1 and EtCl include the effects of both the 

emitter and collector depletion layer variations; however, these effects 

can be separated for low injection levels. 

The average lifetime can be written as 

_E_T_nr_ = -E=r-nr-o + ET nr 1 
1 1 1 (4.31) 

where ETnrl is to be attributed to the volume added or removed from 

the base by the depletion layer variation. It is to be noted that 

ETnrl' while conceptually clear, may be mathematically quite complex 

if the recombination rate is nonuniform. However, for a linear and 

spatially uniform recombination rate the lifetime is unaffected, so 

that 

T = T = T E nr E nro nr (4.32) 
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The charges can also be separated into components (following 

Gray, et al. [31]) as 

(4.33) 

where Q
0 

is the initial charge (in transit, injected or recombined) 

and Q1 is the change in charge (positive or negative) due to the 

base width variation. 

Care must be taken in using Eqs. 4.30 - 4.33 that linearity is 

not assumed. The change in base width w1 is certainly nonlinear in 

voltage, except for sufficiently small fluctuations, ·While Q1 and 

EtCl may never be linear in voltage (or eV) or in injected density. 

The quantities Q1 and EtCl are composed of two effects. The first 

is a change in base volume which enters directly as a change in the 

region of integration. The second effect is less direct and results 

from the fact that the base width affects, through the diffusion equa-

tion, the shape of the excess carrier density distribution. However, 

this separation of times and charges into components is justified on 

the basis that the components have clear conceptual significance and 

hence this separation can enhance understanding of the effect of base 

width variation on device behavior, regardless of the mathematical form 

of the equations. 

4.5 Additional Transport and Injection Processes 

In Chapter II, attention was focussed on electron injection 

from the emitter to the base of an NPN transistor with an ideal base 

contact. In this section those results will be extended to both hole 
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and electron injection and collection by the emitter and collector 

junctions and the base contact. 

Regardless of the injection level, the currents can always be 

* written as (with neglect of the displacement current) 

(4.34) 

(4.35) 

(4.36) 

where Iv is the total current through surface v and I is the 
µ v 

** current through surface v due to injection at surface µ The 

subscripts n,p have their usual significance. 

The charge-control principle, that a transport current is 

simply the charge divided by the relevant time, results in 

(4.37) 

(4.38) 

* For simplicity dQ/dt terms are neglected. These must be insert
ed where appropriate for each injection mechanism for AC analysis. 

** Injection at surface 
age at surface v or 

µ may, of course, be affected by the volt
A. 
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(4.39) 

and similarly for all the other components, where µQ'v is the charge 

injected at surface µ which reaches surface v and t 
µ v is the 

transit time from surface µ to surface v. Thus the total emitter 

current can be expressed as 

~ 
EQ ' n EQ'p EQ

1
nB EQ

1

pB EQ'nc EQ
1

pC 
=-- - + 

EtnB 
+ 

Etnc EtpC T T EtpB E nr E pr 

cQ'nE CQ
1

pE BQ
1
nE BQ

1

pE (4.40) 
CtnE 

+ 
CtpE BtnE 

+ 
BtpE 

Additional terms can, of course, be added to account for excess (non-

equilibrium) carrier generation and devices with more or fewer contacts. 

The base and collector currents can be expressed by equations analogous 

to Eq. 4.40. 

It is important to emphasize that the separation into com-

ponents carried out above requires absolutely no assumptions as to 

injection level or linearity. Superposition has not been used. We 

have merely used the obvious fact that, for instance, part of the 

emitter current is contributed by electrons injected by the collector 

junction that are received by the emitter junction. Equations 4.34 -

4.40 do not preclude the possibility that the density (or total nurriber) 

of these electrons is partially or wholly determined by the emitter 

junction voltage, conditions at the base contact, or by anything else. 
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We have merely enumerated the possible origins and destinies of carriers 

in the base region. Only for low injection levels may the assumption 

be made that the T's and t's are constants and that the charges 

depend only on conditions at the injecting surface. For high injection 

levels, the Q's, T's, and t's may be so interrelated as to render 

the equations mathematically useless. However, they will always remain 

conceptually useful. 

The utility of this separation into components can be seen 

in the calculation and understanding of the DC connnon-emitter current 

gain. The usual first-order approximation was given in the first 

section of this chapter. That result corresponds to setting 

E1C E1nc 
-EQ'nc 

= = t 
E nC 

(4.41) 

and 

E
1
B E1pB 

EQ'n 
= - ~~ 

ETnr 
(4.42) 

Examination of Eqs. 4.35 and 4.36 (rewritten similarly to Eq. 4.40 if 

necessary) will readily show which current flow mechanisms have been 

neglectedc Further study of these mechanisms can lead to quantitative 

limitations of the first-order result. A less detailed analysis can 

lead to qualitative results from which we can determine which mechanism 

is of secondary, tertiary, etc. importance. Expressions like Eq. 4.40 

allow us to enumerate all factors entering into the current gain (or 

other parameter) and to study them systematically, severally or individ-

ually according to whether they are interrelated or not. By including 
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the d~/dt terms in Eqs. 4.34 - 4.36, this discussion can be extended 

to slowly varying signals. 

4. 6 Charge-Voltage Relations 

Charge-control, as introduced by Beaufoy and Sparkes [l, 2] 

and extended by others, is restricted to current-charge relationships. 

However, relations between the injected charge and the applied voltages 

a.re also of interest, and will be derived in this section. Shockley, 

Sparks, and Teal [43] show that, for unity injection efficiency 

VjE 
n(E,y,z) = ~(E,y,z)e (4.43) 

where np(E,y,z) is the equilibrium electron concentration in the base 

at the emitter junction and VjE is the portion of the applied voltage 

which appears across the emitter junction (normalized to the therm.al 

potential Vt= 'K:r./e). 

Van Vliet [44], among others, has obtained relations analogous 

to Eq . 4.43 which are valid for high injection levels and nonunity in-

jection efficiency. He obtains 

(4.44) 

where 

bE(VJ.E) + 1 - --------------=-2v=---------
2 2 jE ¥r - [np(E, y, z)] pNe 

(4.45) 
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so that 

(4.46) 

where ~ and pN are the equilibritun carrier densities . in the emitter 

at the depletion layer edge. This relation asstunes that a quasi-equili-

britun condition, obeying the Boltzmann relation, is instantaneously 

established among all carriers (including injected carriers). For low-

injection conditions we have 

(4.47) 

where VEB is the externally applied emitter-to-base voltage (normal

ized to Vt). Then Eq. 4.43 or 4.44 becomes 

VEB 
n(E,y,z) = np(E,y,z)e 

and Eq. 4.46 becomes 

(4.48) 

(4.49) 

Equation 4.46 represents the emitter boundary condition to be 

used in solving the diffusion equation. At the collector, the boundary 

condition is 

En'(C,y,z) = 0 (4.50) 
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Using Eqs. 4.46 and 4.50 the emitter-injected electron density may be 

written as 

(4.51) 

where it is required that 

Ef(E,y, z) = 1 (4.52) 

Ef(C,y,z) = 0 (4.53) 

This is the result of Ebers and Moll [20] generalized to arbitrary 

injection levels. For low-injection and negligible Early effect, Ef 

is independent of the injection level. 

To obtain the total injected charge, Eq. 4.51 is multiplied 

by the electronic charge and integrated over the base volume, so that 

Similarly 

where 

EQ' = JJJ e np(E,y,z) Ef(x,y,z) bE(VjE) d(vol) 

Base 

cQ' = JJJe np(c,y,z) cf(x,y,z) bc(VjC) d(vol) 

Base 

Cf(E,y,z) = 0 

(4.54) 

(4.55) 

(4.56) 
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cf(C,y,z) = 1 (4.57) 

and be is analogous to bE. 

The integral of Eq. 4.54 is clearly a function only of the 

applied voltages VEB and VCB. Thus, Eq. 4.54 may be written as 

(4.58) 

where EK is a constant, and BE(VEB' VCB) is a function which depends 

on the applied voltages. If the device is such that the equilibrium 

concentrations and VjE do not vary along the depletion layer edges, 

or the injection level is sufficiently low, bE will be spatially 

constant, so that (with the neglect of depletion layer width variation 

with voltage) 

and 

EK= JJfe np(E,y,z) Ef(x,y,z) d(vol) 

Base 

(4.59) 

(4.60) 

For low injection levels, regardless of equilibrium carrier density 

variation with position along the depletion layer edge, Eq. 4.48 is 

valid, so that 

(4.61) 
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If any dependence of Ef on voltage (i.e. because of the Early effect) 

is neglected, Eq. 4.59 is valid and 

(4.62) 

so that 

v 
Q,' - K( e EB -1) 

E - E (4. 63) 

For high injection levels, if the equilibrium carrier density 

is constant along the depletion layer edge, first-order theory results 

in [40, 41] 

(4.64) 

so that the total injected charge is 

(4.65) 

and EK is given by Eq. 4.60. 

Thus, for low injection levels, a simple relation between 

applied voltage and injected charge can be obtained regardless of the 

equilibrium carrier distribution. For high injection levels the same 

formal relation exists, but it is more complex. 

4. 7 Conclusions 

The charge-control principles have been used to derive the 

DC common-emitter current gain under the assumptions of low injection 
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level and unity injection efficiency. It has been shown that the usual 

high-injection solution of a diode or transistor can be obtained as 

easily for three dimensions by charge-control methods as for one dimen

sion in the conventional manner. The results have been further general

ized to arbitrary three-dimensional impurity distributions; this can be 

done as easily for one dimension by the conventional approach . 

The concepts of Chapter II were extended to include nonlinear 

recombination mechanisms and the results of that chapter were extended 

to cover the Early effect . 

Allowance was made for majority carrier currents, collector 

injection and an injecting and collecting base contact. It was demon

strated that all of these effects are easy to account for by charge

control principles; however, for high injection levels these results 

are more useful as an aid to insight and understanding than for math

ematical manipulations. The charge-control model was extended to in

clude charge-voltage relationships at all injection levels; however, 

these relations are more useful for low than for high injection levels. 



CHAPTER V 

THE EBERS-MOLL CIRCUIT REIA.TIONS 

In 1954 Ebers and Moll [20] derived expressions for the emitter 

and collector currents in terms of the junction voltages. Their results 

are valid under the following asswnptions: 

1) Low injection levels, so that the emitter efficiency 
is constant and all of the externally applied voltage 
appears across the junctions. (This permits the use 
of superposition.) 

2) Second-order effects (specifically the Early [14] 
effect) were neglected. 

3) Equation 4.48 for the minority carrier density at 
the junction is valid. 

The Ebers-Moll equations can be written as 

VEB VCB 
(5 .1) ~ = a11(e -1) + a12 (e -1) 

VEB VCB 
(5.2) IC = a21 ( e -1) + a22 (e -1) 

(all+ 
VEB 

+ (al2 + 
VCB 

(5.3) ~ = a21)(e -1) a22 )(e -1) 

Shockley, Sparks, and Teal [43] obtained these results earlier. 

By employing various circuit operations (i.e. open or short 

circuiting various terminals) Ebers and Moll related the a.. to open
J..J 

circuit saturation currents and cormnon-base current gains, to obtain 
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V (1-aI)ICBO V 
(e EB_l) + (e CB-1) 

l-¥I 

(5.4) 

(5.5) 

(5.6) 

where °W' aI are the normal and inverted common-base current gains 

I c 
°W = ~ (5. 7) 

IE 
a = (5.8) 

I - IC 
VEB = 0 

and IµVO is the reverse saturation current through terminal µ when 

the third terminal is left open circuited. 

gains 

In terms of the normal and inverted common-emitter current 

~ = N 
(5. 9) 

(5.lO) 



Eqs. 5.4 - 5.6 can be written as 

(5.ll) 

(5.12) 

(5 .13) 

As has been pointed out by Narud, Hamilto~ and Lindholm [15,16], 

and by Koehler [17,18], Eqs. 5.4 - 5.6 are predominantly electrical 

equations. That is, they are more oriented toward circuit operations 

than toward a conceptual understanding of internal processes. In this 

chapter these relations will be given a clear conceptual interpretation 

by deriving them from charge-control principles. This will lead to the 

conclusion that short-circuit, rather than open-circuit, saturation 

currents would have more conceptual significance in these equations. 

It will also be shown how, using charge-control, Eqs. 5.1 - 5.3 can be 

extended to high injection levels. Finally, Eqs. 5.1 - 5.3 will be 

inverted to obtain the voltages in terms of the external currents and 

short-circuit current parameters. 

5.1 Derivation From Charge-Control Principles 

All of the material needed for this section has already been 

developed in the previous chapters. Here, the previous results will be 

restated in the appropriate context. In conformity with convention, 



70 

minority carrier flow through the base contact will be neglected. For 

conciseness, only minority carrier current will be explicitly considered; 

majority carrier current can readily be added. Under these conditions, 

* Eqs. 4.34 - 4.36 become 

(5.14) 

(5.15) 

(5.16) 

Then, use of the appropriate portions of Eq. 4.40 for the emitter cur-

rent and similar results for the collector and base currents results in 

* 

Q' 
E 

1:s = E'fr 

Q' c 
+ -'f-

c r 

(5 .17) 

(5 .18) 

( 5 .19) 

The base current can be considered as a majority carrier (hole) 
current due to majority carrier injection at the base contact 
(BI B) or as a minority carrier (electron) current due to minority 
carFier injection at the junctions (I + I ). Since only 
minority carriers are being considere~ ~re Ct~ latter description 
will be employed. ' 
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Since the injected charge is more easily related to the external voltages 

than is the collected charge, the explicit reference to the charge in 

transit may be eliminated, so that 

_ Q' (1- o) 1 1-co 
I = E C + Q,' (- + -t-) 
c Etc c CTr c . E 

Q, I 
c 

+T 
C r 

(5.20) 

(5.21) 

(5.22) 

h ~ ~ a e the f'ractions of injected charge that recombine, as w ere Eu' Cu r 

discussed in Chapter II. Using the results of Section 4.6 (Eq. 4.58) 

we can write Eqs. 5.20 - 5.22 as 

(5.25) 
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In obtaining Eqs. 5. 23 - 5.25, no restrictions as to injection level 

or second-order effects have been made, thus they can be considered 

as a generalized form of the Ebers-Moll equations. However, the Ebers-

Moll restrictions will now be imposed so that their results may be ob-

iained. Substitution of Eq. 4. 62 for BE and a similar relation for 

BC into Eqs. 5.23 - 5.25 results in 

v 
cK(l-co)(e CB-1) 

VEB 
-EK(l-Eo)(e -1) 

E C 

CtE 

+ 

(5.26) 

(5. 27) 

(5.28) 

where Eq . 2. 65 has been used for the emitter injection time (and a 

similar relation for the collector injection time). 

Equations 5.26 - 5.28 are the Ebers - Moll equations (Eqs. 

5.4 - 5.6) except that the coefficients of the voltage terms are ex-

pressed differently. They have been derived entirely from the charge-

control theory as developed in the previous chapters . It is clear that 

the basis for charge-control, and hence for the above derivation, is 

exactly the same as for the derivation given by Ebers and Moll, so that 

it is not surprising that the results are identical for identical re-

strictions . The significance of the derivation given here is that the 
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results are given in terms of conceptually, rather than electrically, 

significant parameters. (This may not be an advantage for the d~signer 

of discrete circuits, but it may be important for the design and under-

standing of integrated circuits.) Thus these two derivations provide a 

means of relating circuit and conceptual parameters. From EQs . 5.23 -

5.25 it can be seen how these relations can be extended to high in-

jection levels and second-order effects . 

5.2 Conceptual Interpretation of the Ebers-Moll Parameters 

Now that the Ebers-Moll eQuations have been derived from two 

conceptually different bases, the different parameters will be related 

to each other. This will be done for both open and short-circuit 

saturation currents and it will be shown that the short-circuit sat-

uration currents are a more useful indicator of device behavior . 

From Section 4.1 the current gains are 

(5.29) 

!3r (5 . 30) 

EQuations 5.29 and 5.30 can be used to determine the normal and inverted 

common-base current gains 

= 1 + 1 
!3N 

(5.31) 



1 (5.32) 

5.2.l Open-Circuit Saturation Currents 

The reverse-saturation current through the emitter with the 

collector open-circuited (IEB0) can be obtained in terms of the 

charge-control parameters by comparing Eqs. 5.4, 5.11 and 5.26. Then 

EK ( l + ~N + ~I) 

= E '!" (l + ~N)(l + ~I) 

Use of Eqs. 5.29-5.32 for ~N' ~I' ~' a1 

yields 

and Eq. 2.65 for ~T 
.u 

or 

or 

EK ~N 
1tBo = -'!"- (l + l+~ ) 

E r I 

Similarly 

(5.33) 

(5.34) 

(5.35) 

(5 .36) 

(5 .37) 
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or 
CK a:I(l~) 

1CBO =-- (l + 1 - ex ) 
CTr I 

(5.38) 

or 
CK 

(1 + 
~I 

1cBO =- l + ~ ) T 
C r N 

(5 .39) 

The conventional interpretation of IEBO is that it is the 

emitter-base diode leakage (reverse-saturation) current, modified by 

a factor which accounts for the effects of the collector junction. It 

can be seen that the expression in parentheses reduces to unity if the 

transit times become infinite, which corresponds to the junctions 

having no effect on each other. 

From Eqs. 5.34 and 5.37 it can be seen that in the limit of no 

recombination (ET r' c Tr -> 
00

) 
these two currents become zero and hence 

are useless for describing device behavior. Under this condition 

and cx1 become unity and it can be shown (see next section) that the 

ratio of ~BO or ICBO to (1 - O]CX.r), which appears in Eqs. 5.4 -

5.6, remains finite. 

The reason for the loss of utility of these open-circuit sat-

uration currents is not hard to see. They are used because, for instance, 

a transistor with the collector terminal disconnected is generally 

assumed to be similar to a diode (the emitter-base diode). That this is 

not so is clear from Middlebrook's [21,26] discussion of the separation 

of the control and collection functions. In a diode, the contact is 

ohmic and combines both the control and collection of the moving carriers. 

In an ideal transistor, however, these functions are separated. The 



collector junction is nonohrnic and fulfills only the collection func-

tion for the minority carriers, while the base contact (ideally)" will 

not pass minority carriers and fulfills only the control function. 

Thus it is seen that the emitter and base terminals, with the collector 

floating, do not represent the external connections of a diode, so that 

the usual interpretation of ~BO as a diode leakage current is in

correct for an ideal transistor. 

In most real transistors, however, the open-circuit saturation 

currents are useful parameters. This is because most real transistors 

have an ohmic, rather than ideal, base contact which can serve both the 

control and collection functions. (In normal operation, the collection 

function is minimized by the physical or geometrical location of the 

base contact.) Another way of looking at this is to realize that the 

base contact is part of the base region. In order to have no recom-

bination in the base (which leads to IEBO' ICBO ~ 0) there must be no 

volume recombination and no surface recombination, including at the 

* base contact • This latter condition is violated in almost all real 

transistors. 

From this discussion it can be seen that the open-circuit 

saturation currents are not mainly indicators of the junction behavior, 

as is generally assumed, but are, to a much greater extent, indicators 

of the recombination characteristics of the base region, particularly 

the base contact. Thus, far from being fundamental parameters of the 

device, they are only second-order parameters which are of little 

* This, apparently, is not universally recognized. See, for instance, 
Sparkes[45] who c~nsi~ers ~' aI < 1 and ~BO' ICBO f 0 in the 
absence of recombination. 
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theoretical significance, but of somewhat greater practical importance. 

5.2.2 Short-Circuit Saturation Currents 

The Ebers-Moll equations can be written in terms of short-

circuit currents as 

VEB VCB 
~ = ~ BC(e -1) - ~ (e -1) 

' 
,BE (5 .40) 

VEB VCB 
IC = -IC BC( e -1) + IC BE(e -1) 

' ' 
(5.41) 

VEB VCB 
~ = ~ BC(e -1) + ~ BE(e -l) 

' ' 
(5.42) 

where the symbol I 
µ,\ifl. 

is defined as the reverse-saturation current 

through terminal µ when terminals 'J, A are shorted (V\ifl. = O ) • 

Electrically, then, ~,BC is the emitter reverse-saturation current 

when the base and collector are shorted together. 

In terms of charge-control parameters, the short-circuit 

saturation currents are (from Eqs. 5.26 - 5.32 and Eqs. 5.40 - 5.42) 

~,BC 
EK 

=-
ET 

(5.43) 

IC BE 
CK 

=-

' c 'f 
(5.44) 

(5.45) 

(5 .46) 



~,BC 

\,BE 

I 

= -- = 
C,BC = 

T 
E r 

=--T 
C r 

~N 

= ~,BE = 
~I 

(l - ON) IE BC 
' 

( 5. 47) 

(5.48) 

It is clear that, as indicated in the previous section, the 

emitter and collector short-circuit saturation currents (Eqs. 5.43 -

5.46) remain nonzero as the recombination rate in the base region 

approaches zero ( T T -+ 00 • 

E r' C r ' 

From the discussion of control and collection functions given 

in the previous section, it can be seen that by shorting the base and 

collector terminals we are combining (externally) the control and col-

lection functions so that this combined terminal, together with the 

emitter terminal, does indeed represent a diode. This is true even if 

the control and collection functions are not completely separated in-

ternally, since the shorted terminal completely combines them externally. 

Thus the currents 1:E,BC 
and IC BE can truly be called diode leakage 

J 

(or saturation) currents. The currents IC BC and IE BE are ideally the 
J ' 

collection components of the diode leakage currents. In real devices, 

however, it must be remembered that these currents do not constitute all 

of the collection current and that they also contain part of the control 

current. This is because the control and collection functions are not 

fully separated. The other two currents, I and L_ are ideally 
n,BC ~,BE 

the control components of the two diode leakage currents. In real devices, 

of course, they do not constitute the entire control current and they con-

tain part of the collection current. 
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5.3 Voltages as Dependent Variables 

So far, the transistor currents have been considered as 

functions of the external voltages. However, as Ebers and Moll [20] 

point out, it may sometimes be convenient to consider the voltages as 

functions of the externally applied currents. In accord with this, 

they have solved Eqs. 5.4 - 5.6 for the junction voltages in terms of the 

external currents. Since their results are in terms of the open-circuit 

saturation currents, which are more sensitive to the base contact surface 

recombination rate than are the short-circuit saturation currents, they 

a.re difficult to interpret in the limit of no recombination and high 

gain. In this section, Eqs. 5.40 - 5.42 will be solved (with the aid 

of Eqs. 5.43 - 5.48) for the external voltages in terms of the currents, 

and the no-recombination (high gain) limit obtained. 

Solution of Eqs. 5.41 and 5.42 for VEB and VCB' and re-

arrangement with the aid of Eqs. 5.43 - 5.48 results in 

=ln l(l+ t'N)(l+ ~I)\- (l+ t)N)IC+ (l+ t)N+ t':r)~BC} 

(:).. + t'N + t'I)~ BC , 
(5.49) 

(5.50) 

The collector-emitter voltage VCE can be obtained from Eqs. 5.49 and 

5.50 as 
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(5.5l) 

so that 

~N(l + ~:r)~ + (l + ~r) 1c + (l + ~N + ~r) 1c BE 1E BC 

VCE = ln [[(l + ~NHl +~I)~ - (l + ~N)Ic + (l + ~N +'~r) 1E,BC] 1c:BE} 

(5.52) 

For common-base operation, it is more convenient to consider 

the emitter and collector currents, rather than the base and collector 

currents, as the independent variables. Use of Kirchoff's current law 

(see Figure 2.l) 

(5. 53) 

inEqs. 5.49, 5.50 and 5.52 results in 

(5.54) 

(5.55) 
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(5.56) 

Ebers and Moll have obtained Eqs. 5.52, 5.54 and 5.55 in terms 

of the open-circut saturation .currents and common-base current gains, 

except that they neglected the saturation current terms in the expres-

sions for VCE. They have also used the reciprocity relation (see 

Chapter VI) 

~,BE (5.57) 

or 

(5.58) 

It is to be noted that the Ebers-Moll results are considerably 

more concise than the above equations and hence are of more practical 

value for the analysis of an existing device, for which all the para-

meters are fixed and known. However, the results obtained here are of 

more theoretical significance since they are more easily manipulated to 

yield the effect of varying recombination rates. This is primarily 

because I is less sensitive to the recombination rate than is 
µ, V/I.. 

Iµ VO' and ~ is a simple function of the lifetime. 

In the limit of no recombination ('r --+ a>) we can show, from 
r 

Eqs. 2.46, 2.58, 5.29 and 5.30, that 

(5.59) 



Also, 

lim ON = 1 = lim a1 T --+00 T -PJ 
r r 

lim ~N = oo = lim ~I 
T ...... oo T .... oo 

r r 

lim ~ = 0 
T -PJ 
r 
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From Eqs. 5.58 and 5.60 we find 

lim L = lim I =: I 
T ...... 00~,BC T ...... oo C,BE s 
r r 

Using Eqs. 5.59 - 5.63 in Eqs. 5.49, 5.50 and 5.52 we obtain 

(1 + y )I - IC 
VEB(no recombination)= ln [ (l + ~)I } 

s 

(1 + y )I + IC 
VCB(no recombination) = ln ( · s } 

(1 + y)Is 

(5.60) 

(5.61) 

(5.62) 

(5. 63) 

(5.64) 

(5. 65) 
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VCE(no recombination) 
(l + Y) I + IC 

= ln l ( l + y) ~ - yI } 
s c 

(5. 66) 

These expressions can be obtained with the open-circuit sat-

uration currents only if it is recognized that 

lim 
T -+CO 
r 

lim 
T -+CO 
r 

ICBO 
= I 

l-C:VXI s 
(5 .67) 

which is essentially the same as using the short-circuit saturation 

currents, as above. 

Equations 5.64 - 5.66 (and also Eqs. 5.49 - 5.52) show that 

in a transistor with no recombination (or zero base current), if the 

external voltages are not held constant, then the maximum current that 

the device can sustain is limited by the short-c:i,.rcuit saturation cur-

rents and the ratio of ~N to ~I. This current limitation can easily 

be understood by considering a zero recombination transistor to be 

equivalent to two opposing diodes in series. Then, if a current is 

passed through the diodes, it will be limited by the reverse-saturation 

current of the reverse-biased diode (until it breaks down). With 

neglect of voltage breakdown, the voltage across the reverse-biased 

(high resistance) junction approaches infinity as the current is (at-

tempted to be) increased, while the forward biased (low resistance) 

junction sustains only a small voltage drop. In practice, of course, 

this limiting condition will never be observed. Either the current 

source will reach its limiting voltage and become a voltage source, or 

the reverse-biased junction will break down and conduct (and possibly 
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burn out). 

5.4 Conclusions 

The Ebers-Moll equations have been derived f'rom charge-control 

principles, thus relating two models of the transistor. It has been 

shown that the open-circuit saturation currents do not have the signi

ficance usually attributed to them since they are second-order, rather 

than fundamental, diode currents. It was shown that the short-circuit 

saturation currents are fundamental parameters and thus of more theo

retical significance. However, owing to the nonideality of most real 

transistors, the open-circuit saturation currents are of a useful 

nature. 

The expressions for the currents in terms of the voltages 

were inverted to obtain the voltages as functions of the external cur

rents, short-circuit saturation currents, and common-emitter current 

gains. These are of greater theoretical significance than the same 

expressions in terms of the open-circuit saturation currents which are 

of practical importance for most real transistors. The high gain or 

no-recombination limit of these expressions was obtained and it was 

shown that the short-circuit saturation currents are more easily used 

in this limit than are the open-circuit saturation currents. 
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CHAPTER VI 

TRANSISTOR RECIPROCITY 

In n-port circuit theory, if excitations and responses are 

linearly related, the system equations can be written as 

Rl :::: allEl + al2E2 + ••• + a1 E n n 

R2 :::: a21El + a22E2 + • • • + a E 2n n 
( 6.1.) 

R :::: anlEl. + an2E2 + ••• + a E n nn n 

where E. is the excitation applied at port i, R. is the response 
l l 

measured at port i, and a .. 
lJ 

are consta.nts. Equation 6.1 is of course 

valid for any linear system, not only electric circuits. If the condition 

which is equivalent to 

a .. ==a .. 
lJ Jl 

(all i, j) 

E. :::: E, O, 0 • •• ) (all i, j) 
l 

(6.2) 

(6.3) 

is satisfied, then the system is said to be reciprocal. In words, the 

principle of reciprocity may be stated as follows: given that an ex-

citation E at port i produces a response R at port j; if the 

same excitation E applied at port j produces the same response R 

at port i, then the system is reciprocal with respect to ports i and 

j. If all sets of two-ports are reciprocal, then it is simply said 

that the system is reciprocal. 
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This chapter is concerned only with the bipolar transistor, 

considered as a two-port device. For this device, the principle of 

reciprocity is valid for any geometry, any base impurity distribution, 

linear recombination, low-level injection (linearity), and low fre

quencies. 

Searle, et al. [46] give a plausibility argument for the 

validity of reciprocity from a circuit point of view. For sufficiently 

small applied voltages, the Ebers-Moll equations (Eqs. 5.1, 5.2) can be 

written as 

(6.4) 

(6.5) 

They then argue that "On physical grounds, it is plausible that the 

transistor must now be indistinguishable from a simple block of resistive 

material with three leads. Thus it must possess under these conditions 

all the properties of such an element, including the property of re

ciprocity" [46]. 

A rigorous proof of reciprocity is given by Shockley, et al. 

[43] for the most general geometry and impurity distribution in the 

presence of linear recombination. While this proof is completely 

rigorous it is strictly mathematical, and no conceptual or physical in

terpretation of the derivation is presented. In particular, the authors 

introduce a vector 



A(x, y, z) ,..., 
l [En'(x,y,z)CJ,(x,y,z) - cn'(x,y,z)EJ,(x,y_,z)J 

- np(x,y,z) 
(6.6) 

which is given no conceptual or physical interpretation. The proof con-

sists of mathematical manipulations of this vector, so that no conceptual 

understanding is obtained. Ebers and Moll [20] use essentially the same 

method, except that it is less general. 

In this chapter the principle of reciprocity will be derived 

for a bipolar transistor with arbitrary geometry, arbitrary impurity 

distribution, and an arbitrary spatial variation of linear recombination, 

from the principles developed in Chapter II and other conceptual con-

siderations. The only restrictions imposed will be low injection levels 

and low frequencies. The trivial case of a perfectly symmetric tran-

sistor (with respect to emitter and collector) will not be considered. 

For such a device, it is obvious that recipro'city will be valid for any 

injection level and any frequency, even if all carriers interact. 

6.l No Recombination 

In the absence of recombination, transistor reciprocity can 

be proven rather simply, directly from the Ebers-Moll equations (Eqs. 

5.l, 5.2). In this case, Eqs. 5.26 and 5.27 or Eqs. 5.40 - 5.46 show 

(6.7) 

(6.8) 

so that Eqs. 5.l and 5.2 reduce to 
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(6.9) 

To prove reciprocity, it is required to show that 

(6.ll) 

Substitution of Eq. 6.ll into Eqs. 6.9 and 6 .lO leads to the conclusion 

that with equal applied emitter and collector voltages the net current 

* is zero 

~(v,v) = - rc(v,v) = o (6.l2) 

Clearly, Eqs . 6.ll and 6.l2 are equivalent; that is, they imply each 

other. Thus, a demonstration of the validity of Eq. 6 .l2 will con-

stitute an indirect proof of reciprocity. The proof is indirect be-

cause it is necessary to prove Eq. 6.ll, whereas Eq . 6 .l2 leads directly 

(with no assumptions as to recombination) to the conclusion that 

(6.13) 

(6.14) 

The condition of no recombination must then be used to obtain Eqs. 6 .7 

* This is a consequence of the infinite driving-point (base-emitter 
or base-collector) impedance of a zero-recombination transistor. 



and 6.8 which, with Eqs. 6.l3 and 6.l4, will lead to Eq. 6.ll. 

Eq. 6 .l2 can be proven by expressing the current in terms of 

the electron and hole current densities, which can be expressed in 

terms of the carrier quasi-Fermi levels. By showing that the quasi-

Fermi levels must be constant for equal applied emitter and collector 

voltages, we will show that the current densities, and hence the cur-

rents, must be zero. 

The total cUTrent can be written as 

I(V, V) = r (v, v) + r (v, v) 
n P 

(6.l5) 

= Jf iip . ~ + Jf iln . (6.l6) 

where d~ is the cross-sectional area of a flow tube and is always 

directed in the same direction along the flow tube (i.e. the positive x 

direction) as in Figure 6.l, ~ and iip are the electron and hole 

* current densities along their respective flow tubes , and the integra-

tions may be carried out for any SUTface crossing all of the flow tubes 

in the base region . Attention will be focussed on the electron current; 

arguments for the hole current are analogous. 

The electron current density along a flow tube can be expressed 

as 

(6.l7) 

* Electrons and holes do not necessarily travel along the same flow 
tubes. 
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BASE 

Fig. 6.1 Examples of flow tubes showing the 

vector cross-sectional area ~ 

which is always pointed in the same 

direction along the flow tube. 
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where ~o is the electrostatic potential due to the built-in electric 

field (normalized to the thermal potential Vt)' given by 

(6.18) 

Integration of Eq. 6.18 yields 

(6.19) 

where the constant of integration has been taken as the intrinsic 

carrier density n1 • 

The (normalized) electron quasi-Fermi level 

by [43] 

¢ , defined 
n 

(6.20) 

is now introduced, where n1 is the intrinsic carrier density. Sub

stitution of Eq. 6.20 into Eq. 6.17 leads to 

(6.21) 

Since recombination has been excluded, the current (iiu . d~) cannot 

vary with position along a flow tube . 

Since the direction of d~ is unchanging along a flow tube it 

follows that iiu' and hence Y.J;n? cannot change sign along a flow 

tube, so that ¢n must be monotonic. 

Now consider the electron densities at the emitter and col-

lector depletion layer edges. The first-orde::i.· approximation gives 
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En'(collector) = En'(C,y,z) = 0 (6.22) 

cn'(emitter) = cn'(E,y,z) = 0 (6.23) 

Use of Eqs. 6.22 and 6.23 in Eq. 6.20 results in 

[ ijl (E, y, z) - ¢ (E, y, z)] 
n(E,y,z) = ~(E,y,z) + En'(E,y,z) = n1e 

0 
n 

(6.24) 

[ijl (C,y,z) - ¢ (c,y,z)] 
n(C,y,z) = ~(C,y,z) + cn'(C,y,z) = n1e 

0 
n 

(6.25) 

For low injection levels Eq. 4.49 may be used for En'(E,y,z) and a 

similar relation for cn'(C,y,z). Then, also using Eq. 6.19 for 

ijl (E,y,z) and ijl (C,y,z), Eqs. 6.24 and 6.25 become 
0 0 

VEB -¢ (E,y,z) 
n(E,y,z) = np(E,y,z) + ~(E,y,z)(e -1) = np(E,y,z)e n 

(6.26) 

V CB -¢ ( C, y, z) 
n(C,y,z) = np(C,y,z) + np(C,y,z)(e -1) = np(C,y,z)e n 

(6.27) 

Comparison of Eqs. 6.26 and 6.27 shows that if the applied voltages are 

equal, the electron quasi-Fermi level has the same value at the emitter 

and collector depletion layer edges: 
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Since it has already been shown that 

is clear that 

¢ - constant n -

so that Eq. 6.21 results in 

(6.28) 

¢ is monotonic, it 
n 

(6.29) 

( 6 .30) 

Since holes are subject to the same injection, collection and transport 

mechanisms as are electrons, an exactly analogous argument for the hole 

current density leads to 

( 6.31) 

Substitution of Eqs. 6 .30 and 6 .31 into Eq. 6.16 immediately yields 

Eq. 6 .12. 

This result (Eq. 6.12) can also be derived from circuit con-

siderations. Since there is no base current (because there is no re-

combination), the external voltages can be applied as in Figure 6 .2 

and the base lead can then be cut without affecting anything else. Then 

it is obvious that, if 

(6.32) 



COLLECTOR 

BASE 

EMITTER 

I 9 = 0 

+ + 

Fig. 6.2 Terminal currents for a transistor 

with no recombination. 
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the net voltage across the device is zero, so that there can be no net 

current flow and Eq. 6.12 is satisfied. 

Since Eq. 6 .11 is equivalent to Eq . 6.12, the principle of 

reciprocity has now been proven for a bipolar transistor with no re-

combination. 

6.2 With Linear Recombination 

In the presence of linear recombination rates the simple 

arguments of the previous section cannot be used because 

(6.33) 

(6.34) 

and Eq. 6.12 is not valid. 

In this section a direct proof of reciprocity in the presence 

of linear recombination rates will be presented by deriving Eq. 6.11 

directly . For low injection levels, the emitter and collector collection 

(or transit) currents can be expressed as (with the use of Eqs . 5 .1, 5.2, 

5.14 and 5.15) 

(6.35) 

( 6.3 6 ) 

so that the condition of reciprocity (a12 = a21) is equivalent to 

( 6.37) 



Thus, it is necessary to prove that, for equal applied voltages, the 

emitter and collector collection (or transit) currents are equal~ Equi

valently, the net current due to nonrecombining (collected) carriers 

(EIC(V) - CIE(v)) must be shown to be zero. This is essentially what 

was done in the previous section. However, the task was simpler there 

since in the absence of recombination the transit current and the total 

current are identical. Here, the total current must first be separated 

into its transit and recombination components, so that the transit cur

rent can be considered alone. Although the details will be more complex 

owing to the presence of recombination, the derivation in this section 

will be similar to that in the previous section. 

Eq. 6.37 can be proven be expressing the transit current in 

terms of the nonrecombining excess carriers, which can be expressed in 

terms of pseudo-Fermi levels (see below). By showing that the pseudo

Fermi levels must be constant for equal applied emitter and collector 

voltages, it will be shown that the transit current density, and hence 

the transit current, must be zero, so that Eq. 6.37 is valid. 

The transit current It(V,V) can be written as 

(6.38) 

= [f~(transit) • dS + JJiin(transit) ·dS (6.39) 

where dS is the cross-sectional area of a transit (current) flow tube 

and is always directed in the same direction along the transit flow 
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tube (i.e. the positive x direction) as in Figure 6.l, iin (transit) 

and ~ (transit) are the electron and hole transit current densities 

along their respective transit flow tubes, and the integrations may be 

carried out for any surface crossing all of the transit flow tubes in 

the base region. Attention will be focussed on the electron transit 

current; arguments for the hole transit current are analogous. 

The electron transit current density along a transit flow tube 

can be expressed as 

(6.40) 

where * is the electrostatic potential due to the built-in electric 
0 

field (see Eq. 6.19). The (normalized) pseudo-Fermi level 

* recombining excess electrons , defined by 

n It = En I c + en IE 

e of non
n 

(6.41) 

is now introduced, where n' 
t 

is the total density of nonrecombining 

excess electrons. 

Substitution of Eq. 6.41 into Eq. 6.40 results in 

iin(transit) = -eD n' ve n t"'n (6.42) 

* The term pseudo-Fermi level is used rather than quasi-Fermi level 
because only nonrecombining excess electrons are considered here, 
whereas the quasi-Fermi level, as introduced by Shockley, et al. 
[43] and as commonly used, refers to the total density of electrons. 



Since the electrons constituting the transit current do not recombine, 

the transit current C1n(transit) • ~) cannot vary with position along 

a transit flow tube. 

Since the direction of d~ is unchanging along a transit 

flow tube it follows that iiu(transit), and hence zen, cannot change 

sign along a transit flow tube. Hence, 

transit flow tube. 

e must be monotonic along a 
n 

Now consider the densities of nonrecombining excess electrons 

at the emitter and collector depletion layer edges. The first-order 

approximation yields 

(6.43) 

(6.44) 

Use of Eqs. 6.43 and 6,44 in Eq. 6.41 results in 

[ 1¥ (E, y, z) - 8 (E, y, z)] o n = n1e (6.45) 

n\(C,y,z) (6.46) 

The density of recombining electrons at point (x,y,z) due to 

injection at the emitter can be written as the total density of electrons 

at point (x,y,z) due to injection at the emitter mulitplied by the prob-

ability of survival (not recombining before collection) of these elec-

trons E'f)(x,y, z), and s:imilarly for the electrons injected at the col-
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lector. Then 

(6.47) 

en' E(x, y, z) = c T\(x, y, z) en' (x, y, z) (6.48) 

Substitution of Eqs. 6.47 and 6.48 into Eqs . 6.45 and 6.46 results in 

[¥ (E,y,z) - 8 (E,y,z)] 
ET\(E,y,z) En'(E,y,z) = n1 e 

0 n (6 .49) 

[~ (C,y,z) - 8 (C,y,z)] 
cT\(C,y,z) cn'(C,y,z) = n

1 
e o n (6.50) 

For low injection levels Eq. 4.49 may be used for En'(E,y,z), and a 

similar relation for cn'(C,y,z). Then, with use of Eq. 6.19 for 

~ (E,y,z) and ~ (C,y,z), Eqs. 6.49 and 6.50 become 
0 0 

VEB -e (E,y,z) 
ET\(E,y,z) np(E,y,z)(e -1) = ~(E,y,z) e n (6.51) 

V CB - en ( C, y, z) 
cT\(C,y,z) ~(C,y,z) (e -1) = np(c,y,z) e (6 .52) 

which can be rewritten as 

v 
~ c ) (e EB_1) E'I E,y,z = e 

= e 

- en(E,y,z) 

-8 (C,y,z) n 

(6. 53) 

(6. 54) 
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OWing to injection at the emitter, there is a density 

En'c(x,y,z) of nonrecombining electrons traveling along a transit 

flow tube. From Eq. 6.47, En'c(x,y,z) can be considered as the 

density of all emitter-injected electrons traveling along the same 

transit flow tube, but with a probability E~(x,y,z) of not recom

bining before reaching the collector. A similar argument holds for 

collector-injected electrons. If it is assumed that the probability 

of recombination of an electron at any point is independent of the past 

history of the electron, then the probability of recombination or of 

survival must be independent of the direction of travel of the electrons. 

Thus the probability that an electron injected at the emitter will not 

recombine before collection must be the same as the probability that 

an electron injected at the collector will not recombine before collect-

ion, if they are injected at opposite ends of the same transit flow 

tube so that they will travel along the same trarisit flow tube. Hence 

E~(E,y,z) = C~(C,y,z) (6.55) 

By comparing Eqs. 6.53 and 6.54, with the aid of Eq. 6.55, 

it is seen that if the emitter and collector applied voltages are equal, 

the pseudo-Fermi level at the emitter depletion layer edge is the same 

as at the collector depletion layer edge: 

e (c,y,z) n 

Since it has already been shown that 

(6.56) 

e is monotonic along a transit n 



flow tube, it is clear that 

e = constant 
n 

lOl 

along a transit flow tube, so that Eq. 6.42 becomes 

..tn(transit) = 0 

(6.57) 

(6.58) 

Since holes are subject to the same injection, collection, 

transport, and recombination mechanisms as are electrons, an exactly 

analogous argument for the hole transit current density leads to 

iip(transit) = 0 (6.59) 

Substitution of Eqs. 6.58 and 6.59 into Eq. 6.39 and then into 

Eq. 6.38, immediately yields Eq. 6.37, so that reciprocity has now been 

proven in the presence of recombination. It is seen that the derivation 

given here reduces to that of the previous section if there is no re-

combination, so that ~ = l. 

6.3 Conclusions 

The principle of reciprocity has now been derived for a 

transistor with an arbitrary geometry, arbitrary impurity distribution, 

and arbitrary spatial variation of linear recombination, under the re-

strictions of low injection level and low frequency . The result is, of 

course, not new . However, the derivation. given here is based on con

ceptual processes occurring within the transistor and is carried out 
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in such a way as to yield a conceptual understanding of the processes 

leading to the final result. 
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CHAPTER VII 

CONCLUSIONS 

In this work the charge-control method has been considered as a 

means of enhancing conceptual understanding of device operation, and 

this method has been given a sound theoretical foundation based on a one

to-one correspondence between internal processes and charge-control 

parameters. All of the results have been obtained for a device with an 

arbitrary three-dimensional geometry, arbitrary impurity distribution, 

and arbitrary spatial variation of recombination rate. The results are 

valid within, and limited by, the usual first-order approximations in 

which a semiconductor device is separated into completely depleted 

regions and Quasi-neutral regions with abrupt boundaries between them. 

Some limitations to the theory have been presented and it has been shown 

how the basic concepts can be used to account for second-order effects 

and to give a conceptual interpretation to results which heretofore have 

been given only mathematical or electrical (circuit) significance. 

Finally, a conceptual derivation of transistor reciprocity has been pre

sented in which the final result was related to internal processes of 

ilie~ri~. 

In Chapter II the current density was first considered as a flux 

density of mobile carriers. Separation of the velocity and the carrier 

density into eQUilibrium and excess components permitted the several 

average velocities to be given clear conceptual meanings, directly 

related to the motion of the individual carriers. In the absence of 

reconibination, the point-average carrier velocity was used to obtain the 
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average carrier transit time across the base of a transistor, and it 

was shown that for the DC steady-state, the current is simply the ratio 

of excess or injected base charge to the transit time. In the presence 

of recombination the derivation could not proceed in exactly the same 

way because all of the injected carriers do not reach the collecting 

junction. This difficulty was overcome by separation of the injected 

carriers into those that recombine and those that survive. This sepa

ration permitted the collected current to be treated in the same way as 

the total current was treated in the absence of recombination. The 

total injected current was then obtained in a formal mathematical 

manner by definition of a new parameter, the injection time, which was 

subsequently shown to be the time required for the removal of the total 

excess charge from the base by means of recombination and collection. 

The Beaufoy-Sparkes [l] collection time constant was given a conceptual 

interpretation by showing that it is the mean time required for an 

injected carrier to be removed from the base by collection alone, and 

hence can be considered to be a transit or collection lifetime. In 

analogy with the collection transit time a new parameter, the recombi

nation transit time, was introduced. This parameter is the mean time 

for a carrier to travel from the point of injection to the point of 

recombination. The similarity between recombination and collection as 

mechanisms for removing carriers from the base was pointed out. In 

the final section of Chapter II the base current was obtained from the 

continuity equation and it was shown that the injection time can be 

obtained as the "parallel" combination of the recombination and 
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collection lifetimes. 

In Chapter III, some fundamental and practical limitations to 

the theory developed in the previous chapter were discussed. An impor

tant limitation is the neglect of the nonzero (delay) time required for 

a variation in the signal applied at the emitting junction to propagate 

to the collecting junction. Other limitations of the theory are the 

loss of simplicity when high injection levels and second-order effects 

are included, and the inherent loss of detailed information owing to 

the use of gross or average quantities rather than point variable 

functions (e.g., densities). A synthesis of the concepts of lumped 

models and charge-control theory was suggested as a possible means of 

overcoming the latter limitation. 

In Chapter IV it was shown that the charge-control concepts can 

be used very easily to obtain the DC common-emit~er current gain under 

some simplifying assumptions. The results of Chapter II were extended 

to the case of high injection levels and it was shown that the usual 

high-injection results can be obtained as easily for three dimensions 

by charge-control methods as for one dimension in the conventional 

manner. The result was further generalized to include an arbitrary 

impurity distribution. It was then shown how the charge-control 

theory can be extended to account for nonlinear recombination rates, 

other second-order effects, and additional mechanisms for carrier 

transport and injection, such as are encountered with a nonideal base 

contact. Relations between .applied voltage and injected charge were 

also obtained. 
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In Chapter V the Ebers-Moll circuit equations were derived 

from and related to the charge-control model. With the tools developed 

in Chapters II and IV it was a simple matter to derive the Ebers-Moll 

circuit relations entirely from charge-control principles and to obtain 

relations among various parameters. It was shown that short-circuit 

saturation currents would be more appropriate in the circuit equations 

than the original open-circuit saturation currents, since the former are 

related to more fundamental processes than are the latter. 

In Chapter VI the principle of reciprocity was proven for a 

bipolar transistor with an arbitrary geometry, arbitrary impurity dis

tribution, and an arbitrary spatial variation of linear recombination. 

A derivation valid in the absence of recombination was presented, based 

on the Ebers-Moll equations and the quasi -Fermi level of the carriers. 

Reciprocity in the presence of recombination was then proven by using 

the principle of the separation of inj ected charge into recombining and 

surviving components, and the concept of the pseudo-Fermi level, to show 

that the net transit current is zero if the applied emitter and collec

tor voltages are equal. The derivations given here are more closely 

related to the processes occurring within the device than are previous 

derivations. 
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APPENDIX 

CONVENTIONAL DERIVATION OF HIGH-INJECTION RELATIONS 

In this appendix the carrier transport equations (non-charge-

control analysis) will be used to obtain the minority carrier current 

density in a diode or transistor at all injection levels for which there 

is a quasi-neutral region. 

The p + region of an N P diode or NPN transistor with an 

arbitrary one-dimensional impurity distribution will be considered. A 

one-dimensional geometry and absence of recombination will be assumed. 

The transport equations are 

jn nE' n'E + eD dn' = eµn + eµ 
n 0 n dx 

(A. l) 

jp = eµ pE' + eµ p'E - eD ~ p p 0 . p dx 
(A.2) 

where n,p are the total carrier densities, n' ,p' are the excess 

carrier densities, E is the built-in field, and E' is the excess 
0 

field. Equation A.2 can be solved for the excess field to obtain 

(j - eµ p'E + eD ~) 
P 

p p 0 p dx eµ 
p 

E' = 1 (A. 3) 

Use of Eq. A.3 in Eq. A.land rearrangement of the result yields the 

minority carrier current as 

dn' n 
j = eD (1 + 

n n dx p 

dp'/dx n p' µ n 
---) + e µ n 'E ( 1 - - -) + _.n. - j 
dn ' I dx n o p n ' µp p p 

(A. 4) 

Note that Eq. A.4 contains no approximations; quasi-neutrality has not 
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been assumed. 

The assumption of quasi-neutrality results in 

and 

Use of Eqs. A.5 and A.6 

rent density 

dn' 

jn = eD (1 
n 

dx 

n' = p' 

dn' 
dx = 

dp' 
dx 

in Eq. A.4 leads to an 

n n 
+ -) + eµ n'E (1 -) + 

p n 0 p 

expression 

µn n 
--j 
µp p p 

(A. 5) 

(A. 6) 

for the cur-

(A. 7) 

which is valid at all injection levels in the quasi-neutral region, 

The usual derivation seeking to account for the excess field 

[40,41] is restricted to uniform impurity densities (E = 0) and gen
o 

erally assumes that the majority carrier current can be neglected* . 

Thus Eq. A.7 is a generalization of the conventional results, but is 

still restricted to one dimension. 

For high injection levels 

n p (A. 8) 

so that Eq. A.7 becomes 

(A.9) 

* Jonscher [47] and Middlebrook [48] are notable exceptions. However, 
Jonscher makes other unnecessary assumptions, such as n=np+ n' ~ n', 
so that his results are not valid for very low injection levels. 
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Thus, it is seen that for high injection levels, the built-in field is 

of no importance, This is, of course, intuitively obvious, since at 

these injection levels the excess densities completely overcome the 

equilibrium densities so that the equilibrium gradients (and hence field) 

are, in a sense, undetectable. 
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LIST OF PRINCIPAL SYMBOLS 

aij = parameter in Ebers-Moll eQuations 

B = base contact 

B (V ,V, ) = function of voltage defined by EQ. 4.58 
j.l j.l\) 1\\1 

b (Vj ) = function of voltage defined by EQ. 4.44 
j.l. j.l 

c 

D (D ) 
n p 

E 

= collector junction 

= electron (hole) diffusion constant 

= emitter junction; electric field 

E 
0 

= electric field due to impurity distribution 

E' = electric field dueiD injected carriers 

e = magnitude of electronic charge (e > 0) 

= function giving spatial dependence of carriers injected 
at surface µ 

I = current 

I = total current at surface v 
\) 

I = current at surface v due to injection at surface µ 
j.l \) 

I = 
µ vO 

I = 
µ 'v>.. 

I 
s = 

reverse saturation current at terminal 
terminal is open circuited 

reverse saturation current at terminal 
v and >.. are shorted together 

µ when the third 

µ when terminals 

IE,BC and IC,BE in absence of recombination 

It = total current due to nonrecombining carriers 

j = current density 

µj = total current density due to injection at surface µ 

= current density at surface v due to injection at surface 
j.l 

j(transit) = current density due to nonreconibining carriers 



K µ 

k 

n 

n 
0 

n' 

n' 
t 

n' 
µ 

n' µ \) 

n' 
µ r 

p' 

ill 

= constant defined by Eq. 4.58 

= Boltzmann's constant 

= total electron density 

= equilibrium electron density 

= total excess (injected) electron density 

= total density of nonrecombining injected electrons 

= density of electrons due to injection at surface µ 

= density of electrons due to injection at surface µ that 
will be collected at surface v (density of injected 
electrons in transit from surface µ to surface v ) 

= density of electrons due to injection at surface µ that 
will recombine 

= intrinsic electron density 

= equilibrium electron density in P-type (N-type) material 

= total hole density 

= equilibrium hole density 

= total excess (injected) hole density 

= equilibrium hole density in P-type (N-type) material 

= total charge (positive for both holes and electrons) 

= equilibrium charge 

= total injected charge 

µ 
Q' = injected charge due to injection at surface µ 

µQ ·'v = injected charge in transit from surface µ to surface v 

Q' = charge injected at surface µ that recombines µ · r 

R = recombination rate of charge for the entire base region 

s = Laplace transform variable 

T = absolute temperature; period of applied signal 



t 

t' 
D 

t 
µ \) 

t 
µ r 

t delay 

t relax 

u 

u 

u 
0 

u' 

ll2 

= time 

= general transit time 

= transit time due to diffusion 

= transit time due to drift in equilibrium field E 
0 

= transit time due to drift in excess field E' 

= average transit time from surface µ to surface v (per 
flow tube if subscripts are lower case) 

= average recombination transit time for injection from 
surface 

= delay time 

= relaxation time 

= net rate of removal of carriers (recombination rate) 

= velocity of individual carriers in the direction of 
current flow 

= portion of u due to equilibrium conditions: in di vi
dual electron equilibrium velocity 

= portion of u due to injected carriers: individual 
electron excess velocity 

= thermal potential = kT/e 

Vjµ = voltage across junction µ 

v 
µ \) 

VO 

v' 

v 
µ 0 

vDo 

v' 
D 

= external voltage across terminals µ and v ; 
terminal µ positive with respect to terminal v for 
vµv > 0 

= point-average equilibrium velocity of carriers (due to 
equilibrium conditions) 

= point-average excess velocity of carriers (due to 
injected carriers) 

= average equilibrium velocity of carriers that were 
injected at surface µ 

= average drift velocity of carriers due to the equili-
brium field E 

0 

= average drift velocity of carriers due to the excess 
field E' 



w 

x 

y 

z 

y 

0 
µ 

n(x,y,z) 
µ 

8 ( x,y, z) 
n 

T 
r 

T 
µ r 

. 't 

T 
µ \) 

T 
µ 

ll3 

= average diffusion velocity of carriers 

= length of flow tube 

= coordinate along flow tube (normal to y,z) 

= coordinate, normal to x,z 

= coordinate, normal to x,y 

= general (normal, inverted) common-base current gain 

= general (normal, inverted) common-emitter current 
gain 

= ratio of BN to BI in absence of recombination 

= fraction of charge inj e cted at surface µ that 
recombines 

= probability that an electron at point (x,y,z) 
which was injected at junction µ will not recom
bine before reaching the opposite junction 

= pseudo-Fermi level of nonrecombining electrons 

= electron (hole) mobility 

= time 

= recombination lifetime at a point 

= average recombination lifetime over the entire 
b ase region for carriers injected at surface µ 

= general collection (transit) lifetime 

= average transit lifetime for carriers injected at 
surfa ce µ and collected at surface v 

= injection time = average lifetime due to recombi
nation and collection of carriers injected at 
surface µ 

= ~uasi-Fermi level of (all) electrons 

= electrostatic potential due to impurity distribu
tion 
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w = signal frequency (radians per second) 

Note 1 

Subscript n(p) indicates electrons (holes). 

Note 2 

Subscript o indicates equilibrium or initial conditions. 

Note 3 

Note 4 

Note 5 

A prime(') indicates the component due to injected carriers. 

Transit time is denoted by t • 

Lifetime is denoted by T • 

A pre-subscript indicates the surface of injection of the carriers 

contributing to the parameter· of interest. 

Note 6 

A post-subscript indicates the destination ·of carriers, or the 

surface at which the current (density) is evaluated. 
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