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ABSTRACT

In this thesis the interaction of a normal gas dynamic shock
wave with a gas containing a distribution of small solid spherical
particles of two distinct radii, 9 and o, is studied (1) to demonstrate
that the methods of kinetic theory can be extended to treat solid
particle collision phenomena in multidimensional gas-particle flows;
(2) to elucidate some of the essential physical characteristics asso-
ciated with particle-particle collision processes; and (3) to give some
indication regarding the importance of particle collisions in particle-
laden gas flows. It is assumed that upstream of the shock wave
particles O, are uniformly distributed while particles g; are non-
uniformly distributed parallel to the shock face and in much smaller
numbers than particles o . Under these conditions the gas-particle
0; flow downstream of the shock wave is very nearly one-dimensional
and independent of the presenc.e of particles 0; . The usual shock
relaxation zone is established by the interaction of particles ¢ and
the gas downstream of the shock wave. The collisional model pro-
posed by Marble . is then extended and used with a modified form
of the mean free path method of kinetic theory to calculate the macro-
scopic distribution and velocity of particles 0, as determined by the
particle 0; - particleg; and particle 0;-gas interactions. Within the
condition that the random velocity imparted to a particle 9 by a
collision is damped by its viscous interaction with the gas before it
suffers another collision, the kinetic theory method established here

may be extended to include more general particle-particle and particle-

gas interaction laws than those used by Marble. However, the
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collisional model employed is particularly important because the
criteria for its application are easy to establish and because it
admits a wide class of physically interesting situations.

Within the restrictions of this collision model, it is possible
to analyze the macroscopic motion of particles 0; in three important
limiting cases: (Oi/o,- )2 »>> L (‘E/OT )2 << 1 and
((r?- 0?)2 ~oL . It is found that when (G;'/q)z >> L there
is essentially no redistribution of particles @, normal to the gas flow.
The only effect of particleg] -particled, encounters is a drag force
acting to slow down particles g; . When (G;/o;'>2 << | itis found
that particles g3 may have many collisions during their passage
through the shock relaxation zone. As a consequence there may be
a substantial redistribution of particles 0; downstream of the shock
wave. The physical features of this process are studied in detail
together with the range of validity of this diffusion model. The case

2
(03-/0—') ~ L is analyzed under the condition particles o; have
at most one collision during their passage through the shock relaxa-
tion zone. It is found that when the gas or particlecr,' density is low,
the single collision effects may be important even when 02/0',' differs
significantly from unity and the particles are not very small.

Under most conditions of practical significance, because there
is invariably a distribution of particles sizes present in a dusty gas,
the calculation of the particle distribution in the shock relaxation zone

should account for the effects of particle-particle encounters. It is

suggested that an experimental observation of particle size distribution
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in a shock relaxation zone can yield significant information on particle-

particle and particle-gas interaction laws.



Part

II.

III.

IV.

vi

TABLE OF CONTENTS

Title

Acknowledgements
Abstract
Table of Contents
INTRODUCTION
FUNDAMENTALS OF PARTICLE MOTION IN A GAS
1. Some Fundamental Considerations
2. Particle-Gas Interaction
3. Particle-Particle Interaction
4, Motion of a Test Particle

NORMAL SHOCK WAVE IN A GAS-PARTICLE
MIXTURE

1. Passage of a Normal Shock Wave Through a
Uniform Distribution of Particles of a Single
Size

2. Problem of a Shock Wave Passing Through a
Gas Containing Particles of Two Distinct Sizes

PARTICLE-PARTICLE SCATTERING IN A SHOCK WAVE:

Q2/0 << | , NON-UNIFORM DISTRIBUTION OF
SMALL PARTICLES

1. Macroscopic Motion of Particles o

2. Motion of a Particle Impulsively Disturbed
From Its Local Collisionless Motion

3. Calculation of the Scattering Flux

. PR 5 »
4. Physical Significance of Expression for :FPI
5. Solution for the Particle Density ﬂ’z.

6. Results of Numerical Calculations

iii

vi

14
25

29

59

41

49

52

54

60
75

93

108

122



vii
TABLE OF CONTENTS (Continued)

Part Title

V. PARTICLE-PARTICLE SCATTERING IN A SHOCK
WAVE o3/07 ~ L

1. Density Distribution of the Primary Beam
2. Density Distribution of the Secondary Beam

3. Un’iform Distribution of Particles g5 ;
(4]
Pp2 1% =(o
4, Fundamental Beam Solution tff::c\‘)zmzNhS(\\)
5. General Beam Solution by Superposition
6. Results
VI. SUMMARY AND CONCLUSIONS
References
Appendices
A. Dynamics of the Collision Process
1. Collision of particles ¢, and g; as viewed
in the local collisionless velocity frame of

particles o,

2. Statistics of encounters for particles
relative to reference frame x'u" 2’

3. Collision of particles o; and a; as viewed
in their center of mass reference frame

4. Statistics of encounters for particles
as viewed in the center of mass frame

B. Cylindrical Symmetry; o, /9 <<l

Page

153
156

161

171
175
180
188
199
205

207

207

212

216

218

221



-1-
I. INTRODUCTION

If phase change and chemical reaction do not occur and ex-
ternal forces are neglected, then the dynamics of solid particle
clouds transported by gases is governed by the viscous forces ex-
erted on the particles by the gas and by collisions between individual
particles. The gas -particle and particle - particle interactions are
not always distinguishable from one another, since the interaction of
two or more particles is characterized not only by the collision of
their surfaces but also by the coupling of their individual flow fields.

If the number density of the particles is very high, the flow
fields of many individual particles may be coupled together continu-
ously as the mixture evolves, for example, as in a gas - fluidized bed.
In this situation, the gas -particle mixture behaves almost as a fluid
with modified properties since the particles and the gas are strongly
locked to each other. On the other hand, if the average distance be-
tween particles within the gas is much greater than the characteristic
dimensions of their individual flow fields, the particles may move
significant distances during which they interact only with the gas, and
collisions involving more than two particles will be rare. Under
these circumstances, a collision between two particles, when viewed
on a macroscopic time scale, is characterized by a rapid and very
complicated transfer of momentum and energy between the particles.

This investigation will deal exclusively with dilute particulate
suspension. For a general discussion of methods applicable to the
treatment of gas -particle flows in which the particle densities are

high, the reader is referred to the books by Zenz and Othmer1 and
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With the exception of Marble's work3, previous investiga-
tions4_8 into the dynamics of gas-particle mixtures, in which the
particle densities were not large, have neglected the effects of
particle-particle interactions. This approach is valid only if the
particle number densities are quite small or if the particles are very
nearly the same size so the particles have little tendency to collide.

Since these circumstances do not generally occur in nature
or in problems of practical significance, the effect of particle-
particle interactions must usually be accounted for in describing the
macroscopic motion of the gas-particle system. Fortunately, it
seems that in many problems of practical significance the gas-
particle and particle-particle interactions are sufficiently independent
phenomena, with regard to the motion of a particle through the mix-
ture, that the methods of kinetic theory may be used in principle to
compute the macroscopic motion of the particles. The complexity
and considerable lack of knowledge regarding the particle-particle
and gas-particle interaction laws, however, prohibit a comprehensive
treatment of the dynamics of dilute particulate suspensions. There
do exist circumstances, however, under which the gas-particle and
particle-particle interactions are simplified and the viscous damping
of the particle motion between collisions simplifies the treatment of
the collision process so that a detailed solution to the problem is
possible. These circumstances were first studied by Marble3 for
one-dimensional gas-particle flows. The present work proposes:

first, to demonstrate, by generalizing Marble's collision model, that
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the methods of kinetic theory can indeed be extended to treat solid
particle collision phenomena in multi-dimensional gas-particle flows;
second, to elucidate some of the fundamental physical characteristics
of the dispersion of particles in a gas-particle flow field due to
particle-particle encounters; and finally, to assess the importance

of particle collisions in particle-laden gas flows. To attain these
objectives, this study is divided into two parts. Because of the gen-
eral complexity of this subject, it is appropriate to first establish a
good qualitative understanding of the physical aspects of gas-particle
flows. The foundation is particularly important here, because the
kinetic theory method is considerably simplified if use is made of

the underlying symmetry principles that govern particle-gas motion
and interaction. Therefore, the first part of this study presents a
qualitative discussion of the essential physical features of gas-
particle flows. Important dimensionless parameters are introduced
and their general physical significance is indicated.

The analysis is broken into four parts. First, a reasonably
general model for the gas-particle system to be used throughout this
thesis is outlined. Then the fundamental characteristics of single
particle motion in gas flows commensurate with this model are
described. Third, a particularly important particle-particle inter-
action model and conditions required for its validity are presented.
Some experimental results obtained by Mc:La,ughlin9 which tend to
support this model are also described. These general concepts of
single particle motion and particle-particle interaction are then com-

bined to treat qualitatively the motion of a test particle in a gas-
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particle flow including collisions.

In part two, the interaction of a normal gasdynamic shock
wave with a dusty gas is studied with appropriate mathematical rigor
by using the powerful methods of kinetic theory together with ideas
generated in part one. Throughout the calculation, an effort is made
to ascertain the validity of the computational model in order to estab-
lish the physical significance of the results. This approach also
serves to point out ways of increasing the quantitative accuracy of the
calculation. It should also become evident as we proceed that the
necessary conditions for the application of kinetic theory procedures
to the study of gas-particle flows are sufficiently weak that, in addi-
tion to the shock wave problem, they admit a wide class of physically
interesting problems.

Finally, it should be noted that the study of shock waves pass-
ing through gas-particle mixtures appears to have fundamental as
well as practical implications. For instance, this investigation re-
veals that the study of shock waves in gas-particle suspensions may
be particularly suited as a means for investigating particle-particle
interactions and other non-equilibrium phenomena in solid particle -
gas flows. This is an important result, since at the present time
there is little experimental evidence regarding gas - particle and
particle - particle interactions and their effect on the dynamics of

gas -particle systems.
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II. FUNDAMENTALS OF PARTICLE MOTION
IN A GAS

1. Some Fundamental Considerations

Consider a perfect gas containing a dilute distribution of
small, solid, spherical particles of two distinct radii, 9y and @ .
In principle, it is straightforward to extend the following considera-
tions to treat particle distributions that consist of more than two
distinct particle sizes.

Suppose that the state of the gas and the composition of the
particles are such that the following assumptions are valid. Individual
particles do not vaporize, condense, agglomerate, or chemically re-
act with the gas during their motion through it. Then the mechanical
properties of the particles are dynamical invariants. The particles
have a large thermal conductivity, so their internal temperature is
uniform. Furthermore, heat exchange occurs only by thermal trans-
fer between particles and gas; radiative heat transfer is neglected.
The distribution of particles is dilute in the sense that the average
distance between particles, within any region in the gas, is much
greater than the characteristic dimensions of their individual flow
fields. In general, the flow fields of individual particles do not over-
lap continuously during their motion through the gas. In fact, the
particles may travel significant distances during which they interact
only with the gas.

A collisional encounter between particles occurs when they
approach sufficiently close that the force exerted by the gas upon each

particle is significantly altered. In essence, a collision occurs when
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there is a substantial coupling of the flow fields of the individual
particles involved. Consequently, if the particle number densities
are not too large, collision events involving more than two particles
will be rare.
To be more specific, suppose v, m, are the masses,

Np » Ny, are the local number densities, and (OP':M‘“P‘ ,

\ol,z = mq_nrl are the local mass densities of particles of radius

o] and O, , respectively. The local average distance between
—Va

particles of radius O7 is then approximately S = , and

j j = "]

the local average distance between particles of radius 9  and parti-
' —3
. . A" . .
cles of radius o5 is 8:2—.: (nﬁ + N, Y . Now if Zi is the
characteristic radial dimension of the flow field of an isolated parti-
cle of radius Oy , the distribution is called dilute if the following

inequalities are satisfied throughout the flow;

5 o n~P‘y3 25 2.

l (2. 1)
. 2B 55 2%

27 T - (2. 2)
s e

llg(ny\’(’ngz) >> Z-‘ + ZZ (2.3)

The length Z[, depends upon the local particle Reynolds number
Sy et . — . =W = .
R’et — {QO"; [w Ufol //1 , Mach number MP; Ju _?L}/Ov
and Knudsen number \(PL—:: )\C/OZ » where f , /{ W
and Q. are the local gas density, viscosity, velocity, and sonic speed,

respectively; )\C is the molecular mean free path, and ’_\_{”FL is

the local average velocity of particles of radius 0’5 . Since the
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Knudsen number can generally be expressed as a function of Mach
number, ZL. = Z_(', CQeL ) Mf'b>‘

If }‘c << o corresponds to kf’i<< L, the gas
behaves as a continuum with regard to its interaction with the parti-
cles. When >‘c>> & corresponding to Kl’i- >> L , the gas-
particle interaction may be described by the methods of rarefied gas
dynamics. In this case, if the particle velocity and mass are suffi-
ciently small, Brownian motion of the particles may be important.

Cases where the effects of slip flow, transition flow, and free
molecule flow are significant will not be discussed. It will be as-
sumed that K?‘- << 1 and that the motion of the gas and the
particle can be computed on the basis of continuum mechanics. When
the velocity of individual particles relative to the gas is much less
than the sound speed, the gas behaves as an incompressible medium
in response to the particle motion, and 2: L,’—_‘i_ Z;_CR.CL> -

The disturbance created in the gas by the motion of a particle
is usually spatially anisotropic, emphatically so when a wake is
formed. The significance of ZL is illustrated by the data of
Taneda10 presented in Figure 1. For the steady motion of a sphere
for LOK R€L< 300 , the particle motion is accompanied by a
wake. This wake consists of a vortex ring, K€L>2.4' , that grows in
size and decreases in stability as Re(-) increases. For Re¢ >130
it oscillates and gives rise to time dependent forces on the particle.

Generally, we will assume ZL to be the maximum radial
characteristic dimension ofthe particle disturbance unless, as in the

case of a large wake, Z_ has no useful significance.
g L g
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Using the previous results, we can rewrite (2.3) in the form

T >> Z|+Zz (2. 4)

(—QV‘EI| +_ﬁv§\z;‘{3

If all part1c1es are composed of ma.terlal of density fg , then
Wll——éﬂ—?g and WM,= ‘\TPSO’ . Then, defining KL '.ﬁ"’/f) ’

the ratio of the mass density of particles of radius to the mass

S
O'{)CIL' , we

density of the gas, and supposing for convenience

can rewrite (2. 4):

C%;Z K *'lkz (%?)(%[)1/3 77 (Z‘+>—7 ) (2. 5)

or
(.335)‘/3{_3: (& +xa (3N )5%» (&%) @
f el i 2 05’3 ——E-Ta (2. 6)
In a similar fashion, relations (2. 2) and (2. 3) become:
Vs 25
(%3 (3T 3t<,> >>55 fo 2.7)
and

i% ¢y 52z
(f> (gzz>> Z/G; (2. 8)

The quantity K is a measure of the local total interaction

force per unit mass between the particles of radius 0; and the gas.
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If KL << 1 , the presence of particles of radius o: has
negligible effect on the dynamics of the gas. If k(, >2 1, the parti-
cle density may be very high, a situation with which we are not pres-
ently concerned. When, however, \<£’\J L , the gas and particles of
radius d; are coupled together and local gas properties are modified
by the momentum, energy, and heat transfer between the particles
and the gas. The situation Ki fj 1l occurs, for instance, in the
passage of shock waves through dusty ad;mospheressn7 and in the ex-
haust plume of metallized solid propellant rocket motors. 8 If local
gas density, {0 » is less than or on the same order as the standard
atmospheric density, and the particles are composed of solid material,
f%/() %} .(.03 . Usually, Z"\’U'l . Z;’\,QZ, and there would appear
to be no difficulty in satisfying (2.6), (2.7), and (2. 8) if O'J/(]z is not
too large. For particles in liquids, since (%/lo is not large, condi-
tions (2.6), (2.7), and (2. 8) are much more restrictive. These con-
siderations suggest that there exist physically interesting gas - solid
particle flows in which the particles modify local gas properties but
may travel substantial distances between interactions.

The system is defined to be in its equilibrium state when the
density, temperature, and velocity of the gas are uniform and the
particles move with the gas and have the same temperature as the gas.
The particles may be non-uniformly distributed throughout the gas.

The dynamical evolution of a non-equilibrium state of such a
heterogeneous system depends on the following time scales or their

corresponding characteristic lengths:
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(a) To , duration of a collision between two molecules within

-2
the gas. For gases at standard conditions, —C;& Lo sec.

(b) 'CG » the average time between successive molecular

collisions within the gas. For gases at standard conditions,

-9
"CC’_\:. j¥e) sec.

(c) —Coi,' , the time of a collision between particles of radius
0'2:) and particles of radius O; , which is characterized by the time
during which there is a significant interaction between the flow field
of particle O; and the flow field created by O . ''Bonding" of

J

one particle to another is explicitly neglected. Note: "Coz‘j = Co,ﬁ'
for particles with G;N lOf(/ and relative velocity nv.la at
standard conditions “Cm.l. ’\zlo—' le._ sec.

(d) -CU{, , the velocity equilibration time for particles of
radius Oy , a measure of the time required for the motion of a parti-
cle to respond to changes in local gas flow. For particles with
O; v 10 )& in gases at standard conditions, T”U;’u _,[_C)—2 sec.

(e) _CT[_ , the thermal equilibration time for particles of
radius 0; , a measure of the time required for the temperature of a
particle to respond to changes in the local gas temperature. For
most gases, tUL N~ tTo .

(f) Tci' , the average time between encounters for particles
of radius J; with particles of radius O'j . Generally, Tc,fl' is
the same magnitude as “Cu-i ) ‘CU:I

(g) “T ., the time over which the entire flow system changes

appreciably. Generally, C™ (0O sec.
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Associated with these relaxation times are the following
length scales:

(a) )‘ON C,& is approximately the range of the intermolecular
potential, where (. is the local sonic speed and is nearly the
gaseous thermal speed. In gases at standard conditions, >\°’\’ L~ocm.

(b) \C'\) T, is the molecular mean free path within the gas.

ey
In gases at standard conditions, XC’ULO cm.

N — : s _
(c) )xolj_, 0°i) l_\jb 9?j \ is the range of the particle

particle interaction, where ’\_.YYL and \)%J are the local character-

istic velocities of particles O; and U:, respectively. /\df"’VLO’s cm.

(d) )‘ub’_\j Ty; [\[bl » the velocity equilibration length, is a
measure of the distance covered by a particle during its response to
changes in the local gas velocity; provided ll.[f(, "V da  in gases
at standard conditions, )\UL’-\J 10 cm.

(e) >\TL/‘\" Trb l gf('\ , the thermal equilibration length, is
a measure of the distance covered by a particle during its response to
changes in the local gas temperature. Generally, )‘T,: ph-s XUL

(f) )\Cij n -Cci' (‘Iyll is the average distance traveled by

particles of radius (‘I‘Z between successive collisions with particles

of radius 0:,/
(g) ll_,_;[ v T i is the characteristic geometric dimen-

sion of the entire gas particle flow system and W& | is the charac-

teristic velocity of the system. Generally, \lf_‘ /?J _LQ—.L cm.

If the number density of the particles becomes too large and

(2. 1) - (2. 3) are no longer satisfied, the particle relaxation times
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and lengths will in general be well-defined no longer. When the flow
fields of many individual particles are coupled together, the time of
a particle-particle collision and the average time between successive
collisions lose their meaning. We shall assume that characteristic
times and lengths are well defined and that conditions (2. 1), (2. 2),
and (2.3) are satisfied.

For sufficiently dilute gas-particle mixtures, the character-
istic parameters are related in the following manner:

T, << T, << “Coij <4y )-Cci:j)t

(2.9)

ho << Ao << Nojy €< hyy Ay L

] Y
In relations (2. 9) it is assumed that the gas behaves as a continuum
in its interaction with particles.

Because C)S/i) is large and the particles are small, it is
reasonable to suppose that, when Kbﬁ L , the volume occupied by
the particles is negligible compared to that of the gas. When treating
the average macroscopic motion of the gas, it is assumed that, on
the scale of particles, disturbances caused by the particle motions
may be neglected. This implies that the momentum defect on the
particle scale introduced into the gas is immediately diffused to a
neighborhood of the particle spacing scale. The same assumption
applies to the energy dissipated in the gas by the particle motion
through it. In microscopic detail, of course, the energy first ap-
pears in the particle wake as a velocity disturbance which is, in turn,

dissipated to thermal energy. In our approximation, the energy is
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dissipated immediately and uniformly throughout a local volume of
particle spacing dimensions. Provided no large gradients in gas
properties are present, such as gasdynamic shocks, we assume that
the gas is inviscid except for the drag it exerts on the particles.

The specific heats of the gas and particles are assumed constant.

As a consequence of these assumptions, the particles move through
a gas with ''smoothed' properties.

Since Toiu. << TCiJ- corresponding to XO"J << )kcid' ’
the dynamics of particles can be computed using the averaged gas
properties. Specifically, the dynamics of an encounter between two
particles within the gas may be studied approximately by assuming
""'smoothed' local properties of the gas. Large gradients may, how-
ever, be created within the gas during an encounter between two
particles. Therefore, on the microscopic scale of particle-particle

interactions, viscous effects cannot be ignored.

2. Particle - Gas Interaction

The motion of a single small, solid, spherical particle in a
non-uniform gas flow is governed by the viscous forces exerted upon
the particle by the relative gas motion and by heat transfer between
the particle and the surrounding gas. This problem has been dis-
cussed in some detail by Torobin and Ga.uvinlo, Hoglunds, Fuksll,
Marb1e4, and Soo. é

If the temperature of the particle is different from the tem-

perature of the gas through which it is moving, there will be a vari-

ation in fluid viscosity around the particle because of heat transfer



-15-

and the corresponding temperature distribution. Variations in vis-
cosity alter the velocity field of the gas and, hence, the viscous drag
on the particle. Fortunately, the slow variation of viscosity with
temperature exhibited by gases makes this effect fairly minor if the
temperature of the particle does not differ greatly from the temper-
ature of the gas. We shall assume that the particle resistance may
be computed utilizing the local viscosity coefficient, neglecting local
thermal effects of the particle.

If we neglect non-steady effects upon the particle resistance,

the equations for particle motion are

" et = 4 € (R o0y o a s -t  uy )

C_’t_-}f?&) = E«fd?)
dt (2. 11)

where xPct) and u_fec) are the position and velocity of the parti-
cle at time ‘l’; . The drag coefficient, CD » is a function of the
particle Reynolds number Re = (3()_(?(:(7))0— [Q(Xf(f))—ﬂ? ®) l//(, and
Mach number M= ‘Q«C\g‘,d?))—' Bf&)[ /CL()_(_P(-E)) , where
f , & ., and f(_ are the gas density, sonic speed, and viscosity,
respectively. For low values of M , the medium may be consid-
ered incompressible and the drag coefficient is a function of only the
particle Reynolds number.

For simplicity, we shall assume that the individual particle
motion obeys the classical Stokes law and that the heat transfer be-

tween the particle and the gas takes place with a Nusselt number of

unity based on the particle radius. Although these drag and heat
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transfer laws hold strictly for a single sphere in steady motion
through a uniform medium, the errors involved in applying them to a
dilute suspension are minor. Moreover, the significant physical
features of the collective gas-particle motion do not depend strongly
on the details of the drag law.

Consider the motion of a particle of mass W and radius T
in a steady, one-dimensional gas flow of velocity U(X)€yx . The
position, X? CE) , velocity, \Af(‘b) , and temperature, _I—P(Zb) , of

the particle satisfy, using Stokes Drag Law and Nusselt Number of

unity,
m%Pce> = e,wrfc o (u fo&))fx -gf&)) 2 12)
—rk 2 (T(x@)— T @B
MCS%PC'E)*(;>4WO_ ( Cep@)—="h ) o 13)
and

b)) = u,ck)
dt (2. 14)

In equations (2.12) - (2. 14), )LL is the local gas viscosity, Cg the
specific heat of the solid, and IQ, the thermal conductivity of the

gas. Define the velocity equilibration time

Ty,= M (2. 15)
Cm‘/co‘

and the thermal equilibration time
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= mcC — 3 C
ik )

where C‘) is the specific heat of the gas at constant pressure.
Since the Prandtl number, Pr‘ = CF /(AQ , for most gases is approxi-
mately two-thirds,the velocity and thermal equilibration times are
about equal.

Rewriting (2. 12) and (2. 13) using the definitions (2. 15) and

(2. 16),

(2. 17)

'{[E = (‘%)'L (T"T ) (2. 18)

In most situations for solid particles CS/U CP . From the form of
(2. 17) we see that “C, is approximately the time required for the
velocity of the particle to respond to changes in the local gas velocity.
If the gas is uniform, it becomes the time required for the particle
slip velocity Wg = hey — We to decay to e_'l of its initial
value. A similar interpretation of Ty is useful to describe the
variation of particle temperature. The spatial relaxation of the par- |
ticle velocity and temperature is characterized by the velocity and
thermal equilibration lengths, respectively. They are usually de-

fined as:

Aoz =, ug (2. 19)

(2. 20)
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where W, is a velocity characterizing the gas flow. The parame-
ters )\u and XT are measures of the distance that a particle of
radius O  will be transported before its velocity and temperature
equilibrate reasonably with those of the gas stream.
If (3 is the mass density of the gas, t)s the mass density
of the particle, and - the kinematic viscosity of the gas, then the

equilibration parameters may be written

Ao —‘% (_%S_> (%°>f (2. 21)

A= A Pr (%)(%\}_)0' (2. 22)

\

For metallic solids in gases at standard atmospheric conditions, {05//3
is on the order of _LO3 . For a typical particle of radius OA~1J cm
the velocity equilibrationtime at standard atmospheric conditions in
air is Ty VvV _[Ou sec, and increases as the square of the particle
radius. When the viscosity of the gas, /({« » is nearly constant over
the gas flow, T,y is also nearly constant. Under this condition, it
is apparent from equation (2. 17) that the motion of the particle normal
to the gas flow direction is independent of its motion parallel to the
gas flow. This transverse motion is damped in a time of order T .
Suppose at time t =0 and position X = QO a particle is

injected into the gas flow with a velocity
)_Jf(o) = U?(o) €x + t_a}?LCo) (2. 23)

different from the local gas velocity. The velocity components of the
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particle are governed by (.h))
due® = L (L0p®) — W
iy T ! (2. 24)

(2. 25)
;H.:? (2. 26)

:G (2. 27)

Equations (2. 25) and (2. 27) are readily solved, and the motion of the

particle perpendicular to the direction of gas flow is given by:
"t/—cu
Up ) = W, () € (2. 28)

-t
/Tu) (2. 29)

= ) -
Xp, Gb) = Uy ) T, (L-—¢€
The velocity of the particle normal to the gas flow is damped expo-
nentially in a time of order T, so that it reaches a limiting trans-
verse position

.)_(P_LCOOB . 1_{“(_0) Ty (2. 30)

The length _Z(PL(OO) is called the transverse range of the particle;
it is the maximum distance the particle can move across the gas flow
field if its initial transverse velocity component is _L_}_PL(O) . The

value of KPLCOO) depends on the particle's initial transverse veloc-
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ity and is independent of variations in parallel velocity components.
The concept of a transverse range may be extended to circumstances
where "CU varies with 2¢.

The motion of a particle parallel to the gas flow is generally
complicated and is most conveniently treated within the framework of
a given problem. The dynamics of the particle depend strongly on
the magnitude of ()‘U/L) N (TO/—C> where | is the charac-
teristic geometric length of the gas flow field and T ’\/uoL is ap-
proximately the time it takes a particle to travel a distance L_ .

When "C,>> T corresponding to r\u >> L , Figure 2,
the particle motion is relatively unaffected by local changes in the
gas flow field. The force acting between the particle and the gas is
small compared with particle inertial forces and may be treated as
a perturbation on the motion the particle would have in the absence
of the gas. The particle motion through a region of length L- within
the gas is determined principally by its motion at the time it enters
the region and, in the absence of external forces, the particle tra-
jectory will be nearly linear.

On the other hand, if Ty << T , corresponding to /\U<< L,,
the particle adjusts rapidly to the local gas velocity. Referring to
Figure 3, the particle motion is strongly coupled to the gas motion
because its relaxation time is much less than the time over which
significant changes in the flow field occur. Because the initial mo-
tion of the particle across the gas flow is damped out in a time of
order C, , its motion is nearly parallel to the direction of the one-

dimensional gas flow for times larger than ; . Under these con-
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ditions, Marble4 has shown that after its initial rapid relaxation for
‘E},TU , Xfﬁt) X Xu , the particle adjusts itself to the one-
dimensional gas motion by taking on a velocity relative to the gas, the
slip velocity, that provides the force to accelerate or decelerate the
particle at nearly the local rate of acceleration or deceleration of the
gas. Then, for 'E >> Ty corresponding to XP(*:) >> Ly, the

state of motion of the particle is approximately given by

U?C*:) i LLCXP(:E)) + T %CX.?&)) (2.31)

& Mo
—TL (2.32)

and

AJ
&?L&) - gh_(o}‘cu (2. 33)

The particle has essentially lost its memory of its state of motion at
time ‘E:O ; its motion is relatively independent of its previous
history.

When T&/—c o )“’/L_ is neither large nor small, the motion
of the particle depends on the entire history of its motion through
regions within the gas of dimension L. . Apparently, Figure 4,
no great simplifications may be made in treating the particle motion
parallel to the flow. The transverse displacement, however, has al-
most reached its limiting value.

A similar discussion holds for the relationship between the
local particle and gas temperatures. For a more detailed discussion

of the gas-particle interaction, the reader is referred to the work by
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Marble4, which also includes some illuminating examples of the

physical significance of TO/"C "

3. Particle-Particle Interaction

The collision of two spherical particles in a viscous fluid is
complicated by the fact that, during collision, the distance between
particle surfaces in relative motion becomes so small that viscous
forces dominate. The problem is further complicated when the
particle Reynolds numbers are so large that wakes are formed. Then
the interaction mechanism loses its symmetry; this is probably of
importance when particles collide while moving parallel to each other
through the fluid.

In spite of these complexities, it is reasonable to expect Coﬁ-
ditions under which the particle-particle collision is nearly elastic
and is characterized primarily by the particles' properties. When
two particles approach each other, their individual flow fields inter-
act and the force exerted by the gas upon each particle is altered. If
this viscous force had a negligible effect upon the collision, the mo-
mentum and energy exchange between the particles then depends on
the nature of their contact. Marble3 has suggested that a necessary
condition for this behavior is that the time required for each particle
to traverse the flow field of the other must be small in comparison
with the velocity equilibration time. This condition is reasonable
since, if it were not satisfied, the particle would have sufficient time
during the encounter to respond to the flow field of the other particle.

To make this criterion quantitative, let ZL be the charac-

teristic radial dimension of the flow field of the particle whose radius
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is J; and _q_.r be the local collisionless velocity. The time

v ¢

during which particles of radii 0: and 03 interact is of the order

Zi’/g—f{,"—l&f‘j l . Consequently, in order that the collision be=-
tween particles of radius UI and 9, be nearly independent of

the structure of their flow fields, it is necessary that

—

Cu

‘ 2 L (2. 34)
Zz/lgfg_'&tz.l

-
< > (2. 35)
Zl /(E‘:fe ~Upal

Utilizing the definition of the velocity equilibration time Ty of a
particle of radius @7 and assuming the particles are composed of

the same material so t)s‘: f&‘-’— ﬁs, this may be written

%(_g:><€0{ li("gyl\>(_\§§> 22 1 (2. 36)

2 (G \(p% | Y-, |
()R >

z

(2.37)

The second bracketed term is a Reynolds number based upon the rela-
tive velocity of the two particles and will generally be of order unity.
For our purposes here, it will suffice to take zl’V O-i and ZL’\J 0;_,

and conditions (2. 36) and (2. 37) become
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@)

%(%Xrﬂi\ﬁ\~%ﬁ\)<%) >> L (2. 39)

(2.38)

For solid particles in gases, the density ratio ]oﬁ/f is large
and, for particles having Reynolds numbers of relative motion of
order unity, expressions (2.38) and (2. 39) are of magnitude LOB 5

Further information is required to determine just how large
expressions (2.38) and (2. 39) must be to assure that a collision is
essentially elastic.

Toward this end, a detailed experimental investigation has
been made by McLa.ughlin9 into the momentum and energy losses re-
sulting from the collision of spherical particles with an infinite wall
in the presence of a viscous fluid. This is a geometry which tends to
maximize the energy and momentum losses of the sphere. The ex-
periments were performed using steel spheres in glycerin-water mix-
tures.

His results, most conveniently given in terms of FS\-LO_//-L s
showed two definite interaction regimes. For (’SLLO'//-—L less than
about 30, the kinefic energy of the particle was dissipated in ap-
proaching the wall and no rebound occurred. Above ‘Oil’lg/u _]_02:
over two-thirds of the energy dissipation of the sphere occurred

within a tenth of a sphere radius from the wall.

At higher 6;&0'//.( , the sphere rebounded from the wall,
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and as ()Suo.//% was increased, the loss became a smaller frac-
tion of the kinetic energy of the sphere. At Fsu%’_\z bx LO4' , the
loss had been reduced to approximately eleven percent. Further-
more, as the Reynolds number was increased, the length scale over
which the momentum loss occurred was observed to decrease. Table
I shows the variation of momentum loss with the f’sUL‘"//% as indi-
cated by selected examples of McLaughlin's experiment. At

fsuo-//—(,’\/ Lot the collision is reasonably elastic.

TABLE 1
Radius, Viscosity Velocity o Momentum
cm poise cm/sec s[’b Loss, /o
0.318 9. 25 12. 75 8.7 100
0. 476 9. 25 26.9 28. 6 100
0. 476 2. 40 55.3 214 69
0. 476 0. 59 95. 3 1475 39
0. 238 0. 096 103 40300 18

The experimental results point to a thin-film energy loss
mechanism over a wide range of fsu'(r//k(, . To confirm this
mechanism, McLaughlin also performed experiments to measure the
loss of a sphere rebounding from a wall covered by only a thin film
of the liquid. These results showed that a critical film thickness ex-
isted, above which the energy loss did not significantly increase with
increasing film thickness. The critical thickness for a particular
case was J‘S—' O , considerably smaller than the particle radius.

The experimental results of McLaughlin suggest that flows
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generated by colliding particles exhibit high pressure gradients per-
pendicular to the line of approach, supported by high shear stresses
generated by squeezing liquid from between the surfaces. For values
of E‘Lwy,% > _\,04‘ , elastic deformation of the solid occurs to

such an extent that the collision may be considered elastic.

4, Motion of a Test Particle

Let us now consider some qualitative aspects of the effects of
particle collisions on the motion of particles within a gas. Consider
a perfect gas containing number densities YLP‘ and YLPZ of parti-
cles having radii OI and O;_ , respectively. The dynamic behavior
of this complete system is intimately related to the relative magni~
tudes of the several characteristic time scales or their associated
lengths. Assume that the gas behaves as a continuum and that the
particle number densities are low enough that only binary collisions
between particles are important. Finally, assume that the average
time of an encounter is much less than the velocity equilibration time
of either particle, the average times between encounters and the time
over which the flow field changes significantly.

Under these conditions, an encounter between two particles
appears as an almost discontinuous transfer of momentum and energy
between the particles. Between encounters, the particles interact
only with the gas. In terms of characteristic time scales described

previously,

P
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S (¢ < C
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The dynamics of this system may be described in terms of (i) the mo-
mentum and energy transfer in particle-particle encounters, and
(ii) the motion of the particles between encounters.

Suppose that the particle-particle interaction law is known
and we wish to consider the motion of the particles between encounters.
The particles respond to local changes in the gas flow field through the
viscous force exerted upon them. There is a transfer of momentum
between the particles and the gas. The magnitude of this momentum
transfer and its overall effect on the motion of the particles depends
on the time between encounters. Consequently, the relative impor-
tance of these momentum and energy transfer processes, and there=-

fore the motion of the particles due to collisions, is dependent upon

the ratios Gy, /’C‘C“’V )\Ol /)\cu , Ty /_q’lz %Y )\Ut/\c‘z s
TUZ/TCZ"U )\UL/ Acz‘ » and —C(,\,_/-cczz % kot/ )‘sz'

These ratios will depend strongly on the particle radius ratio
q/o;_ and the number densities of the two particle species. The
velocity equilibration time of a particle depends on the particle radius
because it is a factor in the drag law; in the Stokes regime, Tﬁ'v L
The average time, _Cc.i,j , between successive encounters depends
on the sum of the radial dimensions of their flow fields, 2_:‘, +‘ZJ' .
their relative velocity, \lJ[)(_ ~L)_fj ( , and the number density
of particles. In practical problems a wide distribution of particle
sizes occurs, and one should expect a corresponding variation of ve-
locity equilibration and collision pa.ra.méterso

Suppose that Y\f' >> Y\‘)l so that s TC'H ’

<
C2

T;\z‘ > s £ ; the effect of collisions on the motion of particles
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of radius O"l can be neglected. Particles of radius O; may, how-

ever, have a significant effect on the character of the gas flow field.
Consequently, the gas-particle flow field will remain one-dimensional
provided the mass density of particles of radius 02 is also much
less than the mass density of the gas. Under these circumstances, the
motions of 0;_ particles, caused by gas-particle and particle-
particle interactions, may be studied without consideration of their
effect on the gas or particles of radius O'l’ &

For the purposes of discussion, suppose that 0 >0, ; parti-
cles of radius 0'; and o, will have different collisionless ve-
locities LLN and ut,,_ and different slip velocities us(:LL’LLf’a.nd

e, = LL— LLPQ' . The particle velocities um and qu will

2
indicate local collisionless velocity of the particles. The local col-
lisionless velocity is the local velocity that particles would have if
there were no collisions. Now if the gaseous acceleration is negative
in the direction of the positive x axis u?‘>ufi The relative velocity of
these two particle sizes will lead to collisions between particles of
radius UE and particles of radius O"l If the velocity equilibration time

of particles of radius 0, is short in comparison with the time between

collisions, 'CUL LT , a particle of radius¥, that is disturbed

Czk
from its local slip velocity by a collision will return to its local slip

velocity before it encounters another particle.

The collision frequency 12

G computed in the classical manneris

Vo, 2 W (Z,+Z, )2 W~ | (2. 52)

and the mean free path between collisions
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\ ey, X B o Wor s
, i
Vo “r:lr(szzzﬁurfuf" (2.53)

Collisions may be neglected if T¢zl>>'c , corresponding to
)x:.,_@) -
The approximate time ‘CC?_‘ to be expected between encounters

experienced by a particle C is

<. A L
€2y < ,ch (2. 54)

and it is of interest to compare this time with the effective velocity

/7
equilibration time "C'Uz_ , for a particle O;_ Using

2Wl2
T NJ
U, e

P CRe M) g’ It -upd

where local particle Reynolds number and Mach number are given by

(2. 55)

Rezz f;o;_\u.—-ufa\//& and Mzz lLL—LLr;‘/Qv

respectively we have as the ratio of the characteristic times;

/
Tz ~ ( __2m —— (nff[rczﬁ‘za )zlur,‘“pl)(z. 56)
_CC2l CD(Rez)mz )FT\—OZ, l u«"urz_)

-%:y‘ ( C?(Rezj"lz) %(ﬁl\%}%}l) (%2‘ @g‘?;)‘z‘”’

The magnitude of each of the bracketed terms may be estimated. If

the local Reynolds number and Mach number are sufficiently small,
o o
CyReoy My YV 12 fRe, .2V S, A% g

equation 2. 57 becomes
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The quantity E(GI‘ch)lurr ufll //L(, is the Reynolds number of
particles based on their relative motion and in the Stokes law regime
is less than or of order unity. The quantity ﬁ.l/f is generally less
than unity. The last term involves only the two particle radii and
becomes small as OZ/GI becomes small. Therefore it is not restric-

tive to assume that

/

o,y 2

:C._ A 13 (2.59)
1

where relative particle velocities are not large.

Outside the Stokes regime for particle Reynolds numbers
greater than unity and Mach numbers less than or on the same order
as unity, the drag coefficient of a sphere is of order unity. Except
for unusual situations such as particle shock waves or extended tur-
bulent wakes, experimental evidencelo suggests that Zl ad 0—]_
and 22/\1 (Ti . Consequently even outside the Stokes regime
‘there seems to be no difficulty in satisfying condition (2. 59) if the
density of particles of radius OI is not too large and OE/OT is
sufficiently small.

Consider the motion of a test particle of radius 4‘2 5
\Cdz/'tc“ < 1 . If the particle were subject only to interaction
with the gas, it would, after an initial transient, slip relative to the
gas at a rate such that the viscous drag force accelerates the particle

at very nearly the local gas acceleration rate. When the particle is

disturbed from this state, it will return to the appropriate local state
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of slip within a time of order TUQ_ . Now the collisions experienced
by the test particle disturb the particle from the local equilibrium slip
condition. The scattering velocities that result from collisions will
have components normal and tangential to the directions of average
gas velocity.

Consider first the scattering velocity component normal to the
average motion as indicated in Figure 5 . Following a collision the
normal velocity component decays toward zero with a time constant
TCTu,y . Consequently if the time interval TC2& between successive

collisions is larger than its velocity equilibration time ™Ce. the

particle enters into each collision with negligible velocity normal to
the direction of gas flow. Furthermore, the particle has moved across
the flow field, its transverse range based on the scattering velocity
ETLCO) normal to the gas flow. The transverse range, in the Stokes
regime, is approximately H?LCO) Tl)z.

The scattering velocity parallel to the gas motion, see Figure
S, is a bit more complicated. Prior to a collision the test particle
is moving with its local collisionless slip velocity. After a collision,
the parallel components of the particle velocity decays toward its
collisionless slip velocity with time constant "C)L . Consequently the
restriction insures that particles of radii OT and 9, are moving at
very nearly their local collisionless velocities prior to each collision.

We conclude that when Gy, /'Cc,_' 5 L particles of radius
O;_ will '"diffuse' across the gas flow. There is an interesting

analogy with the manner in which a low density, weakly ionized plasma

diffuses across a strong magnetic field, Figure 6. The guiding center



35

six®e X 9oyj Suoje padyIiew a1 %oo1o1310d 1593 I0J SUOISI||OD 9AISS200NS jo suoiyisod ayfg,

Tl_.x?|_i&

=" ]

°g 2and1 g



‘p1o1y on3oudew Juoais e Aq
poutjuod st jey) ewseld £11Susp moO] pezluol A[MBom B SSOID® SOSNIJIP UOT U® 23I] Yyonuwx molj sesd
oY3] SSOID® ,,9SNJIIP,, 11 31 SUOIs1[]0d Aurw ssoJispun <o snipel jo aid13ied ® JI

‘9 2an81q
: i .
1 T
g
Goum%\
ﬁﬂOuw\H
: ) 1
O
7
X X Ix
J 1
‘ﬂ < An\n\
N.UnGuO«&.D?
.mbO

=~




=37 =
of a typical ion in the plasma can move only a finite distance across
the magnetic field due to collisions. This distance is characterized
by its cyclotron radius (:)C r\ﬂ.{L(o) T where T is the cyclotron
period. The requirement that ()P‘D ? >0 €f2' so that collisions had
a negligible effect on the dynamics of particles of radius O] , was a
matter of convenience only. It assured that the initially one-dimen-
sional gas flow would remain one-dimensional; if PPl’V ﬁ)ra N f
the gas flow will usually deviate from one-dimensionality.

The following physical picture of the gas-particle flow process

will hold: If f?l ;\ﬁ’" gon)

and
To. < Tea )T'cz.z. LT

T\’g < TCl\

) Tep <z
then

(1) the collisionless slip velocities of the particles are deter-
mined by the local acceleration of the equilibrium gas-particle flow
field,

(2) the random particle velocities resulting from inter-particle
collisions have essentially decayed to zero before the next collision
takes place.

(3) all collisions take place with a relative velocity equal to
the difference between the local collisionless velocities of the two
particle sizes and with a direction parallel to the local gas accelera-
tion. Consequently collisions between like particles are unimportant.

(4) collisions between particles result in a transfer of momen-

tum, due to viscous interaction, from the particles to the gas in the
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direction normal to the local gas acceleration. A gas flow that is
initially one-dimensional if &i'?‘/\; (3?,)_'\) ? will most likely deviate
from one-dimensionality as a consequence of particle -particle

interactions.
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III. NORMAL SHOCK WAVE IN A GAS-PARTICLE MIXTURE

The considerations of Chapter II suggest that there exist a
fairly wide class of physically interesting gas-particle flows for which

conditions
TO << Te << To’ij <, Tob)TC‘Lj )_C

}\0 <L )\C < << B\az‘j << )\u‘:) )\CZJ)L

hold. Collisions between parﬁcles within the gas are well-defined
events so that particle-gas and particle-particle interactions, which
govern the evolution of the system, are readily distinguished. Be-
tween collisions, the particles interact primarily with the gas. In
addition, the experiments suggest that when -CO‘:J << TUi,)T"J" the
collisions between particles are nearly elastic and the effect of the
gas is relatively negligible.

Throughout the remainder of the analysis we shall consider
the encounter to be elastic, recognizing that even with its weakness,
this assumption is the most reasonable within the present state of our
knowledge. Indeed, it will turn out that many of our results, if com-
pared with a suitable experiment, should provide insight into the true
character of the particle-particle interaction law in a dilute gas-
particle system.

© With the picture of the physical phenomena which we have
formed, let us consider the passage of a normal shock wave through
a gas containing a distribution of small, solid, spherical paI-'ticles.

This example is intended:
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(1) to demonstrate that the principles of kinetic theory may
be extended to treat quantitatively the dynamics of dilute gas-particle
flows in which particle-particle interactions are important;

(2) to determine novel physical features introduced by
particle-particle collisions; and

(3) to ascertain the general importance of collisions in the
dynamics of dilute gas-particle suspensions.

We shall suppose the dust is composed of particles of two dis-
tinct sizes with radii 9y and 93 . To insure simplicity at a later
stage of the calculation, we shall let particles of radius oy be dis~-
tributed uniformly upstream of the shock wave. On the other hand,
particles with radius 93 are non-uniformly distributed in a direc-
tion parallel to the face of the normal shock wave with a density much
less than that of particles o . Under these conditions, particles of
radius 0, have little effect on the motion of the gas and particles

OT - The motions of the gas and particles with radius 97 , how-
ever, are strongly coupled. These circumstances permit us to ex-
amine the effect of collisions on the motion of the cloud of particles

S, downstream of the normal shock wave.

We shall compute first the dynamics of the gas-particle
mixture due to the presence of the shock wave, neglecting the pres-
ence of particles 0, . Then, using these results, we shall analyze

in detail the motions of particles a3

> in the known gas-particle

flow field.
Finally, primarily to simplify the analysis, we shall make

several restrictive assumptions regarding the gas-particle and
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particle-particle interactions. Stokes drag law will be used to de-
scribe the gas-particle interaction. The collisions between particles
will be approximated by collisions between rigid elastic spheres, con-
sidering the gas to have negligible effect on the particle-particle inter-
action. Throughout the discussion, every effort will be made to as-
certain the validity of these assumptions and their general effect on
the solution. It will be shown, quite clearly, that their primary ef-
fect on the results is quantitative. Qualitatively, they do not alter
the essential physical features of the gas-particle flow downstream of

the gasdynamic shock wave.

1. Passage of a Normal Shock Wave through a Uniform Distribution

of Particles of a Single Size.

Consider a normal shock wave in a mixture of perfect gas and
a collection of small, solid, spherical particles of essentially uniform
radius ST - So long as the solid particles are large with respect to
the molecular mean free path of the gas, O‘l'>> XC , the thickness of
a gasdynamic shock is negligible in comparison with the momentum
and thermal ranges of the particles. Thus, the structure of a normal
shock wave in a dilute particle-gas mixture may be thought of as a
conventional gasdynamic shock which produces temperature and veloci-
ty conditions of the gas different from those of the particles. Follow-
ing this essentially discontinuous variation of the gas properties is a
relaxation zone in which equilibrium between the particles U" and

the gas is gradually re-established through the mechanisms of particle

drag and heat transfer. If the particles represent a significant frac-
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tion of the mass of the gas-particle 0} mixture, their response to
changes in the gas, in turn, modifies the state of the gas.

The statement and analysis equations of this problem were
apparently first given by CarrierS. Various aspects of the relaxation
process were also studied by other investigators, for instance,
Marb1e4, Rudingeré, and Kriebel. © In the present presentation we
will follow the analysis by MaLrble4 since his approximations are con-
sistent with ours.

The number density of particles o is sufficiently low that
pairs or groups of particles may be considered non-interacting. The
volume occupied by the particulate matter is assumed negligible. At
any point in space not occupied by a particle, the state of the gas is
defined by its local pressure, density, temperature, and three com-
ponents of velocity. The properties of the gas are assumed to be
smoothed; only the average effects of particle motions are accounted
for. The energy and momentum present in the particle wakes are as-
sumed to be dissipated immediately and uniformly through a volume
with dimension of the order of particle spacing. The gas is treated as
inviscid except for its interaction with the particles. The state of
any particle is defined by its velocity components and its tempera-
ture, both generally differing from those of the gas. As a conse-
quence of these assumptions, it is admissible to employ the known
behavior of isolated particles in uniform gas fields to calculate the
interaction between the two phases. The shock wave and shock
structure are stationé,ry in the reference frame employed.

Under these restrictions, the method presented by Ma.rble4
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may be used to establish the equations of motion for this gas-particle
UI' mixture. Denote the gas velocity and density by W and P , re-
spectively, and designate the average velocity and density of parti-
cles G, by u?l and ﬁ)[ , respectively. The mass flow of each

phase is conserved, so

Pu = wm (3. 1)

ﬁ’lufl: K, m (3. 2)
where y is the gas mass flow rate per unit area and \<‘v§\ is the
mass flow rate of the solid particles G!’ per unit area. Likewise,
the momentum equations for the two phases are

dp = :
f‘*%&‘( + B Fo (3.3)

Ppt Upr %g‘*f' = -, (3. 4)

where P is the local gas pressure and FP‘ is the force exerted
upon a unit volume of the gas by the particles. The partial pressure
of the particle O‘{ cloud is negligible. For a number density Y\P‘
of non-interacting particles O’r , assuming that the particles obey
Stokes drag law, F?‘ is given by

FFI = .ﬁ’r‘a (“f‘_'u‘) (3. 5)
1)
\

Since the particles are non-interacting, u?| may be interpreted
as the local collisionless velocity of particles with radius (rl .

Furthermore, XUIE W\Ou/ém'/&or is defined as the velocity
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equilibration length of particles @ and Q. is the local gaseous sound

. . . Y2
speed. It will be assumed that the local gas viscosity /‘U\JT s SO
that the ratio /-L/Q, is a constant, and consequently Xal is also
constant.

The first law of thermodynamics for the gas is

fuCP% --u,j/)( - (uf\—-u) FP‘ + Q?‘ (3. 6)
where Q?l is the heat transferred per unit volume per second
from the particles to the gas; the term (ufl—.u')FP( represents
the dissipative work done on the gas by the particles passing through
the gas. The specific heat, C? , at constant pressure, is as-
sumed constant. To the same approximation as Stokes law, we as-
sumed the heat transfer between the particles and the gas takes place
at a Nusselt number (based on particle radius) of unity, and Qfl may

be written as

szﬁl_i_&@l~r> -
Tl

where = _ 3
h /\\Tl = CY M(Q/é[-‘mh(%' = 5 Pr )\v'

is the thermal equilibration length for particles d? . Usually, the
value of the Prandtl number, Pr—: CE /‘(//h, » 1s assumed to be
a constant and is essentially equal to 2/3, so that >\”I and X’Q

are considered equal.

The first law of thermodynamics for the solid phase is
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f’y\ U, CS_,TF\ = —Qp (3. 8)

hx

where Cg is the constant specific heat of the solid material. To-

gether with the equation of state for a perfect gas,
p=p RT (3.9)

the above equations provide a complete description of the non-
equilibrium gas-particle OT flow downstream of the gasdynamic
shock wave.

Equations (3. 3), (3.4), (3.6), and (3. 8) together with the
equations of continuity (3. 1) and (3. 3) may be combined and integrated

directly to give the conservation laws

Y)uf& + hlu’?\ i‘\) = < (3. 10)

2 2
Eu C?T 45 _‘*i_ 4 i’?,u’,, CSW%‘_"%F‘ =5 (3. 11)

where C& and Ca are constants. The conservation laws (3. 1),
(3.2), (3.10), and (3.11) are sometimes referred to as the mass, mo-
mentum, and energy integrals of the flow. They are valid even across
the shock wave.

We now denote, as indicated in Figure 7, the conditions up-
stream of the shock, where the gas and particles Ol' are in mechan-

ical and thermal equilibrium, by 1 ; the conditions immediately down-

stream of the gasdynamic shock by 2; and by oo, the condition far
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downstream where velocity and thermal equilibrium has been re-
established between the solid particles and the gas. Then, since the
particles do not affect the structure of the gasdynamic shock, the
change in state of the gas from 1 to 2 is given by the conventional

gasdynamic shock relations

q) = U@ = d 2
"—{ 4+ O%_—L-) M\ (3.12)

C2) way QM

R ae)) 2
—_— 4+ 2¥ - <'_‘AQ M2
T (am (L YH.(M l) L Y+~L()T\|Tf))(3‘ 13)

where ml’z w@) /O.(L) is the Mach number of the shock relative to
the gas and \/: Cf /CV is the specific heat ratio of the gas.

The equilibrium conditions far downstream of the shock wave
are altered by the particles and may be related to the conditions up-
stream of the shock wave by applying the mass, momentum, and
energy integrals of the gas-particle QO mixture between these two

|
points. For simplicity, if we set CF/CS ={ , then

Uw) s L+ (U
L) <L+k(2’/ )) ‘&+L) " 'uf"(oo):? \(2
Uf(CD (<)
:Lf!é) ?Y‘

(o0)

By comparison of these results with (3. 12), we have a relation be-

(3. 14)

2

tween the gas velocity immediately downstream of the shock wave

and the gas velocity far downstream:
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o \ (3. 15)
nezy (L+k %)) :

This relation indicates the general effect of the particles on the gas;
the significance of Kl . For situations of interest in this thesis,
K[ s i 3 consequently, for Y~ L .4' corresponding to a di-
atomic gas, U~<°°)/x(2) % 1/2.. "

The detailed variations of the properties of the gas and parti-
cles ()dl are determined by numerical evaluation of equations
(3.1), (3.2), (3.4), (3.8), (3.10), and (3. 11), utilizing C| and Cgp
evaluated upstream of the shock wave. The appropriate initial condi-
tions at X =O for the evaluation of the particle equations of mo-
tion are uF‘CO): W CL) and TP‘@) == TCl) . When solving (3.10)
and (3.11) for [ and W , care must be taken to assure that as
X->Q from downstream of the shock wave, U-> W@2)and T1—>T(2).

A typical solution, which illustrates the general character of
the relaxation zone downstream of the gasdynamic shock wave, is
presented in Figure 7. Downstream of the shock wave the particles
and the gas are out of equilibrium. Because of their greater velocity,
the particles do work on and transfer momentum to the gas; as a re-
sult, they are decelerated. The force applied to the gas tends to es-
tablish a positive pressure gradient in the gas as well as to increase
its momentum flux., The dissipation and heat transfer associated with
the particles decrease and increase its density, respectively. Gener-

ally, the properties of the gas and particles are such that the gas ve-

locity is reduced downstream of the shock wave.
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Rutdinger6 has investigated the variations in structure of the
relaxation zone when different assumptions are made for the drag and
heat transfer laws which govern the gas-particle 0“ interaction.
His results show that quantitatively both the particle velocity and gas
pressure are significantly affected by the assumption for the drag co-
efficient. As should be expected, the Stokes law produces a relative-
ly large zone. In contrast, the assumptions for the heat transfer law
have only a small effect. In general, however, the essential physical
features of the relaxation zone are qualitatively correct in all cases

using the Stokes drag law and heat transfer law with Nusselt number

unity.

2. Problem of a Shock Wave Passing through a Gas Containing Parti-

cles of Two Distinct Sizes.

When particles of a different size, 02 , are present in the
gas under the condition that ﬂ-_,a_ << (D) ﬁ;[ s the shock relaxation
zone is established solely by the interaction of particles OE' and the
gas. The motion of particles (, is then governed by their interac-
tion with the gas and collisions with particles of radius Ui' . This
situation may be studied by considering the magnitude of the particle
size ratio, d’i/ 9 .

When o_i/dl" > L » the length of the shock relaxation
zone, established by the interaction of particles 1 and the gas, is
small compared to the velocity equilibration length, >\07_ » of the

particles J; . Consequently, throughout most of the relaxation

zone, particles 0, are moving through a uniform distribution
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composed of much smaller particles. This phenomenon is similar to

the motion of a steel ball through still air. There will be a drag force

exerted on the particle of radius J, due to encounters with particles
0“ in addition to the viscous drag associated with its motion relative

to the gas. On the other hand, there will be essentially no redistribu-

tion of particles (0,  in the directions parallel to the shock face.

We shall not consider this case in further detail.

When U?d-/ol‘ o L , the length of the relaxation zone of
the shock wave is large compared to the velocity equilibration length
of particles (3 . Under these conditions, the redistribution of
particles 0, 1is collision dominated. When the distribution of par-
ticles (T] is dilute, binary collisions O—Z—OT are important,
and because of the large momentum transferred to particles dJ3; dur-
ing collision there may be a substantial spreading of the cloud of
particles 02 downstream of the shock wave. This situation is
studied in detail in Chapter 1V,

When cE/C’l‘ N-Lv, the particles have very nearly the same
velocity,and consequently have at most one collision during their pas-
sage through the shock relaxation zone. The particles collide while
moving at their local collisionless velocities. The particles are of
nearly the same size, so their velocity equilibration lengths, )\le
and >‘°Z , are approximately equal. Following a collision J, par-
ticles move a distance of order >\02_ normal to the gas flow field,
relative to the characteristic length )\ul of the shock relaxation
zone. Therefore, a substantial redistribution of particles 9 due to

single collisions is possible. This case will be considered in detail
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in Chapter V.
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1V. PARTICLE-PARTICLE SCATTERING IN A SHOCK WAVE;

oz/a'-<<1, NON-UNIFORM DISTRIBUTION OF SMALL PARTICLES

When OZ/O'I << [, a particle of radius G, may have many

collisions with particles of radius O!' satisfying the conditions

T << T, << Togy, << Ty < Teny << o,

(4. 1)

2o<< Ao << oy, << Ay, <€ Mg, << ky

<z\|

during its motion through the shock relaxation zone of thickness of
order )(o[ . It will become evident later that since (3[‘2 << ﬁ,\’\J?
conditions (4. 1) can be met, provided the particles are sufficiently
small, namely O"(' § {o- l.OO/{, . The large difference between the
collisionless velocities of the two types of particles is indicated in
Figure 8. Under conditions (4. 1), only binary encounters are im-
portant and, between successive collisions with particles OT .
particles (T;_ relax to their local collisionless velocities. There-
fore, the macroscopic motion of the non-uniform distribution of par-
ticles of radius OZ , downstream of the gasdynamic shock, is
expected to be diffusive or collision dominated. Consequently, there
may be a substantial redistribution of the cloud of particles of radius
U, in directions normal to the gas flow. Let us now analyze the
process in detail, supposing that conditions (4. 1) are satisfied

throughout the relaxation zone and that the particle-gas interaction

is governed by Stokes law.
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1. Macroscopic Motion of Particles g,

The dynamics of particle cloud G, will be computed by as-
suming ﬁ,l )r) > TPZ so that the presence of particles J;  has
essentially no effect on the motion of the gas and the cloud of particles
Ot downstream of the shock wave.

Upstream of the shock wave, all particles are in mechanical
and thermal equilibrium with the gas, but particles of radius O; are
non-uniformly distributed in a direction parallel to the shock face,
while particles of radius oy are uniformly distributed. If we
denote by 1 conditions upstream of the shock wave; by 2, conditions
immediately downstream of the shock; and by oo, conditions far down-
stream where mechanical and thermal equilibrium between the parti-
cles and the gas has been re-established, then upstream of the gas-
dynamic shock,

Up D = Wy, (O = )

*(1;‘(0 = T\;zCl) = FLI) (4. 2)

ad

ﬁ»\ﬂ) - K e(t) 3 f’t,z(l) = ﬁaz (_"-1)%>
Throughout the calculation the right-handed Cartesian coordinate sys-
tem )(L\% is oriented so X measures distances normal to the shock
face, u‘ and % measure distances parallel to the shock face,
Figure 9. The origin of XL('-?::’ is located on the downstream side
of the mathematically infinitely thin shock wave.

Because of their size and mass, the particles are unaffected
by passing through the gasdynamic shock, while the gas undergoes a

compressive change of state. The change in the state of the gas is
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computed from the usual gasdynamic jump conditions. The macro-

scopic properties of the particles are continuous across the shock

wave. Consequently, immediately downstream of the shock wave, at

X=

@) » the states of the gas and particles are related to their

conditions upstream of the shock by

(2) = ww) _ _2 Lo+ (- M\z%
RN CY+M® Z

—

e - (s (1 2000 )(1- 5, ED))

T(Q.) = T (2) = T (4. 3)

ut“(ﬂ = ui,{(a_) = wQ)

Q)
f? l<2) - K\f(o '.) FP_)_C7—> — ﬁ,q_ (“\)%)

By changing the state of the gas, the gasdynamic shock has

established a non-equilibrium situation between the particles and the

gas.

The relaxation of this gas-particle mixture to a new equilibrium

state, where the particles and the gas are again in mechanical and

thermal equilibrium, is governed by the following considerations.

Because the number density of particles of radius G, is very

small, the particles J_ have no effect on the dynamics of the gas

2

or the particles of radius J; . The gas-particle G flow re-

| l

mains one-dimensional downstream of the shock and is governed by
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the exchange of momentum and energy between the gas and particles
of radius OY . This gas-particle Oi’ problem has been treated in
detail in Chapter III. Henceforth, we will assume that F s UL s T s
ﬁ" ; u_?‘ , and ’T{)' are known functions of X derived by
numerical solution of the problem formulated in Chapter III. Within
this approximation, the equilibrium state achieved by the gas and
particles of radius d’l is independent of the presence of particles of
radius a -
On the other hand, the motion of particles O, downstream

of the gasdynamic shock is governed by viscous interaction with the
gas and by collisions with particles OI . The dynamics of the cloud
of particles of radius dz downstream of the shock can be viewed as
the spreading of a non-uniform stream or beam of particles moving
perpendicularly away from the shock face. The spreading or redis-
tribution of this beam is due to collisions between particles of radius
G, and the particles of radius OT which are unaffected by the
beam. Consequently, the final distribution in the beam of particles
< will depend on their complete interaction with the gas-particle

OT mixture.

The macroscopic states of particles of radius g, are con-

tinuous across the gasdynamic shock wave and are therefore known at

X =0 . Although the distribution of particles 01 is dilute,
the number density is sufficiently high that fluctuations in the macro-
scopic properties of the particle cloud may be neglected and the

methods of continuum mechanics are applicable. This assumption

implies that within an infinitesimal volume element there are suffi-
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cient particles 0, that particle density YLFZ and other macro-
scopic properties of the G, particle cloud are well defined.
The equation of continuity for particles O, is established
in the usual manner. Consider a fixed element of volume V whose
surface is of arbitrary shape, but closed, with area A . The mass

of particles of radius 4,  within this volume is

Sv f{"’-dN (4. 4)

where FPQ_T—W\?_Y‘LYQ is the mass density of particles (J; and
the integration is over the volume \/ . The mass of particles J,
flowing in unit time through an element ClA of the surface bounding
the volume V is E%Tz 'A'A where :E ” is the local mass flux
density of particles of radius G . Its direction is that of the average
motion of the particles, while its magnitude equals the mass of parti-
cles of radius Oy flowing in unit time through a unit area perpendic-
ular to the average velocity, ’\__[Pz_ , of the particles; ’\.EF?‘-; ﬁ”:\[?"
The magnitude of the vector CU)*‘ is equal to the area of the surface
element and its direction is along the local normal. By convention

we take 0\& positive along the outward normal. Then "Qz ,Jﬂ is
positive if the particles are flowing out of the volume \/ , and nega-
tive if they are flowing into the volume. Consequently, the total mass

of particles O'é. flowing out of the volume \/ in unit time is

S 2 A 45
A

where the integration is over the whole closed surface A surrounding

the volume \/ "
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Since the mechanical properties of particles Oy are invariants
of their motion through the gas and during encounters with particles
0’[ , the decrease per unit time in the mass of particles 0, in the

volume \/
—3
>k gv ﬁnclV (4.6)

must equal the total mass of particles & flowing out of the volume

\/ in unit time. Therefore, equating (4. 5) and (4. 6),

~’§t§ﬁ’zow - &:E??_-alﬁ k.
v

we establish the integral form of the conservation of mass for parti-
cles of radius Oy . The surface integral can be transformed by

Green's Theorem to a volume integral; then equation (4. 7) becomes

? -
e + V-4, ¢V =0 ;
j:/ bj% b (4. 8)

Since the particular choice of \/ is completely arbitrary, the inte-
grand in equation (4. 8) must vanish everywhere in the shock relaxa-
tion zone. Therefore, in differential form, the equation of continuity

of particles O is

Eﬁ?z —k ‘Z j?z_::()
Wé’ ~p (4. 9)

where ‘—19 = P is the local mass flux density of particles of
= (e Yo

radius 0‘2 . Since there are no oscillations or other time-dependent

phenomena present in the shock relaxation zone, %"(_ ﬁz_ :O and

equation (4. 9) becomes



V- ‘Q =0 (4. 10)

Define Q:LTL = url(x) €x as the local collisionless velocity
of particles 0'2': 3 LLP?_ is the velocity particles DE‘ would have
if they passed through the shock relaxation zone without encountering

any particles of radius 0'; . Then, since we have assumed that the

particles interact with the gas according to the first order Stokes
law, qu is given by
Ufzfl_}}?z =2 (u ~ Upe (4. 11)
ol Ad,
where immediately behind the shock wave at X=0, u?z(o): wa) )
x“z—i YYLLO'/GW/“- 0;. is the velocity equilibration length for particles

%,

gaseous sound speed to the gas viscosity,is a constant. Without loss

and is a constant since we assumed O//L , the ratio of the

of generality, the local mass flux density of particles of radius OZ ’

Ee may be written
Yz 3

——

:E (<)
2 X)H= ﬁ)z(_y)) uTz(x) €x T §?2 CcxX) (4. 12)

This decomposition simplifies the treatment of the motion of particles

(r
0'2’ between collisions and allows \:E‘,,L / to be computed by kinetic

theory methods.
CY‘) 0/

Now pe is the local mass flux density of particles %2 at
the origin of a non-inertial reference frame which is moving at the
local collisionless velocity of particles O, . Inthe absence of

)
collisions, :_e_rz_'—’l ﬁ;z UPQ_ €% ; consequently, ﬁiﬂ' is the flux

of particles C;  due to collision of particles 0, with particles gy .
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:‘a D)

In general, - depends on l \ s AL, 2 Wp,y

d thei tial derivati ﬁ)l C ( Ff P

an eir spatial derivatives, namely, ‘E%yL E )
bt D Lt

When ¥?2 is known in this form, equatlon (4. 10) leads to an equation

f)ra_ » the mass density of particles {, . The values of ﬁ,‘ i
ufl 3 P » and WU are known from the solution of the gas-particle Of
problem, and UPZ is obtained from (4. 11). Therefore, ﬂ,z_ satis=~

fies

D (000 U)o TP
a)((ﬁ& UpL30) V.%?.Cffo“mf)u) ﬁz>%z)’%4_>—f3()>

together with appropriate boundary conditions.

)
In the present problem, ~Y1 can be found, with good approx-

imation, by a straightforward extension of the ''mean free pa,’ch”12
method of kinetic theory.
&? )
The particle flux __.]n depends fundamentally on the O‘"
particle - Ga particle interaction law and the characteristics of the
motion of particles J; between collisions. It will prove convenient

to view this motion as an observer at rest in a reference frame moving

at the local collisionless velocity.

2, Motion of a Particle Impulsively Disturbed from Its Local Colli-

sionless Motion

G
Before proceeding with the detailed calculation of Egz , con-
sider the motion of a particle U, , following a collision with a particle
of radius 07 ,» as viewed from a reference frame moving at the local
collisionless velocity of particles of radius (; . Since ‘"Cu?_< _Qz,\’

the particle is nearly at rest in this reference frame if the col-
P ¥

lision takes place near the origin. For simplicity, we will assume
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that the origin of this reference frame is coincident with the center of
the particle 07 prior to the encounter. The Cartesian axes )%Lic’ic
are taken parallel to the le% axes which define the rest frame of
the gasdynamic shock, Figure 9. At time -{::O , the position and
velocity of reference frame xc"‘[c Z. relative to the shock wave are
X=0 » Y=Y = Z=%, ,and u’,zCo) =UC) « The cal~
culation of the local collisionless velocity of particles J, may be
carried out using either Eulerian or Lagrangian coordinates. Both
are useful for our purposes.

In Eulerian coordinates, the local collisionless velocity,
UFL(X) , of particles of radius Oy , since the flow is steady, is

determined by the solution of

mlu},,_(x)érgx) = é’T\’/"~C><) oz (Ui ~U?£X)) (4. 14)
Ax

together with the condition immediately downstream of the gasdynamic
shock wave; at X=0 , u?l(o): VL) - The solution of (4. 14) de-
fines a velocity field 'LLI,Z_()() "

In Lagrangian coordinates, the local collisionless velocity,
u_;z)(_s Yy » is given by the solution of the pair of coupled differential

equations

i G} <)

m, j—li*rz“’ =t (ﬂr/m <XVL(S> )CuCXP_(SD = u[’z.cs>) (4. 15)
>
and

(4. 16)

where S is a dummy time parameter. At time S =0 , the position
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) (<€)
of the particle is XP@O) =0 and its velocity is UPSO) =1

Equations (4. 15) and (4. 16) are the characteristic equations of (4. 14).
They describe the trajectory of a particle that at S=O 1is immedi-
ately downstream of the gasdynamic shock. Since the gas flow is
steady, the subsequent motion of the particle is such that at time

Co)
S:—S) . the particle will be at position X = X?zcs'J and its veloc-

) @ @
ity will be Up, = quCSI) = Uy CXpa () . Conse-
quently, the link between the two descriptions is simply
Gy C<) Co

Up (X ) = Up, € S(xﬁ)) (4. 17)
or

U0 = U (SO0 (4. 18)

pa p>

The position of the origin of the reference frame ch\c £
for £>0 may be computed from (4. 15) and (4. 16) by simply re-
placing S by ‘b . Furthermore, the velocity of this reference
frame is related to the collisionless velocity field, ufz_CX) , of
particles 0;_ by (4. 17) and (4. 18).

Let us now calculate the motion of particle O

2 initially at

rest at the origin of xc"lc - following a collision with a particle
O'; . The encounter between the two particles occurs in the re-

laxation zone of the shock wave at time =+ -’—‘-to when the origin of

Xc"ic%c is(lc;cated at X= ()Lo) Lloyzo) and its velocity is
<
urquo)_: u{z (%o) . At ‘t‘:‘bo , when its position was

XF(;.):_ Cxo‘)u\o)%°§ » the particle received an impulse from its

encounter with particle q giving it an instantaneous increment
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in velocity without changing its physical position. During this en-
counter, the effect of the gas on the interaction of the two particles is
negligible. The details of such an encounter are classical and are
given in Appendix A-1l. Following the impulse, '\: > _to , the motion
of the particle may be described in Lagrangian coordinates relative

to the inertial rest frame of the shock wave

m, %—rz&) = ETAOGE) & (W0e ) 8 ~U®) (4. 19)

o{g‘,zda = U &)
o_(:b - (4. 20)

where lfz(_{;) and (&) are the position and velocity of the parti-

f'z.
cle relative to the )(Ll:Z: frame. In many cases of interest, the vis-
cosity /"L of the gas may be treated as constant.

If the velocity equilibration time Ty, = My /C;Tr/‘»(,ci and
length >\°2, — CL“Q,Z are introduced, equation (4. 19) may be re-
written

:Ji_j: ) — G.,CXTQ_(:E)) (u_()(rz(:k)) ,?X‘—lr?z&)) ;
Ao,

4, 21)

Immediately after the impulse, the particle at X?z; C xo)Lto) i1l

have a velocity
AL () = ‘U;C)(tc e " N(. )
__.r). o 2. ) =X _.?1()(0) (4. 22)

eh)

where wz (%) is given by (Al.5 - Al. 8), evaluated at

X = Xo » and is the velocity increment due to the collision. All
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values of the impact parameter for the collision are considered equal-
ly likely.

The subsequent motion of the particle d; is complicated
by variation in the gas flow field in the region of the shock relaxation
zone through which the particle moves. Fortunately, the approximate
motion of the particle GZ is particularly simple when viewed in the
X, "\c %c reference frame. Since >Q:‘1c Z. is a non-inertial ref-
erence frame, the apparent acceleration effects on the particle
must be accounted for in determining the motion of the 05 particle

relative to this frame. This is simply done by decomposing the ve-

locity and position of the particle into the sums,
« Cw)
}l,]\’z.c‘%) = u?zc'{:) e }51,,_ k) (4. 23)

@ Cr)
XplH) = X, CB) + Xpy G) (4. 24)

<@
(€9)
where 'UY"Q{?) and )(P’-Ct) are the velocity and position of the
origin of the &L\c %_ reference frame at time ‘a: . Physically,

they are the velocity and position which the particle O‘;_' would have

had at time “7 if there had been no collision at time 'E :‘(’;o .
Co G

)
Consequently, ufz(‘l:) and szc-b are appropriate solutions of

)
equations (4. 15) and (4. 16) with, at ‘E =0 | l(f?.@):co) L‘o)%o) and
) ) )
Llfz_(o) = W) . Evidently sz (t) and Llfz(-k) are the position
and velocity of particle d; relative to the origin of the Xc\_tc’-'&c_
frame at time '{‘,‘) 't'o following the collision. The geometry of the
conditions (4. 23) and (4. 24) is presented in Figure L1O.

Substituting (4. 23) and (4. 24) into (4. 20) and (4. 21), one obtains
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(@) )
4 Cw)
OLJ’:PG:)GK +0Qu‘,a(+,) aﬁxl,zﬁsw X Ct))@o(?c{:) =X Ct)) (4. 25)
A L
d )EC)C'H ey + OLX(P)G:) — (C)(‘(S s
e o P ey I_:g,_ =W, @) oy + Up, B (4. 26)

Now if the particle (; does not move "far" from the origin -
of the decelerating reference frame xcbic Z_ following the encounter,
we may expand @ and W, in a Taylor series about the collision~

(©)
less position XY Ct) , the origin of XcLlc at time 'E

Q(x

£+ X <+>)~ W) + x,,1<t>:\2 o)+ (4,20

)

)
u(xfz&)-i— x t))~ ua?zec)) —+ Xoo @® du, (X?zG:)) Ao

, 4. 28
st ( )

Since )\'Ul is the characteristic length over which A and W change,
X;:)('h‘) , the X component of the distance moved by the particle
relative to the origin of the X, '—lc_%c frame, is not "far" if

\ )(;:)Qb) ‘ << >\°l . In this case, the first terms in (4. 27) and
(4. 28) are really adequate. Substituting (4. 27) and (4. 28) into equa-

tions (4. 25) and (4. 26), we have

V3] 1) (€D
dipc 2o ‘j‘; B = G (U0 g, Ut &)

2

"O'_C_;Y_(f_)) u (—E) + 0 ( w) (4. 29)

Uq
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Since UPZC't) and Xh(t’) are solutions of equations (4. 15)

and (4. 16) together with appropriate initial conditions as discussed

. <) . )
earlier, we find the velocity, B(’z t) , and position, )([, &) of
particle 05 relative to IXC(,{C%C due to the collision impulse at 'l:‘—‘-'to

are determined by
Gr)

— r
Ly = —aOEO w4 OLg") wao
& o,

G r)
Axn@) = Up )
ot

(4.31)

(r')
with the initial conditions at time ‘\f ‘t g (‘L“) O s
&

u??_ (Jc) = Up,(X) -

In many cases of interest, Q X /‘4« 2. constant in the shock
relaxation zone, as pointed out in previous calculations. Assuming
that the local variation of QU and /\L and hence T"z may be

neglected, the solution of (4. 30) and (4. 31) is

—a (+-t
<) C&) C_{T )
U CB) Ny Up, (%) e + O E ) (4. 32)

and

-y (’l:-—'l'.')

ter 2 oo, (L-e* ) +O( %
Y

(4. 33)

\_./

Introducing the velocity equilibration time, Ty, = )»,_/Q. » we can

rewrite (4. 32) and (4. 33) as



sl

) ) — Gt /C,,_

&
Up, @) ¥ U, e + O (_X)\j}) (4. 34)
%

—-G:—‘t,)/
1 G Co, x
Xon (1) g?f)cxo)—c% (L-€ ) | OG:C ’)(4.3s>

¥
Furthermore, there is no difficulty in showing that for gas flow in
the relaxation zone of a gasdynamic shock, O ﬁ(‘l:—'to) <<_C"l’ that
'xrs‘)/)\u‘ nJ >\U2/>\u‘ << L . Consequently, relative to the col-
lisionless motion, the gas appears locally uniform to particles O and
the increment in velocity of a 0; particle due to a collision is
damped exponentially,

From (4. 35) we reach the important conclusion that, following
the collision, the trajectory of particle d; as seenin chk "éc is
linear to order >\u,_/ o <L ] . From (4.35) it is also apparent
that for O < (4 -‘l:c) << To, the particle 0 moves only a finite
distance relative to the origin of XCU(‘-_%C before it comes to rest.
Furthermore, since this limiting position is reached in a time
GE-t,) v~ Tv, and ‘U“l<-ccz, << Ty, » itis very unlikely
that the particle will have a collision before it has reached this limit-
ing position. The fact that T, < Ty, << “'C\,‘ makes it unneces-
sary to include higher order terms in the computation of Z;:)(-t)
and L,ch:%_{;) than those contained in (4. 34) and (4. 35).

The particle will have another collision before (4. 34) and
(4. 35) are significantly invalidated. Under these conditions, the finite

distance moved by the particle O;_ based on (4. 34) and (4. 35) is of

particular significance, and we shall refer to it as the range,
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E‘n(xo) , of the particle O; . We might note that equations
(4. 34) and (4. 35) are exact for particle (E motion normal to the
gas flow,and the approximation enters only in the motion parallel to

the direction of gas flow. The range for particle Oz 1is obtained

from (4. 35) under the condition "Cw_ << ({‘-—'to)<< —C"l and is given by

€5
E:pz( X)) = }_&rl(xo)*cu?_ (4. 36)
We note that the range of particle 0;_ 5 &?aCxo) ,» depends only

on T"z and the initial velocity increment received from the colli-
2 a5
sion with particle ¢ . Since T-"uz,_'-:"‘c‘;] (% <Tl)%) s large,
dense particles move the farthest for a given velocity increment.
&)

In general, it is expected that Lt&rz (xo)l < U . Then
from (4. 36) and the definition )\UQEQ, <, + R 2()(0)\ S Ay, -
Consequently, the condition lX,FQC‘t) 1<< )‘ul is well satisfied when
0< (4-t) « T, -

Using equations (Al.5), (Al.6), and (Al.8), the components

of the I, particle range are

D~ VICL + cog 29
)"c. ml+m,_\ ﬂ(x ll.r,_(xo K cos . 5]
, /
CRYZ\\‘ M Ty | Up X = UpeCX)| Gos c?’ sin 2¢
Mty (4. 38)
Yz) = y‘,r_\_L_LlZ- l LKY'CXQ) Lle )(o)l In C? S‘“ 2_({}
T omerm, (4. 39)
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Specifically, these are the components of the range of particle J, due
to a collision with a particle of radius (7‘~ whose impact parameter
was \o,: CU"-l-Oi) S‘w\k\jl and azimuthal angle ?( . The geometry
of the collision is depicted in Appendix A, Figure Al. Following the
collision, particle G—Z can only move in the positive X direction.
This is a direct consequence of the manner in which momentum was
transferred in the collision, since u?‘O() > Urzg)() throughout the
shock relaxation zone.

In analogy with the distribution of particle 9, recoil veloci

ties over a sphere in the velocity space of the X<Ltc'i'c reference
frame, we also have a distribution of particle ranges over a similar
sphere in the xc"\c:bc reference frame, Figure ll.

Now suppose that a collision between a particle of radius T
and a particle of radius O occurs at time 'l: ='to at a position
different from the X_.=O plane in the 'X¢_l1¢'%c system. Following
the collision, the trajectory of particle 0;_ is, by simple modifi-
cation of previous arguments, linear to first order in )\0&/}\01 and of
essentially finite length on the time scales of interest. This conclu-
sion is accurate so long as Xc/Xut << L where Xg is the
Xe position of the encounter relative to the origin of the Yc“(c Te
reference frame. However, the tips of the velocity ug)(xo-(- Xe)
and range sz C){°+ Xe) vectors for particle < are no longer
distributed over a perfectly spherical surface because of the varia-
tion of the relative velocity of particles along the direction of the gas

flow. The surface is, however, nearly spherical because of the slow

variation of the relative velocity of the particles compared to the ap-
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Figure 11. Range sphere for particles g; due to collisions

with particles ;. Reference frame x. Yec Zc moves at the

local collisionless velocity of particles d



- T
proximate radius of the range sphere. Upstream of the origin of
Xc"\c %c the range sphere is slightly larger and elongated, and
downstream it is slightly smaller and compressed in the Xc. direc=-
tion. Note, however, that the scattering is still entirely in the for-
ward or positive )(C direction. The situation is sketched in Fig-
ure §2.

It should also be noted that the previous results can be ex-
tended to three~-dimensional flows and different drag laws. The con-
cept of particle range, which we will use often in the following analy-
sis, is independent of the form of the drag law. The linear Stokes
law has been used because of its computational simplicity, and serves
well in elucidating the fundamental physical features of the collisional
process.

Summarizing, we can make the following general statement
which, provided 'C°2!<<T02_ <‘C<.z{ <<y s is essentially inde-
pendent of the particle-particle and gas-particle interaction laws. As
viewed in a reference frame moving at the local collisionless velocity
of particles J; , between successive collisions with particles of
radius 0( » a particle J; moves along a linear trajectory whose
maximum length, the range R‘P‘ (x) of particles O, , depends

on the momentum transferred to particle

> during collision and

its velocity equilibration time. Furthermore, it should be clear that
the previous results hold for encounters between particles O" and J;

throughout the shock relaxation zone as viewed from local reference

frames moving at the collisionless velocity of particles of radius O, ;

(A
uxz(sx ) o
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With these results, by appropriate superposition of the mo-

tions of particles CTL , due to collisions with particles 0’; , We can
9‘20\) -:g(h)
calculate T . The quantity ars

particles of radius 0,  at the origin of a non-inertial reference

is the mass flux density of

frame which is moving at the local collisionless velocity, L{f,_( Xy |,

of particles 0;_ .

3. Calculation of the Scattering Flux.

In the reference frame ;('q Z, moving at the local collisionless
Cr)
velocity of particles G)'_‘ 5 ffz is the mass flux density of

particles of radius G at the origin of Yqz due to collisions
between particles G'; and Gy in the vicinity of the origin. Since
particles (S; move a finite distance, -@f'z , in T(,’f{% following
an encounter, only encounters within a small region touching the ori-
—— D
gin of X Ll'Z: can contribute to :E .
Consider a small volume element d\/ located near the origin

of _Xqi . Assume particles 0y are at rest before a collision.

In order to describe events relative to Ol\/ , erect a Cartesian ref-

—_tl 1
erence frame, X L\ 2 » with origin centered within d\/ The
w/ —4 . . . WO
X E{I% frame is fixed with respect to the X Lt-%, reference frame

and its axes are parallel to the corresponding axes of the ;{L‘EZ
frame as described in Figure 13.

From Appendix A, equation (AZ. 3), the number per second,
%&_l?z'( -X-v) , of particles 95 scattered into a solid angle O\Q/ by
collisions within the element 0{\/ . located at position .XV rela-

tive to the shock face, is
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Figure 13.

%)
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2 / /
%‘2 CXv) = n?‘CXV) n?,_o—‘-v) CuF\CXV) - u?"(xv))(o—l‘* %) OOSL\) O\Q 4\(/4. 40)

/ . Ot A £

The element of solid angle is O\.Q, = S\nq’ ON’ 0{? .
In the absence of collisions and neglecting, for the moment,
transit time effects, the number per second of particles &; passing
{ /
through an element of area d3 » subtended by solid angle dﬂ, » on
/

the surface of a sphere of radius R, centered on 0‘\/ due to the
linearity of the particle trajectories, is equal to (4. 40). It is explicit-

/
ly assumed here that R is less than the range of particles O,

2
4
scattered out of ot\/ into solid angle olQ. . The element of sur-
face cut out by the solid angle is

4 { ( (
ee’-dS = dS= R'dn (4. 41)

/
where QR.I is a unit vector in the R direction. The basis vec-

—lt=t
tors for a polar coordinate system in Xl1 Z are (_gg’ Jg*‘l) gT’ .

Using (4. 41) we may rewrite (4. 40) as

%lG?\El,z () = olffzcx‘,»g@ = o\T;,agKf N (4. 42)

where

TS (%) = 10,00 1p5< Xy ) (Up (X1 =L ))(cr+cr)2cos¢/dv (4. 43)
fz-—v n?lx" pzxv f’l v rz.XV T . .
K?—
sl M
is the flux of particles of radius 0;_ at the point (R>¢J? Y, rela-
A ol /
tive to K'q 2 , due to collisions in \/ . Since olS is small, we

/
have assumed OH_{’?. is constant over 0\3 . We note that oU-( va)

e
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has the units of particles/cmzsec and is directly radially outward
from AV since particle trajectories are linear. The volume ele-
ment d\/ may be viewed as a source of particles. However, there
is no component of OU‘l ?-Cﬁv) in the negative X g direction
relative to dV since the scattering of particles J; out of O\V
occurs only in the forward T(/ direction,

Let us now discuss the transit time effect. Now the reference
frames -i,q/@.[ and gqi , while stationary with respect to each
other, are in motion parallel to the direction of gas flow in the shock
relaxation zone. Consequently, the position X, in (4. 40) and
(4. 43) is changing with time, and there is a time dependence associ-
ated with %h'\),f’!— and ol‘[l?z(_)gv) Since the time required for iq-i-
to move a significant distance through the shock relaxation zone is
—Cu\ , then the characteristic time over which Yl?‘ ; nf?_ 3 Lll,‘ s
L‘T’- 5 %JNEPZ , and o\\",_ vary significantly, as viewed by an
observer fixed in iq% , is also "Cul . Now the flux, CLT;,Z , of
particles is non-zero only over distances of order )\01 in the di-
rection downstream of oV because of their finite range. Gener-
ally, the time required for these particles to trace out their range is
of order Ty, . Consequently, since toz/ Ty, <L 1 , the flux
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