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ABSTRACT 

From consideration of the role in current algebra of the 

equal-time commutator involving an axial vector charge and 

divergence of the axial vector current, estimates of meson and 

nucleon scalar density matrix elements are given. The scalar 

* * densities, behaving as (3, 3 ) + ( 3 , 3) under the SU(3) x SU(3) 

algebra of vector and axial vector charges, participate in the 

SU(3) x SU(3) non-invariant part of an (abstracted) energy density. 

The meson scalar density matrix elements are estimated in con­

nection with a K TI, KK scattering length determination and a 

relation for the relevant symmetry breaking parameter ~ which 

multiplies the octet algebraic scalar piece of the hadronic energy 

density. An application is given in which a K TI amplitude expansion, 

containing the information of a kaon scalar density term, is used 

in determining the low energy limits of a KL form factor. The 
4 

estimates for the nucleon scalar density terms are somewhat in-

conclusive and emphasis is placed on discussion of various dispersive 

approaches involved. 
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I. INTRODUCTION 

In this thesis an estimation is made of the nucleon and meson 

matrix elements of certain scalar densities u0, us which appear in 

the SU(3) x SU (3) non-invariant part of an "abstracted" energy density. 

Using the model algebra discussed in Section II, the energy density is 

given in a quark theory with an SU(3) x SU(3) invariant interaction and 

different iso- singlet and iso-doublet masses: 

(1) 

Here the symmetry breaking parameter rt multiplies the algebraic 

octet piece us, while the density e ~0 denotes the part o~ 8 00 which 

is invariant under the SU (3) x SU (3) algebra. The matrix elements 

of the scalar densities or "scalar density terms" are related to 

matrix elements of the equal-time commutator of an axial charge 

Ai = J dx3 A~ and divergence of the axial vector current Di= oµ A~ , 

(2) 

where i, j = 0, 1, ... S are unitary spin indices. Matrix elements of 

(2) are then connected with the Fourier transforms of axial current 

and divergence time-ordered products which, in low energy limits 

and using specified extrapolations from vanishing four momenta, may 

be related to hadron scattering amplitudes for evaluation. 

In Section III, estimation of s-wave KTT and KK scattering 

lengths will be made. The relation will be discussed of these 

threshold quantities to the meson scalar density terms as well as 

to an approximate determining relation for rt : 
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A typical evaluation to emerge from this section which shows the 

sizes of the meson scalar density terms is given by 

(3) 

(4) 

In Section IV, an expansion in Mandelstam invariants for the nK 

amplitude (obtained from the previous section) will be used to discuss 

the rapid variation of a K~ form factor due to a K- meson pole as 
4 

well as the smooth variation of the KL - KL Callan-Treiman 
3 2 

relation. 

Finally in Section V, emphasis will be placed upon the various 

kinds of estimation procedures for the nucleon scalar density terms. 

Firm conclusions regarding the fraction of the nucleon mass repre­

sented by these terms await, at the least, better extrapolation 

techniques in the axial current divergence four momenta. 

We now give a brief discussion of some previous attempts to 

relate chiral symmetry breaking with contributions to baryon and 

meson masses. Our motivation will be to gather expectations about 

matrix elements of the commutator (2) which contains the axial 

current divergence (or about the sizes of matrix elements of the 

scalar densities in (1) - a topic which will involve the model of the 

next section). For example, within Lagrangian models of various 

complexity (and contrivance) the behavior can be illustrated of 

particle masses under chiral symmetry limits where D.(x) vanishes. 
l 

Suppose one first deals with a single nucleon field w(x). The 

axial current A = "f y5y w which is generated by a continuous 11y 5
11 

µ µ 
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iay5 
transformation 1jl -+ e 1jl is conserved for a massless nucleon as in 

(5) 

At least in this chiral limit (D(x) = O), one might expect the nucleon 

mass , abstracted from the model, to vanish. However , this possi­

bility need not imply <NI e00 1 N) = <NI e~0 1 N) = O because the states 

themselves can change from the physical case to the chiral invariant 

case (we have used the notation of eqn. (1) together with eqn. (5) and 

IN) denotes a physical nucleon state). On the other hand, the simple 

Nishijima l) model illustrates the existence of a massless pion field 

which preserves chiral invariance of the energy density (or Lagrangian) 

in the presence of a finite nucleon mass : 

.g 
-

1 M Y5¢ - -
(Note Mijl e 1jl = Mijl 1jl + i g 1jl y 5 w + •• . , reproducing the ~ass and 

familiar coupling terms. ) Under the transformations 1jl --. e 
1
ay5 1)J and 

¢ --. ¢ - (2M/g)a ('il ¢ _. 'i7 ¢), the conserved axial current is found to be µ µ 
A = "f y5y 1jl - (2M/g)'i7 ¢. Such a model could support the view that 

µ µ µ 
were the pion mass not zero, the divergence D would involve this 

quantity as a proportionality constant. (The "size" of the commu­

tator [A, D] might even be argued to be of the order of a pion mass 

squared.) In fact, in pseudo-vector theory, the 0-model2) and 

phenomenological models 3) the model operator relation 

i = 1, 2, 3 (7) 
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results ,which exhibits SU(2) x SU(2) symmetry for a zero pion mass. 

Of course in (7), Di(x) may also vanish because f ... 0 in the chiral 
TI 

symmetry limit as a consequence of a vanishing nucleon mass from 

the Goldberger-Treiman relation fn ~ J2 MG A/gnNN' where GA = 

the axial vector ~-decay renormalization constant ~ 1. 20 and the 

pion-nucleon coupling constant is given by <NN ::: 4n (14. 6). 

Finally, in a simple free quark (unitary triplet, spinor) model where, 

for example, 

i - ... 
8 00 = - 2 1jr ::!., • ~ 1jr + uo 

with ui = 2(3/2)
112mq T ~i V, i = O, •.. 8, the divergences 

i 
D. = -2m (i~ y

5 
"-
2 

1jr) vanish for a zero quark mass m = O. 
1 q q 

(8) 

Let us now rephrase some of these observations in dispersion 

language. For illustration, take the neutron-proton axial vector 

matrix element (pj A l+i2 j n) = u(p)y
5
[y FA (q2) + <lµF p(q

2
)Ju(n) which 

defines the divergenc~ matrix element ~Pl nl+i2j n) = -iu(p)y
5 

u(n)· D(q1t 
2 2 2 2 . 

where D(q ) = 2MF A (q ) + q F(q ) with q = n - p. For a conserved 

axial current nl+i2(x) = O, so that D(q2) = 0 and 

2 
2 2MF A (q ) 

F p(q ) = - 2 
q 

(9) 

At q2 ... 0 a pole would appear in eqns. (9) with the quantum numbers 

of a massless pion unless the residue 2MF A (0) = 2MG A vanishes. 

One may then ask if in the product MG A' the renormalization GA 
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could be zero. From the Adler-Weisberger calculation 4) in the 

limit that Dl±i2(x) = O, however, one finds a!= 1 not G! = 0. To 

see this result, write in the vanishing divergence limit the current 

algebraic identity, 

(10) 

where T(-) = .!(T- - T+ ) T± = -i J di eiq · x( I T{Alf.i2(x) 
µv 2 µv µv ' µv P µ ' 

A~±i2 (o)} I p), the invariant v = p. q and F;(o), the isovector proton 

electromagnetic form factor, satisfies F ~(O) = 1. In the RHS of (10), 

the commutator o(x0)[A~(x), A~(O)J = ieijko(x)V~ has been used; 

since the limit q ... 0 will eventually be takenJno additional gradient 

terms in this commutator will interfere with the argument. 

Following Fubini5), we now write unsubtracted dispersion relations 

at fixed q2 in the energy variable v for the invariant amplitudes 

appearing in the decomposition (for spin-averaged proton), 

T(-) = p p A+ (pa + p q )B + q a C + g D; e.g., A(v,q2) = µv µ v µ ~ v-µ -µ ~ --µv 

.! I di\) I a(v i' q2). Using the fact that the imaginary part of (10) is 
TT V -V 

zero and that the crossing symmetry relations for imaginary parts 

are given by: a(-v, q2) = a(v, q2), b(-v, q2) = -b(v, q2), etc., one 

receives from (10), 

1 I 2 v - n a(v, q )dv = Fl (0). 

Let us now take q2 ... 0 in (10)' and notice that the relation 

(10)' 

v2a + 2vq2b + q 4c + q2d = 0 implies v2a(v, 0) = 0 and hence a(v, 0) = O, 

except where there is the Born contribution aB(v, q
2

) = - ; { o(v- ~) + 

q2 l 2 2 2 ·v 6) 
o(v + 2 )5 FA (q ). Thus GA= F 1 (0) = 1 emerges from (10)'. So 
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unless the nucleon mass M vanishes in the chiral limit, there will 

be a 1/q2 pole corresponding to a massless pion. 

Given the energy density (1), a massless pion limit suggests 

that (n I u0 + itu 81 n) (as well as (n I e~0 1 n>) is proportional to m; 

in the physical case. In fact, a low energy limit directly applied to 

the scalar vertex as discussed in Section ID leads to (n I u0 + itu81 n > = 

m 2 , where the state normalization ( pj p) = (2n)3 2p0 6 (Q) is such that 
IT 2 

<rr l e00 j rr ) _E=O = 2mn . Although there doesn't seem to be an analogous 

pole statement for the nucleon itself, it is of interest to estimate what 

fraction of the nucleon mass is represented by the quantity 

(Nj u0 + itu81 N). In Section V, various current algebra dispersive 

techniques and extrapolation methods are discussed in this connection. 
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II. ALGEBRAIC PRELIMINARIES 

Matrix elements of the equal-time commutator [A\ Dj] 

may be related via a current algebraic identity (obtained by partial 

integration) to various current-target scattering amplitudes. In 

turn, these "weak" amplitudes may be related under certain 

assumptions to "strong" or hadronic scattering amplitudes for 

possible evaluation. We wish to identify this commutator with 

scalar density operators , certain members of which exist in a model 

expression for the hadronic energy density operator e00. From 

particle matrix elements of these scalar densities, one then gets 

estimates for the SU(3) x SU(3) non-invariant pieces of particle 

masses. 

To begin, algebraic properties of operators are abstracted 

from a quark prototype with different iso-doublet and iso- singlet 

masses and an SU(3) x SU(3) invariant interaction term. The energy 

density is given by 

where in the model the scalar densities are given by 

ui = 2(3/2)112m0 · l ~i w; pseudo-scalar densities which will be 

connected to the axial divergences satisfy v. = 2(3/2)1/ 2m0 · 
. 1 

(1) 

1 

i l y 5 A2 w and the dimensionless parameter rt= - Ii (ms - md)/m0 

with m0 = { ms+ i md. The vector and _axial vector currents are 

i - Ai i - A1 

given by V = w y -2 w and A = IV y 5y -2 w and the charges 
µ µ µ µ 

J. 3 i J3 i Vi = dx v 0 and Ai = dx A0 satisfy the equal-time SU(3) x SU(3) 
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algebra: 

[V., V.] = if .. k Vk 
1 J lJ . 

[V., A.] = if .. k Ak 
1 J lJ . 

(11) 

[A., A.] = if .. k Vk . 
1 J lJ . 

The scalar and pseudo-scalar densities u., v. transform as 
* * 1 1 (3 , 3) + (3, 3 ) under the SU(3) x SU(3) algebra of vector and axial 

vector charges 7): 

[ V., u.] = if .. k u. 
1 J lJ K 

[ V
1
., v.] = if . . k vk 

J lJ . 
(12) 

[A., v.] = id .. k u. 
1 J lJ K 

[A., u .J = -id .. k vk . 
1 J lJ. . 

All statements regarding the behavior under SU(3) x SU(3) of current 

densities can be checked in the model by using the canonical commu­

tation relation { \jl :<.e ), \jl ~ (Q )} = 6 a~o (,e) so that [ \jl +(_e)L\ \jl (_e), 

\jl+{O)I' 't-. ' o/{ O)J = o{x) . \jl+ [r t-. , I' 't-. ' ]ljl , where r t-. denotes the direct 
rv rv rv 

product of dirac gamma and unitary spin matrices. The kinetic 
• f-> 

energy term in (1), - ~ l J, · J_, \jl , is SU(3) x SU(3). invariant ~nd 
examples of SU(3) x SU(3) interactions include A ~O Ai=O' vt;=0 V~=O' 
i i i µ i µ u u. + v v. and A A. + V V . . 

1 1 µ 1 µ 1 
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Using the expression (1) for 8
00 

and equations (12), 

r 3 x i if 3 I 3 i i[ J dx (800 + u0 + rtu8), A J = -i[A , dx (u0 + rtu8)J = dx D so 

that we may identify, 

i i D = - [d .. 0 + rtd .. 8Jv, it- o, 8 • 
11 11 

(13) 

For example, Di = -~ if2 + rt)vi for i = 1, 2, 3 and 

i 1 rt i . () D = - 73 (J2 - 2 )v for 1 = 4, 5, 6, 7. Now the commutator 2 can 

be written in terms of scalar densities; as an illustration we write 

out such an expression, 
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ill. MESON SCALAR DENSITY TERMS, KTT AND KK SCATTERING 

LENGTHS AND THE SYMMETRY BREAKING PARAMETER fl. 

Using low-energy theorems from the SU(2) x SU(2) current 

algebra and Adler's PCAC self-consistency conditions, S) Weinberg9-a) 

has estimated the TT- TT scattering lengths assuming that a linear 

expansion of the amplitude in Mandelstam invariants is approximately 

valid up to threshold. In order to determine some of the coefficients 

in the above expansion and without invoking the algebra of Section II, 

the isospin properties had to be specified of the scalar density term 

(TT ICA\ DjJI TI) (i,j areisospinindiceshere). Itturnsoutthat, 

within Weinberg's parameterization, specification alone of the pion 

vector charge matrix element and the requirement of no I = 2 

contributions in [A\ Dj ] completely determinelO) the value of this 

matrix element: 

(14) 

On the other hand, one can arrive9- b) at the same value by applying 

a low-energy limit directly to the scalar vertex defined by (14) upon 

using (the SU(2) x SU(2) version of) the algebra of Section II: 

1 2 i < I -e.. I k< -~ (/2 + fl.) O [A , /2 u0 + u8J TI p)) 6 i. 
(p ' -+ O) TI J 

2 t k 2 f'fT - 1 2 
= m 6 . . • <o ID I TT ) (m 12) = (m ) 6 . . 6kg . 

TI lJ TT TI lJ , "" 
(15) 
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Here, the normalization condition (nil Dil O) = m~ ;~ (£,,. = /2 MG Al 
~NN) has been used in the reduction technique of the pion 1/'(p') 

for the p' _, 0 limit. In order for (14), an equation involving pion 

states of equal four-momenta, to follow from this exercise it must 

be assumed that the matrix element does not vary appreciably for 

zero-momenta of one state. 

In this section, we generalize Weinberg's work and estimate 

s-wave KIT and KKscattering lengths as well as the concomitant 

meson scalar density matrix elements. In particular, the scalar 

density terms which appear in the KK case are estimated by es­

tablished SU(3) x SU(3) commutators (11) and PCAC principles, just 

as in Weinberg's TTTT estimation above. For the KTT case additional 

assumptions are needed and the scalar terms are determined by 

i) applying a low-energy limit to the scalar density vertex as in 

exercise (15)Jand ii) using an (approximate) determining relation 

fqr the relevant symmetry breaking parameter rt which appeared in 

e00. The scattering length determination for the KK case is con­

sistent with this last procedure. Finally, the consistency of our use 

of the relation for rt itself is discussed. 

1) The K 11 System 

Here there are the two independents-wave scattering lengths 

in the I= 1/2 and I = 3/2 states: a l/2 and a 3/ 2 (the Kn system is 

related to the Krr system by a charge conjugation operation or t­

channel crossing symmetry). A linear expansion of the amplitude l l) 

AI( t 2 2 f 2 2 ') . t f . . t t 2 2 I 2 d s, , u; q , q , p , p m erms o mvarian s s, , u, q , q , p an 

p21 is extrapolated to threshold assuming that there are no JP= o+ 
bound states and that unitarity effects 12) do not lead to rapid vari­

ations of the amplitude at low energies. (Refer to Figure 1 for 
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kinematical definitions). 

We write the definite I-spins-channel amplitudes in terms of 

amplitudes with definite t-channel charge-conjugation properties 

"e. = : satisfying crossing relations: 

(16) 

where 

A (±)( t . 2 2, 2 2,) _ A(±)( t . 2, 2 2 2,) s, ,u,q ,q ,p ,p -± u, ,s,q ,q ,p ,p 

(17) 
- A(±)( t . 2 2 I 2 I 2) 
- ± u, ' s' q ' q ' p ' p . 

(For amplitude symmetry properties in the Mandelstam invariants, 

see Appendix A.) Using t-channel crossing symmetry (17) and the 
2 2 2 2 

kinematical condition s + t + u = q + q ' + p + p ', the linear 

expansions with constant coefficients can be written, 

(+)( ) - ( ) ( 2 2,) A s, t, . . . - A + B s + u + C t + D p + p , (18) 

A(-)(s,t, ... ) = A'(s - u). (19) 

. 2 2 2 2 Incidentally, no terms of the form B'(p - p ')or C'(q - q ')appear 

in (19) because (17) applies to p2 ... p21 and q2 "'q21 separately. 

In order to evaluate the coefficients A, B, C, D and A', we 

consider low-energy limits (vanishing four-momenta limits) in 

current-commutator identities of the form, 
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• • • • 4 • I • • 

F
1
J(s,t, ... ) = qµ'qvT~Jv - qµ' Jax e1q .x(p'lo(x0)[A~(x),Ab(o)Jlp> 

4 • I • • (20) 
+ i J dx e1q ·X(p'l o(x0)[A~(x),DJ(o)JI p) 

where 

• • 4 • I • • 

F 1
J = - i J dx e1q · x < p' I T[D\x) nl(o) JI p) 

and 

are Fourier transforms of the axial current and divergence time­

ordered products. Observing the normalization condition 

(nil Di! 0) = m.2 f./J2, the following connection for low-energy 
1 1 

applications will be assumed between the off- mass- shell boson-

boson amplitude A ij and the weak amplitude Fij, 

2, 2 2 2 . . (q - m. )(q - m.) 
lJ( ) - 1 J A s, t,... - f f 

2 . 2 . 
(min> {mj h> 

ij 
F (s, t, ... ) . 

We now take various low-energy limits in (20) for, say, 

A (3/ 2) = A(K+ rr +-> K+ TT+) whose expansion is given by equations 

(16), {18) and {19). 

(a) q-> 0 {or q' -> 0) with the other three particles on their 

mass shells (Adler's PCAC consistency condition13»: 

{21) 

(22) 
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and, 

2 2 
A + 2 mK (B + D) + mTT C = 0 • (23) 

(b) q', q ~ O with the kaons on-mass-shell: 

(3/2) (3/2) 2 2 . 2 2 
A ~A (mK + 2p · q, O, mK - 2p · q, O, O, mK' mK) 

2 2 2 
=[A+ 2mK (B + D)] - 4(p.q)A 1 + O(q, q 1

, q·q') 

and A' = 1 
- 2f2 ' 

(24) 

TT 

2 2 <+I 1+ A+ 2mK (B + D) = ~(/"2+~) K (p) /2 u0 +u8 K (p)). 
3f 

(25) 

ii 

Suppose we now use a low-energy limit directly applied to the vertex 

in order to evaluate the RHS of (25), 

( 2 2,) 
+ + mK - p " 4 ip' • x 

(K (p')l/"2 u0 +u8l K (p)) = V2 2 • J dx e 
mKfK 

<ol T {DK- (x)V2 u
0 

+ u
8
)} I K+(p)) 

-1 I K- I + - i/"2 fK (0 [A , /2 u
0 

+ u8J K (p)) 
(p' ~ 0) 

= 

2 
(3/2)mK 
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The RHS of (25) becomes, 

(26) 

However, this last expression can be greatly simplified by use of a 

determining relation for the parameter tt. 

+ 
< 0 I VTT I 11 - > 

+ 
<ol vK I K-> 

(27) 

Of course in eqn. (27), we have merely used the expressions (13) 

which relate the axial current divergence to the pseudo-scalar 

densities vi. If one now assumes the pseudo-scalar states to be 

nearly SU(3) symmetric14>, as motivated for example by success 

of the Gell-Mann-Okubo mass formula, the algebraic operators v 

connect the vacuum to states with unit norm so that 

(3) 

We note the relation between proximity of tt to the value - J2 and 

the smallness of the ratio m; /mi_ . l 5) Inserting (26) with the 

relation (3) into (25), 

2 
2 m TT 

A + 2mK (B + D) = fT 
TT K 

(25)' 

Similarly, keeping the pions on-mass-shell and using various 

low-energy limits for the kaons: 
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(c) p _. 0 (or p' -. 0): 

and 

(d) 

A(3/2) _. A(3/2)( 2 2 2. 2 2 2 O) _ O m , mK, m , m , m , mK, -
TT TI TI TT 

2 2 
A + 2mTT B + mK (C + D) = 0 . 

P P l _. 0: 
' 

(3/2) (3/2) 2 2 2 2 A _.A (m + 2p • q 0 m - 2p · q· m m 0 O) 
TT ' ' TT ' rr' fT' ' 

2 
= [A + 2m BJ - 4(p · q) A' 

1T 

and 

(28) 

(29) 

(30) 

Again, in eqn. (30), a low-energy limit together with the determining 

relation for rt has been used to evaluate the scalar density term. 

From (24) and (29), simultaneous pion and kaon low-energy 

limits would require the (approximately valid) equality16), frr = fK = L 

Using the independent equations (23), (24), (25) ', (28) and (30) to 

determine l 7) the five constants A', A, B, C and D, we find 
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A' = -~, A = (m 
2 

+ m 
2
) 1 , B = - ~, C = - ~, D = 0. (31) 

2f K 11 f 2f f 

The s-wave scattering lengths are given18) in terms of the 

threshold amplitude by, 

I I 2 2 2 2 2 2 
-8n (mK+ m )a =A ( (mK+ m ) , O, (mK- m ) ; m , m , mK, mK) . 

TT TI TT IT TI 

(+) ( 2 2 2 At threshold, Ath = A + 2 mK + m
11 

)B + 2mK D = 0 and 

A~J.) = 4mK"'rr A ' = -2mKmrr f~ , so that using (16), 

a 112 = 2 ( mK ) L ,..._, 2L ,....., O. 22 m - l 
m +m - - TT ' 

K TT 

3/2 ( mK ) -1 a = - L,....., -L,....., -0. 11 m 
m +m - - rr ' K n 

(32) 

m n -1 where L = ~ ,....., O. 11 m 
4 nf'" - n 

These results for a l/2, 3/ 2 are identical to the ones obtained 

from Weinberg's "heavy target" formula 9) for target-pion scattering 

in which Ai~) is omitted: 

1 ( mK ) ~TT= - [1(1+ 1) - 3/4 - 2]L • 
w mK+ mrr 

(In this case, the target particle is the kaon.) In fact, if only limits 

(a) and (b) are used, Ai~)/ Aii/ = O(mTT/mK). The use of all the 

equations (fn = fK) , however , gives Aib.) = 0 . 



18 

2) The KK System 

There is only one s-wave scattering length a (I=l) since a (O) 

vanishes by Bose statistics. Applying to the I= O, 1 s-channel 

amplitudes: (i) Bose statistics in the s- channel, and (ii) PT 
· · h. h • · d ( t 2 2, 2 2 ') mvariance w ic says mvariance un er s, , u; q , q , p , p 

~(s, t, u; q21 , q
2

, p
2

', p
2

), or (ii') t-channel crossing symmetry, 

one finds 

A (l) = a+ b (u + t) + cs and A (O) = a' (u - t) . 

Using low-energy limits in commutator identities to de­

termine the coefficients: 

(a) q ... 0 (consistency condition): 

and 
2 2 

a + 2 mK b + mK c = 0 . 

(b) q', q.-.Q (orp', p.-.Q): 

2 
=[a+ mK (b + c)J + 2(p.q)(c - b) 

= 2~ (K+(p)j [AK-' DK+ JI K+(p)) + 4(p 2 q) ' 

f K fK 

and c - b 
2 

= 2/fK , 

(33) 

(34) 

(35) 
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2< > 2 n < + I 1 J3 I + a+ mK b+c = ::-::-2(/2 - 2) K (p) /2 u0 - 2 u8 + 2 u3 K (p)) . 
3fK 

And 

A (O) -> m 2 a' - 2(p · q) a' 
K 

+ (0) (p . q) 

or a' = 0 
' 

(c) p', q' -> 0 (or p, q -> 0): 

(36) 

(37) 

(38) 

(1) -> (1) 2 ' 2 ' . 2 2 - 2 A A (O, mK+ 2p. q, mK- 2p. q ,mK' O, mK, 0)- (a+2mK b) 

So if there is no Y = 2 component in the commutator [A\ Dj], 7) 

2 
a+ 2mK b = 0 . (39) 

We note that Eqs. (35), the kaon vector charge matrix element, and 

(39), the requirement of no Y = 2 scalar density, determine the scalar 

density matrix element in (36): the right-hand side of (36) equals 
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2mi_/f-i_. On the other hand, using the low-energy limit to evaluate 

the matrix element in (36) by taking one kaon four momentum to zero 

yields this same answer as well as confirming the equivalence of (37) 

and (38). Of course, this observation is entirely similar to one made 

previously for the TTTI system. 

a'= 0 
' 

Equations (34), (35), (37), and (39) give 

2 
4mK 

a = --::-2' ' 
f K 

2 
b=- -

f 2 
K 

and c = 0 . (40) 

(1) - 2 2 (0) So A (s, t, u, ... ) - 2 [ 2mK - (u + t)] (while A (s, t, ... ) = 0 
f K 

+ quadratic terms in invariants) and using 

(1) - (1) - (1) 2 . 2 2 2 2 
- 32 rr mK a - Ath - A (4mK, O, 0, mK, mK, mK, mK), 

(41) 

A linear expansion (33) for the KK amplitudes Ao, 1 is plausible be­

cause for this Y = 2 system there are no unphysical threshold effects. 

However, such an expansion for the Y = 0 KK system (which can be 

related by crossing to KK) would not be expected to be valid since 

there are considerable unphysical thresholds for both I = 0 and I = 1 

lying below the elastic one at sth = 4mi_ = 0. 98 (BeV)
2
. Small 

PG ++ +- -J = 0 , 0 effects may permit a calculation of s-wave KK 

scattering lengths. But the experimental situation reveals significant 

I= O, 1 KK effects although there exist a variety of interpretations in 
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the fits:
19

) non-resonance -- positive real scattering length, bound 

system - complex scattering length or resonance just above 

threshold. 

Let us note that the ratio of the scalar density term coming 
1 2 

from (14), 3 (/"2 + x.) <nl/"2 u0 + u8 ln> = mTT, and from (36), 

1 ( x. > < +
1 

1 /"3 I + 2 . . 
3 /"2 - 2 K /"2 u0 - 2 u8 + 2 u3 K ) = mK, together with SU(3) 

symmetry for pseudoscalar states can be evaluated without the 

necessity of a low-energy limit as: 

(/"2 + x.) 
x. 

(/"2 - ~) < +1 1 /3 I + K /"2 u0 - 2 u8 + y u3 K ) 

{42) 

In this expression a., f3 have resulted from the independent reduced 

matrix elements of the scalar densities and the numerical factors 

are merely SU(3) symmetry d .. k coefficients. Equation {42) serves lJ 
as a consistency check (f

11 
= fK) on our previously derived eqn. (3) 

which involved a vacuum to single-particle state transition matrix 

element. Recently, Glashow and Weinberg (Phys. Rev. Letters 20, 

224 (1968)) also wrote down an equation which resembles equation 

(27) (writte-n down by the author iii November, 1966). In fact, their 

procedure which involves pseudo-scalar dominance of spectral 

functions can be shown to be equivalent to PCAC applied at various 
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pseudo-scalar vertices. This chapter, of course, has been concerned 

with using and demonstrating the consistency of the approximate 

eqn. (3) within the framework of a scattering length determination. 

The agreement of Weinberg's heavy target (kaon) formula with our 

rr K scattering lengths is just reflected in the smallness of the pion­

kaon mass (squared) ratio of equation (3). 

Finally as the result of our discussion of the interplay of 

scattering length and scalar density term estimates, we exhibit the 

low-energy limit directly applied to the arbitrary pseudo-scalar 

meson matrix element. 

2 
= m .• 

1 
(43) 
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IV. DISCUSSION OF A KL FORM FACTOR 
4 

Using the expansion for the Krr scattering amplitude 

AK+rr + =A (3/ 2) obtained in the last section, it is shown that the soft 

pion theorems on KL decays are consistent with the Callan-Treiman 
4 

relation on KL decays. We will exhibit the explicit relation for a 
3 

KL form factor which, due to a K-meson pole, varies rapidly for 
4 

simultaneous low-energy limits in the two pion four-momenta - the 

scalar density term which is contained in the expression for AK TT is 

the pole residue. We now give some background related to this 

discussion. 

Using a low-energy limit for the pion rr0 (p) in the K+ 
L3 

matrix element 

<n°(p)I VK-1 K+(k)> = - -
2
1 [f (k + p) + f (k - p) J 

µ + µ - µ 

4 - i5 

f = f (k2 2 6 2 = (k - )2) VK- = V 12 
± ± ,p, p' µ µ 

which is then connected with the K~ matrix element 
2 

one receives the Callan-Treiman relation20-a), 

(44) 

(45) 

(46) 
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Carrying out the procedure described, 

Equating coefficients of k , equation (46) follows. fu the same 

manner20-a), low-energy iimits connect the K~ matrix element 

( + + - v+ ) 4 the process K --. TT TT 'V v 

2 2 2 
F 1 2 3 = F 1 2 3 (k ' p ' q ' k . p, k . q, P • q) 

' ' ' ' 

with the ~ matrix element (44): 
3 

2 2 2 2 (a) p --. O, q = m k = m · 
n ' K' 

(n +(0) 11-(q)j A~- I K+(k)> = - ~12 (TT-I [Arr-, A~-] I K+) = 0 
TI 

coefficient of k : 
µ 

F ( 2 
0 

2 
0 k O) = 0 3 mK ' ' mTT ' ' · • q, (48) 
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2 2 2 2 
coefficient of qµ: F 1 (mK, O, mn' O, k · q, O) - F 2 (mK, O, mn ' O, k · q, O) 

2 2 = F3(mK, o, mTT , o, k · q, 0). {49) 

and 

2 2 2 2 
(b) q __, o, p = mTT , k = mK ; 

coefficient of k : 
µ 

-1{ 2 2 2 2 2 2 } 
= - mif n f + (mK, mTT , 6 ) + f _ (mK, mn, 6 ) · 

coefficient of pµ: F 1 (mi, m;, O, k · p, O, 0) 

2 2 2 2 
+ F 2(mK,mrr ,O,k· p,O, O) - F 3(mK,mrr, O,k· p, O, O) 

(50) 

(51) 

In extrapolation from vanishing pion four-momenta, one may invoke 

"smoothness" assumptions and neglect possible variations in the form 

factors F 1 and F 2. The same kind of smoothness assumption allows 

extrapolation of the Callan-Treiman relation {46) from p = 0 to the 

physical region p
2 

= m;, 0 s 6
2 

_::: (mK - mrr)
2

. Then from (a) and 

(b) above, F 1 and F 2 are replaced by constants which satisfy 
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F 1 = F 2 :::: -m0~ 1f+(6 
2 

= 0) ,leading to good agreement with the 

measured rate of K~ decay. 
21

) On the other hand, by comparing 
4 

eqns. (48) and (50) for the form factor F 
3 

there must be considerable 

variation for the two limits p __. 0 and q --. 0. Weinberg21) pointed out 

that such variation in F 
3 

was accounted for by a nearby singularity: 

the K- meson pole of Figure 2. However the precise incorporation of 

this observation has led to some confusion. Berman and Roy22) have 

pointed out that Weinberg's neglect of a certain scalar density term 

(
110-commutator") invalidates his expression for F 

3 
in the limit for 

which p and q are both small. But without an explicit expression for 

the nK amplitude in the K-meson pole term of F 
3

, they lose certain 

terms in their argument and predict that the RHS of (50), like (48), 
2 2 2 2 2 2 

should be zero so that s = f (mK' m , 6 )/f (mK , m , 6 ) ~ -1. 
- i'1' + 1i 

Using our linear expansion in Mandelstam invariants for the 

off-mass-shell nK amplitude, the residue of the K-meson pole term, 

we arrive at the conclusion 

fK { 2 2 2 2 2 2 , 
1 f( ) f( mn ' " )L. ':::::'. f ::::: + mK, mrr , 6 + _ mK, Ll J (52) 

TI 

When this equation is compared with the Callan-Treiman relation 

(46), it implies the consistency of neglecting variations for f ± due 

to the change p2 
= 0 to p2 

= m 2 in the pion mass squared variable. 23
) 

'fi 

We begin by writing F 
3 

as the sum22), 24) of a pole term and 

a constant, 

2 2 2 
F 3 (mK, p , q , k · p, k · q, p . q) = - mKf K · 

A (k-p-q, p; k, -q) 
K+n+ 

2 2 + c. 
[ mK - (k- p- q) ] (53) 
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That is, smoothness is assumed for F 3 except for the K-meson pole 

contribution. We then insert, using equations (31), the expansion 
for A = A (3/ 2) 

+ + ' K 1i 

-2 .. 2 2 } 
A + + (k - p - q, p; k, -q) = f { mK + mii - (u + t) 

K TT 

-2{ 2 2 2 2 2 } = f mK + mrr - (k + q + 2p + 2p. q- 2k. p) (54) 

(here the decay constants satisfy fK ~ f TT = f) so that, 

2 2 2 -1 
F 3 (mK, p , q , k . p, k . q, p . q) = - mi(f . 

2 2 2 [ m - q - 2 p - 2 p . q + 2k . p J 
TT 

2 2 +C . 
[ mK - (k - p - q) ] 

(55) 

Recall that the expansion (54) has been constructed to incorporate 

all of Adler's consistency conditions (for example, for q -+ 0 or for 

p -+ 0 with all other particles on-mass-shell) as well as an evaluation 

in the low-energy limit of the relevant charge-divergence commutator 

(25) between kaon states. 

We now use eqn. (55) for F 3 together with constant F 1, F 2 
in the indicated low-energy limits which relate as before the 

K~ and K~ vertices: 
4 3 

2 2 2 2 
(a) p -+ O, q = mrr, k = mK . 

coefficient of k : 
µ 

coefficient of ~: 

c = 0 (56) 

(57) 
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and 

2 2 2 2 
(b) q .... O, p = mrr, k = mK . 

coefficient of kµ: (mJf- l - C) 

-1{ 2 2 2 2 2 2} 
= mif f + (mK, mrr, 6. ) + f_ (mK, mrr , 6. ) (58) 

(59) 

Using (56), our result eqn. (52) follows from (58) where now25
) 

(60) 

In other words, using expansion (54) in the residue of the K-meson 

pole (53), one finds the residue to vanish at q .... O, p
2 

= m;, k
2 

= mi_ 
as required by Adler's consistency condition but in a definite way, 

namely like ""' f- 2[ mK
2 

- (k - p - q)
2J, so that the entire pole term 

F 
3 

is non- zero. 

Finally, we write down the equation for F 
3 

in the simultaneous 

limits p, q""' 0. Using (55) when both p and q are small (and quadratic 

terms in these variables may be neglected) we get the explicit 

expression: 

A~rr+(q, p = 0) 
+ mKf. 2 2 . 

[ mK - (k-p-q) ] 

(61) 
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Directly from (54), AK+TT+(p,q=O) = 
3
: 2 (J2+ it) (K+IJ2 u0 +u8 jK+) 

TT 
= m 2 f- 2, where the symmetry-breaking parameter it satisfies (3), TT 

(/2 + it)/(/2 - i> ~ (m; /mi)(fTT/fK). The first piece in the RHS of 

(61) is the quantity retained by Weinberg21), but there is an additional 

(infinite) pole term whose residue he neglected. Now the first 

quantity, by itself, gives for F 3 the correct separate limits p-+ O, 

q
2 

= m;, k
2 

=mi_ and q -+ O, p
2 

= m;, k2 = mi_. This is merely 

due to the fact that in these limits the consistency condition eliminates 

the entire second quantity in the RHS of (61). 

Finally we note that the expression (53) for F 3 (C = 0) can 

directly serve as a parameterization in K decay (whereas in K 
µ4 e4 

decay this coefficient multiplied the negligible lepton momentum). 
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V. NUCLEON SCALAR DENSITY TERMS 

We begin by writing a current identity like (20) which provides 

the basis for a relation between weak amplitudes and the equal-time 

commutator CA\ Dj]. For this nucleon scalar density discussion it 

is convenient to consider at the outset a version of the identity with 

symmetric unitary spin indices and with the kinematics displayed in 

Figure 3: 

- (+)( ) ' (+) ( ) - F v, t, w, v - q · q T v, t, w, v . 
-µ v µv 

This identity with proton states involves the combinations 

F(+) = .! (Fij + Fji) and T(+) = .! (Tij + Tji) for the amplitudes 
2 µv 2 µv µv ' 

and 

Again, in the vanishing current four-momenta limits q, q' --. 0 or, 

alternatively, (v, t, w, v) --. (O, O, O, 0) we get the relation, 

(+)< - · I i j I F . . O, O, O, 0) - 1 ( p [A , D ] p) • 
lJ 

(62) 

(63) 

(The Born contribution in q' q T(+) does not prevent this term from 
-µ v µv 

vanishing and this assertion will be explicitly shown in the following 

applications.) Choosing unitary indices in order to lead to experi-
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mentally accessible quantities in what follows we list the relations, 26) 

F(+) (0 0 0 0) = . < ICA1+i2 Dl-i2JI > 
12 ' ' ' I p ' p 

so 
(+) 

3 F 12 (0, O, O, 0) 
= 2 (J2 + rt) 

and 

1 { (+) ( (+) ( } 2 F 45 O, O, O, 0) + F 67 0, O, O, O) 

so 

1 3 { F~~(O, O, O, O) + F~~(O, O, O, o)} 
(Pl J2 uO - 2 u8 I p) = 4 . _____ rt _____ _ 

( J2 - 2) 

(+) ( ) F K O, O, O, 0 

rt 
(J2 - 2) 

If we want a proton matrix element of the linear combination of 

scalar densities appearing in e 
00

, 

(64) 

(65) 

(66) 

- 1 1 + 2 J2 rt ( +) 1 1 - J2 rt ( +) 
- 272 ( J 2 + rt ) F 12 (0, O, O, 0) + 2J 2 ( J

2 
_ ~ ) F K (O, O, O, 0). 

2 
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Now the question is prompted of how the amplitudes F(+)(O, O, 0, 0) 

are related to hadron amplitudes at physical values of their scattering 

invariants. Equation (22) which was used for the pseudo-scalar 

scattering case no longer is applicable in general because of the 

presence here of Born terms and/or of unphysical threshold continuum 

contributions. These singularities in the energy variable v interfere 

with writing the approximate statement of double pseudo-scalar pole 

dominance of the entire weak amplitude F(+). Accordingly, we apply 

an extrapolation procedure following Weisberger 4-b) who dealt with 

the unitary spin antisymmetric case, the Adler-Weisberger calcu­

lation. For the discussion of the KN channel extrapolation involved 

in (65), we will use a finite-energy-sum-rule approach27) which is not 

so sensitive to the unphysical continuum contributions. Also in this 

section we will discuss more general extrapolation procedures, such 

as mass dispersion relations, which indicate departures from 

especially the simple pion or kaon pole dominance. 

1) Low-Energy Extrapolations 

We are first going to estimate the RHS of (64) by evaluating 

Fi1 (0, O, 0, O) as well as using the relation for tt, eqn. (3). At 

q, q' = O, the Born singularity in F(+) consisting of the neutron, 

single-particle intermediate state is separated off4-b) and the 

remaining piece of F(+) is then dominated by the double pseudo-scalar 

pole term (see Figure 4-a for the singularity structure), 

(+)( _ (+)B 2 ""'(+)( 2 ) F 12 O, O, O, 0) - F (O, O, O, 0) + f T O, O, m , 0 . 
TI pTI TI 

(67) 
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2 2 
From Appendix B, F(+)B(v, 0, q2, 0) = D

2
iJ ) 

p 
2 

2 
[v - 6M vn] 

2 2 so that 
v - vn 

(+)B 2 2 gTTNN . 
F (O, O, O, 0) = (M + M )GA = f -M usmg the Goldberger-p n TT 

Treiman relation. The "tilde" on T(+) indicates that this amplitude 

is the non-Born part of the pion-nuc11:on amplitude T~+~ = ~(T + + T _) 

which satisfies28) prr prr 

(+)( 2 _ (+)B 2 ""'(+) 2 T v, O, m , 0) - T (v, O, m , O) + T (v, O, m , O) 
pll 1T PTT 1T PTT TT 

2 2 (68) 
- gTTNN [v - tiM vB] ""'(+) 2 - -rvr 2 2 + T p TT (v, 0, m

11 
, 0) , 

p v - v B 

1 [M2-M2-m2] 
vB = 2M n p TT • 

p 

Writing a threshold subtracted dispersion relation for T(+)(v, O, m2, O), 
. pll 1T 

2 

T (+)( 0 2 0) = T(+) ~NN 
rrp v, 'mrr' prr, th+ M 

2 2 00 

2(v - m ) 
+ 

11 J dv' 1T . 

v'Im T(+)(v' 0 m2 0) 
llp ' ' TT' 

( ,2 2)( ,2 2) v -v v -m 
TT 

and evaluating it at v = 0, 

2 2 00 (+) 2 
""'(+) 2 _ (+) gTTNN 2m11 J ImT11p(v,O,m11 ,0) 
T

11 
(0, O, m

11
, 0) - T th - M - --;:r dv 2 2 p prr' v v(v - m ) . t 1T 

+ negligible terms. 
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In this expression the threshold amplitude T(+) th= T(+)(m , O, m2, 0). np, np n n 
Inserting into eqn. (67), 

(+) 2 ImT (v,O,m ,o) 
pn TI 

2 2 
v(v - m ) 

n 
(69) 

m 
The normalization is such that T~+~' th= -4n(l + Mn) • j (a1 + 2a3), 

where a 1, a3 are the s-wave I = 1/2, 3/2 scattering lengths, and 

Im T(+)(v 0 m 2 0) = - ~ (v2 - m 2)1/ 2 (cr + a } • Using the 
pn ' ' n' ~ n + pn pn 
30) -1 . 31) 

value (a1 + 2a
3

) = 0. 069 mn as well as an evaluation of the 

-1 -2 (+) ( -1 integral ~ 4n(. 13)mn , one obtains fn F 12(0, O, O, O) ~ 4n • lO)mn • 

Using this number in eqn. (64) together with (/2 + x.) 

~ i /2 (m~/mi:Hfw'fn) one receives 

u8 
(pl u0 + 12 1 p) ~ 790 MeV. (70) 

Consistent with our statements regarding SU(3) symmetry for pseudo­

scalar states and the relation (3) for x., SU(3) symmetric baryon 

states would imply <Pl e~0 + u0 1 p) =central mass of baryon octet 

~ 1150 MeV and <Pl u8 1 p) '.:::'. 150 MeV. However, we see that eqn. 

(64) is somewhat sensitive to the precise value for x. (it is the factor 

(/2 + x.f 1 which, by (3), multiplies the small quantity F~1(o, O, O, 0) 

by the large ratio ..... m~/m~ ). For example, should fK/fn be set 

equal in (3) to one or left at 1. 30? The answer for the nucleon scalar 

density changes by 30%. Also, alternative values in the literature 
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for the scattering lengths would revise the estimate in (70) upward 

by as much as 25%. 

We turn now to the nucleon matrix element in (65). Whereas 

its determination would not be sensitive to the value for Ii , other 

problems will be encountered such as the approximation of kaon pole 

d . 32) 0 . d. "d F(+)( t ) - fF(+) F(+)} ommance. nee agam we 1v1 e K v, , w, v == i. 45 + 
67 

into two pieces as q, q' __. 0: The Born part which includes the single­

particle intermediate states A and I: and the remaining part which is 

dominated by the double kaon pole term, 

(+) _ (+)B 2 "'(+) 2 
F K (0, O, O, 0) - F K (0, O, O, 0) + fK T K (O, O, mK, 0) . {71) 

Using (B-3) and Goldberger-Treiman relations for kaons, 

2 2 
-2 (+)B _ { gKAN 3gKI.:N } 

fK F K (O, 0, O, 0) - (Mf\.+M} + (M M) 
I:+ 

(72) 

where the coupling constants are normalized so that in SU(3) symmetry 

2 1 22 2 22 . 
gKAN = 3 (3 - 2a) gTTNN and gKNI.: = (1 - 2a) ~NN with a/(1-a) = D/F. 

A threshold subtracted representation for T~) (v, O, m~, 0) might tend 

to emphasize the unphysical continuum contributions, especially for a 

complex scattering length parameterization of these ATT, 2.:TT, ... 

channels. Alternatively, we will apply a finite-energy-sum-rule 

representation (Appendix C) which is not sensitive to unphysical 

continuum contributions, but instead involves subtracting out of the 

high .. energy (Regge) part of the amplitude T~)(v, O, m~, O). Thus, in 

our expression for T~)' Regge pole parameters for KN, KN 

processes at t = 0 will be prominently involved. At present, there 

are measurements of these parameters, and in the near future more 
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refined data will be forthcoming. From Appendix C, 

x 

+ ~ I 

Inserting (73) into eqn. (71), 

2 
+ ­

TT 

\) 
c 

x 

J 
\) 

c 

dv (+) 2 v Im TK (v, O, mK, 0). 

dv (+)( 2 v Im TK v, O, mK, 0). 

For normalization, in the scattering region Im T~)(v, O, m~ , 0) = 

(73) 

(74) 

1 2 2 1/2 - -2 (v - mK) [a + a + a + a } • Here C., a.. are 
K+ P K- p K+ n K- n 1 1 

couplings and trajectories for P,P ' Regge poles33); v is the c 

continuum threshold corresponding to s = (MA + mn)
2

; and v = x is 

a cutoff for which the evaluation of (74) is found to be quite insensitive 

(values x corresponding to kaon lab momenta equal to 4. 00, 6. 00 and 

8. 00 BEV /c support this statement). We choose an s-wave, complex 
* -scattering length parameterization which interprets Y0 (1405, 1/2 ) 

as a KN, I= 0 virtual bound-state resonance34) and we treat 
* + * -Y 1 (1385, 3/2 ) as a narrow scattering resonance with the Y 1 KN 

coupling constant connected to N*Nn in broken SU(3)35). We will 
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employ both the cases of symmetric36) and broken35) SU(3) coupling 

constants gKJ\N' g:KL:N. The various contributions to the quantity 

F ~) (0, 0, O, 0) of eqn. (74} are now explicitly displayed, 

-2 (+)( )- -1 -1 fK F K O, O, O, 0 - -11. 6 +6. 05 +437 -405 BEV = 26. 5 BEV • 

(SU(3) J\, L:} * (Y 1 ) (Regge piece) (integral) (75} 

Here the separate Regge and integral pieces in (75} were evaluated 

for the value of x corresponding to p~b = 6. 00 BEV /c. If one uses 

the broken SU(3) values for J\, L: couplings, the first numerical 

quantity in the RHS of (75} becomes (-6. O) BEV-l so that 
-2 (+) ( - -1 . . f K F K O, O, O, O} - 32. 1 BEV . Us mg (75} with fK-::: 1. 30 frr' 

(+) ( ) F K O, O, O, 0 -::: • 72 BEV. 

Inserting this value into eqn. (65), 

1 <Pl u0 - 272° u8 J p) ~ 180 MEV. (76) 

This matrix element is small relative to the central octet baryon 

mass'.:::'. 1150 MEV. Since, as was mentioned before, (pj u81 p) is 

only'.:::'. 150 MEV, comparison with the larger value (70} suggests 

that with these extrapolation techniques a definite conclusion cannot 

be reached on the size of the nucleon scalar density terms. 37) 

We now turn to a critical discussion of some generalizations 

of the low-energy extrapolation. 
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2} Discussion of Generalizations 

Since the (non-Born} divergence scattering of nucleons was 

approximated by double pseudo-scalar pole dominance at q2 
= O, the 

first generalization of this circumstance will involve multiple meson 

production and scattering amplitudes. However, even this modest 

extension would involve sketchy experimental quantities and somewhat 

arduous theoretical development. We content ourselves with a formal 

expansion for F(+)(O, O, O, O} into pseudo-scalar "resonance"-proton 

scattering amplitudes with weak proportionality constants representing 

resonance couplings to the current divergences. The form of the 

expansion is just what one would expect. yet the means for obtaining 
.J 

it, a mass dispersion relation, makes rather clear the nature of the 

simplifications involved in obtaining, say, eqn. (71}. 

Once again we want to connect F (+) (v, q2) = F (+} (v, O, q2, O} = 
~ [ Fij + Fji} at q = O with hadronic amplitudes and, thence, to the 

scalar density terms via eqn. (63), 

F (+}(O 0 0 O}- 1· (pl [A+ D-Jlp) "±" = 1· ± (1'}J·. 
' ' ' - ' ' 

The amplitude F(+)(v, q2) is divided into two pieces for use at q = O, 

(+) 2 (+) B 2) ""(+) 2 F (v, q ) = F (v, q + F (v, q } . (77} 

The first, Born piece is calculated as before from perturbation theory 

or from writing unsubtracted dispersion relations in v (for fixed q
2

) 

for the component invariant amplitudes using the one- particle inter­

mediate state imaginary part. 28) The second, "non-Born" piece is 

assumed to satisfy an unsubtracted dispersion relation in q
2 

(for 

fixed v) using the imaginary part given directly from (77) as 
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,....,f (+) - f(+) f(+)B h 38) - - , w ere 

/+)(v,q2) = -{ J dx4 eiq · x<Pl{cn+(x),D-(O)J + [D-(x),D+(O)J} IP> 
(78) 

= -{ l (2n)4 6(p+q-pn)<p!D+(O)j n) <n!D-(O)j p) +other terms 

n 

and f(+)B just involves the one-particle intermediate state in the sum. 

Therefore, 

F(+)B(O,O) +~ J d~2 f'(+)(q2,o) = i(p!CA+,D-JI p). (79) 
q 

Taking the crossing symmetry property of f(+)(q2, v) into account, 

(79) was written for v > 0 and then v -+ o+ was taken; otherwise, a 

minus sign would multiply the integral appearing in (79) for v < O. 

From Appendix D, we then take account in (78) of hadron production 

disconnected matrix elements and write for these in the resonance 

approximation the following decomposition, 

p -
a, ~ denote J = 0 pseudo- scalar "resonances". 

We then insert such expressions into (78) and cancel out the undesirable 

"double-pinch" terms using the unitarity condition for T(pa ; p~) (see 

Appendix D). The integration over f (q2, v) in eqn. (79) then "picks off" 

the double pole residues which are strong amplitudes multiplied by 
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weak proportionality factors (see Figure 5 for an illustration of this 

circumstance): 

F(+)B(O,O) +{ l f,/~{T(pc/; pf3+) + T(pa-; ps->} = i(p![A+,D-JIP> 

a, ~ (79)' 

= scalar density terms. 

Here the amplitudes T(pa ±; pS±) which describe the strong process 

S± + p ... a± + p are evaluated for v = 0 and the weak proportionality 

factors are defined from <ol n+I a-) = m 2 f . The case, for 
a a 

example, in which "±" = 1 ± i2 and a= ~ = n immediately gives (67). 

The actual form of (79)' does not constitute any practical 

improvement over (67) or (71)
1

nor does it treat all possible (dis­

connected) graph corrections. An example of a representation which 

at least exhibits all possible disconnected contributions is given by 

the simple expansion38) (which is equivalent to writing unsubtracted 

dispersion relations in q
0

), 

i~ 2 · 4 i •X i . 
F l(v, q ) = -i J dx e q <Pl e(x

0
)[D (x), nl(o)J Ip) 

where (81) 

1 4 . . 
= --... \ (2rr) ti(p+q-p) (plD1 ln> <nlnllP> 

~ L n c c 
n 

1 4 . . . 
-2 l (2rr) ti(q-p(l) <OID

1
l<l> (<IplnllP>c 

(l 
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-i l (2rr)4 o(q-p~) (pjDilp~ )c <~IDjlo> 
~ 

-i l (2rr)
4

o(p- q +pm) (OjDilpm) ( pmlDjlo> 

m 

+ (crossed terms, q .... - q and i ~ j ) . 

Here (pjD1
1 n) denotes the "connected part" of (p!Dil n) and the 

c 
new sum represents the "z-graph" contribution due to the disconnected 

matrix element in the decomposition (Pl Dil ppm) = ( Pl p) (0 I Di! pm) + 

(pjDil ppm) . We will now discuss the Breit frame specialization of 
c 

this formula in which Fubini and Furlan 4l) have derived an equation 

relating the scalar density term to amplitudes together with cor­

rections (still within the framework of an extrapolation from q = O). 

However, as we shall indicate, the method in practice is inapplicable 

for estimating scalar density terms because of, among other things, 

the presence of an arbitrary subtraction constant at q
0 

-+ co. 4 l) 

We sketch briefly the derivation of the Fubini, Furlan 

equation. One writes the current identity (62) with forward kine­

matics in the Breit frame of the target proton so that p = (M, 0). Then 
2 2 ~ 

one takes !! = 0 so that v = q0 and q = q0 and there results a kine-

matical restriction, the parabola q2 
= v2 (see Figure 4-b). From the 

identity, q
0 

-+ 0 gives the condition F(+) {0, 0) = i ( Pl [A+, D- JI p) . 

From the unsubtracted representation {81), the q
0 

-+ co limit gives 

F(+)(qo -+ co) .... c<+~' c(+) =~I dx3 < Pl{cn+(o,~),D-(O)J 
qo 

{82) 
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q 2 2 
Now if one considers the quantity (1 - -; ) F(+)(q0) in the limit for 

m 
which q0 .... m (m is the pseudo-scalar meson mass like m or mK)' 

2 2 IT 
then along the parabola \) .... m, q ... m and we get from the dis-

connected meson terms in expansion (81), 

2 2 
( 1 - qO ) F ( +) ( ) ... f 2 T ( +) 

- 2 qQ IT prr, th • 
m q ->m 

IT 0 TT 

(83) 

(Take the IT symbol for definiteness. ) 

Now one defines the function G(q
0

) = &(+)(q0)/(q0
2 - m;) for which 

a Cauchy integral is written. By construction the function G satisfies, 

I + - I 2 
qo .... o G ... -i (p [A , D ] p) /m , TT 

f 2 
T(+) 

and G .... prr 2 th 
qQ-> ± mTT • 

IT 2 2 ' (qo -mTT) 
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Note the resemblance of the two formulas (84) and (69); however, it 

is only when q0 is near mTT that the imaginary part in (84) describes 

TTP scattering. Also there appears in (84) the quantity c (+) which is 

a subtraction constant at q0 ... 00 (and v = q = 00 , q
2 = q0

2 = 00). To 

use (84), Fubini and Furlan assume that cf+> is zero on the basis of 

the argument that when D(x) = m 2 f ¢ (x) is used, the commutator in 
. TT TT TT 38) 

(82) is given by [D(O, x), D(O)J ,..., [ ¢ (O, x), ¢(0)] = (c-number) 6 ( x ). ,...., ,...., ,...., 

However, any such PCAC operator statement is motivated where the 

application involves a small momentum transfer to the axial divergence 

sandwiched between states; i.e., pseudo-scalar pole dominance. Now 

we may take the equal-time commutator contribution to c (+) in the 

Breit frame ( p = O, q = 0) and expand: ,...., ,...., 

J 3 I ·+ - l dx (p [D (O,_e), D (O)] p) = 

- i \(2TT)3 o(p )(po- M)<plD+(O)ln) (njD-(O)!P> +other term. L ,....,n n 
n 

We see that the momentum transfer in the matrix element <Pl D+I n) 

is given by (p - p )2 
= (M - M )2 which, for any arbitrary state n, 

n n 
certainly need not be vanishing. fu other words, with the repre-

sentation (84) one must make an assumption about the equal-time 

commutator which defines c (+) in order to estimate another, equally 

unknown equal-time commutator i( Pl [A+, D+] Ip) - an unsatisfactory 

circumstance. Suppose, however, one were to ignore the constant 

c (+) and instead concentrated on evaluating the integral in (84). Then 

in this ,.e = O, ,g = 0 system, JP = 1/2- isobars contribute from the 

connected matrix element sum piece in (81). Unfortunately for the 
* -TTN case, the first candidate is N (1570, 1/2 ) and this corresponds 

to q0 = ~ - M ~ 4m TT so that the parabolic restriction gives 
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2 2 2 2 ........ -1+) 
q = 16mn (not q '.::'. mn ). Then the imaginary part Im :t' (Clo} = 

2 
qo 2 ( ) 

(1 - 2 ) f + (q
0

) cannot be approximated by calculable np 
m 

TI 

scattering. In the case with kaon- nucleon scattering quantum numbers 

(65} and (84) would give, 

---
TT 

Im-y(+) (q ) 
.:rK 0 

The first term on the RHS, fi._ T i+)th , involves I= O, 1 s-wave 

' 
scattering lengths a

0 1 
for KN scattering34b) and a

0
' 

1 
for KN 

' ' 
scattering 42). This threshold amplitude alone would give 

(85} 

* (Pl u0 -<1/2J2lu8 Ip) ~ 450 MEV. A possible isobar here is Y0 (1405, 

1/2-) whose position corresponds to q0 = ~ - M ~ mK so that 

Im 1~) (q0) ~ fi_ Im Tt>(v) for a region of q0. But the integral is 

prohibitively sensitive to ans-wave, complex scattering length param-

eterization of Im Tt)(v) in the unphysical continuum and low-energy 

. 2 2 -1 43) 
regions due to the threshold factor (v - mK) • 

From this discussion of possible estimatory extensions, one 

must settle, for the present, for the (inconclusive) nucleon scalar 

term estimates (70} and (76). 
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VI. CONCLUSION 

From the discussion of various pseudo- scalar meson 

processes such as rrK and KK low-energy scattering we have seen 

that it is possible to estimate the meson scalar density terms; e. g. , 

(nil u0 + rt u8! rri) = mrr
2

. Estimation of nucleon scalar density terms, 

however, contains certain ambiguities such as sensitivity to the 

symmetry-breaking parameter f1. or delicacies in the extrapolation 

methods. It may be that a final formulation relating these terms to 

weak amplitudes would involve an understanding of current-induced, 

hadron production mechanisms for both very large energies and 

current masses. 
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APPENDJX A 

AMPLITUDE SYMMETRY PROPERTIES IN MANDE LSTAM 

INVARIANTS 

An example is given in which simple Bose-statistics rules in 

the amplitude t-channel (say) are illustrated by t-channel crossing 

symmetry expressed in a definite reduction representation. 

The kinematics of the s-channel, elastic meson scattering 

amplitude is given in Figure 1. The indices a, ~, y, 6 for the meson 

process M(a, q) + M(y, p) -> M(~, q ') + M(o, p') are physical particle 

indices in a SU (3) basis; e.g., in K+ n + scattering we have 

a = l+i2/J2, ~ = 1-i2/J2, y = 4+i5/J2, 6 = 4-i5/J2. By a simple 

(LSZ) reduction procedure the S-matrix can be expressed as, 

I -i(2n)4 o(p'+q'-p-q) oy 2 2 2 2 
S=( o p',~q'yp,aq)= 6 A (s,t,u;q,q',p,p') 

(2n) J l6p0 'Po q0 'qo 

_ -i(2n)
4 

o(p'+q'-p-q) A~a( t . 2 2, 2 2,) 
- 6 J s, , u,q , q , p , p 

(2n) 16po'Po q0 'qo 

where for brevity we write, 

. 1 ( ') 
6 4 l · 2 p+p x 6 

A Y = J dx e (q'j-ie(x0)[j (~),jy(-~)Jlq> 

(Al) 

and 
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with the source currents satisfying (o 2 + m 
2

) ¢ (x) = ja(x). We 
x a a 

define the definite t- channel charge conjugation combinations 

( 'e =±) by A(±) =..!(Aoy,aS ± Aoy,Sa) and A(±)=_!(Ayo,Sa±Aoy, Sa). 
oy 2 Sa 2 

Remembering how the indices are defined for elastic, s-channel 

scattering, namely in the "raising" and "lowering" basis, A 
0 

Y' aS = 

A yo' Sa by charge conjugation invariance. So we will utilize the 

quantities A(±)= {<Aas ± Asa) ={<A yo ± A 0Y). 

From (1), 

where (ja) * = j S has been used. 

and 

* AaS(p',q';p,q) =Asa (p,-q'; p', -q) 

0 * A y 0 (p'' q'; p, q) = A y (- p T' q; - p, q') . 

(A-2) 

Using the relations s = (p+q)2 = (p'+q 1
)
2

, u = (p-q 1
)
2 

= (p'-q)
2 

and 

t = (p'-p)
2 

= (q'-q)
2 

we finally obtain, 

* A (±)( t . 2 2, 2 2,) - ±A(±) ( t . 2 , 2 2 2,) 
s, 'u, q 'q 'p 'p - u, 's, q 'q 'p 'p 

(A-3) 

* _ A(±) ( t . 2 2, 2, 2) 
- ± u, ' s' q ' q ' p ' p . 
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These t-channel crossing relations were used in the Kn scattering 

length discussion, equation (17) of Section ID. 

Now, looking at the scattering process in the t- channel for 

which there are definite 'e = ± states, application of Bose statistics 

simply interchanges the "initial" particles (p', o) w (-p, y) as well 

as (if desired) the "final" ones (-q', ~) H (q, ex.). The symmetry of 

the amplitude under subsequent changes of Mandelstam invariants 

is completely equivalent to the content of equations (A-2) and (A-3). 

One may also formalize PT invariance using the represen­

tation (Al). For example, the initial and final pairs of states in the 

s-channel may be switched so that the invariants behave as 

( t 2 2, 2 2,) ( t 2, 2 2, 2) s, , u; q , q , p , p -. s, , u; q , q , p , p . 
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APPENDIX B 

WEAK BORN TERM CONTRIBUTIONS 

A Born term expression will be given for which the limit 

q', q _, 0 is unambiguous in the current identity (62}. In particular, 

it will be shown that the complete Born term quantity 

B(+)( 2) = F(+)B( 0 2 0) - µ v T(+}B( 0 2 0) v, q v, , q , q q µv v, , q , (B-1) 

satisfies the (q, q' _, O} limit, 

(B-2} 

For simplicity, forward kinematics (t = 0) is taken with equal mass 

currents (q2 
= q

2
' or w = q2

, v = 0). For definiteness, the one 

neutron intermediate state is considered in Fl1 and T~~' 12 
although one could consider (say) the lambda intermediate state in 

(+) (+) 
F 45 and T µv, 45 , etc. . 

Using the vertex < pj n1+12 In) = iu(p)y 5u(n) · D(q
2

) with 

D(q
2

) = (MP +Mn)F A (q
2

) + q
2 

F p(q
2

) in perturbation theory, the Born 

contribution to the divergence- proton scattering amplitude 
(+)( 2 ) . F 12 v, 0, q , 0 1s 

2 2 
F (+)B( 0 2 0) = D (q ) . 

12 v, 'q ' 2M 
p 

2 
[v - .6Mv ] 

n . 

(B-3) 
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Similarly, with the vertex ( pj A~+i2 In) = u(p)[ y µFA (q2) + 

C\iF p(q
2

)Jy5 u(n) in perturbation theory, the Born contribution to 

the axial current-proton scattering amplitude T(+) 
12

(v, 0, q2, 0) is 
µv, 

Now, just computing the quantity qµq v T(+)B
12

, 
µv, 

so that, 

µ v T(+)B = (M M )F 2 2F D F(+)B 
q q µv, 12 + n A - A + 12 

B(+) ( 2) = F(+)B - µ v T(+)B 
12 v, q - 12 q q µv, 12 

2 When q ... 0 or (v, q ) = (O, O}, 

(+) ( ) - ( ) 2 B12 O, 0 - M + Mn GA . 

(B-4) 

(B-6) 

This equation alone would define the Born-singularity separation 

used in obtaining (67) from (62) in Section V. From the expression 
~)B 2 2 for F 12 {v, O, q , 0) in (B-3) we see also that when v, q .... 0 

(any order), 



B(+) (0 O) 
12 ' 
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= F ( +) B (0 0 0 0) 
12 ' ' ' . 

No generality was lost in this last relation by saying L\M = M - M n P 
(or Mii. - Mp' etc.) is small but non-zero in the precise limiting 

process q -+ 0. 
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APPENDIX C 

FillITE ENERGY SUM RULE REPRESENTATION 

In the text we deal with the strong amplitude T~)(v, O, mi, 0) 

= -2
1 {T + T + T + T } to which the even charge-

K+ p K-p K+n K-n 

conjugation Regge poles P, P' contribute at high energy according to 

-i Tia.· a-
(+)( 2 ) .... \ cl .• e 1 + 1 <vvo) 1 

T K v' 0' mK ' 0 L sin TI a. 
v .... 00 • 1 

1 

i = P, P' . 

To derive the finite-energy-sum-rule (73) we first define a new 

function in terms of T~)(v) which will have a better asymptotic 

behavior in v: 

-iTia.· a. 
= TK(+) (v) - \ Cl. • e . 1 + 1 ( ~) 1 • 

L sm TI a.i v0 
i 

(C-1) 

(C-2) 

fu this expression, all the known Regge trajectories P,P' have been 

subtracted out so that H(v) .... v0 
, 6 < 0 when v .... 00 • We now write 

a convergent, unsubtracted dispersion relation for H(+)(v), 

00 

(+) 2 f v 1 Im H(+)(v') 
Re H (v) = -TI dv' 2, 2 

v - \) 0 
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Re-expressing this dispersion relation in terms of T~) (v) as well 

as the Regge parameters and extracting the single particle 11., I: 

integral contributions, 

Re T~)(v) - l Ci· 

i 

ro 

[vI: - (~ - M)]vI: 2 j'' ' v' { (+) ' 
2 2 + n . dv 2 2 Im T K ( v ) 

v -v v'-v I: 
2M 

(C-3) 

The amplitude TK(+) is defined from T(+) = T(+)B + ;_r(+) where the 
28) K K K' 

Born term is given by 

2 2 
(+)B 2 - gK/\.N [v - (Mi\ - M}v/\.] 

T K (v, O, mK, 0) - 2M 2 2 
v - v 

j\ 

2 2 
3gKI:N [ v - (~ - M)vI:] 

(C-4) 

+ 2M 2 2 
v - v I: 

Let us cut off the integral in (C-3) at v' = x, the onset of the Regge 

region where the absorptive part vanishes by (C-1), and denote by 

v' = v c the unphysical continuum threshold in Im T~). Then 

setting v = 0 in (C-3) and (C-4) (and remembering that the integral 

in (C-3) extends now from v' = 0 to v' = x for the Regge part), 
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(73) 

dv (+) 2 v ImT K (v, 0, mK, O) 
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APPENDIX D 

SO:ME DETAILS OF MASS DISPERSION INTEGRATION 

In this Appendix we give some of the details involved in 

evaluating the mass dispersion integral in (79) so as to arrive at 

the expansion in (79) '. 

Among the general states appearing in the sum over inter­

mediate states (78), consider the state I pa,), where a is a JP= 0-

system which we approximate here as a resonance. Then, using 

the ISZ reduction technique, we may decompose the matrix element 

(plD+I pa-) into a connected and a disconnected piece, 

= (0 I D+(O)b t(p) I a- p, out) + (0 I [ b t(p), D+(O)J I a- p, out) 
OU OU 

I I 
+ - 1· 4 ip. x- I + I -= ( p p) (0 D I a ) - i dx e u(p, s)(iy · v-M)(O T[ Hx)D (0)) pa , out) . 

(D-1) 

For the connected pieces, an unsubtracted dispersion relation in q2 

is written39) with the imaginary part approximated by narrow 

JP= 0- resonances (so we shall neglect anomalous singularity 

effects); e. g. , 
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(0 I [pout(p), D+(O)]a:- p, out) 

2 
1" dk ( \' 2 2* - - +-' 

= rr J 2 2 . t -n L o (k -ms )T (pa ; PS ) < o ID I s > J 
k - q + 18 ~ 

Similarly, the connected part of (a:- p, out! D- (O) Ip) is given by, 

(D-2) 

Inserting the matrix element (D-1) into the expression for f (+)(v, q2) 

and remembering that we have subtracted off the completely dis­

connected vacuum graphs, 38) 

(D-4) 
' {I (2n)

4o (p+q-pn)T* (n;p a -)T(n;p~->} 
n 

( 2 2 . )( 2 2 . ) q - ma: - 18 q - ms + 18 

+ other, similar terms. 
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The prime on the sum above the "double-pinch" poles denotes that 

the one-particle intermediate state is not included. We now make 

use in (D-4) of the relation 

6 (qo - P aO) = 2P aO · 2 ~i { 2 
1 

2 . - 2 
1 

2 . } 
q - m -18 q - m + 18 

a a 

and account for all flux normalization factors. Then, keeping track 

of the one-particle state, a cancellation takes place in (D-4) which 

removes the second term (a continued unitarity relation) and part of 

the first term since 

1 { . ( - -) * - -)} I T pa ; p~ - T (p~ ; pa 
= 

( 2 2 . )( 2 2 . ) q - ma - 18 q - m~ + 18 

Thus one receives 4o) (v > O), 

""* - -
_ T (p~ · ; pa ) } + (term with + ... -). (D-5) 

( 2 2 . )( 2 2 . ) q -ma -18 q -m~ -18 

. 1 I dq
2 

""(+> 2 The contour of the mtegral n, 2 f {v, q ) is made to run not 
q 

directly along the real q2 axis, but rather along a series of circles 

which surround the singularities at q
2 = ma

2
, m~2 (recall that 
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~* N 

T (p~; pCl) is the boundary value of T(pCl; p ~) approaching from 

below the real axis). Then, 

~ + +} + T(pCl ; p~ ) 

leads to equation (79)' with the definitions ( 0 I D +I Cl - > = m 
2 

f . 
Cl Cl 
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11. The boson- boson invariant amplitude is defined from the 

S-matrix by: 

S = 1 - i(2n) 4 6 (p ' + q' - p - q) A 

(2n)6 V16po 'poqo 'qo 

12. The literature dealing with unitarity corrections to the nn 

scattering length determination of Weinberg is rather 

lengthy. A representative article, L. S. Brown and R. L. 

Goble , Physical Review Letters 20, 346 (1968), constructs 

a unitarized form of the n-n amplitude which is constrained 

at threshold by the current algebra result. The low-energy 

result can then be extended to a higher range of energies : 

the s-wa ve I = 0 and I = 2 phase shifts vary approximately 
I=O o I=2 o linearly up to Is ~ mK where 6 ~ 20 and 6 ~ -12 . A 

recent extrapolation procedure was made by W. D. Walker 

et. al., Physical Review Letters 18, 630 (1967), in which 
• • >- I=O · f 35° t r d an mcreasmg u rises rom ~ a v s ~ mK an goes 

through 90° in the neighborhood of ,fs = 850 to 950 MEV so 

that a broad I = O, s-wave resonance is indicated. Mean­

while 6
1=2 smoothly decreases with energy to ~ -20° in the 

region ,fs = 625 to 875 MEV. 

13. From eqn. (22) which relates A to the current amplitude F 

and the current identity (20), one can see that taking q -. 0 

(while keeping the other particles on mass-shell) in the sub­

sequent general, current algebraic expression for A takes 

out both equal-time commutators due to a (q21 - m 
2
) factor . 

n 

14. That is, even though there are large mass differences in the 

pseudo- scalar octet, the states could be almost symmetric , 
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thus allowing construction of the (successful) octet- broken 

mass formula in the first place. 

15. In a mathematical limit for which ft = -J2, one sees from 

eqn. (13) that there results the invariant SU (2) x SU (2) 

algebra of isotopic vector and axial-vector charges (in the 

prototype quark model such a limit corresponds to a vanishing 

iso-doublet mass, md = 0). If ft = 2J2 then there is a mixed 

parity SU(3) invariance, while the mathematical limit ft = 0 

gives the familiar SU (3) algebra of conserved vector charges, 

etc. 

16. In the decay rate ratio, 

we use the assumption of a "universal" Cabibbo angle 

tan 8 A = tan 8 W 8 ~ includes radiative corrections to 

GV = Gµ cos e ~' which is obtained from ~ -decay assuming 

a point-like Fermi interaction. We use tan s~= .209 (C. S. 

Wu, Review of Modern Physics 36, 618 {1964)), while 

I'(K+ __. µv)/I'( r/ ... µv) ~ 1. 31 (A. H. Rosenfeld, et. al., 

Review of Modern Physics 37, 633 {1965)). Then it is found 

that I fJ!frrl ~ 1. 30. In Cabibbo theory where the vector 

currents are unrenormalized in the SU (3) symmetric limit, 

it is natural to take I fJ!f rr I ~ 1. 
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Cabibbo (Proceedings of 13th International Conference 

on High Energy Physics, p. 33, University of California, 

1967. ) has also used the assumption 8A = 8
13 

and he points 

out that fits from hyperon decays determine the quantity 
f 
f K • tan 8

13
::::: . 274. Again, 813 includes radiative corrections 

TT 

and may be checked with the value obtained from K decay 
e3 

(sin 8
13

::: O. 21) so that fJ/frr ::::: 1. 28. It should also be 

mentioned that the theoretical determination fJ/frr = 1. 16 

results from single- particle saturation of vector and axial­

vector spectral functions (S. L. Glashow, H. J . Schnitzer 

and s. Weinberg, Phys. Rev. Letters 19, 139 (1967). ) 

17. It should perhaps be pointed out that if one were to take limits 

p', q' ... 0 while leaving the initial pion and kaon on mass shell 

(without taking the necessary additional energy conserving 

limit p2 ... m
11 

2 
or, alternatively, q2 ... mK 2), two additional 

equations would be obtained whose right-hand sides are zero 

due to the supposed absence of I= 3/2 components (SU(3) 27 
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transformation contributions) in the relevant commutators. 

These equations turn out to be consistent with solutions (31) 

by substitution. Taking three particles off mass shell for 

energy conservation, one again has to evaluate scalar density 

terms. The variation from p2 = mi_ to mrr2 involves the 

momentum transfer to one of these scalar terms, which, if it 
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I \ 

K(p) / t \ "TT(q) 
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s=(p+q)2 

t = (p' -p)2 

u = (p - q')2 
I I 

masses= q2 ,q2 , p2, p2 

Fig. 1 

Off-mass-shell pseudo-scalar scattering amplitude 
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Figure 2. · KL kaon- pole diagram. 
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p' 

- t 

p 

1 
p = 2 (p ' + p) 

K = { (q' + q) 

6 = (p ' - p) = (q - q) 

· · t P • K t 2 1 ( 2 2,) 1( 2 2,) mvarian s: v = 1\1"", = 6 , w = 2 q +q , v = 2 q -q 

Figure 3. Kinematical Definitions 
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