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ABSTRACT

Theoretical solutions are derived for a model of faulting in
elastic media and for the effect of lateral inhomogeneities on the
earth's free oscillations. The solutions are used in a study of
permanent tilts and strains observed a few hundred kilometers from
earthquakes.

It is shown that the static deformational field due to a
suitably chosen dislocation fault model is the same as that due
to introduction of a stress free surface into a prestressed medium.
Formal mathematical solutions are derived for the static deformational
fields due to dislocation fault models in a homogeneous elastic
sphere and a layered elastic half-space. For the layered half-space
explicit solutions are given in terms of integral transforms for the
surface displacements, tilts, and strains due to a slip fault
and a dilatational source. A perturbation procedure is developed
for calculating the effects of lateral changes in elastic constants
on the earth's free oscillations. The procedure is applied to obtain
expressions for the effect of some simple inhomogeneity geometries
on the torsional free oscillations.

Numerical evaluation of the static, elastic, dislocation
solutions shows that the observed tilts and strains are large compared
with theoretical predictions and sometimes show the opposite sign.
The hypothesis that a weak layer in the lower crust or upper mantle
can explain the observations is investigated. It is found that a

very weak layer, approaching a liquid-like behavior, does help to



explain the observations. The compatibility of a very weak layer
with observed surface wave dispersion is tested using the results

of the perturbation calculations for the torsional free oscillations.
A very weak layer is determined as compatible with observed surface
wave dispersion only if very thin and with some frequency dependence
in its elastic properties. It is concluded that although a regional
weak layer in the lower crust or upper mantle can help to explain
the observed tilts and strains, other regional or local structural

effects or source complications must also be important.
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Chapter 1

INTRODUCTION

Observations of what appear to be permanent deformations of the
earth's surface at large distances from earthquakes have been reported
by a number of investigators. Press (1965) reviews the observations
and theoretical models up to 1965. Wideman and Major (1967) recently
published 25 observations of '"strain steps" from earthquakes at |
distances of 47 to 13,650 km. Their observations as well as many
of the previous observations are unusually large when compared to
predictions based on existing theoretical models of faulting in
elastic media. Most of the published observations which are
anomalously large are subject to question either because of the nature
of the instrumentation or the temporal relationship of the observation
and the earthquake.

Two earthquakes in 1966 and one in 1968 resulted in an unusually
good set of observations of permanent tilt and strain at the Isabella,
California recording station of the California Institute of Technolqu.

The Parkfield earthquake1 was very extensively studied resulting in

10rigin time 04 hrs, 26 min, 13.4 sec, GMT on June 28, 1966; epicenter
at 35° 57.3' North Latitude, 120° 29.9" West Longitude, focal depth

4 km, magnitude 5.5. This is the main shock in a sequence of earth-
quakes in the Parkfield-Cholame area of California and will here be
referred to as '"'the Parkfield earthquake'" for convenience.



much better information about the nature of the source than is usual.
Two tiltmeters at Isabella recorded permanent changes in the tilt -
on one the full change was visible while the other went off scale
giving a lower bound on the tilt. The Baja earthquake2 resulted in
permanent changes in tilt and strain on two tiltmeters and two strain
meters at Isabella. To the author's knowledge this is the only earth-
quake for which four independent measurements of the surface
deformational field were clearly recorded at one recording site at
large distance. Offset on two strainmeters resulted from the Borrego
Mountain earthquake3 while the tiltmeters shows no perceptible offset.
The source-station geometry for this earthquake is very similar to
that for the Baja earthquake allowing comparison of two sets 6f
data where many of the parameters in the models are nearly the same.
Comparison of these observations with models given in Press
(1965) indicated that the observations were very large compared with
the theoretical predictions based on fault dimensions and slip which
were believed appropriate. In the case of the Baja earthquake the

sign of one critical observation was reversed from that predicted

20rigin time 17 hr, 36 min, 26.7 sec GCT, on August 7, 1966; epicenter
at 31° 48.0" North Latitude, 114° 30.0' West Longitude, focal depth
33 km, magnitude 6.3.

30rigin time 02 hrs, 28 min, 58.9 sec GCT on April 9, 1968; epicenter
33° 08.8" North Latitude, 116° 07.5' West Longitude, focal depth 20 km,
magnitude 6.5. The epicenter and focal depth were tentatively
assigned by the Seismological Laboratory at Pasadena.
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by half-space models. There are a number of possible reasons for the
discrepancies:
a. the mathematical model of the earthquake is inadequate
either because the mechanism of the earthquake is
substantially different than assumed or the mathematical
representation of the mechanism is not sufficiently
accurate;
b. assuming faulting is the mechanism, which is done here,
the fault dimensions and slip are much larger than the
field evidence has indicated; or
c. the models of earth structure used are inadequate either
because
1. the regional structure has properties which are
significantly different than assumed, or

2. local structure at the recording site is dominating
the observations so that they cannot be directly
related to the earthquake mechanism and regional
structure.

The instrumentation is such that it is considered unlikely that
the recorded permanent tilts and strains are merely a defect in the
recordation. However, as implied in c.2. above, adjustments along
fractures at the recording site can give local effects that result
in real tilt and strain offsets but which are not useful in under-
standing earth structure or earthquake source mechanism. It should

be noted that the "permanent' tilt or strain offsets referred to
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here are offsets where there is no recovery evident on a time
scale of several hours. It is not possible to specify behavior
on a longer time scale because of secular changes.

In this study the emphasis is upon possible effects due to
regional structure, particularly the possibility that a weak or
decoupling zone in the lower crust or upper mantle is involved. A
weak layer in the upper mantle has been hypothesized for reasons
independent of earthquake-caused static observations (e.g. Hales, 1961).
The presence of the low velocity zone suggests partial melting and
concomitant weakening. Prof. D. L. Anderson and the author carried
out a pilot investigation of the absorption of seismic waves which
suggests substantial regional differences in absorption (see Appendix
1). There are regional variations in surface wave dispersion
(e.g. Toksoz and Anderson (1966) and Brune (1968)). In the most
general sense there is almost certaiﬁly regional weakening in the
upper mantle. The degree of weakening and the time scale on which it
occurs are important considerations in the construction of tectonic
models. The work which follows compares observed static fields with
theoretically calculated fields under the hypothesis of a weak layer
in the lower crust or upper mantle. The effect of sphericity on the
static field and the effect of a very weak layer of limited lateral
extent on surface wave dispersion are also treated.

A consideration of the effect of a weak layer, or more generally
of structure, is not independent of the source representation.

Following Archambeau (1967) an earthquake is taken to be caused by
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faulting due to shear rupture. The use of a dislocation model for
predicting the static field due to faulting is evaluated and accepted
for the purposes of this study. Other possibilities covered in a., b.,
and c. above are discussed in view of the results from the theoretical
models.

The topics covered are outlined here in the order of presentation.
Chapter 2 reviews the Green's function representation of the field
due to a dislocation source in a layered elastic medium. The formal
relationship between a displacement dislocation source and certain
stress relaxation problems is naturally treated along with the
Green's function representation. In Chapter 3 the Green's dyadic
for an elastic sphere is derived. Application of this result when
combined with published numerical solutions for structured, spherical
earth models leads to the conclusion that for shallow sources at
distances greater than about 20° an adequate theoretical treatment
requires a spherical, structured, gravitating earth model. In Chapter
4 the theory of Chapter 2 is applied to a layered elastic half-space.
Integral representations are derived for surface deformational fields
due to a strike-slip source, a dip-slip source, and a dilatational
source. The mathematical source which is used to model faulting is .
discussed in the first part of Chapter 5. In the latter part of
Chapter 5 the asymptotic forms of the layered half-space solution
fields and numerical solutions are used to illustrate the properties
of the deformational fields due to various sources. In Chapter 6

a perturbation procedure is developed and used to calculate the
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effect of lateral inhomogeneities on the earth's free oscillationms.
The results are used in evaluating the effect of a very thin, weak
region of limited lateral extent on surface wave dispersion. It

is concluded that an exceedingly weak layer can be consistent with
observed surface wave dispersion if it is very thin and its
properties show some frequency dependence. The observations of
static tilts and strains from the earthquakes given above are listed
in Chapter 7. A source model is chosen for each of the earthquakes
and theoretical tilt and strain fields for half-space models and
for weak layer models are compared with the observations. The
effects on the predicted fields caused by varying the source
parameters are considered.

A weak layer model improves the ability to fit the data, but
the improvement is significant only when the weakening is so severe
that it approximates a liquid layer. For either a half-space or
a weak layer model the source strengths required to match the size
of theoretical and observed tilts and strains are large compared
to that deduced from other observations. Half-space models generally
require a larger source strength than weak layer models. Some
properties of the observed tilt and strain fields are not matched
well by any of the models considered. The possibility that local
effects at or very near the recording site are dominating the
recordings remains open. The determination of the variability in
size and spatial distribution of tilt and strain fields from

a single earthquake is critical for a definitive interpretation of
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the cause. If very local effects dominate, the recorded offsets
are only useful for studying very local structure. If the seismic
source or regional structure dominate the observations, then the
models considered here show that the source or structure are quite
different than usually assumed.
The basic conclusion is that a weak layer improves the ability

of the theory to fit the observations, but the source dimensions

of the earthquake and complicated regional or local effects must

also be important.



Chapter 2

CONSTRUCTION OF THE GREEN'S FUNCTION

FOR CERTAIN PROBLEMS IN STATIC ELASTICITY

Representation of the Displacement Field due to a Dislocation Source

Basic to all the solutions derived here is the construction of
the solution to the equation governing static elasticity by use of a
Green's function. Physically the Green's function is most readily
thought of as the response to a "point source'" where the term "source"
has a physical interpretation defermined by the problem. Later, as
an aid in exposition, the notion of response to a point source will
be used interchangeably with the term Green's function. Before giving
its method of construction, the Green's function is assumed known
and a representation of the displacement field due to a dislocation
source is derived in dyadic notation. The result is sufficiently
general for the cases to be considered. More complete treatments are
given in Bergman and Schiffer (1953) and Burridge and Knopoff (1964).
The equation for the static deformation of a homogeneous, isotropic

elastic medium is

(A + 20)9(V-0) - u¥ x (Vxu) = - F E5=13

; >
where u is the displacement, F a body force, and A and u Lame's
parameters. The vector operator L 1is defined by writing equation

(2-1) as Lz = - %



Using

-

(A + zp)v(v-3)— wv x (Vv x v)

Il
1
=

and the vector Green's theorems

”J {:3 AV} - ?{v(v-?)}] dr
%D [(v-$)3 - (v~3)$] - % dA

and

JH [Eﬂx(v xz) -3-VX(VX3)]dT

—#[<3x3>-(vX€>+<3x{vX3}) -v]dA

equation (2-5) can be obtained by subtracting u times equation

(2-4) from (X + 2u) times equation (2-3).

”J [K-L?? - (?-Lﬁ_] at =

.

(i + 21) # r(v-i?)ﬁ - <v.§>$] -7 dA
L_

+ u# [(sz)-(v xv) + @x {v XZ})%] dA

(2-2)

(2=3]

(2-4) s

(2=5) .
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The stress across a surface with normal K is
- - > =
neT(W) = A(V-wn + 2u (@)U + 1n x (V x u) = T(1)-n (2-6) .

Using equation (2-6), the identities
. - -
vK=%L\7K+Kv—;x(vXA)
and
Vx (AxB) =B(VA) - R+ (VB) + & (V+B) - B (V)

b

and the divergence theorem, equation (2-5) can be written

{ j J [z.g_z.ﬁ] ar = %{[;(3)-3] el [g@.zj} aa (2-7) .

The Green's function for the static elastic equation is the

solution of
Le Glr) =-16G-71) (2-8)

where G 1is the Green's dyadic and I is the idemfactor. For an
. . 3 ) 3 3 3 . + ‘_\’ .
infinite medium it is required that G ~ 0 as r > «. r 1is the

.—}
observational coordinate system; r, is the source coordinate system.
For vector separable coordinate systems (Morse and Feshbach, 1953,
Chapter 13) each vector component of G is a solution, one in the

- > > >
r system and one in the r_  system, so G(rolr) can be substituted

for 3 in equation (2-7) to give

[[Je-Far+ ] e [_T_QG)'E}dAO

()

(2-9).
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- -
With reference to Figure 2-1, choose n equal to n_ thus

defining the positive sense of AG by
Au =u, - u (2-10)

-
where Au 1is to be the discontinuity in the displacement field

' -
across the dislocation surface . For simplicity F 1is now set to

Zero. ¥ not equal to zero simply retains the term JJ{ G°f dro

Apply equation (2-9) to Z+ and Z_ to obtain

I - H {g [39<'£+>~3+] - [5@-@] -Z+} a

[ng]
-+

+ H {9 [30_(3_).3_] . [Eg(g).ﬁ_:] .3_} as (2-11).
Z_.

E+ and %_ are brought together to form the single surface I with

>
normal n. Continuity of stress is required which gives
- - - -
o + . =
T (u+) n, T (u)en_ 0

and then by use of equation (2-10)

W@ = H L T (g)-%] . % A (2-12).
| Lo
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Equation (2-12) is a representation of the displacement field due to a
displacement dislocation. The term displacement dislocation is used
to describe the above defined singularity or source which, by
construction, is characterized by an element of surface across which
there is a discontinuity in the displacement field, but the stress
field is continuous. For convenience the term "dislocation' will be
used here to refer to a displacement dislocation as defined above. The
specification of a dislocation surface requires the unit vector normal
to the dislocation surface, ;, and the value of the discontinuity in
displacement, Az, at each point of the dislocation surface.

If there had been no surfaces present in the medium, but body

forces had been applied then equation (2-9) would have become .
u(r) = m G F dr (2-13).

Burridge and Knopoff (1964) show that equation (2-12) can be written
in the same form as equation (2-13). This leads to the notion of
"body force equivalents' for displacement dislocation sources. The
subject is thoroughly treated in their article.

In the later parts of‘this chapter the Green's function, G, inb
the foregoing will be understood to be the particular solution to
equation (2-8) with the medium infinite in extent. The Green's
function for this case is denoted Gw. If there is a boundary surface

S in the medium, a sufficient amount of the homogeneous solution

to equation (2-8) is added to Geo to satisfy the boundary conditionms.
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The additional homogeneous solution is denoted EH so that for the

complete problem including the boundary surface

Relation between the Static Deformational Field
of a Dislocation Source and that due to

Stress Relaxation

Chapters 3 and 4 are devoted to the construction of the explicit
forms of G or EO(Q)-; for use in calculating the displacement
fields due to certain dislocation sources which can be interpreted
as models of faulting. Although the argument for the ﬁodel of
faulting adopted will not be presented until Chapter 5, the relation-
ship between the fault model adopted and a dislocation source is
conveniently carried out here.

Equation (2-9) can be written

ﬁmi@ = m G-F dr_

(f . ENN
+ 6> {g- E_’J_T_O(u)-n] . [_T_o(_g)'n] -u} as (2-14).

- -

uini(r) is interpreted here as an initial displacement field due to
>

body forces ¥ and surface tractions or displacements across surfaces

S in the medium. G 1is the Green's function for the appropriate
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boundary conditions. In the earth, for example, the solution is
regular at the origin and the stress equals zero at the surface. The
development here assumes that a fault develops on a surface I by the
stress relaxing to zero on Z. The surface I will be taken to
enclose no volume. The notation Z+ and I_ 1is retained as in the
previous section to distinguish the two '"sides" of I, and the procedure
of imagining Z+ and I_  to coalesce to form I 1is used. The stress
> -

field T(u. .) associated with wu. . is called the prestress field.

= "ini ini

. . e -
In particular there are tractions _l(uini)-ni across the surfaces

£+ for which the notations

> _T<—> )~> 5

T4 T 2\t 0y o1 ey (2-15a)
- -

T = I( ini).n— on I_ (2-15b)

are used.

Let G' be the Green's function for the same conditions as
equation (2-14) except that I 1s a stress free boundary. If, as
Z+ and I_ coalesce, the limit of T, and T_ in equatioms (2-15)
is zero everywhere on I, then redefine ¥ so this is not the case.’
This is necessary since stress relaxation cannot occur if ¥ 1is not

prestressed. Applying equation (2-9) to the problem for which G' 1is

the Green's function, there results



el B
f ( 5 = > >
—‘iz ) = JH G'-F dr_ +#_ {G'- [lo(h)-n] a {:ld(g')-n] °u} aa,
L ,

(2-16)

where T and S are the same as in equation (2-14). Assume that

Ad = u (2-17)
R XS -

is not zero everywhere on I. The assumption will be justified later.
Now using equation (2-12) a discontinuity in displacement on I
-
in the amount Au, as determined from equation (2-16), is added to

the displacement field of equation (2-14) giving

G, = Ut “ [IO(G_) -K] XIS (2-18) .
X
Note that G 1is appropriate to the boundary conditions of the problem
for equation (2-14), not to that for equation (2-16).
If the surface I is interpreted as a cut thus insuring the

single-valuedness of then the boundary conditions specified

>
Ytot?
in equation (2-18) uniquely determine the solution with the possible
exception of an additive constant corresponding to a rigid body
displacement. Similarly the solution determined by equation (2-16)

is unique with the same possible exception. If such a constant appears,
it can be chosen the same in both cases and will not be considered
further. In equation (2-18) the boundary conditions on I are specifica-
tion of the discontinuity in displacement, Aﬁ, and continuity of

stress across . The condition that the stress be zero on I in the

solution given by equation (2-16) also requires that the stress is
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continuous across I, and, since AE on I is the same in each case,

the solution to equation (2-16) satisfies the same boundary conditions
as the solution to equation (2-18). The uniqueness of each solution
requires that they be identical. This also justifies the assumption
made in equation (2-17) that AG is not zero everywhere on I. If it
were, then 32 would be identical with 3ini by the above argument,

but this would contradict the condition that T, and T_ are not zero
everywhere on I.

The development above assumes that the body forces and boundary
conditions which determined the prestress field remain unchanged
during the process where I becomes a stress free surface. The
exclusion of some of the prestressing body forces and boundary
conditions gave rise to the conclusion of Steketee (1958) that a
dislocation model of a fault necessarily resulted in an increase in
" stored strain energy. That this need not be the case is shown in
Appendix 2..

In summary it has been shown that there is a dislocation
distribution Aﬁ(?o) on I which gives a displacement field which
equals the change in displacement field caused by the introduction
of a stress free surface,l, into a prestressed medium. The choice
of Az depends on the prestress field as is physically obvious that
it must. Although a knowledge of the prestress field is the logical
way to pose a problem involving prestress, it does not allow a direct
calculation of 3(?) by equation (2-12). Either AG must be known
a priori, which in effect means determing G' in equation (2-16),

or equation (2-12) must be interpreted as an integral equation in
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-
which Au is to be determined by requiring that

3 =" = >
_l(ui)-nt - _’_Q_(uini)'ni =0 on I.

It is also possible to choose Az's arbitrarily or from physical
considerations and use equation (2-12) to determine what prestress
field must be relaxed to give that AK. The results of interest here
are to be applied to observations far from the source region and it
will be shown in Chapter 5 what is critical in the choice of the

>
distribution in Au over I for this problem.

Construction of the Green's Dyadic in Vector

Separable Coordinates

In Chapters 3 and 4 the explicit form of the Green's function is
determined for certain problems in two coordinate systems. The
notation used in this section is strictly appropriate to spherical
coordinates. The construction in circular cylindrical coordinates
is so similar that this section will be used as a theoretical frame-
work for that case also. Specific differences will be pointed out in
Chapters 3 and 4 where each solution is given in detail.

The method of constructing the Green's dyadic G 1is treated
here in three parts. First the construction of the homogeneous
solution to equation (2-1) in a coordinate system which is natural
to the problem. Then the representation of the delta function in

the same coordinate system. This allows a representation of the
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Green's function for an infinite medium. For these two parts to give
results which are in a form where it is convenient to meet the boundary
conditions the coordinate system must be ''vector separable'. Vector
separability is discussed in Morse and Feshbach (1953, Chapter 13)
where it is shown that circular cylindrical coordinates and spherical
coordinates are vector separable for the static elastic problem.
Finally, a sufficient amount of the homogeneous solution is added to
the Green's function for an infinite medium to meet the boundary
conditions for the problem at hand. TFor layered media the Thomson-—
Haskell matrix formalism is used in this last part (see, for example,
Gilbert and MacDonald, 1960; or Harkrider, 1964). The development
here is limited to layered media where the solution function is known
explicitly in each layer. The method can be generalized to cases
where the solution function is determined numerically (e.g. Gilbert
and Backus, 1966).

The homogeneous solution to equation (2-1) is

- - Ji

u=23B - Z?E:ET V(r-B + Bo) (2-19)

where B and BO are an harmonic vector and an harmonic scalar,
respectively (e.g. Lur'e, 1964). The harmonic scalar need not be
retained. Solutions of the vector harmonic equation are given in
Morse and Feshbach (1953, Chapter 13) in forms convenient for spherical
coordinates and circular cylindrical coordinates. The solutions

are denoted by
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1 2
Mm,z 8 Mm,l
1 %2
I\m,.(L . hm,l
21 G2
m, 2 ? m, 4L (2-20).

m and & are the ¢ and ©6 separation indices, respectively, and
the superscripts 1 and 2 signify the solutions which are regular at
the origin and regular at infinity, respectively. The explicit
expressions are given in Chapters 3 and 4. The homogeneous form of

equation (2-1) can be written

1

T . g _ »
(1-25) V(Veu) + V4u = 0 (2-21).

- >
Since the M and N solutions in (2-20) have zero divergence, they
are already solutions of equation (2-21). The third solution used here
-
is obtained by substituting a constant times the G solutions into

equation (2-19). The resultant set of solutions are denoted

¥l %2
Nm,% > Nm,%
- >
El E2
m, % ? m, L (2-22).
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The notation used above and subsequently is closely patterned after
that in Morse and Feshbach (1953, Chapter 13). There are differences,
however, so that each form is defined explicitly at an appropriate
place in ﬁhe text.

The solution for

(A + 207D - x (Vgw = —F a('f—'r’c))}i (2~23)

is now constructed. Consider the problem in an infinite homogeneous
medium and require that the solution be regular at the origin and at
infinity. The discontinuity implied by equation (2-23) is called a
"point force of magnitude F in the n direction". This is the
same problem which Love (1944, Chapter VIII) calls "a force operative
at a point'". TIf the solution is constructed for any ;, then the

solution to

(L + 20)V(VG) - wx (VxG =-1 5(?—?0)

can be constructed where G 1is the Green's dyadic for equation
(2-8).

In Chapter 3 the Green's dyadic is constructed explicitly for a
homogeneous sphere. In Chapter 4 only certain special cases are
explicitly worked out. To illustrate the method of construction of

2

the solution to equation (2-23) consider the case when n =T in

spherical coordinates. Equation (2-23) becomes
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é(r—ro) 6(6—80) 6(¢-¢O)

=3 -> ~
+ 2 ) - = -
(\ WV (Veu) uw x (Vv x u) F e hiinde T

(2-24).

Assume a solution

u =2

> -> - -
m%pmwr)ﬂwﬁm¢)+bmﬁr)%M(%¢)+cmﬁﬂ %&w,w

(2-25).

= 3
f s B 5 and C are vector spherical harmonics. Their definitions
m¥ mi mi
- > - '
and their appearance in E, N, and M are detailed in Chapter 3.

Substituting equation (2-25) into equation (2-24) gives

pmﬁ e

op P
: 1 38 (o "m2 ) _ mf  _u
mZz (A + 2w [_rZ or (r or > 2 r2 (A +21) %(4+1) 2 Pml

P N
+ [(x * ) %2“2'{ (r p_,) + (et3n) ;g&] AGFD B,

ob b
1 3 [ o7 me)  (F2w) my, ] =
= [:rz dor (:r dr ) U HLEHL) o3 )

b
2L RGED “ﬁmg

1 3
+ [— (A1) 7 57 (r bmi) + (M 2y) 2 2

ac e
1 5 2 _mi \ i mi =
" [ r2 or ( Y Tor > L t] Cag

. 5(r—ro) 5(9“90) 5(¢“¢O)
- r25ind =
(2-26).
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By taking the vector dot product of fiv into equation (2-26),
multiplying by siné d6 d¢, integrating over 6 and ¢, and setting

u=m, v =4 one obtains

op p P
1l 9o 2 m& _ mi _u mi
(A+2U){: r2 3r (r > 2 12 (A+2u) 2 (4+1) 2 L)

b
1 3 2
+ [—-(A+u) vlren Cr bmz) + (A+2u) 2 ;%L'] Ve (+1 n.

§(r-r )
- . o— O 2B
== r2 [:r PmQ<eo’ ¢o>] (2-27)

where

A4 (o4m) !
mt  (2241)  (2-m)!

n

Multiplication by r2dr and integration of equation (2-27) from

r - eto ro+-g while requiring continuity of pmg(r) and bmz(r),

and letting e - o gives

apm%

or

apmz

or
+ T
o

(A + 2w)

r

(2-28).
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Substituting the solution from equation (2-25) into equation (2-6)

- A
with n = r gives the stress across a surface of constant r

. op P b }
b = 7, [ Oet2n) —2 + 9 BE o /ITHD —%1—2—] B

or mi

~ abm% bm% pm% g
+UL——————————+ VSL(SLH.)T:] B

or r ml

ac @
m? _ml ] %
+ 3 [ dr T CmSL (2-29).

From comparison of equation (2-28) and (2-29) it is seen that for
each m and & the traction across r = r parallel to gml has

a discontinuity of

~

The cases n = 8 and =n = ¢ are treated similarly except that for
these cases there is a discontinuity in both gm% and Eml'

With the discontinuity in stress or displacement determined by
the procedure outlined above, the construction is completed by adding
a sufficient amount of the homogeneous solution to satisfy the
‘boundary conditions. For a layered medium this can be accomplished
with the Thomson-Haskell matrix technique.

In the jth layer of a layered medium the homogeneous solution of

equation (2-1) is given by (2-22) where the elastic constants are

those appropriate to the jth layer. The layer index j 1s suppressed
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>
for now. The M solutions and the stresses derived from them contain

-
only the vector Cmﬁ so the M solutions (zero frequency limit of

- -
toroidal motion) can be treated separately. The N and E solutions

(zero frequency analog of spheroidal motion) and the stresses derived

' > >
from them are in terms of the vectors P and Bm

- In the jth

%"

layer the spheroidal-like part of the displacement can be written

il ; = Tl J 4 E2 4 N2 —7
UPB(I', 2, m) A, Em,ﬁ, e Asz,SZ, Aq Em,fl, Ay I\m,SL (2-30).
The stress across a face with normal r is
T (r; £, m) = Ay 2T (B} ) + 4, 2T (X! )
PR 72 — Y.l = " m,4Q
= ~ )
+ r-T (B2 - «T (N2 -31).
A3 rel (Em,l) Aq i l ( m,SL) (2 31)

and from equation (2-29) the stress can also be written in terms of

the vectors P _ and %mz. Equations (2-30) and (2-31) can be

mi
rewritten
- > -
UPB(r; L, m) = UP(r; 2, m) sz + UB(r; L, m) BmQ Va (e + 1) (2-32).-
and

> 3 >
5 - 5 : /4
TPB(r, %, m) Tp(r, 2, m) (2P 2) + TB(r, 2, m)(éB (2 + 1) )

mi

(2-33).
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By comparing equations (2-30) and (2-31), and (2-32) and (2-33) the

following matrix equation is obtained

s N
Uy Ay
= g(r; 2, m) (2-34).
TP Aj
TB Aq—J

The 4 x 4 matrix e(r; &, m) is the solution matrix.
Its elements are given explicitly for the problems treated in
Chapters 3 and 4. The layer index j 1is now included explicitly

and equation (2-34) is written
U,(r) =¢,(r) A, (2-35)
J J J

where the column vectors Uj and Aj are defined by equation (2-34).
The Aj are now determined for a source at depth r = r, and
the following boundary conditions
a) stress equal to zero at r = a ,
b) continuity of displacement and stress at each interface
r=r;,, 140 ,
c) displacement regular at r = 0.
The interfaces are labeled as in Figure 2-2 except that r is

replaced by 1t = a. Other boundary conditions can be treated in a

similar fashion. Condition (b) gives for each interior interface
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Uj(rj_l) = T (2-36)

51750

Apply equation (2-35) at r = r,

-1 and multiply from the left by

=L{e. .) vieldin
€5 Y3-10 Y .

A, =¢e7(xr. ) U.(x.
3 | ( j=i J< J“l)

Substituting this expression into equation (2-35) at r =r gives

J
Uj(rj) = a, Uj(rj_l) (2-37)
where
ay = sj(rj) eTl(rj_l) (2-38).
The matrix aj propagates the solution from r = rj—l to

r = rj and is called the propagator matrix.

Let the source be at r = T, in the sth layer. Then with the

definitions
as+l = es(rs) e;l (ro)
Ds+l = = 5 .. as+l
n-~1 "n~=2
PoF a3 Tt A

repeated use of equation (2-37) gives

U (r ) =D U(a) + 057 au (2-39)

n n-1
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where AU dis the discontinuity in U due to the source.
Condition (c) requires that Az = Ay = 0 for equation (2-30) in
the nth layer (i.e. the bottommost layer) so that in the equation
U (r Y =g (¥ ) A (2-40)

n n-1 n n-1 n

A.n has the form

(2-41)

Note that if A3 - and A4 = were associated with the solution
5 5

regular at r = 0, An would have the zero and non-zero constants
in a different position but the basic procedure given here would

remain unchanged. A3 0 and A4 L are the non-zero constants in the
3 b

solutions given in Chapter 4.

The boundary condition at r = a requires

0@ = | U

U_(a)
B (2-42) .

0

0
e
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Using the last three equations (2-40, 41, 42), equation (2-39) becomes
with the first two terms in expanded notation (and the subscripts

"pR" added to the last term)

o1 (pan) By p T Fp(pg) A5 4

) A +

1,4 EZZ(rn—l) A

ey (pog 2,0

e3p (1) B G50 Ay

* €42(rn—l) A2,n

EAl(rn—l>Al,n

Dll UP(a) + D UB(a)

Dy, Upla) +D,, Uyla) il
ps “Ups

%ll%(@ * I UB@)

1 UP(a) + D UB(a)

(2-43).
Transposing the first term on the right to the left this is rewritten

x v =-0ST1 4y (2-44)
PB "PB B PB
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where
Dy, Dy, e11(r__;) €1z(rn_l)_
Dyy Dy2 €21(r _1) €20(r__;)
e D3 D3z €31(r ;) €32(x__)
Dy, Dyp BERSECEY) fup (1)
—
and -—ap(;;-
Ypp = U, (a)
_Al,n .
~A2,n
R— i
The solution for YPB is
Yoy = = %53 D;Jlgl AUpsg

which includes the displacements at r = a (i.e. the coefficient of

>

ng or gmﬁ V2 (8+ 1) in equation (2-32)). The solution at depth can
be obtained by using equations (2-37) and (2-35) although these
are not explicitly calculated for the layered models considered here.

The calculations for the toroidal-like case are precisely analogous

except that a 2 x 2 matrix system results instead of a 4 x 4 system.
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Chapter 3

THE GREEN'S DYADIC FOR THE ELASTIC DISTORTION
OF A HOMOGENEOUS SPHERE AND THE SURFACE

DISPLACEMENT DUE TO A BURIED DISLOCATION

The Green's dyadic is derived for a homogeneous sphere with the
boundary condition of zero stress at the surface. Using the body
force equivalents, expressions for the surface displacements due to
two types of buried dislocations are derived. For one component of
displacement the series representation was partially summed to obtain
a rapidly converging form. The result is compared to the same problem
in a half-space to show the effect of sphericity on the static
deformational field due to seismic sources. Reference will be made
to the pértinent formulas in Chapter 2 in order to relate the results

given here to the theory presented there.
Derivation of the Green's Dyadic for a
Homogeneous Sphere

Vector spherical harmonics are given in Morse and Feshbach

(1953, pp 1799-1800) as
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i s Emg V2 (a+1)

M2 r—2-1 _émg V2 A+

_>1 - ,Q,_l > = ]
Nog-1°-° [z Pt B, vaG+D)
N2 =42 | _(+1) P+ B /(D) ] =0
“m, 2+1 mg g
[ = AT 3 AGED - D) B ]
m, +1 m, L m, 4
=1 [—> > ]
2 =
6m,2-—l R BLg 20D + 2 B

These are the functions of expression (2-20). The f, %, and ¢

functions are defined by

= 2 imo m

fm,z r e Pz(cos 8)

gm g™ ey [;elm@ P?(cos 6)j}
? V& (+1)

Em j = ey x [:f elm¢ PZ(cos 6):}
’ Ve (2+1)

The coordinate system is shown in Figure 3-1.
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In order to avoid an even more highly super-and subscripted notation,
the convention is adopted above and throughout the text that the index
m associated with the ¢ function may range from -2 to +%
while the index m associated with the € function is always to be
interpreted as [m}.
Define
k = 2(1-0)

= -
and choose ﬁ in equation (2-19) as 2«G. Then the solutions are

PN i —
fm,ﬁl r (D) 1y B )+ 15 B ) AGHD
(3-2)
2 _ -9 = _ - ]
ﬁm’z_l r [z Lp B, = Le B, /20D
with

Ll = (2.+2) o 2I<
LZ = (Q/"‘l) + 2K
L3 = (,Q,'f'l) + 2k

L)_+ = ,Q,—2K

The stress across a face r = constant will be needed and follows

from equation (2-29) together with the identities given in Appendix 3.
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The results are

- -1 3
¥ (=1) x .

-

ey

=

A ¥
1l

2 E— -1 2
M Q) v (+2) r Mm i

>

= 2u (e-1) r~! Krrln (3-3)

- B [ (e41) Lg P + Ly %ml V% (R+1) j}

) = -2p (a+2) r~! N2

= 2y 27! [:—& e B, o+ Ig %mi V(1) j]

where

Lg = 2(2-1) -4 + «
Lg = (2+1) (2+2) -4 + «
Ly = (+1)2 - «

Lg = 22 - «

In order to expand the solution in equation (2-26) it is

convenient to expand
5(0-8) 8(o=6) @

sin ©
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B

in terms of the functions sz,

‘_> = . . .
Bmz, and sz. Then the discontinuity

in the radial function is determined from equation (2-28). These
results are given in Appendix 4.

For the solution matrix e(r; %, m) the components of the left

hand side of equation (2-34) are defined by

T= 3 U P +U. B VTR +D+U & /1 + 1
e p mi B "mR c mi
(3-4a)
and
t= 7 T 22 +T. 28 i@ +D+T ¢ /A2 + 1D
e p T Tms B " Tmk c ml
(3-4b)

Then the components of e(r) associated with the vectors sz and

Bml are defined by reference to equations (3-1), (3-2), and (3-3).
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where

R = [ = e
T (22+3) (24+1) (20-1) (20+1) .
For the e(r) associated with Emz
% |
r by
EL(r) = - s
n(e-1) r -u (+2) r
3-7).
(42) -4 1 il
Q1) T (20+1) I
-1
e (x) =
2
(2-1) 9+1 1 e
(22+1) © (22+1) u
| (3-8).

The elements of the propagator matrix, equation (2-38), are given in
Appendix 5.

To derive G, we require that the solution be regular at r = 0

(o)

>
and r = » with a point force source at r = (ro, 60, ¢O).

In this case equation (2-43) becomes



=B

LV

LV

o
"y )" 4 gy (Cayens
2 €
v Coyhts vty Ca)fea
h O_ He & OH €24
v ("% 4 gy Cn)

O -
e Cayla 4 By "n¥la

2y Aoyvmzw
ey (“2)%%s
ey ("x)%%a

2y (Px)els

H< AOHVH:w
O

H< ( Mvﬁmw
(6]

H< A HVHNw

H< AOMVHHm




e

for the spheroidal-like part and

ell(ro) B1

821(1‘0) Bl

P —

— —

e

for the toroidal-like part.

and

-1

(ro)

—

elz(ro) B,

The solution to these equations are

AT

AT

AT

(3-9a)

(3~9b) »

Solving equations (3-9) for the values of AT,, ATy, and AT

determined for a point force source in each of the coordinate directions

gives the displacement field 3 by equation (3-4a) for each source.

Let

5
r
(0]

(ro, eo, ¢O) and pointing in the r direction,

5
4" be the displacement due to a unit point force located at
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L. 3 -0 - >1r >6 -
and similarly define u and u'. u, u , and u¢ were each

determined by explicitly solving equations (3-9). The actual
expressions are not duplicated here since they are quite long. The
Green's dyadic when dotted into the source vector gives the displace-

ment field due to a point force, that is

u =G -7
"ty
O _c .8
A
and K¢ =G -é "
L

By inspection of the forms for gr’ Ze, and 3¢ derived as described

above the form of G, was deduced to bel

In the form for G and throughout the text the superscript * denotes
complex conjugate.
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G, was obtained by a procedure which was essentially that of the
Thomson-Haskell matrix formulation. The same procedure could be used
to obtain the Green's dyadic for a sphere, but it is more convenient
to view the problem slightly differently. A sufficient amount of the
homogeneous solution which is regular at the origin (the vectors
superscripted 1 in expression (2-22)) can be added to satisfy the
boundary condition that the stress = 0 at r = a. This latter part

was called G in Chapter 2. Assume the form

H

G =G _+
-3 —00

=, =F —)-l R4 > => 1 ¥ > ]
mil [ ﬁm,£+l(r) Xo * Nm,z—l(r) Bo g Mm,z(r> Co

> -
where Ko’ BO and C0 are undetermined vectors. The stress

b

->
operator is applied from the right to the r coordinates giving

. O

A

—r - A
e 3 Bo, and Co must be expressed in terms of the unit wvectors L

¢O and the coordinates T 60, ¢o. Setting r = a in equation

. -> - -
0 determines A , B , and C .
o o o)

1l

(3-10) and requiring that £-T (Gg)

The resulting expression for Gy is
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Surface Displacements due to a Buried Dislocation

The integral kernel in equation (2-12) gives the field due
to a particular point dislocation surface. Explicit formulas from which

the integral kernel

(:T (9)-1?1] B
T

can be easily derived are given in Appendix 6.
The resultant series representation for the displacement field
for two cases is given below. The expressions are for eo =0,

¢o =0 and r = a. With the notation

[:go (gs)-ﬁ] -AU = u(h, AQ)

then 3(@0, —60)_15 the point source approximation for a buried right
lateral strike slip fault with fault plane with normal éo’ or for a
buried left lateral strike slip fault with fault plane with normal

- $o; and K(éo, fo) is the point source approximation for a buried
dip slip fault with fault plane with normal éo with the south side
moving up, or for a buried horizontal thrust fault with fault plane
with normal Eo with the upper surface thrust to the south (see
Figure 3-1 for the conventions used in these descriptions). The

results are
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L, t=2
> % +1) 7
a(b , -¢,) = (247+1) T sin 2¢ P2 t° Lig = ]
0’ 7O Fz 16ma2 % PG
i ap2 2 p2
+ 9 sin 2¢ ) —% a1 - 2 a,
36 sin 6
~
2 P2 ap2
+ 6 cos 2¢ L 1 - —&
sin ¢ 96 2
(3-11a)
- b
S K o (224+1) Ly t
T 221 8ral T cos¢ Pi i t2 -1

(3-11b)
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where

-2
% Lg & Lj

T | D@ gt

4 =
%2 (3=1) () (g+1)

A

@3 T A | (g+1) &

1

) -1
i 2 (gt1)

1:-0
f = —=
I

and the argument of the Legendre function is cos 8.
The radial component of ﬁ(éo, —&O) has been partially summed to
obtain a rapidly converging series. Let the radial component of

e —$ ). As detailed in Appendix 7

> A ~
u(eo, - ¢o) be denoted by u (6, =

(8.5 = $o> can be written

o



oy e

2 _ =z _ sin 2¢ E _ -2 il
u (805 = 9) = T550 27 = G + 5% +

cos 6 (74t=1 - 30t~3) ] 2 csc20 + 27 - 9t=2 - 16t™! cos g

~
+ 1 101 - 24t~2 = 5t™% + cos 6 (-27t - 80t~1 + 35t73)|2 csc?p
1/2
T

~144 + 18t™2 + 10t™ + cos 6 (75t~ - 25¢73)

1
T3/2

+ 116 - 14t72 - 10t™™ + cos g (=27t - 110t~ 1 + 45¢t73)

+ 50 (-3 + t~2) sin2p

g} 48 (2 - 1) sin2e

5/2

T

e 2 42 P
& Z 22:5 (3t%=1) t %

=2 a 2 (4+1) (2+2)

(3-12)

where

T=1- 2t cos 0 + t2
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The last expression for ur(éo, = $o) converges approximately like

~7/2

L Using this expression with a equal to one, the quantity

PN

$,)

8r u (6 , -
U = s o o
s

sin 26

was calculated. To show the effect of sphericity the results were
compared with the displacement due to the same source in a homogeneous

elastic half space. The ratio Us/UH was calculated where

8w urH

[, = =——————s
sin 2¢

H
and wu.y is the vertical displacement field on the surface of the
half space for a source depth equal to (1-t) and distance measured
in units of 6. Using Maruyama's (1964) results for the half space,

there follows

0 o= Je S0-8) . 13(-0)®  60-r)°
H o g2 1/2 3/2 5/2
R R R
where R =02 + (l—t)2

US/UH is plotted in Figure 3-2 for various angular distances and
for t = .995, t = .96, and t = .90. These values of t correspond
to source depths of approximately 31 km., 255 km., and 637 km.,
respectively. The effect of sphericity is clearly not negligible

at distances of 20° or greater for the case calculated. The
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difference between the field on the sphere and in the halfspace for
a given distance from the source increases as the depth of the
source increases. This is physically to be expected since the
deeper the source, the greater the influence of the surface of the
sphere antipodal to the source. TFor distances less than roughly
10° and source depths less than roughly 30 km. the effect of
sphericity on the displacement component calculated is less than a
factor of two except very near the epicenter. The ratio Us/UH is
a poor method of comparison very near the epicenter since a small
change in the position of a zero crossing makes a large change in
the ratio. Although the calculation given here shows the effects
of sphericity very clearly because this is the only difference
between the homogeneous sphere and the homogeneous halfspace, it
does not show the effects of gravity or of varying the elastic
constants with depth.

Takeuchi (1951, Chapter 7) has shown that the effect of gravity
is negligible for distances where the ratio of the distance to
the circumference of the earth is small. In Appendix 8 it is shown
by comparing solutions by Longman (1962 and 1963) and Slichter and
Caputo (1960) that the combined effect of the elastic parameters
varying with depth and gravity is probably more important at

distances greater than 20° than the effect of sphericity.
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It is concluded that for the calculation of the static
deformational field due to a shallow seismic source at less than
about 10°, sphericity will not have an important effect, but
variations in properties with depth may. For significantly greater
distances or source depths variations of properties with depth,

gravity, and sphericity should all be taken into account.
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Chapter 4

SURFACE DEFORMATION DUE TO DISLOCATION

SOURCES IN A LAYERED ELASTIC HALF-SPACE

Solution forms are derived for the displacement, tilt, and
strain fields at the surface of a layered elastic half-space due
to certain buried dislocation sources. In considering the effect
of a buried weak layer on the surface fields expressions are
needed for the same problem as described above except that the
structure is a plate over a liquid. These are derived by a simple

modification of the results for a layered half-space.

Construction of Representation of Static
Deformational Fields for a Layered

Elastic Half-Space

Again the general framework of Chapter 2 is used and the
results given here are referenced to the appropriate equation in
Chapter 2. Solutions to the vector harmonic equation (expression
(2-20)) in circular cylindrical coordinates are given in Morse and
Feshbach (1953). 1In a notation slightly different from theirs

these are
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Substituting 4(l-o) times the solutions &;k and G;k into

equation (2-19) gives the third homogeneous solution to equation (2-=1).

1 _ _ kz = _ kz >
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where

¢ = 3 - 4¢

The stress across a face z = constant is derived using equation

(2-6) together with the identities given in Appendix 3.

resulting expression are

o > kz > >
. 1 V= - 1
z+ L (N%&J uk e C , Bk Mmk
& . ‘>2 - _ kz = - _ "
zs T O%MJ vk e ka vk Ml1
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To determine the coefficients in the expansions analogous to

equation (2-25) it is convenient to have expressions for
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in terms of P B and C The discontinuity in the radial

mk’ “mk mk*
function is then derived from the analog of equation (2-29). These
expressions together with certain specializations which are needed
in the following are given in Appendix 4.
To define e(z; m, k), the solution matrix, the expansions
of the displacement field and the stress fields in terms of the
- -

>
surface vector harmonics Pmk’ Bmk’ and ka are needed. These are

analogs of equations (2-32) and (2-33) and are, respectively,

- - > -
u=;I[Umek+UBBmk+UCka]dk (4-1a)
k
and
- = 3 -
t—%J[TPPm+TBBmk+TCka]dk (4-1b).
k

Equations (4-la, b) define U, and T, where o may be P, B, or

o

C. 1In place of equation (2-34) there is

U A ]
P 1
UB A2
= ep(z;mk) (4-2a)
A
EP. 3
k
ip
B
e Ay
_k L =
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for the spheroidal-like field, and

= eL(z;m,k) (4-2b)
E?_Q B,
k

L |

for the toroidal-like field. The solution matrices for these

parts are, respectively,

(c-kz) ekz ekz (ct+kz) e_kz e_kz
-kz ekz ekz -kz e_kz —e—kz
ER(Z) =
u(c+l-2kz) ekz u2ekz —u(c+1+2kz) e_kz —112e_-kz
u(c-1-2kz) ekz p2ekz u(c+1+2kz) e_kz u2e—kz
and
-
kz -kz
e e
g (2) =
k kz ~kz
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A development analogous to that leading from equation (2-36)

to equation (2-44) gives for the spheroidal-like field

s+1

Xpp Ypp = 7 Dpp Upg
where
D11 D12 e13(z ;) e1u(z 1)
D21 D22 a3z 1) eau(z_ ;)
s D D 33z ) egn(z )
31 32 33Vn-1 34 -1
Dy, Dy e3u(z ) euy(z 1)
and

PB
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The solution for the displacements at the surface z = zo is included

in the solution

_ =1 sl _
Ypp = = Xpp Dpp AUpg d (4-3a)

Similarly for the toroidal

_ s+1
X, Yo = - D, 7 AU, (4-3b)

where

1 D1 ez )
YC =
Dy e22(z ;)
UC(zo)
YC = s
2 51

The elements of the propagator matrix (equation 2-38) are given

in Appendix 5.
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AUPB =

and

<5 B

for the source discontinuities, the following expressions are needed

to compute the displacements at the surface.

P B
UP(zO) = - KDP(AUP) - KDP(AUB) - KF
U(z)=—KDB(AU)—KDB(AU)—KF
B*"o B P B B
' C ¢
U - -~
A (zo) KDC(AUC) KFg

(=)

AT AT
P P B B
5 ( —Ef-> - KF, ( " ) (4=4a)
AT AT
P P B B (4-4b)
B(k)"KFB<k>
(4=4c).
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AU AU and AU are the coefficients of 3

B ac
p 4%p> c e Cpier B8 >

respectively, from the representation of a source which has a
discontinuity in displacement (and continuity of stress) at the source
depth z = h. ATP, ATB, and ATC are the coefficients of ﬁmk’ gmk’
and Emk’ respectively, from the representation of a source which
has a discontinuity in stress (and continuity of displacement) at
the source depth z = h. The KD's and KF's are determined by
equations (4-3). For example the first of the set of equations given
by (4-3a) is equation (4-4a). Explicit algebraic expressions are
given for the KD's and KF's for a hpmogeneous half-space in Appendix 9.
For a stack of elastic layers over a liquid the boundary
conditions are the same as given for the above problem in Chapter 2
except at the liquid solid interface which is introduced at
the depth =z = z 1 The boundary conditions at z _q are
a) the tangential component of stress equals zero, and
b) the normal component of stress equals the negative
of the product, liquid density (p) times gravitational
field (g) times normal displacement.

The expressions given above are not altered except that the terms in

equations (4-3) become
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Except where explicitly noted the results given in the rest of this
chapter are for a layered elastic half-space. The procedures apply
as well to the problem of a layered elastic stack over a liquid.

Two examples of the construction of the final solution as an
integral representation are given in detail.

For a force of magnitude Fz in the direction of 2z at z = h,

r =0, 6 = 0, the source term is

N>

“F_§(z-h) £ 8(8)
z r

The representation for LE: r6 8) z in Appendix 4 defines the source
discontinuity as
zF Z k
ATp T T Pox T T 2m (4-3)

with continuity of displacement and stress giving O for the other

AU's and AT's. Substituting into equations (4-4) there follows

P [1
Up(z,) = KFp (E?F)

P [1
UB(ZO) = KFB ("Z—T}‘>

The kernel of equation (4-1a) is

= 1 P > P =
UPB To2m [:KFP Pox T Ky Bok :] )
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With the notation 3ZF for the displacement field due to a force

Fz z at z = k, r = 0o, 8 = 0o, then the inverse transform of ﬁPB is
>2F _ "z | & P _ s [ P
Ut o= o z J KFP Jo(kr) dk - r ) KFB Jy (kr) dk 5
o o

For a source which has continuity of stress at z = k, but a
discontinuity in the 2z component of displacement across a face
parallel to z = h, the required discontinuity in the displacement

field is,

(Auz) § (z-h) §££l;§£§l z

where Auz is the magnitude of the discontinuity in u, . The

representation for §£32;££§l- gives the source discontinuity as
zD z k
AUP " Pox T 27 ’

Continuity of displacement and stress give o for the other AU's
' . - . . »zD
and AT's. Then, as immediately above, with the notation u for

the field due to this source, there follows

[ee]

. (av) B |
g Z ; J KDy J_(kr) k dk - £ J KDY Jp (kr) k dk
(o]

o
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Other sources are treated similarly and integral expressions
for the deformational fields for an arbitrary dislocation surface

and an associated arbitrary jump in displacement can be derived.

Deformational Fields due to a Strike-Slip
Source, A Dip-Slip Source, and A

Dilatational Source

Explicit expressions are given for certain point sources which
are used to model a seismic source. Figure 4-1 shows the coordinate
system and the geometry of the elemental dislocation surface and
the associated displacement discontinuity. For convenience each
point source may be described using the terminology of faulting,
the dislocation surface being identified with the fault surface
and the displacement discontinuity being identified with the slip.
Any slip vector in the plane of the dislocation surface can be
obtained by superposition of the cases which are considered. The
solution for a dilatational source is also given.

In constructing the solutions the displacement fields due to
certain point forces are used. The notation an is used for the
displacement field at z = o for a unit point force in the n
direction. For a dislocation source specified by a surface with
unit normal n and a unit jump in displacement AU the displacement

. > o~ ~
field at z = o is denoted by u(n, Au).
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First expressions are given for a vertical strike-slip fault
(Y = o in Fig. 4-1la) and a vertical dip-slip fault (Y = o in
Fig. 4-1b). The source is at a depth h 1in all cases although
this appeafs explicitly only in the KD's and KF's.

Using the equivalence theorems of Burridge and Knopoff (1964),

the displacement field for strike-slip motion on a vertical fault

plane is
>xF >yF
o AN ou ou
u(y, -x) = Mg 3y + . (4-6)

The derivatives in equation (4-6) and later in equation (4-8) are

with respect to the field coordinates x and y, not with respect to
P ~

the source coordinates x and Yor The components of u(y, -x) in

circular cylindrical coordinates are

u
% a s y B
uz(y, -X) =5~ sin 26 J KFP (-k J,) dk (4-62)
o
u_(y, -X) =is- sin 26 KF ~kJ +2—J + KFC _EJ dk
r 2 2'n' 1 T 2 C r 2
o
(4-6Db)
u(y, -x) = EE- cos 26 KFB - J + KF -kJ; +=J dk
8 Vs 27 B T 2 1 r 2
o
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In the above and subsequent expressions ﬁs is the rigidity of the
source layer and the argument of the Bessel functions is kr.

The field, 3(§, - 2), due to dip-slip motion on a vertical fault
plane is the same as the field, (-2, ¥), due to a horizontal thrust.
Since 2z 1is a separable coordinate surface in the latter field,
the displacement dislocation can be constructed directly. The

> i
components of u(y, -z) are

B

uz(Y, -z) oy sind KDP <FJ1>dk (4-72a)

]
IH
oO-——38

=N g B : C
ur(y, -z) o sing KDB (kJO kJ2> o KDC (kJO + kJ2> dk

(4-7b)

I
IH
o——38

B c
KD (kJo + kJ2> + KD, (kJO - k32> dk

(4-7c).

]
l%
o——38

ue(y, -z) i cosd

EA denotes the surface displacement field due to a dilatational

source. Using the source equivalence theorems this can be shown to

be

+xXF >+yF
o S o o S T Ju Ju i
v = ulz, z) - 2ug (ax * oy ) (4-8) .

A ; ’ ’ : A
u as given is for a unit source expansion. The components of u
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are determined by

O -

fE 0 Ik oy b (4-9)
27 ) B 1
and
>xXF >yF ~
ou ou -z B
5x ¢ 9y 2nJ Kep (kJ ) dk
(o]
+ [ {gp® (k1) > odk (4-10)
27 B 1 °
(o]

For a strike-slip fault with a dipping fault plane the geometry

of Figure 4-la is used and the notation

—)SS_—> ~ . ~ £
u = u(cosy y + siny z, -X) .

Using the kernel, [Io (QQ-ﬁ]-Az, from equation (2-12) this can be

written

W% = cosy u(y, -x) + siny u(x, -2) (h=11) «

—> A A A * ~
u(y, -x) is given by equations (4-7). z(x, -z) can be obtained by

rotating the field 3(§, -2) through g— about the 2z axis carrying
y into x (i.e. replace 6 by 0 +'% in equations (4-7a, b, c)).
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For a dip-slip fault with dipping fault plane the geometry of

Figure 4-1b is used and the notation

=5 ~ 7 ~ A~
u = = u(cosy 'y + siny z, siny y - cosY z) (4-12).

Again using the kernel of equation (2-12) this can be written

_d ~ ~
°° = cos 2y a(y, -z)

+sin 2y | 3 R/ 2, -/E69))2)
(Ame )
+ —(—l:(-‘:s—y u(z, zZ )
us (Cs~7> SEXF aﬁyF ) }
T2 (e D ( ox oy e

c, is the parameter c¢ in the source layer.

5 5 asz aﬁyF
Expressions for u(¥, -z), u(z, z), and — + 5y p—

given in equation (4-7),(4-9), and (4-10), respectively.
u(V2(~%x+9) /2, - V/2(%+9)/2) can be obtained by rotating the field
§(§, -x) through 1I/4 about the z axis carrying x into y (i.e.
replace 6 by o - %- in equations (4-6a, b,c)).

Expressions for the components of tilt and strain for each

of these sources are given in Appendix 11.
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The KD's and KF's were generated numerically and approximated

by a series

nz —azk
K(k) = E AQ k" e (4-14)
2

where A, and o are numerically determined constants and n

2 L L

is an integer. The resulting approximation can be integrated exactly
to give displacement, tilt, and strain fields at the surface of the
half-space, This is a simple adaptation of a procedure used by

Biot (1935). The necessary integral is given in Erdelyi (1954) and
the forms used for this work are listed in Appendix 10.

A more detailed discussion of the numerical procedure is given
in Appendix 15; however, a few comments should be made here. The
procedure used almost certainly does not converge. For a limited
number of terms the integral kernels for certain structures can be
approximated to within about a per cent over a wide range of k.
Subject to certain qualifications which are discussed in Appendix 15,
an approximation over a wide range of k gives results which are
valid over a wide range of distances from the source. This allows
a convenient calculation of the deformational field for those
structures which can be approximated. Although the class of
structures which can be treated satisfactorily is small, it allows
establishment of the principal points to be made in this study. The

cause of the difficulties for structures which cannot be hahdled
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satisfactorily as well as a suggested integration procedure to
improve upon the one given here are treated in Appendix 15.

The behavior of the solutions for large r can be obtained from
the solution representations by taking the limit as k - o and
integrating the resultant expressions. These are useful as a check
on numerical calculations and for determining certain general
properties of the solution fields. The limits are given for the

surface displacement fields of equations (4-6, 7, 8) in Appendix 14.
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Chapter 5

DISLOCATION‘MODELS OF FAULTING AND
THE EFFECTS OF LAYERING ON THE

DEFORMATIONAL FIELD IN A HALF-SPACE

Choice of Source Model

If the source region of an earthquake is surrounded by a surface
£', then for some choice of ' it is usually assumed that outside
' the deformational field due to the earthquake is described by
the equations of elasticity. The accumulated evidence from seismology
indicates that this is certainly true over a large range of frequencies
for the mantle of the earth. Archambeau (1967) reviews possible
source mechanisms and concludes that reduction of stress on a surface
', as described above, is a satisfactory source description for the
most likely mechanisms. To be specific an earthquake is assumed
due to shear failure which can be described by simple Coulomb
fracture or modified Coulomb fracture.

The above mechanism manifests itself as faulting. The
association of faulting and earthquakes in the southern California
region has been carefully documented by Allen et al. (1965). The
static deformational field due to a fault is assumed to be essentially

the same as the field due to the introduction of a stress free
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surface into a prestressed elastic medium. The fault plane is
taken to be a surface where the stress drops to zero, so that the
surface L' above becomes the non-volume enclosing surface, I,
of Chapter 2. Actually there need only be a reduction in stress
over the fault surface, but for the problem considered here the

distinction is not important.1

The approximation of the volume
enclosing surface I' by the non-volume enclosing surface I should
be adequate as long as the zone of non-elastic behavior on either
side of the fault surface is small compared to the length and width
of the fault surface.

In Chapter 2 it was shown how a properly choosen dislocation
source, Aﬁ, together with equation (2-12) can be used to calculate
the displacement field due to the introduction of a stress free
surface, I, into a prestressed medium. As was pointed out there a.
proper solution of the problem requires a knowledge of the prestress
field which then, in principle at least, allows calculation of
precisely that AU which causes the surface I to be stress free.
In practice dislocation theory has been used by choosing a AU which
is analytically convenient and which, on physical grounds, is

expected to resemble the Az for a particular type of faulting.

This is the approach, for example, of Press (1965), Maruyama (1964),

lFor some purposes, for example, the calculation of elastic strain
energy release, the distinction may be quite important.



] G

and Savage and Hastie (1966). The accuracy of this type of
approximation can be tested against the few exact solutions for the
introduction of a stress free surface into a prestressed medium.
Knopoff (1957) gives the solution for a two dimensional strike slip
fault in a homogeneous half-space. Keilis-Borok (1959) adapted a
solution of Neuber's2 (1946) for a slip fault in a whole space.
This study is designed to evaluate the deformational field at
intermediate3 distances, so a detailed comparison of the exact
solutions and the typical dislocation approximation of a constant
AU over I is not made. However, certain properties of the
comparison which are important in justifying the models used are
discussed below.

For a given plane fault surface I with total area ZA, if a

-
constant AuC is chosen by

2There are some omissions in the solution as printed in Keilis-Borok's
article, so that, if the complete details of the solution form are
desired, it is advisable to use Neuber's book.

3The term "intermediate" distances is used here for distances of
several fault lengths. When discussing a plate-like layer over a
weak layer, "intermediate'" is used to refer to distances of several
plate thicknesses. The fault lengths and plate thicknesses which are
appropriate are from 40 to 100 km.
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then, for a homogeneous, isotropic whole space, the far fieldL+ from
the model with this Aﬁc is the same as the far field from the exact
solution. This is easily verified for the Neuber solution. For a
general plane fault surface in a homogeneous whole space the
distribution of Az is not known apriori, but if its average
components are estimated, equation (5-1) can be applied. The reason

for this is seen in equation (2-12). [IO'(Q)-K ]-Az can be expanded in

the form

r is taken as a convenient measure of distance from the fault plane,
say the distance from the center of I, and the expansion is valid
outside of a surface centered at r = o and enclosing I. Since
the expression for [IO(Q)-K ]°A3 is known explicitly for a homogeneous
whole space, e.g. Maruyama (1964), this form is easily derived.
An depends only on the direction to the observation point. The

o)
choice of Azc over I may or may not be a good approximation
for the near and intermediate fields. This depends on the particular
situation.

In order to further develop the nature of the approximations

used here, considerations similar to those in the last paragraph

N
By the far field is meant the asymptotic behavior of the field as
distance from the fault goes to .
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are undertaken for a half-space. Only the deformational field at the
surface of the half-space is considered. Two cases illustrate the
ideas. Using the results in Appendix 14 for o = % the limits as

T = @ are

U, %) =y £{ £5sin 20+ 6 2 cos 20 +
>
Lo p n
z 2 sin 206 + 0 [;33
- h 3 A N
uly, z) = - 73 5o T sing + 0 EEEJ
28 = . z
+t x5 Zsine+0 (55

>, A A > A ~
u(y, x) is similar to the result for a whole space, but u(y, z)
n

contains terms of the form EE . In this case the appropriate
= T
choice of Auc is
Jf h" AT A2
% z
Au = —— (5-2).
¢ z
A

As a simple example, if AU = Aﬁo and I, is defined by

-L<X; <L, H < h <H) , then equation (5-2) is
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2 L
Aqu J h" dX;dh
T = n+1l n+l
Auc = = Auo
2 L (Hp-Hy) (n+1) (Hp-H;)
(H,+i,)
If n=1, Auc = Auo SR T that is the point source is placed

at the midpoint of the dislocation surface. The above approach
amounts to the beginning of a multipole expansion of the source. The
point to be made here is that for sufficiently large distance from
the source a properly chosen point source approximation may give an
adequate model of the deformational field for a dislocation model
of faulting. A weak test of the accuracy of the approximation is
given by the asymptotic expressions as above. If the integral
kernel [gogg)Fﬁ]-Aﬁ is known for all distances from the source,
a strong test is made simply by choosing point sources at a few points
on the dislocation surface. Comparison of the predicted field at a
given location shows whether the field is sensitive to the distribution
of AU over I. TFor the latter case as many points sources as are
necessary can be used in the approximation. This last procedure
amounts to numerical integration.

' The choice of the correct AG over I is not determined by the

above. Short of complete solution of the stress release problem
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either field evidence or physical reasoning must be used to determine
the appropriate AG. The closer the observation point is to I, the
more important is the direction of AG and its distribution over I.
A point source approximation is used in the calculations for the
models considered for Chapter 7. The adequacy of the source

approximations is discussed with the individual cases.

Some Properties of the Surface Displacements in a

Layered Half-Space

In this section some simple properties of the displacement
field at the surface of a layered half-space are pointed out.
These properties are derived from the asymptotic behavior for
large r supplemented by some numerical results. Expressions for
the asymptotic behavior of three source types in a layered half-
space are given in Appendix 14. The formulas are not repeated in
this section. The limits considered are surface displacement
fields as r, the distance from the origin, increases.

For a vertical strike-slip fault as r =+ « each component of
the field is dominated by a term which dies off as -%7 . For a
vertical dip-slip fault the r and © components die off like
%3— while the 2z component dies off like %E" Since tilts are
derivatives of the r and 6 components, the relative importance

of these two field types at large distance can also be estimated.
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All field components due to dip-slip motion on a vertical fault
plane die off more rapidly away from the source than the same
components due to strike-slip motion on a vertical fault plane.

By source equivalence the same statement follows with slip motion
on a horizontal thrust fault substituted for dip slip motion on a
vertical fault plane. Reference to equation (4-13) shows that
dip-slip motion on a dipping fault plane contains components which
die off like %5" so that the vertical fault plane is a very
special case insofar as its far field behavior is concerned. Dip-
slip motion on a nearly vertical fault plane is still a relatively
poor excitor of far field compared to the same amount of strike-
slip motion since the angular function is relatively small. For a
dilatational source the ¥ component dies off 1ike.vl—- and the

r?_
1
r3 °

z component like
In all the fields considered above those displacement components

which die off like %i' depend on the elastic properties of the

bottom half-space and not upon the source depth. They do not depend

on the elastic properties of the layers except for the rigidity

of the source layer which acts like a factor which scales AG  from

the source layer to the bottom half-space. It follows that as

distance increases the largest deformational fields are controlled

by the properties deeper in the medium. Those displacement components

which die off as %g or faster depend upon source depth and the

elastic properties of the layers as well as upon the elastic
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properties of the bottom half-space.
For a single layer over a half-space those displacement fields

which dominate at large distance, that is those which die off like

¥y
%E , all contain the factor i If ¢;, ¢y, and h are
2

considered fixed, then increasing upp decreases the fields at large
distance and decreasing ﬁz increases themn. To a first
approximation the mantle has ¢ constant with depth and ﬁ increasing
with depth. The implication from the asymptotic form is that the
surface deformational fields on the earth will be reduced relative
to those predicted for a half-space model with the source layer
properties. The distance at which the asymptotic forms of Appendix
14 become dominant may be fairly large, so that at intermediate
distances the deformational fields will not necessarily show the
simple relative reduction which the first term in the asymptotic
theory predicts. Physical reasoning suggests that the property

of increasing rigidity with depth is the most important property

of current mantle models insofar as the static deformational

fields are concerned. Numerical calculations were made for a model
in which the properties were the same with depth except that the
region from a depth of 1 unit to 2 units had the rigidity doubled.
The results were compared with a half-space model for three source
types and displacement, tilt, and strain fields. More general
comments concerning the effect of structure are made in the next

section, but the. point to be made here concerns the most important
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displacement fields, those with a -%E die off at large distance.

At a distance of 2 to 3 units, where the effect of the layer of
increased rigidity is a maximum, these fields generally show a
reduction due to the layer of increased rigidity. Details due to
local warping of the fields complicate the picture, but the conclusion
is that conventional earth structure will generally decrease the
important deformational fields with increasing distance even at
intermediate distances.

The asymptotic forms yield no direct indication of the distance
at which they are applicable. A comparison of asymptotic and numerical
results is given in Table 5-1. The structure has two layers each
of unit thickness over a half-space. The rigidity in the upper layer
and the half-space is 1; the rigidity in the second layer is 0.5.
Poisson's ratio is 0.25 everywhere. The results tabulated are for a
strike-slip source at a depth of 0.1l. The quantity UZ/UZH is the
vertical‘displacement field normalized by the vertical field in a
half-space with the properties of the source layer. R 1is the
distance from the origin in units of layer thickness. The
asymptotic form includes terms of order I%E- and -%g . This
asymptotic result is good to about 5% at a distance of 20 and to
about 1% at a distance of 30. At a distance of 10 it shows
amplification of the field relative to the half-space where the
numerical result shows reduction. TFor a more severe change in

parameters an. even larger value of r will be required before the



-80-

asymptotic form, to the order calculated, becomes a good approximation.
For fields which die off more rapidly with distance, both higher

order terms and probably more terms are required for a comparable
estimate. For the distances and for the severe changes in elastic
properties considered subsequently, the asymptotic forms are not
sufficient although the general properties given in this section

are still useful in appraising the results.

Nature of Weak Layer Model and Some Typical

Results of Calculation

Among the possibilities that might explain the anomalously
large tilt and strain observations is a weak or soft layer in
the crust or mantle. A three layer model was used to investigate
the effect of a weak layer on the static deformational fields due
to a seismic source. The elastic constants in layers 1 and 3
(the bottom half-space) were fixed and equal. o; and 03 were
taken equal to .25. ugz was taken as the unit of rigidity. The
elastic constants in layer 2, the source depth h, and the thickness
of layer 2 were varied for three point source models, a vertical
strike-slip fault, a vertical dip-slip fault, and a dilatational
source. For convenience, in this section only, the first two
sources will be called a "strike-slip source" and a "dip-slip

source', respectively; it being understood that the fault plane is
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vertical.

Displacement, tilt, and strain fields were calculated at the
surface of the layered half-space and compared to the same fields
in a homogeneous half-space with the properties of layer 1. Weakening
of layer 2 either by reducing the rigidity, w2, at comstant o,, or
by reducing up with A, constant can result in amplification of
the deformational fields particularly at intermediate distances
from the source. The amount and sign of the amplification (changes
in the sense of the field at a given distance occur) is quite
variable when different source types and different source depths
are considered. Despite this diversity large amplification is
usually achieved only by large variations in the rigidity or Poisson's
ratio in layer 2. Exceptions to this occur for field types which
show a high rate of fall off with distance in a half-space.

In order to achieve sufficiently large amplifications to relate
the theoretical predictions to the field observations, the strength
of layer 2 had to be reduced to the point where the effect of
gravitational forces could not be neglected. To bound the variations
in up; and o0, calculations were done for a plate over a liquid
as described in Chapter 4. It was found that the near and intermediate
static field for a plate over a liquid is similar in shape and
amplitude to the field for certain types of weakening of layer 2
of the 3 layer model. This similarity depends both on the values of

U2 and o,  and the relative sizes of d; and dy, . The amount
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by which u, and o, can be varied is limited by the numerical
capabilities of the program. A numerically convenient method of
achieving surface deformation fields which, for near and intermediate

distances is similar to that of a plate over a liquid was

M2 = .01 pl

o
I

d, =~ 60 km.

The numerical similarity is illustrated in Figure 5-1 in which the
kernel KF? is plotted as a function of k for several models.
Models 1 and 2 are for a source in an elastic plate overlying a
liquid. In both of these models the source depth is 1/4 the plate
thickness, o = .25, p = 3.5 x 1011 dynes/cm?, and the product,
density times gravitational field, is 3500 dynes/cm3. In Model 1
the plate is 20 km thick. In Model 2 the plate is 100 km thick.
Models 3, 4, and 5 are all two elastic layers over an elastic
half-space. The elastic constants in layers 1 and 3 are fixed as
indicated in the first paragraph of this section. Layers 1 and 2
are each one unit thick and the source is in layer 1 at a depth of

255 Model 3 has o0, = .25 and By = .01 u; ; Model 4 has

Ay = Uy and py_ = .01 uys and Model 5 has 05 = .25 and Wp = M

2 1

(making it a homogeneous half-space). The kernel between about

k = .1 and k = 5 determines the behavior of the solution at
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intermediate distances. In this range of k Model 3 is intermediate
between Models 1 and 2 while Model 4 is somewhat different.

The results described below are for o, = .25 and u, equal
to some fraction of u;. This is intended to model decoupling by a
gradual liquifying of the weak layer. The method is arbitrary, but
should show the correct general patterns.

Figures 5-2, 5-3, 5-4, and 5-5 show some effects due to
varying source type, source depth, rigidity of layer 2, and layer
thickness. The ordinate in these figures is the ratio of the tilt
(or strain) field in the layered half-space to the tilt (or strain)
field in a uniform half-space with the properties of layer 1.

The abscissa is the distance along the surface in units
of the thickness of layer 2. yu dis the rigidity of layer 2 in units
of the rigidity of layer 1; D is the thickness of layer 1; and
H is the depth of the source below the surface. The fields were
calculated in circular cylindrical coordinates. For tilts the curves
labeled R and 6 are for the radial and azimuthal components of
tilt, respectively. For strains the curves labeled R, 6, and S are

for strain components e > ©5g° and e respectively.

¥6”
Figure 5-2 shows the effect of different source types. The

dip slip source shows by far the greatest amplification and this

occurs with the sense of the tilts reversed compared to that in a

half-space. The rigidity reduction in layer 2 by a factor of 10 is

quite extreme when compared to the elastic parameters of current
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earth models.

Figure (5-3) shows the effect of varying source depth for a
dip-slip source. The amplification of the field is very sensitive
to source depth for this case. For a dilatational source the effect
of source depth is still moderately strong, while for a strike-slip
source the effect is a small part of the total amplification.

Figure (5-4) shows the effect of varying the rigidity of layer
2 for a strike-slip source. Decreasing rigidity amplifies the tilt
and causes the maximum tilt to occur slightly farther from the
origin.

In Figure (5-5) the effect of decreasing the thickness of layer
1 is shown for a strike-slip source. The principal effect is a slight
increase in the total strain amplification. For the other sources
the strain amplification is usually less than that calculated for
the strike-slip source.

The examples shown illustrate the most extreme effects found.
Larger reduction in the rigidity, of course, gives larger amplifications.
The tilt field for a shallow dip slip source shows rather startling
amplifications at some distances, up to *1000 for w, = .01 p; .
However, for a given source strength, the absolute field after
amplification is of the same order as that for a strike-slip source.
Even for the most extreme models considered the amplification can only
approximately eliminate the difference in rates of fall off at

intermediate distances from the source.
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Chapter 6

A PERTURBATION PROCEDURE FOR CALCULATING THE EFFECTS

OF LATERAL INHOMOGENEITIES ON THE EARTH'S FREE OSCILLATIONS

One of the problems associated with the hypothesis of a weak layer
in the upper mantle or lower crust is the effect upon the dispersion
of surface waves. Harkrider et al (1963) did some calculations showing
the effect of thin weak or liquid layers on Rayleigh wave dispersion.
They concluded that an exceedingly weak layer can be detected even if
less than a kilometer thick if the layer is of sufficient lateral
extent. For a layer in the lower crust or upper mantle the effect of
lateral extent is critical. The agreement of low mode free oscillation
data with theoretical models based on body wave structure argues
against any shallow very weak zones of large lateral extent. For
Love waves a weak zone at about 60 km depth should begin to have an
appreciable effect on observed dispersion at periods between 30 and 50
seconds; the corresponding wave lengths being about 120 to 220 km. If
the weak zone were only a few wave lengths long the effect of lateral

extent could be quite important.

A Perturbation Procedure for Lateral Inhomogeneities

A perturbation technique is applied to the problem of the free
oscillations of the earth. The problem is formulated so that the
effect on the free oscillations of regional variations in physical

properties can.be calculated. This result is related to surface wave
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dispersion through the implied great circular travel times. The
problem is of interest independent of the question of the existence
of weak zones in the earth since known differences in dispersion
over continental, oceanic, and tectonic regions imply significant
lateral differences. Backus (1964) has given a procedure for
inverting great circular and great semi-circular phase velocity data
for periods when a traveling wave view is appropriate. Toksdz and
Anderson (1966) have interpreted observed phase velocity differences
over different.paths using path-averaging. Smith (1966) has presented
free oscillation data showing different observed periods at different
stations. The observed differences are probably due to regional
variations in earth structure. The theory given here can aid in
more precise interpretation of observed differences in free oscillation
periods and in connecting free oscillation calculations with the
traveling wave viewpoint. Backus and Gilbert (1961) calculated the
rotational splitting of the free oscillations of the earth using a
perturbation approach. The technique used here is essentially the
same although the emphasis is upon an operator formalism which is
convenient for lateral variations which occur over a distance which
is short compared to the wave length considered.

Two types of perturbations are treated:

a) perturbations in A and u for a spherical, gravitating
earth model;

b) perturbations in A, u, and p for a spherical, non-gravitating

earth model.
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The theory given allows calculation of the first order change in
eigenfrequency, as would Rayleigh's principal, and also contains
expressions for changes in the eigenfunction and expressions for higher
order changes can be formed by simple extensions. The computational
effort to obtain more than the first order change in eigenfrequency
may be considerable.

For a complete treatment of the problem it is important to extend
the theory to include perturbations in density and shape, and the
effect of rotation. As mentioned, Backus and Gilbert (1961) have
treated rotation and some aspects of perturbations in density have
been considered by Backus (1967). The theory and results developed
here should be adequate to give good estimates of the effects of
lateral inhomogeneities on fundamental mode torsional eigenfrequencies.

The equations of motion for a spherically symmetric, gravitating

earth are

0o (0 oy _ g0 ro Toy ° o o o o
p°V(g®+u’) —0°g° (V-w?) = (A°+ 2f) V(V-w’) + u°vx(V x u’)
(6-1a)

- o e S0 o\, (g o o _ %gyo — o o o
(Va°) (v un) (Vu®) (Vun + unV) 0 vwn o) 0% u’

and

~47yVe (p° 3;) + Ve (792) = 0 (6-1b)

Notations for equations used in Chapter 6 are given in Appendix 12

o

when not defined here. In equations (6-1 a, b) A°, u°®, o and g° are
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functions of r only. If X and u are functions of 6 and ¢

also, equations (6-1 a, b) become

. e T s -
0°V(g un) p°g° (v un) A+ 20V un) + uv x (V x un)

> . - - iy (6"28)
—(VA)(V'un)-(Vu)'(Vun + unV) - p°V¢n = c_np°un
and
° + L = -—
-4myVe (p un) + vV (an) 0 (6-2b) .

Equations (6-1) are given in Alterman et al, (1959) among others;
equations (6-2) are given in Hoskins (1920); both follow Love's
derivation (Love, 1911; Chapter 7).

Let the differences in A and yu which change equations (6-1)
to (6-2) be small so that o, and ﬁn’ the eigenvalue and eigen-
function for the perturbed problem, are nearly equal to those of the

unperturbed problem. Define the perturbations by

Al<rs eb ¢) A(r: e: ¢) = Ao(r)

pl(r, 6, ¢) = u(r, 8, ¢) - u°(x) .

Then for notational convenience the following definitions are made
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p°V(g%+.) - p°8° (V-.)=(A° + 24°)V(V-.)

+ u°vx(V x J)=(VA°) (V-.)

— (Vu®)+ (V. + .V)

=4y (p°~)




B

and

|

G0

- (A + 2u)v@-L) + ulvx (v x 2)

(val) (v--~)

(Tul)« (V. + V)

(=%

vy

e
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The matrix operator L, is applied to the column vector v; by

using ordinary rules of matrix multiplication so that equations (6-la,

b) are written

fﬁl n _n (6-1c)
and equations (6-2a,b) are written

(L® + Q)irl =0 p° % (6-2¢)

A procedure is now followed analogous to that given in Dicke and

Wittke (1960), (Chapter 14), or Mathews and Walker (1964), (Chapter
10). Equation (6-2c) is written

(L° + aQ) :ﬁl =0_p :31 (6-24)

where ¢ 1s an arbitrary parameter which identifies the order of

the terms in the assumed expansion

v =v° 4+ av 4+ a‘v. 4 - (6-3a)
o o _n _n
u =u® + aqul + a2u? 4 v (6-3b) .
noo_n _n _n

G =0 + acl + 0262 4 ee- (6-3c)
n n n

i il .
The column vectors v and u are defined

’n “n by
54 i
v = u
n ol
vyt
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and

0
S

Substituting equations (6-3a, b, c) into equation (6-2d) and equating

o ; th
coefficients of the same power of o gives for the zero— power of o

o _.o °© o _.o
= u 6-4
Lz’f_l_ an_rl (),
for the first power of o
[ 1 - .o o _.1 1 .o _.o©
v: +Qu = + u 6-
Ly POt moge By o ety L
etc.
5
ﬁé is expanded in terms of the u;
> -
1 = ° -
Yn z %n Ym (6-6)
m
where
o 1
a = ®
m (um ’ un)

The inner product is defined by

(Zo* > wly = fJJ 3;*°31 p°d(vol)

m n n

_—)—
and the u; are normalized so that

- =y
(u;* . u;) = 1 .
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Ottelet (1966) has shown that

ok oy _
<um 2 ul) B amﬁ )

It is assumed that
Y = ° -
vy,) % a v 6-7) .

The constant a in equation (6-7) is the same as the constant a
in equation (6-6) and there has been no use of an orthogonality
condition on the Vw; to obtain equation (6-7). Equation (6-2b)

is satisfied by this assumption for all orders of a.

From equations (6-6) and (6-7) there follows

1 = o -
Ty = z a_ v (6-8a)
_n m _n
and
1 = o —
EE % a_ EE (6-8b) .

Substituting equations (6-8a, b) into equation (6-5) and using

equation (6-4)
o ° 4 o - o SR 1 o o - .
Z Om %p P Eg Q Uy n 2 P Un 2° "n L)

The fact that equation (6-2b) is satisfied for all orders of a results
in the second of equations (6-9) being satisfied. The first of

equations (6-9) is



o oo o _ oo 1 .o7%0 o
z o @, pou + Q1 u o Z a piu’ + o  pu (6-10).

m m

Taking the vector inner product of equation (6-10) from the right

yields

»>%% -
° . Oy o O 1
o, 2, + (uz, Qllun) o, 2 + o 62n

where
3 o ok o
(UO;_" Qllun) = JJJ u‘z‘,u (Qll uQ,) Qod(VO].).
If 2 =n,
ol = (@% Q! w) " (6-11)

and if 2 # n

> 0., -,

% nll 7o
(U'Q'y Q un> (6—12)
8y = c° - o°
n 2

Equation (6-11) gives the first order perturbation in the eigen-
frequency of the nth mode and equation (6-12) gives the coefficients
for the first order change in the eigenfunctions. Further calculations
here will involve only equation (6-11), but a few comments are made
on the formalism developed above because of its possible use in other
studies.

General application of equation (6-12) will involve considerable
calculative effort since the inner products of the spheroidal and

toroidal eigenfunctions over limited regions of a sphere are involved;
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however, the results contain information about the amplitude of the
eigenfunction over a slightly inhomogeneous sphere which should be
useful in interpreting observed surface wave characteristics in
terms of earth structure. TFollowing Morse and Feshback (1953),
(Chapter 9), the above procedure can be extended to include the
effects of perturbations in boundary shape. This allows treatment
of the effect of the varying elevation of the earth's surface. The
above development has assumed non-degenerate eigenfunctions which are
sufficient for the work which follows since the actual perturbations
calculated are ¢ independent which allows choice of an appropriate
zero order set of eigenfunctions by inspection. Treatment of more
realistic earth models will require extension of the procedure to
account for the degeneracy of the eigenfunctions. This is straight-
forward using known procedures, for example, in any of the last
three references.

A simple modification of the above allows application of the
formalism to a non-gravitating sphere including perturbations in the
density p°. Dropping the terms which contain g°, g, w;, ¥ in
equations (6-1) and (6-2) and replacing p° by p = p° + alp,

equation (6-2c) becomes

o _ o
(L° + aQ) ZE. = on(p + alp) :El .

L° and V; ‘become
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- (A° +2°)V(Ve~) + u° Vx(V x ~) . 0

L° = - (WA°) (Vo) = (Wu°) o (V. + V)

ﬁ°
n
v B .
_n
0
[SEE——

The rest of the development is essentially as previously leading to

the following expressions in place of equations (6-11) and (6-12)

1 = ok o _ o ok o .
o (un, Qllun) o (un , Ap un) (6-11a)

and

= (6-12a)

8~
Q
|
Q3 o
3
=}
B
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Application of Perturbation

Procedure to Torsional Oscillations

The formalism is now applied to the torsional oscillations of a
layered, spherical earth model. Since an exact solution is developed
for the radial part of the eigenfunctions the Thomson-Haskell matrix
technique can be applied in a manner similar to that for the static
solution given in Chapter 2. The matrix relations for the period
equation for torsional oscillations of a sphere are given in Gilbert
and MacDonald (1960) and are not repeated here. However, the solution
function used here is different from that of Gilbert and MacDonald
and this solution function with the necessary matrix results is
given below and in Appendix 13. A derivation of the solution and a
note on the sense in which it can be extended to spheroidal modes
are given in Appendix 13.

For the torsional modes of either a gravitating or non-gravi-

tating earth model equation (6-1d) becomes
(o] ] (] o ] o o o
v - . + = .
u° vx(v x u®)-(vp°) - (Vu u® ¥ o p u

The solution to this equation is of the form

-5

o _ 7 "
un Nmﬁlp uﬁZ,p (r) CmSZ, (e9¢)

As noted in Appendix 12 the subscript n is used for the mode type

and for the three subscripts m, %, and p. The Eﬁz have been defined



in Chapter 2 and the constant N

.

is defined below so that

mlp
J” Ge*e W 5° r2 sind do d¢ = 1 .
n n
over
sphere
For the solution in each layer u° 1is a constant and p° = %?
where R° 1is a constant. The radial solution function is
T 1
ulp(r) =ATr %2 cosh ks + B r~ % 2 sinh ks (6-13a)
if W +%) > ® and
1 L
ugp(r) =ATr" %2 cos KS + B r 2% 2 sin KS (6-13b)
if W +%) <w .
A and B are arbitrary constants and the following definitions apply
7 = &4 (6-14)
u
s =4nr (6-15)
k = /(o +%)2 - W (6-16a) ‘and
K = Vo - (2 + %)2 (6-16b) .

For a layered earth model with

q layers numbered from 1 through q
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1
N = ' :
mip q . L v
o | 3L 2 br__ (m)! i
'Zl % J Yip,g F @1y (rmyy WL (6-17)
J .
d
rJ_1
The detailed from of uZRP 3 dr and the necessary matrix
T, ’
J

forms are given in Appendix 13.

A perturbation in rigidity within the ith layer is considered

where
pl =y, - yn° constant for rT. € r<r
il i i L u
<
eL $ 6 < eu
0 <€ ¢ < 27
and

ui =M, u; =0 elsewhere. Results are also given for a
perturbation in density of similar geometry but with the magnitude
of the perturbation determined by

R, - R?

®, - RY)

1
i i i r2

where Ri and R; are constants.
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If 1 = ri and L . eL = 0 and Qu = 7, this
perturbation is the same as a change pi in the rigidity of the

iEh layer of the sphere (or similarly for a change in density) This
case was used as a check on the numerical calculations.

For torsional oscillations and these perturbations the pertur-

bation in the operator, Q, is written

Q =0, + 0
where
- 1 .
QV = ] vx(V x ~) 0 for S T<T, .
- 1 ®
2uiv(v ) | 6, <0< 6
0 0 0 € ¢ 2m
Qv = 0 elsewhere 5
I i
—(Vui)-(l, + ~V) 0
QS =
L__O 0
and

Vui =1 pi { d(r—rL) - 6(r—ru) }

1

i
}-—{ a(e—eL) - a(e—eu) }

=

+ 6



-101-

Equation (6-1la) is then

Tok o - a1 or o
(u s Qvun) u; % Bv Ov 3
ok
ok > =___j; e o
(un"qun) R; B B T B, 9 y amd
o
g° (@ Apu®) = (Ri Ri) G° RO
n i 2 e n Ri n-—v v
where
®
u
R J 2 . dr
i p,1
be
= L
B :
k Ba g
Z R® [ u? . dr
21 J 2p,]
J T
J

2
Gu pm 2 aPm
2 2 + 2 .
m p - sin6 do
5 sinb 96
L
Ov =
2 (2+m) !

(28+1)  (2-m)! L)
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T
o 2 u
B F s Y §
L
S
k Fged
2 R® J u?2 | dr
e P, J
J
T,
J
Bpm o o om Bu
. e 2
2 sind Y Sg + m Pl TQ 5
L
2 (f4m) !
(205D)  (b-m)1 YD
- auﬁpii 2p,i
or T =
m m
_ cosH aPR L ol PQ 2 (2+1)
sin® 96 sin26 2
m
1 BPZ _ cosb m
sinb 90 sin26 i) :

m

and
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Results of Calculations

The preceding expressions were programmed for an earth model with
a perturbation in rigidity and a perturbation in demnsity. The geometry
of the perturbed region is shown in Figure 6-1. The calculated change

in eigenperiod, AT, is compared with

2(6u — SL)
Mpve =7 24 (Iy = T :
Tl - TO is the change in eigenperiod for a change in rigidity extending
from 6 = 0 to 6 = 7. ATAVE will be the change in eigenperiod if
Tl = TO is reduced in proportion to the angular distance actually

covered by the inhomogeneity. Brune et al (1961) and earlier Jeans
(1923) showed that the standing wave pattern of a free oscillation
can be viewed as resulting from the interference of two traveling
waves traveling in opposite directions around a sphere. For the

geometry used here the estimate AT is appropriate for a source

AVE
located at the pole with m = 0. In particular, for such a source,

physical arguments indicate that AT E should approach AT as the

AV
wave length of the associated traveling wave becomes small compared
to 2(6 - 6.) r where r 1is the radius of the sphere.
u L o] o
The particular perturbation used was a change in rigidity or
a change in density in a layer 10 km thick centered at 55 km depth.

The mantle model used for the results presented in Figure 6-2 was

one of Prof. D. L. Anderson's models based on data from shield areas.
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The conclusions drawn are not dependent upon small differences in
the starting earth model. In Figure 6-2 for a perturbation from

6 = 15° to 6 = 90° the ratio of the breadth of the inhomogeneous
region to the wave length appropriate to the standing wave pattern
varies from about 1/2 at £ = 2 to about 4 at & = 20. At & =2

the estimate ATAVE is good to about 207 while at & = 20 it is good
to better than 5%. Similarly for a perturbation from 6 = 75° to

= 90° the same ratio varies from about 1/12 at & = 2 to about 9/10
at & = 20. For this case at £ = 2 the estimate ATAVE may be in
error by a factor of 3 to 4, at & = 10 it is good to about 207%,
while at & = 20 it is good to about 10%Z. Similar considerations

for the case where the perturbation varies from9 = 45° to 6 = 90°
give intermediate results. The geometry of the perturbations for
these cases is sufficiently simple that the relationship between the
free oscillation result and a traveling wave view 1s easily seen.
The change in free oscillation period can be directly interpreted

in terms of phase velocity for a great circular path by the formula

21
0

C = T

The interpretation for other geometries is more complicated, but the
above results should suffice for a test of the compatibility of the
hypothesis of a regional weak layer in the upper mantle and observed
surface wave dispersion.

To be specific the following discussion is limited to the case

of a thin weak layer at about 60 km depth. In Table 6-1 the torsional
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free oscillatiéon periods for three models are listed for several
values of the degree number &. A 1is the approximate wave length of
traveling waves which would interfere to give the free oscillationm.
In the column "Model G" are the periods for a 35 layer approximation
to a Gutenberg earth model. In the column "Model G3" are the periods
for a model which is the same except with the rigidity reduced by a
factor of 100 in a 1 km thick layer centered at 60.5 km depth. Column
b, the percentage differences between the periods for Models G and G3,
shows that a regional weak layer with the properties of Model G3
is easily consistent with the long period data. Observed differences
for various great circular paths reported by Toksoz and Anderson
(1966) are larger than the differences between Models G and G3 even
without assuming that the weak layer of Model G3 is of limited extent.

In the column "Model G4'" of Table 6-1 are the periods for a
60 km shell with the same properties as the uppermost 60 km of the
Gutenberg Model G and with the lower boundary a free surface. Column
c is the percentage difference between the periods for Models G and
G4. The differences for the long periods are far larger than
observational differences and show the expected unacceptability of a
world encircling completely decoupling zone. As the period approaches
50 sec the differences in column c rapidly approach the size of
observed differences. This results from the concentration of the
energy in the mode above the 60 km level.

The results in Figure 6-2 and Table 6-1 give a basis for

estimating the effect of a very thin, very weak regional layer on
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surface wave dispersion. However, although the rigidity changes for
models G3 and G4 are limited to a small region in the model, they

are not a small proportion of the original rigidities. To evaluate
the effect of this, the ratio of the actual period change to the
estimate of the period change from perturbation theory is listed for
several models in Table 6-2. The basic model is Model G. The coluﬁn
"Model G1" is based on a model like G, but with the rigidity reduced
by one-half in a 1 km thick layer centered at 60.5 km depth. Similarly
Model G2 has a rigidity reduction to one-tenth of the original value
in the same layer. If the ratio given in Table 6-2 is near 1, the
pe;turbation theory gives a good estimate. This is the case for

the models with a rigidity reduction of 507 and 90% in a thin layer.
With a rigidity reduction of 99% the perturbation estimate is too low
by a factor of 3 at £ = 100 (T ~ 88 sec). When the rigidity is
reduced to zero the perturbation estimate fails, as would be expected.
However, the periods calculated for the shell model, listed for

model G4, Table 6-1, can serve as estimates of the period which would
be deduced from dispersion in a region with a completely decoupled
outer layer which was many wave lengths long.

The above results are now combined to estimate the effect on
surface wave dispersion of a very thin, very weak zone of limited
lateral extent. Column's b and c, Table 6-1, give the period changes
due to an earth encircling weak layer. Reference to Anderson's
partial derivative tables (Anderson, 1964) shows that the percentage

differences for & = 160 are about as large as will occur for the model



-107-

considered here. The percentage change is reduced by the approximate
ratio of the length of path containing the weak léyer to the total
length of path. Then it is increased by the approximate maximum

ratio of AT/ATA I for the appropriate ratio of inhomogeneity dimension

v
to wave length. Table 6-3 lists the calculated percentage changes in
period. These can also be interpreted as the percentage changes in
phase velocity. For long periods the observational differences for
different paths reported by Toksoz and Anderson (1966) are used as
a measufe of an acceptable variation in period. For shorter periods
(about 40 to 80 sec) the variations in typical phase velocities for
different regions summarized by Brune (1968) are used. These measures
of acceptable variations in period are the maximum allowable since
they include known regional structural differences other than a weak
layer. The results for model G3, Table 6-3, are large but acceptable
by the above criteria. For model G4 with £ = 20 results were included
for all cases for completeness, but they are obviously inappropriate
when the weak layer dimension and the path length are both 500 to 2000
km since dispersion for such a long wave length could not be measured
over so short a path. For a weak layer dimension of 1000 km and a
path length of 40,000 km a 0.83% change is predicted which, although
large, is not outside observed limits. For model G4 with 2 = 160
the changes again are comparable to observed limits.

The calculated changes in eigenperiod are sharply dependent upon

the lateral extent, thickness, depth, and rigidity of the weak layer.
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For a weak layer to have an appreciable effect on static tilts and
strains, its lateral extent must be at least as great as the source
to receiver distance, about 200 to 600 km for thé observations
considered here. To a first approximation the effect of a weak layer
with non-zero rigidity is proportional to its thickness. The static
models which showed deviations from the half-space tilts and strains
which were large enough to correspond to the observations are
essentially equivalent to complete decoupling such as characterized
Model G4. The percentage variations for Model G4 are comparable

with observed variations without accounting for regional differences
other than a weak layer. Since other regional differences are
undoubtedly important contributors to the observed phase velocity
variations, their combination with a weak layer will tend to conflict
with phase velocity observations. Although the calculations are
uncertain at approximately the level of the discrepancy, the extreme
weakening necessary in the static models appears to make some
frequency dependence in the rigidity a necessity. Assuming that

a weak layer is due to partial melting, the material may show
appreciable rigidity at high frequencies and virtually no rigidity

at low frequencies. Some rigidity at & = 160 (T = 57 sec) such as

in Model G3 results in period variations of 0.5% to 2% which are
judged acceptable. Longer wave lengths could measure a lower rigidity,
but still be consistent with observed differences because of the
longer paths necessary to measure them.

It is concluded that if decoupling is to be significantly
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involved in explaining the static tilt and strain observations and
also be consistent with surface wave dispersion data, the decoupling
region must have the following properties:
a) the zone or zones of severe decoupling must be very thin,
of the order of 1 km or less; and
b) the effective rigidity of the decoupling zone must show

frequency dependence.



-110-

Chapter 7

COMPARISON OF OBSERVATIONS AND RESULTS FROM THEORETICAL MODELS

In this Chapter the observed tilts and strains are tabulated.
Models are chosen for the source mechanism. The results from
several theoretical models are then tabulated and compared with

the observations. The implications of the comparisons are discussed.

Observations

The observed permanent tilts and strains for the Parkfield,
Baja, and Borrego Mountain earthquakes are listed in Table 7-1. The
possible variation listed after each observation is the author's
estimate of the maximum possible variation in the observed value
which will still be consistent with the record. This estimate
includes a qualitative evaluation of line width, noise level, and
longer term trends in the recording. The listed variation is not
intended as an estimate of standard error.

Some additional comments on the observations are contained
in Appendix 16 where some other observations are recorded. However,
certain critical information is also given here. An attempt was
made to estimate a time interval at the beginning of which there
was no evidence of offset and at the end of which the permanent

offset had definitely occurred. For the Parkfield earthquake it was
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estimated that the offset had definitely occurred within 6 minutes.
While for the Baja earthquake the offsets had definitely occurred in
6 to 15 minutes. The possible reading error is about 2 minutes and
all the records are consistent with the offset having occurred
instantaneously. The records which allow the greatest precision of
reading give the smallest times. These time estimates are important
in comparing the source dimensions implied by the static field versus
the source dimensions implied by the dynamic field.

The implications of the other observations reported in Appendix

16 are as discussed below.

Fault Mechanisms for Parkfield, Baja,

and Borrego Mountain Earthquakes

The Parkfield earthquake has been intensively‘studied resulting
in a unique collection of information on the source mechanism. The
critical parameters for this study are the dimensions and géometry
of the.fault plane and the magnitude and direction of slip on the
fault plane together with its spatial distribution. The data
considered in determining the parameters adopted are given below.

McEvilly, et al. (1967), bound the fault plane solution with

the following two solutions:
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Fault Plane

Strike Dip Motion
(1) N 35° W 88° NE Right lateral 13° upward component
on SW block.
(2) N 29°W 85° SwW Right lateral 26° upward component

on SW block.

The ambiguity concerning the determination of the fault plane is
clearly removed by the field evidence.

Brown et al. (1967) mapped surface rupture and tectonic fracture
patterns along a zone 38 km long which may be 5 to 8 km longer. The
mapping shows two offset fault traces. For purposes of calculating
static fields an "average'" trace somewhere between N 40° W and
N 45° W is indicated. 1In the same paper aftershocks are reported
at depths from 2 to 12 kilometers.

Eaton (1967) presented data on aftershocks of the Parkfield
earthquake which showed almost all of the aftershocks at less than
15 km depth and the great majority above about 12 km depth. The
density of aftershocks was greatest from roughly 5 km depth to within
1 or 2 km of the surface. There were few if any aftershocks very
near the surface which is presumably associated with the presence
of relatively weak sedimentary fill. The aftershock epicenters are
closely associated with the surface trace of the fault indicating a
nearly vertical fault plane.

Allen and Smith (1966) report that the white line on the highway

1.5 km east of Cholame was offset 4.5 cm in a right lateral sense
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10 hours following the main shock with the offset increasing in time.
Brown et al. (1967) measured up to 10 cm of right lateral separation,
locally and up to 7 cm of vertical displacement, locally. The vertical
displacement was not believed to be tectonic and the measurements
were made days to weeks after the earthquake.

Aki (1967) deduced a dislocation with a 50 cm offset at depth
of 3 km moving at 2.2 km/sec by comparing a theoretically calculated
seismogram with observed strong motion records. Hofmann (1967)
reported about 20 cm relative right lateral movement between stations
about 5 to 10 km from the fault. The time interval between measure-
ments was about six months and includes the occurrence of the Parkfield
earthquake. Hoffman's data was used together with Knopoff's (1957)
fault model to obtain an estimate, which is roughly an upper bound,
of the average displacement and depth of faulting. The details are
given in Appendix 17, but for the purpose here a depth of 12 km and
a right lateral offset of 26 cm are accepted.

On the basis of the above the source model given in Table 7-2
was chosen. The variations given for azimuths, distance, and dip
indicate what are judged to be reasonable variations consistent witﬁ
the observations. They were used as guides when varying the parameters
in theoretical models, but not as strict constraints.

There are no studies available for the source mechanism of the
Baja earthquake. A fault plane solution was carried out using the

long period instruments of the World Wide Net and the long period
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instruments of the local network of the Seismological Laboratory
of the California Institute of Technology. The fault plane solution
is given in Appendix 18. The data are judged consistent with the

following solutions:

Nodal Planes

N 53° E § = 90° (could vary to § = 83°
NE dip which changes the
azimuth to N 59° E)

N 37° W § = 72° % 5° (+ 15 is possible but
less likely)

The fault plane solution and epicentral location are consistent with
the earthquake being caused by movement on one or both of the branches
of the San Jacinto fault near the head of the Gulf of California.

The interpretation adopted here is:

Fault Plane Motion
Strike Dip
N 37° W - 72° SW Right lateral with from 0° to 8°

upward on the SW block.

The map in Kovach et al. (1962) showing the San Jacinto fault
near the head of the Gulf of California was also used in determining

the probable azimuth of the fault plane.

The depth of the Baja earthquake is important, but ill
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determined. The USC and GS Preliminary Determinations of Epicenter
cards give 33 km, but this is a restricted depth, not based on a
direct determination. The City Clerk of San Luis, Mexico, stated
that there were reports of ground fissuring and sand geysers. It
is not clear if these were associated with primary surface rupture
or secondary effects due to shaking (Prof. S. W. Smith - personal
communication). Many of the seismograms which were used in the fault
plane solution showed a "double event" which appeared to be due to
two pulses separated by about 4 sec. This may be due to source
complications such as two events on the same fault trace or events
on the two fault traces shown in Kovach et al. (1962). Alternatively,
it may be due to the depth of the source. The accumulated evidence
of earthquakes on the San Andreas fault system favors a shallow
source, but a source at a greater depth than usual is not ruled
out. A shallow source was assumed for the model given in Table 7-2,
but the possibility of a deeper source was also considered. The
fault length, fault depth (dimension from the surface to the bottom
of the fault), and amount of slip were arbitrarily fixed so that the
maximum possible strains at the distance of Isabella, California,
were approximately equal to the observed strains.

The source model for the Borrego Mountain earthquake is based
on the report of Allen et al. (1968). The maximum right lateral,
strike-slip motion reported was 38 cm; therefore, the assumption

here of an average motion of 38 cm is several times what an average
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of observed surface displacements would give. Preliminary

determinations of aftershock locations give depths of less than 15 km.
The California Institute of Technology's Isabella station

is at 35.663° North Latitude, 118.476° West Longitude. The azimith

of the NW-SE tiltmeter and strainmeter is 321.61°. The azimuth of

the NE-SW tiltmeter and strainmeter is 51.61°.

Comparison with Results of Theoretical

Calculations

Source models essentially like those given in Table 7-2 were
used to predict the tilt and strain fields at Isabella. The
results given in Press (1965) were first used to try to fit the
data. The strong disagreement of the prediction and the data led
to the consideration of structural effects. As pointed out in
Chapters 3 and 5 a conventional earth structure, if anything,
increases the difficulties compared to a half-space. The effect
of a weak layer at a depth of about 50 km was investigated by
calculating theoretical deformational fields for models like those
described in the last section of Chapter 5. A variety of parameteré
were varied for each earthquake. The parameters considered and
the amount of variation were determined in each case by comparing
the results of the calculations with the observations. Point
source approximations for strike-slip, dip-slip, and dilatational

sources were assumed. The dip of the fault, the depth of the source,
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the source-station angle (6 in Figure 7-1), the station-instrument
angle (B in Figure 7-1), and the distance from the source to the
station were varied. Deformational fields were calculated for a
half-space model and for a model with a layer of unit thickness and
rigidity, overlying a layer of unit thickness and reduced rigidity,
overlying a uniform half-space. TFor the results presented the
models had Poisson's ratio equal to % in all layers. By allowing
a wide range of source-station distances for each calculation the
possibility of rescaling the model to obtain a better fit to the
data was included. Since there is considerable interplay between
the nature and thickness of the weak layer and the thickness of
the overlying layer this procedure effectively permits consideration
of a wide variety of models.

For each model the deformational fields due to a strike-slip,
a dip-slip, and a dilatational source were calculated. The field
evidence and the fault plane solutions indicated that dip-slip motion
for the three earthquakes is small compared to strike-slip motion.
An extremely weak decoupling layer and a dip-slip source leads to
a great diversity of results. Nonetheless it was generally true
that the values of the deformational fields, due to the dip-slip
motion assumed, were relatively small compared to those due to the
strike-slip motion assumed. This is basicaly due to the smaller
source strength assumed for dip-slip motion. Within the class of

models considered there is no indication that dip-slip motion can
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make an important contribution toward explaining the observations.
An arbitrary expansion or compression in the source region was
modeled by a point dilatational source. Such a source did not
consistently aid in explaining the important features of the
observations. The results discussed below and presented in Figures
7-2, 7-3, and 7-4 are all for strike-slip models.

The large source strengths implied by the observations are
illustrated by comparing the predictions from one of Press's
strike-slip models with the observations. The model assumed had
the fault half-length equal to 19 km, a total source strength of
8.1 x 10!3 cm3, and an orientation 10° different than that given
in Table 7-2. The term "source strength'is used for the product of
fault length, fault breadth, and average slip. The ratios of the
observed tilts to the theoretical were:

observed tilt

-k theoretical tilt ~ + 150

NE-SW observed tilt > 4+ 40

theoretical tilt

This fault model has a source which is compatible with the field
evidencef The predicted tilts have the correct sign, but are much
too small.

The predicted.tilt fields for four models for the Parkfield
earthquake are plotted in Figure 7-2. The models are listed in
Table 7-3. Aki (1967b) reports a seismic moment of 1025 dyne-cm.

Assuming a rigidity of 3.33 x 1011 dyne/cm, this gives a source
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strength of 3 x 1013 cm®. Model D is a shallow point source with

this source strength. It shows the same order of discrepancy with
the observations as the results from Press's model. Model C is

the same with the source strength increased to 1.14 x 101% cm3.
This is considered a very strong source. Smith and Wyss (1968)
associate a source of about one-half this strength with the main shock
at Parkfield. Models B and A show the effect of reducing the
rigidity of the second layer in the model to 1/10 and 1/100 of that
in the top layer. Model A predicts a field which is still over two
times smaller than the observations. A closer fit can of course

be achieved, e.g. by increasing the source strength, but this is
not deemed important. The important point is the degree of
weakening which is necessary to substantially improve the fit. In
either A or B the zone of reduced rigidity must be viewed as a
convenient way of modeling a relatively thin, very weak layer.
Model A is close to a model of a plate over a liquid layer.

In varying the depth of the source in layer 1 when layer 2 was
weakened, it was found that the most important feature was the
relative position of the source in layer 1. A source in the upper
1/3, near the middle, and in the lower 1/3 of layer 1 give essentially
different features in the deformational fields. A point source at
a given depth in layer 1 is roughly equivalent to a source which is
centered at the point source location and distribgted over a depth

range of about 2/10 of the thickness of the layer. Considering the



-120-

extreme features of the structural models necessary to achieve some
correspondence between the theoretical models and the data, detailed
depth distributions and a detailed fit of the data were not attempted
for Parkfield or for the other earthquakes discussed below.

Deformational fields for sources located at either end of the
surface fault trace were calculated for the Parkfield model. It
was determined that integration of the source in the horizontal
direction does not have a strong effect on the field predicted
at Isabella.

As an example of the nature of the observations from the Baja
earthquake compared to a half-space model one of Press's strike-slip
models was used to predict the tilt and strain fields at Isabella.
The source-station angle was taken as 6°, the half-length of the
fault as 50 km, and the source strength as 1.22 x 10!€ cm3. The

ratios of observed to theoretical fields were

. observed strain
NW-SE strain : 2 = 4+ 1.0
theoretical strain

. bserved strain
NE-SE strain O2SEIVES SIEAMN . - 4+ 3.0
theoretical strain

: observed tilt _
NW-SE tilt theoretical tilt = + 10.

. observed tilt -
NE-SW tilt theoretical tilt B 3.2
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Two points are important. First, the source strength adapted is

considered quite large. For example, using the numbers listed in

Brune and Allen (1967), source strengths for four earthquakes of

magnitude 7.1 to 7.2 vary from .6 x 1015 cm3 to 6 x 1015 cm3.

The Baja earthquake has a magnitude of 6.3. By analogy with the

Parkfield earthquake, detailed observations might indicate a rather

larger source than expected. Second, all of the observed components

are very close to a nodal line except the NE-SW tilt, and this tilt

has the opposite sign from that predicted. The most critical

factor in trying to obtain a model to fit the Baja data are the

sign and approximate magnitude of the NE-SW tilt. For a half-space

model a change of over 30° in the azimuth of the fault plane given

in Table 7-2 is necessary to obtain the sign of this tilt. The

relative magnitudes and signs of the other observations are next

in importance, but the nearby nodal line makes the other tilt and

strains change very rapidly for relatively small changes in angle.
The tilts and strains calculated for four models for the Baja

earthquake are shown in Figure 7-3. The parameters of the models

are given in Table 7-4. In this figure the solid lines are calculated

fields which have the same sign as the observed fields; the dashed

lines are calculated fields which have the opposite sign from the

observed fields. The same convention is used in Figures 7-2 and

7-4. The most important point for half-space models, like Model D

in Figure 7-3a, is that the NE-SW tilt has the opposite sign from
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the observation. Also all the fields are small compared to the
observations. Of all the models tried no half-space model gave the
same sign as the observation for the NE-SW tilt. Model C has the
wrong sign at the scaling used, but can be rescaled to give the
correct sign.. For example rescaling model C so that the unit of
length is about 50 km instead of 60 km and the source strength

remains the same, gives

NE-SW tilt 1.1 x 1072

I
+

NW-SE tilt 2.0 x 10~10

NW-SE strain 4+ 5.7 x 10710

NE-SW strain + 3.0 x 10”10

at Isabella. The NE-SW tilt has the correct sign, but is too small.
To match this observation would require increasing the already

large source strength by 40 times. Models A and B show the effect

of having the source appreciably below the middle of layer 1.

Both models show the same sign for the NE-SW tilt as the observationm,
and both show relatively large amplification of the size of this

tilt relative to a half-space. A source strength about 5 times
larger is necessary to match the observed NE-SW tilt. TFor the other
tilt and two strains neither Model A nor B has all the signs and
relative amplitudes in agreement with the observations. No model

tested was satisfactory in this respect. Model A gives as -good a fit
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as any to the relative sizes of the observations, but the strains
have the wrong sign. The thickness of layer 1 and the absolute
source depth in models A and B could probably be reduced by using
a source relatively lower in the plate.

Figure 7-4 shows the results from four models for the Borrego
Mountain earthquake. The parameters for the models are given in
Table 7-5. Since there was no observation to determine the sign, the
arbitrary convention was adopted that a solid line represents SE
up in Figure 7-4a and a solid line represents SW up in Figure 7-4b.
Model D is a half-space model. It shows reversed signs from the
strain observations and, if scaled to match the strain observations,
the NE-SW tilt would tend to violate the observational bound.

These two features, reversed signs and tilt which tends to be

too large, characterized all the models attempted which had a geometry
within a few degrees of that given in Table 7-2. A half-space

model which showed the same signs as the strain observations and

also had sufficiently small tilts had a fault plane azimuth of 332°
compared with 318° for the preferred model in Table 7-2.

Borrego Mountain models with a weak layer and a shallow source'
strong enough to give the strain amplitudes generally gave a NE-SW
tilt which was larger than the observed bound. However, a node
in the tilt field of these models allowed a scaling which could
accomodate the absence of tilts and give the correct sign and

magnitude for. the strains. This is illustrated by model C.
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Models A and B show that a source near the midpoint of layer 1
results in a reduction of the tilt fields over a wide range in
distances from the source. This would explain the lack of tilt
observation under less restricted scaling than model C, but
considerable deviation from the preferred fault plane azimuth in
Table 7-4 is still necessary in order to get the proper signs

for the strains. All these models, despite the large source
strength assumed fall somewhat short of the observed magnitudes for

the strains.

Discussion of Results

For the three earthquakes studied the use of half-space models
to predict the tilts and strains leads to substantial disagreement
between calculated fields and observations. Including the possibility
of a weak or decoupling layer which begins at a depth of about 40 km
to 100 km improved the ability to fit some important features of
the data, but did not lead to a completely satisfactory fit. All
models required a larger source than other evidence supports
although models with a weak layer did not generally require as
strong a source as half-space models. In particular the observed
tilts from the Parkfield earthquake can be fit by either a half-space
model or a model with a weak layer. A substantially weaker source

can be used in the weak layer model. All important features of the
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Baja earthquake cannot be fit by any of the models tried. Proximity
to a nodal line for three of the observations from this earthquake
tends to negate their value in constraining the model. No half-
space model for the Baja earthquake showed the proper sign for

the critical NE-SW tilt, but some models with a weak layer did. The
Borrego Mountain observations could be roughly fit with or without

a weak layer. For all models considered for the Borrego Mountain
earthquake a change in fault plane azimuth from that inferred from
field evidence was necessary to obtain the proper sign for the
observed strains. The necessary change is large compared to what
the.field evidence indicates and could be due to appreciable

lateral variations in earth structure. Assuming a half-space model,
the similarity of source type and source-station geometry for the
Baja and Borrego Mountain earthquakes implies that the NE-SW tilt

at Isabella should be comparable for the two earthquakes. Changes
in the sign of the field, which a weak layer causes, help to

explain the observation that the two reponses are not similar.

In order to give an appreciably improved fit to the data the
degree of decoupling in the weak layer had to be extreme. The
degree of weakening is the principal objection to the models used.
The thickness of the weak layer in the models calculated here is
only an aid in the computational scheme. The model which served
as motivation to test the weak layer hypothesis is that of a

partially molten region in the upper mantle. The precise rheology
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of such a layer is not known, but it is assumed here to act as a
decoupling layer. The models calculated are very simple, but the
interplay of source depth, layer thickness, and variation in rigidity
should give a good idea of the nature of the deformational fields
due to a decoupling layer.

An important associated problem is that an extremely weak layer,
even if very thin, should have an appreciable effect on surface
wave dispersion. The results of the calculations using the pertur-
bation theory of Chapter 6 do not apply directly to the problem
because the theory tends to break down for an extremely strong
perturbation and because the calculations made include only very
long wave lengths. Nevertheless the results indicate that path
averaging, slightly modified for short paths, to determine the
effect on phase velocity can be used. This combined with some
frequency dependence in the properties of the weak layer material
will not violate surface wave data. A recent article by Aki (1968)
bears on this question and supports the possibility of wvery thin,
weak layers in the upper mantle or crust.

The emphasis in the structural models used is on variations in’
the physical properties of the material which occur over a limited
vertical range and a relatively large horizontal dimension. The
observations from the Baja and Borrego Mountain earthquakes suggest
that strong vertical variations in earth structure with a relatively

small horizontal dimension may also be involved. The scale, the
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contrast in physical properties, and the orientation of possible
structural effects has all gradations from regional to local.

For example the rigid plate tectonics of Morgan (1968) or McKenzie
and Parker (1967) involvesstructural units much larger than the
source-receiver distance for the observations considered here.
Effects due to regional tectonics on a scale of hundreds of
kilometers, as suggested by Tomaschek (1957), or the "jostling"

of fault blocks suggested by Hamilton and Myers (1966) (e.g. page 534),
have an appropriate distance scale. Effects due to local geologic
structure with a length scale of hundreds of meters, as reported

by Nishimura (1950), could dominate. Finally very local effects

due to the geometry or physical nature of the recording site are

also a possibility. The last two cases are clearly unrelated to the
weak layer models considered here.

The size of effects due to local conditions at the recording
site is an important problem. The instruments are located in an
abandoned mine tunnel. Topography at the recording site and the
geometry of the tunnel will certainly have some effect. Neuber's
(1946) results show that distortion of the strain field from that
predicted for a half-space model can be expected to be roughly
proportional to the curvature of the topographic surface or the
tunnel interior. Such distortions should diminish rapidly away from

the surfaces and were judged to be small. Two very simple models

show that this argument may not be sufficient. Using Neuber's (1946)



~-128-

solution for a spherical cavity in a medium under tension the effect
of the cavity on a strain measurement was estimated. The true

strain, €,,, was defined as the difference between the displacement

T
fields at two points along the axis of temnsion in a infinite medium.
The strain measured in cavity, e » was defined as the difference
between the displacement fields at the same points, but on the surface
of a spherical cavity. These geometries are illustrated in Figure

€m
7-5a, b. The ratio of the strains is Ef*w 4 1.5

T
Another simple example was calculated using Starr's (1928) solution
for a two dimensional elliptical surface in a uniform shear field.

The true tilt, t,,, was defined as the difference between displacement

T
field components at two points in an infinite medium. The tilt

measured in a two dimensional cavity, t » was defined as the same
difference in displacement field components, but on the surface of

an elliptical cavity. The geometries are illustrated in Figure

7-5 ¢, d. The ratio of the tilts is

t 2E

_ A+2 o
= = O e tanh Eo .

|5

The parameter &O is a measure of the ellipticity of the cavity.
The "measured" tilt shows a change in sign. A variation in the size
of a measured strain by + 1.5 is not important in this study. A

reversal in the sign of the tilt is quite important. The simple
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geometries considered are not adequate to give an evaluation of
the effect of tunnel geometry at the Isabella recording site, but
they do illustrate the fact that it cannot be excluded as a
potentially important factor.

Another local factor which may be important is movement along
joints or cracks in or near the tunnel. An extension of the base
of one of the strainmeters of less than a micron gives a strain
of 1079, During some periods of time offsets of 10~ to 1078 occur
on some of the strain or tilt records; They are not related to
evident seismic events. Their origin is not known. A tilt of 1077
which was recorded for an Alaskan earthquake (see the Fox Island
Earthquake, Table Al6-2, Appendix 16) is so large that it indicates
a relatively local effect. On the other hand of the earthquakes
checked there are many more which do not have an offset than there
are which do, and many of these had larger amplitude waves at
Isabella than the Fox Island earthquake. A detailed study of
possible effects at the recording site is an important remaining
problem.

The source model adopted here although greatly simplified is
considered adequate insofar as the field evidence defines the nature
and dimensions of the source. The question of source strength,
the product of rupture length, rupture width, and average offset,
is the most critical point. The unusual amount, quality and variety

of information on the Parkfield earthquake indicated a source
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strength which is larger than might have otherwise been determined.
It is certainly possible that there are complications in the source
which escape detection. The inclusion of a dilatational
source in the calculations was a simple test of the hypothesis that
there might be regional changes in volume associated with earthquakes.
The apparent spreading in the Gulf of California (e.g. Hamilton and
Myers, 1966, p. 524) and apparent compression reported by Burford
(1968) suggest this source type. One possible complication, although
postulated on an ad hoc basis, is deemed sufficiently pertinent to
be discussed. The extent of the aftershock zone, horizontally and
vertically, is taken to define the fault plane surface. The
concurrence with surface evidence of rupture confirms this in the
horizontal dimension. Vertically it is less certain. A vertical
weak zone, or in the most extreme case, a vertical free surface at
depth associated with the fault zone could give an appreciably
greater effective depth than the aftershock depths indicate. The
net result when observed from a distance is a larger apparent source
strength. One of the cases treated analytically by Walsh (1968),
that of deepening of an already existing fault surface, illustrates
this. The geometry treated by Walsh is different than that suggested
above, but the effect several fault depths away should be similar.
For the three earthquakes considered the source strength which
the static observations suggest and the rapidity with which the

static field attained its new value at Isabella imply strong surface
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wave excitation. The fact that the bounds on the time intervals during
which the offsets occur are essentially determined by record quality
allows for time durations considerably less than the estimates.
Assuming a short time duration for offset and using the magnitude-
moment relationship»bf Brune (1968), the source strength of a 5%
magnitude earthquake is about 1.7 x 10!3 cm3; that of a 6 3/4
magnitude earthquake about 2.7 x 101% cm3. Using magnitude as

the basis, this would give source strengths some 2 to 20 times
smaller than thoseused in the models calculated. Brune (1968)
pointed out that there are uncertainties in applying the magnitude-
moment relationship to individual earthquakes, but the amount of
discrepancy, particularly for the Baja earthquake, is a difficult
point. Some additional considerations can help to explain this.

If there is a vertical weak region associated with the fault zone,

as discussed above, this region may have little stored strain energy
associated with it, and therefore little seismic radiation generated
by its movement. Also the nature of a dynamic stress release source,
as opposed to a step dislocation in time, particularly with a weak
layer present, may not generate strong surface waves when constrained
by the time intervals during which the static offset occurred.

A unique demonstration of source complications was documented
by Allen et al. (1968) for the Borrego Mountain earthquake. Offsets
of 1 to 2 cm were observed on small theodolite nets spanning
Superstition Hills fault, Imperial fault, and Banning-Mission Creek

fault. The time of occurrence of these offsets
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is not certain, but they are apparently associated with strain
release triggered by the Borrego Mountain earthquake. These
particular sources are not strong enough to have an appreciable
effect at Isabella compared to the Borrego Mountain earthquake. For
example a model of the Banning-Mission Creek fault based on the data
in Allen et al. (1968) (fault length 20 km, offset 1 cm, fault

depth assumed to be 20 km) gave strains at least a factor of

10 less than most Borrego Mountain models. A source of this strength
at roughly a distance of 100 km could dominate the offset at
Isabella. Smaller sources which are closer could be equally
important, and this notion eventually scales to movement on joints
in the tunnel constituting very local sources.

The discussion above shows that there are important problems
remaining to be solved in order to achieve a definite explanation
for the observations. The scale of the spatial variations of the
observed tilt and strain fields, particularly with respect to the
question of local versus regional effects, is the most important
problem. Although each recording site and regional structure is
an individual case, the same problem is pertinent for other

observations of the type considered here.



-133-

Chapter 8

CONCLUSIONS

The use of dislocation theory to model the static deformational
field due to seismic sources was investigated. An earthquake is
assumed to be due to faulting which results in a reduction in stress
in a  prestressed region. It is shown that if a stress free surface
is introduced into a prestressed medium, the resulting deformational
field is identical with that of a suitable dislocation source. The
validity of a dislocation source representation can be investigated by
using point dislocation models to test the effects of spatial source
distribution.

A representation of the Green's function for a homogeneous
elastic sphere is derived and used to show that for shallow seismic
sources sphericity cannot be neglected beyond about 20°. For
sources over about 50 km deep sphericity is important at even shorter
distances.

Integral representations for the static surface deformational
fields due to certain dislocation sources in a layered, elastic
half-space are derived. The point source equivalents of a strike-
slip fault, a dip-slip fault, and a volume change are treated.

The asymptotic forms of the solutions and numerical results from
some simple layered models are used to show some general properties

of the surface deformational fields. At distances of a few degrees
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the effect of earth structure is generally a reduction in the field
compared to the field in a half-space due to the increase in
rigidity with depth.

Predicted tilt and strain fields from dislocation fault models
are compared with observed fields for three earthquakes. The
discrepancy between observations and prediction led to an investigation
of the hypothesis that a weak layer in the lower crust or upper mantle
might be dominating the observations. Theoretical models showed
that, if a weak layer is to help significantly in explaining the
observations, the degree of weakening must be quite severe. A
perturbation procedure was developed to calculate the effect of
lateral inhomogeneities on the earth's free oscillations. This
was applied to test the compatibility of thin, weak zones of limited
lateral extent and observed surface wave dispersion. It is
concluded that extremely weak, thin layers in the lower crust or
upper mantle are consistent with observed surface wave dispersion,
but, for the degree of weakening used in the static earth structure
models, some frequency dependence in the elastic properties is
required.

The comparison of theoretical and observed tilts and strains
for shallow seismic source at distances of about 200 km to 600 km
does not distinguish between the weak layer hypothesis and a
number of alternatives. The situation is summarized by the

following conclusions.
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a. Half-space models require a much large; source than other
evidence indicates. Structural models where the mantle has a higher
rigidity than the crust generally increase the source size necessary.
Weak layer models also require a larger source than other evidence
indicates, but generally smaller than that required by half-space
models.

b. The hypothesis of a weak or decoupling layer in the lower
crust or upper mantle improves the ability of the theoretical models
to fit the important features of the observed tilts and strainms.

The improvement is significant only if the weakening is extreme,
so that the weak layer approaches a model of a thin liquid layer.

c. None of the half-space or weak layer models show a
completely satisfactory compatibility with the evidence as to the
nature of the source, the predicted deformational fields, and the
observed fields. This can be due to regional structural effects,
source complications, or local effects at the recording site.
Observations on the spatial variability of the tilt and strain

fields are necessary to distinguish between the alternatives.
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Appendix 1

A PILOT INVESTIGATION OF UPPER MANTLE
ABSORPTION OF SEISMIC ENERGY USING DATA

FROM THE ARPA PROJECT VELA-UNIFORM
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Summary

The unified magnitude, the ratio of the amplitudes of S to P
waves, and travel time residuals were compiled from published
data for five seismological stations. Using one of the stations as
a reference, a relative measure of the above quantities was calculated
for each of the other stations for each of a number of earthquakes.
The results can be interpreted as consistent with regions of upper
mantle with a low'Q and possibly a high Poisson's ratio; however, a
considerably more detailed study is indicated before the interpretation

and reliability of the results can be considered as established.

Introduction

Tiltmeter and strainmeter offsets associated with earthquakes
led to the hypothesis of a regional "soft" or "weak" layer in the
crust or upper mantle. A "weak" layer can reasonably be expected
to be characterized by relatively high absorption of seismic energy,
particularly high absorption of shear energy compared to dilatational
energy, and by relatively large delay times for seismic phases.
Professor D. L. Anderson suggested the use of published amplitude
data available in the "Registration of Earthquakes', Teledyne
Industries (1966), and the '"Seismological Bulletin of the Long-Range
Seismic Measurements Program,' Teledyne Industries (1966), to

calculate a measure of energy absorption. The results reported
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here, which were intended as a feasibility study, were developed

by Professor Anderson and the author.

Data.

The principal source for the data used was 'The Registration
of Earthquakes at Blue Mountains Seismological Observatory (BMO),
Cumberland Plateau Seismological Observatory (CPO), Tonto Forest
Seismological Observatory (TFO), Uinta Basin Seismological Observatory
(UBO), and Wichité Mountain Seismological Observatory (WMO)",
Teledyne Industries (1966a). The location of the observatories is
given in Figure Al-1. The data used here are from either the short
period instruments which are peaked at about .35 seconds or from the
long period instruments which are peaked at about 30 seconds. Some
data were taken from the '"Seismological Bulletin Long-Range Measure-
ments Program," Teledyne Industries (1966b), for stations at Kanab,
Utah (KU); Mina, Nevada (MN); Jasper, Alberta (JP); and Prince
George, British Columbia (PG). The location of the stations is shown
in Figure Al-2. The instruments are essentially the same as for
the observatories. Details can be found in the bulletins.

Three quantities were calculated:

a) the ratio of S-amplitude to P-amplitude at each station

relative to the same ratio at UBO;

b) the ratio of the P-amplitude at each station relative to

the P-amplitude at UBO;
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c) the travel time residual at each station relative to the

travel time residual at UBO.

S/P Ratio for TFO, WMO, CPO, BMO

Calculation of the S/P ratio was restricted to earthquakes for
which the station to epicenter azimuth differed by less than 11°
from the UBO to epicenter azimuth and neither the station nor UBO
was greater than 96° from the epicenter. Data were taken from the
Registration of Earthquakes, Teledyne Industries (1966a), for
May through August. The amplitudes given in the bulletins are
corrected for instrument response. The amplitudes of the P and S
arrivals were normalized (i.e. divided) by the dominant period of
the pulse. The P-amplitude was always taken from a short period
instrument and the S-—amplitude from a long period instrument. The
P pulses used generally report a period near 1 sec (about .5 to
2 sec) while the S pulses used generally show a period near 20 sec
(about 15 to 30 sec). No correction was made for the distance
of the station to the epicenter. The largest possible difference
in distance (using UBO as a reference) is about 20° for CPO. The
restriction on azimuth difference and the restriction that the data
at the station and at UBO come from the same earthquake should tend
to remove radiation pattern and source region effects. The ratio of
nérmalized S to normalized P for the station was divided by the

ratio of normalized S to normalized P for UBO. These twice normalized
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amplitude ratios will be called the "S/P ratio" for the station.
Data were not available or did not meet the restrictions for all
stations from every earthquake, so the results for each station

are based on a 'somewhat different sample of earthquakes.

S/P Ratio for KN, MN, JP, PG
Calculation of the S/P ratio for these stations was as above
except the azimuth and distance restrictions were not applied. Data
were taken from the Seismological Bulletin Long-Range Measurements

Program, Teledyne Industries (1966b), for May through August.

P-ratio for TFO, WMO, CPO, BMO

In the Registration of Earthquakes, Teledyne Industries (1966a),
the unified magnitude is given for all suitable P arrivals.
Corrections for hypocentral depth and distance to the earthquake
are applied. No station correction is made. For each earthquake
the magnitude at UBO was differenced from the magnitude at each
station giving the magnitude difference relative to UBO. The logjyg
of the relative magnitude gives the ratio of the P-amplitude at the
station to the P-amplitude at UBO (the amplitude ratio being
implicitly corrected for the same effects as the magnitﬁde) and
will be called the "P-ratio'" for the station. No correction was
made for radiation pattern. Data were taken from about the first

half of August, 1966.
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P-residual for TFO, WMO, CPO, BMO

The travel time residual with reference to the 1958 Jeffreys-
Bullen Travel Time Tables is also given in The Registration of
Earthquakes. This travel time residual for P arrivals was corrected
according to the "Average Surface Focus Travel Time Curve' given
by Carder et al. (1966) For each earthquake the corrected P travel
time residual at UBO was subtracted from the corrected P travel
time residual at the station to give the "P-residual" for the station.

The data used were from the same time period as for the P-ratio.

Results and Discussion

The results and some statistical measures are given in Table
Al-1. A summary of the results used in the discussion of Q is given
in Table Al-2. The P-residuals were assumed normally distributed.
For the observations which are ratios a logarithmic normal distribution
was assumed (i.e. the logarithms of the measurements are assumed
noramlly distributed). The statistical measures identified as
"standard deviation factor" and 'standard error factor" are the
antilogs of the standard deviation of the logarithms and the
standard error of the mean of the logarithms. They are interded

to be used as multiplicative factors with an intuitive interpretation
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analogous to the standard deviation and standard error.l

Figures Al-3 through Al-6 show all of the data for some of the
stations. The indicated quantity is plotted veréus epicentral
distance from UBO and histograms are constructed for the same data.
Qualitatively the histograms leave some doubt about the assumption
of a normal distribution. Observations indicated by an arrow were
excluded in calculating the results given in Table Al-1.

A simple interpretation of the results is that the S/P-ratio
and P-ratio are very rough measures of upper mantle absorption at
each station relative to upper mantle absorption at UBO - higher
ratios corresponding to lower absorption. The P-residuals are
independent, but it is reasonable to expect more positive P-residuals
to correlate with high absorption. On this basis TFO is clearly
distinguished as the most absorptive station, but other statioms,
for example BMO, show a low P-ratio but a high S/P-ratio.
Complications in this obviously oversimplified interpretation are
discussed later, but for now a calculation is attempted neglecting
the complications and the inconsistency between P-ratios and S/P-
ratios.

Under many assumptions a quantitative estimate of the relative

absorption at the different stations can be made. Let all the

lFor example the P-ratio for TFO is .6 with a "standard deviation
factor" of 2.6, and this is taken to imply that about 67% of the
measurements lie between .6 x 2.6 = 1.6 and .6 ¥+ 2.6 = .2. The
"standard error factor" of 1.1 for this measurement implies that the
true P-ratio is more likely to lie between .6 x 1.1 = .7 and

.6 + 1.1 = .5 than not.
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absorption for a given station occur in a single layer with quality
factor Qi, thickness X, and velocity vi for waves of period Ti, and
let crustal structure and site effects be included in a "crustal
factor" Ai - where i = p for compressional waves, s for shear waves.
Then the amplitude observed at station 1 is
A{ = Ai A

i i
1081 exp(—k1 X )

where A; is the amplitude at the source and

Straightforward algebra gives

AP AP
SR S kP - P
AP AP
2
2C

for the amplitude of P waves at station 1 relative to station 2, and

P A4S p s
A5 /A3 AP A
= - lc "2c it P _ Py _ s _ .S
Ry = of T exp { = [(5 - k) - G - K)IX)
2/772 2¢ lc

for the P/S ratio at station 1 relative to station 2. - Assuming that

the crustal factors are the same for all stations
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Qp i 1
b =
PP (kg 1nR, )
Xl
and
Q, = —
¥ vo1° (k‘l’—kp+k +lnRz)
X

If the Qi are known or assumed the Q? can be calculated. The results
of such calculations are given in Table Al-3. Qi values were assumed
for WMO. The results for Q% = o at WMO would be upper bounds on

Q at TFO if the assumptions were correct. Locations in Table Al-3
which are filled with a dash gave negative Q values which shows

that the assumed conditions are incompatible with the data for these
cases.

The ratio QP/QS can be written

Qp/QS _ u 2 [:
k* + 4u*/3

_ 20-0) ]
T 1-20 [ k* + 4u*/3
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where k* and p* are the imaginary parts of the bulk and shear
moduli, 0 is Poisson's ratio, and o and B are the compressional

and shear velocities. Clearly QY/Q° + » as o -+ 1/2. If all

0 and QF/Q° = %%%E%%T . For o =1/4,

0.4, Q°/Q° = 6. A high ratio of Q° to Q°

losses are in shear k¥

QP/QS = 2.25 and for o
indicates a high value of Poisson's ratio. The derived values of

.Qp, Qs, and.Qp/QS in Table Al-3 show either very low Q, very high
Qp/Qs, or both. Increasing X; tends to increase the Q estimates

and decrease QP/QS, but the derived values in Table Al-3 are

dominated by the P-ratio. Comparing any two stations with P amplitude
differences as large as the difference between TFO and WMO gives
similar results. Jordan et al (1965) have contoured amplitude
patterns for P waves of about 1 second period and have shown that

P amplitudes can vary within the limits in Table Al-2 due to local
effects at the receiver and the source. Therefore the individual
entries for relative P amplitudes are liable to be controlled by

the structure at the recording site. However, Jordan et al (1965)
point out that there are indications of regional systematics with
amplitudes lower in the western part of the United States than in

the eastern part. It is difficult to associate a quantitative value
with the difference, but a 3 to 2 ratio as shown for WMO and TFO in
Table Al-2 appears reasonable. The results in Table Al-3 show

that such an amplitude difference requires a very low Q or high

Poisson's ratio under the assumed conditions. Either result indicates
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an approach to fluid-like behavior. It should be noted that the
lowest Q values in a given column in Table Al-3 are determined
essentially by the assumed values at WMO rather than by the station
observations. There is also the possibility that regional
structural differences determine regional P amplitude differences
so that the inference of low Q or high Poisson's ratio is only
suggestive.

An estimate of the S-ratio, defined in a manner analogous to
the P-ratio, can be derived by multiplying the P-ratio times the S/P-
ratio. This has been done to give the S-ratio in the third column of
Table Al-2. It should be noted that the S/P-ratio and P-ratio were
determined from different sets of data. Since the S-waves typically
have about a 20 second period, the S-ratio should be much less
sensitive to local structural variations than the P-ratio. On the
basis of S-ratio relative to UBO the stations can be separated into
two groups — UBO and TFO with an S-ratio of 1 or less, and WMO, CPO,
and BMO with an S-ratio of 2 or greater. Using the same derivation
as given for Q? previously, but with s substituted for p, the QS
at one station can be assumed and the Qs at other stations calculated.
the results of such a calculation when QS values were assumed at
BMO are given in Table Al-5. For X; = 100 km. the upper bounds on
QS at UBO and TFO are less than 50. Similar bounds result if WMO
or CPO are used as a reference station. The thickness of the layer

in which Q differences are allowed is important in determining the
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bound as is shown by the increase in the upper bound at UBO and TFO
when X, = 400 km. As in Table Al-3 the lowest QS values in each
column are determined essentially by the assumed values at BMO. If
the assumptions in the calculations were correct, the inference is
a fairly low QS under TFO and UBO or substantial QS differences
through regions of at least several hundred kilometers extent.

An absolute P—residuél was determined from the relative
P-residuals in Table Al-1 by assuming Carder et al's (1966) correction
curve to the Jeffreys—-Bullen travel times has an average of -2.0
seconds. The resulting P-residuals, Table Al-4, correlate with the
S-ratios as expected if the S-ratios are due to regional differences
in Q. UBO and TFO show a positive residual and WMO, CPO, and BMO
show negative residuals. P-residuals given by Carder et al (1966),
Cleary and Hales (1966), and Herrin et al (1968) are also listed
in Table Al-4. The correlation of the S-ratios with the other
determinations of station residuals given in Table Al-4 is not
perfect, but only the determination of Carder et al (1966) for UBO
is in substantial disagreement.

Introducing an S-delay, as would be implied by relatively long
transit times for S waves in an absorbing layer, tends to reduce the
high QP/Qs ratios in Table Al-3. However, this is equivalent to
assuming a high Poisson's ratio. A cursory examination of S arrival
times reported in the Registration of Earthquakes does not exclude

the possibility of large
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relative S-delay. The study of Doyle and Hales (1967) implies
relative S-delays of 3 - 4 sec for TFO and UBO relative to BMO.
Their results can be interpreted, Hales and Doyle (1967); to give a
Poisson's ratio of about .325 for X = 100 km or .275 for X = 400 km
in the region of UBO and TFO. Such changes in S-delay or Poisson's
ratio do not change the basic pattern of low Q and high Qp/QS in
Table Al-3.

No attempt is made at a complete listing of factors which may
influence the data, but the following illustrate the important
difficulties. Since the S/P-ratios are not corrected for distance
there could be an important distance effect. Figure Al-4 supports
the idea that the ratios for WMO and CPO decrease with average
distance from the epicenter. Bolt and Nuttli's (1966) study
indicates some large azimuthal effects, Misidentification of
phases and source radiation patterns could bias the data. Although
the statistical measures indicate an adequate sample size for the
stations represented in Table Al-2, the aséumptions underlying these
estimates may not be satisfied. A statistical study of magnitudes
by Swanson (1966) based on a much larger sémple size leads to P-
ratios within .1 of those in Table Al-2 except for BMO. Swanson's
/

results give P Lal,

Mo’ Fuso ~
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Conclusions and Recommendations

The results of this study are consistent with a very low Q
upper mantle and possibly a very high Poisson's ratio in the Basin
and Range Province. The analysis used is by no means conclusive.
The data in The Registration of Earthquakes and the Seismological
Bulletin of the Long;Range Seismic Measurement Program are available
in a computer compatible form. Computer processing would allow
easy usé of all the data and relative ease of application of corrections,
for example, a distance correction for S—-amplitude. Statistical
checks on the reliability of the data could be easily made. This
should certainly be an improvement over this pilot study, but some
effects require a separate, rather detailed investigation. In
particular, the effect of local crustal structure and possibly the
recording site should be investigated as well as the reliability
of the identification of phases. Even without this more detailed
work, the results of this pilot project indicate that a similar
study based on all the data should be useful. Such a study should
be capable of singling out areas where possible Q anomalies in the

upper mantle could be investigated by other methods.
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Appendix 2

ENERGY CONSIDERATIONS UPON INTRODUCING A

DISLOCATION INTO A PRESTRESSED MEDIUM

In Chapters 2 and 5 the change in the strain field due to
faulting in the earth has been related to the change in strain field
caused by the introduction of a dislocation surface into a prestressed
medium. When an earthquake occurs, it is supposed that the strain
energy in the medium is reduced - the change in strain energy going
into inelastic processes and seismic radiation. An acceptable
mathematical model of a seismic source should allow a reduction in
the stored strain energy. Steketee (1958) concluded that, for
boundary conditions which are appropriate to the earth, a dislocation

", .. we have

model results in a strain energy increase. He states,
to recognize that the surface of the earth is essentially free and
if a dislocation is made under these circumstances, Colonnetti's
Theorem shows that the strain energy can only increase." It should
be noted that Steketee pointed out the possibility of strain energy
reduction with certain boundary conditions. However, he rejected
the particular cases he considered as unrealistic. As shown below
the inclusion of more general conditions, in particular, the
possibility of prestressing by body forces, allows the possibility

of strain energy reduction.

Tensor notation is used in this appendix with the symbol
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definition patterned after Steketee (1958, Section 6. The Strain

Energy of the Dislocation). The symbols are

wl

stress tensor 3
strain tensor 3
rotation tensor :

displacement field;

traction across a surface element with normal Vi H
body forces 3
exterior surface of the body -

any interior surface across which a dislocation exists
the total stored strain energy due to prestressing
alone, that is the total stored strain energy before
introduction of the dislocation surface modeling the
fault ; and

the total stored strain energy after introduction of

the dislocation surface modeling the fault.

The development here closely follows that in Steketee with the

important differences being pointed out.

The total strain energy in a body with volume V is

= J Tij eij dV (Az—l)a

we
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The equilibrium equation is

Tog o + £, = 0
ENEN 1
Using .. =0 and the identity
13 13
(to o u,) o = T, Luw o+ T, u o,
1 1,7 1J,J 1 i 1,3]

equation (A2-1) can be written

i 1
e J (Tij ui]sj v + 5 [ £, by 4V (A2-2)
v \Y
It is assumed that the body is bounded by an external surface, S,
v
with tractions T; and may have internal surfaces, I, with

displacement dislocations Aui. Using the divergence theorem

equation (A2-2) can be written

e Toas + = T ar+L (¢ d 2-3
-5 u, T, 5 Au, T, df + > i Yy \Y (A2-3).
T v

Equation (A2-3) is the same as Steketee's equation (6.4) except that’
the inclusion of body forces adds the last term.
If the body is prestressed by body forces, internal dislocatiomns,

and tractions on S,
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% V v * %*
we ='% J u T? ds + = Au; T; dz +'% J fi uz dav (A2-4).

If a new dislocation surface is introduced, then

woed )@ e ased | ey av

\
[ pu [%: +T,) " +-% J pu, (T +T.) dz (A2-5)
by

where I dis the new dislocation surface and

a) the boundary condition on S changes from

v v v
™ to TF + T, ;
i i i
® . *
b) Au:.L is assumed fixed on = ¢ and

c) the fi are assumed constant.

Subtracting equation (A2-4) from (A2-5) yields

v _ L V%
W- W= J dug (T, +T,) dz
P
v A% V
+ =+ J pul T, dz¥ o+ l-J u (T, +T;) ds
2 i1 2 ivii i
¥ S

L %* oV 1 * ' _
+ > [ u, T, dS + 2 J fi uy av (A2-6) .
S \Y
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W' - W' is the change in stored strain energy caused by introduction
of the dislocation surface . If f: =0 and I = ¥ » equation
(A2-6) is equivalent to either of Steketee's equations (6.10). 1If

it is further assumed that Au? = 0 and %i =0 on S, then the
theorem of Colonnetti follows as Steketee shows. Steketee states

the result as follows: "

... the work performed by the initial forces
over I while making the dislocation is equal and opposite to the
work performed by the initial forces on S when the dislocation

is made." Under these circumstances the total strain energy in the
body must increase when the dislocation is made. It should be noted
that with fz =0, I = . 3 Aui = 0 and ¥i =0 on S the only
prestressing mechanisms possible are the tractions %i on §, If S is
the surface of the earth and ¥§ = 0, there is no prestress.

A sufficiently general case to demonstrate the possibility of
energy decrease with geophysically relevant boundary conditions
follows if

a) the boundary conditions on S are

v

V
T, =T =0 :
8 I

* . *
b) Aui is assumed non-zero on I  and does not change; and

c) the f; are assumed non-zero and constant.



vV Vv % V *
W'—W*=-];JAu (T, + T¥) dZ+—l-J pu; T, dI
2 i i 2 i i
z o*
+2 | fu ay (A2-7)
¥ i i #
v

Although equation (A2-7) can allow either an increase or a decrease
in strain energy, the result that the stored strain energy must
increase no longer follows. Even if the Auz are zero the last
integral in equation (A2-7) may be either positive or negative, so,
if the prestress is due to body forces, there may be a decrease in
energy without the necessity for ¥i to be non-zero on S.

As a rather trivial example to demonstrate explicitly the

%
possibility of energy decrease, let fi =0 , = 1 and
Aui = - Auz. Equation (A2-7) is then
, v )
W' oo W =2 | au, TR Az = - = | ad® TF ax .
2 A 2 i i
P %

The stored strain energy is decreased by just the amount of energy

®
it took to form Aui initially as it must be since the prestressing

dislocation was just reduced to zero.
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Appendix 3

IDENTITIES FOR STATIC ELASTIC SOLUTIONS IN

SPHERICAL AND CIRCULAR CYLINDRICAL COORDINATES

The identities given here can be derived simply by executing the
indicated operations. Many of these results are given in Morse and

Feshbach (1953, Chapter 13).

Spherical Coordinates

The notation, ﬁ, refers to either the vector ﬁé g or the
b
—)2 .. . o o .
vector Mm Iy 3y and similarly for the notations N, G, and E.
b
2> 2 m
VB ¥ T 7y
> L m
¥ Bml T f Sl
v-?,m = 0
-> L =
v ox sz T or mi
> 1
vE Bm2 T T x Eml
1 > >
V x E T or (L mi T ml)
mf
v@wd ) = % (-F +13 )
m4 r2 m& me
> L >
V(V‘ mRJ T or2 (Pml L Bml)
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L r ‘mk
~ im¢ _m L
vx (re™El) = 2 C

.—*1 - - £ .m
\Y Gm,9,+l (29+3) (8+1) r SQ,
>2 -2-1 m
VG gy =T (@D 2 S,
Sk = 2(2043) (2+1) (1K) r* B
m, +1 o R
= -2-1 .m
v Em,l—l = 2(22-1)2(1-K) r SSZ,
>l 1
vV x Mm,,Q, = (8+1) Nm,IZ,—l
N - _ >9
L Mm,SL * Nm,5L+l
e
VxN=20
21 - _ 71
V x Gm,9,+1 (22+3) Mm,!L
*2 _ oy SHE
Vx G o= DM
i _ 1
V x Em,52,+l 2(224+3) K Mm,SZ,
V x EZ =

2
2{24-1) R Mm,z
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|
~
=
+
H
~t
H
I
*_l
3}

JE
[ - ¢ r 1 Z

or m, -1

s® = elm¢ P? (cos 8)

K = 2(1-0)

Circular Cylindrical Coordinates

> |
The notation, M, refers to either the vector ﬁkm

=2

i > > >
o and similarly for N, G, and E.

m_ >
Y Tk =k Bmk
A

V x (z Tk) =k ka
Vel = 9N = 0

-1 kz -m
v ka =k e Tk
V'+2 - - x e-kz Tm

or the vector
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<
=Y
I

(c-1) ke ™ T

2 -kz . m
v Ekm = (e-1) k e Tk
Vxﬁ=kﬁ
Vxﬁ=0
- -
VxxG=%kM

B
km _ = >1
9z k (Ekm Nkm)
>2
JE
km - _ 2o %2
e -k (B - N )
Tm - im6 T ()
k m
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Appendix 4

EXPANSIONS OF THE DELTA FUNCTION IN VECTOR SPHERICAL

AND CYLINDRICAL HARMONICS

Spherical Coordinates

Let

_ 3% > % - %
I,=5,0,0)F ,(6,0) +E (6 ,0) 5 (6,4) + Em2<eo,¢o) ¢ (6,9

and n be a unit vector, then

6(0-6 )6(¢=0 ) . = & A
ino n= L Wy atly
. 9=0 m=-2
where
N = (20+1)  (4-m)!
ml G (2+m) ! .
Circular Cylindrical Coordinates

Let

= o g > —)—* - +* 3

and n be a unit vector, then
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G(r—ro)é(e—eo) .. 1 E mﬁ'I )
r 2T “mk
m=-c
(o]
For r =0 and 8 =20
O (o]
8(x) () 5 _ j 3 a1
r
o]
o) () §<=J [§X+EXJ di
[e]
W@ 5 (9. ] a
(o]
where
>X z >
B =B Yon
>X X > >
= Byge B * Poa Plap
= Byt Cg ¥ % g Yy

e

1k "1k

AN A

1k

B =1bY, B + b

-1k

>

B—-

>

1k

y
Sk * one Yti
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¥ oo B £ S
7L {;

The argument of Jg

and Jp
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is kr

-
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Appendix 5

ELEMENTS OF PROPAGATOR MATRICES

SPHERICAL COORDINATES

For a layer (or spherical shell) whose elastic properties are

K = 2(1-g) and y and which is bounded below by rq and above by

rq_l, the elements of the propagator matrix are denoted Aij' The
A.. propagate the solution from r = r to r=1r . For the
ij q-1 q
motion expressible with the ﬁm,l and ﬁm,l , let
D..=R YA, )
1] 1]
T
R = ;?il_
q-1 ’
W = ;fL__
q-1

B, C, and L ; through Lg are defined in Chapter 3.

Dll = R [—‘ (SZ,"F}.) bll + 9 Cll]

Il

2(24‘1) R [blz ot C]_z]
1
D13 = R m [" (Q,+l) b13 = § C13]

Q,(Q,'i‘l) R m_l [blh = Clg]

(o]
i
&

]
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Dyg = R [' bay = C21]

D22 = R [2, b22 = (Q,'*’l) C22]

D23=Rm—1[—b23+023]

m"l EQ b2[+ + (2,+l) C2’+]

(=)
N
o

1]
=

D31 =m [" (Q,'*'l) (2'*'2) b31 = Q,(Z-l) C31]
D3 = m [Q,(Q,'i‘l) (2+2) b32 - (2-1) (2) (2+1) C32]

= (2+l) b33 + % C33

lw)
w
w
1
|

D3; = 2(2+1) [b% + C31+]

Dy, = m [- (242) by + (2-1) c“]

Dy, = m [z(z+2) byy + (8-1) (4+1) cyp ]
Dy3 = = byz - cus3

Dyy = byy = cyy

Let
B. 5 B_l b v s
1] 1]
C.. = C—l R22+3 Ay s
1] 1]
-(2243
pp =R ( ) s
R25L+l .



B1a

Bio

Bis

17k

(2+2) L; + Lg pl

(2+2) Ly = Ly p,

Ly - Ly,

Ly + Lj pl

(2+2)'L3 - Lg Py

(R+2) L3 + L7 pl

L3 =% Ll pl

L3

L3 0,
Lg Py
L7 oy
(+2) L, Py
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The Cij can be derived from the above formulas for the Bi by the

3

replacements

1

For example

(@
—
—

Il

(Q‘l) Lz e LG p2

(2—1) L2 - L8 pz

(g
—
N

It

Ciz =Lz - Lz py

etc.,
For the motion expressible with the Em . let
9

E., = (20+1) R *A,, .

1] 1]
E;p = (442) + (2-1) o5’

a k

E12 = m {:l == pz ]
Eyqp = (2-1)(2+2) m R—l'[:l.- pzl ]
Eyp = R [ (4-1) + (142) o ! ] -
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Circular Cylindrical Coordinates

For a layer whose elastic properties are ¢ = 3 - 40 and

and which is bounded below by Zq and above by z the elements

i

of the propagator matrix are denoted Aij' The Aij propagate the

solution from =z = zq_l to z = zq. For the motion expressible
ith the P d B, let
with the P , and B ,, le

Fij = 2(ctl) e Aij >

o
I

-

(o)

d=2z -2 .
q q-1
-2D
Fiq = (c+1-2D) + (c+1+2D) e
-2D
F12 = (C—l—ZD) + (C—l+2D) e
Fla =p ' [ (c-D) - (c+D) e_ZD]
qu = u—l [D—D e—2D]
-2D
Fy1 = = (c-1+2D) + (c-1-2D) e
-2D
Foo = = (c+1+2D) + (ctl-2D) e
Fp3 = - Fyy
Foy = W E (c+D) - (c-D) e-.ZD]
F3; = 4y [(l-—D) - (14D) e—ZD ]



v

w

N
]

v

w

w
1]

]

+rf
£
N
Il

For

(]
—
(S

I

(]
N
—

I

4 u [D—D e_ZD ]

Fi1

o

= By

by [ (14D) - (1-D) e 2P _J

- B3

Fpy "

the motion expressible with the

2

e

=177-

-D

A

13

-
ka,

let
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Appendix 6

> >
FORMULAE FOR COMPUTING [gb(gs)-n] AU in

SPHERICAL COORDINATES

Let X! be any of the vectors M N s OF E; Similarly

m, m,%> "m, G2°

define i; . Inspection of the form of gs in Chapter 3 shows that

y)
x2*

(r ) wh
m, o+ To’ Where

. o —>'1 >

each of its components is of the form a Xm l(r)
7 b
a 1s a constant, i an integer and the superscripts 1 and 2 may be
1 y .G 4 A- _)-j z = Ao +j* z i
interchanged. ‘Since n 20 (Xm,z(r)) 0, only n Eo(xm,ﬂ(ro)) is
needed. The expressions below are actually for ﬁ-z(ii 2(;)).
9
Replacing T by ?o and taking the complex conjugate gives
neT (%J% (+ )). The form of ﬁ-T(ﬁ) is given in equation (2-6).
=0 m,L O =
Expressions for 1T (ii 2G?)) are given in equation (3-3). The
3

additional expressions which are necessary follow.

Define the symbols Va by

=

- ou
V. u =

r = 3r

._)-

> _12u

Veu r 9
+

Vg:l .EIL..I. "

¢ r sinb 93¢
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A. ->l - —>1
2 ) - mv
2-1 [, - .

+ p(e+l) r imS3r -2 ¢
2 o - Y
: E(Mm,l) o V1': Mm,SL

-g=2 . . A

+ ul r [—1mS3r-(2,+1)S¢]
A. —)'1 _ —>1
¢ E(Nm,ll,—l) 2 Ve Nm,,Q,—l
/\. +2 = 2
GO pn? = BTy Ny pg
8.7 (%1 - £l
2 —T—<Em,sz+1> S Wy B ges

+ 2(2043) ‘:uK S; r + A(1-K) (&+1) S é]
A. ")‘2 - —>2
9 —T-(Em,2—1> Zu Ve Em,SZ,—l

+ 2(20-1) ¢ ¥71 [:—uK Sy £ 4+ A(1-K) 28 é]
5o (1) = Ml
$TOL ) =W My

& ulaary gL [—sl r+2S 6 ]
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2 _ 2
peT(M ’2) 2u V¢M’2
—2’—2 o~ A
+ ul r S1 r + (#+1) S 6
I\. —)-1 - . '—>1
¢ -T-(Nm,z—l) 2y vd) Nm,SZ,—l
2o (N2 - 32
SIIN ppd = 2V B g
A +1 - —>l
LB guq) =WV B
+ 2(2043) r* [uK inm S3 7 + A(1-K) (2+1) S § J
5T (B2 - E2
B r—I‘-(Em,!@—l) 2y v¢ Em,!L—l

+ 2(20-1) ¢ ¥ L— UK im S3 T + A(1-K) %S & ]
vl o=t {—im S3 2+ Ty 6 -8y ?p}
Veﬁrzn 5= 1'2'—2 {—im S3 T+ T3 6 - So (,i;}

* =2 ~ A ~
o™m, -1 T {(2,—1) S r + [32"'23] 0 4 Tj ¢}

i wptE {_—(2+2) Sy T+ [32 = L) S)] T $}

<

2
—
I
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>

£t {[(2+l)2 - 2(%+2) K] S
+ [L3 So + (&+1) L; S]
g o {[22 + 2(2-1) K] S
+ [—L4'32+ 2Ly s] 6 - Ly, Ty q?}

D>

+L3T1$}

H>

= 72 {im (2-1) S3 7 + Ty 6 + [T?_ + zs:l 5 }
r'2—3 {-— im(g+2) S3 r + T; 6 + [Tz - (a+1) S:] $}

c* {im [(z+1)2 - 2(8+2) K] S3 T

+ Ly Ty é+[L3 Ty + (2+1) Ly s:] $}

= r"H{im [22 + 2(2-1) K] S3
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—Lqé—ELqu—ZLzs] $}

where
_ o _ im¢ .m

S SZ e P2 (cos 8)

g™
2

1% 35
azsﬁ

S2 = 352
5%

3 = 5in ©

im
Ty = e [?1 - cos 6 53]

-1 . ]
T?_—-Sine[cosesl m“ S3 -

A and u are Lame's constants,
and the Li and K are defined with equations (3-2) and (3-3). In
order to complete the list of the derivatives of the iJm 1y the radial
9

derivatives are listed below.
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Appendix 7

PARTIAL SUMMATION OF EXPRESSION FOR
u (éo, —$O) TO OBTAIN A RAPIDLY CONVERGING FORM

r

By straightforward algebraic rearrangement of the radial

component of equation (3-1la), there follows

2

2
(*-1) - gy

u(e’—¢

_oo 1 . 2 =
(8 O) = QZZ-IEFZT sin 2¢ Pz(cos 8) t

+ (1-3t2) [(1—210 —§-+'—(—1-;—19—:] .

Then use of the relations (for o = 1/4)

L 4 1 33
L. 2 4 b 1 + 4 _ 8
AR (2+1) (2+2) {(2+3) (241) (2+2) (2+3) A
25
4
(2) (2+1) (2+2) (+3) A ?
29 L, I 39
L _ 16 B 16 __16 _ 16 B 16
AR (2+1) (2+2) (2+3) (2+1) (2+2) (4+3) A
165
" 32 ,

(2) (8+1) (2+2) (2+3) A
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o _ D
2 tl @ Pi(cos 8) =-§J%§%§i 5
2=2 'E
= g “(t-cos '0) | 2 1
2 - 2 - 2
QZZ =D PQ(cos 9) cos 6(3 + 2 ctn<8) + Tl/z <1270 + 7 :} R
© - 2 A
z -EI Pi(cos 8) =1+ 2 ctn0 + (t co;/g—l) + 2 cosb (t-i7§ 8) s
=2 T sin26 T
© 2,+1 2
t 2 _ 2 [(t-cos 6) - 2t sin<0]
2 D) Pz(cos ) 2 cosb csc46 + 3/2
=2 T
(2 csc?p -1) (t-cos )
* 1/2 )
T
o 2+2 2 2
2 _ > [2t% cos“® — 3t(t-cos 8) - 2]
Z (272) Pz(cos 6) 2 csc4h + 3/2
2=2 T
[(2 csc?0 + 1) t cos 6 — 2 ctn?0]
4 1/2 ’
T

and

T=1-2tcos 6+ t% ,

together with further algebraic rearrangement leads to equation (3-12).
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Appendix 8

EFFECTS OF EARTH STRUCTURE AND GRAVITY

ON THE STATIC DEFORMATION OF THE EARTH AT LARGE DISTANCE

The static deformation of the earth is affected by the variation
of elastic properties with depth and self-gravitation. Two published
solutions allow estimation of the importance of these effects at
distances greater than 20°. Longman (1963) computed the deformation
due to a point mass loading a Gutenberg earth model. Slichter and
Caputo (1960) derived a solution for the deformation of an elastic
shell enclosing a compressible fluid due to antipodal pressure caps.
Their solution does not contain gravitational effects.

Slichter and Caputo's solution is considered first. In their
model A; 1is the compressibility of a homogeneous, liquid core,

and A, and y, are Lame's constants for a homogeneous, isotropic,
A2

elastic mantle. They give numerical results for E_ = %%
RS ’
(Poisson's ratio = 0.28), ;—- = 8, and up = 1012 dynes/cmz.
2

These results can be scaled for varying u, and \A; with Poisson's
ratio in the mantle fixed. The earth model is deformed by uniform
antipodal pressure caps. The numerical results are for a specified
pressure and for caps which subtend half-angles of 25°, 16°, 8°,

and 4° at the center of the model. To obtain the figures quoted
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below the pressure was normalized so that the net pressure in each
cap was 1 dyne. The limit, as the half-angle goes to zero, of the
normalized vertical displacement is the displacement for antipodal
point forces. This limit was estimated from the numerical results
in the paper for three observational positions. Let the point forces
be at the north and south pole. Let ui(e) be the vertical displace-
ment at colatitude 6 (e.g. u: (90°) is the vertical displacement at

the equator). Then for antipodal point forces of 1 dyne

uf_j (30°) ~ - 4.3 x 10722 cn,
ui (600) ~ 1.3 x 10722 cp,

and

ui (900) ~ 3.1 x 10 22 cm.

A S
1 2
T My is varied with Ey and ;5- fixed, inspection of the

solution given by Slichter and Caputo shows that the values of u,
are proportional to ;;a For example under these conditions at

6 = 90°

ui ~ 9.2 x 10722 ¢cm. for i, = 3 x 10!! dynes/cm3.

1012 dynes/cm3.

S ~ =22
usg 3.1 x 10 cm  for U,

ui ~ 1.0 x 10722 cm  for 3 x 102 cynes/cm3.

oo
I

Varying the elastic constants through a range from crustal values to

lower mantle values produces a change in displacement values which
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is significant compared to the sphericity effect determined in

Chapter 3. For the problem considered by Slichter and Caputo one
expects a lower average rigidity to be appropriate mnear the source

and a higher average rigidity to be appropriate near 6 = 900, although
precisely what values should be used cannot be determined without
solving the complete'problem.

Longman (1962 and 1963) computed the response of a gravitating
Gutenberg earth model with a point mass load. By scaling the
numerical results which he gives to a 1/980.7 gram mass one obtains
approximately a 1 dyne point force at the surface. By superposing
solutions for such a mass at the north and south poles of the earth
modle, a solution is obtained which is comparable to Slichter and
Caputo's but includes gravitational effects and a realistic variation
of elastic parameters. With a notation similar to that above the

vertical displacement for antipodal 1/980.7 gram masses is

ui (300) ~ - .81 x 10722 cm.
ul (60°) ~ .20 x 10722 cm
uf; (90°) ~ .33 x 10722 cnm.

Comparing these with the displacements from Slichter and Caputo's

solutions one obtains
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(90°) = 9.3 -

Hdmlﬂcm

Although some of the difference is due to the gravitational attraction
of the mass load, it still seems likely that the earth's self-
gravitation and structural effects are appreciable.

From these comparisons it is concluded that, at large distances
from the source, neither the effects of elastic constants varying
with depth nor gravitation can be neglected compared with the effect

of sphericity alone.
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Appendix 9

INTEGRAL KERNELS FOR A HOMOGENEOUS

HALF-SPACE

For a homogéneous half-space with rigidity u and c = 3-40,

where ¢ is Poisson's ratio, the integral kernels for equations

(4-4) are
KDl; « 000 e
KDB = - kh e’_k'h
P
KDP = kh e-'kh
B
Kpi - (1= k) e
P 1 -kh
KFP = W (c + 1+ 2kh) e
B 1 -kh
KFP - (c - 1 - 2kh) e
P 1 -kh
KFB = T (c = 1+ 2kh) e
KFB e B (¢ + 1 - 2kh) e-kh
B 4u

(@]
L
=3
aQ

-kh

(@]
Q
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Appendix 10

INTEGRALS USED IN APPROXIMATIONS

TO HALF-SPACE DEFORMATIONAL FIELDS

For the surface deformational fields in a layered half-space
an approximation to the integral kernels of the form of equation
(4-14) can be integrated exactly. The results below all follow
from a general Hankel transform in Erdelyi (1954, Chapter VIII,
Section 8.6, Formula 3). All the forms which were actually used in

calculating the results in the text are given here.

B i) = J g o 05 J_(kr) dk ,
(o]

X2 = h? + r2

h2
= =% ’
n
. 1
if n dis even, a = (-1) "o s
n-1
. D) e
if n is odd, a = (-1) hox >



-192-

. . ]
An’ Bn, and Cn are polynomials in z4, and dAn’ dBn’ and an are

constants. For m=0 and 0 <n < 12 5

F(n,0) = d a A .

For m=1 and n=20 3
F(0,1) =r X! (X + h)~! .
For m=1 and 1 <n < 12 ,
F(n,l) = -r dBn a1 Bn .
For m=2 and -1=<n<1 5

F(-1,2) = %i (X + h)~2

F(0,2) = r2 X~! (X + h)~2

F(1,2) = r2 X 3 (X + h)™2 (2X +h) ;
For m = 2 and 2 <n <11 5

F(n,2) = r2 4 a C .

Cn n+2 n

dAn’ dBn and dCn are given in Table Al0-1.

The coefficients for the polynomials An’ Bn’ and Cn are given in

Tables Al10-1, Al10-2, and A10-3, respectively. Each row in these
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tables gives one polynomial. The column labeled "n" identifies the
polynomial and the other columns give the coefficients for the
power of 2z which heads the column. The polynomials alternate in

sign with the first term positive. For example the polynomial Bg is
Bg = 5 -30 z%? + 33 z"

and F(6, 1) is

F(6,l) -rd ay Be

Bg

F(6,1) = r h X~2 (315)(5-30 z2 + 33 z%).
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Appendix 11

EXPRESSIONS FOR COMPONENTS OF TILT AND

STRAIN FOR HALF-SPACE SOURCES

In Chapter 4 formulas are given for the surface displacement
fields due to certain point sources. Expressions are given here
for the surface tilt and strain fields associated with these
displacement fields. The notation is the same as Chapter 4 unless
noted otherwise.

For the field

+ A ~ A
u(r, 6, o) =1 u + 8 ugt z u,

the surface tilt and strain components are:

radial tilt

Ju
T = =
T or ’
theta tilt
1%
) r 96 ’
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theta strain

ou u
S it R S
66 20 r

R |~

shear strain

For strike—slipAmotion on a vertical fault plane (the field

defined by equation (4-6))

- 15 gin 26 " i Ty = 4y |k
Tr 2T P 17y 2 .
0]
u ©
- B B _2
Ty = 3, COS 20 J KFP ( k Jp ) dk 5

H o
- S o Bl _ 2 2 -2
Cey = Ty 28 26 J {lKFB ( k“Jy + e k J =2 Jz)

C 2 6
+KFC(—-;kJ1+;_-2—J2)} dk s
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For a dip-slip motion on a vertical fault plane (the field

defined by equations (4-7))

- g TP [ 2y _ 1
T. = 5o SlnefKDP (kJo rle) dk .
0]
1 " B[l
Te--z—T-r'COS 6J KDP (rkJ1> dk .
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C L2 1
+ KD, (-Zle-:-rsz)} dk

For the field -ﬁ(}., z) of equation (4-9)

T =

A (R
; ZWJKDP(kﬁ)dk ,
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[ mP(ﬂ%—%kJJ dk .

1 (T P (1
€66_—2.T-T_J KDB(rle) dk .

+xXF -ayF

. " du .
For the field = + 5y of equation (4-10)

™
Il

1 [T B 5 1
. ,2nJ KFB( kJ0+rkJ1) dk

00

ro
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The above results can be used together with equations (4-8),
(4-11) and (4-12) to obtain expressions for the tilts and strains

associated with all the fields developed in Chapter 4.
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Appendix 12

NOTATION FOR CHAPTER 6

The notations used in Chapter 6 are for the most part frequently

used, but all those not defined in Chapter 6 are given here for

completeness.

o

ed ¥y > ©

=

and y

this superscript identifies a quantity as appropriate
to a spherically symmetric earth model which is
considered the unperturbed earth model.

this subscript represents the mode type, spheroidal
or torsional, and the r, 6, and ¢ mode numbers.
density

Lamé's constants

gravity

n'th displacement eigenfunction

change in the gravitational potential for the n'th
eigenfunction.

the angular frequency squared for the n'th eigen-
function

the gravitational constant

conventional spherical coordinates

the r, 6, and ¢ mode numbers respectively

layer index; for example, the radial solution function

for a spherically symmetric earth model with mode
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numbers % and p in the jg}- layer is u’Lp j
i b
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Appendix 13

TORSIONAL SOLUTION USED AND SENSE IN WHICH IT

CAN BE EXTENDED TO THE SPHEROIDAL SOLUTION

The equations governing the radial part of the solution for

a spherically symmetric earth model are given in Alterman et al (1959).

For torsional motion the equations are

where the notation is as in Chapter 6 except the superscript ° has
been dropped for convenience; y, 1is for the displacement, y, 1is

for the stress, and the dot signifies differentiation with respect

to r. With the substitutions

<
—
Il
(2]
«

and s =4nr

these equations can be written
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: 3 L

: 2 3

Vo u(e4 + 2-2) - Ro -5 vy
L- = st e L— —

where v, and v, are functions of s. If p and R are assumed
constant, these equations become a first order set of simultaneous
linear ordinary differential equations with constant coefficients.
Such a set can be solved in closed form if the roots to the
characteristic equation can be found in closed form. The procedure
is well known, for example Hildebrand (1949), Chapter 1, and leads
to the result given in Chapter 6.

The results necessary to use this solution in the Thomson-

Haskell matrix formalism are in the notation of Chapter 3
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2 cosh ks 2 sinh ks
e(s) = _
u(2k sinh ks - 3 cosh ks) u(2k cosh ks - 3 sinh ks)
u(2k cosh ks - 3 sinh ks) -2 sinh ks
e—l(s) = e
4uk . ’
u(=2k sinh ks + 3 cosh ks) 2 cosh ks
_ 3 .
.all—-coshkd+-2—1€ sinh k d s

1 .
alz-ﬁanhkd .

8.21=]Jk. (l""z_k—z') sinh k d s

and

azz-coshkd-%{-sinhkd

where for the jt—h- layer

The substitution
K=-1k

gives the other solution form.
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For the. normalization used in Chapter 6 the following results are

needed

n
a
2k
A|2 a2k+B'2 b_zk _b_ o l 1‘-—
a 4k
+ A' B' 21‘1('3) 5
A" = A+ B ,
B‘=A"B 9

{:(az - B82) cos x - 208 sin x {;é%?;l{}

+ (02 + 82) o (3) ,
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"
|
=~
=
=]
tT.
'_l

<

I

=~

=

o
N

© |o

L MR

o Al (S._l) H
. _:i(_l_ Vo (S._l)
2K pK ?

< a<r, and

It is possible to obtain a similar solution for the equations
for spheroidal motion but density must be treated in a special
manner. In equations (6-la, b) let the density when it appears on
the left hand side of the equals sign be called pgravity and the
density when it appears on the right hand side of the equation be

called pinertial. Make the following assumptions

mertial = &

pinertial = = 5
. R

pgravity = '1—_ s

+ ~

g = gr ’ and

U, A, g, R, and E are constants,
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then the substitutions

3 n/2
Vi T Vi $
n =1 for i odd,
n = 3 for i even,

into equations (28) through (33) in Alterman et al (1959) result in an
equidimensional set of equations in the variables v, This set can
be reduced to a set of six simultaneous linear ordinary differential
equations with constant coefficients by the charge of variable

s = fn r. It can be shown that the resulting equations have a closed
form solution. The use of two different variations for demnsity is,

of course, only a mathematical artifice. This spheroidal solution

was not completed since it does not appear to offer any advantages
over existing numerical techniques. The existence of this solution

was noted here since the author is not aware of it having been

recorded previously.
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Appendix 14

LIMITS AS r » » (k > 0) OF SURFACE
DISPLACEMENT FIELDS IN A LAYERED

ELASTIC HALF-SPACE

The limits as 1t + ® of the surface displacement fields are
given for three source types to order %3-. The limits as k -~ 0 to
order k of each of the integral kernels in Chapter 4 are also
listed. The use of the integral kernels as k > 0 together
with the integrals given in Appendix 10 and the formulas in Chapter
4 determine the particular point source limits given here. The limits
of the surface deformational fields for any other point force or
dislocation source can bg derived fairly quickly since the limits
as k + 0 are given for all the integral kernels of Chapter 4.

Indexing of the layer parameters is given in Figure (2-2).

The sth layer is the source layer. The index s' may appear in
the upper or lower limit of a summation. The index s', when

applied as a subscript to an elastic constant, means that elastic
constant for the source layer. When s' appears as an upper limit

S

in the summation, E , it means that the summation is from the
i=1
surface to the source depth. For example
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n-1
When s' appears as a lower index in the summation, z 5 At
]
s
means that the summation is from the source depth to the lowest

layer interface. For example

n-1

. 1 i n_l
i=s

For clarity in this appendix only capital C is used for the parameter

written as small c¢ in Chapter 4.

C=3-4G °
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Vertical Dip-Slip Fault

For this case there are no terms of the type = and the

r2
component has no terms of the type %3— .
D> ,A A~ l l A . ~
u(y, =-2z) = o =3 L3r T sin 9 - 2 L36 f cos §
n
+ 0 (;ﬁ) >
si 1 (C +1)
L, = el | 4 -1 d
+ -}
3r i21 My (c.+1) s
Si My (C +1)
L = - = l d .
+1
36 2 oW, | (€L %

For 2 layers over a half-space with the source in layer 1, the

(%3) term for the z component is
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Dilatational Source

For this case the r component contains no term of the type

%3— and the 2z component contains no term of the type L.

r2 °

i
3
=
HIH
N
>

r-{lp-x
w
N>

{;(Zn-l_h) i L3z
+o()] ,
r

n-1 _(Ci—3) . (Cnfl) Ei.- .
(Ci+l) (Ci+1) 11 i i

1

The limit of the integral kernels as k > o is to order k

KD§-> 1+ 0(k2)

. By d,
— o i
Tk el |G- 2wy 7D ) Ty ’
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KDB - kh 5
s' u. (C+1)
KD, +1+k -2 ) -—= = d,
B Lyow, €D i ’
(C_+1) n-1 u
g s — g o= 7| 4= (c.-1) + (c_-1)(C,-3)
AT 4y Sy M. i n i 3
n n 1=8 1
n-1 ui
= kg =1y } 2 == (C 1) - (;-3)
i=1 n
& =
KF+(“ ) X (C_+1)(Z_ .-h)
P 4un 4 n n-1

n-1 (C +1)

I (c-3)—2ii-(c-1)
121 (Ci+l) 1 n

d.

—_—
(Ci+l)

d,

T
(Ci+1)

d
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(c_-1) n~1_ (C,~3)
P n k i
KF. + —— {(C+1) ) —— d, +
B 4un 4un n 12! (Ci+l) i
n-1 u. (C +1)
-2(C-1) ) —=
=
(C_+D n-1
B n k
Ky = o (c-1)(2z__,-h) + 4 ] .
n n =3
a-1-Pg (c_+1)
- 2(c_+1) .Z w, (C+L)
. i=1
s' .
KDg»1+k{- | == a ’
i=1 Ma
n-1 u n-1 y.
KFS"*}——+L )y =4, - ] —= 4,
Ma Mn i=g' M1 O * i=1 Mo %



~216-
Appendix 15

INTEGRATION PROCEDURES FOR A LAYERED, ELASTIC

HALF-SPACE

The kernels (the KD's and KF's of Chapter 4) of the Fourier-
Bessel integral representations of the layered half-space were
generated numerically. They are calculated by programming the matrix
results given in‘Chapter 4, The kernel for a homogeneous half-space
with the elastic properties of the source layer and with the same
source type and source depth is subtracted from the kernel for the
layered half-space. The kernel for the homogeneous half-space can
be integrated exactly using the results given in Chapter 4 and other
appendices referenced there. The remainder, that is the layered half-
space kernel minus the homogeneous half-space kernel, is denoted
by K(k). There are ten possible such residual kernels corresponding
to the ten different KD's and KF's. Subtracting out the half-space
solution can be viewed as removing the effect of the source, but
in a way that fails to meet the boundary conditions exactly at the
various interfaces. Integrating the K(k)'s determines how much
additional solution must be added to meet the boundary conditions.

The K(k)'s are expressed in the form



=217~

fy =8ys
K(k) =) Ak " e + R(k) (A15-1) .

¢ 2

The terms in the summation are integrated exactly. It is attempted
to choose these terms so that the term R(k) does not contribute
appreciably to the integral.

When plotted on a logarithmic scale in k, the functions K(k)
are, for the structures treated here, smooth functions with one or two
maxima or minima. The difference between curves 1 and 5 in Figure
5-1 is typical of the most extreme form of K(k) considered. The
procedure used for approximating a K(k) is as follows. The maximum
value of K(k), denoted K(kmax), is determined. The wvalues of k
where K(k) has decreased to one-half its value at kmax are
determined by stepping away from kmax toward higher and lower values
of k. These values are denoted

K(k ;) and K(k /).

1
=%

Let

F(n, A, a3k) = NG e—ak :

F(n, A, o;k) has a simple maximum and decreases to 0 as k +~ 0 and
as k > », For a specified number of values of n, A and o are

determined so that
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F(n, A, a;kmax) = K(kmax).

The quantity

|K(k ;) - F(n,aA, on;k_l/z)l + [K(k_*_;i) - F(n, A, a;k%)l

-5
is calculated for each n. That value of n for which this quantity
is a minimum is selected together with the associated A and a to
determine A;, aj, and nj in equation (Al5-1). The procedure is
then repeated until the index & or the remainder R(k) have reached
prespecified limits. The resulting kernel approximations are punched
on cards thus constituting a permanent "'structure deck" which is

used in another program to evaluate the formulas for the various

field components.

The quality of the approximation is judged by calculating the
ratio R(k)/KD(k) (or KF(k)) for a wide range of k's. The simple
structures considered in the text have 2 layers, each from 1 to 4
units thick. For this scaling k was varied from about k = .001 to
about k = 100 with equal spacing on a logarithmic scale. The ratio
R(k)/KD(k) was generally less than .01 and seldom exceeded .02 for
the results presented in the text. When the ratio did exceed .02
it was usually associated with a zero crossing in KD(k). In some
of the structures tried R(k)/KD(k) was not sufficiently small to

justify using. the approximation.
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As a further check on the calculation one of the structures was
approximated at two different scalings. This yields different
approximations. Each structure meet the criteria given above for a
satisfa;tory approximation. Some values of the surface displacement
field in a half-space with the source layer properties, are listed
in Table Al5-1. The structure is a layer of unit thickness with

u =1, 0 = %; overlying a layer of unit thickness with u = .01,

o = %; overlying a half-space with p =1, o =%. This is the
largest change in rigidity which was calculated, and these are the
least accurate approximations used. The source is a strike slip

fault with vertical fault plane located at a depth of 0.1 of the
thickness of layer 1. R is the distance from the origin measured in
units of the thickness of layer 1. For UZ, the vertical displacement,
the approximations agree with each other to within a few percent

out to about R = 10. The only relatively large difference, about

7% is at R = 0.5. There is a zero crossing in UZH, the half-space
field, at R = 0.4, and relatively small differences in the position
of a nearby zero crossing in UZ account for the percentage error
being greater than that for nearby values of R. At larger distances
the disagreement between approximations becomes larger, but the
general features shown by the two approximations are the same. A
comparison of most of the other fields (displacement, tilt, or strain)

from any of the sources gives results similar to those shown for

UZ /UZH.
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That field which showed the greatest discrepancy between the

two approximations was U the displacement in the 6 direction.

6°
Some results for this case are also listed in Table 15-1. At

R = 12 the two fields disagree by 30% to 407% and at R = 40 the
magnitude of the field is clearly unreliable. Thebzero crossing
between R = 20 and R = 40 occurs at substantially different distances.
These discrepancies probably arise because two relatively large

numbers are differenced in the calculation of Ue. Both fields

show the same trends of amplification or reduction with respect to

the half-space field although the position of zero crossings and

maxima or minima may occur at different values of R. Because of the
general agreement of the other fields and the nature of the discrepancy
for this case, the integration procedure is.accepted as adequate for
the purposes of this work.

The procedure described above can only give an adequate
approximation to kernels for simple layered models which have the
source in the uppermost layer and which have a lowermost half-space
with the same properties as the uppermost layer. These two conditions
insure that the subtraction of the half-space solution, as described
earlier, determines the proper field for very large and very small
values of r (very small and very large values of k, respectively).
It may then be possible to obtain a satisfactory approximation by

the simple procedure given previously, but, since the procedure is

only loosely constrained, it may fail by choosing too large a value
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of AQ or too small a value of ag. Since the results obtained
were sufficient for the points to be made here, improvement in the
integration was not undertaken. It is recommended that any future
applications of the theory presented in Chapter 4 use a different
integration procedure. A detailed consideration of a better procedure
is not attempted here, but two points are worth mentioning. The
process of subtracting out the kernel for a half-space with the

source layer properties is advantageous in any case. This portion is
easily integrated in closed form and for shallow sources it is
precisely this part of the integrand which will cause the greatest
difficulty in the integration for large values of r. Numerical
integration will tend to be difficult for large r because of the
rapid oscillation of Jn (kr). A more precise method of analytic
integration than the one used here may be practicable for all values
of k. In any event it should be particularly advantageous to use an

analytic approximation for small values of k since this will also

tend to eliminate integration problems for large r.
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Appendix 16

ADDITIONAL INFORMATION ON PERMANENT TILT

AND STRAIN OBSERVATIONS

As noted in Chapter 7 an attempt was made to determine the time
duration during whicﬁ the permanent tilt and strain offsets occurred.
The records from which the offsets were determined run at 3/8 inch
per hour or about 6 minutes per millimeter. The precision with which
relative time can be read depends on the sharpness of the pen line,
noise level, and signal level. Under the best of conditions a
relative time of one minute might be achieved, but a figure of
two minutes is a better estimate of the reading error for the best
of the observations reported here. For some of the observations
the reading error may be considerably greater due to blurring or
fading of the pen line. For observations where the line was not
blurred or faded the principal limitation in reading precision was
the presence of large amplitude signal. The estimates of the time
interval during which offset occurred for’each case treated in the
text are listed in Table Al6-1l. These are all estimates of an
upper bound since all the records are consistent with the offset
occurring instantaneously.

For the three earthquakes listed in Table Al6-1 it is not
possible to distinguish the occurrence of the offset as associated

with any particular phase on the seismogram. In the case of the
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Fox Island earthquake listed in Table Al16-2 the occurrence of the
offset recorded on the NW-SE tiltmeter is clearly associated with
the time interval during which surface waves arrive. The offset
takes place during a time interval of 16 * 2 min to 22 * 2 min
after the origin time. Wideman and Major (1967) report that strain
steps arrive at times characteristic of surface waves.

The offsets listed in Chapter 7 were all recorded on direct
records. For the direct records the signal is amplified but not
subject to any filtering. The strainmeters are also recorded
at higher speed after passing through a high pass filter. By
studying the filtered records it was attempted to determine the
nature of the response and the sense of the input (positive or
negative) for the strainmeters for the Parkfield earthquake. The
filtered records for the Parkfield and Baja earthquakes were compared
with the instrument response to a step function input and an impulse
input. The results are tabulated in Table Al6-3. The NW-SE
strainmeter for the Parkfield earthquake showed a response which was
reasonably clearly impulse-like, but it was not possible to clearly
identify the instrument response with either a step function or
impulse response in the other cases. A judgment of the nature of
the response is given in Table 16-3. Both records for the Parkfield
earthquake are judged more impulse like than step-like and this alone
makes their use to determine the sense of a step-like offset
questionable. In addition and more important the NE-SW filtered

strain record for the Baja earthquake indicates extension while
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the direct record shows compression. For this case the noise level
on the filtered record is such that a compressiﬁe step function
response could have been overridden by the noise, but this is judged
unlikely. It was decided that the filtered strain record could

not be used to estimate the sense of a possible offset.

Excluding the three events discussed in the main text, nineteen
events were closely checked for permanent offsets on the tilt or
strain.records. Eleven of these were chosen from Wideman and Major's
(1967) list; two were nuclear events; the rest were chosen either
because of their proximity to Isabella or by scanning the records.
Except for four there was no indication of a permanent offset for
any of these events or for many other events which were scanned
in the records. Of the four events which gave at least some
indication of an offset, three showed a clear offset on at least
one instrument. The three are listed in Table Al6-2. As in the
main text there is an estimate of the maximum possible variation
after each observation.

There were records available for one or more of the two tilt
and two strain components at Isabella for thirteen of the sixteen
distant earthquakes for which Wideman and Major report strain
steps. Of the thirteen, three showed at least one definite
permanent offset, the Parkfield and Baja earthquakes treated in
the main text and the Southern Nevada earthquake which is given

in Table Al6-2. None of the other ten earthquakes showed aﬁy definite
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offsets. Considering the precision with which the instruments can
be read and possible azimuthal variations in thé deformational
fields no definite conclusion can be reached about the consistency
of Wideman and Major's data and the Isabella data. The earthquake
which comes closest to being inconsistent is the Northern California
(Truckee) earthquake. An estimate of the upper bound for a possible
offset is given in Table Al6-2. Wideman and Major report a strain
step of 10~10 to 109 for this earthquake at a distance of 1260 km.
Isabella at about 450 km from the earthquake shows that any
permanent strain is less than 7 x 10710,

Static models were not constructed for the three earthquakes
in Table A16-2 which show offsets. The theory developed is not
adequate at the distance of the Fox Island earthquake. 1In this
case however even a rough calculation shows that the observed
tilt is very large. The earthquake at Isabella shows offsets on
both tiltmeters and both strainmeters. It is so close to Isabella
that the error in epicentral location can accommodate any azimuth

from the recording site.
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Appendix 17

ESTIMATE OF AVERAGE SLIP DURING THE PARKFIELD

EARTHQUAKE FROM GEODIMETER DATA

Hofmann (1967) determined the relative movement between the
two sides of the San Andreas fault from measurements with a
geodimeter net before and after the Parkfield earthquake. The
time interval between measurements was about 9 months, from October,
1966 to July, 1967. A line some 4.5 km west of the middle of
the San Andreas fault zone in the Parkfield-Cholame area was assumed
fixed. The relative motion of three points about 7 to 11 km east
of the middle of the fault zone wefe determined. The relative
motion was dominantly right lateral, strike-slip parallel to the
average trace of the fault although there were a few centimeters
of motion perpendicular to the fault trace at two of the statioms.
From Hofmamn's data the geometry and relative motions shown in
Figure Al7-1 were determined. Figure Al7-1 is a modification
of a figure from a preprint of a publication which included the
data presented by Hofmann in 1967.

Knopoff's (1957) two dimensional solution for an infinitely
long, vertical strike-slip fault in a half-space was used to
estimate the average slip for the Parkfield earthquake. Let r; be

the distance along the surface of the half-space on a line
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perpendicular to the fault trace to a point west of the fault
trace. ry is similarly defined for a point on the same line east
of the fault trace. 'west'" and "east' are used according to
Figure Al7-1 where r; and r, are labeled for one observation
point. Let Uz(r,o) be the motion parallel to the fault trace

at a perpendicular distance r along the surface of the half-

space. Then using Knopoff's (1957) results

Uz(rl, o) - Uz(rz, 0) =

2 . 1 2 1
A0 l:(r1 + az)/2 + (r2 + a2)? - By = ¥y ] (A17-1)

where a 1is the fault depth and A0 is a constant. By assuming
a value of a the constant Ao can be determined. The displacement

jump across the fault plane at the surface is

AUZ(o,o) = 2 AO a "

The distribution of the displacement jump with depth is

1
AUz(o,x) = 2 A0 (a2 - xz)/2 le < a
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where x 1is the depth beneath the surface. From this the average

displacement jump is

i
A‘Uz A

Uz(o,o) .

Using these formulas the values of AUZ(o,o) listed in Table 17-1
were calculated for the fault depths and other parameters shown.
Since Eaton's (1967) observations show that the great majority of
aftershocks occurred above 12 km depth, the values of AUz(o,o)

of 37 cm., 32 cm., and 30 cm. were chosen as representative. These
give a ‘ZEZ of about 26 cm. for a fault depth of 12 km. which
are the figures used in Chapter 7. Assuming the fault length fixed,
the relative source strength is determined by the product of Kﬁz
and the fault depth. Use of a 6 km fault depth would decrease the
source strength by about 25%; use of a 24 km fault depth would increase
the source strength by about 50%.

The above estimate assumed that all the relative displacement
observed by Hofmam occurred during the earthquake. Smith and Wyss
(1968) attributed about 10 cm of surface displacement to the
earthquake, over 3 times less than the total figure determined above.
Using Chinnery's (1961) results for a surface with depth the effect
of the finite length of the fault compared with the infinite fault
length used above can be estimated. Assuming a fault depth of 1 unit

and a surface observation station 1 unit from the center of the fault,
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then the ratio of the lateral displacement to the lateral displace-
ment due to an infinitely long fault is about .74 for a fault length
of 4 units and .42 for a fault length of 2 units. For Parkfield

the ratio of fault length to fault depth is about 3 to 4, so the
calculation used above should underestimate the source strength

by a factor of about 1.2 to 2 if the finite length of the fault

were considered. The average displacement and fault depth determined

above is judged likely to be within a factor of 2 to 3.
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Appendix 18

FAULT PLANE SOLUTION FOR THE BAJA EARTHQUAKE

The fault plane solution for the Baja earthquake was determined
from a first motion diagram which was constructed by projecting
the first motion at a station back to the lower half of the focal
sphere. The lower hemisphere of the focal sphere was plotted on
a Wulff stereographic projection. A surface source was assumed
and the epicenter used was that reported in the California
Institute of Technology, Local Bulletin of Earthquakes (Richter, 1967).
The origin of the ray was determined using tables given in Ritsema
(1958), except that stations at distances less than 11° were also
assumed to be coming from the approximate origin of Pn on the
focal sphere. The records were from the long ﬁeriod instruments
of the World-Wide Standard Seismograph Net (Powell and Fries, 1966)
with a few points from the long period instruments of the California
Institute of Technology network.

Figure A18-1 shows the first motion determinations and
identifies a few of the stations which are referred to later.
Figure A18-2 shows amplitude data and a rough indication of the
type of S-motion at some of the stations. The amplitude data are
for the first peak in the record. It is on an arbitrary scale,
corrected for the magnification of the instrument, but not corrected

for the period of the pulse. In Figure Al8-2 stations at less than
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11° from the source are projected on to the portion of the focal
sphere which approximates the region where Pn originates. The
estimate of that portion of the focal sphere is indicated by a double
headed arrow. The station JCT was excluded since it was clearly
reversed and not critical in the interpretation.

The presence of a nodal line at an azimuth of about 53° is
easily determined from the data. The exact position of the other
nodal line is not determined very accurately. Within the error
of the epicentral location (about *.1°) the epicenter plots at the
south end of the San Jacinto fault (at the north end of the Gulf of
California) as given on the map in Kovach et al. (1962, p. 2846).

The nodal line at an azimuth of about 53° coincides well with that
expected from strike-slip motion on the San Jacinto fault and this
was accepted as the fault model.

The second nodal line then essentially determines the dip of
the fault plane. The position of the nodal line is not well
determined by the data. This is what prompted the inclusion of
amplitudes and S-wave motion at some of the stations. The California
Institute of Technology stations, Riverside, Pasadena, Palomar, Barrett
and San Nicolas indicate some west dip to the fault plane, but the
amount of dip is poorly determined since these are Pn arrivals.

The station GIE has a poorly recorded negative polarity which, if
accepted, would give a nearly vertical fault plane. Sykes (1967)

reports that GIE consistently shows reversed polarity compared to
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other stations, and that together with the amplitudes at other

South American stations led to rejection of GIE as a reliable data
point. Other critical stations were either too distant or had

too high a noise level to allow a very definite positioning of the
nodal line. Well documented strike-slip faults on the San Andreas
fault system favor a nearly vertical fault plane; however, considering
all the data a nodal line which gives a dip of about 72° to the

SW was chosen as the best fit. This could easily be in error by

5° and a larger error is not unlikely.
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Table 5-1

Comparison of Results from Asymptotic

Calculation and Numerical Calculation

Asymptotic for Numerically
Large r Calculated
UZ/UZH UZ/UZH

1.300 .913
1.150 971
1.075 1.045
1.050 1.042
1.038 1.034
1.030 1.029
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Table 6-2

Ratio of Perturbation Estimate of Period Change

to Actual Period Change

2 Model Gl Model G2 Model G3 Model G4
2 1.0 1.0 1:1 6200

4 1.0 1.0 1.4 3600

8 1.0 1el 1.8 1400
20 1.0 P 2.0 290
50 1.0 1.1 2.2 66

100 1.0 3.0 28
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CPO

BMO
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Table Al-2

Summary of P-ratios and S/P-ratios

P-ratio S/P-ratio
Psra’PuBo (8/gpp/ (/) ypg
.6 1,2
.9 2.3
1.6 1.8
.6 4.0

S

STA/S

'7
2.0

2.9

2.4

by multiplying the S/P-ratio by the P-ratio.

UBO*
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Table A 10-1

CONSTANTS IN FORMULAS FOR F(n,m)

10

1,

12

dAn dBn an
1
1 1
1 3 3
3 3 15
3 15 15
15 45 315
45 315 315
315 315 945
315 2835 14175
2835 14175 155925
14175 155925 155925
155925 467775 6081075
467775 6081075
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Table Al5-1

Comparison of Fields from Different

Approximations to the Same Structure

Approximation Approximation
1 2 1 2

R UZ/UZH UZ/UZH U6/U6H U6/U6H
25 ¢ L.000 .986 1.020 1.019
.5 1.344 1.436 1.094 1.092
1. 2.344 2.52% 1.446 1.438
hs 11.992 12.002 6.132 5.959
8. 3.947 3.932 5.046 4.174
12. -.982 -.998 5.114 3.634
20. 292 .285 2.665 2.402

40. .602 .617 -.634 ~+107
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Table A 16-3

Strain Offsets from Filtered Records

Parkfield Earthquake

NW-SE strain

NE-SW strain

Baja Earthquake

NW-SE strain

NE-SW strain

Filtered Record

Response Sense
Impulse-like Extension
Mixed-more Compression

impulse-like

than step-like.

Step-like Extension

. Step-like Extension

Direct Record

Sense

No record

No record

Extension

Compression



-260-

ve vt

0€ ¢t
(44 9 2oL 6°¢ 0°6T
8¢ %t
LE ¢t
gq 9 1L AR 8°0¢
9¢ e
(43 ¢t
8y 9 8'9 8% %°0¢
-

(0°0) nv wy 55
dunp - yada(q uy uy

JusweoBTdsST(Q °0BIINSG 1rneg ¢x Ix (o .NHvND - (o ,Muvnb

AAVAOHIAVA AIAIINEVA

HHL ¥04 dWAL INIWHOVIASIA HOVAYNS A0 SHIVWILSH

T-LTV °TqEL



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2-1

3-1

4-1

5=1

5-2

5-3
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Figure Captions

Surface I, and I_ and normal vectors ﬁ+ and

ﬁ_ for a displacement dislocation.
Layer indexing for spherical and circular

coordinate systems.

Spherical coordinate system and convention

for description of fault types for a sphere.

Comparison of surface displacement field
in a sphere and a half-space.

Circular cylindrical coordinate system and
convention for description of fault types
for a layered half-space.

The kernel KDg for five models.

Comparison of the effect of a weak layer
on the tilt fields due to a strike-slip
source and a dip slip source with vertical
fault planes and a dilatational source.
Comparison of the effect of 'a weak layer
on the tilt field due to a dip-slip
source with a vertical fault plane for

different source depths.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5-5

6-1

6-2

7=1

7-3
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Comparison of the effect of a weak layer
on the tilt field due to a strike-slip
source with a vertical fault plane for
different weak layer rigidities.
Comparison of the effect of a weak layer
on the strain field due to a strike-slip
source with a vertical fault plane for
different layer thicknesses.

Geometry of laterally inhomogeneous
region for torsional oscillatioms.
Eigenvalue perturbation for torsional
oscillations compared with a path
average estimate.

Geometry of fault models and recording
site.

Observed and calculated tilts at Isabella
for the Parkfield earthquake.

Observed and calculated tilts and
strains at Isabella for the Baja
earthquake.

Observed and calculated tilts and strains
at Isabella for the Borrego Mountain

earthquake.
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Figure

Figure

Figure

Figure

Figure

Figure

Figure

-5

Al-1

Al-2

Al-3

Al-4

Al-5

Al-6
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Cavity geometries

Location of observatories (from the
Registration of Earthquakes, Teledyne
Industries, 1966a).

Location of LRSM sites (from the
Seismological Bulletin Long-Range
Seismic Measurements, Teledyne
Industries, 1966b).

S/P-ratio for TFO versus distance

to UBO and for BMO versus distance

to UBO.

S/P-ratio for WMO versus distance to
UBO and for CPO versus distance to UBO.
Magnitude difference UBO-TFO versus
distance to UBO.

P-residual at BMO less P-residual at

UBO versus distance to UBO.
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Figure Al7-1

Figure A18-1

Figure Al18-2
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Geometry for estimating average slip
on San Andreas Fault for Parkfield
Earthquake.

First motions for Baja Earthquake.
Amplitudes and S-wave motion for

Baja Earthquake.
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Figure 2-1
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Figure 5-2



~80

272~

10 IS
DISTANCE

Figure 5-3

25



TILT RATIO

-273-

STRIKE SLIP
=0.1
D=1.0
H=0.l
N e ————
2 R ©=0.5 D=0 H=0.l
;7<?>>k,
0 1 l 1 l | I 1 l 1 |
0 5 10 15 20

DISTANCE

Figure 5-4

25



+10

+8

+6

+4

l“'+2

+12

+10

+ 8

~274~

STRIKE SLIP
/ ~— D=1.0
= 7o S~ H=0l
4 S T~<
u // =R ~—
- R el
V -
_;\‘~~-7'
\_/
i iy STRIKE SLIP
/ N p=0.1
B / NG D=0.5
= / N\ H=0.l

10
DISTANCE

)

Figure 5-5



-275-

Figure 6-1
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Observatory:

Observatory iden-
tification on film
seismographs

Location:

Geographic
coordinates:

Elevation
(meters above

mean sea level):

Geology of
bedrock:

BMSO

BMO

Baker,
Oregon

44950"
56"N-
117°18'
20"wW

1189
(3900 ft)

Granite

-282-

CPSO

CPO

McMinn-
ville,
Tennessee

35035°"
41'"N-
85034
13"W

574
(1883 ft)

Sandstone/
limestone

TFSO

TFO

Payson,
Arizona

34°16'
04'""N-
111°01¢'
13"wW

1492
(4894 ft)

Granite

UBSO

UBO

Vernal,
Utah

40°19
18"N-
109°34!
07w

1600
(5248 ft)

Sandstone

Figure Al-1

WMSO

WMO

Ft. Sill,
Oklahoma

34043
05'"N-
98935!
21"W

505
(1658 ft)

Granophyre
(porphyritic)
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. % BULLETIN SITES DURING AUGUST 1966~~~ "\

°OTHER SITES OPERATIONAL DURING
AUGUST 1966

Figure Al-2
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GEODIMETER STATION

Parkfield

0 5 km

Figure Al7-1
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