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ABSTRACT
The interaction between the ionized wake of a capsule entering
the Martian atmosphere and the circularly polarized radiation emitted
by an antenna located on the aft part of the capsule is theoretically
investigated in this study. A simplified mathematical model of the
atmosphere of Mars, the entry-trajectory of the capsule, and the flow
field surrounding the capsule are used in the analysis. The near wake
of the capsule is approximated by a cylindrically stratified plasma
shell consisting of n plasma regions. The plasma in each region is
assumed to be homogeneous, anisotropic, and conducting, and moving at
a uniform velocity relative to the antenna. The antenna is represented
by a turnstile antenna located off-axis Ao/h above an infinite ground
plane and operates at the signal frequencies of 400 MHz and 2.295 GHz.
Integral expressions for the cylindrical components of the
field vectors are obtained by a rigorous felati#istic formulation of
the prcblem, and are evaluated using the techniques of asymptotic
expansions to yield the radiation patterns of the antenna. Radiation
patterns for the special case of an on-axis antenna radiating through
a uniform, lossless, and isotropic plasma shell are presented and are
compared with the free space patterns.
The analysis shows that blackout occurs during the entry of
a capsule into the Martian atmosphere. Before and after blackout;
the radiation patterns of the antenna exhibit an 6n—axis null region
whose angular extent is proportional to the electron concentration of
the plasma. Also, sharp peaks which are attributed to leaky wave radia-

tion, are present in the null region of the patterns. For the non-null
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region of the patterns, the values of the gain function of the antenna
oscillate about the free space values. As the electron concentration
of the plasma increases, the peaks in the radiation patterns become more
numerous and more sharply defined. The effects of the motion_of the
plasma, on the radiation emitted by the antenna are to shift the peaks
of the radiation patterns to smaller cone angles and to introduce more
peaks into the patterns.

For the low velocity case corresponding to an entry into the
Martian atmosphere, no serious motional or depolarization effects
occur, and communications with the capsule can be satisfactorily>carried

out when the condition of blackout does not exist.
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I. INTRODUCTION

A. The Communication Blackout Problem

In this age of space exploration it has become necessary to
analyze the problem of communicating with an instrumented space probe
as it encounters an extraterrestrial planet. Recently, certain pre-
liminary aspects of an exploratory mission to an extraterrestrial
planet have been studied and have been shown to be scientifically
meaningful and technically feasible.

The objectives of an exploratory mission to an extraterrestrial
planet are

(1) To perform an atmospheric entry and obtain diagnostic
data on the physical properties of the planetary atmos-
phere;

(2) To survive a landing and return desirable scientific data
on the properties of the atmosphere at the surface of the
planet;

(3) To perform flyby scientific experiments that complement

the entry mission.

The underlying objective of this study is to analyze the elec-
tromagnetic aspects of communicating with an instrumented space probe as
it encounters the atmosphere of an extraterrestrial planet and attempts
a soft-landing on the surface of the planet. Such an undertaking re-
quires an approximate knowledge of fhe properties of the atmosphere at
the surface of the planet and the variation of these properties with

altitude above the surface of the planet. This study describes an
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experiment designed to approximately determine this knowledge. This
experiment can be performed on a flyby mission before the entry mission
takes place. The trajectory of the space probe on the flyby mission is
developed so that the probe will disappear behind the limb of the
planet as seen by the Earth and will be occulted by the planet. Before
its intercept by the surface of the planet, and again after its reap-
pearance on the opposite side of the planet, the s-band telemetry
signal of the probe will transverse the atmdsphere of the planet. The
refractive properties of the atmosphere will cause changes to appear in
the phase, frequency, and amplitude of the signal received at the Earth.
It is the measurement of these changes that will form the basis for a

determination of the properties of the atmosphere of the planet.

The data obtained from the occultation experiment can then be
used to design a survivable landing capsule. In particular, the scale
height of the atmosphere must be accurately known so that the capsule

can be designed to withstand the aerodynamic heating and deceleration

forces that will be encountered during the entry; and the surface pres-
sure and density of the atmosphere must be accurately known for the
proper design of the descent parachutes. Other properties of interest
in this study are the composition of the atmosphere, the surface tem-
perature, the adiabatic lapse rate and the specific heat of the gases
constituting the atmosphere, and the trobopause altitude.

After a survivable landing capsule is designed, the problem

still remains of receiving the data telemetered to Earth. Certain
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difficulties can arise that will now be discussed.

As the capsule encounters the atmosphere of the planet, a
resistance to its motion by the atmospheric gases will result in an
exchange of energy between the capsule and the gases, and a subsequent
ionization of the gases. The degree of ionization depends on the com-
position and physical properties of the atmosphere, as well as on the
entry-trajectory characteristics of the capsule. If the degree of
ionization is substantial, then a shock-induced envelope of ionized
gaseswll form around, and trail, the capsule as it passes through
the atmosphere of the planet (Figure l).

The shock-induced envelope of ionized gases constitutes a
moving plasma flow field, i.e., a macroscopically neutral ionized gas
consisting primarily of free electrons, free ions, and neutral parti-
cles, that moves with some velocity relative to the capsule. The
plasma can interact with the electromagnetic radiation received by and
transmitted from the capsule, and communications to and from the cap-
sule can be seriously disrupted. If this happens, changes, the sever-
ity of which will depend largely on the degree of ionization and
collision frequency of the gases constituting the plasma, can be ex-
pected in the phase, frequency and amplitude of the s-band telemetry
signal received at the Earth. At hypersonic entry velocities the éom—
bined effects of phase increase, doppler shift, and refractive defocusing
attenuation can be sufficient to cause "blackout",i.e., complete loss
of signal, even at extremely high frequencies. It is desirable to es-
tablish whether or not blackout will occur during the entry of the capsule

into the atmosphere of the planet, so that data collected during blackout
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can be stored and replayed after the end of blackout.

B. Previous Studies

Although numerous detailed studies have recently been conducted on
the communication blackout problem, most of them have been concerned with
the Earth reentry problem. In these cases, propagation takes place in the
forward direction through a plasma sheath, since for Earth reentry the

antennas are usually located on the forward part of the capsule. The

entry of a capsule into the atmosphere of an extraterrestrial planet
poses a different set of problems. In such cases, propagation takes
place through the near and far wakes behind the capsule, since the
antennas are usually mounted on the aft part of the capsule. Therefore,
a description of the plasma is required in the wake region. It will be
sufficient to determine only the electron concentration and collision
frequency profiles of the plasma in the wake region for the work that
follows. Determining these properties of the plasma is a difficult
problem in itself, since it involves a detailed knowledge of the ther-
modynamic properties and chemical composition.of e multicomponent,
high temperature, nonequilibrium gas flow field, and knowledge of the
atmosphere of the planet and the entry-trajectory of the capsule.
Certain reasonable approximations will be introduced to surmount these
thermodynamic and chemical problems.
C. Mars

Although many of the aspects of this study are applicable to

any extraterrestrial planet, the specific results and examples are



limited to the Martian atmosphere. This choice was made because of the
great amount of interest accorded Mars at the time of writing, and also,
because of the availability of astronomical and occultation data on the
planet. The electromagnetic work that follows will be done in complete
generality, however.

One of the present designs conceived for the Mariner Mars mis-
sion is such that the space probe will acquire an orbit trajectory
around Mars. A capsule will then be released on an impact trajectory
to enter the Martian atmosphere and, at a predetermined altitude, deploy
a parachute and extract a lander which will soft-land on the surface of
the planet. This design uses transmission frequencies of 400 MHz and
2.295 GHz, the proposed transmission frequencies for communication links
between the landing capsule and a relay bus (space probe) and directly
between the landing capsule and the Earth, respectively. This study will

also be limited to these two communication frequencies.

D. Outline

This study naturally divides into two main problems: a thermo-
dynamic-chemical problem, and an electromagnetic problem. The thermo-
dynamic-chemical problem further divides conveniently into three
parts. (1) given the available astronomical and occultation data on
certain key properties of the Martian atmosphere, one can construct a
reasonable model of the entire atmosphere; (2) given a description of
the landing capsule and the initial entry-trajectory data, one can
construct the entry-trajectory of the capsule into the Martian atmos-

phere. This calculation will, of course, depend on the model
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atmosphere developed in part (l); (3) given the model atmosphere and
entry-trajectory developed in parts (1) and (2), one can construct the
electron concentration and the collision frequency profiles of the
moving plasma flow field in the wake region of the capsule as a function
of altitude above the surface of Mars.

After a detailed knowledge of the properties of the plasma is
developed, the analysis of the electromagnetic interaction of the
moving plasma flow field with the s-band telemetry signal will be under-
taken. The following sections of this study will consist of a detailed

analysis of the thermodynamic-chemical and the electromagnetic problems

using the planet Mars as a specific example.
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II. THE CHEMICAL-THERMODYNAMIC PROBLEM

A. The Martian Atmosphere

1. Introduction

Certain key properties of the Martian atmosphere, such as sur-
face pressure, density, temperature, are used in this section to con-
struct a reasonable model of the entire atmosphere.

First, the occultation experiment used to develop this infor-
mation is described. Then the results of the occultation experiment
are presented from these data and various models of the Martian atmos-
phere are proposed. Since there is some uncertainty about the basic
reliability of the occultation data, the actual properties of the
Martian atmosphere and the variation of these properties with altitude
above the surface of Mars are still not precisely known. Consequently,
there is some uncertainty about which  model derived from the occulta-
tion data most accurately describes the Martian -atmosphere.

Therefore, two model atmospheres, VM-4 and VM-8, that have been chosen
to represent a reasonable range of expected conditions, are used

throughout the remainder of the study.

2. The Occultation Experiment

Despite the great amount of attention accorded its study in
the past few years, the structure of the Martian atmosphere has
remained, until recently, an unsolved problem subject to many diverse
interpretations. Previous knowledge of such atmospheric properties as
surface pressure, density, temperature, and scale height was quite
inexact. For example, the surface pressure as deduced from spectro-

scopic observations was thought to be between 10 and 40 mb., instead
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of the 85 mb. figure previously derived from Rayleigh scattering mea-
surements (1). The vertical structure of the atmosphere, including
properties. of the tropopause and scale height of the stratosphere,
being inaccessible to direct Earth based measurements, was therefore
only estimated from assumptions about the atmospheric constituents and
temperature. Also, the properties of the ionosphere were open only to
the postulation of models based in turn on the estimated structure of
the upper atmosphere.

The s-band telemetry occultation experiment (2) on the Mariner
Mars 1965 flyby--the design of which will now be discussed--offered the
earliest opportunity to significantly reduce the uncertainty surrounding
the Martian atmosphere. The geometry of the occultation experiment is
shown schematically in Figure 2. At entry into occultation the space-
probe was 25, 570 km distant from the limb of the planet and traveling
at a velocity of 2.07 km/s normal to the Earth-Mars line. The point of
tangency on the surface of Mars was located at latitude 50.50 S and
longitude lTTO E, corresponding to & point between Electris and Mare
Chronium. At the time of exit from occuliation, the distance from fhe
limb of the planet had increased to 39, 130 km, and the point of
tangency, which fell within Mare Acidalium on the surface of Mars, was
located at latitude 60° N and longitude 3&0 W. As the space probe
passed behind the limb of Mars and emerged from the opposite limb Sk
minutes later, the path of its s-band telemetry signal passed through
the Martian atmosphere. The presence of the atmosphere caused the
velocity of propagation of the signal to deviate from the velocity in

free space because of the nonunity index of refraction of the neutral
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and ionized layers of atmospheric media. Also, the radial gradient of
the effective index of refraction of the atmosphere caused the signal to
be refracted from a straight-line path. Therefore changes in the appar-
ent phase path length between the space probe on its trajectory and the
tracking antenna on the Earth were observed. Since the trajectory of
the space probe was precisely determined from pre- and post-encounter
tracking, the effects of the atmosphere were apparent when the actual
phase path length of the signal was compared with the phase path length
predicted by the abit of the space probe. Also, since the amount of
phase deviation of the signal changed with time, the received frequency
of the signal differed from the predicted value. Too, the lens-like
effect of the refractivity gradient in the atmosphere that caused the
signal to diverge led to alreduction of the received signal power. Thus
changes in the phase, frequency and amplitude of the signal received on
the Earth were observed and recorded; and this information constituted
the raw data of the experiment.

Figures 3 and L4 show the (observed minus predicted) doppler
shifts and phase differences based on data received at the various DSIF
(Deep Spacé Instrumentation Facilities) stations. Both closed loop data
(data taken with the transmitting frequency reference of.the space probe
provided by a frequency standard on the Earth) and open loop data
(data taken with the transmitting frequency reference provided by an
on-board crystal oscillator) were recorded. In the later mode, the
precision of the phase measurements is significantly degraded. One
may observe that the data from the various sources show a high degree

of consistency. The most important results of the occultation experiment
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were the determination of the properties of the Martian atmosphere at
the surface of the planet from the occultation data. Actually, fhe
occultation data indirectly gave the values of the properties of the
atmosphere at the place on Mars that occulted the telemetry signal.
There was the disturbing possibility that the place might have been,
however, a high mountain peak. In analogy to the Barth, this would
cause the values of the derived properties of the atmosphere to be off
perhaps by half those values found at most points on the surface of
Mars. To mitigate this problem, it was important to observe both the
space probe immersion into and emersion out of occultation and compare
the data taken in each instance.

Figure 5 shows the (observed minus predicted) doppler shifts
based on the data received during the space probe emersion. A comparison
of the entry and exit doppler shifts shows that both sets of data are
similar. Therefore, there was confidence that the data were valid and
that the data were indirect measurements of the properties of the Mar-
tian atmosphere near the nominal surface of the planet.

Analyses of the changes in phase, frequency, and amplitude of
the telemetry signal were used to infer some of the properties of the
Martian atmosphere. The properties of interest in this study are

(1) The composition of the atmosphere,

(2) The pressure, density, and temperature at the surface of
the planet,

(3) The specific heat of the gases constituting the atmosphere,
(4) The adiabatic lapse rate of the stratosphere,

(5) The scale height of the tropopause,

(6) The altitude of the tropopause.
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The measured deviation in phase of the telemetry signal was used to
estimate the spatial characteristics of the index of refraction of the

Martian atmosphere by a process of model fitting and integral inversion

of the equation

sr(t) = J ds n(r) - r_(t) (TE k1)
r(t)
where
r(t) = actual path followed by the telemetry signal
n(r) = refractivity of the Martian atmosphere
r (t) = straight-line path between the transmitting antenna

on the space probe and the receiving antenna on the

Earth.
Therefore, the deduced parameter from the occultation data was the
refractivity of the Martian atmosphere as a function of altitude above
the surface of the planet. From the refractivity of the atmosphere,
one can further derive not only the scale height but also the pressure
and density distributions of the atmosphere as a function of altitude
above the surface of the planet. From the scale height of the atmos-
phere, the mean molecular weight can be determined and the composition

of the atmosphere can be defined.

3. Model Atmospheres

The deduction of the properties of the Martian atmosphere from
a knowledge of the refractivity of the atmosphere are discussed amply
in the literature (3,4). The results of these model studies are pre-

sented in Table 1:
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from which it seems clear that the following characteristics of the

Martian atmosphere are well established:

(1)

Mars has a tenuous atmosphere. The molecular number
density near the surface of the planet is only 0.7 to

1% that of the Earth.

Carbon dioxide must be the principal atmospheric consti-
tuent in order to explain both the occultation and the
spectroscopic measurements.

The atmosphere is very cold at all altitudes. The tem-
perature is about 180° i2OOK near the surface of the
planet and is about 80° #20°K at the height of the —
sphere.

Because of the low temperature, the atmosphere is confined
near the planet (the exosphere begins near 140 km) and the
height profile of the atmospheric mass density is several
orders of magnitude below that of the Earth at all altitudes

even though the graﬁity is 62% lower on Mars.

In summary, the current models of the Martian atmosphere consist of a

spherically layered atmosphere with a constant lapse rate lower layer

and an isothermal (exponential)upper layer separated at the altitude of

the tropopause. The adjustable parameters are the composition of the at-

mosphere; the surface pressure, density and temperature; the specific hesat

ratio; the constant lapse rate of the stratosphere; the exponential scale

height of the isothermal layer; and the altitude of the tropopause.
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Since there is still some uncertainty about the properties of
the Martian atmosphere and the variation of these properties with alti-
tude above the surface of Mars, two model atmospheres, VM-L4 and VM-8,
that have been chosen to represent a reasonable range of expected con-

ditions, are used throughout the remainder of the study.

Since the various proposed model atmospheres assume a constant
lapse rate lower layer in the stratosphere and an isothermal (exponen-
tial) upper layer, separated at the altitude of the tropopause, the

pressure p(h) of each atmospheric model is given by (5)

r 3
— e £ % &
po(l + h) 0% hé&h
O
P = , (I1.4.2)
—B(h—ht)
p, e h > hy

and similarly, the density p(h) of each model by (5)

i
I\ ——
Y=L Pl <

= £ £h

po(l # 5 h) 0£h "
o}
o = fELadl3)
~Blh =T, )
Ry, B h > ht
where

B, = surface pressure
By & surface density
TO = surface temperature
Y = specific heat ratio -
I' = adiabatic lapse rate

h = altitude
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B = inverse scale height
p, = tropopause pressure
Dt = tropopause density

h = tropopause altitude

The appropriate values for these parameters are given in Table 1 for
each model atmosphere.

Much of the information discussed in this part of the study has
been graciously made available to the author by personal communication

with the experimenters at the Jet Propulsion Laboratory.
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B. The Entry-Trajectory

1. Introduction

The entry-trajectory of the capsule as it descends through the
Martian atmosphere is developed in this section from a description of
the entry capsule and the initial entry-trajectory data. To simplify
the analysis that follows, the entry-trajectory is assumed to be linear,
and is based on the two model atmospheres, VM-4 and VM-8, previously
developed.

2. Capsule Description

The entry capsule (6) has a sphere-cone aerodynamic configura-
tion, which ballistically decelerates the capsule within the Martian
atmosphere. The spherical nose (nose radius = 0.1 diameter) is followed
by a 60° half-angle cone forebody truncated in a knuckle section at the
maximum diameter (corner radius = 0.05 diameter). The O.l-diameter nose
radiusvwas chosen to minimize aerodynamic heating. The large cone half-
angle of 60° was chosen to obtain the necessary deceleration in the
tenuous Martian atmosphere. The corner radius of 0.05-diameter was based
on tests conducted on other blunt body capsules and on some preliminary

data available on 600 cones. This value reduces the heat problem at the

corners.

The entry capsule is 6-1/2 £, in diameter and weighs 180 1bs.
at entry. The ballistic coefficient¥* at entry is 0.12 slugs/f2 . The
entry capsule uses a 400 MHz relay communication system that transmits
at 8-W RF power during both the deflection maneuver and the entry phase.

Also, an s-band direct-to-Earth communication system transmits at 3-W RF

%
The ballistic coefficient is a measure of the distribution of mass per
unit area and can be experimentally determined.
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power at 2.295 GHz during the entry phase., The capsple is capable of
carrying out an atmospheric entry experiment using pressure and tem-
perature sensors, an accelerometer package, and a mass spectrometer.

As the capsule descends through the Martian atmosphere it can perform
direct measurements of the atmospheric properties and composition. Once
on the surface of Mars, the lander can further obtain samples of the
physical properties of the atmosphere at the surface of the planet,
undertake soil composition experiments, and search for extraterrestrial
life.

3. Initial Entry-Trajectory Data

The entry phase of a mission to the planet Mars begins
nominally at an altitude of 800 kf above the surface of Mars just before
the actual atmospheric entry, and ends with the impact on the surface of
the planet. A set of initial conditions, consistent with the proposed

space probe approach-trajectories, deflection manuever orientation, and

deflection maneuver accuracies are used for the entry-trajectory

analysis. These initial conditions are (6)-

(1) entry altitude: h, = 800 kf

(2) entry velocity: T = 22 kf/s

(3) entry angle: ¥ =55 *6°
e

L. Linear Entry-Trajectory Characteristics

The predicted entry-trajectory of a blunt body capsule into
the Martian atmosphere is depicted in Figure 6. Linear entry-trajectory
theory is used to approximately determine the entry characteristics of

the capsule. Those of interest in this study are the velocity and
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elapsed time-from-entry of the capsule, calculated as a function of
altitude above the surface of Mars.

With the linear theory, the entry-trajectory of the capsule is
assumed to be a straight-line path at the constant entry angle relative
to the local horizontal at the assumed point of entry into the Martian
atmosphere. The surface of Mars is assumed to be flat so that the
altitude of the entry capsule above the surface of the planet is inde-
pendent of the displacement of the capsule from the local vertical at
the assumed point of entry into the atmosphere. Figure 7 is a schematic
drawing of the linear entry trajectory showing the pertinent parameters
and the resulting altitude error. Clearly, the accuracy of the linear
approximation increases with increasing entry angle and is exact for an
entry angle of 900. At an entry angle of 30O or less, the curvature of
Mars is no longer negligible in determining the velocity and elapsed
time-from-entry profiles of the capsule. For a'Martian entry, the pre-
dicted entry angle is 5503 therefore, the constant path angle assumption
can be made without introducing any appreciable error into the analysis.
‘This assumption will be advantageous in determining the entry profiles
now to be discussed.

Since the path angle is assumed to be constant, the velocity
equation (7) in the set of trajectory equations is readily integrated

and yields D

- 2g Asin ¢
¢ =w.ow = = LEL Bl

The elapsed time-from-entry (7) is obtained by integrating the equation

£ = - v sin (II.B.2)
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with the aid of Eq. II.B.l and the previous assumption that ¢ =y =

e
constant. This results in the equation
021 (P ) m(—e—j] (B3
Bve51n we 2gSA sin we 2gsA sin we
where
Ty entry velocity
we = entry angle
P, = atmospheric pressure at the entry altitude
B = inverse scale height
£, = nominal surface gravity
A = ballistic coefficient of the entry capsule
5 n . ;
Bi(7) = J an g}_ £ > 0 (exponential integral)

Figures 8 and 9 are graphs of capsule velocity vs altitude
above the surface of Mars, and capsule elapsed time-from-entry vs
altitude above the surface of Mars. The results are for the VM-4 and
VM-8 model atmospheres as obtained from Eqs. II.B.1l and II.B.3 for an
entry altitude of 800 kf, an entry velocity of 22 kf/s, an entry angle
of 550, and a ballistic coefficient of 0.12 slug/fe.

An examination of Figure 9 reveals that for the VM-4 model
atmosphere the capsule achieves terminal velocity at approximately 50s

after entry. When this condition exists, Eq. II.B.3 is no longer valid
and results in the unreasonably high value of T755.0s for the calculated
impact time. Fortunately, only that part of the grapn which lies below

50s is important to the work that follows.
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C. Plasma Profiles

1. Introduction

The radial dependence of the properties of the plasma in the
wake region of the entry capsﬁle is developed in this section from the
assumed models of the Martian atmosphere and the entry-trajectory of
the capsule as developed in the previous sections. These radial pro-
files are developed as a function of altitude above the surface of
Mars and as a function of elapsed time-from-entry of the capsule.

The properties of interest in this study are the electron con-
centration and the collision frequency of the plasma. Actually, for a
Mars entry, it has been shown that the collision frequencies are over three
orders of magnitude below the signal frequencies of interest in this
study and, therefore, can be neglected (8). Also, it can be determined
from the entry-trajectory of the capsule in relation to the Earth at
the time of entry that the propagation path will occur through the near
wake only; therefore, only the electron concentration in the near wake
is determined.

The radial profiles of the plasma in the near wake are developed
first by examining the properties of the atmospheric gases in the
stagnation region of the capsule, and then by analyzing the expansion
of these gases as they flow out of the stagnation region, past the
forebody of the capsule, and into the wake region. This analysis will
determiﬁe only the peak electron concentration in the near wake as a
function of altitude above the surface of Mars. Finally, the actual
radial profiles of the plasma in the near wake are developed from

experimental data furnished by the Jet Propulsion Laboratory.
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2. Chemical Equilibrium—Normal Shock

Although many processes of interest in aerothermodynamics
involve flow onditions in which high temperature gas mixtures are
characterized by significant temperature gradients, and thus by non-
equilibrium chemical phenomena, some processes are of interest for
which either the temperature gradients disappear or the reaction rates
are sufficiently fast to satisfy the assumption of chemical equili-
brium.

If the principle 'of conservation of energy and the second
law of thermodynamics are applied to a constant mass system in mechani-
cal and thermal equilibrium at a particular pressure and temperature,
the chemical composition of the gas mixture can be determined. Alsoc if
the assumption is made that the long range interaction between the
particles of the gas are negligible, the individual constituents of the
gas mixture can be described approximately by the ideal gas law. Then
with this assumption the equations of mass action and mass balance for
each constituent gas particle éan be derived. A derivation of these
equations is presented in the references (9). For completeness, the
results are:

(1) mass action

S+m
n -1+ ajk
—_.L’L._____. = k=s+l — ®e 00
st o = ©3(RT) (3 =1,2,°*" ,s) (II.C.1)
i Jk
oy
k=S+1

where



fj sgm fi
lnc = ==+ a —= (TI.0.2)
3 BT 2., ik BE
(2) mass balance
: 0
n, + jzl nop = b, 5;' (k = s+l, s+2, <+, s+m) {I1.6.3)

in which the quantities are defined as

m = number of chemical elements present
s = number of compounds present
b. = concentration of the ith-element at STP

fO = partial molal free energy of the ith constituent at one
atmosphere

n. = concentration of the ith constituent

R = universal gas constant (1.98726 cal/mole °K)

T = temperature
ajk = number of atoms of the kth element in the molecule of the
JB constituent
p = mass density of the mixture
DO = mass density of the mixture at STP

After the chemical equilibrium concentrations of the gas mixture are
determined, the thermodynamic properties of the gas mixture are calcu-

lated by the following relations

s+m

n o= ] m (II.C.h)
=1
s+m

p = ] am (II.C.5)

i=1
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s+m
Z n, h
i=1 o
o o= A (I1.C.6)
p
where
n = total concentration
p = total mass density
h = total enthalpy
h; = partial molal enthalpy of the ith constituent at one
atmosphere
. .th .
m. = molecular weight of the i constituent

One important application of chemical equilibrium is the normal
shock problem. The equations (10) governing the variation of the prop-
erties of the fluid through a normal shock, when the coordinate system
is chosen so that the flow is steady and one-dimensional, and when the
effects of body forces, diffusion, and radiative transfer are negligible,
are

(1) continuity

%; 5y] = @ (I1.C.7)

(2) linear momentum

v ,dp_4d (. dv
Mt ST G (n dZ) (IT.C.8)
(3) energy
aE v _ d aT L dv.2 -
VLt P T wE T3 G X S

where
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p = pressure
p = mass density

v = velocity

E = energy

n = viscosity

K = thermal conductivity

If the fluid is assumed to be inviscid (n =

0) and nonheat-conducting

(K = 0), or if the fluid is assumed to be in thermal equilibrium

(%; = 0), then the equations reduce to the form
a
az (ev) =0
dv dp
.—__+———=
P dz dz .
A at av _ o.
PV 1z dz

Integrating these equations with respect to

where kl, k2, and k3

are the integration constants and h

(11.0.10)

(II.C.11)

(I1.C.12)

(Ir.c.13)
(IT.C.1h)

(I1.C.15)

is the

enthalpy per unit mass. If these equations  are applied across a normal

shock, then the equations become
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PV, = PV, {IT.C.16)
2 =
PLVy * Py = PV, F D, (II.C.17)
V2 V2
1 _ -2
h) + 5 = hy 2 {IT.C.38)

Equations II.C.16-18 relate the thermodynamic properties and the veloci-
ties in the upstream and downstream equilibrium regions of the flow asso-
ciated with a moving normal shock. Mathematically, the problem is to

satisfy the Hugoniot equation

l__+.:.l‘_)

(II.0.19)
Py 2

o _
hy = by = F(p, - py )l

which is obtained from a suitable manipulation of Eqs. II.C.16-18. If
the initial properties hl’ Py and P, are known, the chemical equili-
brium computation yields relations for h2(92,T2) and P, (p2,T2) .
Therefore, by selecting one property in region 2, the other property is

determined by Eq. II.C.19.

3. Peak Electron Concentration (Stagnation Region)

In the dense lower altitudes of the Martian atmosphere, where
the chemical reaction rates in the flow regime of an entry capsule are
sufficiently fast, the free-flight entry calculation is one of supply-
ing thermodynamic properties and chemical compositions of a multicom-
ponent, high temperature, real gas mixture, which approximately
satisfies the conditions of chemical equilibrium. In the less dense,

higher altitudes of the Martian atmosphere, the assumption of chemical
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equilibrium is no longer Jjustified. However, an equilibrium solution
at the less dense altitudes would produce a conservative estimate of
the properties of the gas mixture and, therefore, will be in keeping
with the objectives of this study.

Also, to a close approximation, the properties of the gas
mixture in the stagnation region of the capsule are similar to that
behind a traveling normal shock.

The Hugoniot equation and auxiliary equations derived from
Egqs. II.C.16 and II.C.17 with subscripts appropriate to the free-

flight moving shock problem are

- L b g
h, - h, =5, - pm)(pm + ps) (II.C.20)
Py P P
v o= === (11.C.21)
c P Py — P
P B~ B,
V/C = i S (IT.C.22)
g Py P~ Py
- 1.2
b, = B+ 3V (II.c.23)

where

—
~
1}

shock region

—~
~
1l

free stream region

The terms v, and vg/c denote the velocity of the capsule and the

velocity of the &ases relative to the capsule, respectively, and hSr

is the enthalpy of the stagnation region.
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To obtain the properties of the s+m constituents of a gas mix-
ture in chemical equilibrium, the m mass balance equations and the s
nonlinear mass action equations must be solved simultaneously. A method
has been developed to solve these equations numerically. It expands the
mass action and mass balance equations in a Taylor's series about a
point defined by a set of concentrations which is assumed to approxi-
mately satisfy the mass actioﬁ and mass balance conditions. If terms
higher than the first order are neglected, a system of linear equations
is obtained that approximates the mass éction.and mass balance equations.
The sojution of the linear system of equations results in a new set of
concentrations, which are closer to the actual solution to the mass
action and mass balance equations. If this procedure is repeated, a
solution with any desired accuracy can be obtained.

The solution to the free-flight moving shock problem consists of
finding a thermodynamic state defined by g and Ts that satisfies
the Hugoniot equation. The initial conditions to the Hugoniot equation
are specified by the pressure, temperature, and concentrations
as found by the method above. To find the final state that satisfies
the Hugoniot equation, a final temperature Ts is chosen, and the value
of Pq is varied until values of 1 and hs are found which satisfy
the Hugoniot equation. After'the properties which satisfy the Hugoniot
equation are found, the velocity of the capsule and the velocity of the
gases relative to the capsulé are found from Egs. II.C.22 and II.C.23.
Then the properties of the gases in the stagnation region of the capsule

are determined.



~8T

An equilibrium thermochemistry and normal shock computer pro-
gram (11) has been developed to perform the above computations. The

input parameters to the program are

initial mixture constituents
initial mixture compositions
initial molal enthalpies
initial free stream pressure
initial free stream temperature

shock temperature

The output of the program is a complete chemical and thermody-
namic description of the gases behind the moving normal shock. The
output parameters of interest for this study are the shock velocity and
electron concentration in the stagnation region of the capsule.

It is convenient to use the altitude above the surface of Mars
as an input parameter in the following computations performed with the
equilibrium thermochemistry and normal shock computer program. Since
the program input is in terms of the initial free stream pressure in-
stead of the altitude, Eq. II.A.2 is used to convert each altitude of

interest into an equivalent free stream pressure.

Because the input value of the shock temperature cannot be
determined in advance, the electron concentration in the stagnation
region of the capsule is calculated for a series of shock temperatures.
The program output then gives the appropriate electron concentration
and shock velocity corresponding to each shock temperature in the

series, and a curve of electron concentration vs. shock velocity is
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developed for each initial free stream pressure, with the shock tempera-
ture as a parameter along the curve. The correct shock velocity for
each curve is the velocity of the capsule for that curve, and the cap-
sule velocity corresponding to the free stream pressure along each curve
is given by Eq. II.B.1 . Therefore, with the use of Eq. II.B.1l, the
electron concentration in the stagnation region of the capsule can be
determined as a function of capsule velocity by linear interpolation,
when necessary. The construction of one such curve with all the perti-
nent parameters is shown in Figure 10.

Figure 11 contains graphs of the electron concentration in the
stagnation region of the capsule vs. shock velocity or‘capsule velocity.
The graphs were obtained for the VM-4 and VM-8 model atmospheres from
the thermochemistry and normai shock computer program by the method just

described. The curves used to construct these graphs are not shown.

L. Peak Electron Concentrations (Wake Region)

The peak electron concentration in the wake region of the entry
capsule is now determined since the antenna is mounted on the aft part
of the capsule and the propagation path is through the near wake.

An exact analysis of the expansion of the gases flowing out of
the stagnation region, past the forebody of the capsule, and into the
wake region is not attempted here because the solution would require the
use of nonequilibrium chemistry. Instéad, a frozen flow approximation
to the actual flow conditions is used to estimate the values of the peak
electron concentrations in the wake region. Other chemical equilibrium

schemes are possible, but because the frozen flow approximation yields
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the greatest value for the electron concentration in the wake region,
it is in keeping with the limitations of this study.

In the frozen flow approximation it is assumed that the total
number of electrons formed in the stagnation region remains constant as
the gases flow around the capsule and into the wake region. Any change
in the electron concentration is due to the expansion of the gases as
they flow into the wake region. Although the value of the specific
heat ratio is not a constant'during the expansion of the gases, the
results are not sensitive to the value selected (8). In the frozen
flow approximation the value of the electron concentration n_ in the
wake region is related to the value of the electron concentration ng

in the stagnation region by (8)

P, 1/y
n_ = ng (5;) (IT.C.24)

where the pressure ratio (ps/pw) across the shock is obtained from the
output of the equilibrium thermochemistry and normal shock computer
program. The term Y denotes the specific heat ratio.

Graphs of the peak electron concentration in the wake region
vs. altitude above the surface of Mars, and graphs of the peak electron
concentration in the wake region vs. elapsed time-from-entry of the
capsule are obtained from the results contained in Figure 11 by using
Eq. II.C.24 and relationships between altitude, capsule velocity, and
capsule elapsed time-from-entry as given by Eq. II.B.1 and II.B.3 .
These graphs are shown in Figures 12 and 13 for the VM-I and VM-8 model

atmospheres.
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For the nonconducting, isotropic plasma present on a Mars entry,
a critical value of the electron concentration n, can be determined
such that, if n < n,, the plasma is underdense and waves in the plasma

propagate without attenuation; and, if n_ > n, the plasma is over-

dense and waves in the plasma are evanescent and carry no power. Therefore,

blackout will occur during a Mars entry whenever n > n, -

The critical electron concentration for 40O MHz is

9

e /cc and the critical electron concentration for 2.295 GHz

0

1.99 x 10
is 6.53 x 10°° e /cc. These are shown in Figs. 12 and 13. Clearly, black-
out occurs during a Mars entry, and the altitude at which blackout

begins and ends and the duration of blackout can be determined from
Figures 12 and 13. A discussion of these aspects of blackout is pre-
sented in the references (12).

In the remainder of this study, the effects of the ionized

wake on wave propagation before and after blackout will be investigated.
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5. Radial Distributions

Typical electron concentration profiles in the wake region of
an entry capsule are shown in Figure 1b. These profiles were
obtained experimentally by the Jet Propulsion Laboratory from shock
tube tests performed with blunt body capsules. In the figure the
electron concentrations are plotted against the distance off the
dividing streamline* perpendicular to the axis of symmetry of the
capsule, for various distances downstream from the aft part of the
capsule.

The electron concentration profiles are determined as a func-
tion of the peak value of the electron concentration in the wake
region of the capsule. It has been found from these experimental
tests that the shapes of the distributions are not sensitive to varia-
tions in the peak value of the electron concentration.

Since the peak value of the eiectron concentration in the
wake region of the capsule haé been determined in the previous sec-
tions of this study, the radial profiles of the electron concentration
in the near wake of the capsule can be determined from Figure 1k.

The profile labeled =z = 0.5 in Figure 1lb4 is typical of the electron
concentrations found in the near wake of the capsule and will be used

as a model to represent the actual near wake present on a Mars entry.

*

The dividing streamline is the path taken by the gases closest to
the capsule at the maximum diameter as they flow intoc the wake
region.
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IIT. THE ELECTROMAGNETIC PROBLEM

A. Problem Statement

The effects of a moving plasma on electromagnetic wave propa-
gation are investigated in this section. The plaéma in its most
general state is assumed to be inhomogeneous, ansiotropic*, and con-
ducting.

As noted in the previous sections, no magnetic field is detect-
able on Mars, and the collision frequencies of the plasma are over three
orders of mgnitude below the signal frequencies of interest in this
study. Therefore, for the Mértian atmosphere, the plasma can be assumed
to be isotropic and nonconducting.

Tc make this study applicable to other extraterrestrial planets,
which may or may not have the same properties as Mars, the following
work will be undertaken considering the more general case in which the
anisotropy and conductivity of the plasma are present.

The electron concentration profile in the wake region of the
capsule possesses axial symmetry about the center line of the capsule.
As shown in Figure 1k, the electron concentration is also a slowly
varying and continuous function of the radial and axial distances away
from the capsule. For increasing axial distance behind the capsule,
there is a decay in the peak electron concentration and an expansion
of the wake radius. Since these axial changes are much slower than
the radial changes, they are not expected to alter significantly the

results obtained from assumihg that the inhomogeneity is a function of

*
The origin of the magnetic bias that gives rise to the anisotropy of
the plasma is considered to be outside the scope of this study.
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the radius only. Therefore, the wake region of the capsule is
approximated by a cylindrically stratified plasma shell consisting of

n homogeneous plasma layers. The i'® layer of the plasma (1 < i < n),

which is described by the electron concentration ni and the collision
frequency féi’ is biased on the z direction by an applied magnetic
field Eoi and is moving in the z direction with a velocity v, - The
geometry of the problem is shown in Figure 15.

The antenna in this study is mounted ko/h * above the aft part
of the capsule and emits right circularly polarized radiation in the z
direction. This antenna is represented by a turnstile antenna located
Ao/h above an infinite ground plane. Although the aft part of the cap-
sule is finite, it is large compared with the wavelengths of interest in
this study; consequently, the diffraction effects of the finite capsule
can be neglected and the assumption of an infinite ground plane is
reasonable.

Since the radiation from a turnstile antenna with an infinite
ground plane can be constructed from a knowledge of the radiation from
a horizontal dipole, the problem reduces to one of finding the fields of

.a horizontal dipole located as shown in Figure 15.

To analyze the effects of the moving plasma on the radiation
from the antenna, the theories of Minkowski's phenomenoclogical electro-
dynamics of a moving medium are used to derive the required field equa~
tions in the moving plasma. This approach is based on the covariance of
Maxwell's equations and on the invariance of the.constitutive param-
eters of the plasma when Lorentz-transforming the field equations

between inertial reference frames.

¥
AO is the free space wavelength of the radiation emitted by the
antenna.
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One frame of reference is chosen to be at rest with respect to
the plasma in each layer, and another frame of reference is chosen to
be at rest with respect to the antenna. From the point of view of the
rest frame of the plasma in each layer, the problem is one of solving
the inhomogeneous wave equation in a stationary, anisotropic, and con-
ducting piasma° After the stationary wave equation in each layer of
the plasma has been solved, the resulting integral expressions for the
cylindrical components of thé field vectors are Lorentz-transformed
into the rest frame of the antenna. Then, in the rest frame of the
antenna, the boundary conditions on the tangential components of the
field vectors are satisfied. Finally, the complete integral expres-
sions for the spherical components of the field vectors are evaluated
using the techniques of asymptotic expansions to yield the radiation

patterns of the antenna.
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B. Stationary Media

l. Field Equations

In the following discussion let any vector v represent a

function of the time t and of the space r , i.e., V

V(t,r) . Then

Maxwell's equations in a stationary medium

3B
TAE = -57 (I11.B.1)
LBy 4. LB
;;'Z.A‘_.= 1, * B, 5 {(II1.B.2)
ek = p (III.B.3)
v.B =0 (TIT.B.k)

describe the electromagnetic field by the vectors E and B and charac-
terize the medium by the total charge density pt and the total current
density it . The terms uo and eo denote, respectively, the permea-
bility and permittivity of the #acuum.

The total charge and current density. terms can be separated

into two distinct parts (13)

Py = Py * Py (ITI.B.5)

jo= 4+ 4 (II1.B.6)
where |

p. = p (applied) (ITI.B.T7)
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p, ==Y P+2V¥: Q0+ (induced) (III.B.8)
-, ( —
ia applie
A, = < icond (conduction) (I1I1.B.9)
lconv (convection)
RS
3P 1 g
= __-_—__ — s ° M s o0 3
{s =-Fw ¥ 2+ 7 AM+ (induced) (III.B.10)

The terms P, 2, M, etc. denote the volume densities of the induced mul-
tipole moments that are produced by the effect of the electromagnetic
field on the neutral particles of the medium and are, therefore, func-
tions of the field vectors t and B .

The electric field wvector 2_ is defined by

v+D = o (III.B.11)

or, after comparing this relationship with Egs. IIT.B.3 and III.B.5, by

D 5 e E+P -5 Q0+ - (III.B.12)

N

Similarly, the magnetic field vector ﬂ_ is defined by

D

VAR =4 +=57 (IT1.B.13)

or, after comparing this relationship with Eqs. III.B.2 and III.B.6, by

B

ﬁ = -_M_+ (III.B.1h)

%o
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It is convenient to express the field vectors in the follow-

ing form:

~

1
<

v(t,r) (III.B.15)

|
8 -

~

v(w,r) = | —v(t,r) e (III.B.16)

<1
5
I

-—00

which is just a Fourier integral transformation in t and w .
In what follows, let any transformed vector v represent a func-
tion of the transformed variable w and of the space r , i.e.,

v E zﬂm,z) . Consequently, Maxwell's equations in terms of the trans-

formed variables are

VAE=1diwu n - H (III.B.17)
VAE=j -dwe g *E (III.B.18)
“ EAE = III.B.1
e Lt El= g, (II1.B.19)
Wy Y rn-E= 0 (III.B.20)

where it is assumed that a linear relationship exists between the mul-
tipole moments and the transformed field vectors such that equations

III.B.12 and III.B.1l4 transform into the expressions

1
m

D = g+ E E*E (III.B.21)

|
n
I=

H

m
=
=

3§ (I11.B.22)

L 1is the relative permittivity dyad of the medium and n is the
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relative permeability dyad of the medium,

2, Conduction-Convection Currents

The conduction current density in a stationary dielectric is

given simply by the Ohm's law

J g * E (III.B.23)

where
g = uo (III.B.2k)

The term o denotes the conductivity of the dielectric.

A suitable model of a stationary plasma, consistent with the
objectives of this study, is that of. a certain number n of electrons
per unit volume free to move under the influence of an applied electro-
magnetic field and a static magnetic field, but subject to a damping
force due to collisions characterized by a damping constant wc .*

Only the interaction between the wave and the free electrons
need be considered for the frequencies of interest in this study. The
convection current density in a stationary plasma is determined by
~examining the motion of the free electrons.. From Newton's second law

of motion and the Lorentz force equation, the equation of motion of the

free electrons is

av

m — = nq(E+y AB)+nqg ¥ A

= - mm w v (ITIT.B.25)

In the present case the nonlinear vV A B term is dropped, since

*
The damping constant W, represents the average number of collisions

the electrons undergo per unit time.

Tu is the unit dyad.
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lv A B| << |E| . Also, it is assumed that the static magnetic field
applied to the plasma is in the z direction, i.e., Eo = zb0 and
bo £ 0 Then in the transformed space, Eq. III.B.25 can be rewritten

in the following equivalent but preferred ways:

X ° _Q
(-iw + w )y + wzpy= E
g S a
(riw+w )v+wv = =E (211.B.26)
c’'— " Tg— m =
T ° - ..q;.
[(-iw + wc)g:+ mggj ¥oE g

where wg is the gyrofrequency of the free electrons defined as

5o

bo (I1I.B.27)

The properties of the projection operator ( )S and the dyad
¢ are described fully in the appendix. The projection operator

( )S or the dyad ¢ essentially reduces the vector cross product to

a scalar dot product.

Let the linear dyadic operator ij) e defined sas

(w)

<

i

(-iw + w Ju + Wl (II1.B.28)

®
A rigorous derivation of Eq. III.B.26 using a statistical distribution

to describe the plasma can be found in the Theory of Wave Propagation
by C. H. Papas (13).
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Then

¥ & %‘Q:l(w) ' E (II1.B.29)
where Q:l(w) is the inverse of O(w) , i.e.,

0(w) » 07Hw) = u (II1.B.30)

The inverse of ij) can be determined by examining its

individual components in matrix form. This process yields

2
[ A A
- - &
(- +w o -we+ 5702
-1 c
0 (w) = = (ITI.B.31)

(0]

Therefore, from Eqs. III.B.29 and III.B.31, the average velocity of

the free electrons can be written as

2
w A A
(w + iw )u - iw c - —a
q = g= - w-flwc
v=i= - E (I1I1.B.32)
c g

The convection current density in the plasma is defined as

deopy = DAY (III.B.33)
and since v is related to E by Eq. III.B.32, then
2
w A ~
w2 (0 + lwc)g=— 1wgg=- wtiw
—conv o w . 2 2 =
(w + 1wc) - w

g
(III.B.3L4)
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where wp is the plasma frequency of the free electrons defined as

n

ng
P me (ITII.B.35)

The equation of the convection current density can be put into a form

similar to that for the conduction current density,

Joopy ® L*E (III.B.36)
if
2
w PR
2 (w + iw )u - iw c - ———5——
W, e = g= u;+1wc
T = iwe & (III.B.3T7)
o w : 2 2
(w + iw )5 - w
c
3. Constitutive Parameters
In a conducting dielectric
lo=d g =2z (III.B.38)
and

g = ug (III.B.39)
& = k&, (II1.B.L0)
oL =umu, (III.B.h1)

Substituting these parameters into Maxwell's equations yields
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1<
>
| &
1l

iop p H (III.B.k2)

1<

>

|
Il

¥ . _O
~iwe (e + 1 a—z) E (ITI.B.L3)

To put Egs. III.B.42 and III.B.MB.into & symmetric form, the

relative permittivity and permeability dyads are redefined as

L=uct, g e v i—— (ITI.B.Lk4)
L= g% N, N, = M. (III.B.45)
so that
VAE=dieun H (III.B.L6)
VAHE= -iwve t E (III.B.LT)
In an anisotropic plasma
Rl T AL (ITI.B.L48)
and
y
2 (w+ iw Ju - iw c - —E
[0} e = g= w + 1wc
T = iwe £ I (ITI1.B.L9)
(w + iw ) = w
g
L=u (IITI.B.50)
n=n (III.B.51)
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Substituting these parameters into Maxwell's equations yields

VAE=iwn E (I1I1.B.52)
2
‘ w PPN
2 {w+iw )u - iwc - —&—
. SR = g~ w+1wc
INL= = dag |0 == =B (T11.B.58)

To put Egs. III.B.52 and III.B.53 into a symmetric form, the

relegtive permittivity and permeability dyads are redefined as

qu+igec+, 2z

L= o (III.B.54)
t .
§L= S tig.e + C“ A
n= u (11X.B.55)
where
EE' (0 + iw )
By Bo = — > > (IIT.B.56)
(wHiw )= w
e
2
“p g
g &= A {(TTT.B.57)
(w + iw )~ w
c
w2 w2
g = = - . (III.B.58)
% @ + i (w + iw )2- e
w w w c _8
2 = +
“y 1 T
Gy = Lo e et (III.B.59)
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and 2 is the transverse part of the unit dyad.

Then
VAE=4dwu_n-H (II1.B.60)
VAHE= -ive £°E (III.B.61)

K, § W, + 0 , Egqs. ITII.B.56-59 reduce to the isotropic case

lim g = (1-=57)u (II1.B.62)
w_ +0

g

lim n = u (III.B.63)
wg >0

L. Potentials

(a) Dielectric. Maxwell's equations in & stationary dielectric

can be written in the alternate form

k2 K2
—_— 5
IhE= e & (III.B.6k)
o0
k2 K2
O
IAE= I * T s E (III.B.65)
o O
pO
¥ s | (III.B.66)
i == € €
o T
Ve H= 0 (III.B.6T7)
where
2 _ _ . @
<> =gon =ule +1 _“’Eo (III.B.68)
and
k= w/c (III.B.69)
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The form of Egs. III.B.64-67 suggest that an electric vector

potential " Ee can be introduced by letting

H = -dwez VAL (III.B.70)
E = VV -0 + k2|<2 il (III.B.71)
= == =g o -e

When E and H are substituted into Egs. III.B.64 and
III.B.65, the following vector partial differential equation is obtained,

relating the electric vector potential to the source term

(V2 + k2|<2) I = '—io"——' (III.B.TZ)
(0] ) 1wf-;02;o

The relationship between E and ﬂe can then be reduced to the simpler

form of

_ -0 .
B XAXAL * 5 (II1.B.73)
070
or, in regions where io =0, to
E=JATAL (III.B.T4)

To the solutions for E and H can be added any solution of
the homogeneous Maxwell equations. In regions free of charge and current

Mexwell's equations reduce to the expressions

22

oF

VAE ==——— H (III.B.T75)
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2.2
k7
VANH= ———& (III.B.76)
lwuono
VeH= 0 (IIT.B.T8)

The form of Egs. III.B.T75-7T8 suggest that a magnetic vector

potential Bm can be introduced by letting

E = doun VAL (III.B.79)
H=VV.Il + k2|<2 il (111.8B.80)
B T e o -m

When E and H are substituted into Egs. III.B.T5 and
III.B.76, the following vector partial differential equation is found

for the magnetic vector potential:

2 22

(V" + k)1 = 0 (III.B.81)
(@] -—n

The relationship between H and Em can then be reduced to the simpler

form of

EH= YAYAL (III.B.82)

In summary, the most general solution of Maxwell's equations

in a stationary dielectric are



E=gAYAL * fougng LA L (I11.B.83)
H=YAYAL -iver VAL (III.B.8k)
where

2 2 2 io
(V" + k)1 = —m (111.B.85)

o —e iwe ¢

OO0
(v2 + k2K2) m = 0 (ITII.B. 86)
(o) =

For the cylindrical system of this study, in which axial and
transverse directions can be identified, it is convenient to obtain
expressions relating the axial and transverse components of the field
vectors to the axial and transverse components of the vector potentials.

This can be done by expression the field vectors in the following form:

Talky) T ik Y(z-z ) _,
v(t,p,0,z) = J - J au v(w p P,k Y)e ° B ik
o Vem 1 Vem : (II1.B.87)
[ dz [ at -ik v(z-z) 40
viw,p,0,k ¥) = J J — v(t,p,0,2) e e ~
- /or /or (1II1.B.88)

which is Just a double Fourier integral transformation between the

variables t, w, 2, and kcy "



B

Again, let Vv represent any transformed vector; but now
v = z_(w,o,¢,koY) . Also, let any vector v be separated into the
‘axial and transverse components ¥, and LA respectively. The curl,
divergence, and gradient operations must also be separated into axial
and transverse components. Consequently, Egs. III.B.83 and III.B.8W

as re-expressed in terms of the axial and transverse components of the

transformed variables become

. *ea B8 7 t .t i % L.z
<+ L — V7 e ° ° ° 3
E' +2z E z[ (V") I, - ik )y V' -q J# c*V (Ve ¢ o)+ ik Y T
Bt . B t bz b
- ° ° - . I° -1 I.B.
+ kYL +1wuono[ zV ecell’ -c-(V o - iEY T )] (I111.B.89)
. S P -0 t -t D e A t %
H +z B = -z[(V)TL-ik ¥9" <0 ]+ ¢ V(¥ s T )+ ik ¥ T
2.2 -t S v & t-z . t
= e . ° ° - ° — } H ° °
+ kYOI 1w€oco[ z V' ecel’-c- (¥ I -ik Y )] (I1I1.B.90)

Again, the various vector operations have been expressed in terms of
the dyad ¢ .
The axial and transverse components of the electric field

vector as derived from Eq. III.B.89 are

t t

piA t\2. 2 . t . t
B = = ° - ° ° +B.
[(v") He 1kOY v n°] 1wuono \ c eIl (III.B.91)
Et = c -Vt(Vt o C -Ht)+ ik vy A +'k2Y2 Ht

~dwnon g e (V% - gk y I°) (III.B.92)
O O _-—m o -m
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Similarly, the axial and transverse components of the magnetic

field vector as derived from Eq. III.B.90 are

pA £t 2 2 A, t t
= - = V' . 3 ° . .B.
H [(v))°m 1kOY Ce T ]+ iwe T Viec I (111.B.93)

ju sl
H
flo
I<a
o
<
)

; t ;
o - . .
+ iwe ¢ ¢ o (VlI ik v I (III.B.9L4)

By a similar procedure, the vector partial differential equa-
tions satisfied by the electric and magnetic vector potentials are

3
B, & = (111.B.95)

iwe
e L5

t.\2 2
(V) + kOK

o

[(Vt)2 + kiici] L= 0 (III.B.96)

where the transverse wave number Kt is defined as

Ko = k% -y (III.B.97)

In regions where the source currents are zero, the only non-
zero components of the vector potentials are the axial components of
Ee and Hm . That the problem can be scalarized with just two nonzero
components of the vector potentials is shown in the following section
of this study. For this case the axial and transverse components of

the electric field vectors reduce to the expressions
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B% = - (v9)2 n’ (III.B.98)
t t. Z . t 2
= - ’V e Do
E ik v Z’He iwg ng eV Hm (II1.B.99)

Similarly, the axial and transverse components of the magnetic

field vector reduce to the expressions

5

T L n; (III.B.100)
t _

=tk vy ¥ I 4+ fwer e~V I (III.B.101)

— O - m Q o T = e

The two nontrivial equations for the nonzero components of the

vector potentials are, of course,

.2 2 2. 2z
(V)" + koKt] m, = 0 (III.B.102)
[(Vt)2 + k2K2] = 0 (II1.B.103)
' ot m

The cylindrical components of the field vectors are

. ani ' an;
EY = 1kOY —SE-+ 1muono E‘ —55
) L A om,
E" = ik Y S 75~ Mo, 5, (III.B.10k)
P = ke 1
ot e

and



z Z
all PYI
p : m : 1 e
H" = — 2 e,
1kOY 30 1weoco Y
z Z
oIl oIl
@ . 1 m . e
= PR 5 .B.10
H ik )Y = —g *+ lwe b 5 (II1.B.105)
S
ot m

In regions where the source currents are not zero, more than
two nonzero components of the vector potentials must exist. For a
general source distribution, it must be assumed that all of the com-
ponents of the vector potentials are nonzero. The scalarization of the
problem for the special case of a horizontal dipole will be considered
later in this study.

For the general case, the cylindrical components of the field

vectors are

2= -2 L2 nf), l--B-E;H ik Y EE§-+ x°y? 1P
p 3p p 9p *%e p g o 2 o e
Z
ol
. 1 m ) 1)
- 1wuono(- Y + ik y Hm)
p Z
oll on
6_3 18, By, L1 e . 1% 22 @
B =gy - o aptelledr 5 gl iRy S g + 5 e
o1’ .
. Tmo .
= doun (5 - kv 1) (III.B.106)
)
ol
Z 22 _z . 19 o) 1 e
= + _——— F B e
BT ok e lkoY[o 3o(pne) P 30

15, ¢ 1M
- 1wuono[- ;'Eg(pnm)+ TR
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and
P
BH 3H
g B o LB e B 1 _m o, 22
i 530 1”5 9 (pnm)+ 8¢]+ re ap Ko IIm
anz 4
+1weoz;o(-— a¢+1kyn)
0 zZ
oll SH
B8 123, #,1 _m 1 k2v2n® II1.B.10
H = ap[-— 5 ap(pﬂm)+ = a¢]+ ik y 8¢ kY Hm ( .B.107)
anz .
+ iwe ¢ (—5;- ik y T )
p p
3H oll
z . 222 . 13 , oy, 1 13, .8\, 1 e
= kOKth + 1koy [p ap(pﬂm) o 21+ iwe o%o [- i ap(pHe)+ T

Later in the study, the rectangular components of the poten-

Therefore, the cylindrical components of the

tials will be developed.
field vectors will be developed in terms of the rectangular components

of the vector potentials by substituting
(III.B.108)

P = 1 cos o + 1V sin 1)
1 = - sin g + 1V cos ¢ (III.B.109)
into Eqs. III.B.106 and III.B.107 . When this substitution is carried
out, the following results for the field vectors are obtained
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. an” ,
E =1kY'~5-5+1wuonOE'—a®-
L aenz y aznz oy ,
+ [= —5(— 6 * ———§J+ 6(-5535-— ap + kY I -oeuon ky I *1sin ¢
0 ap
N aznz oy o azny
+ [- —=( e ( — # )t k sl H +-wu n, k T Hy] cos @
AN Y} 3p  pof
p- 3P
Z Z
N L ﬁ
Yy 2.y 2%
Il 97T 5=
1 e 1 e 22 x , vy .
+(- p2 £Y0) * p 3pdp * 3p2 koY r[e PHMo%oY Hm) sin ¢
L oM a2nx azﬂﬁ 2 2y x
* (- S5 g * S heaE ~ T2t KoY Me = WMoNGK,Y Ty) cos B
o ap
i w B
(o] e
ani anz 1@ g anﬁ
+ [k _y( IS )+ Lo n, (= S5 " 35 )] sin @
o any anx 1 anz ani
+ —__ S Ko D 2 ——
K 55 * ap)+ iwu n (= & —5g + =501 cos 9 (III.B.110)
and
. ani " anz
H = 1koy W - :LweoCO E —_B_Q)
g anz aQHi " aznz ani 25y
+ [ =(- —+ + =(= —)+ ky°I 1 g
[ p2( Y a¢2) p( 3030 ap) 5k m-+meocokoy He]51n @
1 32nﬁ oy anz agny - .
+ [- ;5( a¢2 + —3a0+ ;( - ap3¢ ) e ) H -we g k y I ] cos @
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Il 3l
(N i m .l
H 1koY Y + iwe T o
1 ang 1 32“1};1 azn:; 22 x v
e ;'2' 36" o 3pof 302 = gy Ty, wE Ly B r[e) =
Ak anﬁ 1. agni 32“1 2 2.y X
= —=— =
> T3p + > 3530 = * koy Hm-FweOCokoY He) cos @
0 9p
0% = szz 1 (I11.B.111)
ot m
. anﬁ ang'1 2 anz an’;
+ [ikgy(= 5 =g + 55 - duet, (-5 55 =~ )] sin ¥
1 ani an:; 1 anz ani
. 4 1w, "my 1 e
[1koY(p 30 + 3 ) iwe T ( Y s )] cos @

(b) Alternative method. An alternative method of deriving the

field relationships in a stationary dielectric is now presented since
this method can be generalized to solve the case in which fhe medium is
anisotropic. Having worked tﬁe simpler isotropic case first will make
the effects of the anisotropy mére discernable. Also, the scalariza-
tion of the problem is easily handled by this method.

Maxwell's equations in a stationary dielectric can be written

in terms of the axial and transverse components of the field vectors as

(V" + z ikoy) A (EF + z EZ)

iou n_ (K + z B°) (III.B.112)

(v° + 2 ik y) A (B + 2 B*) = ~iwe g _(E° + 2 B°) (III.B.113)
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When the curl operations are expanded in terms of the dyad ¢
as described in the appendix, the axial and transverse componenfs of

Eqs. III.B.112 and III.B.113 can be separated as follows:

t to_ . Z
-V e E =ioun H
axial (ITI.B.11k)
-Vt eCc o Ht = -iwe ¢ E?
- = = 0°0
t..Z . t i t
- ¢ (VE -iky E’) =iwun E
transverse (III.B.115)
t..2 : t _ i t
-c *(V'H" - ik y H') = -iwez E

After being premultiplied from the left by the dyad ¢ and

rearranged, the transverse equations become

T .z

. t, . \
t ; o ° . °
ikgyL « E+ doun e V' E (III.B.116)

e
T
1]
g

~Spe . & ¢ B kv b (III.B.117)
Q0 = sy (@] =

ot
=
I

I
<
==}

The transverse field components in terms of the axial field com-
ponents are obtained by solving simultaneously Eqs. III.B.116 and

IIT.B.117. The resulting expressions are

2.2 L T Lz £ .
] t = 5 T - 3 5 I .B.
Kok Lo BN =iky Lo 9" E-deun ¢ U H (I11.B.118)
e t t 2 t 2z

t s = ] t L i © -
kkeg Lo B =dky 2+ ¥V H*iwelf ¢~V E (III.B.119)

Operating on the transverse equations with ZF° one finds that
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& ¥ K" (111.B.120)

I
<
(e}

I
ct

=
N

+
e
-

o
<
|

(e}
L]
=

1

=

€
=
3

t o v° .+ E° (III.B.121)

i
<
ct
(€]
<1
o 5]
+
=
-
(e
-
|<<
ct
lo
jas)
ct
I
I
H
£
™
Y
ct

As shown in the appendix, ZF 'gz-ZF operating on any vector is
zero. Therefore, with the aid of the axial equations,Eqs. III.B.120 and

IIT.B.121 become

<
jas]
1

A -ik_y i (IIT.B.122)

<
=
|

v B =ik y B (III.B.123)
Operating on the transverse equations with ¢ - ZF-, one finds
that

e T e T B ik y e ¥ re B' = dwwn ¢ -7°eH"  (III.B.12})

p b gE e v Y o diie o sWC 2B (TTT.B.125)

|
I
°
<
e
|<a
jas}
+
[N
-
<
(@]
<
lo
jas]
]

As shown in the appendix,-¢ ° ZF * ¢ * operating on any vector is

the transverse divergence of that vector, and ¢ ° ZF’ operating on any
vector is equivalent to ZF *c voperating on that vector. Therefore,

Eqs. III.B.124 and III.B.125 become

t t t t

K iwun V' cc-H {III.B.125)

v . vUEA- ik y ¥ °E

t t t

byt ~iwe g ¥ g E ~ (III.B.127)

v© o VR ik y 70 H
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Inserting Eqs. III.B.122 and III.B.123 into Eqs, III.B.126

and III.B.127, with the aid of the axial equations, yields

[(Vt)2+ kiKQ] B = k§Y2EZ (II1.B.128)

[(v®)%+ kiKz] H? = kiyeHz (1II.B.129)
or

[(v¥)2+ k. 12;] P uw B (III.B.130)

[(v®)2+ ki i] B = 0 (III.B.131)

If potentials are now introduced by letting

N

z  _ 2 2

E® = kOKt ne (I11.B.132)
z 22 _7

H = koKt . (III.B.133)

then the equations for the electric and magnetic field vectors reduce to

the simpler form

t 7 t 2 2

E=dikyt-¥'M - diwpn c*¥ n +z k& okt ne (III.B.13k4)
t_z t 22 nZ
= 5 t oo i ° e
H=1iky b+9M +iwe st c-¥ r[ ¥z KK (II1.B.135)

E

The partial differential equations satisfied by the electric
and magnetic potentials are found by substituting the defining equations

for the potentials into Egs. IIT.B.130 and III.B.131
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£42 .2 2, %
[(V')“+ kOKtJ ne (III1.B.136)

I
o

[(Vt)2+ kixi] n; = 0 (II1.B.137)

The cylindrical components of the field vectors are

. o112 y anz
BT RY T T iGN, 5 Tog
an® an>
E¢ = ik ¥ o iop N — (I11.8.138)
o' p of oo dp e .
Ez - k2K2 Hz
ot e
and .
. an; anz
H = 1koy —55 - 1weO§0 = —55
, N an; ani
H = 1kOYB-—3a-+ 1weoc0 —33 (III.B.139)
HZ - k2K2 HZ
ot m

A comparison of Eqs. III.B.138 and III.B.139 for the cylindri-
cal components of the field vectors with Egs. III.B.104 and III.B.105
derived in the previous section for the same vectors reveals that they
are identical.

(c) Plasma. Maxwell's equations in a stationary plasma can

be written in terms of the axial and transverse components of the field

vectors as
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(vt+ zZ ikoy) A (Et+ z BY) = iwuo(Ht+ z H?) (III.B.1k40)
; . " e . . : z
= - = 1 .
(V'+ z ik v) N (E'+ z HY) 1wso(c +1§+c) E+ZC”E

(ITII.B.1k1)

When the curl operations are expanded in terms of the dyad £
as described in the appendix, the axial and transverse components of

Egs. III.B.140 and III.B.1L41 can be separated as follows:

'ZF .gzogf = dwu H2
axial (I11.B.1k2)
T 7 'Ht = -iwe ¢ E?
- == o |
_Q‘—'Zt EZ + ikoY ;.E.t . lwuoi.gt
transverse

0 R, . . b
~e*V'H + ik Yy g H = -iwe (g b+ic ¢) *E
(III.B.143)

After being premultipl'ied from the left by the dyad c , the

transverse equations become

t _z ’ t : t
V' E - 1koy§:_ iou ¢

(IIT.B.1Lk)

k=]

vC B - ik y B

4+
v

g~dz B+ E (III.B.1k5)

—10)80(C_L

After some rearrangement, the transverse equations become

iky & - E' + iwpg ¢ H = t . y° B (ITI.B.146)
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t

- w q £) » 3 t = = °
1weo(§lg= ig, Bl»E" + ik y L~ H v’ H (III.B.147)

The transverse field components in terms of the axial field
components are obtained by solving simultaneously Eqs. III.B.1L6 and

IIT.B.1L47. The resulting expressions are

o, 2 e B 3 B a B
kK~ AE~ = {1koY(<‘iL Y )=;+kOY C+g} V'E™+ {wuoc+ﬁ: uuuo(;“L Y )e}V'H
(ITII.B.148)
2 A 2 t..2 2 2
I— 1 - t ° - 't - -
ko 0H° = {ik v(g -y )E+ky gebe VH +{-we r v =+iweo[(r1 Ye,
- cf] ¢} - v E? (III.B.149)
where
- 2.5 . 5D
A B (gL -y 1" + (ig,) (III.B.150)

<

Operating on the transverse equations with ZF-, one finds that

-7 e T'E ik y 7 e E =dew £eV0-E (II1.B.151)
vt g T ik y Vg E
= -~iwe (9L2=° yf o EF-+1;+ yf eg Et) (ITI.B.152)

As noted in the previous section, y? -g=-2? operating on any
vector is zero. Therefore, with the aid of the axial equations, Egs.

IIT.B.151 and III.B.1l52 become

v < H = - ik y H ~ (III.B.153)



_"("(_
o _ & z _ Z
Y B = 1koyz;“E wu g B (II1.B.15k4)

Operating on the transverse equations with ¢ - _V_t- , one finds

that

(ITII.B.155)

oV 'Q'_V_t HZ+ ikng'V ’C='H

i
i

o VL SO TR - S -
= —1w€o(2;_|_; VE+ig eV c¢E ) (III.B.156)
As previously noted, -c - _v_t - ¢ -operating on any vector is the
transverse divergence of that vector, and [ lt . operating on any
vector is equivalent to zt e C- operating on that vector. Therefore,

the above equations become

vV -VE-iky ¥ +E =denu ¥ -c-H (III.B.15T)

t t>

-g-Et- ig,v' -E (III.B.158)

Substituting Egs. III.B.153 and IIT.B.15k into Eqs. III.B.157

and ITI.B.158, with the aid of the axial equations, yields

z C
: I ,
(Vt)2+ o (¢ - y2) E? = -iwn k y — HZ (III.B.159)
ot& "L oo' &
52 o
. T -t 5Ly
[(vt)2+ ki(——-—'l'g LA yg)]HZ = iwe kY Z L gf - (III1.B.160)

L g
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To simplify the notation in what follows, let

C‘I
B om e (¢ -v2) (II1.B.161)
e QL L
2 P
g, -t
i
c2 = Lt y2 (I11.B.162)
m z
g
C ( )
= -iwp k y — II1.B.163
T oo T,
R R b - 6l
Na = 1w€0ko’\.{ T— (ITI.B.16k4)

If potentials are now introduced by letting

B = kOC—-:—_Q ne (IT11.B.165)
Y

zZ _ 2 A

H = kj — nm (ITII.B.166)
L=y

then the equations for the electric and magnetic field vectors reduce to

the simpler form

k YT wH g,
E = [iky b+ =—5c] 0 +[—>Ft-dou c]+ Y1 (III.B.167)
k vC we g .Y
Ht = [ik v £ + . c] -VtH 3 [t t + iwe
e o = 2= —'m . 2 = o
?L-Y & - Y
4
+ t III.B.168
x (g - ) gl v, ( )
T -y

The partial differential equations satisfied by the electric and
magnetic potentials are found by substituting the defining equations for

the potentials into Egs. III.B.159 and III.B.160



TG

Craaka? 2 2 3
[(v)° + koae] m,=n (III.B.169)
g2 22 _
[(v)< + kocm] no= T (III.B.170)
The cylindrical components of the field vectors are
Ep = ik ane - 3 YC+ & 3He + wHOC+ Hm + iwu L -—‘anm
T 3 . 20 279 op 9p
=Y 33
E¢ - 1 oll +koyz;+ Bl'[e+wuoc+ 1 oll i BHm
o' b 3@ 2 dp 2 0 op o dp (II1.B.171)
C,-Y T, =Y
39 |
B? = k2 A I
o r ~Y2 e
g
and
ol  k Y¢g oll e g, vy~ oI T,2 ol
B = ik Y —= L, FA - iwe (g - ———5)F =<
5" Top 2o 0, _ .23 TNNICRE
CJ_'Y 3 Y 1
31 k. yr. 80 we C.y- . ol 2 T
B =gk y2Be 0t _B__ 0% L .44 (g T
o 9 d 8 d 2’ 9p
ol e 99 L B % c-v ° d LY
s 4 (II1.B.172)
VA
=& 2 IIm
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5. Solutions of the Potential Equations

For a horizontal dipole located in the p@ plane as shown in

Figure 21, the source distribution is represented by

i, = £ § (III.B.173)
where
+ yt¥ ()% (7)F =1 (III.B.17Th4)

and
p-p,) 8(8-0_) 8(z-2_)

I ¥ i1, ; (I11.B.175)
The transformed source distribution is
i1 8(p-p ) S(p-0 )

J =223 E g (III.B.176)

S /or )

To solve for the fields of & horizontal dipole in a stationary

dielectric or in a stationary plasma, one must solve the equations

|
o

[(v%)% kixi] I, = (II11.B.177)

11g/Ver 8(p-p ) 8(#-0;)

ty2, .22
[(v)™ k] W = Tue t 5 (III.B.178)

t\2 2.2
[(v")+ x5 Inm =n_ 1
%y 5} e

(IIT.B.179)

where Ho or Hm represents any one of the three components of the

electric or magnetic vector potentials.
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In a cylindrical coordinate system

2
t,2 _ 19 5. 1 9
Wl = p 3p (p ap)+ ;§'a¢2 (I11.B.180)

Since the solution of each equation is periodic in @ with

period 27 , it is convenient to expand the solution in the following

form:
3o [ Ak Y) @ iv(g-g_) ik y(z-z) _, .
o) o[ [T eI
* V2r _ /21 v=—c
(111.B.181)
) o m .
dt dz 1
S\)((ﬂ,p,koY) = [ —— J E;T_ J ag s(t,p,Q),z)
W /EF-_w 27 g
-iv(g-¢ ) -ik Y(z-z ) . .
X e 8 ¥ S &M (111.B.182)

The term v 1is assumed to be an integer. In what follows, let any
scalar s represent a function of t, p, @, .2 and let s, Trepre-
sent the corresponding transformed scalar function of w, p, kOY .

In terms of the transformed variables in the cylindrical coor-

dinate system, Eq. III.B.17T7 becomes

2

D 3 B -
SO ]nv =0 (111.B.183)

9 9
[o TR TR

This equation is Bessel's equation of the complex argument

koKtp and integer order v , i.e.,

i = cit) Zi*) (koktp) (II1.B.18k)
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(£) (%)

The expression c, Zv represents any linear combination
of the independent pairs of Bessel, Neumann, or Hankel functions.
In terms of the transformed variables in the cylindrical coor-

dinate system, Eq. III.B.178 becomes

i1
F 9, 3 pRP @ 1 Y57s
[p 5=(p 520+ KSkip™=v| T =
9p dp v (gn)3/2

o't : 06(p-p ) (I11.B.185)
iwe ¢
o0

where the following Fourier series expansion of the delta function in

¢ has been used:

> iv(g-p,)

2p-p) =5 I e

e (I11.B.186)

=0

For p # ps this equation reduces to the expression

pg g _
KgP ™= v ] nv =0 (I11.B.187)

which, as seen before, has the solution

51) Zii)(katp) (ITI.B.188)

For pé»ps_ the solution is finite at the origin and therefore

= \ { T \
Hv Cu< Jv(koKtp’ \p< DS) (I11.B.189)

For o> Py the solution is an outwardly traveling wave and therefore

1o=c  BY (k¢
Vv (o]

g = P ) (p>0) (II1.B.190)

+P
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To find the constants Q e and Bus 2 the boundary condition on
Hv at p = Py must be invoked. The continuity of Hv across 'p = D,

implies that

o= I (k ko) Hil)(koK ) ‘ (ITI.B.191)

\Y o) tp< tp>

where 3 is the lesser of p and Py .and . is the greater of o
and IR The restriction on the derivative of Hv is found by substi-
tuting the above equation for Hv into Eq. III.B.185 and integrating
the resulting equation over a small interval containing ps as an
interior point. This integration results in the following value for

C :
Vs

e = ~i (ITII.B.192)
Lv2g iweogo

where use has been made of the Wronskian relation

‘ (1) y (1) _L.2 1
Jv(koKtps) Hv (koKtps)— Jv(detps) Hv (koKtps)_ LT koKtps
(II1.B.193)
Therefore
I = i sls Tk ep ) Bk cp ) (I1I.B.194)
v viio tT< v ot > T

L/om iwe C
0’0

Egs. III.B.179 are not independent of each other and demonstrate
that pure E or H modes no longer exist. Now, however, hybrid modes

exist. The terms He or Hm might now be eliminated between these

t)2 and (Vt)h

equations giving a single equation in (V , but it is
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more convenient to find those linear combinations of He and Hm that
satisfy a first-order equation in (Vt)2 . Writing such linear combina-

tions as
Hy = o, M+ B8, T (I1I.B.195)

and adding B, times the second of Egs. III.B.179 to o, times the

first, it is found that these are equations in #, alone of the form

£tye .2 .2
(") S 1H, = o (III.B.196)

provided vy, has the values

B ol non
* 2 e m e m
Y = a-t-= ko B 1+ [/1+ ( > 2)2 (III.B.197)
€ Ce-Cm
where
S} .
L T el R (I11.B.198)
k
o]
The values of h, are then given by
2 _ 2 ~
hy = To-v, ng (III.B.199)
where
sl
Ty E 2 Y, (III.B.200)
o

From Eq. IIT.B.195 the terms M end T must satisfy
H+ =a, I_+8, T (III.B.201)

H = o 0 +8 1 (III.B.202)
- e - m
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so that

BH, - 8.H_

I = — bt = (III.B.203)
e B_a, BLo_

a_H+ - a+H_

I = ——— (III.B.204)
m a_8+ - a+8_

The problem is over-specified since only the ratios of B, to
a, have been determined; therefore, two of these constants can be arbi-
trarily chosen to have any value. For convenience in recovering the

isotropic case, a

+ and B_ are chosen to be unity. The isotropic case

is then recovered by setting o_ and B+ to zero. If this choice of

constants is made, then

H+ = ne + B, n,o= I+, nm (III.B.205)
H = ol +0I1 = 1 b I (III.B.206)
- - e m m Y_ e
and
H, - B, H . H, - Y, H
M= ettt =t = (III.B.207)
e = i —B+0._ PN ~
L= b tv_J
o fl, - H_ H_ = (1/v_H,
L. = = (II1.B.208)
m a_B+ -1 S
1=ty /r.)
where
o = 1/v_ (II1.B.209)
g, = ¥, (II1.B.210)

Solutions of Eq. III.B.196 may now be sought in a cylindrical

coordinate system. In terms of the transformed variables, Eq.
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III.B.196 becomes

d 4, 222 2] _
[p 55 (P g0+ Kohge” - VT, = 0 (III.B.211)

As seen before, these equations are Bessel's equations of the

complex arguments kohip and integer order v , i.e.,

. phid gh€)
Hoo= 2y 2, (khpo) (III.B.212)

H = qit) zii) (k.h_p) (III.B.213)

Using the above equations for H the equations for Hve

vi?

and I become
vm

() 2 o) v ol 2k o)
n = Py Ty WP ey Ty R (III.B.21k4)
1= (%% )
(t) (%) 1 (%) (%)
7' '(k h p)- — z' '(k h,p)
M, = vty PPy Ty ol (ITI.B.215)
1 - (/7))
6. Tields

The cylindrical components of the field vectors can now be

written in terms of the solutions previously obtained for the vector

pi*) (£)

Y

potentials. In what follows and q are arbitrary constants.
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In a region free of source current in a stationary dielectric,
the cylindrical components of the field vectors as derived from Egs,

ITI.B.104 and IIT.B.105 are

B a2 £) (%) . iv (%) (%),
Ev 1kOyKt P Zv (koKtp)+ lww ng == q, Zv (KOKtp)
g _ . iv (%), (%) ; (£) (%)
Ev 1koY o} Pv Zv <koKtp)_ 1b‘)”lonokomtqv Zv (koKtp)
z _ .22 (%) (%)
E = ki« b 2 (koKtp) (111.B.216)
and
R - (£) () . iv () (%)
Hv lkoYKtqv Zv <koKtp) 1weoco p pv Zv (koKtp)
]
g _ . iv (%) (%) . () (%)
B, = ik y =4, z, (koKtp)+1weocokoKtpv Z, (koKtp)
a . g B8 (E] (2]
H o= ko« q) " 2 (koKtp) (III.B.217)

For the source distribuﬁion described by Eq. III.B.173 1in a
stationary dielectric, the x and y components of He and the z
components of He and Hm are nonzero. Therefore, the cylindrical
components of the field vectors as derived from Egs. III.B.110 and

ITI.B.111 in the region p> ps are
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Eg - ikiYKt Pii) Zii)'( v (%) 2*) (x °)

koKtp)+ lwuono p Vv v ot

# oy T (ko )x {ig{(tx- ivt¥)sin @ - (ivt%+ +7)cos ¢]Hil)(komtp)
Ko (1vt%+ +¥)si X, .Y (1)
- [-(ivt™+ tY)sin @+ (-t"+ ivtY)cos ¢]Hv (koKtp)

Is’

k;yz(ty sin @ + t*cos @) Hil)(koKtp)}

Eg = ik Y i% pii) Zii)(

(+) ,

\ . k (i)'(k )
koKtp’_ 1wuono oKt qy v oKtp

+ ¢ J (k «

vsd v Ko tps)x{' i%(tysin 6 +t%cos ¢)Hél)(koKtp)

p

kOK iv v _ X (1)
. (tVsin @ + t cos @) H, \(goKtp)
22, %, ¥ (1)n
koKt(t sin @ - tYcos §) Hv (koKtp)

kin(—txsin ¢ + tycos @) Hi})(koKtp)}

z _ .22 (£) (%)
Ej = kg P 2 (k k)
+c T (k k. p)x{ik vy iﬁ(-txsin @ + tY¥cos ¢)H(l)(k K,p)
vs v o t's o' p v ot

e Tes X (1)1
1koth(t sin @ + t"cos ¢)Hv (koKtp)}

(I11.B.218)
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and
P _ .2 (£) (%) ; iv (%) (%)
By = dkoyee a0 207 (k Kkop)= LR A (koKtp)

s . X . y (]_)
+c J (k K P )X { iwe T 1koy(t sin # - tYcos I (koKtp)}

g _ . iv (#) (%) e I L L
H = ik i
g - YT a, N (koKtp)+ iwe g k ko Do’ Lo (koKtp)

/ _= . Y s X (l)
vsz k K P )x | lweotolkoy(t sin § + t cos ¢)Hv (koKtp)}

a2 _ .22 (&) ()
Hv - koKt e Zv (koKtp)
’ iv,, ¥ . X 1
¢ e T (orep )% five . Lt%tn g + t¥eos o) )(koKtp)

e X y (1)
lwcoCokOKt( t"sin @ + tYcos ¢)Hv (koKtp)}

(III.B.219)

When the trigonometric terms in Eqs. III.B.218 and III.B.219
are replaced with their equivalent exponential representations, and
after the terms of order v only are regrouped, the cylindrical com-

ponents of the field vectors become



GO

- (%) (%) : iy (2] L¥)
E, = ik vk, D) * Z (kOKtp)+ iwp ong 5 q, Z, (kOKtp)
koKt s X y X, .,y | i¢s
el {[(t7= ivty)-i(ivt™+ t¥)] e Jv—l(koKtps)
x y X, .y - ( )
+ [=(t7= ivtY )= i(ivtT+ tY)] e Jv+l(koKtps)} (k Ktp)
c ig
2.2 "vs X .,y s (1)
* kY o [(t7= itY)e Jv—l<koKtps)H (k Ktp)
-i@
_ Poa® au¥ s (1)
(-t7- itY) e Jv+l(koKtPS)Hv+l(k Ktp)]

g _ . iv (%) (%) () (%)
Ev B lkoY o Pv Zv (koKtp) Ly nokoKt qv Zv (koKtp)
c i@
22 “vs 0 n Y S
+ Kk, —Er‘[(lt + tY)e Jv_l(koKtps)
_j_Q)
- s (1)
+ (it™= 1Y) e J +l(koKtps)] H (koKtp)
22°¢ y e (l)
+ ky 5 [(it%+ tV)e | (k KB ) H (k Ktp)
_i¢ '
T I s (1)
(35— &) e Jv (x o“tPs )Hv+l(k K P 0)]
Z 2 (=) (%)
Ev =k K, P Zv (kOKtp)
2 °ys X, .Yy i¢s
+ koYKt —5—-[ (it™+ tY)e J l(koKtp )
_iQ)

S

+ (it%- t)e 3,ep(kkep )] H( )(k k)

(III.B.220)
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and

B, = ikith qii) Zii)'(koKtp)' e L %2'pii) Zii)(koKtp)
+ iwe T ik v fgi [(it™+ ty)ei¢S Jv_l(kontps)Hifi(koxto)
= {17 ty)e—i¢s T aq (Egkepy) Hiii(koxtp)]

Hg = ikoy %2 qii) Zii)(komtp)+ iweocokoKt pii> Zii)kkoKtp)
- twe g ik y 22 [(s%- e s 7y (& ko JESH) (ki p)
+ (t%+ itY) e—l s Jv+1(koKtps) Hiii(koKtp)]

SN NRICNS

iwe ¢ ik k vs X ..y ist
070 o't 5= [(£7= itY)e Jv—l(koKtps)
+ (£%+ itY) e—i¢s Jv+l(koKtps)]Hil)(kOKtp) (III.B.221)

In arriving at these results, the following relations were

used:

(1) _vr1 (1) v L (1Y
H (k_k,0) = ko Houq (koeep) £ HU(k k p) (II1.B.222)
(1)* _ v t1 (1) yEI (L))
Hv (koKtp> ST 2p2 H\)il(koKtp)+ k x,p Hv*l(koKtp)
k k, p ot
ot
+ H(l)"(k K,p) (IT11.B.223)
- Tyl ot
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These relations can be derived from the recurrence relations (lh)

(1) (1) _ 2V (1)
Hv_l(kOKtp) + HV+1(kOKtp) E;E;E H (koKtp) (III.B.22k)

(1)( - H(l)(

k k,p) = HE)(k « p) = 25t1)'
v-1"0ot w1l ot

H

I
n
=]
<€

koKtp) (III.B.225)

In a region free of source currents in a stationary plasma, the
cylindrical components of the field vectors as derived from Egs.

ITI.B.171 and III.B.1l72 are

(i) (‘t)' (i) (t)'
Es ) ikiY hoe, "2 (koh+p)~ h_v,a, * Z, (koh_p)
1- (v, /7))
_ koY% iv pii) Zii)(koh+p)-Y+ qit) Zit)(koh_d
e P —
T LRI
+ #Yt 1 3 551
WMoy h_qi ) Zi ) (k_h_p)- h+’7;p£ ) Zi ) (k_h,0)
+ . _Y2 ko
- 1~ (3,/7)
\ Qii) Zit)(kohfp)' %;pit) Zit)(koh+p)
+1wuop—

1= (3,/7))



and

4y By 2, (kjhp)- v, qit> Zii)(koh_o)
ik y —
o p
1~(y/v)
. 20 o .
L L= (x.lr )
% 1 > t
WL T, iv qE) ) Z( )(koh_p)- 7_p£) ) ZE} )(koh+p)
2
Tl 1 - (v,/v.)
_ h_qi*) z(i)v(koh_p)- h, %_p(vt) Z(vi)'(koh_'_p)
Jmuoko
1= (v,/v)
2 _A pii) Zii)(koh+p) - Y+qii) Zii)(koh_p)
o 2
Y 1- (4,/7)

(III.B.226)



° 1 - (v, /)
EJ.'YQ P 1 - (\A(_F/\A( )
weOC+Y2 . h+p(t> Zii)'(k he)-h Y+qgi) zi ) (k h_e)
2 "o A A
LY 1 - (v,/7)
cf - ii) Zii)(koh+p)— Y qit) 2! )(koh_p)
iwe (g~ . 2)p—- —
o Lo~ (v iy d
fe LY qE, ) ZE) )(k n_p)- %_-pg ) ZE) )(koh+p)
o p =
1 - Ly /v )
k YT, . h_qii) Zii)'(k h_p)- h, ;;p(t) Zii)'(koh+p)
20 A
S 1= (v /v)
we T ' - pi*) Zii)(k6h+p)— Y+qii) Zii)(koh_p)
-y L e
+ L= v /%)
. i +p$)i) Zii)'(koh+p)_ h-Y+qii) Zii)'(koh o)
:uueo(C_L_— 2)ko R
LY 1= (v, /v.)

(II1I.B.227)
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C. Moving Media

1. Introduction

Now that the field vectors in a stationary medium have been
determined, the problem remains of determining how the field vectors
behave in the presence of a moving medium. This is accomplished by
studying certain aspects of the Special Theory of Relativity (15).
Since the experimental basis and the development of the theory are
described in detail in many places, only a brief summary of the key

points needed in this study will be presented.

The following notation will be used throughout the remainder
of this study. The time coordinate t is denoted by x® and the
space coordinate r is separated into the rectangular components xl,
xe, and x3. If the time coordinate is measured in the same units as
the space coordinates, then the mathematical expressions presented in
the remainder of this study have a more symmetrical form. This is
accomplished by arbitrarily setting the speed of light in vacuum
equal to unity. This set of geometrized units is used throughout the
remainder of the study. An event is then defined as a point in space-
time and is denoted by x = (xo, xl, xg, x3) or xu . Actually, the
term x" denotes the contravariant components of a point in space-
time. The covariant components xu can be formed by lowering the

; ; ; : : ¥
contravariant components with the metric tensor, i.e.,

*In this study the Einstein summation convention is used. That is, an
upper and lower repeated index are understood to be summed on, even
though the summation sign is not written. If the repeated index is
Romen, the sum is from 1-3; if the index is Greek, the sum is from
0-3.



X =0 x, {ITT.G1)
or v
X = b'd IIT.C.2
. s ( )
The metric of the flat spacetime of special relativity theory
is

ad | F- (III1.C.3)

|| n woll = 1

2. The Lorentz Transformation

The Lorentz transformation relates the coordinates x" in the
inertial reference frame s and the coordinates xu' in the inertial
reference frame s' . The Lorentz transformation can be considered a
consequence of the postulate that the speed of light in vacuum has the
same value in all inertial reference frames. To derive the Lorentz
transformation it is only necessary to assume that the transformation is
linear. This seems very plausible and is equivalent to the assumption
that space-time is homogeneous and isotropic. With this assumption, the

Lorentz transformation of the coordinates between the inertial rest

frames s and s' becomes

1
" =AY xY (III.C.h)

or

1 1
M =AY x (1II.C.5)

where
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0 Y | BYB
Har ol = | — = (IIT.C.6)
BYB.: u + BB(y - 1)
I
Y | —BYé
[EARNIRE , (III.C.T)

~BY8 | B+ BB(y - 1)
i

In Egs. III.C.6 and III.C.T, B represents the velocity of frame s'

relative to frame s , and

Yy = — (111.C.8)
\/1—82
In the previous notation Eq. III.C.4 implies that
t = y(t' + BB + r')
(IEZ.0.9)
r=[u+ (y~-1)BB] = r' + ByB t'

If one assumes that the coordinates undergo a proper Lorentz
transformation, then a Y-vector is defined as a set of four quantities

uu that transform like the coordinates

= v (III.C.10)
or

Y (ITE.6.11)

and a 4-dyad is defined as a set of hz quantities d"V that obey the

transformation law



Iint
L L S A (111.C.12)
gt U on

or

duvvv

li

=
=

=
&

Qo
Y
=

. N (1I11.C.13)

3. The Covariance of Maxwell's Equations

The electric field vector E and the magnetic field vector B
can be written as the elements of an antisymmetric field dyad 6uv

such that the two homogeneous Maxwell equations

9B
YSANE+— =0

(III.C.14)
7B =0
can be written in the covariant form
2™ = o (III.C.15)
\Y .
dx
The dual operation #( ) is defined as
sd'V = L MVEN 4 (III.C.16)
2! n

for any antisymmetric dyad where

+1 if wBYd form an even permutation of 0123
saBYS = =1 1if oBy§ form an odd permutation of 0123

0 otherwise (IIT.C.17)

Explicitly, the field dyad is



(- ¢ & & ¢
. e B> -8
IFIE
g -g? o g¥ (111.C.18)
_ -2 8 -B* o

Similarly, the electric field vector Q. and the magnetic field vector
H can be written as the elements of an antisymmetric field dyad guv

such that the two inhomogeneous Maxwell equations

I
|1
1}
©

2D , (III.C.19)

I
>
=
|
&
I
g

S M s (III.C.20)
v o
ox
The source charge-density L-vector jz is defined as
i (oo,ig (111.C.21)
Explicitly, the field dyad is
= . )
o o o 9
" - o0 —
1g""|| = (III.C.22)
¥ -H* 0 H
L -0 W - o
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L. Transformations

Since the fields E and B are elements of the field dyad

6uv, their transformstion properties can be found from

] 1]
v = A“C, A“nvéc “ (III.C.23)

With the transformation III.C.6 from the system s' to s , the above

equation gives the transformed fields*

jem
1l

yw+ (1-v)B B} - E'-Bye - B’

(ITI.C.24)

B={yu+ (1-y)g B} + B' + Bye * E'

Similarly, since the fields 2_ and ﬂ_ are elements of the field dyad

guv, their transformation properties can be found from

With the transformation III.C.6 from the system s' to s

the above equation gives the transformed fields*

D={yg+(1—y)é_§_}°?_'-8yg~i¥'

(111.C.26)
H={ya+ (1-y) BB} « H'+By c - D'
The phase @ of a wave in the system s is defined by
p=ker = kK- r-out (III.C.27)

¥The dyad ¢ 1is now referenced to the direction of 8
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Since the frequency  and the wave 3-vector ko£ are the

elements of a Wwave L-vector k , their properties can be found from

L L '3 (II1.C.28)

With the transform III.C.6 from the system s' to s, the

above equation gives the transformed variables

w = y{w' + k; k' =g B)
(I1I.C.29)
== . AA. U Av
ke = [u+ (y-1)8 Bl Kk  + BYBuw
From the invariance of the phase of a wave
kker-wt = k'k' *r' - w't' (IT1.0.30)
o— = o— =

These results also hold in terms of the transformed variables w and
koy . For the special case of relative motion in the z direction,
18y

B = z 8 or (é g z) (I11.C.31)
and

(I1I.C.32)

o
N
1

Vi- 822.

Equations III.C.9 for the transformed coordinates reduce to the

expressions

ct

1}

. 0
Yz(t' + 8,2 )

z = yz(z' + th') (IIT.C.33)
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"Equations III.C.24 and III.C.26 for the transformed fields reduce

to the expressions

1] 1 1]
E® = E° E' =y (B - 8 c » BY)
—— AR 7= =
] 1] 1
BZ - BZ _B_t - YZ(_B_t + BZ% . Et )
(I1I.C.34)
] ] ]
% = oo ey B -Be=u )
1] ] ]
Hz = Hz EF - YZ(EF " Bzg:. PF )

Similarly, Eq. III.C.29 for w and koﬁ_ reduce to the expres-

sions
= ' T ¥
w yz(w + szoy )
= RV 1
kv =v,(kiy' + 8, o) (III.C.35)
k Kt = k'Kt'
o— o~
also
k yz - wt = kéy'z' - w't! (III.C.36)

5. Constitutive Relations

In the system s’ the constitutive relations in an anisotropic

plasma are

51, P z'
— ° - ir? ° ' oL
D' = ez “E =el(z]t+ig) ¢) *E + ' E ] (EIT.C.3T)
' = }lT <L—l)' B! = .3]:_}_3_' (I1I.C.38)
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When the primed field variables in s' are expressed in terms
of the unprimed field variables in s with the aid of Eqs. III.C.3k,

the constitutive relations become

t Y7 A7 i 1 £ © N 7
o = 5 i ° ° 1
v,(D'+ B,c H')+z D EO(C_L=+ iz,e) v, (E'+ B e B')+z e Lt E
(II1.C.39)
t t n B t . TG 2 Z
Y, (B'- B,e*B)+zB =uy (H-8c D )+zu H (ITT.C.%0)

The axial and transverse components of these equations can be separated,

as follows:

D = ¢ ¢! EZ
o’ |l
axial (III.C.41)
gt = i g? )
e
24’82;-1—2 = eo(Cl _t_:+1§';. 9__)-(_E—+BZE:_=.§)
transverse (III.C.L42)
U t_ ot .t
B -Bz%.g = 1‘0(.}2 —BZQ_ D)

T it : 5
LD+ BeH =c (gk+icle) B+ aogz(glg;iciggo B®  (III.C.43)

1
. e G 1 T
LR o2k (III.C.khk)
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It is possible to solve Egs. III.C,43 and III.C.4k simultane-
ously for the transverse field vectors _lzt and gt in terms of the
transverse field vectors ~_E_-t and _B_t . The constitutive relations in

the system s then become

t_ 2 (A 1 ke I o -
R P [(B St1~ By 4 L3 B EByloy e]- E
Z o VA
2 | 1‘_ - srtt] e t
+ YZBZ[(EOC_L uo)g= eolc+=J B (III.C.L5)
t_ .2 ;]'_.. _l_._ R 4 . t
B = v, [(G-——-8.e2" )L 8 e icle] + B

(11I.C.L6)
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D. TFields in the Rest Frame of the Antenna

1. Introduction

Using the results derived in the previous section on the special
theory of relativity, one can now determine the fields in the presence of
the moving plasma flow field.

The inertial reference frame s 1is taken to be at rest with
respect to the antenna. In the ith cylindrical layer of the plasma
(1 £1i<n), an inertial reference frame s{ is taken to be at rest with
respect to theplasma in that layer. Note that the velocities in adjacent

layers need not be the same.

2. Region O

In the region 0 , let

Ly Epy * 1 gg_ (I11I.D.1)
(o]

g = Mo (111.D.2)

Ki = g n (III.D.3)

Kiog Ki - (III.D.k)

where €ro is the relative permittivity, Moo is the relative permea-
bility, and . is the conductivity of the region O .

Since the regiorn O contains the origin, the linear combination

(£)

p\)O v

t)
(koKtop) becomes

P Jv(k K, p) (111.D.5)

VO o to
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Sy (8]

and the linear combination qg ° Z_ (koKtop) becomes

4, I, (kK 0) (III.D.6)

where Pyuo and q,, @are arbitrary constants to be determined later in
this study.
In the rest frame of the antenna in the region 0, the field

vectors as derived from Egs. III.B.220 and III.B.221 are

o I~ y 'v :
Evo B lkoYKtopvko(ko to p)+ iy n p qvko(koKto Vo

a _ . . ?

E = iky 5 pvko(ko top) - dws n k Ktoqvko(ko - o)+ €0 {III.DsT)
VA 2 2 Z

" = +

hvo koKtopvo v(ko top) evo

and
b _ .2 o iv P

Hvo B lkoYKtoqvko( o top) L(mfogo o] pvouv(koKtop)+ hVo

H¢ = ik y—— Q.. (k K, p)+ iwe ook p. J'(k k,_ p)+ h¢ (I1I.D0.8)
Vo VO V to oo to VO V' O to Vo
7 2P J VA

Hvo - koKto Vo) v(koﬁtop; * hvo

where
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P _ koKto cvs. X ..y o 7 o X y i¢s
eyo =t ——E——-—§~{[(t - ivtY)- i(ivt + tY)] e Jv-l(koKtops)
+ [=(t%eivtY )= i(ivt®+ -ty)]e—ws T e (B )} H(l)(k oKeoP)
* kgye 3%5[(tx_ it7) ei¢s Jv—l(koKtops)Hi}i(koKtop)
- {45 157 e-i¢s Jv+l(koKtops)Hiii(koKtop)]

i@ -ip
g _ ., .22 _2§ ¥y s X N s
evo =7 koKto 2 [(1t *t7) e Jv l(ko tops) (it t7)e Jv+l
x (k E A I R o T ty)ei¢s . (kk p)
o tops Y o top o'Y 2 v=1""0 tops
(1) . 10, _ (1)
X Hv—l(koKtop)_ (it7- t¥) e tjv+l(ko tops)Hv+l(koKtop)]
z 2 c i
= +k Vs X s
®vo oo —5-[—(1t +t9)e Jv-l(ko tops)
_iQ
X LY s (1) 5 o 9
+ (it7-t') e Jv+1(koKtops)] H (koKtop) ( 7)
e .. i@ (1)
P 2 5 % VS, , .. X Yy S 3 )
b =+ *weoColkof = [(it7+ t7) e Jv_l(KoKtops)Hv_l(koKtop)
-ig
1
St e B o (ke p )EE (k e, p))

v+l o to s v+l

el i C\’S[( Tt ) e J . (k )H<l)(k K, P)
Moo e LAk ¥ gl =it e v-1"%0 toPs’"v-1""0 to

+ (%+ ity)e—igjs J (k JH (1)

vl S0 toPs” NEXNON
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z  _ . . c i@
h = iwe T ik « Vs X ¥ s
Vo 0’0 T o to —E-[(t - it e Jv-l(koKtops)

% v -igs (1)
+ (t7+ itY)e uv+l(koKtopS)] H, (koKtop)

3. Region =

In the region = , let

L He + i — (I1I.D.10)

Vg = W (III.D.11)
k2 = g_n (I11.D.12)
KE; = Ki - y2 (III.D.13)

where € oo is the relative permittivity, W is the relative permea-
bility, and o_ is the conductivity of the region .

Since the region « contains only outwardly traveiing waves, the

. N (£) (%)
linear combination p z' '(k k, p) becomes
ve Ty 0 tw
(1) \
P, By (ke 0) (III.D.1k)
. e (z) (%) ) \
and the linear combination q\)oo Av (koﬁtwp} becomes
(1),
q, By (ke 0) (II1.D.15)

where P and 4, 8re arbitrary constants to be determined later in
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this study.

In the rest frame of the antenna in the region *« , the cylindri
cal components of the field vectors as derived from Eqs. III.B.216 and

III.B.217 are

P . (1)’ . iv (1)
va = 1koyn<too Hv (koKtwp)pvw + dwnn, e H (k Ktwp)qvw
0} . iv (1) . EWL
va - lkoY p Hv (koKtoop)pvoo - lmuonwkoKthv (koKtmp)q\)o0
z _ .22 (1)
E,, =k B "(kx 0)P,, (II1.D.16)
and

P .2 (1) : i o (L)
By = ikjye B0 (k ok pla, - dwe T, == H " (k k 0P,

g _ . iv (1) . L (1)

va - lkoY P Hv (koKtwp)q\)°° i lweonKOKtwﬂv (koKtmp)pvw
2wl w1 e g (III.D.17)
Voo (0] 'too VvV o) -tco q\)m . °

L. Region i

In the region i (1 € i £ n), let
n“q2
Wit B (III.D.18)
pi me
o
- g \
wl. ¥ =b', (IIT.D.29)

gi m “oi
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wli U)' + iwl.
1 - 2+ ;1 . (III.D.20)
w (0'+iw', )= w's
ci gi
w2
i 1
g R N - (III.D.21)
w o'+t iw',
x :
wpi Ygi
5 5 (III.D.22)
w' (w'+ w',) = w's
c gl
C’II’_]_ [} 2
(¢.. -v'7) (III.D.23)
e 11
A
2 12
SR
1 + 2
o = -y (III.D.24)
IR
gt
~iw'u k'Y e (III.D.25)
C..Li Al Al = l | nl
ei mi - L ei 'mi
'-Cl . ko..
fute Kiy? 2D (III.D.26)
oo &
i Vs
2 2 ®, °
Ll5 ~ S Anls g
1+ [1+ CITED2T)
2n' [l = g
el el mi
kéz Yl (III.D.28)
72 ~ T ]
el = Yye Ny (III.B.29)
v 12,2 12
(g5 = ¥")° -2 (I1I.B.30)
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X. = (ITII.D.31)

1= vy /vy )

" +i
Mo B T (I11.D.32)
2
1 _ ? C':‘i
e (TIT.D.33)

where ni is the electron concentration, w;i is the collision fre-
quency, and b;i is the magnetic bias in the rest frame of the region
i

In the rest frame of the plasma in the region i, the linear
combination p(i)lz(i)(k'h! p') is explicitly choéen to be

vi v o i+

i P f  &F i 1ty A
Pyi+ Jv(kohi+p) +ali, Nv(kohi+p) (III1.D.3k4)

£)j +
.Similarly, the linear combination qii) Zi )(kghg_ﬁ) is explicitly

chosen to be

pli_ I k! o') + al, W (k'hi o') (ITII.D.35)

where p$ii and q$ii are arbitrary constants to be determined later
in the study.

To simplify the notation in what follows, the cylindrical com-
ponents of the field vectors in the regibn i are combined as the

elements of a single vector ivi s le€oy
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, [ e,
g1l = (in s') (II1.D.36)
'
- V1
or
N
—V1
[P (in s) (III.D.37)
L —vi

Also, the undetermined coefficients are combined as the elements

of a vector ¢ , , i.e.,
)

— i M
pvi+
I
q. .
| _ vi+
pvi—
1
- q\)i-- -J
rmp\)i+ T
Qoi+
lle .|| = (in s) (1I1.D.39)
—vi
Pvi—
Lq\)i— _

Then, in the rest frame of the plasma in the region i , the cylindri-
cal components of the field vectors as derived from Egs. III.B.226 and

IIT.B.227 are

: sl a‘t, ¢ c'. (I1I.D.LO)
N1l =\1 =Vl

where



and

vi

vi

vi

vi

[

= 9 ] 7 r )
ap bp, cp dp.
vi vi vi vi
1 1 1 1
a¢ bg, cQj dg.
vi Vi vi vi
Zl ] 1 f
a bz. cz. dZ
|] 3 ” vi vi vi vi
q. : =
=1 ] 1] ] i
PR Y
] 1] 1 1]
e¢ f¢. g¢. h¢
1 i i i
Z' 1 ' ¥ 1]
Levi Tui By by
J
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T (4% At — Sty e )iV Tht !
%y L A Aty Srioy T AHS Pt

1-—
PR B | TR | 1 & 1t 1 LR | 1
+ + —
(lkoY — qui+ Y!_)kohi+ Jv(kohi+p )]
. g 1. 18y .
v Tyt ' ——)r h!' p!
X; [(ikly'AL - dw'u v:_)p' N,(k'h! p')

—)k'n! N'(k'h! 6')]

+(ik'y'+ iw'u Al
( oY 1Jo i+ Yi o i+ v o i+

v_-vvr_’+-'i_2 1t ot
Xi[( 1koY Ai+XH'lw uo)p' J\)(kohi-p )

e MWl o @nifae A Vet TR0 i
HARSY Yy — Tutu g ey 3 0echy ot

TTlcikiy'ht vt il )Y il A
Xi[( Iy YL, lw“o)p' Nv(kohi_p )

wT e Var b, o 3l A e 'hY NV'(R'H! A
+ lkoY Yi+ T uo)‘i+)koh.i- Nv(kohi—p )]

(III.D.h1)
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vi

¢V

vi

¢v

vi

"

XL (

1

X: [(

1

ik!
o

»YV+ iw'u‘ Al

T e

g 5 AN
o i+ vy p1

h! f
] J,(k!n! p )

. 1
ik My 2! LT . N N "(k'h' o!
+ ( 1koy Ai+ +io'u m ) k'h!, J'(k'n! p')]

i o i+ v' o i+

iv

ikly'+ dutu Al =5 2N (k'h!e")

o) i+yi o o i+

o i+ Vv 0o 1+

. 1
IR S R s d _x 11, 0 1 1]t AT
+ ( 1koy Ai+ + dw'ug v ) k'h' N'(k'h! p*')]

iv

YT Stz ¥ e Sl X1 )y =2 Tht At
Xi[( ikly'yl, - iw'u Al J (k'n! p")

1 1] 1 ] 1
+ (1koy xi+Y'

+ pf v 0 1-

o doit tht TVt A1) 1
1o - iwtu kil T (ki p')]

'_-vvv_-vvj-_\i 11,1 A1
Xi[( lkoY Yi+ 10 uoxi+) ! Nv(kohi—p )

b (St t
+ (1koy

!

[N I N | 1ht NV (th! A
ALy iw'n Jk'hi N (k'hip')]

i+'i+

1] Tt ]
2 Xi Jv(kohi+p )

] 13 ¥ [
5 X5 N, (klnget)

AL Tl o ¥
2 Yi+xi J\)(kohi—p )

1 1 1
7 YiaXg Ny (klhy f)



vi

vi

vi

¢v

vi

h¢‘

vi

¢V

sl Gee

1T (ik'y'A!  + ! 1 ! = ! !
xJLGEKIYAL + dw'e A _yl+) o Jv(kohl_p )

2
+ (1% = Tp? 1 14,1 11 1 V(! !
(1koy in'e ALY ' ) k'h! Jv(kohi—p )]

Tt 1yt s oq ot iv 1]t At
Xi[(lkoY.Ai+ + iw eoki—Yi+) Y Nv(kohi-p )

+ (1k'y - iw'e A'.y 2Y )k'h! N (k'n! p')]

o"i+ o i- o i-
- 1 iv ; '
= ' N ' v iRt
= Xl[( -ik oY A1+Y - iw EOA ) o Jv(kohi+p )
1 .
S T DR T - ' 131 V(1 tht AT
+( 1koy Yi + iw EOA LY )koh1+ Jv(kohi+p )]
z X'[(-ik'y'k' —l—-— iw'e A' ) Y N (k'h!,p')
i i+ | o) v'To 1+

1 2
L Py [ ! 1ot
+( lkoY — + iw eoki+y )

1] ] ] 1 ] 1
5 k'h!, Nv(kohi+p )]

{11

- v Y [
[(1k Y iw sOA1+Y Y ) Jv(koh1 p')

] ' = 1] 1] 7 1] J' | 1] 1
+ (-ik! oy A iw' R Y1+) klh! (kohl_p )

, ‘ 2
¥ R Vi W ¥ 1 ' ¢
XihlkoY 2 8o>‘1+Y Yi+

) iﬁ_ it '

. RS P POR B W A A | 9 v L | Tht '
* (~iklY'AL - dw'e AL vi ) klhi Ni(k'h! o')

1 2y iv
Sv i (a3l VTl —e—— g $ 0! ) 2L Ttht
_xi[( ikly Yi_ + dw'e ALY ) o J (k h!,o ')
+ (ik'y'A! i iw! e Ml ) x'h! J'(k ht ")

o' "i+ vy! o i+ o i+
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vi

vi

it
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1
L [ T SO R .
xiK ikly v

25 dv Tt At
) > N (k'h! p')

+ iw'e A! ! !
(o] 1+Y o 1+

1
+ R ORI W | s
(lkOY Ai+ v!

+ im! 1 tht 1 h! '
iw'e Al ) k'h! Ni(k'hi o')]

5 Al
' 1 ' Tt A0
£ PR J\)(kohi—p )

ot
el Y
h A

1 Tht 1
2 i N, (kghi_e*)

2 i 1,
X5

1 ] ]
Nv(kohi+p ) (III.D.k2)

By using the constitutive relations developed in the previous

section of this study, one can write the cylidrical components of the

field vectors in the rest frame of the antenna in the following form:

where

(III.D.k3)
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[ o p <P P )
vi vi vi vi
g b¢. c¢. b
vi vi vi vi
g b2, S
]] || vi vi vi vi ( k)
d . = IIT.Ds
i o A N
vi vi Vi vi
e¢. fQ. g¢. h¢.
vi vi vi vi
Z Z Z Z
LeVI fvi €vi thd

and
P 5 0 S ST o T _l_
8, = [Yz(lkoy Afym dw'ug Y:!L-_)+ uOBZ( ikly I
2 iv
s 1] 1 1] | (o= ] | 1]
+ dw'e AL v'7)1x] o I, (kln! ")
[ (- [P ] L | 1 X O T O ] i
Gl P L 77_)+ uoBz(lkoY Ada Y
3 i-
+ s 1 ] 1 1 ) i v 7 1] ]
iw Eoki-)]xi kohi+Jv(kohi+p )
=7 STV I~ it s RS PN A
vi [Yz(lkoY Pl ™ y! )+ uosz( LESY Yi_

N -

+ iw'eOA!+v'2)
i

v iﬁ_ th! !
]Xi p' Nv(kohi+p )

i3
SRRV o
)+ u B (lk Y'A

1
* 1 ] 2 1 ] L. -
+ [yz(lkoy + in'u A . Yi_

o i+ v!
Yl_

2 ] ] 1 ] ] 1] 1] ? ]
+ iw oni—)]xi kohi+Nv(kohi+p )
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P
vi

2
ettt U poaiy s Bap o il 1 1 1
c [yz( ikly Ai+th1w uo)+ uOBZ(lkOY iw oni+Y yi+)]

1 E). | 1 ]
X X5 p! Jv(kohi—p )

S T O O I I | 1 ISR DTN T 1ot
+ [YZ( ikly'y) - i qui+)+ uoBz( ikly Ai+ iw soAi yi+)]

1 1 ] 1] 1 1 1
x Xikohi- J\)(kohi—p )

; 2
+ 7 T eVt o St 1 U
iw uo)+ uosz(lkoy iw EoAi+ y'“ v, )]

= AUET BOr BN i
dy; = [y, Fikly'Al v, 3

V1 b 5 S

iv
x yl! S Th! pof
X{ =57 Nv(kohi_p )

+ el o B 1 —ik'v'AY - iw! 1 1
[Yz( lkoY Yi+ i ]'lo>\i+)+ uoBz( koY Ai+ 10 oni-Yi+)]

T P’ ¥ 1t AV
* xjkghi BHilkgn) o')

¢ = ] ] 1 1 i} 1] l 2 1] 1] ] s ]
= v+ = - S Al
avi [Yz(lko a uo;‘i+ Yi- “osz( 1koY Ai+ Yi 20 50 i_)]
x x! A% J (k'n! ')

ip!' vio'i+
1 1 2
PRI D P s o —a)e T o I D N Tt
“ [YZ( ikly'AL+ dw'u Yi—) UOBZ( ikly Y + iw'e ALy )]

190 TI(1T1t AF
X Xikohi+Jv(kohi+p )
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¢ = Pt 1 }\v IEVADW] 1 { !
bl = [Y (1k + dw'u AL Y )- M8, (-1k M, Y' - iw'e A! Pl
7 1\) 11
Xy ot N (koh1+p )
+ [y _(-ik'y'A! + iw' My i) -u 8, (- ikly! P i 4 dwe A v
Z o i+ v! v! o] 1+
F o i-
' ] 1] 1
X xik! hl+Nv(koh1+p )
¢ = 1 1] ] ] 2 1] ? s 9 ] ] + 1] 1 1
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The primed quantities appearing in the above equations can be removed

by using the following transformations between w and koY

o' =y (o - Bk )

(III.D.L6)
kéy' - Yz(koY - Bzw)
This transformation is easily accomplished, but because the resulting
representations of the field vectors become very unwieldy, the results
of this transformation are not shown. In what follows, it will be
remembered that any primed variable is reducible to an equivalent com-

bination of unprimed variables through the use of Eq. III.D.L5.
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E. Boundary Conditions

1. Introduction and Notation

The boundary conditions on the field vectors in the rest frame
of the antenna are simply that the tangential electric and magnetic
field vectors are continuous across each layer of the plasma. Therefore

o g

and EZ, H and H® must vary continuously across each interface
of the plasma.

To simplify the notation in what follows, in the region O ,

let
e~ =
:a.(zj 0 cQj 0
“vo Vo
aio 0 0
lm, I = g p (III.E.1)
e 0 g 0
Vo Vo
0 0 & 0
= €v0 -
where
g _ . iv \
Svo 1koY 0 Jv(koKtop)
Z o .2 2
8vo = %o to Jv(koKtop)
c¢ = ~iwp nk k., J'(k o)
Vo ooo to Vv to
4 (1ITI.B.2)
= @ e re
v lwbocokoKto Jv(koKtop)
" S iv \
8o ~ L. ¥ ) Jv(koKtop’
Z - 2.2
8o ~ koKto Jv(koKtop)

and
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¢
e¢
Z
| )
k || =
=0 h¢
L.hz-J
In the region i , let
— i
aw. b¢. c¢. d¢.
vi vi vi vi
az bz. CZ. dZ
vi vi vi vi
m.i|l=
N I
. . g . .
vi vi vi vi
o) Ty By by
- 1
In the region <« , let
aQ 0 cQ 0 a
Voo Voo
a” 0 0 0
Voo
(NI ;
€ o 0 8 e 0
Z
L0 0 ng 0 J
where
¢ _ . iv (1),
8 = 1koy Hv ( OKtwp)
z _ .22 (1),
avw - 0 o Hv (koKtmp)
/R (1)
Com = -lwuonwkoKtw Hv (k Ktmp)
g - . (1)*
€ oo iwe gk k. H (koktmp)

(III.E.3)

(III.E.4)

(III.E.5)
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p)

(III.E.6)

Also, the tangentisl field vectors in the various regions are grouped

as follows:

It =

r— =3
gPo

EZO
gPo

| 222

llz,;

= . )
gPi
. zi

E
gi

H

zi
H

.l

~
F'E¢w

(III.E.T)

Similarly, the undetermined coefficients in the various regions are

grouped as follows:

eyl

2

VO

q

VO
Lo

lle

—vill

L “vi-_J

Matrix Solution

(IITI.E.8)

In terms of the symbols Jjust introduced , the following

equetions can be written

-—1)c0

m - cC +
=0 —0

m .% @ .

=1 —Vl

m =+« C

=)00 —\ )00

[1IT.B.9}

CIIL B 10)

(III.E.11)
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Therefore, the boundary conditions at p = P, are

o + =
Lo - Lvo l-{o‘ 3 Zvl
p=P p=e. 0=p_

cc (III.E.12)
-1

at p = p., the boundary conditions are

lEﬁ)i p=p ’ "c—\)l = Ié’\)sl-i-]_ p=p O‘C‘V,i'ﬁ'l (III.E.13)
and,at p = p_ = p_,the boundary conditions are

Bonlpsns “Bop = Buwlpsp "5 (ITI.E.1k)

=vn p—pn =1 =)0 p_pm =)o

These equations can be summarized by stating

{n—l -1 : .
m cc _+k|=mn l {1 (m ) em . }
= 3 = —3 + =
—vo|p=p_ =vO —oL V1|p=p .5 TVi p=p,  TV,i+ljp=p,
* (m )'l - oem ‘c (n#1) (III.E.15)
=vn p=p, SVeR[p=Ep Ve
" Let
n-1
= -1 ]
= - ° ]'[ . . "
2\) ré\)'l’p=p {._ (g\)i) }p=p. Ig\J,1+l p=p_} (E\)n)
o i=1 1, - i p=pn

(n # 1) (III.E.16)

then equation III.E.15 reduces to the simpler form

Buolomp, " o T By " Bye[pmp " Sue T T Ko|pmp_ (III.E.17)
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This system of equations can be easily solved for the remaining constants

Pon? Tpe? Pyss and U by elementary matrix theory.
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F, Asymptotic Expansion of the Radiation Fields

The integral expressions for the cylindrical components of the

field vectors in the region = are

w0 % d(k y)
P _ o2 (1)
E —v=§m I = [lkoYKtmpvav (koKtwp)
. ~oiv(g-g) ik v(z-z_)
+ dwu n, ig-qvm gl)(koKtwp)]e 8 e © s
= alk v)
g _ (1)
E —v=§m Im = [ik, Y pvm o (kK p)
1 1\’(¢"¢ ) ik Y(z—z )
- iwp Moo o Koo T e H( ) (k Ktwp)]e " e © =
@ ¢ dlk ) iv(g-¢ ) ik y(z-z_)
-1 S e iagsane e
and

o a(k_v)
(1)
Hp =\)=_oo J /Z_F |:lkO‘Y t°°q\)°°H\) (kOKtwp)
. iv(g-g ) ik y(z-z_)
~iwe g ﬁﬁ.pv (l)(koK 0)le e
[ g d(k ‘Y) .
P _ 0 iv (1)
e 1| e 5t e )
iv(g-¢ ) ik y(z-z_)
+iwe C k Ktmpvw il) (k L p)]e ® e ¢ =
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: iv(g-¢_) ik y(z-z )
k k, p)le 5 e Tl s

HZ = = [kiKim vail)( o te
vam

-0 (III.F.2)

The constants P and. Lo are now known from the work performed in
the previous section of this study.

If the region « is assumed to be nonconducting,

o = 0 (III.F.3)

Then K, reduces to the real number

kK, =7tk = Yu_ € (ITI.F.L4)

The integration in the complex <y plane is along the real
axis of Yy from - to + with an indentation below the branch point at
y = +k_ and above the branch point at vy =;Kw ., as shown in Figure 16.
No indentations are required if K, is allowed to have & vanishingly
small but finite positive imaginary part corresponding to the presence
of some conductivity in the region « .

In the present case, it is assumed that koK oP >> 1 . This

t
corresponds to evaluating the fields in the radiation zone of the
antenna, since the distance from the point of observation to the outer
radius of the cylinder is large compared with the wavelength. With this

assumption, the radiation fields, correct to order 1/p , reduce to

the expressions
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o 7 d(k iv(p- ik v(z-z
B’ = z f _(_O_Y_)_ ikeyxtwpvail)'(k Ktwp)e - ¢S) e © : s)
veew 4 JEm © °
0 o F; d(koY) (1) i\)(¢"¢s) ikOY(Z_ZS)
E" = —z J e iwuonwkoKtquva (kOKtmp)e e
ve-o | /om
o - °z° d(k_v) 2.2 H(l)(k ; iv(g-g.) ik v(z-z )
~ —_— " toop\)oo % oKtwp e e
=
and
i ‘ o /
o . a(k y) 5 (1)'( , ivig-g.) ik v(z-z)
H Z S——— 1kOthquw W koKtwp e e
V=—oo Von
o 7 d(k y) . iv(g-g_) ik _y(z-z_)
H¢ ~ J ___EL—-iweogmkoktwpvail) (koKtwp)e s e °© S
vemw | /2w
g . & a(k y) , 5 (1) iv(g-g.) ik y(z-z)
H® = — kxC q H ' (k k, ple e
e B O toTye Ty 0 tew ~
v — (III.F.6)
If the spherical transformation
p=r sin @ vr = vP sin 6 + v° cos ©
; o 0 z ..
B = ¢ v =V cos © -vVv sin @
2 = T cos O v¢ = v¢ (TII.F.T)

is performed, the resulting theta and phi components of the radiation

field are given by
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(o]

o a(k v)
o) o .2 (1)
E = =§w J = [lkoYKthvav (koKtwp)cos 0
) (l) i\’(¢—¢s) ikoY(Z"ZS)
= koKi_'mp\)oo " (KOKth)SIn 9le e
@ ¢ alky) \ iv(g-_) ik y(z-z_)
P el | 2 gy ko g B Rk ple S e © S
s /om 0 ® 0 fteryxy o tew
- ' (I11.F.8)
and
k k
B = - 22 gf
wuonw
(III.F.9)
k k
H¢ = - o EQ
uonm

Also, under the assumption that koKtwp >> 1, it is permissible to

replace the Hankel function and its derivative by the first term of its

asymptotic expansions (16)

ik k, r sin € -iv1 -i =
Hil)(koKtwr sin 9)=N/ = e © e e & e E
ﬂkoKtmr sin © 100 O 6
s > ik K ¥ sin 6 -iv g =iy
H (koKtwr sin 6) = i\/ e e e
“koKtwr sin @
(III.F.11)

When these expansions are used the theta and phi components of

the electric field vectors become
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E == — ki(YKtwcos 0 + Kimsin 9)p\)°° \/ 2
V==00 Yot mk k, r sin @
-C0 0 tw
ik k, r sin 8 -ive -i = iv(g-¢ ) ik y(z-z )
% 0 tw 2 In s e} S
e e e e e

: - N S .
) ik ., r sin 6 -iv 5 iy 1v(¢—¢s) 1koy(z-zs)
e e e e e

(III.F.12)

The resulting integrals are now in the form

o

o d(koy) = ik k. v sin @ ik y r cos ©
Z I f(kOY) e e
-0 2 1
A " ¥ e RAR B (III.F.13)
where
LT g G
4 2( 2 . ) —1v§ —lﬂ- 1\)(Qs-ws) _lkoYZs
—ko YK, COS e +Ktms1n ] Pyw © e e e
£(k Y)=<
© vy -ip iv(P-8)  -ik_vz_
wuonmkoKtoo Ly € e e e (III.F.1Lk)
N

These integrals can be evaluated by the methods of saddle point
integration if the integration is transformed to the compiex o plane

by means of the substitution

K, COS a (ITT.F.A5)

<
]

This leads to the form
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oo

w L ik kT cos(a - 0)
_\)=-§-:oo j ae f(KOKm de @) 7V T sin @ (III.F.16)
=100
L

where the path of integration in the complex o plane is shown in
Figure 16.
The next step is to transform the contour to the path of

steepest descent. The path is defined by

cos(a - 8) = 1 + iX2 (III.F.17)

where X 1is to range from -« to +o,

The integral then becomes

Z J dxw/g—-——iL——— f(koKw cos[cos—l(l+ ix2)+ 9])

‘ 1 2
V== . X
—co &N
1/14-1 5
k

K
1 o t=»
m r sin ©

ik Kk, (1 + ix%)r
(III.F.18)
The integrand can now be expanded in a power series in x2 and the
integration performed term by term. This leads to
ik k r
OCD [ee]
&= =—— ] f(kk, cos 8) (III.F.19)

im r

V==
where the remaining terms contain higher powers of 1/r .
By the use of the asymptotic expansion of the integrals, the

theta and phi components of the field vectors become
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. _ T
| lkoKw(r z_cos 0) . —iv= iv(g-g )
6 ., [2.22. e 2 S
E° = i7/= k“k“sin © I e -
il 0 ™= r V=m0 =
- k k cos ©
O (o]
ik k (r-z cos 9)
() 4/2 e °° ° 7
B = -i E.wuoh&koKWSin e - Z Qo
V=—0 k K cos ©
O (o]
-iv= iv(g-¢ )
x e e (III.F.20)
and
k k
k. E¢
Wy N
k K

p_._o= 5O | (ITI.F.21)

Wl N,

Note that pvw and qvw are evaluated at the value of kochos e .
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G. Turnstile Antenna

1. Description

A turnstile antenna consists of two mutually perpendicular
dipole antennas, one fed 90O out of phase with respect to the other.
For right circular polarized radiation in the z direction the dipoles
are oriented in the x and ¥y directions, with the y oriented dipole fed
-90° out of phase with respect to the x oriented dipole.

If the antenna is in free space and located at the origin of
a spherical coordinate system, then in the far field of the antenna the

theta and phi components of the electric field vector are (13)

ik r .
o o i@
E = Lwp 1slS Tmr © cos 6
ik r (III.G.1)
0 e ° ip
E = -op_ i1 e

o “s's lLnr

If the antenna is placed on the z axis Ao/h above an infinite
ground plane located in the xy plane at 2z = 0, then the effects of the

-ground plane are obtained by multiplying Eq. IIT1.G.1 by the array fac-

tor (13)

-i2 sin (%—cos ) (IIT.G.2)

The resulting left and right circular polarized components of

the radiation are

ik r ik r
o o)

1 0

3/2 . e ip . 2,8y . T . e
B = =2 wu il p——e sin (2)s1n(2 cos 9) = fou ) = 1(e,0)
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ik r ik r
r_ /3/2 .. e ig 2,6y . T S e
E =2 wuqlsls “Tno € cos (2)51n(2 cos @) = oy —ﬂ;;-r(9,¢)

(III.G.3)

As indicated, 1 and r are functions of the angular coordinates only.
The point source character of the antenna becomes evident on

considering the power radiated into the far field. The Poynting vector

is
R A
s =13 5 5 ale,p) (II1.G.k4)
6 A T
(0]
where
- 2 2
a(0,8) = |1(0,8)|"+ |r(e,0)| (II1.G.5)

In discussing the power flow in the far field it is convenient
to use, instead of the Poynting vector, the intensity I(8,f) which is
the power radiated per solid angle in the radial direction. The inten-

sity is defined as

of H-

[ -
2 o 1
I1(e,8) = r“|s| = 1/—-——2—3,(9,(25) (III.G.6)
€
o A
o

which is independent of the radial distance.

The power distribution in the far field is conveniently speci-

fied in terms of a gain function g(6,f) with respect to an isotropic

radiator. The gain is defined as

1(8,0)

g(e,0) = o (II1.G.7)

m
i ag J 30 sin 0 I(0,0)
O

L
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The gain of the antenna in free space is shown in Figure 1T7.

The gain of the antenna in the presence of an infinitely long
cylindrical plasma shell is obtained from the theta and phi components
of the electric field vector as given by Eq. III.F.20. The resulting
radiation patterns in the presence of the plasma will be compared with

the free space patterns.

2. Numerical Results

Numerical computations have been carried out for the special
case in which the antenna is located on the axis of an infinitely long
cylindrical shell containing a uniform, lossless,and isotropic plasma.
The antenna is assumed to operate at the signal frequency of 400 MHz,
and the shell is assumed to extend from 0.75 m to 1.25 m, which cor-
responds, respectively, to k p = 6 and k p, * 10 at 400 MHz. At
this signal frequency the thickness of the shell is smaller
than the wavelength in free space.

This plasma configuration adequately describes the near wake
of a capsule entering the Martian atmosphere with a step distribution
in the electron concentration of the plasma. A more accurate descrip-
tion of the electron concentration is not expected to significantly
alter the resulting radiation patterns of the antenna. Since the
antenna is located on-axis, the radistion patterns are symmetric about
the axis of the shell; and therefore, only the theta dependence need
be considered in the work that folléws. For this case only the v =%1
terms need to be summed in Eq. IITI.F.20. .The v=1%] t{erms give

rise to the dipolar modes as discussed in the references (17). The

effects of locating the antenna off-axis and the effects of varying the
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shell radius are also discussed in the references (18).

The gain of the antenna is now investigated as a funcfion of
theta with the electron concentration of the plasma and the velocity
of the plasma relative to the antenna as parameters. 'For the low
velocity cases, the results of these investigations correspond to an
entry into the Martian atmosphere.

At the operating frequency of 400 MHz, the plasma is trans-

9

parent for electron concentrations below 1.99 x 10 e /ce. Above
this electron concentration, the plasma is opaque and the condition of
blackout exists. Therefore, numerical data were taken for a range of
electron concentrations below 1.99 x 109 e_/cc. In each case the
gain of the antenna was developed as a function of theta for various
velocities of the plasma. The resulting radiation patterns are shown
in Figures 18 through 26.

As is evident from an examination of these figures, the

T

effects of the plasma begin to appear at 1 x 10'e /cc. Below this
value of the electron concentration, the interaction of the plasma
with the radiation of the antenna is too weak to cause a noticeable
deviation in the values of the gain function from the free space
values. Above this value of the electron concentration, however, the
plasma has a noticeable effect on the radiation of the antenna. In
particular, the presence of the plasma causes a null to appear in the
radiation patterns for small values of theta. Also, for larger values

of theta, the values of the gain function oscillate about the free

space values.
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As the electron concentration is increased above 1 X 107e—/cc,
the extent of the null region increases and the peaks become more
numerous and more sharply defined. As the electron concentration

T

approaches the cutoff value of 1.99 x 10'e /ce, very sharp peaks also
occur within the null regions.

The presence of the null region can be explained from physical
considerations with the principles of geometrical optics. Since the
radistion from the antenna is refracted by the free space, plasma inter-
face at the inner radius of the shell, there exists a critical angle
which corresponds to total internal reflection into the free space

region. This critical angle as determined from Snell's law of

refraction is

6, = cos™ Ve (III.G.8)
Therefore,
o= 3.6 ot 1 % 107e /ce
o, = 13.1° 1 x 108e"/cc
6, = L5, 20 1 x 107 /ee

For radiation incident on the inner radius of the shell at
angles 6 f'QC , the radiation is propagated parallel to the surface of
the shell. This surface wave travels at a speed less than the speed of
light in vacuum and can produce radiation only at a discontinuity in the
guiding surface. Therefore, the radiation of the antenna emitted into
the angles © f’QC cannot reach the free space region outside of the

shell, and thus the values of the gain function are reduced for these
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angles.,

The oscillations in the values of the gain function about the
free space values for angles 6 > OC are the result of standing waves
and plasma resonances supported by the plasma shell. As the density of
the plasma is increased, more peaks occur in the radiation patterns,
since the plasma is capable of supporting higher order standing waves
as it becomes denser.

The sharp peaks in the null region 6 € GC are caused by the
waves propagating along the outer radius of the shell. These waves
travel with a speed greater than the speed of light in vacuum and are
attenuated as they travel, indicating a continuous leakage of energy
out of the shell and into the free space region. Waves possessing
these characteristics are distinguished as leaky waves and have been
observed in other studies (19).

Since the leaky waves decay expoﬁentially in the radial direc-
tion inside the plasma shell, the leakage of energy across the outer
radius of the shell is small at any one point on the shell; however,
the radiation interferes constructively at the same angle since the
wave number of the leaky wave in the plasma shell is constant
and results in a sharp peak in the radiation patterns. This leaky wave
angle is

- -1 B
6, = cos E; (III.G.9)

where B is the propagation constant of the leaky wave.
As the velocity of the plasma is increased from zero to values

near the speed of light in vacuum, the peaks of the stationary patterns
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are shifted to smaller angles in theta. The amount of the shift in any
given case is proportional to the velocity of the plasma. This is the
effect one would expect that a moving medium would have on the radiation
of an antenna. The effect of shifting the peaks of the radiation pat-
terns to smaller angles in theta tends to decrease the severity of the
on-axis null region and tends to spread out the peaks so that they are
no longer as sharp or as intense. |

Note, however, that a more interesting effect alsc occurs. As
the plasma moves,more peaks are introduced into the radiation patterns.
This effect is dué to the Lorentz-contraction observed along the axis
of the cylinder. As the plasma moves, it appears to increase in den-
sity and more peaks are observed in the radiation patterns in the rest
frame of the antenna, in addition to the shifting of the peaks to
smaller angles in theta.

From an examination of the various radiation patterms, it is
clear that no serious motionsl effects or depolarization effects occur.
during the entry of the capsule into the Martian atmosphere and com-

munications with the capsule can be satisfactorily carried out.
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IV. CONCLUSION

The interaction between the ionized wake of a capsule enter-
ing the Martian atmosphere and the circularly polarized radiation
emitted by a turnstile antenna located on the aft part of the capsule
have been investigated in this study.

It has been shown that blackout occurs during the entry of a
capsule into the Martian atmosphere, and that the calculated duration
of the blackout depends on the signal frequency of the antenns and the
mathematical model chosen to represent the Martian atmosphere.

The gain of the transmitting antenna has also been studied
before and after blackout. The results of the numerical computations
carried out at 400 MHz show that the effects of the plasma on the
radiation from the antenna begin to appear at the electron concentra-
tion of 1 X 107e_/cc° In particular, the radiation patterns of the
antenna develop a null region for small values of theta. Also, sharp
peaks occur within the null region of the patterns for values of the
electron concentration approaching the cutoff value of 1.99 X 109e-/cc;

-For larger values of theta, the values of the gain function of the
antenna oscillate about the free space values. The effects of the
plasma on the radiation emitted by the antenna are seen to depend on
the electron concentration of the plasma and the velocity of the plasma

relative to the antenna.

It is concluded that, for the low velocity case corresponding
to an entry into the Martian atmosphere, no serious motional or depol=-
arization effects occur, and that communications with the capsule can
be satisfactorily carried out when the condition of blackout does not

exist.
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APPENDTX

Projection Operators

In what follows let the operator which projects any vector onto

itself be denoted by u ,

XE

Also, let the dual of any

<*E)Jk
where
+1 if
ejkl = -1 if
0 othe

1€y

. v | (A.1)

=

vector v be denoted by #*v , i.e.,

z eJklvl (A.2)
1

jk1 forms an even permutation of 123

jk1 forms an odd permutstion of 123

(A.3)

rwise

If the projection of the vector v on the plane normal to the

z direction is denoted by

XF , Then

ZF =t ° v (A.L)

[l

where the projection operator £ 1is defined as

fle

If the projection
z direction, followed by

direction, is denoted by

S
v

AA

= u - 2z (A.5)

of the vector v on the plane normal to the

a rotation through € radians about the z

XF , then

fl+

I<
S
o

Es



where the rotation operator

B

For the special case of 8 = m/2, let the

s be defined sas
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Eg is defined as

~

= ucos O + zz(1l -~ cos ) - %z sin ©

(A.7)

projection operator

g = gn/g -t (A.8)
then
=5 v (A.9)
The following identities among the projection operators are
evident:
(X_S)S o Kt
vev =0
S t t S .
E Y ==48 ¥
< < ’ 5 (A.10)
R X =K X
(wpAw)® = u® « °
(WAY)Y = uv®- u®v?
If the dyad ¢ 1is introduced by letting
c = - %z (A.11)
then W and Vv are related by
= ooyt (A.12)
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or
S " t
¥y = zAX (A.13)
Also, since the inverse of ¢ is just -¢ ,
crec=-1 (A.1L)
In terms of the dyad ¢ , the identities A.10 become
t t
g*L"rL =X
vieeeyt= 0
t % t t
B LY =~ Ll
t & & t (A 15)
£°R "R~ =L * 1L
Awt=te ey
(@A w®=u'e v v« u

If & similar notation

vV,i.e.,
z.t — Lr
¥ o= s
then
YAy = 2 ¥ e
and
= 2
VAY Ay =-z[(v")
+or AT

is used for the differential opersator

v (A.16)
¥ (A.17)
T - g=°(yﬁvz+ VZXF) (A.18)
vz+ VZZ? "XF]

'g"lt)— VZ_V_tVZ— (VZ)Z X_t (Aol9)
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