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ABSTRACT

Privacy concerns are becoming a major obstacle to using data in the way that we
want. It’s often unclear how current regulations should translate into technology,
and the changing legal landscape surrounding privacy can cause valuable data to
go unused. In addition, when people know that their current choices may have
future consequences, they might modify their behavior to ensure that their data re-
veal less—or perhaps, more favorable—information about themselves. Given these
concerns, how can we continue to make use of potentially sensitive data, while
providing satisfactory privacy guarantees to the people whose data we are using?
Answering this question requires an understanding of how people reason about their
privacy and how privacy concerns affect behavior.

In this thesis, we study how strategic and human aspects of privacy interact with
existing tools for data collection and analysis. We begin by adapting the standard
model of consumer choice theory to a setting where consumers are aware of, and
have preferences over, the information revealed by their choices. In this model of
privacy-aware choice, we show that little can be inferred about a consumer’s pref-
erences once we introduce the possibility that she has concerns about privacy, even
when her preferences are assumed to satisfy relatively strong structural properties.
Next, we analyze how privacy technologies affect behavior in a simple economic
model of data-driven decision making. Intuition suggests that strengthening privacy
protections will both increase utility for the individuals providing data and decrease
usefulness of the computation. However, we demonstrate that this intuition can fail
when strategic concerns affect consumer behavior. Finally, we study the problem
an analyst faces when purchasing and aggregating data from strategic individuals
with complex incentives and privacy concerns. For this problem, we provide both
mechanisms for eliciting data that satisfy the necessary desiderata, and impossibil-
ity results showing the limitations of privacy-preserving data collection.
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C h a p t e r 1

INTRODUCTION

Privacy concerns are becoming a major obstacle to using data in the way that we
want. It’s often unclear how current regulations should translate into technology,
and the changing legal landscape surrounding privacy can cause valuable data to
go unused. For well-intentioned companies holding potentially sensitive data, the
easiest and safest mode of compliance is simply to not use the data. For exam-
ple, it is common practice for major companies to limit the sharing of data across
departments, or to avoid storing sensitive data altogether. A recent Scientific Amer-
ican article described this occurrence: “as awareness of these privacy concerns has
grown, many organizations have clamped down on their sensitive data, uncertain
about what, if anything, they can release” [65]. Given these concerns, how can we
continue to make use of potentially sensitive data, while providing rigorous pri-
vacy guarantees to the people whose data we are using? Answering this question
requires tools to guarantee privacy in data analysis, as well as an understanding of
how people reason about their privacy and how privacy concerns affect behavior.

In the last decade, a growing literature on differential privacy has emerged to ad-
dress some of these concerns (see Dwork [33] and Dwork and Roth [34] for a
survey). First defined by Dwork et al. [36], differential privacy is a parameterized
notion of database privacy that gives a mathematically rigorous worst-case bound
on the maximum amount of information that can be learned about any one individ-
ual’s data from the output of a computation. Differential privacy ensures that if a
single entry in the database were to be changed, then the algorithm would still have
approximately the same distribution over outputs. The privacy community has been
prolific in designing algorithms that satisfy this privacy guarantee and maintain use-
fulness of the computation, resulting in a theoretical toolbox for a wide variety of
computational settings, including machine learning, optimization, statistics, and al-
gorithmic economics. Recently, major companies such as Apple [3] and Google
[41], and government organizations such as the United Status Census Bureau [70],
have announced a commitment to implementing differentially private algorithms.
However, many theoretical results cannot be directly applied by practitioners whose
problems don’t match the underlying assumptions.
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In order to achieve a comprehensive solution to the privacy challenges we face to-
day, we need to understand how existing tools for differentially private data analysis
interact with strategic and human aspects of practical privacy guarantees.

This thesis seeks to bridge this gap between theory and practice in the formal study
of privacy. We begin by adapting the standard model of consumer choice theory to
a setting where consumers are aware of, and have preferences over, the information
revealed by their choices. In this model of privacy-aware choice, we show that little
can be inferred about a consumer’s preferences once we introduce the possibil-
ity that she has concerns about privacy, even when her preferences are assumed
to satisfy relatively strong structural properties. Next, we analyze how privacy
technologies affect behavior in a simple economic model of data-driven decision
making. Intuition suggests that strengthening privacy protections will both increase
utility for the individuals providing data and decrease usefulness of the computa-
tion. However, we demonstrate that this intuition can fail when strategic concerns
affect consumer behavior. Finally, we study the problem an analyst faces when pur-
chasing and aggregating data from strategic individuals with complex incentives
and privacy concerns. For this problem, we provide both mechanisms for elicit-
ing data that satisfy the necessary desiderata, and impossibility results showing the
limitations of privacy-preserving data collection.

1.1 Overview of the thesis
Privacy concerns affect the interpretability of data
When people know that their current choices may have future consequences, they
might modify their behavior to ensure that their data reveal less—or perhaps, more
favorable—information about themselves, even if they do not fully understand the
consequences of their actions. For example, a person may choose to not down-
load a particular app, change their privacy settings, or even purchase a product
from a different website. Indeed, 85% of adult Internet users have taken steps to
avoid surveillance by other people or organizations [86]. If analysts use the data of
privacy-aware individuals for learning or inference, will the results still be mean-
ingful? The classical revealed preferences problem from economics models an ob-
server making inferences about a consumer based upon her choices; in the absence
of privacy concerns, an observer can see these choices and, after enough obser-
vations, learn the utility function that guides the consumer’s decisions. However,
when the consumer can take action to change what is revealed, existing tools are
ill-equipped to describe such privacy-aware choices.
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In Chapter 4, based on joint work with Federico Echenique and Adam Wierman
that appeared in EC 2014 and Operations Research in 2016 [21], we initiate the
study of the testable implications of choice data, in settings where consumers are
privacy-aware. The main message of the paper is that little can be inferred about

a consumer’s preferences once we introduce the possibility that she has concerns
about privacy. No matter what her behavior, she always has an “alibi” that can
explain her choices as a consequence of privacy concerns. We show that all possible
behaviors on the part of the consumer are compatible with all possible preferences
she may have over objects, even when her preferences are assumed to satisfy natural
economic properties such as separability and monotonicity, which normally place
strong restrictions on behavior.

The main result of Chapter 4 is a constructive proof of this claim using tools from
economics and graph theory. We adapt the standard model of consumer choice
theory to a situation where the consumer is aware of, and has preferences over,
the information revealed by her choices. We represent privacy-aware preferences
as a directed graph, where vertices of the graph are pairs of choice objects and
inferences made by an observer. By imposing edges on this graph according to the
constraints of our desiderata—rationalizability, monotonicity, and separability—
we show that the graph corresponds to a monotone and separable privacy-aware
preference ordering that is consistent with the observed choice behavior.

Impact of privacy policy
Given the promise of differential privacy, one tempting response to privacy concerns
is regulation: lawmakers could mandate the use of differentially private algorithms
or other privacy technologies, to limit the amount of information that firms can learn
about consumers. An implicit assumption in the prior literature is that strengthen-
ing privacy protections will both increase utility for the individuals providing data
and decrease usefulness of the computation. However, this assumption can fail
when strategic concerns affect the impact and guarantees one can get from privacy
technologies!

Chapter 5, based on joint work with Katrina Ligett, Mallesh Pai, and Aaron Roth
that appeared at EC 2016 [27], serves as a cautionary tale against blindly setting
privacy policy in strategic settings: the static effects of adding privacy technologies
to a system may be the exact opposite of the effects in equilibrium. In that chapter,
we study how privacy technologies affect behavior in a simple economic model of
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data-driven decision making. A lender would like to use a consumer’s past pur-
chases to decide the terms of a new loan, but he is given only a differentially private
signal about the consumer’s behavior—which can range from no signal at all to a
perfect signal, as we vary the differential privacy parameter. Using tools from pri-
vacy and game theory, we analyze end-to-end privacy guarantees of this game. We
characterize equilibrium behavior as a function of the privacy level promised to the
consumer, and show that the effect of adding privacy in equilibrium can be highly

counterintuitive. Specifically, increasing the level of privacy can actually cause the
lender to learn more about the consumer, and can also lead to decreased utility for
the consumer and increased utility for the lender. We show that these quantities can
generally be non-monotonic and even discontinuous in the privacy level of the sig-
nal. These results demonstrate that even in simple models, privacy exhibits much
richer behavior in equilibrium than compared to its static counterpart, and suggest
that future policy decisions about privacy technologies ought to consider equilib-
rium effects.

Eliciting data from individuals
Much of the work in private data analysis starts from the premise that an analyst
has access to a fixed database that is representative of the underlying population.
But how does the analyst acquire this database? If she were to elicit it, why would
anyone truthfully report their data? In many practical settings, people can misreport
their data (e.g., change browsing behavior or lie on a survey) or refuse to partici-
pate (e.g., delete cookies or opt out of a service). These individuals may wish to
influence the outcome of a computation performed on their data, or to mask their
input due to privacy concerns. If they could potentially come to harm through the
use of their private data, they may require additional compensation for this loss.
Chapters 6 and 7 study several key challenges an analyst faces when purchasing
and aggregating data from strategic individuals with complex incentives and pri-
vacy concerns. In these settings, we must design differentially private mechanisms
that incentivize players to truthfully share data, allow the analyst to perform her
learning task, and minimize the analyst’s costs.

In Chapter 6, based on joint work with Stratis Ioannidis and Katrina Ligett that
appeared in COLT 2015 [22], we consider a setting where data is unverifiable—
such as taste in movies or political beliefs—and individuals are able to misreport

their data to the analyst. Privacy-aware individuals hold data drawn according to
an unknown linear model, which an analyst wishes to learn. The analyst can offer
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both a privacy guarantee and payments to incentivize players to truthfully report
their data, and wishes to minimize her total payments and while still accurately es-
timating the model. We designed a truthful, individually rational mechanism that
produced an asymptotically accurate estimate and allows the analyst’s budget to
diminish towards zero as the number of participants grows large. The main techni-
cal challenge in solving this problem is that differentially private computation of a
linear model produces a biased estimate, and existing approaches for eliciting data
from privacy-sensitive individuals do not generalize well to biased estimators. We
overcome this using tools from peer prediction [74] to design our payment scheme,
which leveraged the linear correlation of players’ data to induce truthfulness: each
player is paid based upon how well her report predicted the reports of other players.
Accuracy of the computation followed because the vast majority of players were
incentivized to report truthfully, and from a bound on the noise needed to preserve
privacy.

Chapter 7, based on joint work with David Pennock and Jennifer Wortman Vaughan
that appeared in EC 2016 [23], asks whether existing techniques for data collection

are compatible with differential privacy. We give both positive and negative results
for the design of private prediction markets: financial markets designed to elicit
predictions about uncertain events. We first provide a class of private one-shot wa-
gering mechanisms—in which bettors specify a belief about a future event and a
monetary wager—that satisfy a number of desirable properties, including truthful-
ness, budget balance, and differential privacy of the bettors’ reported beliefs. We
then consider dynamic prediction markets, focusing our attention on the popular
cost-function framework in which securities with payments linked to future events
are bought and sold by an automated market maker. We show that it is impossible
for such a market maker to simultaneously achieve bounded worst-case loss and
differential privacy, without allowing the privacy guarantee to degrade extremely
quickly as the number of trades grows.
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C h a p t e r 2

BACKGROUND ON DIFFERENTIAL PRIVACY

This chapter introduces the relevant terms, tools, and related work from differential
privacy that will be used throughout this thesis. We begin in Section 2.1 with formal
definitions of differential privacy and joint differential privacy. Section 2.2 presents
the properties which make these privacy notions desirable for practical use. Section
2.3 provides a diverse algorithmic toolkit of differentially private mechanisms from
the existing privacy literature. For a more comprehensive discussion and additional
topics related to differential privacy, the interested reader is referred to Dwork and
Roth [34] for a textbook treatment.

2.1 Definitions
We begin with the classic definition of differential privacy, introduced by Dwork
et al. [36]. In the settings considered here, a database D ∈ Dn consists of data from
n individuals. We say that two databases are neighboring if they differ in at most
one entry.

Definition 1 (Differential Privacy [36]). A mechanism M : Dn → R is (ε, δ)-
differentially private if for every pair of neighboring databases D,D′ ∈ Dn, and

for every subset of possible outputs S ⊆ R,

Pr[M (D) ∈ S] ≤ exp(ε )Pr[M (D′) ∈ S] + δ.

If δ = 0, we say thatM is ε-differentially private.

Intuitively, differential privacy bounds the maximum amount that one person’s data
can change the output of a computation. The parameter ε quantifies the privacy
guarantee provided by the mechanism: ε = 0 provides perfect privacy, as the output
must be independent of the input. At the other extreme, ε = ∞ guarantees no
privacy, as it imposes no binding constraints, and the output of the mechanism is
allowed to depend arbitrarily on a single entry in the database. For ε < 1, the
multiplicative eε guarantee can be approximated by (1 + ε ).

In the context of mechanism design, differential privacy is often too strong of a
notion. Suppose, for example, that the mechanism M outputs a vector of prices
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that each of n players will pay based on their joint input. While we may want the
price that player i pays to be differentially private in the input of the other players,
it is natural to allow it to be more sensitive to changes in i’s own input. To capture
this idea, Kearns et al. [64] defined the notion of joint differential privacy. We’ll
say that two databases are i-neighbors if they differ only in the i-th entry, and let
M (D)−i denote the vector of outputs to all players except player i.

Definition 2 (Joint Differential Privacy [64]). A mechanism M : Dn → Rn is

(ε, δ)-jointly differentially private if for every i ∈ [n], for every pair of i-neighbors

D,D′ ∈ Dn, and for every subset S ⊆ Rn−1,

Pr[M (D)−i ∈ S] ≤ exp(ε )Pr[M (D′)−i ∈ S] + δ.

If δ = 0, we say thatM is ε-jointly differentially private.

Intuitively, joint differential privacy guarantees that the output to all other players
excluding player i is insensitive to i’s input. It protects the privacy of player i from
arbitrary coalitions of other players; even if all other players shared their portion of
the output, they would still not be able to infer much about player i’s input.

One useful tool for proving joint differential privacy is the billboard lemma of Hsu
et al. [62]. The idea behind the billboard lemma is quite intuitive and simple. Imag-
ine that a mechanismM first computes an (ε, δ)-differentially private signal based
on the data, and then displays that signal publicly to all n agents, as if posted on
a billboard. If each player i’s portion of the output, M (D)i, is computable from
only this public signal and i’s own input Di, thenM is (ε, δ)-jointly differentially
private.

Lemma 1 (Billboard Lemma [62]). SupposeM : Dn → R is (ε, δ)-differentially

private. Consider any collection of functions fi : Di × R → R′, for i ∈ [n],
where Di is the portion of the database containing i’s data. Then the composition{

fi
(∏

i (Di),M (D)
)}

is (ε, δ)-jointly differentially private, where
∏

i : D → Di is

the projection to i’s data.

This lemma allows a designer to use existing tools from differential privacy —
some of which are presented in Section 2.3 — to design jointly differentially private
algorithms.
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2.2 Properties of Differential Privacy
In this section, we present three properties of differential privacy that make it desir-
able for use as a privacy notion: post-processing, group privacy, and composition.

First, differential privacy is robust to post-processing: no adversary can learn addi-
tion information about the database by performing further computations on a dif-
ferentially private output.

Proposition 1 (Post-processing [36]). LetM : Dn → R be an (ε, δ)-differentially

private mechanism. Let f : R → R′ be an arbitrary randomized function. Then

f ◦M : Dn → R′ is (ε, δ)-differentially private.

Although the promise of differential privacy is typically phrased as privacy for a
single individual, it also provides privacy to arbitrary groups of players, where the
level of privacy decreases linearly with the size of the group. This property is known
as group privacy.

Proposition 2 (Group privacy [36]). LetM : Dn → R be an (ε, δ)-differentially

private mechanism. ThenM is also (kε, kδ)-differentially private for groups of size

k. That is, for all D,D′ ∈ Dn that differ in at most k entries, and for every subset

of possible outputs S ⊆ R,

Pr[M (D) ∈ S] ≤ exp(kε )Pr[M (D′) ∈ S] + kδ.

Differentially private algorithms also compose, meaning that the privacy guarantee
degrades gracefully as multiple computations are performed on the same database.
This allows for the modular design of differentially private mechanisms; an al-
gorithm designer can combine several simple differentially private mechanisms as
building blocks in a larger, more complicated algorithm. She can then reason about
the overall privacy guarantee of her mechanism by reasoning about these simple
mechanisms.

We begin with basic composition (Theorem 1), which says that the composition of
multiple (ε, δ)-differentially private mechanisms is also differentially private, where
the ε and δ parameters “add up.”

Theorem 1 (Basic Composition [40]). LetMi : Dn → Ri be (ε i, δi)-differentially

private for i = 1, . . . , k. Then the compositionM[k] : Dn → R1 × · · · × Rk , defined

asM[k](D) = (M1(D), . . .Mk (D)) is (
∑k

i=1 ε i,
∑k

i=1 δi)-differentially private.
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Advanced composition (Theorem 2) improves on the composition guarantees of
Theorem 1 in two ways. First, it allows the ε parameter to degrade (asymptotically)
as square root of the number of computations performed, rather than linearly, at the
cost of a small increase in the δ parameter. Second, it allows for adaptive composi-

tion: the choice of the i-th mechanism can depend on the previous i−1 mechanisms
and their outputs. That is, the i-th mechanism of the composition can be written in
the following way: Mi : Dn × (M1 × · · · ×Mi−1) × (R1 × · · · × Ri−1) → Ri. For
a more detailed discussion of k-fold adaptive composition, see Dwork, Rothblum,
and Vadhan [35].

Theorem 2 (Adaptive Composition [35]). LetM : Dn → Rk be a k-fold adaptive

composition of (ε, δ)-differentially private mechanisms. Then M is (ε′, kδ + δ′)-
differentially private for

ε′ = ε
√

2k ln(1/δ′) + kε (eε − 1).

Theorem 2 also tells an algorithm designer how to set privacy parameters in sub-
routines to achieve a desired privacy guarantee for the overall mechanism. This is
described in Corollary 1.

Corollary 1. IfM : Dn → Rk is a k-fold adaptive composition of (ε/
√

8k ln(1/δ),0)-
differentially private mechanisms for any ε ≤ 1, thenM is (ε, δ)-differentially pri-

vate.

2.3 Algorithmic Toolkit
In this section, we survey differentially private mechanisms that are commonly used
in the privacy literature. This is not intended as a comprehensive list, but is rather
a sampling of the algorithmic techniques which underlie many advanced mecha-
nisms.

Randomized Response
Perhaps the simplest differentially private mechanism is that of randomized re-

sponse [100]. Imagine a data analyst wanted to know what fraction of the pop-
ulation engaged in some embarrassing or illegal behavior. Instead of asking par-
ticipants directly whether they engaged in this behavior — where they may have
incentive to lie to avoid legal action or public embarrassment — the analyst can ask
participants to complete the following procedure:

1. Flip a coin.
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2. If tails, then respond truthfully.

3. If heads, then flip a second coin and respond “Yes” if heads and “No” if tails.

The privacy of this mechanism comes from the plausible deniability it provides.
If a participant responds “Yes,” then the analyst (or any other observer) cannot be
sure whether the participant actually engaged in the behavior, or whether both coins
came up heads and this was a random answer. The analyst can still estimate the total
number of people engaging in the behavior as twice the number of “Yes” responses
minus 1/2, due to the way noise was added.

This simple mechanism demonstrates the essential goal of differential privacy: to
allow inferences about a large population, while protecting the privacy of every indi-
vidual. The version of randomized response described above is (ln 3,0)-differentially
private. Other values of ε can be achieved by varying the bias of the coins.

Laplace Mechanism
The Laplace Mechanism is useful for answering numeric queries to a database:
functions f : Dn → R that map databases to a real number. Examples of these
types of queries are “How many people in the database have blue eyes?” or “What
fraction of the entries in the database satisfy property P?”

The Laplace Mechanism first computes the true value of f on the input database,
and then adds a noise term drawn according to the Laplace distribution, defined
below.

Definition 3 (Laplace distribution). The Laplace distribution (centered at 0) with

scale b is the distribution with probability density function:

Lap(x |b) =
1

2b
exp

(
−
|x |
b

)
.

We will write Lap(b) to denote the Laplace distribution with scale b. We may some-

times abuse notation and use Lap(b) to denote a random variable drawn from the

the Laplace distribution with scale b.

The sensitivity of a function determines the scale of noise that must be added to pre-
serve privacy. Formally defined in Definition 4, sensitivity is the maximum change
in the function’s output when a single player changes her input.
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Definition 4 (Sensitivity). The sensitivity of a function f : Dn → R is:

∆ f = max
D,D′, neighbors

| f (D) − f (D′) |.

We now define the Laplace Mechanism, first introduced by Dwork et al. [36], which
computes the value of f on the input database D, and adds Laplace noise scaled to
the sensitivity of f divided by ε .

Definition 5 (Laplace Mechanism [36]). Given any function f : Dn → R, the

Laplace Mechanism is defined as:

ML (D, f (·), ε ) = f (D) + Y,

where Y is drawn from Lap(∆ f /ε ).

Theorem 3 ([36]). The Laplace Mechanism is (ε,0)-differentially private.

Proof. Let D,D′ ∈ Dn be neighboring databases, and let f : Dn → R be an
arbitrary function.

Pr[ML (D, f (·), ε ) = x]
Pr[ML (D′, f (·), ε ) = x]

=
exp

(
−
ε | f (D)−x |
∆ f

)
exp

(
−
ε | f (D′)−x |
∆ f

)
= exp

(
ε
(
| f (D′) − x | − | f (D) − x |

)
∆ f

)
≤ exp

(
ε
(
| f (D) − f (D′) |

)
∆ f

)
≤ exp(ε )

The first inequality comes from the triangle inequality and the second inequality
comes from the definition of sensitivity. �

The Laplace Mechanism also works for vector-valued queries: functions of the
form f : Dn → Rk . In this case, the sensitivity of a function should be defined with
respect to the appropriate vector norm (typically the `1-norm), and the mechanism
outputs ML (D, f (·), ε ) = f (D) + (Y1, . . . ,Yk ), where the Yi are drawn i.i.d. from
Lap(∆ f /ε ). Other variants of the Laplace Mechanism add noise that is correlated
across the k dimensions through a high-dimensional analog of the Laplace distri-
bution. See, e.g., Chaudhuri, Monteleoni, and Sarwate [14], Bassily, Smith, and
Thakurta [4], or Section 6.4 of this thesis for more details.

The following theorem provides an accuracy guarantee on the output of the Laplace
Mechanism.
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Theorem 4. Let f : Dn → Rk . Then for all D ∈ Dn, all ε ∈ R+, and all β ∈ (0,1],

Pr
[
‖ f (D) −ML (D, f (·), ε )‖∞ ≥ ln

(
k
β

)
·

(
∆ f
ε

)]
≤ β,

where ∆ f is the `1 sensitivity of f .

Example: Counting Queries Counting queries are queries of the form “How
many entries in the database satisfy property P?”. They also include generalizations
such as the fractional variant (“What fraction of the entries in the database satisfy
property P?”) and weighted counting queries with weights in [0,1] (i.e., linear
queries). Since changing one entry in the database can change the output of a
counting query by at most 1, then the sensitivity of these queries is 1, and the
Laplace Mechanism adds noise drawn from Lap(1/ε ).

Answering k fixed counting queries can be viewed as a vector-valued query with
a k-dimensional output. In this case, the `1-sensitivity of the query is k, since
changing one entry in the database can change the value of each query by at most 1,
and thus can change the `1 norm of the output vector by at most k. To achieve (ε,0)-
differential privacy, the Laplace Mechanism should add noise drawn from Lap(k/ε )
to the answer of each query. This can also be seen from Basic Composition.

Example: Histogram Queries A special case of vector-valued counting queries
is histogram queries, where the data universe D is partitioned into disjoint cells,
and each query counts how many entries fall into a particular cell. Examples of
histogram queries include disjoint age brackets or income brackets. In this case, the
sensitivity of the function is 1 because changing a single entry can only change
the count in one of the cells,1 so the Laplace Mechanism can guarantee (ε,0)-
differential privacy by adding i.i.d. noise draws from Lap(1/ε ) to each dimension
of the output.

Example: Gaussian Mechanism The Laplace distribution is particularly well-
suited for differential privacy, but one might wonder if other noise distributions
would work as well. The Gaussian Mechanism is analogous to the Laplace Mech-
anism, and adds Gaussian noise with mean 0 and variance ∆ f ln(1/δ)/ε to the true
answer of the query, and guarantees (ε, δ)-differential privacy. Due to the tails of

1The philosophical question of whether “changing a single entry” means adding or removing an
entry, or changing the content of an entry is ignored here. It only affects the privacy guarantees up
to a factor of 2.
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the Gaussian distribution, the Gaussian Mechanism is not able to achieve (ε,0)-
differential privacy. For more details see Appendix A of Dwork and Roth [34].

Exponential Mechanism
The Exponential Mechanism [73] is a powerful private mechanism for non-numeric
queries with an arbitrary range, such as selecting the best outcome from a set of
alternatives. Examples of such queries include “What is the most common eye
color in the database?” and “What price should I post to maximize revenue?” The
quality of an outcome is measured by a score function, relating each alternative to
the underlying data. A score function q : Dn × R → R maps each database and
outcome pair to a real-valued score. The quality of an outcome — an eye color or
a price, in the example queries given above — will depend on the database, and we
assume the analyst wishes to select an outcome with high quality score.

The sensitivity of the score function is measured only with respect to the database
argument; it can be arbitrarily sensitive in its range argument:

∆q = max
r∈R

max
D,D′, neighbors

|q(D,r) − q(D′,r) |.

Definition 6 (Exponential Mechanism [73]). Given a quality score q : Dn×R → R,

the Exponential Mechanism is defined as:

ME (D,q, ε ) = output r ∈ R with probability proportional to exp
(
εq(D,r)

2∆q

)
.

The Exponential Mechanism samples an output from the range R with probability
exponentially weighted by score. Outcomes with higher scores are exponentially
more likely to be selected, thus ensuring both privacy and a high quality outcome.

Theorem 5 ([73]). The Exponential Mechanism is (ε,0)-differentially private.

Proof. Let D,D′ ∈ Dn be neighboring databases, and let r ∈ R be an arbitrary
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element of the output range.

Pr[ME (D,q,R) = r]
Pr[ME (D′,q,R) = r]

=

*
,

exp
(
εq (D,r )

2∆q

)
µ(r)∑

r ′∈R exp
(
εq (D,r ′)

2∆q

)
µ(r ′)

+
-

*
,

exp
(
εq (D′,r )

2∆q

)
µ(r)∑

r ′∈R exp
(
εq (D′,r ′)

2∆q

)
µ(r ′)

+
-

=
*.
,

exp
(
εq(D,r)

2∆q

)
exp

(
εq(D′,r)

2∆q

) +/
-
·

*.
,

∑
r ′∈R exp

(
εq(D′,r ′)

2∆q

)
µ(r′)∑

r ′∈R exp
(
εq(D,r ′)

2∆q

)
µ(r′)

+/
-

= exp
(
ε
(
q(D,r) − q(D′,r)

)
2∆q

)
·

*.
,

∑
r ′∈R exp

(
εq(D′,r ′)

2∆q

)
µ(r′)∑

r ′∈R exp
(
εq(D,r ′)

2∆q

)
µ(r′)

+/
-

≤ exp
(
ε

2

)
· exp

(
ε

2

)
·

*.
,

∑
r ′∈R exp

(
εq(D,r ′)

2∆q

)
µ(r′)∑

r ′∈R exp
(
εq(D,r ′)

2∆q

)
µ(r′)

+/
-

= exp(ε )

�

Theorem 6 says that the probability of outputting a “bad” outcome decays exponen-
tially quickly in the distance from the optimal output.

Theorem 6 ([73]). Let r ∈ R be the output ofME (D,q, ε ). Then:

Pr
[
q(D,r) ≤ max

r ′∈R
q(D,r′) −

2∆q (ln |R | + t)
ε

]
≤ e−t .

Or equivalently:

Pr
[
q(D,r) ≥ max

r ′∈R
q(D,r′) −

2∆q
(
ln( |R |/β)

)
ε

]
≥ 1 − β.

Above Noisy Threshold
The Above Noisy Threshold Mechanism, first introduced by Dwork et al. [39], takes
in a stream of queries and halts after finding the first query with a (noisy) answer
above a given (noisy) threshold. It preserves privacy by adding Laplace noise to
both the threshold and the answer of each query in the stream.

This mechanism — and its more advanced cousin, the Sparse Vector Mechanism,
described in the next subsection — is especially useful if an analyst is facing a
stream of queries and believes that only a small number of the queries will have
large answers. These mechanisms allow the analyst to identify and answer only the
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Algorithm 1 Above Noisy Threshold, AboveThreshold(D, { fi},T, ε )
Input: A database D, an adaptively chosen stream of sensitivity 1 queries { fi}, a
threshold T , a privacy parameter ε
Output: A stream of answers {ai}

Let T̂ = T + Lap
(

2
ε

)
For each query fi do

Let νi = Lap
(

4
ε

)
If fi (D) + νi ≥ T̂ then

Output ai = >

Halt
Else

Output ai = ⊥

“important” queries, without having to incur privacy cost proportional to all queries
in the stream.

Theorem 7. Above Noisy Threshold is (ε,0)-differentially private.

Definition 7 gives an accuracy notion for AboveThreshold. It requires that the
mechanism provides an output for all k queries, and that its output is approximately
correct for all queries with high probability.

Definition 7 (Accuracy). A mechanism that outputs a stream of answers {ai} ∈

{>,⊥}∗ to a stream of k queries { fi} is (α, β)-accurate with respect to a threshold

T if with probability at least 1 − β, the mechanism does not halt before f k , and for

all ai = >:

fi (D) ≥ T − α,

and for all ai = ⊥:

fi (D) ≤ T + α.

Theorem 8. For any sequence of k sensitivity 1 queries f1, . . . , f k such that |{i <

k : fi (D) ≥ T − α}| = 0, then AboveThreshold is (α, β)-accurate for:

α =
8
(
ln k + ln(2/β)

)
ε

.

Note that the qualifier |{i < k : fi (D) ≥ T − α}| = 0 in the statement of Theorem 8
requires that the only query close to being above threshold is possibly the last one.
Without this requirement, the algorithm would be required to halt before the k-th
query with high probability, and thus could not satisfy the accuracy guarantee.
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Sparse Vector Mechanism
The Sparse Vector Mechanism (introduced in Dwork et al. [39], refined in Hardt
and Rothblum [56], and abstracted into its current form in Dwork and Roth [34])
takes in a stream of sensitivity 1 queries { fi} on a database D, and a threshold T .
The mechanism only outputs answers to those queries with (noisy) answers above
the (noisy) threshold, and reports that all other queries were below threshold. There
is also an upper bound c on the number of queries that can be answered. The
mechanism will halt once it has seen more than c queries with answers above the
noisy threshold.

Algorithm 2 Sparse Vector Mechanism, Sparse(D, { fi},T,c, ε , δ)
Input: A database D, an adaptively chosen stream of sensitivity 1 queries { fi}, a
threshold T , total number of numeric answers c, privacy parameters ε and δ
Output: A stream of answers {ai}

Let ε1 = 8
9ε and ε2 = 2

9ε

If δ = 0 let σ(ε ) = 2c
ε . Else let σ(ε ) =

√
32c ln 2

δ

ε

Let T̂0 = T + Lap (σ(ε1))
Let count = 0
For each query fi do

Let νi = Lap (2σ(ε1))
If fi (D) + νi ≥ T̂count then

Output ai = fi (D) + Lap (σ(ε2))
Update count = count + 1 and T̂count = T + Lap (σ(ε1))

Else
Output ai = ⊥

If count ≥ c then
Halt

The Sparse Vector Mechanism works by repeatedly running and restarting Above
Noisy Threshold, up to c times. Whenever a query is selected as being above thresh-
old, Sparse Vector answers that query via the Laplace Mechanism. The differential
privacy guarantee of Sparse Vector can be analyzed via the privacy of these two
subroutines and composition theorems.

Theorem 9 ([39]). The Sparse Vector Mechanism is (ε, δ)-differentially private.

Proof. When δ = 0, the Sparse Vector Mechanism consists of c runs of Above
Noisy Threshold, where each run is ( 8

9c ε,0)-differentially private, and c runs of
the Laplace Mechanism, where each run is ( 1

9c ε,0)-differentially private. Basic
Composition (Theorem 1) gives that Sparse Vector is (ε,0)-differentially private.
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When δ > 0, each run of Above Noisy Threshold is ( 8
9
√

8c ln(2/δ)
ε,0)-differentially

private. By Advanced Composition (Corollary 1), these runs together are ( 8
9ε,

δ
2 )-

differentially private. Each run of the Laplace Mechanism is ( 1
9
√

8c ln(2/δ)
ε,0)-

differentially private. By Advanced Composition, these runs together are ( 1
9ε,

δ
2 )-

differentially private. Basic Composition of these two subroutines gives that Sparse
Vector is (ε, δ)-differentially private. �

To analyze the accuracy of Sparse, we adapt our accuracy notion to a setting the
algorithm also outputs numeric answers to some queries. Definition 8 extends Defi-
nition 7 to additionally require that when the mechanism outputs a numeric answer,
it is within α of the the true answer to that query.

Definition 8 (Numeric Accuracy). A mechanism that outputs a stream of answers

{ai} ∈ (R ∪ {⊥})∗ to a stream of k queries { fi} is (α, β)-accurate with respect to a

threshold T if with probability at least 1 − β, the mechanism does not halt before

f k , and for all ai ∈ R:

| fi (D) − ai | ≤ α,

and for all ai = ⊥:

fi (D) ≤ T + α.

We can analyze the accuracy of Sparse Vector using the accuracy guarantees of its
subroutines.

Theorem 10 ([39]). For any sequence of k queries f1, . . . , f k such that |{i : fi (D) ≥
T − α}| ≤ c, if δ = 0, then Sparse is (α, β)-accurate for:

α =
9c

(
ln k + ln 4c

β

)
ε

.

If δ > 0, then Sparse is (α, β)-accurate for:

α =
9
(
ln k + ln 4c

β

) √
8c ln 2

δ

ε
.

Proof. The requirement that fi (D) ≤ T +α when ai = ⊥ is satisfied by the accuracy
guarantees of Above Noisy Threshold. Instantiating Theorem 8 with β =

β
2c and

ε = 8
9c ε if δ = 0, or ε = 8

9
√

8c ln(2/δ)
ε if δ > 0, gives that each of the c runs of Above

Noisy Threshold is (α1,
β

2c )-accurate for:

α1 =
9c

(
ln k + ln 4c

β

)
ε

if δ = 0,
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and

α1 =
9
(
ln k + ln 4c

β

) √
8c ln(2/δ)

ε
if δ > 0.

We must also show that | fi (D) − ai | ≤ α if ai ∈ R. This is satisfied by the ac-
curacy guarantee of the Laplace Mechanism. Instantiating Theorem 4 with k = 1,
∆ f = 1, β = 2c

β , and ε = 1
9c ε if δ = 0, or ε = 1

9
√

8c ln(2/δ)
ε if δ > 0, gives that

Pr
[
| fi (D) − ai | ≥ α2

]
≤

β
2c for each ai ∈ R, where

α2 =
9c ln 2c

β

ε
if δ = 0,

and

α2 =
9 ln 2c

β

√
8c ln(2/δ)

ε
if δ > 0.

Noting that α = max{α1,α2}, and taking a union bound over the failure probabili-
ties completes the proof. �
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C h a p t e r 3

APPLICATIONS OF PRIVACY TO ALGORITHMIC
ECONOMICS

This chapter presents applications of differentially private algorithms to problems
in game theory, mechanism design, and other subfields of algorithmic economics.

Section 3.1 provides a self-contained primer on game theory. Section 3.2 summa-
rizes a body of work that uses differential privacy as a tool in mechanism design.
Section 3.3 surveys the literature connecting jointly differentially private algorithms
for equilibrium computation to truthfulness in games and equilibrium selection.
Section 3.4 considers various models for the loss experienced by a privacy-aware
player from participating in a mechanism or game. Parts of this chapter follow a
survey of Pai and Roth [81] and its textbook adaptation by Dwork and Roth [34,
Chapter 10].

3.1 Game Theory Basics
In this section, we review the standard game theory definitions and properties that
will be used throughout this thesis. We first define the terminology of games and
review equilibrium notions. We then introduce mechanism design and its desider-
ata. For a textbook introduction to game theory, see Nisan et al. [77, Chapter 1] or
Mas-Colell, Whinston, and Green [71, Chapters 7 and 8].

Before beginning, we introduce some convenient notation. For an arbitrary vector
v = (v1, . . . ,vn), we use vi to denote the i-th entry, use v−i to denote the n−1 entries
of v other than the i-th, and use (v′i ,v−i) to denote the vector created by replacing
the i-th entry of v with v′i .

Equilibrium Concepts
A game consists of n players, whose actions jointly determine the payoffs of all
players. Each player i has a type ti ∈ T describing her payoff-relevant information
in the game, and can choose an action ai ∈ Ai. For example in an auction, a
player’s type could be her value for the good being sold, and her action could be
her bid for the good. In the context of data privacy and markets for data, a player’s
type is often her data, and her action is her (possibly false) data report, so T = D
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or Ai = D or both.

Each player has a utility function ui : A1 × · · · × An → R describing her payoff

in the game, where ui (ai,a−i) is the payoff of player i when she chooses action ai

and the other players choose actions that form a−i. Players choose their actions
strategically to maximize their utility function, which is formalized as a strategy

σi : T → Ai, mapping from a player’s type to her action chosen in the game. If σi

is a deterministic mapping, it is a pure strategy; if σi is randomized, it is a mixed

strategy. A strategy profile σ = (σ1, . . . ,σn) is a collection of strategies, one for
each player.

We say that player i is playing an η-best response to σ−i if her current strategy
maximizes her expected utility, up to an additive η, when the other players play
strategy profile σ−i. A strategy profile σ is an η-Nash equilibrium if all players are
playing an η-best response to σ. When η = 0, the approximation terms are omitted,
and these are simply called a best response and a Nash equilibrium, respectively.
The same naming convention applies when η = 0 in any of the other equilibrium
notions defined in this chapter.

Definition 9 (Nash equilibrium). A strategy profile σ forms an η-Nash equilibrium
of the game defined by type vector t, if for every player i, and for all ai ∈ Ai,

Eσ[ui (σ(t))] ≥ Eσ[ui (ai,σ−i (t−i))] − η.

A mixed strategy Nash equilibrium is guaranteed to exist in every finite game [76].
That is, games with a finite number of players n and finite action spacesAi for each
player.

If a strategy σi is an η-best response to all possible σ−i, we say that it is a η-

dominant strategy. A strategy profile σ is an η-dominant strategy equilibrium if
all players are playing an η-dominant strategy. This is stronger equilibrium notion
than a Nash equilibrium because it requires a player’s strategy to be optimal for any
behavior of their opponents, rather than just a fixed strategy profile. As such, many
games do not have a dominant strategy equilibrium.

Definition 10 (Dominant strategy equilibrium). A strategy profile σ forms an η-
dominant strategy equilibrium of the game defined by type vector t, if for every

player i, for all ai ∈ Ai, and for all σ−i,

Eσ[ui (σ(t))] ≥ Eσ[ui (ai,σ−i (t−i))] − η.
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The equilibrium notions in Definitions 9 and 10 are defined for complete informa-

tion environments, where the true type vector t is common knowledge to all players
in the game.

In settings of incomplete information, the types of all players are not commonly
known. Instead, each player has a probabilistic belief about the types of others.1
One common incomplete information environment is the assumption of a common

prior, where the types of each player are drawn (either jointly or i.i.d.) from a
distribution that is commonly known to all players. Each player then realizes her
own type and then performs a Bayesian update on her beliefs about the types of
other players.

Games of incomplete information with a common prior are also known as Bayesian

games, and have three informational stages. In the ex-ante stage, players only know
the prior distribution over types; in the interim stage, players know their own type
ti, and have performed a Bayesian update to form a posterior belief about the types
of others t−i; in the ex-post stage, players have learned the types of all other players
and any other previously unknown random quantities in the game.

The appropriate equilibrium notion for incomplete information environments is the
Bayes Nash equilibrium. A strategy profile σ is an η-Bayes Nash equilibrium if
all players are playing an η-best response in σ, where the expected utility maxi-
mization of the best response is now over both the randomness in σ and a player’s
interim beliefs about the types of other players.

Definition 11 (Bayes Nash equilibrium). A strategy profile σ forms an η-Bayes
Nash equilibrium if for every player i, for all ti ∈ T , and for all ai ∈ Ai,

Et−i , σ[ui (σ(t)) | ti] ≥ Et−i , σ[ui (ai,σ−i (t−i)) | ti] − η.

Another equilibrium notion for games of incomplete information is the ex-post Nash

equilibrium, which requires a strategy profile σ to form a Nash equilibrium for ev-
ery possible realization of types (i.e., all possible complete information games) that
could arise. This is a much stronger solution concept than Bayes Nash equilibrium,
and it does not require players to know a prior distribution over types.

Definition 12 (Ex-post Nash equilibrium). A strategy profile σ forms an η-ex-post
Nash equilibrium if for every type vector t ∈ T n, for every player i, and for all

1These beliefs are often modeled as being a part of the player’s type [57].
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ai ∈ Ai,

Eσ[ui (σ(t))] ≥ Eσ[ui (ai,σ−i (t−i))] − η.

An ex-post dominant strategy equilibrium can be defined analogously by requiring
σ to form a dominant strategy equilibrium for every possible vector of types.

Mechanism Design
The field of mechanism design studies the problem faced by a central designer with
the power to influence the behavior of players by changing their utility functions—
often through the use of payments that depend on a player’s action. Formally, the
designer must choose a mechanismM : An → R mapping the actions of players2
to some range R, which describes the outcome of the game and the utilities to all
players.

One example of a mechanism designer is an auctioneer who wishes to sell an item.
Players report their bids, and the auctioneer must decide who wins the item and at
what price, which in turn determines the utilities of all players. Another example is
a government deciding where to build a hospital. It can ask players where they live
and work, and then must decide where the hospital will be located. The designer
may additionally have his own objective function f : R → R that he wishes to
optimize when designing the mechanism: the auctioneer wants to maximize his
revenue, and the government wants to serve the most people with the hospital.

A direct revelation mechanism is of the formM : T n → R, where each player’s
action space is the type space of the game: Ai = T . It is without loss of generality
to consider only the design of direct relation mechanisms. To see this, consider a
mechanismM : An → R with an arbitrary action space. A designer implementing
the Revelation Principle could design a new mechanismM′ : T n → R that collects
type reports t, computes each player’s equilibrium strategy σi : T → Ai fromM
on her behalf, and selects the outcome M′(t) = M (σ(t)). This implementation
makes truthful reporting of types a Bayes Nash equilibrium [75]; see Section 3.3
for more details.

There are two primary properties that are desired of a mechanism. First, players
should be incentivized to truthfully report their type. We say that a mechanism is
incentive compatible if players can maximize their expected utility by truthfully

2The action spaces can still be unique to each player, but this is suppressed here for notional
ease.
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reporting their type. This property is also referred to as truthfulness. A mechanism
is individually rational if players have a strategy that guarantees them non-negative
utility. Without this property, players may prefer to not participate in the mechanism
at all.

Definition 13 (Incentive Compatible). A mechanism M is incentive compatible
(IC) if for every player i, for all ti ∈ T , and every possible misreport t′i ∈ T ,

EM, t−i [ui (t) | ti] ≥ EM, t−i [ui (t′i , t−i) | ti].

We say that a mechanism is strictly incentive compatible or strictly truthful if the
inequality in Definition 13 does not hold with equality for any t′i , ti. In a strictly
truthful mechanism, the unique maximum of a player’s expected utility is achieved
by reporting her true type ti.

Definition 13 requires truthful reporting to maximize expected utility only when
other players report truthfully as well. This can be phrased equivalently as requir-
ing that truthtelling forms a Bayes Nash equilibrium under M. For this reason,
Definition 13 is also known as Bayes Nash incentive compatibility (BNIC). An
alternative incentive compatibility condition is dominant strategy incentive com-

patibility (DSIC), which requires that truthful reporting maximizes expected utility
regardless of the type reports of other players, and thus that truthtelling forms a
dominant strategy equilibrium underM.

The second desirable property of a mechanism is that players are incentivized to
participate. A mechanism is individually rational if players have a strategy that
guarantees them non-negative utility. Without this property, players may prefer to
not participate in the mechanism at all.

Definition 14 (Individually Rational). A mechanismM is individually rational (IR)

if for every player i and all ti ∈ T , there exists a type report t′i ∈ T such that,

EM, t−i [ui (t′i , t−i) | ti] ≥ 0.

If a mechanism is both incentive compatible and individually rational, then the type
report t′i satisfying the individual rationality condition will be her true type ti.

Definition 14 is also known as interim individual rationality, because it assumes
player i knows her own type but does not know the types of other players. This is
the most commonly used individual rationality condition, because this is typically
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the information available to players when they choose their action or type report.
Other variants are ex-ante individual rationality, where player i does not know her
own type so the expectation of her utility is also taken over her own type, and ex

post individual rationality, which requires that players receive non-negative utility
for every possible vector of types t ∈ T n and for every realization ofM.

3.2 Differential Privacy as a Tool for Mechanism Design
In this section, we survey a body of work that uses differential privacy a tool in
mechanism design to achieve the game theoretic desiderata defined in Section 3.1.
We begin with an alternative interpretation of (ε,0)-differential privacy, phrased in
terms of utility functions. Although Definition 15 is syntactically different from the
original Definition 1, it is easily seen to be mathematically equivalent.3

Definition 15 (Differential Privacy, Alternative). A mechanism M : T n → R is

ε-differentially private if for every pair of neighboring type vectors t, t′ ∈ T n, and

for all utility functions u : R → R+,

Er∼M (t)[u(r)] ≤ exp(ε )Er∼M (t ′)[u(r)].

Definition 15 considers the change in every possible utility function from a uni-
lateral change in a single type report ti. It promises that a player’s utility cannot
change too much from her choice to report truthfully or lie, nor from her choice to
participate or opt-out of the mechanism. It also promises that if player i changes
her type report, then it won’t change player j’s utility by too much either.

McSherry and Talwar [73] were the first to observe that differential privacy implies
approximate truthfulness.

Proposition 3 ([73]). If a mechanismM is ε-differentially private for ε ≤ 1, then

M is also 2ε-dominant strategy incentive compatible.

The properties of differential privacy presented in Section 2.2, combined with the
truthfulness guarantee of Proposition 3, make differential privacy a desirable solu-
tion concept for games. Basic Composition (Theorem 1) implies that a composition
of k mechanisms that are each ε-differentially private will be 2kε-dominant strategy

3This equivalence only holds for δ = 0, and requires the utility function u to have strictly positive
output range.
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incentive compatible. Group privacy (Proposition 2) implies group strategyproof-

ness: even for coalitions of k agents who collude on their misreports, truthful re-
porting is still a 2kε-dominant strategy. The incentive properties of other truthful
mechanisms are generally not preserved under composition or collusion.

Despite these nice properties, differential privacy has one major drawback as a so-
lution concept in games: misreporting is also an approximate dominant strategy!
Differential privacy promises that a player’s utility will be insensitive to her own
report, so she could achieve approximately the same utility with any other non-
truthful report, which intuitively cannot incentivize truthful reporting.

Nissim, Smorodinsky, and Tennenholtz [79] proposed a solution by designing mech-
anisms where each player’s utility is a function of both the mechanism’s outcome
and the player’s reported type: ui : R × T → R+. Specifically, they considered
environments where players choose a reaction to the outcome — such as buying
a good at the price selected by the mechanism, or visiting one of several hospitals
with locations selected by the mechanism — and the mechanism designer has the
power to restrict reactions.

The Punishing Mechanism is a convex combination of the Exponential Mechanism
from Section 2.3 and the Commitment Mechanism, which is designed to enforce
strict truthfulness. The Commitment Mechanism first chooses an outcome r ∈ R

uniformly at random, and then requires that each player’s reaction is a best response
to the outcome, according to her reported type. For example, if the mechanism was
used to determine the price of a good, players would be forced to buy the good if
their reported value was above the chosen price, and would not be allowed to buy
the good otherwise.

Definition 16 (Punishing Mechanism [79]). The Punishing MechanismMP : T n →

R with parameter 0 ≤ q ≤ 1 runs the Exponential MechanismME with probability

1 − q and runs the Commitment Mechanism with complimentary probability q.

The Exponential Mechanism is known to achieve a high quality outcome (Theorem
6), but suffers from the weak truthfulness guarantees of differential privacy. The
Commitment Mechanism, on the other hand, is easily seen to be truthful, but is
likely to choose a low quality outcome. By randomizing between the two (with an
appropriate choice of q), the Punishing Mechanism enjoys both strict truthfulness
and a high quality outcome: truthfulness is enforced by the threat of the Commit-
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ment Mechanism, and quality of the outcome is preserved by choosing the Expo-
nential Mechanism most of the time (i.e., relatively large q).

The Punishing Mechanism is also differentially private because it is a composition
of two differentially private mechanisms: the Exponential Mechanism by Theorem
5, and the Commitment Mechanism because its choice of outcome is independent
of the input.

The following theorem summarizes the properties of the Punishing Mechanism,
when the quality score used in the Exponential Mechanism is the social welfare, or
total utility of all players, of each outcome on the input type reports.

Theorem 11 ([79]). 4 The Punishing Mechanism is ε-differentially private, strictly

truthful, and for sufficiently large n achieves social welfare at least

OPT−O *
,

√
log |R |

2εn
+
-
.

3.3 Joint Differential Privacy and Equilibrium Computation
In this section we show that joint differential privacy (Definition 2) provides an-
other avenue for strengthening the truthfulness guarantees of private mechanisms
in game-theoretic settings. Recall that joint differential privacy requires player i’s
input to have only a small effect on the output to other players, but still allows i’s
portion of the output to be arbitrarily sensitive in her own report. This allows the
mechanism designer more power to enforce truthfulness, while still preserving the
desirable properties of differentially private mechanisms, such as composition and
group strategyproofness.

Joint differential privacy can be brought to bear for implementing equilibrium be-
havior via a “mediated” direct revelation mechanism. A mediator M : (T ∪
{⊥})n → An collects type reports (or the null report ⊥) from all players, com-
putes an equilibrium of the reported (complete information) game, and suggests
back to each player an action corresponding to her part of the equilibrium. A me-
diator is weaker than the mechanisms of Section 3.1 and 3.2 because it does not
have the power to enforce actions or outcomes. Each player is free to opt-out of the
mediator (i.e., report ⊥), to misreport her type, or to deviate from the mediator’s
suggested action.

4For simplicity of presentation, this statement ignores some minor technical conditions on the
environment.
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In a mediated game, the designer would like players to truthfully report their type,
and then faithfully follow the suggested action of the mediator. We call this strategy
good behavior. The following theorem shows that if the mediator computes an
equilibrium under the constraint of differential privacy, then the suggested actions
are jointly differentially private (by the Billboard Lemma), and good behavior forms
an ex-post Nash equilibrium of the mediated game.

Theorem 12 ([87]). Let M : (T ∪ {⊥})n → An be a mediator satisfying (ε, δ)-
joint differential privacy, and on any input type vector t, with probability 1 − β

computes an α-pure strategy Nash equilibrium of the complete information game

defined by type vector t. Then the good behavior strategy profile forms an η-ex-post

Nash equilibrium of the mediated game for

η = α + 2(2ε + β + δ).

The intuition behind this result lies in the use of joint differential privacy, which
ensures that if player i changes her type report, then the joint actions suggested
to other players will remain approximately unchanged. Player i’s best response to
this action profile will be suggested by the mediator if she reports truthfully, but if
she misreports then she may receive an arbitrarily worse suggestion. Further, when
other players follow the good behavior strategy, then deviating from the mediator’s
suggestion is equivalent to deviating from a Nash equilibrium. Thus each player
can maximize her expected utility by truthfully reporting her type to the mediator
and faithfully following the suggested action.

Theorem 12 reduces the problem of truthful mechanism design to the problem of
jointly differentially private equilibrium computation. Kearns et al. [64] was the
first to show that this kind of reduction could be accomplished and gave an algo-
rithm to privately compute correlated equilibria5 in arbitrary large games, where
the effect of any single player’s action on the utility of others is diminishing with
the number of players in the game. The private computation of correlated equilib-
rium turns out to give the desired reduction to a direct revelation mechanism only
when the mediator has the power to verify types, i.e., players are not able to opt-
out or misreport. Rogers and Roth [87] relaxed this requirement of the mediator

5A correlated equilibrium is a generalization of Nash equilibrium, where a correlation device
— such as a mediator — sends a signal to each player sampled from a joint distribution, and each
player’s strategy is a best response conditioned upon the realization of her signal. A real-world
example is a traffic light; it signals green or red to each driver, and each driver’s best response is
to stop if they see red and go if they see green. A Nash equilibrium is a special case of correlated
equilibria, where the signal to each player is sampled independently.
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by giving a mechanism to privately compute Nash equilibria in a special subclass
of large games, namely unweighted congestion games. Cummings et al. [26] gen-
eralized the class of games in which we can privately compute Nash equilibria to
include all large aggregative games, and additionally allowed the mediator to select
a Nash equilibrium that optimizes any linear objective function, thereby solving the
equilibrium selection problem.

This line of work [64, 87, 26] provides a more robust version of the Revelation Prin-
ciple of Myerson [75], because it requires weaker informational assumptions, yet
provides a stronger solution concept. The Revelation Principle enables a mediator
to implement a Bayes Nash equilibrium and requires a prior on types, whereas joint
differential privacy allows the mediator to implement a Nash equilibrium without
the need of a prior. Additionally, since good behavior is an ex-post Nash equilib-
rium of the mediated game, players will be incentivized to follow this strategy even
when types are arbitrary or worst-case.

It is an open question whether it’s possible to extend the weak mediators of Rogers
and Roth [87] and Cummings et al. [26] to the class of all large games, as Kearns
et al. [64] did with strong mediators. As a step towards answering this question,
Cummings et al. [25] defined the coordination complexity of a game to be the max-
imum length message the mediator must communicate to players via the Billboard
Lemma in order to implement a high quality equilibrium. The authors show that any
game with low coordination complexity also has a jointly differentially private al-
gorithm for equilibrium computation — and the lower the coordination complexity,
the better the utility guarantee of the private algorithm. They use the Exponen-
tial Mechanism (Definition 6) to select from the mediator’s message space (i.e., all
messages of length at most the coordination complexity). Recall from Theorem 6
that the utility guarantee of the Exponential Mechanism has a logarithmic depen-
dence on the size of the output range R, so if the message space is small then the
mechanism will select a higher quality output. This result, combined with Theorem
12, further reduces the problem of truthful mechanism design to the problem of
upper bounding coordination complexity. If a class of games has low coordination
complexity, then the mediator can efficiently and privately find a message that will
allow players to coordinate on a high quality equilibrium, and good behavior will
be an ex-post Nash equilibrium of the mediated game.
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3.4 Modeling Costs for Privacy
A line of work on strategic data revelation and mechanism design for privacy-aware
agents, starting from Ghosh and Roth [47], uses differential privacy as a way to
quantify the privacy cost incurred by a player who participates in a mechanism. A
player’s privacy cost is assumed to be a function of the mechanism’s privacy param-
eter ε and her personal cost parameter ci ∈ R+, which determines her sensitivity to
a privacy violation. In particular, each player i has a privacy cost function fi (ci, ε )
that describes the cost she incurs when her data is used in an ε-differentially private
computation.

The game-theoretic interpretation of differential privacy in Definition 15 guarantees
that a player’s utility cannot change by more than a multiplicative exp(ε ) factor
from participating in an ε-differentially private mechanism. For ε < 1, this mul-
tiplicative factor can be approximated as ≈ 1 + ε , so a player can lose at most at
additive ε Er∼M[u(r)] in her utility from participating in the mechanism. Motivated
by this fact, Ghosh and Roth [47] used Assumption 1, and suggested an interpreta-
tion of ci as the player’s expected utility from the mechanism’s outcome.

Assumption 1 ([47]). The privacy cost function of each player i satisfies

fi (ci, ε ) = ciε .

Nissim, Orlandi, and Smorodinsky [78] subsequently relaxed Assumption 1 to an
inequality: fi (ci, ε ) ≤ ciε . The authors pointed out that although the privacy cost of
a player could be upper bounded by a linear function of ε , this linear function was
not justified as a lower bound.

Xiao [101] proposed that a player’s privacy cost should reflect the amount of infor-
mation leaked about her type through her participation in the mechanism. He mod-
eled a player’s privacy cost function as the mutual information between her type
and the outcome of the mechanism. Informally, the mutual information between
two random variables (formally defined in Chapter 5, Definition 24) measures the
reduction in uncertainty about the value of one variable after seeing the value of the
other.

Assumption 2 ([101]). The privacy cost function of each player i participating in

mechanismM is

fi (ci, ε ) = I (ti;M (σi (ti), t−i)) ,

where I(·; ·) is mutual information.
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This model of Xiao [101] achieves the intuitive goal of capturing how much a mech-
anism’s publicly observable output reveals about a player’s private input, but has the
slight drawback that it requires a prior distribution on types for the mutual informa-
tion to be well-defined. However, Nissim, Orlandi, and Smorodinsky [78] point
out a paradox arising from the fact that privacy costs in Assumption 2 are strategy
dependent, using the following Rye and Wholewheat Game.

Imagine a world with only two types of bread: Rye (R) and Wholewheat (W). A
player’s type t is her favorite type of bread, and the prior on types is uniform. A
mechanismM : {R,W } → R takes in a player’s reported type, and outputs a sand-
wich on her reported favorite bread. Now consider two strategies a player could
employ in this game, σtruth f ul and σrandom. With the former strategy, a player al-
ways reports her true sandwich preferences; with the latter, she randomizes equally
between the two possible type reports. Under Assumption 2, the privacy cost of us-
ing the truthful strategy is I

(
t;M (σtruth f ul (t))

)
= 1, and the privacy cost of using

the random strategy is I (t;M (σrandom(t))) = 0. However to an outside observer,
these strategies are indistinguishable, because he will see each type of sandwich
with probability 1/2.

Chen et al. [18] proposed that each player additionally has an outcome-dependent

privacy cost function gi that measures her loss for participating in a particular in-
stantiation of a differentially private mechanism. The authors assume (Assumption
3) that the value of gi is upper-bounded by a function that depends on the effect
that player i’s report has on the mechanism’s output. This assumption leverages the
functional relationship between player i’s data and the output of the mechanism.
For example, if a particular mechanism ignores the input from player i, then her
privacy cost should be 0 since her data is not used. Additionally, this model does
not require a prior distribution on types.

For a mechanismM : Dn → R, define gi (M,r,Di,D−i) to be the privacy cost to
player i for reporting Di ∈ D when all other players report D−i ∈ D

n−1 and the
output ofM is r ∈ R.

Assumption 3 ([18]). 6 For any mechanismM : Dn → R, for all players i, for all
6The assumption proposed in Chen et al. [18] allows privacy costs to be bounded by an arbi-

trary function of the log probability ratio that satisfies certain natural properties. We restrict to this
particular functional form for simplicity, following [48].
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outputs r ∈ R, and for all input databases D ∈ Dn,

gi (M,r,Di,D−i) ≤ ci ln
(

max
D′i ,D

′′
i ∈D

Pr[M (D′i ,D−i) = r]
Pr[M (D′′i ,D−i) = r]

)
.

Note that when a mechanism M is ε-differentially private, Assumption 3 implies
that gi (M,r,Di,D−i) ≤ ciε in the worst case, which returns to the model where
privacy costs are bounded above by a linear function of ε .

The following lemma shows that if we instead consider the expected value of gi, we
can achieve a tighter bound on privacy cost that is quadratic in ε . At a high level,
Lemma 2 says that a differentially private algorithm cannot achieve its worst-case
privacy leakage ε on all outputs, and the privacy leakage is more like ε2 on the
“average” output, sampled according to the mechanism’s distribution.

Lemma 2 ([35]). In settings that satisfy Assumption 3 and for mechanisms M :
Dn → R that are ε-differentially private for ε ≤ 1, then for all players i with data

Di, for all inputs of other players D−i, and for all possible misreports D′i by player

i,

Er∼M (D)[gi (M,r,Di,D−i)]−Er∼M (D′i ,D−i )[gi (M,r,D′i ,D−i)] ≤ 2ciε (eε−1) ≤ 4ciε
2.

To combine this framework with the utility model of, e.g., Ghosh and Roth [47],
Nissim, Orlandi, and Smorodinsky [78], and Xiao [101], we need only to interpret
fi (ci, ε ) = 1

4E[gi (M,r,Di,D−i)]. That is, f (ci, ε ) is player i’s expected cost for par-
ticipating in the mechanism (up to a scaling constant). This interpretation motivates
Assumption 4.

Assumption 4 ([18]). The privacy cost function of each player i satisfies

fi (ci, ε ) ≤ ciε
2.

The quadratic bound in Assumption 4 was introduced by Chen et al. [18], adopted
by Ghosh et al. [48] and Cummings, Ioannidis, and Ligett [22], and is used in
Chapter 6 of this thesis.
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C h a p t e r 4

THE INTERPRETABILITY OF PRIVACY-AWARE CHOICE
DATA

4.1 Introduction
In this chapter we study what an observer can learn about a consumer’s preferences
and behavior when the consumer has concerns for her privacy and knows that she
is being observed. The basic message of our results is that very little can be learned
without strong assumptions on the form of the consumer’s privacy preferences.

To motivate the problem under study, consider the following story. Alice makes
choices on the internet. She chooses which websites to visit, what books to buy,
which hotels to reserve, and which newspapers to read. She knows, however, that
she is being watched. An external agent, “Big Brother” (BB), monitors her choices.
BB could be a private firm like Google, or a government agency like the NSA. As a
result of being watched, Alice is concerned for her privacy; and this concern affects
her behavior.

Alice has definitive preferences over the things she chooses among. For example,
given three political blogs a, b, and c, she may prefer to follow a. But, BB will ob-
serve such a choice, and infer that she prefers a over b and c. This is uncomfortable
to Alice, because her preferences are shaped by her political views, and she does
not like BB to know her views or her preferences. As a result, she may be reluctant
to choose a. She may choose b instead because she is more comfortable with BB
believing that she ranks b over a and c.1

Now, the question becomes, given observations of Alice’s behavior, what can we
learn about her preferences? We might conjecture that her behavior must satisfy
some kind of rationality axiom, or that one could back out, or reverse-engineer,
her preferences from her behavior. After all, Alice is a fully rational consumer
(agent), meaning that she maximizes a utility function (or a transitive preference
relation). She has a well-defined preference over the objects of choice, meaning
that if she could fix what BB learns about her—if what BB learns about her were
independent from her choices—then she would choose her favorite object. Further,

1Like Alice, 85% of adult internet users have take steps to avoid surveillance by other people or
organizations, see Rainie et al. [86].
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Alice’s preferences over privacy likely satisfy particular structural properties. For
example, she has well-defined preferences over the objects of choice, and she cares
about the preference revealed by her choices: she always prefers revealing less
to revealing more. In economics, preferences of this form are called separable
and monotonic; and such preferences normally place strong restrictions on agents’
behavior.

However, contrary to the above discussion, the results in this paper prove that noth-
ing can be inferred about Alice’s preferences once we introduce the possibility that
she has concerns about privacy. No matter what her behavior, it is compatible with
some concerns over privacy, i.e., she always has an “alibi” that can explain her
choices as a consequence of privacy concerns. The strongest version of this result
is that all possible behaviors on the part of Alice are compatible with all possible

preferences that Alice may have over objects: postulate some arbitrary behavior
for Alice, and some arbitrary preference over objects, and the two will always be
compatible.

So BB’s objective is hopeless. He can never learn anything about Alice’s true pref-
erences over political blogs, or over any other objects of choice. If BB tries to es-
timate preferences from some given choices by Alice, he finds that all preferences
could be used to explain her choices. He cannot narrow down the set of preferences
Alice might have, no matter what the observed behavior. The result continues to
hold if BB adversarially sets up scenarios for Alice to choose from. That is, even
if BB offers Alice menus of choices so as to maximize what he can learn from her
behavior, the result is still that nothing can be learned.

The results in this paper have a variety of implications.

First, they motivate the use of specific parametric models of preferences over pri-
vacy. Our main result makes strong qualitative assumptions about preferences (sep-
arability, monotonicity). Given that such assumptions lack empirical bite, one
should arguably turn to stronger assumptions yet. The paper proposes an addi-
tive utility function that depends on the chosen object and on what is revealed by
the consumer’s choices. If Alice chooses x then she obtains a utility u(x) and
a “penalty” v(x, y) for not choosing y, for all non-chosen y, as she reveals to
BB that she ranks x over y. This additive model does have restrictions for the
consumer’s behavior, and could be estimated given data on Alice’s choices. The
model is methodologically close to models used in economics to explain individual
choices, and could be econometrically estimated using standard techniques. The



36

paper discusses a test for the additive model based on a linear program.

Second, while the paper’s main motivation is consumers’ behavior on the inter-
net, the results have implications for issues commonly discussed in behavioral eco-
nomics. Some behavioral “anomalies” could be the consequence of the presence
of an outside observer. For example (elaborating on a laboratory experiment by
Simonson and Tversky [93]), consider a consumer who is going to buy a technical
gadget, such as a phone or a camera. The consumer might prefer a simple camera
over a more complex one which they might not know how to operate; but when pre-
sented with a menu that has a simple, an intermediate and an advanced camera, they
might choose the intermediate one because they do not want to reveal to the world
that they do not know how to use a complex camera. Of course, the results show
that this line of reasoning may not be very useful, as anything can be explained in
this fashion. The results suggest, however, that a stronger parametric model may be
useful to explain various behavioral phenomena.

Third, the results explain why BB may want to be hide the fact that consumer
behavior is being observed. The NSA or Google seem to dislike openly discussing
that they are monitoring consumers’ online behavior. One could explain such a
desire to hide by political issues, or because the observers wish to maintain a certain
public image, but here we point to another reason. The observations simply become
ineffective when the consumer is aware that she is being observed.

Related Work
The growing attention to privacy concerns has led to a growing literature studying
privacy, see Heffetz and Ligett [59] for a survey. Within this literature, an important
question is how to model the preferences or utilities of privacy-aware agents in a
way that describes their behavior in strategic settings.

One approach toward this goal, surveyed in Section 3.4, is to use differential pri-
vacy in mechanism design as a way to quantify the privacy loss of an agent from
participating the mechanism. Within this literature, each of Ghosh and Roth [47],
Nissim, Orlandi, and Smorodinsky [78], and Xiao [101] assume that the utility of
a privacy-aware agent is her gain from the outcome of the interaction minus her
loss from privacy leakage. Note that this is a stronger condition than separability,
as defined in Section 4.3, and a weaker condition than additivity, as defined in Sec-
tion 4.3. In contrast, Chen et al. [18] and Nissim, Vadhan, and Xiao [80] make
the same separability assumption as used in this paper, but Chen et al. [18] allows
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for non-monotone privacy preferences and Nissim, Vadhan, and Xiao [80] uses a
relaxed version of monotonicity.

Perhaps the model closest to ours is Gradwohl [52], which also considers privacy-
aware agents with preferences over outcome-privacy pairs. However, the technical
quantification of privacy is different in the two models, as Gradwohl [52] consid-
ers multiple agents engaging in a single interaction instead of multiple choices by
a single agent as in our paper. Another related model is that of Gradwohl and
Smorodinsky [53], where a single privacy-aware agent must make decisions and
knows that her choices are being observed. The model differs from ours in that the
agent has a (cardinal) utility function over outcome-privacy pairs, rather than ordi-
nal preferences as in this paper. Further, Gradwohl and Smorodinsky [53] works in
a Bayesian setting — the observer maintains a distribution over types that the agent
may have, and performs a Bayesian update after each observed choice — whereas
our results are in a prior-free setting. In addition, the nature of the results in both
papers differ from ours. Gradwohl [52] studies implementation from a mechanism
design perspective, and Gradwohl and Smorodinsky [53] studies the existence and
uniqueness of equilibria between the agent and the observer. To contrast, we study
the testable implications of privacy-aware preferences through the lens of revealed
preference analysis.

Our paper is also related to the literature on psychological games. This line of
work was initiated by Geanakoplos, Pearce, and Stacchetti [45], and studies settings
where players have preferences over their opponents’ beliefs about their actions.
This makes for an interesting interaction between the endogenous actions taken by
players in a game, and each player’s beliefs over those actions. In our paper, in
contrast, there is a single agent making decisions (hence, we are not in a game
theoretic setup), and this agent cares about what an outside observer infers about
her preferences. The outside observer does not make decisions in our paper.

More broadly, there is a literature within economics that studies privacy in other
game theoretic models. For example, Daughety and Reinganum [29] study a sig-
naling model where an agent’s action may convey information about her type. In
their setting, the agent may have privacy concerns, and therefore cares about what
others learn about her type. Conitzer, Taylor, and Wagman [19] study a setting in
which consumers make repeat purchases from the same seller, and show that price
discrimination based on past purchase decisions can harm consumer welfare. In a
similar setting, Taylor [94] shows that when consumers are privacy-oblivious, they
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suffer losses in welfare, but privacy-aware consumers may even cause firms to lower
prices in equilibrium. Other studies on the relation between privacy and economics
are surveyed by Acquisti, Taylor, and Wagman [2].

Another related stream of work consists of empirical studies of people making
privacy-aware choices in practice. For example, Goldfarb and Tucker [50] exam-
ined the changing willingness of people to fill in personal data on income for market
research surveys. The authors concluded that the recent decrease in willingness can
be explained in part by an increased preference for privacy, and suggest that this
desire for privacy may result from the now ubiquitous practice of data-driven price
discrimination. In addition to pecuniary losses from price discrimination, simple
embarrassment may also cause agents to become privacy-aware. Indeed, Gold-
farb et al. [51] demonstrates empirically that people behave differently when their
choices are recorded by a human being, which the authors attribute to embarrass-
ment. These studies suggest that people do indeed have privacy-aware preferences,
and thus privacy concerns should be considered when analyzing empirical data.

4.2 Modeling Privacy Preferences
The goal of this paper is to study the testable implications of choice data in a con-
text where agents have privacy preferences. To this end, we adapt the standard
conceptualization of consumer choice theory in economics (see e.g. the textbook
treatments in Mas-Colell, Whinston, and Green [71] or Rubinstein [89]) to a sit-
uation where the consumer is aware of, and has preferences over, the information
revealed by her choices.

The Setting
We focus on a situation where there is an outside observer (he), such as Google or
the NSA, that is gathering data about the choices of a consumer (she) by observing
her choices. We assume that the consumer is presented with a set of alternatives A

and then makes a choice c(A), which the outside observer sees. The observer then
infers from this choice that c(A) is preferred to all other alternatives in A.

The above parallels the classical revealed preference theory framework; however
our model differs when it comes to the the behavior of the consumer, which we
model as privacy-aware. We assume that the consumer is aware of the existence of
an outside observer, and so she may care about what her choices reveal about her.
Specifically, her choices are motivated by two considerations. On the one hand,
she cares about the actual chosen alternative. On the other hand, she cares about
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what those choices reveal about her preferences over alternatives, i.e., her revealed
preferences. We capture this by assuming that the consumer has preferences over
pairs (x,B), where x is the chosen object and B is the information revealed about
the consumer’s preferences.

An important point about the setting is that the inferences made by the observer
do not recognize that the consumer is privacy aware. This assumption about the
observer being naive is literally imposed on the behavior of the observer, but it is

really an assumption about how the agent thinks that the observer makes inferences.

The agent thinks that the observer naively uses revealed preference theory to make
inferences about her preferences. The observer, however, could be as sophisticated
as any reader of this paper in how they learn about the agent’s preferences. The
upshot of our results is that such a sophisticated observer could not learn anything
about the agent’s behavior.

It is natural to go one step further and ask “What if the agent knows that the ob-
server knows that the agent is privacy-aware?” Or, “what if the agent knows that
the observer knows that the agent knows that the observer knows that the agent is
privacy-aware?” The problem naturally lends itself to a discussion of the role of
higher order beliefs. We formalize exactly this form of a cognitive hierarchy in
Section 4.4, and we discuss how our results generalize.

Preliminaries
Before introducing our model formally, there are a few preliminaries that are impor-
tant to discuss. Let B(X ) = 2X×X denote the set of all binary preference relations
on a set X and recall that a binary relation � is a weak order if it is complete (total)
and transitive. We say that x � y when x � y and it is not the case that y � x.
Finally, a linear order is a weak order such that if x , y then x � y or y � x.

We shall often interpret binary relations as graphs. For B ∈ B(X ), define a graph
by letting the vertex set of the graph be equal to X and the edge set be B. So, for
each element (x, y) ∈ B, we have a directed edge in the graph from x to y. We say
that a binary relation B is acyclic if there does not exist a directed path that both
originates and ends at x, for any x ∈ X . The following simple result, often called
Spilrajn’s Lemma, is useful.

Lemma 3. If B ⊆ B(X ) is acyclic, then there is a linear order � such that B ⊆�.
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The Model
Given the setting described above, our goal is to characterize the testable implica-
tions of choice data, and to understand how the testable implications change when
consumers are privacy-aware as opposed to privacy-oblivious. To formalize this we
denote a choice problem by a tuple (X,A,c) where X is a finite set of alternatives,
A a collection of nonempty subsets of X , and c : A → X such that c(A) ∈ A for
all A ∈ A.

In choice problem (X,A,c), the consumer makes choices for each A ∈ A according
to the function c. Further, given A ∈ A and x = c(A), the observer infers that the
consumer prefers x to any other alternative available in A. That is, he infers that
the binary comparisons (x, y) ∀ y ∈ A \ {x} are part of the consumer’s preferences
over X . Such inferences lie at the heart of revealed preference theory (see e.g. [97]
or [96]).

A privacy preference is a linear order � over X × 2X×X . A privacy preference ranks
objects of the form (x,B), where x ∈ X and B ∈ B(X ). If a consumer’s choices are
guided by a privacy preference, then she cares about two things: she cares about the
choice made (i.e. x) and about what her choices reveal about her preference (hence
B).

Our approach differs from the standard model in that the consumer has preferences
not only over objects, but also over the choice data. Other papers have broken from
the standard model to allow for preferences over menus (see, e.g., Dekel, Lipman,
and Rustichini [30] and Dekel, Lipman, and Rustichini [31]) or over beliefs (see
Geanakoplos, Pearce, and Stacchetti [45]).

Given the notions of a choice problem and privacy preferences defined above, we
can now formally define the notion of rationalizability that we consider in this paper.

Definition 17. A choice problem (X,A,c) is rationalizable (via privacy prefer-
ences) if there is a privacy preference � such that if x = c(A) and y ∈ A \ {x}

then

(x, {(x, z) : z ∈ A \ {x}}) � (y, {(y, z) : z ∈ A \ {y}}),

for all A ∈ A. In this case, we say that � rationalizes (X,A,c).

This definition requires that for every observation of an element x chosen from a set
A, and for every alternative y ∈ A that was available but not chosen, the consumer
prefers x paired with the inferences made from her choice of x, to the alternative
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y paired with the counterfactual inferences that would have been made if she had
chosen y instead. We shall sometimes use the notation Ax = {(x, z) : z ∈ A\ {x}} to
denote the set of binary comparisons inferred by the observer from the consumer’s
choice of x from set A.

Thus, a choice problem is rationalizable when there exists a privacy preference
that “explains” the data, i.e., when there exists a privacy preference for which the
observed choices are maximal.

4.3 The Rationalizability of Privacy-Aware Choice
In this section, we present our main results, which characterize when choice data
from privacy-aware consumers is rationalizable. Our results focus on the testable
implications of structural assumptions about the form of the privacy preferences of
the consumer. While a consumer’s preferences may, in general, be a complex com-
bination of preferences over the choices and revealed preferences, there are some
natural properties that one may expect to hold in many situations. In particular,
we focus on three increasingly strong structural assumptions in the following three
subsections: monotonicity, separability, and additivity.

Monotone Privacy Preferences
A natural assumption on privacy preferences is monotonicity, i.e., the idea that re-
vealing less information is always better. Monotonicity of privacy preferences is
a common assumption in the privacy literature, e.g., see Xiao [101] and Nissim,
Orlandi, and Smorodinsky [78], but of course one can imagine situations where it
may not hold, e.g., see Chen et al. [18] and Nissim, Vadhan, and Xiao [80].

In our context, we formalize monotone privacy preferences as follows.

Definition 18. A binary relation � over X ×2X×X is a monotone privacy preference
when

(i) � is a linear order, and

(ii) B ( B′ implies that (x,B) � (x,B′).

This definition formalizes the idea that revealing less information is better. In par-
ticular, if B ( B′, then fewer comparisons are being made in B than in B′, so (x,B)
reveals less information to the observer than (x,B′).
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Given the above definition, the question we address is “what are the empirical im-
plications of monotone privacy preferences?” That is, “Is monotonicity refutable
via choice data?” The following proposition highlights that monotonicity is not

refutable, so any choice data has a monotone privacy preference that explains it.

Proposition 4. Any choice problem is rationalizable via monotone privacy prefer-

ences.

Proof. We shall use the following notation:

Ax = {(x, y) : y ∈ A \ {x}}.

Define a binary relation E on X ×B(X ) as follows: (x,B) E (x′,B′) if either x = x′

and B ( B′, or x , x′ and there is A ∈ A with x = c(A), x′ ∈ A and B = AX

while B′ = Ax′. It will be useful for our proof to think of E as the edges of a
directed graph G = (V,E), where V = X × B(X ). The edges where x = x′ result
from the monotonicity requirement, and the edges where x , x′ result from the
requirement that observed choices be rationalized. For shorthand, we will call these
edges “monotone” and “rationalizing,” respectively. It should be clear that any
linear order that extends B (i.e any linear order � with E ⊆�) is a monotone privacy
preference that rationalizes (X,A,c). By Lemma 3, we are done if we show that
E is acyclic. To prove that E is acyclic, it is equivalent to show that the graph is
acyclic.

By the definition of E, for any pair (x,B) E (x′,B′), the cardinality of B must be
at most that of B′, and if x = x′ then the cardinality must be strictly smaller due to
monotonicity. Therefore, there can be no cycles containing monotone edges.

Thus any cycle must contain only rationalizing edges (x,B) E (x′,B′) with x , x′.
Each such edge arises from some A ∈ A for which B = AX while B′ = Ax′,
and for each such A there is a unique x ∈ A with x = c(A). If the graph were
to contain two consecutive rationalizing edges, it would contradict uniqueness of
choice. Therefore there cannot be any cycles in E. �

Proposition 4 provides a contrast to the context of classical revealed preference the-
ory, when consumers are privacy-oblivious. In particular, in the classical setting,
choice behavior that violates the strong axiom of revealed preferences (SARP) is
not rationalizable, and thus refutes the consumer choice model. However, when
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privacy-aware consumers are considered, such a refutation of monotonic prefer-
ences is impossible. Interestingly, this means that while one may believe that pref-
erences are non-monotonic, the form of data considered in this paper does not have
the power to refute monotonicity.2

Note that the question addressed by Proposition 4 is only whether the consumer’s
choice behavior is consistent with rational behavior, and is not about whether the
consumer’s underlying preferences over outcomes in X can be learned. In particu-
lar, these underlying preferences may not even be well defined for the general model
considered to this point. We address this issue in the next section after imposing
more structure on the privacy preferences.

Separable Privacy Preferences
That all choice behavior is rationalizable via monotone privacy preferences can be
attributed to the flexibility provided by such preferences. Here we turn to a signif-
icant restriction on the preferences one might use in rationalizing the consumer’s
behavior.

It is natural to postulate that the consumer would have some underlying, or intrinsic,
preferences over possible options when her choices are not observed. Indeed, the
observer is presumably trying to learn the agent’s preferences over objects. Such
preferences should be well defined: if outcome x is preferred to outcome y when
both are paired with the same privacy set B, then it is natural that x will always be
preferred to y when both are paired with the same privacy set B′, for all possible
B′. This property induces underlying preferences over items in X , as well as the
agent’s privacy-aware preferences.

We formalize the notion of separable privacy preferences as follows.

Definition 19. A binary relation � over X ×2X×X is a separable privacy preference
if it is a monotone privacy preference and additionally satisfies that for all x, y ∈ X

and B ∈ B(X ),

(x,B) � (y,B) =⇒ (x,B′) � (y,B′) ∀B′ ∈ B(X ).

That is, whenever (x,B) is preferred to (y,B) for some preference set B, then also
(x,B′) is preferred to (y,B′) for all other sets B′.

2This phenomenon is common in the consumer choice formulation of the revealed preference
problem, but it comes about for completely different reasons.
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Separable privacy preferences have an associated preference relation over X . If
� is a separable privacy preference, then define � |X as x � |X y if and only if
(x,B) % (y,B) for all B ∈ B(X ). Note that � |X is a linear order over X . We can
interpret � |X as the projection of � onto X .

There are two questions we seek to answer: “What are the empirical implications of
separability?” and “When can an observer learn the underlying choice preferences
of the consumer?” The following proposition addresses both of these questions.
Note that Proposition 5 follows from a more general result, Theorem 13, which is
presented in Section 4.4.

Proposition 5. Let (X,A,c) be a choice problem, and let � be any linear order

over X. Then there is a separable privacy preference �∗ that rationalizes (X,A,c)
such that the projection of �∗ onto X is well defined and coincides with �, i.e.,

�∗ |X =�.

Think of � as a conjecture that the observer has about the agent. Proposition 5
implies that no matter the nature of such a conjecture, and no matter what choice

behavior is observed, the two are compatible.

This proposition carries considerably more weight than Proposition 4. Separability
imposes much more structure than monotonicity alone and, further, Proposition 5
says much more than simply that separability has no testable implications, or that it
is not refutable via choice data. Proposition 5 highlights that the task of the observer
is hopeless in this case – regardless of the choice data, there are preferences over
revealed information that allow all possible choice observations to be explained.

That is, the choice data does not allow the observer to narrow his hypothesis about
the consumer preferences at all. This is because the consumer always has an alibi
available (in the form of preferences over revealed information) which can allow her
to make the observed data consistent with any preference ordering over choices.

In some sense, our result is consistent with the idea that secrecy is crucial for ob-
servers such as the NSA and Google. If the consumer is not aware of the fact that
she is being observed then the observer can learn a considerable amount from choice
data, while if the consumer is aware that she is being observed then the choice data
has little power (unless more structure is assumed than separability).

One way out of the negative conclusions from our result is to impose additional
structure on the consumer’s preferences. For example, one could require that the
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consumer cares more about correct inferences than about incorrect ones. We look
next at a specific family of privacy-aware utility functions with an additive structure,
that do have empirical content. These functions also lend themselves nicely to
imposing additional assumptions on the form of preferences (such as penalizing
correct inferences more than incorrect ones).

Additive Privacy Preferences
So far, we have seen that monotonicity and separability do not provide enough
structure to allow choice data to have testable implications or to allow the observer
to learn anything about consumer preferences over choices. This implies that fur-
ther structure must be imposed for choice data to have empirical power. To that end,
we now give an example of a model for privacy preferences where choice data does
have testable implications. The model we consider builds on the notion of separable
privacy preferences and additionally imposes additivity.

Definition 20. A binary relation � over X × 2X×X is an additive privacy preference
if there are functions u : X → R+ and v : X × X → R+ such that (x,B) � (x′,B′)
iff

u(x) −
∑

(z,z′)∈B

v(z, z′) > u(x′) −
∑

(z,z′)∈B′
v(z, z′).

While monotonicity and separability are general structural properties of privacy
preferences, the definition of additivity is much more concrete. It specifies a par-
ticular functional form, albeit a simple and natural one. In this definition, the con-
sumer experiences utility u(x) from the choice made and disutility v(x, y) from the
privacy loss of revealing that x � y for every pair (x, y) ∈ X × X . Note that this
form is an additive extension of the classical consumer choice model, which would
include only u and not v.

Moreover, this definition also satisfies both monotonicity and separability, making
it a strictly stronger restriction. Monotonicity is satisfied because the agent always
experiences a loss from each preference inferred by the observer. Namely, the range
of v is restricted to non-negative reals, so for a fixed choice element, the agent will
always prefer fewer inferences to be made about her preferences.3 Separability
is satisfied because utilities u determine the linear ordering over X , so for a fixed

3Monotonicity restricts to the case where people want to keep their preferences private. It may
be interesting to explore in future work, the case where people are happy to reveal their information,
e.g., conspicuous consumption. Under additive preferences, this would correspond to allowing the
range of v to be all of R.
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set of inferences made by the observer, privacy preferences will correspond to the
preferences determined by u.

Of course there are a number of variations of this form that could also make sense,
e.g., if the disutility from a revealed preference (x, y) was only counted once instead
of (possibly) multiple times due to multiple revelations in the choice data. This
would correspond to a consumer maximizing a “global” privacy loss rather than
optimizing online for each menu. However, this modeling choice requires the agent
to know ex ante the set A of menus from which she will choose, and additional
assumptions about the order in which the she faces these menus. For our analysis
we restrict to additive preferences as defined above.

Rationalizability of additive privacy preferences corresponds to the existence of
functions u and v, such that the observed choice behavior maximizes the consumer’s
utility under these functions. Here, it turns out the imposed structure on privacy
preferences is enough to allow the model to have testable implications, as shown in
the following proposition.

Proposition 6. There exists a choice problem (X,A,c) that is not rationalizable

with additive privacy preferences.

Proposition 6 highlights that, while monotonicity and separability cannot be refuted
with choice data, additivity can be refuted. To show this, we construct a simple
example of choice data that cannot be explained with any functions u and v.

Proof of Proposition 6. To construct an example that is not rationalizable via ad-
ditive privacy preferences, we begin by defining the set of alternatives as X =

{x, y, z,w} and the choice data as follows. It includes six observations: z = c({x, z}),
x = c({x, y, z}), w = c({w, z}), z = c({w, y, z}), x = c({x,w}), w = c({x, y,w}).

To see that this choice data is not rationalizable suppose, towards a contradiction,
that the pair (u,v) rationalizes c. Then z = c({x, z}) implies that

u(z) − v(z, x) > u(x) − v(x, z),

while x = c({x, y, z}) implies that

u(z) − v(z, x) − v(z, y) < u(x) − v(x, z) − v(x, y).

Therefore v(z, y) > v(x, y).
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Similarly, we can argue that w = c({w, z}) and z = c({w, y, z}) together imply
that v(w, y) > v(z, y), and x = c({x,w}) and w = c({x, y,w}) together imply that
v(x, y) > v(w, y). This gives us a contradiction and so proves that the choice data
is not rationalizable. �

Given that the structure imposed by additive privacy preferences is testable, the
next task is to characterize data sets that are consistent with (or refute) the additive
privacy preference model. The example given in the proof of Proposition 6 already
suggests an important feature of choice data that must hold for it to be rationaliz-
able.

Given a choice problem (X,A,c) and an element y ∈ X , define the binary relation
Ry by x Ry z if there is A ∈ A with z = c(A) and x = c(A ∪ {y}). Our next result
gives a test for additively rational preferences. It says that, if there are cycles in the
binary relation Ry, then the choice data cannot be rationalized by additive privacy
preferences.

Proposition 7. A choice problem can be rationalized by additive privacy prefer-

ences only if Ry is acyclic, for all y.

Proof. Let c be rationalizable by the additive privacy preferences characterized by
(u,v). For each x, z ∈ X such that x Ry z, then there is some A ∈ A such that
z = c(A) and x ∈ A, so

u(z) −
∑
t∈A

v(z, t) > u(x) −
∑
t∈A

v(x, t).

Similarly, x = c(A ∪ {y}) and z ∈ A ∪ {y}, so

u(z) −
∑
t∈A

v(z, t) − v(z, y) > u(x) −
∑
t∈A

v(x, t) − v(x, y).

For both inequalities to be true simultaneously, we need v(z, y) > v(x, y). Thus,

x Ry z =⇒ v(z, y) > v(x, y). (4.1)

Now assume there exists a cycle in binary relation Ry: a1 Ry a2 Ry · · · Ry ak Ry a1.
Then by Equation (4.1), it must be that v(a1, y) > v(a2, y) > · · · > v(ak , y) >

v(a1, y). In particular, v(a1, y) > v(a1, y) which is a contradiction. Then for choices
to be rationalized, acyclicity of Ry for all y ∈ X is a necessary condition. �
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Of course, one would like to develop a test for rationalizability that is both necessary
and sufficient. We do this next. Unfortunately, the test we develop takes super-
exponential time to even write down. This suggests that acyclicity of Ry, despite
being only a necessary condition, is likely a more practical condition to use when
testing for rationalizability.

To describe the test for rationalizability, first observe that when an object x is chosen
from a set, the observer infers that x (with its associated privacy) is preferred to y

(and its associated privacy), for all y ∈ A \ {x}. Since we have assumed these
preferences to have a specific functional form as in Definition 20, the observer can
also infer the corresponding inequality in terms of functions u and v. We initialize
a large matrix to record the inequalities that are inferred from choice behavior, and
ask if there exist values of u(x) and v(x, x′) for all x, x′ ∈ X for which all inferred
inequalities hold. If so, these values of u and v form additive privacy preferences
that rationalize choices. If not, then no such preferences exist and the observed
choice behavior is not rationalizable.

Remark 1. A choice problem (X,A,c) is rationalizable if and only if there exists

functions u : X → R+ and v : X × X → R+ satisfying the matrix inequality given

by Equation (4.4), below.

To explicitly state the matrix inequality, let us index the elements of X = {x1, . . . , xn}.
Then for each A ∈ A, the agent chooses some xi = c(A) ∈ A. By the definition of
additive preferences, every x j ∈ A for j , i was not chosen because

u(xi) −
∑

z∈A\{xi }

v(xi, z) > u(x j ) −
∑

z∈A\{x j }

v(x j , z).

Rearranging terms gives the following inequality:

u(xi) − u(x j ) +
∑

z∈A\{x j }

v(x j , z) −
∑

z∈A\{xi }

v(xi, z) > 0. (4.2)

To record all inequalities implied by observed choices, we instantiate a matrix T

with n2 columns, where the first n columns correspond to elements x1, . . . , xn ∈ X ,
and the remaining n2 − n columns correspond to ordered pairs (xi, x j ) of elements
in X , for i , j.1 T will have a row for each triple (A, xi, x j ), where A ∈ A, and
xi, x j ∈ A. If the agent is observed to choose xi = c(A), then Equation (4.2) must
be true for each x j ∈ A for j , i. To encode this inequality for each such x j , we fill
in the row corresponding to (A, xi, x j ) as follows: enter +1 in the ith column, −1 in
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the jth column, +1 in columns corresponding to pairs (x j , z) where z ∈ A, −1 in
columns corresponding to pairs (xi, z) where z ∈ A, and zeros elsewhere.

To complete the encoding, we also instantiate a vector ~u, which represents the val-
ues of u(·) and v(·, ·) evaluated on all elements of X . The first n entries of ~u will
contain variables for u(x1), . . . ,u(xn), and the remaining n2 − n entries will contain
variables for v(xi, x j ) for i , j, in the same order in which the pairs appear in the
columns of T .

Each row of the matrix product T~u would equal

u(xi) − u(x j ) +
∑

z∈A\{x j }

v(x j , z) −
∑

z∈A\{xi }

v(xi, z) (4.3)

for some set A ∈ A, observed choice xi = c(A), and not-chosen element x j ∈

A. Note that Equations (4.2) and (4.3) are identical, so the observed choices are
rationalizable if and only if there exists an assignment of the variables in ~u such
that each row of T~u is greater than zero. That is,

T~u > ~0. (4.4)

Any such ~u would specify functions u : X → R+ and v : X × X → R+ which cor-
respond to additive privacy preferences that are optimized by the observed choices.

4.4 Higher Order Privacy Preferences
The results we have discussed so far are predicated on the notion that the agent
thinks that the observer is naive. We shall now relax the assumption of naivete. We
are going to allow the agent to believe that the observer thinks that she is privacy
aware.

Going back to Alice, who is choosing among political blogs, suppose that she rea-
sons as follows. Alice may realize that her observed choices violate the strong
axiom of revealed preference and therefore cannot correspond to the choices of a
rational agent. This could tip off the observer to the fact that she is privacy aware.
We have seen that privacy awareness is a plausible explanation for violations of the
revealed preference axioms. So Alice could now be concerned about the observer’s
inference about her preferences over objects and over revealed preference. Perhaps
she thinks that the observer will infer that she is avoiding blog a because of what
it reveals about her, and that fact itself is something she does not wish be known.
After all, if Alice has a preference for privacy, perhaps she has something to hide.
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More generally, an agent may be concerned not only about what her behavior re-
veals about her preferences over X , but also about what her behavior reveals of her
preferences for privacy. She may then make choices to minimize inferences the ob-
server is able to make about her preferences for privacy, as well as her preferences
over X .

To provide a model that incorporates such issues, we define a hierarchy of higher
order preferences, called level-k preferences, where a level-k consumer is aware
that the observer may make inferences about her level-(k − 1) privacy preferences,
and has preferences over the information the observer can infer. In our construction,
level-0 corresponds to the classical privacy-oblivious setting, and the setting we
have considered to this point is that of a level-1 consumer (Sections 4.2 and 4.3).

The meaning of such levels should be clear. If Alice is concerned about facing an
observer who makes level k inferences, then her behavior will be dictated by the
level k +1 model. To emphasize a point we have made repeatedly, the real observer

may be as sophisticated as one wants, but Alice thinks that the observer thinks that
Alice thinks that the observer thinks that Alice thinks . . . that the observer makes
inferences based on revealed preferences.

Level-k Privacy Preferences
To formally define a “cognitive hierarchy” for privacy-aware consumers we use the
following sequence of sets, Y k for k ≥ 0. Y0 = X , Y1 = X × B(Y0), and let
Y k = X × B(Y k−1). A level-k privacy preference can then be defined as a binary
relation �k over Y k = X × B(Y k−1). That is, �k describes preferences over pairs
of objects x ∈ X and the set of level-(k − 1) preferences that are revealed from the
choice of x.

Given the results in Section 4.3, our focus is on monotone, separable privacy pref-
erences, and so we can extend the notion of monotonicity discussed in Section 4.3
to level-k privacy preferences as follows.

Definition 21. A monotone level-k privacy preference is a binary relation �k over

Y k = X × B(Y k−1) such that

1. �k is a linear order, and

2. B ( B′ implies that (x,B) � (x,B′), for all B,B′ ∈ B(Y k−1).

For this definition to hold for level-0, we define Y−1 to be the empty set.
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Similarly, we extend the notion of separability to level-k privacy preferences as
follows.

Definition 22. A separable level-k privacy preference is a binary relation �k over

Y k = X × B(Y k−1) such that it is monotone and additionally satisfies for any

B ∈ B(Y k−1),

(x,B) �k (y,B) =⇒ (x,B′) �k (y,B′) ∀B′ ∈ B(Y k−1).

Given the notion of level-k privacy preferences, we need to characterize how an
observer will make inferences from observed choices. Naturally, the exact infor-
mation inferred will depend on the level which the observer believes the privacy
preferences to be. For example, if the observer believes the consumer to have level-
0 preferences, the information inferred by the observer is the set

Ax = {(x, y) : y ∈ A \ {x}},

which is a binary relation over X . So Ax ∈ B(Y0). However, if the observer
believes the consumer to have level-1 preferences, the information inferred by the
observer is the set

{((x, Ax), (y, Ay)) : y ∈ A \ {x}} ∈ B(Y1).

More generally, to describe the observer’s inferences under the the belief that the
consumer is level-k, we introduce the following notation. Consider the functions
T k : A × X → B(Y k ), for k ≥ 0. Let

T0(A, x) = {(x, y) : y ∈ A \ {x}} ∈ B(Y0)

T1(A, x) =
{(

(x,T0(A, x)), (y,T0(A, y))
)

: y ∈ A \ {x}
}
∈ B(Y1)

...
...

T k (A, x) =
{(

(x,T k−1(A, x)), (y,T k−1(A, y))
)

: y ∈ A \ {x}
}
∈ B(Y k ).

In words, T k (A, x) are the level-k preferences (over alternatives in A and set of
level-(k − 1) preferences that will be inferred from each choice) that would cause
the agent to choose x from the set A. Then generally, a level-k agent making choice
x = c(A) must have T k (A, x) as a subset of her level-k preferences.
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Example: Level-2 Privacy Preferences

In order to illustrate the cognitive hierarchy more concretely it is useful to describe
the case of level-2 privacy preferences in detail. Recall that the level-0 privacy pref-
erences are the classical setting of privacy-oblivious consumers and level-1 privacy
preferences are the case we study in Sections 4.2 and 4.3. As we shall see, there is
a sense in which level-2 is all that is needed.

Continuing with the story about Alice, we remarked how she could come to ques-
tion her level-1 behavior because she should realize that there is something suspi-
cious about her choices violating the revealed preference axioms. As the result of
such a realization, she might entertain level-2 behavior. She might think that the
observer thinks that she is level-1. Now, there is no reason for her to go any further
because, in contrast with level-1, nothing could give her away.

While her violations of the revealed preference axioms indicate that she cannot be
level-0, given our Proposition 4, nothing about her behavior could contradict that
she is level-1. She has no reason to think that reasoning beyond level-2 will afford
her more privacy—we have already seen that nothing in her behavior that could
prove to the observer that she is not level-1.

More concretely, suppose that x is chosen from set A. The observer, who thinks the
consumer is at level-1, infers the level-1 preferences

(x, Ax) � (z, Az) ∀ z ∈ A \ {x},

or, more specifically, that her level-1 privacy preferences correspond to the binary
relation, ⋃

{[(x, Ax), (z, Az)] : z ∈ A \ {x}} . (4.5)

Now the agent who believes that the observer will make such an inference, will
only choose x when this choice together with inferences revealed by the choice is
better than the choice of another alternative in A with its accompanying inferences.
That is, she will choose x over y in A whenever the choices of x together with the
release of the information in Equation (4.5) is preferred to the choice of y together
with the information, ⋃ {

[(y, Ay), (z, Az)] : z ∈ A \ {y}
}
.

That is, if a level 2 agent chooses x from set A, she knows that observer will make
inferences according to Equation (4.5). Then her choice of x must maximize her



53

preferences over outcomes and these known inferences that will be made. Specifi-
cally, she will choose x if her level-2 preferences are, for all available y ∈ A,

(x,∪{[(x, Ax), (z, Az)] : z ∈ A \ {x}}) � (y,∪{[(y, Ay), (z, Az)] : z ∈ A \ {z}}).
(4.6)

Using the notation defined earlier in this section, we can re-write Equation (4.6) as
a binary relation,

[(x,T1(A, x)), (y,T1(A, y))].

Since the same can be said for every available alternative y ∈ A that was not chosen,
the following must be a part of the agent’s level-2 preferences

T2(A, x) =
{ [

(x,T1(A, x)), (y,T1(A, y))
]

: y ∈ A \ {x}
}

Note, however, that the observer does not get to infer T2(A, x). He believes the
agent to have level-1 preferences, and upon seeing x = c(A), he infers T1(A, x).
This is why the agent chooses x ∈ A to optimize her preferences over X and sets of
the form T1(A, ·).

The Rationalizability of Level-k Preferences
Given the notion of a privacy-aware cognitive hierarchy formalized by level-k pri-
vacy preferences, we are now ready to move on to the task of understanding the
empirical implications of higher order reasoning by privacy-aware consumers. To
do this, we must first adapt the notion of rationalizability to level-k reasoning. For
this, the natural generalization of Definition 17 to higher order reasoning is as fol-
lows. This definition reduces to Definition 17 when level-1 is considered, and to
the classical definition of rationalizable in the privacy-oblivious case when level-0
is considered.

Definition 23. A choice (X,A,c) is level-k rationalizable if there is a level-k pri-

vacy preference �k∈ B(Y k ) such that for all A ∈ A, T k (A,c(A)) ⊆�k .

Given this definition, we can now ask the same two questions we considered in
Section 4.3 about level-k privacy preferences: “What are the empirical implications
of level-k privacy preferences?” and “When can the observer learn the underlying
choice preferences of consumers?” Our main result is the following theorem, which
answers these questions.
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Theorem 13. Let (X,A,c) be a choice problem. Let k > 0 and � be any linear

order over X. Then there is a monotone, separable level-k privacy preference �∗

that level-k rationalizes (X,A,c) and such that:

x � y iff (x,B) �∗ (y,B) for all B ∈ B(Y k−1).

This result implies that the conclusions of Proposition 5 are not just an anomaly due
to restrictions on Alice’s reasoning. Theorem 13 says that for any level-k at which
Alice chooses to reason, Big Brother cannot test if she is behaving rationally, and
cannot learn anything about her preferences over X .

Another interpretation is that Alice always has an “alibi,” in terms of other prefer-
ence orderings over objects that are also consistent with her choices. In the case
where Big Brother deems one particular preference ordering to be the most desir-
able, Alice’s choices can never reveal that her preferences differ from Big Brother’s
desired ordering, for any level of reasoning that she may use.

Proof of Theorem 13. Let T k−1 : A × X → B(Y k−1) be as defined in Section 4.4.
For shorthand, write Y for Y k−1 and T for T k−1. Then T describes the set of level-
(k−1) preferences inferred by the observer as a result of the agent’s choice behavior.
That is, when the agent chooses x = c(A), the observer will infer all preferences in
the set T (A, x). Note that T is one-to-one and satisfies the following property: for
all A ∈ A and all x, x′ ∈ A,

|T (A, x) | = |T (A, x′) |. (4.7)

Property (4.7) follows because the number of pairs {((x,T (A, x)), (y,T (A, y))) :
y ∈ A \ {x}} is the same for any x ∈ A.

We now construct a binary relation E over X × B(Y). As in the proof of Proposi-
tion 4, it will be useful to think of E as the edges of a directed graph G = (V,E),
where V = X × B(Y). We create edges in E according to the desiderata of our
privacy-aware preferences: monotone, separable, and rationalizing choice behav-
ior. Define E as follows: (x,B) E (x′,B′) if either (1) x = x′ and B ( B′, (2)
B = B′ and x � x′ according to linear order �, or (3) x , x′ and there is A ∈ A

with x = c(A), x′ ∈ A and B = T (A, x) while B′ = T (A, x′). We will call these
edges types respectively “monotone,” “separable,” and “rationalizing,” as a refer-
ence to the property they are meant to impose. By Lemma 3, we are done if we
show that E is acyclic.
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Assume towards a contradiction that there is a cycle in this graph. Then there exists
a sequence j = 1, . . . ,K such that

(x1,B1) E (x2,B2) E · · · E (xK ,BK ) and (xK ,BK ) E (x1,B1).

For any monotone edge (xi,Bi) E (xi+1,Bi+1), it must be the case that |Bi | < |Bi+1 |

since Bi ⊂ Bi+1. If this were a separable edge, then Bi = Bi+1, so |Bi | = |Bi+1 |.
Similarly, for any rationalizing edge, |Bi | = |T (A, x) | = |T (A, x′) | = |Bi+1 |. Thus
as we traverse any path in this graph, the size of the second component is non-
increasing along all edges, and strictly decreasing along monotone edges. This
implies that there can be no cycles containing monotone edges, and our assumed
cycle must consist entirely of rationalizing and separable edges.

If there are two sequential rationalizing edges in this cycle, then there exists a j and
some A ∈ A such that

(x j ,T (A, x j )) E (x j+1,T (A, x j+1)) E (x j+2,T (A, x j+2)),

where x j , x j+1, x j+2 ∈ A. From the first edge, x j = c(A) in some observation, and
from the second edge, x j+1 = c(A) in another observation. If x j , x j+1 then c(A) =

x j , x j+1 = c(A) which contradicts the uniqueness of choice imposed by the linear
ordering. If x j = x j+1, then (x j ,T (A, x j )) = (x j+1,T (A, x j+1)), which implies that
an element of X ×B(Y) is strictly preferred to itself, which is a contradiction. Thus
no cycle can contain two sequential rationalizing edges.

If there are two sequential separable edges in our cycle, then there exists a j such
that

(x j ,B j ) E (x j+1,B j+1) E (x j+2,B j+2),

where B j = B j+1 = B j+2 and x j � x j+1 � x j+2. By transitivity, x j � x j+2, so there
must also be a separable edge in the graph (x j ,B j ) E (x j+2,B j+2). If the cycle we
have selected contains two sequential separable edges, then there must exist another
cycle that is identical to the original cycle, except with the two sequential separable
edges replaced by the single separable edge. Thus we can assume without loss of
generality that the cycle we have selected does not contain two sequential separable
edges. Note that the only time this is with some loss of generality is when there is
a cycle containing only separable edges. By assumption, � is a linear order over X

and must be acyclic, so this is not possible.
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Given the previous two observations, we can assume without loss of generality that
the cycle j = 1, . . . ,K contains alternating rationalizing and separable edges. This
includes the endpoints j = K and j = 1 since they too are connected by an edge.

If there is a path in the graph containing sequential rationalizing, separable, and
rationalizing edges, then there exists A, A′ ∈ A and a j such that

(x j ,T (A, x j )) E (x j+1,T (A, x j+1)) E (x j+2,T (A′, x j+2)) E (x j+3,T (A′, x j+3)),

where x j , x j+1 ∈ A, x j+2, x j+3 ∈ A′, and choices x j = c(A) and x j+2 = c(A′)
are observed. Since the middle edge is separable, it must be that T (A, x j+1) =

T (A′, x j+2), so x j+1 = x j+2 and A = A′. However, this means that (x j+1,T (A, x j+1))
is strictly preferred to itself, which is a contradiction, so no such path in the graph
can exist.

Since edges must alternate between rationalizing and separable, this leaves the only
possible cycles to be of length two, containing one rationalizing edge and one sepa-
rable edge. However, if such a cycle existed, then traversing the cycle twice would
yield a path containing sequential rationalizing, separable, and rationalizing edges,
which has been shown to not exist in this graph.

Thus we can conclude that E must be acyclic, which completes the proof. �

4.5 Concluding Remarks
We conclude by describing what our results mean for Alice’s story, and for future
research on privacy.

Alice makes choices knowing that she is being observed. She thinks that the ob-
server uses revealed preference theory to infer her preferences. She might think that
the observer is not sophisticated, and uses revealed preferences naively to infer her
preferences over objects. Alternatively, she might think that the observer is sophis-
ticated, and knows that she has preferences for privacy; in this case, the observer
tries to infer (again using revealed preferences) Alice’s preferences for objects and
privacy.

The story of Alice, however, is more “The Matrix” than “in Wonderland.” Alice
believes that she is one step ahead of the observer, and makes choices taking into
account what he learns about her from her choices. In reality, however, the observer
is us: the readers and writers of this paper.

We are trying to understand Alice’s behavior, and to infer what her preferences
over objects might be. The main result of our work is that such a task is hopeless.
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Any behavior by Alice is consistent with any preferences over objects one might
conjecture that she has (and this is true for any degree of sophistication that Alice
may have in her model of what the observer infers from her). Other observers on
the internet, such as Google or the NSA, would have to reach the same conclusion.

One way out is to impose additional structure on Alice’s preferences. The main re-
sult uses separability and monotonicity, which are strong assumptions in many other
environments, but that is not enough. We have suggested additive privacy prefer-
ences (Section 4.3) as a potentially useful model to follow. Additive preferences
do impose observable restrictions on choice, and its parameters could be learned
or estimated from choice data. Privacy researchers looking to model a utility for
privacy should consider the additive model as a promising candidate.

Another source of structure is the observer’s possible objectives. Our model is one
of intrinsic preferences for privacy; Alice has an innate, exogenous desire for pri-
vacy. One could instead imagine an instrumental preference for privacy, which
arises from Alice’s prediction of how the (adversarial) observer will use the in-
formation he collects about her preferences. By imposing assumptions on the ob-
server’s possible actions and objectives, one can restrict the universe of possible
privacy-aware preferences. If one does not impose any assumptions on the ob-
server’s future actions, one is back in the framework of our paper, even if privacy
concerns are instrumental.
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C h a p t e r 5

THE IMPACT OF PRIVACY POLICY IN EQUILIBRIUM
MODELS

5.1 Introduction
As advertising becomes increasingly targeted and data driven, there is growing con-
cern that the algorithms driving these personalization decisions can be discrimina-

tory. For example, Datta, Tschantz, and Datta [28] highlighted potential gender bias
in Google’s advertising targeting algorithms, giving evidence that male job seekers
were more likely to be shown ads for high paying jobs than female job seekers.
Similarly, the FTC has expressed concern that data mining of user online behavior,
which data brokers use to categorize users into categories such as “ethnic second-
city struggler” and “urban scrambler”, is used to selectively target users for high
interest loans [90].

One tempting response to such concerns is regulation: for example, we could man-
date the use of privacy technologies which would explicitly limit the amount of in-
formation advertisers could learn about users past behavior in a quantifiable way.1
If advertisers are only able to see differentially private signals about user behavior,
for example, then we can precisely quantify the amount of information that the ad-
vertiser’s signal contains about the actions of the user. As we increase the level of
privacy, we would naively expect to see several effects: first, the amount of infor-
mation that the advertiser learns about the user should decrease. Second, the utility
of the advertiser should decrease, since she is now less able to precisely target her
advertisements. Finally, if the user really was experiencing disutility from the way
that the advertiser had been targeting her ads, the user’s utility should increase.

These expectations are not necessarily well grounded, however, for the following
reason: in strategic settings, as the information content of the signal that the adver-
tiser receives changes, he will change the way he uses the information he receives
to target ads. Similarly, given the way that user behavior is used in ad targeting, a
sophisticated user may change her browsing behavior. Therefore it is not enough to
statically consider the effect of adding privacy technologies to a system, but instead

1An alternative approach to limiting the information that advertisers can collect is to explicitly
try to limit how they use that information to avoid unfairness. See Dwork et al. [38] for work in this
direction.
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we must consider the effect in equilibrium. Each privacy level defines a different
strategic interaction which results in different equilibrium behavior, and, a priori,
it is not clear what effect the privacy technology will have on the equilibrium out-
come.

In this paper, we consider a very simple two-stage model of advertising that may
be targeted based on past user behavior. The model has three rational agents: a
consumer, a seller, and an advertiser. The consumer has a value for the good being
sold by the seller, and also a type which determines which of several ads the ad-
vertiser benefits most from showing the consumer. The consumer’s value and type
are drawn from a joint distribution, and the two are correlated—hence, informa-
tion about the consumer’s value for the good being sold is relevant to the advertiser
when determining what ad to show her.

The game proceeds in two stages. In the first stage, the seller determines a price
to set for the good he is selling—then the consumer determines whether or not she
wishes to buy the good. In the second stage, the advertiser receives some signal
about the purchase decision of the consumer in the first round. The signal may be
noisy; the correlation of the signal with the consumer’s purchase decision reflects
the level of privacy imposed on the environment, and is quantified via differential
privacy. As a function of the signal, the advertiser performs a Bayesian update to
compute his posterior belief about the consumer’s type, and then decides which
ad to show the consumer. The consumer has a preference over which ad she is
shown—for example, one might be for a credit card with a lower interest rate, or
for a job with a higher salary. As such, the consumer does not necessarily act
myopically in the first round when deciding whether to purchase the seller’s good
or not, and instead takes into account the effect that her purchase decision will have
on the second round.

We characterize the equilibria of this model as a function of the level of differential
privacy provided by the signal the advertiser receives. We show that in this model,
several counter-intuitive phenomena can arise. For example, the following things
may occur in equilibrium as we increase the privacy level (i.e., decrease the correla-
tion between the user’s purchase decision and the signal received by the advertiser):

1. The signal received by the advertiser can actually contain more information
about the agent’s type, as measured by mutual information (Figure 5.3). Sim-
ilarly, the difference in the advertiser’s posterior belief about the true type of
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the agent after seeing the purchase/ did not purchase noisy bits can increase
(Figure 5.2). (Interestingly, this difference does not necessarily peak at the
same privacy level as the mutual information between the consumer’s type
and the advertiser’s signal).

2. Consumer utility can decrease, and advertiser utility can increase (Figure
5.4).

3. More generally, these quantities can behave in complicated ways as a function
of the privacy parameter ε : they are not necessarily monotone in ε , and can
even be discontinuous, and equilibrium multiplicity can vary with ε (Figure
5.2, 5.6, 5.7).

Our work also gives a precise way to derive the functional form of the value of

privacy for players (at least in our simple model), in contrast to a large prior litera-
ture surveyed in Section 3.4, that has debated the right way to impose exogenously
a functional form on player privacy cost functions [47, 101, 18, 80]. In contrast
to these assumed privacy cost functions, which increase as privacy guarantees are
weakened, we show that players can actually sometimes have a negative marginal
cost (i.e., a positive marginal utility) for weakening the privacy guarantees of a
mechanism.

In summary, we show that even in extremely simple models, privacy exhibits much
richer behavior in equilibrium compared to its static counterpart, and that decisions
about privacy regulation need to take this into account. Our results serve as a call-to-
arms — policy decisions about privacy technologies ought to consider equilibrium

effects, rather than just static effects, because otherwise it is possible that the intro-
duction of a new privacy technology or regulation could have exactly the opposite
effect as was intended.

Related Literature
It is well known that when the accuracy of a differentially private mechanism must
be traded off against the level of data owner participation, the “optimal” level of
privacy will in general be some intermediate level between zero and full privacy,
and that agents with “beneficial” types might prefer to reveal their type with fewer
privacy protections [61]. This is distinct from the phenomenon that we study in
this paper, in which, in equilibrium, the “value” of higher privacy levels can be
appropriated by a third party who has the ability to set prices.
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Blum et al. [8] study a sequential coordination game inspired by financial markets,
and show that when players play un-dominated strategies, the game can have sub-
stantially higher social welfare when players are given differentially private signals
of each other’s actions, as compared to when they are given no signal at all. Here,
like in other work, however, privacy is viewed as a constraint on the game (i.e. it
is added because of its own merits), and does not increase welfare compared to the
full information setting. Ghosh and Ligett [46] study a simple model of data pro-
curement in which user costs for privacy are a function of the number of other users
participating — and study the ability of a mechanism to procure data in equilibrium.
In Ghosh and Ligett [46], agents have explicitly encoded values for their privacy
loss. In contrast, in our model, agents do not care about privacy except insofar as
it affects the payoff-relevant outcomes of the game they are playing — differential
privacy in our setting is instead a parameter defining the game we analyze.

A small literature in economics and marketing has looked to understand the effect of
privacy in repeated sales settings. The earliest paper is by Taylor [94], who studies
a setting where buyers purchase from firm 1 in period 1 and firm 2 in period 2.
The author shows that counter-intuitively, strategic consumers may prefer that their
purchase decision be made public, while strategic sellers may prefer to commit to
keep purchase decisions private.

More recently, Conitzer, Taylor, and Wagman [19] consider a setting where a buyer
purchases twice from the same firm, and the firm cannot commit in period 1 to
the future price, and may condition on the consumer’s purchase decision. They
consider the effect of allowing the buyer to purchase privacy, i.e., “hide” his first
period purchase decision from the seller, and show that in equilibrium, having this
ability may make buyers worse off (and the firm better off) than in its absence.

We build on these papers by here modeling privacy as a continuous choice variable
in the spirit of differential privacy, rather than the discrete choice (purchase deci-
sion revealed or not) considered in previous papers. This allows us to analyze the
quantitative effect of privacy on welfare and profit as a continuous quantity, rather
than a binary effect, and in particular lets us show for the first time that increasing

privacy protections (i.e., decreasing the correlation between the advertiser’s signal
and the buyer’s action) can actually increase the information contained in the signal
about the buyer’s type.

Related in spirit is Calzolari and Pavan [11], who derive similar results in a gen-
eral contracting setting. However, their paper considers direct revelation mecha-
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nisms rather than a fixed, natural mechanism such as posted prices. Therefore, in
their setting, the transaction that the first principal actually conducts with the agent
is disjoint from the information she learns about the agent (i.e., the agent’s exact
type). In our setting, like the other works cited above, the first principal’s choice of
posted price jointly determines both what she learns about the agent’s type and the
transaction that occurs among them (if at all).

Finally, the present work is part of a larger literature that uses models of games
with incomplete information to understand how agents’ concerns about others’ be-
liefs about them may affect their behavior relative to the myopic optimal. Specific
relevant examples include repeated contracting with persistent private information
([43], [58], [92]) and signaling ([53]). Chen, Sheffet, and Vadhan [16] connect this
approach to the differential privacy literature by considering games in which players
are incentivized to act in ways that are differentially private in their own types.

5.2 Model and Preliminaries
We study a two period game with a single consumer and two firms. The first firm
has a single good to sell to the consumer and wishes to maximize its expected profit.
The second firm is an advertiser who wishes to show a targeted ad to the consumer.
We will also refer to the first firm as the seller, and the second firm as the advertiser.

1. In period 1, the consumer has a privately known value v ∈ [0,1] for the good,
drawn from a distribution with CDF F and density f . The seller posts a
take-it-or-leave-it price p for the good, and the consumer makes a purchase
decision. We assume that the seller’s price is not observed by the advertiser.

2. In period 2, the consumer can have one of two types, t1 and t2, where the prob-
ability of having each type depends on her value v from period 1. Specifically,
Pr(t1) = g(v) and Pr(t2) = 1 − g(v), for a known function g : [0,1]→ [0,1].
The advertiser may show the buyer one of two ads, A and B. He gets payoff

s1A and s2A respectively from showing ad A to a consumer of type t1 and t2,
and payoffs s1B and s2B from showing ad B to a consumer of type t1 and t2

respectively. The consumer gets additional utility δ from being shown ad A
over B.2

2Since the customer’s preferences in period 2 are independent of her type, it does not matter
whether she knows her period 2 type from the beginning or learns it at the start of period 2.
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Assumption 5. The following two assumptions are made regarding the distribution

of buyer’s value and type:

1. The distribution of the buyer’s value satisfies the non-decreasing hazard rate

assumption, i.e. f (v)
1−F (v) is non-decreasing in v.

2. The probability that a buyer of value v is of type t1, g(v), is non-decreasing

in v.

3. Buyers prefer ad A, i.e. δ > 0.

Regarding the payoffs to the advertiser, we assume that s1A > s1B and s2B > s2A.

The payoff assumption corresponds to the case where type t1 is the “high type”
and ad A is the “better” ad. For example, the ad could be for a credit card. The
advertiser can offer either a card with a low interest rate (ad A) or high interest
rate (ad B), and the consumer’s purchase history may reveal his creditworthiness.
The former distributional assumption is standard in mechanism design. The latter
assumption amounts to saying that high-value buyers are more likely to be the ones
the advertiser wants to target with the “good” ad.

The advertiser neither observes the consumer’s type, nor directly observes his pur-
chase decision. Following the consumer’s decision, the advertiser will learn (par-
tial) information about the consumer’s action in the first period. We write b to
denote the bit encoding the consumer’s decision in the first period — that is, b = 1
if the consumer purchased the good in period 1, and b = 0 otherwise. The adver-
tiser does not learn b exactly, but rather a noisy version b̂ that has been flipped with
probability 1 − q, for q ∈ [1/2,1]. The advertiser observes the noisy bit b̂ and then
performs a Bayesian update on his beliefs about the consumer’s type, and displays
the ad that maximizes his (posterior) expected payoff. The consumer knows that
her period 1 purchase decision will affect the ad she sees in period 2. She seeks to
maximize her total utility over both periods, and thus is not myopic.

The parameter q measures the correlation of the reported bit with the actual pur-
chase decision of the consumer, which can also be quantified via differential pri-
vacy. In our setting, it is easy to translate the parameter q into an ε-differential
privacy guarantee for the Period 1 purchase decision as follows:

q
1 − q

= eε ⇐⇒ q =
eε

1 + eε
.
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In the two extremal cases, full privacy (q = 1/2) corresponds to ε-differential pri-
vacy with ε = 0, and no privacy (q = 1) corresponds to ε-differential privacy with
ε = ∞. By varying q from 1/2 to 1, we will be able to measure changes to the
equilibrium outcomes for all possible privacy levels.

5.3 Equilibrium analysis
To begin, we observe that any equilibrium must be such that the consumer follows
a cutoff strategy in Period 1: there exists a marginal consumer with value v∗, such
that any consumer with value v ∈ [0,v∗) does not buy the good, and any consumer
with value v ∈ [v∗,1] does. We formally verify this in the Appendix (Proposition
14).

Period 2
The advertiser sees b̂, the noisy purchase decision bit, and performs a Bayesian
update on its prior over types. This allows us to define the advertiser’s posterior
given an observed b̂ = j, for j ∈ {0,1}. Recall that b̂ = b with probability q, and
b̂ = 1 − b with probability 1 − q.

Plugging in the probabilities for each j ∈ {0,1}, we see that the advertiser’s poste-
rior when he understands the consumer is following a threshold strategy with cutoff

v∗ is as follows:

r (b̂ = 1,v∗,q) =
(1 − q)

∫ v∗

0 g(v) f (v)dv + q
∫ 1
v∗
g(v) f (v)dv

(1 − q)F (v∗) + q(1 − F (v∗))
,

r (b̂ = 0,v∗,q) =
q
∫ v∗

0 g(v) f (v)dv + (1 − q)
∫ 1
v∗
g(v) f (v)dv

qF (v∗) + (1 − q)(1 − F (v∗))
.

Here r (b̂,v∗,q) is the advertiser’s posterior belief that the consumer is of type t1

after seeing the noisy bit b̂, given that v∗ is the marginal consumer in Period 1 and
given the noise level q.

The advertiser wishes to maximize his expected payoff, so his Bayesian optimal
decision rule will be to show ad A if and only if,

s1Ar (b̂,v∗,q) + s2A(1 − r (b̂,v∗,q)) > s1Br (b̂,v∗,q) + s2B (1 − r (b̂,v∗,q)).

That is, he will show ad A if it maximizes his expected payoff. Rearranging this in
terms of his posterior, he will show ad A if and only if,

r (b̂,v∗,q) >
s2B − s2A

s1A − s2A − s1B + s2B
:= η.
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We define this fraction to be η for shorthand. Notice that η does not depend on any
game parameters other than the advertiser’s payoff for each outcome, s1A, s2A, s1B,
and s2B. Further, by our assumptions on the ranking of these four (Assumption 5)
we have ensured that η ∈ [0,1].

The following lemma will be useful throughout. It says that fixing a cutoff strat-
egy v∗, the seller’s posterior on seeing a noisy “purchased” bit is increasing as the
amount of noise decreases (i.e. q increases), and similarly the seller’s posterior on
seeing a noisy “did not purchase” bit is decreasing.

Lemma 4. Fixing v∗, r (1,v∗,q) is increasing in q and r (0,v∗,q) is decreasing in q.

Proof. Define α1 =

∫ v∗

0 g(v) f (v)dv
F (v∗) , α2 =

∫ 1
v∗

g(v) f (v)dv
1−F (v∗) . Note that since g(·) is non-

decreasing, α1 ≤ α2. Therefore, r (1,v∗,q) can be written as:

r (1,v∗,q) =
(1 − q)F (v∗)α1 + q(1 − F (v∗))α2

(1 − q)F (v∗) + q(1 − F (v∗))
.

This is the convex combination of α1 and α2 with weights (1−q)F (v∗)
(1−q)F (v∗)+q(1−F (v∗)) and

q(1−F (v∗))
(1−q)F (v∗)+q(1−F (v∗)) respectively. Next, note that for q ∈ [1/2,1] the weight on
α2 is increasing in q, and the weight on α1 correspondingly decreasing. To see
this, differentiate the weight with respect to q and observe that it is always positive.
Therefore r (1,v∗,q) is increasing in q.

Finally, note that r (0,v∗,q) = r (1,v∗,1 − q), so the latter claim follows. �

The following proposition is an important property of the advertiser’s posterior, i.e.
that in any equilibrium, seeing a noisy “purchased” bit always results in a higher
assessment of type t1 than a noisy non-purchased bit.

Lemma 5. For any period 1 cutoff value v∗ and any noise level q, the advertiser’s

posterior probability of the consumer having type t1 given noisy bit b̂ = 1 is higher

than his posterior belief of type t1 given noisy bit b̂ = 0. Formally, for all v∗, q, it

holds that r (1,v∗,q) ≥ r (0,v∗,q).

Proof. The proposition follows from Lemma 4, the fact that r (0,v∗,q) = r (1,v∗,1−
q), and q ≥ 0.5. �

In light of this, there are only three different strategies that the advertiser could use
in equilibrium:
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1. Show ad A to a consumer with noisy bit b̂ = 1 and ad B to consumer with
noisy bit b̂ = 0. This is characterized by the following inequalities:

r (1,v∗,q) > η and r (0,v∗,q) < η (5.1)

2. Always shows ad A, regardless of the observed noisy bit b̂. This is optimal
for the advertiser when the parameters are such that:

r (1,v∗,q) > η and r (0,v∗,q) > η (5.2)

3. Always shows ad B, regardless of the observed noisy bit. This is optimal for
the advertiser when the parameters are such that:

r (1,v∗,q) < η and r (0,v∗,q) < η (5.3)

In the latter two cases, consumers will behave myopically in the first round because
their purchase decision doesn’t affect their payoff in the next round. The seller can
then maximize period 1 profits by posting the monopoly price for the distribution
F. Thus cases 2 and 3 can only occur when the posterior induced by the monopoly
price satisfies (5.2) or (5.3).

We call the equilibrium when the advertiser follows the first strategy a discrimina-

tory advertising equilibrium. The latter two are referred to as uniform advertising

equilibria A and B respectively

Define the myopic monopoly price as pM , i.e. pM solves:

pM −
1 − F (pM )

f (pM )
= 0. (5.4)

The following proposition discusses existence and properties of uniform advertising
equilibria.

Proposition 8. Fixing other parameters of the game:

1. For q = 1
2 there is either a uniform advertising equilibrium A or B, but never

both.

2. In the former case: uniform advertising equilibria A exist for all q ∈ [1
2 , q̄2],

where q̄2 is the largest solution to r (0,pM ,q) = η in [1
2 ,1], if any. Further,

there are no uniform advertising equilibria B for any q.
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3. In the latter, conversely, uniform advertising equilibria B exist for all q ∈

[1
2 , q̄3], where q̄3 is the largest solution to r (1,pM ,q) = η in [1

2 ,1], if any.

Further there are no uniform advertising equilibria A for any q.

Proof. At q = 1/2, the signal b̂ is complete noise, and the advertiser’s posterior on
types will be exactly his prior. This means that the advertiser must show the same ad
to all consumers, which corresponds exactly to a uniform advertising equilibrium
A or B, depending on whether his prior probability of type t1 is larger or smaller
than η. The corner case where the prior exactly equals η is ignored.

Note that r (1,pM ,
1
2 ) = r (0,pM ,

1
2 ), and both are either > η or < η. Further, by

Lemma 4,r (1,pM ,q) is increasing in q, while the r (0,pM ,q) is decreasing in q.

Therefore the system of equations (5.2) or (5.3) can only be satisfied on some inter-
val [1

2 , q̄j] if at all for v∗ = pM . �

To collect everything we have shown so far, there are three kinds of possible equi-
libria in this game:

1. Discriminatory Equilibrium: Advertiser shows ad A on seeing a noisy pur-
chase bit and ad B and seeing a noisy non-purchase bit. The cutoffs followed
by the consumer, v∗ is such that (5.1) is satisfied.

2. Uniform Advertising Equilibrium A: Advertiser always shows ad A, regard-
less of bit. In this case buyer purchases myopically, and seller charges the
myopic monopoly price pM . Further, r (·) evaluated at v∗ equaling the my-
opic monopoly price pM satisfies (5.2). This equilibrium exists for all q on
some interval [1

2 , q̄2], if at all.

3. Uniform Advertising Equilibrium B: Advertiser always shows ad B, regard-
less of bit. In this case buyer purchases myopically, and seller charges the
myopic monopoly price pM . Further, r (·) evaluated at v∗ equaling the my-
opic monopoly price pM satisfies (5.3). This equilibrium exists for all q on
some interval [1

2 , q̄3], if at all.

By observation, the two types of uniform advertising equilibria cannot coexist in
the same game.
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In a uniform advertising equilibrium, the period 1 behavior is straightforward. We
now finish the analysis by characterizing period 1 behavior under discriminatory
advertising equilibria.

Period 1 Behavior in Discriminatory Advertising Equilibria
In this kind of equilibrium the consumer is aware that her period 1 purchasing de-
cisions will affect the ad she sees in period 2. She will buy in period 1 if and only
if her surplus from purchasing at price p plus her continuation payoff from having
purchased (i.e. expected utility from the ad that will be shown) is greater than the
continuation payoff from not having purchased. Formally, a consumer with value v

will purchase in period 1 if the following holds:

(v − p) + qδ ≥ (1 − q)δ. (5.5)

For the marginal consumer with value v∗, this inequality must hold with equality.

v∗ = p + (1 − 2q)δ.

Define p1(q) to be the seller’s optimal price charged at noise level q. Further define
v∗(q) as the implied cutoff type at noise level q, i.e. v∗(q) = p1(q) + (1 − 2q)δ.
Note that both p1(q) and v∗(q) are continuous functions of q.

Lemma 6. Assuming a discriminatory advertising equilibrium exists for a neigh-

borhood of q ∈ [1
2 ,1], the optimal price p1(q) is increasing in q while the cutoff

type v∗(q) is decreasing.

Proof. From equation (5.5) above, if the seller charges a price of p in a discrimina-
tory advertising equilibrium, then the buyer purchases if her value exceeds p + (1−
2q)δ. Therefore the seller chooses p to maximize his net profit,

p(1 − F (p + (1 − 2q)δ)).

Differentiating with respect to p, the optimal price (p1(q)) in a discriminatory ad-
vertising equilibrium solves:

p1(q) − I (p1(q) + (1 − 2q)δ) = 0, (5.6)

where I (v) =
1−F (v)

f (v) . Applying the implicit function theorem, we see that

p′1(q) − I′(p1 + (1 − 2q)δ)(p′1(q) − 2δ) = 0.
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Therefore, since I′ is negative, it follows that p′1(·) must be positive. Further, we
have that p′1(q) − 2δ is negative, i.e. the cutoff value who buys at the optimal price
charged is decreasing in q. �

The following proposition says that whenever a discriminatory advertising equilib-
rium exists at a given q, the price is higher and more customers buy than in either
uniform advertising equilibrium.

Lemma 7. For any q ∈ [1/2,1], the period 1 price in a discriminatory advertising

equilibrium (if it exists), is higher than the monopoly price (i.e. the price charged

in a uniform advertising equilibrium), which is higher than the purchase cutoff

employed by a consumer in a discriminatory advertising equilibrium. Formally,

v∗(q) ≤ pM ≤ p1(q).

Proof. Note that at q = 1
2 , p1(q) = v∗(q) = pM . The result now follows since p′1(·)

is positive, while v∗′(·) is negative. �

Finally, to resolve existence, which follows easily from the definitions.

Observation 1. A discriminatory advertising equilibrium exists at all q such that

r (1,v∗(q),q) ≥ η and r (0,v∗(q),q) ≤ η.

Next, note that v∗(q) is a continuous function of q. Therefore, equilibria of type 1
may exist for possibly multiple disjoint intervals in ( 1

2 ,1].

5.4 Illustrations via an Example
In this section we highlight some of the counter-intuitive effects that result from
changing the level of differential privacy constraining the advertiser’s signal, by
means of an explicit family of simple examples. The phenomena we highlight are
quite general, and are generally not brittle to the choice of specific parameters in
the game. For simplicity of exposition, we highlight each of these phenomena in
the simplest example in which they arise. For the remainder of this section, we
take the distribution of buyer values, F, to be the uniform distribution on [0,1]. We
also set the buyer’s probability of having type t1 to be exactly his value — i.e. we
take g(v) = v for all v ∈ [0,1]. Finally, we set the additional utility that a buyer
gets from being shown ad A to be δ = 1. The value of parameter η (along with
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its defining parameters s1A, s1B, s2A, and s2B) will vary by example, and will be
specified when relevant.

The static monopoly price in this game is pM = 1/2, and the price and cutoff value
in a discriminatory equilibrium (if it exists at a given q) are

p1(q) =
1
2

+ (2q − 1)
δ

2
and v∗(q) =

1
2
− (2q − 1)

δ

2
.

Below we plot these values as a function of q. Note that in this particular exam-
ple, the discriminatory price and cutoff value are linear in q (because values are
distributed uniformly), although this need not be the case in general.

Figure 5.1: A plot of the monopoly price pM and the equilibrium discriminatory
price p1 and cutoff value v∗ as a function of q. In a uniform equilibrium, the cutoff

value is equal to the monopoly price because consumers behave myopically.

Figure 5.1 shows that as q increases, the discriminatory equilibrium price increases
and cutoff value (value of marginal consumer that purchases in period 1) decreases.
Relative to a uniform advertising equilibrium, more consumers purchase the good
in period 1, and at a higher price in a discriminatory equilibrium. Observe further
that at q = 1 (i.e. no privacy), all consumers purchase in period 1, regardless of
their value. This is because the value in period 2 of hiding information relevant
to their type exceeds the loss that they take by buying at a loss in period 1. Here,
when the consumers are offered no privacy protections, they in effect change their
behavior to guarantee their own privacy.

The existence and types of equilibria in this game depend on the advertiser’s pos-
terior, given that the prices and cutoff values above will arise in period 1. The
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advertiser’s posterior beliefs about the consumer’s type for each realization of b̂ are
given below for both the discriminatory and uniform advertising equilibria.

r (1,v∗(q),q) =
−2q3 + 5q2 − 3q + 1

4(q2 − q + 1
2 )

r (0,v∗(q),q) =
−2q3 + 5q2 − 3q

4(q2 − q)
=

3 − 2q
4

r (1,pM ,q) =
1 + 2q

4

r (0,pM ,q) =
3 − 2q

4

To illustrate the existence of various equilibria, we plot the advertiser’s possible
posterior beliefs below as a function of q.

Figure 5.2: On the left is a plot of the advertiser’s possible posteriors in both dis-
criminatory and uniform equilibria, given the corresponding prices and cutoff val-
ues of Period 1 and an observation of b̂. In this example, r (0,v∗(q),q) = r (0,pM ,q)
for all q. On the right, we show for η = 0.45 and η = 0.55 how these posteriors
correspond to different equilibrium types as q varies.

Note the following counter-intuitive fact: the advertiser’s posterior, having seen a
noisy “purchased” bit, i.e., b̂ = 1, in a discriminatory equilibrium is non-monotone
in the noise level q. Statically, if we were to increase the privacy level (i.e. decrease
q), we should always expect the advertiser’s posterior to be less informative about
the consumer’s type, but as we see here, in equilibrium, increasing the privacy
level can sometimes make the advertiser’s posterior more accurate. This can occur
because of the two competing implications of adding less noise (i.e. increasing
q): on the one hand, the observed bit b̂ is less noisy, and is thus a more accurate
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indicator of the consumer’s purchase decision in period 1. On the other hand, as q

increases, a larger fraction of consumers buy in period 1; the pool of consumers who
do purchase the item is “watered down” by low-valued consumers who are unlikely
to have type t1. This can be viewed as a larger fraction of consumers modifying
their behavior to guarantee their own privacy, as the privacy protections inherent in
the market are weakened. The dominating effect on the posterior depends on q and
the game parameters.

Similar non-monotonicities can never be observed when the advertiser sees b̂ = 0
in a discriminatory equilibrium because these two implications are no longer at
odds. As we reduce the amount of noise added, the noisy bit b̂ is still more likely
to be accurate. In addition, the maximum value v∗(q) of a consumer who did not
purchase is decreasing in q, ensuring that only the lowest valued (and thus the least
likely to have type t1) consumers do not purchase in period 1. These two effects
conspire to ensure that r (0,v∗(q),q) is monotonically decreasing in q.

Figure 5.2 can be also be used to illustrate to existence of equilibria in this family
of games. Specifying a value of η for the game determines the type of equilibria (if
any) that exist at each q, according to Conditions (5.1), (5.2), and (5.3). This can
be easily visualized using Figure 5.2.

Equilibria need not exist for all ranges of q: it is possible for none of Conditions
(5.1), (5.2), or (5.3) to be satisfied for a given η and q. However, in all games, there
is a uniform equilibrium at q = 1/2, where consumers behave myopically in period
1 and then no information is shared with the advertiser. Equilibria also need not be
unique for a given q; a discussion of equilibrium multiplicity is deferred to Section
5.5.

Next we show that in settings for which a discriminatory equilibrium exists for a
range of q, the mutual information between the noisy bit b̂ and the consumer’s type
can be non-monotone in q. In particular, as we increase the privacy protections of
the market (i.e. decrease q), we can sometimes end up increasing the amount of
information about the consumer’s type present in the advertiser’s signal! This is
for similar reasons to those that lead to non-monotonicity of the advertiser’s pos-
terior belief—as the market’s privacy protections decrease, consumers change their
behavior in order to guarantee their own privacy.

Mutual information (Definition 24) is a standard information theoretic measure
which quantifies the amount of information revealed about one random variable,
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by observing a realization of the other random variable. Here, we use it to quantify
how much the advertiser is able to learn about the consumer’s type from the noisy
signal b̂.

Definition 24 (Mutual Information). The mutual information between two discrete

random variables X and Y with joint probability distribution p(x, y) and marginal

probability distributions p(x) and p(y) respectively, is defined as,

I (X ;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
.

Figure 5.3 plots the mutual information between b̂ and the consumer’s type as a
function of q in a discriminatory equilibrium.3 Note that although both the ad-
vertiser’s posterior and the mutual information between the consumer’s purchase
decision and the signal exhibit similar non-monotonicities in q, they do not peak at
the same value of q!

Figure 5.3: A plot of the mutual information between b̂ and the consumer’s type in
a discriminatory equilibrium.

These phenomena together suggest that in the range of q in which the mutual in-
formation is decreasing, the advertiser might actually prefer that the market include
stronger privacy guarantees. Indeed, Figure 5.4 plots the advertiser’s utility in a dis-
criminatory equilibrium as a function of q, where s1A = s2B = 1 and s1B = s2A = 0.
This setting of parameters gives η = 1/2, where a discriminatory equilibrium exists
for all q.

3As illustrated by Figure 5.2, there are games for which a discriminatory equilibria exist for the
relevant range of q, e.g., when η = 1/2, a discriminatory equilibrium exists for all q ∈ [1/2,1].
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Figure 5.4: A plot of the advertiser’s utility in a discriminatory equilibrium, where
s1A = s2B = 1 and s1B = s2A = 0. These parameters correspond to η = 1/2, which
ensures that a discriminatory equilibrium exists for all q ∈ [1/2,1].

As predicted, the advertiser’s utility is non-monotone in q. However, the adver-
tiser’s utility is not maximized at the same value of q that maximizes the mutual
information. Thus, the advertiser’s interests are not necessarily aligned with the
goal of learning as much information about the consumer as possible — and are
certainly not incompatible with privacy technologies being introduced into the mar-
ket. Indeed, the ideal level of q for the advertiser is strictly on the interior of the
feasible set [1/2,1].

We would also like to understand how consumer surplus and profit vary with q.
These are confounded by the fact that for a fixed level of η, an equilibrium type
may or may not exist for a given q. To simplify the analysis to not account for this
existence problem, consider the following though experiment: for each equilibrium
type, and any q, pick η such that the appropriate one of Conditions (5.1), (5.2),
or (5.3) is satisfied. Fixing the advertiser’s equilibrium behavior, η only affects
the advertiser’s payoff, not the seller’s or buyer’s. Figure 5.5 plots the consumer’s
surplus and the seller’s profit as a function of q for each equilibrium type, under
this artificial thought experiment.

In a discriminatory equilibrium, the consumer surplus is decreasing in q, while the
seller’s profit is increasing in q. This suggests that the preferences of the consumer
and seller are misaligned: the consumer fares best with full privacy and the seller
prefers no privacy. As q increases, more consumers purchase the good at a higher
price in equilibrium. Unsurprisingly, consumer surplus and revenue are constant
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Figure 5.5: On the left is a plot of consumer surplus in all three equilibrium types.
On the right is a plot of the seller’s profit in both discriminatory and uniform equi-
libria. The seller’s profit in a uniform equilibrium doesn’t depend on the ad shown
in period 2.

across q in uniform advertising equilibria.

In addition to changes for a fixed equilibrium type, varying q can also change the
type of equilibria that exist in the game. Figure 5.2 showed that small changes in
q can cause new equilibria to spring into existence or disappear. Thus consumer
surplus, seller’s profit, and advertiser’s utility can jump discontinuously in q. We
illustrate this phenomenon with two examples: the first example illustrates changes
between a uniform advertising equilibrium B, a discriminatory equilibrium, and no
equilibrium. The second shows a change from a uniform advertising equilibrium A
to a discriminatory equilibrium.

For the first example, set s1A = .5, s2B = .6, and s1B = s2A = .05, which implies
η = .55. As illustrated in Figure 5.2, as we increase q from 1/2 to 1, there is
first a uniform advertising equilibrium B, then equilibria briefly cease to exist, then
discriminatory equilibria exist, and finally no equilibria exist for large q. Each
change of equilibrium existence results in discrete jumps in the consumer surplus,
profit, and advertiser utility. Figure 5.6 illustrates this below.

For the second example, set s1A = .6, s2B = .5, and s1B = s2A = .05, which
implies η = .45. In this game, as q increases from 1/2 to 1, the equilibrium type
changes discretely from a uniform advertising equilibrium A to a discriminatory
equilibrium, also illustrated in Figure 5.2. This change also causes discontinuities
in the consumer surplus, profit, and advertiser utility. Note here that a tiny decrease
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Figure 5.6: A plot of consumer surplus, profit, and advertiser utility in equilibrium
when s1A = .5, s2B = .6, and s1B = s2A = .05. Discontinuities correspond to
changes of the equilibrium type that exists, or an absence of equilibria altogether.

in the level of privacy (i.e. increase in q) can cause a precipitous drop in welfare.
Figure 5.7 illustrates this effect.

Figure 5.7: A plot of consumer surplus, profit, and advertiser utility in equilibrium
when s1A = .6, s2B = .5, and s1B = s2A = .05. Discontinuities correspond to
changes of the equilibrium type that exists.

5.5 Multiplicty of Equilibria and Other Results
In this section we build on the example of the previous section to provide some
formal results about equilibrium multiplicity, welfare, etc. as a function of the
promised level of privacy offered to the consumer. Proofs are deferred to the Ap-
pendix.
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Multiplicity
Proposition 9. A discriminatory equilibrium and a uniform advertising equilibrium

A can coexist in the same game for the same level of q.

Proposition 10. If a discriminatory equilibrium and a uniform advertising equilib-

rium A coexist at a given noise level q, then the buyer prefers the uniform equilib-

rium A to the discriminatory equilibrium, regardless of her value v. On the other

hand, the seller prefers the discriminatory equilibrium.

Proposition 10 is intuitive, so we omit a formal proof. To see the first claim, observe
that a buyer faces both a lower price in period 1 and sees a better ad in period 2,
so she is always better off in the uniform advertising equilibrium, regardless of her
value. To see the latter, observe that the discriminatory equilibrium allows the seller
to sell to more consumers (v∗(q) < pM) at a higher price (p1(q) > pM).

Takeaway Small changes in q can make uniform advertising equilibria cease to
exist, and can therefore have a discrete impact on welfare and revenue, as they cause
the equilibrium to shift discontinuously from uniform to discriminatory. At these
boundaries, the buyer may (strictly, discontinuously) prefer slightly less privacy
while the seller may (strictly, discontinuously) prefer more privacy!

Proposition 11. A discriminatory equilibrium and a uniform advertising equilib-

rium B can coexist in the same game for the same level of q.

Proposition 12. In any game where both a discriminatory equilibrium and a uni-

form advertising equilibrium B exist for the same value of q, average consumer

welfare is always higher under the discriminatory equilibrium, but individual con-

sumers may have different preferences for these two equilibria.

Takeaway In a game where a discriminatory equilibrium and uniform advertising
equilibrium B coexist, buyers prefer the discriminatory equilibrium. Since the uni-
form advertising equilibrium B exists for an interval of “low” q, a buyer therefore
may prefer less privacy!

Welfare Comparative Statics and Preferences over Levels of Privacy
Proposition 13. In settings where a discriminatory equilibrium exists for a range

of q, the equilibrium consumer surplus can be increasing in q.
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Takeaway The buyer’s preferences over different levels of privacy may be com-
plex, and her welfare is not necessarily monotonically increasing in her privacy as
is often assumed. Consumers may have negative marginal utility for increased pri-
vacy (i.e. a smaller value of q), and would prefer that their purchase decision be
revealed more accurately.

Observation 2. The seller prefers the largest q consistent with discriminatory equi-

librium — he gets a higher price and more demand. If a discriminatory equilibrium

ceases to exist at some interior q, the seller will at that point prefer that the market

provide more privacy.

Takeaway The seller prefers discriminatory equilibria over uniform advertising
equilibria, and the least privacy that is consistent with a discriminatory equilibrium
if given the choice over privacy levels.

Observation 3. For any level of noise q, the advertiser always prefers a discrimi-

natory equilibrium to a uniform equilibrium if both exist.

To see this, note that in any uniform equilibrium, the advertiser’s net utility is the
same as his ex-ante utility from showing that ad (since he ignores information from
period 1). Since he chooses to act on the information he gets in a discriminatory
equilibrium, his net utility must exceed the ex-ante utility of showing the same ad.

Takeaway The advertiser will always prefer levels of q consistent with discrimi-
natory equilibria. Among these, however, he may prefer strictly interior levels of q,
for example, as demonstrated by Figure 5.4 previously.

5.6 Concluding Remarks
A rich body of work on differential privacy has developed in the computer sci-
ence literature over the past decade. Broadly caricatured, this literature provides
algorithms for accurate data analyses (of various sorts), subject to guaranteeing ε-
differential privacy to individual entries in the dataset. Typically, ε can be set to be
any value (implicitly to be chosen by the entity that controls access to the dataset),
and mediates a trade-off between the strength of the privacy guarantee offered to the
data owners and the accuracy of the analysis promised to the user of the data. This
trade-off is typically viewed in simple terms: higher values of ε (i.e. less privacy)
are better for the analyst because they allow for higher accuracy, the reasoning goes,
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and worse for the privacy-desiring individual. Of course, if the dataset is already
gathered, this reasoning is correct.

In this paper, we add some caveats to this folk wisdom in a simple stylized model.
The dataset here consists of the individuals’ purchase decision of a good. The data
analyst in our model is an advertiser. Individuals do not care about the privacy of
their purchase decision for its own sake, but rather, care about privacy only insofar
as it affects how ads are targeted at them. A crucial point is that in our model, at
the time of choosing the privacy policy, these purchase decisions have not yet been
made. As a result, the price of the good, the purchase decision of the individual,
and the advertising policy of the advertiser all depend on the announced privacy
policy. Evaluations of the privacy preferences of seller, advertiser, and buyers must
take into account everyone’s equilibrium incentives. As we demonstrated, these can
be the opposite of the simple static trade-offs we are used to, and reasoning about
them correctly can be complex.

As the literature expands from (the already hard) questions of privately analyzing
existing datasets, to thinking of setting privacy policies that influence future user
behavior and the datasets that result from this behavior, the equilibrium approach
we espouse here will be important. We hope this paper serves as a call-to-arms to
reasoning about privacy policy in such settings, while also highlighting the difficul-
ties.

5.7 Appendix: Omitted Proofs
This appendix contains all proofs that were omitted in the body of the paper.

Proposition 14. All equilibria have the property that in period 1, there exists a

threshold value v∗ such that the consumer buys if and only if v > v∗.

Proof. Assume not. Then there exists v,v′ such that v′ < v, and in equilibrium
consumers with value v′ buy in period 1, while consumers with value v do not. We
consider the three possible equilibrium types, and show that each one leads to a
contradiction.

If this is a discriminatory equilibrium, then consumers with b̂ = 1 are shown ad
A, and consumers with b̂ = 0 are shown ad B. Then it must be the case that the
consumer’s utility satisfies:

u(v′,buy) ≥ u(v′,not buy) and u(v,not buy) ≥ u(v,buy).
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This implies:

u(v′,buy) + u(v,not buy) ≥ u(v′,not buy) + u(v,buy)

⇐⇒
[
v′ − p + qδ

]
+

[
(1 − q)δ

]
≥

[
(1 − q)δ

]
+

[
v − p + qδ

]
⇐⇒ v′ ≥ v

This is a contradiction because v > v′.

If this is a uniform advertising equilibrium A, then all consumers are shown ad A

and receive utility δ in period 2. It must be the case that:

u(v′,buy) ≥ u(v′,not buy)

⇐⇒ v′ − p + δ ≥ δ

⇐⇒ v′ ≥ p.

Also,

u(v,not buy) ≥ u(v,buy)

⇐⇒ δ ≥ v − p + δ

⇐⇒ p ≥ v.

These two facts above imply that v′ ≥ v, which is a contradiction since we have
assumed that v > v′.

If this is a uniform advertising equilibrium B, then all consumers are shown ad B

and receive zero utility in period 2.

u(v′,buy) ≥ u(v′,not buy) ⇐⇒ v′ ≥ p

u(v,not buy) ≥ u(v,buy) ⇐⇒ p ≥ v

Again, these facts imply v′ ≥ v, which is a contraction. �

Proposition 9 A discriminatory equilibrium and a uniform advertising equilib-

rium A can coexist in the same game for the same level of q.

Proof. Suppose the distribution F of buyers’ values is uniform on [0,1], and sup-
pose the distribution of period 2 types is such that g(v) is the step function that is
0 below 1−δ

2 and 1 at or above 1−δ
2 . We will show that in this game, both uniform

A and discriminating equilibria co-exist for a continuous range of q as well, and
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derive sufficient conditions on η, δ, for both to exist. Recall from Lemma 5 that it is
sufficient for a uniform advertising equilibrium A to exist if r (0,pM ,q) > η. Given
myopic behavior on the part of the consumers and the seller setting the monopoly
price in period 1, the advertiser’s posterior having seen noisy bit b̂ = 0 is as follows:

r (0,pM ,q) =
q
∫ 1/2

0 1v> 1−δ
2

dv + (1 − q)
∫ 1

1/2 dv

qF (1/2) + (1 − q)(1 − F (1/2))

=
q δ

2 + (1 − q) 1
2

q 1
2 + (1 − q) 1

2

=
q δ

2 + (1 − q) 1
2

1
2

= δq + (1 − q).

A uniform advertising equilibrium A will exist whenever r (0,pM ,q) > η, that is,
for any q ∈ [1/2,1] satisfying

δq + (1 − q) > η ⇐⇒ q <
1 − η
1 − δ

.

Thus a uniform advertising equilibrium A will exist for all q ∈ [1/2, 1−η
1−δ ]. Restrict-

ing η < 1+δ
2 and 0 < δ < 1 will ensure that 1−η

1−δ > 1/2 so this range is non-empty.

We now verify that there is a continuous range of q for which there also exists
a discriminatory equilibrium of this game. By equation (5.6), the discriminatory
equilibrium price p1(q) must satisfy p1(q) − I (p1(q) + (1 − 2q)δ) = 0, where
I (v) =

1−F (v)
f (v) . Plugging in the distribution F as U[0,1],

p1(q) − (1 − p1(q) − (1 − 2q)δ) = 0

⇐⇒ p1(q) =
1
2
− (1 − 2q)

δ

2
.

The Period 1 cutoff value is then

v∗(q) = p1(q) + (1 − 2q)δ =
1
2

+ (1 − 2q)
δ

2
.

There exists a discriminatory equilibrium at q ∈ [1/2,1] if both r (1,v∗(q),q) > η

and r (0,v∗(q),q) < η.
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We first compute the advertiser’s posterior r (1,v∗(q),q) and show that it is mono-
tone increasing in q.

r (1,v∗(q),q) =
(1 − q)

∫ v∗(q)
0 1v> 1−δ

2
dv + q

∫ 1
v∗(q) dv

qF (v∗(q)) + (1 − q)(1 − F (v∗(q)))

=
(1 − q)(v∗(q) − 1−δ

2 ) + q(1 − v∗(q))
(1 − q)v∗(q) + q(1 − v∗(q))

= 1 −
(1 − q) 1−δ

2

(1 − q)v∗(q) + q(1 − v∗(q))

= 1 −
1
2 (1 − q)(1 − δ)

q + (1 − 2q)[1
2 + (1 − 2q) δ2 ]

= 1 −
1
2 (1 − q)(1 − δ)

q + 1
2 (1 − 2q) + 1

2 (1 − 2q)2δ

= 1 −
1
2 (1 − q)(1 − δ)

1
2 [1 + (1 − 2q)2δ]

= 1 −
(1 − q)(1 − δ)
1 + (1 − 2q)2δ

We take the partial derivative of r (1,v∗(q),q) with respect to q.

∂r (1,v∗(q),q)
∂q

= −
(−1 + δ)[1 + (1 − 2q)2δ] − [−2δ(1 − 2q)(−2)q(1 − δ)]

[1 + (1 − 2q)2δ]2

=
(1 − δ)[1 + (1 − 2q)2δ + 4δ(2q − 1)q]

[1 + (1 − 2q)2δ]2

Due to our restrictions that δ ∈ (0,1) and q ∈ [1/2,1], this expression is strictly
positive, so r (1,v∗(q),q) is strictly increasing in q.

Next note that r (1,v∗(1/2),1/2) = 1 −
1
2 (1−δ)

1+0 = 1+δ
2 . Thus for η < 1+δ

2 , then
r (1,v∗(q),q) > η for any q ∈ [1/2,1]. Fortunately, this is the same condition on η
that was required for a uniform advertising equilibrium A to exist.
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We now compute the advertiser’s posterior r (0,v∗(q),q).

r (0,v∗(q),q) =
q
∫ v∗(q)

0 1v> 1−δ
2

dv + (1 − q)
∫ 1
v∗(q) dv

qF (v∗(q)) + (1 − q)(1 − F (v∗(q)))

=
q(v∗(q) − 1−δ

2 ) + (1 − q)(1 − v∗(q))
qv∗(q) + (1 − q)(1 − v∗(q))

= 1 −
q 1−δ

2

qv∗(q) + (1 − q)(1 − v∗(q))

= 1 −
1
2 q(1 − δ)

(1 − q) − (1 − 2q)[1
2 + (1 − 2q) δ2 ]

= 1 −
1
2 q(1 − δ)

(1 − q) − 1
2 (1 − 2q) − 1

2 (1 − 2q)2δ

= 1 −
1
2 q(1 − δ)

1
2 [1 − (1 − 2q)2δ]

= 1 −
q(1 − δ)

1 − (1 − 2q)2δ

For there to be a discriminatory equilibrium at q, it must be the case that

r (0,v∗(q),q) = 1 −
q(1 − δ)

1 − (1 − 2q)2δ
< η.

Although there is not a nice closed form description of the q ∈ [1/2,1] satisfying
this condition, we note that this expression is differentiable (and thus continuous),
everywhere except when

1 = (1 − 2q)2δ ⇐⇒ q =
1 ±

√
1
δ

2
.

From our restriction of δ < 1, this q will fall outside of our range of interest, and
this expression r (0,v∗(q),q) is differentiable on [1/2,1].

We now take the derivative of r (0,v∗(q),q) with respect to q, and see that it is
negative, so the function is monotone decreasing.

∂r (0,v∗(q),q)
∂q

= −
(1 − δ)[1 − (1 − 2q)2δ] − [−2δ(1 − 2q)(−2)q(1 − δ)]

[1 − (1 − 2q)2δ]2

We are only interested in the sign of this expression, and the denominator is clearly
positive, so we will proceed only with the numerator (without the negative sign in
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front of it).

(1 − δ)[1 − (1 − 2q)2δ − 4δ(1 − 2q)q] = (1 − δ)[1 − δ[(1 − 2q)2 + 4q(1 + 2q)]]

= (1 − δ)[1 − δ(1 − 2q)(1 + 2q)]

= (1 − δ)[1 − δ(1 − 4q2)]

= (1 − δ)2 + (1 − δ)4δq2

Since 0 < δ < 1, this expression is positive, so plugging it back into the orig-
inal expression (with a negative in front) means that ∂r (0,v∗(q),q)

∂q is negative, so
r (0,v∗(q),q) is a monotone decreasing function. Thus if r (0,v∗(q̄), q̄) = η for
some distinguished q̄, then r (0,v∗(q),q) < η for all q ∈ (q̄,1].

We complete the proof by showing that there exist values of η such that q̄ <
1−η
1−δ .

Thus both types of equilibria will exist for a non-empty range of q ∈ (q̄,max{ 1−η1−δ ,1}].

Note that r (0,v∗(1/2),1/2) = 1 −
1
2 (1−δ)

1−0 = 1+δ
2 , so from our restriction of η < 1+δ

2

and because r (0,v∗(q),q) is strictly decreasing q, we can always choose an η such
that r (0,v∗(q̄), q̄) = η for some q̄ ∈ (1/2,1].

Finally, we show that r (0,v∗(q),q) < r (0,pM ,q) for all q ∈ (1/2,1].

r (0,v∗(q),q) = 1 −
q(1 − δ)

1 − (1 − 2q)2δ

> 1 − q(1 − δ) because q ∈ (1/2,1] and δ ∈ [0,1]

= δq + (1 − q)

= r (0,pM ,q)

In particular, this holds at q̄, meaning that η = r (0,v∗(q̄), q̄) < r (0,pM , q̄), so a
uniform advertising equilibrium A exists as q̄, so q̄ < 1−η

1−δ .

To summarize, when 0 < δ < 1 and η < 1+δ
2 in this game, a uniform advertising

equilibrium A exists for q ∈ [1/2,max{ 1−η1−δ ,1}], and a discriminatory equilibrium
exists for q ∈ (q̄,1], and both of these ranges are non-empty. Further, these ranges
overlap and there is a non-empty set of q ∈ (q̄,max{ 1−η1−δ ,1}] where both equilibria
types coexist. �

Proposition 11 A discriminatory equilibrium and a uniform advertising equilib-

rium B can coexist in the same game for the same level of q.
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Proof. Consider the same example as in Proposition 9, where the distribution F of
buyers’ values is uniform on [0,1] and g(v) is 1 if v ≥ 1−δ

2 and 0 otherwise. Let
δ ∈ (0,1).

There will exist a uniform advertising equilibrium B in this game at q if and only
if r (1,pM ,q) < η, where pM = 1

2 . The advertiser’s posterior in this setting after
seeing b̂ = 1 is

r (1,pM ,q) =
(1 − q)

∫ 1/2
0 1v> 1−δ

2
dv + q

∫ 1
1/2 dv

qF (1/2) + (1 − q)(1 − F (1/2))

=
(1 − q) δ2 + q 1

2

q 1
2 + (1 − q) 1

2

=
(1 − q) δ2 + q 1

2
1
2

= (1 − q)δ + q.

A uniform advertising equilibrium B exists for all q satisfying

(1 − q)δ + q < η ⇐⇒ q <
η − δ

1 − δ
.

Restricting η > 1+δ
2 ensures that there is a non-empty interval of q ∈ [1/2,1]

satisfying this condition.

A discriminatory equilibrium exists for any q such that r (1,v∗(q),q) > η and
r (0,v∗(q),q) < η. Recall from the proof of Proposition 9 that the equilibrium price
is p1(q) = 1

2 − (1− 2q) δ2 and the equilibrium cutoff value is v∗(q) = 1
2 + (1− 2q) δ2 .

Also recall that r (0,v∗(q),q) = 1 − q(1−δ)
1−(1−2q)2δ

, and is monotone decreasing in q,

while r (1,v∗(q),q) = 1 − (1−q)(1−δ)
1+(1−2q)2δ

and is monotone increasing in q. Finally, re-
call that r (0,v∗(1/2),1/2) = r (1,v∗(1/2),1/2) = 1+δ

2 . From these facts and our
restriction that η > 1+δ

2 , the condition that r (0,v∗(q),q) < η will be satisfied for all
q ∈ [1/2,1].

What remains to be shown is that r (1,v∗(q),q) > η for some range of q overlapping
with [1/2,max{ η−δ1−δ ,1}]. We do this by proving that r (1,v∗(q),q) > r (1,pM ,q) for
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all q ∈ (1/2,1]. Assume not.

1 −
(1 − q)(1 − δ)
1 + (1 − 2q)2δ

< (1 − q)δ + q

(1 − 2q)2δ + (1 − q)δ + q
1 + (1 − 2q)2δ

< (1 − q)δ + q

(1 − 2q)2δ + (1 − q)δ + q < [(1 − q)δ + q][1 + (1 − 2q)2δ]

1 < (1 − q)δ + q

This is a contradiction because q ∈ [1/2,1] and δ ∈ (0,1), so it must be that
r (1,v∗(q),q) > r (1,pM ,q). In particular, fix any 1+δ

2 < η < 1, and let q̄ be the
value of q such that r (1,v∗(q̄), q̄) = η. Then η = r (1,v∗(q̄), q̄) > r (1,pM , q̄), so a
uniform advertising equilibrium B exists at q̄, so q̄ < η−δ

1−δ .

To summarize, when 0 < δ < 1 and 1+δ
2 < η < 1 in this game, both a uniform

advertising equilibrium B and a discriminatory equilibrium exist for a non-empty
range of q ∈ (q̄,max{ η−δ1−δ ,1}]. �

Proposition 12 In any game where both a discriminatory equilibrium and a uni-

form advertising equilibrium B exist for the same value of q, average consumer

welfare is always higher under the discriminatory equilibrium, but individual con-

sumers may have different preferences for these two equilibria.

Proof. In any uniform advertising equilibrium B, the myopic monopoly price is
charged, and by assumption, all consumers are shown the inferior ad. Therefore the
ex-ante consumer welfare is

∫ 1
pM

(v − pM ) f (v)dv.

At any q where a discriminatory equilibrium exists, the ex-ante consumer welfare
is: ∫ 1

v∗(q)
(v − p1(q)) f (v)dv + [q(1 − F (v∗(q))) + (1 − q)F (v∗(q))]δ

=

∫ 1

v∗(q)
[v − p1(q) − (1 − 2q)δ] f (v)dv + (1 − q)δ.

Note that the latter term is positive. Further, recall from Lemma 7, v∗(q) = p1(q) +

(1− 2q)δ, and that v∗(q) ≤ pM . Therefore
∫ 1
v∗(q) (v − p1(q) − (1− 2q)δ) ≥

∫ 1
pM

(v −
pM ) f (v)dv.

We will now see that if both a discriminatory equilibrium and a uniform advertising
equilibrium B exist, then consumers with values v ∈ [0,pM] will prefer the discrim-
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inatory equilibrium, while the preferences of consumers with values v ∈ [pM ,1]
depend on the game parameters δ and η, as well as the noise level q.

For consumers with values v ∈ [0,v∗(q)], they prefer the discriminatory equilibrium
because they still don’t purchase the good in period 1, but they have a chance at
the better ad in period 2. For consumers with values v ∈ [v∗(q),pM], under the
discriminatory equilibrium, they receive utility (v − p1(q)) + δq for buying the
good at price p1(q) and being shown the better ad with probability q. Under the
uniform advertising equilibrium B, they receive utility 0 for not buying in period 1,
and then being shown ad B with probability 1. For all consumers with value in this
range, the discriminatory equilibrium is preferred because

v − p1(q) + qδ > (1 − q)δ > 0,

where the first inequality is because the consumer maximized her utility by buying
in the discriminatory equilibrium, and the second inequality is because δ > 0 and
q < 1.

For consumers with values v ∈ [pM ,1], under the discriminatory equilibrium, they
receive utility v − p1(q) + δq for buying the good at price p1(q) and being shown
the better ad with probability q. Under the uniform advertising equilibrium B, they
receive utility v − pM for buying at price pM in period 1, and then being shown ad
B with probability 1. These consumers will prefer the discriminatory equilibrium
if and only if

v − p1(q) + δq > v − pM ⇐⇒ δq > p1(q) − pM .

Intuitively, the term δq captures the consumer’s bonus in period 2 from the possi-
bility of being shown the better ad. The term p1(q) − pM is the additional amount
the consumer must pay in period 1 to get the good. Then the consumer will prefer
discrimination whenever the increase in utility from seeing the better ad outweighs
the increased price she must pay in period 1. �

Proposition 13 In settings where a discriminatory equilibrium exists for a range

of q, the equilibrium consumer surplus can be increasing in q.

Proof. To simplify calculations, suppose again that valuations are distributed on the
entire positive real line. Next consider ex-ante equilibrium welfare of the buyer as



88

a function of q in the discriminatory equilibrium:∫ ∞

v∗(q)
(v − p1(q)) f (v)dv + qδ(1 − F (v∗(q))) + (1 − q)δF (v∗(q)).

Differentiating with respect to q and collecting terms, we have:

− f (v∗(q))v∗′(q)
(
v∗(q) − p1(q) − (1 − 2q)δ

)
+ δ(1 − 2F (v∗(q))) − p′1(q)(1 − F (v∗(q))).

Recall that by the definitions of v∗(q), we have:

v∗(q) − p1(q) − (1 − 2q)δ = 0

Therefore, the derivative of ex-ante welfare in a discriminatory equilibrium w.r.t. q

equals

δ(1 − 2F (v∗(q))) − p′1(q)(1 − F (v∗(q))).

Recall from the proof of Lemma 6 that we have:

p′1(q) − I′(p1 + (1 − 2q)δ)(p′1(q) − 2δ) = 0,

=⇒ p′1(q) = 2q
(

I′(p1 + (1 − 2q)δ)
I′(p1 + (1 − 2q)δ) − 1

)
.

Substituting in, the derivative of welfare w.r.t. q equals:

δ(1 − 2F (v∗(q))) − 2q
(

I′(p1 + (1 − 2q)δ)
I′(p1 + (1 − 2q)δ) − 1

)
(1 − F (v∗(q))).

Note that for I′ small (e.g. close to 0 like an exponential distribution that has con-
stant hazard rate), and F (v∗) < 1

2 , this is positive.

To specify one such game, let values be distributed according to an exponential
distribution with parameter λ. This distribution has I (v) = 1

λ and I′(v) = 0. Then
the derivative of welfare w.r.t q in this game is:

δ(1 − 2F (v∗(q))) = δ(1 − 2(1 − e−λv
∗(q))) = δ(−1 + 2e−λv

∗(q)).

This is positive whenever e−λv
∗(q) > 1

2 , or equivalently, whenever λv∗(q) < ln 2.
Since v∗(q) ∈ [0,1] for all q, any λ < ln 2 would suffice to ensure that consumer
surplus is increasing in q. �



Part III

Eliciting Data from Privacy-Aware
Agents

89



90

C h a p t e r 6

PRIVATE AND TRUTHFUL LINEAR REGRESSION

6.1 Introduction
Fitting a linear model is perhaps the most fundamental and basic learning task,
with diverse applications from statistics to experimental sciences like medicine and
sociology. In many settings, the data from which a model is to be learnt are not held
by the analyst performing the regression task, but must be elicited from individuals.
Such settings clearly include medical trials and census surveys, as well as mining
online behavioral data, a practice currently happening at a massive scale.

If data are held by self-interested individuals, it is not enough to simply run a
regression—the data holders may wish to influence the outcome of the computa-
tion, either because they could benefit directly from certain outcomes, or to mask
their input due to privacy concerns. In this case, it is necessary to model the utility
functions of the individuals and to design mechanisms that provide proper incen-
tives. Ideally, such mechanisms should still allow for accurate computation of the
underlying regression. A tradeoff then emerges between the accuracy of the com-
putation and the budget required to compensate participants.

In this chapter, we focus on the problem posed by data holders who are concerned
with their privacy. Our approach can easily be generalized to handle individuals
manipulating the computation’s outcome for other reasons, but for clarity we treat
only privacy concerns. We consider a population of players, each holding private
data, and an analyst who wishes to compute a linear model from their data. The
analyst must design a mechanism (a computation he will do and payments he will
give the players) that incentivizes the players to provide information that will allow
for accurate computation, while minimizing the payments the analyst must make.

We use a model of players’ costs for privacy based on the framework of differential
privacy introduced in Chapter 2, and the privacy cost models presented in Section
3.4. Incentivizing most players to truthfully report their data to the analyst con-
strains our design to mechanisms that are differentially private. This immediately
creates a number of challenges: to provide privacy, players must be rewarded based
on noisy aggregates of other players reports, rather than the actual reports; some
players may have such high costs for privacy that they cannot be incentivized to
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report truthfully; the incentive for all others to report truthfully must overcome the
impact of the non-participating players and the intentional introduction of noise for
privacy; and, the intentional introduction of noise degrades the accuracy of the fi-
nal computation. In addition, differentially private computation of a linear model
necessarily produces a biased estimation; existing approaches [48] to design mech-
anisms to elicit data from privacy-sensitive individuals do not generalize well to
biased estimators. Overcoming these challenges, through appropriate design of the
computation and payment scheme, is the main technical contribution of this chapter.

Our Results
We study the problem of eliciting data from privacy-aware individuals in the con-
text of linear regression. We present a mechanism (Algorithm 4), which, under
appropriate choice of parameters and fairly mild technical assumptions, satisfies
the following properties: it is (a) accurate (Theorem 18), i.e., computes an estima-
tor whose squared `2 distance to the true linear model goes to zero as the number
of players increases, (b) asymptotically truthful (Theorem 17), in that players have
no incentive to misreport their data, (c) individually rational (Theorem 19), as play-
ers receive positive utility and are incentivized to participate, and (d) it requires an
asymptotically small budget (Theorem 20), as total payments to players go to zero
as the number of players increases. Our technical assumptions are on how individ-
uals experience privacy losses and on the distribution from which these losses are
drawn. Accuracy of the computation is attained by establishing that the algorithm
provides differential privacy (Theorem 16), and that it provides payments such that
the vast majority of players are incentivized to participate and to report truthfully
(Theorems 17 and 19). An informal statement appears in Theorem 15.

The fact that our total budget decreases in the number of individuals in the popula-
tion is an effect of the approach we use to eliciting truthful participation, which is
based on the peer prediction technology and the model of agents’ costs for privacy
(both presented in Section 6.2). A similar effect was seen by Ghosh et al. [48]. As
they note, costs would no longer tend to zero if our model incorporated some fixed
cost for interacting with each individual.

Related Work
Starting with Ghosh and Roth [47], a series of papers have studied data acquisition
problems from agents that have privacy concerns. The vast majority of this work
[42, 69, 80, 24] operates in a model where players cannot lie about their data.
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Their only recourse is to withhold it or perhaps to lie about their costs for privacy.
A related thread [47, 78, 101, 18] explores cost models based on the notion of
differential privacy. This latter body of work is discussed in more detail in Section
3.4.

Our setting is closest to, and inspired by, Ghosh et al. [48], who bring the tech-
nology of peer prediction to bear on the problem of incentivizing truthful report-
ing in the presence of privacy concerns. The peer prediction approach of Miller,
Resnick, and Zeckhauser [74] incentivizes truthful reporting (in the absence of pri-
vacy constraints) by rewarding players for reporting information that is predictive
of the reports of other agents. This allows the analyst to leverage correlations be-
tween players’ information. Ghosh et al. [48] adapt the peer prediction approach to
overcome a number of challenges presented by privacy-sensitive individuals. The
mechanism and analysis of Ghosh et al. [48] was for the simplest possible statis-
tic: the sum of private binary types. In contrast, here we regress a linear model
over player data, a significantly more sophisticated learning task. In particular, to
attain accurate, privacy-preserving linear regression, we deal with biased private
estimators, which interferes with our ability to incentivize truth-telling, and hence
compute an accurate statistic.

Linear regression under strategic agents has been studied in a variety of different
contexts. Dekel, Fischer, and Procaccia [32] consider an analyst that regresses a
“consensus” model across data coming from multiple strategic agents; agents would
like the consensus value to minimize a loss over their own data, and they show that,
in this setting, empirical risk minimization is group strategyproof. A similar result,
albeit in a more restricted setting, is established by Perote and Perote-Pena [83].
Regressing a linear model over data from strategic agents that can only manipulate
their costs, but not their data, was studied by Horel, Ioannidis, and Muthukrishnan
[60] and Cai, Daskalakis, and Papadimitriou [10], while Ioannidis and Loiseau [63]
consider a setting without payments, in which agents receive a utility as a function
of estimation accuracy. We depart from the above approaches by considering agents
whose utilities depend on their loss of privacy, an aspect absent from the above
works.

Finally, we note a growing body of work on differentially private empirical risk
minimization. Our mechanism is based on the outcome perturbation algorithm of
Chaudhuri, Monteleoni, and Sarwate [14]. Other algorithms from this literature—
such as the localization algorithm of Bassily, Smith, and Thakurta [4] or objective
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perturbation of Chaudhuri, Monteleoni, and Sarwate [14]—could be used instead,
and would likely yield even better accuracy guarantees. We chose the output per-
turbation mechanism because it provides an explicit characterization of the noise
added to preserve privacy, which allows the analysis to better highlight the chal-
lenges of incorporating privacy into our setting.

6.2 Model and Preliminaries
In this section we present our model and technical preliminaries on regression, peer
prediction, and the analyst’s mechanism design objectives.

A Regression Setting
We consider a population where each player i ∈ [n] ≡ {1, . . . ,n} is endowed data
consisting of a vector xi ∈ R

d (i.e., player i’s features) and a variable yi ∈ R (i.e.,
her response variable). We assume that responses are linearly related to the features.
That is, there exists a θ ∈ Rd such that

yi = θ>xi + zi, for all i ∈ [n], (6.1)

where zi are zero-mean noise variables.

An analyst wishes to infer a linear model from the players’ data; that is, he wishes
to estimate θ, e.g., by performing linear regression on the players’ data. However,
players incur a privacy cost from revelation of their data and need to be properly
incentivized to truthfully reveal it to the analyst. More specifically, we assume, as
in Ioannidis and Loiseau [63], that player i can manipulate her responses yi but not
her features xi. This is indeed the case when features are measured directly by the
analyst (e.g., are observed during a physical examination or are measured in a lab)
or are verifiable (e.g., features are extracted from a player’s medical record or are
listed on her ID). A player may misreport her response yi, on the other hand, which
is unverifiable; this would be the case if, e.g., yi is the answer the player gives to a
survey question about her preferences or habits.

We assume that players are strategic and may lie either to increase the payment they
extract from the analyst or to mitigate any privacy violation they incur from the dis-
closure of their data. To address such strategic behavior, the analyst will design a
mechanismM : (Rd × R)n → Rd × Rn

+ that takes as input all player data (namely,
the features xi and possibly perturbed responses ŷi of all players), and outputs an
estimate θ̂ and a set of non-negative payments {πi}i∈[n] to the players. Informally,
we seek mechanisms that allow for accurate estimation of θ while requiring only
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asymptotically small budget. In order to ensure accurate estimation of θ, we will
require that our mechanism incentivizes truthful participation on the part of most
players, which in turn will require that we provide an appropriate privacy guaran-

tee. We ensure privacy by requiring the analyst to use a mechanism that satisfies
differential privacy, as defined in Chapter 2. Clearly, all of the above also depend on
the players’ rational behavior and, in particular, their utilities; we formally present
our model of player utilities in the next subsection.

Throughout our analysis, we assume that θ is drawn independently from a known
distribution F , the attribute vectors xi are drawn independently from the uniform
distribution on the d-dimensional unit ball,1 and the noise terms zi are drawn inde-
pendently from a known distribution G. Thus θ, {xi}i∈[n], and {zi}i∈[n] are indepen-
dent random variables, while responses {yi}i∈[n] are determined according to (6.1).
As a result, responses are conditionally independent given θ.

We require some additional bounded support assumptions on these distributions.
In short, these boundedness assumptions are needed to ensure the sensitivity of
mechanismM is finite; it is also natural in practice that both features and responses
take values in a bounded domain. More precisely, we assume that the distribution
F has bounded support, such that ‖θ‖22 ≤ B for some constant B; we also require
the noise distribution G to have mean zero, finite variance σ2, and bounded support:
supp(G) = [−M,M] for some constant M . These assumptions together imply that
��θ>xi�� ≤ B and |yi | ≤ B + M .

Mechanism Design Objectives: Privacy and Utility
The analyst must design a mechanismM : (Rd × R)n → Rd × Rn

+ that receives as
input (xi, ŷi) from each player i, and outputs an estimate θ̂ ∈ Rd and a non-negative
payment πi to each player. We seek mechanisms that satisfy the following proper-
ties: (a) truthful reporting is a Bayes Nash equilibrium, (b) players are ensured non-
negative utilities from truthful reporting, (c) the estimator computed under truthful
reporting is highly accurate, (d) the budget required from the analyst to run the
mechanism is small, and (e) the mechanism is jointly differentially private.

To satisfy the first two conditions, we requireM to be Bayes Nash incentive com-

patible (Definition 13) and interim individually rational (Definition 14), both de-
fined formally in Section 3.1. Our accuracy notion is the mean squared error (with

1See Theorem 14 and its accompanying Remark for a discussion of generalizing beyond the
uniform distribution.
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respect to the `2 norm) between the estimate θ̂ and the true parameter θ.

Definition 25 (Accuracy). A regression is η-accurate if for all realizable parameters

θ, it outputs an estimate θ̂ such that E
[
‖θ̂ − θ‖22

]
≤ η.

We will also be concerned with the total amount spent by the analyst in the mech-
anism. The budget B of a mechanism is the sum of all payments made to players.
That is, B =

∑
i πi.

Definition 26 (Asymptotically small budget). An asymptotically small budget is

such that B =
∑n

i=1 πi (X, y) = o(1), for all realizable (X, y).

In our setting, joint differential privacy is the appropriate privacy notion because it
makes sense to assume that the payment to a player is in some sense “private,” in
that it is shared neither publicly nor with other players. To that end, we assume
that the estimate θ̂ computed by the mechanismM is a publicly observable output;
in contrast, each payment πi is observable only by player i. Hence, from the per-
spective of each player i, the mechanism output that is publicly released and that,
in turn, might violate her privacy, is (θ̂, π−i), where π−i comprises all payments ex-
cluding player i’s payment. The analyst will design a mechanismM that computes
θ̂ under the constraint of differential privacy. The payment πi to each player will
be computed as function of only their input (xi, ŷi), and by the Billboard Lemma
(Lemma 1), the mechanismM will be jointly differentially private.

The use of joint differential privacy is natural, but it is also necessary to incentivize
truthfulness. Requiring that a player’s payment πi be ε-differentially private implies
that a player’s unilateral deviation changes the distribution of her payment only
slightly. As discussed in Sections 3.2 and 3.3, under full differential privacy, a
player’s payment would remain roughly the same no matter what she reports, which
cannot incentivize truthful reporting.

We adopt the modeling assumptions described in Section 3.4: we assume that each
player i has a cost parameter ci ∈ R+, which determines her sensitivity to the pri-
vacy violation incurred by the revelation of her data to her analyst, and a privacy
cost function fi (ci, ε ), which describes the cost she incurs when her data is used in
an ε-jointly differentially private computation. We also assume that players have
quasilinear utilities, so if player i receives payment πi for her report, and experi-
ences cost fi (ci, ε ) from her privacy loss, her utility is ui = πi − fi (ci, ε ).
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We make the following assumption, motivated in Section 3.4, that privacy cost func-
tions are upper bounded by a quadratic function of ε .

Assumption 4 ([18]). The privacy cost function of each player i satisfies

fi (ci, ε ) ≤ ciε
2.

Throughout our analysis, we assume that the privacy cost parameters are also ran-
dom variables, sampled from a distribution C. We allow ci to depend on player i’s
data (xi, yi); however, we assume conditioned on (xi, yi), that ci does not reveal any
additional information about the costs or data of any other agents. Formally:

Assumption 6. Given (xi, yi), (X−i, y−i,c−i) is conditionally independent of ci:

Pr[(X−i, y−i,c−i) |(xi, yi),ci] = Pr[(X−i, y−i,c−i) |(xi, yi),c′i ],

for all (X−i, y−i,c−i), (xi, yi), ci, c′i .

We also make the following additional technical assumption on the tail of C.

Assumption 7. The conditional marginal distribution satisfies

min
xi ,yi

(
Prcj∼C|xi ,yi [c j ≤ τ]

)
≥ 1 − τ−p,

for some constant p > 1.

Note that Assumption 7 implies that Prci∼C[ci ≤ τ] ≥ 1 − τ−p.

Linear and Ridge Regression
In this section we review some basic properties of linear regression and ridge regres-
sion, the methods the analyst can employ to estimate the parameter vector θ ∈ Rd .
Let X = [xi]i∈[n] ∈ R

n×d denote the n × d matrix of features, and y = [yi]i∈[n] ∈ R
n

the vector of responses. Estimating θ through ridge regression amounts to minimiz-
ing the following regularized quadratic loss function:

L(θ; X, y) =

n∑
i=1

`(θ; xi, yi) =

n∑
i=1

(yi − θ
>xi)2 + γ ‖θ‖22 . (6.2)

The ridge regression estimator can be written as:

θ̂R = arg min
θ∈Rd

L(θ; X, y) = (γI + X>X )−1X>y, (6.3)
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where I is the d × d identity matrix.

The parameter γ > 0, known as the regularization parameter, ensures that the loss
function is strongly convex (Definition 27) and, in particular, that the minimizer θ̂R

of (6.2) is unique.

Definition 27 (Strong Convexity). A function f : Rd → R is η-strongly convex if

H
(

f (θ)
)
− ηI is positive semi-definite for all θ ∈ Rd ,

where H ( f (θ)) is the Hessian2 of f , and I is the d × d identity matrix.

Strong convexity requires that the eigenvalues of the Hessian of f are bounded away
from zero. Note that when f is a one-dimensional function (d = 1), strong con-
vexity reduces to the requirement that the second derivative of f is strictly positive
everywhere: f ′′(θ) ≥ η > 0 for all θ ∈ Rd . Lemma 8 shows that regularizing the
quadratic loss L ensures that it is strongly convex. The proof is in the Appendix of
Section 6.6.

Lemma 8. L(θ; X, y) is 2γ-strongly convex in θ.

When γ = 0, the estimator is the standard linear regression estimator, which we
denote by θ̂L = (X>X )−1X>y. The linear regression estimator is unbiased, i.e., it
satisfies E[θ̂L] = θ. The same is not true when γ > 0; the general ridge regression
estimator θ̂R is biased.

Nevertheless, in practice θ̂R is preferable to θ̂L as it can achieve a desirable trade-off

between bias and variance. To see this, consider the mean squared loss error of the
estimation θ̂R, namely, E[‖θ̂R − θ‖22], which can be written as:

E[‖θ̂R − θ‖22] = E[‖θ̂R − E[θ̂R]‖22] + ‖E[θ̂R] − θ‖22
= trace(Cov(θ̂R)) + ‖ bias(θ̂R)‖22 ,

where Cov(θ̂R) = E[(θ̂R − E[θ̂R])(θ̂R − E[θ̂R])>] and bias(θ̂R) = E[θ̂R] − θ are
the covariance and bias, respectively, of estimator θ̂R. These can be computed in

2The Hessian H of function f is a d × d matrix of its partial second derivatives, where

H ( f (θ)) jk =
∂2 f (θ)
∂θ j∂θk

.

A d × d matrix A is positive semi-definite (PSD) if for all v ∈ Rd , v>Av ≥ 0.
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closed form as:

Cov(θ̂R) = σ2(γI + X>X )−1X>X (γI + X>X )−1, (6.4)

bias(θ̂R) = −γ(γI + X>X )−1θ, (6.5)

where σ2 is the variance of the noise variables zi in Equation (6.1). It is easy to see
that decreasing γ decreases the bias, but may significantly increase the variance.
For example in the case where rank(X ) < d, the matrix X>X is not invertible, and
the trace of the covariance tends to infinity as γ tends to zero.

Whether trace(Cov(θ̂R)) is large and, therefore, whether regularizing the square
loss is necessary, depends on largest eigenvalue (i.e., the spectral norm) of (X>X )−1.
Although this can be infinite for arbitrary X , by the law of large numbers, we expect
that if we sample the features xi independently from an isotropic distribution, then
1
n (X>X ) should converge to the covariance of this distribution (namely Σ = cI for
some constant c). As such, for large n both the largest and smallest eigenvalues
of X>X should be of the order of n, leading to an estimation of ever decreasing
variance even when γ = 0. The following theorem, which follows as a corollary
of a result by Vershynin [98], formalizes this notion, providing bounds on both the
largest and smallest eigenvalue of X>X and γI + X>X . The proof is deferred to the
Appendix in Section 6.6.

Theorem 14. Let ξ ∈ (0,1), and t ≥ 1. Let ‖ · ‖ denote the spectral norm. If

{xi}i∈[n] are i.i.d. and sampled uniformly from the unit ball, then with probability at

least 1 − d−t2
, when n ≥ C( t

ξ )2(d + 2) log d, for some absolute constant C, then,




X>X


 ≤ (1 + ξ)
1

d + 2
n, and 


(X>X )−1


 ≤

1
(1 − ξ) 1

d+2 n
, and




γI + X>X


 ≤ γ + (1 + ξ)
1

d + 2
n, and 


(γI + X>X )−1


 ≤

1
γ + (1 − ξ) 1

d+2 n
.

Remark A generalization of Theorem 14 holds for {xi}i∈[n] sampled from any
distribution with a covariance Σ whose smallest eigenvalue is bounded away from
zero (see Vershynin [98]). We restrict our attention to the unit ball for simplicity
and concreteness.

Peer Prediction and the Brier Scoring Rule
Peer prediction [74] is a useful method of inducing truthful reporting among players
that hold data generated by the same statistical model. In short, each player reports
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her data to an analyst and is paid based upon how well her report predicts the report
of other players; tying each player’s payment to how closely it predicts peer reports
is precisely what induces truthfulness.

We employ peer prediction to elicit data from privacy-aware players through the
use of strictly proper scoring rules. A scoring rule takes as input a parameter
value—either directly observed or computed from the reports of other players—
and a player’s reported belief about the parameter value, and outputs a payment. A
strictly proper scoring rule is one in which the expected payment is uniquely max-
imized by truthful reporting. In particular, we will use the Brier scoring rule [9],
which is known to be strictly proper.

Definition 28 (Brier scoring rule [9]). The Brier scoring rule is the function B :
R2 → R, defined as:

B(p,q) = 1 − 2(p − 2pq + q2).

The Brier scoring rule can used as a payment scheme in peer prediction mechanisms
to elicit reports q from players about the value of a parameter p. Note that when the
Brier scoring rule is used for the prediction of a binary eventω ∈ {0,1}, the function
reduces to B(ω,q) = 1− 2(q−ω)2, and a player’s report q can be interpreted about
her prediction of the probability p with which the event occurs.

The mechanisms in this chapter (Algorithms 3 and 4) use payment rule Ba,b(p,q),
which is a parametrized rescaling of the scoring rule B(p,q), defined as follows:

Ba,b(p,q) = a − b
(
p − 2pq + q2

)
.

Any positive-affine transformation of a strictly proper scoring rule remains strictly
proper [7]. The rescaled Brier scoring rule satisfies this criterion as Ba,b(p,q) =

a′ + b′B(p,q) where a′ = a − b/2 and b′ = b/2. Thus Ba,b(p,q) is a strictly proper
scoring rule for b > 0, and is uniquely maximized by reporting the true belief q = p.

In our setting, the analyst asks each player i to report (xi, ŷi) and then computes
an estimate θ̂ of the true parameter θ. The analyst performs a Bayesian update
on behalf of each player based on her reported data, and pays the player based
upon how closely the expectation of the posterior belief matched θ̂ according to the
scoring rule Ba,b(p,q). The parameter p being estimated by each player i is x>i θ̂,
which is the inner product of player i’s features xi with an estimated parameter θ̂.
Her input belief q will be x>i E[θ |xi, ŷi], which is the inner product of her features
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Algorithm 3 Truthful Regression Mechanism(a, b)
Solicit reports X ∈ (Rd)n and ŷ ∈ Rn

Analyst computes θ̂L = (X>X )−1X> ŷ and θ̂L
−i = (X>

−i X−i)−1X>
−i ŷ−i for each

i ∈ [n]
Output estimator θ̂L

Pay each player i, πi = Ba,b(x>i θ̂
L
−i, x

>
i E[θ |xi, ŷi])

xi with her posterior beliefs about θ, given her reported data xi and ŷi. Players are
also able to opt-out of the mechanism by reporting q = ⊥; we define Ba,b(p,⊥) = 0.
Since the xi are verifiable by the analyst, a misreport of xi will be interpreted as a
report of ŷi = ⊥.

6.3 Truthful Regression without Privacy Constraints
To illustrate the ideas we use in the rest of the chapter we present in this section a
mechanism which incentivizes truthful reporting in the absence of privacy concerns.
If the players do not have privacy concerns (i.e., ci = 0 for all i ∈ [n]), the analyst
can simply collect data, estimate θ using linear regression, and compensate players
using the following rescaled Brier scoring rule presented in Section 6.2:

Ba,b(p,q) = a − b
(
p − 2pq + q2

)
.

The Truthful Regression Mechanism is formally presented in Algorithm 3. In the
spirit of peer prediction, a player’s payment depends on how well her reported ŷi

agrees with the predicted value of yi, as constructed by the estimate θ̂L
−i of θ pro-

duced by all her peers. We now show that truthful reporting is a Bayes Nash equi-
librium.

Lemma 9 (Truthfulness). For all a,b > 0, truthful reporting is a Bayes Nash equi-

librium under Algorithm 3.

Proof. Recall that conditioned on xi, yi, the distribution of X−i, y−i is independent
of ci. Hence, assuming all other players are truthful, player i’s expected payment
conditioned on her data (xi, yi) and her cost ci, for reporting ŷi is

E[πi |xi, yi,ci] = E
[
Ba,b(x>i θ̂

L
−i, x

>
i E[θ |xi, ŷi]) |xi, yi

]

= Ba,b
(
x>i E[θ̂L

−i |xi, yi], x>i E[θ |xi, ŷi]
)
.

The second equality is due to the linearity of Ba,b in its first argument, as well as the
linearity of the inner product. Note that Ba,b is uniquely maximized by reporting
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ŷi such that E[θ |xi, ŷi]>xi = E[θ̂L
−i |xi, yi]>xi. Since θ̂L is an unbiased estimator

of θ, then E[θ̂L
−i |xi, yi] = E[θ |xi, yi]. Thus the optimal misreport is ŷi such that

E[θ |xi, ŷi]>xi = E[θ |xi, yi]>xi, so truthful reporting is a Bayes Nash equilibrium.
�

We note that truthfulness is essentially a consequence of (1) the fact that Ba,b is a
strictly proper scoring rule (as it is positive-affine in its first argument and strictly
concave in its second argument), and (2) most importantly, the fact that θ̂L

−i is an
unbiased estimator of θ. Moreover, as in the case of the simple peer prediction
setting presented in Section 6.2, truthfulness persists even if θ̂L

−i in Algorithm 3 is
replaced by a linear regression estimator constructed over responses restricted to an
arbitrary set S ⊆ [n] \ i.

Truthful reports enable accurate computation of the estimator with high probability,
with accuracy parameter η = O( 1

n ).

Lemma 10 (Accuracy). Under truthful reporting, with probability at least 1 − d−t2

and when n ≥ C( t
ξ )2(d + 2) log d, the accuracy the estimator θ̂L in Algorithm 3 is

E
[


θ̂

L − θ





2

2

]
≤ σ2

(1−ξ) 1
d+2 n

.

Proof. Note that E
[


θ̂

L − θ





2

2

]
= trace(Cov(θ̂L))

(6.4)
= σ2 trace

(
(X>X )−1

)
. For

i.i.d. features xi, the spectrum of matrix X>X can be asymptotically characterized
Theorem 14, and the lemma follows. �

Remark Note that individual rationality and a small budget can be trivially at-
tained in the absence of privacy costs. To ensure individual rationality of Algorithm
3, payments πi must be non-negative, but can be made arbitrarily small. Thus pay-
ments can be scaled down to reduce the analyst’s total budget. For example, setting
a = b(B + 2B(B + M) + (B + M)2 − 1) and b = 1

n2 ensures πi ≥ 0 for all players i,
and the total required budget is 1

n (2B + 4B(B + M) + (B + M)2) = O( 1
n ).

6.4 Truthful Regression with Privacy Constraints
As we saw in the previous section, in the absence of privacy concerns, it is possible
to devise payments that incentivize truthful reporting. These payments compen-
sate players based on how well their report agrees with a response predicted by θ̂L

estimated using other player’s reports.
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Players whose utilities depend on privacy raise several challenges. Recall that the
parameters estimated by the analyst, and the payments made to players, need to
satisfy joint differential privacy, and hence any estimate of θ revealed publicly by
the analyst or used in a payment must be ε-differentially private. Unfortunately,
the sensitivity of the linear regression estimator θ̂L to changes in the input data
is, in general, unbounded. As a result, it is not possible to construct a non-trivial
differentially private version of θ̂L by, e.g., adding noise to its output.

In contrast, differentially private versions of regularized estimators like the ridge
regression estimator θ̂R can be constructed. Recent techniques have been developed
for precisely this purpose, not only for ridge regression but for the broader class
of learning through (convex) empirical risk minimization [14, 4]. In short, the
techniques of Chaudhuri, Monteleoni, and Sarwate [14] and Bassily, Smith, and
Thakurta [4] succeed precisely because, for γ > 0, the regularized loss of Equation
(6.2) is strongly convex as shown in Lemma 8. This implies that the sensitivity of θ̂R

is bounded, and a differentially private version of θ̂R can be constructed by adding
noise of appropriate variance or though alternative techniques such as objective
perturbation.

The above results suggest that a possible approach to constructing a truthful, ac-
curate mechanism in the presence of privacy-conscious players is to modify Al-
gorithm 3 by replacing θ̂L with a ridge regression estimator θ̂R, both with respect
to the estimate released globally and to any estimates used in computing payments.
Unfortunately, such an approach breaks the mechanism’s truthfulness guarantee be-
cause θ̂R is a biased estimator. The linear regression estimator θ̂L ensured that the
scoring rule Ba,b was maximized precisely when players reported their response
variable truthfully. However, in the presence of a biased estimator, it can easily be
seen that the optimal report of player i deviates from truthful reporting by a quantity
proportional to the expected bias.

We address this issue for large n using again the concentration result of Theorem
14. This ensures that for large n, the spectrum of X>X should grow roughly lin-
early with n, with high probability. By Equations (6.4), this implies that as long as
γ grows more slowly than n, the bias term of θ̂R converges to zero with high prob-
ability. Together, these statements ensure that for an appropriate choice of γ, we
attain approximate truthfulness for large n, while also ensuring that the output of
our mechanism remains differentially private for all n. We formalize this intuition
in the next section by presenting a mechanism based on ridge regression, and prov-
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ing that it indeed attains approximate truthfulness for large n, while also remaining
jointly differentially private.

Private Regression Mechanism
Our Private Regression Mechanism is presented in Algorithm 4, which is a differ-
entially private varaint of the Truthful Regression Mechanism in Algorithm 3. We
incorporate into our mechanism the Output Perturbation algorithm from Chaudhuri,
Monteleoni, and Sarwate [14], which first computes the ridge regression estimator
and then adds noise to the output. This approach is used to ensure that the mecha-
nism’s output satisfies joint differential privacy.

The noise vector v is drawn according to the following distribution PL, which is a
high-dimensional Laplace distribution with parameter 4B+2M

γε :

PL (v) ∝ exp
(
−γε

4B + 2M
‖v‖2

)
.

Algorithm 4 Private Regression Mechanism(γ, ε , a, b)

Solicit reports X ∈
(
Rd

)n
and ŷ ∈ Rn

Randomly partition players into two groups, with respective data pairs (X0, ŷ0)
and (X1, ŷ1)
Analyst computes θ̂R = (γI + X>X )−1X> ŷ and θ̂R

j = (γI + X>j X j )−1X>j ŷ j for
j = 0,1
Independently draw v,v0,v1 ∈ R

d according to distribution PL
Compute estimators θ̂P = θ̂R + v, θ̂P

0 = θ̂R
0 + v0, and θ̂P

1 = θ̂R
1 + v1

Output estimator θ̂P

Pay each player i in group j, πi = Ba,b((θ̂P
1− j )

>xi,E[θ |xi, ŷi]>xi) for j = 0,1

Here we state an informal version of our main result. The formal version of this
result is stated in Corollary 2, which aggregates and instantiates Theorems 16, 17,
18, 19, and 20.

Theorem 15 (Main result (Informal)). Under Assumptions 4, 6, and 7, there exist

ways to set γ, ε , a, and b in Algorithm 4 to ensure that with high probability:

1. the output of Algorithm 4 is o( 1√
n
)-jointly differentially private,

2. it is an o
(

1
n

)
-approximate Bayes Nash equilibrium for a (1 − o(1))-fraction

of players to truthfully report their data,

3. the computed estimator θ̂P is o(1)-accurate,
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4. it is individually rational for a (1− o(1))-fraction of players to participate in

the mechanism, and

5. the required budget from the analyst is o(1).

6.5 Analysis of Algorithm 4
In this section, we flesh out the claims made in Theorem 15. All proofs are deferred
to Appendix 6.6.

Theorem 16 (Privacy). The mechanism in Algorithm 4 is 2ε-jointly differentially

private.

Proof idea We first show that the estimators θ̂P, θ̂P
0 , θ̂P

1 computed by Algorithm 4
together satisfy 2ε-differential privacy, by bounding the maximum amount that any
player’s report can affect the estimators. We then use the Billboard Lemma (Lemma
1) to show that the estimators, together with the vector of payments, satisfy 2ε-joint
differential privacy.

Once we have established the privacy guarantee, we can build on this to get truthful
participation and hence accuracy. To do so, we first show that a symmetric threshold
strategy equilibrium exists, in which all agents with cost parameter ci below some
threshold τ should participate and truthfully report their yi. We define τα,β to be the
cost threshold such that (1) with probability 1 − β (with respect to the prior from
which costs are drawn), at least a (1 − α)-fraction of players have cost parameter
ci ≤ τα,β, and (2) conditioned on her own data, each player i believes that with
probability 1 − α, any other player j will have cost parameter c j ≤ τα,β.

Definition 29 (Threshold τα,β). Fix a marginal cost distribution C on {ci}, and let

τ1
α,β = inf

τ

(
Prc∼C [|{i : ci ≤ τ}| ≥ (1 − α)n] ≥ 1 − β

)
,

τ2
α = inf

τ

(
min
xi ,yi

(
Prcj∼C|xi ,yi [c j ≤ τ]

)
≥ 1 − α

)
.

Define τα,β to be the larger of these thresholds: τα,β = max{τ1
α,β, τ

2
α }.

We also define the threshold strategy στ, in which a player reports truthfully if her
cost ci is below τ, and is allowed to misreport arbitrarily if her cost is above τ.
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Definition 30 (Threshold strategy). Define the threshold strategy στ as follows:

στ (xi, yi,ci) =




Report ŷi = yi if ci ≤ τ,

Report arbitrary ŷi otherwise.

We show that στα,β forms a symmetric threshold strategy equilibrium in the Private
Regression Mechanism of Algorithm 4.

Theorem 17 (Truthfulness). Fix a participation goal 1− α, a privacy parameter ε ,

a desired confidence parameter β, ξ ∈ (0,1), and t ≥ 1. Then under Assumptions

4 and 6, with probability 1 − dt2
and when n ≥ C( t

ξ )2(d + 2) log d, the symmetric

threshold strategy στα,β is an η-approximate Bayes-Nash equilibrium in Algorithm

4 for

η = b *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ τα,βε
2.

Proof idea There are three primary sources of error which cause the estimator θ̂P

to differ from a player’s posterior on θ. First, ridge regression is a biased estimation
technique; second, Algorithm 4 adds noise to preserve privacy; third, players with
cost parameter ci above threshold τα,β are allowed to misreport their data. We show
how to control the effects of these three sources of error, so that θ̂P is “not too far”
from a player’s posterior on θ. Finally, we use strong convexity of the payment rule
to show that any player’s payment from misreporting is at most η greater than from
truthful reporting.

Theorem 18 (Accuracy). Fix a participation goal 1 − α, a privacy parameter ε , a

desired confidence parameter β, ξ ∈ (0,1), and t ≥ 1. Then under the symmetric

threshold strategy στα,β , Algorithm 4 will output an estimator θ̂P such that with

probability at least 1 − β − d−t2
, and when n ≥ C( t

ξ )2(d + 2) log d,

E[‖θ̂P − θ‖22] = O *
,

(
αn
γ

+
1
γε

)2

+

(
γ

n

)2
+

(
1
n

)2

+
αn
γ

+
1
γε

+
-
.

Proof idea As in Theorem 17, we control the three sources of error in the estima-
tor θ̂P — the bias of ridge regression, the noise added to preserve privacy, and the
error due to some players misreporting their data — this time measuring distance
with respect to the expected `2 norm difference.

We next see that players whose cost parameters are below the threshold τα,β are
incentivized to participate.
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Theorem 19 (Individual Rationality). Under Assumption 4, the mechanism in Al-

gorithm 4 is individually rational for all players with cost parameters ci ≤ τα,β as

long as,

a ≥ *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB) + bB2 + τα,βε
2,

regardless of the reports from players with cost coefficients above τα,β.

Proof idea A player’s utility from participating in the mechanism is her payment
minus her privacy cost. The parameter a in the payment rule is a constant offset
that shifts each player’s payment. We lower bound the minimum payment from
Algorithm 4 and upper bound the privacy cost of any player with cost coefficient
below threshold τα,β. If a is larger than the difference between these two terms, then
any player with cost coefficient below threshold will receive non-negative utility.

Finally, we analyze the total cost to the analyst for running the mechanism.

Theorem 20 (Budget). The total budget required by the analyst to run Algorithm 4

when players utilize threshold equilibrium strategy στα,β is

B ≤ n

a + *

,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB)

.

Proof idea The analyst’s budget is the sum of all payments made to players in the
mechanism. We upper bound the maximum payment to any player, and the total
budget required is at most n times this maximum payment.

Formal Statement of Main Result
In this section, we present our main result, Corollary 2, which instantiates Theorems
16, 17, 18, 19, and 20 with a setting of all parameters to get the bounds promised in
Theorem 15. Before stating our main result, we first require the following lemma
which asymptotically bounds τα,β for an arbitrary bounded distribution. We use this
to control the asymptotic behavior of τα,β under Assumption 7.

Lemma 11. For a cost distribution C with conditional marginal CDF lower bounded

by some function F:

min
xi ,yi

(
Prcj∼C|xi ,yi [c j ≤ τ]

)
≥ F (τ),

then

τα,β ≤ max{F−1(1 − αβ),F−1(1 − α)}.
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We note that under Assumption 7, Lemma 11 implies that

τα,β ≤ max{(αβ)−1/p, (α)−1/p}.

Using this fact, we can state a formal version of our main result.

Corollary 2 (Main result (Formal)). Choose δ ∈ (0, p
2+2p ). Then under Assumptions

4, 6, and 7, setting γ = n1− δ2 , ε = n−1+δ, a = (6B + 2M)(1 + B)2n−
3
2 + n−

3
2 +δ, and

b = n−
3
2 in Algorithm 4, and taking α = n−δ, β = n−

p
2 +δ(1+p), ξ = 1/2, and

t =
√

n
4C(d+2) log d , ensures that with probability 1 − dΘ(−n) − n−

p
2 +δ(1+p):

1. the output of Algorithm 4 is O
(
n−1+δ

)
-jointly differentially private,

2. it is an O
(
n−

3
2 +δ

)
-approximate Bayes Nash equilibrium for a 1 − O

(
n−δ

)
fraction of players to truthfully report their data,

3. the computed estimate θ̂P is O
(
n−δ

)
-accurate,

4. it is individually rational for a 1 − O
(
n−δ

)
fraction of players to participate

in the mechanism, and

5. the required budget from the analyst is O
(
n−

1
2 +δ

)
.

This follows from instantiating Theorems 16, 17, 18, 19, and 20 with the specified
parameters. Note that the choice of δ controls the trade-off between approximation
factors for the desired properties.

Remark Note that different settings of parameters can be used to yield a different
trade-off between approximation factors in the above result. For example, if the
analyst is willing to supply a higher budget (say constant or increasing with n), he
could improve on the accuracy guarantee.

6.6 Appendix: Omitted Proofs
Proof of Lemma 8 (Strong Convexity)

Lemma 8. L(θ; X, y) is 2γ-strongly convex in θ.

Proof. We first compute the Hessian of L(θ; X, y). For notational ease, we will
suppress the dependence ofL on X and y, and denote the loss function asL(θ). We
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will use xi j to denote the j-th coordinate of xi, and θ j to denote the j-th coordinate
of θ.

∂L(θ)
∂θ j

=

n∑
i=1

[
−2yi xi j + 2(θ>xi)xi j

]
+ 2γθ j

∂L(θ)
∂θ j∂θk

=

n∑
i=1

[
2(xik )xi j

]
for j , k

∂L(θ)
∂θ2

j

=

n∑
i=1

[
2(xi j )2

]
+ 2γ

The Hessian of L is

H (L(θ)) =

n∑
i=1

xi x>i + 2γI,

where I is the identity matrix. Thus,

H (L(θ)) − 2γI =

n∑
i=1

xi x>i ,

which is positive semi-definite. To see this, let v be an arbitrary vector in Rd . Then
for each i, v(xi x>i )v> = (vxi)2 ≥ 0. The sum of PSD matrices is also PSD, so L(θ)
is 2γ-strongly convex. �

Proof of Theorem 14 (Concentration of Spectral Norms)

Theorem 14. Let ξ ∈ (0,1), and t ≥ 1. Let ‖ · ‖ denote the spectral norm. If

{xi}i∈[n] are i.i.d. and sampled uniformly from the unit ball, then with probability at

least 1 − d−t2
, when n ≥ C( t

ξ )2(d + 2) log d, for some absolute constant C, then,




X>X


 ≤ (1 + ξ)
1

d + 2
n, and 


(X>X )−1


 ≤

1
(1 − ξ) 1

d+2 n
, and




γI + X>X


 ≤ γ + (1 + ξ)
1

d + 2
n, and 


(γI + X>X )−1


 ≤

1
γ + (1 − ξ) 1

d+2 n
.

Proof of Theorem 14. We will first require Lemma 12, which characterizes the co-
variance matrix of the distribution on X .

Lemma 12. The covariance matrix of x is Σ = 1
d+2 I.

Proof of Lemma 12. Let z1, . . . , zd ∼ N (0,1), and let u ∼ U[0,1], all drawn in-
dependently. Define, r =

√
z2

1 + · · · + z2
d and Z = (u1/d z1

r , . . . ,u
1/d zd

r ). Then Z
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describes a uniform distribution over the d-dimensional unit ball [66]. Recall that
this is the same distribution from which the xi are drawn. By the symmetry of the
uniform distribution, E[Z] = ~0, and Cov(Z ) must be some scalar times the Identity
matrix. Then to compute the covariance matrix of Z , it will suffice to compute the
variance of some coordinate Zi of Z . Since each coordinate of Z has mean 0, then
V ar (Zi) = E[Z2

i ] + E[Zi]2 = E[Z2
i ].

d∑
i=1

E[Z2
i ] = E



d∑
i=1

Z2
i



= E


d∑
i=1

(
u1/d zi

r

)2

= E[u2/d]E

(
1
r

)2
d∑

i=1

z2
i


= E[u2/d]

=
d

d + 2

By symmetry of coordinates, E[Z2
i ] = E[Z2

j ] for all i, j. Then E[Z2
i ] = 1

d+2 , and the
covariance matrix of Z (and of the xi since both variables have the same distribu-
tion) is Σ = 1

d+2 I. �

From Corollary 5.52 in [98] and the calculation of covariance in Lemma 12, for any
ξ ∈ (0,1) and t ≥ 1, with probability at least 1 − d−t2

,







1
n

X>X −
1

d + 2
I







≤ ξ

1
d + 2

, (6.6)

when n ≥ C( t
ξ )2(d + 2) log d, for some absolute constant C. We assume for the

remainder of the proof that inequality (6.6) holds, which is the case except with
probability at most d−t2

, as long as n is sufficiently large. Then







X>X −

1
d + 2

nI






≤ ξ

1
d + 2

n.

Let λmax(A) and λmin(A) denote respectively the maximum and minimum eigen-
values of a matrix A. By definition, λmax(A) = ‖A‖.
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Assume towards a contradiction that λmax(X>X ) = (1 + ξ) 1
d+2 n + δ for δ > 0.

ξ
1

d + 2
n ≥







X>X −

1
d + 2

nI







=



X>X


 −

1
d + 2

n

= λmax(X>X ) −
1

d + 2
n

= (1 + ξ)
1

d + 2
n + δ −

1
d + 2

n

= ξ
1

d + 2
n + δ

This implies δ ≤ 0, which is a contradiction. Thus λmax(X>X ) = ‖X>X ‖ ≤

(1 + ξ) 1
d+2 n.

Similarly, assume that λmin(X>X ) = (1 − ξ) 1
d+2 n − δ for some δ > 0. Since all

eigenvalues are positive, it must be the case that λmin(X>X ) ≥ 0.

0 ≥ λmin(X>X −
1

d + 2
nI)

= λmin(X>X ) −
1

d + 2
n

= (1 − ξ)
1

d + 2
n − δ −

1
d + 2

n

= −ξ
1

d + 2
n − δ

This is also a contradiction, so λmin(X>X ) ≥ (1 − ξ) 1
d+2 n. For any matrix A,

λmax(A−1) = 1
λmin(A) . Thus,

λmin(X>X ) =
1

λmax
(
(X>X )−1)

=
1

‖(X>X )−1‖

≥ (1 − ξ)
1

d + 2
n

=⇒ ‖(X>X )−1‖ ≤ (1 − ξ)
1

d + 2
n.

Using the fact that λ is an eigenvalue of a matrix A if and only if (λ + c) is an
eigenvalue of (A + cI), we have the following inequalities to complete the proof:




γI + X>X


 = λmax(γI + X>X ) ≤ γ + (1 + ξ)
1

d + 2
n




(γI + X>X )−1


 =
1

λmin(γI + X>X )
≤

1
γ + (1 − ξ) 1

d+2 n
.

�
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Proof of Theorem 16 (Privacy)
We will now prove that the estimator θ̂P and the vector of payments π of the mecha-
nism in Algorithm 4 is 2ε-jointly differentially private. First, we need the following
lemma to bound the sensitivity of θ̂P.

Recall from Section 2.3 that the sensitivity (Definition 4) of a function is the maxi-
mum change in the output when a single player changes her data. Since our mech-
anism produces a vector-valued output, we measure this change from with respect
to the `2 norm.

The following lemma follows from Chaudhuri, Monteleoni, and Sarwate [14]; a
proof is provided for completeness.

Lemma 13. The sensitivity of θ̂R is 1
γ (4B + 2M).

Proof. Let (X, y) and (X ′, y′) be two arbitrary neighboring databases that differ
only in the i-th entry. Let θ̂R and (θ̂R)′ respectively denote the ridge regression
estimators computed on (X, y) and (X ′, y′). Define g(θ) to be the change in loss
when θ is used as an estimator for (X ′, y′) and (X, y). Then,

g(θ) = L(θ; X ′, y′) − L(θ; X, y)

=
(
θ>xi − yi

)2
−

(
θ>x′i − y′i

)2
.

Lemma 7 of Chaudhuri, Monteleoni, and Sarwate [14] says that if L(θ; X, y) and
L(θ; X ′, y′) are both Γ-strongly convex, then 


θ̂

R − (θ̂R)′


2
is bounded above by

1
Γ
·maxθ ‖∇g(θ)‖2. By Lemma 8, both L(θ; X, y) and L(θ; X ′, y′) are 2γ-strongly

convex, so 


θ̂
R − (θ̂R)′


2

≤ 1
2γ · maxθ ‖∇g(θ)‖2. We now bound ‖∇g(θ)‖2 for an

arbitrary θ:

‖∇g(θ)‖2 = 2 


(θ>xi − yi)xi − (θ>x′i − y′i )x′i



2

≤ 4 ���θ
>xi − yi

��� ‖xi‖2

≤ 4
(���θ
>xi

��� + |yi |
)

≤ 4(2B + M).

Since this bound holds for all θ, it must be the case that maxθ ‖∇g(θ)‖2 ≤ 4(2B +

M) as well. Then by Lemma 7 of Chaudhuri, Monteleoni, and Sarwate [14],




θ̂
R − (θ̂R)′


2

≤
4

2γ
(2B + M) =

1
γ

(4B + 2M).
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Since (X, y) and (X ′, y′) were two arbitrary neighboring databases, this bounds the
sensitivity of the computation. Thus changing the input of one player can change
the ridge regression estimator (with respect to the `2 norm) by at most 1

γ (4B +

2M). �

We now prove that the output of Algorithm 4 satisfies 2ε-joint differential privacy.

Theorem 16 (Privacy). The mechanism in Algorithm 4 is 2ε-jointly differentially

private.

Proof. We begin by showing that the estimator θ̂P output by Algorithm 4 is ε-
differentially private.

Let h denote the PDF of θ̂P output by Algorithm 4, and ν denote the PDF of the
noise vector v. Let (X, y) and (X ′, y′) be any two databases that differ only in the
i-th entry, and let θ̂R and (θ̂R)′ respectively denote the ridge regression estimators
computed on these two databases.

The output estimator θ̂P is the sum of the ridge regression estimator θ̂R, and the
noise vector v; the only randomness in the choice of θ̂P is the noise vector, because
θ̂R is computed deterministically on the data. Thus the probability that Algorithm
4 outputs a particular θ̂P is equal to the probability that the noise vector is exactly
the difference between θ̂P and θ̂R. Fixing an arbitrary θ̂P, let v̂ = θ̂P − θ̂R and
v̂′ = θ̂P − (θ̂R)′. Then,

h(θ̂P |(X, y))
h(θ̂P |(X ′, y′))

=
ν(v̂)
ν(v̂′)

= exp
(

γε

8B + 4M
(

v̂′

2 − ‖v̂‖2

))
. (6.7)

By definition, θ̂P = θ̂R + v̂ = (θ̂R)′+ v̂′. Rearranging terms gives θ̂R− (θ̂R)′ = v̂′− v̂.
By Lemma 13 and the triangle inequality,



v̂′

2 − ‖v̂‖2 ≤


v̂′ − v̂

2 =




θ̂
R − (θ̂R)′


2

≤
1
γ

(4B + 2M).

Plugging this into Equation (6.7) gives the desired inequality,

h(θ̂P |(X, y))
h(θ̂P |(X ′, y′))

≤ exp
(

γε

4B + 2M
1
γ

(4B + 2M)
)

= exp(ε ).

Next, we show that the output (θ̂P, θ̂P
0 , θ̂

P
1 , {πi}i∈[n]) of the mechanism satisfies joint

differential privacy using the Billboard Lemma. The estimators θ̂P
0 and θ̂P

1 are com-
puted in the same way as θ̂P, so θ̂P

0 and θ̂P
1 each satisfy ε-differential privacy. Since
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θ̂P
0 and θ̂P

1 are computed on disjoint subsets of the data, then by Theorem 4 of
McSherry [72], together they satisfy ε-differential privacy. The estimator a player
should use to compute her payments depends only on the partition of players, which
is independent of the data because it is chosen uniformly at random. Then by
Basic Composition (Theorem 1), the estimators (θ̂P, θ̂P

0 , θ̂
P
1 ) together satisfy 2ε-

differential privacy.

Each player’s payment πi is a function of only her private information — her report
(xi, ŷi) and her group in the partition of players — and the 2ε-differentially private
collection of estimators (θ̂P, θ̂P

0 , θ̂
P
1 ). By the Billboard Lemma (Lemma 1), the out-

put (θ̂P, θ̂P
0 , θ̂

P
1 , {πi}i∈[n]) of Algorithm 4 satisfies 2ε-joint differential privacy. �

Proof of Theorem 17 (Truthfulness)
In order to show that στα,β is an approximate Bayes Nash equilibrium, we require
the following three lemmas. Lemma 14 bounds the expected number of players
who will misreport under the strategy profile στα,β . Lemma 15 bounds the norm
of the expected difference of two estimators output by Algorithm 4 run on different
datasets, as a function of the number of players whose data differs between the two
datasets. Lemma 16 bounds the first two moments of the noise vector that is added
to preserve privacy.

Lemma 14. Under symmetric strategy profile στα,β , each player expects that at

most an α-fraction of other players will misreport, given Assumption 6.

Proof. Let S−i denote the set of players other than i who truthfully report under
strategy στα,β . From the perspective of player i, the cost coefficients of all other
players are drawn independently from the posterior marginal distribution C|xi ,yi .
By the definition of τα,β, player i believes that each other player truthfully reports
independently with probability at least 1 − α. Thus E[|S−i | |xi, yi] ≥ (1 − α)(n −
1). �

Lemma 15. Let θ̂R and (θ̂R)′ be the ridge regression estimators computed on two

fixed databases that differ on the input of at most k players. Then




θ̂
R − (θ̂R)′


2

≤
k
γ

(4B + 2M).

Proof. Since the two databases differ on the reports of at most k players, we can de-
fine a sequence of databases D0, . . . ,Dk , that each differ from the previous database
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in the input of at most one player, and D0 is the input that generated θ̂R, and Dk is
the input that generated (θ̂R)′. Consider running Algorithm 4 on each database D j

in the sequence. For each D j , let θ̂R
j be the ridge regression estimator computed on

D j . Note that θ̂R
0 = θ̂R and θ̂R

k = (θ̂R)′.




θ̂
R − (θ̂R)′


2

=



θ̂

R
0 − θ̂

R
k




2

=



θ̂

R
0 − θ̂

R
1 + θ̂R

1 − . . . − θ̂
R
k−1 + θ̂R

k−1 − θ̂
R
k




2

≤



θ̂

R
0 − θ̂

R
1




2
+




θ̂
R
1 − θ̂

R
2




2
+ . . . +




θ̂
R
k−1 − θ̂

R
k




2

≤ k ·max
j




θ̂
R
j − θ̂

R
j+1




2

For each j, θ̂R
j and θ̂R

j+1 are the ridge regression estimators computed on databases
that differ in the data of at most a single player. That means either the databases are
the same, so θ̂R

j = θ̂R
j+1 and their normed difference is 0, or they differ in the report

of exactly one player. In the latter case, Lemma 13 bounds ‖θ̂R
j − θ̂

R
j+1‖2 above by

1
γ (4B + 2M) for each j, including the j which maximizes the normed difference.

Combining this fact with the above inequalities gives,




θ̂
R − (θ̂R)′


2

≤
k
γ

(4B + 2M).

�

Lemma 16. The noise vector v sampled according to PL in Algorithm 4 satisfies:

E[v] = ~0 and E[‖v‖22] = 2
(

4B+2M
γε

)2
and E[‖v‖2] = 4B+2M

γε .

Proof. For every v̄ ∈ Rd , there exists −v̄ ∈ Rd that is drawn with the same proba-
bility, because ‖v̄‖2 = ‖ − v̄‖2. Thus,

E[v] =

∫
v̄

v̄ Pr(v = v̄)dv̄ =
1
2

∫
v̄

(v̄ + −v̄) Pr(v = v̄)dv̄ = ~0.

The distribution of v is a high dimensional Laplacian with parameter 4B+2M
γε and

mean zero. It follows immediately that E[‖v‖22] = 2
(

4B+2M
γε

)2
and E[‖v‖2] =

4B+2M
γε . �

We now prove that symmetric threshold strategy στα,β is an approximate Bayes
Nash equilibrium of the Private Regression Mechanism in Algorithm 4.



115

Theorem 17 (Truthfulness). Fix a participation goal 1− α, a privacy parameter ε ,

a desired confidence parameter β, ξ ∈ (0,1), and t ≥ 1. Then under Assumptions

4 and 6, with probability 1 − dt2
and when n ≥ C( t

ξ )2(d + 2) log d, the symmetric

threshold strategy στα,β is an η-approximate Bayes-Nash equilibrium in Algorithm

4 for

η = b *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ τα,βε
2.

Proof. Suppose all players other than i are following strategy στα,β . Let player i

be in group 1 − j, so she is paid according to the estimator computed on the data
of group j. Let θ̂P

j be the estimator output by Algorithm 4 on the reported data of
group j under this strategy, and let (θ̂R

j )′ be the ridge regression estimator computed
within Algorithm 4 when all players in group j follow strategy στα,β . Let θ̂R

j be the
ridge regression estimator that would have been computed within Algorithm 4 if all
players in group j had reported truthfully. For ease of notation, we will suppress
the subscripts on the estimators for the remainder of the proof.

We will show that στα,β is an approximate Bayes Nash equilibrium by bounding
player i’s incentive to deviate. We assume that ci ≤ τα,β (otherwise there is noth-
ing to show because player i would be allowed to submit an arbitrary report under
στα,β ). We first compute the maximum amount that player i can increase her pay-
ment by misreporting to Algorithm 4. Consider the change in expected payment to
player i from a fixed (deterministic) misreport, ŷi , yi.

E[Ba,b((θ̂P)>xi,E[θ |xi, ŷi]>xi) |xi, yi] − E[Ba,b((θ̂P)>xi,E[θ |xi, yi]>xi) |xi, yi]

= Ba,b(E[θ̂P |xi, yi]>xi,E[θ |xi, ŷi]>xi) − Ba,b(E[θ̂P |xi, yi]>xi,E[θ |xi, yi]>xi)

The rule Ba,b is a proper scoring rule, so it is uniquely maximized when its two
arguments are equal. Thus any misreport of player i cannot yield payment greater
than Ba,b(E[θ̂P |xi, yi]>xi,E[θ̂P |xi, yi]>xi), so the expression of interest is bounded
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above by the following:

Ba,b(E[θ̂P |xi, yi]>xi,E[θ̂P |xi, yi]>xi) − Ba,b(E[θ̂P |xi, yi]>xi,E[θ |xi, yi]>xi)

= a − b
(
E[θ̂P |xi, yi]>xi − 2(E[θ̂P |xi, yi]>xi)2 + (E[θ̂P |xi, yi]>xi)2

)
− a + b

(
E[θ̂P |xi, yi]>xi − 2(E[θ̂P |xi, yi]>xi)(E[θ |xi, yi]>xi) + (E[θ |xi, yi]>xi)2

)
= b

(
(E[θ̂P |xi, yi]>xi)2 − 2(E[θ̂P |xi, yi]>xi)(E[θ |xi, yi]>xi) + (E[θ |xi, yi]>xi)2

)
= b

(
E[θ̂P |xi, yi]>xi − E[θ |xi, yi]>xi

)2

= b
(
E[θ̂P − θ |xi, yi]>xi

)2

≤ b(‖E[θ̂P − θ |xi, yi]‖22 ‖xi‖
2
2 )

≤ b‖E[θ̂P − θ |xi, yi]‖22 .

We continue by bounding the term ‖E[θ̂P − θ |xi, yi]‖2.

‖E[θ̂P − θ |xi, yi]‖2 = ‖E[θ̂P − θ̂R + θ̂R − θ |xi, yi]‖2

= ‖E[(θ̂R)′ + v − θ̂R + θ̂R − θ |xi, yi]‖2

= ‖E[v |xi, yi] + E[(θ̂R)′ − θ̂R |xi, yi] + E[θ̂R − θ |xi, yi]‖2

≤ ‖E[v |xi, yi]‖2 + ‖E[(θ̂R)′ − θ̂R |xi, yi]‖2 + ‖E[θ̂R − θ |xi, yi]‖2

We again bound each term separately. In the first term, the noise vector is drawn
independently of the data, so E[v |xi, yi] = E[v], which equals~0 by Lemma 16. Thus
‖E[v |xi, yi]‖2 = 0.

Jensen’s inequality bounds the second term above by E[‖(θ̂R)′ − θ̂R‖2 |xi, yi]. The
random variables (θ̂R)′ and θ̂R are the ridge regression estimators of two (random)
databases that differ only on the data of players who misreported under threshold
strategy στα,β . By Lemma 14, player i believes that at most αn players will mis-
report their ŷ j ,3 so for all pairs of databases over which the expectation is taken,
(θ̂R)′ and θ̂R differ in the input of at most αn players. By Lemma 15, their normed
difference is bounded above by αn

γ (4B + 2M). Since this bound applied to every
term over which the expectation is taken, it also bounds the expectation.

For the third term, E[θ̂R − θ |xi, yi] = bias(θ̂R |xi, yi). Recall that θ̂R is actually
θ̂R

j , which is computed independently of player i’s data, but is still correlated with
(xi, yi) through the common parameter θ. However, conditioned on the true θ,

3Lemma 14 promises that at most α(n − 1) players will misreport. We use the weaker bound of
αn for simplicity.
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the bias of θ̂R is independent of player i’s data. That is, bias(θ̂R |xi, yi, θ) =

bias(θ̂R |θ). We now expand the third term using nested expectations.

EX,z,θ
[
θ̂R − θ |xi, yi

]
= Eθ

[
EX,z[θ̂R − θ |xi, yi, θ]

]

= Eθ
[
bias(θ̂R |xi, yi, θ)

]

= Eθ
[
bias(θ̂R |θ)

]

= bias(θ̂R)

= −γ(γI + X>X )−1θ

Then by Theorem 14, when n ≥ C( t
ξ )2(d + 2) log d, the following holds with

probability at least 1 − d−t2
.

‖E[θ̂R − θ |xi, yi]‖2 = ‖ − γ(γI + X>X )−1θ‖2

≤ γ‖(γI + X>X )−1‖2‖θ‖2

≤ γ *
,

1
γ + (1 − ξ) 1

d+2 n
+
-

B

=
γB

γ + (1 − ξ) 1
d+2 n

We will assume the above is true for the remainder of the proof, which will be the
case except with probability at most d−t2

. Thus with probability at least 1−d−t2
, and

when n is sufficiently large, the increase in payment from misreporting is bounded
above by

b‖E[θ̂P − θ |xi, yi]‖22 ≤ b *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+
-

2

.

In addition to an increased payment, a player may also experience decreased pri-
vacy costs from misreporting. By Assumption 4, this decrease in privacy costs is
bounded above by ciε

2. We have assumed ci ≤ τα,β (otherwise player i is allowed to
misreport arbitrarily under στα,β , and there is nothing to show). Then the decrease
in privacy costs for player i is bounded above by τα,βε2.

Therefore player i’s total incentive to deviate is bounded above by η, and the sym-
metric threshold strategy στα,β forms an η-approximate Bayes Nash equilibrium
for

η = b *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ τα,βε
2.

�
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Proof of Theorem 18 (Accuracy)
In this section, we prove that the estimator θ̂P output by Algorithm 4 has high
accuracy. We first require the following lemma, which uses the concentration in-
equalities of Theorem 14 to give high probability bounds on the distance from the
ridge regression estimator to the true parameter θ.

Lemma 17. Let θ̂R be the ridge regression estimator computed on a given database

(X, y). Then with probability at least 1 − d−t2
, as long as n ≥ C( t

ξ )2(d + 2) log d

E[‖θ̂R − θ‖22] ≤ *
,

γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ σ4 *
,

(1 + ξ) 1
d+2 n

(γ + (1 − ξ) 1
d+2 n)2

+
-

2

and

E[‖θ̂R − θ‖2] ≤
γB + Mn

γ + (1 − ξ) 1
d+2 n

.

Proof. Recall from Section 6.2 that

E[‖θ̂R − θ‖22] = ‖ bias(θ̂R)‖22 + trace(Cov(θ̂R)),

and

E[‖θ̂R − θ‖2] = E[‖θ̂R − E[θ̂R] + E[θ̂R] − θ‖2]

≤ E[‖θ̂R − E[θ̂R]‖2] + E[‖E[θ̂R] − θ‖2]

= E[‖θ̂R − E[θ̂R]‖2] + E[‖ bias(θ̂R)‖2].

We now expand the three remaining terms: ‖ bias(θ̂R)‖2 and trace(Cov(θ̂R)) and
E[‖θ̂R−E[θ̂R]‖2]. For the remainder of the proof, we will assume the concentration
inequalities in Theorem 14 hold, which will be the case, except with probability at
most d−t2

, as long as n ≥ C( t
ξ )2(d + 2) log d.

‖ bias(θ̂R)‖2 = ‖ − γ(γI + X>X )−1θ‖2

≤ γ‖θ‖2‖(γI + X>X )−1‖2

≤ γB‖(γI + X>X )−1‖2

≤
γB

γ + (1 − ξ) 1
d+2 n
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trace(Cov(θ̂R)) = ‖ Cov(θ̂R)‖22
= ‖σ2(γI + X>X )−1X>X (γI + X>X )−1‖22

≤ σ4‖(γI + X>X )−1‖22 ‖X
>X ‖22 ‖(γI + X>X )−1‖22

≤ σ4 *
,

1
γ + (1 − ξ) 1

d+2 n
+
-

2 (
(1 + ξ)

1
d + 2

n
)2

*
,

1
γ + (1 − ξ) 1

d+2 n
+
-

2

≤ σ4 *..
,

(1 + ξ) 1
d+2 n(

γ + (1 − ξ) 1
d+2 n

)2

+//
-

2

E[‖θ̂R − E[θ̂R]‖2] = E[‖θ̂R − (θ + bias(θ̂R))‖2]

= E[‖(γI + X>X )−1X>y − θ + (γI + X>X )−1γIθ‖2]

= E[‖(γI + X>X )−1X>(Xθ + z) − θ + (γI + X>X )−1γIθ‖2]

= E[‖(γI + X>X )−1(X>X + γI)θ − θ + (γI + X>X )−1X>z‖2]

= E[‖θ − θ + (γI + X>X )−1X>z‖2]

= E[‖(γI + X>X )−1X>z‖2]

≤ E[‖(γI + X>X )−1‖2‖X>z‖2]

≤ E[‖(γI + X>X )−1‖2Mn]

≤
Mn

γ + (1 − ξ) 1
d+2 n

Using these bounds, we see:

E[‖θ̂R − θ‖22] ≤ *
,

γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ σ4 *
,

(1 + ξ) 1
d+2 n

(γ + (1 − ξ) 1
d+2 n)2

+
-

2

,

and

E[‖θ̂R − θ‖2] ≤
γB

γ + (1 − ξ) 1
d+2 n

+
Mn

γ + (1 − ξ) 1
d+2 n

=
γB + Mn

γ + (1 − ξ) 1
d+2 n

.

�

We now prove the accuracy guarantee for the estimator θ̂P output by Algorithm 4.
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Theorem 18 (Accuracy). Fix a participation goal 1 − α, a privacy parameter ε , a

desired confidence parameter β, ξ ∈ (0,1), and t ≥ 1. Then under the symmetric

threshold strategy στα,β , Algorithm 4 will output an estimator θ̂P such that with

probability at least 1 − β − d−t2
, and when n ≥ C( t

ξ )2(d + 2) log d,

E[‖θ̂P − θ‖22] = O *
,

(
αn
γ

+
1
γε

)2

+

(
γ

n

)2
+

(
1
n

)2

+
αn
γ

+
1
γε

+
-
.

Proof. Let the data held by players be (X, y), and let ŷ be the reports of players
under the threshold strategy στα,β . As in Theorem 17, let θ̂P be the estimator output
by Algorithm 4 on the reported data under this strategy, and let (θ̂R)′ be the ridge
regression estimator computed Algorithm 4 when all players follow strategy στα,β .
Let θ̂R be the ridge regression estimator that would have been computed within
Algorithm 4 if all players had reported truthfully. Recall that v is the noise vector
added in Algorithm 4.

E[‖θ̂P − θ‖22] = E[‖θ̂P − θ̂R + θ̂R − θ‖22]

= E
[
‖θ̂P − θ̂R‖22 + ‖θ̂R − θ‖22 + 2

〈
θ̂P − θ̂R, θ̂R − θ

〉]

≤ E[‖θ̂P − θ̂R‖22] + E[‖θ̂R − θ‖22] + 2E[‖θ̂P − θ̂R‖2‖θ̂
R − θ‖2]

We start by bounding the first term. Recall that the estimator θ̂P is equal to the
ridge regression estimator on the reported data, plus the noise vector v added by
Algorithm 4.

E[‖θ̂P − θ̂R‖22] = E[‖(θ̂R)′ + v − θ̂R‖22]

= E[‖(θ̂R)′ − θ̂R‖22] + E[‖v‖22] + 2E[〈(θ̂R)′ − θ̂R,v〉]

= E[‖(θ̂R)′ − θ̂R‖22] + E[‖v‖22] + 2〈E[(θ̂R)′ − θ̂R],E[v]〉

= E[‖(θ̂R)′ − θ̂R‖22] + 2
(

4B + 2M
γε

)2

(by Lemma 16)

The estimators (θ̂R)′ and θ̂R are the ridge regression estimators of two (random)
databases that differ only on the data of players who misreported under threshold
strategy στα,β . The definition of τα,β ensures us that with probability 1 − β, at most
αn players will misreport their ŷ j . For the remainder of the proof, we will assume
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that at most αn players misreported to the mechanism, which will be the case except
with probability β.

Thus for all pairs of databases over which the expectation is taken, (θ̂R)′ and θ̂R

differ in the input of at most αn players, and by Lemma 15, their normed difference
is bounded above by

(
αn
γ (4B + 2M)

)2
. Since this bound applies to every term over

which the expectation is taken, it also bounds the expectation.

Thus the first term satisfies the following bound:

E[‖θ̂P − θ‖22] ≤
(
αn
γ

(4B + 2M)
)2

+ 2
(

4B + 2M
γε

)2

.

By Lemma 17, with probability at least 1 − d−t2
, when n ≥ C( t

ξ )2(d + 2) log d, the
second term is bounded above by

E[‖θ̂R − θ‖22] ≤ *
,

γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ σ4 *
,

(1 + ξ) 1
d+2 n

(γ + (1 − ξ) 1
d+2 n)2

+
-

2

.

We will also assume for the remainder of the proof that the above bound holds,
which will be the case except with probability at most d−t2

.

We now bound the third term.

2E[‖θ̂P − θ̂R‖2‖θ̂
R − θ‖2] = 2E[‖(θ̂R)′ + v − θ̂R‖2‖θ̂

R − θ‖2]

≤ 2E[
(
‖(θ̂R)′ − θ̂R‖2 + ‖v‖2

)
‖θ̂R − θ‖2]

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂
R − θ‖2] + 2E[‖v‖2‖θ̂R − θ‖2]

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂
R − θ‖2] + 2E[‖v‖2]E[‖θ̂R − θ‖2] (by independence)

= 2E[‖(θ̂R)′ − θ̂R‖2‖θ̂
R − θ‖2] + 2

(
4B + 2M

γε

)
E[‖θ̂R − θ‖2] (by Lemma 16)

We have assumed at most αn players misreported (which will occur with probability
at least 1 − β), so for all pairs of databases over which the expectation in the first
term is taken, Lemma 15 bounds ‖(θ̂R)′ − θ̂R‖ above by αn

γ (4B + 2M). Thus we



122

continue bonding the third term:

2E[‖(θ̂R)′ − θ̂R‖2‖θ̂
R − θ‖2] + 2

(
4B + 2M

γε

)
E[‖θ̂R − θ‖2]

≤ 2E
[(
αn
γ

(4B + 2M)
)
‖θ̂R − θ‖2

]
+ 2

4B + 2M
γε

E
[
‖θ̂R − θ‖2

]

= 2
(
αn
γ

(4B + 2M)
)
E

[
‖θ̂R − θ‖2

]
+ 2

4B + 2M
γε

E
[
‖θ̂R − θ‖2

]

= 2
(
αn
γ

(4B + 2M) +
4B + 2M

γε

)
E

[
‖θ̂R − θ‖2

]

≤ 2
(
αn
γ

(4B + 2M) +
4B + 2M

γε

)
γB + Mn

γ + (1 − ξ) 1
d+2 n

The first inequality above comes from Lemma 15, and the second inequality is due
to Lemma 17.

We can now plug these terms back in to get our final accuracy bound. Taking a
union bound over the two failure probabilities, with probability at least 1− β− d−t2

,
when n ≥ C( t

ξ )2(d + 2) log d:

E
[


θ̂

P − θ





2

2

]
≤

(
αn
γ

(4B + 2M)
)2

+ 2
(

4B + 2M
γε

)2

+ *
,

γB

γ + (1 − ξ) 1
d+2 n

+
-

2

+ σ4 *
,

(1 + ξ) 1
d+2 n

(γ + (1 − ξ) 1
d+2 n)2

+
-

2

+ 2
(
αn
γ

(4B + 2M) +
4B + 2M

γε

)
γB + Mn

γ + (1 − ξ) 1
d+2 n

�

Proof of Theorems 19 and 20 (Individual Rationality and Budget)
In this section we first characterize the conditions needed for individual rational-
ity, and then compute the total budget required from the analyst to run the Private
Regression Mechanism in Algorithm 4. Note that if we do not require individual
rationality, it is easy to achieve a small budget: we can scale down payments as in
the non-private mechanism from Section 6.3. However, once players have privacy
concerns, they will no longer accept an arbitrarily small positive payment; each
player must be paid enough to compensate for her privacy loss. In order to incen-
tivize players to participate in the mechanism, the analyst will have to ensure that
players receive non-negative utility from participation.
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We first show that Algorithm 4 is individually rational for players with privacy costs
below threshold. Note that because we allow cost parameters to be unbounded,
it is not possible in general to ensure individual rationality for all players while
maintaining a finite budget.

Theorem 19 (Individual Rationality). Under Assumption 4, the mechanism in Al-

gorithm 4 is individually rational for all players with cost parameters ci ≤ τα,β as

long as,

a ≥ *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB) + bB2 + τα,βε
2,

regardless of the reports from players with cost coefficients above τα,β.

Proof. Let player i have privacy cost parameter ci ≤ τα,β, and consider player i’s
utility from participating in the mechanism. Let player i be in group 1 − j, so she
is paid according to the estimator computed on the data of group j. Let θ̂P

j be the
estimator output by Algorithm 4 on the reported data of group j under this strategy,
and let (θ̂R

j )′ be the ridge regression estimator computed within Algorithm 4 when
all players in group j follow strategy στα,β . Let θ̂R

j be the ridge regression estimator
that would have been computed within Algorithm 4 if all players in group j had
reported truthfully. For ease of notation, we will suppress the subscripts on the
estimators for the remainder of the proof.

E[ui (xi, yi, ŷi)] = E[Ba,b((θ̂P)>xi,E[θ |xi, ŷi]>xi) |xi, yi] − E[ fi (ci, ε )]

≥ E[Ba,b((θ̂P)>xi,E[θ |xi, ŷi]>xi) |xi, yi] − τα,βε2 (by Assump. 4)

= Ba,b(E[θ̂P |xi, yi]>xi,E[θ |xi, ŷi]>xi) − τα,βε2

We proceed by bounding the inputs to the payment rule, and thus lower-bounding
the payment player i receives. The second input satisfies the following bound:

E[θ |xi, ŷi]>xi ≤ ‖E[θ |xi, ŷi]‖2‖xi‖2 ≤ B.

We can also bound the first input to the payment rule as follows:

E[θ̂P |xi, yi]>xi = E[(θ̂R)′|xi, yi]>xi + E[v |xi, yi]>xi

= E[(θ̂R)′|xi, yi]>xi

≤ ‖E[(θ̂R)′|xi, yi]‖2‖xi‖2

≤ ‖E[(θ̂R)′ − θ̂R |xi, yi]‖2 + ‖E[θ̂R − θ |xi, yi]‖2 + ‖E[θ |xi, yi]‖2

≤
αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B,
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where the last inequality is due to Lemma 15 and Theorem 14.

Recall that our Brier-based payment rule is Ba,b(p,q) = a−b
(
p − 2pq + q2

)
, which

is bounded below by a− b|p| − 2b|p| |q | − b|q |2 = a− |p|(b + 2b|q |) − b|q |2. Using
the bounds we just computed on the inputs to player i’s payment rule, her payment
is at least

πi ≥ a − *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB) − bB2.

Thus her expected utility from participating in the mechanism is at least

E[ui (xi, yi, ŷi)] ≥ a−*
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b+2bB)−bB2−τα,βε
2.

Player i will be ensured non-negative utility as long as

a ≥ *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB) + bB2 + τα,βε
2.

�

The next theorem characterizes the total budget required by the analyst to run Al-
gorithm 4.

Theorem 20 (Budget). The total budget required by the analyst to run Algorithm 4

when players utilize threshold equilibrium strategy στα,β is

B ≤ n

a + *

,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB)

.

Proof. The total budget is the sum of payments to all players.

B =

n∑
i=1

E[πi] =

n∑
i=1

E[Ba,b((θ̂P)>xi,E[θ |xi, ŷi]>xi) |xi, yi]

=

n∑
i=1

Ba,b(E[θ̂P |xi, yi]>xi,E[θ |xi, ŷi]>xi)

Recall that our Brier-based payment rule is Ba,b(p,q) = a−b
(
p − 2pq + q2

)
, which

is bounded above by a + b|p| + 2b|p| |q | = a + |p|(b + 2b|q |). Using the bounds
computed in the proof of Theorem 19, each player i receives payment at most,

πi ≥ a + *
,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB).
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Thus the total budget is at most:

B =

n∑
i=1

E[πi] ≤ n *
,
a + *

,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB)+
-
.

�

Proof of Lemma 11 (Bound on threshold τα,β)

Lemma 11. For a cost distribution C with conditional marginal CDF lower bounded

by some function F:

min
xi ,yi

(
Prcj∼C|xi ,yi [c j ≤ τ]

)
≥ F (τ),

then

τα,β ≤ max{F−1(1 − αβ),F−1(1 − α)}.

Proof. We first bound τ1
α,β.

τ1
α,β = inf

τ

(
Prc∼C [|{i : ci ≤ τ}| ≥ (1 − α)n] ≥ 1 − β

)
= inf

τ

(
Prc∼C [|{i : ci ≥ τ}| ≤ αn] ≥ 1 − β

)
= inf

τ

(
1 − Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≥ 1 − β

)
= inf

τ

(
Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≤ β

)
We continue by upper bounding the inner term of the expression.

Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≤
E[|{i : ci ≥ τ}|

αn
(by Markov’s inequality)

=
n Pr[ci ≥ τ]

αn
(by independence of costs)

=
Pr[ci ≥ τ]

α

From this bound, if Pr[ci≥τ]
α ≤ β, then also Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≤ β. Thus,

inf
τ

(
Prc∼C [|{i : ci ≥ τ}| ≥ αn] ≤ β

)
≤ inf

τ

(
Pr[ci ≥ τ]

α
≤ β

)
,
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since the infimum in the first expression is taken over a superset of the feasible
region of the latter expression. Then,

τ1
α,β ≤ inf

τ

(
Pr[ci ≥ τ]

α
≤ β

)
= inf

τ

(
Pr[ci ≥ τ] ≤ αβ

)
= inf

τ

(
1 − Pr[ci ≤ τ] ≤ αβ

)
= inf

τ

(
C(τ) ≥ 1 − αβ

)
≤ inf

τ

(
F (τ) ≥ 1 − αβ

)
(since the extremal conditional marginal bounds the unconditioned marginal)

= inf
τ

(
τ ≥ F−1(1 − αβ)

)
= F−1(1 − αβ)

Thus under our assumptions, τ1
α,β ≤ F−1(1 − αβ).

We now bound τ2
α.

τ2
α = inf

τ

(
min
xi ,yi

(
Prcj∼C|xi ,yi [c j ≤ τ]

)
≥ 1 − α

)
≤ inf

τ
(F (τ) ≥ 1 − α)

= inf
τ

(
τ ≥ F−1(1 − α)

)
= F−1(1 − α)

Finally,
τα,β = max{τ1

α,β, τ
2
α } ≤ max{F−1(1 − αβ),F−1(1 − α)}.

�

Proof of Corollary 2 (Main result)

Corollary 1 (Main result (Formal)). Choose δ ∈ (0, p
2+2p ). Then under As-

sumptions 4, 6, and 7, setting α = n−δ, β = n−
p
2 +δ(1+p), ε = n−1+δ, γ = n1− δ2 ,

a = (6B + 2M)(1 + B)2n−
3
2 + n−

3
2 +δ, b = n−

3
2 , ξ = 1/2, and t =

√
n

4C(d+2) log d in

Algorithm 4 ensures that with probability 1 − dΘ(−n) − n−
p
2 +δ(1+p):

1. the output of Algorithm 4 is O
(
n−1+δ

)
-jointly differentially private,
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2. it is an O
(
n−

3
2 +δ

)
-approximate Bayes Nash equilibrium for a 1 − O

(
n−δ

)
fraction of players to truthfully report their data,

3. the computed estimate θ̂P is O
(
n−δ

)
-accurate,

4. it is individually rational for a 1 − O
(
n−δ

)
fraction of players to participate

in the mechanism, and

5. the required budget from the analyst is O
(
n−

1
2 +δ

)
.

Proof. Choose δ ∈ (0, p
2+2p ). Note that this ensures δ < 1/2. Let α = n−δ and

β = n
p
2 −δ(1+p) as we have chosen. By the constraint that δ < p

2+2p , we have ensured
that β = o(1). By Lemma 11, τα,β ≤ max{(αβ)−1/p,α−1/p} = (αβ)−1/p since
α, β = o(1) and p > 1. Then τα,β = O

(
n1−δ

)
.

By setting ξ = 1/2 and t =
√

n
4C(d+2) log d , we ensure that with probability 1 −

d−
n

4C (d+2) log d = 1 − dΘ(−n), the bounds stated in Theorem 14 hold. With probability
1− β, at most an α-fraction of players will have cost parameters above τα,β. Taking
a union bound over these two failure probabilities, the bounds in Theorems 16, 17,
18, 19, and 20 will all hold with probability at least 1− dΘ(−n) − n−

p
2 +δ(1+p). For the

remainder of the proof, we will assume all bounds hold, which will happen with at
least the probability specified above.

First note that by Theorem 16, Algorithm 4 is 2ε-jointly differentially private. By
our choice of ε , the privacy guarantee is 2n−1+δ = o(

√
n).

Recall that by Theorem 17, it is a
[
b
(
αn
γ (4B + 2M) +

γB
γ+(1−ξ) 1

d+2 n

)2
+ τα,βε

2
]
-

approximate Bayes-Nash equilibrium for a (1 − α)-fraction of players to truth-
fully report their data. Taking B, M , ξ, and d to be constants, this strategy forms
a Θ

(
b
(
αn
γ +

γ
n

)2
+ τα,βε

2
)
-approximate BNE. To achieve the desired truthfulness

bound, we require (among other things) that τα,βε2 = o( 1
n ). Given the bound on

τα,β, it would suffice to have ε = o(n−
3
4 + δ

2 ). This is satisfied by our choice of
ε = n−1+δ because δ < 1/2. After setting b = o( 1

n ), we will have the desired
truthfulness bound if αn

γ +
γ
γ+n = o(1). This implies the following constraints on

γ: we require γ = ω(nα) = ω(n1−δ) and γ = o(n). Our choice of γ = n1− δ2

satisfies these requirements. Due to our choice of b = n−3/2, the approximation
factor will be dominated by τα,βε

2 = O
(
n−

3
2 +δ

)
= o(1). Thus truthtelling is an

O
(
n−

3
2 +δ

)
= o(1)-approximate Bayes-Nash equilibrium for all but an n−δ = o(1)-

fraction of players.
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Recall from Theorem 18 that the computed estimate θ̂P is guaranteed to satisfy
O

((
αn
γ + 1

γε

)2
+

(
γ
γ+n

)2
+

(
1
n

)2
+ αn

γ + 1
γε

)
-accuracy. We have already established

that αn
γ = o(1) and γ

γ+n = o(1). Trivially, 1
n2 = o(1). We turn now to the term

1
γε . For this term to be o(1), we require γ = ω( 1

ε ) = ω
(
n1−δ

)
. Our choice of

γ = n1− δ2 ensures this requirement is satisfied. Since αn
γ + 1

γε = o(1), then so must

be
(
αn
γ + 1

γε

)2
= o(1). The accuracy bound will be dominated by three terms: first(

γ
n

)2
= n−δ, second αn

γ = n−
δ
2 , and third 1

γε = n−
δ
2 . Thus, Algorithm 4 outputs an

estimator with accuracy O
(
n−

δ
2
)

= o(1).

Theorem 19 says that the mechanism in Algorithm 4 is individually rational for a
(1 − α)-fraction of players as long as a ≥

(
αn
γ (4B + 2M) +

γB
γ+(1−ξ) 1

d+2 n
+ B

)
(b +

2bB) + bB2 + τα,βε
2. We now expand each term of this expression to prove that

our choice of a satisfies the desired bound. Consider the first term: αn
γ (4B + 2M) =

n−
δ
2 (4B+2M). This term is decreasing in n, so it can be upper bounded by its value

when n = 1. Thus αn
γ (4B + 2M) ≤ 4B + 2M . Now consider the second term:

γB

γ + (1 − ξ) 1
d+2 n

=
n1− δ2 B

n1− δ2 + 1
2(d+2) n

=
n−

δ
2 B

n−
δ
2 + 1

2(d+2)

= B *
,
1 −

1

2(d + 2)n−
δ
2 + 1

+
-
.

The final term −1

2(d+2)n−
δ
2 +1

is always negative, so the entire term γB
γ+(1−ξ) 1

d+2 n
can be

bounded above by B. We can simplify the expression b + 2bB + bB2 as (1 + B)2b =

(1 + B)2n−3/2. Finally, as noted earlier (and due to to Lemma 11), we can upper
bound τα,βε

2 ≤ n−
3
2 +δ. Combining all of these bounds, it would suffice to set

a ≥ (6B + 2M)(1 + B)2n−3/2 + n−
3
2 +δ. We set a to be exactly this bound. Then

it is individually rational for a 1 − α = 1 − n−δ = 1 − o(1) fraction of players to
participate in the mechanism.

By Theorem 20, the budget required from the analyst is:

B ≤ n

a + *

,

αn
γ

(4B + 2M) +
γB

γ + (1 − ξ) 1
d+2 n

+ B+
-

(b + 2bB)

.

From our choice of a = Θ
(
n−

3
2 +δ

)
and because αn

γ +
γ
n = o(1), the required budget

is B = O
(
n(b + τα,βε

2)
)

= O
(
n(n−

3
2 + n−

3
2 +δ)

)
= O

(
n−

1
2 +δ

)
= o(1). �
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C h a p t e r 7

THE POSSIBILITIES AND LIMITATIONS OF PRIVATE
PREDICTION MARKETS

7.1 Introduction
Betting markets of various forms—including the stock exchange [54], futures mar-
kets [88], sports betting markets [44], and markets at the racetrack [95]—have been
shown to successfully collect and aggregate information. Over the last few decades,
prediction markets designed specifically for the purpose of elicitation and aggrega-
tion, have yielded useful predictions in domains as diverse as politics [6], disease
surveillance [85], and entertainment [82].

The desire to aggregate and act on the strategically valuable information dispersed
among employees has led many companies to experiment with internal prediction
markets. An internal corporate market could be used to predict the launch date of
a new product or the product’s eventual success. Among the first companies to
experiment with internal markets were Hewlett-Packard, which implemented real-
money markets, and Google, which ran markets using its own internal currency that
could be exchanged for raffle tickets or prizes [84, 20]. More recently, Microsoft,
Intel, Ford, GE, Siemens, and others have engaged in similar experiments [5, 13,
20].

Proponents of internal corporate markets often argue that the market structure helps
in part because, without it, “business practices [...] create incentives for individuals
not to reveal their information” [84]. However, even with a formal market structure
in place, an employee might be hesitant to bet against the success of their team
for fear of insulting her coworkers or angering management. If an employee has
information that is unfavorable to the company, she might choose not to report it,
leading to predictions that are overly optimistic for the company and ultimately
contributing to an “optimism bias” in the market similar to the bias in Google’s
corporate markets discovered by Cowgill and Zitzewitz [20].

To address this issue, we consider the problem of designing private prediction mar-
kets. A private market would allow participants to engage in the market and con-
tribute to the accuracy of the market’s predictions without fear of having their in-
formation or beliefs revealed. The goal is to provide participants with a form of
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“plausible deniability.” Although participants’ trades or wagers should together in-
fluence the market’s behavior and predictions, no single participant’s actions should
have too much influence over what others can observe. We formalize this idea using
differential privacy, presented in Chapter 2, which can be used to guarantee that any
participant’s actions cannot be inferred from observations.

We begin in Section 7.3 by designing a private analog of the weighted score wa-

gering mechanisms first introduced by Lambert et al. [68]. A wagering mechanism

allows bettors to each specify a belief about the likelihood of a future event and a
corresponding monetary wager. These wagers are then collected by a centralized
operator and redistributed among bettors in such a way that more accurate bet-
tors receive higher rewards. Lambert et al. [68] showed that the class of weighted
score wagering mechanisms, which are built on the machinery of proper scoring
rules [49], is the unique set of wagering mechanisms to satisfy a set of desired
properties such as budget balance, truthfulness, and anonymity. We design a class
of wagering mechanisms with randomized payments that maintain the nice prop-
erties of weighted score wagering mechanisms in expectation while additionally
guaranteeing ε-joint differential privacy in the bettors’ reported beliefs. We discuss
the trade-offs that exist between the privacy of the mechanism (captured by the pa-
rameter ε) and the sensitivity of a bettor’s payment to her own report, and show
how to set the parameters of our mechanisms to achieve a reasonable level of the
plausible deniability desired in practice.

We next address the problem of running private dynamic prediction markets in Sec-
tion 7.4. There we consider the setting in which traders buy and sell securities with
values linked to future events. For example, a market might offer a security worth
$1 if Microsoft Bing’s market share increases in 2016 and $0 otherwise. A risk
neutral trader who believes that the probability of Bing’s market share increasing is
p would profit from buying this security at any price less than $p or (short) selling
it at any price greater than $p. The market price of the security is thought to reflect
traders’ collective beliefs about the likelihood of this event. We focus on cost-

function prediction markets [15, 1] such as Hanson’s popular logarithmic market
scoring rule [55]. In a cost-function market, all trades are placed through an auto-

mated market maker, a centralized algorithmic agent that is always willing to buy
or sell securities at some current market price that depends on the history of trade
via a potential function called the cost function. We ask whether it is possible for a
market maker to price trades according to a noisy cost function in a way that main-
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tains traders’ privacy without allowing traders to make unbounded profit off of the
noise. Unfortunately, we show that under general assumptions, it is impossible for
a market maker to achieve bounded loss and ε-differential privacy without allowing
the privacy guarantee to degrade very quickly as the number of trades grows. In
particular, the quantity eε must grown faster than linearly in the number of trades,
making such markets impractical in settings in which privacy is valued. We suggest
several avenues for future research aimed at circumventing this lower bound.

There is very little prior work on the design of private prediction markets, and to the
best of our knowledge, we are the first to consider privacy for one-shot wagering
mechanisms. Most closely related to our work is the recent paper of Waggoner,
Frongillo, and Abernethy [99] who consider a setting in which each of a set of
self-interested agents holds a private data point consisting of an observation x and
corresponding label y. A firm would like to purchase the agents’ data in order
to learn a function to accurately predict the labels of new observations. Build-
ing on the mathematical foundations of cost-function market makers, Waggoner,
Frongillo, and Abernethy propose a mechanism that provides incentives for the
agents to reveal their data to the firm in such a way that the firm is able to solve
its prediction task while maintaining the agents’ privacy. The authors mention that
similar ideas can be applied to produce privacy-preserving prediction markets, but
their construction requires knowing the number of trades that will occur in advance
to appropriately set parameters. The most straightforward way of applying their
techniques to prediction markets results in a market maker falling in the class cov-
ered by our impossibility result, suggesting that such techniques cannot be used to
derive a privacy-preserving market with bounded loss when the number trades is
unknown.

7.2 Privacy with Streaming Data
The weighted score wagering mechanisms we design in Section 7.3 are differen-

tially private and joint differentially private in the standard sense, according to Def-
initions 1 and 2, respectively. However, these definitions assume the input database
D is fixed and finite, whereas the dynamic prediction markets we consider in Sec-
tion 7.4 have input databases of possibly infinite size that arrive online in a stream-

ing fashion, one element at a time.

Fortunately, differential privacy has also been considered for streaming algorithms
[12, 37]. Let N = {1,2,3, . . .}. A stream s ∈ DN is a string of countable length
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of elements in D, where st ∈ D denotes the element at position or time t and
s1,...,t ∈ D

t is the length t prefix of the stream s. Two streams s and s′ are said to be
neighbors if they differ at exactly one time t.

A streaming algorithmM is said to be unbounded if it accepts streams of indefinite
length, that is, if for any stream s ∈ DN, M (s) ∈ RN. In contrast, a streaming
algorithm is T-bounded if it accepts only streams of length at most T . Dwork et al.
[37] consider only T-bounded streaming algorithms. Since we consider unbounded
streaming algorithms, we use a more appropriate definition of differential privacy
for streams adapted from Chan, Shi, and Song [12]. For unbounded streaming algo-
rithms, it can be convenient to let the privacy guarantee degrade as the input stream
grows in length. Chan, Shi, and Song [12] implicitly allow this in some of their
results; see, for example, Corollary 4.5 in their paper. For clarity and preciseness,
we explicitly capture this in our definition.

Definition 31 (Differential Privacy for Streams). For any non-decreasing function

ε : N → R+ and any δ ≥ 0, a streaming algorithm M : DN → RN is (ε (t), δ)-
differentially private if for every pair of neighboring streams s, s′′ ∈ DN, for every

t ∈ N, and for every subset S ⊆ Rt ,

Pr[M (s1,...,t ) ∈ S] ≤ eε (t)Pr[M (s′1,...,t ) ∈ S] + δ.

If δ = 0, we say thatM is ε (t)-differentially private.

Note that we allow ε to grow with t, but require that δ stay constant. In principle,
one could also allow δ to depend on the length of the stream. However, allowing
δ to increase would likely be unacceptable in scenarios in which privacy is consid-
ered important. In fact, it is more typical to require smaller values of δ for larger
databases since for a database of size n, an algorithm could be considered (ε, δ)-
private for δ on the order of 1/n even if it fully reveals a small number of randomly
chosen database entries [34]. Since we use this definition only when showing an
impossibility result, allowing δ to decrease in t would not strengthen our result.

7.3 Private Wagering Mechanisms
We begin with the problem of designing a one-shot wagering mechanism that in-
centivizes bettors to truthfully report their beliefs while maintaining their privacy.
A wagering mechanism allows a set of bettors to each specify a belief about a future
event and a monetary wager. Wagers are collected by a centralized operator and re-
distributed to bettors in such a way that bettors with more accurate predictions are
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more highly rewarded. Lambert et al. [68] showed that the class of weighted score

wagering mechanisms (WSWMs) is the unique class of wagering mechanisms to
satisfy a set of desired axioms such as budget balance and truthfulness. In this
section, we show how to design a randomized wagering mechanism that achieves
ε-joint differential privacy while maintaining the nice properties of WSWMs in ex-
pectation.

Standard wagering mechanisms
Wagering mechanisms, introduced by Lambert et al. [68], are mechanisms designed
to allow a centralized operator to elicit the beliefs of a set of bettors without taking
on any risk. In this paper we focus on binary wagering mechanisms, in which each
bettor i submits a report pi ∈ [0,1] specifying how likely she believes it is that a
particular event will occur, along with a wager mi ≥ 0 specifying the maximum
amount of money that she is willing to lose. After all reports and wagers have been
collected, all parties observe the realized outcome ω ∈ {0,1} indicating whether or
not the event occurred. Each bettor i then receives a payment that is a function of
the outcome and the reports and wagers of all bettors. This idea is formalized as
follows.

Definition 32 (Wagering Mechanism [68]). A wagering mechanism for a set of

bettors N = {1, . . . ,n} is specified by a vector Π of (possibly randomized) profit

functions, Πi : [0,1]n × Rn
+ × {0,1} → R, where Πi (p,m,ω) denotes the total profit

to bettor i when the vectors of bettors’ reported probabilities and wagers are p and

m and the realized outcome is ω. It is required that Πi (p,m,ω) ≥ −mi for all p, m,

and ω, which ensures that no bettor loses more than her wager.

There are two minor differences between the definition presented here and that of
Lambert et al. [68]. First, for convenience, we use Πi to denote the total profit to
bettor i (i.e., her payment from the mechanism minus her wager), unlike Lambert
et al. [68], who use Πi to denote the payment only. While this difference is inconse-
quential, we mention it to avoid confusion. Second, all previous work on wagering
mechanisms has restricted attention to deterministic profit functions Πi. Since ran-
domization is necessary to attain privacy, we open up our study to randomized profit
functions.

Lambert et al. [68] defined a set of desirable properties or axioms that deterministic
wagering mechanisms should arguably satisfy. Here we adapt those properties to
potentially randomized wagering mechanisms, making the smallest modifications
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possible to maintain the spirit of the axioms. Four of the properties (truthfulness,
individual rationality, normality, and monotonicity) were originally defined in terms
of expected profit with the expectation taken over some true or believed distribution
over the outcome ω. We allow the expectation to be over the randomness in the
profit function as well. Sybilproofness was not initially defined in expectation; we
now ask that this property hold in expectation with respect to the randomness in the
profit function. We define anonymity in terms of the distribution over all bettors’
profits, and ask that budget balance hold for any realization of the randomness in
Π.

(a) Budget balance: The operator makes no profit or loss, i.e., ∀p ∈ [0,1]n,
∀m ∈ Rn

+, ∀ω ∈ {0,1}, and for any realization of the randomness in Π,∑n
i=1 Πi (p,m,ω) = 0.

(b) Anonymity: Profits do not depend on the identify of the bettors. That is, for
any permutation of the bettors σ, ∀p ∈ [0,1]n, ∀m ∈ Rn

+, ∀ω ∈ {0,1}, the
joint distribution over profit vectors {Πi (p,m,ω)}i∈N is the same as the joint
distribution over profit vectors {Πσ(i)

(
(pσ−1(i))i∈N , (mσ−1(i))i∈N ,ω

)
}i∈N .

(c) Truthfulness: Bettors uniquely maximize their expected profit by reporting the
truth. That is, ∀i ∈ N , ∀p−i ∈ [0,1]n−1, ∀m ∈ Rn

+, ∀p∗,pi ∈ [0,1] with pi , p∗,

Eω∼p∗
[
Πi ((p∗,p−i),m,ω)

]
> Eω∼p∗

[
Πi ((pi,p−i),m,ω)

]
.

(d) Individual rationality: Bettors prefer participating to not participating. That
is, ∀i ∈ N , ∀mi > 0, for all p∗ ∈ [0,1], there exists some pi ∈ [0,1] such that
∀p−i ∈ [0,1]n−1, ∀m−i ∈ R

n−1
+ , Eω∼p∗

[
Πi ((pi,p−i),m,ω)

]
≥ 0.

(e) Normality:1 If any bettor j changes her report, the change in the expected
profit to any other bettor i with respect to a fixed belief p∗ is the opposite sign
of the change in expected payoff to j. That is, ∀i, j ∈ N , i , j, ∀p,p′ ∈ [0,1]n

with p′k = pk for all k , j, ∀p∗ ∈ [0,1], ∀m ∈ Rn
+,

E[Π j (p,m,ω)] < E[Π j (p′,m,ω)] =⇒ E[Πi (p,m,ω)] ≥ E[Πi (p′,m,ω)].

All expectations are taken w.r.t. ω ∼ p∗ and the randomness in the mechanism.
1Lambert et al. [67] and Chen et al. [17] used an alternative definition of normality for wagering

mechanisms that essentially requires that if, from some agent i’s perspective, the prediction of agent
j improves, then i’s expected profit decreases. This form of normality also holds for our mechanism.
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(f) Sybilproofness: Profits remain unchanged as any subset of players with the
same reports manipulate user accounts by merging accounts, creating fake iden-
tities, or transferring wagers. That is, ∀S ⊂ N , ∀p with pi = p j for all i, j ∈ S,
∀m,m′ ∈ Rn

+ with mi = m′i for i < S and
∑

i∈S mi =
∑

i∈S m′i , ∀ω ∈ {0,1}, two
conditions hold:

E [Πi (p,m,ω)] = E
[
Πi (p,m′,ω)

]
∀i < S,∑

i∈S

E [Πi (p,m,ω)] =
∑
i∈S

E
[
Πi (p,m′,ω)

]
.

(g) Monotonicity The magnitude of a bettor’s expected profit (or loss) increases as
her wager increases. That is, ∀i ∈ N , ∀p ∈ [0,1]n, ∀m ∈ Rn

+, ∀Mi > mi, ∀p∗ ∈

[0,1], either 0 < Eω∼p∗[Πi (p, (mi,m−i),ω)] < Eω∼p∗[Πi (p, (Mi,m−i),ω)] or
0 > Eω∼p∗[Πi (p, (mi,m−i),ω)] > Eω∼p∗[Πi (p, (Mi,m−i),ω)].

Previously studied wagering mechanisms [68, 17, 67] achieve truthfulness by in-
corporating strictly proper scoring rules [91] into their profit functions. Scoring
rules reward individuals based on the accuracy of their predictions about random
variables. For a binary random variable, a scoring rule s maps a prediction or re-
port p ∈ [0,1] and an outcome ω ∈ {0,1} to a score. A strictly proper scoring rule
incentivizes a risk neutral agent to report her true belief.

Definition 33 (Strictly proper scoring rule [91]). A function s : [0,1] × {0,1} →
R ∪ {−∞} is a strictly proper scoring rule if for all p,q ∈ [0,1] with p , q,

Eω∼p[s(p,ω)] > Eω∼p[s(q,ω)].

One common example is the Brier scoring rule [9], defined in Chapter 6 as s(p,ω) =

1 − 2(p − ω)2. Note that for the Brier scoring rule, s(p,ω) ∈ [−1,1] for all p and
ω, but any strictly proper scoring rule with a bounded range can be scaled to have
range [0,1].

The WSWMs incorporate proper scoring rules, assigning each bettor a profit based
on how her score compares to the wager-weighted average score of all bettors, as in
Algorithm 5. Lambert et al. [68] showed that the set of WSWMs satisfy the seven
axioms above and is the unique set of deterministic mechanisms that simultaneously
satisfy budget balance, anonymity, truthfulness, normality, and sybilproofness.
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Algorithm 5 Weighted-score wagering mechanisms [68]
Parameters: number of bettors n, strictly proper scoring rule s with range in [0,1]

Solicit reports p and wagers m
Realize state ω
for i = 1, . . . ,n do

Pay bettor i

Πi (p,m,ω) = mi

(
s(pi,ω) −

∑
j∈N m j s(p j ,ω)∑

j∈N m j

)
end for

Adding privacy
We would like our wagering mechanism to protect the privacy of each bettor i,
ensuring that the n−1 other bettors cannot learn too much about i’s report from their
own realized profits, even if they collude. Note that paying each agent according
to an independent scoring rule would easily achieve privacy, but would fail budget
balance and sybilproofness. We formalize our desire to add privacy to the other
good properties of weighted score wagering mechanisms using joint differential
privacy.

(h) ε-joint differential privacy: The vector of profit functions satisfies ε-joint dif-
ferential privacy, i.e., ∀i ∈ N , ∀p ∈ [0,1]n, ∀p′i ∈ [0,1], ∀m ∈ Rn

+, ∀ω ∈ {0,1},
and ∀S ⊂ Rn−1

+ , Pr[Π−i ((pi,p−i),m,ω) ∈ S] ≤ eεPr[Π−i ((p′i ,p−i),m,ω) ∈ S].

This definition requires only that the report pi of each bettor i be kept private, not
the wager mi. Private wagers would impose more severe limitations on the mecha-
nism, even if wagers are restricted to lie in a bounded range; see Section 7.3 for a
discussion. Note that if bettor i’s report pi is correlated with his wager mi, as might
be the case for a Bayesian agent [67], then just knowing mi could reveal information
about pi. In this case, differential privacy would guarantee that other bettors can in-
fer no more about pi after observing their profits than they could from observing
mi alone. If bettors have immutable beliefs as assumed by Lambert et al. [68], then
reports and wagers are not correlated and mi reveals nothing about pi.

Unfortunately, it is not possible to jointly obtain properties (a)–(h) with any rea-
sonable mechanism. This is due to an inherent tension between budget balance
and privacy. This is easy to see. Budget balance requires that a bettor i’s profit
is the negation of the sum of profits of the other n − 1 bettors, i.e., Πi (p,m,ω) =
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−
∑

j,i Π j (p,m,ω). Therefore, under budget balance, the other n − 1 bettors could
always collude to learn bettor i’s profit exactly. In order to obtain privacy, it would
therefore be necessary for bettor i’s profit to be differentially private in her own
report, resulting in profits that are almost entirely noise. This is formalized in the
following theorem. We omit a formal proof since it follows immediately from the
argument described here.

Theorem 21. Let Π be the vector of profit functions for any wagering mechanism

that satisfies both budget balance and ε-joint differential privacy for any ε > 0.

Then for all i ∈ N , Πi is ε-differentially private in bettor i’s report pi.

Since it is unsatisfying to consider mechanisms in which a bettor’s profit is not
sensitive to her own report, we require only that budget balance hold in expectation
over the randomness of the profit function. An operator who runs many markets
may be content with such a guarantee as it implies that he will not lose money on
average.

(a′) Budget balance in expectation: The operator neither makes a profit nor a loss
in expectation, i.e., ∀p ∈ [0,1]n, ∀m ∈ Rn

+, ∀ω ∈ {0,1},
∑n

i=1 E [Πi (p,m,ω)] =

0.

Private weighted score wagering mechanisms
Motivated by the argument above, we seek a wagering mechanism that simultane-
ously satisfies properties (a′) and (b)–(h). Keeping Theorem 21 in mind, we would
also like the wagering mechanism to be defined in such a way that each bettor
i’s profit is sensitive to her own report pi. Sensitivity is difficult to define pre-
cisely, but loosely speaking, we would like it to be the case that 1) the magnitude
of E [Πi (p,m,ω)] varies sufficiently with the choice of pi, and 2) there is not too
much noise or variance in a bettor’s profit, i.e., Πi (p,m,ω) is generally not too far
from E [Πi (p,m,ω)].

A natural first attempt would be to employ the standard Laplace Mechanism [34]
on top of a WSWM, adding independent Laplace noise to each bettor’s profit. The
resulting profit vector would satisfy ε-joint differential privacy, but since Laplace
random variables are unbounded, a bettor could lose more than her wager. Adding
other forms of noise does not help; to obtain differential privacy, the noise must
be unbounded [36]. Truncating a bettor’s profit to lie within a bounded range after
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noise is added could achieve privacy, but would result in a loss of truthfulness as
the bettor’s expected profit would no longer be a proper scoring rule.

Algorithm 6 Private wagering mechanism
Parameters: num bettors n, privacy param ε , strictly proper scoring rule s with
range in [0,1]
Fix α = 1 − e−ε and β = e−ε

Solicit reports p and wagers m
Realize state ω
for i = 1, . . . ,n do

Independently draw random variable xi (pi,ω) such that

xi (pi,ω) =



1 w.p. αs(pi ,ω)+β
1+β

−β w.p. 1−αs(pi ,ω)
1+β

end for
for i = 1, . . . ,n do

Pay bettor i

Πi (p,m,ω) = mi

(
αs(pi,ω) −

∑
j∈N m j x j (p j ,ω)∑

j∈N m j

)
end for

Instead, we take a different approach. Like the WSWM, our private wagering mech-

anism, formally defined in Algorithm 6, rewards each bettor based on how good his
score is compared with an aggregate measure of how good bettors’ scores are on
the whole. However, this aggregate measure is now calculated in a noisy manner.
That is, instead of comparing a bettor’s score to a weighted average of all bettors’
scores, the bettor’s score is compared to a weighted average of random variables
that are equal to bettors’ scores in expectation. As a result, each bettor’s profit is, in
expectation, equal to the profit she would receive using a WSWM, scaled down by a
parameter α to ensure that no bettor ever loses more than her wager, as stated in the
following lemma. The proof simply shows that for each i, E[xi (pi,ω)] = αs(pi,ω).

Lemma 18. For any number of bettors n > 0 with reports p ∈ [0,1]n and wagers

m ∈ Rn
+, for any setting of the privacy parameter ε > 0, for any outcome ω ∈

{0,1}, the expected value of bettor i’s profit Πi (p,m,ω) under the private wagering

mechanism with scoring rule s is equal to bettor i’s profit under a WSWM with

scoring rule αs.
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Proof. For each i ∈ N ,

E[xi (pi,ω)] =
αs(pi,ω) + β

1 + β
− β

1 − αs(pi,ω)
1 + β

= αs(pi,ω) (7.1)

and so
E[Πi (p,m,ω)] = mi

(
αs(pi,ω) −

∑
j∈N m jαs j (p j ,ω)∑

j∈N m j

)
.

This is precisely the profit to bettor i in a WSWM with scoring rule αs. �

Using this lemma, we show that this mechanism does indeed satisfy joint differen-
tial privacy as well as the other desired properties.

Theorem 22. The private wagering mechanism satisfies (a′) budget balance in ex-

pectation, (b) anonymity, (c) truthfulness, (d) individual rationality, (e) normality,

(f) sybilproofness, (g) monotonicity, and (h) ε-joint differential privacy.

Proof. Any WSWM satisfies budget balance in expectation (by satisfying budget
balance), truthfulness, individual rationality, normality, sybilproofness, and mono-
tonicity [68]. Since these are all defined in terms of expected profit, Lemma 18
implies that the private wagering mechanism satisfies them too.

Anonymity is easily observed since profits are defined symmetrically for all bettors.

Finally we show ε-joint differential privacy. We first prove that each random vari-
able xi (pi,ω) is ε-differentially private in bettor i’s report pi which implies that
the noisy aggregate of scores is private in all bettors’ reports. We then apply the
Billboard Lemma to show that the profit vector Π satisfies joint differential privacy.

To show that xi (pi,ω) is differentially private in pi, for each of the two values that
xi (pi,ω) can take on we must ensure that the ratio of the probability it takes this
value under any report p and the probability it takes this value under any alternative
report p′ is bounded by eε . Fix any ω ∈ {0,1}. Since s has range in [0,1],

Pr(xi (p,ω) = 1)
Pr(xi (p′,ω) = 1)

=
αs(p,ω) + β

αs(p′,ω) + β
≤
α + β

β
=

1 − e−ε + e−ε

e−ε
= eε ,

Pr(xi (p,ω) = −β)
Pr(xi (p′,ω) = −β)

=
1 − αs(p,ω)
1 − αs(p′,ω)

≤
1

1 − α
=

1
1 − (1 − e−ε )

= eε .

Thus xi (pi,ω) is ε-differentially private in pi. By Theorem 4 of McSherry [72],
the vector (x1(p1,ω), . . . , xn(pn,ω)) (and thus any function of this vector) is ε-
differentially private in the vector p, since each xi (pi,ω) does not depend on the
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reports of anyone but i. Since we view the wagers mi as constants, the quantity∑
j∈N m j x j (p j ,ω)/

∑
j∈N m j is also ε-differentially private in the reports p. Call

this quantity X .

To apply the Billboard Lemma, we can imagine the operator publicly announcing
the quantity X to the bettors. Given access to X , each bettor is able to calculate
her own profit Πi (p,m,ω) using only her own input and the values α and ω. The
Billboard Lemma implies that the vector of profits is ε-joint differentially private.

�

Sensitivity of the mechanism

Having established that our mechanism satisfies properties (a′) and (b)–(h), we next
address the sensitivity of the mechanism in terms of the two facets described above:
range of achievable expected profits and the amount of noise in the profit function.
This discussion sheds light on how to set ε in practice.

The first facet is quantified by Lemma 18. As α grows, the magnitude of bettors’
expected profits grows, and the range of expected profits grows as well. When α
approaches 1, the range of expected profits achievable through the private wagering
mechanism approaches that of a standard WSWM with the same proper scoring
rule.

Unfortunately, since α = 1 − e−ε , larger values of α imply larger values of the
privacy parameter ε . This gives us a clear tradeoff between privacy and magnitude
of expected payments. Luckily, in practice, it is probably unnecessary for ε to be
very small for most markets. A relatively large value of ε can still give bettors
plausible deniability. For example, setting ε = 1 implies that a bettor’s report can
only change the probability of another bettor receiving a particular profit by a factor
of roughly 2.7 and leads to α ≈ 0.63, a tradeoff that may be considered acceptable
in practice.

The second facet is quantified in the following theorem, which states that as more
money is wagered by more bettors, each bettor’s realized profit approaches its ex-
pectation. The bound depends on ‖m‖2/‖m‖1. If all wagers are equal, this quantity
is equal to 1/

√
n and bettors’ profits approach their expectations as n grows. This

is not the case at the other extreme, when there are a small number of bettors with
wagers much larger than the rest. The proof uses Hoeffding’s inequality to bound
the difference between the quantity m j x j (p j ,ω) and its expectation.
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Theorem 23. For any δ ∈ [0,1], any ε > 0, any number of bettors n > 0, any

vectors of reports p ∈ [0,1]n and wagers m ∈ Rn
+, with probability at least 1 − δ,

for all i ∈ N , the profit Πi output by the private wagering mechanism satisfies

|Πi (p,m,ω) − E[Πi (p,m,ω)]| ≤ mi *
,

‖m‖2
‖m‖1

(1 + β)

√
ln (2/δ)

2
+
-
.

Proof. For any j ∈ N , consider the quantity m j x j (p j ,ω). From Equation 7.1,
E[m j x j (p j ,ω)] = m jαs(p j ,ω). Additionally we can bound m j x j (p j ,ω) ∈ [−m j β,m j].
Hoeffding’s inequality then implies that with probability at least 1 − δ,

�������

∑
j∈N

m jαs(p j ,ω) −
∑
j∈N

m j x j (p j ,ω)
�������
≤ ‖m‖2(1 + β)

√
ln(2/δ)

2
.

From the definition of the private wagering mechanism and Lemma 18, we then
have that with probability at least 1 − δ, for any i ∈ N ,

|Πi (p,m,ω) − E[Πi (p,m,ω)]| =
mi∑

j∈N m j

�������

∑
j∈N

m jαs(p j ,ω) −
∑
j∈N

m j x j (p j ,ω)
�������

≤ mi
‖m‖2
‖m‖1

(1 + β)

√
ln(2/δ)

2

as desired. �

The following corollary shows that if all wagers are bounded in some range [L,U],
profits approach their expectations as the number of bettors grows.

Corollary 3. Fix any L and U, 0 < L < U. For any δ ∈ [0,1], any ε > 0, any

n > 0, any vectors of reports p ∈ [0,1]n and wagers m ∈ [L,U]n, with probability

at least 1− δ, for all i ∈ N , the profit Πi output by the private wagering mechanism

satisfies

|Πi (p,m,ω) − E[Πi (p,m,ω)]| ≤ mi *
,

U
√

nL
(1 + β)

√
ln (2/δ)

2
+
-
.

Keeping wagers private

Property (h) requires that bettors’ reports be kept private but does not guarantee
private wagers. The same tricks used in our private wagering mechanism could
be applied to obtain a privacy guarantee for both reports and wagers if wagers are
restricted to lie in a bounded range [L,U], but this would come with a great loss in
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sensitivity. Under the most straightforward extension, the parameter α would need
to be set to (L/U)(1 − e−ε/n) rather than (1 − e−ε ), greatly reducing the scale of
achievable profits and thus making the mechanism impractical in most settings.

Loosely speaking, the extra factor of L/U stems from the fact that a bettor’s effect
on the profit of any other bettor must be roughly the same whether he wagers the
maximum amount or the minimum. The poor dependence on n is slightly more
subtle. We created a private-belief mechanism by replacing each bettor j’s score
s(p j ,ω) in the WSWM with a random variable x j (p j ,ω) that is ε-differentially
private in p j . To obtain private wagers, we would instead need to replace the full
term m j s(p j ,ω)/

∑
k∈N mk with a random variable for each j. This term depends on

the wagers of all n bettors in addition to p j . Since each bettor’s profit would depend
on n such random variables, achieving ε-joint differential privacy would require that
each random variable be ε/n-differentially private in each bettor’s wager.

We believe that sacrifices in sensitivity are unavoidable and not merely an artifact
of our techniques and analysis, but leave a formal lower bound to future work.

7.4 Limits of Privacy with Cost-Function Market Makers
In practice, prediction markets are often run using dynamic mechanisms that up-
date in real time as new information surfaces. We now turn to the problem of
adding privacy guarantees to continuous-trade markets. We focus our attention on
cost-function prediction markets, in which all trades are placed through an auto-
mated market maker [55, 15, 1]. The market maker can be viewed as a streaming
algorithm that takes as input a stream of trades and outputs a corresponding stream
of market states from which trade prices can be computed. Therefore, the privacy
guarantees we seek are in the form of Definition 31. We ask whether it is possible
for the automated market maker to price trades according to a cost function while
maintaining ε (t)-differential privacy without opening up the opportunity for traders
to earn unbounded profits, leading the market maker to experience unbounded loss.
We show a mostly negative result: to achieve bounded loss, the privacy term eε (t)

must grow faster than linearly in t, the number of rounds of trade.

For simplicity, we state our results for markets over a single binary security, though
we believe they extend to cost-function markets over arbitrary security spaces.
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Standard cost-function market makers
We consider a setting in which there is a single binary security that traders may buy
or sell. After the outcome ω ∈ {0,1} has been revealed, a share of the security is
worth $1 if ω = 1 and $0 otherwise. A cost-function prediction market for this
security is fully specified by a convex function C called the cost function. Let xt

be the number of shares that are bought or sold by a trader in the tth transaction;
positive values of xt represent purchases while negative values represent (short)
sales. The market state after the first t − 1 trades is summarized by a single value
qt =

∑t−1
τ=1 xτ, and the tth trader is charged C(qt + xt ) − C(qt ) = C(qt+1) − C(qt ).

Thus the cost function can be viewed as a potential function, with C(qt+1) − C(0)
capturing the amount of money that the market maker has collected from the first
t trades. The instantaneous price at round t, denoted pt , is the price per share of
purchasing an infinitesimally small quantity of shares: pt = C′(qt ). This framework
is summarized in Algorithm 7.

Algorithm 7 Cost-function market maker (parameters: cost function C)
Initialize: q1 = 0
for t = 1,2, . . . do

Update instantaneous price pt = C′(qt )
A trader buys xt ∈ R shares and pays C(qt + xt ) − C(qt )
Update market state qt+1 = qt + xt

end for
Realize outcome ω
if ω = 1 then

for t = 1,2, . . . do
Market maker pays xt to the trader from round t

end for
end if

The most common cost-function market maker is Hanson’s log market scoring rule
(LMSR) [55]. The cost function for the single-security version of LMSR can be
written as C(q) = b log(e(q+a)/b +1) where b > 0 is a parameter controlling the rate
at which prices change as trades are made and a controls the initial market price at
state q = 0. The instantaneous price at any state q is C′(q) = e(q+a)/b/(e(q+a)/b +1).

Under mild conditions on C, all cost-function market makers satisfy several desir-
able properties, including natural notions of no-arbitrage and information incorpo-
ration [1]. We refer to any cost function C satisfying these mild conditions as a stan-

dard cost function. Although the market maker subsidizes trade, crucially its worst-
case loss is bounded. This ensures that the market maker does not go bankrupt,
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even if traders are perfectly informed. Formally, there exists a finite bound B such
that for any T , any sequence of trades x1, . . . , xT , and any outcome ω ∈ {0,1},

qT+1 · 1(ω = 1) − (C(qT+1) − C(0)) ≤ B,

where 1 is the indicator function that is 1 if its argument is true and 0 otherwise.
The first term on the left-hand side is the amount that the market maker must pay
(or collect from) traders when ω is revealed. The second is the amount collected
from traders. For the LMSR with initial price p1 = 0.5 (a = 0), the worst-case loss
is b log(2).

The noisy cost-function market maker
Clearly the standard cost-function market maker does not ensure differential pri-
vacy. The amount that a trader pays is a function of the market state, the sum of
all past trades. Thus anyone observing the stream of market prices could infer the
exact sequence of past trades. To guarantee privacy while still approximating cost-
function pricing, the marker maker would need to modify the sequence of published
prices (or equivalently, market states) to ensure that such information leakage does
not occur.

In this section, we define and analyze a noisy cost-function market maker. The noisy
market maker prices trades according to a cost function, but uses a noisy version of
the market state in order to mask the effect of past trades. In particular, the market
maker maintains a noisy market state q′t = qt + ηt , where qt is the true sum of trades
and ηt is a (random) noise term. The cost of trade xt is C(q′t + xt ) − C(q′t ), with
the instantaneous price now pt = C′(q′t ). Since the noise term ηt must be large
enough to mask the trade xt , we limit trades to be some maximum size k. A trader
who would like to buy or sell more than k shares must do this over multiple rounds.
The full modified framework is shown in Algorithm 8. For now we allow the noise
distribution Y to depend arbitrarily on the history of trade. This framework is
general; the natural adaptation of the privacy-preserving data market of Waggoner,
Frongillo, and Abernethy [99] to the single security prediction market setting would
result in a market maker of this form, as would a cost-function market that used
existing private streaming techniques for bit counting [12, 37] to keep noisy, private
counts of trades.

In this framework, we can interpret the market maker as implementing a noise trader
in a standard cost-function market. Under this interpretation, after a (real) trader
purchases xt shares at state q′t , the market state momentarily moves to q′t + xt =
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Algorithm 8 Noisy cost-function market maker (parameters: cost function C, dis-
tribution Y over noise {ηt }, maximum trade size k)

Initialize: q1 = 0
Draw η1 and set q′1 = η1
for t = 1,2, . . . do

Update instantaneous price pt = C′(q′t )
A trader buys xt ∈ [−k, k] shares and pays C(q′t + xt ) − C(q′t )
Update true market state qt+1 = qt + xt
Draw ηt+1 and update noisy market state q′t+1 = qt+1 + ηt+1

end for
Realize outcome ω
if ω = 1 then

for t = 1,2, . . . do
Market maker pays xt to the trader from round t

end for
end if

qt + ηt + xt = qt+1 + ηt . The market maker, acting as a noise trader, then effectively
“purchases” ηt+1 − ηt shares at this state for a cost of C((qt+1 + ηt ) + (ηt+1 −

ηt )) − C(qt+1 + ηt ) = C(qt+1 + ηt+1) − C(qt+1 + ηt ), bringing the market state
to qt+1 + ηt+1 = q′t+1. The market maker makes this trade regardless of the impact
on its own loss. These noise trades obscure the trades made by real traders, opening
up the possibility of privacy.

However, these noisy trades also open up the opportunity for traders to profit off

of the noise. For the market to be practical, it is therefore important to ensure that
the property of bounded worst-case loss is maintained. For the noisy cost-function
market maker, for any sequence of T trades x1, . . . , xT , any outcome ω ∈ {0,1}, and
any fixed noise values η1, . . . , ηT , the loss of the market maker is

LT (x1, . . . , xT , η1, . . . , ηT ,ω) ≡ qT+1 · 1(ω = 1) −
T∑

t=1

(
C(q′t + xt ) − C(q′t )

)
.

As before, the first term is the (possibly negative) amount that the market maker
pays to traders when ω is revealed, and the second is the amount collected from
traders (which no longer telescopes). Unfortunately, we cannot expect this loss to
be bounded for any noise values; the market maker could always get extremely
unlucky and draw noise values that traders can exploit. Instead, we consider a
relaxed version of bounded loss which holds in expectation with respect to the noise
values ηt .
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In addition to this relaxation, one more modification is necessary. Note that traders
can (and should) base their actions on the current market price. Therefore, if our
loss guarantee only holds in expectation with respect to noise values ηt , then it is
no longer sufficient to give a guarantee that is worst case over any sequences of
trades. Instead, we allow the sequence of trades to depend on the realized noise,
introducing a game between traders and the market maker. To formalize this, we
imagine allowing an adversary to control the traders. We define the notion of a
strategy for this adversary.

Definition 34 (Trader strategy). A trader strategy σ is a set of (possibly randomized)

functions σ = {σ1,σ2, . . .}, with each σt mapping a history of trades and noisy

market states (x1, . . . , xt−1,q′1, . . . ,q
′
t ) to a new trade xt for the trader at round t.

Let Σ be the set of all strategies. With this definition in place, we can formally
define what it means for a noisy cost-function market maker to have bounded loss.

Definition 35 (Bounded loss for a noisy cost-function market maker). A noisy cost-

function market maker with cost function C and distribution D over noise values

η1, η2, . . . is said to have bounded loss if there exists a finite B such that for all

strategies σ ∈ Σ, all times T ≥ 1, and all ω ∈ {0,1},

E
[
LT (x1, . . . , xT , η1, . . . , ηT ,ω)

]
≤ B,

where the expectation is taken over the market’s noise values η1, η2, . . . distributed

according to Y and the (possibly randomized) actions x1, x2, . . . of a trader em-

ploying strategy σ. In this case, the loss of the market maker is said to be bounded
by B. The noisy cost-function market maker has unbounded loss if no such B exists.

If the noise values were deterministic, this definition of worst-case loss would cor-
respond to the usual one, but because traders react intelligently to the specific real-
ization of noise, we must define worst-case loss in game-theoretic terms.

Limitations on privacy
By effectively acting as a noise trader, a noisy cost-function market maker can par-
tially obscure trades. Unfortunately, the amount of privacy achievable through this
technique is limited. In this section, we show that in order to simultaneously main-
tain bounded loss and achieve ε (t)-differential privacy, the quantity eε (t) must grow
faster than linearly as a function of the number of rounds of trade.
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Before stating our result, we explain how to frame the market maker setup in
the language of differential privacy. Recall from Section 7.2 that a differentially
private unbounded streaming algorithm M takes as input a stream s of arbitrary
length and outputs a stream of values that depend on s in a differentially private
way. In the market setting, the stream s corresponds to the sequence of trades
~x = (x1, x2, . . .). We think of the noisy cost-function market maker (Algorithm
8) as an algorithm M that, on any stream prefix (x1, . . . , xt ), outputs the noisy
market states (q′1, . . . ,q

′
t+1).2 The goal is to find a market maker such that M is

ε (t)-differentially private.

One might ask whether it is necessary to allow the privacy guarantee to diminish as
the the number of trades grows. When considering the problem of calculating noisy
sums of bit streams, for example, Chan, Shi, and Song [12] are able to maintain
a fixed privacy guarantee as their stream grows in length by instead allowing the
accuracy of their counts to diminish. This approach doesn’t work for us; we cannot
achieve bounded loss yet allow the market maker’s loss to grow with the number of
trades.

Our result relies on one mild assumption on the distribution Y over noise. In par-
ticular, we require that the noise ηt+1 be chosen independent of the current trade
xt .3 We refer to this as the trade-independent noise assumption. The distribution
of ηt+1 may still depend on the round t, the history of trade x1, . . . , xt−1, and the
realizations of past noise terms, η1, . . . , ηt . This assumption is needed in the proof
only to rule out unrealistic market makers that are specifically designed to moni-
tor and infer the behavior of the specific adversarial trader that we consider, and
the result likely holds even without it. However, it is not a terribly restrictive as-
sumption as most standard ways of generating noise could be written in this form.
For example, Chan, Shi, and Song [12] and Dwork et al. [37] show how to main-
tain a noisy count of the number of ones in a stream of bits. Both achieve this by
computing the exact count and adding noise that is correlated across time but in-
dependent of the data. If similar ideas were used to choose the noise term in our
setting, the trade-independent noise assumption would be satisfied. The noise em-
ployed in the mechanism of Waggoner, Frongillo, and Abernethy [99] also satisfies
this assumption. Our impossibility result then implies that their market would have

2Announcing q′t allows traders to infer the instantaneous price pt = C ′(q′t ). It is equivalent to
announcing pt in terms of information revealed as long as C is strictly convex in the region around
q′t .

3The proof can be extended easily to the more general case in which the calculation of ηt+1 is
differentially private in xt ; we make the slightly stronger assumption to simplify presentation.



148

unbounded loss if a limit on the number of rounds of trade were not imposed. To
obtain privacy guarantees, Waggoner, Frongillo, and Abernethy must assume that
the number of trades is known in advance and can therefore be used to set relevant
market parameters.

We now state the main result.

Theorem 24. Consider any noisy cost-function market maker using a standard con-

vex cost function C that is nonlinear in some region, a noise distribution D satis-

fying the trade-independent noise assumption, and a bound k > 0 on trade size. If

the market maker satisfies bounded loss, then it cannot satisfy (ε (t), δ)-differential

privacy for any function ε such that eε (t) = O(t) with any constant δ ∈ [0,1).

This theorem rules out bounded loss with ε (t) = log(mt) for any constant m > 0. It
is open whether it is possible to achieve ε (t) = m log(t) (and therefore eε (t) = tm)
for some m > 1, but such a guarantee would likely be insufficient in most practical
settings.

Note that with unbounded trade size (i.e., k = ∞), our result would be trivial. A
trader could change the market state (and hence the price) by an arbitrary amount
in a single trade. To provide differential privacy, the noisy market state would then
have to be independent of past trades. The noisy market price would not be reflec-
tive of trader beliefs, and the noise added could be easily exploited by traders to
improve their profits. By imposing a bound on trade size, we only strengthen our
negative result.

While the proof of Theorem 24 is quite technical, the intuition is simple. We con-
sider the behavior of the noisy cost-function market maker when there is a single
trader trading in the market repeatedly using a simple trading strategy. This trader
chooses a target state q∗. Whenever the noisy market state q′t is less than q∗ (and
so pt < p∗ ≡ C′(q∗)), the trader purchases shares, pushing the market state as close
to q∗ as possible. When the noisy state q′t is greater than q∗ (so pt > p∗), the trader
sells shares, again pushing the state as close as possible to q∗. Each trade makes a
profit for the trader in expectation if it were the case that ω = 1 with probability p∗.
Since there is only a single trader, this means that each such trade would result in
an expected loss with respect to p∗ for the market maker. Unbounded expected loss
for any p∗ implies unbounded loss in the worst case—either when ω = 0 or ω = 1.
The crux of the proof involves showing that in order achieve bounded loss against
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this trader, the amount of added noise ηt cannot be too big as t grows, resulting in a
sacrifice of privacy.

To formalize this intuition, we first give a more precise description of the strategy
σ∗ employed by the single trader we consider.

Definition 36 (Target strategy). The target strategy σ∗ with target q∗ ∈ R chosen

from a region in which C is nonlinear is defined as follows. For all rounds t,

σ∗t (x1, . . . , xt−1,q′1, . . . ,q
′
t ) =




min{q∗ − q′t , k} if q′t ≤ q∗,

−min{q′t − q∗, k} otherwise.

As described above, if ω = 1 with probability p∗, a trader following this target
strategy makes a non-negative expected profit on every round of trade. Furthermore,
this trader makes an expected profit of at least some constant χ > 0 on each round
in which the noisy market state q′t is more than a constant distance γ from q∗. The
market maker must subsidize this profit, taking an expected loss with respect to p∗

on each round. These ideas are formalized in Lemma 19, which lower bounds the
expected loss of the market maker in terms of the probability of q′t falling far from
q∗. In this statement, DC denotes the Bregman divergence4 of C.

Lemma 19. Consider a noisy cost-function market maker satisfying the conditions

in Theorem 24 with a single trader following the target strategy σ∗ with target q∗.

Suppose ω = 1 with probability p∗ = C′(q∗). Then for any γ such that 0 < γ ≤ k,

E
[
LT (x1, . . . , xT , η1, . . . , ηT ,ω)

]
≥ χ

T∑
t=1

Pr(|q′t − q∗ | ≥ γ),

where the expectation and probability are taken over the randomness in the noise

values η1, η2, . . ., the resulting actions x1, x2, . . . of the trader, and the random out-

come ω, and where χ = min{DC (q∗ + γ,q∗),DC (q∗ − γ,q∗)} > 0.

Intuitively, Lemma 19 lower bounds the trader’s (possibly complicated) per-round
profit by χ if the noisy quantity is in [q − γ,q + γ] and 0 otherwise. The value of χ
will then the minimum of her expected profit from a trade that pushes the quantity
either from q − γ to q or from q + γ to q. If the trader buys or sells any additional
shares, it is because the noisy quantity was strictly outside of the range [q−γ,q+γ].

4The Bregman divergence of a convex function F of a single variable is defined as DF (p,q) =

F (p)−F (q)−F ′(q)(p−q). The Bregman divergence is always non-negative. If F is strictly convex,
it is strictly positive when the arguments are not equal.
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We can then consider her trade in two parts: first, the |xt − γ | shares that moved the
quantity from qt + ηt to q ± γ, and second, the remaining γ shares that moved the
quantity from exactly q± c to q, from which she receives expected profit at most χ.
As described in the proof of Lemma 19, her per-share profit from the first portion
of the trade must be higher than per-share profit from the latter portion of the trade,
so her expected profit from the entire trade is at least:

Ep
[
profit(xt )

]
≥
χ

γ
(|xt − γ |) + χ ≥ χ.

The proof of Lemma 19 makes use of the following technical lemma, which says
that it is profitable in expectation to sell shares as long as the price remains above
p∗ or to purchase shares as long as the price remains below p∗. In this statement,
q can be interpreted as the current market state and x as a new purchase (or sale);
C′(q∗)x−C(q + x) +C(q) ≥ 0 would then be the expected profit of a trader making
this purchase or sale if ω ∼ p∗ = C′(q∗).

Lemma 20. Fix any convex function C and any q∗, q, and x such that q + x ≥ q∗ if

x ≤ 0 and q + x ≤ q∗ if x ≥ 0. Then C′(q∗)x − C(q + x) + C(q) ≥ 0.

Proof. Since C is convex, the assumptions in the lemma statement imply that if
x ≤ 0 then C′(q + x) ≥ C′(q∗), while if x ≥ 0 then C′(q + x) ≤ C′(q∗). Therefore,
in either case C′(q + x)x ≤ C′(q∗)x, and

C′(q∗)x − C(q + x) + C(q) ≥ C′(q + x)x − C(q + x) + C(q) = DC (q,q + x) ≥ 0.

�

Proof of Lemma 19. From the definition of the market maker’s loss, we can rewrite
E

[
LT (x1, . . . , xT , η1, . . . , ηT ,ω)

]
=

∑T
t=1 E[πt], where πt is the expected (over just

the randomness in ω) loss of the market maker from the tth trade, i.e.,

πt = C′(q∗)xt − C(q′t + xt ) + C(q′t ).

By definition of the target strategy ~s∗ and Lemma 20, πt ≥ 0 for all t.

Consider a round t in which |q′t − q∗ | ≥ γ. Suppose first that q′t ≥ q∗+ γ, so a trader
playing the target strategy would sell. By definition of ~s∗, xt = −min{q′t − q∗, k} ≤
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−γ. We can write

πt = C′(q∗)(xt + γ) − C′(q∗)γ − C(q′t + xt ) + C(q′t − γ) − C(q′t − γ) + C(q′t )

≥ −C′(q∗)γ − C(q′t − γ) + C(q′t )

≥ −C′(q∗)γ − C(q∗) + C(q∗ + γ)

= DC (q∗ + γ,q∗) ≥ χ,

where χ is defined as in the lemma statement. The first inequality follows from an
application of Lemma 20 with q = q′t − γ and x = xt + γ. The second follows from
the convexity of C and the assumption that q′t ≥ q∗ + γ.

If instead q′t ≤ q∗ − γ (so a trader playing the target strategy would buy), a similar
argument can be made to show that πt ≥ DC (q∗ − γ,q∗) ≥ χ.

Putting this all together, we have

E
[
LT (x1, . . . , xT , η1, . . . , ηT ,ω)

]
=

T∑
t=1

E[πt] ≥
T∑

t=1

χPr( |q′t − q∗ | ≥ γ)

as desired. The fact that χ > 0 follows from the fact that it is the minimum of two
Bregman divergences, each of which is strictly positive since C is nonlinear (and
thus strictly convex) in the region around q∗ and the arguments are not equal. �

We now complete the proof of the main result.

Proof of Theorem 24. We will show that bounded loss implies (ε (t), δ)-differential
privacy cannot be achieved with eε (t) = O(t) for any constant δ ∈ [0,1).

Throughout the proof, we reason about the probabilities of various events condi-
tioned on there being a single trader playing a particular strategy. All strategies
we consider are deterministic, so all probabilities are taken just with respect to the
randomness in the market maker’s added noise (η1, η2, . . .).

As described above, we focus on the case in which a single trader plays the target
strategy σ∗ with target q∗. Define R∗ to be the open region of radius k/4 around q∗,
that is, R∗ = (q∗ − k/4,q∗ + k/4). Let q̂ = q∗ + k/2 and let R̂ = (q̂ − k/4, q̂ + k/4).
Notice that R∗ and R̂ do not intersect, but from any market state q ∈ R∗ a trader
could move the market state to q̂ with a purchase or sale of no more than k shares.

For any round t, let σt be the strategy in which σt
τ = σ∗τ for all rounds τ , t, but

σt
t (x1, . . . , xt−1,q′1, . . . ,q

′
t ) = q̂ − q′t if |q̂ − q′t | ≤ k (otherwise, σt

t can be defined
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arbitrarily). In other words, a trader playing strategy σt behaves identically to a
trader playing strategy σ∗ on all rounds except round t. On round t, the trader
instead attempts to move the market state to q̂.

For any t, the behavior of a trader playing strategy σ∗ and a trader playing strategy
σt are indistinguishable through round t−1, and therefore the behavior of the market
maker is indistinguishable as well. At round t, if it is the case that q′t ∈ R∗ (and
therefore |q′t − q∗ | ≤ k/4 < k and also |q′t − q̂ | ≤ 3k/4 < k), then a trader playing
strategy σ∗ would purchase q∗− q′t shares, while a trader playing strategy σt would
purchase q̂ − q′t . Differential privacy tells us that conditioned on such a state being
reached, the probability that q′t+1 lies in any range (and in particular, in R∗) should
not be too different depending on which of the two actions the trader takes. More
formally, if the market maker satisfies ε (t)-differential privacy, then for all rounds
t,

eε (t) ≥
Pr(q′t+1 ∈ R∗ |σ = σ∗,q′t ∈ R∗) − δ

Pr(q′t+1 ∈ R∗ |σ = σt ,q′t ∈ R∗)
≥

Pr(q′t+1 ∈ R∗ |σ = σ∗,q′t ∈ R∗) − δ

Pr(q′t+1 < R̂|σ = σt ,q′t ∈ R∗)

=
Pr(q′t+1 ∈ R∗ |σ = σ∗,q′t ∈ R∗) − δ

Pr(q′t+1 < R∗ |σ = σ∗,q′t ∈ R∗)
.

The first inequality follows from the definition of (ε (t), δ)-differential privacy. The
second follows from the fact that R∗ and R̂ are disjoint. The last line is a conse-
quence of the trade-independent noise assumption. By simple algebraic manipula-
tion, for all t,

Pr(q′t+1 < R∗ |σ = σ∗,q′t ∈ R∗) ≥
1 − δ

1 + eε (t) . (7.2)

We now further investigate the term on the left-hand side of this equation. For the
remainder of the proof, we assume that σ = σ∗ and implicitly condition on this.

Applying Lemma 19 with γ = k/4, we find that the expected value of the market
maker’s loss after T rounds if ω = 1 with probability p∗ = C′(q∗) is lower bounded
by χ

∑T
t=1 Pr(q′t < R∗) for the appropriate constant χ. This implies that for at least

one of ω = 1 or ω = 0, E
[
LT (x1, . . . , xT , η1, . . . , ηT ,ω)

]
≥ χ

∑T
t=1 Pr(q′t < R∗),

where the expectation is just over the random noise of the market maker and the
resulting actions of the trader. Since we have assumed that the market maker’s loss
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is bounded, this implies there must exist some loss bound B such that

B
χ
≥

∞∑
t=1

Pr(q′t < R∗). (7.3)

Fix any constant α ∈ (0,1). Equation 7.3 implies that for all but finitely many t,
Pr(q′t < R∗) < α, or equivalently, for all but finitely many t, Pr(q′t ∈ R∗) ≥ 1 − α.
Call the set of t for which this holds T . Equation 7.3 also implies that

B
χ
≥

∞∑
t=1

[
Pr(q′t+1 < R∗ |q′t ∈ R∗)Pr(q′t ∈ R∗) + Pr(q′t+1 < R∗ |q′t < R∗)Pr(q′t < R∗)

]

≥

∞∑
t=1

Pr(q′t+1 < R∗ |q′t ∈ R∗)Pr(q′t ∈ R∗) ≥ (1 − α)
∑
t∈T

Pr(q′t+1 < R∗ |q′t ∈ R∗).

Combining this with Equation 7.2 yields∑
t∈T

1 − δ
1 + eε (t) ≤

B
χ(1 − α)

. (7.4)

Now suppose for contradiction that eε (t) = O(t). Then by definition, for some
constant m > 1 there exists a round τ such that for all t > τ, eε (t) ≤ mt. Then∑

t∈T

1 − δ
1 + eε (t) ≥

∑
t∈T ,t>τ

1 − δ
1 + eε (t) ≥

∑
t∈T ,t>τ

1 − δ
1 + mt

>
1 − δ

m

∑
t∈T ,t>τ

1
1 + t

.

Since this sum is over all natural numbers t except a finite number, it must diverge,
and therefore Equation 7.4 cannot hold. Therefore, we cannot have eε (t) = O(t). �

7.5 Concluding Remarks
We designed a class of randomized wagering mechanisms that keep bettors’ reports
private while maintaining truthfulness, budget balance in expectation, and other
desirable properties of weighted score wagering mechanisms. The parameters of
our mechanisms can be tuned to achieve a tradeoff between the level of privacy
guaranteed and the sensitivity of a bettor’s payment to her own report. Determining
how to best make this tradeoff in practice (and more generally, what level of privacy
is acceptable in differentially private algorithms) is an open empirical question.

While our results in the dynamic setting are negative, there are several potential
avenues for circumventing our lower bound. The lower bound shows that it is not
possible to obtain reasonable privacy guarantees using a noisy cost-function mar-
ket maker when traders may buy or sell fractional security shares, as is typically
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assumed in the cost function literature. Indeed, the adversarial trader we consider
buys and sells arbitrarily small fractions when the market state is close to its tar-
get. This behavior could be prevented by enforcing a minimum unit of purchase.
Perhaps cleverly designed noise could allow us to avoid the lower bound with this
additional restriction. However, based on preliminary simulations of a noisy cost-
function market based on Hanson’s LMSR 2003 with noise drawn using standard
binary streaming approaches [37, 12], it appears an adversary can still cause a mar-
ket maker using these “standard” techniques to have unbounded loss by buying one
unit when the noisy market state is below the target and selling one unit when it is
above.

One could also attempt to circumvent the lower bound by adding a transaction fee
for each trade that is large enough that traders cannot profit off the market’s noise.
While the fee could always be set large enough to guarantee bounded loss, a large
fee would discourage trade in the market and limit its predictive power. A care-
ful analysis would be required to ensure that the fee could be set high enough to
maintain bounded loss without rendering the market predictions useless.
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