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ABSTRACT

Let E and F be Archimedian Riesz spaces. A linear operator
T :E~F is called disjointness preserving if |[f| A [g| = 0 in E im-
plies |Tf| A|Tg| = 0 in F. An order continuous disjointness preserving
operator T : E - E is called bi-disjointness preserving if the order
closure of |T|E is an ideal in E. If the order dual of E separates the
points of E, then every order continuous disjointness preserving opera-
tor whose adjoint is disjointness preserving is bi-disjointness preser-

ving. If E is in addition Dedekind complete, then the converse holds.
DEFINITION. Let T : E + E be a bi-disjointness preserving operator.
We say that T is:

(1) quasi-invertible if T is injective and {TE}dd = E.

(12) of forward shift type <f T is injective and F]{THE}dd = {0}.

n=1
Ker T = Eamd{ TEI™ = E.

<8

(1i1) of backward shift type if

n=1

(iv) hypernilpotent if N KerT"= E and rl{TnE}dd = {0}.
n=1 n=1

The supremum in (1i1) and (iv) is takem in the Boolean algebra of bands.
The following decomposition theorem is proved.

THEOREM. Let T : E » E be a bi-disjointness preserving operator on a
Dedekind complete Riesz space E. Then there exist T-reducing bands

"
Ei (i =1,2,3,4) such that @ Ei = E and the restriction of T to Ei
i=1

satisfies the ith property listed in the preceding definition.
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Quasi-invertible operators can be decomposed further in the follow-
ing way. Set Orth(E) :={T € Sb(E) : TB © B for every band B}. We say
that a quasi-invertible operator T has strict period n (n€N) if
T" € Orth(E) and for every non-zero band B € E, there exists a band A
s.t. {0} # A B and A, {TAY, .., (7" are mutually disjoint. A
quasi-invertible operator is called aperiodic if for every n € N and
every non-zero band B < E, there exists a band A s.t. {0} # A < B and

dd n,.dd q B
A, {TA}™™, ..., {T'A} are mutually disjoint.

THEOREM. Let T : E -~ E be a quasi-invertible operator on a Dedekind

complete Riesz space E. Then there exist T-reducing bands En

(n €N U{=}) such that the restriction of T to En (n€N) has strict

period n, the restriction of T to E_ is aperiodic and E = ® E_s
® neN U{=} "

Finally, the spectrum of bi-disjointness preserving operators is

considered.

THEOREM. Let E be a Banach lattice which is either Dedekind complete or
has a weak Fatou norm. Let T : E + E be a bi-disjointness preserving

operator. If T is either of forward shift type, of backward shift type,
hypernilpotent or aperiodic quasi-invertible, then the spectrum of T is
rotationally invariant. If T is quasi-invertible with strict period n,

then N € o(T) implies Aa € o(T) for any nth root of unity &.

The above theorems can be combined to deduce results concerning the
spectrum of arbitrary bi-disjointness preserving operators. One such

result is given below.

THEOREM. Let T : E + E be a bi-disjointness preserving operator on a

Dedekind complete Banach lattice E. Suppose, for each
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O<r€R,{z€C: |z| =r}No(T) Lies in an open half plane. Then
there exists T-reducing bands E, and E, such that E = L@ E,, TIEl is an
abstract multiplication operator (i.e. is in the center of E) and TlEz

18 quasi-nilpotent.
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TERMINOLOGY AND NOTATION

For terminology and the general theory of Riesz spaces and Banach
lattices, we refer to the standard treatises of Luxemburg-Zaanen [LZ],
Zaanen [Z] and Schaefer [S]. We have attempted to make this thesis rea-
sonably self-contained except for material in the above works and other
well known results. A1l Riesz spaces considered herein will be assumed
to satisfy the Archimedian axiom. Unless otherwise stated, the results
in chapters 1-4 are valid for both real and complex Riesz spaces (see
[S] II § 11); all spaces considered in chapter 5 are complex.

We now give a partial 1ist of notation.

E,F (Archimedian) Riesz spaces.

E. {iT€E: T &>0F,

E* The order dual of E.

E: The order continuous dual of E.

E The Dedekind completion of E.

B8(E) The Boolean algebra of bands of E.

P(E) The Boolean algebra of all band projections of E.

£b(E,F) The collection of all order bounded operators from E to F.
£b(E) Sb(E,E)

Jf, JS The ideal generated by an element f € E or a subset S < E.
Uf -jS The uniformly closed ideal generated by f € E or S < E.
e (fE€E: |f| Alg| =0 for all g € S}.

c(x) The collection of all continuous functions defined on a

topological space X.
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order adjoint of T.

* *
restriction of T to En .
associated operator of T (see def. 3.3 and pg 39).
Luxemburg "t" map (see def. 3.15).

annihilator of a subspace S < E.
pre-annihilator of a subspace of E* or E:.
spectrum of T.

point spectrum of T.

approximate point spectrum of T.

residual spectrum of T (= o(T) \ Ac (T)).

spectral radius of T.

[z E€ 3 |z| = r}

{z el : |z]

D, ,

The space of all (norm) bounded operators from a Banach

r}

C,

space B to itself.



INTRODUCTION

Two elements f and g of a Riesz space E are called disjoint if
[f| A |g| = 0. This thesis studies disjointness preserving operators;
in other words operators between two Riesz spaces which take disjoint
elements to disjoint elements. On concrete function spaces (such as
c(x) and LP spaces) this means that the operator takes functions of
(essentially) disjoint support to functions of (essentially) disjoint
support. It is not difficult to see that bounded disjointness preserv-
ing operators correspond to weighted composition operators on such
concrete function spaces, that is, to operators of the form Tf(x) =
h(x) f (p(x)) (see propositions 1.3 and 1.4).

Disjointness preserving operators are of interest in many different
contexts. First of all, along with the kernel operators, they form one
of the two major classes of concrete bounded operators and thus supply
a rich source of examples. The classical theorems of Banach-Stone [B]
[St] and Banach-Lamperti [B] tLa] (see also [Ro] 15.8) show that the iso-
metries between C(X) spaces (where X is compact Hausdorff) and LP spaces
(0<p<w=, p#2)ona o-finite measure space are disjointness preserv-
ing. Disjointness preserving operators are naturally of considerable in-
terest in the theory of dynamical systems. Such theories study mappings
¢ of a set X carrying some additional structure into itself, which pre-
serves the structure of X. The composition operator Sf(x) = f(¢(x)) and
weighted composition operators Tf(x) = h(x)f(¢(x)) defined on function
spaces over X are important tools which are used to understand the proper-

ties of the mapping . Finally, Riesz homomorphisms, which are
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disjointness preserving, are of obvious interest in the study of ab-
stract Riesz spaces.

The notion of a disjointness preserving operator was first intro-
duced by B. Vulikh [V], though positive disjointness preserving opera-
tors (Riesz homomorphisms) were studied considerably earlier. His pri-
mary interest was to find conditions on a disjointness preserving opera-
tor defined on certain function spaces which will make them multiplica-
tive, and so of the form Tf(x) = f(®(x)). More general representations
of the form Tf(x) = h(x)‘f(@(x)) have been given by several authors on
various spaces and in varying degrees of generality, see [Kp] [La] [Wo]
[(M3] [Kn] [AVK] [Ab].

The abstract theory of disjointness preserving operators (also
sometimes called disjunctive operators, d-homomorphisms or Lamperti oper-

ators) has been studied only in the past decade (see [M1][M3][AvK]
[Ki 2] [M 4] [Ar 2] [Ab] [dP 2]). The primary motivation for this re-

search was to extend both the theoky of orthomorphisms (i.e. abstract
multiplication operators, see ch. 2) and the theory of Riesz homomor-
phisms. An exposition of much of this work is contained in this thesis
(see especially chapter 1). We now give a summary of each chapter of

this thesis.

Chapter 1 discusses the basic properties of disjointness preserving
operators. These results will be used repeatedly in the later chapters.

Chapter 2 studies a special class of disjointness preserving opera-
tors known as orthomorphisms. We first give a survey of the most impor-
tant properties of such operators. We then use a known result about

orthomorphisms to show that if F has the c—interpolation property (this
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holds in particular when F is Dedekind o-complete), then the range

of every disjointness preserving operator from E to F is a Riesz sub-
space of F. The chapter concludes with a discussion of some extension
properties of certain types of orthomorphisms.

Chapter 3 discusses two auxiliary maps associated with a disjoint-
ness preserving operator. In concrete situations where the operator is
of the form Tf(x) = h(x) f (¥(x)), the two associated maps roughly corres-
pond to the composition operator ?f(x) = f(¢p(x)) and the underlying map
@. Most of the chapter is devoted to discussing the relationship be-
tween a disjointness preserving operator and its associated maps.

In chapter 4 we discuss bi-disjointness preserving operators. Under
certain circumstances, bi-disjointness preserving operators are exactly
those order continuous disjointness preserving operators whose adjoint
is also disjointness preserving. The main result of this chapter is to
show that a bi-disjointness preserving operator on a Dedekind complete
Riesz space may be decomposed into a direct sum of simple components,
each of which can be easily analyzed.

Chapter 5 discusses the spectrum of disjointness preserving opera-
tors. The first half of the chapter is devoted to computing the spectrum
of the simple bi-disjointness preserving operators which make up the
"blocks" in the decomposition theorem proved in chapter 4. We then use
this decomposition theorem in the second half of the chapter to derive
various properties of the spectrum of an arbitrary bi-disjointness pre-

serving operator.
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Chapter 1
BASIC PROPERTIES

This chapter gives some examples of disjointness preserving opera-
tors and discusses their basic properties. The central result is the
characterization of disjointness preserving operators given in theorem

1.5. A1l results in this chapter are essentially known.

DEFINITION 1.1. Two elements f and g of a Riesz space are said to be
disjoint if |f| A |g| = 0. This relation will be denoted by f L g.
An operator T :E + F between Riesz spaces E and F is called dis-

jointness preserving <f f,g € E and f L g tmply Tf 1 Tg.

We begin by characterizing bounded disjointness preserving opera-

tors on C(X) spaces.

PROPOSITION 1.2. Let X be a compact Hausdorff space and | be a non-zero
bounded linear functional on C(X). The following are equivalent:

a) Y is disjointness preserving.

b) There exists a unique point X € X and a unique non-zero scalar C

such that Y(f) = cf(x) for all f € C(X).

Proof. b) = a) is obvious.

a) = b): By the Riesz representation theorem, there exists a finite

(complex) Borel measure p on X s.t. w(f) = | fdu for all f € C(X). Sup-
X

pose A and B are disjoint closed sets in X. By Urysohn's lemma, there

exist functions e;, e, € C(X) s.t. e,(x) =1 for all x €A, e,(x) =1

for all x € B and [e | A [e,| = 0. Since ¥ is disjointness preserving,



7

|v(e,)| A |u(e,)| = 0, and so either y(e,) = 0 or ¥(e,) = 0. Hence,
either w(A) = 0 or u(B) = 0. It follows easily that u must be concen-

trated at a single point, i.e. there exists a point x € X s.t.

u{x} = u(X). Hence Y(f) = [ fdu = uix} - f(x) = cf(x ), where
X

c = u{x}.

PROPOSITION 1.3. Let X and Y be compact Hausdorff spaces and let

T:C(X) = C(Y) be a (norm) bounded operator. The following are equiva-

lent:
a) T is disjointness preserving.

b) There exists a continuous function h € C(Y) and a continuous map
@ : Coz(h) - X (where Coz(h) := {y €Y : h(y) # 0}) such that

h(y) fle(y)) y € Coz(h)
Tf(y) =
0 otherwise .

Proof. b) = a) is clear. To show that a) = b), pick y € Y and let 6y
be the disjointness preserving linear functional given by éy(f) = f(y)

for all f € C(Y). Since the composition of two disjointness preserving
operators is disjointness preserving, by proposition 1.2 there exists a
scalar (depending on y) h(y) and a point x € X s.t. 6y ° T = h(y) o -

If h(y) # 0, the point x depends uniquely on y, so there is a function

In other words,

; * b Q. 8 = .
@ : Coz(h) - X s.t g T = h(y) 6$(y)
h(y) o (f) if y € Coz(h)
Tf(y) = 6,0 T(f) = °ly)
Y 0 otherwise

h(y) fe(y)) y € Coz(h)

0 otherwise .



It remains to show that h and ¢ are continuous. Let e be the
function which is identically one on X. Then Te(y) =h(y) e(¢(y)) = h(y).
Hence h = Te € C(Y). To show that ¢ is continuous, pick an open set
U< X and suppose w € ¢='(U). By Urysohn's lemma, there exists a func-
tion g € C(X) s.t. g(p(w)) =1 and g(x) = 0 if x £U. Then Tg € C(Y),
Tg(w) = h(w)g(ep(w)) = h(w) # 0 since w € ~*(X) = Coz(h). Furthermore,
if x £ @ *(U), it is clear that Tg(x) = 0. Hence w€Coz(Tg) < 1(U).
Since Tg €C(Y), Coz(Tg) is open, so @~ *(U) is open which shows that ¢ is
continuous. |

We now wish to discuss disjointness preserving operators on LP
spaces. Due to possible measure-theoretic pathologies, a disjointness
preserving operator between LP spaces need not induce a "point map" be-
tween the spaces as was the case for C(X) spaces (see [W] pg. 54 for an
example of such pathologies). For this reasonaslightly weaker concept
must be introduced.

By a measure space (X, £, u), we mean a set X together with a
o-algebra of subsets I and a o-additive measure pu. The measure algebra
of (X, £, 1) will be denoted by E . Via the map A ~ ]A’ the measure al-
gebra of (X, I, u) can be identified with the characteristic functions
in L°(X, £, u). Thus, if (X, =, ») and (Y, A, v) are measure spaces, a
(Boolean) o-homomorphism t : £ > A induces a map S from the characteris-
tic functions of L°(X, I, ) to those of LT(Y, A, v). It is not diffi-
cult to see that S can be extended to simple functions, and then to all
LQ(X, L, i), and that the map S: Lw(X, T, W) > Lm(Y, A, v) is a lattice
and algebra homomorphism (see [F] sec. 45). We will call S the operator

induced by the o-homomorphism t. In non-pathological cases, there exists
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amap ®: Y -+ X, defined except possibly on a set of measure zero in Y
such that Sf(y) = f(e(y)) for all f € LQ(X, Z, 1) and almost all y €Y
(see [Ro] pg. 329).

PROPOSITION 1.4. <Let (X, £, 1) and (Y, A, V) be finite measure spaces
and T: LP(X, £, u) » L9(Y, A, v) (1 <p,q <) be a norm bounded dis-
jointness preserving operator such that {T(]X)}d = {0}. Then there
exists a function h € Lm(Y, A, v) and a G-homomorphism t : E - R such
that Tf = h . Sf, for all f € Lm(X, L, U), where S denotes the operator

induced by t.

Proof. For any element A € ¥, define t: 5> A by t(A) = supp(T]A). If
A.and B are disjoint in f, since T is disjointness preserving we have
t(ANB) =g = t(A)Nt(B). It follows that t(ANB) = t(A) Nt(B) for
arbitrary A,B € z. Moreover, since supp(T1X) =Y and T is disjointness
preserving we have t(A€) = supp(T]Ac) = {supp(T]A)}C, where the "c" de-
notes the complement of the set. It follows from the fact that T is or-

T1, and let S be the

der continuous that t is a o-homomorphism. Set h X

h « Sf holds for

operator induced by t. It is easy to see that Tf

characteristic functions and hence for arbitrary functions feLlP(x, , p).

Remarks: 1) The above argument was first used by Lamperti [La] in his
discussion of isometries of LP spaces. See also [B], [Ro] pg. 333,
[Kn].

2) With appropriate modifications, the above theorem can be extended
to Banach function spaces with order continuous norm, defined on

o-finite measure spaces.
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We now give an important characterization of order bounded disjoint-
ness preserving operators, due to M. Meyer ([M1], [M3], [M4], see also
[Ar 2]). 1In particular it states that every disjointness preserving op-

erator which is order bounded is already regular.

THEOREM 1.5. Let T € £b(E,F) be an order bounded operator between Riesz
spaces E and F. The following are equivalent:

a) T is disjointness preserving

b) |Tf| = |T|f|| for all f €E.

e¢) |T| exists and satisfies |T||f| = |Tf| for all f € E.

Proof. a) = c): By the Yosida representation theorem ([LZ] 45.3), there
exist compact Hausdorff spaces X and Y such that the principal ideals
generated by f and Tf, JTc and JTf can be identified with uniformly dense
subsets of C(X) and C(Y) respectively. SinceT is order bounded, TlJf

can be uniquely extended under the above identification to a disjoint-
ness preserving operator Tg: C(X) - C(Y). By proposition 1.3, there
exists a function h € C(Y) and a continuous map ®: Y - X such that
Tff(y) = h(y) f(ep(y)) for all y € Y. It is clear that leI exists and
ITelf(y) = |h(y)| f(®(y)). Moreover [T F[(y) = [h(y)| [f(®(y))] =

lel |f|(y). It follows that |T| exists, since it is defined on the

positive cone of E by the formula |T|f:= sup |Tg| = sup leg[ = |Tf|f
lg|<f |gl<f

and it can be extended linearly to all of E. Furthermore, for any
f € E, [THf] = [Tl [f] = |TeF[ = |[TF] which gives c).

c) = b): Applying ¢) first to |f| and then to f yields

ITIFL] = |TIf] = |TF].

b) = a): It is easy to see that two elements f and g of a Riesz space
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are disjoint iff |f + Ag| = |f - Ag| for all scalars A (c.f. [LZ] 14.4,
14.5 in the real case). Hence, f L+ g in E= |f + Ag| = |f - Ag| for all
scalars A = |Tf + ATg| = |[T(f + Ag)| = |T|f + Ag|]| = |T|f - Ag]|]| =

|T(f - Ag)| = |Tf - ATg| for all scalars A = Tf 1 Tg in F.

The remainder of this chapter will be primarily devoted to deriving

various consequences of theorem 1.5. We begin with an easy corollary.

COROLLARY 1.6. Suppose E and F are Riesz spaces and T € £b(E,F) is dis-

Jjointness preserving.
) If |g| < |f| in E, then |Tg| < |Tf| in F.

it) If J is an ideal in F then T-l(J) 18 an ideal in E. In particular,

Ker T 2s an ideal in E.

Proof. 1i): If |g| < |f| in E, then by theorem 1.5,
ITg| = |Tllgl < [TIIf] = [TF].

ii): Suppose Tf € J and |g| < |fl. Then by i), |Tg| < |Tf| € J, so

Tg € J since J is an ideal, which shows that T~ (J) is an ideal.

Recall that an operator T: E-F between Riesz spaces E and F is
called a Riesz homomorphism if |Tf| = T|f| for all f € E. It is easy to
see that T is a Riesz homomorphism iff Tf V Tg = T(fvg) iff Tf ATg =
T(fAg) for all f,g € Re E (c.f. [LZ] 18.3). There is a simple rela-
tionship between Riesz homomorphisms and disjointness preserving opera-

tors.
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PROPOSITION 1.7. An operator T: E -+ F between Riesz spaces E and F is

a Riesz homomorphism iff it is positive and disjointness preserving.

Proof. If T is a Riesz homomorphism, it is clearly positive and hence
it follows from the definition of a Riesz homomorphism that T satisfies
condition c¢) of theorem 1.5, so T is disjointness preserving.
Conversely, if T is positive and disjointness preserving, then by
c) of theorem 1.4 for all f € E, |Tf| = |T||f| = T|f|,whence T is a Riesz

homomorphism.

The next result is another version of Meyer's theorem ([M1], [M3],

see also [dP 2]), which is occasionally useful.

THEOREM 1.8. Let E and F be real Riesz spaces and let T € &, (E,F) be

b

disjointness preserving. Then there exist Riesz homomorphisms

7 & £, (E,F) such that T = T T and TFATF=0 for all f € E.

Proof. Put T' = $(|T] +T) and T = 3(|T| - T). T" and T are clearly

positive and disjointness preserving, and hence are Riesz homomorphisms.

Furthermore, for any 0 < f € E, 7% = $(|T|f + Tf) = $(|Tf| + Tf) = (Tf)+.

+

Similarly, T f = (Tf)". Therefore, T f AT f = (Tf)+ A (Tf)” =0 and

the proof is complete.

THEOREM 1.9. Let E and F be Riesz spaces.

Then any disjointness preserving operator T € Sb(E,F) can be extended to
a disjointness preserving operator T ¢ £b(E,ﬁ), where E and F denote
the Dededind completion of E and F respectively. If T is order contin-

uous, then this extension is unique.
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Proof. The complex case can be reduced to the real case by considering
the real and imaginary parts of T. Hence, it can be assumed that T is
real. Then by theorem 1.8, T = T" 2 T where T' and T~ are Riesz homo-
morphisms. It follows from the results of [LS2] that T" and T~ can be
extended to Riesz homomorphisms ?+ and ?" on E into E. It now follows

easily that T := T - T~ is the desired extension. The assertion about

uniqueness is obvious.

We conclude this chapter by saying a few words about an important
recent discovery in the thebry of disjointness preserving operators. In
the special cases discussed in propositions 1.2 - 1.4, it is easy to see
using the characterizations proved there that every norm bounded dis-
jointness preserving operator is order bounded and in fact is regular
(theorem 1.5). It is a remarkable fact, due to Abramovich [Ab], that

even a slightly more general result is true.

THEOREM 1.10. Let T: E - F be a disjointness preserving operator be-
tween Riesz spaces E and F. Suppose that 1nf(|Tfn|+ [Tgnl) = 0 whenever
n

fn’ g ¥ 0 relative uniformly. Then T is order bounded.

A simple proof of this result can be found in [dP2]. If E and F are
normed Riesz spaces, then theorem 1.10 immediately implies that every

norm bounded disjointness preserving operator is order bounded.
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Chapter 2
ORTHOMORPH ISMS

In this chapter, we shall study a special class of disjointness
preserving operators known as orthomorphisms. On concrete function lat-
tices, orthomorphisms correspond to multiplication operators.

In the first part of the chapter, we state for future reference the
basic properties of these operators. As these results are well known,
most of the proofs will be omitted. For proofs and further properties
of orthomorphisms, we refer to [Z], ch. 20. Other references include
(U, [dr1], [AB1], [F1] and [BKW].

In the second part of the chapter, it is shown that every disjoint-
ness preserving operator between uniformly complete Riesz spaces has a
local "polar decomposition" (theorem 2.9) into a product of a Riesz
homomorphism and an orthdmorphism. Using this result, we prove that
under certain conditions, the range of a disjointness preserving opera-
tor is a Riesz subspace (theorem 2.10). Finally, we prove some exten-
sion theorems for orthomorphisms which will play an important role in

the next chapter.
DEFINITION 2.1. Let E be a Riesz space and let m € £b(E)°
1) We shall call T an orthomorphism <f for any band B€ 8(E), m(B) < B.

i1) We say that T is a contractor if for all ideals J < E, m(J) < J.

111) We say that T is in the center of E 7if there exists a positive

real number \ such that |nf| < \|f| for all f € E.

We denote the collection of all orthomorphisms on E by Orth(E),
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the collection of all contractors on E by Con(E)and the center of E by
ZLEY;

It is easy to see that m € Orth(E) iff w € Sb(E) and nf 1 g for all
f,g € E such that f 1+ g. It follows from this that every orthomorphism
is disjointness preserving. It is also clear that }(E) < Z(E) < Con(E)
< Orth(E), where & E) denotes the collection of all band projections on
E.

Recall that an f-algebra A is a Riesz space which is also an alge-

bra that satisfies the following conditions:
1) If a,b €A, thenab €A_.

2) Multiplication by an element a € A is an orthomorphism. More pre-

cisely, if a,b,c € Aand b + ¢, then ca + b and ac < b.

A well-known theorem of Birkhoff and Peirce states that an (Archimedean)
f-algebra is necessarily commutative.

If A and B are f-algebras, a linear operator T: A - B is called an
f-algebra homomorphism if T is both an algebra homomorphism and a Riesz
homomorphism.

We are now ready to state the basic theorem about orthomorphisms.

THEOREM 2.2. For any Riesz space E, Orth (E) s an f-algebra, where mul-
tiplication is defined by composition and addition and the lattice oper-
ations are defined pointwise. In other words, for all Ti,m, €ReOrth(E).
and f €E, (m V m )f= mf v mf ,and (M A m )f =

mf A m,f . Z(E) and Con(E) are f-subalgebras of Orth(E).

If E is Dedekind complete, then Orth(E) and Z(E) are, respectively,
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the band and ideal generated by the identity operator in Sb(E). IF E
is Dedekind (0-Dedekind, uniformly) complete, then Orth(E) and Z(E) are
Dedekind (resp. O-Dedekind, uniformly) complete.

If E is a Banach lattice, then Z(E) = Orth(E), Z(E) <s a Banach
lattice under the operator norm, which is given by Hﬂ“ = inf{A € R+:
|| < A I}, and Z(E) is isometrically and f-algebraically isomorphic to

a space of type C(X) where X is a compact Hausdorff space.

If E is a uniformly complete (real) Riesz space, and Em and
Orthm(E) denote the complexification of E and Orth(E) respectively, then
it is easy to see that Orthm(E) = Orth(EG). Most of the following re-
sults have been proven for real Riesz spaces; complex versions follow
immediately from the above observation.

It follows from Theorem 2.2 that Orth(E) is commutative. If E has
the principal projection property, then the converse holds in the sense
that if T € £b(E) and T = ©T for all m € Orth(E), then T € Orth(E). In

fact, the following slightly stronger result can be proven.

THEOREM 2.3. Suppose E 18 a Riesz space which has the principal pro-
jection property, and T € £b(E) satisfies TP = PT for all projections

P €P(E). Then T is an orthomorphism.
Another important result is given in the following theorem.
THEOREM 2.4. FEvery orthomorphism M on a Riesz space E is order contin-

uous. Furthermore, if S is a subset of E and m, T, € Orth(E) satisfy

mf = m,f for all f €35, then mf = W, f for all f € {S}dd.

We next discuss some results about Riesz spaces whose centers
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possess one of the following important properties.

DEFINITION 2.5.

1) A Riesz space E is said to have an algebraically rich center if for
any f, g € E+ satisfying 0 < g < f, there exists an operator T € Z(E)+

such that 0 <Tf < g and mh = 0 for all h € {f}9.

17) A Riesz space E is said to have a transitive center <f for all
f, g € E_ satisfying 0 < g = f, there exists an operator m € Z(R)+ such

that Tf = g and wh = 0 for all h € {f}9.

Obviously every Riesz space with transitive centerhas an algebraic-
ally rich center. Also, if E has a transitive center, f, g € E and
lg| < |f|, it is easy to see that there exists an operator mw € Z(E) such
that g =mf.

It follows from [M2], 1.13 that E has algebraically rich center iff
for every band B < E, there exists an operator 0 # m € Z(E)+ such that
m(E) < B. Some other characterizations can alsobe found in [M2].

Our next two results, which are well known, give examples of spaces

with these two properties.

THEOREM 2.6. Let E be a Banach lattice with a quasi-interior point e.

Then E has an algebraically rich center.

Proof. Let K be the structure space of E (see [ST III, §4). E may be
identified with a Riesz space of continuous functions E on K, which are
infinite on at most a rare subset of K. For every band B < E, there

exists an open set 8 € K s.t. B = {f € E: f(x) # 0 for all x € 6}.

By Urysohn's lemma, there exists a function g € C(K) s.t..
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0<g(x) <1 for all x € K and g(x) = 0 for all x £ 6. Define

m E->E bymh =g-h. Itis evident that m € Z(E) and m(E) < B, which

completes the proof.
The next result is due to Luxemburg([ L] ch. 3; 7.6).

THEOREM 2.7. Every Dedekind O-complete Riesz space E has a transitive

center.

Proof. Suppose f, g € E and 0 < g < f. Then by Freudenthal's spectral
theorem ([LZ] 40.2), for each j € N, there exists a natural number nss

constants qij and projections Pij (T & Ty Be oxai nj) s.t. the elements
n.
J

gj: = 2 aij Pijf satisfy 0 < gj t g f-uniformly in E. Since E has
i=

ek

the principal projection property, the P. i may be taken to satisfy

) d : } ;
Pijh =0 for all h € {f}~. Define nj = %J,' 0'1JP1J We have njh =0

for all j €N and h € {f}d, nj € Z(E) and 0 < nj t. Since E and hence
Z(E) is Dedekind o-complete, there exists an element m € Z(E) s.t.

s tmin Z(E). It is easy to see that mh = 0 for all h € {f}d
(ﬂ-ﬂj)'f ¢ 0 in E. Thus, |[mf-g| < (lnf-rrjﬂ + [rrjf-g|) +0 in E,

which shows that mf = g and proves the theorem.

While a uniformly complete Riesz space need not have a transitive
center (e.g. C[0,1]), the next result says that "locally" this is the

case.

PROPOSITION 2.8. Suppose E is a uniformly complete Riesz space. Then

for all f, g € E such that 0 < g < f, there exists an element m € Z(Jf)

such that g =nuf.
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Proof. By the Yosida representation theorem ([LZ] 45.4), Jf can be
identified with a C(X) space, where X is a compact Hausdorff space, such
that f is identified with the constant function 1. Define m € Z(C(X))

by mh = g-h. It is obvious that nf = g.

Remark: The above proposition can also be proven without representation
theory, see [dP1] 19.5.
Using a similar argument as above, we now prove a local polar de-

composition theorem for disjointness preserving operators.

THEOREM 2.9. Let E and F be Riesz spaces with F uniformly complete.
Suppose that T € £b(E,F)is<iisjointness preserving. Then for all f € E,

there exists an operator T € Z(JTf) such that Tg = m|T|g for all g € Je-

Proof. By the Yosida representation theorem ([LZ] §45), there exist com-
pact Hausdorff spaces X and Y s.t. Jf can be identified with a Riesz
subspace E of C(X) and Jrg can be identified with C(Y). Then Tldf can

be considered to be a map T: E - C(Y). Hence, since T is disjointness
preserving, there exists a continuous function h € C(Y) and a continuous
map @: Y >~ X s.t. h(y) # 0 and ?g(y) = h(y)g(e(y)) for all g € E and

y €Y. Define m € Z(C(Y)) to be multiplication by TET' It is clear that

A

T = m|T|, which proves the theorem.

Remark: If F is Dedekind complete, a global polar decomposition can be
proved. Since we will not need this result, the proof will be omitted;
the real case follows easily from theorem 1.8.

Recall that a Riesz space E is said to have the o-interpolation prop-
erty if for any sequences {fm} ,.{gn} in_E which satisfy fm Tt < S 4,

there exists in element h € E such that f <h <g_ for all mand n.
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Every Dedekind o-complete Riesz space has the o-interpolation property,

and the o-interpolation property,in turn, implies uniform completeness.

In contrast to Riesz homomorphisms, the range of a disjointness pre-
serving operator T need not be a Riesz subspace. Indeed, this may not
hold even if T is an orthomorphism. However, if E has the o-interpola-
tion property, then the range of every orthomorphism on E is a Riesz
subspace (in fact, it is even an ideal, see [Z] 146.7, [dP1] 16.4, [HP]).

The next theorem generalizes this to disjointness preserving operators.

THEOREM 2.10. Let E and F be Riesz spaces and suppose F has the O-in-
terpolation property. Then the range of every disjointness preserving

operator T € Sb(E,F) is a Riesz subspace of F.

Proof. It suffices to show that f € TE implies |f| € TE. To this end,
suppose f € TE. By theorem 2.9, there exists m € Z(JTf) .
Tg = m|T|g for all g € Jrg-  Since |T| is a Riesz homomorphism and Je is
a Riesz subspace of E, ITlJf is a Riesz subspace of F. Thus, n[TIJf isa
Riesz subspace, since F and hence JTf has the o-interpolation property.
It follows that |f| €m 1T|Jf C TE, so TE is a Riesz subspace.

We conclude this chapter by discussing some extension properties of
contractors. Let S and V be subspaces of a Riesz space E and suppose
ScV. LetT: S-S be an operator on S. T is said to have an extension

to V if there exists an operator T: V - V such that T s = Ta

THEOREM 2.11. Let R be a Riesz subspace of a uniformly complete Riesz

space E, and let J be the ideal generated by R. Then every S € Con(R)

has a (unique) extension S € Con(J).
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Proof. Suppose g € J. Then there is an element f € R which satisfies
lg| < |f|. By proposition 2.8, there exists an operator m € 2(J¢) s.t.
mf = g. Define S: J - J by Sg := mwSf. Note that this definition makes
sense since S preserves ideals. It remains to show that the definition

is independent of the choice of f. Suppose f' € R satisfies |g|<|f'].

Let h = [f| v |[f'|. There exist elements m' € Z(Jf.) and
Tes ﬂf,,ﬁg € Z(Jh) s.t. m'f' =g, mh=f, m,h=f" and ﬂgh = g. We
hwenSf=nSnﬁ1=nnfSh=rBSh=rwr¥,Sh=n Sm“h=ﬂ Sf'.

This shows that S is well defined; it is clear that S € Con(J) and that

this extension is unique.

It has been shown by B. de Pagter ([dP1], 20.1) that elements of
the center of an ideal in a uniformly complete Riesz space can be ex-
tended to the uniform closure of that ideal. Our next theorem follows
from this result and theorem 2.11. For the sake of completeness, we pre-

sent a proof (see also [Wil]).

THEOREM 2.12. Let R be a Riesz subspace of a uniformly complete Riesz
space E. Then every T € Z(R) has a unique extension m € Z(J) to the uni-

formly closed ideal J generated by R.

Proof. By the last theorem, we only have to show that every m € Z(J) can
be extended to J, where J denotes the ideal generated by R. It can be
assumed that 0 <m < I. Defined to be the collection of all ideals A
s.t. J ©A cJ and w has an extension m, to A satisfying 0 <m, < I.

Define H: = U Aa. It is clear that H is solid. Suppose A,B € J and
A €J
a

denote the extensions by ™ and g respectively. Since J is order dense
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in A N B, M and Mg agree on A NB. It follows that m can be extended
to A + B by defining ﬂA+B(f4-g) = mf + Mg (f€A,g€B). This shows
that H is an ideal, so H € 9. Let ™ be the extension of m to H, and let
H' be the relative uniform pseudo-closure of H. It follows from
0<m<1 and the r.u. completeness of E that if fn - f r.u.(fn €H,f €E)
then ?ffn converges relative uniformly. Hence, T can be extended to H'.
It follows that H = H', so H is r.u. closed ([LZ] 16.6), which shows

that H = J and the proof is complete.

THEOREM 2.13. Let R be a Riesz subspace of a Dedekind complete Riesz
space E and suppose m € Z(R). Then T can be extended uniquely to an
element T € Z({R}dd). Hence, T can be spibnded Bo an elament T £ Z(E)

such that m'(E) < {R}dd and m'f = 0f for all f € {R}ddo

Proof. By theorem 2.11, it can be assumed that R is an ideal. It also
may be assumed that m is positive. Suppose 0 < f € {R}dd. Then there

exists a net {f } inRs.t. f 1 f. Define nf = sup mf_. Since m is
a

order continuous, T is well defined on {R}fd and hence has a unique ex-
tension to {R}dd. It is immediate that m € Z({R}dd). The last state-
ment follows by defining m'f = WP f, where P: E ~ {R}dd is the band pro-

jection onto {R}dd.

Remark: The last theorem can also be obtained by using the vector-valued
Hahn-Banach theorem (see [LS1], [Wi 4]). Our approach has the advantage
of actually constructing the extension, as well as yielding the interme-
diate results 2.11 and 2.12. Some other extension properties of ortho-

morphisms can be found in [dP1] and [Wi 4].
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The proof of the next theorem follows immediately from 2.4, 2.11,

2.12 and 2.13.

THEOREM 2.14. Suppose E is a uniformly complete Riesz space and R is a
Riesz subspace of E. Let J and J denote the ideal and closed ideal gen-
erated by R, respectively. Then Con(R) == Con(Jd) and Z(R) = Z(J). If E
is Dedekind complete, then Z(R) =‘Z({R}dd) and there exists a unique em-

bedding i: Z(R) » Z(E) such that i(m)f = 0 for all mw € Z(R) and f € {R}d.
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Chapter 3

THE ASSOCIATED HOMOMORPHISMS

It was shown in proposition 1.4 that every bounded disjointness pre-
serving operator between LP spaces has associated with it a Boolean homo-
morphism between the underlying measure algebras and an f-algebra homo-
morphism between the corresponding L® spaces. The purpose of this chap-
ter is to generalize these results to arbitrary Riesz spaces and to re-
late the properties of a disjointness preserving operator with those of
its associated homomorphismé.

If E = LP(x, =, u) (1 < p < =), then its underlying measure alge-
bra is isomorphic to the Boolean algebra of bands of E, 8(E),and
L®(X, £, u) is isomorphic to Z(E) = Orth(E). Thus, the associated homo-
morphisms of a disjointness preserving operator T € £b(E,F) between arbi-

trary Riesz spaces will be formulated under appropriate conditions in
terms of a Boolean homomorphism defined on ®8(E) and an f-algebra homo-

morphism defined on Z(E)(or Con(E) or, under certain restrictions, Orth(E)).

We first discuss the associated f-algebra homomorphism. This type
of construction was first introduced by A. W. Wickstead [Wi 1] for a lat-
tice homomorphism on a Banach lattice; several authors then gave some
variations on this idea (see [M3] [Sd 2] [Ar 2]). Theorem 3.1 and corol-
lary 3.2 give generalizations of these results. We then show that the
properties of a disjointness preserving operator are closely linked with
those of its associated f-algebra homomorphism on the center, provided
that the centers of the spaces have sufficiently many elements.

The associated Boolean homomorphism defined on the bands is discussed

in the last part of the chapter, using a construction introduced by
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W.A.J. Luxemburg [L] (definition 3.15). We then discuss the relation-
ship between a disjointness preserving operator and its two associated
homomorphisms. The advantage of the associated Boolean homomorphism
over the f-algebra homomorphism is that its properties closely reflect
those of the original operator even without any assumptions on the
spaces. However, it is often more difficult to work with than the f-al-
gebra homomorphism. Both associated homomorphisms will be used frequent-

ly in the 1last two chapters.

THEOREM 3.1. Let E and F be Riesz spaces. Suppose T € Sb(E,F) s dis-
jointness preserving and TE is a Riesz subspace of F. Then there exists

an f-algebra homomorphism T : Orth(E) -~ Orth(TE) defined by

~ ~ ~

T(m) Tf = Taf for all mw € Orth(E) and f € E. Furthermore, T = |T| ,

T (Con(E)) < Con(TE) and T(Z(E)) < Z(TE).

Remark: The hypothesis that TE is a Riesz subspace holds in particular

whcn T is positive or when F has the o-interpolation property (thm. 2.10).

Proof. Since Ker T is a uniformly closed ideal and each m € Orth(E)
leaves such ideals invariant ([dP1]15.2), Tf = 0 implies Tmf = 0.
Hence, Tg = Th implies Tmg = Tmh, which shows that T(n) is well de-
fined. It is clearly linear.

Now suppose 0 < Tg < Tf. Then by thm. 1.5 and [LZ] 59.1, there
exists an element k € Ker T s.t. |g| < |f| + k. Hence if m € Orth(E),
|T(mMTg| = [Tmg| < |[Tw(|f] + k)|=|f(ﬂ)Tf| so T(m) is order bounded.

Next, suppose Tf 1 Tg. By replacing f and g by their absolute

values if necessary, it can be assumed that f,g > 0. Define f'=f-fAg
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and g' =g - f Ag. Since |T(fAg)| = |Tf| A |Tg| = 0, it follows that
Tf = Tf' and Tg = Tg'. As it is clear that f' + g', for any m € Orth(E)
we have mf' + g'. Thus, since T is disjointness preserving,

0= |Twf'| A|Tg'| = |T(MTF'| A |Tg'|= |T(m)TF| A |Tg|. We have there-
fore shown that Tf + Tqg implies T(W)Tf + Tg, so T(m) € Orth(E).

For any m € Orth(E) and f € E s.t. Tf > 0 we have If(ﬂ)le =
|T(m)TF| = |Twf| = |(T|n|f)= T(|n|)TF, so T is a Riesz homomorphism.
Moreover, for any M, T, € Orth(E) and f € E, T(mm,)Tf = T mm,f =
T(my )T f = T(my) T(m,)TF, which shows that T is an f-algebra homomor-
phism.

Next, we show that T = |T| . Note that this makes sense because
|TE| = ||T|E|, so TE = |T|E since they are both Riesz subspaces of F.

For any m € Orth(E), and f € E s.t. Tf > 0, we have T(M)Tf = Tnf =

+
IT|w|f| = |T| () |T||f]

IT| (m) TF.

1]

It follows that T(m) |T[~(n), whence T = |Tl~, since they agree
on the positive cone of Orth(E).

Now suppose that m € Con(E) and J is an ideal in TE. Then T_l(J) is
an ideal in E by corollary 1.6. Therefore T(m)d = T(m)T(T
Tr(T77(J)) € T(T77(J)) = J. Hence T(m) € Con(TE).

Finally, suppose m € Z(E), so there exists a positive real number A
s.t. |mf|< A|f| for all f € E. Then for any f € E,

IT(MTf| =|Tnf| = |T||nf| < A|T||f| = A|Tf|, which shows that

T(m) € Z(E). This completes the proof.

Remark: Theorem 3.1 has an interesting application to the theory of f-
algebras. If A is an f-algebra, A can be canonically embedded in Orth(A)

by the map i: f P e, where e is defined as nf(g) = f.g for all g € A.
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Now suppose A and B are f-algebras, and T: A -~ B is a surjective f-alge-
bra homomorphism. It is easy to see that ?(nf) = e for all f €A,

which gives the following commutative diagram:

~

T
Orth(A) —————» Orth(B)

] I

A - B

In other words, every surjective f-algebra homomorphism T: A - B can be
extended (under the canonical embedding) to an f-algebra homomovrphism

T: Orth(A) - Orth(B).

If we restrict our attention to Con(E) and Z(E), we can obtain a
better result than theorem 3.1 by applying the extension theorems proved

in the last chapter.

COROLLARY 3.2. (c.f. [Wi1], [M3], [sd2], [Ar2])
Let E and F be Riesz spaces with F uniformly complete, and suppose
T € £b(E,F) 18 disjointness preserving. Denote the ideal and uniformly

closed ideal generated by TE in F by J and J respectively.

i) There exists a (unique) f-algebra homomorphism 1 : Con(E) - Con(J)

such that T(m)T = Tw for all m € Con(E).

ii1) There exists a (unique) f-algebra homomorphism T: Z2(E)» Z(3) such
that T(M)T = Tm for all w € Z(E).

Furthermore, in both i) and ii) we have T = |T| .
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Proof. If T is positive, i) follows immediately from theorems 3.1 and
2.11. For anarbitrary disjointness preserving operator T, define T = [Tl~
(note that the ideals generated by TE and |T|E in F are the same). We
must show that T(m)T =wT for all @ € Con(E). By theorem 2.9, for every
f € E there exists an operator e € Z(JTf) such that Tf = nflT[f. There-
fore, Tuf = nf|T|rrf = f(n)lT|f = T(rﬂ‘nflTlf = T(n)ff. This proves

f
i). The second statement follows from the first and from theorem 2.12.

We now consider the relationship between a disjointness preserving
operator T and its associated f-algebra homomorphism T defined in the
theorems givenabove. Since we are primarily interested in the T map de-

fined on the center, we single it out in the following definition.

DEFINITION 3.3. Let E and F be Riesz spaces with F uniformly complete
and let T€ Sb(E,F) be disjointness preserving. We shall call the f-alge-
bra homomorphism T: Z(E) - Z(j;E) defined in corollary 3.2 the associat-

ed operatorofT.

Warning: In the end of this chapter, we will slightly modify the defini-

tion of the associated operator. See page 38.

We now wish to relate the properties of a disjointness preserving
operator T with those of its associated operator T. However, if the
center of the domain or range of ?'15 trivial (i.e. consists of scalar
multiples of the identity operator only) then it is clear that the prop-
erties of T cannot be reflected accurately in T. Hence, in the following

we will typically need a condition which connects a Riesz space with its

center. Two such conditions have already been defined (definition 2.5).
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We give two more such conditions below.

DEFINITION 3.4. Let E be a Riesz space.

i) We say that E has a regular center if it follows from m_  + 0 in Z(E)

that ﬂaf +0<nkE for all f €E,.

i1) We say that E has a uniformly rich center if for every uniformly

closed ideal J € E there exists a non-zero element M € Z(E) such that

w(E) < Jd.

The condition that a Riesz space has regular center is very weak.
In fact, the author does not know of an example of a Riesz space which
does not have a regular center. It is clear that every Riesz space whose
center is trivial has regular center, and our next result, due to Meyer

[M2], shows the same is true when the center is algebraically rich.

PROPOSITION 3.5. FEvery Riesz space E whose center is algebraically rich

has a regular center.

Proof. Suppose L ¢ 0 in Z(E) but ”Q?.f f >0 for some e,f € E+ and all a.
Since Z(E) is algebraically rich, there exists an element m € Z(E) such
that 0 < me< f and mh= 0 for all h € {e}d. By theorem 2.4, m g >mg >0
for all g € {e}dd. Therefore, sincemh = 0 for all h € {f}d, m >m>0,

a contradiction.

In constrast to regularity of the center, the condition that a space
has uniformly rich center is quite strong. Any Banach lattice with order
continuous norm as well as any Dedekind complete Banach lattice with a
quasi-interior point has uniformly rich center. It seems to be unknown

whether or not every Dedekind complete Riesz space (or Banach lattice) has
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uniformly rich center.

THEOREM 3.6. Let E and F be Riesz spaces and let T € Sb(E,F) be dis-
jointness preserving. Suppose E has a transitive center and E;E has a
regular center. Then T is order continuous iff its associated operator

T 78 order continuous.

It should be remarked that the theorem holds in particular when E

and F are Dedekind o-complete.

Proof. Suppose T is order continuous and m ¢ Q in Z(E). Since the cen-
ter of E is transitive, it is algebraically rich. Thus, by proposition
3.5, naf ¢ 0 for all f € E_. Hence, since T is order continuous,

T(na)Tf =Tmn, f + 0. This shows that if 0 <m< T(na) for all «, then
m=0on TE. It now follows from theorem 2.4 that m = 0 on U;E, whence T
is order continuous.

Conversely, suppose T is order continuous, and f > fOL {0 in E.
Since E has transitive center there exist elements 0 <m € Z(E) such
that m f = f_and mh = 0 for all h € {f}d. ‘Then m_g order converges to
zero for all g in the order dense set {f} U {f}d, which shows that m ¢ 0
in Z(E). Since T is order continuous T(na) ¢ 0 in Z(J+-). Therefore,

B

since 3¥E has regular center, Tf =Tm f = T(na)Tf ~ 0 in order, which

shows that T is order continuous.

Example. This example shows that the assumption on E given in the last
theorem is essential. Let E be the Riesz space of all continuous, piece-
wise linear functions on [0,1] and let F be the Riesz space of all bounded

functions on [0,1]. Let T: E -+ F be the natural embedding. It is clear
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that T is not order continuous. However, Z(E) consists of scalar multi-
ples of the identity operator (see [L] ch. 3, thm. 8.2), so T is order

continuous.

THEOREM 3.7. Let E and F be uniformly complete Riesz spaces. Suppose
T € Sb(E,F) 18 disjointness preserving with associated operator T. Con-

sider the following statements:

a) T is injective.

b) % 18 injective.

Then a) = b). If the center of E is algebraically rich and any one of

the following conditions are satisfied, then b) = a), so a) and b) are

equivalent.
2) T is order continuous.

17) T 18 surjective and E has transitive center.

111) E has uniformly rich center.

tv) E and F are Banach lattices and E has a quasi-interior point.

~

Proof. Suppose T is not injective. Pick O # m € Ker T. Then there

T(m) Tf = 0,

exists an element 0 # f € E s.t. wf # 0. Since Tmf
T is not injective.

Now suppose that the center of E is algebraically rich and that T
is not injective. If i) holds, then Ker T is a band, so there exists an
element O0#m€ Z(E) such that m(E) < Ker T since Z(E) is algebraically
rich. Similarly, if (iii) holds, then there is an element 0 # m € Z(E)

such that m(E) € Ker T since Ker T is a uniformly closed ideal. In
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either case we have f(rﬂ Tf =Tnf =0 for all f €E, so T(m) = 0 and

hence T is not injective.

If ii) holds and T is injective, then T is invertible and hence or-
der continuous. By theorem 3.6 and part i) proved above, T is injec-
tive.

Finally, suppose E and F are Banach lattices and E has quasi-inter-
ior point e. Suppose T is not injective so Tf = 0 for some non-zero ele-
ment f € E. Since Ker T is an ideal, it can be assumed that 0 < f < e.

By theorem 2.6 there exists an operator m € Z(E), such that me< f and

+
mg= 0 for all g € {f}d. Hence, 0 = |T|f > |T|me = T(m)|T|e > 0, from

which it follows that T(m) = 0, since Te is quasi-interior to E;E.

Remark: The equivalence of a) and b) was first observed for a lattice
homomorphism between Banach lattices with quasi-interior points by Wick-

stead [Wil].

We next wish to investigate the duality relationships of disjoint-
ness preserving operators. If E is a Riesz space, we will denote the
order dual of E (i.e. the Riesz space of all order bounded linear func-
tionals on E) by E*. IfT € £b(E,F), where E and F are Riesz spaces, we

* * * *
will denote the order adjoint of Tby T (i.e T € £ (F ,E ) is the re-

b
*
striction of the algebraic adjoint to F ). The following result is due

to W. Arendt [Ar2].

PROPOSITION 3.8. Let T € £b(E,F) be a disjointness preserving operator

* *
between Riesz spaces E and F. Then |T |=|T| .

*
Proof. For any 0 <f € E and 0 <pu €E we have
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* * *
(Fo|T [u) = (f, sup [T v[) > sup [KF,T )| = sup |[KTf,v)|
V(|<u |V <p VISH

* *
= (|TF|, w2 = |T|f, w) = (F,|T| w) > sTp (f,|T v|). Since the second
v[<u

and the last expression are the same, equality must hold throughout. It

* *
follows that |T| = |T |.

DEFINITION 3.9. A positive operator T € £b(E,F) where E and F are Riesz
spaces, is said to be interval preserving (or has the Maharam property)
if for all f €E_ and all g € F satisfying 0 < g < Tf, there exists an

element f' € E such that 0 < f' < f and Tf' = gq.

Our next result is essentially aspecial case of the Luxemburg-Schep
"Radon-Nikodym" theorem (see [LS1] or [L] ch 4, 4.1). We include an

alternate proof of this result.

PROPOSITION 3.10. Let E and F be Riesz spaces, and suppose that E is
Dedekind complete and F has a transitive center. Let T € £b(E,F) be an
order continuous positive operator. Then T is interval preserving iff
for every m € L(F), there exists an element W' € Z(E) such that mTf =
Tu' f for all f € E. In particular, an order continuous Riesz homomor-
phism T is interval preserving i1ff its associated operator T is surjec-

tive.

Proof. Suppose that for all m € Z(F), there exists m' € Z(E) s.t.
mT=Tu', and let 0 < g<Tf (f € E,» g € F+). Then there exists an

mTf, and hence an operator m' € Z(E) s.t.

operator m € Z(F) s.t. g

g=Tmuf, so T is interval preserving.

Conversely, suppose T is interval preserving. Pick a disjoint order
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basis {f} for E (see [LZ] pg. 163). It can be assumed that f_ >0
g€S &=

for all 0 € S. Pick mw € Z(F) and, without loss of generality, it can be

assumed that 0 <m < 1. Then for each o €S we have 0 <mTf <Tf_.

Since T is interval preserving, there exists an element 95 g E 5.%.

0<g,= fO and Tg, = nTf;. By theorem 2.7 there exists an op-
- - d

erator m_ € Z(E) s.t. nfy = 95 and mh = 0 for all h € {f_}". Now sup-

pose 0 < x < f_ for some o € S. Then there exists an operator mo€ Z(E)

P rrxfG = X. We have anx = Tngrrx Ty = T(ﬁX)Tncfc = T(nx)Tgc =

T(nx)n"l'fG =mTmf,=nTx. Thus, Tmox = mTx for all x € ch. Define

m = sup moe It follows from the above that mTx = Tw' x for allxin the
ges

(order dense) ideal generated by the fc. Since T,m and @' are order con-

tinuous, it follows that mTy = Tmw'y for all y € E.

It was first observed by T. Ando-that the property of being interval
preserving is "almost" dual to the property of being a Riesz homomorphism
(see [Lo2], [LS1], [S] III, prob. 24). We wish to give a variation
of this result. To do so, we need to introduce the notion of the "abso-
lute weak topo]ogy."

Suppose that E is a Riesz space whose order dual E* separates the
points of E. Recall that the absolute weak topology on E is the locally
convex-solid Hausdorff topology generated by the Riesz seminorms
{pp: b€ E*} where pp(x) := |u|(|x|) for x € E. A linear functional & on
E is continuous with respect to the absolute weak topology iff o is order

bounded. For proofs and further information, see [AB] pg. 40-41.

PROPOSITION 3.11. Let E and F be Riesz spaces and suppose the order dual

*
F separates the points of F. Let T € £b(E,F) be a positive operator.
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*
Then the order adjoint T <is a Riesz homomorphism iff for all positive
elements e € E+ TIO,e||c|= [0,Te], where TIO,eI|ol denotes the closure of

T[0,e] in the absolute weak topology.

Proof. For simplicity, we will assume that E and F are real Riesz spaces.
Suppose T is a Riesz homomorphism. Pick f € F_ and suppose f ﬁ'TfﬁféIlcl.
By the geometric Hahn-Banach theorem (c.f. [Ru] thm. 3.4), there exists a
linear functional p € F* and a real number @ such that pu(f) > a > p(g) for
all g € T[0,e]. Since T* is. a homomorphism and f > 0,

WH(F) > u(f) >a>  sup Tu(h) = (T)¥(e) = T'u(e) = u'(Te), which

he[0,e]
shows that f ¢ [0,Te].

Conversely, suppose that TIO,e||c|= [0,Te] for alle €E, . Then for any

M E F* we have (T*p)+(e) = sup T*u(h) =  sup n(Th) = sup H(g) =
he[0,e] he[0,e] g€[0,Te]

+ * 4 . *
p (Te) = T w (e) which shows that T is a homomorphism.

PROPOSITION 3.12. TILet E and F be Dedekind complete Riesz spaces and sup-
pose T € Sb(E,F) 18 an order continuous Riesz homomorphism. Consider the

following two statements:

a) T is interval preserving

b) The order adjoint T* 18 a Riesz homomorphism.

Then a) = b). If the order dual F* separates the points of F, then b) =

a) so the two statements are equivalent.

*
Proof. a) = b) follows from proposition 3.11. Conversely, suppose F
*
separates the points of F and that T is a Riesz homomorphism. Pick e €E,

and suppose 0 < g < Te for some g € F. By proposition 3.11 there exists a
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x*
net {ga}aEA s.t. g, > 9 |o|(E,E ), and for each @ € A there exists an ele-
ment h, €Es.t. 0<h <eand Th, = 9o- For any a € A, define
f_=1inf h,. Note that e > f_ 1, so there exists an element f € E, s.t.
a B>a B - Q +
fOL t f in E because E is Dedekind complete. Since T is an order continu-

ous Riesz homomorphism, Tf =T sup infh_= sup inf T}\1= 1im inf g = g,
a pP~a a B>a a (o4

which shows that T is interval preserving.
We collect the preceding results in the following theorem.

THEOREM 3.13. Let E and F be Dedekind complete Riesz spaces and suppose
T € Sb(E,F) 18 an order continuous disjointness preserving operator. Con-

sider the following statements:
a) |T| is interval preserving
b) TE s an ideal in F.
e) The associated operator T is surjective.
. . * . . o
d) The order adjoint |T| +<s a Riesz homomorphism.

*
e) T <s disjointness preserving
Then a), b) and c¢) are equivalent, as are d) and e). Furthermore a)
*
= d) and if the order dual F separates the points of F then d) = a) so

all five statements are equivalent.

Proof. a) @ c) is proposition 3.10. a) = b): Suppose f € E and g € F
satisfy |g| < |Tf|. Then there exists an element h € E_ s.t. Th= [g].
By theorem 2.7, there exists an operator m € Z(F) s.t. g = mw|g| = @ Th.
By c), there exists an operator m' € Z(E) s.t. g=mnTh = Tn' h, which

shows that TE is an ideal.
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b) = a) follows from |Tf|= |T||f|. d) e e) is obtained by applying prop-

osition 3.8. a) = d) follows from proposition 3.12 as does d) = a) when

*
F separates the points of F.

Remark: The assumption in theorem 3.13 that F is Dedekind complete is es-
sential. Indeed, if E = C[0,1] there are elements of Z(E) (whence their

*
adjoints are in Z(E )) whose ranges are not even Riesz subspaces.

If E is a uniformly complete Riesz space, its center is uniformly
complete and has a strong order and algebra unit I. Hence Z(E) is f-alge-
braically isomorphic to a space of the type C(K), where K is a compact
Hausdorff space. If T € Sb(E,F) is disjointness preserving, then its asso-
ciated operator T can thus be considered as an f-algebra homomorphism
T: C(X) > C(Y), where X and Y are compact Hausdorff spaces, C(X) = Z(E)
and C(Y) = Z(3¥E). Hence, by proposition 1.3, there is a continuous map

Pr Y > X s.t. Tf(x) = f(qﬁ(x)) for all f € C(X). We now investigate

the relationship between T and P

THEOREM 3.14. Let E and F be Dedekind complete Riesz spaces and suppose
T € Sb(E,F) is disjointness preserving. Identify L(E) == C(X) and Z({TE}dd)

= Z(U;E)'* C(Y) and let P Y > X be the continuous map as defined above.
a) T is order continuous iff % 18 an open mapping.

b) If T is injective then %r 18 surjective. Conversely, if %r 18 surjec-
tive and any of conditions i) - 1v) listed in theorem 3.7 is satisfied,

then T is injective.

e) If T is order continuous, then TE <Zs an ideal in F iff Pr 18 injective.
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Proof. Statement a) follows immediately from theorem 3.6 and [S] III 9.3;
b) follows from theorem 3.7 and [S] III 9.3.

To prove c), first suppose that Pr is not injective, so for some
Y15 ¥, €Y, @rys) = @rly2). Then for all f € C(Y), T f(y1) = Tf(y.). It
follows from Urysohn's lemma that T 1s not surjective, and hence by theo-
rem 3.13 TE is not an jdeal.

Conversely, suppose that P is injective. By factoring out the ker-
nel of T if necessary, it can be assumed that T is injective and hence Pr
is surjective ([S] III 9.3),.i.e. Pr is a homeomorphism. This says that

~

T is invertible and hence surjective. By theorem 3.13, TE is an ideal.

Remark: The previously mentioned result [S] III 9.3 was proved by Nagel

[N]. Some other related results can be found in [Wi 2].

Let E and F be Dedekind complete Riesz spaces and let T € £b(E) be
disjointness preserving. Then by theorem 2.14, the associated operator
can be considered as a map T: Z(E) - Z(F) such that T(m)f = 0 for all
m € Z(E) and f'G{TE}d. From this point on, the associated operator T will

always mean the map T: Z(E) » Z(F) constructed in this manner.

Since P € P(E) iff P € Z(E) and P2 = P (where ®(E) denotes the col-
lection of all band projections on E), for any P € ©(E), T(P) € P(F). 1In
fact, since T is an f-algebra homomorphism, the restriction of T to ®(E)
is a Boolean homomorphism from ©(E) into ®(F). By identifying ®(E) and
©(F) with their respective Boolean algebras of bands, T induces a Boolean
homomorphism from B(E) to 8(F), which will be denoted by T,.

There is another way for T to induce a map from 8(E) into &(F) which

requires no completeness assumption. It was introduced for Riesz
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homomorphisms by Luxemburg ([L] ch 3, sec. 3).

DEFINITION 3.15. Let T € Sb(E,F) be a disjointness preserving operator
between Riesz spaces E and F. We define tr: 8(E) > 8(F) by tT(B) =
1819 (B € a(E)).

If no ambiguity will arise, we will denote tT simply by t. It should
be remarked that tT is not always a Boolean homomorphism (for examples see
[L]). The final goal of this chapter is to investigate the relationship
of T,T, and tr.

PROPOSITION 3.16. Let E and F be Dedekind complete Riesz spaces, and sup-
pose T € Sb(E,F) is disjointness preserving. Then T, = tT so in particu-

lar tT 18 a Boolean homomorphism.

Proof. Let B € B(E) with corresponding projection P. Then

t-(8) = (18394 = (P} = (F(p)TEXY? = F(p)(TEIY = F(P)E=T,(B).

T

PROPOSITION 3.17. Let T € Sb(E,F) be an order continuous disjointness
preserving operator between Riesz spaces E and F. Let E and F be the
Dedekind completions of E and F respectively and let T be the unique ex-
tension to B of T (theorem 1.9). Let ?* :ﬁ(E) > 8(F) be the Boolean ho-
morphism induced by the associated operator of T as defined above and

B(E) ~ B(F) be the map given in definition 3.14. Then tT 18 a Boo-

T
lean homomorphism which corresponds, under the identification of B(E) and

A ~

B(F) with B(E) and B(F) to T,.

Proof. Since T and hence T is order continuous, it is clear that the
bands generated by TE and T in F are the same. Therefore, t; can be

identified with ts under the canonical identification on B8(E) and &(F)
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with 8(E) and 8(F). Applying proposition 3.16 to ts yields the result.

LEMMA 3.18. Let E and F be Riesz spaces, T € £b(E,F) be disjointness pre-
serving and suppose E has the principal projection property. Then the as-
soctiated operator T is order continuous iff the restriction of ? to the

order projections P(E) is order continuous.

Proof. If T is order continuous, then obviously ?‘P(E) is order continu-
ous.

Conversely, suppose T‘P(E) is order continuous and suppose Izrh-to
in Z(E). Suppose there exists an element m,€ Z(E) s.t. 'f’(rra)zrro >0.

Pick € > 0 and let P€ - be the projections onto the carrier bands of
(- sI)+ Note that P€

b, 0 in Z(E) and that eI + PE g 2 T for all a.

30' 9

) 4

that m; = 0 and completes the proof.

Hence, since T(P 0, el >m, >0. As e is arbitrary, this implies

g0 &

The final result of this chapter was obtained, with a different proof,

by Luxemburg [L].

THEOREM 3.19. Let E and F be Riesz spaces and suppose T € Sb(E,F) 18
disjointness preserving. Then T is order continuous iff tT 18 an order
continuous Boolean homomorphism.

Proof. If T is order continuous, so is its extension ? € Sb(E,F) to the
Dedekind completion of E. Hence, T, 1is order continuous by theorem 3.8

and the lemma. It follows immediately from propositions 3.16 and 3.17

that tT is an order continuous Boolean homomorphism.

Conversely, suppose tT is an order continuous Boolean homomorphism

and let T be any extension of T to E. Define t: ®(E) ~ 8(F) by
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t(B) = {TB}dd, where the "dd" is taken in F. Since t is an order contin-

uous Boolean homomorphism, so is t. Furthermore, since TB < TB

~

t(B) = t2(B) for all B € B(E) (where B is defined to be {B}dd(ﬁ)). By

%
proposition 3.16 tf is a Boolean homomorphism. Hence, E(Bd(E)) =

(£8))4F) 5 1a(8)4(F) < o(ad(B))
inclusions yields t = 2 Since ts = T, and t is order continuous, the

restriction of the associated operator of T to ®(E) is order continuous.

B for-all B € 8(E). Combining the two

By 1lemma 3.18 and theorem 3.6 T is order continuous, and hence T is order

continuous as well.

Remark: If T is order continuous, analogues of theorems 3.7 and 3.13

can easily be obtained for tT in place of T.
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Chapter 4

BI-DISJOINTNESS PRESERVING OPERATORS

This chapter studies a special type of disjointness preserving oper-
ator which is given in definition 4.1 below. The main object of this
chapter is to decompose such operators into simple components whose prop-

erties can be easily analyzed (see theorems 4.13 and 4.19).

DEFINITION 4.1. Let E be a Riesz space. We will say that an order con-
tinuous Riesz homomorphism T € £b(E) is bi-disjointness preserving if
for every f,g € E_ satisfying 0 < g < Tf, there exist a net {hq} such
that Tha =+ g in order.

A disjointness preserving operator will be called bi-disjointness

preserving if its absolute value is bi-disjointness preserving.

It is clear that the hOL in the preceding definition can be taken to
satisfy 0 <h < f. Our first goal is to show that under certain condi-
tions an order continuous disjointness preserving operator is bi-dis-
jointness preserving iff its adjoint is disjointness preserving. This
observation justifies the definition given these operators. We first
give an important, though somewhat technical, characterization of bi-

disjointness preserving operators.

PROPOSITION 4.2. Let T € £b(E) be an order continuous disjointness pre-
serving operator on a Riesz space E. Let E be the Dedekind completion of

E and let T be the (unique) extension of T to E. Then T is bi-disjoint-

ness preserving 1ff TE is an ideal in E.

Proof. It can be assumed that T is a Riesz homomorphism. Suppose

T is bi-disjointness preserving and 0 < f, g € E satisfy
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0 < g < Tf. Then there exists an element f and a

net {ga} in E such that ga’t § < Tf. Since T is bi-disjointness preserv-

ing, for each a there exists a net {haB}BEB in E such that 0 f-has <f
and Th,g =+ g, in order. Define A = sup{inf h, 1. Since T is an order
a,B y>B
B,y€B

continuous Riesz homomorphism, Th = §, so TE is an ideal.

Conversely, suppose TE is an ideal and 0 < g < Tf in E. Then there
exists an element h € E such that Th = g. Hence, there exist elements
ha € E such that 0 < hOL t h and thus g =T sup ha = sup Tha, which shows

that T is bi-disjointness preserving.

COROLLARY 4.3. Let E be a Dedekind complete Riesz space whose order dual
*
E separates the points of E. Let T € Sb(E) be an order continuous dis-

jointness preserving operator. The following are equivalent:
a) T is bi-disjointness preserving,
b) TE Zs an ideal in E,
*
e) T 1is disjointness preserving.
Proof. The corollary follows immediately from theorem 3.13 and proposi-
tion 4.2.

Example. Let X be an extremely disconnected compact Hausdorff space,

and Tet E = C(X). Then every disjointness preserving operator T € £b(E)

is of the form Tf(x) = h(x)f(p(x)), where h € C(X) and ®: Coz(h) = X.
It follows from theorem 3.14 and corollary 4.3 that T is bi-disjointness

preserving iff ¢ is injective and an open mapping.
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If E is not Dedekind complete, we can at least obtain the following

result.

*
PROPOSITION 4.4. Let E be a Riesz space such that E separates the
points of E. If T € Sb(E) 18 an order continuous disjointness preserv-
*
ing operator and T 1s also disjointness preserving then T is bi-dis-

jointness preserving.

*
Proof. Since E separates the points, every absolute weakly convergent
net converges in order. The result now follows from propositions 3.11,

3.12 and the definition of bi-disjointness preserving operators.

Besides the Dedekind complete case, there is one other situation
where a dual formulation of bi-disjointness preserving operators can be
given. Recall that a normal integral of a Riesz space E is an order con-
tinuous linear functional on E. We shall denote the collection of all
normal integrals by E:. It is well known that E: is a band in E* and
hence is itself a Dedekind complete Riesz space. If T ¢ Sb(E) is order
continuous, then we will denote the restriction of T* to E: by T:. Note

* £ *
that Tn € b(En).

*
PROPOSITION 4.5. Suppose E is a Riesz space such that En separates the
points of E. Then an order continuous operator T € £b(E) is bi-disjoint-

*
ness preserving iff T and Tn are disjointness preserving.

Proof. Let T € £b(E) be an order continuous disjointness preserving op-

erator and let T be its extension to , the Dedekind completion of E. It

S5 % Mo

is easy to see that each element of E_can be extended uniquely to E so

* A% *
that En and En are Riesz isomorphic. It follows that Tn is disjointness
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A%
preserving iff T_ is disjointness preserving. Therefore, by theorem 3.13

n
A A AKX
and [LS1] 4.1, TE is an ideal iff Tn is disjointness preserving iff T:

is disjointness preserving, which proves the result.

We now introduce the four basic types of bi-disjointness preserving

operators.

DEFINITION 4.6. Let T € £b(E) be a bi-disjointness preserving operator

on a Riesz space E.
2) T 2s said to be quasi-invertible <f T Zs injective and {TE}dd = E.

1t) T s said to be of forward shift type Z2f T Zs injective and

A {1394 < (o3,
n=1

iii) T is said to be of backward shift typeif V Ker T" = E and
n=1
(TE3%d = g,

(o]

iv) T is said to be hypernilpotent <f V Ker T" = E and fX{TnE}dd = {0k
n=1 n=1

Remark: It is easy to see that a bi-disjointness preserving operator has

one of the four properties listed in the above definition iff its exten-

tion to the Dedekind completion of E has the same property (c.f. propo-

sitions 3.16 and 3.17).

Example. Let E = *(Z) be the Riesz space of all bounded, doubly in-
€ E and let T be the

finite sequences. Pick a weight sequence {wn}°°
n:

weighted bilateral shift operator T{x }co = {wnx It is clear

n n=- n+] }nz_m :

that T is bi-disjointness preserving. Then T is quasi-invertible iff
W # 0 for all integers n €Z and invertible iff there exists a constant

¢ =2 U 5.8 W >c¢ for all n €Z. T is hypernilpotent iff for each
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integer n there exists integers ni, n, s.t. ny < n <n, and
= = — . - — d
Wos = ¥, 0. Let A {{xn} EE: X, =07Vn <0} and B = A". The
restriction of T to A is of forward shift type iff W # 0 for all
n € N. The restriction of T to B is of backward shift type iff

w,# 0 for all integers n < 0.

We begin our discussion of these four classes by describing the
duality relationship between them. Let S be a subspace of a Riesz space
E. Then the set S° := {y eg: . y(f) =0 for all f € S} will be called
the annihilator of S. Similarly, if A is a subspace of E:,
°A := {f € E : ¥(f) = 0 for all ¥ € A} will be called the pre-annihilator
of A. If S is an ideal in E and A is an ideal in E:,.then S° and °A are
bands in E: and E, respectively. The following simple relationship be-
tween the ideals and the annihilators was first observed by Luxemburg and

Zaanen [LZ1].

*
PROPOSITION 4.7. Let E be a Riesz space and suppose En separates the
*
points of E. Then for any ideal S in E and any ideal A in E_, e )= de
and {°A}° = A%,

o o 0{S%}. On the

Proof. Since °{S°} is a band which contains S, S
*
other hand, by the bipolar theorem ([S1] IV; 1.5), °{S°} is the c(E,En)
*
closure of S. But since En separates the points of E, every band in E is

dd dd

G(E,E:) closed ([Z] 106.1). Hence °{s°} =599, so 9(s°} = 599, The

second statement is proved similarly (c.f. [Z] 106.2).

If E: separates the points of E and T € Sb(E) is order continuous,
* % *
then it is easy to see that Ker T = °{T En} and Ker T = {TE}*{e. 7. [Ru]

4.12 and [S1] IV 2.3). Using these facts, we can easily prove the
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following duality relationships.

THEOREM 4.8. Let T € £b(E) be a bi-disjointness preserving operator on
* *
a Riesz space E and suppose En separates the points of E. Then Tn 18

bi-disjointness preserving. Furthermore:

1) T is quasi-invertible iff T: 18 quasi-invertible

i) T Zs of forward shift type <iff T: 18 of backward shift type

i3i) T is of backuard shift type iff T, is of forvard shift type

tv) T is hypernilpotent iff T: 18 hypernilpotent.

Proof. It follows from [LS1] 4.1 that T: is bi-disjointness preserving.

By proposition 4.4 and the above remarks we have

(1) Ker T = {TE}® = {{{TE}"}}® = ({39930 and

(2) {17 E3%% = (0T £330 = fKer TI.

dd ’ * 2 * _*.dd *
Hence, {TE} ~ = E iff Ker Tn {0} and Ker T = {0} iff {Tn En} = En .
This proves i). By [Ko] pg. 247 (6), proposition 4.7 and formulas (1)

and (2) we have:

(3) {‘V Ker Tk}o = A {ker T = FI{(T*)k g j4d

k=1 k=1 k=1 N0
and

@ @ @ k
(@) | nerer” = Vv ket = Vier (T:) ,

k=1 k=1 _ k=1

Statements ii), iii) and iv) now follow immediately from the definitions

and formulas (1) through (4).

Quasi-invertible operators can be characterized as precisely those

disjointness preserving operators whose associated operator is an



48

isomorphism.

PROPOSITION 4.9. Let E be a Dedekind complete Riesz space and let

T € £b(E) be disjointness preserving. The following are equivalent:
a) T is quasi-invertible.

b) The associated operator T is an f-algebra isomorphism of Z(E) onto

ttpal?l,

e) The restriction of T to the projection bands is a Boolean isomorphism

of P(E) onto itself.

Proof. a) = b). Since {TE}dd = E and TE is an ideal, % is surjective

by theorems 2.14 and 3.13, and injective by theorem 3.7.

b) = a). Since % is surjective, the projection P onto {TE}d is in the range
of }. But it follows immediately from the definition of % that its range
must be disjoint from P, whence {TE}dd = E. By theorem 3.13, TE is an

ideal. Since % is invertible, it is order continuous, so T is order con-

tinuous by theorem 3.6. It therefore follows from theorem 3.7 that T is

injective and hence is quasi-invertible.

b) = ¢). If P £ ©{E], then (T(P}}2 = T(P%) = T(B). Since T(P) & Z(E),

this shows that T(P) € ®(E). Similarly, T-*(P) € P(E), so T is a Boolean

isomorphism.

c) = b). By lemma 3.18, % is order continuous and hence its kernel is a
band. Thus, Ker % = P Z(E) for some P € #(E). Since %(P) =0, P =0 by
c). Therefore % is injective. On the other hand, by c), %(Z(E)) con-
tains ®(E), and hence all linear combinations of band projections. It

follows easily from Freudenthal's spectral theorem ([LZ] 40.2) that T is
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surjective, which proves b).
A similar result can also be obtained for the associated Boolean
homomorphism. It is an immediate consequence of propositions 3.17 and

4.9 and theorem 3.19.

COROLLARY 4.10. et T € Sb(E) be a disjointness preserving operator on

a Riesz space T. The following are equivalent:
a) T is quasi-invertible.
b) t; is a Boolean isomorphism of BE) onto itself.

We wish to show that a bi-disjointness preserving operator on a
Dedekind complete Riesz space can be decomposed into components satisfy-
ing one of the four properties listed in definition 4.6. We will need

two lemmas.

LEMMA 4.11. Let E be a Dedekind complete Riesz space and suppose
T € £p(E) is bi-disjointness preserving. Define K € B(E) by

VKker T". Then K is a reducing band for T; in other words, if
n=1
P € P(E) is the projection onto K, them TP = PT.

K

Proof. It can be assumed the T is positive. For each natural number n,

let Pn be the projection onto Ker Tn, and let P, be the zero operator.

Now TP E = T Ker ™" = TE N Ker TNF = P TE. Thus, if Q denotes the
projection onto {TE}dd, we have f(Pn) = Q Pn_1 . Hence, for any f € E,
TPf=T V(pf)= V(TP f) = V(QP _ Tf) =Q(VP)Tf =

n=1 n=1 n=1 n=1

QPTf = PTf, and the proof is complete.
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LEMMA 4.12. Suppose E is a Dedekind complete Riesz space and T € Sb(E)
is bi-disjointness preserving. Define A = f\{TnE}dd. Then A is a re-

n=1
ducing band for T.

Proof. For each natural number n, let Qn be the band projection onto

{TnE}dd, let Qo =I1and Q= Q.. We must show that TQ = QT.
n=] "

First of all, by theorem 3.13, for each natural number n, there
exists a projection Rn € P(E) s.t. T(Rn) = Qn‘ Denote the projection
onto Ker T by P. We claim that P VR =PV Q . To show this, sup-

pose f € (I-P)T"*

E. Then by the definition of Qn’ Tf = TQn_lf = Qan =
T'Rnf. Since f € (I-P)E = {Ker T}d, this implies that Rnf = f. It fol-

lows that RV P > Q.. ¥V P. On the other hand, suppose f € E satisfies

fL(T"'E UKer T). Then Tf + T"E and hence 0 = Q,Tf = TR f. Since

1]

f L Ker T, this implies that Rn'f= 0. Thus (Qn_l V P)g =0 implies

(Rn v P)g = 0. i.e. Rn VP< Qn VP Combining the two inequalities

<7§Qn>T .
n=1

yields the claim.

— 2

Finally, since T is order continuous, TQ = T(Q)T =

< ﬁ\T(Qﬂ))T = < f\Qn_l>T = QT, and the lemma is proved.
n=1 n=1

THEOREM 4.13. Suppose T € £b(E) 18 a bi-disjointness preserving operator
on a Dedekind complete Riesz space E. Then there exist T-reducing bands

Ei(i =1, 2, 3, 4) such that E =

n @

Ei and the restrictions of T to Ei
1

are respectively quasi-invertible, of forward shift type, of backward

]‘

shift type, and hypermilpotent.

Proof. Let P be the projection onto V ker T" and let Q be the projec-
n=1

tion onto M {T"E}%9, pefine E, (i =1,2,3, 4) by 2 = (I-P)QE,
n=1
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E, = (I-P)(I-Q)E,Es = PQE and E, = P(I-Q)E. That the E; are T-reducing
bands and that _é Ei = E follow immediately from the definitions and from
Temmas 4.11 and1;112.

For i € {1,2,3,4} set Ti =T

E.° It is clear that T; and T, are
3

injective and that N {T7E,399 = {0} and N (T7E,3%9 = {0}. Suppose
n=1 n=1

f € QE but f L TQE. Then f L QTE and hence f L TE since f € QE.

This implies that f = 0 since f € QE= N {T"E}%9. Therefore, {TQE}¥ =
n=1

QE and hence {T'El}dd = E, and {T'E3Fd = E3, which completes the proof.

The final goal of this chapter is to show that quasi-invertible op-
erators can be further decomposed into components satisfying the follow-

ing properties.

DEFINITION 4.14. Let E be a Riesz space and let T € Sb(E) be a quasi-

invertible disjointness preserving operator.

1) We chall say that T has strict period n for some n €N if
" € Orth(E) and for every band 0 # B € B(E), there exists a band

W eregayyd, ..., AP

0 # A € B(E) such that A < B and A, {T(A)}

are mutually disjoint.

i1) We say that T is aperiodic if for every band 0 # B € B(E) and epery
natural number n, there exists a band 0 # An € B(E) such that A, =B and

dd ney ypdd
A (T(A DY, Lo, (TR

are mutually disjoint.
Example 1: Let X be compact Hausdorff and E = C(X). Then every disjoint-
ness preserving operator T : E * E is of the form Tf(x) =h(x)f(ep(x)) for

some h € E and some continuous map ¢ : Coz(h) = X (thm 1.3). For any
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m,f € C(X) we have T(mf)(x) = h(x)m (¢p(x)) f ((x)) = m(ep(x))(TF)(x). Un-
der the identification of C(X) with Z(C(X)), this shows that
%m(x) = m(ep(x)) for all m € Z(C(X)) and all x € Coz(h).

Now suppose T is quasi-invertible. Then since {TE}dd is a band, h
must be a weak order unit of E. This is equivalent to the statement that
Z(h) := {x € X : h(x) = 0} has empty interior (see [JR] 12.9 or [LZ]
22.10). Since Z(h) is closed, it must therefore be nowhere dense.

Let £ and Z(E)" denote the Dedekind completion of E and Z(E) respect-
ively. Since Z(E) =~ 7{E)", it is easy to see that the associated opera-
tor of the extension of T to E can be identified with the extension of T
to Z(E)A. Thus, by proposition 4.9, the extension of } to Z(E)A is in-
vertible, so } must be invertible as well (and conversely if } is invert-
ible, then T is quasi-invertible by the same argument). This shows that
¢ : Coz(h) + X can be extended continuously to all of X in such a way to
make ¢ a homeomorphism. In conclusion, an operator Tf(x) = h(x) f(®(x))
from C(X) to itself is quasi-invertible iff Z(h) is nowhere dense and ¢
can be extended to a homeomorphism of X onto X.

Now suppose Tf(x) = h(x) f (¢(x)), where Z(h) is nowhere dense and ¢
is a homeomorphism of X onto itself. Set Fn = {x €X : o (x) = x}
(n=1,2, ... ). The Fn are clearly closed sets. We claim that T has
strict period n iff Fy, Fo, ..., Fn_1 all are nowhere dense but Fn = X.

To see this, first suppose T has strict period n. Then since

~

" is the identity operator on Z(E). Since

" € orth(E) = Z(E), T
Tn(x) =m("(x)) for all m € Z(E) = C(X), it follows that F_ = X. Sup-
pose Fk contained a non-empty open set U for some k € {1, 2, ..., n-1}.

Then by Urysohn's lemma, there exists a non-zero function f which is zero
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off U. Then for any g € {f}dd,Tkg = g, whence B = {TkB}dd for any band
B < {f}dd. This contradicts the assumption that T has strict period n,

so the Fk must all be nowhere dense.

Conversely, suppose Fn = X and Fa, cees Fn_1 are nowhere dense.
Then obviously T" € Z(E). Let U be any non-empty regularly open set in X
n-1 _
and pick a point x € U.\ ( U Fk). Then x, @(x), ..., " *(x) are distinct
k=1

points, so by the continuity of ¢, there exists a regularly open neigh-
borhood 8 of x such that 8, ©(8), ..., ¢""*(8) are mutually disjoint.
Since bands in E correspondAto regularly open sets in X ([JR] 12.9 or
[LZ] 22.10), it follows that if A,B are the bands corresponding to 6 and

dd, i {Tn(A)}dd are

U respectively, then {0} # A <B and A, {T(A)}
mutually disjoint. Thus, T has strict period n.
Using the same reasoning as above, it can be shown that T is aperi-

odic iff Fn is nowhere dense for all natural numbers n.

Remark: The only property of E in the above example,which was used to
show that T is quasi-invertible iff % is invertible,is that Z(E) = Z(E)".
It is not difficult to see that this condition is equivalent to the prop-
erty that E has algebraically rich center. Thus, the equivalence of a)

and b) in proposition 4.9 remains valid for non-Dedekind complete spaces

whenever the space has an algebraically rich center.

Example 2: Results similar to example 1 can be obtained for quasi-invert-
ible operators on Lp[0,1] (1 < p < <«) with Lebesgue measure (or more gen-
erally, Lp(X, £, 1), where (X, z,d) is a finite Lebesque space). Firstly,
T is quasi-invertible iff Tf(x) = h(x) f (@(x)), where h € L“[0,1] is non-
zero almost everywhere and ¢ : A ~ B is an invertible bi-measurable map

(where A,B are sets of measure 1 in [0,1]) such that f =h - f o @
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defines a bounded operator on Lp[O,l]. Such a quasi-invertible operator
T has strict period n iff {x € [0,1] : @k(x) = x} has measure zero for
each k =1, 2, ..., n-1and ¢"(x) = x for almost every x € [0,1]. T is
aperiodic iff {x € [0,1] : @k(x) = x} has measure zero for all natural
numbers k. The proofs of these facts are straightforward and will be

omitted.

The two examples given above show that the definitions of strict
period n and aperiodicity given in 4.14 agrees in the concrete case with
the usual definitions given these concepts in the theory of dynamical

systems (c.f. [Fr] pg. 102, [Rn], [HS]).

We next wish to give a characterization of those operators which
have strict period n or are aperiodic when the space is Dedekind complete

tc.f. [Arlls-IL] ch 3., 1.7].

LEMMA 4.15. Let E be a Dedekind complete Riesz space and let T € Sb(E)
be a quasi-invertible disjointness preserving operator. The following

are equivalent:

1) For every projection 0 # P € P(E), there exists a projection

0#P €P(E) such that P' <P and P'T(P') = 0.

22) I A|T| =0

Proof. 1) = ii): Let P be the projection onto {Ker(IA|T|)}d and suppose
that P # 0. Then by i), there exists a projection 0 # p' ¢ P(E) s.t.
P'<Pand P T(P') =0. Wehave 0< (I A|T|)P' = (I A|T|)(P')? =

P'(I A TP < P'|T|P' = P'f(P')!TI = 0, a contradiction. Therefore

P =0, whence I A |T| = 0.
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ii) = i): Suppose i) does not hold for some projection 0 # P € B(E).
Then for every 0 # p' € ©(E) s.t. P < P, we have p' }(P') # 0. Fix
0#P' €®(E) with P' <P and define Q = P' - P'T(P')and R =

- TP (TR - T(P)T2 (')
0. Similarly, R%(R) = 0

P' - P' T°X(P'). We have Q T(Q) = (P

1
—t
—
el
~
O
]

< (P - T(PY)PT(P') = T(P')P
Since Q,R € P(E) and 0 < Q <P, 0 <R <P, this implies that Q = R = 0,
by assumption. Now Q = 0 implies P' < %(P') and R = 0 implies

p' < %'1(P') and hence %(P') < P'. Therefore, p' = %(P'), which shows
that TP' = P'T for all P' € @(E) satisfying P' < P. By theorem 2.3, this
implies that TlPE € Orth(PE). Hence, TP is non-zero and in the band

generated by I A |T| in Sb(E). This contradicts ii).

PROPOSITION 4.16. Let E be a Dedekind complete Riesz space and let n be

any natural number. The following are equivalent:

i) For every 0 # P € P(E), there exists a projection Pn € P(E) such that

0#P <PandP TP ), ..., T'(P) are disjoint.
i) T A|T| =0 for each k €1, 2, ..., n}.

Proof. 1) = ii): Suppose i) holds for some natural number n. Then for

any 0 # P € ( there exists a projection 0 # Pn € P(E) s.t.

E)s
o n
Pn,T(Pn), ss 5w 0

k E'{1, 2, ..., N} we have Pn T

(Pn) are disjoint. In particular, for each
k
(

P ) = 0, which implies that I A |TX| = 0

n

by Temma 4.15.
1 is lemma 4.15. Suppose that

ii) = i): By induction. The case n
i1) = i) holds for some n €N and that I A |[T|X = 0 for each
k € {1, 2, ..., n+ 1}. By induction hypothesis, for any 0 # P € ©(E),

there exists a projection 0 # Pn € P(E) s.t. Pn < P and
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~

P s TP Ja 2:ea Tn(Pn) are disjoint. By Temma 4.15 (applied to T " and
Pn), there exists a projection 0 # P . € P(E) s.t. P o, <P and

R Yy ves TP

P T

n+1 TEP

(P

) = 0. Since Pn+l < Pn, we have P

)
are disjoint as

nty’ n+1
~n+
igdy wxsa T0 P

well. It herefore follows from Pn+1fn+1

n+1

. - . = ~2
are disjoint, and hence T(Pn+1)’T (P n+l)

(Ppy) = 0 that P,

)

E: nt+1

T(Pn+l), ey T (P are disjoint, which proves 1i).

)

THEOREM 4.17. Let E be a Dedekind complete Riesz space and let T € £b(E)

be a quasi-invertible disjointness preserving operator.
1) For each natural number n, the following are equivalent:
a) T has strict period n.

b) T € Orth(E) and for every projection 0 # P € P(E); there exists a

~ ~

projection 0 # P' € P(E) such that P' <P and P', T(P'), ..., T" ' (P")

are mutually disjoint.

|
(@]

e) TN € Orth(E) and for each k € {1, 2, ..., n - 1}, 1 A |T]k =

11) The following are equivalent:
a) T is aperiodic.

b) For each natural number n and each projection 0 # P € P(E), there

exists a projection 0 # Pn € P(E) such that P' < P and

~

Pn,T(Pn), s e Tn(Pn) are mutually disjoint.
e¢) For every natural number n, 1 A |T|n = 0.

Proof. The theorem follows immediately from propositions 3.16and 4.16.
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We now give a decomposition theorem for quasi-invertible operators

on Dedekind complete spaces. We first need a Temma.

LEMMA 4.18. Let E be a Dedekind complete Riesz space and suppose
T € Sb(E) 18 quasi-invertible. Then there exists a unique projection

P € P(E) such that:
) TP = PT

ii) T|pg € Orth(PE).
2id) (LA TN (ppyg = O-

Proof. Let § be the collection of all projections R € ®(E) such that

TR' = R'T for all projections 0 < R' < R. Suppose Ry, R, € 8 and

R' < Ry V R,. Then R' = R,R + (I—Rl)RzR'. The first term is dominated
by Ry and the second by R,. It follows that TR' = R'T, and hence

Ry VR, € 8. Therefore 8 t in P(E). Set P := sup{R € 8} in P(E).

Since T is order continuous, P € 8. Thus; P satisfies i) and also ii)
by theorem 2.3.

Suppose Q € ©(E) and Q #Q<1I-P. Then by the definition of P, there
exists a projection 0<Q' <Q s.t. TQ' # Q'T. Hence Q;:= Q' -Q'T(Q")
or Q,:= Q' - Q' T7'(Q) s nan-zero; say Q, # 0. As in the proof of lem-
ma 4.15, we have Ql%(Ql) = 0. Hence, by lemma 4.15 I A ‘TI‘(I-P)E =0,

which proves iii) and completes the proof.

THEOREM 4.19. Let T € Sb(E) be a quasi-invertible disjointness preserv-
ing operator on a Dedekind complete Riesz space E. Then for each

n € NU{=}, there exists a T-reducing band En such that
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) E = @ En
nENU {«=}

12) T|g- has strict period n if n EliandTﬂE 18 aperiodic.
n @©

Proof. For each natural number n, let Pn be the projection which is ob-

tained by applying the previous lemma to T". We claim that T'Pn= PnT,

or equivalently, %(Pn) = Pn' For any Q € P(E) s.t. %'1(Q) < Pn’ it fol-
(Q)) =Q.

~ o~ ~ o~

==,

T(TNT™ Q) = T(T

QT", which shows that

-1

lows from the definition of Pn that Tn(Q)

Therefore, for any Q < ?(Pn), we have T'Q

Tan(Pn) € Orth(P E) and hence f(Pn) <P_. Similarly, for any R € P(E)

2.k, ?(R) < Pn’ Tn(R) = R and hence f'l(Pn) < Pn. Combining the two in-
equalities proves the claim.
n-1
Define E; = P;E and E_ =| I (I-P,)|PE forn=2, 3, ... TheE
n . k n
are clearly disjoint and the above argument shows that they are T-reduc-

n

ing bands. By ii) of lemma 4.18, TnIE € Orth(E_) for each n €N. Fur-
n
thermore, by iii) of the same lemma, for each natural number n > 2 and

each k € {1, 2, ..., n -1} we have I A IT[k =0. This shows that T|;

£, :
has strict period n.

Finally, let E_ ='{ V’En}d. It follows from lemma 4.18 that

n=1

I A |T|n.E =0 forall n €N so TIE is aperiodic.

@

Remark: Theorem 4.19 was proven for invertible operators on Banach lat-
tices by Arendt [Ar 1]. Analogues in ergodic theory of this theorem are

well known, see [Rn] and [HS].
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Chapter 5
THE SPECTRUM

This chapter discusses the spectrum of disjointness preserving oper-
ators. The main object of the chapter is to calculate the spectrum of
bi-disjointness preserving operators. OQur technique will be to first
consider the spectrum of the simple bi-disjointness preserving operators
given in definitions 4.6 and 4.14. Except for the periodic quasi-invert-
ible case, it will be shown that the spectrum of all such simple opera-
tors is rotationally invariant. We then combine these results with those
of chapter four to yield a general theorem valid for arbitrary bi-dis-
jointness preserving operators (theorem 5.15). The same idea was used by
Arendt [Ar 1], who obtained a few of our results in the case when the op-
erator is invertible. Detailed bibliographical remarks are given follow-
ing theorem 5.15. We conclude the chapter by giving various consequences
of these results; perhaps the most important of these is a far-reaching
generalization of a well known theorem of Schaefer, Wolff and Arendt
[SWA]; see theorem 5.16 and corollary 5.17.

A1l spaces in this chapter will he taken to be complex. IfP €R(E)
and o €C, define Z)anPn := 0-1im ZlanP if this limit exists in Z(E).

n=1 N+= n=1
We will always consider a Banach TatticeE to be isometrically embedded in its
second dual space E**in the canonical way. We will denote the spectrum,

approximate point spectrum and point spectrumof an operator T or a Banach

space by o(T), Ao(T) and Po(T), respectively. The spectral radius of T
will be denoted by r(T). We will denote the disk and circle of radius r
about the orgin in the complex plane by Dr and Cr respectively. The unit

disk and circle will be denoted simply as D and C. We will say that a
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subset S of the complex plane is rotationally invariant if A € S implies
keie €S for all & € [0,2m). Let T € £(B) be a bounded operator on a
Banach space B. The following simple fact will be used often: If
Ac(T) is rotationally invariant, then o(T) is rotationally invariant as
well. To see this, suppose A € o(T). If for some & € [0,2m),
xeie £ o(T), then there must be a complex number 60 € [0,2m) such that
Xeie" €00 (T) Ao (T), where 30 (T) denotes the boundary of o(T).
Since Ao (T) is rotationally invariant, re'? €Ag(T) €o(T) for all
¢ € [0,2m), a contradiction.
i0

A set S in the complex plane is called cyclic if re = € S

(r >0, 8 € [0,2rr)) implies that re1ne

€ S for all integers n. A well
known result of Lotz([Lo 1] [S]V 84)states that if T is a lattice homo-
morphism on a Banach lattice, then Po (T) and Ao (T) are cyclic. This
result was used by Scheffold ([Sd 1][S]V §4) to show that o(T) is cyclic.
Lotz' proof is indirect, using among other things an ultraproduct (non-
standard hull) construction. We now give a simple constructive proof of

Lotz' result. This proof illustrates well the type of argument we will

use throughout this chapter.

THEOREM 5.1. Let Ebe a Banach lattice and suppose T € £b(E) 18 a lattice
homomorphism. Then the point and approximate point spectrum of T are

eyelie.

Proof. Suppose re16 €Ac(T) (r >0, 6 € [0,2m)). Then for any € > 0,
there exists an element f € E s.t. |flj =1 and UTf-—reTefH < e. Note
that [T|f| - r|f|ll=||TFl-|rf|} < [TF-re'%f| < c. By proposition 2.8,

there exists an element M € Z(J,) s.t. f = M|f|. By theorem 2.13, M can
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~ * ~ A
be extended uniquely to an operator M € Z(E* ) s.t. M =M on Jf and Mh =0
for all h € {f}d, where the "d" operation is taken in E**. Note that
(Ml = limi
*%* . a5 - e
of T (i.e. M =T (M)). We have

1. Denote by M the image of M under the associated operator

(1) MiF] - e MFL) < IMiF] - TMTIEL] ¢ MTIE] - e O )

< Wy g - rieg s Dre-vry < 22

We claim that for all natural numbers n,

(2) [TM ] -re' " MY F||l < (2n-1)e.

(2) holds trivially for n = 1. Suppose it holds for some n € N. Then,

by (1), [TM™H] - pel (M1 8¢y
< IMTMLE] - e ™ W M L]+ Qre M E MM F]- ret (MFRMTHL £y

< Ml UT" E] - e LY IMOY ML - e FL

< (2n-1)é + r %? = (2n+1)e, which proves (2) by induction. The cyclicity

of Ao (T) follows immediately from (2); the cyclicity of Po (T) can be

obtained by putting € = 0 in the above proof.

Remark: A similar argument to that given above was recently used by
Greiner and Groh [GG] to prove that the spectrum of a positive represen-

tation of a compact Abelian group is cyclic.
We begin the main part of this chapter by giving some preliminary
results which will be used repeatedly.

Let B be any Banach space and T: B - B be a bounded operator. Sup-

pose that o(T) can be separated by a Jordan curve y into two disjoint
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parts; a bounded part o, and an unbounded part o,. Then the spectral

projection induced by v is defined by Py = i [ (AI-T) 'dA, where the

integration is taken counterclockwise. It is well known that P, and

Py 52 I -P, are idempotent and commute with T. Furthermore, B

B, ©8,

where B, := P.B and B, := P_B, the spectrum of T‘Bl € S(Bl) is o and the

spectrum of Tle € £(B,) is g, (see [Do] 1.39). The following theorem is
due to Arendt [Ar 2].

*
THEOREM 5.2. Let E be a Banach lattice, T € £b(E), and suppose T and T
are disjointness preserving. Suppose for some positive real number S,
CS Nao(T) =@, Let P, be the spectral projection induced by CS as defined

above. Then P . and P, :=1- P1 are band projections.

Proof. Let T, be the restriction of T to E, := P,E. Since r(T;) <s, the
n

C. Neumann series 2 o

n=0 s
f€E, and |g|<|f|. Then [T ﬁ |T"f| for each n €N by corollary 1.6, so

ITgll < [T"f|| and thus z 7
n=0 sn+1

be easily verified that (AI1-T) g =

converges uniformly for all f € E,. Now suppose

converges uniformly as well. It now can
Tn
n=0 kn+l

erated by E; and all A € C.. Thus, for any such g,

L8

for all g in the ideal gen-

% oo

P19 211 f
C

1o

;ffg— i = ?%7- > 1% [ 9% =g, This shows that E, is

* * *
an ideal. Applying this argument to the adjoint T gives that P, - is an

* * *
ideal in E; . It follows that P,E = Ker P, = 0(PlEl) is an ideal as well

([S] II 4.8, Cor.), where the pre-annihilator is taken with respect to the
full topological dual. It therefore follows from [S] II 2.7 that P, and

P, are band projections.

2
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Recall that a Banach lattice is said to have a weak Fatou norm if
there exists a constant ¢ > 0 such that if 0 < fo 1 finE then
sup Mfau_z c |[fll. Most non-pathological spaces have this property. For
instance, if E is the Banach lattice of all bounded continuous functions
on a completely regular space (under the usual "sup" norm), then E has a
(weak) Fatou norm. Every dual Banach lattice as well as every Banach

lattice with order continuous norm also has this property.

The following technical Temma will play a crucial role when the

space is not Dedekind complete.

LEMMA 5.3. Suppose E is a Banach lattice with a weak Fatou norm. Then
**k
there exists a constant ¢ > 0 such that for every projection P € P(E )

such that PE N E Zs order dense in E, HPf“_f c ifll for all f €E.

Proof. Let B be a band in E** such that E N B is order dense in E and

pick f € E. It may be assumed that f > 0. Since E N B is an order dense

ideal of E, there exist elements f € E N B such that 0 < f_ 1 f in E.

Since E has a weak Fatou norm, there exists a constant ¢ > 0 (independent
*%

of f) such that sup Hfau‘f c lIfll. Let P € (E ) be the projection onto
a

B. Then ||Pfl| > sup HPfaH = sup Hfau > ¢ |ifll and the proof is complete.
Z s L -

We will need one more technical lemma which is stated in terms of

the Luxemburg "t" map given in definition 3.15.

LEMMA 5.4, Let T € Sb(E) be a bi-disjointness preserving operator on a

dd,dd _

Riesz space E. Then for any Riesz subspace S < E, {T{S} "}~ = {TS}dd.

In particular, (T(TE} = (12639 2ud hence t0(8) = (T"8) for any

band B € B(E) and any natural number n.
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Proof. By extending T to the Dedekind completion of E if necessary, it

suffices to prove the lemma when E is Dedekind complete. Then TE is an

dd

. i . . . dd, _
ideal, so T(Jg) = Jc. Since T is order continuous, T({d¢? ) = {16}

W)y < rr(gadd)ydd = sy,

s)
dd

= {TS} . Therefore, {T({S}

We are now ready to compute the spectrum of the basic bi-disjoint-

ness preserving operators considered in the previous chapter. We begin

our discussion with operators of forward shift type.

LEMMA 5.5. Let E be a Riesz space and suppose T € £b(E) 18 bi-disjoint-
ness preserving and of forward shift type. For each natural number n
define B = {Tn-l(E)}dd n {TnE}d. Then the Bn are mutually disjoint

bands, V' B_ =FE and t(B_ ) = B +, for all natural numbers n.
n=1 N n n+1

Proof. Since t is a Boolean homomorphism (theorem 3.19), we have by lem-
E}dd d) _

ma 5.4, t(8 ) = t({1"" n {639 = ("2 E) nit"(E)}

t"(E) N tn+1(E) - {TnE}dd 0 {Tn+1E}d =B ... Furthermore, since T is of

<{TnE}dd n {Tn+lE}d> D{fﬂ {T”E}dd} 9.

forward shift type, E D \/Bn =V
n=1

n=1 n=0

(o =,

THEOREM 5.6. Suppose E is a Banach lattice and T € £(E) is bi-disjoint-

ness preserving and of forward shift type.
1) The point spectrum of b is empty

ii1) If E is Dedekind complete, then the approximate point spectrum is

rotationally invariant and o(T) = Dr(T)'

i12) If E has a weak Fatou norm, then o(T) = Dr(T)'
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Proof. Since Ker T = {0}, O £ Po(T). Suppose that, for some 0 # A € €
and 0 # f € E, Tf = AMf. Then clearly {f}dd = {TnE}dd for all natural
numbers n, contradicting the assumption that T is of forward shift type.

Thus, the point spectrum of T is empty.

Next suppose that A € Ag(T). Then for each € > 0, there exists an
element f € E such that [[fll = 1 and [|[Tf - Af|| < €.
Now suppose that E is Dedekind complete. Let Bn € B(E) be as in

lemma 5.5 and let Pn be the band projection onto Bn. Since by lemma 5.5,

tT(Bn) = By T(Pn) = P ., by proposition 3.16. Pick a € C and define
M= 2 o P. Then IM| = I, so |Mfl| = 1. Furthermore, since T is or-
n=1 - = -
der continuous by theorem 3.6, T(M) = 2" T(P,) = Zian Frps ™
n=1 n=1

aM- aflPl. Since P,T = 0, it follows that TM = aMT. Therefore,
[TMf - aAMf|| = [aMTf - aAMf]| < |a| M| Tf-Af|j <e. Thus,areAa(T),

which shows that Ao (T) and hence o(T) is rotationally invariant.

Now suppose E has a weak Fatou norm. For each natural number n, let
*%
Bn € B(E) be the band defined in lemma 5.5 and define An € 8(E ) by

An = {Tn-lE}dd n {TnE}d (unless otherwise specified, we will take the "d"

* %k
operation in E ). Note that {An N E}dd(E) = Bn' Furthermore,

n-1_,dd nti_.d _
E}" = An+1 by

tanlA ) =t (T"EHY) 0t (1) = (e n
T T i

*%
lemma 5.4. Hence, if Pn € P(E ) denotes the projection onto An’

T (P) =P (proposition 3.16).

n nt1l
Pick a € C and define M = Za™"p . since (E nA}ME) =5
- » n=1

E=V B, = {EN V’An}dd(E). Hence |M| E is order dense in E.

n=1 n=1

By lemma 5.3, there exists a constant ¢ > 0 (independent of f) s.t.
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**x
IMf]| > ¢ [[fll = c. As in the Dedekind complete case, T M = aMT" and

*k € ) *k
hence [T Mf - oA ﬁ“<g , which shows that aX € Ao (T ) < o(T).
c c

Therefore, o(T) is rotationally invariant.

Finally, let E be arbitrary and suppose 0 < s < r(T) but
seie N o(T) = & for all 6 € [0,2m). Let P, be the spectral projection
induced by Cs and Tet E, = (I-Py)E. Then E, is a non-trivial reducing
subspace and T’Ez is invertible. This clearly contradicts the assumption
that T is of forward shift type. It follows that if E is Dedekind com-
plete or has a weak Fatou norm o(T) = Dr(T)'

The backward shift and hypernilpotent case can be considered
together.

LEMMA 5.7. Suppose T € £b(E) 18 a bi-disjointness preserving operator on

a Riesz space E such that Vker T" = E. For each natural number n, de-
n=1

fine B € B(E) by B = Ker T" 0 {Ker T" 9.

Then the Bn are mutually

S ¥ dd
disjoint n:% Bn = E, tT(Bn) = Bn—l N {TE} (n=2, 3, ...) and

t-(8,) = {0}.

Proof. It is clear that the Bn are disjoint and that V Bn = E. Since
n=1
) =

tT is a Boolean homomorphism, for any natural number n > 2, tT(B
dd

n

(Ker T N {tT(Ker Tn-l)}d = {T(Ker TM1%Y n {T(Ker Tn'l)}d =

by
] 2 d ] L d
ker "0 (TE}YY 0 ({Ker T'F v (TE}?Y) =Ker T"® 0 (Ker "} n (TE}%C

=8 . N (e}, Furthermore, t;(B;) = {T(Ker THE = fo,

n-

THEOREM 5.8. Suppose E is a Banach lattice and T € £b(E) 18 a bi-dis-

o .
Jjointness preserving operator satisfying Vker T" = E.
n=1



67

1) If E is Dedekind complete, then Pa(T) is a (closed or open) disk

and Ao(T) is rotationally invariant.

12) If E is either Dedekind complete or has a weak Fatou norm then

o(T) = Dr(T)'

iii) If U Ker T" = E, then o(T) = Aa(T).
n=1

Proof. 1): Let Bn € B8(E) be as in lemma 5.7 and let Pn € P(E) be the

projection onto Bn' Then the Pn are mutually disjoint and \/Pn = I,
n=1

Q. It follows

Also, if Q denotes the projection onto {TE}dd, T(Pn) = Pn_1

that TP =P QT=P T

n-1
Suppose A € Pa(T), so that there exists an element 0 # f € E such
that Tf = Af. Pick Ofa €D and define M € Z(E) by M = ia P. Then

TM) = Za" T(P ) =Q Za" P =aQM. Hence, TMf = aMTf = aAMF.
=] n=2

n
Since V'P = I, it is clear that Mf # 0, so aX € Po(T). Since
n=1

0 € Po(T), it follows that Po(T) is a disk.

Next, suppose A € Ad(T). Then for each € > 0, there exists an ele-

ment f € E s.t. |[fll =1 and ||Tf-Afl <e. Pick @ € C and let M =

2 a Pn as above. Then |M| = I, so [Mf|| = 1. Furthermore,
n=1

TMf - aAMfl = [[aMQTf - aAMF| < |a| M| [TF-Af|| <e. Hence,
oA

€ Ao(T), so Ad(T) and o(T) are rotationally invariant.

*%
ii): Suppose E has a weak Fatou norm. Define An € 8(E ) by
no1.d . .
}, (n=1,2, ...) (unless otherwise speci-
dd(E)

dd
= {Ker T"} N {Ker T

* %
fied, the "d" operation will be taken in E ). Since {An N E} = Bn,
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it is clear that the An are mutually disjoint and that E N V An is order
n=1

dense in E. Furthermore, as in lemma 5.4.

dd
t xx(A)

) = {TiKer ™399 0 (T ker T}y
'

. dd dd
tker T A (1E199 A {Ker TV

Bx Wy xnn

dd
{An_l n {TE} n

0 n 1

** * %k
Let Pn € P(E ) be the projection onto An and let Q € P(E ) be the
~ %%
projection onto {TE}dd. By proposition 3.16, T (Pn) = Q Pn_1 for each

~kk . ] & n
n>2and T (P,) = 0. Now pick a € C and define M = Za P- Suppose
n=1

A € Ao(T), so for each € > 0, there exists an element f € E s.t. [f|| = 1

and [[Tf - Af][ < e. Since |[M[ENE = ( V’An> N E is order dense in E,
n=1

there exists a constant ¢ > 0 such that UMfH_Z c by Temma 5.3. Moreover
as in i) we have |TMf-aAMf| < e, which implies that aX € o(T), so
a(T) is rotationally invariant.

To show that o(T) = Dr(T) in the two given cases, it suffices to
show that o(T) is connected. If not, since o(T) is rotationally invari-
ant, there must be a positive real number s < r(T) s.t. CS nao(T) = @.
Let R be the spectral projection induced by Cs. Then by theorem 5.2,

B := (I-R)E is a non-trivial T-reducing band and T'B is invertible. But

B ==< V Ker Tn) NB = \’Ker(Tn'B) which gives a contradiction. This

n=1 n=1
proves ii).
i n . * N % n.®
iii): Suppose U Ker T' = E. It is easy to see that (T ) E < (Ker T"),

n=1
*
where the annihilator is taken with respect to E . By [Ko] pg. 247 (6),
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0

{0}t = { V Ker Tn}o = N (ker T =
n=1 n=1 n

nos

* N *
{(T Y E } It follows that

Ro(T) < Po(T") < {0} which shows that Ra(T) = @, i.e. Ac(T) = o(T).

Remarks: 1) If T is hypernilpotent, then it is easy to see that
Po(T) = {0}.

2) The condition in iii) is always satisfied when E has order continuous

norm.

We now turn to auasi-invertible operators.

LEMMA 5.9. Let E be a Riesz space and suppose T € £b(E) 18 a quasi-in-
vertible disjointness preserving operator with strict period n for some
n €N. Then there exists a band B € B(E) such that B, t(B), ..., t" ' (B)

n-1
are mutually disjoint and E = \% tk(B).
k=0

Proof. Define & = {A € B(E): A,t(A), ..., t" ' (A) are disjoint}. Let
{B,} be a chain in # under the ordering induced by 8(E). Since t is an
order continuous Boolean homomorphism (thm. 3.19), for any natural num-
bers i,j satisfying 0<i<j<n -1 we have ti(g B,) AtI(YB) =

= (X ti(Ba)) A (X tj(Ba)) =X (ti(Ba)‘/\ tj(Ba)) = {0}. Since & is clear-
1y non-empty, this shows that # is inductively ordered and thus has a

n-1 d
maximal element B by Zorn's lemma. Let A = { 1 tk(B)] . If A # {0},
k=0

then there exists a band A, € B(E) such that {0} # A, <A and A € 4.
Let B, = B V A;. Since T has strict period n, it is clear that
t'(B) AtI(A,) = {0} for all i,j €N. It follows from this and A , B € &

that B, € #, which contradicts the maximality of B. Thus A={0}, whence
n-1
v ik
k=0

(B) =E and the proof is complete.
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THEOREM 5.10. Let E be a Banach lattice and let T € .Sib(E) be a quasi-
invertible disjointness preserving operator with strict period n for

some n €N.
z) o(T) = Ao(T).

11) If E Zs either Dedekind complete or has a weak Fatou norm, then

a(T) = oo (T) for any nth root of unity .

i11) If E is Dedekind complete, then Pa(T) = aP o(T) for any nth root of

unity Q.

Proof. We first show that o(T) = Ao(T). By the spectral mapping theorem
(applied to both o(T) and Ac(T)) it suffices to show this when T €Z(E). In
this case, under the identification Z(E)==C(X)=Z(C(X)), (where x is some

compact Hausdorff space) T may be identified with a multiplication opera-

tor T, € Z(C(X)) (f € C(X)) given by T.g= f.g for all g € C(X). Sup-

i i
pose A € o(T). It follows from [Ar 2] 3.3 that AI -T is not invertible

in  Z(E). Thus, X\ - 1X - T. is not invertible in Z(C(X)). Since it

f

is well known that o(T.) = Ac(Tf), there exist functions 9, € C(X)

f)
{n=1, 2, ...) such that ugnu = 1 and Llegn-Xgnu +0as n-»=» It fol-

Tows that UTfMg . kMg | + 0 as n+ =, where Mg denotes multiplication

n n n

by g,. Identify the Mg with elements M_ € Z(E). Since HMnH = 1, there
n

exist elements h € E s.t. UMnhnH = 1 and Uhnh < 2. It follows that

uTMnhn- anhnH+ 0as n~+«, i.e. A €Ad(T).

Next, suppose E has a weak Fatou norm. In the following, we will

**
take "d" operation in E . Let B € B(E) be the band defined in lemma

dd

-1
5.9. Then it is clear that E F\r\/ {tk(B)} is order dense in E. Let

k=0
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*%
P € ®(E ) be the projection onto {B}dd and let a be any nth root of

. n-1 -k, ~xx K ) ~kk N ~kk
unity. Define M = (T ) (P). Since (T ) =1 ,
k=0
a5 n- ~** k+1 n N " k
0 =D KE ) s a B ok e - an
k=0 k=1

Suppose A € Ad(T), so for every € > 0, there exists an element f € E
*%k ~% %k
. IIfll =1 and |Tf - Af|j < e. Then [T Mf-aAMf| = [T (M)Tf-aAMF|
= uaM(Tf-xf)u < e. Since |M| E NE is order dense in E, by lemma 5.3
there exists a constant ¢ >0 s.t. [Mf|| > c. It follows that aX€ o(T).
The proof in the Dedekind complete case is similar, as is the proof of

the assertion about Po(T).

COROLLARY 5.11. Let E be a Banach lattice which is either Dedekind com-
plete or has a weak Fatou norm. Suppose T € £b(E) 18 a quasi-invertible
lattice homomorphism with strict period n for some n € N. Then X\ €a(T)

iff |A| € o(T) and A = |X|. @ where a is an nth root of unity.

Proof. Since T" € Z(E) and T >0, c(Tn) CR,. Hence, by the spectral
mapping theorem, every A € o(T) is of the form |X|a, where a is an nth

root of unity. The corollary now follows from theorem 5.10.

LEMMA 5.12. Let E be a Riesz space and suppose T € £b(E) is an aperiodic

quasi-invertible disjointness preserving operator. Then for any natural
m-1

number m, there exists a band B such that B,t(B), ..., t (B) are dis-
2m=-1 K

joint and VY  t“(B) = E.
k=1

Proof. Fix a natural number m and define £ = {A € 8(E) : A,t(A), ...,

m-1

t" "(A) are mutually disjoint}. As in the proof of lemma 5.9, 4 is
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inductively ordered and hence has a maximal element B. Let

2m-1
G =< V t
k=0

H, ©H such that H,, t(Hy), ..., t

d -
k(B) and H = t m(G). If G # {0}, there exists a non-zero

"T(H,) are mutually disjoint. Define

B, = Hy V B. For all integers (j) such that 0 < i< j <m- 1 we have

(*) t'(8,) ntI(8,) = (1) AtIH)) v (tT(H ) A ed(B)) v

0
(t1(B) A tJ(HO)) v (t1(B) A tJ(B)). The first and last terms of the

right hand side of (*) are zero by assumption. For any integers

k, 4 €10, 1, ..., m - 1} we have t%(B) n t¥(H ) = ¥ M(£™K(3) ntM(H )

L-m 2m-1 k
=t ;VB t (B) NG = {0}. Hence the second and third terms of
the right hand side of (*) are zero as well, which shows that B, € A,

This contradicts the maximality of B which completes the proof.

LEMMA 5.13. Let T € Sb(E) be an aperiodic quasi-invertible disjoint-

ness preserving operator on a Banach lattice E.

1) If E is Dedekind complete, then for every element f € E and every

natural number n, there exists a projection P € P(E) such that

~

. =t g
P, T(P), +.., T""(P) are disjoint and HEZQ Tk(P)fU_z 3 ||fll.

1) If E has a weak Fatou norm, then there exists a constant ¢ > 0

such that for every element f € E and every natural number n there exists
~%k%k

. ” ** N** zn-l .
a projection P € P(E ) such that P, T (P), ..., (T ) (P) are dis-

=] _an B

ioint and H"z T ) 2 ¢ Uell.
k=0



73

Proof. Fix n and f, and let B be a band satisfying lemma 5.12 with

m = 2n. If E is Dedekind complete, let Q € #(E) be the projection onto

B. Then 'V = TNQ) = I. For each j € {0, 1, 2, 3} define R, =
k=0

n-1 . -l bp-1 _

Z T9*(Q). Then | - }{'3 ' T"(Q)Iflg 5 }}i (rk(o)lfl)“

k=0 k=0 k=0

3 3
= u ZDR.|{N < 2 |R:fll. Thus for at least one j, say j,, we have
j=0‘] L—j=0 J

~Nni
“Rjof“ > i|fll. Then P :=T Jo(Q) satisfies i). The second part of the

lemma is proved similarly.

Remark: Lemma 5.13 is a somewhat modified weak functional analytic ver-
sion of the well known "Rohlin-Halmos lemma" of ergodic theory (c.f. [H]
pg. 71, [Rn], [Fr] §7]. A more conventional formulation would be that,
under the assumptions of i) in the lemma, for every f€E and n €N there

n

exists a projection P €R(E) such that P;%(P), ..., T (P) are disjoint and

n‘u
tlED'Tk(P)fH > 3lIfll. If E has order continuous norm, it follows from [CF]
k=0

(see also [Fr] 7.9) that the lower bound of i||f|| can be improved to the

classical (1-¢) [[fll bound. The author does not know whether this is pos-
sible in general.

THEOREM 5.714. Let T € £b(E) be an aperiodic quasi-invertible disjoint-
ness preserving operator on a Banach lattice E.

t) If E is Dedekind complete then o(T) and Ad(T) are rotationally invar-

iant.

tt) If E has a weak Fatou norm then o(T) is rotationally invariant.
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Proof. To prove i), it suffices to prove the statement about Ac(T).
Suppose A € Ao(T). Then for each n € N, there exists an element f, €E
t. an“ =1 and HTfn-anU < %u Fix n € N and for simplicity, assume

that n is odd. By lemma 5.13, there exists a projection P € P(E) s.t.
~ ~2n+1 o s 0~ : :
PLT(P ), «coy T (P,) are disjoint and || 2 TP )f || > 4. Pick o in

the unit circle and define

et ] (kL
M o:= % k o T( T)(P 3+ a‘”"nZ (n-k)a~* T( FZ—%P )| and
" k=l n k=0 L
M
1
N, = HM;%;H . Note that nI > [M_| i-ﬂ%— ;ZET (P ). Hence,
M f nt1 1 5t 7k Of >””. Note also that |T(N )| < #nLl <
ol = B3 U 2T ote atso that [704,)1 < ffHr <
; . 2041 (k-2
78 < 8. Furthermore, |T(Mn) -aM | = ;;% T (Pn) < I. There-
fore, [N f - aN f Il < [T(N)TF - AT(N ) I+ IAT(N )F - 2an f |
< TN HTF - af [+ (A uT D-an [ fif <84 “—PHT [T ) -t |

5-% + %%%L + 0 as n » ». Therefore, Aax € Ac(T), which proves i). The

second statement is proved similarly.

Via the decomposition theorems proved in chapter 4, the preceding
results may be combined in the Dedekind complete case to yield a general

theorem valid for arbitrary bi-disjointness preserving operators.

THEOREM 5.15. Let T € Slb(E) be a bi-disjointness preserving operator on
a Dedekind complete Banach lattice E. Let E, (k =1, 2, ...) be the
bands on which T is quasi-invertible with strict period K (theorem 4.19).

= {k €N: Ek # {0} and Tet Tk € Sb(Ek) be the restriction of T to Ek'
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Then o(T) = [U O(Tk)] U R and Aa(T) = |:U AO(TK)" U S, where R and S
keM keM

are rotationally invariant subsets of the complex plane.

Proof. By theorem 4.13 there exist T-reducing bands B,, B,, B,, B, such
that the restriction of T to Bi (i =1, 2, 3, 4) is, respectively quasi-
invertible, of forward shift type, of backward shift type, or is hyper-
nilpotent. By theorems 5.6 and 5.8, the spectrum of T restricted to the
latter three parts is rotationally invariant. It therefore suffices to

prove the theorem when T is. quasi-invertible. In this case, by theorem
4.19, E = <k§&£k> ® E_ where M, Ek and E_ are as in theorem 4.19. By

theorem 5.14, Ao(T_) is rotationally invariant. Hence, it can be sup-

posed that E_ = {0}. Clearly, U Ac(Tk) < Ao(T). Suppose
keM

A€ AS(T) \ U Ac(Tk). We must show that |A| o € o(T) for all a € C.
keM

Now for every n €N, there exists an element f_ € E s.t. Ifll = 1 and

MTfn- M [l < 1/n. Since A £ Aa(T ) for all k, there must be a subse-
quence ‘fnj]

j—>eand f €E_ .
n mj

and a sequence of integers {mj} ® such that mj - ® 3s

j=1 &

Pick @« € C. Then for any j € N, there exists an mjth root of unity

a; Bt Ia-ajl < %l. Define Mj as in the proof of theorem 5.10, so

that lel = Pm , where Pm denotes the projection onto Em , and
J J J
T(Mj) = o Mj. We have UTMJ. # _-kan fn.u = L[aij Tfn_'—kan f. Il
J ) J J
< .M. T - .M. + [Aa.M. - .M. - 2
< oy My TF = dag Mo+ M f e M < daM f |
J J % | J lk[

I A

o LMl “Tfnj‘”nj“ + [l ufnju o - < 1/ny T, o .

Hence Aa € Ac(T) which proves the second statement. The statement about
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a(T) now follows easily from the one about Acd(T).

Remark: Various special cases of the preceding results are known. Re-
sults similar to theorems 5.6, 5.8, 5.11 and 5.14 were obtained by Wolff
[Wo] for Markov operators on a C(X) space. Results similar to theorem
5.6 and 5.8 were also proven by Ridge [Ri] for composition operators on
LP space. Theorem 5.14 is well known for weighted shift operators on
various sequence spaces, see Shields [Sh] for a survey. Theorems 5.10
and 5.14 were obtained by Parrott [Pa] (see also [Pe]) for operators in-
duced by measure preserving'transformations on an LP space. Kitover

[Ki 1] generalized the second of these results to operators induced by a
non-singular measurable transformation on Banach function spaces with
order continuous norm. Kitover [Ki 2] also stated theorem 5.14 for in-
vertible operators on an arbitrary Banach lattice, though no proof was
given. Arendt [Ar 1] proved corollary 5.11 and theorem 5.15 for lattice
isomorphisms with zero aperiodic component. He also obtained special

cases of theorem 5.14.

The remainder of this chapter gives various applications of the pre-

ceding results.

THEOREM 5.16. Let E be a Dedekind complete Banach lattice. Suppose that
T € Sb(E) is bi-disjointness preserving and that for every r >0,
Cr N o(T) Zies in some open half-plane. Then there exists a projection

P € P(E) such that TP = PT, T‘PE € Z(PE) and TI(I-P)E is quasi-nilpotent.

Proof. Let E, be as in theorem 5.15 and let P be the band projection on-
to E; . Then TP = PT and TlPE € Z(PE). Suppose A € G(T‘(I—P)E)‘ Then
by theorem 5.15 either A € O(T‘E ) for some k = 2, 3, ..., or A €8,

k
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But if A €5, xe'® €S for all 8 € [-m,m) by theorem 5.15, which forces

A = 0, by assumption. Similarly, if A € G(TlE ) for some k = 2, 3, ...
k

then there exists a kth root of unity e1e

io -i6

(6 € [-m,m)) s.t. |e] >m/2.

By theorem 5.10 e ~ € o(T) and Xe € o(T). Since A, xeie s Xe'ie

all lie in the same open half-plane, A = 0 and the proof is complete.

If T is invertible or 0 is an isolated point in o(T), then the Dede-
kind completeness and order continuity assumptions in the last theorem

can be dropped.

COROLLARY 5.17. Let E be a Banach lattice, and let T € £b(E) be a dis-
Jjointness preserving operator whose adjoint is also disjointness preserv-
ing. Suppose that for all r > 0, Cr N o(T) Iies in some

open half—plane. Suppose also that there exists a positive number S
such that {z €C : 0< |z| <s}Nao(T) =@. Then there exists a band
projection P € ©(E) such that TP = PT, T'PE € Z(PE), and T'(I-P)E 8

quasi-nilpotent.

Proof. Let Q be the spectral projection induced by CS and Tet P =1 - Q.
Then TP = PT, and by theorem 5.2, P is a band projection. Clearly,

T|(I-P)E is quasi-nilpotent. Let PE = E, and T'El = Ty« @&ince

* * * *

o(T,) =0o(T,), we can apply theorem 5.16 to T, € Sb(El). Since T, is in-
* *

vertible, we therefore have T,k € Z(El) whence T, € Z(E,), which completes

the proof.

Remarks: 1. Corollary 5.17 generalizes the results of Schaefer-Wolff-
Arendt [SWA] and Arendt [A 2], who proved special cases for lattice
isomorphisms and invertible disjointness preserving operators, respective-

ly. A special case of corollary 5.17 was obtained by Wickstead [W 3], who
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needed the additional assumptions that E = C, (X) (where X is a locally
compact Hausdorff space) and that T is a lattice homomorphism with finite

spectrum.

2. Even quasi-invertible disjointness preserving operators may be quasi-
nilpotent. Examples are given by Schaefer ([S2] or [S] pg. 353, prob-
Tem 9) and Wickstead [Wi 3] example 4.1.

3. The assumption in the last two results that the adjoint is disjoint-
ness preserving cannot be dropped. For example, take E = R? with the

usual ordering and norm. Let T be the operator whose matrix is

1 0
< 1 (]> under the standard basis. Then o(T) = {0, 1} but T does not

satisfy the conclusion of the theorem.

Recall that an operator T € £b(E) on a Riesz space E is called
band-irreducible if the only T-reducing bands are {0} and E. If T is an
order contiﬁuous disjointness preserving operator, then T is band-irre-
ducible iff its unique extension to the Dedekind completion of E (see
thm. 1.9) is band-irreducible. If T is in addition quasi-invertible,
then it follows from corollary 4.10 that T is band-irreducible iff

t-(B)=B(Be®(E)) implies B = {0} or B = E.

T

THEOREM 5.18. Let T € Sb(E) be a band-irreducible bi-disjointness pre-
serving operator on a Banach lattice E. If E is infinite dimensional and
1s either Dedekind complete or has a weak Fatou norm, then the spectrum
of T is either an annulus or a disk. In other words, there exist real

numbers 0 < r < r_  such that o(T) ={z€C:r . <|z|=r,}

Proof. Let % be the extension of T to the Dedekind completion of E.
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Since T is band-irreducible, by theorem 4.13, ? and hence T must be
either quasi-invertible, of forward shift type, of backward shift type
or hypernilpotent. If T is one of the latter three, then o(T) is rota-
tionally invariant by theorems 5.6 and 5.8. If T is quasi-invertible,
then we claim that T is aperiodic. If not, then by theorem 4.19 T has

strict period n for some natural number n. Pick 0 # f € E and let

n-1
B= V tk({f}dd). Since t is a Boolean isomorphism and T has strict
k=0 nl g+l ..dd . : .
period n, t(B) = V t° ({f} ) =B. As T is band-irreducible and
k=0
quasi-invertible, B = E. For any non-zero band A Ci{f}dd, it is clear

that A,t(A), ..., tn-](A) are mutually disjoint. Since T is band-irre-

n-1

ducible, it follows as above that E = V tk(
k=0

which shows that f is an atom. Hence dim E = n contrary to assumption,

A). Therefore A = {f}dd,

so T must be aperiodic as claimed. By theorem 5.15, o(T) is rotation-

ally invariant.

Combining the above results shows that o(T) is always rotationally
invariant. It now follows easily from theorem 5.2 (see [Ar2]4.6) that T

is either an annulus or a disk.

Remark: For invertible disjointness preserving operators, a result simi-
lar to theorem 5.18 was stated without proof by Kitover [Ki2]. It was
already noted by Arendt [Ar 1] that a band-irreducible lattice isomorphism
on an infinite-dimensional Dedekind complete Banach lattice is aperiodic.
Some special cases of theorem 5.18 on concrete function spaces have been

proved; see [Pa], [Ke], [Ar1].

Let E be a Dedekind complete Banach Tattice. Then £b(E) is a Banach
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algebra under the r-norm UT“r = {[|TIIl  (see [S] IV §1). The order
spectrum of an operator T € £b(E) is the spectrum of T with respect to
£b(E) and will be denoted by o,(T). It is clear that o(T) < g,(T); this
inclusion may be strict, see [S3] for an example and further discussion.
Our next result shows that equality does hold for bi-disjointness preserv-

ing operators.

THEOREM 5.19. Let T € £b(E) be a bi-disjointness preserving operator on

a Dedekind complete Banach lattice E. Then o(T) = g kT

Proof. It follows from |Tf| = ||T|f| that the spectral radius of T in
1/n
£(E), r(T) = Aim It / , is the same as the spectral radius in £b(E),

r (T) = Tim |70 47",

0
n->e

Suppose for some 0 <s < r(T), CS No(T) = &. Let P be the spectral
projection induced by CS. By theorem 5.2, PE and (I-P)E are T-invariant

bands. Let T, and T, be the restrictions of T to PE and (I-P)E, respect-

ively. Then o (T) = o,(T,) U cO(Tz). By the above, s > r (T,) = ro(T Q

1
R § o el 2
and s <o (T;%) = r(T;7) . It follows that C, N o (T) = Z.

Now suppose A € co(T). If A £ o(T), then it follows from the pre-
ceding paragraph that there exists an element u € Ao (T) such that || =
X, Since A £ o(T), it follows as in theorem 5.15 that for some natural

n ld . . :
UE (with notation as in
k=1 K

theorems 4.19 and 5.15) satisfies o(T,) N ClHl =Z=0,(T) NC

number n that the restriction T0 of T to {

It

n |
therefore may be assumed that E = U Ek' In this case, T € Z(E). But
k=1

it is easy to see that o(M) = g,(M) for M € Z(E) (see [Ar2]3.3). Thus,

by the spectral mapping theorem, o(T) = OO(T), whence A € o(T) which
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completes the proof.

Remark: The argument given in the above theorem is essentially due to
Arendt [Ar 1], who proved theorem 5.19 there for a lattice isomorphism

with zero aperiodic component.

Qur final application is an analogue to a well-known result for nor-

mal operators on a Hilbert space.

THEOREM 5.20. Let E be a Dedekind complete Banach lattice and suppose
T € ib(E) 18 a bi-disjointness preserving operator. Then non-zero 1so-

lated points of Ao (T) are contained in P o (T).

Proof. Suppose A # 0 is an isolated point in Ao (T). Then it follows
from theorem 5.15 that A € AtJ(T‘En) for some n € N, where E,, denotes the
band in which T has strict period n as in theorem 5.15. Thus, it suf-
fices to prove the theorem when T is quasi-invertible with strict period
n. Since Po(T") = (Po(T))" and Ac(Tn) = (AG(T))n, it may be assumed that
T € Z(E). Using the isometric isomorphism Z(E) == Z(Z(E)) == Z(C(X)) where
X is some compact Hausdorff space, T may be identified With a multipli-
cation operator Tf € Z(C(X)) defined by ng = f.g (g € C(X)) for some

f € C(X). Since o(T) = c(Tf) (see [Ar2] 3.3), X is an isolated point in

ao(T Thus, since c(Tf) = range of f, there must be a non-empty open-

£
closed set U < X such that f(x) = A for all x € U. By Urysohn's lemma,
there exists a non-zero function g € C(X) such that g(y) 2 0 for all

y € X\ U. Note that ng==kg. Identify g with its corresponding ele-
ment M € Z(E) under the same identification C(X) == Z(E) used before and

pick h € E such that Mh # 0. Then T(Mh) = (TM)h = AMh which completes
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the proof.

Remarks: 1) Theorem 5.20 was proven for lattice homomorphism on
C,(X) spaces, where X is a locally compact Hausdorff space, by Wickstead

(Wi 3].

2) As was pointed out in [Wi 3], the exclusion of zero in theorem 5.20 is

necessary. For an example, see [Wi 3]4.1.

In conclusion, we leave as an open question whether the hypothesis
used throughout this chapter that E is either Dedekind complete or has a

weak Fatou norm can be dropped.

The assumption that E has a weak Fatou norm is only needed to apply
the conclusion of lemma 5.3. Thus, the results in this chapter remain
valid if the assumption that E has a weak Fatou norm is replaced by the
conclusion of Temma 5.3. (In fact, inspection of the proofs of theorems
5.6 and 5.8 shows that these theorems remain valid even if the constant
in lemma 5.3 depends on the projection). It is possible, though unlikely,
that Temma 5.3 holds for an arbitrary Banach lattice. If this is the
case, then the results of this chapter would be true for arbitrary Banach
lattices. It is quite possible, however, that the results of this chapter

are false without some condition on the Banach lattice.
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