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Flexible dielectric waveguides have been demonstrated at 10 GHz and
94 GHz by filling hollow, low dielectric constant polymer tubes with
low-loss, high-dielectric constant powders. Flexible guides with
losses as low as 0.12 dB/cm were demonstrated at 94 GHz. These guides
also exhibited negligible bending loss for radii of curvature greater
than 4 cm.

The theory of 3-region cylindrical dielectric waveguide was used to
design the powder-filled tube guides, and measured wavelengths for the
HE, 4 mode are in agreement with theoretical wvalues. Sets of
dispersion curves were calculated numerically from the theory for

waveguide parameters typical to our guides.

A powder-filled rectangular groove in the surface of a plastic
substrate has also been demonstrated as a dielectric waveguide at 94
GHz. Guide wavelengths measured for these channel guides for various
combinations of guide dimensions, powders, and substrate materials
agree with values predicted by the approximate theory of Marcatili for
the Eyn mode. Measured transmission losses were as low as 0.09

dB/cm.
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The 94 GHz loss tangents of the powders were calculated by
extending Marcatili’s theory to relate channel guide attenuation to
material losses. These calculated values of loss tangent increased
with powder packing fraction, as predicted by theories of
electromagnetic wave propagation in random heterogeneous media.
Estimates of the 94 GHz loss tangents of the so0lid constituent
materials were then obtained from these theories using the powder loss

tangents.

Powder channel ring resonators had Q's as high as 2400 at 94 GHz in
an 8 cm diameter ring. Directional coupling from adjacent straight
channel guides was used to form a transmission filter. Marcatili's
approximate theory of bending loss for channel guide appears to be

inadequate for predicting the curvature losses of these resonators.

In a 10 GHz experiment, the coupling between two parallel powder
channel waveguides was measured as a function of their separation.
The measured coupling was at variance with that predicted by

Marcatili's approximate analysis for parallel channel waveguides.
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Dielectric waveguides have been studied since the early part of the
twentieth century. Probably the earliest reported work (1910) is that
of Hondros and Debye (Ref. 1), who studied a cylindrical dielectric
rod as a structure capable of guiding an electromagnetic wave. Since
the late sixties, dielectric waveguides, usually consisting of glass
fibers, have been investigated extensively for applications in optical
communications (Ref. 2). More recently, with the growing interest in
millimeter wave technology for such applications as radar, satellite
communications, radio astronomy, and atmospheric studies, dielectric
waveguides of various sorts have been studied for use in millimeter
wave systems. In particular, they have been investigated as a means
of realizing low attenuation transmission (Ref. 3), leaky wave
antennas (Ref. 4), and integrated circuits (Ref. 5), to list just a

few examples.

Our original motivation for studying millimeter wave dielectric
waveguides was to develop an alternative to conventional rectangular
metal guide. Metal guide used at millimeter wave frequencies is rigid
and expensive (typically 40 dollars per meter for WR-10 W-band
extruded copper waveguide, exclusive of end flanges). An attractive
alternative would be an inexpensive, flexible dielectric guide

analogous to optical fiber. Flexible millimeter wave guides



consisting of cylindrical plastic rods had been demonstrated before
(Ref. 3), but these guides were 'unclad’ and thus subject to loss from
nearby objects. A cladding was needed to isolate the higher-index
‘core’ from its environment, as in modern optical fibers. 1In

addition, the cladding would need to be thin to maintain flexibility.

For a thin cladding to be effective, its dielectric constant would
have to be much smaller than that of the core so that the fields of
the guided mode would decrease rapidly with distance in the cladding.
Unfortunately, all the known flexible solids with low millimeter wave
losses, such as ':['e:ElonR and polypropylene, have small dielectric
constants (about 2). Our solution to this problem was to fill low-
loss, low-dielectric constant plastic tubing with low-loss, high-
dielectric constant powder to form the core of a flexible waveguide.
In section A of Chapter I we discuss the theory of these 3-region
(core/cladding/surrounding medium) dielectric waveguides and present
dispersion curves for sets of parameters typical to our guides.

Experimental investigations of these powder core guides are described

in Section B.

In our first experiments on 94 GHz powder-filled tube waveguides,
we found it difficult to pack the powder uniformly into the thin
tubes. Packing nonuniformity caused the measured guide wavelength to

vary with position. Also, the guides were so flexible that undesired



bending would occur during the measurement of guide wavelength,
causing a loss of measurement accuracy. Although these problems with
the powder-filled tubes were eventually overcome, an investigation of
a rigid 94 GHz powder core waveguide was begun in the meantime to
obtain good agreement between theory and experiment. This guide
consisted of a powder-filled rectangular channel in the surface of a
block of low-loss polymer (Teflon® or polypropylene). Since the
powder was loaded from the side rather than the ends, the problem of
packing uniformity was also eliminated. In Chapter II we describe the
guide wavelength and attenuation measurements performed on these
channel guides and present a method of obtaining the 94 GHz powder

loss tangents from the measured values of waveguide attenuation.

Although powder channel waveguide was originally intended for
measurement purposes, it appears to be interesting in its own right,
especially for low-cost millimeter wave integrated circuits. Such
circuits would require simple passive components like filters and
directional couplers. Experimental investigations of ring resonator
transmission filters made from powder channel waveguide are the
subject of Chapter III. 1In Chapter IV, we describe the design and
performance of a directional coupler consisting of two parallel powder

channel waveguides.



This thesis has four appendices. In Appendix I, we describe our
search for powder materials. 1In solid form, these materials needed
very large dielectric constants and moderately low losses at
millimeter wave frequencies for the corresponding powder to be
suitable as a core for our waveguides. In Appendix II, we review
theories of electromagnetic wave propagation in granular materials.
Theories relating the attenuation of a wave propagating in a powder to
the dielectric properties of the bulk solid from which the powder is
derived are used to estimate the 94 GHz loss tangents of the solid
materials from which our powders were obtained. Appendix III reviews
the theory of the transmission method used for measuring the Q of our
ring resonators. Finally, in Appendix IV, we estimate the radiation
loss of powder channel guides caused by periodic imperfections in the

waveguide parameters.
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Introduction

A flexible waveguide for use at millimeter wave frequencies, can be
obtained by filling low-loss, low-dielectric constant plastic tubing
with low-loss, high-dielectric constant powder to form the core of the
guide. This chapter presents experimental and theoretical work on

powder—-filled tube dielectric waveguides for millimeter waves.

A. Theory

1, The G teristic Equati

Since the dielectric tubes employed in this study had to have walls
thin compared to a wavelength to ensure flexibility, we could not take
the usual simplifying approach, common to optical fibers, of treating
a 3-region guide with thick cladding as a 2-region guide by ignoring
the presence of the outermost region. Furthermore, since the
differences in refractive index between the materials used here were
large, approximations based on small index differences, common in
optical fiber analysis, (Ref.I-1) were inapplicable. Consequently,
the exact analytical theory of lossless 3-region cylindrical

dielectric waveguides, given by Kuhn, (Ref. I-2) was used to predict



propagation constants for the modes of powder-filled tube guides.

The geometry of a 3-region cylindrical dielectric waveguide is
shown in Fig. I-1. Region 1 is the core of the waveguide, and region
2 is the cladding. For the fields of the propagating modes to be well
confined to the waveguide, it must have &4 > 89 0 g g Since the

materials are assumed to be lossless in this first-order analysis, 84

and e, are real. For low-loss guide, it is usually sufficient to

r2
treat the loss as a perturbation, that is, ignore its effect on the

propagation constant, B(w).

To find the propagation constants for the modes of 3-region
cylindrical dielectric waveguide, it 1is necessary to find the
solutions to the wave equation for which the tangential field
components are continuous at the two material boundaries. Kuhn's
approach was to solve for the forms of the axial fields and then use
these in Maxwell'’s curl equations to derive expressions for the other
field components. The characteristic equation giving the propagation
constants is then obtained from the equations expressing the

continuity of the tangential fields at the boundaries.

The 3-region guide solutions require a distinction between modes
not necessary in the 2-region case. Propagating modes are classified

as either ‘'core’ modes or ‘cladding’ modes (Ref. 1I-2). The



Figure I-1: Cross section of 3-region cylindrical dielectric
waveguide



mathematical functions used to describe the field variations are

different for these two classes of modes.

If the propagation constant, B, of a mode satisfies B N‘?zko where
ko= m\ﬂm, then the mode is a core mode. Core modes propagate with
phase velocities less than c/@ but greater than c/ \I'Er_l On the
other hand, modes for which g < \rs‘r"zko are called cladding modes.
These modes have phase velocities less than c/\{?;:; but greater than
c/ ﬁ}; In general, cladding modes have larger phase velocities than
core modes because a larger fraction of the power of a cladding mode
propagates outside the core of the waveguide. Of course, for any
propagating mode the propagation constant must lie between the value

for a plane wave in free space, k,, and a plane wave in the core

O,
dielectric, k0 \Jerl. Modes with values of B 1lying outside this

interval are cut off (Fig. I-2).

Consider the system of cylindrical coordinates shown in Fig. I-1,
with the z-direction coinciding with the 1longitudinal axis of the
waveguide. The z components of the fields of a core mode can be found

using separation of variables. They are

Elz = AJm(klr)cos(m)exp(—sz + jot)

Hy, = BJm(klr)sin(md)exp(-—sz + jot)

E,, = [CIm(kzr) + DKm(kzr)]cos(n)e’)exp(—sz + jot) (1-1)
H =

27 [EIm(kzr) + FKm(kzr)sin(nw’)exp(-sz + jot)
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Figure I-2: Core mode and cladding mode regions of a 3-region
cylindrical dielectric waveguide
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E

3z GKm(ksr)cos(me)exp(—sz + jot)

H, = PKm(k3r)sin(meﬁexp(—sz + jot).

3z
We note that the radial variation of these field components is
governed by Bessel's equation and that the fields in region 1 cannot
depend on the Bessel function Ym(klr) since it diverges at the origin.
Similarly, Im(k3r) is omitted from the form of the solutions in region
3 since it increases monotonically with r.

Here m is the azimuthal eigenvalue, A,B,C,D.E,F,G, and P are constants

and the real constants k1’ kz’ k3 are defined by

2 2 .2
k" = erlko B
2 _ .2 2 _
k2 = B erzk 0 (I-2)
2 _ .2 2
k3 =B 8r3k 0°

The remaining radial and azimuthal field components can be
expressed in terms of the z-components using Maxwell's curl equations.
(See, for example, Ref. I-3 or I-4.) These field components will
exhibit similar functional variations with (r,2,z) as the
z-components in each region since they are related to the z-components
by differentiation. Note that, for the core modes, the z-components
of the electric and magnetic fields are oscillatory with r in the core
region (Bessel function Jh), smoothly vary in the cladding region
(modified Bessel functions I Km), and decay exponentially in the

exterior region (Km only).

By contrast, for a cladding mode, the constant k2 becomes
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imaginary, so we define k2 as
2 2 2 _
(kz) —eerO B, (1I-3)
while k1’ and k3 remain as before, and the field components E2z’ sz
become
E

2z

HZZ

The z-components of the fields in regions 1 and 3 retain the same

[C'Jm(kz'r) + D'Ym(kz'r)]cos(n)z)exp(—jﬂz + jot) (I-4)

[E’Jm(kz'r) + F'Ym(kz’r)]sin(nw)exp(-jﬁz + jut).
forms as for core modes.

Equating the tangential field components at the boundaries between
regions yields a set of eight linear homogeneous equations for the
eight constants (A,B.C,...P.). Setting the secular determinant of
this system to zero yields the characteristic equation. This equation
is rather complicated and must be solved numerically. For core modes
it may may be written (Ref. 5)

Gm,> + Gy *+ G, =0, (I-5)
where

G1= ad - bc
G2= (ad’ - cb’) + (da’' - bc')
G3= a'd’' - b'c’

)

a= (

er1(8py 45 ~ 83 A
' = - -
a' = e Q@ (5 - 1) - e (e 45 + e A M)

b= erz(ﬁ - 1) Q2
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' = -
b" =@ (e ,A) = e 3A5) + e ,4,Q,

c = erl(t - 1) Q2

C' = 2.,0,(A) = Ay + e ,00Q
da = erz(Az— AS)

ar =

Q1Q2(§ -1) - erz(A3+ A1n6)

Ay =My Tt

Ay = mym mg

Ay = Engn, — My, (I-6)
Ay = Eny= ) (ny = my)

A, = (& - l)n6

ny = Jm'(x)/me(x)

n, = —Im'(ul)/ullm(ul)

ng = —Km'(ul)/ule(ul)

= —Im'(uz)/uzIm(uz)

ng = —Km'(uz)/usz(uZ)
ng = -Km'(w)/me(w)
g = Im(uz)Km(ul)/Im(ul)Km(uz)
_ 2 2
Q1 = (mB/ko)(llx + 1/u1 )
_ 2_ 2
Q2 = (mﬁ/ko)(llw 1/u2 )
X = r1k1 u

1 = Ik,

2= u1r2/r1 w = r2k3.
For cladding modes, all the quantities are the same except
n,= Jm'(ul)/ulJm(ul) n,y= Ym'(ul)/ulYm(ul)

n,= Jm'(uz)/usz(uz) ng= Ym'(uz)/qum(uz) (I-7)
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Jm(uz)Ym(ul)/Jm(ul)Ym(uz)

(m8 /K ) (1/x2- 1/u12> Q, = (mB/ko)(l/u22 + 1/w?)

e
i

9

= [
u, =y k2 .

2. Classification of Modes

As in the case of a simple 2-region dielectric rod, when the
azimuthal eigenvalue, m, equals zero, a great simplification is
possible. The characteristic equation reduces to two much simpler
equations. These are

25

erlnl(srzA2 - eISAS) - (erz) 3~ 8r28r3A1n6 =0, (I-8)
which yields ™ modes, and
nl(A2 - As) - A3 - A1n6 = 0, (1I-9)

which yields TE modes. Since m = 0 the fields of these modes have no
circumferential variation. TM and TE modes are designated ™, ™y,

™ and TEgy» TEgys+-» where the first subscript specifies m = 0

03’.'.
(redundant), and the second gives the order in which the modes goes

through cutoff to become guided as the frequency is increased.

Again, as in the case of the 2-region dielectric rod, all modes for
which m is not zero are termed 'hybrid‘ modes because longitudinal
components of both E and H are present. Several methods have been
proposed (Refs. 2,5) for classifying hybrid modes for 3-region guide,

but no method has been universally accepted. Most schemes classify
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hybrid modes into one of two categories, I—IEmn and EHmn However, the
criterion used to determine whether a mode is HE or EH is still a

subject of controversy.

Since most schemes for classifying hybrid modes of 3-region gquide
are based on ones previously applied to simple dielectric rods, a
discussion of methods for classifying hybrid modes of these 2-region
guides is necessary to understand those proposed for 's-region guide.
One of the earliest schemes for the dielectric rod was proposed by
R.E. Beam in 1949 (Ref. I-6). Beam's method is based on the relative
contributions of EZ and H, to a transverse field component at some
reference point. If E, makes the larger contribution, the mode is
designated EH. If the contribution from H, is larger, the mode is
classified as HE. In this scheme, the choice of the names HE and EH
is reasonable because they are meant to express the hybrid character
of the modes and to indicate which longitudinal field component is
more significant in some sense. In addition, there is historical
precedent for this choice of names. They are adapted from names given
to modes of metal guides: TE modes of metal guides have been called H
modes and TM modes have been called E modes, particularly in the

British literature.

Although the spirit of this naming scheme makes sense, Beam's

method is arbitrary because it depends on the particular transverse
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component chosen to judge the relative importance of H, and E,.
Objecting to the arbitrariness of Beam’s method, Snitzer (Ref. I-7)

proposed a scheme for dielectric rods based on a factorization of the

characteristic equation into the form F1(B)*F2(B) 0. Since all
modes result from either F1 = 0 or F2 = 0, the factorization divides
the modes into two sets. Snitzer observed two differences between the
sets. First, modes stemming from F1 = 0 obey different cut-off
conditions than ones associated with F2 = 0. Second, the sign of the
amplitude coefficient ratio A/B (c.f. Eg. I-1) is negative for hybrid
modes belonging to one set and positive for hybrid modes from the
other set. Since it had become conventional by this time to refer to
the fundamental mode as HE ;. Snitzer proposed that all hybrid modes
for which the sign of A/B is the same as for the fundamental be
designated HEmn. Hybrid modes for which A/B has the opposite sign
were to be designated EHmn’ Here n is the order in which a mode of a

given class (either HE of EH) goes through cut-off to become guided.

Although Snitzer's scheme allows the unambiguous classification of
hybrid modes into two sets, the use of the names HE and EH is now at
variance with Beam’s scheme: modes called HE do not have longitudinal
H dominant over longitudinal E. Similarly, EH modes are not 'E-like.’
In fact, the opposite is true (Refs. I-4, I-8). The magnitude of A/B
in normalized units of impedance is always greater than unity for

hybrid modes of the dielectric rod designated HE by Snitzer and less
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than unity for modes called EH. Hence, Snitzer’s HE modes are truly

'E-like’ and the EH modes are 'H-like.’

Other classification schemes have been proposed for the dielectric
rod (Refs. I-9, I-10). The most commonly used of these other methods
(Refs. I-10, I-11) is based on cut-off conditions of hybrid modes. It

results in a classification of hybrid modes identical to Snitzer'’s.

In the case of the dielectric rod, Snitzer'’s method and its
equivalents have gained wide acceptance (Refs. I-4, I-8, and I-11).
For "3s-region guide, however, no classification scheme has yet received
wide acceptance. Following Snitzer, Kuhn (Ref. I-2) used the sign of
A/B to classify hybrid modes of 3-region guide as either HEmn or EH .
However, he does not show the existence of any important physical
differences between hybrid modes for which the sign of A/B is
different. Since the sign of A/B, in itself, is not particularly
significant, the separation of hybrid modes into two categories using

this criterion is not meaningful.

Safaai-Jazi and Yip (Ref. I-5) have proposed a classification
scheme based on a factorization of the characteristic equation of
3-region guide into the form F3(B)*F4(B) = 0. Hybrid modes whose
propagation constants are found from F3(B) = 0 are designated HEmrl and

those whose propagation constants are given by F4(B) = 0 are called
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EHm. Here again, the authors do not show any general physical
differences between modes in each of the two classes. Furthermore,
there is more than one way to express the characteristic equation of
3-region guide as a product of two functions of B set to zero.
Different factorizations may result in different classifications of

the modes.

As a scheme for classifying hybrid modes of 3-region dielectric
waveguide, we propose here that the magnitude of the ratio of the
longitudinal fields be compared to the wave impedance of a plane wave
travelling at the same phase velocity. That is, we define a wave
impedance, Z, as

z = Nug/ey/(B/ky) = 377 ohms/(B/K,).

I1f, for a particular hybrid mode, the ratio IA/B| (which, in some
sense, is the magnitude of the ratio of E,, to H, . the longitudinal
fields in the core region) evaluated far above the cut-off frequency
is greater than Z, then the mode is to be called HE - Modes for
which |A/Bl is less than Z will be EH_ . The subscript m will denote
the azimuthal eigenvalue while n will give the order in which a mode
of a particular class goes through cut-off to become guided as
frequency is increased. According to this scheme, the fundamental mode

will be named HEH. in accordance with the established convention.
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With this method, hybrid modes can be classified unambiguously into
physically distinct categories whose names reflect the distinction.
Although it would be preferable for historical reasons to have the
first letter in the name of a hybrid mode, rather than the second,
indicate the dominant longitudinal component, such a choice would
cause extra confusion since the fundamental mode of optical fibers is
called HE , by convention. Secondly, our proposed method is in
agreement with Snitzer'’'s well-accepted scheme for the dielectric rod
where the second letter of the name of a hybrid mode indicates the

dominant longitudinal component, as explained earlier.

The reason for examining | A/Bl/Z for each hybrid mode far above
cut-off is that its value varies with frequency. However, when
evaluated far above cut-off, |A/Bl/Z approaches unity for all hybrid
modes. The classification scheme presented here is based on whether

unity is approached from above or below.

3. Formulas Usefu r Cut—of

When designing a dielectric waveguide it is useful to know the
cut-off conditions for the modes. 1In general, solving equation I-5 is
quite tedious. However, approximations can be used to find the
cut-off conditions. For 3-region cylindrical dielectric waveguide

these can be obtained from the characteristic equation for cladding
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modes (Eq. I-5) using the following Bessel function identities as

described in Ref. I-12.

tJm'(t) = tJﬁ_l(t) - Hﬂh(t)
tYm'(t) = tYm—l(t) - mym(t)
th'(t) = —th_l(t) - me(t)

Near cut-off, B approaches VE;sko and w approaches zero. Using the
small argument approximations given in Table 1, the following cut-off

conditions are derived:

1'(§ - 1) + 8r2A1' = 0 for ™ modes, (I-10)

! = 0 for TE modes. (I-11)

€
and nl'(§ -1) + A

1
The TE and ™ modes of 3-region guide are seen to obey different
cut-off conditions, unlike the 2-region guide where the cut-off

conditions for the TEOn and TMOn modes are the same. -

For modes with m > 1, the cut-off condition is

2
(nl' - (m/x7) - (RI/(ZEI)))(nl' - (m/xz) - (R2/(2E1))) =0, (I-12)

where
2 2.1/2
= '
Ry = Ey + a((E)")" + 4e e jE.7)
o 2 2.1/2
R2 E2 6((E2 )¢ o+ 4er18r3E3 )
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TABLE I-1

Small argument approximations

n K (£)/ (K (£))
n?2 1/(2(n-1))
n=1 In(2/(yt))
n=0 -1/ (t21n(yt/2))

Y = 1.781.-.

(Buler'’s constant)
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By =51
E, = (arl + erz)(mCllul2 - Cz) + 8r2(er1 + er3)A4'
By’ = o,y = e,,)(C; /0> = Cp) + e (e = & )8,
Ey = mC,(1/x% - 1/u,®) - e A,
c =1
C1 = (¢ - 1)((sr2 + ers)AZ' - er3(§ -1)/(m - 1))
C2 = (& - 1)((8r2 + erB)As' + 8r3A1'/(m - 1)).
For m=1,
E1 = erl(ﬁ - 1)
By = =(ey + 8,0 (A" + (&= D/u?)
By’ = =(e,y — 8,0 (A" + (& - D/ud)

E; = (£ - D(A/x 1/u1 )
o = sgn(¢ - 1),
all of the above equations for cut-off conditions,

Alv = nzr - 57\3'

’

- ' .
A7 =8y m s

>
]

’ . L} !
30 T Mgyt T omyng

A4' = g(nzl - n3l)(n4' - .nsv)

n,' = Jﬁrl(x)/(me(x))

n,' = Jp ) /u,d (u)))
ng' =Y, /Y (u)))
n,' = Uy (,d(u,))
ng' = Ym_l(uz)/(uZYm(uz)).
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4. Numerical Results

Computer programs were written which solved the 3-region

characteristic equation (Eq. I-5) for m = 1 (HE, and EHln modes) and

in
m = 0 (TEOn and TMOn modes). Examples of computed values for
propagation constant for different parameters appropriate to 10 GHz
waveguides are given in part B of this chapter. As reported there,
the agreement between theoretical and experimental values was

excellent.

Here we present dispersion curves obtained with the programs for
3-region dielectric waveguides useful at microwave frequencies.
These guides have much thinner cladding regions (r2 = 1.25r,) than
their optical counterparts. In addition, the refractive index
difference between core and cladding is much larger than for optical

fibers.

Sets of dispersion curves are given for €4 equal to 4, 8, and 12
(Figs. I-3 through I-5). For each set e 3 equals 1 (air) and 8y
equals 2.08 (TFE teflon). The abscissa is kor1 = 2nfr1/c. It may be
thought of as frequency for a guide with fixed core radius, ry, or as

core radius for operation at a fixed frequency.
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The most noticeable differences between Figures I-3 through I-5 and
dispersion curves for 2-region guides are the crossovers of the 'I'EOn
and ™o modes in Figures I-3 through I-5. (The TEon and ™4 modes
of dielectric rods do not cross.) Safaai-Jazi and Yip (Ref. I-12)
have reported that these modes also cross for 3-region optical guides
where the refractive index difference between core and cladding is
small. (Their results were obtained from the exact 3-region analysis,
not an approximation based on small refractive index difference.)
Hence, these crossovers must be attributable to finite cladding

thickness.

Another difference between the dispersion curves of 2-region and
3-region guides involves mode cut-offs, as mentioned earlier. For
2-region guides, the TE, n and ™on, modes have identical cut-offs, as
do the EHl,n and Hliil’n_‘_1 modes. However, for 3-region guide, these

pairs of modes do not have identical cut-offs, as shown in Figs. I-3

through I-5. Values of k of at cut-off calculated from equations

1
I-11, I-12, and I-13 are presented in Table I-2.

B. Experimental Work on 3-Region Guides

Flexible dielectric waveguides were demonstrated at both 10 GHz and

94 GHz by filling hollow, low-dielectric-constant polymer tubes with
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TABLE I-2
Calculated values of kor1 at cut—-off for 3-region

guide with r, = 1.25r, and &g = 1,

erller2 = 4/2.08 erller2 = 8/2.08 erller2 = 12/2.08
1.24 .82 0.65
1.28 0.88 0.71
2,02 1.34 1.09
2.07 1.42 1.15
2,77 1.86 1.49
2,92 2,02 1.63
3.53 2.39 1,93

3.70 2.56 2,08
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low-loss, high-dielectric-constant powders. Flexible guides with
losses as low as 0.12 dB/cm were demonstrated at 94 GHz. These guides
also exhibited negligible bending loss for radii of curvature greater
than 4 cm. Fig. I-6 is a photograph of some samples of W-band
flexible guide made by this technique.

1. 10 GHZ

Initial efforts to make dielectric waveguides by filling flexible
hollow tubes with dielectric powders were conducted at 10 GHz to avoid
inaccuracies due to the small guide dimensions at 94 GHz. In
addition, the dielectric properties of the powders were known at 10
GHz, so the guides could actually be 'designed’ and compared with

theory.

The powders used were Emerson and wmming ecco-flo powder,
Trans-Tech D-30 nickel-aluminum titanate, and Trans-Tech D-38 barium
tetratitanate. The particles of the D-30 and D-38 powders ranged ‘in
size from 43 pm to 100 um. Trans-Tech gives e, = 31 and tand < .0002
for solid D-30 at 10 GHz, and e, = 37 and tand < .0005 for solid D-38
at 6 GHz. They do not specify the dielectric properties of the
powders. Ecco-flo powder is specified by Emerson and Cumming to have

tand = .0007 at 10 GHz.
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Figure I-6: Samples of W-band dielectric waveguide made by filling

TeflonR spaghetti with various low-loss dielectric
powders.
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In order to design a dielectric waveguide with a powder core, it is
necessary to know how the dielectric constant of the powder will vary
with the packing density. This relationship was determined for each
powder at 10 GHz by using the shorted waveguide technique (Ref. I-13)
to measure dielectric constant. A typical plot of dielectric constant

versus density (nickel-aluminum titanate) is given in Fig. I-7.

The cladding materials used were TFE TeflonR. polyethylene, and
Corning 7740 glass (PyrexR) . The dielectric properties of these
materials at 10 GHz as given by von Hippel (Ref. I-14) are shown in
Table I-3. Although the PyrexR tubes were inflexible, they were
useful for making accurate guide wavelength and attenuation

measurements.

Each waveguide was made by filling a tube with powder and plugging
the ends with polyfoam. The inner diameter of the tube was chosen so
that the HE,, mode would propagate with a wavelength significantly
smaller than the free space wavelength. Coupling was achieved by
inserting one end of the tube into a flared section of rectangular
metal waveguide (a TE ¢ rectangular to TE circular metallic
waveguide transition). This metal waveguide transition was used since
the transverse fields of the TEll-circular mode of metal waveguide
(Ref. I-15) are known to be similar to those of the HE,, mode of a

cylindrical dielectric rod. The waveguide was supported inside the
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TABLE I-3

Dielectric properties of tubing materials at 10 GHz

Material &, tan &
TFE Teflon® 2.08 .0004
polyethylene 2.25 .0004
Corning 7740 4.52 .0085
PyrexR glass

Data from A.R. Von Hippel, DIELECTRIC MATERIALS AND APPLICATIONS, John
Wiley and Sons, Inc., pp. 301-370, New York, 1958,
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flared section with a form-fitting polyfoam insert. With the waveguide
inserted to the proper depth (determined by trial and error), the
reflected power was more than 10 dB below the incident power. This
amount of reflected power was sufficiently small for making guide
wavelength measurements. In addition, there was no detectable
radiation field away from the coupler and waveguide. A metal
perturber placed a few mm away from the fiber, outside the volume of
the (HEH) guided mode caused no change in reflected power, which was
already low. Finally, lossy foam was wrapped around the tube at the

far end to prevent reflections.

Guide wavelength measurements were made by sliding a metal washer
along the full length of the guide and observing the periodic
variation in reflected power. Table I-4 shows that the measured guide
wavelengths were in excellent agreement with those predicted by the
theory of lossless 3-region cylindrical dielectric waveguide, as
presented in section I-A. The values of e rcore listed in Table I-4

were determined by using the e, VS. density data and determining the

density of the powder in the tube by precision weight measurement.

Rough estimates of transmission and bending loss were obtained for
the powder-filled tubes by observing the exponential decay in the
amplitude of the periodically varying reflected power as a metal

washer was moved along the length of the guide (Fig. I-8). These
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measurements indicated that the transmission and bending losses were
low. Since we were primarily interested in millimeter-wave guides, we
did not pursue this investigation far enough at 10 GHz to determine
precisely the magnitude of these losses. Instead we began a program

to build and test flexible 94 GHz powder-filled tube waveguides.

2, 94 GHZ EXPFRIMENTS

94 GHz flexible dielectric waveguides were made by filling TeflonR
tubes (18-23 AWG lightweight* electrical spaghetti) with dielectric
powders. The guides were ‘designed’ using the theory of lossless
3-region cylindrical dielectric waveguide so that the HE,, mode would
be significantly slowed. In order to use the theory, the dielectric
constant of the powders were needed. We used the values measured at
10 GHz because of the difficulty of controlling the length of a powder
sample sufficiently accurately to measure its dielectric constant at
94 GHz with the shorted-waveguide technique. The dielectric constant

of a powder composed of low-loss dielectric material should not vary

*Teflont electrical spaghetti is available in 3 types, according to
wall thickness. 'Standard wall'’ spaghetti has the thickest walls,
followed in decreasing order of thickness by ‘thin wall’' and

'lightweight’.
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much between 10 GHz and 94 GHz if the powder grains are small relative

to wavelength at 94 GHz (for further explanation, see Appendix II.)

Coupling to metal waveguide was achieved by inserting the end of
the tube into a slightly flared section of WR-10 metal waveguide. As
before, guide wavelength measurements were made by sliding a metal
perturber along the length of the waveguide and observing the periodic

variation in reflected power.

The ecco-flo powder proved to be so lossy at 94 GHz that only
surface waves would propagate along ’I‘eflonR tubes filled with this
powder. These waves were the same kind of v ~ ¢ waves that were

previously observed on KRS-5 guides (Ref. I-16.)

For tubes filled with the other powders used previously at X-band
(D-30 and D-38 powders for which the particles ranged in size from 43
pm to 100 um), we were unable to obtain meaningful measured values of
guide wavelength. The measured wavelengths varied by as much as 100%
with distance along the guide. We believe that one of the factors
contributing to this wavelength variation was the random variation
with length of the cross-sectional dimensions and circularity of the
small (21,22,23 AWG), commercial grade spaghetti supporting these
powders. Another source of error was that the small size of the tubes

made them difficult to £ill uniformly with powder. Finally, the
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powder-filled tubes were so flexible they would bend during the
measurement, making the length of a period difficult to measure

accurately.

The foregoing difficulties were overcome by using three powders not
received in time to be studied at X-band. These powders were
Trans-Tech MCT-40 magnesium-calcium titanate, D-30 nickel-aluminum
titanate, and D-8512, and improved barium tetratitanate. (Trans-Tech
claims that D-8512 has lower loss than D-38 and also a smaller thermal
coefficient of dielectric constant. Otherwise, we do not know the
nature of the ‘'improvement'.) For each of these powders, all

particles were less than 43 um in size.

Since these powders had lower dielectric constants than the others,
we were able to use larger—diameter spaghetti (18,19,20 AWG) while
still allowing propagation of only the fundamental HE, 4 mode. Thus,
the problems associated with small tubing, dimensional imperfections,
packing irregularities, and excessive flexibility, were all reduced
significantly. 1In addition, the smaller particles of these powders
also made it easier to pack them uniformly in the tubes. As a result
of these improvements, the measured guide wavelengths agreed with the
theoretical values for the HE., mode, as shown in Table I-5. For the
guides represented in Table I-5, there were no beats in the pattern of

reflected power versus perturber position, indicating that the guides
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TABLE I-5

Comparison of measured and theoretical guide wavelengths
for HE , mode of 3-region guide at W-band

Powder Core Freq. e, Guide Wavelength
Radius (GHz) core Meas. Theo.

(mm) (mm) (mm)

D-30 .43 94,78 5.60 2.48 2.42
D-8512 .43 94.72 5.45 2.55 2.47
D-8512 .48 94,75 5.83 2.21 2.10
D—-8512 .53 94,10 4,79 2,06 2.24

Cladding material is TFE TeflonR, e, = 2.08.
Cladding thickness is .15 mm,

The free space wavelength is approximately 3.2 mm.
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were single-mode as intended.

Attenuation measurements were made by measuring the power received
with a diode detector at the far end of the waveguide. Power was
coupled off the dielectric waveguide by inserting it into a flared
section of metal waveguide connected to the detector. Another
detector connected to a small horn was used as a movable probe to
determine that there was an insignificant amount of radiation from the
couplers and waveguide. Also the power reflected back into the metal
waveguide from the feed coupler was approximately -20 dB down from the
incident power. Thus, we concluded that there was very little power
lost in coupling by reflection or radiation, so that the difference
between the incident power and the power detected at the far end
represented the true dielectric waveguide loss. The loss per unit
length is then this loss divided by the length of the dielectric
waveguide, typically 30 cm. Table I-6 gives the results of

attenuation measurements on a few straight powder-filled teflon tubes.

Bending loss measurements were made using the same set-up as for
attenuation measurements on straight guides. The plane of bending was
perpendicular to the (vertical) plane of polarization of the HE11
mode. A problem encountered during these measurements was that the
ends of the teflon tubes tended to change position inside the flared

metal waveguide couplers when the tubes were bent in arcs with radius
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TABLE I-6

Attenuation of straight mm-wave guides

Powder Core Freq. e r Measured Loss
Radius (GHz) core Guide (dB/cm)
(mm) Wavelength
(mm)
D-30 .43 94.78 5.60 2.48 .12
D-8512 .43 94,72 5.45 2,55 .13
D-8512 .48 94.75 5.83 2,21 .14
MCT-40 .53 94.08 4,48 2.12 26

Cladding material is TFE 'I‘eflonR, g, = 2.08.
Cladding thickness is .15 mm.

Loss of silver WR-10 waveguide is approximately .05 dB/cm at 94 GHz.
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less than about 4 cm. This movement changed the quality of the
coupling between the dielectric waveguide and the metal waveguides,
making it difficult to obtain accurate measurements of bending losses.
when the tubes were bent into circles with curvature radius greater

than or equal to 4 cm, bending losses were immeasurably small.

A straightforward comparison of our bending loss observations to
theory is not possible because we know of no bending loss theory that
applies to 3-region guides with thin cladding, large refractive index
difference between layers, and curvature radius equal to about 20
guide wavelengths. In fact, all the theories with which we are
familiar assume that the refractive index differences between layers
are small. Keeping these limitations in mind, we have used the theory
of Kuester and Chang (Refs. I-17 and I-18) for curved dielectric rods
for rough comparison. To use the theory, the rod radius and
dielectric constant were chosen equal to that of the core of the
actual guide, and the surroundings of the rod were assumed to have a
relative dielectric constant equal to one. The theoretical curvature
losses were calculated for the vertically polarized LP.o mode, which
corresponds to the unapproximated vertically polarized HE,, mode.
Applied in this way, the theory predicted that a curvature radius
of less than 2 cm would be necessary for our guides to exhibit bending

losses comparable to our absorptive losses.
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I. DE

Introduction

Difficulties in measuring bending loss for spaghetti guide and the
desire to obtain good agreement between theory and experiment at 94
GHz originally led us to explore rigid guide structures. We adopted a
powder-filled open channel in a solid block of polymer for our
measurements. This configuration satisfied both the requirement of
rigidity so that we could make precise length measurements and the
requirement of uniformity, since the powder was loaded from the side
rather than the end of the guide. 1In addition, this structure appears
to be interesting in its own right, particularly for low-cost mm-wave
integrated circuits, especially if injection-molded substrates prove
feasible. Experimental work on 94 GHz channel guides and the

supporting theory are the subjects of this chapter.

. _Theory of el ide

1. rvey of theoretical oaches

The rectangular dielectric channel waveguide is shown in
cross section in Fig. II-1. No analytical solution exists for the
propagating modes of this guide. However, there are several numerical

methods which yield approximate values of the propagation constants.
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Figure II-1: Cross section of dielectric channel waveguide
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Most of these techniques, such as those proposed by Goell (expansion
in circular harmonics) (Ref.II-1), Yeh et al. (finite elements) (Refs.
I1-2, II-3), and Schweig and Bridges (finite differences) (Ref. II-4),
require the use of large computers. Marcatili’s approximate-mode
method (Ref. II-5), on the other hand, is fairly easy to use since the
computations involved are much simpler. Even though Marcatili’'s
method uses an approximation that is not satisfied by our guide
1

/ << 1), selected cases using other methods do seem to

~ No1ad Peore

agree reasonably well with guide wavelengths calculated from
Marcatili’s theory (Refs. II-4, II-5). For these reasons, Marcatili's
method was used here to predict propagation constants of guided modes

of channel waveguides.

2, Marcatili's theory

The difficulty in obtaining a closed-form solution for a
rectangular dielectric waveguide is contained in the mixed boundary
conditions in the 'corner regions’ shown shaded in Fig. II-2.
Marcatili observes that, for a guided mode, a very small fraction of
the power propagates in the corner regions. Hence it is reasonable to
ignore the fields in these regions. Fields are assumed to exist only
in regions 1-5 and these are matched only at the boundaries of region
1. Marcatili simplifies the problem further by assuming that the

refractive index difference between region 1 and any other region is



oS //
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small. (Stated precisely, Marcatili assumes that 1 - ni/n1 K1, 1i=
2,3,4,5. For our channel guides, the left-hand side of this
inequality typically equaled 0.25 for i = 3,4,5 and 0.5 for i = 2.) As
a result of these assumptions, the modes found by Marcatili have
almost purely transverse fields (TEM) and can be grouped into two
sets, Eypq and Equ. For both families of modes, the subscripts p and
g indicate the number of extrema of the transverse field components in

the x and y directions, respectively.*

For Eypq modes, H, and Hy are assumed to have the following form

in each of the five regions:

Hoq = Mlexp(—ikzz + imt)cos(kxx + y)cos(kyy + 8)
sz = Mzexp(~ikzz + imt)cos(kxx + y)exp(—y/nz)
Hog = M3exp(—ikzz + iwt)cos(kyy + 8)exp(—x/§3)
Ho, = M4exp(—ikzz + imt)cos(kxx + y)exp(y/n,)
Hg = Msexp(-ikzz + imt)cos(kyy + 8)exp(x/§5)

0 j=1,2,3,4,5.

8%

*We use Marcatili’s notation here, despite the difficulty that the
magnetic field associated with the 'Eypq' mode is mainly x-directed
and therefore cannot be designated 'Hypq' without confusion.
Marcatili solves this problem by rarely referring to the magnetic

field. See also Ref. II-4 for an alternative way of naming modes.
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The remaining field components are expressed in terms of H, and Hy
using Maxwell's curl equations. As a consequence of the assumption of
small refractive index differences, E is small enough to be
neglected for the Eypq mode. A similar procedure is used to find the
fields of the Equ modes from assumed H components.

The propagation constant of a mode, kz, is found by matching

tangential field components at the edges of region 1 in two steps,

equivalent to superposing two slab waveguides: n,-n,-n, and n;-n,-ng.
For B modes,
£2>q 2 2 2
kz = k1 - kx - ky s
where k1 = nlk, k = 2n/A, and A is the free space wavelength. The

constant kx is found by solving the transcendental characteristic
equation for the ng-n;-ng slab,

_ _ -1 _ -1
kxa—pn tan (kxés) tan (kxts),

in which
_ 2, 2,-1/2 B 2, 2.-1/2
§3 = ((n/A3) kx ) §5 = (("/As) kx )
and
_ 2 2.1/2 _ 2 _ _2,1/2
A3 = 2\/(2(n1 n, ) ) A5 = 7»/(2(n1 ng ) ).

The constant ky is found by solving the transcendental characteristic
equation for the n,-n,-n, slab,
-1 2 el 2
kyb = gn - tan ((nz/nl) ky"z) tan ((n4/n1) kyn4),
in which

2,-1/2 _ 2, 2,-1/2
) n, = ((n/A4) ky )

2
n, = (n/a)® -k,

and
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2,1/2

2,1/2 )

A2 = x/(Z(n1 n, ) ) A4 k/(Z(n1 n,

A similar procedure is used to find the propagation constants of the

).

X
modes.

E
o8

3. a i oss _usi catili’

Marcatili’s theory can be used to calculate waveguide loss as a
function of material losses for rectangular dielectric channel
waveguides in the standard way for small losses. We assume that the
dielectric losses are so small in all regions that the transverse
distribution of the fields is not changed. Losses due to dimensional
imperfections (e.g., waveguide wall roughness) and to scattering from
material inhomogeneities are not included in this analysis. We also
note that for a rectangular dielectric channel guide (Fig. II-1),
regions 3,4, and 5 in Marcatili's analysis (Fig. II-2) have identical
material properties.

Since the material losses are assumed to be small, they can be
taken into account by multiplying each of Marcatili's field components
by the factor exp(-az). Here 2a is given by the ratio of the average
power dissipated per unit length to the average power flowing along
the guide. These quantities, in turn, are found from the transverse
field components given by Marcatili, assuming that the loss per unit
volume is everywhere proportional to the square of the electric field.

For the Eypq modes, a can be expressed as
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a=A/F:

where
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The variable F can be expressed as

F= (Wi + W, + W, + Wg + Ws)(n/m),

2 3
where
Wi = 011112
W, = 031114d22
Wy = c51215d32
W, = c71115r342
WB = Wé.

In the equations above, &' = Re(e) and ¢y 1s the permittivity of
free space. Also, the subscripts 1,2,3 and 4 after the variables
k,e,n, and tand associate them with the corresponding regions shown in
Fig. II-2. In addition, we note that o depends implicitly on p and g
through kx and ky.

If the loss tangents of our powders had been known at 94 GHz,
equation II-1 could have been used to predict the transmission losses
of our channel guides. However, since the 94 GHz powder loss tangents
were unknown, Equation II-1 was used to calculate them from the
measured transmission losses of the EY. 11 Mode. The results of these

calculations are given later in this chapter.

Experiments on ¢ i

1. Guide wavelength and attenuation measurements

A rectangular groove was milled into the surface of a low-loss

(TFE teflon or prolypropylene) substrate and was filled with a high-
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dielectric constant powder to form the core of a dielectric waveguide
(Fig. ITI-1). With this configuration, the powder could be packed from
the top to assure a sufficiently uniform density along the length of
the groove. Rectangular grooves with cross-sectional dimensions
varying less than + 0.001 inches or + .025 mm from the specified
values (typically 1 mm x 1 mm) could be milled with relative ease.
This degree of dimensional accuracy was found to be sufficient at 94
GHz to produce a guide wavelength uniform within our measurement
accuracy.

The guide wavelength and loss per unit length were measured for
the fundamental vertically polarized (Eyll) mode of various powder
channel waveguides using the set-up shown in Fig. II-3. On each end of
the substrate the dielectric-filled groove was extended with a
thin-walled trough of substrate material. This trough fitted snugly
into the end of a slightly flared section of WR-10 metal waveguide to
couple to the dielectric guide. Lossy inserts made from Emerson and
Cumming MF-110 absorber were placed at non-periodic intervals in the
substrate 3 mm from the groove to attenuate any substrate modes (that
is, propagation of energy through the substrate other than via the
desired mode) that might have been excited at the coupling point and
resulted in end-to-end coupling via the sﬁbstrate.

To measure the guide wavelength, a metal perturber was held
mechanically just above the surface of the powder. This perturber

reflects a small fraction of the power travelling along the waveguide
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toward the feed, where it interferes with the reflection from the
input coupler. The amplitude of this interference changes as the
relative phase between these two signals changes. Thus, as the
perturber was moved along the length of the groove, a sequence of
maxima and minima in reflected power was sensed with a -10 dB
directional coupler and a Schottky diode, as shown in Fig. II-4. The
guide wavelength is twice the distance the perturber is moved between
successive minima.

For various combinations of guide dimensions, dielectric powders,
and substrate materials, the guide wavelengths were compared to the
values predicted by Marcatili'’s approximate theory (Ref. II-5) for the
fundamental vertically polarized mode. In order to use Marcatili's
theory, the dielectric constants of the powders were needed. The
density of the powder in the groove was determined by precision weight
measurement, and previously measured curves of dielectric constant
versus density were used to find the effective dielectric constant of
the powder packed into the groove. The dielectric constants of the
powders had been measured previously at 10 GHz using the
shorted-waveguide technique. These measurements were made at 10 GHz
because of the difficulty of controlling the length of a powder sample
in a shorted WR-10 metallic waveguide sufficiently accurately to
measure its dielectric constant at 94 GHz. The effective dielectric
constant of a powder composed of low-loss dielectric material should

not vary much between 10 GHz and 94 GHz if the powder grains are small
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relative to wavelength at 94 GHz. (For further explanation, see
Appendix II.)

The powders used were the same as for the flexible guide work
described in Chapter I: Trans-Tech D-30 nickel-aluminum titanate,
Trans-Tech D-38 barium tetratitanate, Trans-Tech MCT-40 magnesium
calcium titanate, and Trans-Tech D-8512, an 'improved’ barium
tetratitanate. For D-8512, MCT-40, and for one batch of D-30, all
particles were less than 43um in size. For D-38 and for a second
batch of D-30, 70% of the particles were between 100um and 43um and
30% were less than 43um. Trans-Tech gives &’ = 31 and tand <.0002 for
solid D-30 at 10 GHz, e’ = 37 and tand <.0005 for solid D-38 at 6 GHz,
e’ = 40 and tand <.002 for solid MCT-40 at 6 GHz, and &' = 38.6 and
tand <.0005 for solid D-8512 at 6 GHz.

To determine the loss—per-unit length of a channel waveguide, the
power transmitted from end-to-end was measured by a detector connected
to the flared section of metal waveguide surrounding the trough on the
far end of the substrate (Fig. II-3). Shorted stub (’E/H') tuners were
added to match the coupling sections. The power detected at the far
end could not be significantly increased by adding the E/H tuners, so
we assume that the couplers are reasonably well matched by themselves.
In addition, removing the lossy substrate inserts did not affect the
power received at the far end, indicating that little power is lost to
substrate modes. A third detector connected to a small horn antenna

was used as a movable probe to determine that an insignificant amount
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of power was radiated from the couplers or guide. Finally, the power
reflected from the feed coupling was -15 A8 down from the incident
power even without the E/H tuners. Taken together, these observations
indicate that almost all of the incident power was coupled into the
dielectric waveguide, so that the difference between the incident
power and the power detected at the far end represents dielectric
waveguide loss. The loss per unit length is then this loss divided by
the length of the dielectric waveguide.

A comparison between the measured values of the guide wavelength
with those predicted for the Eyll mode by Marcatili’s approximate
theory is given in Table II-1 for various powders in plastic
substrates at 94 GHz. Although Marcatili’s theory assumes that the
refractive index of the core is similar to that of the surrounding
media and is thus only an approximation, the wavelengths it predicts
for the Ey11 mode (Table II-1) are in reasonable agreement with those
measured. Hence, we conclude that the dielectric constants of the
powders used were not too high for Marcatili's theory to be useful.

A selection of typical measured values of loss per unit length for
straight powder-filled grooves in a plastic substrate are given in
Table II-2. The measurements were made at 94 GHz. For given
substrate material and channel dimensions, the transmission 1loss
increased with powder density. This variation is consistent with a
closer confinement of the mode energy to the core region, which has a

higher material loss.
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TABLE II-1

Type Substr. Width Depth Powder Dielectric Ag Ag
of Type of of Density Constant (meas.) (Marcatili)
Powder Groove Groove (g/cm3) (rmm) (mm)
(mm) (ram)
1 T 0.94 0.94 1,95+,07 5.78+.35 1.86 1.96+.08
2 T 1.12 1.12 1,77+.04 5.0 +.4 2,06 1.9 +.1
4 T 1,83 1.04 1,33+,02 3.77+.07 2,07 2,11+,02
3 T 1.27 1.10 1,55+,03 3.85+,07 2.16 2,18+,02
3 T 1.27 1.10 1.47+.02 3.55+,22 2,22 2,26+.06
3 P 1.47 1.10 1.55+.02 3.85+,08 2,04 2,09+.02

Powder 1 is nickel-aluminum-titanate (Trans—Tech D-30).
Powder 2 is barium tetra-titanate (Trans-Tech D-38).

Powder 3 is barium tetra-titanate (Trans—Tech D-8512).

Powder 4 is magnesium calcium titanate (Trans—Tech MCT-40).

Substrate T is TFE teflon.

Substrate P is polypropylene.

The uncertainty in the guide wavelength predicted by Marcatili'’s theory is

estimated from the uncertainty in the dielectric constant of the powder.
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TABLE II-2

Attenuation of powder-filled channel dielectric waveguides

Type Substrate Width of Depth of Density Loss
of Type Groove Groove of Powder
Powder (ram) (mm) (g/cm?) (dB/cm)
D-30%»* P 1,17 1.13 1.75 0.34+.01
MCT-40%* T 1.50 1.05 1.26 0.14+.01
D-8512% T 1.27 1.10 1.47 0.09+.01
D-30* P 1.17 1,13 1.80 0.17+.01
D-30* P 1.17 1.13 1.68 0.09+.01

**+ 70% of particles between 100uym and 43um, 30% less than 43m

* 100% of particles less than 43um

Substrate T is TFE TeflonR

Substrate P is polypropylene.
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2. Ef

Using the measured transmission losses of our channel guides and
literature values (Refs. II-6 and II-7) of the loss tangents of the
substrate materials, the effective loss tangents of the powders
themselves were calculated using Equation II-1. (The dielectric
properties of heterogeneous media, such as powders, are often called
'‘effective’ to distinguish them from the bulk properties of the
constituent materials. In this thesis, the term 'effective’ has been
omitted when the properties being discussed are clearly those of
powders.)

Some of the results are given in Table II-3. As shown there, the
effective loss tangents increased with powder density, as expected.
(See Appendix II.) This effect causes the waveguide loss to increase.
However, the rise in waveguide loss accompanying increased powder
density is not solely due to the increase in effective loss tangent.
The effective dielectric constant of the powder also increases with
density, causing a greater fraction of the power of the guided mode éo
travel in the core, rather than in the more low-loss substrate. (Even
near cut-off, only a small fraction of the power travels in the air.
The main effect of increasing the powder dielectric constant on the
distribution of power among the various regions is to increase the
fraction of power travelling in the core by reducing that in the

substrate.)
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TABLE II-3

Effective Loss Tangents of Powders

Type Substrate Density Powder Waveguide tand
of Type of Powder Dielectric Loss

Powder (g/cm?) Constant (dB/cm)
D-30%* P 1,68+.03 4,05+,08 .09 .0006
D-30% P 1.80+.03 4.42+.11 .17 .0010
D—-8512% T 1.49+.02 3.62+,15 0.11 . 0009
D-8512% T 1.63+.02 4,04+,08 0.17 .0012
D-8512% T 1.47+.02 3.55+.22 0.09 . 0007
D-30%+ P 1,70+.03 4.59+,16 0.36 .0021

* 100% of particles less than 43um
**+ 70% of particles between 100um and 43pm, 30% less than 43um

.0002 for TFE teflon (Ref. 6)

tand

tand = .0002 for polypropylene (Ref. 7)

The uncertainty in the values of powder effective loss tangent is + .0001,



65

As shown in Tables II-2 and II-3, waveguides made with 43 pm D-30
powder exhibited much lower losses than those using the larger grain
D-30. As a result, the computed values of effective loss tangent for
the 43 pym D-30 were smaller. The fact that higher losses were
measured for the D-30 powder with larger particles suggests that the
extra loss is due to scattering. However, the amount of power
radiated from the guide was insignificant. In addition, the theory of
scattering by powders (see Appendix II) predicts negligible scattering
loss. Hence, absorption losses must be much greater for the coarse
D-30 powder. We do not know why the coarse D-30 powder is more
absorptive. The only known difference between the two batches of D-30

powder is in the distribution of particle sizes.

3. Embossed grooves

Powder channel dielectric waveguides offer the potential of low-
cost fabrication, especially if an inexpensive process, such as
injection molding, proves feasible for making dimensionally precise
grooves in plastic. To check the feasibility of using molding
processes, we developed a simple technique for embossing straight
grooves in polypropylene with an aluminum die (Figs. II-5, II-6.)

After being sprayed with a dry Teflon lubricant, the die was heated
to approximately 160 degrees Celsius. It was then pressed against a

one-half inch thick slab of polypropylene. After 3 minutes, the
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N

Figure II-5: Die used to emboss grooves in polypropylene



| _—ARM OF PRESS

)
7

ELECTRIC HEATER ELECTRIC HEATER

>

N—DIE

FRONT VIEW

%/ARM OF PRESS

?—SET SCREWS

Vi

ASBESTOS PLATE
DIE

XELECT RIC HEATER
SIDE VIEW

Figure II-6: Die assembly



68

heaters were turned off and air was blown across the die for cooling.
Ten minutes later, the die was removed from contact with the plastic.
Good quality grooves were formed by this technique, but after being
pulled away from the die, the polypropylene slab would gradually
become warped (about 1 cm in a 15 cm length). This effect could be
significantly reduced by preheating the back side of the slab with a
heat gun before embossing the groove.

This process was used to form straight grooves which were 6 inches
long, 1.37 mm wide and 1.12 mm deep. The cross-sectional dimensions
varied by less than 0.03 mm along the length of the groove. By
filling one of these grooves with 1.57 + .05 g/cm3 of Trans-Tech
D-8512 barium tetratitanate powder (er = 3.87 + .16), a dielectric
waveguide was obtained which had a loss of 0.10 dB/cm. The guide
wavelength was measured to be 2,07 mm + .01 mm. (Marcatili's theory
predicted a guide wavelength of 2.10 mm + .04 mm for the Ey11 mode of
this guide.) The good performance of this waveguide and the
simplicity of the process by which it was made indicate that a molding
technique would allow large-scale, low-cost production of powder core

dielectric waveguides and components.
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1. RE

Introduction

After demonstrating the efficacy of using powdered dielectric
material to make waveguides, a natural step toward making more complex
circuits is to build a simple passive component such as a resonator.
Using our channel dielectric waveguides, one can imagine several
possible resonator configurations. The simplest of these is a segment
of straight waveguide (Fig. III-1a) with dielectric discontinuities at
both ends. However, to maximize the reflection at the ends and
minimize the radiation from the ends, the effective dielectric
constant of the powder core would have to be much higher than that of
the powders we have at our disposal. One might attempt to solve this
problem by placing metal walls at the ends of the resonator (Fig. III-
1b), but this approach is counter to our basic strategy of

all-dielectric waveguide technology.

An alternative to these schemes would be to make reflective
periodic structures at the ends of the resonator, such as shown in
(Fig. III-1c). Each of the alternating sections would be one—quarter
guide wavelength long (Ref. III-1). However, such designs are harder
to fabricate by machining and suffer the additional disadvantage that

the terminations are likely to radiate, thus resulting in lower Q.
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A simple solution to the problems of the linear resonator of Fig.
III-1 is to eliminate the ends by curving the guide into a ring,
usually, but not necessarily, circular. The use of curved guides
introduces the new problem of radiation induced by the curvature. The
amount of radiation increases as the radius of curvature decreases.
Hence, the radius of a circular ring resonator, for example, must be
chosen large enough so that the amount of radiation is small or
negligible compared to the other losses of the guide. On the other
hand, the resonator should not be so large that it is unwieldy, so one
should use the smallest possible radius of curvature for which

radiation due to bending is insignificant.

A. Design

To design a ring resonator, (henceforth assumed to be circular) a
theory relating the bending loss to the waveguide parameters is
required. The only such theory known to us which is applicable to
dielectric channel waveguide is that of Marcatili (Ref. III-2). This
theory is an extension of his approximate theory of propagation on a
straight channel waveguide (Ref. III-3). Marcatili treats curvature as
a perturbation, assuming that the radius of curvature is large
compared to the wavelength. The field distributions of his modes of

curved guide are thus only slightly different from those of straight
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guide. Each mode of curved guide is given the name of the associated
mode of straight guide. Like Marcatili's theory for straight channel
guides, the theory of curved guide assumes that the differences in
refractive index between the core and the surrounding media are small.
However, since Marcatili’s theory of straight channel guide seemed
adequate for understanding our straight guides (Chp. II), we decided

to try his theory of curved waveguides on ring resonators.

For our powders and substrate materials, Marcatili’s theory
predicts that, at 94 GHz, bending losses would be insignificant
compared to the measured absorptive losses of straight guide for a
radius of curvature greater than about 1 c<m. We checked this
prediction by measuring the transmission losses of guides machined in
180° circular arcs. For 1 cm radius of curvature, the measured loss
of the curved guide was found to be much higher than that of straight
guide. On the other hand, the measured losses of guides with 4 cm and
5 cm radius of curvature were comparable to straight sections, so we
decided to build one ring resonator with a 4 cm radius and another

with a 5 cm radius.

Coupling to the ring resonators was achieved by placing a straight
channel guide in proximity to the ring. No theory currently exists to
analyze such a structure, Marcatili treats only the coupling between

parallel straight guides (Ref. III-3). However, it is reasonable that
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the coupling can be adjusted by changing the ring-to-straight guide
spacing. The coupling for straight gquides (Ref. III-3) is an
approximately exponential function of the spacing. Thus, we used a

technique that allowed this spacing to be adjusted easily.

Straight channel guides were positioned on opposite sides of the
ring to couple power on and off. The resonator and the guides used for
coupling were each built on individual substrates. Material was cut
away from two opposing edges of the resonator substrate until each
edge was only 0.38 mm from the channel. The substrate of each
straight guide had an edge that was cut at an angle to the channel.
For both of these substrates, the distance between the channel and the
edge was 0.46 mm at one end and 4.32 mm at the other. When the three
substrates were placed together as shown in Figure III-2, the
separations between the resonator and the coupling guides could be

adjusted by sliding the substrates with respect to one another.

Marcatili’s theory of straight channel waveguides was used to
design the guides used for coupling to the resonator so that only the
B 11 mode would propagate. Since the substrate material had been
chosen to be polypropylene (er = 2.25) and the dielectric constant of
the core was constrained between 3.5 and 6 by the selection of
low-loss powders, the design effort focused on choosing the best

cross-sectional dimensions for the channel.
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178 mm

Figure III-2: Coupling scheme used to achieve adjustable distances
between a ring resonator and two straight waveguides
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Coupling occurs through the overlap in the substrate of the
evanescent fields surrounding the rectangular core. To increase
coupling, we may put the cores closer together or increase the
penetration of the evanescent fields into the substrate. This
increased penetration can be achieved by operating the guide closer to
cut-off, that is, by decreasing the core dielectric constant or the
channel width. The depth of the channel does not affect significantly
the horizontal penetration (Ref. III-3), but the channel depth is
limited to less than 1.06 mm by the inner dimensions of the flared
WR-10 metal waveguide sections used for coupling to metal guide (Fig.
IT1-3). Also, the area of the channel must exceed a minimum value of
about 1.3 mm2 in order for the Eyll mode to be guided. Hence, the
width of the channel had to be larger than 1.2 mm. We picked 1.35 mm
for the width and 1.05 mm for the depth. This choice fixed the
penetration into the substrate and thus fixed the coupling obtained at

a given distance.

The goal of the ring resonator design was to choose the optimum
channel dimensions given the properties of the materials to be used.
Marcatili's theory predicts that bending loss is independent of the
channel depth when the plane of curvature is horizontal, so the depth
was chosen equal to that of the straight coupling guides in order to

enhance the coupling between these guides and the resonator.
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Marcatili’s theory also predicts that the bending loss of the EY 11
mode decreases as the channel width increases. Consequently, we chose
the width as large as possible without allowing propagation of higher-

order vertically polarized modes.
B. Experiment

The experimental set-up is shown in Figure 1III-3. For the
measurement of Q, the resonator was operated as a transmission filter.
Since the loaded Q value of a resonator approaches the unloaded @Q in
the limit of zero coupling (Ref. III-4), we wanted the coupling
between the resonator and the straight guides to be sufficiently weak
that the difference between the loaded and unloaded @'s would be less
than the other errors in the measurement. This was accomplished by
sliding the substrates to decrease the coupling until further
decreases yielded no measurable increase in Q. Data were taken with
the filter operating with a 40 dB insertion loss, a value more than
sufficient to make the loaded Q@ equal to the unloaded Q within the
experimental uncertainty. The 40 dB insertion loss was obtained by
setting the distance between the adjacent walls of the two channels to

about 1.4 mm.

The Q was measured by varying the frequency of the source and

observing the response of the resonator with the detector at (2). The
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amount of power incident on waveguide A was monitored with the
detector at (1) and the precision attenuator was used to keep this
power level constant as the frequency was changed. The frequencies of
the resonator’s peak response and half-power response points were
measured with the cavity wavemeter. The Q is the frequency of the
peak response divided by the difference in frequency of the half-power
points. Since the cavity wavemeter used to measure frequency had a Q@
comparable to that of the ring resonators, the uncertainties in our

measured values of Q are relatively large.

We used several checks to determine that the measured Q@ was
actually that of the ring and not the result of a spurious resonance
elsewhere in the measurement set-up. First, with the frequency tuned
to a resonance, the placement of a small piece of lossy ferrite over
any portion of the ring caused a 10 dB drop in received powder at (2).
Secondly, placing lossy ferrite inserts at various positions in or on
the substrate of the resonator had no effect on the performance. These
observations show that power was propagating through the ring’s powder
channel and not through the substrate. (The purpose of the aluminum
foil shown in Figure III-3 was to prevent radiation from the end of
waveqguide A from entering the resonator’s substrate.) Finally, the
resonant frequency could be tuned by adjusting the height of a piece

of polypropylene positioned over part of the ring.
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Using the results of our previous measurements on straight channel
waveguide and applying the formula Q = B/2a (Ref. III-2), where B and
o are the propagation and attenuation constants of the straight guide,
the predicted ring resonator Q's would be no larger than 1700 if
bending losses were neglected. (.09 + .01 dB/cm loss and xg = 2,04 +
.02 mm for the E:Yl1 mode give @ = 1500 + 200.) Thus, we are surprised
that some of the actual measured Q values (Table III-1 and Fig. III-4)
exceed 1700. These results suggest that measurement of the Q of a
ring resonator may be a better method for determining waveguide
dissipative and scattering losses than end-to-end transmission on a

straight guide.

Marcatili’s theory predicts negligible bending loss for all of the
resonators represented in Fig. III-4. If Marcatili's theory of
curvature loss were accurate for these resonators, one would expect
the Q’s in Fig. III-4 to decrease with powder dielectric constant as-a
result of increased dielectric absorption in the channel (c.f. Chap.
IT). Instead, the Q's initially increased with powder dielectric
constant until a maximum was reached and then declined as it was
increased further. These observations and the poor prediction of the
bending losses of semicircular arcs (described earlier), lead us to

conclude that Marcatili’'s theory may not be completely reliable for
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TABLE III-1

Measured Q of ring resonators

Density Dielectric Radius Frequency Measured Q
of Constant of (GHz)
Powder Curvature
(g/cm?) (cm)
1,76+.02 4.,28+.07 4.0 94.39 1100+200
1.86+.02 4.65+.08 4.0 94.61 1300+200
1.88+,02 4,73+,09 4.0 94.24 2400+400
1,95+.02 5.06+.10 4.0 94.61 16004200
2,10+.02 5.90+.13 4.0 94,31 12004200
1.67+,02 4.02+,06 5.0 94,86 810+100
1,70+.02 4,10+,06 5.0 93.20 9304150
1,78+,02 4,35+,07 5.0 94,32 1300+200
1.83+.02 4,53+.08 5.0 94.28 1600+200
1,88+.02 4,73+.09 5.0 94.417 1900+200
1.89+.02 4,78+,09 5.0 94.44 1000+200

Powder: Nickel-aluminum titanate (Trans-Tech D-30).
All particles less than 43 jm.

Channel width: 1.83 mm

Channel depth: 1.09 mm for R
1.05 mm for R

5.0 cm
4.0 cm
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calculating the bending losses of channel gquides with our large

differences in dielectric constant.

We tentatively attribute the initial increase in Q with increasing
powder dielectric constant to reduced bending loss. However, as
powder dielectric constant increases, dielectric loss increases as the
fields become more confined to the (relatively) 1lossy channel.
Eventually this effect becomes dominant and the Q begins to decrease
with increased powder dielectric constant. Propagation of a
higher-order mode (or modes) may also have contributed to the eventual
decrease in Q, particularly for the 5 cm radius ring for which the

decrease in Q was abrupt.
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IV. ADJUSTABLE DIRECTIONAL COUPLER

Introduction

Since directional couplers are a useful part of many
millimeter-wave systems, we were interested in building a directional
coupler using our powder—core channel waveguides. We decided to build
one consisting of two straight channel waveguides in parallel because
an approximate analysis (Ref. IV-1) existed for this structure. 1In
order to better investigate the degree of coupling between the two
waveguides, an experiment was devised wherein the distance between

them could be varied.

A. Design

Well-established formulas have been derived by Miller (Ref. IV-2)
which describe the the propagation of waves on any pair of coupled
parallel waveguides for which the coupling is small per wavelength and
uniform along the direction of propagation. We expected these
conditions to apply for our directional coupler. Assuming that a
single mode on one of the waveguides is coupled to one mode of the
other, Miller's formulas give the power carried by each of these

modes, denoted as 1 and 2, as a function of distance, z, along the
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mutually parallel extent of the two guides (Fig. IV-1). If, as
expected for our directional coupler, the individual guides have equal
attenuation constants, then P, (z) and P,(z), which represent the power
carried by modes 1 and 2, respectively, are given by Miller as

2 1/2

Py (z) = Py (0) (AB /(c +AB ))exp(- 2az)(s1n ((c + A7) Tz)

/2

+ cos2((c? + ap?)1/23)) (IV-1)

and

2,yy, (1v-2)

P,(z) = P, (0)((cP/(c + ap®))exp(-2az)sin’ ((c? + ap?)!
where

Ap = (By - By)/2.
Here Bl and Bz are the propagation constants of modes 1 and 2,
respectively, in the absence of coupling between the two waveguides.
The amplitude attenuation constant of each guide in the absence of
coupling is represented by a. Finally, it was assumed in the

derivations of Equations 1 and 2 that all the power is initially in

guide 1 (Pz(z=0) = 0).

Thus, given the propagation and attenuation constants of the
individual waveguides and the length over which they are parallel
(quantities which can be controlled by design for our powder-core
channel waveguides), these formulas prediét the coupling in terms of a
parameter called the coupling coefficient. The coupling coefficient,
in turn, depends upon the fields of the two coupled waveguide modes

and the relative positioning of the waveguides.
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z2=0

wavequide 1 waveguide 2

Figure IV-1: Schematic of coupled waveguides analyzed by Miller
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Although Miller’'s formulas apply to a wide variety of parallel
waveguide pairs, the coupling coefficient must be determined
individually for each pair, since it depends on the fields.
Unfortunately, there is no unapproximate analytical theory which gives
the coupling coefficient for a pair of parallel channel waveguides. In
fact, the only theory we know which predicts this coupling coefficient
is the approximate theory of Marcatili (Ref. IV-1). (The directional
coupler analyzed by Marcatili is shown in Fig. IV-2). This is the
same theory that was shown in Chapter II to be reasonably accurate for
predicting the guide wavelengths of the Ey11 mode of our straight
dielectric channel guides. If it also could predict accurately the
coupling coefficient, it would be useful for designing directional
couplers. Unfortunately, we knew of no experimental data confirming
Marcatili's prediction of the coupling coefficient. 1In addition, for
our powder-core channel guides, the refractive index differences
between the core and the surrounding media are large enough to push
the validity of Marcatili’'s approximation (c.f. Chap. II) to its
limits. As a result, we were unsure of the accuracy that could be
expected from Marcatili’s predicted values of the coupling

coefficient.

Since, for the reasons just stated, we were uncertain of how the
coupling coefficient would depend upon the separation between the two

waveguides, we devised an experiment in which the spacing between the
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two parallel channel guides could be varied. To do this, each of the
two waveguides would be built on individual plastic substrates (Fig.
IV-3). A wedge made from the same material as the substrates
would be lowered or raised in order to change the spacing between the
channels. Thick plastic plates made of the substrate material would
be placed directly above and below the waveguide substrates. These
plates would be sufficiently thick that, for purposes of analysis, one
could assume that the two channel waveguides were immersed in an
infinitely thick plastic medium. Thus, the geometry of our coupler
would be the same as that analyzed by Marcatili (with n, =n; =n, =
ns), so we could compare its measured performance to predictions based

on his theory.

Since, in general, the fields of a guided mode of a dielectric
waveguide decrease approximately exponentially with distance away from
the guiding medium (core), we suspected that the coupling coefficient
would decrease rapidly as the separation between the channels
increased. Thus, we wanted our experimental setup to allow fine
adjustments in the channel separation and also to permit close spacing
of the two channels. 1In order to make fine adjustments, the wedge
would need to be tall and thin. To permit a small separation, the
groove for the channel of each waveguide would have to be very close
to the edge of its substrate nearest the wedge. If the experiment

were to be done at W-band, for example, the nearest edge of the groove
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plastic wedge

plastic plate ——————— X

plastic substrate —

plastic plate ——————— \

\—powder channel

Figure IV-3: Method of achieving variable spacing between two parallel
channel waveguides
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would need to be within a few tenths of a millimeter of the edge of
the substrate. Since it was prohibitively difficult to machine
plastic with sufficient precision to meet such requirements at
millimeter-wave frequencies, we decided to conduct the experiment at

10 GHz.

The next step in the design was to choose a substrate material.
We decided to use RexoliteR (a cross-linked polystyrene sold
specifically as a low-loss microwave dielectric material by C-LEC
Plastics) rather than other low-loss, machinable materials that we
possessed, such as polypropylene, TFE teflon, and polyethylene, mainly
because RexoliteR has the largest dielectric constant at 10 GHz. For
RexoliteR, e, = 2.56, as compared to 2.25 for polypropylene and
polyethylene (Ref. 3), and 2.08 for TFE teflon. The values of &,
listed here for RexoliteR, polypropylene, and TFE teflon were measured
using the shorted-waveguide technique (Ref. 4) and are in good

agreement with values quoted in the literature.

We wanted the relative dielectric constant of the substrate to be
as close as possible to that of the powder core, which was expected to
be approximately 4, since we intended to compare our results with
Marcatili's theory. Additionally, the smaller difference in
dielectric constant between the core and a Rexolite substrate would

cause the fields to be more loosely confined to the core and thus
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would 1likely result in a less rapid decline of the coupling
coefficient with increasing separation between the waveguides.
Finally. RexoliteR is easier to machine than most of the

aforementioned alternative plastics.

Again, to minimize the difference in dielectric constant between
the core and the substrate, we chose Trans-Tech D-8512 (barium
tetratitanate) as the powder material because it had the lowest
effective dielectric constant of any powder available in the lab. The
powder was to be packed just enough so that inadvertent jarring of the
experimental setup would cause minimal settling. Thus, the powder
density was chosen to be 1.74 g/cms, giving a relative effective

dielectric constant of 4.4.

We next picked the channel dimensions for the two waveguides using
Marcatili's theory as a design tool, since it had already been shown
(c.f. Chap. II) to be reasonably accurate for predicting the guide
wavelength of the Eyll mode of straight channel waveguides. For
simplicity, it was desired that each waveguide be able to propagate
only the fundamental vertically polarized 44 11) mode. (We expected
to excite only vertically polarized modes.) Secondly, since for a
given value of coupling coefficient the power transferred between the
two waveguides is maximized over AR when AP equals zero (c.f. Egs.

1 and 2), we wanted the channel dimensions for the two waveguides to
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be identical. Thirdly, the guided B , mode was to be near cut-off so
that the fields would extend farther into the substrate. We were able
to satisfy all these constraints by picking the channel depth and
width both equal to 1.20 cm. With these dimensions and with the
relative effective dielectric constant of the powder equal to 4.4, the
guide wavelength for the Ey11 mode was predicted by Marcatili’s theory
to be 1.72 cm at 10 GHz. (For comparison, the cut-off wavelength was

2 . 1.43 cm.)

1.88 cm and Ay/(4.4.)1
In our experiment, we planned to excite the EY11 mode at an end of
one of the parallel channel waveguides (hereafter, to be referred to as
the ‘'primary’ channel waveguide) and measure the power received at the
other end of both guides as a function of the distance between them.
To do so, a means would be required of coupling power between channel
guide and rectangular metal waveguide. We intended to couple between
these two different types of waveguide by way of an intervening
section of rectangular dielectric rod upon which the Ey11 mode would
propagate. Fortunately, we already possessed two 30 cm lengths of
StycastfR dielectric rod with cross-sectional dimensions similar to
those chosen for the channel guide. For one of these rods, the width
was 1.26 cm and the height was 1.02 cm. For the other, the width and
height both equaled 1.30 cm. The StycastR material was specified by
the manufacturer, Emerson and Cuming, to have e = 3.0 + 3% and tand <

.002 at 10 GHz.
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According to Marcatili’s theory, both of these rods could propagate
only the fundamental vertically polarized (&Y 11) mode at 10 GHz. The
guide wavelength of the B 11 mode was predicted to be 2.73 cm for the
rod with smaller cross-sectional area and 2.40 cm for the other.
Also, the cross-sectional field distribution of the EY 11 Mode of each
of these rods was predicted to be similar to that of the Ey11 mode of
the channel guide, so one would expect to get good coupling between
these two types of waveguide by butting them together end-to-end.
Since the field distribution of the EY 11 mode of each rod was also
fairly similar to that of the dominant TE; o mode of the rectangular
metal guide, we would try to couple between these two types by

inserting the rod into the metal guide.

Two detectors could have been used to determine simultaneously the
power transmitted to the far ends of both of the parallel channel
waveguides comprising the directional coupler. However, to preclude
the calibration problems inherent in obtaining two identical
detectors, a single detector would be switched between the two guides.
The far end of one of the channel guides would be terminated in a
matched load while the power transmitted to the far end of the other
guide would be coupled first onto a StvycastR rod and then into a
segment of metal waveguide containing a detector. The matched load

R

would consist of a Stycast™ rod with pieces of Emerson and Cuming

MF-110 absorber placed above and below the rod. This switched
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detector scheme was also necessary in order to provide the minimum
possible separation between the channel guides without being limited
by the width of a metal waveguide flange. However, it introduced the
potential problem of unwanted coupling between the two dielectric rods
emerging in parallel from the far ends of the channel waveguides (Fig.
Iv-4). If the amount of power transferred between the rods was
significant compared to that between the channel guides, the

experimental results would be more difficult to interpret.

Unfortunately, for a given separation distance, the coupling
coefficient for the two parallel rods would be similar to that for the
channel gquides, according to Marcatili’s theory. Thus, in order to
reduce the power transferred between the rods, we wanted the
difference in their propagation constants for the Eyn mode to be
large (c.f. Egns. 1 and 2). To achieve this goal, the two rods
were chosen to have cross-sectional dimensions that would assure
different B’s. The one chosen to couple to metal waveguide would be
a segment of the rod with height equal to 1.02 cm because this height
more closely matched the inner height of the metal guide. The rod
used for making the matched load would be a piece of the one which had
both width and height equal to 1.30 cm. Thus, the value of Af for the
Eyn modes of these two rods would be about 0.16 cmul, according to
Marcatili's theory. We hoped that this value of Ap would be

sufficiently large that the power transferred between the rods would
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be negligible compared to that between the channel guides over the
entire range of separation distances possible with the experimental
setup. However, we could not be confident of this outcome because we
were uncertain of the accuracy of the values of coupling coefficient
given by Marcatili’s theory. 1In addition, we were unsure of how the
coupling coefficient between the rods would be affected by the
presence of the pieces of MF-110 absorber used to attenuate the wave

travelling on one of them.

There would also be two dielectric rods in parallel at the near end
of the directional coupler. One each of these would emerge from the
near end of each of the parallel channel waveguides. Here again, the
rods were chosen to have different cross—sectional dimensions to
reduce the power transferred between them. The purpose of one of
these rods would be to feed power onto the primary channel. This rod
would be cut from the 30 cm length which had a height of 1.02 cm. The
other rod, which would be used to make a matched load for the near end
of the other channel guide (hereafter to be referred to as the
'secondary’ channel waveguide), would be a segment of the rod which
had both width and height equal to 1.30 cm.

The thickness of the substrates for the channel guides would be 2.5
cm, using our thickest RexoliteR sheet stock. The plates to be placed

directly above and below these substrates would also be 2.5 cm thick.
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Although we did not really know what thickness for these plates would
be sufficient to simulate Marcatili'’s geometry. our experience with
dielectric waveguides led us to believe that 2.5 cm would be enough
because the field strength at 2.5 cm from the core probably would be
negligible. 1Indeed, Marcatili’s theory predicted that the penetration
depth of the fields into the substrate would be only about 0.4 cm.
(The penetration depth is the distance from the channel in which the
fields decay by a factor of 1/e.) 1In any case, more plates could be
added during the experiment if tests indicated that they were
necessary. We also intended to put a layer of 1.3 cm thick Emerson
and Cuming MF-110 absorber underneath the lower plates (Fig. IV-5) to
absorb any stray power that might escape from the dielectric
waveguides, thus preventing reflection from the metal jacks used for
support. MF-110 is specified by Emerson and Cuming to have a relative

dielectric constant of 2.9 at 10 GHz.

Another important part of the design was to pick the shape and size
of the wedge. First, one side of the wedge (viewed in cross section)
was chosen to be vertical so that RexoliteR'plates could be added next
to it (Fig. IV-5) to increase the range of separation distances
possible with the experiment. Since we possessed a large number of
plates, the separation distance could be made quite large with this
scheme. The proportions of the wedge were picked so that a given

vertical displacement would result in a much smaller change in
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Figure IV-5: Diagram of coupled channel guides showing Rf?-.xoliteR
plates used to increase the range of separation distance
possible with the experiment. Supporting structures
(metal jacks) not shown.
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separation distance (in the ratio 12:1). In particular, the height of

the triangular wedge was to be 12.0 cm and the base was to be 1.0 cm.

The wedge would be supported and guided from above by a metal frame
(Figs. IV-6). A 1long, finely threaded (40 threads/inch) screw
attached to the frame would be used to push the wedge downward to
increase the separation distance. Because of the fine threads of the
screw and the gradual slope of the wedge, it would be possible to
adjust the separation distance in increments of less than one-tenth of
a millimeter. This degree of adjustment was judged to be adequate
since the penetration depth of the fields into the substrate was

expected to be a few millimeters.

In order to be able to achieve the smallest possible separation
between the two coupled channel guides, it was desirable for each
channel to be put as close as possible to the edge of its substrate
nearest to the wedge. However, the closer the channels were to the
edge, the more fragile would be the substrates. They would also
become harder to fabricate. As a compromise, each channel was put
0.20 cm away from the edge of its substrate nearest the wedge (Fig.
IV-5). Thus, the minimum possible separation distance between the two
channels would be 0.82 cm, occurring when the point of the wedge was
extended just to the bottom of the RexoliteR plates underneath the

substrates.
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Figure IV-6: Metal frame used to support and guide the RexoliteR
wedge
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To choose the length of the coupler, Miller's equations (Egns. IV-1
and IV-2) were used. For our application, Pl(z) and P,(z) in these
equations represent the power carried in the positive z direction by
the Ey11 modes in the two parallel waveguides at distance z from the
end at which power is introduced onto the primary waveguide. From
Egns. IV-1 and IV-2, we observed that the longer the length of the
directional coupler, the greater would be the number of oscillations
of P and P, as ¢ is varied over the range possible with the setup.
However, we were limited to a maximum length of about 30 cm by our
supply of D-8512 powder. Also, according to Marcatili’s theory, the
coupling coefficient, ¢, would reach a maximum value of only .053 when
the separation distance equaled its minimum value of 0.82 cm. Thus,
we chose 30 cm for the length of the coupler so that if Marcatili’s
predicted value of coupling coefficient were too small, we might begin
to observe the first oscillation of the sinusoidal terms in Egns. IV-1
and IV-2 as the separation distance approached the minimum wvalue
possible with the setup. (Assuming that Ap for the two channel guides
equaled zero.) On the other hand, if Marcatili'’s values were accurate
or too large, the argument of the sinusoids would never become

appreciably greater than n/2.
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B. Experiment-Preliminaries

The first experimental step was to investigate the coupling at 10
GHz between rectangular metal waveguide and the StycastR rod with
height equal to 1.02 cm. This experiment, and all the ones described
below, were done with the X-band test equipment configured as shown in
Fig. IvV-7. Since the rod's height was a little too large to allow an
end to fit into the metal guide, which had an inner height of 1.00 cm,
the top and bottom sides of the rod were sanded near one end until the
height there was reduced to 0.95 cm. This end of the rod was then
inserted into the feed (an open—ended section of metal waveguide) and
the standing wave ratio was measured with the slotted line for several

insertion depths less than 4.0 cm. The ratio of reflected power to

incident power was calculated from the standing wave ratio.

To prevent reflections from the far end of the 30 cm long rod, a
piece of MF-110 absorber which was 2.0 cm wide, 1.3 cm high and 16 cm
long was placed parallel to the dielectric rod about 2 mm from its
upper surface as shown in Fig. IV-8. The 2 mm distance between the
rod and the absorber was small enough to allow sufficient absorption,
but large enough that there was negligible reflection caused by the
absorber. 1Indeed, as long as the 2 mm distance was maintained, the
value of the standing wave ratio measured with the slotted line was

independent of the precise position of the absorber along the length
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of the rod. Moreover, with the absorber present, probing the space
around the end of the rod with a metal perturber had no effect on the
reflected power. Without the absorber, however, the perturber had a
pronounced effect. Thus, we concluded that with the absorber in
position, the only significant source of reflected power was the

imperfect coupling between the metal waveqguide and the dielectric rod.

As the dielectric rod was inserted into the metal waveguide, the
reflected power varied periodically with insertion depth with a period
of 1.0 cm. At the minima, the reflected power (calculated from the
SWR) was 21 dB down from the incident power. Minima were recorded at
insertion depths of 0.7 cm, 1.7 cm, 2.7 cm, and 3.7 cm. With the rod
at each of these depths, a detector connected to a short length of
rectangular metal waveguide was used as a movable probe to determine
that the amount of radiation emanating from the feed was small. 1In
each case, the detected radiation was more than 25 dB below the
incident power, no matter where the probe was positioned. (The
incident power was monitored with the detector connected to the
directional coupler shown in Fig. IV-7.) Hence, we concluded that
virtually all of the power that was not reflected was coupled onto the

dielectric rod, rather than radiated.

After removing the absorber, guide wavelength measurements were

conducted by moving a metal perturber along the length of the
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dielectric rod and observing the periodic variation of reflected power
as a function of perturber position. As expected, no beats were
detected in this pattern, indicating that a single mode was
propagating on the rod. The guide wavelength was determined to be
2.70 cm £+ .02 cm, in reasonable agreement with Marcatili's prediction

of 2.63 cm for the Eyn mode.

Next, the rod’s height at its other end was reduced slightly by
sanding so that it could fit into metal gquide. As a check, the
procedure described above for determining the optimal insertion depths
(in terms of minimum reflected power) for coupling to metal waveguide
was repeated for the newly sanded end of the rod. Not surprisingly,
the results were the same as for the other end. Then, knowing how to
couple to both ends of the rod, we were able to determine its
transmission loss using the setup shown in Fig. IV-9. Since the power
lost in coupling was so small, the difference between the incident
power and that detected at the far end of the rod equaled its
transmission loss to within our measurement precision of 0.2 dB. The
transmission loss of the rod was thus determined to be 1.0 dB + 0.2
dB. Using this value in the extension of Marcatili's theory described
in Chapter 1II, the loss tangent of the StycastR material was
calculated to be .0025 + .0005 at 10 GHz. Since this number is close
to that specified by the manufacturer (.002), we were confident in the

accuracy of the loss measurement.
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Figure IV-9: Setup for measuring the transmission loss of a
dielectric rod
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The StycastR rod with height equal to 1.02 cm was now cut in half
to make two 15 cm lengths to be used to couple power between metal
guide and the channel guides of the directional coupler. The sides of
each of these segments were sanded slightly at one end to allow it to
fit into the channel guide. The other end of each segment had been
sanded earlier on the top and bottom and would be inserted into metal

waveguide.

To determine the depth to which these dielectric rods needed to be
inserted into the channel guide for best coupling, the appropriate end
of one of them was first inserted into the metal feed to a depth of
3.7 mm. (This depth was one of those which yielded optimal coupling
to the metal guide.) The other end of the rod was then inserted into
the near end of the primary channel waveguide (Fig. IV-10). The
channel of this guide had a width of 1.22 cm + .01 cm, a depth of 1.20
cm + .01 cm, and a dielectric constant, due to the D-8512 powder, of

4.19 + .03. While testing the coupling between the StycastR

rod and
this channel guide, a Rexolite plate was butted against the edge of
its substrate which would be adjacent to the wedge during testing of
the directional coupler (Fig. IV-10). Otherwise, there would have

been a substrate-air boundary very close to the channel.

To prevent reflections from the far end of the channel guide, a

piece of MF-110 absorber 2.0 cm wide, 1.3 cm high and 16 cm long was
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placed directly over the channel, several centimeters from the near
end (Fig. IV-10). The standing wave ratio measured with the slotted
line was independent of the position of this absorber along the length
of the channel, indicating that any reflection caused by its presence
was negligible compared to those caused by the imperfect coupling of
the dielectric rod to the metal guide and to the channel guide. 1In
addition, since no measurable change in reflected power could be
caused by probing the region around the far end of the channel guide
with a metal perturber, the absorber provided adequate attenuation.
Without the absorber, however, the perturber caused a large

reflection.

With the dielectric rod inserted 5 mm into the near end of the
channel, the reflected power, as calculated from the standing wave
ratio, was negligibly different from that arising from the junction of
the dielectric rod with the metal wavequide. Hence, we concluded that
the power reflected from the junction of the rod with the channel
guide could be ignored because it was much smaller than that from the
junction of the metal guide with the rod. Next, a movable probe (as
described earlier) was used to determine that the amount of power
radiated from the junction of the rod with the channel guide was
small. No matter where in the vicinity of the junction the probe was
placed, the measured radiation emanating from it was at least 24 dB

below the incident power. Hence, virtually all the power available
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from the far end of the rod was coupled onto the channel guide.

The next step was to investigate the coupling between channel guide
and the StycastR rod which was to be used to make matched loads.
(This rod was the one which had both width and height equal to 1.30
cm.) Two 10 am lengths were cut from the original 30 cm long rod, and
the sides of each of these were sanded near one end to allow them to
just fit into the channel guide. Then, after removing the absorber
which earlier had been placed over the channel, the sanded end of one

of the rods was inserted into the far end of the channel.

To prevent reflections from the far end of this rod, pieces of
MF-110 absorber, each 2.0 cm wide, 1.3 cm high, and 9 cm long, were
placed parallel to the top and bottom of the rod as shown in Fig.
Iv-11. This configuration was the same as was to be used to make
matched loads for the channel guides of the directional coupler. Thin
polyfoam spacers were inserted between the rod and the pieces of
MF-110 to insure that the distance between them would be 2 mm. (From
our earlier experience with the other rod, we estimated that a 2 mm
separation between the rod and the absorbers would yield adequate
absorption and negligible reflection.) By the same methods used
previously, we determined that the presence of the absorbers and
polyfoam caused a negligible reflection and that the absorbers

provided sufficient attenuation.
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An insertion depth of 6 mm was found to be the one for which the
standing wave ratio measured by the slotted line changed minimally
(0.3 dB) from the value resulting from the reflection from the feed.
With the rod inserted to this depth, the reflected power calculated
from the standing wave ratio was 19 dB below that available from the
feed, so we concluded that the power reflected from the junction at
the far end of the channel guide was sufficiently small. In addition,
the amount of power radiated from this junction was also small. No
matter where the movable probe was positioned, the detected power was
more than 24 dB below that available from the feed. Thus, almost all
of the power incident on the rod at the far end of the channel was

coupled onto it and then absorbed by the pieces of MF-110.

With the combination of rod and absorbers acting as a matched load
at the far end of the channel guide, the guide wavelength of the
channel guide was measured by moving a metal perturber along the
length of the channel and observing the periodic variation of the
reflected power as a function of perturber position. As expected from
Marcatili's theory, no beats were observed in this variation,
indicating that only one mode was propagating. The guide wavelength
was measured as 1.77 cm + .02 cm, in reasonable agreement with the
value of 1.81 cm given by Marcatili’s theory for the E:y11 mode of this

guide.
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Up to this point, all the experiments on this channel waveguide
(i.e., learning how to couple it to dielectric rods and measuring its
guide wavelength) had been conducted without covering the channel with

a R:exoliteR

plate, as would be done for the experiments on the
directional coupler. We now needed to add this plate and determine
whether a change would occur in the degree of coupling between the
StycastR rods and the channel guide. Consequently, a RexoliteR plate
which was 2.5 cm thick, 15 cm wide, and 30 cm long was placed directly
over the channel. Since the top of the rod used for the matched load
rose slightly above the top of the channel (the height of this rod was
1.0 mm greater than that of the channel), the plate’s position was
offset 6 mm toward the feed to allow it to lie flat against the
channel guide’'s substrate. With the plate in this position, the
standing wave ratio measured with the slotted line equaled 1.5 dB. It
was thus different by only 0.4 d8 from its value of 1.9 dB without the
plate. In addition, probing the regions around the ends of the
channel guide with a movable detector showed that the radiation from
the junctions with the rods was not significantly greater than when
the channel was uncovered. Hence, the addition of the Rexolite®
covering plate did not significantly affect the coupling between the

rods and the channel guide.

To check whether the thickness of the plate covering the top of the

channel was large enough to be considered infinite for comparison to
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Marcatili's theory, the space immediately above the plate was probed
with a metal perturber. The presence of the perturber caused no
measurable change in the standing wave ratio, indicating that the
field strength of the mode guided by the channel was negligible at the
top of the plate. As another check on the field strength at the top
of the plate, the matched load was removed from the far end of the
channel guide and a segment of StycastR rod with height equal to 1.02
cm was inserted 5 mm into he channel to couple power between it and a
piece of metal guide containing a detector. The power measured by
this detector was 3.0 dB *+ .2 dB below that available from the feed.
Placement of a piece of MF-110 absorber which was 30 cm long, 30 cm
wide, and 1.3 cm thick over the top of the covering plate had no
measurable affect on the power observed with the detector. Hence, the
thickness of the covering plate was deemed to be sufficiently thick to

be considered infinite.

To check whether the RsexoliteR plate underneath the channel guide's
substrate (Fig. IV-11) was sufficiently thick, an additional 2.5 cm
thick Rexolite® plate was inserted below it next to the layer of
MF-110, and the power transmitted through the channel guide and
coupling rods was remeasured. If the field strength of the guided
mode of the channel were significant at the bottom of the original
plate, the transmission loss would be expected to decrease when the

extra layer of dielectric was inserted above the absorber. Instead,



118

it was still equal to 3.0 dB. Consequently, we concluded that the
original plate underneath the substrate could be considered infinitely
thick.

So far, all of the foregoing experiments had involved the channel
waveguide which was to be the primary guide of the directional
coupler. We now repeated these tests on the channel waveguide which
was to be the secondary guide. The channel of this guide had both
width and depth equal to 1.19 cm + .01 cm and dielectric constant (due
to the D-8512 powder) of 4.44 + .04, The same insertion depths were
found to be best for coupling between this channel guide and the
StycastR rods as for the other channel guide. The quality of the
coupling was also essentially the same. The guide wavelength was
measured as 1.73 + .02 cm in the absence of the RexoliteR covering
plate, in reasonable agreement with the value of 1.77 cm predicted for
the Eyu mode by Marcatili's theory. This measured value equaled that
for the primary guide to within the experimental uncertainty, as
desired. With the covering plate, the power lost in transmission
through the combination of the channel guide and the two StycastR rods
was measured as 3.3. dB + 0.2 dB. Again, this value equaled that for

the other channel guide to within the experimental uncertainty.

By subtracting the losses due to the StycastR rods (1.0 + 0.2 dB),

the transmission losses of the two channel guides were calculated as
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2,0 8B + .4 @ and 2.3 d + .4 dB. These values correspond to

1 1 i

attenuation constants equal to .0077 cm = + .0015 cm = and .0088 cm

+ .015 cm_l, respectively. Thus, for computing the theoretical
performance of the directional coupler, 2a¢ in Equations IV-1 and IV-2

1

would be taken as .017 cm © + .003 cm Y. (Twice the average of e for

the two guides.)

As the last preliminary step before testing the directional
coupler, we conducted a crude measurement of the power transferred
between the rod which would be used to couple power to the near end of
the primary channel guide and the assembly of rod and absorbers which
would be used as a matched load for the near end of the secondary
channel guide. First, the rod to be used for coupling to the primary
channel guide (this rod will be called 'rod A') was inserted 3.7 cm
into the feed. This depth was one of those which yielded the best
coupling between rod A and metal guide. Next, the other rod (rod B)
and the pieces of MF-110 were placed parallel to rod A as shown in
Fig. IV-12. A segment of metal waveguide containing a detector was
then butted against the far end of rod A to measure the transmitted
power as a function of the distance between the rods. (The height of
the far end of rod A was too large for it to be inserted into the

metal guide for better coupling.)

The power measured at the far end of rod A is plotted in Fig.
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Figure IV-12: Setup for measuring the power transferred between
the rod (A) to be used to couple power onto the near
end of the primary channel guide and the assembly of
the rod (B) and absorbers forming a matched load for
the near end of the secondary guide.
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IV-13, normalized to the amount detected in the absence of rod B and
its accompanying absorbers. As shown there, this power decreased
measurably as the distance from rod B and its accompanying absorbers
decreased below 12.0 mm. This decrease, which presumably represents
power transferred to rod B and the absorbers, could be expected to

affect the measured performance of the directional coupler.

We next attempted to learn how much power transferred from rod A
was available from the far end of rod B because, during testing of the
directional coupler, this power (or virtually all of it) could be
expected to couple onto the near end of the secondary channel guide,
in violation of the desired condition that P2(z=0) = 0. To make this
measurement, the far end of rod B was inserted 6 mm into the near end
of the channel guide which was to be the secondary guide of the
directional coupler (Fig. IV-14). A small metal plate was placed at
the far end of rod A to prevent it from radiating in the direction of
the channel guide. Another Stycast‘R rod with the same cross-sectional
dimensions as rod A was inserted into the far end of the channel guide

to couple power to a segment of metal guide containing a detector.

The measured power decreased rapidly as the distance between the
rods increased and, fortunately, was very small over the entire range
of separation distances which would be used in testing the directional

coupler. For instance, when the distance between the rods was only 8
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mm, the detected power was 32 dB below that available from the feed.
Since, over the range of separation distances to be used, the detected
power was much smaller than that expected at the far end of the
secondary guide of the directional coupler as a result of coupling
between the two channel guides, we concluded that a sufficient amount
of the power transferred from rod A to rod B had been dissipated by
the absorbers. Thus, the condition P2(z=0) = 0 would apply for our

experiment.

C. Experiment - Coupler Measurement

We were now ready to begin testing the directional coupler. Our
goals were to learn the dependence of the coupling, insertion loss,
and directivity on the distance between the parallel channel guides.
(Coupling is defined as 10109(P2(z = 30 cm) /Pl(z = 30 cm)), insertion
loss is defined as —1010g((P1(z = 30 cm) + Pz(z = 30 cm))/Pl(z = 0)),
and directivity is defined as 101og(P2(z = 30 cm)/P2(z = 0)).) The
power transmitted to the far ends of the channel guides, relative to
that coupled onto the near end of the primary guide, would be measured
as a function of the separation distance to determine the coupling and
insertion loss. The directivity would be determined by measuring the
relative available power at the near end of the secondary guide.
Unfortunately, our coupling scheme required placing StycastR rods of

identical cross section in parallel at the near ends of the channel
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guides in order to make this measurement, so we were skeptical of the

outcome.

To test the directional coupler, the primary and secondary channel
guides, wedge, covering plates, etc., were configured according to the
design. Matched loads were placed on the far end of the primary guide
and the near end of the secondary guide, and the relative power
transmitted to the far end of the secondary guide was determined by
adding 1.0 dB to that measured with the detector in Fig. IV-15. The

R rods used

1.0 @B correction accounted for the losses of the Stycast
to couple power between metal and channel guide. (Recall that the
loss of a 30 cm length of this rod had been determined previously to
be 1.0 dB + 0.2 dB and that the two rods used for coupling between
metal guide and channel guide were each 15 cm long.) Using the same
correction, the relative power transmitted to the far end of the

primary guide was determined with a matched load on the far end of the

secondary guide.

For both of the above measurements, the distance between the
channel guides was varied from 12.0 mm to 16.4 mm and from 19.6 mm to
24.6 mm. The first range of separation distances was obtained by
putting a 5.0 mm thick RexoliteR plate next to the vertical side of
the wedge. A 12.9 mm thick plate was used to obtain the second range.

Separation distances smaller than 12.0 mm were not used since coupling
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between the StycastR rods was significant when they were less than

12.0 mm apart.

We attempted to determine the directivity of the coupler, even
though it was predicted to be greater than 30 dB by coupled mode
theory. We measured the relative available power at the near end of
the secondary guide with the far ends of both channel guides
terminated in matched loads. Only the set of larger separation
distances was used in order to allow sufficient clearance between the
StycastR rod inserted into the near end of the secondary guide and the
flange of the metal waveguide feed (Fig. IV-16). The power measured
with the detector in Fig. IV-16 was 30 dB below that available from
the feed and, surprisingly, was independent of the distance between
the channel guides. This result suggested that most of the power
reaching the detector had arrived via a spurious path. Indeed, when
the StycastR rod coupling the near end of the secondary guide to the
detector was removed entirely from the setup and the end of the
channel was covered with a small piece of metal, the detected power
was unchanged. By probing with a piece of MF-110 absorber, we
determined that the detected power had been radiated from the feed and
then reflected by the substrates of the chénnel guides. Thus, we knew
only that the power from the near end of the secondary guide was more

than 30 A below that in the primary gquide for separation distances
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between 19.6 mm and 24.6 mm. This measurement is consistent with the

theoretical prediction of directivity greater than 30 dB.

D. Analysis of results

Marcatili’s theory predicts the coupling coefficient between
a pair of identical parallel channel waveguides. We attempted to make
the channel guides in the coupler as identical as possible by
precision machining and powder packing. However, there were small
differences in actual dimensions (1.22 cm x 1.20 cm versus 1.19 cm x
1.19 cm) and powder dielectric constant (4.19 versus 4.44), and we
observed a small difference in B. To apply Marcatili's theory to our
directional coupler, the dimensions and dielectric constants of the
cores of the two channel waveguides were averaged to produce an
‘average’ channel waveguide. The coupling coefficient was then
computed for a pair of parallel ’average' waveguides as a function of
their separation distance. These values of coupling coefficient were
then used in Miller's equations along with values of 2a and AP to
compute Pl(z=30 cm) and P,(z=30 cm). As explained earlier, the value
of 2¢ used in Miller's equations equaled .017 cm—l. The uncertainty

in 2a (+ .003 cm—l) caused an uncertainty of + 0.4 @ in the computed

values of P1 and P2.
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There was also uncertainty in the experimental value of AP used in
Miller's equations. From the values of the propagation constants

measured for the two channel guides in the absence of the Rfs:xoliteR

1 1 and 3.63 cm !

covering plates (3.55 cm = + .04 cm + .04 cm Y), the
true value of AP must have been between 0 and 0.08 cm © for the
uncovered guides. Since the addition of the plates was predicted by
Marcatili’s theory to cause virtually equal changes in the propagation
constants of the two guides, the value of AB for the covered guides of

the directional coupler was probably between 0 and 0.08 cm—l.

Since Pl(z=30cm) and Pz(z=30cm) are quite sensitive to errors in
AB, curves of Pl(z=30cm) and Pz(z=30cm) versus the distance between
the waveguides were plotted for several values of Af between 0 and
0.08 cm ! (Figs. IV-17 and IV-18). As shown, the theoretical P,
curves (Fig. IV-18) did not coincide with the measured one to within
the experimental error for any of the values of AB. 1In particular,
there is a clear difference in slope between the theoretical and
measured P, curves. Since Miller's equations are well established,
the discrepancy between the theoretical and measured results probably
stems from inaccuracies in the theoretical values of the coupling
coefficient. An error in the coupling coefficient had been
anticipated because Marcatili’'s theory neglects coupling in the
regions between the guides shown shaded in Figure IV-2. In addition,

Marcatili’'s requirement of small refractive index differences was only
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marginally satisfied for our channel guides.

According to Marcatili’s theory, the coupling coefficient, c,
varies with the distance, d, between the guides as

ce= exp(—d/és).

(See page 51 for Marcatili's definition of 55.)

This exponential dependence of the coupling coefficient on the
inter-guide spacing results from the fact that the fields in
Marcatili’'s analysis decrease exponentially with distance from the
core. Since, for loose coupling, c2 €4 Aﬁz, Eqn. IV-2 for the
theoretical value of P, reduces to

P,(2) /P (0) = c’exp(-2az)sin’ (ABz) /Ap7,
the theoretical P, values decrease exponentially with distance between
the guides as

P, = exp(-—2d/§5).

The measured P, values also decrease exponentially with distance
between the guides, but the decay constant is only about half the
theoretical value. The measured decay constant for P, is 2.60 + 0.16
an ! and the theoretical one is 4.56 cm '. Thus, the coupling
coefficient for our channel guide coupler decreased exponentially with
quide spacing with only about half the decay constant predicted by
Marcatili’s theory.

As is apparent from Figs. IV-17 and IV-18, the parallel channel

guides functioned as a coupler with adjustable coupling. As the



134

separation distance was increased from 12.0 mm to 16.4 mm, the
coupling decreased from -8.5 dB + 0.8 dB to -14.6 dB + 0.8 dB. For
separation distances from 19.6 mm to 24.6 mm, the coupling decreased
from -18.0 + 0.8 dB to -23.8 + .08 dB. The insertion loss remained
within 0.2 dB of the value of 1.9 dB + 0.8 dB over both ranges of
separation distance.

As discussed earlier, the power available from the near end of the
secondary channel guide was not determined, so the directivity of the
coupler is unknown. From our measurements, we can give only a lower
bound on the directivity, equal to 9 dB for a separation of 19.6 mm
and decreasing to 3 dB at 24.6 mm. However, since AP would be large
for two oppositely directed waves, the true directivity was probably

much greater than these limiting values.
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PEND . LIDS WITH E DIELFE STANT
MILLIMETER WAVE FREQUENCIES

The first step toward making powder-core millimeter wave dielectric
waveguides is to find a suitable powder. Since millimeter wavelengths
are comparable to the physical dimensions of the guides, the effective
dielectric constant of the powder core must be significantly greater
than that of the cladding for the fields to be tightly confined.
Since our cladding materials were TFE TeflonR and polypropylene,
powders were required to have effective dielectric constants much
larger than 2 to serve as practical core materials. Such powders are
obtained from solid materials with dielectric constants of roughly 20
or more. The solid must also have moderately low loss. Unfortunately,
the number of materials whose millimeter wave dielectric properties
have been measured is relatively few (Ref. AI-1 gives an index to the
literature on millimeter wave properties of materials as of 1982) and
none of these appeared to be suitable for our purposes. This appendix

describes our search for suitable materials.

There are three different mechanisms which can contribute to
electric polarization in a homogeneous solid:

(1) The tendency of molecules possessing permanent dipole moments
to align with the direction of an applied electric field results in

dipolar polarizability.
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(2) Relative displacement of ions results in ionic polarizability.
(3) Displacement of electrons relative to the nucleus results in
electronic polarizability.
In most cases, the dipolar and ionic polarizabilities are not both

large in the same substance (Ref. AI-2).

Each of the polarization mechanisms is frequency-dependent. For
sufficiently low frequency, a particular mechanism can easily follow
the applied field. It thus contributes to the real part of the
dielectric constant but not to the imaginary part. At higher
frequencies it begins to lag the applied field, resulting in
dielectric loss. At even higher frequencies, the field alternates too
fast for the mechanism to respond and there is no contribution to
either the real or the imaginary part of the dielectric constant. The
electronic and ionic mechanisms typically respond up to the
ultraviolet and infrared regions, respectively (Ref. AI-2). Dipolar
relaxation in solids occurs at lower frequencies. Often there are
several different dipolar relaxation mechanisms present in a single
polar material, giving rise to absorption over a wide range of
frequencies (Refs. AI-3 and AI-4). Nylon, for example, has a broad
absorption band which extends from below 100 Hz up to microwave

frequencies (Refs. AI-5 and AI-6).
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Since the frequencies typically characterizing dipolar relaxation
in polar solids were too low, we focused our search on solids with
large ionic and electronic polarizabilities. We found that several
ionic compounds possessing structures of the perovskite family have
very large dielectric constants and low loss at microwave frequencies
(Refs. AI-5 and AI-7). Most perovskites have the chemical formula

ABO, (Refs. AI-8 and AI-9). Some examples are: SrTiO,, Sr2ro,,

3

BaZrO,, BaTiO,, KTaO,, and CaTiog. Many of them are ferroelectric in

certain temperature regions (Refs. AI-8 through 10).

The extreme dielectric properties of the perovskites are related to
their crystal structures. 1In particular, they possess one or more
optical branch vibrational modes which can be very strongly excited by
an applied electric field (Ref. AI-10). The amplitude of vibration of
these modes is large because the local electric field caused by the
electric polarization counteracts the harmonic restoring forces on the
ions. Such large motion(s) accounts for the high polarizability of
the perovskites (Refs. AI-10 and AI-11). In strontium titanate
(SrTiOs) , for example, the crystal structure contains 1lines of
alternating it and 02— ions. An electric field applied parallel to
these lines excites a strong vibration of the Ti4+ ions against the
0*" ions (Ref. AI-10). In some perovskites, at sufficiently low
temperature, the forces on the ions due to the polarization are

stronger than the harmonic restoring forces. The crystal then becomes
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distorted, giving rise to a spontaneous electric polarization (i.e.,

ferroelectricity) (Refs. AI-10 through 12).

We became curious whether there might be simple metal oxides other
than perovskites which could be useful to us. We found that
Trans-Tech sells several metal oxide ceramics in solid form as high
dielectric constant, low-loss microwave materials. Some of these
materials, barium tetratitanate (BaTi 409), magnesium-calcium titanate,
and nickel-aluminum titanate, were acquired in powder form and tested.
Their effective dielectric constants were sufficiently high and their
losses sufficiently low at 94 GHz to serve as core materials for

dielectric waveguides.

In the future, it would be interesting to try paraelectric
perovskites such as strontium titanate as core media for 94 GHz
dielectric waveguides. Since their microwave dielectric constants
(Refs. AI-5 and AI-7 ) are much larger than those of the materials we
obtained from Trans-Tech, they could be advantageous for waveguide
applications requiring tight field confinement, provided their
dielectric absorption is not too high. The loss tangent of solid
strontium titanate ceramic has been reported to be .0028 at 10 GHz
(Ref. AI-5), not greatly different from that of solid

magnesium—calcium titanate, which Trans—-Tech gives as 0.002 at 6 GHz.
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Since the central theme of this thesis is that dielectric materials
in powder form are useful as core materials for low-loss dielectric
waveguides, a discussion of electromagnetic wave propagation in
granular materials is appropriate. These theories fall roughly into
two groups. Those in the first group attempt only to find the
effective dielectric constant of the powder (assumed to be real). The
other group of theories is more comprehensive and attempts to
determine the scattering and absorption coefficients for plane wave
propagation as well. The discussion here treats these two groups
separately. Theories which predict only the effective dielectric
constant are discussed in Part A. Those which also deal with

scattering and attenuation losses are the subject of Part B.

A. Effective dielectric constant
Introduction

The group of theories which attempt to find only the effective
dielectric constant of a powder share in common the assumption that

the frequency is zero (Refs. AII-2 through AII-9 and AII-12 through
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AII-18). However, under certain conditions discussed later, they can

be applied when the frequency is not zero.

To find the effective dielectric constant, the powder is visualized
as filling the space between the plates of an infinitely large
parallel plate capacitor. A uniform dc electric field is maintained
between the plates. The average polarization (average dipole moment
per unit volume) of the powder is then found in terms of the electric

field between the plates.

A rigorous derivation is difficult because the polarization of any
individual particle depends not only on the imposed field, but also on
the polarization of all the other particles. In order to account for
these mutual polarization effects, the positions, shapes, sizes, and
orientations of all particles must be known. 1In every theory it is
assumed that all the particles have an identical ellipsoidal or
spherical shape and identical size. Nevertheless, since their
orientations and positions are not known, the mutual effects must be
treated either by using simplifying assumptions (Refs. AII-2 through
AII-8, AII-17, AII-18) or statistical methods (Refs. AII-9, AII-12
through AII-16, AII-19, AII-21 through ATI-26). The simpler theories

will be discussed first.
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1. Simle theories of effective dielectri tant

The simple theories treat a powder composed of particles of a
homogeneous, isotropic, lossless dielectric material (referred to
hereafter as material 1) by focusing on an individual particle of that
material. The particle is visualized as being surrounded not by other
particles, but by a homogeneous, isotropic, and lossless dielectric
medium. Various authors ascribe different values to the dielectric
constant of the hypothetical surrounding medium, but it is always
assumed to be between that of empty space (ar = 1) and the effective
dielectric constant of the powder. The next step is to find the local
electric field at the position of the particle in terms of the
average, or macroscopic, electric field. Authors disagree on how to
express the local electric field in terms of the average field, but
the local field is always assumed to be uniform over the volume of the
particle., After deriving an expression for the local electric field
in terms of the average field, the particle’s polarization is found in
terms of the average electric field using a well-known formula (Ref.
AII-1) for an ellipsoidal dielectric in a uniform static applied
field. Since the polarization of every particle is assumed to be
equal, the average polarization of the powder is given by multiplying
the polarization of a single particle by the volume fraction of
material 1. Having finally found the average polarization in terms of

the average electric field, the effective dielectric constant is
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obtained using

D=eoE+P and D= ¢.e E.

Many theories have been proposed which use the basic argument given
above. The more widely known ones will be discussed here. Some of
these, such as the formula of Clausius and Mossoti (Ref. AII-2), work
well for dilute mixtures like non-polar gases, but are of limited
value when the inhomogeneities are densely packed, as in a powder.
Many such theories which work only for dilute mixtures make the
assumption that the hypothetical homogeneous surrounding medium used
in the derivation of the polarization of a typical particle has a
dielectric constant equal to that of empty space. On the other hand,
several of the theories which are useful for dense mixtures assume
that the dielectric constant of the hypothetical surroundings is equal

to the effective dielectric constant of the mixture.

A few of the more well-known formulas for the effective dielectric
constant of a powder are given below. Throughout, the volume fractién
occupied by the particulate matter (material 1) is denoted by £, the
relative effective dielectric constant of the mixture by € and the

relative dielectric constant of solid material 1 by 8y

The formula of Clausius and Mossoti is probably the first one to be

used for random heterogeneous media (examples of such are gases,
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liquids, and powders). For spherical particles, the formula is
(er - 1)/(er +2) = f(e1 - 1)/(31 + 2),
It can be derived in the way described above by assuming that the

dielectric constant of the hypothetical surroundings is equal to that

of empty space.

Bottcher (Ref. AII-3) has proposed that the effective dielectric
constant of a powder composed of spherical particles is given by

(er - 1)/(3er) = f(e1 - 1)/(81 + Zer).
He assumes that the dielectric constant of the hypothetical

surroundings is equal to the effective dielectric constant of the

powder.

Another formula, derived by Bruggeman (Ref. AII-4), for a powder
composed of spherical particles is
(M- B = (e - eI, - D).
In his derivation, Bruggeman initially assumes that f is very small
and that the dielectric constant of the hypothetical surroundings is
equal to that of free space. He then calculates the effective
dielectric constant for larger values of f by the imaginary process of

gradual addition of particles of material 1.

Using a derivation very similar to Bruggeman'’s, Landau and Lifshitz

(Ref. ATI-6) and also Looyenga (Ref. AII-7) have obtained yet another
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formula for a powder composed of spherical particles. The difference
between their derivation and Bruggeman'’s is the theoretical increase
in 8. caused by an infinitesimal increase in f (i.e., the form of
der/df used in the two derivations is different.) The
Landau-Lifshitz, Looyenga formula is

1/3 1/3

—'1)=3 —10

f(e1 r

Figure AII-1 shows theoretical curves of effective dielectric
constant versus the volume fraction of particulate matter for
particles composed of a material with a relative dielectric constant
of 9.0 (A1,0,). The formulas of Clausius and Mossoti, Bottcher,

Bruggeman, and Looyenga for spherical particles are each represented.

Several authors have also proposed formulas for powders composed of
ellipsoidal particles. The formula of Polder and Van Santen (Ref.
AII-8) is valid for randomly oriented ellipsoidal particles of general
shape. For randomly oriented, prolate ellipsoids (needles), van Beek
(Ref. AII-5) has derived the following formula:

g, =1+ feq - 1)(53r + 81)/(3(er + 8,)).

Finally, Bruggeman (Ref. AII-4) has derived a formula for randomly
oriented, oblate ellipsoids by the same method he used for spherical
particles. Known as Bruggeman's equation for ’'disks’, it is

e, = 31(3 + 2f(tz1 - 1))/(331 - f(e1 -1)).
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0.0 O.IO 0.20 0.30 0.40

Figure AII-1: Theoretical curves of power effective dielectric
constant versus volume fraction for particles composed
of a material with a dielectric constant of 9.0 (a1,
0,). The formulas of Clausius and Mossoti, Bottcher,
Bruggemann, and Looyenga for spherical particles are
each represented.
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A few authors have attempted more sophisticated treatments of
mutual polarization effects using statistical correlation functions to
describe the relative positions of the particles. The correlation
functions are found using the methods of statistical mechanics. One
of the first such attempts was made by Kirkwood (Ref. ATI-9).
Although Kirkwood's theory was originally intended for dense gases and
liquids, it can also be applied to powders. Successive authors have
tried to improve upon it in various ways (Refs. AII-12 through 17),
but the value of these modifications has not yet been demonstrated.
Hence, Kirkwood'’s remains the best known of the statistical theories
of effective dielectric constant of random heterogeneous media. A

brief description of Kirkwood's method is given below.

The polarization, p;. of molecule i is expanded in an infinite
series.

P; “Poj *Ppj ¥ Ppy * oo
Py; represents the contribution to P; due to the applied electric
field and Py is that due to the polarizations pOj induced in the
other molecules by the applied field. Py is the contribution from
the polarizations p1j in the other molecules, etc. Py is then

averaged over all possible configurations of the N molecules, yielding

<pi> = <poi> + <pli> + <p2i> + .
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In order to find <P i>’ <p2i>, ..., the 2-particle, 3-particle, etc.,
correlation functions are needed. An approximate expression for the
2-particle correlation function is found using the dilute gas
approximation (Ref. AII-10), treating the molecules as hard spheres.
Next, the superposition approximation (Ref. AII-11) is used to express
the 3-particle correlation function in terms of the 2-particle
function. Terms in the expansion of <pi> involving correlations
between more than 3 particles are dropped. Finally, assuming <p;> to
be the same for any i, the polarization of the medium and hence the

effective dielectric constant are readily found.

Felderhof et al. (Refs. AII-15 and 16) have also given an
expansion for the effective dielectric constant of a powder composed
of spherical particles. As in Kirkwood'’s theory, successive terms in
the expansion involve particle correlation functions of successively
higher order. Felderhof retains one less term in the expansion than
Kirkwood, dropping those which include correlations of three or more
particles. The 2-particle correlation function is the same as that

used by Kirkwood.

Felderhof (Refs. AII-12 through 14) has also calculated bounds on
the effective dielectric constant of a powder composed of spherical
particles. The bounds are expressed as expansions, and again

successive terms involve correlation functions of successively higher
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order. Terms containing correlation functions of order 3 or less are
retained. The correlation functions used here are more sophisticated

than those obtained with the dilute gas approximation.

3. Comparison of the theories t {ment

In this section the previously discussed theories of effective
dielectric constant are compared to experiment in order to assess
their respective ranges of validity. The measured values of effective
dielectric constant used in the comparisons come both from the
literature and from our own measurements. All of these empirical data

were measured at non-zero frequencies.

Although the theories of effective dielectric constant presented
above were derived assuming static fields, they hold at all
frequencies for which certain conditions are satisfied. The first
condition is that the dielectric material of which the particles are
composed must be low-loss. The second condition is that the particles
must be small compared to the wavelength in the dielectric material
((n kd/2) << 1, where n; is the refractive index of the material, k is
the free space wavenumber, and d is a typical dimension of the
particle.). This requirement insures that the polarization throughout
the particle will be in phase with the excitation and that the

incident electric field is uniform over the extent of the particle.
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The utility of the various formulas for predicting the effective
dielectric constant of powders depends on the volume fraction (f) and
on the dielectric constant of the material of which the particles are
composed (el). For loosely packed powders (£ < .3) of material with
low dielectric constant ( g, ¢ 5 ), all the theories give reasonably
accurate results. BAs e, and f increase, the theories begin to
disagree with experiment. For tight packing and high dielectric

constant material, none are accurate.

The formulas of Kirkwood, Felderhof, and Clausius and Mossoti give
very similar values. As f and &y increase, these theories disagree
with experiment sooner than the others. As shown in Table AII-1, they
are significantly in error for e, = 9. The range of agreement of
Bruggeman’s formula is slightly better than these. Bottcher'’s formula
is more reliable at higher volume fractions and dielectric constants
than Bruggeman'’s, while the Landau-Lifshitz, Looyenga formula is the
best of all. Unfortunately, none of the formulas are accurate for
tightly packed, high dielectric constant powders such as the ones we
have used for making millimeter wave dielectric waveguides (see Table

ATI-2).

Each material shown in Tables AII-1 and AII-2 is low-loss at the
frequency at which the effective dielectric constant was measured.

The condition ((nlkd/Z) << 1) is also satisfied for all the powders at
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TABLE AII-1
Comparison of experimental values of effective dielectric constant

to theoretical values predicted by the Clausius-Mossoti, Bottcher,
and Landau-Lifshitz formulas.

Material  Volume e Srmeas.  °C-M  °Bott.  °I-L
RC1 .253 4.84 1.65 1.50  1.57 1.62
KC1 .350 4.84 1.89 1.73  1.88 1.92
RC1 .522 4.84 2.46 2.24  2.54 2.52
Z.0 .095 8.7 1.34 122 1.24 1.33
A0,  .296 9.0 2.33 1.82  2.15 2.30
2,0,  .380 9.0 2.86 2.15  2.72 2.81
5,0 .313 13.30 3.21 2,00 2.64 2.92
5,0 .344 13.30 3.51 2.15  2.95 3.18

Data were taken from references AII-17 and AII-18 except for Zno' The
effective dielectric constant of zno powder was measured at 10 GHz by the
shorted-waveguide technique. The bulk dielectric constant, e,» for z,0 is

from Ref. AII-28.

The values of &y and s meas. Were measured at frequencies between 9.4
and 10 GHz, except for &y of zno for which the precise (microwave)
frequency of measurement is unknown.

For every powder except zno. the particles ranged in size from 50 ym to 150

um. The size of the z 0 particles is estimated to be less than 50 pm.
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TABLE AII-2
Comparison of experimental values of effective dielectric constant

to theoretical values predicted by the Clasius-Mossoti, Bottcher,
and Landau-Lifshitz formulas.

Material Volume € 8 e € g
Fraction 1 rmeas. CM Bott L-L
D-30 «396+.005 31.0 3.76 2.69 5.93 6.31
D-8512 .400+,005 38.6 4.47 2.77 7.01 7.44
MCT-40 .318+.003 40.0 3.28 2.26 4.28 5.54
MCT-40 .470+,003 40,0 5.43 3.32 10.42 9.76

The listed values of e the relative dielectric constant of the bulk

1’
material, were measured at various frequencies between 6 GHz and 10 GHz by
Trans-Tech. Trans-Tech gives the uncertainty in these measurements as 5%

for D-30 and MCi~40 and 1.5% for D-8512.

The empirical values of powder effective dielectric constant, & meas.’ Were

measured at 10 GHz by the shorted-waveguide technique. The uncertainty in

these values is + .03.
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the measurement frequency. The powders were composed of particles
with roughly spherical shapes.

Microscopic examination showed that for each of the powders in
Table AIT-2, the majority of the particles were about the same size
(43 um). However, most of the powders represented in Table AI-1
contained particles of various sizes in the range 50-150 um and the
distribution of sizes within this range was different for each powder.
Nevertheless, the accuracies of the formulas (for spherical particles)
for effective dielectric constant appear to depend mainly on the bulk
dielectric constant, e,» and the volume fraction, £, of these powders.,
as shown in Table AII-1 (see also Refs. AII-17 and AII-18). The
validity of the formulas appears to be independent of the particle
size distribution, provided all particles are small. This behavior is
to be expected from the theories for spherical particles since they
calculate the polarization (dipole moment per unit volume) of a single
particle and then multiply by the volume fraction to obtain the

average polarization of the powder. The polarization of a sphere in-a

uniform field is independent of its diameter.

4. Sumary

Since theoretical guide wavelengths of dielectric waveguides

calculated with the dielectric constant data measured by the
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shorted-waveguide technique for our powders agreed well with measured
values (c.f. Chap. I and Chap. II), we are confident of the accuracy
of the shorted-waveguide technique for measuring the dielectric
constants of powders. Moreover, since none of the theoretical values
of effective dielectric constant agreed with our measured values for
tightly packed, high dielectric constant powders, we conclude that the

theories are not useful for such powders.

B, Scatteri 1 al ‘i
Introduction

In this section we discuss the theories which treat scattering and
absorption in granular material. Propagation of electromagnetic waves
in random heterogeneous media is an old subject, dating back to
Rayleigh’s paper on scattering by gas molecules (1871). However,
theories concerning propagation in powders are relatively new. The
reason for their late development is that propagation in a powder is a
complex problem involving multiple and dependent scattering.

Dependent scattering occurs when the positions of the scatterers
are correlated, causing a systematic phase relationship to exist

between the waves scattered from different particles. To calculate
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the total scattering, the amplitudes of the individual scattered waves
must be added, taking phases into account. In contrast, most theories
treat dilute concentrations of scatterers where the particles are so
far apart that their positions can be considered uncorrelated. 1In
these cases, no systematic phase relationship exists between the
individual scattered waves, and their intensities can be added to give
the total scattered intensity. Wave propagation in powders must be
treated as a dependent scattering problem because the particle
positions show short-range order.

Multiple scattering occurs when the particle excitation contains a
significant contribution from waves scattered by other particles and
is thus not equal to the incident wave excitation alone. If these
scattered waves add incoherently, the problem is one of independent
multiple scattering, often called radiative transfer. If they add
coherently, as in a powder, the scattering is both dependent and
multiple.

Most scattering theories concern dilute, weakly scattering media
for which a single scattering treatment is appropriate. 1In single
scattering, the total scattered intensity is found by multiplying the
scattered intensity of one particle by the total number of particles.
Only a relatively few theories treat the more difficult case of

dependent multiple scattering appropriate to powders.
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1 rie r

Recently, attempts have been made to derive formulas predicting
propagation constants for electromagnetic waves in powders consisting
of identical particles (Refs. AII-19 through 25). The various
theories are quite similar, and an outline of their general approach

is given below.

The powder medium is viewed as filling an infinite half-space with
a plane wave normally incident upon it. The total field inside the
powder is given by the incident wave plus the sum of all waves
radiated by individual particles. The field exciting a given particle
is the sum of the incident wave and the waves radiated from the other
particles. Thus, the radiation from each particle depends on that
from every other particle. In order to find the wave scattered by any
one particle, the positions and orientations of every other particle
must be known. However, for a real powder, the particle positions and

orientations are uncertain.

The problem of not knowing the particle positions and orientations
can be overcome by averaging the fields over all possible
configurations of the particles. To do this, however, one needs the
joint probability density describing the positions and orientations of

all the particles. Knowledge of this joint density function is
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equivalent to possessing the N-particle correlation functions of all
orders. Unfortunately, methods for finding correlation functions of
more than 3 particles do not exist currently. As a result, authors
use the quasi-crystalline approximation (Ref. AII-26) to allow
calculation of approximate averages with knowledge of only the
2-particle correlation function. The two particle correlation
function is often found using the Percus-Yevick equation (Ref.

AII-27), treating the particles as hard spheres.

To find the effective propagation constant, the quasi-crystalline
approximation is used to write an integral equation for the
configurational average of the field exciting an individual particle.
Next, the exciting field is expanded in vector spherical wave
functions. The expansion is truncated after an arbitrary, but large,
nuber of terms. A trial solution is assumed and after much
simplification a system of linear homogeneocus equations is generated
for the unknown coefficients in the expansion. An implicit equation
for the effective propagation constant is found by setting the secular

determinant of this system to zero.

The equation yielding the effective propagation constant is quite
cumbersome and requires numerical solution. However, when the
particles are small compared to the wavelength (nl'ka << 1, where nl'
is the real part of the refractive index of the particle material, k
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is the free space wave number, and a is the particle radius), the
equation for the effective propagation constant reduces to a much
simpler form given by both Twersky (Ref. AII-20) and Tsang and Kong

For small spherical particles, the real part of the effective

propagation constant is

B = neffk,
where
- - 1/2 _
Nege = 1+ 2§0/(1 250/3)) (ATI-1)
and

& = (3/z)f((n1')2 - 1)/((n1')2 +2).

The imaginary part of the propagation constant, a, can be
decomposed into a contribution from scattering and a contribution from
absorption.

a = as + ca.

The term due to scattering, a is

oy = SH/(2n_c (1 - z§0/3)2), (AII-2)

eff
where

s = 2tk*a’ ((n; 02 - D2/ (nyH? + 22
and

w=a-64%a+ 202

Note that the scattering loss a s varies as the cube of the particle
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radius, as in Rayleigh scattering. The contribution to a due to

absorption is
— — 2 —-—
e, = A/(Zneff(l 250/3) ), (AII-3)
where

A = 18fkn 'n **/((n, ) + 2%,
Here n '’ is the imaginary part of the refractive index of the
particle material. Note that e is independent of the particle
radius, a.

The differences between values predicted with Equations AII-2 and
AIT-3 and those obtained with the full equation for particles of
arbitrary size remain small until n, 'ka approaches /2. When this
condition occurs, the particles are about one-half wavelength long and
can support internal standing waves. As a result, absorption losses

become much larger than predicﬁed by Equations AII-2 and AII-3.

2.  Comparison | i ment

The loss predictions of the theory presented above show good
agreement with experiment for 1low (31 = 2.,5) dielectric constant
particles (Ref. AII-24). However, as far as we know, the predicted
losses have never been compared to experiment for powders with large

e, such as we have used for making dielectric waveguides. The

1
theoretical values of effective dielectric constant will agree with
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experiment only when the dielectric constant of the bulk material (s,)
is low because the effective dielectric constant predicted by these
scattering theories is identical to that given by the Clausius-Mossoti
formula for spherical particles (discussed in Sec. A). We know that
formula is inadequate for large &5 SO it is reasonable to conclude
that the theoretical attenuation constants a . and o a2 will likewise be

inaccurate when e, is large. Nevertheless, these theories are all we

1
have, so we attempt to use them to predict the losses of our powders

due to scattering.

To calculate the theoretical scattering losses, the particle sizes
were needed. For the D-8512 and MCT-40 powders and for one batch of
D-30 powder, the manufacturer (Trans—Tech) specified that all
particles were less than 43 um in size. Microscopic examination of
these powders showed that most of the particles were the same size,
presumably about 43 pm wide. For the other batch of D-30 powder used
in our experiments, 70% of the particles were between 100 um and 43
pm, and the rest were smaller than 43 pum. Since the theory assumes
that all particles of a powder are the same size, the theoretical
scattering predictions were computed using 43 pm and 100 um as the
respective particle diameters of the tWo sets of powders. These
choices give the most pessimistic (largest) values of ag. Even so,
the theoretical values of a_ at 94 GHz were less than 1074 ! for

3

the smaller grain powders and 10 cm"1 for the coarse D-30 powder for
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all appropriate values of £. These values of a, are negligible
compared to the measured attenuation constants of our 94 GHz powder

core guides, which were greater than or equal to 1072 an°1.

The question of accuracy notwithstanding, we are unable to use the
scattering theory to make estimates of e, values expected for powder
core dielectric waveguides since the loss tangents of the materials of
which the powders are composed are unknown at 94 GHz. However, the
reverse process is possible. Estimates of the bulk loss tangents of
these materials can be obtained from the theory using measured losses
for powder core waveguides. These estimates are crude, not only

because of the expected inaccuracy of the theory for large e,, but

1!
also because the theory applies to plane waves, not modes of

dielectric waveguides.

Estimates of the loss tangent values at 94 GHz of bulk D-8512,
MCT-40, and D-30 are given in Table AII-3. The waveguide loss data
used to compute these estimates were measured for the M 11 mode of
rectangular powder core dielectric waveguide far from cut-off. The
powder effective loss tangents are also given in Table AII-3 for
comparison. These values were obtained from the measured waveguide
losses using the extension of Marcatili’s theory explained in Chapter
II.



162

TABLE AII-3

Bulk Loss Tangent Values

Waveguide Estimated Manufacturer’s
Material Loss Powder Effective Bulk Loss Values of Bulk
(dB/cm) Loss Tangent Tangent Loss Tangent
at 94 GHz
D—-8512 0.17 .0012 .018 < 0.0005
MCT-40 0.18 .0016 .020 < 0,002
D-30* 0.17 .0010 .010 < 0,0002
D-30#*s 0.49 .0023 .025 < 0.0002

*100% of particles smaller than 43 um.

*+70% of particles between 43 pym and 100 pm, 30% less than 43 um.

The manufacturer’s values of bulk loss tangent were quoted at 6 GHz for

D-8512 and MCT-40, and at 10 GHz for D-30.
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The most noteworthy point about these estimates is that the loss
tangents predicted for the bulk materials are much higher than the
effective loss tangents of the respective powders. This relationship
indicates that low-loss dielectrics can be obtained by grinding
moderately lossy materials into powders. Of course, the effective
dielectric constant of the powder will be lower than that of the
original bulk material.

Another interesting result is that two quite different values of
loss tangent were predicted for bulk D-30 based on waveguide loss
measurements using two different batches of powder. Since we have
already seen that theory predicts that scattering accounts for a
negligible fraction of the total measured propagation loss, the
difference in the measured propagation losses associated with the two
batches of D-30 must be attributed to greater absorption for the
coarser powder, as evidenced by the higher computed value of loss
tangent for the bulk D-30 material. (It could be that the bulk D-30
from which one batch was made was substantially more lossy than for
the other batch.) Contamination is a possibility. We do not know of
any reasons by which the large range of particle size present in the

coarser powder could be expected to cause the extra absorption.
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3. Sumary

In Chapter II, effective loss tangents of powders were computed
using an extension of Marcatili’s theory. The computed values
increased as the packing fraction increased. The theories reviewed
above predict this same behavior. For powders with particle size, eys
and f similar to those used in our waveguide experiments, theoretical
scattering losses decrease with increasing f and should be negligible,
but absorption losses increase. For practical high dielectric
constant powders (i.e., ones obtained from bulk materials with loss
tangents greater than .001 at 94 GHz), absorption dominates, causing

the effective loss tangent to increase as the packing fraction

increases.
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In Chapter III, we described the experimental set-up used to
measure Q values of ring resonators by operating them as transmission
filters. This standard technique for measuring Q's, called the
transmission method, has been used for microwave resonators for many
years and is described by Ginzton (Ref. AIII-1), Beringer (Ref.
ATII-2), and others. Here we describe our measurements in terms of a

simple model given by Beringer.

To measure the Q@ of a resonator by the transmission method, a
signal source which is isolated from the load is connected by an input
coupling network to the resonator. An output coupling network
connects the resonator to a detector. By varying the frequency of the
source, a resonance curve of transmitted power versus frequency is

observed. The resonator Q is determined from the width of this curve.

For our experiments on ring resonators, the input and output
coupling networks are taken to be the portions of the straight
powder—core dielectric waveguides which pass in close proximity to the
ring (c.f. Fig. 2 of Chapter III). The remaining lengths of straight
dielectric waveguide, the metal-to-dielectric couplers, and the metal

WR-10 waveguides are grouped conceptually with either the source or
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the detector, as appropriate.

The relationship between the width of the transmission curve
and the Q@ of the resonator is found using the circuit model shown in
Figure AIII-1. In this model, coupling to the resonator is
represented by ideal transformers. RG and RL are the generator and
load impedances. These are assumed to be matched to their respective
transmission lines, which have characteristic impedances Z; and z,.

Finally, the resonator is modeled with an R-L-C series combination.

The first step in the analysis of the model is to transform
the generator and load into the central loop, yielding the circuit
shown in Figure AIII-2. QO’ the unloaded @, is then found by putting
RG and RL equal to zero, yielding

/2

Q, = w,L/R, where uy = 1/(10)"

0
Q;, the loaded @, is given by

_ 2 2

QL—mOL/(R+n1RG+n2RL).

By introducing coupling parameters defined as
2 )

By = 1y Zl/R and By = n, Zle,
the relation between Q, and QL becomes

QO = QL (1 + 131 + BZ)’ (AIII-1)
which shows that the loaded Q approaches the unloaded @ in the limit

of zero coupling.
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Figure ATII-1: Circuit model for a resonator used as a
transmission filter
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2

Figure AIII-2: Alternative form for the circuit of Figure AIII-1.
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The transmission loss through the system, T(w), is defined as
the ratio of the power delivered to the load to the power available
from the source. It is given by

T(w) = T(ag)/(1 + Q2 (o/uy - uy/w)?), (ATII-2)
where T(mo) is the transmission loss at resonance and

— 2 —

T(wo) = 4Blﬁ2/(1 + ﬂl + Bz) . (ATII-3)
Equation AIII-2 gives a good fit to the transmission loss curves
measured for our ring resonators. Setting

W = wo + (A(!)I'Z):
gives

T(w) = T(w )/ (1 + @ 2 (Al )?)

0 QL 0 ’

which implies that

mO/Aw = QL
at the half-power points of transmission. Thus, the loaded Q@ can be
determined by measuring the frequencies of the peak and half-power
transmission points. The unloaded Q is found by decreasing the
coupling to the resonator until further decreases yield no measurable
increase in QL (c.f. Eq. AIII-1). Q, is then equal to QL to within
the experimental uncertainty.

Given the measured transmission losses and the uncertainties
in the Q values for our ring resonator experiments (c.f. Chapter
III), BEquations AIII-1 and AIII-3 predict that a decrease in QL would
be observable if the coupling were made sufficiently strong for the

transmission loss at resonance to be less than about 20 dB. (Here we
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assume that Bl = BZ') Unfortunately, with our experimental set-up,
the coupling was too weak to allow less than 25 dB transmission loss
at resonance, so we could not verify this prediction. For values of
transmission loss between 25 dB and 41 dB at resonance, there were no

observable changes in QL
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Appendix II treats the effects of material inhomogeneities on
electromagnetic wave propagation. Another type of inhomogeneity
inherent in all dielectric waveguides consists of the variation of
the waveguide parameters with distance along the guide. These

imperfections cause power to be lost to reflection and radiation.

For powder core dielectric waveguides, the parameters expected to
vary slightly with length are the cross—sectional dimensions and
dielectric constant of the core. The effects of variation of the core
dielectric constant are of particular interest since it probably would
be the most difficult parameter to control in a manufacturing process.
In this appendix, an estimate is given of the maximum tolerable size
of the deviations of the core dielectric constant from its specified

value.

In a real waveguide, the deviation of the core dielectric constant
from its ideal value would be a random function of length. However,
to avoid the complexities involved in an analysis of the effects of
random imperfections (Ref. AIV-1), it is assumed here that the core
dielectric constant varies sinusoidally with length. (The loss

resulting from the sinusoidal variation can be visualized as
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representing that caused by one Fourier component of the actual

variation of the dielectric constant with distance.)

In general, imperfections in a dielectric waveguide can cause power
to be lost to all other modes (both guided modes and radiation modes).
According to Marcuse's analysis (Ref. AIV-2), however, a sinusoidal
thickness perturbation can couple only modes whose beat wavelength
coincides with the period of the perturbation. (The beat wavelength
of two modes is defined as 2n divided by the difference of their
propagation constants. To calculate the beat wavelength, the
propagation constant of a radiation mode is to be taken as the
z-component of the wave vector of the radiated wave.) Furthermore,
since our powder core dielectric waveguides were always designed for
single mode operation, there could be no coupling to other guided
modes. In this treatment, we also neglect losses due to coupling to
the backward travelling dominant mode because such coupling would
require a perturbation wavelength equal to half a guide wavelength and
it is difficult to imagine a manufacturing process in which such. a
rapid fluctuation in powder density would be produced inadvertently.
(The guide wavelengths of our powder core dielectric waveguides were
approximately 2 mm at 94 GHz.) As a result of all these

considerations, we calculate here only the losses due to radiation.
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To further simplify the calculations, the waveguide is assumed to
be a dielectric slab (Fig. AIV-1). The relative dielectric constant
of the slab was chosen equal to 4.0 because this value was typical of
the core dielectric constants in our channel guides. Similarly, the
relative dielectric constant of the material surrounding the slab was
chosen as 2.25, corresponding to polypropylene. The mode used to
transmit power along the guide was taken to be the lowest-order even
TE mode (TEO) because its fields (Fig. AIV-1) are most similar to
those of the E 11 mode of channel guide. Finally, assuming a
frequency of 94 GHz, the width of the slab was chosen to be 0.32 mm so
that the effective refractive index of the TE, mode would be similar
to the values typical of the B 11 mode of our channel guides. (The
effective refractive index of a propagating mode of a dielectric
waveguide is defined as B/k, where k is the free space propagation
constant and B is the propagation constant of the mode.)

Marcuse'’s analysis (Ref. AIV-2) was used to find the radiation
losses suffered by the TE, mode as a result of sinusoidal variation in
the thickness of the slab (Fig. AIV-2). For small amplitudes, the
sinusoidal thickness variation produces a sinusoidal variation in the
propagation constant of the TE, mode. By using the characteristic
equation of the slab to relate the amplitudes of these two variations,
the losses were expressed as a function of the size of the periodic

variation in B.
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Figure AIV-1: Transverse cross section of the dielectric slab
waveguide for which radiation losses were calculated.
The electric field distribution is shown for the TE,
mode.
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Figure AIV-2: Longitudinal cross section of a dielectric slab with
sinusoidal thickness variation
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The radiation losses were found to be a strong function of the
amplitude of the P variation. For a perturbation period equal to 2.05
cm, a relative variation amplitude of 0.1% for B (i.e., AB/By = 0.1%,
where B = ﬁo + Agsin( z)) caused a theoretical radiation loss of 0.3
dB/m. For Ap/ Bo equal to 0.4%, the radiation loss was predicted to be
9 d8/m, equal to that of our best channel guides. The value of 2.05
cm was used for the perturbation period because it was the one which
produced the strongest (theoretical) radiation. Perturbation
wavelengths greater than 4 cm were too long to couple to any radiation
modes and hence are not associated with radiation. For shorter
periods the radiation losses were not greatly different from the

quoted 'worst case' values.

From the results of the above calculation for a slab, we next
attempted to estimate the radiation loss for a channel guide with
constant channel dimensions but sinusoidally varying core dielectric
constant. The channel of this hypothetical guide was surrounded on
all sides by a material whose relative dielectric constant equaled
2.25. The channel itself was chosen to have a relative dielectric
constant of 4.0 and to have a square cross section with each side
being 1.16 mm long. This length was chosen so that the effective
refractive index of the Eyu mode at 94 GHz would be the same as for
the TE, mode of the hypothetical slab treated earlier. Using

Marcatili’s theory (Ref. AIV-3) to relate B to the core dielectric
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constant, a value of AB/B0 equal to 0.1% was found to correspond to a
0.2% relative amplitude variation in the core dielectric constant. A
value of AB/BO equal to 0.4% corresponded to As/e equal to 1%. Thus,
we can estimate (crudely) from the slab results that for Ae/s equal to
0.2%, the radiation loss would be about 0.3 dB/m if the perturbation
period were 2.05 cm. Similarly, for Ae/e equal to 1%, the radiation

loss is estimated to be 9 dB/m.

These results indicate that relatively small periodic perturbations
in the types of dielectric waveguides described in this thesis can
produce large radiation losses. The fact that we measured negligible
radiation from our powder core dielectric guides probably means that
any significant periodic imperfections in these guides had periods

which were too long to cause coupling to radiation modes.
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