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ABSTRACT

This doctoral thesis describes experimental work conducted as part of ongoing ef-
forts to identify and understand the source of linear instability in ultrathin liquid
films subject to large variations in surface temperature along the air/liquid interface.
Previous theoretical efforts by various groups have identified three possible physical
mechanisms for instability, including an induced surface charge model, an acoustic
phonon model, and a thermocapillary model. The observed instability manifests as
the spontaneous formation of arrays of nano/microscale liquid protrusions arising
from an initially flat nanofilm, whose organization is characterized by a distinct
in-plane wavelength and associated out-of-plane growth rate. Although long range
order is somewhat difficult to achieve due to thin film defects incurred during prepa-
ration, the instability tends toward hexagonal symmetry within periodic domains
achieved for a geometry in which the nanofilm is held in close proximity to a cooled,
proximate, parallel, and featureless substrate.

In this work, data obtained from a previous experimental setup is analyzed and it
is shown how key improvements in image processing and analysis, coupled with
more accurate finite element simulations of thermal profiles, lead to more accu-
rate identification of the fastest growing unstable mode at early times. This fastest
growing mode is governed by linear instability and exponential growth. This work
was followed by re-examination of real time interference fringes using differential
colorimetry to quantify the actual rate of growth of the fastest growing peaks within
the protrusion arrays. These initial studies and lingering questions led to the intro-
duction of a new and improved experimental setup, which was redesigned to yield
larger and more reproducible data sets. Corresponding improvements to the image
analysis process allowed for themeasurement of both thewavelength and growth rate
of the fastest growing mode simultaneously. These combined efforts establish that
the dominant source of instability is attributable to large thermocapillary stresses.
For the geometry in which the nanofilm surface is held in close proximity to a cooled
and parallel substrate, the instability leads to a runaway process, characterized by
exponential growth, in which the film is attracted to the cooled target until contact
is achieved.

The second part of this thesis describes fabrication and characterization of microlens
arrays and linear waveguide structures using a similar experimental setup. However,
instead of relying on the native instability observed, formation and growth of liquid
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shapes and protrusions is triggered by pre-patterning the cooled substrate with
a desired mask for replication. These preformed cooled patterns, held in close
proximity to an initially flat liquid nanofilm, induce a strong non-linear response via
consequent patterned thermocapillary stresses imposed along the air/liquid interface.
Once the desired film shapes are achieved, the transverse thermal gradient is removed
and the micro-optical components are affixed in place naturally by the resultant rapid
solidification. The use of polymer nanofilms with low glass transition temperatures,
such as polystyrene, facilitated rapid solidification, while providing good optical
response. Surface characterization of the resulting micro-optical components was
accomplished by scanning white light interferometry, which evidences formation of
ultrasmooth surfaces ideal for optical applications. Finally, linear waveguides were
created by this thermocapillary sculpting technique and their optical performance
characterized. In conclusion, these measurements highlight the true source of
instability in this geometry, and the fabrication demonstrations pave the way for
harnessing this knowledge for the design and creation of novelmicro-optical devices.
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NOMENCLATURE

This is a compilation of the abbreviations and symbols which are used in this
work. Generally, dimensional variables are lower case letters while dimensionless
variables are the corresponding upper case letters. In the case of operators, the
nomdimensional analogs typically have a tilde over them. Within the body of this
document, certain variables will be subscripted by i. This subscript will typically
represent different layers in the system, primarily either "film" or "air".

[·] Denotes a difference across the air/nanofilm interface
α RGB channel index
α4 First aspheric coefficient
β Nondimensional growth rate

∆Tcurr Temperature drops computed using the expanded domain inCh. 3
∆Torig Temperature drops computed in Ref. [1]
δφ Perturbed electric potential
∆Tout Difference between the heater and chiller setpoints
∆Tsin Temperature drop across the sinusoidally perturbed bilayer
δ ®D Perturbed electric displacement field
δ ®E Perturbed electric field
δhk ′ Fourier coefficients describing the current interface height
∆l Fabry-Pérot etalon change in length
∆t Time step between peak observation images
δ Normalized mask pin height
∆T Temperature difference between the bounding plates

δ j(λopt) Optical phase
ÛQITO Volumetric heat flux density within the ITO heater
ε Long wavelength expansion parameter
Γ Dimensionless surface tension
γ Surface tension of the fluid/air interface
Γc Characteristic scale of the surface tension
γT Thermocapillary coefficient
n̂ Unit normal vector at the nanofilm/air interface
t̂ Tangential unit vector
~ Reduced Planck’s constant
κ Thermal conductivity ratio
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λopt Wavelength of optical illumination
λo Lateral spacing of instability protrusions
E Rate of strain tensor

M j, j+1 Optical transmission matrix from layer j to layer j + 1
M j Optical transmission matrix through layer j

T Stress tensor
Tem Maxwell stress tensor
F (k, t) Peak fitting function
G (k) Gaussian fitting function
L (k) Lorentzian fitting function

T Temperature
T+ Temperature measured by the thermocouple on the chiller
T− Temperaturemeasured by the thermocouple underneath the heater
TC Temperature of the cooled top plate
TH Temperature of the heated bottom plate
TInt Temperature at the interface of the molten nanofilm
Tg Glass transition temperature
µ Dynamic viscosity of the fluid
∇s Surface gradient
∇‖ Horizontal components of the gradient
ν Mode order
ω Frequency of an oscillator

Ca Modified capillary number
Ma Modified Marangoni number
Q Acoustic quality factor
φ Electric potential
φo Base state electric potential
Φc Characteristic scale of the electric potential
Φ′c Alternative electric potential scale in the EHD model
Φo Applied potential difference
Π MicroAngelo mask pitch
ρ Density of the fluid
σ Surface charge density at the fluid/air interface
σfree Free charge density at an interface
τ Dimensionless time

vexp(x, y, t, α) Experimental fringe color values
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vtheor(h, α) Fringe color values
Θ Nondimensional temperature
θ Angle between principal axes and the raw data axes

ṽtheor(h, α) Normalized fringe color values
ε Relative permittivity
εo Permittivity of free space
®D Electric displacement field
®E Electric field
®Eo Base state electric field
®fbody Body forces acting on the bulk of the fluid
®K Nondimensional wavevector of the instability
®k Wavevector of the instability
®q Heat flux density

®u = (u, v,w) Velocity field within the nanofilm
®u‖ = (u, v) Horizontal components of the velocity

δ̃h Nondimensional perturbation used in linear stability analysis
∇̃s Dimensionless surface gradient
∇̃‖ Dimensionless lateral gradient
φ̃i Nondimensional electric potential
®̃E i Nondimensional electric field
A Amplitude of peak fitting function
a Width of an infinite square well

Alens Individual MLA lens area
Awg Waveguide amplitude
bo Growth rate of peak fitting function

CAP Fitting constant for the material constants in the AP model
CTC Fitting constant for the material constants in the TC model
cp Specific heat capacity
D Dimensionless gap separation
d1 MicroAngelo mask pin or block height
d2 MicroAngelo mask depression height

Dlens Characteristic MLA lens diameter
do Separation between bounding plates
Dp MicroAngelo mask pin or depression diameter

Dwg Gaussian decay of waveguide envelope
Eν Energy of mode ν



xxii

f1 Larger microlens focal length
f2 Smaller microlens focal length

Farray Fresnel number of the microlens array
Flens Fresnel number of an individual microlens

fp Mask pin protrusion function
G Functional form of the mask topography

g(x, y, t, h) Peak height cost function
H Dimensionless film thickness

h(x, y, t) Interface position between molten nanofilm and air
hmeas(x, y, t) Measured peak height as a function of time

hpaste Thermal paste thickness
hpk(t) Peak height during film growth

ho Initial film thickness
I Measured intensity signal

I(λopt) Intensity spectrum of the halogen light source
IR Reflected intensity from a Fabry-Pérot etalon
k Thermal conductivity
k+ Right half maximum point of peak fitting function
k− Left half maximum point of peak fitting function

kmax Upper bound for the peak fitting function
kmin Lower bound for the peak fitting function
ko Maximum point of peak fitting function
l Fabry-Pérot etalon length
m Mass of a particle in an infinite square well
n Index of refraction
P Dimensionless pressure
p Pressure within the fluid

Pac Nondimensional acoustic pressure used in the AP model
pac Acoustic pressure used in the AP model
Pel Nondimensional electric pressure used in the SC model
pel Electric pressure used in the SC model
Pc Characteristic scale of the pressure in the fluid
Pr Prandtl number

R(λopt, h) Reflectance from a multilayer stack
R1 Microlens radii of curvature along the larger principal axis
R2 Microlens radii of curvature along the smaller principal axis
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rpaste Thermal paste radius
r j, j+1 Fresnel amplitude reflection coefficient

Re Reynolds number
rn(x, y) Random number generator in COMSOL
S

(
®k, t

)
Power spectral density

Sα(λopt) Spectral responsivity of the camera
tfinal Last time which was analyzed in the wavelength analysis
tmeas Time of initial wavelength measurement

t f Final time of the peak observation
tref Time stamp of the image which was used as the reference image

t j, j+1 Fresnel amplitude transmission coefficient
U,V,W Dimensionless fluid velocities

uc Characteristic lateral scale of the flow velocity
up Speed of sound in the molten nanofilm

W(k) Background plus peak fitting function
wc Characteristic vertical scale of the flow velocity
wwg Waveguide width
x′, y′ Microlens principal axes

X,Y, Z Dimensionless position variables
xpk, ypk Peak location as a function of time
x f , y f Location of peak at final time
xo, yo Coordinates of the microlens vertex in raw data coordinates

z j Thickness of layer j

zmax Height of individual microlens
AP Abbreviation for the acoustic phonon model
AR Asphericity ratio
EHD Abbreviation for the electrohydrodynamic model
HeNe Helium neon
IPA Isopropyl alcohol
ITO Indium tin oxide
JPL Jet Propulsion Laboratory
LIS2T Laboratory of Interstitial and Small Scale Transport
NSTRF NASA Space Technology Research Fellowship
PBS Polarizing beam splitter
PDMS Polydimethylsiloxane
PID Proportional integral derivative
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PMMA Poly(methyl methacrylate)
PS Polystyrene
RGB Red green blue
RMS Root mean square
RTD Resistance temperature detector
SC Abbreviation for the surface charge model

SHWS Shack-Hartmann wavefront sensor
SSR Sum of squared residuals
TC Abbreviation for the thermocapillary model
TE Transverse electric electromagnetic wave polarization
TM Transverse magnetic electromagnetic wave polarization
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