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C h a p t e r 2

REVIEW AND COMPARISON OF THREE THIN FILM
INSTABILITY MODELS

As mentioned above in Ch. 1, nanofilms on a heated substrate are found experimen-
tally to be unstable. To better understand this phenomenon, several groups have
approached this process theoretically by modeling it as a fluid instability. All of the
proposed mechanisms for this phenomenon revolve around thin film hydrodynamic
instability theory. They differ in the specific driving force which destabilizes the
film against the force of surface tension but possess several unifying features. In this
chapter we review the three proposed mechanisms and synthesize the previous work
into one derivation which has consistent notation and serves to highlight the origin
and influence of the various driving forces. We also present the derived expressions
which the later experimental results are compared with in Ch. 3, Ch. 4, and Ch. 5.

The remainder of this chapter is organized as follows. In Sec. 2.1, a thin film height
evolution equation is derived for the position of the nanofilm/air interface, h(x, y, t),
starting from the basic equations of fluid mechanics. Subsequently in Sec. 2.2
these equations are nondimensionalized and simplified using the long wavelength
approximation. Then in Sec. 2.3 linear stability analysis is applied for each of the
three proposed models. The results of the linear stability analysis give tangible
predictions for the wavelength and growth rate of the fastest growing mode.

2.1 Fluid Dynamics Governing Equations
To specify the system completely, we define the domain, the governing equations,
and the boundary conditions for the system. As mentioned in Ch. 1, the system of
interest is a free surface molten nanofilm bounded by an air layer. Note that this
derivation is only concerned with the fluid dynamics of the liquid nanofilm and not
the air layer. Due to the large difference between the density and viscosity of the
liquid nanofilm and the density and viscosity of the air layer only the dynamics of
the fluid layer are explicitly considered.

2.1.1 Nanofilm Instability Geometry
The domain which we will consider is a thin liquid film which has an initial height
ho. This can also be interchangeably referred to as the film thickness. The film is
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Figure 2.1: Schematic of the instability geometry
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The molten nanofilm is bounded from below by a heated substrate and from above by a plate which
is cooled. The total plate separation is denoted by do, while the initial film thickness is denoted by
ho. The temperature drop from hot to cold plates is denoted by ∆T = TH−TC and the lateral spacing
of the protrusions is denoted by λo.

supported from below by a rigid, impermeable, heated substrate. The upper surface
of the film is a free interface and a distance do from the bottom of the film there
exists a cooled, upper plate which constrains the system in the vertical direction.

2.1.2 Mass and Momentum Continuity Equations
There are two differential equations which we will use to describe this system.
The first differential equation is the mass continuity equation. We will assume
incompressible flow and the resulting equation is

∇ · ®u = 0. (2.1)

In this equation ®u = (u, v,w) is the velocity of the molten nanofilm as a function of
space and time. The other differential equation which governs the fluid dynamics in
the molten layer is the Navier-Stokes equation where we have assumed that the fluid
is Newtonian. This equation physically represents the conservation of momentum
and has the form

ρ
D®u
Dt
= −∇p + µ∇2®u + ®fbody, (2.2)

where ρ is the density of the fluid, p is the pressure, µ is the shear viscosity and
®fbody is the effect of body forces on the fluid. The most common body force which
acts on fluids is gravity. Previous theoretical work [8–10] has estimated that gravity
is negligible in nanofilm experiments due to the minuscule height scales. As such,
fbody will be set to zero for the remainder of this work. The notation for the
time derivative on the left hand side of the equation is the convective, or material,
derivative and is defined by

D
Dt
≡ ∂

∂t
+ ®u · ∇. (2.3)
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This describes how a quantity changes in time as well as local changes due to
variations along the local velocity field.

2.1.3 Fluid Velocity and Pressure Boundary Conditions
With the governing equations specified, we now outline the boundary conditions
required for solution of ®u and p. At the bottom of the liquid layer (z = 0 in Fig. 2.1)
there is a no-slip and impenetrability condition with the solid wall

®u(z = 0) = 0. (2.4)

At the free interface there is both a kinematic boundary condition and an interfacial
stress balance. The kinematic boundary condition relates the vertical component of
the fluid velocity to the change of the film height at the interface

w(z = h) = ∂h
∂t
+ ®u‖ · ∇‖h. (2.5)

The subscript ‖ denotes that only the x̂ and ŷ components of the subscripted quantity
should be included in the expressions. Consequently, the horizontal velocity is
defined by

®u‖ ≡ ux̂ + vŷ. (2.6)

Similarly, the horizontal gradient, ∇‖ , is composed of the derivatives solely in the x̂

and ŷ directions. In other words,

∇‖ = x̂
∂

∂x
+ ŷ

∂

∂y
. (2.7)

Beyond the kinematic boundary condition, we must balance the normal and tangen-
tial stresses at the interface which can be encapsulated in the following equation
which applies at z = h(x, y, t)

(Tair − Tfilm) · n̂ + pacn̂ + peln̂ + ∇sγ − γn̂ (∇s · n̂) = 0. (2.8)

In this equation the stress tensors, T, are subscripted by their respective layers and
will be described in detail below. The unit normal vector, n̂, is perpendicular to the
nanofilm surface everywhere and points from the film to the air. The terms pac and
pel are pressures arising from acoustic or electrical sources, respectively, and will
be defined in the relevant sections below since they correspond to specific proposed
models. These have been explicitly removed from the fluid pressure p in the stress



11

tensor so that limiting cases can be considered for each model. Additionally, γ is
the surface tension at the air/film interface and ∇s is the surface gradient which is
defined by

∇s ≡ ∇ − n̂(n̂ · ∇). (2.9)

This means that the surface gradient operator only exists in the plane of the interface,
by definition, since the normal components have been removed. Furthermore, note
that ∇s = ∇‖ only where the interface is flat and n̂ = ẑ.

2.2 Scaling the Governing Equations and Applying the Lubrication Approx-
imation

The systemof interest has been defined and now the governing equations are scaled to
simplify the analysis. In particular, we know that both the overall system dimensions
and the characteristic lateral length scale of the instability growth, λo, aremuch larger
than the initial film thickness, ho. As such, we define a small quantity

ε ≡ ho

λo
, (2.10)

and after scaling the equations we only keep terms to first order in ε since ε2 � 1.
This approximation has several names including the lubrication or long wavelength
approximation [17–19]. All the horizontal lengths are scaled by λo and all the
vertical lengths scaled by ho. Time is scaled using the horizontal length and a
characteristic lateral speed, uc, which can be chosen arbitrarily. Therefore,

X =
x
λo

;Y =
y

λo
, (2.11)

Z =
z

ho
; H =

h
ho

; D =
d
ho
, (2.12)

U =
u
uc

; V =
v

uc
; W =

w

wc
, (2.13)

τ =
tuc

λo
; P =

p
Pc

; Γ =
γ

Γc
, (2.14)

∇̃s = λo∇s; ∇̃‖ = λo∇‖ . (2.15)

The scalings for the pressure, Pc, and surface tension, Γc, will be determined
below during the simplification of the Navier-Stokes equations. The quantity wc

is a characteristic velocity scale for flow in the vertical direction. Due to the
disparate length scales, it would not be correct to scale all the fluid velocities by the
same quantity. Now we return to the governing equations and scale them using the
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quantities above which will illuminate several relationships between these quantities
and allow us to simplify the equations significantly.

The first equation we will scale is the continuity equation to get a relationship
between uc and wc. Scaling Eq. (2.1) results in

∂U
∂X
+
∂V
∂Y
+

wc

εuc

∂W
∂Z
= 0.

To ensure that all the terms in the continuity equation are of the same order the
vertical velocity scale is set by wc = εuc. Consequently, the scaled continuity
equation is

∂U
∂X
+
∂V
∂Y
+
∂W
∂Z
= 0. (2.16)

Using these velocity scalings, the Navier-Stokes equations are simplified. For
simplicity, the equations are resolved into components during the scaling process.
These are

x̂ : εRe
DU
Dτ
= −εhoPc

µuc

∂P
∂X
+ ε2 ∂

2U
∂X2 + ε

2 ∂
2U
∂Y2 +

∂2U
∂Z2 ,

ŷ : εRe
DV
Dτ
= −εhoPc

µuc

∂P
∂Y
+ ε2 ∂

2V
∂X2 + ε

2 ∂
2V
∂Y2 +

∂2V
∂Z2 ,

ẑ : ε3Re
DW
Dτ
= −εhoPc

µuc

∂P
∂Z
+ ε2

(
ε2 ∂

2W
∂X2 + ε

2 ∂
2W
∂Y2 +

∂2W
∂Z2

)
.

In these equations, the Reynolds number, Re, has been defined as

Re =
ρucho

µ
. (2.17)

The Reynolds number represents the ratio of inertial forces to viscous forces within
the fluid [19]. Based on the similarity of the terms in front of the pressure in each
of the three components, there is a clear scaling for the pressure

Pc =
µuc

εho
. (2.18)

With this definition for the nondimensionalization of the pressure, the long wave-
length approximation is now implemented which requires that (1) ε2 � 1 and (2)
εRe � 1. This approximation takes advantage of the disparity between vertical and
lateral length scales to greatly reduce the complexity of the analysis. Neglecting
terms of second order in ε or higher, the scaled Navier-Stokes equations are

‖ :
∂2 ®U‖
∂Z2 = ∇̃‖P, (2.19)

ẑ :
∂P
∂Z
= 0. (2.20)
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Moving on to the boundary conditions, the no-slip and impenetrability condition
from Eq. (2.4) scales in a straightforward manner

®U(Z = 0) = 0. (2.21)

Similarly, the kinematic boundary condition from Eq. (2.5) becomes

W(Z = H) = ∂H
∂τ
+ ®U‖(Z = H) · ∇‖H. (2.22)

Scaling the interfacial stress balance in Eq. (2.8) within the long wavelength approx-
imation is more complicated and intermediate results will first be derived and then
compiled into the final expression. Specifically the normal vector, n̂, the surface
gradient, ∇s, the surface divergence of the normal vector, ∇s · n̂, and the stress
tensor, Ti, are scaled.

2.2.1 Scaling the Normal Vector to a Surface
The surface of the film described by h(x, y) can be expressed in three dimensions as
a locus of points where a function F is equal to zero.

F(x, y, z) = z − h(x, y) = 0.

The unit normal to the surface is found by taking the gradient of F and normalizing
it

n̂ =
∇F
|∇F | =

((
∂h
∂x

)2
+

(
∂h
∂y

)2
+ 1

)−1/2 (
−∂h
∂x

x̂ − ∂h
∂y

ŷ + ẑ
)
. (2.23)

Each of these quantities scales as defined above, so the terms in the preceding square
root will be of order ε2 and will be neglected in this analysis. Consequently, the
scaled unit normal in nondimensional units becomes

n̂ = −ε∇̃‖H + Ẑ . (2.24)

2.2.2 Scaling the Surface Gradient Operator
We can now take the scaled normal vector in Eq. (2.24) and use it to compute
the scaled surface gradient, ∇̃s. Recalling the definition of the surface gradient in
Eq. (2.9), this expression scales to

∇̃s = ∇̃ − n̂
(
n̂ · ∇̃

)
.
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After substitution of the normal vector from Eq. (2.23) into the definition of the
surface gradient in Eq. (2.9), scaling the resulting expression, and simplifying, the
scaled surface gradient becomes

∇̃s = ∇̃‖ +
(
∇̃‖H

) ∂

∂Z
+ Ẑε

(
∇̃‖H

) (
∇̃‖ +

(
∇̃‖H

) ∂

∂Z

)
. (2.25)

Note that in this equation the derivatives grouped with H within parentheses only
act on H, not on the argument of the surface gradient operator itself.

2.2.3 Scaling the Surface Divergence of the Normal Vector
The last term in the stress balance from Eq. (2.8) represents the effect of surface
tension and depends on the surface divergence of the normal vector. Since these two
quantities have been scaled in Eq. (2.9) and Eq. (2.24), they are combined to find

∇̃s · n̂ = −ε∇̃2
‖H. (2.26)

When computing this expression, we note that none of the quantities in the normal
vector shown in Eq. (2.24) depend on Z .

2.2.4 Scaling the Stress Tensor
The stress tensors in the film and air layers are crucial pieces of the interfacial stress
balance in Eq. (2.8). Within each layer i, the stress tensor takes the form

Ti = −piI + 2µiEi . (2.27)

Here pi is the fluid pressure and Ei is the rate of strain tensor. Since the viscosity of
air is many orders of magnitude smaller than the viscosity of the molten nanofilm,
the product 2µairEair will be neglected as a small contribution. The subscripts on
µfilm and Efilm will be dropped since there can be no confusion. The rate of strain
tensor is defined by

E ≡ 1
2

(
∇®u +

(
∇®u

) tr
)
=

1
2



2
∂u
∂x

∂u
∂y
+
∂v

∂x
∂u
∂z
+
∂w

∂x
∂v

∂x
+
∂u
∂y

2
∂v

∂y

∂v

∂z
+
∂w

∂y
∂w

∂x
+
∂u
∂z

∂w

∂y
+
∂v

∂z
2
∂w

∂z


. (2.28)

In the stress balance of Eq. (2.8), the quantity which enters the equation is the stress
tensor difference dotted with the normal vector, n̂. From the definition of the stress
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tensor in Eq. (2.27) one obvious scaling for the stress tensor is the characteristic
pressure, Pc. Therefore,

1
Pc
(Tair − Tfilm) · n̂ =

pair − pfilm
Pc

n̂ − 2µ
Pc

E · n̂.

Note that pair − pfilm = p. Additionally, converting the rate of strain tensor to
nondimensional units, dotting by the normal vector on the right, and dropping terms
of order ε2 yields

2µ
Pc

E · n̂ = ε


2ε
∂U
∂X

ε
∂U
∂Y
+ ε

∂V
∂X

∂U
∂Z

ε
∂V
∂X
+ ε

∂U
∂Y

2ε
∂V
∂Y

∂V
∂Z

∂U
∂Z

∂V
∂Z

2ε
∂W
∂Z




−ε ∂H

∂X

−ε ∂H
∂Y

1


= ε

∂ ®U‖
∂Z

.

Inserting these results above yields

1
Pc
(Tair − Tfilm) · n̂ = Pn̂ − ε

∂ ®U‖
∂Z

. (2.29)

All the intermediary results in Eqs. (2.24), (2.25), (2.26), and (2.29) are inserted
back into the full stress balance in Eq. (2.8) to find

Pn̂ − ε
∂ ®U‖
∂Z
+ Pacn̂ + Peln̂ +

Γc

λoPc
∇̃sΓ +

εΓc

λoPc
Γ

(
∇̃2
‖H

)
n̂ = 0.

Note that this equation contains both normal and tangential components. This equa-
tion now suggests a natural scaling for Γc so that all the tangential components (the
second and the fifth terms above) will be of order ε and all the vertical components
will be of order unity

Γc = ελoPc =
µuc

ε
. (2.30)

The nondimensionalized surface tension has the form reminiscent of the traditional
capillary number, Ca, [19] except scaled by a factor of ε−3. As such, the modified
capillary number is defined as

Ca =
1
ε2Γ
=
µuc

γε3 =
Ca
ε3 . (2.31)

The capillary number represents the ratio of viscous forces to forces due to surface
tension. Similar to the way that we split the vectorial Navier-Stokes equations into
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vertical and horizontal components in Eqs. (2.19) and (2.20), the interfacial stress
balance is decomposed into components

‖ :
∂ ®U‖
∂Z
= −∇̃sΓ, (2.32)

ẑ : P = − 1
Ca

(
∇̃2
‖H

)
− Pac − Pel. (2.33)

2.2.5 Summary of Scaled Equations
The governing equations and the boundary conditions have all been scaled to trans-
form them into nondimensional equations which were then simplified using the
lubrication approximation. For convenience, here are all the scaled equations which
will be referenced when deriving the thin film height evolution equation

∂U
∂X
+
∂V
∂Y
+
∂W
∂Z
= 0, (2.34)

∂2 ®U‖
∂Z2 = ∇̃‖P, (2.35)

∂P
∂Z
= 0, (2.36)

®U(Z = 0) = 0, (2.37)

W(Z = H) = ∂H
∂τ
+ ®U‖ · ∇‖H, (2.38)

∂ ®U‖(Z = H)
∂Z

= −∇̃sΓ, (2.39)

P(Z = H) = − 1
Ca

(
∇̃2
‖H

)
− Pac(Z = H) − Pel(Z = H). (2.40)

2.2.6 Thin Film Height Evolution Equation
To proceed from these equations to a single differential equation for the interface
evolution, the general approach will be to use the kinematic boundary condition to
introduce a temporal derivative of H(X,Y, τ) and then rewrite everything in terms
of H(X,Y, τ). Note that the interface height is both a function of time and position.
For notational convenience, we will drop this explicit functional dependence in the
following equations. To do this, consider a slightly rewritten form of the continuity
equation in Eq. (2.34) (or equivalently Eq. (2.16))

∇̃‖ · ®U‖ +
∂W
∂Z
= 0.
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Integrating this equation with respect to Z from Z = 0 to Z = H results in

W(Z = H) −W(Z = 0) +
∫ H

0
∇̃‖ · ®U‖dZ = 0.

The first term is the kinematic boundary condition from Eq. (2.38) (or equivalently
Eq. (2.22)) and the second is the impenetrability condition from Eq. (2.37) (or
equivalently Eq. (2.21)). After substitution this equation becomes

∂H
∂τ
+ ®U‖(Z = H) · ∇̃‖H +

∫ H

0
∇̃‖ · ®U‖dZ =

∂H
∂τ
+ ∇̃‖ ·

∫ H

0
®U‖dZ = 0. (2.41)

In the second equality the Leibnitz rule for differentiation has been used to bring
the derivative outside the integral [19]. All that remains now is to solve for ®U‖
and then integrate the result to find the height evolution equation. To accomplish
this, the remaining equations are used. From the vertical component of the scaled
Navier-Stokes equations in Eq. (2.36) (or equivalently Eq. (2.20)), it is clear that
the pressure, P, is independent of the vertical coordinate. As such, the lateral
components of the scaled Navier-Stokes equations in Eq. (2.35) (or equivalently
Eq. (2.19)) are integrated twice to solve for

®U‖ =
Z2

2
∇̃‖P + A‖Z + B‖ . (2.42)

In this equation, A‖ and B‖ are two component vectors which are the integration con-
stants for each component equation. Based on the no-slip condition from Eq. (2.37)
(or equivalently, Eq. (2.21)) it follows that B‖ = 0. The other integration constant
can be determined by using the horizontal components of the interfacial stress bal-
ance in Eq. (2.39) (or equivalently Eq. (2.32)). Since this poses a condition on
the derivative of the horizontal velocity at Z = H, the velocity which satisfies this
equation is clearly

®U‖ =
(

Z2

2
− HZ

)
∇̃‖P − Z∇̃sΓ.

The horizontal gradient of the pressure can be computed from the vertical component
of the interfacial stress balance in Eq. (2.40) (or equivalently Eq. (2.33)). If we insert
this expression for the gradient of the pressure into the preceding equation we find
that

®U‖ =
(

Z2

2
− HZ

) (
−1
Ca

(
∇̃3
‖H

)
− ∇̃‖Pac(Z = H) − ∇̃‖Pel(Z = H)

)
− Z∇̃sΓ.
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As mentioned previously, the specific forms of Pac, Pel, and ∇̃sΓ depend on the
chosen model and will be discussed further below. Regardless, none of these
values depend on Z and the evaluation at Z = H will be suppressed from now on.
Consequently, this equation for the horizontal velocity can be integrated from Z = 0
to Z = H to find∫ H

0
®U‖dZ =

H3

3

(
1

Ca

(
∇̃3
‖H

)
+ ∇̃‖Pac + ∇̃‖Pel

)
− H2

2
∇̃sΓ. (2.43)

Inserting Eq. (2.43) back into Eq. (2.41) yields the height evolution equation

∂H
∂τ
+ ∇̃‖ ·

[
H3

3

(
1

Ca

(
∇̃3
‖H

)
+ ∇̃‖Pac + ∇̃‖Pel

)
− H2

2
∇̃sΓ

]
= 0. (2.44)

2.3 Linear Stability Analysis
While the exact forms for Pac, Pel, and ∇̃sΓ have not been specified yet, it will be
shown below they all depend exclusively on H. As such, through the chain rule the
derivatives will act on H and therefore any constant H will satisfy this differential
equation. To investigate the stability of this family of solutions, the initially flat
interface (denoted by H = 1) is perturbed by a function of the form

H = 1 + δ̃heβ(K)τei ®K‖ · ®X ‖ . (2.45)

The quantity δ̃h is the magnitude of the perturbation and is assumed to be small so
that we neglect terms of second order in this quantity. The real exponential contains
the nondimensional growth rate, β, and the imaginary exponential contains explicit
dependence on the horizontal wavevector, ®K‖ , which contains only x̂ and ŷ compo-
nents. The magnitude of the wavevector is related to the real space wavelength, λ,
by

K = | ®K‖ | =
2πλo

λ
. (2.46)

The nondimensional growth rate, β, is related to the dimensional growth rate, b,
through

β(K) = b(k)λo

uc
. (2.47)

To proceed any further with the linearization, the forms of each model will be
specified separately in turn.
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Figure 2.2: Instability geometry in SC model
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The distinguishing feature of the SC model is the presence of a surface charge density, σ, along the
interface which induces an electric field that leads to the destabilizing electric pressure.

2.3.1 SC Model: Electrostatic Pressure
Within the SC model the driving force is posited to be electrostatic in origin. In the
work of Chou and Zhuang [2, 3], there was assumed to be a surface charge density
along the interface which would induce image charges in the upper and lower
bounding plates which were grounded, as illustrated in Fig. 2.2. The presence of the
electric charges creates an electric field which they hypothesized was responsible for
the deformation of the interface. Because the AP model had not yet been published
by Schäffer et al., the net pressure from acoustic phonon reflections is zero and
so Pac = 0. Furthermore, they did not consider the surface tension to vary with
any external field which implies that ∇̃sΓ = 0. All that remains is to define the
electric pressure, Pel, created by the interfacial charge density and complete the
linear stability analysis.

The electrostatic pressure arises from the difference between the Maxwell stress
tensors, Tem

i , in the air and nanofilm layers. Explicitly, the magnitude of the
pressure in the normal direction is

Pel =
1
Pc

n̂ ·
(
Tem

air − Tem
film

)
· n̂. (2.48)

The Maxwell stress tensor in matter without any magnetic fields has the form [20]

Tem = ®E ®D − 1
2

I
(
®E · ®D

)
, (2.49)

where ®E is the electric field and ®D = εoε ®E is the electric displacement field. εo

is the the permittivity of free space. Note that ε is the relative permittivity of the
medium, and is distinct from ε which is the long-wavelength expansion parameter.
In air we assume that the relative permittivity is equal to unity, so that εair = 1. To
proceed further, the electric fields in both the air and film layers are solved using
Laplace’s equation and then the Maxwell stress tensors are computed. These are
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then inserted into the electrostatic pressure term, Pel. Once Pel has been computed,
linear stability analysis is applied to the resulting thin film height evolution equation
to find the wavevector and growth rate of the fastest growing mode.

Electrostatic Governing Equations

Within the derivation of Chou and Zhuang, it was assumed that there are no signif-
icant magnetic fields present in the system. This reduces the problem of solving for
the electric field within the system to a simple electrostatics problem. Furthermore,
it was assumed that there was no volumetric charge density present within either the
air or film layers and that the only charge is present at the interface between the two
layers. The interfacial charge density is constant during deformation and denoted
by σ. These assumptions imply that the governing differential equation is Laplace’s
equation

∇2φi = 0. (2.50)

In this expression φi is the potential in the ith layer. Since there is no externally
applied voltage in this system, both the upper and lower bounding plates are assumed
to be grounded so that

φfilm(z = 0) = 0, (2.51)

φair(z = d) = 0. (2.52)

Along the interface, the usual electrostatic boundary conditions are applied [20]

n̂ ·
(
®Dair − ®Dfilm

)
= εon̂ ·

(
®Eair − εfilm ®Efilm

)
= σ, (2.53)

n̂ ×
(
®Eair − ®Efilm

)
= 0. (2.54)

Finally, the relationship between the electric field and the electric potential is

®Ei = −∇φi . (2.55)

Scaled Electrostatic Equations

To scale the electrostatic equations, the same scalings which were defined in Sec. 2.2
are used but there are two more for the electric potential and the electric field.

φ̃i =
φi

Φc
; ®̃E i =

®Eiho

Φc
. (2.56)
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The quantity Φc is a characteristic potential which will be determined in the course
of scaling the equations, similar to how Pc and Γc were determined above. The rela-
tionship between the nondimensional electric potential and electric field transforms
from Eq. (2.55) to

®̃E i = −ε∇̃‖ φ̃i −
∂φ̃i

∂Z
. (2.57)

Once we nondimensionalize Laplace’s equation from Eq. (2.50) we find that to
second order

∂φ̃i

∂Z2 = 0. (2.58)

The exterior Dirichlet boundary conditions simply become

φ̃film(Z = 0) = 0, (2.59)

φ̃air(Z = D) = 0. (2.60)

The tangential electrostatic boundary condition of Eq. (2.54) is equivalent to the
requirement that the potential be continuous across the interface. Therefore,

φ̃film(Z = H) = φ̃air(Z = H). (2.61)

The final electrostatic boundary equation is the one shown in Eq. (2.53) for the
normal components of the electric displacement field at the interface. Using the
scaled normal vector which was derived above in Eq. (2.24), this yields

Φcεo

ho

(
−ε∇̃‖H + Ẑ

)
·
(
−ε∇̃‖ φ̃air − εo

∂φ̃air
∂Z

Ẑ + εεfilm∇̃‖ φ̃film + εfilm
∂φ̃film
∂Z

Ẑ
)
= σ.

From this it is clear that all the tangential terms in this equation are order ε2 and can
be neglected. Furthermore, the characteristic electric potential scale arises from the
charge density at the interface and should be

Φc =
σho

εo
. (2.62)

This boundary condition then simplifies to

εfilm
∂φ̃film(Z = H)

∂Z
− ∂φ̃air(Z = H)

∂Z
= 1. (2.63)
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Electric Field Solution

The scaled Laplace equation from Eq. (2.58) was integrated twice with respect to
Z , yielding electric potentials in each layer that are linear.

φ̃film = ASC
filmZ + BSC

film,

φ̃air = ASC
air Z + BSC

air .

In this equation ASC
film, BSC

film, ASC
air , and BSC

air are integration constants. The Dirichlet
boundary conditions on the bounding plates from Eqs. (2.59) and (2.60) imply that
BSC

film = 0 and BSC
air = −DASC

air

φ̃film = ASC
filmZ,

φ̃air = ASC
air (Z − D).

The electric potential must be continuous across Z = H according to the boundary
condition in Eq. (2.61), so that ASC

film can be expressed in terms of ASC
air

ASC
film = ASC

air
(H − D)

H
.

This implies that the electric potentials should have the form

φ̃film = ASC
air

Z(H − D)
H

,

φ̃air = ASC
air (Z − D).

The only remaining boundary condition is Eq. (2.63) and this implies that the one
remaining integration constant is

ASC
air =

H
(εfilm − 1)H − εfilmD

.

Returning to the electric potentials, they have the form

φ̃film =
Z(H − D)

(εfilm − 1)H − εfilmD
, (2.64)

φ̃air =
H(Z − D)

(εfilm − 1)H − εfilmD
. (2.65)
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Based on the relation in Eq. (2.57) between the electric potential and the electric
field, the nondimensional electric fields at the interface are

®̃Efilm = ε

(
DH∇̃‖H

[εfilmD − (εfilm − 1)H]2

)
− (D − H)
εfilmD − (εfilm − 1)H Ẑ, (2.66)

®̃Eair = ε

(
εfilmD(H − D)∇̃‖H
[εfilmD − (εfilm − 1)H]2

)
− H
εfilmD − (εfilm − 1)H Ẑ . (2.67)

The most important thing to note about these electric fields is that the vertical
components do not have an ε , while the horizontal components are first order in ε .
This means that when these electric fields are inserted into theMaxwell stress tensor,
all terms which contain products with two tangential components, such as ExEy,
ExEx , and EyEy, are order ε2 and can be neglected. Computing the expression for
the normal component of the stress tensor dotted into the normal vector yields

n̂ · Tem · n̂ = εoε

[
−ε ∂H

∂X
−ε ∂H

∂Y
1
] 
−1

2
E2

z 0 ExEz

0 −1
2

E2
z EyEz

ExEz EyEz
1
2

E2
z




−ε ∂H

∂X

−ε ∂H
∂Y

1


=
εoε

2
E2

z .

Recalling the form of the electric pressure from Eq. (2.48), the electric pressure is

Pel =
εo

2Pc

(
E2

air,z − εfilmE2
film,z

)
.

In terms of the electric fields which are expressed in Eqs. (2.66) and (2.67), this
pressure becomes

Pel =
σ2

2εoPc

(
(1 − εfilm)H2 + 2εfilmDH − εfilmD2

[εfilmD − (εfilm − 1)H]2

)
. (2.68)

Linear Stability Predictions

Returning to the height evolution equation in Eq. (2.44), the gradient of the elec-
trostatic pressure was computed and substituted yielding the following expression

∂H
∂τ
+ ∇̃‖ ·

[
H3

3Ca

(
∇̃3
‖H

)
+

H3σ2

3εoPc

(
εfilmD2

[εfilmD − (εfilm − 1)H]3

)
∇̃‖H

]
= 0. (2.69)
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Insertion of the linear stability perturbation function fromEq. (2.45) and cancellation
of the common exponentials yields a nondimensional dispersion relation where
terms of order δ̃h

2
have been dropped

βSC(K) + K4

3Ca
− σ2

3εoPc

(
εfilmD2

[εfilmD − (εfilm − 1)]3

)
K2 = 0. (2.70)

This specific dispersion relation has a representative form that will be borne out
in the other proposed models. The dispersion relations for each model are of the
general form

β(K) = A2K2 − A4K4, (2.71)

where A2 and A4 are constants whose exact form depends on the model. As such,
the location and magnitude of the maximum growth rate can be found from this
general form. The mode with the maximum growth rate is assumed to be the
one observed experimentally so the wavevector at which this maximum occurs
should then correspond to the characteristic wavelength of the real space pattern
which is observed. The form of the dispersion relation in Eq. (2.71) can be solved
analytically for the wavevector corresponding to the maximum growth rate. This
maximum wavevector is denoted by Ko

Ko =

√
A2

2A4
. (2.72)

The maximum value of the growth rate is then

βo ≡ β(Ko) =
A2

2
4A4

. (2.73)

For the SC model, A2 and A4 are

ASC
2 =

σ2

3εoPc

(
εfilmD2

[εfilmD − (εfilm − 1)]3

)
, (2.74)

ASC
4 =

1
3Ca

. (2.75)

Consequently, Ko and βo for the SC model are

KSC
o =

√
σ2hoD2

2εoε
2
filmγε

2

(
D +

1
εfilm
− 1

)−3/2
, (2.76)

βSC
o =

λoho

3µucγ

(
σ2D2

2εoε
2
film

)2 (
D +

1
εfilm
− 1

)−6
. (2.77)
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Figure 2.3: Instability geometry in AP model
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The distinguishing feature of the AP model is the coherent propagation of acoustic phonons through
the bilayers, which create a destabilizing radiation pressure.

These are the same quantities as those derived by Zhuang [3], just expressed in
nondimensional terms. The dimensional quantities will be presented in Sec. 2.3.4
with the results from the other two models.

2.3.2 AP Model: Acoustic Phonon Radiation Pressure
As opposed to the SC model which relies on electric fields, the driving instability
mechanism in both the AP and TC models is a thermal one. The AP model was
derived by Schäffer and co-workers [4–6] and they assumed that phonon reflections
from all the interfaces in the system would sum to create a net pressure, Pac, which
acted as a destabilizing force on the interface. They did not consider the surface
tension to vary with any external field which implies that ∇̃sΓ = 0, as in the SC
model. They did not expect any charge density to be present in the system and
did not apply an external voltage, so they did not include any electric effects and
therefore Pel = 0. To derive an expression for Pac, the temperature in the system
was computed from which the thermal flux through the system was calculated. The
heat flux was then substituted into the acoustic phonon radiation pressure.

Within the AP model, Schäffer and co-workers assumed that the magnitude of the
acoustic phonon pressure was

pAP = −
2Q
up
| ®q |, (2.78)

where ®q is the heat flux density, up is the speed of sound in the molten nanofilm,
and Q is the acoustic quality factor. A microscopic derivation of Q was published
[4, 6], but in their subsequent analysis it has been treated as a fitting parameter
during analysis of experimental data. To proceed further with their derivation,
the governing thermal equations are defined, scaled, and then solved to find the
temperature in the system. From the temperature in the system the heat flux through
the bilayers is calculated and then substituted into the acoustic phonon radiation
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pressure. The acoustic phonon radiation pressure is then substituted into the height
evolution equation, and linear stability analysis is performed to find the maximum
growth rate and its corresponding wavevector for the AP model.

Thermal Governing Equations

There are two differential equations which govern the temperature in the system.
The first is Fourier’s law of thermal conduction:

®q = −k∇T. (2.79)

In this expression, k is thermal conductivity and T is the temperature. The second
is the equation describing the conservation of heat

ρcp
DT
Dt
= −∇ · ®q. (2.80)

The quantity cp is the specific heat capacity. These two equations were combined
using a simple substitution and the assumption that the thermal conductivities of
each layer in the system are constant and isotropic. This assumption allows the
resulting equation to be written as the usual heat equation

ρcp
DT
Dt
= k∇2T. (2.81)

For boundary conditions, the bottom surface of the nanofilm was assumed to be
isothermal at a temperature TH while the top surface of the air layer was assumed
to be isothermal at a temperature TC with TH > TC. Finally, both temperature and
heat flux density must be continuous at the interface. In total, these requirements
are summarized in the following set of equations

Tfilm(z = 0) = TH, (2.82)

Tair(z = d) = TC, (2.83)

Tfilm(z = h) = Tair(z = h), (2.84)

−kfilm∇Tfilm(z = h) = −kair∇Tair(z = h). (2.85)
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Scaled Thermal Equations

To scale these equations only one new scaling is needed in addition to the ones
contained in Sec. 2.2. This scaling is for the temperature

Θ ≡ T − TC
TH − TC

=
T − TC
∆T

, (2.86)

where Θ is the nondimensional temperature and ∆T ≡ TH − TC is the temperature
drop between the bounding plates. The utility of this scaling will become apparent
when the isothermal boundary conditions are scaled. First, the heat equation in
Eq. (2.81) becomes

εPrRe
DΘ
Dτ
= ε2

(
∂2Θ

∂X2 +
∂2Θ

∂Y2

)
+
∂2Θ

∂Z2 .

In this expression an additional dimensionless number has been defined in addition
to the Reynolds number, Re, which was defined in Eq. (2.17). This new number is
the Prandtl number, Pr , and has the form

Pr =
cpµ

k
. (2.87)

The Prandtl number reflects the ratio of the viscous diffusion of momentum to the
thermal diffusivity. On the size scales relevant to experiment, the product εPrRe

is small [8–10], so the temporal dependence of the left half of Eq. (2.87) will be
neglected in addition to the terms of order ε2. It becomes

∂2Θ

∂Z2 = 0. (2.88)

The boundary conditions have the following scalings

Θfilm(Z = 0) = 1, (2.89)

Θair(Z = D) = 0, (2.90)

Θfilm(Z = H) = Θair(Z = H), (2.91)

∇̃Θfilm(Z = H) = κ∇̃Θair(Z = H). (2.92)

In the last equation the quantity κ ≡ kair/kfilm has been defined as the thermal
conductivity ratio.
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Temperature Field Solution

The scaled heat equation was integrated directly in both the film and air layers to
yield

Θfilm = AAP
filmZ + BAP

film,

Θair = AAP
air Z + BAP

air .

As in the SC model section, AAP
film, BAP

film, AAP
air , and BAP

air are integration constants.
The two Dirichlet boundary conditions in Eqs. (2.89) and (2.90) imply that BAP

film = 1
and BAP

air = −DAAP
air such that

Θfilm = AAP
filmZ + 1,

Θair = AAP
air (Z − D).

From Eq. (2.91) the continuity of temperature requires that

AAP
air =

AAP
filmH + 1
H − D

.

Then the temperatures in each layer must be of the form

Θfilm = AAP
filmZ + 1,

Θair =
(
AAP

filmH + 1
) Z − D

H − D
.

The final boundary condition is the continuity of thermal flux in Eq. (2.92). This
determines the last constant to be

AAP
film =

−κ
D + (κ − 1)H .

Consequently, the nondimensional temperature in each layer is

Θfilm =
D − H + κ (H − Z)

D + (κ − 1)H , (2.93)

Θair =
D − Z

D + (κ − 1)H . (2.94)

Based on these expressions, the magnitude of the thermal flux density will be in the
Ẑ direction to first order in ε . This implies that the nondimensional acoustic phonon
pressure at the interface is

PAP = −
2Qkair∆T
upPcho

∂Θair
∂Z

=
2Qkair∆T
upPcho

(
1

D + (κ − 1)H

)
. (2.95)
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Linear Stability Predictions

Returning to the height evolution equation in Eq. (2.44), the horizontal gradient of
the acoustic phonon pressure was computed and substituted to yield the following
height evolution equation for the AP mode

∂H
∂τ
+ ∇̃‖ ·

[
H3

3Ca

(
∇̃3
‖H

)
+

2Qkair∆TH3

3upPcho

(
1 − κ

[D + (κ − 1)H]2

)
∇̃‖H

]
= 0. (2.96)

Once again the perturbation function from Eq. (2.45) was inserted into the height
evolution equation to find the dispersion relation for the AP model

βAP(K) + K4

3Ca
− 2Qkair∆T

3upPcho

(
1 − κ

[D + κ − 1]2

)
K2 = 0. (2.97)

The general forms for Ko and βo that were derived in Eq. (2.72) and Eq. (2.73) yield
the wavevector and growth after association of the constants

AAP
2 =

2Qkair∆T
3upPcho

(
1 − κ

[D + κ − 1]2

)
, (2.98)

AAP
4 =

1
3Ca

. (2.99)

The nondimensional values of KAP
o and βAP

o are

KAP
o =

√
Qkair(1 − κ)∆T

γupε2 (D + κ − 1)−1 , (2.100)

βAP
o =

L
3γµucho

(
Qkair(1 − κ)∆T

up

)2

(D + κ − 1)−4 . (2.101)

Once again, these are the same quantities as those derived by Schäffer and co-
workers [4–6], just expressed in nondimensional terms. The dimensional quantities
will be presented in Sec. 2.3.4 with the results from the other two models.

2.3.3 TC Model: Thermocapillary Shear
The TC model is similar to the AP model in that the driving force for the instability
is thermal, but it has a different origin for the destabilizing force. The AP model
defines a destabilizing pressure acting normal to the interface while in the TCmodel
the force is a shear tangential to the interface. This tangential shear arises from
differences in surface tension which occur due to the temperature variations along
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Figure 2.4: Instability geometry in TC model
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The distinguishing feature of the TC model is variation of surface tension with temperature that
drives a destabilizing thermocapillary shear.

the interface. Within this model, originally posited by Dietzel and Troian [8–10],
the dominant force arises from the ∇̃sΓ term while the pressure terms from the
other two models, Pac and Pel, are both equal to zero. The derivation of this model
is relatively shorter than those of the SC and AP models because the temperature
field throughout the system has already been computed in Sec. 2.3.2 and the scaled
results from Eq. (2.93) and Eq. (2.94) port over directly.

When computing the ∇̃sΓ term, Dietzel and Troian assumed that the surface ten-
sion only depends on temperature and that the surface tension depends linearly on
temperature. This implies that the surface gradient of the surface tension is

∇̃sΓ =
∆T
Γc

∂γ

∂T
∇̃sΘ = −

εγT∆T
µuc

∇̃sΘ. (2.102)

In this expression the thermocapillary coefficient, γT , was defined as

γT = −
����∂γ∂T

���� . (2.103)

The minus sign has been explicitly brought out to the front of this equation since
for single component fluids, this quantity must always be negative. The quantity in
front of the gradient is a scaled Marangoni number [19], which represents the ratio
of surface tension forces to viscous forces. It was defined by

Ma ≡ εγT∆T
µuc

= εMa. (2.104)

From here, the temperature at the interface was substituted from either Eq. (2.93) or
Eq. (2.94). From the continuity of temperature at the interface they must have the
same value at Z = H. Then we take the surface gradient to find

∇̃sΓ = −
κDMa

[D + (κ − 1)H]2

(
∇̃‖H + ε

(
∇̃‖H

)2
Ẑ
)
. (2.105)
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The Ẑ components in this expression are second order in ε when ∇̃sΓ is substituted
into the scaled interfacial stress balance from Eq. (2.30). Consequently, they do not
appear below.

Linear Stability Predictions

Substitution of the surface gradient of the surface tension from Eq. (2.105) into the
height evolution equation from Eq. (2.44) yields

∂H
∂τ
+ ∇̃‖ ·

[
H3

3Ca

(
∇̃3
‖H

)
+

H2κDMa

2 [D + (κ − 1)H]2
∇̃‖H

]
= 0. (2.106)

In this case the dispersion relation is

βTC(K) + K4

3Ca
− κDMa

2 [D + κ − 1]2
K2 = 0. (2.107)

For the TC model the dispersion relation constants are

ATC
2 =

κDMa

2 [D + κ − 1]2
, (2.108)

ATC
4 =

1
3Ca

. (2.109)

This then implies that the values of KTC
o and βTC

o are

KTC
o =

√
3κγT∆T

4γε2

(√
D +

κ − 1
√

D

)−1
, (2.110)

βTC
o =

3L
γµucho

(
κγT∆T

4

)2 (√
D +

κ − 1
√

D

)−4
. (2.111)

As in the previous two cases, these are the same quantities as those derived by
Dietzel and Troian [8–10], expressed in nondimensional terms. The dimensional
quantities will be presented in Sec. 2.3.4 with the results from the other two models.

2.3.4 Summary of Dimensional Linear Stability Predictions
After completion of the derivations for each model and computation of the predic-
tions forKo and βo for eachmodel, these quantities are converted to their dimensional
analogs: the dimensional growth rates, b, and the dimensional wavelengths, λo. This



32

Table 2.1: Dimensional wavelengths and growth rates for each proposed model

Wavelength Growth Rate

λSCo

2πho
=

√
2εoε

2
pγ

σ2hoD2

(
D +

1
εp
− 1

)3/2
bSCo =

σ4hoD4

12µγε2
oε

4
ph3

o

(
D +

1
εp
− 1

)−6

λAPo

2πho
=

√
γup

Q(1 − κ)ka∆T
(D + κ − 1) bAPo =

[Q(1 − κ)ka∆T]2

3µγu2
pho

(D + κ − 1)−4

λTCo

2πho
=

√
4γ

3κγT∆T

(√
D +
(κ − 1)
√

D

)
bTCo =

3 (κγT∆T)2

16µγho

(√
D +
(κ − 1)
√

D

)−4

will remove any ambiguity in the choice of characteristic scales from Sec. 2.2 and al-
low different functional dependencies to be elucidated more easily. Using Eq. (2.46)
and Eq. (2.47), the dimensional quantities are

λ =
2πL

K
, (2.112)

b =
βuc

L
. (2.113)

This can be done readily for each model and the resulting expressions are summa-
rized in Table 2.1. These expressions will be used extensively throughout Ch. 3,
Ch. 4, and Ch. 5.
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