BIBLIOGRAPHY

- ¹E. McLeod, Y. Liu, and S. M. Troian, "Experimental verification of formation mechanism for pillar arrays in nanofilms subject to large thermal gradients", Phys. Rev. Lett. **106**, 175501 (2011).
- ²S. Y. Chou, and L. Zhuang, "Lithographically induced self-assembly of periodic polymer micropillar arrays", J. Vac. Sci. Technol. B **17**, 3197–3202 (1999).
- ³L. Zhuang, "Controlled self-assembly in homopolymer and diblock copolymer", PhD thesis (Princeton Univ., Princeton, NJ, 2002).
- ⁴E. Schäffer, "Instabilities in thin polymer films: structure formation and pattern transfer", PhD thesis (Konstanz Univ., 2001).
- ⁵E. Schäffer, S. Harkema, R. Blossey, and U. Steiner, "Temperature-gradientinduced instability in polymer films", Europhys. Lett. **60**, 255–261 (2002).
- ⁶E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, and U. Steiner, "Morphological instability of a confined polymer film in a thermal gradient", Macromol. **36**, 1645–1655 (2003).
- ⁷J. Peng, H. Wang, B. Li, and Y. Han, "Pattern formation in a confined polymer film induced by a temperature gradient", Polymer **45**, 8013–8017 (2004).
- ⁸M. Dietzel, and S. M. Troian, "Formation of nanopillar arrays in ultrathin viscous films: the critical role of thermocapillary stresses", Phys. Rev. Lett. **103**, 074501 (2009).
- ⁹M. Dietzel, and S. M. Troian, "Thermocapillary Patterning of Nanoscale Polymer Films", in *Materials Systems and Processes for Three Dimensional Micro- and Nanoscale Fabrication and Lithography*, Vol. 1179E, edited by S. M. Kuebler, and V. T. Milam, (Materials Research Society, 2009).
- ¹⁰M. Dietzel, and S. M. Troian, "Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient", J. Appl. Phys. **108**, 074308 (2010).
- ¹¹F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, "Prism coupling technique investigation of elasto-optical properties of thin polymer films", J. Appl. Phys. 96, 7147–7153 (2004).
- ¹²K. Kurabayashi, M. Asheghi, M. Touzelbaev, and K. E. Goodson, "Measurement of the thermal conductivity anisotropy in polyimide films", J. Microelectromech. Syst. 8, 180–191 (1999).
- ¹³P. Deshpande, X. Sun, and S. Y. Chou, "Observation of dynamic behavior of lithographically induced self-assembly of supramolecular periodic pillar arrays in a homopolymer film", Appl. Phys. Lett. **79**, 1688–1690 (2001).

- ¹⁴S. Y. Chou, L. Zhuang, and L. Guo, "Lithographically induced self-construction of polymer microstructures for resistless patterning", Appl. Phys. Lett. **75**, 1004– 1006 (1999).
- ¹⁵E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, and U. Steiner, "Thermomechanical lithography: pattern replication using a temperature gradient driven instability", Adv. Mater. **15**, 514–517 (2003).
- ¹⁶E. McLeod, and S. M. Troian, "One step non-contact fabrication of polymer microlens arrays by thermocapillary lithography", CLEO:2011 - Laser Applications to Photonic Applications, CML3 (2011).
- ¹⁷S. J. VanHook, M. F. Schatz, J. B. Swift, W. D. McCormick, and H. L. Swinney, "Long-wavelength surface-tension-driven Benard convection: experiment and theory", J. Fluid Mech. **345**, 45–78 (1997).
- ¹⁸S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L. Swinney, "Long-wavelength instability in surface tension driven Benard convection", Phys. Rev. Lett. **75**, 4397–4400 (1995).
- ¹⁹L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, 32 Avenue of the Americas, NY 10013-2473, USA, 2007).
- ²⁰D. J. Griffiths, *Introduction to electrodynamics*, 3rd ed. (Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, 1999).
- ²¹D. R. Lide, ed., *CRC Handbook of Chemistry and Physics*, 81st (CRC Press, Boca Raton, 2000).
- ²²Z. Pu, "Polystyrene", in *Polymer Data Handbook*, edited by J. E. Mark, (Oxford University Press, New York, 1999).
- ²³J. R. Welty, C. E. Wicks, and R. E. Wilson, *Fundamentals of Momentum, Heat, and Mass Transfer*, 3rd ed. (John Wiley & Sons, 1984).
- ²⁴O. Urakawa, S. F. Swallen, M. D. Ediger, and E. D. von Meerwall, "Self-diffusion and viscosity of low molecular weight polystyrene over a wide temperature range", Macromol. **37**, 1558–1564 (2004).
- ²⁵ MATLAB, Version 8.1.0 (r2013a) (The MathWorks Inc., Natick, Massachusetts, 2013).
- ²⁶F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform", Proc. of the IEEE **66**, 51–83 (1978).
- ²⁷A. Naranjo, M. del Pilar Noriega, T. Osswald, A. Roldan-Alzate, and J. D. Sierra, *Plastics Testing and Characterization: Industrial Applications* (Carl Hanser Verlag, Munich, 2008).
- ²⁸ COMSOL, Inc., *COMSOL Mutliphysics*[®] (Los Angeles, CA).
- ²⁹ Corning, Inc., *Corning*[®] 1737 (Corning, NY).

- ³⁰ McMaster-Carr Supply Co., *Multipurpose 110 Copper* (Santa Fe Springs, CA).
- ³¹Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, *Thermal Conductivity* - *Nonmetallic Solids*, Vol. 2, Thermophysical Properties of Matter (IFI/Plenum, NY, 1970).
- ³² MicroChem Corp., SU-8 2000 Epoxy Photoresist (Westborough, MA).
- ³³W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. McElroy, "Thermal conductivity, electrical resistivity, and Seebeck coefficient of silicon from 100 to 1300 K", Phys. Rev. 167, 765–782 (1968).
- ³⁴ OMEGA Engineering, Inc., *OMEGATHERM[®] 201* (Norwalk, CT).
- ³⁵ Delta Technologies, Ltd., Part No. CB-50IN-S205 (Loveland, CO).
- ³⁶T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba, and Y. Shigesato, "Thermal transport properties of polycrystalline tin-doped indium oxide films", J. Appl. Phys. **105**, 073709 (2009).
- ³⁷K. A. Leach, Z. Lin, and T. P. Russell, "Early stages in the growth of electric field-induced surface fluctuations", Macromol. **38**, 4868–4873 (2005).
- ³⁸M. Hartl, I. Krupka, and M. Liska, "Differential colorimetry: tool for evaluation of chromatic interference patterns", **36**, 2384–2391 (1997).
- ³⁹K. R. Fiedler, and S. M. Troian, "Early time instability in nanofilms exposed to a large transverse thermal gradient: improved image and thermal analysis", J. Appl. Phys. **120**, 205303 (2016),
- ⁴⁰F. A. Jenkins, and H. E. White, *Fundamentals of optics*, 4th ed. (McGraw-Hill Inc., 1976).
- ⁴¹I. D. Nikolov, and C. D. Ivanov, "Optical plastic refractive measurements in the visible and the near-infrared regions", **39**, 2067–2070 (2000).
- ⁴² Tydex, J. S. Co., *Tydex[®] Sapphire* (St. Petersburg, Russia).
- ⁴³M. A. Green, and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K", Prog. Photov. 3, 189–192 (1995).
- ⁴⁴P. Yeh, *Optical waves in layered media* (John Wiley and Sons, Inc., Hoboken, New Jersey, 2005).
- ⁴⁵M. Born, and E. Wolf, *Principles of optics: electromagnetic theory of propagation, interference and diffraction of light* (Cambridge University Press, 1999).
- ⁴⁶ OMEGA Engineering, Inc., *RTD Reference Sheet* (Norwalk, CT).
- ⁴⁷ OMEGA Engineering, Inc., *Thermocouple Tolerances* (Norwalk, CT).
- ⁴⁸ McMaster-Carr Supply Co., *Multipurpose 6061 Aluminum* (Santa Fe Springs, CA).
- ⁴⁹ Aremco Products Inc., Aremco Heat-AwayTM 638 (Valley Cottage, NY).

- ⁵⁰ Induceramic, *Alumina Metallic Ceramic Heating Element* (Waterloo, Ontario, Canada).
- ⁵¹A. G. Marshall, and F. R. Verdun, *Fourier Transforms in NMR, optical and mass spectrometry: a user's handbook* (Elsevier, New York, NY, 1990).
- ⁵²R. J. Meier, "On art and science in curve-fitting vibrational spectra", Vib. Spectrosc. **39**, 266–269 (2005).
- ⁵³A. Yariv, and P. Yeh, *Photonics: optical electronics in modern communications* (Oxford University Press, Inc., New York, New York, 2007).
- ⁵⁴ OriginLab, Origin (Northampton, MA).
- ⁵⁵T. Hou, C. Zheng, S. Bai, Q. Ma, D. Bridges, A. Hu, and W. W. Duley, "Fabrication, characterization, and applications of microlenses", Appl. Opt. **54**, 7366–7376 (2015).
- ⁵⁶H. Zappe, *Fundamentals of micro-optics* (Cambridge University Press, 2010).
- ⁵⁷V. Vespini, O. Gennari, S. Coppola, G. Nasti, L. Mecozzi, V. Pagliarulo, S. Grilli, C. Carfagna, and P. Ferraro, "Electrohydrodynamic assembly of multiscale PDMS microlens arrays", IEEE J. Quantum Elec. **21**, 1–8 (2015).
- ⁵⁸B. Platt, and R. Shack, "History and principles of Shack-Hartmann wavefront sensing", J. Refract. Surg. 17, S573–S577 (2001).
- ⁵⁹C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, "NIH Image to ImageJ: 25 years of image analysis", Nature Methods **9**, 671–675 (2012).
- ⁶⁰J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, "Fiji: an open-source platform for biological-image analysis", Nature Methods **9**, 676–682 (2012).
- ⁶¹Q. Tseng, "Study of multicellular architecture with controlled microenvironment", Thesis (Université de Grenoble, 2011).
- ⁶²V. G. Levich, and V. S. Krylov, "Surface-tension-driven phenomena", Annu. Rev. Fluid Mech. 1, 293–316 (1969).
- ⁶³S. H. Davis, "Thermocapillary instabilities", Annu. Rev. Fluid Mech. **19**, 403–435 (1987).
- ⁶⁴M. F. Schatz, and G. P. Neitzel, "Experiments on thermocapillary instabilities", Annu. Rev. Fluid Mech. **33**, 93–127 (2001).
- ⁶⁵J. P. Harmon, and G. K. Noren, eds., *Optical polymers: fibers and waveguides* (Oxford University Press, New York, New York 10016, 2001).
- ⁶⁶ Scientific Polymer Products Inc., *Polystyrene Standard, Cat* #771 (Ontario, New York).

- ⁶⁷I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica", J. Opt. Soc. Am. 55, 1205–1209 (1965).
- ⁶⁸D. J. Griffiths, *Introduction to quantum mechanics*, 2nd ed. (Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, 2005).
- ⁶⁹ Thorlabs Inc., *Zing*TM *Fiber* (Newton, New Jersey).
- ⁷⁰J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, "Ultra-low-loss high-aspectratio Si₃N₄ waveguides", Opt. Exp. **19**, 3163–3174 (2011).
- ⁷¹R. N. O'Brien, F. P. Dieken, and A. Glasel, "Use of He-Ne laser with Abbe refractometer to obtain some electrolyte refractive indices", J. Chem. and Eng. Data **18**, 142–144 (1973).
- ⁷²J. Rheims, J. Köser, and T. Wriedt, "Refractive-index measurements in the near-IR using an Abbe refractometer", Meas. Sci. and Tech. 8, 601–605 (1997).
- ⁷³I. Z. Kozma, P. Krok, and E. Riedle, "Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet", J. Opt. Soc. Am. B 22, 1479–1485 (2005).
- ⁷⁴M. Daimon, and A. Masumura, "Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region", Appl. Opt. 46, 3811– 3820 (2007).
- ⁷⁵E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, "Electrically induced structure formation and pattern transfer", Nature **403**, 874–877 (2000).
- ⁷⁶L. F. Pease, and W. B. Russel, "Linear stability analysis of thin leaky dielectric films subjected to electric fields", J. Non-Newton. Fluid Mech. **102**, 233–250 (2002).
- ⁷⁷L. F. Pease, and W. B. Russel, "Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis", J. Chem. Phys. **118**, 3790–3803 (2003).
- ⁷⁸D. A. Saville, "Electrohydrodynamics: the Taylor-Melcher leaky dielectric model", Annu. Rev. Fluid Mech. 29, 27–64 (1997).
- ⁷⁹V. Shankar, and A. Sharma, "Instability of the interface between thin fluid films subjected to electric fields", J. Colloid Interface Sci. **274**, 294–308 (2004).