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A p p e n d i x B

EVALUATION OF DRIVING FIELDS AT PERTURBED
INTERFACES

B.1 Background
One interesting aspect of the derivation presented in Ch. 2 is that the driving
mechanisms, the electric field for the SC model and the temperature field for the
AP and TC models, are evaluated at the perturbed film interface h(x, y, t), not the
unperturbed film interface ho. Intuitively, this is reasonable because the force due
to surface tension is based on the perturbed surface since there is no curvature in
the unperturbed state. To balance a driving force against surface tension, it should
be calculated in the same configuration where the surface tension was calculated.
One method for calculating the driving force is to use perturbation theory where
the perturbed fields are typically evaluated at the base state, not the perturbed state.
Evaluating some elements at the perturbed interface while evaluating others at the
unperturbed interface leads to a subtle dissonance in the derivation which results in
errors. This appendix will detail an example to show the error that can occur if the
driving forces are not consistently evaluated at the perturbed interface.

The derivation of the SC model that was presented in Sec. 2.3.1 is actually a
subset of the full derivation presented in the Ph.D. thesis of Zhuang [3]. In his
original derivation, he considered amore general system inwhich an overall potential
difference was applied across the nanofilm/air bilayer in addition to the surface
charge present at the interface. This applied potential difference was not applicable
to the experimental setup presented above, so the applied potential difference was
not included in Ch. 2. However, the case where there is no interfacial charge
density and only an applied potential difference has been investigated as a separate
instability, called the electrohydrodynamic (EHD) instability. The EHD instability
has garnered considerable interest both experimentally [4, 5, 75] and theoretically
[76, 77]. As shown in Fig. B.1, the geometry is the same as in Ch. 2 except instead
of an applied temperature gradient, there is an applied electric field. This appendix
will focus on the theoretical work of Pease and Russel [76, 77] and demonstrate that
their electric fields yield a tangential stress which is incompatible with Maxwell’s
equations.
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Figure B.1: Instability geometry in EHD model
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The driving force in the EHD model is the applied potential difference across the bilayer, Φo.

The rest of this appendix is organized as follows. In Sec. B.2, it is shown that there are
no tangential stresses at a perfect dielectric interface with no free charge which arises
directly from Maxwell’s equation. Then, electric fields in the bilayer are derived
from the nondimensional governing equations within the lubrication approximation
when evaluated at the perturbed interface in Sec. B.3. Next, the tangential stresses
due to these electric fields are computed in Sec. B.4 to show that the tangential
stresses at the perturbed interface are zero. Then, a dimensional perturbation
calculation follows to evaluate the perturbed electric field at the unperturbed interface
in Sec. B.5. In Sec. B.6, it is demonstrated that these electric fields do not consistently
satisfy Maxwell’s equations and in Sec. B.7 the results are briefly discussed.

B.2 Tangential Stresses at a Perfect Dielectric Interface
The Maxwell stress tensor in the absence of magnetic fields, originally defined in
Eq. (2.49), has the form

Tem = ®E ®D − 1
2

I
(
®E · ®D

)
. (B.1)

To compute the tangential stresses at the interface, this equation is dotted by the
tangential unit vector, t̂, on the left, dotted by the normal unit vector, n̂, on the right,
and the difference between the stress tensors in the air and film layers is taken. Note
that all of these terms are evaluated at the film/air interface.

t̂ · Tem
air · n̂ − t̂ · Tem

film · n̂ = t̂ · ®Eair ®Dair · n̂ − t̂ · ®Efilm ®Dfilm · n̂.

The normal and tangential unit vectors are orthogonal so that t̂ · I · n̂ = 0 which was
used to simplify the preceding equation. The tangential components of the electric
field must be equal across the interface because∇× ®E = 0. Therefore, the subscripts
on the electric field terms are dropped and the common terms factored out front

t̂ · Tem
air · n̂ − t̂ · Tem

film · n̂ =
(
t̂ · ®E

) (
®Dair · n̂ − ®Dfilm · n̂

)
.
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The difference in the normal components of the electric displacement field across
the interface is simply the free charge at the interface, σfree. In this system, there is
no free charge, so the tangential stresses at the interface must be

t̂ · Tem
air · n̂ − t̂ · Tem

film · n̂ =
(
t̂ · ®E

)
σfree = 0. (B.2)

The fact that there can be no tangential stresses at a perfect dielectric interface if
there is no free charge was well known to the leaky dielectric community [78]. As
such, Pease and Russel did not calculate the tangential stresses at the perturbed
interface in their derivation. However, as shown below in Sec. B.5 and Sec. B.6,
their electric field expressions did cause tangential stresses anytime the interface was
perturbed from the initially flat state. Before this is done, an electric field solution
which is self-consistent with Maxwell’s equations at the perturbed film interface
will be demonstrated.

B.3 Electric Field Evaluated at a Perturbed Interface
The basics of the governing equations for the electric field within the lubrication ap-
proximation have been presented in Sec. 2.3.1, although in this section the potential
scaling and the boundary conditions will be slightly different. All scaled quantities
in this appendix will be denoted with a prime to signify the change in scaling. The
characteristic potential scale is now

Φ
′
c = Φo. (B.3)

The electrostatic boundary conditions are changed to

φ̃′film(Z = 0) = 0, (B.4)

φ̃′air(Z = D) = 1, (B.5)

φ̃′film(Z = H) = φ̃′air(Z = H), (B.6)

εfilm
∂φ̃′film(Z = H)

∂Z
=
∂φ̃′air(Z = H)

∂Z
. (B.7)

The solutions for the electric potential have the same general solution

φ̃′film = AEHD
film Z + BEHD

film ,

φ̃′air = AEHD
air Z + BEHD

air ,
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where AEHD
film , BEHD

film , AEHD
air , and BEHD

air are integration constants. Applying the
Dirichlet boundary conditions from Eq. (B.4) and (B.5) yields

φ̃′film = AEHD
film Z,

φ̃′air = AEHD
air (Z − D) + 1.

Applying Eq. (B.7) gives
εfilm AEHD

film = AEHD
air .

This implies that the electric potentials become

φ̃′film = AEHD
film Z,

φ̃′air = εfilm AEHD
film (Z − D) + 1.

The final boundary condition is continuity of the potentials at the interface from
Eq. (B.6). This allows AEHD

film to be determined

AEHD
film =

1
εfilmD − (εfilm − 1)H .

The electric potentials are therefore

φ̃′film =
Z

εfilmD − (εfilm − 1)H , (B.8)

φ̃′air =
εfilm(Z − D)

εfilmD − (εfilm − 1)H + 1. (B.9)

From this the electric fields are computed and then broken into components

Ẽ′film,z =
−1

εfilmD − (εfilm − 1)H , (B.10)

Ẽ′film,‖ =
−Z(εfilm − 1)ε∇̃‖H
[εfilmD − (εfilm − 1)H]2

, (B.11)

Ẽ′air,z =
−εfilm

εfilmD − (εfilm − 1)H , (B.12)

Ẽ′air,‖ =
−εfilm(Z − D)(εfilm − 1)ε∇̃‖H
[εfilmD − (εfilm − 1)H]2

. (B.13)

B.4 Tangential Stresses from Electric Field Evaluated at Perturbed Interface
In Sec. 2.3.1, an expression for the normal component of the stress tensor dotted
into the normal vector was computed. Recall that this expression is

n̂ · Tem · n̂ = εoε

2
E2

z . (B.14)
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To find the tangential stresses this quantity must be subtracted from the stress tensor
dotted into the normal vector. This quantity is

Tem · n̂ = εoε


−1

2
E2

z 0 ExEz

0 −1
2

E2
z EyEz

ExEz EyEz
1
2

E2
z




−ε ∂H

∂X

−ε ∂H
∂Y

1


= εoε

(
ε

2
E2

z ∇̃‖H + Ez ®E‖ +
1
2

E2
z ẑ

)
.

The tangential components of the stress tensor are

(Tem · n̂)‖ = Tem · n̂ − (n̂ · Tem · n̂) n̂

= εoεEz

(
Ezε∇̃‖H + ®E‖

)
. (B.15)

The difference in the tangential stress tensors in the air and the film is now verified
to be zero. This implies that there are no tangential stresses.(
Tem

air · n̂
)
‖ −

(
Tem

film · n̂
)
‖ =εoE′air,z

(
E′air,zε∇̃‖H + ®E′air,‖

)
− εoεfilmE′film,z

(
εE′film,z∇̃‖H + ®E

′
film,‖

)
=
εoεfilmΦ

′2
c

h2
o

Ẽ′film,z

(
ε∇̃‖H

(
Ẽ′air,z − Ẽ′film,z

)
+ Ẽ′air,‖ − Ẽ′film,‖

)
.

In this expression the fact that E′air,z = εfilmE′film,z has been used. Substitution of the
electric field expressions into this equation yields

(
Tem

air · n̂
)
‖ −

(
Tem

film · n̂
)
‖ =

εoεfilmΦ
′2
c

h2
o

Ẽ′film,zε∇̃‖H
(

1 − εfilm
εfilmD − (εfilm − 1)H

+
H(εfilm − 1) − εfilm(H − D)(εfilm − 1)

[εfilmD − (εfilm − 1)H]2

)
=0.

This demonstrates that the electric fields derived from the perturbed interface con-
sistently satisfy Maxwell’s equations and do not have any tangential stresses when
there is no free charge at the interface.

B.5 Electric Field Perturbations Evaluated at an Unperturbed Interface
The derivation of Pease and Pussel computed the electric fields in the bilayer in
two steps. First, a base state electric field was computed for the unperturbed
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film interface, within the geometry shown in Fig. B.1. Then, a perturbation to
the film height was introduced which created perturbations in the electric fields.
Their derivation proceeded in dimensional quantities and was then scaled after
computation of the perturbed electric field.

B.5.1 Base State Electric Field
Base state quantities are denoted with the superscript o. The boundary conditions
for this system are

φo
film(z = 0) = 0, (B.16)

φo
air(z = do) = Φo, (B.17)

εfilmEo
film(z = ho) = Eo

air(z = ho), (B.18)

φo
air(z = do) − φo

film(z = 0) = −
∫ ho

0
Eo

filmdz −
∫ do

ho
Eo

airdz. (B.19)

The last condition is an equivalent statement to the continuity of electric potential
at an interface which arises from the tangential electrostatic boundary conditions.
Combining the four equations presented above into one simplifies to

Φo = −hoEo
film − εfilm(do − ho)Eo

film,

from which the electric field in the film at z = ho was found

®Eo
film(z = ho) =

−Φo ẑ
εfilmdo − (εfilm − 1)ho

. (B.20)

From this expression the electric field in the air layer at z = ho was computed to be

®Eo
air(z = ho) =

−εfilmΦo ẑ
εfilmdo − (εfilm − 1)ho

. (B.21)

These are the base state electric fields which can now be perturbed.

B.5.2 Perturbed Electric Field
With the base state electric fields computed, the position of the film/air interface
was perturbed

h = ho + δhei®k ‖ · ®x‖ . (B.22)
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The perturbed electric quantities, δφ, δ ®E , and δ ®D are added to the their respective
base state quantities. For each layer, the total potential, electric field, and elec-
tric displacement field must satisfy Maxwell’s equations. Due to the linearity of
Maxwell’s equations the perturbed electric fields must satisfy

∇ × δ ®E = 0, (B.23)

∇ · δ ®E = 0. (B.24)

These two equations imply that the perturbed electric field can be written as the
negative gradient of the perturbed potential and that this perturbed potential will
satisfy Laplace’s equation

∇2δφ = 0. (B.25)

The perturbed potential was expanded in terms of normal modes as was the film
height perturbation. The specific form is

δφ = φ̃(z)ei®k ‖ · ®x‖ . (B.26)

Laplace’s equation of the perturbed potential then becomes

d2φ̃

dz2 − k2φ̃ = 0. (B.27)

Two linearly independent solutions to this equation in the two layers are

φ̃film = AEHD
film sinh kz + BEHD

film cosh kz, (B.28)

φ̃air = AEHD
air sinh kz + BEHD

air cosh kz. (B.29)

Because the base state solution already satisfies the boundary conditions at z = 0
and z = do, the perturbed potential must satisfy the following Dirichlet boundary
conditions

δφfilm(z = 0) = 0, (B.30)

δφair(z = do) = 0. (B.31)

Upon simplification the perturbed potentials become

φ̃film = AEHD
film sinh kz,

φ̃air = AEHD
air sinh k(z − do),
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where in the last expression a constant factor has been absorbed into the definition of
AEHD

air since it would have canceled later. The two remaining boundary conditions are
more complicated to apply and in the work of Pease and Russel were evaluated at the
unperturbed film position z = ho, even though it should have been z = h. Denoting
the difference across the interface (air minus film) of a quantity by enclosing it in
brackets, the usual electrostatic boundary conditions are

n̂ × [ ®E] = 0, (B.32)

n̂ · [ ®D] = 0. (B.33)

The vector quantities are now broken into components to more effectively take the
dot and cross product in the above equations. The base state electric field has no x̂

and ŷ components, and the normal component of the base state electric displacement
field is continuous across the interface because there is no free charge. Consequently
the differences across the interface have the form

[Ex] = [δEx],
[Ey] = [δEy],
[Ez] = [Eo] + [δEz],
[Dx] = [δDx],
[Dy] = [δDy],
[Dz] = [δDz].

The boundary condition in the normal direction is

n̂ · [ ®D] = −∂δh
∂x
[δDx] −

∂δh
∂y
[δDy] + [δDz] = 0.

The first two terms in this expression are second order and have been dropped to
first order. Consequently, this equation implies

δEair,z = εfilmδEfilm,z .

Or, in terms of the potential,

∂φ̃air
∂z
= εfilm

∂φ̃film
∂z

.



198

This equation was evaluated at z = ho and yields one constant in terms of the other

AEHD
film =

AEHD
air
εfilm

cosh k(ho − do)
cosh kho

, (B.34)

which means that the perturbed potentials are now

φ̃film =
AEHD

air cosh k(ho − do)
εfilm

sinh kz
cosh kho

,

φ̃air = AEHD
air sinh k(z − do).

The tangential electrostatic boundary conditions requires the evaluation of the cross
product

n̂ × [ ®E] =


x̂ ŷ ẑ

−∂h
∂x

−∂h
∂y

−1

[δEx] [δEy] [Eo] + [δEz]


= 0.

The ẑ component of this cross product is second order and the x̂ and ŷ expressions
have the same form. As such, the x̂ component was chosenwithout loss of generality.
In terms of the potential it is [

−∂δφ
∂y
+ Eo ∂h

∂y

]
= 0.

Because both the potential perturbation and the height perturbation were expanded
in the same set of normal modes, the partial derivative brings down the same term
from the exponential which then cancels, leaving[

−φ̃ + Eoδh
]
= 0.

The difference in perturbed potentials is then

φ̃film − φ̃air = δh
(
Eo

film − Eo
air

)
. (B.35)

From this equation the last remaining constant in the perturbed potentials is deter-
mined

AEHD
air =

εfilm
cosh k(ho − do)

δh
(
Eo

film − Eo
air

)
tanh kho − εfilm tanh k(ho − do)

. (B.36)
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Substituting this back into the expressions for the perturbed potentials yields

φ̃film =
δh(εfilm − 1)Eo

film
εfilm tanh k(ho − do) − tanh kho

sinh kz
cosh kho

, (B.37)

φ̃air =
εfilmδh(εfilm − 1)Eo

film
εfilm tanh k(ho − do) − tanh kho

sinh k(z − do)
cosh k(ho − do)

. (B.38)

The components of the electric field at the perturbed interface (z = h) are needed
for the evaluation of the tangential stresses. As before, the electric field is broken
into components normal and tangential to the interface

δEfilm,z =
−δh(εfilm − 1)Eo

film
εfilm tanh k(ho − do) − tanh kho

k cosh kh
cosh kho

, (B.39)

δEfilm,‖ =
−(εfilm − 1)Eo

film∇‖δh

εfilm tanh k(ho − do) − tanh kho

sinh kh
cosh kho

, (B.40)

δEair,z =
εfilmδh(εfilm − 1)Eo

film
εfilm tanh k(ho − do) − tanh kho

k cosh k(h − do)
cosh k(ho − do)

, (B.41)

δEair,‖ =
−εfilm(εfilm − 1)Eo

film∇‖δh

εfilm tanh k(ho − do) − tanh kho

sinh k(h − do)
cosh k(ho − do)

. (B.42)

Since these electric fields are in dimensional units, they are nondimensionalized and
then the lubrication approximation is applied to them in the following equations.
During the application of the lubrication approximation the hyperbolic functions are
Taylor expanded. Note that all dependence on the wavevector, K , cancels after the
Taylor expansion.
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δ̃E
′
film,z =

−(H − 1)(εfilm − 1)Ẽo
film

εfilm tanh εK(1 − D) − tanh εK
εK cosh εKH

cosh εK

≈ (H − 1)
(εfilm − 1)Ẽo

film
εfilmD − (εfilm − 1), (B.43)

δ̃E
′
film,‖ =

−(εfilm − 1)Ẽo
filmε∇̃‖H

εfilm tanh εK(1 − D) − tanh εK
sinh εKH
cosh εK

≈ εH∇̃‖H
(εfilm − 1)Ẽo

film
εfilmD − (εfilm − 1), (B.44)

δ̃E
′
air,z =

−(H − 1)εfilm(εfilm − 1)Ẽo
film

εfilm tanh εK(1 − D) − tanh εK
εK cosh εKH

cosh εK

≈ (H − 1)
εfilm(εfilm − 1)Ẽo

film
εfilmD − (εfilm − 1), (B.45)

δ̃E
′
air,‖ =

−εfilm(εfilm − 1)Ẽo
filmε∇̃‖H

εfilm tanh εK(1 − D) − tanh εK
sinh εK(H − D)

cosh εK

≈ ε(H − D)∇̃‖H
εfilm(εfilm − 1)Ẽo

film
εfilmD − (εfilm − 1) . (B.46)

Additionally, the scaled base state electric fields at the unperturbed interface are

Ẽo
film =

−1
εfilmD − (εfilm − 1), (B.47)

Ẽo
air =

−εfilm
εfilmD − (εfilm − 1) . (B.48)

B.6 Tangential Stresses from Electric Field Evaluated at Unperturbed Inter-
face

From Sec. B.4 the tangential components of the stress tensor have the form

(Tem · n̂)‖ = εoε
(
εE2

z ∇̃‖H + ®E‖Ez

)
. (B.49)

The ẑ component of the electric field is composed of a base state and a perturbation.
Substituting and only keeping terms to first order in ε , this expression becomes

(Tem · n̂)‖ = εoε
(
ε∇̃‖H(Eo)2 + ®E‖Eo

)
.

This implies that the tangential stress difference between the air and film layers is(
Tem

air · n̂
)
‖ −

(
Tem

film · n̂
)
‖ =

εoΦ
′2
c

h2
o
εfilmẼo

film

(
ε∇̃‖HẼo

film(εfilm − 1)

+ δ̃E
′
air,‖ − δ̃E

′
film,‖

)
.



201

Focusing on the right hand side of the equation, substitution of the scaled electric
fields from above gives(

Tem
air · n̂

)
‖ −

(
Tem

film · n̂
)
‖ =

εoεfilmΦ
′2
c

h2
o

(
Ẽo

film

)2
ε∇̃‖H(εfilm − 1)×(

1 − εfilmD − (εfilm − 1)H
εfilmD − (εfilm − 1)

)
,0. (B.50)

This result demonstrates that this technique for calculating the electric field is not
consistent with Maxwell’s equations any time that the interface is not flat (H = 1).

B.7 Summary
In the first case when the electric field was evaluated at the perturbed interface,
the governing equations were scaled and the lubrication approximation was invoked
very early in the derivation. This use of the lubrication approximation simplified
Laplace’s equation, which allowed for an easy solution of the electric field in the
bilayer since the ẑ equations decouple from the other directions. In the second
case, the electric field was computed in dimensional quantities, scaled, and then the
lubrication approximation was applied afterwards. This leads to a more complicated
solution process which can obscure the fact the electric fields are not consistent
with Maxwell’s equations any time the interface is not flat. From an intuitive
perspective, the choice to evaluate the perturbed electric field at the unperturbed
interface is problematic because it attempts to find a consistent electric field at a flat
interface when the interface will be deformed during growth. The computation of
the electric fields in the perturbed case could have been fixed by applying the final
two electrostatic boundary conditions at z = h instead of z = ho.

As an interesting historical note, this issue with the inconsistent tangential stresses
was corrected in later work (e.g. [79]) without comment, so it is not clear if this
issue was ever noticed. It also bears mentioning that even with this error Pease and
Russel still derived the correct expression for λEHD

o in linear stability (not presented
here). They found the correct answer because in linear stability the stresses are
evaluated at the unperturbed interface where the tangential stresses don’t contribute.
This means that the only place where this issue would cause significant problems is
in numerical simulations of the EHD thin film evolution equation at late times when
using the evolution equation derived by Pease and Russel.
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