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ABSTRACT

This doctoral thesis describes experimental work conducted as part of ongoing ef-
forts to identify and understand the source of linear instability in ultrathin liquid
films subject to large variations in surface temperature along the air/liquid interface.
Previous theoretical efforts by various groups have identified three possible physical
mechanisms for instability, including an induced surface charge model, an acoustic
phonon model, and a thermocapillary model. The observed instability manifests as
the spontaneous formation of arrays of nano/microscale liquid protrusions arising
from an initially flat nanofilm, whose organization is characterized by a distinct
in-plane wavelength and associated out-of-plane growth rate. Although long range
order is somewhat difficult to achieve due to thin film defects incurred during prepa-
ration, the instability tends toward hexagonal symmetry within periodic domains
achieved for a geometry in which the nanofilm is held in close proximity to a cooled,

proximate, parallel, and featureless substrate.

In this work, data obtained from a previous experimental setup is analyzed and it
is shown how key improvements in image processing and analysis, coupled with
more accurate finite element simulations of thermal profiles, lead to more accu-
rate identification of the fastest growing unstable mode at early times. This fastest
growing mode is governed by linear instability and exponential growth. This work
was followed by re-examination of real time interference fringes using differential
colorimetry to quantify the actual rate of growth of the fastest growing peaks within
the protrusion arrays. These initial studies and lingering questions led to the intro-
duction of a new and improved experimental setup, which was redesigned to yield
larger and more reproducible data sets. Corresponding improvements to the image
analysis process allowed for the measurement of both the wavelength and growth rate
of the fastest growing mode simultaneously. These combined efforts establish that
the dominant source of instability is attributable to large thermocapillary stresses.
For the geometry in which the nanofilm surface is held in close proximity to a cooled
and parallel substrate, the instability leads to a runaway process, characterized by
exponential growth, in which the film is attracted to the cooled target until contact

is achieved.

The second part of this thesis describes fabrication and characterization of microlens
arrays and linear waveguide structures using a similar experimental setup. However,

instead of relying on the native instability observed, formation and growth of liquid
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shapes and protrusions is triggered by pre-patterning the cooled substrate with
a desired mask for replication. These preformed cooled patterns, held in close
proximity to an initially flat liquid nanofilm, induce a strong non-linear response via
consequent patterned thermocapillary stresses imposed along the air/liquid interface.
Once the desired film shapes are achieved, the transverse thermal gradient is removed
and the micro-optical components are affixed in place naturally by the resultant rapid
solidification. The use of polymer nanofilms with low glass transition temperatures,
such as polystyrene, facilitated rapid solidification, while providing good optical
response. Surface characterization of the resulting micro-optical components was
accomplished by scanning white light interferometry, which evidences formation of
ultrasmooth surfaces ideal for optical applications. Finally, linear waveguides were
created by this thermocapillary sculpting technique and their optical performance
characterized. In conclusion, these measurements highlight the true source of
instability in this geometry, and the fabrication demonstrations pave the way for

harnessing this knowledge for the design and creation of novel micro-optical devices.
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NOMENCLATURE

This is a compilation of the abbreviations and symbols which are used in this
work. Generally, dimensional variables are lower case letters while dimensionless
variables are the corresponding upper case letters. In the case of operators, the
nomdimensional analogs typically have a tilde over them. Within the body of this
document, certain variables will be subscripted by i. This subscript will typically

represent different layers in the system, primarily either "film" or "air".
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Chapter 1

INTRODUCTION

Almost twenty years ago, the spontaneous formation of pillars from a molten
nanofilm in a confined geometry subject to a transverse thermal gradient was ob-
served by Chou and Zhuang [2, 3|]. In their experiment, solid polymeric nanofilms
were spun coat on a silicon wafer with an initial film thickness, 4, of approximately
one hundred nanometers. Subsequently, another silicon wafer was overlaid on this
coated wafer. To ensure an air gap between the top surface of the nanofilm and
the overlaid wafer, the wafer was patterned with spacers which determined the total
plate separation distance, d,, and this distance was typically on the order of several
hundred nanometers to a micron. A schematic of their experimental setup is shown
in Fig. [[.T} Upon heating, the temperature of the system was raised significantly
above the glass transition temperature so that the film was in a molten state. After
deformation times ranging from 5 to 80 minutes, the molten film was allowed to
solidify and hexagonal arrays of pillars with lateral spacing on the order of microns
were observed after the bounding plate was removed. These pillars had spanned
the air gap during deformation and contacted the top plate, creating pillars with
flat tops and fairly vertical sidewalls. At the time, there was no explanation for
this phenomenon. It has since generated controversy over the dominant physical
mechanism that causes the molten nanofilm to be unstable in this system. Several

possibilities have been put forth and will be discussed in turn.

Figure 1.1: Basic nanofilm instability geometry

Molten Nanofilm
Heater

Schematic of the nanofilm geometry. The molten nanofilm is bounded from below by a heated
substrate and from above by an air layer. The air layer is bounded from above by a plate where the
total plate separation, d,, is typically on the order of a micron, while the initial film thickness, A,, is
on the order of hundreds of nanometers. The temperature drop from bottom to top plates is typically
on the order of 10 °C. The lateral spacing of the protrusions, A,, is on the order of microns to tens
of microns.



1.1 Previous Instability Investigations: Surface Charge (SC) Model

The first model proposed to explain the instability of this film was put forward
by Chou and Zhuang [2, 3]]. Their model treats the molten nanofilm from the
perspective of fluid dynamics wherein it is linearly unstable to perturbations. They
hypothesized that charges at the nanofilm’s free interface induce image charges in the
heating and cooling plates. The combined effect of these charges creates an electric
field which exerts a destabilizing electrostatic stress on the interface to overcome
the stabilizing force of surface tension. Due to its dependence on interfacial charge
density, this model will be referred to as the surface charge (SC) model. Interestingly,
they noted that in addition to electrical effects, thermal effects might be playing a
role because if the molten nanofilm was not bounded from above by the overlaid
wafer, then the pillars were not observed after solidification of the film. However,
they did not intentionally impose a thermal gradient across the system with active
cooling of the top plate. Additionally, they estimated that the critical numbers for
cellular convection driven by thermal effects such as Rayleigh-Bénard and Bénard-
Marangoni convection were far too small for instability to occur. Regardless, the
spatial period of the observed hexagonal arrays showed an unexplained dependence

on the temperature of the system.

1.2 Previous Instability Investigations: Acoustic Phonon (AP) Model

Nearly simultaneously with the work of Chou and Zhuang, Schiffer and co-workers
investigated an instability in a similar geometry [4-6]. As before, they spun coat
polymeric nanofilms onto silicon substrates and placed them in a confined geometry
through the use of spacers. The key difference from the experiments of Chou and
Zhuang is that in the experiments of Schéffer et al. the top plate was actively cooled.
The cooler top plate was held at a temperature above the glass transition temperature
of the polymer and the temperature difference between the bounding plates was on
the order of 10 °C. The setup was subjected to this externally imposed transverse
thermal gradient overnight and then the nanofilm was solidified. Once again, hexag-
onal arrays of pillars with flat tops were observed upon removal of the top plate.
To rule out any electrostatic effects, both of the bounding plates were electrically
grounded. As Chou and Zhuang did, Schiffer et al. calculated the Rayleigh-Bénard
and Bénard-Marangoni numbers in nanofilm experiments and found that they were
many orders of magnitude smaller than the critical ones required for instability. To
explain the observed results, they suggested that the instability might be due to an

acoustic phonon mechanism leading to periodic modulation of the acoustic pressure
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within the film. In this model, acoustic phonon reflections create a net acoustic pres-
sure which destabilizes the interface and causes protrusions to grow. Specifically,
they conjectured that phonons with low frequency would be coherently reflected off
the nanofilm/air interface while high frequency phonons would be unaffected by the
interface and conduct most of the heat flux through the system. These low frequency
phonon reflections would then contribute a significant destabilizing radiation pres-
sure which overpowers surface tension to create protrusions. This model will be

referred to as the acoustic phonon (AP) model.

Following a derivation of a complete hydrodynamic theory describing the instability
in terms of the radiation pressure, they used linear stability analysis to derive a result
for the characteristic spacing of the film’s fastest growing mode, A4,, as a function
of the initial film thickness, h,, total plate separation, d,, and temperature drop,
AT. They then performed a set of experiments to probe the functional dependence
of 4, on d, by introducing a tilt between the bottom and top plates to measure a
range of d, for a single run at a given h, value. They repeated this procedure for
several values of h,. By fitting one of the parameters in their theory, they were able
to find agreement between the experimental data and the theoretical prediction for
A, over a limited range of d,. Due to their decision to vary d, through substrate
tilt, they were only able to measure values of d, that varied by a factor of three
in a given experimental run and only achieved a range of a factor of six over all
the experimental runs. Furthermore, the induced substrate tilt induced an extra
lateral gradient which was not included in their model. More problematic for their
comparisons to the wavelength predicted by linear stability theory, the values that
they reported for 4, were all measured far outside of the linear regime because
the deformations were allowed to contact the top plate and solidify. Prolonged
contact with the top plate can drastically changed the pattern morphology through
coarsening or van der Waals interactions which were not considered in the AP
model. Furthermore, several measurements were made in regions where growth of
structures was nucleated by defects which would also invalidate the comparison of

the experimental data to linear stability theory.

Following in this vein, Peng ef al. demonstrated formation of hexagonal arrays from
heated polymeric nanofilms in confined geometries [7/]], similar to what had been
previously reported by Schiffer et al.. They then took the hexagonal patterns and
transferred them to a stamp made of polydimethylsiloxane (PDMS) which could then

be used for future microfabrication steps. Even though there was strong ordering in
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these systems, Peng ef al. did not measure the spacing of their arrays as a function

of hy, d,, or AT, nor did they compare to any proposed model.

1.3 Previous Instability Investigations: Thermocapillary (TC) Model

Several years later, Dietzel and Troian began to investigate these issues and re-
evaluated the assumptions of the SC and AP models [8-10]. In particular, they
noted that phonon mean free paths on the order of ten to one hundred nanome-
ters required for coherent reflection from the film interface in the AP model have
only been measured in solid polymer systems at temperatures far below the glass
transition temperature. They conclude that it is unlikely that molten amorphous
films would be able to support the long attenuation lengths due to the increased
mobility of the polymeric system above the glass transition temperature. They also
reexamined the assertion by both Chou et al. [2] and Schiffer er al. [6] that the
critical numbers which typically govern Bénard-Marangoni convection would be
too small in nanofilm experiments for instability. Their theoretical and computa-
tional work [8-10] has indicated that the instability represents a new limit of the
long wavelength Bénard-Marangoni instability, distinguished by extremely large
thermocapillary forces and negligible hydrostatic forces, which is not governed by
the traditional critical numbers. The underlying concept for this model is that pro-
trusions will be slightly cooler than valleys and they will have a correspondingly
higher surface tension. This gradient in surface tension between peaks and valleys
creates a destabilizing shear stress along the interface which causes lateral flow
and, through incompressibility, out of plane protrusion growth. This model will
be referred to as the thermocapillary (TC) model. Based on the TC model, they
also derived a prediction for the characteristic spacing of the film’s fastest growing
mode, 4,, as a function of the initial film thickness, #,, total plate separation, d,,,
and temperature drop, AT, and compared it to the experimental data of Schéffer et
al. [4H6] and concluded that the TC model was consistent with the experimental
data to that point, and could potentially play a critical, if not dominant, role in the

film evolution.

Shortly thereafter, McLeod et al. performed a series of experimental wavelength
measurements to further investigate the underlying instability mechanism [1]]. These
experiments focused on improving the experimental measurement techniques to
more accurately compare the measured wavelengths to the predictions of linear
stability theory from the SC, AP, and TC models. In particular, they performed

in situ optical measurements of the instability during the deformation process to
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measure A, when the deformations were small compared to the initial film thickness
and well before the protrusions contacted the top plate. Furthermore, none of the
previous experiments had measured or calculated the temperature drop across the
nanofilm/air bilayer. Due to the minute size of the gap, it is impossible to directly
measure the temperature in the gap using a thermocouple. Instead, the difference
between heater and chiller setpoints was taken to be equal to the temperature drop
across the bilayer. McLeod ef al. improved upon this procedure by performing finite
element simulations of the experimental setup based on thermocouple measurements
to compute the temperature difference across the bilayer. They also performed many
more experimental runs than Schiffer ef al. [4-H6] and swept a much larger range
of d,, h,, and AT. With this experimental setup, they found that the experimental
data for the measured wavelength was most consistent with the TC model, but
that close numerical agreement required the thermal conductivity of the polymer
nanofilm to be fit. The required value for the vertical, out-of-plane polymer thermal
conductivity was found to be five times larger than the bulk value. It was originally
postulated that polymer chain alignment could account for the increase in thermal
conductivity, but this hypothesis is problematic for two reasons. First, in cases
where polymer alignment has been observed [11]], the polymer used was well above
the entanglement molecular weight where long chains can interact. Conversely, the
polymer used in the work of McLeod et al. was well below the entanglement limit
so a potential alignment mechanism is not clear. Second, the increase in thermal
conductivity of spin coated polymeric thin films has been observed in the lateral
direction, not the vertical one [[12]. As such, even with the improved experimental
setup, there remained discrepancies between the experimental measurements and

the theoretical predictions.

1.4 Pattern Replication through Controlled Film Deformation

Concurrently with the fundamental science investigations into the underlying in-
stability mechanism presented above, there has been research into controlling and
localizing feature deformation as a potential manufacturing technique. To do this,
the locally flat top plate from Fig. [I.1] was patterned with another set of features
which stretch toward the nanofilm in addition to the spacers. A schematic of this
geometry is shown in Fig.[I.2] In all three models, the presence of a patterned mask
on the top plate will localize deformation and allow for control of the film because

the mask changes the local gap width.

The first demonstration of pattern replication in these types of geometries was by



Figure 1.2: Basic nanofilm deformation geometry with a patterned top plate
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Schematic of the nanofilm geometry where the feature deformation is localized by patterns on the
top plate. The ranges for the experimental parameters are the same as for Fig. [T.1]

Chou and co-workers where they patterned the top plate with a triangle, a square
and the text "PRINCETON" [2, [13]]. In each case, they observed pillar arrays in
the shape of the patterned mask and virtually no deformation in the regions outside
the mask. In a related study, Chou et al. observed that the film would completely
cover the applied mask if it was closer in proximity to the initial film height [14].
In this case, the pillar arrays merged into a continuous feature which replicated
the mask. Similarly, Schiffer er al. demonstrated pattern replication of hexagonal
arrays, square arrays, and lines with feature sizes as small as 500 nm [4, |15]]. In all of
the cases just discussed, the features were allowed to grow until they contacted the
mask. This meant that all the features had flat tops due to their interaction with the
mask. Instead of allowing the film to grow unchecked, McLeod and Troian stopped
the film deformation before it interacted with the mask to produce a square array
of curved lenses [16]. This experimental work corresponds more closely with the
schematic in Fig. [I.2]than the previous studies which would have touched the mask
protrusions. The ability to localize nanofilm deformations using patterned masks
opens up a new avenue for the fabrication of unique structures with ultrasmooth
surfaces. This system profiles as a novel lithographic technique, but more work

needs to be done to understand the advantages and limitations.

1.5 Thesis Outline

In the spirit of the previous studies mentioned above, this thesis seeks to investigate
and understand the residual discrepancies between the experimental instability data
and the theoretical predictions. It also seeks to deform nanofilms into structures
through the use of patterned masks on the top plate and then characterize their
properties. As such, the remainder of this thesis is organized as follows. In Ch.[2]
the equations describing the distinct sources of instability proposed to explain the
spontaneous nanofilm deformation are reviewed. For each of the three previously
proposed linear instability models (SC, AP, and TC), predictions for the fastest
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growing mode and its corresponding wavelength and growth rate are compared. The
next three chapters focus on the experimental and numerical work which investigated
the dominant physical mechanism driving this thin film instability. Specifically, in
Ch. [3] improved analysis techniques for image analysis and thermal simulation are
detailed to improve the comparison of measured wavelengths to the AP and TC
models. In Ch.[]the growth of protrusions are measured as a function of time using
colorimetric information derived from thin film interference fringes. The resulting
growth rates are compared to the predictions of the TC model. Next, an improved
experimental setup is detailed and the instability measurements which were made
with it are described in Ch.[5] The results of these experiments strongly indicate that
the dominant instability mechanism is caused by interfacial thermocapillary stresses.
After this, the next two chapters focus on the fabrication of two kinds of micro-optical
components using thermocapillary forces. First, microlens arrays were fabricated
and characterized. The results of this study are presented in Ch.[6] Beyond microlens
arrays, linear optical waveguides were also fabricated and characterized and this
work is described in Ch. [/} Finally, Ch. @ describes conclusions from the thesis and

suggests experimental improvements for future studies.



Chapter 2

REVIEW AND COMPARISON OF THREE THIN FILM
INSTABILITY MODELS

As mentioned above in Ch. |1} nanofilms on a heated substrate are found experimen-
tally to be unstable. To better understand this phenomenon, several groups have
approached this process theoretically by modeling it as a fluid instability. All of the
proposed mechanisms for this phenomenon revolve around thin film hydrodynamic
instability theory. They differ in the specific driving force which destabilizes the
film against the force of surface tension but possess several unifying features. In this
chapter we review the three proposed mechanisms and synthesize the previous work
into one derivation which has consistent notation and serves to highlight the origin
and influence of the various driving forces. We also present the derived expressions
which the later experimental results are compared with in Ch.[3] Ch. ] and Ch.[3]

The remainder of this chapter is organized as follows. In Sec. [2.1] a thin film height
evolution equation is derived for the position of the nanofilm/air interface, h(x, y, 1),
starting from the basic equations of fluid mechanics. Subsequently in Sec. [2.2]
these equations are nondimensionalized and simplified using the long wavelength
approximation. Then in Sec. [2.3|linear stability analysis is applied for each of the
three proposed models. The results of the linear stability analysis give tangible

predictions for the wavelength and growth rate of the fastest growing mode.

2.1 Fluid Dynamics Governing Equations

To specify the system completely, we define the domain, the governing equations,
and the boundary conditions for the system. As mentioned in Ch.[I] the system of
interest is a free surface molten nanofilm bounded by an air layer. Note that this
derivation is only concerned with the fluid dynamics of the liquid nanofilm and not
the air layer. Due to the large difference between the density and viscosity of the
liquid nanofilm and the density and viscosity of the air layer only the dynamics of

the fluid layer are explicitly considered.

2.1.1 Nanofilm Instability Geometry
The domain which we will consider is a thin liquid film which has an initial height

h,. This can also be interchangeably referred to as the film thickness. The film is



Figure 2.1: Schematic of the instability geometry
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The molten nanofilm is bounded from below by a heated substrate and from above by a plate which
is cooled. The total plate separation is denoted by d,,, while the initial film thickness is denoted by
h,. The temperature drop from hot to cold plates is denoted by AT = Ty — T and the lateral spacing
of the protrusions is denoted by 4,,.

supported from below by a rigid, impermeable, heated substrate. The upper surface
of the film is a free interface and a distance d, from the bottom of the film there

exists a cooled, upper plate which constrains the system in the vertical direction.

2.1.2 Mass and Momentum Continuity Equations
There are two differential equations which we will use to describe this system.
The first differential equation is the mass continuity equation. We will assume

incompressible flow and the resulting equation is

V.ii = 0. 2.1)

In this equation & = (u, v, w) is the velocity of the molten nanofilm as a function of
space and time. The other differential equation which governs the fluid dynamics in
the molten layer is the Navier-Stokes equation where we have assumed that the fluid
is Newtonian. This equation physically represents the conservation of momentum
and has the form .

Du

poy = ~VP+ UV fooy (2.2)

where p is the density of the fluid, p is the pressure, u is the shear viscosity and
ﬁ)ody is the effect of body forces on the fluid. The most common body force which
acts on fluids is gravity. Previous theoretical work [8-10] has estimated that gravity
is negligible in nanofilm experiments due to the minuscule height scales. As such,
foody Will be set to zero for the remainder of this work. The notation for the
time derivative on the left hand side of the equation is the convective, or material,

derivative and is defined by

D o
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This describes how a quantity changes in time as well as local changes due to

variations along the local velocity field.

2.1.3 Fluid Velocity and Pressure Boundary Conditions
With the governing equations specified, we now outline the boundary conditions
required for solution of i and p. At the bottom of the liquid layer (z = 0 in Fig.

there is a no-slip and impenetrability condition with the solid wall

ii(z=0) = 0. (2.4)

At the free interface there is both a kinematic boundary condition and an interfacial
stress balance. The kinematic boundary condition relates the vertical component of

the fluid velocity to the change of the film height at the interface
oh
W(Z = /’l) = E tuy- V||h. (2.5)

The subscript || denotes that only the X and § components of the subscripted quantity
should be included in the expressions. Consequently, the horizontal velocity is
defined by

i = uf +v3y. (2.6)

Similarly, the horizontal gradient, V||, is composed of the derivatives solely in the £

and ¥ directions. In other words,

v =il 52 @.7)
ox

Beyond the kinematic boundary condition, we must balance the normal and tangen-
tial stresses at the interface which can be encapsulated in the following equation

which applies at z = h(x, y, 1)
(Tair - Tﬁlm) A+ pacﬁ + pelﬁ + Vs'y - yﬁ (Vs : ﬁ) =0. (2.8)

In this equation the stress tensors, T, are subscripted by their respective layers and
will be described in detail below. The unit normal vector, 7, is perpendicular to the
nanofilm surface everywhere and points from the film to the air. The terms p,. and
Pel are pressures arising from acoustic or electrical sources, respectively, and will
be defined in the relevant sections below since they correspond to specific proposed

models. These have been explicitly removed from the fluid pressure p in the stress
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tensor so that limiting cases can be considered for each model. Additionally, vy is
the surface tension at the air/film interface and V is the surface gradient which is
defined by

Vo=V —-i@-V). (2.9)

This means that the surface gradient operator only exists in the plane of the interface,
by definition, since the normal components have been removed. Furthermore, note

that V; = V| only where the interface is flat and 72 = Z.

2.2 Scaling the Governing Equations and Applying the Lubrication Approx-
imation

The system of interest has been defined and now the governing equations are scaled to

simplify the analysis. In particular, we know that both the overall system dimensions

and the characteristic lateral length scale of the instability growth, 4,,, are much larger

than the initial film thickness, A,. As such, we define a small quantity

ho
= —, 2.10
€= (2.10)
and after scaling the equations we only keep terms to first order in € since > < 1.

This approximation has several names including the lubrication or long wavelength
approximation [17H19]]. All the horizontal lengths are scaled by A, and all the
vertical lengths scaled by h,. Time is scaled using the horizontal length and a

characteristic lateral speed, u., which can be chosen arbitrarily. Therefore,

x=2.y=2, (2.11)
Ao Ao
h d
z=2w=2.p=-% 2.12)
Iy Iy Iy
v="Lv=L.w=2 (2.13)
Ue Ue We
t
r=—<p=Lr=2 (2.14)
Ao P. .
V.= ,9:9) =Y. (2.15)

The scalings for the pressure, P., and surface tension, I'., will be determined
below during the simplification of the Navier-Stokes equations. The quantity w,
is a characteristic velocity scale for flow in the vertical direction. Due to the
disparate length scales, it would not be correct to scale all the fluid velocities by the

same quantity. Now we return to the governing equations and scale them using the
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quantities above which will illuminate several relationships between these quantities

and allow us to simplify the equations significantly.

The first equation we will scale is the continuity equation to get a relationship
between u, and w,. Scaling Eq. (2.1)) results in

6_U+6_V+&6_W—0
X Y  eu.d0Z

To ensure that all the terms in the continuity equation are of the same order the
vertical velocity scale is set by w, = eu.. Consequently, the scaled continuity

equation is
ou oV ow

6_X+6_Y+a_Z_ (216)

Using these velocity scalings, the Navier-Stokes equations are simplified. For

simplicity, the equations are resolved into components during the scaling process.

These are
. DU  €h,P. 0P ,0*U ,0°U 08*U
X : €eRe = - —+ € +€ + ,
Dt uue. 0X 0X2 aY? 972
DV hoP. 0P 9’V 9’V 0%V
j}:eRe—:—EOC—+62 + €2 + ,
Dt uu. 0Y 0Xx? Y2  0z2
. 3. DW  €h,P.OP L[ ,0*°W  L,0*W 0°W
Z:€ Re = - — +€e[€ +€ + .
Dt uu. 0Z 0Xx? aY:  0z2

In these equations, the Reynolds number, Re, has been defined as

h
Re = Plclto (2.17)

u
The Reynolds number represents the ratio of inertial forces to viscous forces within
the fluid [19]. Based on the similarity of the terms in front of the pressure in each
of the three components, there is a clear scaling for the pressure
_ Huc
‘" €h,’

With this definition for the nondimensionalization of the pressure, the long wave-

(2.18)

length approximation is now implemented which requires that (1) € < 1 and (2)
€eRe < 1. This approximation takes advantage of the disparity between vertical and
lateral length scales to greatly reduce the complexity of the analysis. Neglecting

terms of second order in € or higher, the scaled Navier-Stokes equations are

U, —

I =22 = VP, (2.19)
aP

21— =0. (2.20)
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Moving on to the boundary conditions, the no-slip and impenetrability condition

from Eq. (2.4)) scales in a straightforward manner

U(Z =0) = 0. (2.21)

Similarly, the kinematic boundary condition from Eq. (2.5) becomes

aH =
W(ZZH)26—+U||(Z=H)'V||H. (2.22)
T
Scaling the interfacial stress balance in Eq. (2.8) within the long wavelength approx-
imation is more complicated and intermediate results will first be derived and then
compiled into the final expression. Specifically the normal vector, 7, the surface
gradient, Vj, the surface divergence of the normal vector, V; - 71, and the stress

tensor, T;, are scaled.

2.2.1 Scaling the Normal Vector to a Surface
The surface of the film described by A(x, y) can be expressed in three dimensions as

a locus of points where a function F is equal to zero.

F(x,y,z) =z—h(x,y) =0.

The unit normal to the surface is found by taking the gradient of F and normalizing

it
-1/2
on\> (0h\* oh  dh
= =) 41 i 42, 2.2
(6x) +(6y) + ) ( I ayy+z) (2.23)

VF
VF|

=

Each of these quantities scales as defined above, so the terms in the preceding square
root will be of order > and will be neglected in this analysis. Consequently, the

scaled unit normal in nondimensional units becomes

A=—-eVH+2. (2.24)

2.2.2 Scaling the Surface Gradient Operator
We can now take the scaled normal vector in Eq. (2.24) and use it to compute
the scaled surface gradient, V.. Recalling the definition of the surface gradient in

Eq. (2.9), this expression scales to
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After substitution of the normal vector from Eq. (2.23) into the definition of the
surface gradient in Eq. (2.9), scaling the resulting expression, and simplifying, the
scaled surface gradient becomes
Vo= i+ (Vi) 2+ 2e (Vi) 91+ (ViH) 2 (225)
s = —_— € —_— . .
: [ 1) 57 I [ 1) 57

Note that in this equation the derivatives grouped with H within parentheses only

act on H, not on the argument of the surface gradient operator itself.

2.2.3 Scaling the Surface Divergence of the Normal Vector

The last term in the stress balance from Eq. represents the effect of surface
tension and depends on the surface divergence of the normal vector. Since these two
quantities have been scaled in Eq. (2.9) and Eq. (2.24), they are combined to find

V. f= —eVﬁH. (2.26)

When computing this expression, we note that none of the quantities in the normal
vector shown in Eq. (2.24)) depend on Z.

2.2.4 Scaling the Stress Tensor
The stress tensors in the film and air layers are crucial pieces of the interfacial stress

balance in Eq. (2.8). Within each layer i, the stress tensor takes the form
T; = —piI + 2/.11El (227)

Here p; is the fluid pressure and E; is the rate of strain tensor. Since the viscosity of
air is many orders of magnitude smaller than the viscosity of the molten nanofilm,
the product 2u,i E,ir will be neglected as a small contribution. The subscripts on
Uaim and Egm will be dropped since there can be no confusion. The rate of strain

tensor is defined by

2@ %4_6_‘} %4_6_“)-
ox dy O0x dz Ox
ry 1|dv du ov v ow
Vii+ (Vi)' ) == | 2= + = ooy owl
(u (u)) 2 0x+(9y 2(9y 8Z+(')y
8_W+@ 8_W+@ Za_w
[ 0x 0z Oy 0z 0z

E= (2.28)

N =

In the stress balance of Eq. (2.8), the quantity which enters the equation is the stress

tensor difference dotted with the normal vector, 7i. From the definition of the stress
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tensor in Eq. (2.27)) one obvious scaling for the stress tensor is the characteristic

pressure, P.. Therefore,

1 Pair — Pfilm 2/1

— (Tair =T =———n—-—E-7.

Pc ( air ﬁlm) Pc Pc
Note that pair — piim = p. Additionally, converting the rate of strain tensor to
nondimensional units, dotting by the normal vector on the right, and dropping terms

of order € yields

19U ou oV oU || OH
‘ox oy " Sox oz || “ox
g foe| OV U 0v v ) oH|_ 9
P, “ox T oy oY 07 oy 0z
ou v LA
0z 0z o9z

Inserting these results above yields

P (Talr - Tfm) -1 = Pii — ea—Z. (2.29)

All the intermediary results in Eqs. (2.24), (2.25), (2.26), and (2.29)) are inserted
back into the full stress balance in Eq. (2.8) to find

10 I — r
Ph = €L+ Pyt + Pat + —5- VT + —XT (ViH) 7 = 0.
0z AP, P\
Note that this equation contains both normal and tangential components. This equa-
tion now suggests a natural scaling for I'. so that all the tangential components (the
second and the fifth terms above) will be of order € and all the vertical components

will be of order unity
e

T, =el,P. = =<,
€

(2.30)

The nondimensionalized surface tension has the form reminiscent of the traditional

capillary number, Ca, [19] except scaled by a factor of €. As such, the modified

capillary number is defined as

Ca= 5= =M L2
21" 763 €3

(2.31)

The capillary number represents the ratio of viscous forces to forces due to surface

tension. Similar to the way that we split the vectorial Navier-Stokes equations into
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vertical and horizontal components in Egs. (2.19) and (2.20), the interfacial stress

balance is decomposed into components

U gy 232

”'(9_2__ sI, (2.32)
1 (=

2:P=-= (V3H) = Puc = P (2.33)
a

2.2.5 Summary of Scaled Equations

The governing equations and the boundary conditions have all been scaled to trans-
form them into nondimensional equations which were then simplified using the
lubrication approximation. For convenience, here are all the scaled equations which

will be referenced when deriving the thin film height evolution equation

U oV oW
8_X+8_Y+6_Z_O’ (2.34)
’U|_ o
— =P, (2.35)
oP
9 -0 2.36
57 = (2.36)
U(Z =0) =0, (2.37)
aH -
W(Z = H) = 5_7' + U|| : V“H, (2.38)
SUZ=H) _ g 2.39
8Z - St ( . )
1 —~
P(Z=H)=-— (VﬁH) — Pu(Z = H) = Py(Z = H). (2.40)
a

2.2.6 Thin Film Height Evolution Equation

To proceed from these equations to a single differential equation for the interface
evolution, the general approach will be to use the kinematic boundary condition to
introduce a temporal derivative of H(X,Y, ) and then rewrite everything in terms
of H(X,Y, 7). Note that the interface height is both a function of time and position.
For notational convenience, we will drop this explicit functional dependence in the

following equations. To do this, consider a slightly rewritten form of the continuity
equation in Eq. (2.34) (or equivalently Eq. (2.16))

5 - L OW
Vi-Uj+— =0.
Yt 57
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Integrating this equation with respect to Z from Z = 0 to Z = H results in

H
W(Z:H)—W(Z:O)+/ V- UdZ =0.
0

The first term is the kinematic boundary condition from Eq. (2.38)) (or equivalently
Eq. (2.22)) and the second is the impenetrability condition from Eq. (2.37) (or
equivalently Eq. (2.21))). After substitution this equation becomes

—+U||(Z=H)-V||H+/ v, UdZ = —+V||-/ UydZ =0. (2.41)
07’ 0 07’ 0

In the second equality the Leibnitz rule for differentiation has been used to bring
the derivative outside the integral [19]. All that remains now is to solve for 17”
and then integrate the result to find the height evolution equation. To accomplish
this, the remaining equations are used. From the vertical component of the scaled
Navier-Stokes equations in Eq. (2.36) (or equivalently Eq. (2.20)), it is clear that
the pressure, P, is independent of the vertical coordinate. As such, the lateral
components of the scaled Navier-Stokes equations in Eq. (or equivalently
Eq. (2.19)) are integrated twice to solve for

- 72—
U|| = 77||P + A||Z + B||. (2.42)

In this equation, A and B are two component vectors which are the integration con-
stants for each component equation. Based on the no-slip condition from Eq. (2.37)
(or equivalently, Eq. (2.21)) it follows that Bj = 0. The other integration constant
can be determined by using the horizontal components of the interfacial stress bal-
ance in Eq. (2.39) (or equivalently Eq. (2.32))). Since this poses a condition on
the derivative of the horizontal velocity at Z = H, the velocity which satisfies this

equation is clearly

- 7?2 — —
Uy = (7 - HZ) VP -ZV,T.

The horizontal gradient of the pressure can be computed from the vertical component
of the interfacial stress balance in Eq. (2.40) (or equivalently Eq. (2.33)). If we insert
this expression for the gradient of the pressure into the preceding equation we find
that

. (22 1= = — —
0y = (7 - HZ) (C: (VﬁH) — V| Pu(Z = H) -V Py(Z = H)| - ZV,T.
a
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As mentioned previously, the specific forms of P,., P}, and V.l depend on the
chosen model and will be discussed further below. Regardless, none of these
values depend on Z and the evaluation at Z = H will be suppressed from now on.
Consequently, this equation for the horizontal velocity can be integrated from Z = 0
to Z = H to find

H 3 — 2

_ H 1 — = H" —

UdZ =— |— (V’H) +V Poc + V Py | — —V,I. (2.43)

I 3 I I I D
0 Ca

Inserting Eq. (2.43)) back into Eq. (2.41)) yields the height evolution equation
0H <= [H* (1 (= = = H?> =
V|5 (= (Vi) 4 Vi ViPa| - VT =00 44)
ot 3 Ca | 2

2.3 Linear Stability Analysis

While the exact forms for P,., Pe, and G;F have not been specified yet, it will be

shown below they all depend exclusively on H. As such, through the chain rule the

derivatives will act on H and therefore any constant H will satisfy this differential
equation. To investigate the stability of this family of solutions, the initially flat

interface (denoted by H = 1) is perturbed by a function of the form

H =1+ 6hePBTiKIX) (2.45)

The quantity Sh is the magnitude of the perturbation and is assumed to be small so
that we neglect terms of second order in this quantity. The real exponential contains
the nondimensional growth rate, 8, and the imaginary exponential contains explicit
dependence on the horizontal wavevector, K |» Which contains only £ and y compo-
nents. The magnitude of the wavevector is related to the real space wavelength, A,
by

2nd,

K=Kl = = (2.46)

The nondimensional growth rate, 8, is related to the dimensional growth rate, b,

through
b(k)A,
B(K) = ) . (2.47)

c

To proceed any further with the linearization, the forms of each model will be

specified separately in turn.
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Figure 2.2: Instability geometry in SC model

++
Molten Nanofilm

The distinguishing feature of the SC model is the presence of a surface charge density, o, along the
interface which induces an electric field that leads to the destabilizing electric pressure.

2.3.1 SC Model: Electrostatic Pressure

Within the SC model the driving force is posited to be electrostatic in origin. In the
work of Chou and Zhuang [2} 3], there was assumed to be a surface charge density
along the interface which would induce image charges in the upper and lower
bounding plates which were grounded, as illustrated in Fig.[2.2] The presence of the
electric charges creates an electric field which they hypothesized was responsible for
the deformation of the interface. Because the AP model had not yet been published
by Schiffer et al., the net pressure from acoustic phonon reflections is zero and
so P, = 0. Furthermore, they did not consider the surface tension to vary with
any external field which implies that V,I = 0. All that remains is to define the
electric pressure, P, created by the interfacial charge density and complete the

linear stability analysis.

The electrostatic pressure arises from the difference between the Maxwell stress
tensors, T;™, in the air and nanofilm layers. Explicitly, the magnitude of the

pressure in the normal direction is

Po=—h- (TSN - TS ) . A, (2.48)

air

|-

The Maxwell stress tensor in matter without any magnetic fields has the form [20]
- = 1 - -
T = ED-S1(E D), (2.49)

where E is the electric field and D = soeﬁ is the electric displacement field. &,
is the the permittivity of free space. Note that ¢ is the relative permittivity of the
medium, and is distinct from € which is the long-wavelength expansion parameter.
In air we assume that the relative permittivity is equal to unity, so that g, = 1. To
proceed further, the electric fields in both the air and film layers are solved using

Laplace’s equation and then the Maxwell stress tensors are computed. These are
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then inserted into the electrostatic pressure term, Pej. Once P has been computed,
linear stability analysis is applied to the resulting thin film height evolution equation

to find the wavevector and growth rate of the fastest growing mode.

Electrostatic Governing Equations

Within the derivation of Chou and Zhuang, it was assumed that there are no signif-
icant magnetic fields present in the system. This reduces the problem of solving for
the electric field within the system to a simple electrostatics problem. Furthermore,
it was assumed that there was no volumetric charge density present within either the
air or film layers and that the only charge is present at the interface between the two
layers. The interfacial charge density is constant during deformation and denoted
by o. These assumptions imply that the governing differential equation is Laplace’s
equation

V2¢; = 0. (2.50)

In this expression ¢; is the potential in the ith layer. Since there is no externally
applied voltage in this system, both the upper and lower bounding plates are assumed

to be grounded so that

diim(z = 0) =0, (2.51)
$air(z = d) = 0. (2.52)

Along the interface, the usual electrostatic boundary conditions are applied [20]
- (l_jair - ﬁﬁlm) = 80ﬁ : (Eair - 8ﬁlmﬁﬁ1m) =0, (253)

7 x (Eair _ Eﬁlm) - 0. (2.54)

Finally, the relationship between the electric field and the electric potential is

-

E =-V¢,. (2.55)

Scaled Electrostatic Equations

To scale the electrostatic equations, the same scalings which were defined in Sec.[2.2]
are used but there are two more for the electric potential and the electric field.
~_ ¢ ;77 Eih,

i s L= . 2.
b= goiEi= (256)
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The quantity @, is a characteristic potential which will be determined in the course
of scaling the equations, similar to how P, and I'. were determined above. The rela-

tionship between the nondimensional electric potential and electric field transforms

from Eq. (2.55) to B
= — 0,
Ei=—€V i - a—‘;’. (2.57)

Once we nondimensionalize Laplace’s equation from Eq. (2.50) we find that to

second order

¢
28 2. 2.58
022 (238)

The exterior Dirichlet boundary conditions simply become

bim(Z = 0) = 0, (2.59)
¢air(Z = D) = 0. (2.60)

The tangential electrostatic boundary condition of Eq. (2.54)) is equivalent to the
requirement that the potential be continuous across the interface. Therefore,

¢iim(Z = H) = ¢pur(Z = H). (2.61)

The final electrostatic boundary equation is the one shown in Eq. (2.53) for the
normal components of the electric displacement field at the interface. Using the
scaled normal vector which was derived above in Eq. (2.24), this yields

aaﬁlm N

D g,
—mal
07 7

— L - 8$air z, oy
(—GV”H + Z) : (_€V||¢air — & 97 Z + GSﬁlmV||¢ﬁ1m + Eflm
From this it is clear that all the tangential terms in this equation are order > and can
be neglected. Furthermore, the characteristic electric potential scale arises from the

charge density at the interface and should be

o, = Tl (2.62)

Eo

This boundary condition then simplifies to

35ﬁ1m(Z = H) _ aaair(z = H) _
0z 0Z -

Efilm 1. (2.63)



22
Electric Field Solution

The scaled Laplace equation from Eq. (2.58) was integrated twice with respect to
Z, yielding electric potentials in each layer that are linear.

Bim = App,Z + Biy,

film film®
- _ ASC SC
¢air - Aair Z+ Bair .

In this equation ASC , B3C , ASC , and BSC are integration constants. The Dirichlet
q film film air air g

boundary conditions on the bounding plates from Egs. (2.59) and (2.60) imply that
B¢ =0and B = —-DASC

film air air

= _ 4SC
Pfilm = AﬁlmZ’
buir = ASC(Z - D).

air

The electric potential must be continuous across Z = H according to the boundary
e

air

condition in Eq. , so that ASC can be expressed in terms of A
q film p

SC _ 4SC (H — D)
Aﬁlm - Aair H .

This implies that the electric potentials should have the form

- Z(H - D)
sC
Pfiim = Ay — g
Gair = Ay (Z = D).
The only remaining boundary condition is Eq. (2.63) and this implies that the one
remaining integration constant is

ASC = H
A (gfiim — 1) H — gfimD”

Returning to the electric potentials, they have the form

_ Z(H-D)
(Sﬁlm - I)H - SﬁlmD’

~ H(Z-D)
(€fiim — 1) H — &aim D~

(2.64)

(2.65)
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Based on the relation in Eq. (2.57)) between the electric potential and the electric

field, the nondimensional electric fields at the interface are

Efm =€

Z, (2.66)

DHVH (D - H)
[fiimD — (gfim — 1) H]2 efimD — (&iim — 1) H
esmD(H — D)V H
[SﬁlmD - (8ﬁ1m - 1)H]2

H
gﬁlmD - (Sﬁlm - 1)H

Equ =€

Z. (2.67)

The most important thing to note about these electric fields is that the vertical
components do not have an €, while the horizontal components are first order in €.
This means that when these electric fields are inserted into the Maxwell stress tensor,
all terms which contain products with two tangential components, such as EEy,
E.E,, and EE,, are order €% and can be neglected. Computing the expression for
the normal component of the stress tensor dotted into the normal vector yields

! 11 0H]
_EEZZ 0 Esz —Ea—X
~ em 0H  0H 1 OH | _ &€
AT A= eof |~en ey 1] 5B BE||-egp| = 7B
1
|E.E.  EyE: EES_ |1

Recalling the form of the electric pressure from Eq. (2.48), the electric pressure is

_ %o 2 2
P = 2P, (Eair,z - SﬁlmEﬁlm,z) .

In terms of the electric fields which are expressed in Egs. (2.66) and (2.67), this

pressure becomes

Pel

o2 ((1 — gfiim)H? + 2eqimDH — 8ﬁlmD2) . (2.68)

2e0Pc [s8imD — (eam — 1) HT?
Linear Stability Predictions

Returning to the height evolution equation in Eq. (2.44), the gradient of the elec-
trostatic pressure was computed and substituted yielding the following expression

—+V- V°H ( #iim D”
at : 3&oPe [SﬁlmD - (8ﬁlm - 1) H

3Ca

3 — 3 .2
OH o [H (Fin) + 1 P)’ﬂy]:o. (2.69)
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Insertion of the linear stability perturbation function from Eq. (2.45]) and cancellation
of the common exponentials yields a nondimensional dispersion relation where

terms of order gﬁz have been dropped

ﬁSC(K) N Ii B o2 8ﬁlmD2 . K2=0. (2.70)
3Ca 3&,P. [SﬁlmD - (8ﬁlm - 1)]

This specific dispersion relation has a representative form that will be borne out
in the other proposed models. The dispersion relations for each model are of the
general form

B(K) = A K? — ALK*?, (2.71)

where A, and A4 are constants whose exact form depends on the model. As such,
the location and magnitude of the maximum growth rate can be found from this
general form. The mode with the maximum growth rate is assumed to be the
one observed experimentally so the wavevector at which this maximum occurs
should then correspond to the characteristic wavelength of the real space pattern
which is observed. The form of the dispersion relation in Eq. can be solved
analytically for the wavevector corresponding to the maximum growth rate. This

maximum wavevector is denoted by K,

A
K,=+/—. 2.72
N A, (2.72)

The maximum value of the growth rate is then
2
A7

—. 2.7
1A, (2.73)

Bo = B(K,) =

For the SC model, A, and A4 are

asco ( #finD” ) (2.74)
27 32,Pc \[egmD — (g5 — DI

1
3Ca

AC = (2.75)

Consequently, K, and 3, for the SC model are

2h,D2 1 372
KSC = |22 (D+ - 1) , (2.76)
2e,85 Y€ Efilm

2
o2D?

2&,

sc _ Aoho
? Suucy

1 -6
(D + — - 1) . .77)
Efilm

2
Efiim
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Figure 2.3: Instability geometry in AP model

The distinguishing feature of the AP model is the coherent propagation of acoustic phonons through
the bilayers, which create a destabilizing radiation pressure.

These are the same quantities as those derived by Zhuang [3]], just expressed in
nondimensional terms. The dimensional quantities will be presented in Sec. 2.3.4]

with the results from the other two models.

2.3.2 AP Model: Acoustic Phonon Radiation Pressure

As opposed to the SC model which relies on electric fields, the driving instability
mechanism in both the AP and TC models is a thermal one. The AP model was
derived by Schiffer and co-workers [4-6] and they assumed that phonon reflections
from all the interfaces in the system would sum to create a net pressure, P,., which
acted as a destabilizing force on the interface. They did not consider the surface
tension to vary with any external field which implies that V,T = 0, as in the SC
model. They did not expect any charge density to be present in the system and
did not apply an external voltage, so they did not include any electric effects and
therefore P,y = 0. To derive an expression for P, the temperature in the system
was computed from which the thermal flux through the system was calculated. The

heat flux was then substituted into the acoustic phonon radiation pressure.

Within the AP model, Schiffer and co-workers assumed that the magnitude of the
acoustic phonon pressure was
20 .
pap = ——|ql, (2.78)
Up

where ¢ is the heat flux density, u, is the speed of sound in the molten nanofilm,
and Q is the acoustic quality factor. A microscopic derivation of Q was published
[4, 6], but in their subsequent analysis it has been treated as a fitting parameter
during analysis of experimental data. To proceed further with their derivation,
the governing thermal equations are defined, scaled, and then solved to find the
temperature in the system. From the temperature in the system the heat flux through

the bilayers is calculated and then substituted into the acoustic phonon radiation
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pressure. The acoustic phonon radiation pressure is then substituted into the height
evolution equation, and linear stability analysis is performed to find the maximum

growth rate and its corresponding wavevector for the AP model.

Thermal Governing Equations

There are two differential equations which govern the temperature in the system.

The first is Fourier’s law of thermal conduction:

G=—kVT. (2.79)

In this expression, k is thermal conductivity and T is the temperature. The second

is the equation describing the conservation of heat

DT -
’OCPE =-V.-.gq. (2.80)

The quantity c), is the specific heat capacity. These two equations were combined
using a simple substitution and the assumption that the thermal conductivities of
each layer in the system are constant and isotropic. This assumption allows the

resulting equation to be written as the usual heat equation

DT
pep oo = kV>T. (2.81)

For boundary conditions, the bottom surface of the nanofilm was assumed to be
isothermal at a temperature Ty while the top surface of the air layer was assumed
to be isothermal at a temperature T¢ with Ty > Tc. Finally, both temperature and
heat flux density must be continuous at the interface. In total, these requirements

are summarized in the following set of equations

Thim(z = 0) = T, (2.82)
Tair(z = d) = Tc, (2.83)
Tﬁlm(Z = h) = Tair(Z = h)a (2.84)

—kilm VT hiim(z = h) = —kair VTair(z = h). (2.85)



27
Scaled Thermal Equations
To scale these equations only one new scaling is needed in addition to the ones
contained in Sec.[2.2] This scaling is for the temperature

T-Tc T-Tc
Ty-Tc AT °

C)

(2.86)

where O is the nondimensional temperature and AT = Ty — Tc is the temperature
drop between the bounding plates. The utility of this scaling will become apparent

when the isothermal boundary conditions are scaled. First, the heat equation in

Eq. (2.81)) becomes

DO 62(029 32(9) 9’0

PrRe— = + + .
TRy ox2 ar2) T az2

In this expression an additional dimensionless number has been defined in addition
to the Reynolds number, Re, which was defined in Eq. (2.17). This new number is

the Prandtl number, Pr, and has the form

c
pr=K, (2.87)

k
The Prandtl number reflects the ratio of the viscous diffusion of momentum to the
thermal diffusivity. On the size scales relevant to experiment, the product ePrRe
is small [8H10], so the temporal dependence of the left half of Eq. will be

neglected in addition to the terms of order €2. It becomes

9’0
- = 2.88
072 (2.88)

The boundary conditions have the following scalings

Ofiim(Z = 0) = 1, (2.89)
©,ir(Z = D) =0, (2.90)
Ofiim(Z = H) = 0,ir(Z = H), (2.91)
VOum(Z = H) = kVO,i(Z = H). (2.92)

In the last equation the quantity x = kir/kfim has been defined as the thermal

conductivity ratio.
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Temperature Field Solution

The scaled heat equation was integrated directly in both the film and air layers to

yield

_ AP AP
Ofim = Ay, Z + By,

air air *

As in the SC model section, Agllfn, Bglfn, Afif, and Bfif are integration constants.
The two Dirichlet boundary conditions in Egs. (2.89) and (2.90) imply that Bf/?ll; =1

and B2 = —DAAP such that

air air

Ofim = AL Z + 1,
@air = AAP(Z - D).

air

From Eq. (2.91)) the continuity of temperature requires that

AP
ap _ Afm 1
air H-D .

Then the temperatures in each layer must be of the form

Ofim = A%};nz + 1,

@m:(Agy1+1

) Z-D
H-D
The final boundary condition is the continuity of thermal flux in Eq. (2.92). This

determines the last constant to be

AP —K

A = —
film = D4+ (k-1)H

Consequently, the nondimensional temperature in each layer is

D-H+«k(H-2Z)

Ofiim = , 2.93

T D r (k- 1)H (255)
D-Z

it = . 2.94

©s D+(k-1)H (259

Based on these expressions, the magnitude of the thermal flux density will be in the
7 direction to first order in €. This implies that the nondimensional acoustic phonon
pressure at the interface is
2ékairAT a@)air _ 2§kairAT 1

upPchy 0Z — up,Pchy, \D+(k—1)H]|’

Pap = — (2.95)
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Linear Stability Predictions

Returning to the height evolution equation in Eq. (2.44), the horizontal gradient of
the acoustic phonon pressure was computed and substituted to yield the following
height evolution equation for the AP mode

GﬁH

H3 20k, ATH? 1-
( )+ Qka ( . - 0. (2.96)

SupPch, [D+ (k — 1)H]2

i

Once again the perturbation function from Eq. (2.45) was inserted into the height

evolution equation to find the dispersion relation for the AP model

B (K) +

4 N . —
K 20kair AT ([ 1 -« )K2 =0. (2.97)

3@_ SupPch, D+K—1]2

The general forms for K, and 3, that were derived in Eq. (2.72]) and Eq. (2.73) yield

the wavevector and growth after association of the constants

20k, AT 1 -«
o= == ( 2), (2.98)
3uchha [D + K — 1]
1
A = —. (2.99)
3Ca
The nondimensional values of K¥ and g2F are
Qkair(1 — K)AT
KAF = \/Q air( ZK) (D+xk-1)7", (2.100)
Yup€
— 2
L kair(1 — K)AT
AP _ i (2.101)
3yuuch, up

Once again, these are the same quantities as those derived by Schiffer and co-
workers [4H6], just expressed in nondimensional terms. The dimensional quantities

will be presented in Sec. [2.3.4 with the results from the other two models.

2.3.3 TC Model: Thermocapillary Shear

The TC model is similar to the AP model in that the driving force for the instability
is thermal, but it has a different origin for the destabilizing force. The AP model
defines a destabilizing pressure acting normal to the interface while in the TC model
the force is a shear tangential to the interface. This tangential shear arises from

differences in surface tension which occur due to the temperature variations along
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Figure 2.4: Instability geometry in TC model

The distinguishing feature of the TC model is variation of surface tension with temperature that
drives a destabilizing thermocapillary shear.

the interface. Within this model, originally posited by Dietzel and Troian [8-10],
the dominant force arises from the V,I" term while the pressure terms from the
other two models, P,. and P, are both equal to zero. The derivation of this model
is relatively shorter than those of the SC and AP models because the temperature
field throughout the system has already been computed in Sec.[2.3.2]and the scaled
results from Eq. (2.93)) and Eq. (2.94) port over directly.

When computing the V,I term, Dietzel and Troian assumed that the surface ten-
sion only depends on temperature and that the surface tension depends linearly on
temperature. This implies that the surface gradient of the surface tension is

AT 0y = eyrAT =

VIir=—2/'VOo=- V.0. 2.102
K Fc oT s Lt s ( )

In this expression the thermocapillary coefficient, y7, was defined as

9y

~ |37l (2.103)

YT =

The minus sign has been explicitly brought out to the front of this equation since
for single component fluids, this quantity must always be negative. The quantity in
front of the gradient is a scaled Marangoni number [19], which represents the ratio

of surface tension forces to viscous forces. It was defined by

Ma = = eMa. (2.104)

From here, the temperature at the interface was substituted from either Eq. (2.93)) or
Eq. (2.94). From the continuity of temperature at the interface they must have the
same value at Z = H. Then we take the surface gradient to find

kDMa
[D+ (k- 1)H]

V.l =- . ('V]H+e('V]H)2Z). (2.105)
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The Z components in this expression are second order in € when V,T is substituted
into the scaled interfacial stress balance from Eq. (2.30). Consequently, they do not

appear below.

Linear Stability Predictions

Substitution of the surface gradient of the surface tension from Eq. (2.105)) into the
height evolution equation from Eq. (2.44)) yields

oH = | H® (5 H*«DMa
4V | = (ViH) L _vH| =0 (2.106)
ot 3C 2[D + (k- 1) H]
In this case the dispersion relation is
K* DMa
BTCK) + == - —— L K2 =0, (2.107)
3Ca 2[D+«k-1]
For the TC model the dispersion relation constants are
DMa
AjC= 70 (2.108)
2[D+«k—-1]
1
AjC = —. (2.109)
3Ca
This then implies that the values of K} © and 8. C are
3kyrAT -1\
KIC= [ (VD + £ , (2.110)
4ye? VD
3L AT)? -1\
TC - (KW ) (\/5+K ) . @.111)
Y Huch 4 VD

As in the previous two cases, these are the same quantities as those derived by
Dietzel and Troian [8-10], expressed in nondimensional terms. The dimensional

quantities will be presented in Sec.[2.3.4with the results from the other two models.

2.3.4 Summary of Dimensional Linear Stability Predictions
After completion of the derivations for each model and computation of the predic-
tions for K, and 3, for each model, these quantities are converted to their dimensional

analogs: the dimensional growth rates, b, and the dimensional wavelengths, 4,. This
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Table 2.1: Dimensional wavelengths and growth rates for each proposed model

Wavelength Growth Rate
A5€ 280812,)/ 1 3/2 SC o*h,D* 1 -6
= ﬁ D+ —— 1 b() = W D+ — — 1
2rch, o“h,D Ep 12#7808pho €p
A5F u 1 — k)k,AT]?
0 :,/7—”(D+K—1) b/jP:[Q( K)Z“ | (D+k-1)"*
27Th0 Q(l - K)kaAT 3/,L’)/I/lph0

| 4 (k=1 1c _ 3(yrAT) (k= 1))~
onhy, . \ 3xyrAT («/5+ @) T (\/B“L @)

will remove any ambiguity in the choice of characteristic scales from Sec.[2.2]and al-
low different functional dependencies to be elucidated more easily. Using Eq. (2.46))
and Eq. (2.47), the dimensional quantities are

1=== 2.112)
b= ﬁzc. (2.113)

This can be done readily for each model and the resulting expressions are summa-
rized in Table 2.1] These expressions will be used extensively throughout Ch. [3]
Ch.[] and Ch.[5
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Chapter 3

INSTABILITY MECHANISM IDENTIFICATION: IMPROVED
IMAGE AND THERMAL ANALYSIS

3.1 Background

With the analytic expressions for the wavelength and growth rate derived in Ch. 2]
and summarized in Table 2.1, we can work to differentiate between the different
instability mechanisms. It is often possible to identify the mechanism leading to
instability by measuring the characteristic wavelength at early times and comparing
the value to A, computed from linear stability theory. The length separating adjacent
convection cells in macroscopic systems is often measured directly or estimated by
Fourier analysis of images obtained by shadowgraphy, particle seeding, or particle
image velocimetry. Unfortunately, for the reasons described below, such techniques
are not feasible in liquid films whose initial thicknesses measure only a few hun-
dred nanometers nor can the temperature drops across such thin films be directly
measured. These challenges have posed difficulties in identifying the competitive
forces leading to the spontaneous development of array protrusions in nanofilms, as

discussed next.

In previous work, McLeod et al. obtained good functional fits between the experi-
ment and the TC model prediction for 4, but close quantitative agreement seemed
to require input values of the liquid thermal conductivity many times larger than
reported in the literature [1]. We have since revisited their analysis to ascertain
whether this problem can be resolved by making improvements to the image anal-
ysis in order to extract A, at much earlier times and improvements to the thermal
simulations used to assess AT. In this chapter, we still focus on the dominant Fourier
peak from time resolved microscopy images of surface deformations observed in
reflection mode to extract the values of 4,. However, we have implemented more
robust image analysis routines to help isolate this main peak at much earlier times
during instability. Such early time measurements better conform to the main as-
sumption of linear stability analysis, namely that interface fluctuations remain very

small in comparison to the initial film thickness.

Accurate estimates of AT are also required for quantitative comparison to theoretical

models. Unfortunately, the bilayer thickness d, is typically of the order of 1 um
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in experiment, a gap too small to allow direct measurement by thermocouple or
infrared techniques. Estimates of AT are therefore obtained from thermal simula-
tions based on a more complete and more accurate finite element model which more
closely mimics the experimental system consisting of thermal conduction through
a multilayer structure at steady state conditions. In this chapter, we therefore also
show how improved simulations result in revised values of AT which on average are

half as large as those previously reported [ 1.

In what follows, we describe the improved image analysis for isolating the fastest
growing mode and a more accurate thermal model for assessing the temperature drop
across the confined air/nanofilm bilayer. Feature extraction at much earlier times,
coupled with more realistic thermal simulations, leads to better overall functional
and quantitative agreement with the thermocapillary model. Despite these improve-
ments, there persists a quantitative discrepancy with theory which we attribute to a

number of experimental challenges.

We first briefly review the predictions for 4, arising from three different physical
models, namely the induced surface charge (SC), acoustic phonon (AP) and ther-
mocapillary (TC) models which were derived in Ch. [2] and presented in Table 2.1}
Listed in Tables 3.1} [3.2] and [3.3] are the analytic expressions for 1, normalized
by the initial film thickness 4,, along with key system dimensions and material
constants from experiments reported in the literature. As evident, the SC instability
is independent of the temperature drop AT, which disagrees with experimental mea-
surements [|1, 5]. In the remainder of this chapter, we therefore exclude this model

from consideration and only explore differences between the AP and TC models.

Experiments to date have used either polystyrene (PS) or poly(methylmethacrylate)
(PMMA) films spun coat onto a silicon wafer to produce a flat and uniform film then
melted in situ. The main advantage to using polymer films is that the their low glass
transition temperatures [24]] facilitate rapid melting and solidification. Estimates of
the shear rates incurred in experiment yield very small Deborah numbers, indicating
that non-Newtonian effects play no role at early times and that the liquid film can
be modeled as a simple Newtonian fluid. All three models therefore assume that
the film viscosity is independent of shear rate. However, the viscosity of polymers
depends strongly on temperature. While this dependence ultimately slows the late
time growth of protrusions as they approach the opposing cold substrate, it is not
expected to affect early time growth when surface deformations are of the order of

tens of nanometers or less. All three models therefore assume that the relevant film
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Table 3.1: Material constants for the SC model

A5¢€ 280&5vho (d, 1 | 32
= —_— —_— + —_—
2rh, 72d2 \h, &

h, Initial film thickness 50 - 103 nm

d, Substrate separation distance 180 - 640 nm

A, Fastest growing wavelength 2 -8 um

&, Vacuum permittivity 8.85x 10712 F/m
g, PMMA permittivity 3.5

v  PMMA surface tension 30 mN/m

o Interfacial charge density 107 mC/ m?

Normalized wavelength for the fastest growing mode in the induced surface charge (SC) model.
Listed are the relevant system dimensions and material constants for low molecular weight
poly(methylmethacrylate) (PMMA 2 kg/mol) films heated to 130 °C used in experiment. [2} 3]

viscosity for the linear stability analysis is constant and equal to the temperature of
the supporting substrate.

The expression for A, in the acoustic phonon model (AP) in Table [3.2] relies on
the constant Q, the so-called acoustic quality factor, which arises from phonon
transmission and reflection from the three interfaces comprising the bilayer system,
namely the silicon/polymer, the air/polymer and air/silicon surfaces. Positive values
of Q lead to film destabilization and protrusion growth. In all experiments conducted
so far, the value of Q has been treated as a fitting parameter. The remaining material
constants, namely the liquid film surface tension, y, and thermal conductivity of the
air and liquid film, have been obtained from literature values. In the AP model then,
the normalized wavelength of the fastest growing mode increases linearly with the

normalized substrate separation distance D = d,/ h,.

The expression for A, in the thermocapillary (TC) model in Table [3.3]also relies on
the liquid film surface tension, vy, the magnitude of the surface tension coefficient,
|0y /0T|, and the air and liquid thermal conductivity, all values also obtained from
the literature. In contrast to the AP model, however, the normalized wavelength
of the fastest growing mode increases with the normalized substrate separation
distance D according to VD + (k = 1)/VD. While the original experiments [4-6,
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Table 3.2: Material constants for the AP model

QAP yu d,

2y 001 - K;?kaAT (h_ T 1)
h, Initial film thickness 80 - 130 nm
d, Substrate separation distance 100 - 600 nm
A, Fastest growing wavelength I-10 um
AT Temperature differential 10-55°C
v PS surface tension 30 mN/m
u, Speed of sound in PS 1850 m/s [21]]
O Acoustic phonon coefficient 6
k,  Air thermal conductivity 34 mW/m-°C [21]
k,  PS thermal conductivity 160 mW/m-°C
k  Thermal conductivity ratio k,/k, 0.213

Normalized wavelength for the fastest growing mode in the acoustic phonon (AP) model. Listed are
the relevant system dimensions and material constants for high molecular weight polystyrene (PS
108 kg/mol) films used in experiment [[4-6} |15]].

15] were designed to probe values of D < 5, the experiments reported in Ref. [1]]
and reanalyzed in this chapter allowed access to a larger range D < 25. This feature,
coupled with the ability to view the film instability in-situ, has allowed more accurate
measurements of A, for several reasons, including rejection of runs suffering from
non-parallel substrates or defective films containing pinholes, embedded particles,

or surface contaminants.

Prior work [10] outlined the challenges inherent in making direct comparison be-
tween theory and experiment. The biggest problem of all is that the majority of
experiments prior to 2011 reporting measurements of A, had little to do with the
actual instability in that the formations were allowed to grow, make contact with the
opposing substrate, and solidify in place before the cold substrate was removed and
measurements of 1, taken. Measurements obtained in this way not only violate the
assumptions of linear stability theory but also include influences and effects not in-
corporated into the theoretical analysis. For example, contact of a warm protrusion

with the opposing cold substrate tends to induce coalescence of adjacent protrusions
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Table 3.3: Material constants for the TC model

ATC 4 d h
0 = —7 —0 + (K - 1) _0
2rh, 3k|0y/OT|AT \ \| h, d,

hy Initial film thickness 95 - 390 nm
d, Substrate separation distance 605 - 2360 nm
Ao Fastest growing wavelength 27 - 68 um
AT Temperature difference 16 - 44 °C

0% Surface tension (100 °C) 33 mN/m [22]

k, Air thermal conductivity (80 °C) 30 mW/m-°C [23]
k, PS thermal conductivity (100 °C) 128 mW/m-°C [22]]
K Thermal conductivity ratio k,/k, 0.234

|0y/OT| Surface tension coeflicient 78 uN/m-°C [22]]

Normalized wavelength for the fastest growing mode in the thermocapillary model. Listed are the
relevant system dimensions and material constants for low molecular weight polystyrene (PS 1.3
kg/mol) films used in experiment [|1,8H10].

followed by flow migration along the underside of the cold substrate, both of which
strongly affect the final measured values of 4,. Film shrinkage during solidification
can also play a role. For accurate comparison to model predictions for 4,, the
amplitude of features which emerge from an initial flat air/liquid interface must
be infinitesimally small. In this chapter, we focus exclusively on estimates of the
instability wavelength measured at the earliest possible time given the experimental

setup and other limitations described.

The remainder of this chapter is divided as follows. In Sec.[3.2] we briefly review
some details of the experimental apparatus used in Ref. [[1]], from which the raw
images analyzed in this chapter were obtained. In Sec.[3.3] we outline significant
improvements to the image analysis and processing routines which lead to more
accurate measurements of A, at much earlier times than reported in Ref. [1]. In
Sec.[3.4] we detail a new finite element model used to extract more accurate estimates
of AT which better mimics the experimental system. These two improvements lead to
better overall agreement with the thermocapillary model. We conclude by examining

some persistent deficiencies in Sec. [3.6] which are traceable to uncertainties in
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measurement of key parameters needed to make contact with theory.

3.2 Brief Description of Experimental Setup

We review some key aspects of the experimental setup shown in Fig. More
extensive discussion, including sample preparation procedures, can be found in
Ref. [1]]. The resistive heating element used to enforce the temperature differential
AT across the bilayer film consisted of an indium tin oxide (ITO) coated glass slide.
The current passed through the ITO layer for increasing the overall thermal flux
was regulated via proportional integral derivative (PID) feedback control. Heat
loss beneath the glass slide was minimized by a thin layer of fiberglass insulation.
The thermal sink used to draw heat vertically and away from the air/liquid bilayer
consisted of a thin copper sheet (Cu) in contact with a chiller loop perforated with a
small cylindrical viewing port. Strong suction was applied to the region beneath the
glass coverslip (i.e. vacuum region) to enforce good contact between the sapphire
disk and cold Cu sheet. The heat sink enforced through the chiller loop and the
thinness of the interstitial material layers guaranteed that the dominant heat flux
traversing the layered stack was due to conduction and not convection or radiation.
(In Sec.[3.4] we provide estimates of the thermal flux due to thermal conduction,

convection and radiation and conclude that conduction is dominant.)

In most of the experimental runs listed in Table [3.7] the underside of the sapphire
window was patterned with a transparent cylindrical disk of SU-8. This cooled disk
helped trigger and localize the instability to the region directly below the disk where
the nominal temperature gradient, AT/d,, was largest. The thickness of the air layer
above the nanofilm was enforced by four SU-8 spacers patterned onto the sapphire
disk. In each run, two thermocouples were used to measure T (beneath the exterior
edge of the silicon wafer) and T_ (top surface of the Cu layer just beyond the glass
coverslip). Time stamped color images of reflections from the liquid surface were
captured by a CCD camera at 10X magnification. Tables [3.6|and [3.7]list all relevant
dimensions, operating conditions, material constants, and numerical estimates of

AT for all runs analyzed.

In the experiments which provided the raw images reanalyzed in this chapter [1], a
polymer coated silicon wafer was inserted into the assembly prior to a run and the
opposing hot and cold substrates were leveled and made parallel by adjusting external
screws until interference fringes observed were all but eliminated. Data collection

began once power was delivered to the indium tin oxide (ITO) slide, which set the



39

Figure 3.1: Diagram of the experimental setup

10X microscope
objective
Thermocouple
T.

Chiller Glass coverslip /

Cusheet | Vacuum | Cusheet |
| Sapphire disk | SU-8
N | _ L susdisk | _[l<———spacers
Air layer d,
Molten nanofilm {ho
o Silicon wafer
Thermal paste
Cu'sheet Therm-l;touple
Thermal paste
ITO layer
Glass slide

| Large glass support |

‘ Fiberglass insulation ‘

Aluminum mounting plate

Vibration isolation table

Diagram of the experimental setup [1]] illustrating the many layers affecting heat transfer throughout
the system (not drawn to scale). Dimensions and thermal conductivities of each layer are listed in
Table[3.6] Designated temperature readings, T, and T_, were registered using small thermocouples
and used to calibrate boundary temperatures in the finite element simulations described in Sec.

origin of time for each run. Thereafter, images were captured at regular intervals,
typically between 20 seconds and 2 minutes, depending on the flow speed generated
and the rapidity with which protrusions grew. To ensure that the temperature drop AT
had reached steady state conditions before any measurements of 1, were initiated,
the rise time to reach T, was monitored. Depending on the power applied, the
rise time ranged from 1.5 to 5 minutes, only after which were measurements of A,

recorded.

3.3 [Estimates of the fastest growing wavelength from improved image analysis
Accurate measurement of the instability wavelength at early times requires feature
extraction from rather noisy images which appear featureless to the naked eye. Here
we describe the various steps used to facilitate identification of emergent structure

formation.

3.3.1 Image analysis protocol

The color image sequences for each experimental run were first separated into three
color channels (RGB) - the channel exhibiting the highest contrast was selected
for analysis. Typically, the blue channel offered highest contrast (see Table [3.7).
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Image subtraction was then carried out to reduce image noise, which was especially
problematic at early times, or to eliminate obvious artifacts such as stationary dust
particles on any of the optical components. For each image sequence, a reference
image captured at time #..r was selected and subtracted from all subsequent images.
This reference image was always obtained after the thermocouple registering the
value T, had reached the desired set point and the color of the nanofilm had
stabilized. (The ITO coated slide typically required several minutes to achieve
steady state after the power was applied.) The mean intensity of each image was
then computed and that value subtracted from each image to yield a mean intensity
of zero. This step eliminated the zero wave number Fourier component which

sometimes occluded the peak of interest associated with the instability.

3.3.2 Extraction of 1, from power spectra

The 2D discrete Fourier transform for each image in a run sequence was then
computed using a 2D fast Fourier transform routine [25]. The data was radially
averaged by first segmenting the image into concentric rings of width Ak = 2x/L;,
where L; denotes the smaller of the raw image dimensions given in Table (3.7, and
then averaging the Fourier transform within each ring. The corresponding power
spectrum, i.e. modulus squared of the Fourier transform, was then re-scaled in
amplitude so that the maximum peak value of the final image in chronological
order was equal to one. This step ensured that the Jacobian values generated
during the nonlinear regression were well-conditioned - otherwise, large Fourier
amplitude coeflicients tended to overwhelm and distort the peak fitting parameters.
The resulting scaled data was then fit to the curve G[k(¢)] given by Eq. (3.1)), which
represents the sum of a Lorentzian peak with an exponentially decaying background,

according to which

(1)

a*(t) + [k(t) = ko(1)]

where k(1) = |l;(t)| and ¢ denotes time. The fitting parameters describe a Lorentzian

G[(k(1)] = fo(t)

S+ A" B, 3

peak amplitude f,(7) with half-width at half-maximum a(z) centered about the wave
number k(1) = |k;(r)| summed with an exponential curve of amplitude fi(¢) and
decay constant b(z) (associated with the background intensity). The value f>(7) was
used to set the vertical offset. The contribution from the decaying exponential is
typical of spectral leakage which occurs when periodic extension of the observation
window imposed on the fundamental image does not match the periodicity (or lack

thereof) of the structure in the fundamental image [26]. Good fits were obtained by
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analyzing images in reverse chronological order since the peak value k,(¢), the most
sensitive parameter in the nonlinear fitting process, was usually easily identifiable.
Additionally, iteration on the fitting parameters proceeded more quickly by using
the spectral curve fitting parameters at time f,4; as initial estimates for the fitting

parameters at the earlier time ¢,.

The initial parameter values for the fitting routine generally fell into two categories -
either the Lorentzian peak dominated the exponentially decaying background or else
the exponential background was comparable or even larger than the Lorentzian peak
amplitude. Correspondingly, the initial seed for the amplitude of the Lorentzian,
fo, was set to be much larger than fj, i.e. 1.0 versus 0.1. Else, the initial seed
values were reversed, i.e. f, = 0.2 and f; = 5.0. The initial guesses for the peak
half-width at half-maximum, a(¢) and decay value b(t), were usually chosen to be
0.03 and 10, respectively - these values showed only weak dependence on the initial
choices for f, and f;. The final parameter values for the nonlinear fitting routine for
the image sequences shown in Fig. [3.2(d) and Fig. [3.3[(d) can be found in Table 3.4
and Table 3.3

On occasion, the automated fitting routine ran into problems of numerical overflow
or division by zero, mostly for images obtained at very early times, well before any
features were discernible by the naked eye. In such cases, the routine was re-initiated
using a new set of parameter values for which the amplitude of the Lorentzian peak
and the exponential background were set equal to the maximum of the spectral
curve. The nonlinear fitting routine then 