THE NORMAL STATE OF THE HYDROGEN HMOLWCULSH

Thesis Dby

Sidney Weinbsum

In partial fulfillment of the reguirements

for the degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

1933



THE NORMAL STATE OF THE HYDKOGEN LOLECULE

Abstract

A simple wave function for the normal state of the

hydrogen molecule, taking into account both the atomic

and ionic configurations, was set up and treated by a
variational method. The dissociation energy was found
to be 4.00 v.e. as compared to the experimental value
of 4.68 v.e. and kosen's value of 4.02 v.e. obtained
by use of a function involving complicated integrals.
It was found that the atomic function occurs with a
factor 3.9 times that of the ionic function.

A similar function with different screening con-

stants for the atomic and ionic parts was also tried.

It

was found that the best results are obtained when these

screening constants are equal.

The addition of kosen's term to the atomic-ionic

function resulted in a value of 4.10 v.e. for the dis-

sociation energy.
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Attempts to obtain some of the properties of the
normal hydrogen molecule by wave-mechanical methods
date to the early days of wave mechanics. Heitler and
London 1 applied a first-order perturbation method,
and Sugiura 2, by evaluating an integral whose value
Heitler and London had only estimated, obtained results
gqualitatively comparable with known experimental data.
Eisenschitz and London 3 applied a second-order per-
turbation treatment and obtained results in poorer
agreement with experimental values than the results of
previous calculations. For example, Heitler-London-
Sugiura's value for the dissociation energy is 3.2 v.e.
and the experimental value corrected for the zero-point
energy is 4.68 v.e., while Iisenschitz and London ob-
tained 2.5 v.e.. Thus it seems that the perturbation
method is not very satisfactory for the treatment of
the hydrogen molecule. [he variational method, by
approaching the value of energy from one side, is safe
from the possibility of oversnooting the mark. Wang4,
using a variational method involving the introduction
of a shielding constant as a parameter, cobtained 3.7 v.e.
for the dissociation energy. Hosen 5, by using tne

three-parameter function

= prcy
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where Vyois the hydrogenic wave function for the lowest
state with a shielding constant 2z, %¥” is & function
symmetrical about the axis but not about a plane through
the nucleus perpendicular to it, and G 1is a parameter,
hes obtained 4.02 v.e. for the dissociation energy. The
improvement on the previous value is considerable, but
the calculations are rather laborious.

All these calculations were based on the assuumption
that eachh of the nuclei always has one electron attached
to it, these electrons sometimes interchanging their
positions, which leads to the interchange energy. It
was suggested by Hund and iMulliken 6 that a truer pic-
ture would be given by a wave function /@€+9f4/2§+%£/
which takes account not only of the atomic configuration
but also of the ionic configuration, when both electrons
are on the same nucleus, the other being completely
stripped of electrons. However, a function of the type
suggested by Hund and kulliken would give the hydrogen
molecule in the normal state as much ilonic character as
stomic. There seems to be no reason to assume this, and
s logical wave function to take care of the atomic-ionic

character of the hydrogen molecule appears to be

LG 5%) (%)



4

w _
where ¢ is a parameter, 2?=/W2 “ and 9?=/¢2 25%7

77

It has been shown that the integral

e S var
J g

where I is the Hamiltonian operator and ¢ is a function
which satisfies certain boundary conditions but is other-
wise arbitrary, containing, say, some variable parameters,
has the property that the lowest value W obtained from
varying the numerical parameters is the best approximation
to the value of X, and that 3 - W is always positive or
zero., Hence the variational integral presents, as already
mentioned, a satisfactory means for evaluating the energy
of the normal state of the hydrogen moleculs.

The first test for the wave function 7“=C?@f2§+2?%?k“
-f/@f2?+%%€/ would be to consider it a two-parameter
function. The results obtained by varying c¢ would then
be comparable with the Heitler-London-Sugiura results.
it is, however, more convenient to treat )&=C’/%}f+§,ﬂ$é//+
+/§f/§z//+;,ﬂ/‘é) as a three-parameter function, and then,
at a certain point in the algebra, to reduce it to a
two-parameter function by letting Z = 1.

It is useful to set up the following scheme, due

to Slater:
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and rewrite our wave function as
V=) + % (1)
where Y45 -% is the atomic Heitler-London term and

%@*Z&- is the ionic term. The variational integral

- JE e
= J V’"’V’o/?'?'

(2)

then takes the form

W= W - I )t ] (22)
T S ) e ta]

Ihe wave equation for a hydrogen-like atom, in a

2

()

system of units where unit of length a, = .5234

2
and unit of energ; é? = 27.06 volt-electrons, is
(4

Vit Gwl) =0 (3)

or, in a rewritten form,

Wt =—Lvig+ by (32)
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where W = - 2 The general wave equation may be written
&
&8s
/V%—/%V (4)
34 = V V__ZZZ‘Z ;
with -£ and = “;2‘4’ (5)

7
the Hamiltonian function for the case of a hydrogen

molecule being

—_L/pipd_ L 4 _ /L _ L 7z /
/7 Z/Z*Z/ Y G B @ +27z+é5 (6)

In subsequent calculations the letter I with a
subscript will be used to indicate the different inte-
als occurring. The integrel Jﬁfﬁﬂdé’ will be de-

notesd by S.

o
&>

Leaving out for the present the term éié in

the Hamiltonian we can now set up the following expressions:

JtH = |4/~ —L ) paty=

S

_:/lp.._:Zhgii*__//yqﬁ%:fzcz-ﬁé%gLZﬁ{7 A £%y
St dr=-[%s22)3]=5 (72)

Let us denote integrals of the type Jﬂf/?%%gﬁw

oy Aéy . These integrsls may be represented also by

éiﬁ/f7y2%§7y%7 , where p stands for the number of per-

mutations of the signs of the spin that are necessary

to obtain the same spin for functions pertaining to the



seame electron. Then, in terms of A and B, we obtain
g =%z =<A*Z
/Z/m;/@/?z?"‘jﬂ*é
V7o =Vhr = ~ZB5-Z (3)
/i ™ S B+
Aé@=A%a=”éé?sf%y:”2§=‘ééis”é%;‘fék‘Agﬁéh%;

Making use of the relations (8), we find
3"% = C Y g =C *iz ~ Y C oy =
= O J£iA 1 L4 Yo 50 L |+ 2B + e/ A5+ 54 (9)

and putting I = ZI, where ¥ 1is a function of f¢ngJ

only, this becoues

F Uy =Z el shs I Yol # e ) 225554 )¢

+§f€3/§;-§’6/5"/§3f/§*§:/]= /QZ?f/tZ (9a)
where
A=[4l)1wesh -5+ ek (10)

= (C% I ) E -2~ -Y5f ey eCF — Y /50 s+l (10a)
/lt /9 & Z '35

The denominator in the expression for W has the value
0/=~/r7’?4/7" Ly + Lt~ Ly + g + et =
= 2052020 5%25% Fos = It ) hnsr Yes)= 2P (11)



As /D=Z@’43 , introducing the term £ that we

left out of the calculations, we have
2
Al 2 _ 52 Z
h/—~—771‘——+F—‘,Z+///’ﬁ+P/Z (12)

Substituting Z =1 in (12) we obtain W as a function of
parameters € and /0

W=2pe o £ =

_ Y572 st ) = (50 fs 12~ ) e (13)
(cl)(1r52)+Yes r |

This expression for W involves only integrals used by
Heitler and London, F6 being the integral evaluated by
Sugiura. Minimizing (13) with respect to C , %%K:O
yields a quadratic in c. Substituting the value of C
obtained from this quadratic bacs in (13) and varying
/7, the lowest value of W was found to be W= -1.1137
with f7= 1.67 and C= 6.322. The Sugiura value for W
is W= -1.1156, so that the inclusion of the ionic term
gives an improvement in the dissociation energy of
0.0031 or 3%.

Going back to {(12), we can improve the treatment
by minimizing (12) with respect to 2, which is equivalent

to Wang's treatment plus an ionic term. We get

— LA Pt i
%ZM_ 7—Z+/‘)&+/—é- (14
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me.z-é’}j,(//é}e'*,é') (15)

Substituting (15) into (12) we have

h/Z=/77/'ﬂ.= “17:)’{/,; *,‘of‘/z (16

Bxpression (16) is a function of ¢ and f> as was
aw

the case for (13). But while in the case of (13) 2 =0

gave

o

guadratic in C, in the case of (16) %%g:o gives
an equation of the fifth degree in €. IHowever, to eval-
uate C by direct substitution of different values of C
for a given f> involves very little labor. The procedure
employed was as follows: the best value of C was first
obtained for /): 1.67; then f) was varied to get the best
value fbr the obtained C ; then C was varied again, and
so on, until the variation in either ¢ or fD would re-
sult in a lower value of W. The lowest value of W ob-
tained from (16) is W = -1.148 with f9= 1.69, C= 3.9
and Z = 1,193,

This result compares very favorably with the re-
sult of Wang's treatment (improvement of 8% in disso-
ciation energy) and is just very slightly lower than
Rosen's result, which requires very elaborate calculations.

Thus the results of this calculation show that the ratio
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of the coefficients of the atomic and ionic parts of the
wave function is zbout four and not one as was suggested
by Hund and #ulliken.

50 far it has been assused that the effective nuclear
charge Z is the same for both the atomic and ionic parts.

74

The next step is to introduce a new parameter £=f§- 3
where Z' 1s the effective nuclear charge in the ionic
terﬁ, The integrals involving Z only will be denoted as
before by I, for the integrals involving Z' = &£Z an &
will be added in the subscript, and the integrals invol-
ving both Z and Z' will be denoted by the letter J.

Our wave function will be written now as

V=Clbhr )55+ 7,72/ (17)
/7

# w2 g ? L Gy

where ;:/Ve and ), =/l/e

The Hamiltonian (6) is now not Hermitian and, in
general, integrals of the type jﬂfﬁzgaﬁf and\/%ﬁ/%wﬂ?
are not egual.

Proceeding as before and leaving the term Zé out,
A8

we can write the following expressions:
JeHisdr= fensdr=A
JtH g dy= [ Hwdy=5
Jill 5 dtr=fphy -y
JEH 3y = g A o=



LE
JHH 5 dy = Jop gy == L w2 g =7
/}&/7/7”/7""/97/7? 7= z‘+sz T J=8

(18)
Jéffyﬁpaé"-JcZAyya 2?Z¢#2Z22w7;z:=14”
,/%A/ykﬁ}—UGZﬁ/ :._éZ ‘+2Q;~%Z—1/=19”
where Z;=/%f’/7’ and Z"/Vfé/r

In terms of A, b, Ayy By, A's B', A", and B,

we have

/Z&-?4£y= IA+1y

/%27= by == 2E5-1

Voa~lipr= At 4, (19)
Ve = lew =5+ 1,

(Trar= bz = e Sy = AL EG +

'/-'}:'r = /iy =~ lir =Tz =AY+ 5% A

and —%-’\NN= Cz/ZAf y/+67?85+’4/+245+13£f2é%* 7+

LAV 5T 2] (2o

Introducing integrals ¥ and G, independent of 2z,
such that I = ZF, I;= ¢ZF and J = ZG, we get
Ty = Z;fc T2k 5-5Y e fftes) G+ 1 "G )% *
— (# )G+ 5125 4, -.57+ch3//*/‘~2*
~ ZE-YEs)w o wfoim 22l 7@;s£)+
~ e /2(5,+6,)+1 [ (627 %)- 6 72 22/«

(20a)
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The denominator has the value
A=2/c3cis%/+ 5t 408,8= 20" (21)

Hence, introducing the term 3%— s left out of the
AB

calculations, we have
152 ’
Z / i
W=._7,ﬂ_lz);‘ %:§-21+/#,,+!-0L/Z (22)
and

) Y, 2
Woemin== () (23)
The G integrals can be evaluated in elliptic coor-
dinates and they will be found in the appendix.
Expression (23) is a function of f) , & and C .
It recduces to (16) when &= 1. Starting with the best
values of C and ’D for (16), C=3.9 and ‘0—:1.69,
values of &>/ and &</ were tried. It was found that
the value &E=1 gives the lowest energy. This interesting
fact shows that the screening constants for the atomic
and ionic contributions to the normal state of hydrogen
molecule are the same.
The ionic term and the kosen term giving indepen-
dently an improvement on Wang's result, the next step
is to set up a function which would include both these

terms. ilaking again use of Slater's scheme we can write
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Y C/%*J%/:, -~ Y+ e (24)
where ¢ is the Losen term
(25)

& @)% 224
2”—/?7 e %, cos &,
the nuclear charge being taken as 2Z so that the inte-

grals involving ¥ would be integrable.

Following the same procedure as before and remembering that
(26)

Fleale 'g‘“ /¢

and
(26a)

L 20 22 )y
z[?yb_//z + Z/ep
we obtain

JEHydr=A
[eHpdy=5
JeHs - [t dr =7,
JEH G = o == [Z2w1-22) ] =
=[5 (575 ] =0
S H 5= [ 4 Ay =[]
::74%%§+/33&;Q%7=[9
WU G Ay == w122) L = £ (
(H oy =5+ 412 =N

I\

I

D
~2
~——

[
r
!



where S,= / %5&2/7’) 5, = / A snd Lg=Z2L .

In terms of A, 5, D, & and i, we have
Uy Wb 226 By (0 Y0y 22650
+ Y6 L+, +YCL, + 50D,
Vg =l = (250 405, 4 265, )B4/ Yo+ 0675 +46°5 ) D+
+(20 S+ 402, +20%5, )M + I + Y7, +Z&‘2/[,7+ 20/+
+ 0L, + 26y +C7
= = s = Her =5 =~ Y =~ o=~ =
=(5+C3, JA+E+CD+Z;~(Cs +C?5z/j:,, +C Ly +0L +CZ
R "
Vo= Ho = 2654 -

Substituting I = Z¥ we get .

Wy = 2102206005 o -/ -2f [R5 265465,
+ et~ G)5m9 | B0/ 5+ 2054075, L] 45 Je BP0 +
~Z ) O B3, 6, [+ Z S - Wt [C Ve +
+&CI5rES, )+ j I (2554265, +C %5, JedeeS)r L+ lel+
() =B [C e Clforts, |- 25, (6150 576, )
+CG =Lk, )C Y G-Iy CE fSe 65,00, 1 H6°C Ly #
+8CCH P ELCY + %‘%‘f/xﬁﬁ@/m"&’c* b+ CC g+
+ 26 C3, + FCTYey + P Ty r IOy + FOC s +

2%, +i52'§}f=/?/,_7i/{,2’ (29)

and

A= 201+ 2056+ 25 % V055167 95, % 255, + 7055+

¢ %j*— Fc ’3,#(75;/ e r 5=/ i



(o=
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Finally
W= 2%l k)2 (51)

and

2
l/lé--/ﬂ/'/z:“?%//f'fﬁ (32)

The integrals occurring in (32) will be found in
the appendix.
Lxpression (32) is a function of P o ¢ and G .
&s both the Wang-ionic and Rosen treatment give the same
internuclear distance it is a good approximation to use
F): 1.7 for the Rosen-ionic treatment. Some of the inte-
grals involved are expressed in terms of integral log-
arithms and are calculated by repeated use of recursion
formulae, hence the value f)=:1’7 was chosgen in prefer-
ence to f>==l.69 as with the former more accurate values
could be obtained from the available tables of integrsal
logarithms. With f>=-l.7, C and G were varied until
the combination of C and G giving the lowest value
for W was arrived at. The results obtained are W= -1.1515,
¢c=5.7, (=.07 and Z = 1,190; /o has not been varied
as such a varistion would require very long computations
and the expected improvement in the vealue for W was small.
The comparison of the results of the different cal-
culations can be seen from Fig. 1 and from the following

table.



s et - W AE(v.e.) %Lgm-cmg) Qg(cm‘l)
Wang-ionic -1.148 4.00 4.65 x 10%L 4750
Hosen-ionic =1.1515 4,10

Heitler-London-Sugiura -1.116 314 D 2 4300
ang -1.133 3476 4,59 4300
Rosen -1.14385 4,02 4,65 4260
Observed 12173 4.68  4.537 © 4418 ¢

The fundamental freguency zé was calculated by means

9

/8

curve

DE =L PPl g po P 1) (33)

okoorse

By substituting in (33) three different values of
/% with the corresponding values of AX we obtain three
simultaneous equations which when soilved give I = 0.14723

and a = 1.216. Then )é was calculated from the formula

e I
% Torzy /‘% (34)
where a is in 1/R, D in wave numbers and M:=2Zﬁ; in

terms of oxygen = 16.

The table shows that the introduction of the ionic
term in the wave function gives an improvement of 8%
over Wang's value for the dissociation energy of the
hydrogen molecule. Thus from g simple wave function

results almost equivalent to hosen's were obtained. It

should be noticed that while the ionic term corresponds
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to a definite physical picture, the physical significance
of the Kosen term is not quite clear. The addition of the
Rosen term to the atomic-ionic wave function gives only

about 2% increase in the value of the dissociation energy.

<l

The writer wishes to thank Professor Pauling for
suggesting the problem and for valuable criticism during

the progress of the work.
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Appendix

The list of integrals used in this work follows.
The expressions for 5 and H functions will be found in

the discussion of these integrals.
" 2
5=/>¢{a/7;=e /O/é% +/0fy
5,=/W2/z:ﬂ
_4£
5= ey =4p

/‘/27 /

% |
*/’2 2 -
/5: %a/zd/g :IDL—Z %-ﬁ}{—/f'g/&*;/y

= -
fo [IHlty = 0T s Frp) -0 T

&= / M”/ Ty = #ﬁ/f/ 420)-64/54,) +/1440)+
~I5440) #5119
5= %—%’a’r =0

:/_%_’Za/r_ s <& /0/”*‘3*"*,02)

8y



_ [ £ _ 2
fo= | Etr= 445

B AP )
//"/z” ”éf‘z

/72

S e LB 2 /Y
/z“/ 25,% _%f’&—g %*370*7’#,‘;*,2'63*,5{_/

L TR
lo= | St =471
F_/%az/erdf“z—/-*f—‘—i —ngaﬁ#ff T, K, 25,
W= 5, e = g ot e T T

% V4
L [¢ey _

by = | HEE o = 4~ o ) + M0+
+HOH YR~ WA B G i G5 + g e)
O 2 X N A L e
# 2/ T62) 2551150 w6544 p)
b= [ =g B B

PR

F73p° | 23809p°%, e , Fpl5/ , 49, 8Y . MY, bf , 5%
*};75‘* 78 T ed T sz T o T et *70‘3“*707*,2?/



:/ % d//V'ﬂ/f—-——-HZ éga/ 75/—/———72-//‘33 —é;j;é_z

22 T e 2Y0
+i;:g£+f+/y /ﬁ ;f+(£,
/g:/%g/; z/‘/ﬁé’,"d/&' (Zé 2,0/7}0_&_7,_}2, 7 +%+§§j/_
e

lo= [ EEE sty = £

£ = 14 LUl ity = [, 0 12 ST Ll ) 20 2
rhat BB S ot ) O (1 i B
Y e 2 o L e
+-— 9/f+// + 2L LG )p]/ Where
A=FH(32 p)-#136p), E=3/444p/~#/440)
C= 9514.4p) » 9511510~ F5/490) -7 5430 ~TH/54 o)
+IH5Gp)+ (3 5,0)-11540), and L= 55240+
+93(130) - F5(44£)-35/442)-2415 20) #7454, 0)*

+INI 5~ 41457
&= = ";‘” Lyt = ok - B0+ Ao [HIHs )

= TIEH Y G ) 225714 % 0) #3455 40)- 38412 512 >

+27H[540)- 275556, p)r HESEY L) -655/5%0)

21



7
z‘=/¢7 = //5/215"” i) e U )
/ 73
///-S/e
~(é+4Jo
Gr=/- ‘tg,“’ 7= P//+2/3 ZC«’ e i

@: zf/z:———)z; ; ffzeﬂe'f’o[/;'fyﬂ-zjj
2’_/25/ pad /0// /’“Zf"ye - ’?_/z/,mg]f
G= i bdrdy = /0/” el

- -—7_—/g /&‘ [_/5/-///0-#%#—/ +E /%é */E +£//0—75—ﬁ)
v

iiost of these integrals were calculated by previous
vorkers in this field. However, a number of them had to
be calculated for the present paper, namely, t, »t,G ,Gy,
Gz 9Gpr Gy sy 9kz¢ and Iy « All these integrals were eval-
uated in elliptic coordinates. t, 4,t,G ,G/ 4Gz, and Gy
were evaluated without much difficulty. ky and Izy could

be expressed in terms of other known already integrals.

Before giving the solution of Gs and ¥z the method of



solving the interchange integrals of which Fye 1s a very
complicated example will be discussed.

In expressing an interchange integral in elliptic
coordinates zi is replaced by its Neumann expansion in

W

terms of Legendre polynomials

L =Bl £ln)d, /2 Em)

o

The resulting integrals can be broken up into a sum of

terms of the form H(m,n,p) and S(n,nlo) where
Himnp)= //2 "7 &/Z/aﬁ/z "o, +
Mz”/’@/z/o’/,zz 2 sth,
/a//,g e/”afz/z "o P, -

/,2 zf)aﬁ/ﬂ "y %,

Q//« /%,2,«/

These quantities can be treated by the use of functions

Ad () :/A 2P
buip) =) 25 Ve

which satisfy the following recursion formulze

%/fO} 7 %4_/]
butfp) =f/z—z//0/ 5/ Lous ()~ %) L/ ) "4}7—240‘/7

©
o)
&

/@



A=

Elp)- Lo oo -Eif ) 4T

1) = L/t 407*5'/67045{*/3/1/ ~Lif2p)e ) % 55/
C=05772/6.....

¥Yrom A,, I, and ¥, , tables of A and I' can be compiled with
the use of the recursion formulae.

'he 8 functions obey the following recursion formula

Sz, 74,0) =[5 (076, 14 0) # Ay ()]
with
- Ay
)= 24

H functions, in turn, are expressed by

19/78,71,) = Ay () o fo) st it )~ T2 2000) = T 70)
where
/i 7p)= ,g’[;ﬂ%f-& 240)* foron (42
with
7/67p)~ 25
With the help of these functions the interchange integrals

can now be calculated.
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G R R G A A
W7 a,/i an Ayl =
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= (24— BLanJI05 e T ]+ e
a2t ey | 1 4)e o f T
~ 2B galat e =

= £l BT e ) F M50 VB e )
LA~ + € -1 B IAGS )-F s
#(1-E+ am 5—;}[/‘/%0/—5#@4}& AN Frdr
+S)FS4 20 F5(050)- £50590) - $5439-E A5 % 0
+F 8GR+ 44/54,2) glﬂ/ggf/],u//f/g— #* f{ " ,.;1;& (Z;’;f &
+ )/ 2514300+ $.51442)- 4514051240 $ 4G 4
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D25t p)+ F5103p) £ 51462~ £ 50240

/3 200+ £H1540) FH1130) - #4922))f =
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