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SUMMARY

The theory of an Aston-type mass-spectrometer using a
cylindrical condenser and bringing all ions of the same
specific mass to a point focus by variaticn of the magnetic
field alone is developed. The theory of the motion of an
ion in an inverse first-power electrostatic field is studied
under the particular set of conditions where all ions
regardless of their energy enter the condenser normal tc its
leading edge and at the median position in the gap. Taylor
series expressions have been obteined which give the exit
position, the squaré of the exit velocity, and the tangent
of the angle of deflection in the field. The existence,
uniqueness, continuity, and uniform convergence of these
series solutions are established. The equation of the family
of straight lines which the lons follow beyond the electro-
static field and befcre the magnetic field are obtained. The
existence, location, and width of a virtual source are
established for this system under the above conditions of
collimation., Expressions for the coordinates of the faces of
the magnetic pole pieces are obtained for the case where the
leading and trailing faces are mirror images of one another.
in the line ccontaining the centers of curvature of the paths
of the ions in the magnetic field. The maximum mass-resolution
is obtained for a magnetic deflection of about one radian when
the electric deflection is one fourth of a radian. A study
is made of the corrections for vartous edge effects in the
magnetic field. Tables are given of the numerical results

of this investigation.



I. INTRODUCTION

An Aston-type mass-spectrograph may be characterized by
a certain combination of electrostatic and magnetic fields.
A well collimated plane-parallel beam of accelerated positive
ions is first resolved by the electrostatic field into an
energy spectrum (or better, into a spectrum dependent on
mva/e where m, e, and v are respectively the mass, charge,
and initial velccity of an ion as it enters the electrostatic
field). This energy spectrum is further analyzed by the
magnetic field in terms of the momentum of an icn (or better,
in terms of the mV/e for an ion where V is the final velocity
of the ion as it leaves the electrostatic field). These two
fields are arranged in such a way as to bring all ions of the
same ratio of mass to charge to a focus dependent on this

ratio but independent of the velocity.

This type of mass-spectrograph may be characterized in a
somewhat different way which is significant for the purposes
of design. The electrostatic field breaks up a well collimated
plane-parallel beam of accelerated positive ions into a
spectrum which is strictly equivalent to a point virtual
source, the same for all ions, together with an angular
spread about a certain median ray and dependent on mv®/e.
The magnetic field then converts the point virtual source
into real point foci independent of the velocity of an ion
but dependent on its ratio of mass to charge. The system
thus displays analcgies with an optical system, and the

language of optics may well be used in its description.



In the following presentation there has been developed
the theory of a modified Aston-type mass-spectrograph which
uses a cylindrical section condenser in place of Aston’s
plane-parallel plate condenser, and which uses in place of
the several focl employed simultaneously by Aston only one
focus. This focus 1s then obtained in turn for each individual

value of m/e by variation of the magnetic field alone.

The Significant Parts of the Mass-Spectrograph.

As a preface to the derivation of the theory of the
mass-spectrograph a qualitative account of the several integral
parts of the apparatus which are important in the theory of
focussing will be given. Also a discussion will be given here
of the arguments in favor of the various modifications which
are belng incorporated into the apparatus as against those of

other possible alternatives.

It is virtually impossible to obtain a theory of the
mass-spectrograph without the use of a considerable number
of approximations. In order to insure in the highest degree
that the approximations involved in the following calculations
are leglitimate and that no untoward assumptions have been
introduced, the conditions and some of the more important

dimensions of the apparatus under consideration will be given.

The parts of the apparatus which are directly important

for the theory of focussing may be enumerated as follows:



3.

(1) Source of ions. This type of mass-spectrograph places

severe restrictions on the arrangements possible for the
production of positive ions. Aston has come more and more to
believe that the constancy of the positive ion source determines
the ultimate limit to the usefulness of the mass-spectrograph
(F:W. Aston, Journal of the Chemical Society, February, 1933).
With the present method of measuring the relative amounts of
ions with different ratios of mass to charge it becomes of
paramount importance that the source of ions display only

very slight fluctuations. Otherwise relative intensities have

no meaning.

A nearly constant source of ions can be obtained by the
following method. A stream cf vapor or gas is introcduced by
means of a capillary into the discharge tube exactly opposite
the collimating system. The pressure in the capillary can
be maintained quite constant over a considerable period of
time. Concentric with the mouth of the capillary there is
located a filament for the production cf electrons and, at a
smaller radius, a grid for the acceleration of these electrons.
The neutral molecules coming from the capillary are thus
ionized in a space of small dimensions and of small potential
variation. Such methods as a heater type filament and
evaporation require extreme precautions in the preparation
and maintenance of the surface before constancy can be

approximated.

In order that the number of lons beyond the electrostatic
field be an appreciable fraction of those formed at the source

it is essential that the source of ions be restricted to a



rather small region exactly opposite the collimating slits
and to a region of nearly constant potential after the
accelerating field has been applied across the discharge tube.
The former precaution assures that a fair proportion of the
ions will get through the collimating slits and the latter
that these ions will not be drawn to the lower condenser

rlate and thus removed from the measurements.

(2) The discharge tube. The discharge tube contains at one

end the anode in the immediate neighborhocd of the source

and at the other end, the cathode. The anode may conveniently
be the grid of the electron bombardment arrangement. The
cathode may be either simply the first slit of the collimator
or a separate arrangement in the neighborhood of this slit.
Between the anode and cathode an accelerating field having

a potential drop of the order of 1500 volts is applied.

It is essential that the pressure be maintained at such a
value as to insure that the kinetic theory mean-free-path 1is
several times larger than the greatest linear dimension of
the tube. This will prevent, in a sufficient measure, cocllisions
between the anode to cathode ion stream and any gas molecules

which may be present in the tube.

(3) The collimating system. The ion beam is made effectively

plane-parallel by means of two horizontal slits about .04 by
2.5 millimeters separated by a distance of 40 centimeters. The
important quantity from this system in so far as the theory

of focussing is concerned is the angular spread of the ion



beam evaluated at the center of the system. This quantity is
.04/200 = ,0002 radians approximately. The tube containing
the collimating system is 2 inches in diameter and is connected

to ground.

The pressure in all parts of the apparatus beyond the cathode
slit must be maintained at 107° millimeters of mercury or less
as collisions of the ions with neutrals might very well

invalidate some or all of the subsegquent conclusions.

(4) The electrostatic field condenser. The plane-parallel

plate condenser of Aston’s design has been replaced by a
cylindrical section condenser. This innovation deserves some
comment. The advantages of this form are as follows:

(a) Since the potential of the condenser can be adjusted so
that those ions possessing a median energy will be bent in

a true circle concentric with the axis of the two cylindrical
plates, the whole useable portion of the beam of ions will
have nearly the same curvature as this median ray. Hence the
condenser gap and the applied condenser potential can be
reduced to the order of a third or fourth of their values for
a corresponding plane-parallel plate condenser. The potential,
of the order of 50 volts in this case, 1s easler to maintain
constant.

(b)The errors due to edge effects are materially reduced. It
is impossible theoretically to correct rigorously for edge
effects for a condenser incorporated into a vacuum apparatus.
Since the vacuum system 1s in large part of metal at the

potential of the grounded condenser plate it in effect forms



part of the condenser. For an isolated condenser with a small
gap the edge effects are directly proportional to the gap
width. For larger gap widths the edge effects depend on higher
powers of the width. Therefore an arrangement which allows
the gap to be narrowed by an appreclable amount produces a
more than corresponding improvement in the accuracy of the
energy analyzer.

{c) It turns out from the analysis that the field due to a
cylindrical section condenser not only separates a linearly
ollimated beam of positive ions into an energy spectrum but
also effectively concentrates that beam about the median ray
(which is the ray following a true circle in the condenser
gap). Ions with higher energy than the median find that they
must oppose a potential gradient and thus lose energy, while
those with lower energy than the median go with the potential
gradient and thus gain energy. The same effect in a smaller
degree 1s shown by the planeparallel plate condenser. It may
be shown that both of these systems can be replaced by point
virtual sources together with certain energy spreads. (See
F.W. Aston and R.H. Fowler, Phil, Mag., 1922 for the theory
in the case of the planeparallel plate condenser). It is
further shown here that the cylindrical section condenser has
a larger concentrating effect on the ionic beam because its
point virtual image lies considerably behind the corresponding

point for the plane-parallel plate condenser.

To offset, in part, these advantages the theory of the

inverse first power field is very much more complicated than



that of the uniform field. The complexity of the results also
restrict the shape of the magnetic pole faces to rather specialized
forms. It 80 happens however that the corrections for edge

effects in the magnetic field also demand these very same forms.

The form of the condenser plates may be expressed either
as that of an axial sector of a cylindrical shell or of a
sector of an annular pipe. The height of the cylinder is 4
inche=. The sector subtends an angle of 1/4 radian from the
center of the cylinder. The outer and inner radii of the
outer plate are 12.9 and 12.1 centimeters respectively. The
outer and inner radii of the inner plate are 11.9 and 10.3
centimeters respectively. The gap between the plates is thus

2 millimeters.

The inner plate 1s connected directly to the body of the
apparatus and nence 1is at ground potential. The outer plate
is supported by means of insulating spacers and can be

maintained at a fixed positive potential. The constants of the
condenser, such as 1ts capacity, must be determined, if needed,
by experiment since their values when incorporated into the
apparatus may be slightly different from their values when
the condenser is isolated from other bodies. It is assumed
that the spacers are very accurately machined and are not
subject to shrinkage in the vacuum. However a small error
in the spacing should not greatly affect the uniformity in
the field between the condenser plates. The radii of the
condenser plates enter into the equations only through the

logarithm of their ratio so that the equations will be very



insensitive to slight changes in the radii.

The edge errors are of two kinds. First, there is an error
made in assuming no field outside the curved portions of the
gap. The ions which reach the focus never come near enough to
these edges to be appreciably affected by the non-uniformity
of field there. These edges may cause a discrepancy between
the effective potential of the field and the actual potential
applied; but as the effective potential is to be determined
in the last analysis by experiment, it will cause no difficulty.
Second, there is an edge error made by assuming that the field
1s strictly radial at the straight edges of the gap and vanishes
outside the gap. This error affects the ion stream more
directly than the first but certainly has only a small effect
even when magnified by the shrinkage in the gap. In any case
the effect can be calculated approximately by the use of a
Schwarz transformation. The fact that the outer and inner
plates of the condenser are respectively 4 and 8 gap widths
in thickness makes it legitimate to use the Schwarz transformation

corresponding to infinitely thick plates.

5till a further complication arise from the fact that at the
trailing edge of the condenser only ions traveling along the
median ray have their direction of motion always perpendicular
to the field. At both leading and trailing edges the lines
of force outside the condenser gap have atendency to bow
away from the gap. At the leading edge this causes no
complication for the beam is very narrowly confined and all
ions move perpendicular to the field. At the trailing edge

the part of the beam which comes close to the plates will be



given an added and unpredicted deflection. This condition is
remedied by the inception of a diaphragm before the magnetic

field to remove these border ions from the measurements.

Since the apparatus possesses a vertical plane of symmetry
containing the center of the thin ribbon of the positive ion
stream in the collimating system, all calculations can be made

in terms of the two polar or cartesian coordinates of this
plane. Furthermore the collimation will be considered as perfect
at the leading edge of the electric field; i.e. the positive
ion stream will be represented as a mathematical straight line
normal to the line of the leading edge of the sector and 12
centimeters removed from the axls of the sector. The path of
an ion which travels through the electric field on a circle
having this radius 1is, by definition, the median ray. This
term will also be used for the corresponding straight line in
the reglon of separation of the energy spectrum beyond the
electric field. The deflection of the median ray from the
direction of motion in the collimating system is therefore
equal to the angle of the sector or 1/4 radian. The finite
angular spread of the ionic beam in the collimating:-gsystem
will be taken into account in the subsequent discussion of

the width of the virtual point source.

(S)Beyond the electric field the positive ion stream diverges
as though it came from a point source located about 1.5
centimeters back of the trailing edge of the condenser as
measured along the median ray. The divergence of a particular

lon in the beam is determined by the value of mva/e for that
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ion. The location of this virtual scurce and the direction of

the extension of the median ray which passes through it
determine a unique reference system for all subsequent
considerations since a point and a direction determine a

line uniquely in a two dimensional region.

In this same space before the magnetic field and after
the electric field there has been incorporated into the
apparatus a diaphragm which may be varied both as to width

and to position in the ionic beam from outside the wvacuum.

This arrangement makes it possible to ascertain for what value

of the condenser potential the maximum number of ions follow

the median ray. It also enables one to test the theoretical

conclusions from the study of the inverse first power field.

In the final arrangement it will be used to prevent those
ions which have passed too close to the condenser plates
and thus have an undetermined deflection from continuing

into the magnetic field.

(6) The magnetic pole pieces. The purpcse of the magnetic

field in an Aston-type mass-spectrograph is to convert the
virtual point source of the electrostatic field which is
independent of the specific mass into a real point focus
dependent on the specific mass. No attempt is made or need
be made in this design to have the focus sharp for other
than that value of the speciflc mass which will be brought
to a focus for a particular value of the magnetic field

strength.



It is essential to this method of measuring the comparative
amounts of ions with different specific masses that the magnetic
field intensity be measured precisely each time the field is
changed. A graphite crystal suspended between the magnetic
poles from one arm of a torsion balance 1is used for this
purpose. The crystal, which is diamagnetic, gives a force

the square of
directly proportional to,the field intensity. A mirror mounted
on the balance, symmetrical with its axis, reflects a beanm
of light to the same scale as 1is used for the deflections
from the galvanometer in the recording circuit. Thus for
each measurement of positive ion current a simultaneous
value for the field intensity 1is obtained without disturbing
the remainder of the apparatus. This arrangement establishes

the necessary relation between field intensity and specific

mass.

In a calculation of the shape of pole pileces and of the
mass-dispersion the assumption is always made at first that
the magnetic field is uniform inside the pole gap and cuts
off sharply at the pole faces. Under this assumption the
radius of the path of an ion 1is a constant for constant field
strength and is in fact given by the product of the specific
mass of the ion and the ratio of the velocity of the ion
to the field strength. The purpose of thls assumption is
to so simplify the problem of focussing as to make it
comparatively easy to calculate the shape of pole faces
for various conditions which may appear desirable for

experimental reasons.



The symmetry between the virtual source and the real
focus suggests that the trailing edge of the magnetic pole
pieces may well be taken to be simply the mirror image of
the leading edge in the perpendicular bisector of the line
Joining the source with the focus. This bisector then
contains the centers of curvature of the paths of the ions
in the magnetic field. This arrangement very greatly simplifies

the calculation of the shape required for the pole faces.

The magnetic median ray 1is, by definition, that extension
of the electric median ray, in the magnetic field and in the
space beyond the magnetic field, which will arrive at the
focus for a fixed value of the magnetic field intensity. If
the straight portion of the electric median ray 1s extended
forward until it meets the backward extension of the magnetic
median ray an unique reference point for the magnetic field

is obtained which will be designated as the center of magnetic

field, This center lies on the line of centers of curvature
of the ions in the magnetic field and is 40 centimeters

removed from both the virtual source and the focus.

The angle of deflection of the median ray in the magnetic
field together with the magnetic field strength are the variables
which may be adjusted so as to give the maximum mass- resolution.
This angle of deflection may be chosen either inthe same
direction as or opposite to the deflection in the electrostatic
field and the pole faces will then be shaped so as to bring

all ions with the same specific mass to the focus. The radius



of curvature of the median ray is first chosen to correspond
to such a value of the field intensity as to ensure that the
maximum field strength derivable from the magnet will bring
those ions having the maximum specific mass to the focus.
After this radius is fixed a few points on each of the pole
faces corresponding to several values both positive and
negative for the deflection of the median ray in the magnetic
field are calculated. Then graphically the paths of ions
arriving at the leading edge with the same energies and
positions as the ones which reach the focus but having specific
masses ten percent greater and ten percent less than these
are mapped out through the magnetic field and extended until
they form their respective foci. The distance between these
focl and the real focus is taken as a measure of the mass-
resolution. It is thus found that for an electric deflection
of 1/4 radian the mass-resolution is a maximum for a magnetic
deflection of about 1 radian.in the opposite direction. Hence
this value of 1 radian which is the same as for Aston’s
design will be maintained. The diagram of this work is not

given in the subsequent theory.

A large number of points are then calculated on the curve
for the pole faces for a magnetic deflection of one rasdian.
This curve which still represents the situation for sharp
cut off at the pole faces must then be altered to correspond
to the actual condition of graduwal cut off. In so doing
corrections must be made for first and second order edgé

effects.



The first order edge effect is due simply to the fact
that the magnetic field does not cut off sharply at the pole
faces., If we started at the center of the gap and explored
the field as we move away from the center it would be found
that the field remained almost constant until within a gap
width of the pole faces and that the field rapidly decreased
for a short distance beyond the faces and then more slowly
until the field is zero only at a very large distance. Hence
the failure in sharp cut off gives an effective addition to
the field. By the use of a Schwarz transformation the curve
of field strength against distance measured along the normal
to one of the pole faces can be obtained for essentially
plane pole faces. From this curve the position can be
determined for a hypothetical pole face which would for
sharp cut off give the same integrated field as does the
actual pole face with gradual cut off. Then by cutting from
the actual pole face a depth equal to this distance along
the normal to the pole face the first order edge effect can
be fully corrected. A certain amount of Jjudgment and pious
hope is involved in this process because at a sufficiently
large distance from the pole faces thelr slight curvature
and the corners of the magnet may seriously alter the field
from the idealized situation for which the calculations have

been made. In this case the field beyond 20 centimeters from

the pole faces has been simply neglected.

From the behavior of the first order edge effects for

the magnetic field it can be seen that whereas here only a
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reduction in the pole faces will correct these effects the
corresponding effects in the electrostatic field may be amply
corrected by a reduction of the plate potential by a suitable
amount as determined by experiment. The whole distinction arises
from the fact that there is only a very slight variation in
the lengths of the ionic paths in the electrostatic field
while in the magnetic field there is a large variation in the
lengths. This correction for the edge effects of the electric
field by a change in potential is certainly subject to no
more serious objections than would be the case if the
corrections were done by reducing the length of the condeunser
by an equal amount on either edge and 1t materially improves
the accuracy which can be obtained in the alignment of the

condenser plates.

With sharp cut off it has been assumed that the path of
the ion will be stralght until the ion reaches the leading
pole face and will then be a true circle until the lon reaches
the trailing pole face when the path will again be straight
until the focus 1s reached. In actuality the path of the ion
wlill be curved from the time it leaves the condenser gap. A
short distance behind the leading pole face the icn will
follow a circular path of the desired radius but on account
of the stray field outside the gap the path will be displaced
both in angle and position. This conditicn would cause no
difficulty if the effect before and near the leadlng edge
were exactly cancelled by a similar effect near and after

the trailing edge. A theoretical investigaticn was made of



the arrangement necessary to effect this cancellation and it

was found that this second order edge effect vanishes identically
with the correction for the first order edge effect when the
pole faces are mirror images of one another in the symmetry

line and are essentially plane.

(7) The ions after leaving the magnetic field follow,
neglecting edge effects, straight line trajectories tangent
to their paths in the magnetic field at the trailing edge.
The edge corrections for the pole faces are such as to insure
that an ion after traversing a small distance beyond the
trailing face will be following the same path as it would

normally with no edge effects.

At a distance of 40 centimeters from the center of
magnetic field as measured along the magnetic median ray
a varlable slit has been incorporated into the apparatus.
Thus this slit occupies exactly the position obtained by
reflecting the virtual source of the electrostatic field
in the line of centers of the ionic paths in the magnetic
field. Hence the virtual source, the magnetic field, and

the focus form a symmetrical system.

(8) The collecting and measuring system. The ions which

pass ﬁhe variable slit are caught in a Faraday cage placed
immediately behind the slit. This collector must have a small
electrostatic capacity since any charging up of the collectpr
would result in an increase in the background and in a time

lag in the galvanometer response.



The positive ion current 1s amplified by means of a balanced
Pliotron (General Electric FP-54) circuit which has a very
high current amplification factor and a voltage amplification
factor of unity. An Ayrton shunt is used in the circuit so
that the smaller peaks and background may be examined very
carefully at the highest sensitivity while a lower sensitivity
may be used to record the larger peaks. The amplified current

is recorded visually from the circuit galvanometer.

Thus it is possible to obviate very effectively the
difficulty in determining the relation between the number
of positive lons collected and the bleckening of the
photographic plate which Aston has found to be inherent in
photographic methods of recording mass-spectra. With proper
precautions it seems impossible that any method of recording
mass-spectra could be freer from objections than that which

measures the amplified positive ion current itself.

A complete description of the actual apparatus using the
following theory will be found elsewhere. (See Dissertation
of Dwight D. Taylor). The above description is adequate for
the exigencies of the theory of this mass-spectrograph. The
considerations here given will be taken into account in their

proper sequence and without further specific mention.
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II: THE SOLUTION IN THE ELECTROSTATIC FIELD

The center of the sector of the electrostatic field
condenser will be chosen as the origin of a set of polar
coordinates in the vertical symmetry plane, and the leading
edge of the sector will be taken as the original line. The
radius vector to any point in the gap will be designated by
F’ and P will be the angle measured from the original line
to the radius vector in a clockwise direction. The outer
radius of the inner plate and the inner radius of the outer
plate will be designated by f,and ﬁzrespectively. By a we
shall mean the radius of the median ray. The angle subtended
by the sector at the origin will be written as § and the
notation (?:8), written as a subscript, will indicate quantities
which are to be evaluated at the trailing edge of the electric

field.

If we may anticipate some results to appear in the
following analysis, we may state that V, the velocity of
emergence of the ions from the electric field,fﬁ?=”, and

(i-%?) are the most important quantities to be obtained
¢ Pe=6)
for the subsequent developments. These guantities will be
determined in terms of v, the initial velocity, m/e, the
specific mass of an ion, ¢,, the potential applied across

the condenser plates , and of § e“ (5, and a, which have already

been defined.

A negative line charge of E units per unit length gives

rise to a radial field whose intensity I at a distance i from



the line charge is given by I = 2}3/{3 . The potential @ of this
field 1is

Q:-fld'a:-/—z—f =C - 2E 1gp

where C 18 an undetermined constant. The equipotentials of this
field are given by P constant. If @, and ﬁl are two values
of the potential corresponding respectively to radii sz and
(u we have since §° = @2 - L_
9. = C - 2B 1g pa,
¢, =C - 28 1g p1,

@o §2'§1='2E15%;

hence

é
—_— 1 + C.
$ L& & @
PL
The potential energy P of a positive ion of charge e 1is
given by
P =cf = —E8 1 + C’
¢ b ee
LS
where C’ 1s a constant depending on the zero of potential energy.

The kinetic energy T of an ion of mass m is given by

v - 2i(def @)

The constant total energy $ in this conservative field is

2 2 g.
T+P:-§{(%€)+(>(I¥)l} +—-§§§é—lgr + C’.
Ca
When p= 0O and (> = 85 %Et‘ = O ande%gé: v, the velocity of

1

pid

the ion before the electric field. Hence we have

fe:%vg-r——;;%‘;—lga + C’,
3es



Therefore

We shall make use of Lagrange’s equations for the motion

of the ions. The Lagrangian'f.is given by
_ _ mfcdey *1‘} ed, y
L=17-F= 2{(&) +¢ (@) -—Flgf H L

pa

The egquation forf> is, where dots designate differentiations
with respect to the time,

AL(D_E _R
Ix 3p AC - >
Y Jgy ed, A _
5 SRS ok A
&7 ) $ 1
I old) - —S=— = (1)
- B
The equation for ¢ is
al sL .
%(3’@)“3‘«,?“’»
2 d
%(”“f’ ﬁ)"’s
mez‘?ﬁtz h

where h 1s the constant of angular momentum. When p= a and ¢ = 0,

e

wl<

and hence h = mav. We are thus lead to

PZ%—%: ave (2)

The differential equation of the trajectory of the ion

can be obtained as follows:

de

| pre ) 8 le

R L A X L
Y )




Lo

. L dp e s Nq
From (2) we have 2p Ii == & PP =2 = 0;
Lo _ __ 2 % de _ 3;#()
dt* p & & e do \&/ -
" & e ke
e have Iﬁ‘ given by (1) and T by (3). Hence

) 2% (4 .
(’(%f) “Mﬂiﬁt (f) N e(i&)(gﬁ)

sf _ [ .
. Fy 3 ?
“’ (%)
i’:ﬁ eéa i 2. 1(9 2
» = (D - Loz — (r) B
Y m bl o e
By (2) we have (%g)l = .2§¥i .
z 3 i
Therefore &fz = F - ed. 3 PR A (%F) . (4)
de ot 0q 0= O P\
3
Substitute u = _S: in {4) and let X = M:LI % ;
2 a
then & = 0 o— xud 2 &.u.)l3 (5)
Iy w \Te

This is the differential equation of the trajectories of

the icns in the electrestatic field. It has no solution in

terms of a finite number of known functions. Although it may
have apparently simpler forms, it will be found on setting
the boundary conditions to the approximations that these

simplifications are illusory. For example, by the substitution

W = i we obtain the equation
'X
3 & .
87 =~ & =2 .
d?z y J *
K no longer appears in the differential equation, but if we

spproximate to the solution by means of Taylor’s series it will

immediately reappear in the resulting expression. Hence 1t is



probably best to use (5) as it stands and to attempt the solution
by means of a Taylor’s series:subject toutherboundary:conditions
that at p=aoru= 1, and ¢= 0, %g': 0. For this purpose

it will be necessary to calculate the derivatives of u with
respect to @ up to a sufficient order for our approximations.

It is to be noticed that x is a dimensionless quantity which
will enter into our equations as the parameter of the family

of trajectories in the electrostatic field. It will also

occur as the parameter in the energy spectrum beyond the electric

field and in the calculations for the magnetic field.

Before gilving the successive derivatives a method of
solution of the differential eguation will be outlined which
is so appealing to one approaching the equation for the first
time as to be well nigh irresistible. The equation (5) can be
written (if the values u = and u = 0 are excluded from the

domain of u)

&(_L_ L) R

T G T w
The substitution u = 1/v yields the equation
&11:' _ o d
ICFL = -—U-:-—’tr&.
Multiplying this equation by 2 I% gives
To d¢ Lo

which on integration becomes

2
(l") = 2xlgv -v® + G

49
The boundary conditions give C = 1 and we have

b B +‘(“ ve o+ 21<1«;1

E I ¢ -
Integrating again we obtain

PP = i'g L

Y1 - v® + 2% 1g v

v

o



which evaluated at (¢ =8 ) and under the above boundary conditions

becomes Vie=8)

S ., dv .
L ’l - T % exlg v

This expression defines v as a function of & and x in a

way similar to the definition of an elliptic function as the
result of an inversion of an elliptic integral. In thig case
we are only interested in v for § = 1/4 radian and hence v is
a function of X alone. To solve the differential eguation by
means of this expfession it would be necessary to plot the
function under the integral sign as a function of v for a
great number of values of X . Then by means of a2 mechanical
integration the value of v such as to give an area under the
curve of 1/4 cculd be determined. This would be an exceedingly
long and monotonous precess requiring tremendous care to
obtain a reasocnable degree cf accuracy. Moreover the exit
position of an ion is not the most important gquantity to be
determined from the differential equation. Both the exit
velocity and the angle of deflection of an ion in the field
must be found from the analysis by a further calculation. The
errcrs made in the extension of the calculations would be
accunulative with the errcrs made in the calculation of the
exit position. It is for this reason that the series method

has been chosen for the solution of the equation.

The first 13 derivatives of u with respect to ¢ have been
calculated and simplified by means of the original differential
equation so that the expressions for them involve only u, ¥,

and the first derivative of u with respect to Y .
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The first twelve:derivatives-have been carefully verified
by calculating them from the original differential equation
(5) without using this equation to reduce the order of the
derivatives on the right. Then for each derivative the order
of derivatives on the right is reduced to the first order by
means of re-substitution of the preceding derivatives. The
derivatives are thus verified by a method which is as free
28 possible from the biss of known results for the calculations.
The results of this calculation are very much more involved

than the above derivatives and will not be given.

It is to be noted that only the first parenthesis of the

even-order derivatives remain after the boundary condition

é‘(l; = O for ¢ = O has been applied and that for u = 1 these



first terms can be obtained in each case by multiplying the
first parenthesis of the previcus odd-crder derivative by {(1~K).
Hence the 13th derivative gives quite straight-forwardly the

contribution of the l4th to the Taylor’s series.

The series expansion for u is of the form

m= 14

w= (u)(?“) + Z (%f’%«) 2 i; + l?

m=1 ('f=o) s

which becomes, for i:l‘ =0 at p = 0 and u = 1, the series
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22 3%s% 2 pa3

where in each case K is the remainder after 14 terms.

For the purposes of the following calculations we are
interested in the value of u only for (y:x) at the trailing
edge of the electrostatic field condenser. We are interested
in u as a power series in x rather than as a power series in
¢. The denominators of the terms in (17) and (18) have been
factocred into powers of thelr prime number constituents for

ease 1in cancellations. These operations lead to
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where all the simple cancellations possible have been made. In
the further use of this equation it will always be written
=1 + (1-%)'£(8,x)
which inthe case §= 1/4 will be abbreviated to
u=14+ (1—%)°f(x). (1)

The velocity of exit of the ions from the electrostatic
field may be obtained as follows: If we let V be the velccity
of an ion at any point in the electrostatic field then by

the use of the first equation on page 20. we obtain the relation

Ve - {(%.Ef . fz(%)L} _ vz{l - ﬁ% 1lg U.}
o w Vz{l_ 2% 1g u} . {5}

We nave thus reduced the problem to a determination of 1lg u.
A fastly converging series for lg u in the neighborhcod of

= 1 is the series

"~ T oD

lg v = z (-1

m=1

Equation (17) gives us directly the value of (u—l) to be

~n-l
(u-l_)’". 27L17O °

substituted in thils equation. If we retain only those terms
in this expansicn which contain powers of ¢ up to and including

the 1l4th power the resulting expression for V? is

vt [eosuop] e (50 ER, sttty @)
(4% 3968 K + 19 3503= 10,946 K 40(.?;1(1) s, (1,056~ 1o,560K+392,326 K™ €39, 9263C+ 490,51 143 408'3(") 10
23 3% 537 235t P
(349,504 4,194,098 1 + 18,896 53¢ P 41,988,508+ 49,504,332 K- 29,712,192 K *+ 1,157 9TTK ) = } P

24 3‘5‘" T-n-13

If we now rearrange this series in ascending powers of x rather



CQe

than of ¢, set (¢=8§), and make all possible cancellations we

obtain the square of the exit velocity in the form

® 4 236 7 X ) 10 2 & 4
V= vzii’x(i‘ﬂ)[{s MEY - 24315 i fﬁs r 2GS
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For all future discussion this expression will be written either

as

or as

Ve 2{1—.7((1“1() @(X,K)} for ¢=3 } 8
; 23,
Ve = v® {1 - x(1=x) (x) } for § = 1/4.

where the function @ is defined by this equation and is not

t0 be confused with the electrostatic potential.

There are at least three ways in which we may calculate
the guantity %}gﬁ or its egual 7:%?. (1) The simplest way
would be to simply differentiate the expression we have
obtained for lg u in the determination of V?. This avenue
has not been used since, after 1:%$ is calculated in another
way, we may use the integretion of this expression as a check
on the correctness of the expression for lg u. The expression
for V® has been checked in this way. (2) The quantity -—éﬁ
may be calculated from the successive differentiation of the

guantity 1itself and the use of an appropriate Taylor’s series

subject to the same boundary conditions as were used in the



calculation of u. This method has been used. The intermediate
steps, which are very complicated, will not be given. (3) The
first equation on page 20., taken in conjunction with

equations (2) and (3) of that page for the elimination of

(%f), leads to
(&) - U—"{(i—%;)— 2 <& LLGI’_} vz{(l-%,)-zx%u}

(9 - (o) - G - =(k) - =(k
2 &) = v {e)-wk
(g - nly - feeeerly]

and finglly we have
Tz :
3’{ % = {ul—l—ZJ(lLl%u} (24)

From equations (17) and (21) we have expressions for u and

!

!
1l

2%1lg u. Hence we may calculate u?~1 and 2xu®lg u from these
and substitute into the equation for -:L;-f‘:_‘—: The extraction of
the square root by means of the binomial theorem then yields

the expression

A hu 3 { e (1-2x) ., (4-t6x+13%%) 4 (39-204K+345K2176K°) ¢ (25)
wdg = ¥ > ¢ R3S ¢+ 2%y ¢
, a3~ 3%8.1(+/a 3m¢ 10,8463+ 40693¢Y) 5 (1,056 - 10,560 X +392,326 K~ (39,9265 4490511 X L 1439085°) |
2 slsy ‘f’ 22t 5% ¢

(347 So4-4194,098K + 18, 58¢, 536K 4, 988, 508K 49,501, 3s2xt 29,712, 192K+ 71579775 ) 1z
24355 .03 €1 o+ IS

Again we are only interested in this series for the tralling
edge of the electrostatic field condenser where (¢=J). After
this series has been rearranged in powers of X rather than of
@ and all simple cancellations made, the resulting expression

is
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which will be written in the subseguent discussion as elther

1 &
TI—:; = (1-x) F(§,x) for ¢ =3
or (a7)
L
o o = = X 3 °
o (1-%) F (%) for & = 1/4
The quantity 3225 is, with the appropriate convention as to
its sign, exactly the tangent of the angle which the tangent

to the path of any lon at the trailing edge

a

stetic field makes with the tangent to the

at the same edge.

cf the electro-

median ray taken

The existence, unigueness, continuity, and unifcrm
- . P 2 i &u
convergence of these series expressions for u, V¥, and 7:1§

have been thoroughly investigated and are given in the
Mathematical Appendix tc this thesig. The results of this
investigation have been incorpcrated into the theory to

follecw in their appropriate places.



THE VIRTUAL POINT SOURCE AND THE ENERGY SPECTRUM BEYOND THE
ELECTROSTATIC FIELD

Consider for a moment the original differential equation

qu o e 3 2 (&uz

J_(Pz - u Xu + —_':- I(-()) (5)
When X = O this differential equation can be written in the
form ;‘Q“ [i‘_&'} B n

do Lt dg T
Now let v = 1/u; &f — I 3595 . The equation now takes the

do u de

form o

E" — N

which has for its solution

v = C cos(e+at) .
du 4w
For (P = O and H=v=1, I@ = I;’ = 0, we have
v = cose .

have
Therefore we,the solutions for our three quantities

u = 1/v = sece ;
lg u = 1lg secy ;
L Qu

TI(} = tancp B

Hence for « = O and tf:S s We will have
(‘u)(qﬂg) = secd ;
(1g u)(q>=37 = 1lg secd ;

(—11: %)(?=5) Hags

When the series for u, lg u, and 3‘{% are found in terms of

ascending powers of X, they must reduce to the above values
for # = 0. It will develop subsequently that it is this term,
which remains when X= O, which contributes most to the series

so long as X is positive and not very large (say X< 2),



Hence we are justified in taking some pains to calculate secg~,
lg sec$ , and tan® to a rather high order of accuracy for the
value § = 1/4 radian. For this purpose we will use the
appropriate power series. According to Peirce, A Short Table
of Integrals, formulae 776, 783, and 774 the desired series

are respectively

b 2m
seall = Z Bffj! i [s<%]

m=s BZm_l m . 2
lg sec§ = Z £ {i:—/:;)l S [S < —7—}-]
tan S = z ZzM(ZZ:-;;?—me-L gzm—i- [g"< 1;;_}

T

The B’s of o0dd order occurring in the last two expressions
are known as Bernoulli’s Numbers.A .relation is known which
will yield Bgme1 Provided Bgw-3i and the B’s of lower indices
are known. The first 62 have been calculated by J.C. Adams in
the Journal fUr die reine und angewandte Mathematik, Volume
85, (1878). The first 10 which will be used in these calculations
are as follows: 1/6; 1/30; 1/42; 1/30; 5/66; 691/2,730; 7/6;
3,617/510; 43,867/798; 174,611/330.

The B’s of even order occurring in the first expression
are known as Euler’s Numbers. A great many of them have been
calculated by W. Scherk and published in Mathematische
Abhandlung, Berlin, 1825. This Jjournal is not within my reach
at present. The first 6 are given in Peirce, page 90, together
with a formula for obtaining the higher members. The next 4
have been calculated by means of this formula. The first 10
Euler’s Numbers are as follows: 1; 5; 61; 1,385; 50,521;
2,702,765; 199,360,981; 19,391,512,145; 2,404,879,675,441;
%70,371,188,23T,525,



If we now calculate the coefficient of the powers of § for
each term in each of these series, simplify the coefficients
by factoring them into their prime constituents, and cancel!

wherever possible we will obtain the fcllowing three series:
* 534 618° | 217%%  sos2Y 5405538 1993009818

— 2, + + +
sec ? =+ P37 4Rs T 21351 U 285ty 2%35sqn Y 2N Ssi.E,
/7.u8,/3s,4a78"+ 2,404,879,675,4418" /4814847529 501 520
+ e
25385% 723 2% 8270301 7 22 38 52934031719
15 menl g g . $é . 178% . 3" 63 2434278584
ke pread — + + ———
& 2 223 3% 23tw1 sy 2:355% 7.1 355 7% .13

257.360178%  73.439673%  a141.17960 §*°
2939539303 Bs37inzr 2385 nasamd
tanQ + PN . 28 " _/Z_S_Z L 23 X"+ 26u38" . 2%43.127 8"
¥ i 3257 s 3sTn 3553710413
L, 257301135 2734386787 2-3141174,00 87
345 ™" n-13 3‘.5?7'-‘1[-13«/7 3’.5‘?7?'"_,3_,7.1q'

For the case & = 1/4 these series become
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For the case 8 = 1/4 the three series for f(x), $(x),

and F(X) are
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which reduce to the approximations,

f(x) = i L032,08§ 023,?84,211] ~ [.601)204)287)20.317( + [.000'046)?80'5—5]1(1__ [o“ - 74]](3
> > ) 7
4 s 6
o0 0000751 [ane 005,002,371 L ont s} "
b)) = 2 {[oal&b’ 051 24 ]
.03, /) /2 7)468 T |-©©0,673,377,81 | K + .000,0/8,72/ Q‘I]x [ 006,000, 627 57]_]<

+ [_ooo,ooo,oﬂi,z ]1(4— [.ooo)ooo,ooo,és 31+ [.ooo,ooo,ooo,oz]x‘} (29)

&
'F'( x) = z [.25‘\5341,721,221, /38] = [_010,957'95219] I+ [.oooﬂﬂﬂ/?ﬁ]]{*—_ [.ooo,o/? 040 ,] Al
4 s
+ [_000,000)790' g] X - [ 000,006,032’6'].1( + [ ©00,000,001,3 J("J (30)

In a few cases the uncertainty in these coefficients is in
the next to last place, but for most of them it lies in the
last digit. In every case the numerical results calculated
from these expressions have their uncertainty in the last

decimal place.
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After the ions leave the electrostatic field they will
travel along straight trajectories. Since it requires two
conditions to determine a straight line we will choose the
two which are most accessible in this case. These are the
position and direction of the line at the trailing edge of
the condenser. We shall use the same origin of coordinates
for the spreading straight lines as we did for the trajectories
in the electrostatic field. The equations of these lines
in polar coordinates will be of the form

r cos(®—p) = p
where r and ¥ are the coordinates of any point on a particular
one of the lines, and p and P are the coordinates of the point
on a particular line at which the radius vector is perpendicular
to the line and hence determine with which one of the lines
we are dealing. The center of the sector is now the origin,
the leading edge of the sector is the original line, and

angles are positive in a clock-wise direction.
We now define an angle « by means of the equation

tena = = ($5),, = @ FEL. (31)

This angle « is the acute angle between the line for an ion

of given energy and the median ray.

It 1s apparent from figure 2 that @ = & +« and hence
the equation of the energy spectrum becomes
r cog(¥=3%—-4) = p .
If we now replace by y=3+—38 , the trailing edge of the

sector becomes the original line and the equation of the energy



spectrum becomes
r cos(v—a) = p

(32)

or r {oosv- coss  + siny - sin¢3

o)

In any field for which the law of the conservation of

angular momentum holds we may write the following relations:
2 2. 2 2
B v e@)= 1G@ et Q=G e sF
{( dx J_:f LN +(” ()4
2 E S 2
o )52 - (R ) 2
P de ¢ w deq u*
FPor this problem we have

i tlu — V&‘P=S‘) w
\/ i w A?)(? X)} - w (‘€=8)

From this we determine

Va

1 fu
3 49 /(p=%) _ v o
sina = - T . =t oy .
R = _ W, -
[1 + {(u A?)(?z.s)} } | (p=5 (¢=%)
1 v i
cOog & = + = + .
1 dw 2] 72
[ 4 {(T’:I‘; (49:8)}] \](qw&‘) u'(q;=3

On substituting these expressions for sine and cos & into

equation (32) we obtain

v

r {cosyz + tana - sinﬂp} = P .
Vig=5) Y(e=5)

Fer v = O we must have

o] =)

Tyer = fPg=5 = % Zie=d)
and we are thus lead to the value of p,

v

-V-(qa=$)



which is a direct consequence of the law of the conservation

of moment of momentum. Equation (32) now becomes
r { cosy + tana - sinwy} = AU(e.s) 3
o { cosy — (1-x) F(¥,x) sinw} = a{-l + (1-x) f(S,x)}
r cosy — a= (1-x) { r siny F(3,%x) + a f(S,:K)}

It now seems desirable to make a transformation to a set
of rectangular coordinates for which the median ray will be
the y-axis and the trailing edge of the sector will be the
x-axis. We take y to be positive in the direction away from
the condenser, and x to be positive in the direction from the
origin to the center of the sector. Angles are measured from
the y-axis in a clock-wise direction. The desired transformation
is .

X = a =1 cosy 3 Yy = r siny .

We now have

X

-1) {y P8+ azEa} (33)

This is the equation of the energy spectrum beyond the

electrostatic field. It is valid for any value of § so long

as the two series, F(8,%) and £(f,x), are convergent. It is

to be noted that x = O for the y value,

£(8,x)
Yo = & (34)
F(&8,x)
For J = 1/4 this expression for y, becomes
£(%,x) £(x)
Jo = 84 ——— = g —— , (34a)

F(%,%) F (%)



Hence yo is a constant, independent of X ,only in the case
where f(X) is exactly a constant times F(x). This is obviously
not exactly true in this case. However, as can be seen from the
tables of page 39 which give f(x), F(®), and their quotient for
a variety of values of X , the duotient varles surprisingly
little in the pertinent range. This range in x is from X = .74
to X = 1.27 as determined by excluding all values of X corresponding
to ions which would strike either of the condenser plates. For

a = 12 centimeters and X = .T4, 1.00, and 1.27 we obtain for yg:

Yo = 1.5137816364 cms. for X = .T4
Yo = 1.5158229024 cms. for X = 1.00
Yo = 1.5179195%436 cms. for X = 1.27

This represents an overall variation of yo cof about 1 part in

366. Hence to 1 part in 732 on each side we have firmly established

the exlstence of a point virtual source at y: = 1.5158229 cms.

This lack of constancy in the positicn of the source is only

important for cur purposes in that it gives a finite width to
the source. It is not possible to give this width exactly but
we may place a generous upper limit on it as follows: Let § be

the absolute value of the variation in yg; then

§
§

Let ¢ be the absolute value of the upper limit of the width of

0020412660 cms. for X = .74
.0020966412 cms., for x = 1.27 .

I

the virtual source; then
e <« g{ltan«l + .0002}
where .0002 is the contributiocn from the lack of perfect

collimation in the collimator. From the table we calculate



JcL e

|tana! = .064,343,911 for X = .74
L065,374,479 for X= 1.27 .

ltandl

Hence
£< .000,131,751 cms. for X = .T4
< .000,137,486 cms, for X = l.27 .

Hence we may feel confident that the latter figure sets the

upper limit to the width of the point virtual source.

The time has come to say a wéord in justification of the
number of figures which have been carried in the calculatlions.
The calculations are only accurate to the accuracy of F($§,x)
which has 1its uncertainty in the 9th or 10th figure. Thé
variation in y, was in the 4th figure. This requires carrying
O figures to get 6 figure accuracy beyond the electrostatic
field. The magnification of errors in the magnetic field
cannot reduce this 6 figure accuracy to less than 4 figure
accuracy. It is possible to approach an accuracy of .001 of
an inch on the milling machine for the cutting of the
theoretical shape cnto the pole faces. Hence we have this
accuracy theoretically plus a margin of safety of 1 figure.

The accuracy while more than adequate is not superfluous.



£(30)

L03149437231
. 03143654447
.03137893636
.03135595438
03133300726
. 03131009494
. 03128721734
03126437437
.03124156596
.03121879204
.03120741796
.03119605249
.03117334726
.03115067629
.03112803946
.03110543675
.03109414813%
.03%108286798
.03106033%19
.03103783224
.031015%6505
.03099293156
. 03098172742
.03097053167
. 03095934433
. 03094816534
. 03093699472
.03092583246
03091467856
.03090353297
.03089239572
.0%088126480
.03087014620
.03085903387
.03083683408
. 03081466739
.03079253371
.03077043295
.03075939492
.0307483%6523
.03072633%013
.03070432757
.03068235797
. 03066042079
. 03064946440
. 03063841609
. 03061664381
.03%059480371
.03057299620
.03055122076
. 03052947740

0305077661
103028608658
. 03043202803
.03037816738

Fi(x)

.2499752182
. 2494506221
. 2489281681
. 2487197832
. 2485117382
. 2483040321
. 2480966643
. 2478396338
. 2476829397
2474765814
< 24T3T735279
2472705581
. 2470648687
. 2468595126
. 2466544891
2464497974
. 2463475755
. 2462454363
2460414053
. 2458377038
. 2456343307
. 2454312853
. 2453208854
. 2452285669
. 2451273301
. 2450261747
. 2449251004
2448241077
. 2447231960
. 2446223654
2445216158
2444200469
. 2443203587
2442108513
. 2440190783
. 2438186265
. 2436184955
2434186846
. 2433188988
. 2432191928
. 2430200195
. 2428211639
. 2426226254
. 242U 244027
. 2423254300
. 2422264957
. 2420289035
. 2418316251
2416346601
. 2414380074
.2412416665
. 2410456366
. 2408499170
.2403619707
2398759478

£

. TGO
.1259899783
1260231151
.1260561896
. 1260694022
. 1260826047
«1260957975
. 1261089803
.1261221532
.1261353164
. 1261484697
. 1261550426
1261616131
1261747468
.1261878708
. 1262009849
. 1262140894

. 1262206379

.126227183%9
. 1262402690
. 1262533442
. 1262664098
. 1262794656
.1262859899
.1262925118
.1262990313
.1263055483
.1263120630
.1263185752
.126%250851
.1263315925
.126%380974
. 1263445919
.1263511005
. 1263575983
. 1263705867
. 1263835657
.1263965351
. 1264094948
.1264159713
. 1264224458
. 1264353867
. 1264483173
1264612396
.1264741521
. 1264806047
. 1264866422
. 1264999484
.1265128318
. 1265257070
. 1265385723
. 1265514280
. 1265642746
.1265771109
. 1266091634
.1266411562



TN THE SOLUTION IN THE MAGNETIC FIELD AND EDGE EFFECT CORRECTIONS

The path of an ion in an uniform magnetic field of
strength H is a circle of radius R. The equilibrium between
the d’Alembert and magnetic forces on the ion may be

expressed by

which reduces to

R = &aVv | (35)
H

0}

V can be obtained from equation (23) which is

Ne {1 _ %(1-%) @(S,x)} . (23)

The definition of x was

e®,
mv= 1%(f2/f15

X =

If we denote the velocity of an ion following the median ray
by v or Vg,since it 1is unchanged in the electrostatic field,

and let Xy be the corresponding value of ¥ we have

e, B e,
mv 2 18(f2/(157 TomVp® lg(fa/el)

Ky, =

and hence
K = Voz//V2 = Voz/V2 3 VR o= Voz/x .

We are thus lead to
]

V‘a — .—!ﬂ.—

X
or Ve = {

L - x(1-3 $(3,x)

/73
— (10 B(3,%)]

A,

R'H



“ L.

30 {% - 03] £ - lt-wodw)"
1

o

.062497931146 1.968751034427 403121889
.062432508464 1.790087189373 1.337941400
. 062367262722 1.641719761578 1.281296126
.062341213%898 1.589213564584 1.260640141
.062315193%230 1.540066530434 1.240994170
. 062289200660 1.493973186928 1.222281959
.062263%236138 1.450663%999730 1.204435137
. 062237299602 1.409900238690 1,187392201
.062211391004 1.371469699408 1.171097647
.062185510282 1.3%335183118678 1.155501241
.0621725803%54 1.317790188244 1.147950429
.062159656978 1.300871156009 1.140557388
.062133832246 1.268381838957 1.126224595
. 0621080343826 1.2375783%93035 1.112465007
.062082265064 1.208337387410 1.099244007
. 062056522908 1.180547146811 1.086529865
. 062043662164 1.167164038910 1.080353664
.06203080830Q 1.154106384512 1.074293435
.062005121186 1.128923021822 1.062507892
.061979461508 1.104913164960 1.051148498
.061953829222 1.082000215401 1.040192393
. 061928224266 1,060114093778 1.029618421
.061915432018 1.049535807346 1.024468549
.061902646586 1.039190560804 1.019406965
.061889867960 1.029071139013 1.01443143%6
.061877096134 1.019170621342 1.009539807
.061864331098 1.009482366790 1.004729997
.061851572852 1a 1s
.061838821382 . 990717398115 . 995347877
.061826076686 .981628678%97 . 990771758
.061813338756 . 972728186571 . 986269834
.061800607586 . 964010485841 .981840356
.061787883164 . 955470346539 . 977481635
.061775165494 .94 7102736345 .9731920347
. 061756950358 . 930866481954 .9648142215
.061724362138 . 915263345304 . 9566939664
. 061699000750 . 900261022947 . 9488208592
.061673666172 . 885827295720 . 9411839861
061661008916 .878814368728 9374509954
. 061648358336 .871932702851 . 9337733680
.061623077198 .858549781015 .9265796140
.061597822700 . 845652897873 . 9195938766
.061572594788 .83%218102002 .9128078122
. 061547393416 . 821222987323 . 9062135440
.061534802662 .815383700666 . 9029859914
.061522218524 .8096465T046T - .8998036288
. 061497070046 . 798469179613 .8935710266
061471947992 . 787672353628 . 8875090724
. 061446852246 cT7T7238750295 .8816114509
.061421782778 . 767152062861 8758721727
.061396739530 T5T396943878 8702855531
.061371722462 . T4T7958935695 . 8648461919
.061346731516 . 738824406892 8595489555
.0612843%68108 717233138063 8468961790

.061222166856 697277750095 .8350315863



Furthermore, if Ry, denote the radius of the median ray in the
magnetic field we have

Ro =

ols
=

and equation (35) can be written in the form

e R e N (R (36)
We are now in position to calculate the radius R for any ion
in the magnetic field as soon as Ry is fixed and the value
of X is known. On page 41 the values of §(x), of R3/Ro®, and
of R/R¢ have been calculated for a variety of values of X in
the pertinent range. The effect of the change in velocity

of an ion in the electrostatic field on its radius of
curvature in the magnetic field can be readily determined

from the last column. This effect, although small, is important

for accuracy in focusing.

The symmetry which exists between the virtual point source
and the real focus suggests at once that the leading and trailing
edges of the magnetic pocle pieces should be mirrcr images of
one another. In this case there will exist a line of symmetry
which will contain the centers of curvature of the paths of
the ions in the magnetic field. This scheme reduces the theory
of focussing to the problem of determining under what conditions
the tangents to the paths of the ions as the ions cross the
line of symmetry will be perpendicular to the line of symmetry.
It is apparent that if the theory can be made to represent the
experimental- situation accurately and obtein the condition

that all ions of the desired specific mass cross the symmetry
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e o 3

line perpendicular to that line the most favorable condition
for focussing has been found. All of the following theory is

grounded upon this argument.

In Figure 3. this situation is shown for the median ray
and for two rays corresponding to a larger (primed letters)
and a smaller (double-primed letters) value‘of the kinetic
energy than that for the median ray. The angle & is now taken
to be positive in an anti-clockwise direction from the y-axis.
0’ 1is the origin of the x,y-coordinate system. O and F are the

virtual source and the real focus respectively.

The calculations for the shape of the leading and trailling
edges of the magnetic pole pieces can be most easily made by
the use of a system of coordinates x’,y’ whigh has for its
origin 0;;, the center in the magnetic field, and for its x’-axis,
the line of symmetry as shown in the figure. C is the center
of curvature of the path of an ion. A is the point on the leading
edge of the pole pleces where an ion of given energy would
enter the magnetic field with sharp cutoff in the field at
the pole face. B 1s the projection of A on the x’-axis. R 1s
the radius in the magnetic field. D 1s the intersection of the
extension of the path of an ion beyond the electrostatic field
with the line of symmetry. ¥ 1is the angle of deflection of
the median ray in the magnetic field. X is the angle between
R and the x’-axis. n~is the internal angle at D in the triangle
0D0’?, Primes correspond to energles greater than that of the
median ray and double-primes, to energies less than that of

the median ray. If lines are drawn from C’ and C’’ perpendicular



“4ék,

to 00’’ these lines will form at C’ and C’’ an angle with the
x’-axis of exactly 7/2, and an angle with R of exactly o« .
Hence X = ¥/2 &, Also it can be seen that n="/2+ (¥/2 —=)
and 1{_’: T/2 — (¥/2 —&) since o is essentially negative in the

latter case.

We may now determine the coordinates of the leading edge

in parametric form. We have

¥y’ = BA = R sinX = R sin(¥/2 —et) (37)
and

x* = QB = 0D #+ DB .
From the figure it can be seen that the angle BAD =X and that

DB BA tan (¥/2 — &) = R sin (¥/2 —«) tan (¥/2 —«) .

Also using the law of sines on the triangles D’00’’ and D’’00°7,

we have
loo::] loo’’] _ loo’ ?| = QPip)
sin »' sin{®/2 + (¥/2 — o)} cos(¥/2 —et) sine
loo”’| _ loo”’| B loo’ 1 . _g'ip¥
sinw” sin{m/2 — (¥/2 —«)} ~ cos(¥/2 —«) = sina

And hence for both cases we have

0’’p = |00’’| sina sec (/2 —o)

Therefore

x? = |00’?’| sina sec (¥/2 —) + R sin(¥/2 —a) t??ég"/E —et)

In this case we know & only through tane . Therefore since



1 tane

) = 2
Yl + tanfe f]_ + tan®o

we may rearrange as follows:
¥ = R{sinb‘/Z cose — cosd/2 sinoc}

R

I

{sinb‘/E — cosdy/2 tanx}

T1 + tanfa

i’y
] - 71— S’
Ro {1/3( 1=K §( x)} sin¥/2 — (1-x) F(S,K) COS#/Q}

S A R e (39)

|co’?l  eine R { sin%/2 cosk — cos#y/2 Sinok}z'

+
icosf/’a coss + sind¥y/2 sin«L} {cos ¥/2 cosd + sin?/2 sin«LS

lOO”‘ tand R ( ten?®/2 — tana)® cosd/2

= +
{cos %2 + sind/2 tane} {l + tand/2 tanx} Yl + tan®«

, oo’ (1-x) #(S,x) -
= {Cosf/? + (1-3 #(3,%) sind/2} +O

R {1/,( - (1-x) §(8,x)}’/z {tanf/z’ - (1—-1)1-*(8,:()}%05)‘/2

+ S -
il + (1-307(5,x) tan¥/2} Y1 + (1-%)*{F (5,%)}"

Eguations (39) and (40) are the expressions for the coordinates
of the leading edge of the magnetic pole pieces. The trailing

edge is obtained by simply reversing the sign of y’ leaving

e same. In our case b = 1/4 radian, ¥ =1

¥

everything else ttl

)

radian, 00’ = 40 centimeters, and Ry = 10 centimeters.
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The Derivation of the Conformal Transformation for the Pole Faces.

The solution of a difficult problem in potential theory
can frequently be reduced to the solution of a much simpler
problem by means of a conformal transformation in the complex
domain. In the case where the transformation function is
analytic both the real and imaginary parts of the function
separately satisfy La Place’s equation and the pair may be
used to represent the lines of force and the eguipotentials
respectively of the field. The notations R(z) and I(z) will
be used to denote the real and imaginary parts of the complex

variable Z.

If we use the transformation W(z,) = A lg z; and take
R(W) = constant to be the lines of force and I(W) = constant
to be the equipotentials we can show that as a special case
this transformation gives the field when the two halves of a
plane are raised to different potentials. Let

W(zy) = U(zy) + 1V(zy) = R(21) + 1I(z1)

and Zy = T ei. Then
W(zy) = U(zy) + 1V(zy) = 4 1g z1 = A(lg r + 1%).
Let V= O for ¥= 0 and V = V, for +=m. Then A = Vi /¢ and
U(r) = -——gr—l-lgr ; V(}) :-}-{-T-’:&
(see Jeans P318, page 268). Hence we have the field due to
the plane ¥ = O being at zero potential and the plane =,
at an arbitrary potential Vi. Figure 4 shows the result of
this transformation. The two half planes extend to infinity

in the directions away from the origin.



We now desire that transformation which will bend these
planes at the points (or better, lines), (a,0) and (-a,0)
through a right angle and extend the bent edges on to infinity
in the direction of the negative y-axis. It 1s well known
that a Schwarz transformation is the appropriate transformation
for a sharp corner. We will call this new plane the z-plane.

We bend the plane on the left through an angle of 37T/2 radians.
Then we bend the planes through what apparently is two right
angles consequetively at (0,-¢°) but may as well be taken as

a zero angle. This equivalence can be seen elther from the

fact that the bending is done at infinity or that the form

of a Schwarz transformation is the same for a bend of two

right angles as for a zero bend.at the same position. According
to the theory in Jeans, Electricity and Magnetism, P322, page

271 the correct transformation is

- Vzlz— 8.2

i Z3

Q:lQn
N N
I

It is by no means a surety that this transformation will leave
the axes located in the same position as regards the unbent
portion of the plane as they were before the transformation.

certain
The axes are almost to be translated but they will not be

rotated. Also the scale may be expanded or contracted. These
effects must be found by a process resembling the fixing of
boundary conditions. The integration of this equation involves
a rather subtle point. The function possesses an infinite
number of Riemann sheets such that its sign alternates between
any two consequetive sheets. Fortunately one of the sligns

gives a function which is physically reasonable while the



other gives a function which makes it impossible to calculate
the field for any value but y = negative infinity. By the

following process the correct function may be obtained:
X 2 ' Yac— )
z = '[ Za-— af dzg ~ if-—————-l—az- > dzga
23 Z3

;7_ - + aa— Z 2
z = 3 {Yae— z3® — a lg 28 ' B + const.&

Z3

We now desire that z be purely imaginary when zz 1is purely
imaginary. This is equivalent to making the y-axis of z = x + 1y
correspond to the yj-axis of zy = x5 + iyz. This condition is

Yoz + v,
iy = ii'a2+y‘32 - a lg -2 +i BE L +const.}

LY 1

It is well known that the logarithm of i is i1 /2. Hence in
order for both sides of the above equation to be purely
imaginary the constant must equal — a lg i = — ia m/2. This

leads us to

2 2
r ' a + 85— Z
T iiaz—ha - a[lg z = +i;r]}
&

When y = y3 = O we must have x = b for x4 = a and x = —b for
X3 = —a. Therefore
b = 1 {— a [lg 1+ iTT'/Q]} = amwW/2
b = ‘1{— 2 [lg(l/-l) + 117/2]} = 1{— a[~17r + 17r/2]J = —a T/

Hence in either case a = 2b/r . If we now substitute X = wy/2b

and W= T yi/2b we have

X -ffor T - 1e2ellaF] (41)
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The magnetic field H is given by

’dw ldz,_ | v, , . ~ Vs
dZ; T oUmzlf [z4® - aR)| T T [z.:g — af]¥%

For x3 = QO we have

Vg
SR T

Vi
'Eb['rrsy;“/hrbz + 1]7=

H = Va -
,Tr[yla + aa]'lz_

If we let i?: 2bH/Vy and w = 7wyy/2b as before we obtain

fc = —[—L;%——ri-]—ql o (42)

On pages 50 and 51,J%Quui]iare given for a wide range
of values of w, Figure 5 gives a plot of’fPagainsth for these
values. It is unfortunate that the relation between the two
is only obtained in parametric form. However it can be seen
that X,andtu are asymtotically equal and this fact may be used
in extrapolating for the effect beyond that here calculated.
This edge correction must at best be taken with a grain of
galt. At some distance from the pole face the effect of the
slight curvature of the face and of its finite extent will

dominate the situation.

By a process of counting squares under thej?—)fcurve we
have found that the area under the curve is the same as the
area under the curve ﬁ— 1 extended to where X 3.6036, For
a gap width of 3mm. or .118 inch this corresponds to a
correction of 1353 inch to be cut from the pole face normal

to the face.

I wish to thank Professor William R. Smythe for setting

up these conformal transfeormations for me.
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The Investigation ¢f Second-Order Edge Effects.

The appropriate conformal transformaticns which we have
Just given enable one to plot the magnetic field H as a function
of the normal distance n from the pole faces so long as the
latter are considered tc be plane which is true, to a good
crder of approximation, in this case. The ions will suffer a
change in direction in passing through the variable magnetic
field in the neighborhood of the pole faces. This angular
deflection and the consequent linear deflection may be

formulated as follows:

Let V be the velocity of the ion, m and e, its mass and
charge respectively, and R the varlable radius in the variable
magnetic field. Then as previously in the consideration of a
field with & sharp jump from zero magnetic field outside to
full magnetic field inside the gsp, we have

nw/E = He .

Now let ¢ be the angle which the tangent to the path of
an ion at any point makes with ﬁhe normal to the pole faces.
Since the pole faces in this problem are not accurately planes
we must make some specification as to which point of the
surface we are considering the normal to be drawn ocutward from
before we can give a meaning to the term. We will consider the
normal as drewn outward from the point where an ion would
pass into the air gap with zero magnetic field. Let ds be
an element of length measured along the path of the ion and

let dn be a corresponding element along the normal. Then by



NormAL ¢ e | — Craovar Cur Orr

F_;GURE 6: AN‘ALYSIS OF'

SE cCoND ORDER BGE EPF‘ECTS

VR RV
I
: 3 :
! ]
! I
: |
K\ORMAL ¢° | ABRUPT CUT OF‘P
A |
| I
1 |
] |
I
i i
1
a |
VR RV




simple geometry

dn = eos¢ ds . (See Figure 6).
Furthermore %% is the radius of curvature of the path of an

ion. Hence we have

R = g8 and 2 = 40 gecy.
de €H(n) ae

Hence we have the relations

cos ¢ dg = eV H(n) dn
m
J{¢ N
cose d = '/’H n) dn
A ¢ ¢ j °°°°( H
sin ¢, — sin¢ = riv fH(n) dn .
N

In this equation ¢0 is the angle which the path makes with the
normal in the absence of the magnetic field and N is the ncrmal
distance at a particular point on the path. The signs have

been chosen so that for ¢o > ¢, which is physically the case,
we will have the integral positive. The infinite 1limit will

be replaced in practice by a sultable approximation. Likewise
N will be such a value as to ensure that H has arrived very
nearly to its full value. This can be expressed as

H(N) = H(—o) .

Thus we have found the change in direction of an icn
traveling in the variable field near the pole faces. The second
order correctlon to the pole faces however inveolves only the
difference between this deflection and the corresponding

deflection with sharp cutoff of the field at the pole faces.
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We shall now calculate the deflection for the idealized case
of sharp cutoff of the field at the pole faces. Let ¢0 be the
angle made by the path of an ion with the ncormel to the pole
face a2t the point of incidence. Let R be the radius cof the
path of an ion in the constant field. Let ¢, and N be
respectively the angle made by the tangent to this arc at

any point with the normal and the distance measured from the
pole faces along the normal. Alsc let a be the distance from
the point taken on the pole faces to the plane of symmetry

as measured alcng the normal. See Figure 5 for the graphical

representation of this situation.

From the figure we have that

a = N + R sin ¢ = R sin ¢,
or R(sin ¢ — sin ¢) = N ;
sin ¢, — sin ¢3 = N/R = eNHy/mV

where Hy 1s the constant strength of magnetic field between

the pcle faces.

We have previously found that

oo
sin ¢, — sin ¢ = ;V .j, H(n) dn.
N

Eliminating ¢0 from these two eguations gives

o0
j H({n) dn — HON}

N

sin ¢, — sin ¢ = = {

my

Hence sin ¢1 = sin ¢ providing that

o
N 3



In particular on the plane of symmetry of the pole faces
where N = a the condition 1s that
oQ

JH(’n) dn. = Hga .

G
From Figure 5. it is seen that the magnetic field attains its
full value very soon after the pole faces are passed by an ion
coming in from outside the gap. Hence the second order edge
effects vanigh with the accurate correction for the first
order effects. It 1s to be particularly noted that all that
is required for the correction of second order effects is
that conditions be exactly symmetrical for the trailing edge

with those for the leading edge.

One further consideration need be made and that is for
the directional effect due to the fact that the angle of
incidence which the path of an ion makes with the normal to
the pole faces is a function of the energy. An elementary

analysis of this situatlion leads to the new coordinates

" s - 118 cos(i +p)
cos 1

where x’ and y’ are the coordinates given by (40) and (39),
x’? and y’’ are the corrected coordinates after the edge
corrections have been taken into account, and 1 is the angle
of incidence. On page 56. tables are given of these four
coordinates for the same range of values of X as has been

used throughout this investigation. For the purposes of design

that page represents the final result of all this theory.
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MATHEMATICAL APPENDIX

In order to establish the existence, unigueness, and
uniform convergence of the solutions of the original inverse
firgt-power field differential equation I would like to revamp
and prove an existence and unigqueness theorem due to Birkhoff
(George D. Birkhoff, Dynamical Systems, American Mathematical
Soclety Colloguium Publications, Volumgf pages 1-6 inclusive).
I shall not attempt to make these theorems more general than
is actually necessary for the particular case at hand. A more
general proof may restrict the range of validity of the theorems
to a very bothersome degree. Existence and uniqueness theorems
are much easier to establish for a system of first order
differential equations than for a single higher order equation.
Hence the present second order eguation will be reduced to
two first order equations which will in no way invalidate the
theorems established as applying either to the system or to

the single equation.
The original differential equation is
n 3 2141 8 :
W o= u- ku o+ EEA] (1)

where ¢ is the independent variable and primes denote differentia-
tion with respect to 9. An interval of the type O £ ¢ S b will

" be: referred to as a nelghborhood of P = 0. Since we are concerned

with the solution of the above differential equation which

takes on the boundary values

u'(O) =0 and u(0) =1,
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we shall use these same boundary conditions for all solutions
of differential eguations treated in this discussion. Thus
when we speak of a solution of a differential equation we
shall mean a solution of this differential equation which

satisfies the above initial conditions.

Let us make the substitutions, y = k u® and z = 2u7u .

¥y = 2kuu = it
, 211” 13! 2 _ (u' )2» (u/ 2
7 = —a — ELfag— =241 — ku® + 2~a§*— = Z—G?l_' = 22/2 + g(l_Y)

Hence we can replace the second crder differential equation by

the system of first order equations

¥y = ¥ 2
} (I1)
z! = zR/2 « 2(1—y)

with the boundary conditions y(0) = k and z(0) = Q. Since (I)

and (II) are strictly equivalent except possibly for u = Q
and u = oo , values which are not involved in the problem, an
existence or unigueness theorem for (II) immediately gives

an entirely equivalent theorem for (I).

Birkhoff’s Existence Theorem. We are here dealing with

a physical system which 1s completely determined for any P

by the values of y and z corresponding to ¢ . Hence the system
is such that the rates of change of y and z with ¢ depend
merely upon the values of y and z themselves. The laws of

motion can be expressed by the first order differential

equations,
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d‘f l(J Z) 32‘ (II)
5 ) B , :
3% - Xg(y,z) = BYR ¢ B gl— y)

The get of two functions X; will be assumed to be real
and uniformly continucus in some open finite two dimensional
continuum R in the ’space’ with rectangular coordinates y and
z. A ’solution’ y(¢), z(9¢) of the equations (II) in the open
interval y‘é $<I?" is défined to be a set of two functions
y(g) and z(4g), both continuous together with their first
derivatives and represented for any such ® by aspoint (y,z)
in R such that the differential equations are satisfied by this

set of functions.

EXISTENCE THEQREM: If the point (k,0) is in R at & distance
at least D from the boundary cf R, and if M is an upper bound
for the functions|X;| in R, there exists a solution y(¢), z{¢)
of the functions (II) defined in the interval

|9~ fel< 77 (u =2

and for which y(0) = k and z(0) = O.

To establish this theorem, we observe first that, for

any solution of the type sought, the two equations

b g
S, = y—k“'-'jyzd? = @ §
o

n

Sg Z - Q ~ f?(za/Q + 2(1 - y))d(f = Q,

hold. Conversely any set of continuous functions y(y¢), z(¢)

in R which make the expressions Si vanish in the interval



containing @ = O as an interior point will obviously reduce to
y%(=k), z°(=0) for ¢ = O and will satisfy the differential

equations in question, as follows by direct differentiation.

Now define the set of infinitely multiple-valued functions
Xim(y,z) as that given by any set X;(s,t) taken at a point (s,t)
whose various coordinates differ from those of the point (y,z)
by ndt more than 1/m in numerical value. It is evident that with
this definition the two components of X" may be chosen as

constant in any rectangular domain
£
ly 22| £ /m, \z-2s| £ /a,
namely as the component parts of X(ai,ag).

If the functions Xi be replaced by Xim and the functions

ys z by ym, z™ the expressions for S5; become
. ¢
m — m m m
Sy = g =T e ly z d?
3 m g m (P 2 m
Sg B 7 = (z8/2 + 2 — 2y)" ayp .
o

We propose to show that these expressicns can be made to vanish.
Choose X' as X(k,0) in the rectangular domain
\y - k\ < 1/m and \z\ <« 1/m .

The integrals in the above expressions for Sim will then be

linear functions of ¢ and hence ym and z" may be defined as

m

N

l

k 4+ X (k,0)9 = k

z% = Xa(k,0)y = 2 (1-k)¢
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as long as the point (ym,zm) continues to be in this domain.
In geometrical terms, the expressions for ym(?) and zm(?)
yield the coordinates of a straight line with P as parameter,
which passes through the center of the domain for ¢ = 0. It
thd functions Xim happen to vanish, the line reduces to the

point (k,Q).

In case the line emerges from the domain for (= ¢,> 0 at
a point (8°,t°) we can take this point as the center of a

second like rectangular domain of the same dimensicns, and take

y' o= 8% + 8°t°(¢— ¢,)

Y S {t°2/2 + 2(1—s°)} (¢— %)

in this second domain. The expressions Slm and ng will then
m
continue to vanish for %>§ s until the point (y ,z%) leaves

this second domain at a point (p°,q°).

Thus, by a succession of steps, the expressions Slm and
Sam can be made to vanish for ¢ > 0 and likewise for q‘< o
(although we are not interested in the latter case). The
process can only terminate in case the brecken line representing

ym(q), zm(q) passes a boundary point of R.

e 4 ym and 2" be taken as the coordinates of a point then

the quantity

A

{x™2 + ™2} = 2 u

HA

m
since ’Xi l M

by the definition of Xim end M . Hence the point must remain



inside of R at least in the interval l¢) < D/Y2'M . It

will develcp subsequently that D/{2'M 1is the lesser of the
two quantities /2 and V§7E1. Both functions ym and z are
defined in this fixed ¢ interval whatever be the value of m.

(Note: m is a notation for a very specialized operation and

is not an exponent.)

As m takes on the values 1, 2, 3, ..., there arises an
infinite sequence of sets ym(?), zm(?) of functions defined
in this intervel. All of these sets lie in R, and so are
uniformly bounded. Furthermore since S;m and Szm vanish for

all m, the inegualities

1IN

pee
P

| [ ]

Mc ,

|7 Co+e) - y™(4)]

1IN

Me

i

m,
lz (¢+e) - 2"¢)|
obtain. We now need a special theorem due to Ascoli.

Osgecod’s Statement of Ascoli’s Theorem on Uniform Convergence.
Theorem: Let fn(x) be a real function of the positive integer
n and the real variable x in the finite clcsed interval a = x = b

and let (a) fpl(x) regarded as a function of x and n, be finite:

<

1A

,fn(x), < M; a X=b , =1l 25 By swey

M being a positive constant; (b) let the difference quotient
also remain finite

fnlx') — £n(x")

'
x! - x" < M,
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where x' and x" are any two distinct points of the above
interval, and n is arbitrary; u' being a positive constant.
Comment: From (b) it follows that fn(x) is a continuous function
of x in the closed interval (a,b). Moreover, Condition (b)

will always be fulfilled when fn(x) possesses a derivative

which, regarded as a function of x and n, remains finite.

Then it is possible to choose from the functions f,(x) a set
£,,0x), £, (x), oo,

which converges uniformly in the above interval (a,b).

The statement and proof of this theorem is given by
William F. Osgood, The Uniformization of Algebraic Functions,
Annals of Mathematics, vol, 14, series 2, pages 152-153 (1912).
References are also given there to the earlier work,in

particular to that of Paul Xoebe.

Hence as a special case of Ascoli’s theorem there exists
an infinite sequence of values of m for which both elements
of the set y ., 2™ spproaches a function j, z of the set (y,z)

unifermly ; these functions being themselves continuous.

It is easy to prove that the functions §, z so obtained
satisfy the integral form of the differential equations. In

m
fact since Slm and Sz vanish for all m, we have

T
83 = g:. - Sn.m T ~ .Ym) - l [X:.(/Sf—,z) - le(»ym,zm)] de ;

1

Ss = B4 — 8,7

?
-2 - [ [5G0 - %"("%) o .

For m sufficiently large, the first term on the right becomes

uniformly small inasmuch as y, z are approached uniformly by



: m _m . o
the corresponding y ,2 over the gequence under consideration.

Also X3(y,z) and Xa(y,z) will differ respectively from Xl(ym,zm)
and Xzfym,zm) by an uniformly smsll guantity, since X3 and Xg
are uniformly continucus in R by hypothesis; and X;(ym,zm)

and Xg (y%,2™) in turn will differ from le(ym,zm) aﬁd Xgm(ym,zm)
by a uniformly small quantity, in virtue of the definitioﬁs

of the functions le and sz. Hence the guantity under the
integral sign on the right alsoc becomes uniformly small as m
increases and the expressions Sy and Sg, which are independent
of m, must vanish as stated, so that y(¢), z(¢) yield the

- required solutions of the original system of differential

equations.

By repeated use of the existence theorem, the given
solutions y(¢), z(¢) may be extended beyond their interval
cf definition unless as ¢ approaches elther end of the interval,
the corresponding point y(¢), z(¢) approaches the boundary

of R.

Birkhoff’s Unigueness Theorem. It may now be proved that

there 1s only one solution of the type described in the
exlstence theorem, in case the functions X3 and Xg possess
continuocus first partial derivatives as they do here. This

last requirement may be lightened tc a well known form given

by Lipschitz.

Unigueness Theorem: If for both i’s and for every pair

of points (y,z), (s,t) in R the functions X; satisfy a Lipschitz

condition

<

'Xi(y,z) —x(e,t)] £ Laly- sl + L)z — tl,
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the quantities L and L being fixed positive guantities,
then there is only one solution y(¢), z(¢) such that ¥(0) = k,

z{(Q) = 0.

For if two distinct solutions y(¢), z(¢) and s(y), t{¢)
respectively have the same values k,0 for ¢ = O, the correspond-
ing integral forms of the differential equations give at once

y — 8 — [TX;(/y,z) - X;_(’s,t)] d¢ = O
? ,
z — t _j[xg(y,z) —Xg(s,t)] de = 0 ,

and thence by the Lipschitz condition imposed,
<j"’
y — 8 = °{Llly - s8] + Lg)z - t’} de
,a
.L {Lmly — sl + Lglz - tl} de

1A

z — t

Let L be the greater of the two positive constants Ly and Lg,
and let Q be the greater of the gquantities |y — sl and |z — t\
in any closed interval within the interval [q| £ 1/4L.

The maximum Q must be attained for some value of ¢ say'q*,
and for either |y-s| or |z—tl . If we insert the value @*of

? in the corresponding inequality above, and apply the mean
value theorem to the right-hand member, there results

Q = 2LQ g~ ¢l = q/2.

This proves that Q must be zero. Hence the two solutions y(¢),
z(¢) and 8(g),t(q) respectively which coincide for ¢ = 0 will
continue to do so in any such interval. The theorem follows

by repeated application of this result.



Theorem I. Let Q denote the shorter of the two intervals:

0= p<M2, 0= ¢ <Y2/k' . There exists a solution of

" 2 o %
u’ = u - kud® + a[u’] " (1)
that 1s continuous together with its derivatives of all orders
and satisfies (I) on § . Furthermore, if u(y) denotes this

soluticn, then

1

Q < u(y)
1 - ky?/2 = u(va)

secant
at every point of ¢ .

Proof: The equation (I) with u’(0) = 0 and u(0) = 1 is

equivalent to the system

(I1)

i

VAE I ¢
z! z8/2 + 2(1 —y)

with y(0O) = k and z(0) = O. A direct application of Birkhoff’s
existence and uniquehess theorems shows that system (II) has
an unique solution in a neighborhood of ¢ = O that tékes on
the desired initial values. It follows from this that system

(I) has an unique solution in a certain neighborhood of $ = 0:

Consider the eguations,

1
-

w'(0)

i
O

l

w' w o+ g[w’lz , w(0) (I11)
W _ _

I
'_J
1
O

v o= - kwd v(0) ; v'(0) (1v)
For (III) we have, as was obtalned in the calculations,

W = gecC ‘f °



U{.

For (IV) we have

[

1

Since the integral may be written in the form

v
~/ dav
A V1 — ve

1ts convergence for v = 1 is assured since the integral

u
jr av
1 Y (14ve ) (1sv )( 1= )

v
_[ av
4 71 -
converges. Hence the ilaverse function v = v(?) obtained from

inverting the equation

o
dv =+ Yx/2 @
VL ¥l — v=
-
will converge. The integral .[ av is not nearly so well
N -V

v
known as J[vafglvr— . However gsince we are here interested in
1

v as a member of an inequality so long as we are certain that

v converges and serves as a lower bound to u(?) we are satisfied.

In the caption to Theorem I the second equality is derived

from the use of
v = -k, v'(0) =0, v(0) =1,

which gives the unique solﬁtion v(g) = 1 — k¢®/2 in place of
the (IV) given above. The (IV) abo&e is a somewhat better
lower bound for u(q) than ﬁhis one. In case complications
occur in the invefsion of the integral we may revert to this
form., Hence equation (III) has the unigue solution w(?) = secq

one
while equation (IV) has inhform the unique solution



v(g) = 1 — qu/E and in the other, the function obtained by
the inversion of the integral above. These solution exist
and are positive for ¢ on the interval @ . We now show that

for each ¢ on ¢ , the solution u(y) of (I) exists and that
v(e) = ulg) = wlg) . (v)

We shall now compare the right-hand sides of equations
(1), (1II), and (IV). It will be observed that if u(g) were
identical with w(?) at some point then the right—haﬁd gide of
(III) would exceed the right-hand side of (I) since the
neglected term is actually negative on the range considered.
The fact that w(q) > u(p) for ¢ #0O serves to strengthen this
inequality w" >; u's Eﬁactly similar reasoning holds in the
comparision of (I) and (IV) except for the reversal of the
inequality signé. In connection with (Iv) it is to be noted

that v(g) is actually less than unity when ¢ > O.

We have now established that v”(0)< u(0) < w(0) and
this inequality holds throughout some neighborhood of ¢ = O,
This follows from the continuity of these second derivatives

and the above established existence. It follows immediately from

¢ (t
v(g) = 1+ J J v" ds dt ,
p o “O
t
u(e) = 1 + jq_I u' ds 4% , (vr)
t
w(/q)) = 1 % J‘PJ w" ds 4at ,

that the inequalities,



VY.

vig) < uly) < wig) (VvII)

hold on this sams sub-interval ( where v”’< w” < w") with the
exception of the point Y = O. Let us assume a point g (q7-O)
of the interval @ at which one of the inequalities (VII) fails.
Also let g be the smallest positive number for which (viz)
fails. (Such a smallest number exists from the closuré cf the
point sets on which v(¢) = u(y), u(g) = w(¢), these functions
being continuous, and the above esﬁablished fact that © =0

is not a limit point of either of these point setsg).

Since (VII) holds interior to 0 < @< q, it follows from
(1), (III), and (IV) that v'< u”" <« w'at esch point of
O < ¢ < q. Hence equations (VI) yield v(q) < u(q) < w(qg) .
It follows from this that the inequalities (VIf) hold on @
provided the soluticn u(q) can be extended ﬁhroughout this
interval. Such extension 1s immediately accomplished by -the
usuval procedure. Assume a point ®=q on @ gsuch that this
point is either the last point of 6 for which the solution
u(¢@) exists or else it is the first point for which u(y) fails
td exist. (Thus we follow the idea of the Dedekind Cuﬁ). Let
M be the boﬁnd of w(q) = secy on the interval O = ¥ = q.
The inequality (VII) holds at all points of a neighborhood of
g where the solﬁtion u(q) exists: If we use the bound M + 1
and apply Birkhoff’s ekistence theorem we prove that u(q) exists
at all points of an interval of positive length that hés q
for an interior point. Hence such a point g does not exist
and the solution u(g) exists on $. We have thus established

the existence of u(?) on § and shown that it satisfies the
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inequalities
0 = 1-k¢*/2 = ulg) = secy
- - _ (VIII)
or Qg = v(y) = uly) = sec »

where v(¢) is given in the second case by the inversion of

an integral. These inequalities hold on the shorter of the

<

two intervals O = ¢ £ /2, 0 = ¢ 2/k . (IX)

1

The existence and continuity of all derivatives follow
from the continuity of u and u' as given by the existence theorem
and the fact that u” is a continuocus function of these (oy
virtue of the original differential equation). Higher derivatives

are calculated by differentiating the equation (I).

Theorem II: On the interval @ described in (IX) above

we have
(A) When k> 1, 1 - k¢?/2 2 uleg) =1 ;
(B) When k = 1, ule) = 1 ;
(C) VWhen k< 1, 1 £ uly) = secq ;

for every @ on the interval @ .

Proof: Theorem I establishes the existence of u(g) and
21lgs0 some of the inequalities desired in Theorem II. If we

write equation (I) in the form
w’ = u-—u® + %[pﬂ 2 ¢ (1 - Kk)us (X)

and repeat the arguments of the proof of Theorem I using the

equation



- %E']z (x1)

U
|
(6]

instead of eguation (III) in the case (A) and using this
equation instead of eguation (IV) in case (C), the remaining
inequalities are established. Case (B) 1is established by

solving equation (I) for this value of k .

The series for w(e) = sec¢ ccnverges uniformly on the
range @ and represents a solution of (III) on this interval.
It is shown above that wl¢) marjorates the solution ufe) on

this interval. It has alsc been shown in the discussion of the

n

virtual source that the series for secq marjorates the serie
for u(p). Hence the series for ufy) is uniformly comvergent
and represents the solution of the differential equation (I)
on the interval § . By Theorem I we have obtained existence
and uniqueness on the range of ¢ and k that is pertinent to
the prcblem. Note that a lower bound for the sclution u(@)
has been established by Thecrem II. The equalities of (A) and

(c) of Theorem II hold only at ¢ = O.

6]

®

The series for lg u given in the calculations is absolutely
and uniformly convergent on the range shown there, Hence the
substituticn of u as a series in ¢ and k intc the series for
lg u gives a series representation of 1lg u which converges
absolutely and uniformly on the double range of ¢ and u,
namely on @ and O < un<1i . Hence the series for lg u can be
differentiated term by term and gives a series representation

of % du which converges in the above ranges. Hence existence,

Ly



unigueness, ccentinutily, and uniform convergence have bheen

]

l< Jo

established for the series representstion of the three guantities

1 du
u, lg u, and e

Appreciation: I am deeply indebted to Professor William

0

on the interval § .

M. Whyburn fecr his detailed counsel on the problems attacked
on pages 66-T2 inclusive. It was only through his help that
it was possible tec bring this part of the work toc such a high

degree of completion.



