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ABSTRACT 

An empirical relationship is presented for the incipient motion 

of bottom material under solitary waves. Two special cases 

of bottom material are considered: particles of arbitrary shape, 

and isolated sphere resting on top of a bed of tightly packed 

spheres. 

The amount of motion in the bed of particles of arbitrary shape is 

shown to depend on a dimensionless shear stress, similar to the Shields 

parameter. The mean resistance coefficient used in estimating this 

parameter is derived from considerations of energy dissipation, and is 

obtained from measurements of the attenuation of waves along a channel. A 

theoretical expression for the mean resistance coefficient is developed 

for the case of laminar flow from the linearized boundary layer equations 

and is verified by experiments. 

For the case of a single sphere resting on top of a bed of spheres, 

the analysis is based on the hypothesis that at incipient motion the 

hydrodynamic moments which tend to remove the sphere are equal to the 

restoring moment due to gravity which tends to keep it in its place. It 

is shown that the estimation of the hydrodynamic forces, based on an 

approach similar to the so-called "Morison's formula", in which the drag, 

lift, and inertia coefficients are independent of each other, is in­

accurate. Alternatively, a single coefficient incorporating both drag, 

inertia, and lift effects is employed. Approximate values of this co­

efficient are described by an empirical relationship which is obtained 

from the experimental results. 
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A review of existing theories of the solitary wave is presented and 

an experimental study is conducted in order to determine which theory 

should be used in the theoretical analysis of the incipient motion of 

bottom material . 

Experiments were conducted in the laboratory in order to determine 

the mean resistance coefficient of the bottom under solitary waves, and 

in order to obtain a relationship defining the incipient motion of 

bottom material. All the experiments were conducted in a wave tank 

40 m long, 110 cm wide with water depths varying from 7 cm to 42 cm. 

The mean resistance coefficient was obtained from measurements of the 

attenuation of waves along an 18 m section of the wave tank. Experiments 

were conducted with a smooth bottom and with the bottom roughened with 

a layer of rock . The incipient motion of particles of arbitrary shape 

was studied by measuring the amount of motion in a 91 cm x 50 cm section 

covered with a 15.9 mm thick layer of material. The materials used had 

different densities and mean diameters. The incipient motion of spheres 

was observed for spheres of different diameters and densities placed on 

a bed of tightly packed spheres. The experiments were conducted with 

various water depths, and with wave height-to-water depth ratios varying 

from small values up to that for breaking of the wave. 

It was found that: (a) The theories of Boussinesq (1872) and McCowan 

(1891) describe the solitary wave fairly accurately . However , the 

differences between these theories are large when used to predict the forces 

which are exerted on objec ts on the bottom, and it was not established which 

theory describes these forces better. (b) The mean resistance coeffici-

ent for a rough turbulent flow under solitary waves can be described as 
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a function of D , h, and H, where D is the mean diameter of the 
s s 

roughness particles, h is the water depth, and H is the wave height . 

(c) Small errors in the determination of the dimensionless shear stress 

for incipient motion of rocks result in large errors in the evaluation 

of the diameter of the rock required for incipient motion. However, it 

was found that the empirical relationship for the incipient motion of 

spheres can be used to determine the size of rock of arbitrary shape for 

incipient motion under a given wave, provided the angle of friction of 

the rock can be determined accurately. 
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CHAPTER 1 

INTRODUCTION 

Off shore structures such as sewage outfalls and thermal discha r ge 

pipes which pass from the shore into the ocean are exposed to ocean 

waves that shoal on the beach and break in the surf zone. These waves 

tend to undermine the pipes by removing the sand and can cause struc­

tural failures due to differential settling or by acting directly on 

the pipes . The pipes are usually protected by placing them in a 

trench and armoring their tops with pavements of loose rocks. However, 

if not designed properly, these rocks can be removed by big storm waves. 

In order to determine the size of the rocks required for adequate pro­

tection at a given site it is important to be able to predict the forces 

and moments exerted on them by the waves . Accordingly, the rocks 

should be designed such that they will resist these hydrodynamic 

forces and moments. 

The design of the rocks includes considerations of their size , 

weight, shape, grading and placement. It is conceivable that large and 

heavy rocks are more stable than small and light ones. Angular rocks 

of arbitrary shape are apparently more stable than spherical particles 

because they tend to interlock better with each other. A well-graded rock 

covering a limited range of sizes is possibly better than a single-sized 

rock, as the small particles of a well-graded rock fill in the holes 

among the big rocks and provide a stronger interlocking structure . 

Finally, rocks which are placed individually, usually with the help of 

a diver, are more stable than rocks which are dumped. 
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An understanding of the relationship between the various 

parameters representing the rock at actual conditions (i.e., size, 

weight, shape, grading and placement) and the characteristics of 

the design wave is therefore required for a proper design of 

bottom armoring. 

1.1 OBJECTIVE AND SCOPE OF THE PRESENT STUDY 

The objective of the present study is to investigate, both theoreti­

cally and experimentally, the conditions required for incipient motion 

of a bed of rocks under solitary waves. The incipient motion of a 

particle is defined as the event in which the particle barely moves, as 

the hydrodynamic moments forcing the particle from its place are equal 

to the restoring moment due to the weight of the particle. Solitary 

waves were chosen for three reasons. First, the theory of the solitary 

waves is well-known, so the hydrodynamics of the flow can readily be 

evaluated. Second, long waves shoaling on a beach have wide troughs 

and narrow crests which resemble solitary waves . Third, by employing 

solitary waves in the experimental study the problem of interaction 

between reflected and incident waves is avoided. 

As the motion of the rocks results from hydrodynamic forces and 

moments which are exerted on them by the flow, it is necessary to be able 

to determine these forces and moments. The resistance coefficient of 

the bottom under solitary waves is therefore investigated, and the 

stresses exerted on the bed are determined from this study. The investi­

gation of the incipient motion amounts to the study of the relationship 

between the hydrodynamic stresses and the characteristics of the rock 
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which cause the bed to be in a state of incipient motion. 

The problem of incipient motion which includes consideration of 

all the characteristics of the rock, i.e., size, weight, shape, grada­

tion, and placement, is quite complex. The following simplifications 

have been used in the present study: a. The considered rock has a 

narrow size distribution, i.e., all the particles are fairly uniform 

in diameter; b. All the rocks used in the experimental study are 

angular, i.e., have fairly sharp corners, and they all have approxi­

mately the same shape factor; c. All the rocks are placed in the experi­

mental model using the same method of placement. The investigation is 

thus limited to the problem of incipient motion of particles of arbitrary 

shape characterized only by weight (or density) and mean diameter . 

It is conceivab le that if some motion is expected to occur und~r a 

given wave, the moving rock particles will be those which emerge above 

their neighbors and protrude into the flow. A similar model of a simple 

geometrical shape can be described by a single sphere resting on top of 

a bed of similar spheres. The incipient motion of such a model is also 

studied in the present investigation, and the results of this study are 

compared to those obtained with particles of arbitrary shape. 

A review of previous studies of the resistance coefficient and of 

the initiation of motion of particles under waves is presented in 

Chapter 2 . A theoretical analysis is presented in Chapter 3 in which 

three theoretical presentations of the solitary wave are compared. 

Theoretical considerations of the incipient motion and of the resistance 

coefficient are also presented in Chapter 3. The experimental equipment 
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and procedures are described in Chapter 4. The results of the investiga­

tion are presented and discussed in Chapter 5, and conclusions are stated 

in Chapter 6. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 THE INCIPIENT MOTION OF A BED OF ROCKS 

There is a large number of studies in the literature dealing with 

the problem of the initiation of motion of bed material . However, most 

of these studies are concerned with the problem as it occurs in steady 

flows in streams and channels. The conditions required for initiation 

of motion for these cases are usually described by the so-called 

"Shields diagram", or the "Shields curve", which is named after Shields 

(1936) whose investigation of the problem was based on similarity 

principles. The Shields diagram describes a relationship between a 

dimensionless shear stress, T*' and a boundary-particle-Reynolds 

number, Re*. The dimensionless shear stress, which is also called the 

"Shields parameter", is given by 

T* (2.1) 

where Tb is the bottom shear stress, pw is the density of the fluid, 

g is the acceleration due to gravity, and p and D are the mean density 
s s 

and size (diameter), respectively, of the particles. The boundary-

particle-Reynolds number is given by 

Re* = 

where ~ is the kinematic viscosity of the fluid, and u* 

the boundary shear velocitj. 

(2.2) 

h Ip is called 
b w 

Studies applying the Shields parameter to problems of initiation 
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of motion under waves are quite limited. Komar and Miller (1973) used 

the data obtained experimentally by Bagnold (1946) and Manohar (1955) to 

show that the Shields diagram as it is used for steady flows cannot be 

used for oscillatory flows. However, Madsen and Grant (1975) used 

Bagnold's data to show that Shields diagram can be applied to oscillatory 

flows. They noted that the error in Komar and Miller's results was due 

to a wrong definition of the bottom shear stress. Komar and Miller 

(1975) independently recognized the mistake in their preceding (1973) 

study. 

Bagnold (1946) and Manohar (1955) simulated the oscillatory flow in 

their experiments by oscillating a granular bed in still water. They 

neglected the inertia forces acting on the particles in the oscillating 

bed, assuming that hydrodynamic drag was dominant. However, it should 

be noted that for cases where inertia forces cannot be neglected, the 

forces acting on the oscillating particles are different from those 

acting on stationary particles in an oscillating fluid. This is due to 

the different masses associated with these forces. 

The dimensionless shear stress given by Eq. (2.1) represents the 

ratio between the hydrodynamic forces acting on the bed particles and 

the gravitational force that tend to keep the particles in their at-rest 

positions. In cases of flows in streams and channels the hydrodynamic 

forces are considered to consist of drag and they are assumed to be 

proportional to the shear stresses which are exerted on the bed by the 

flow. Lift forces acting in a direction perpendicular to the direction 

of the flow are usually either neglected or assumed to be included in 

the proportionality factor relating the hydrodynamic forces to Shields 
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parameter (e.g., see Vanoni (1975) p. 92). Inertia forces (due to the 

acceleration of the fluid particles relative to the bed particles) do 

not exist in steady flows over stationary particles. 

In cases where inertia forces cannot be neglected, e.g., under 

waves, the most common approach to the problem consists of an examination 

of the forces acting on a single bed particle. The particle itself is 

usually considered to be a sphere, and the hydrodynamic forces acting on 

it consist of some combination of drag, inertia, and lift effects. 

Grace (1974) presented a few of the formulae which are most commonly 

used to evaluate the hydrodynamic forces acting on a sphere under waves. 

The formula which is most commonly used in coastal engineering 

practice is that due to O'Brien and Morison (1952). They assumed that 

the force acting on a sphere resting on the bottom in an unsteady flow 

can be expressed as a linear combination of drag and inertia forces, 

i.e., 

(2.3) 

where CD and CM are the drag and inertia coefficients respectively, 

assumed to be constant; A and V are the projected area and the volume 

du 
of the sphere respectively; and u and dt are the free stream velocity 

and acceleration of the fluid particles respectively, estimated at the 

level of the sphere in its absence. The direct ion of the velocity and 

acceleration near the bottom is parallel to the bottom plane and so is 

the force given by Eq. (2.3). An equation similar to Eq. (2.3) was 

first applied by Morison et al. (1950) to forces on piles. O'Bri en and 

Morison did not consider lift forces in the study. They evaluated CD 
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and CM experimentally by measuring the wave profile and the forces 

acting on the sphere simultaneously. The fluid particle velocity and 

acceleration were estimated from the wave theory (using the linearized 

equation of motion), and the value of CD was estimated from Eq. (2.3) at 

the point of zero acceleration. Similarly, CM was evaluated at the 

point of zero velocity. 

Eagleson, Dean and Peralta (1958) investigated the forces acting 

on spherical particles on a sloping beach at both incipient motion and 

established motion conditions. In their theoretical developments they 

recognized both drag, inertia and lift effects. However, they assumed 

that lift effects were negligible. The major differences between their 

analysis and that of O'Brien and Morison are that they considered a 

higher order wave theory (Stokes waves), and that they also considered 

the velocity distribution inside the boundary layer for the cases where 

the boundary layer thickness, o, was greater than the diameter of the 

sphere. O'Brien and Morison applied only the free stream velocity 

distribution to their calculations. 

Iversen and Balent (1951) and Bugliarello (1956) studied the 

resistance of an unbounded fluid to the accelerated motion of disks and 

spheres (respectively) moving in a unidirectional motion. They suggested 

that inertia and viscous effects be combined into one coefficient 

c* This resistance coefficient is then expressed in the form 
D 

C* = f(uDs Ds du) 
D v ' u2 dt 

(2 . 4) 

and the force acting on the moving object is written in the form 
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F (2.5) 

However, Basset (1888) showed that the force acting on a sphere accelera-

ting in a viscous fluid depends also on the history of the flow. This 

means that the forces acting on two identical spheres moving in the same 

fluid at the same velocity and acceleration may be different for 

different initial conditions of their motion. Keulegan and Carpenter 

(1958) argued that attempts to correlate the resistance coefficient, 

* CD, to the instantaneous Reynolds number, uD/v , and the dimensionless 

acceleration, D ~~/u2 , between different types of flows (i.e . , uni­

directional, oscillatory, etc.) were unsuccessful for this reason. 

In their investigation of the forces acting on cylinders and plates 

in an oscillating fluid, Keulegan and Carpenter (1958) assumed average 

values for the drag and inertia coefficients which remain constant 

throughout the period of oscillation. They considered the force to be 

given by an equation similar to Eq. (2.3), but with an additional term: 

F (2.6) 

where the function ~R is used to account for the fact that the instanta-

neous values of CD and CM are different from their assumed average 

values. Keulegan and Carpenter found correlations between the average 

values of the coefficients and a dimensionless period, T* = Tu /D, max 

where T is the period of oscillation, u is the maximum or bital max . 

velocity of the fluid, and D is a characteriitic l ength (d iame t er) of 

the object . They noted that the dimensionless period, T* , could be 

replaced by a dimensionless length, ~/D . A similar pa r amet e r , ~ /k , 
s 
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where k is the · equivalent surface roughness (k is proportional to the 
s s 

mean diameter, D , of the particles on a rough surface), was found to 
s 

be significant in studies of the resistance coefficient of rough surfaces 

under oscillatory flows. These studies are presented in the following 

section. 

2.2 THE RESISTANCE COEFFICIENTS UNDER WAVES 

A significant amount of work has been done in the past in order to 

estimate the shear stresses exerted by waves on both smooth and rough 

bottoms. In most of these studies the flow was considered to be 

oscillatory, and only a few investigators considered solitary waves . 

A comprehensive review of studies on boundary layers and friction factors 

under oscillatory flows was given by Jonsson (1966). The present review 

of such flows will therefore be limited and will only demonstrate the 

various methods used by different investigators. 

Of the theoretical treatments of laminar boundary layers under 

oscillatory flows, that due to Lin (1957) is often used in comparison 

with experimental studies of boundary layers unde r waves. Lin considered 

an oscillatory motion superimposed on a steady stream, where the amplitude 

of oscillation and the magnitude of the stream may vary with the x 

coordinate . By averaging the equations of motion over the period of 

oscillation and assuming high frequency of oscillations, he derived a 

linear boundary layer equation for the oscillatory component of the 

flow. The analytical solution of this equation was then introduced into 

the averaged equations of motion which yielded an ana l ytica l solution 

to the mean flow in the boundary layer. For the limiting case of zero 
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mean stream velocity the problem is reduced to that of the oscillatory 

wave, and the analytical solution of the linearized equations adequately 

describes the behavior of the boundary layer. 

Turbulent boundary layers under oscillatory flows over both smooth 

and rough surfaces were investigated theoretically by Kajiura (1968). 

He subdivided the boundary layer into three regions, namely the inner, 

the overlap, and the outer layers, and considered different forms of the 

eddy viscosity for each of them. The values of the eddy viscosity were 

assumed to remain constant throughout the period of oscillation, and they 

were obtained from measurements of steady turbulent flows. Substituting 

the assumed forms of the eddy viscosities into the linearized boundary 

layer equations (neglecting convective terms), Kajiura obtained the 

solution for each subdivided region in the boundary layer. The constants 

of integration in his solution were eliminated by matching the solutions 

at the boundaries between these regions. 

Experimentally, the shear stresses can be evaluated from measure­

ments of shear forces exerted on a plate, or by measuring the velocity 

profiles in the vicinity of the boundary and applying some theoretical 

considerations which relate the velocity profile to the shear stresses. 

Now, since the shear stresses are the main reason for the wave energy 

dissipation, and as the wave energy can be expressed in terms of the 

wave height, the shear stresses can also be estimated from measurements 

of the attenuation of waves along a channel . 

In a theoretical study of the attenuation of waves, Biesel (1949) 

used the linear equations of the laminar boundary layer to show that 

the height, H, of an oscillatory progressive wave decays exponentially 



along the channel, i.e . , 

H H 
0 

12 

-kx/h 
e 

where H is the wave height at the coordinate x = 0, k is the decay 
0 

(2. 7) 

coefficient, and h is the water depth. The decay coefficient was shown 

to be a function of a form of a Reynolds number, defined in terms of 

the wave length and the wave speed. 

Eagleson (1962) measured the forces exerted on a plate under 

oscillatory progressive waves. Defining the bottom resistance co-

efficient, Cf , to be given by 
b 

(2.8) 

where Tb is the bottom shear stress, pw is the density of the fluid, 

and u is in the free stream velocity evaluated near the bottom, he 

obtained a relationship between the decay coefficient, k, and the 

average resistance coefficient (averaged over a wave period). The decay 

coefficients which he obtained were larger than those predicted by 

Biesel (1949). Accordingly, the experimental values of the average 

resistance coefficient were larger than the theoretical ones. 

Iwagaki et al. (1965) also measured the forces exerted on a plate. 

They noted that the discrepancies in Eagleson's results were probably 

due to measurement errors. They also measured the attenuation of waves 

along a channel. The experimental values which they obtained for the 

decay coefficient were also larger than the predicted ones. This 

discrepancy is probably due to energy dissipation at the free surface 

in addition to the dissipation near solid boundaries . Van Dorn (1966) 
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showed that such a dissipation was possible as a free-surf ace boundary 

layer could develop due to contamination. 

The most conunon procedures applied to experimental investigations 

of shear stresses in turbulent oscillatory flows are those which were 

used by Kalkanis (1957), Jonsson (1963), and Kamphuis (1975). Kalkanis 

measured the velocity profile of a fluid near a smooth oscillating plate, 

where the fluid was otherwise at rest. In his experiments, he found 

that the amplitude of the fluid particle velocity in the turbulent 

boundary layer varied according to a power law with a coordinate z 

which measures the vertical distance from the plate. The phase shift 

between the fluid particle velocity and the velocity of the plate varied 

according to a logarithmic law with the coordinate z. These results 

enabled him to determine the distribution of the eddy viscosity in the 

turbulent boundary layer. However, he did not investigate the laminar 

sub-layer and did not provide matching conditions between the laminar 

and turbulent ·regions, thus, it appears that his study is incomplete, 

as far as the determination of the boundary shear stresses are concerned. 

Jonsson (1963) and Kamphuis (1975) used a closed water tunnel in 

which the fluid oscillated in a sinusoidal manner with respect to time. 

Such an apparatus could be described as a fluid oscillating in a "U" 

shaped tube. Jonsson measured the velocity profile near the bottom of 

his tank and fitted the data to logarithmic curves, assuming that steady 

state turbulent boundary layer considerations were valid . The constants 

obtained from the curve fitting enabled him to estimate the shear 

stresses exerted on the bottom. 

Dimensional analysis considerations indicate that for smooth plates 
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the average wave resistance coefficient is a function of a wave Reynolds 

number, which Kamphuis (1975) defined as Re = a~u /v, where a~ is the 
u max u 

amplitude of a fluid particle displacement just outside the boundary 

layer, u is the maximum velocity of such a fluid particle, and v is max 

the kinematic viscosity of the fluid. For rough plates the average 

resistance coefficient is a function of a~/k , where k is the equiva-
u s s 

lent surface roughness. Kamphuis (1975) obtained empirical relationships 

for the resistance coefficients for both smooth and rough plates, and 

compared his results to those obtained experimentally by Jonsson (1963), 

and the theoretical ones predicted by Kajiura (1968) . Considering the 

experimental uncertainties due to measurement errors, and the theoretical 

uncertainties due to the approximations considered by Kajiura in his 

analysis, the results of the three studies appear to agree reasonably 

well . 

The resistance of solid boundaries to the flow of solitary waves 

was studied theoretically by Keulegan (1948) and Iwasa (1959) for the 

case of laminar flow . So far as turbulent boundary layers are concerned, 

the author has no knowledge of theoretical studies of the cases of flows 

under solitary waves. Experimental studies of the resistance coefficient 

under solitary waves were conducted by Ippen, Kulin and Raza (1955), 

and by Ippen and Mitchell (1957). 

Keulegan (1948) considered the linearized equations of motion and 

developed an expression for the velocity distribution in the viscous 

boundary layer for the general case of non-uniform dis tr ibution of the 

free stream velocity along a solid horizontal boundary. He then 

obtained the bottom shear stress, Tb' applying Newton's law of friction, 
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namely 

(2. 9) 

where µ is the dynamic viscosity of the fluid, u£ is the horizontal 

velocity component in the boundary layer, and z is a vertical coordinate 

with its origin at the boundary. For the special case of solitary waves 

he assumed that the free stream velocity distribution along the wave, u, 

was given by 

u(X) 
Cn (X) 

h 
(2.10) 

where C is the wave speed, n is the free surface elevation above still 

water level, h is the water depth and X = x-Ct is a horizontal coordinate 

moving with the wave, and where x and t are the stationary horizontal 

coordinate and time respectively. He also developed a relationship 

between the shear stresses and the rate of wave height attenuation (due 

to energy losses) along a channel, and used the experimental data which 

was observed by Scott-Russell (1844) to verify his theoretical develop-

ments. The accuracy of his results is, however, doubtful. The reason 

is that the approximate expression of the velocity (Eq. (2 .10)), is good 

only for small amplitude waves, i.e., n/h << 1 . For waves of large 

height-to-depth ratio Eq. (2 . 10) does not describe the velocity 

accurately. Furthermore, for waves of large height-to-depth ratio the 

convective terms in the equations of motion are not small enough to be 

neglected compared to the linear terms, and the full, nonlinear 

equations have to be solved for a more accurate description of the 

boundary layer. 
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Iwasa (1959) used a higher approximation (than Eq. (2.10)) for the 

free stream velocity . In order to solve the complete (nonlinear) 

boundary layer equations he considered the cases where he assumed either 

a linear or a parabolic velocity profile in the boundary layer. However, 

these assumptions were not verified experimentally. 

Ippen, Kulin, and Raza (1955) used the relationships which were 

developed by Keulegan (1948) and measured the attenuation of waves over 

both smooth and rough bottoms. Their results for smooth bottoms were 

inconclusive, apparently due to measurement uncertainties . For rough 

bottoms they found that the resistance coefficient depended on the 

absolute value of the roughness size in addition to the wave Reynolds 

number, Re, which they defined as 

Re J~ ud~ 
v 

0 

(2.11) 

where ~ is the displacement of a fluid particle in the free-stream near the 

bottom. Ippen and Mitchell (1957) obtained the resistance coefficient from 

direct measurement of the forces exerted on a plate. In their analysis 

they considered higher approximation for the velocity than that used by 

Ippen et al . (1955)(i.e., Eq. (2.10)). They also found that the 

resistance coefficient for rough beds depends on the absolute value of 

the roughness . Their results seem to be independent of the Reynolds 

number, and since the values of the Reynolds numbers in their experiments 

were larger than those in the investigation of Ippen et al. (1955), they 

assumed that the two different studies were conducted at different flow 

regimes (i.e., that their experiments were conducted in the rough turbu-

lent regime , while the experiments of Ippen et al . (1955) were conducted 
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in the transition to rough turbulent regime). 

Results which show dependence on the absolute value of the rough­

ness cannot be used in cases where the roughnesses are different from 

those tested. In order to obtain a more general relationship for the 

resistance coefficient, these results should be examined from other 

aspects such as dimensional analysis. However, neither study 

provided an analysis and explanation for the relationships which 

'they found . 
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CHAPTER 3 

THEORETICAL CONSIDERATIONS 

In the course of investigation of the incipient motion of bed 

material under solitary waves it is first necessary to study the fluid 

mechanics of these waves. Second, the hydrodynamic forces exerted on 

the bed particles by the flow under solitary waves must be determined 

and, finally, the properties of the bed particles have to be chosen 

such that they will resist the hydrodynamic forces exerted on them. 

A review of three existing theories of the solitary wave is pre­

sented in Section 3.1. Theoretical consideration for the forces 

exerted on bed material under solitary waves are presented in Section 

3.2, and the conditions required for incipient motion of bed particles 

are discussed in Section 3 . 3 . 

3.1 THE SOLITARY WAVE 

The existence and the formulations of the solitary wave are very 

well known, therefore theoretical developments will not be analyzed here. 

Three theoretical solutions of the solitary wave equations which are 

often referred to in the literature are those due to Boussinesq (1872), 

Mccowan (1891), and Laitone (1963). The surface profile, the wave 

celerity, and the fluid particle velocity which are derived from these 

theories are presented here for the convenience of reference. They will 

later be compared to those of experimentally generated waves in order to 

determine which of the three theories is most suitable for use in con­

junction with the experimental study of s t ability of armored bottoms . 
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The wave motion is considered in a two-dimensional space and is 

illustrated in Fig. 3.1. The wave consists of a single surface elevation 

of height H traveling with a speed C over a body of water of constant 

depth h. The x coordinate is located along the bottom of the fluid with 

the z coordinate directed upward. The fluid is unbounded in the x direc-

+ + 
tion. The wave induces a flow field q(x,z,t) = (u,v) where q is the 

+ 
velocity vector ( denotes vectorial quantity), u and v are the 

horizontal and vertical velocity components respectively and t is the 

time . The surface elevation above still water level is denoted by n(x,t). 

The water away from the wave is considered to be at rest. 

Considering an incompressible homogeneous fluid and an irrotational 

flow, the flow field can be represented by the velocity potential ~ 

+ 
(such that q = V~) satisfying Laplace's equation: 

v 2~ = o , 

with the boundary condition at the bottom: 

l! = 0 (at z = O). 
dZ 

The kinematic condition at the free surf ace is 

l!1. + l! l!1. - l! = 0 (at z = h + n(x,t)), 
3t 3x 3x 3z 

and the dynamic condition, neglecting surface tension, is 

~: + %-cv~) 2 + gn = o (at z = h + n(x,t)), 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where g is the gravitational acceleration . The pressure at the free 
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surface is taken to be zero for convenience. The difficulty of the 

problem lies in the nonlinearity of the boundary conditions at the free 

surface, the elevation of which is unknown a priori and must be deter-

mined from the solution of the problem. 

Expanding the velocity potential in a power series: 

()() 

L: <P. zj 
j=o J 

(3 .5) 

Boussinesq's (1872) solution to Eq. (3.1) with the boundary conditions 

(Eqs. (3 . 2), (3.3), and (3.4)) can be considered as the first term in 

the series. Mccowan (1891) carried the solution to the first term 

choosing different functions <P. that represent the velocity potential. 
J 

The solution of Laitone (1963) is similar to that of Boussinesq but 

contains higher order terms. Expressions for the surface profile, wave 

celerity, and fluid particle velocity of the solitary wave which were 

derived from these solutions are presented in Table 3 . 1 in terms of the 

coordinate system (X,z) where X = x-Ct is a coordinate system moving 

with the wave transforming it to a stationary form. McCowan's solution 

is shown (in Table 3.1) in dimensionless terms as presented by Munk 

(1949). 

As can be seen in Table 3.1, Boussinesq's presentation of the wave 

profile and the wave speed are the same as the lowest order terms in 

Laitone's formulation. The horizontal velocity as expressed by 

Boussinesq is derived from continuity considerations assuming a uniform 

velocity distribution over the depth . The first order terms in the 

expansion of this expression for the velocity in a power series of H/h 

are the same as those appearing in Laitone ' s presentation . The 



T
ab

le
 3

.1
 

S
o

lu
ti

o
n

s 
o

f 
th

e
 s

o
li

ta
ry

 w
av

e 
du

e 
to

 B
o

u
ss

in
es

q
, 

M
cC

ow
an

, 
an

d 
L

a
it

o
n

e
. 

B
o

u
ss

in
es

q
 

M
c C

ow
an

 
L

ai
 to

n
e 

h 
N

 s
in

M
 (

l+
n

/h
) 

(3
 

W
av

e 
p

ro
fi

le
 

2
~
X
 

H
 sec

h
2

 (
a~

 )[
1

-
f *

(1
-s

ec
h

2
 ~

X)
J 

n 
=

 
H

 sec
h

 
-

-
M

[c
os

M
 (

l+
n

/h
) 

+
 c

os
hM

 ~
] 

4h
 

h 

(4
 

W
av

e 
sp

ee
d

 
c 

=
 

lg
h

(l
+

H
/h

) 
V
~
 ta

nM
 

[ 
1 

H
 3

 
(H)

2 
(H

f] 
lg

h
 l

+
 2

 h
 -

20
 h

 
+

 0
 h

 

F
lu

id
 p

a
rt

ic
le

 
(1

 
v

e
lo

c
it

ie
s 

Cn
 

CN
(l
+c
os
~ 
co

s~
) 

/g
h

{
*

[1
+

 *(
t-

~~~
)Js

ech
2
(a 
~)

+ 
h

o
ri

z
o

n
ta

l 
u 

=
 

h+
n 

( c
.u

s~
 +
co
s~
)2
 

I i 
(*)

2(!
~~ 

-1
) 

se
ch

4 
(a
~)
} 

(2
 

CN
 
s
i
~
 s
in

h~
 

[ 
z 

dn
 

(H 
)5

/2
] 

v
e
rt

ic
a
l 

v 
=

 
(c

os
~+

 c
os
~)

2
 

-
/g

h
 

h 
a
x

+
 0

 h
 

1
) 

u 
is

 
av

er
ag

ed
 

3)
 

th
e
 

re
la

ti
o

n
sh

ip
s 

fo
r 

4)
 

o
v

er
 
th

e
 d

ep
th

 
N

 a
nd

 M
 a

re
 

ap
p

ly
in

g
 
c
o

n
ti

n
u

it
y

 
N

 =
 t 

si
n

 2 
[ M

 ( 1
 +

 t -*
) J

 
N

o
te

s 
c
o

n
si

d
e
ra

ti
o

n
 

2
) 

e
x

p
re

ss
io

n
 

fo
r 

th
e 

* 
=

 * ta
n[-

~ M
(l

+
 *

)]
 

a
=
~
 (1

-
%

 *)
 +

 o
(*)

51
2 

1
v

e
rt

ic
a
l 

v
e
lo

c
it

y
 w

as
 

1n
o

t 
p

re
se

n
te

d
 b

y 
IB

o
u

ss
in

es
q

 
fo

r 
s
o

li
-
I 

jt
a
ry

 w
av

es
 

i 

I I I I 

"' "' 



23 

similarity and differences between the presentations of Boussinesq and 

Mccowan are not immediately seen because of the complexity of the 

expressions involving the parameters Mand Nin McCowan's formulation. 

However, Mccowan himself noted that the two solutions are similar to each 

other . A comparison between the surface profile, the wave celerity, and 

the velocity distribution of an experimentally generated wave and the 

three theoretical formulations shown in Table 3.1 are presented in 

Section 5.1. The interested reader is referred to that section for a 

more detailed discussion. 

3.2 THE HYDRODYNAMIC FORCES EXERTED ON BED MATERIAL UNDER SOLITARY 

WAVES 

The investigation of hydrodynamic forces exerted on solid surfaces 

usually consists of boundary layer considerations, where the conditions 

of interaction between the surface and the flow are taken into account 

(i.e., smooth or rough surface, laminar or turbulent flow, etc.) . 

Solutions of the equations of motion in the bottom boundary layer under 

solitary wave may provide a direct estimation of the shear stresses 

exerted on the bottom. Approximate solutions of this kind are known for 

the case of smooth laminar flow (e.g., Keulegan (1948), Iwasa (1959)). 

The writer has no knowledge of theoretical solutions to the cases of 

turbulent boundary layers under solitary waves . Experimental investiga­

tion of the velocity profile in the turbulent boundary layer (see 

Section 5 .1.3 ) was unsuccessful. For these cases the shear stresses in 

the boundary layer are studied here based on considerations of wave 

energy dissipation. 
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3.2 .1 The Damping of Solitary Waves 

Consider the solitary wave in a channel as presented by 

Boussinesq (1872)(see Table 3.1): 

n(X) H sech2ax (3.6) 

where n is the surface elevation above still water level, H is the wave 

height, a=13H/4h 3, with h being the water depth, and X = x-Ct is a hori-

zontal coordinate moving with the wave , in which x is a stationary 

horizontal coordinate, C is the wave celerity , and t is the time. The 

wave celerity is given by: 

C = lgh(l+H/h) (3. 7) 

where g is the acceleration due to gravity. The horizontal component of 

the fluid particle velocity, u, is expressed as : 

u(X) = Cn(X) 
h+n(X) 

c 
(3.8) 

Boussinesq (1872) did not present an expression for the vertical velocity 

component under the solitary wave. The total wave potential energy .per 

unit channel width, EPl' can be described by : 

E =l P g {" n2dx = _4_ pwgh3 (-hH )3/2 
P1 2 w -co fi7 

(3.9) 

where p is the density of the fluid. The total kinetic energy per 
w 

unit width, Ek
1

, is given by: 



X=+oo z=h+n(X) 

Ek = .!_ p J dX J 
1 2 w X=-00 z=O 

2p gh 3(l+H/h) 
w 
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/H7h 
£n l+\f I+H!h ) . 

fH!h" 
1-\f l-Hi/h 

(3.10) 

Eqs. (3.9) and (3.10) are similar to the expressions developed by Iwasa 

(1959). The differences between Iwasa's expressions and Eqs. (3.9) and 

(3.10) are due to the differences between his presentation of the soli-

tary wave and the solitary wave due to Boussinesq (1872) which is con-

sidered here. Iwasa's solitary wave is of higher order approximation 

and includes expressions for the vertical component of the fluid particle 

velocity. However, his results show that the kinetic energy due to this 

velocity component is negligible compared to the potential energy 

and the kinetic energy due to the horizontal velocity component. 

The total wave energy per unit channel width, E1 , is obtained by 

adding the potential energy to the kinetic energy, i.e., Eqs. (3.4) and 

(3.10) : 

E = E +Ek= _1._ p gh3[(1+'!.!!\_lfLlJl+ !! tn 1+ ~]. 
1 Pl 1 /3 w 3 h ~h 2 h I H/ h 

l- ~ l+H/h 

(3.11) 

The total wave energy, E, in a channel of finite width, B, is given by: 

E (3 . 12) 

As can be seen in Eqs. (3.11) and (3.12), the total wave energy of a 

given fluid (given p ) in a channel of constant depth and constant width 
w 

is a function of the wave height-to-water depth ratio only (considering 
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the gravitational acceleration to be constant) . 

As the wave propagates along a channel, the bottom and the walls 

exert stresses on the fluid. These stresses are the main cause for the 

d . . t . f Th f d · . · dE b 1ss1pa ion o wave energy. e rate o energy 1ss1pat1on, dt' can e 

obtained as follows: 

dE 
dt 

3E d(H/h) 
----.,.-

3 ( H / h) dt 

During the time increment dt the wave travels a distance dx 

Eq . (3 . 13) becomes: 

Cl.E 
-= 
dt 

3E d(H/h) 
C 3(H/ h) dx 

(3.13) 

Cdt, thus, 

(3 .14) 

Substituting Eq . (3.7) for C in Eq. (3 . 14), and substituting Eq. (3.12) 

into Eq. (3.11) and differentiating it with respect to H/h yields 

dE = _!_ Bp g3/2h5/2 l5 ~B_(l+ I!)_! fo l+{;J[.{§-hl d(H/h) 
dt /3 w h h 2 ./Hih d(x/h) 

1-~T-HVh 

(3 .15) 

The rate of energy dissipation is obtained experimentally from measure-

ments of the attenuation of waves along the channel and substitution of 

d(H/h) 
the measured value of d(x/h) in Eq. (3 . 15). 

Consider a shallow wide channel such that the width is much greater 

than the depth, hence the shear forces exerted on the walls are negligi-

ble compared to those exerted on the bottom. For this case the rate of 

energy dissipation is equal to the rate of work done by the fluid on 

the bottom (considering no energy sources or sinks in the flow domain). 

Assuming that the bottom shear stresses are uniformly distributed across 
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the channel , this is expressed as: 

co 
dE 
-= 
dt (3.16) 

where Tb denotes the shear stresses exerted on the bottom. Eq. (3.16) 

describes a simple mechanical law that the rate of energy change of a 

body is equal to the inner product of the force applied on the body and 

its velocity. The minus sign on the right-hand side of Eq. (3.16) 

accounts for the fact that Tb is considered as the shear stress exerted 

on the bottom rather than that exerted by the bottom on the fluid. The 

bottom shear stress is defined by means of a bottom friction coefficient, 

cf ' such that 
b 

T = .!_ Cf p u 2 
b 2 b w 

Substitution of Eq. (3.17) into Eq. (3 . 16) yields: 

co 

dt 
_ .!_ Bp J 

2 w 
dE 
-= 

-co 

(3.17) 

(3.18) 

Considering Cf as a mean resistance coefficient for a wave, it can be 
b 

taken out of the integral in Eq. (3.18) . It is then evaluated by 

equating Eq . (3.18) to Eq. (3.15), i.e., 

_.!_ 3/2h3/2 [s~!!(l+ .!:!.)_.!.in l+~]d(H/h) 
13 g h h 2 _fH/h d(x/h) 

. l-~l+H7h (3.19) 

where the bar over Cf denotes a mean value (averaged over the wave). 
b 
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It has to be noted that substitution of the value of Cfb as given by Eq . 

(3 . 19) into Eq. (3 . 17) may not necessarily yield the correct distribution 

of bottom shear stresses under solitary wave, since the local values of 

the friction coefficient may be different from the mean resistance co-

efficient defined by Eq. (3.19). In fact, application of the mean 

resistance coefficient to Eq. (3.17) implies that the maximum shear 

stress occurs under the wave crest, where the velocity is maximum. How-

ever, Kajiura (1968), in his investigation of turbulent boundary layers 

under oscillatory waves, showed that there is a phase lag between the 

bottom shear stress profile and the free-stream velocity profile. 

Keulegan (1948) showed that the maximum bottom shear stress in the 

smooth laminar boundary layers under solitary waves occurs under the 

wave front near the crest , but not directly under the crest. Therefore , 

application of the mean resistance coefficient may be inaccurate when 

used to estimate local shear stresses and it can only be applied to 

problems where wave attenuation is concerned. Nevertheless, for two 

channels of the same width and depth with waves of equal heights, the 

stresses in the channel of stronger wave attenuation are larger than the 

stresses in the channel of weak attenuation. Therefore, the application 

of the mean resistance coefficient, although it may not describe the 

correct distribution of the shear stresses, can be used qualitatively. 

When considering a representative shear stress to be given by 

substitution of the mean resistance coefficient and the maximum velocity 

under the wave in Eq . (3 . 17), it is expected that the true stresses 
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under the waves with large representative shear stresses are larger 

than those under waves with small representative stresses. 

Since the mean resistance coefficient will be evaluated from 

experimental measurements of wave attenuation, it is necessary to 

establish a functional relationship between the resistance coefficient 

and other parameters involved in the problem. Thus, a relationship 

obtained under certain experimental conditions will be used for cases 

other than those tested. 

In most studies of the resistance coefficient under oscillatory 

flows (e.g., Jonsson (1966), Kajiura (1968), and Kamphuis (1975)), it 

was shown that the resistance coefficient of a smooth bottom depends 

on a so-called "Wave Reynolds number" which is defined by the maximum 

velocity, u , and the displacement amplitude of a fluid particle just max 

outside the boundary layer. For rough bottom in the transition regime 

the resistance coefficient depends also on the ratio between a 0 and the 

surface roughness size (considered here as given by the mean diameter 

of the roughness particles, D ). For fully developed rough turbulent 
s 

flows the resistance coefficient depends only on Ds/a 0• Note that the 

maximum displacement of a fluid particle just outside the boundary 

layer, s, is equal to 2a
0 

for oscillatory flows . Ippen, Kulin and 

Raza (1955) defined the Reynolds number for the solitary wave, R , as 
e 

R 
e 

uds • 
\) 

(3. 20) 
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Since u d~/dt, and with dX = - Cdt, Eq. (3.20) becomes 

00 

R = f u2 dX 
e Cv (3.21) 

-oo 

where it is noted that ~ = 0 at X = + 00 • Introducing the solitary 

wave equations due to Boussinesq (1872)(i.e. , Eqs. (3.6), (3.7), and 

(3.8) into Eq. (3.21) yields 

R = 2¥ h _ (H"7h" [-1 +l (. /Hfh + /l+H/h) hi l+~] 
e vv'3 Yi+H/h 2 "l+H/h " H/h _ /H7h 

1-"l+Hlh 

(3. 22) 

The displacement of a fluid particle can be described by the volume of 

fluid confined by the wave profile (per unit channel width) divided by 

the water depth. This is expressed as 

00 

(3. 23) 
-oo 

where n is the surface elevation above still water level. Substituting 

Eq. (3.6) into Eq . (3.23) yields 

(3. 24) 

The studies of the resistance coefficient in oscillatory flows which 

were mentioned above deduced the dependence of the resistance coeffici-

ent on the wave Reynolds number and on the relative fluid particle 

displacement (~/D ) from dimensional analysis considerations assuming 
s 

similarity to flows over a flat plate. (For details of the resistance 
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coefficient of a flat plate see , f or example Schlichting (1968)). The 

fluid particle displacement was considered to be equivalent to the length 

of t he plate . Thus, as the resistance coefficient is a function of the 

r atio between the boundary layer thickness and the roughness size, and 

as the boundary layer thickness is a function of the length of the plate 

and the roughness size, then the resistance coefficient is a function 

of ~/D due to the similarity between the length of the plate and ~ . 
s 

However, for rough surfaces in oscillatory flows, the forces on the 

roughness par ticles include also inertia components due to the unsteadi-

ness of the flow . Hence the shear stresses include also inertia effects 

as they are defined as the forces on the particles in a unit bed area. 

Ippen and Mitchell (1957) showed that the local resistance coefficient 
D 

under solitar y waves depends on a dimensionless acceleration u~ ~~ . 

Inertia forces are usually define d as being proport i onal to the fluid 

particle acceleration , and they are canceled out when integrated over 

the wave. Hence it s eems that the mean resistance coefficient (as 

opposed to the local resistance coefficient) does not include inertia 

forces. Yet it is expected that acceleration has effects on the drag 

forces. Keulegan and Carpenter (1958), for example, showed that the drag 

coefficient of a cylinder in an oscillating fluid is different from the 

drag coefficient in a s t eady flow. 

The fluid particle acceleration is given by 

du 
-= 
dt 

~ + u au = (-C+u) au 
at ax ax 

(3 . 25) 

whe r e the transformation X=x-Ct i s employed . Substituting Eqs. (3.6), 
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coefficient of a flat plate see, for example Schlichting (1968)). The 

fluid particle displacement was considered to be equivalent to the length 

of the plate. Thus, as the resistance coefficient is a function of the 

ratio between the boundary layer thickness and the roughness size, and 

as the boundary layer thickness is a function of the length of the plate 

and the roughness size, then the resistance coefficient is a function 

of s/D due to the similarity between the length of the plate and s· s 

However, for rough surfaces in oscillatory flows, the forces on the 

roughness particles include also inertia components due to the unsteadi-

ness of the flow. Hence the shear stresses include also inertia effects 

as they are defined as the forces on the particles in a unit bed area . 

Ippen and Mitchell (1957) showed that the local 

under solitary waves depends on a dimensionless 

resistance coefficient 

Ds du 
acceleration u 2 dt . 

Inertia forces are usually defined as being proportional to the fluid 

particle acceleration, and they are canceled out when integrated over 

the wave. Hence it seems that the mean resistance coefficient (as 

opposed to the local resistance coefficient) does not include inertia 

forces. Yet it is expected that acceleration has effects on the drag 

forces. Keulegan and Carpenter (1958), for example, showed that the drag 

coefficient of a cylinder in an oscillating fluid is different from the 

drag coefficient in a steady flow. 

The fluid particle acceleration is given by 

du 
-= 
dt 

~ + u au = (-C+u) au 
at ax ax 

(3. 25) 

where the transformation X=x-Ct is employed. Substituting Eqs. (3.6), 
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(3.7), and (3.8), which describe the solitary wave, into Eq. (3.25) 

yields: 

du 
cit= 

2C2hn ~ tanh ( ~ ~) 
(h+n) 3 

(3. 26) 

and the dimensionless acceleration becomes 

D 
s du 

u2 dt = 

.f3H (·ffi x) 2Dsh~4h tanh ~4hh 
n(h+n) 

(3 .27) 

The values of the dimensionless acceleration as given by Eq. (3.27) vary 

from zero under the crest, to infinity as x tends to infinity. In order 

to describe the inertia effects on the mean resistance coefficient it is 

necessary to estimate a characteristic dimensionless acceleration for 

the wave. Such a parameter may be chosen in the form 

(
D ) s du 
u2 dt h c ar 

D 
s (du) 

u2 dt max 
max 

(3. 28) 

in which ( :~ :~)char denotes a characteristic dimensionless accelera-

tion, u and (ddu) are the maximum velocity and maximum accelera-
max t max 

tion (respectively) of a fluid particle. As the forces on a roughness 

particle consist of drag, inertia, and lift components (see Section 

3.23, Eqs. (3.46) and (3.47), the dimensionless acceleration given by 

Eq. (3 .28) represents the ratio of maximum inertia force to the maximum 

drag under the wave, assuming that the drag and inertia coefficients are 

constant along the wave . The dimensionless acceleration given by Eq. (3.28) 
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is therefore assumed to describe the inertia effects on the resistance co-

efficient. Note that a characteristic dimensionless acceleration may also be 

defined in the following way. A characteristic time scale, T , for the c 

solitary wave is defined by considering the solitary wave as given in 

Eq. (3.6), and rewriting it in the form, 

n f) (3.29) 
c 

in which L is a characteristic length scale of the wave. From Eq. 
c 

(3.6) it follows that 

T 
c 

h 

c _f3H 
~4h 

(3. 30) 

A characteristic fluid particle velocity, u , is described as the 
c 

displacement of a fluid particle divided by the time scale of this dis-

placement, i.e. , 

u r.J 

c 
_L 
T 

c 

and a characteristic fluid particle acceleration, 

(3 . 31) 

( d
dut ) is given by 

c 

(3. 32) 

It follows from Eqs. (3.31) and (3.32), that a characteristic 

dimensionless acceleration is given by 

D 
s 
I; 

(3. 33) 
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A correlation between the experimentally measured resistance coefficient 

and the characteristic dimensionless acceleration is presented in Section 

5 . 2, and the significance of Eq. (3.33) is discussed in that section. 

The values of the characteristic dimensionless acceleration which 

describe the ratio of maximum inertia force to maximum drag exerted on 

the roughness particle are largely dependent on the theory by which 

they are estimated. The ratio of inertia to drag forces as predicted by 

Boussinesq's (1872) theory (see Section 5.3.2, Figs. 5 .2l and 5 .22). 

Hence, the interpretation of the inertia effects consists of uncertain-

ties due to possible errors in estimating the actual dimensionless 

acceleration. In order to obtain a functional relationship which is 

independent of such uncertainties, it is necessary to obtain a 

correlation between the resistance coefficient and wave parameters 

which can be measured or evaluated accurately. From dimensional analysis 

it may be shown that if the density and the viscosity of the 

fluid are given, then the resistance coefficient is uniquely defined by 

the water depth, h, the wave height, H, and the roughness size, D • 
s 

Hence, if it is assumed that the resistance coefficient is independent 

of the Reynolds number (assuming, for example, that the flow is rough-

turbulent), then the resistance coefficient, Cf , may be defined by 
b 

- - (~- !!_\ 
cfb - f h , h) • (3. 34) 

Note that Eq . (3.34) may be deduced from the assumption that the 

resistance coefficient is a function of ~ /D and the dimensionless s 
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acceleration, as both parameters are functions of H/h and D /h. An 
D s 

empirical relationship between Cfb' : , and~ is presented in Section 5 .2 . 

When considering the forces exerted on bed particles under waves, 

the shear stresses are defined as the horizontal forces acting on the 

individual particles per unit projected area of the bed . However, as 

noted earlier in this section, these forces consist of inertia forces 

(due to the unsteadiness of the flow), in addition to the drag forces 

which account for the energy dissipation. The inertia forces, which are 

usually assumed to be proportional to the fluid particle acceleration , are 

non-dissipat i ve, and they cancel out when integrated over the wave, hence, 

they cannot be estimated from considerations of energy dissipation . 

Furthermore, the forces acting on bed particles include also lift 

components which act in a direction perpendicular to the bed plane, 

and they are not included in the shear forces. The lift forces are 

usually either neglected or assumed to be proportional to the drag forces, 

when considered in sedimentation problems in streams and channel (e .g., 

see Vanoni (1975), p. 92). 

It is concluded that the mean resistance coefficient as obtained 

from measurements of wave attenuation is inadequate as far as the 

estimation of the actual forces on bed particles is concerned. It can 

only be used as a qualitative measure for the magnitude of these forces 

when inertia and lift effects are either negligible or assumed to be 

proportional to drag effects. For cases where inertia and lift forces 

cannot be neglected and are not proportional to the drag, the forces 
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acting on the bed particles have to be determined from a different 

approach. A simple model of the forces acting on a bed particle pro-

truding into the flow from the bed surf ace is described by considering 

the forces acting on a single sphere resting on a bed of similar spheres. 

Such a model is presented in Section 3.2.3. 

3.2.1.1 Correction for Wall Effects 

As the mean resistance coefficient is evaluated 

from measurements of wave attenuation in the laboratory, and since 

experiments are performed in channels of finite width, it is necessary 

to correct the values of Cf as obtained from Eq. (3.19) for wall effects. 
b 

Assuming that the total energy dissipation can be described as a linear 

combination of dissipations due to wall and bottom shear stresses, a 

corrected form of Eq. (3 . 16) is given by: 

dE 
dt 

00 

-Bf TbudX 
-oo 

X=-t<o y=h+n(X) 

- 2 f dX f Twudy 
X=-00 y=O 

(3. 35) 

where T denotes the wall shear stress and y is a coordinate along the 
w 

wetted perimeter of the cross-sectional area of the channel. The bottom 

resistance coefficient then has the form 

[ 
. fH7h] X-=-t<o y=h+n (X) 

- g3/2h5/2 ~. B.(1+.!:!)_l__fo l+ll+Hlh d(H/h) __ 2_ f dX f T ud 
/3/5 h h 10 1_ -~ d(x/h) Bpw w y 

= "~ X'"'- 00 y=O 

(3.36) 



37 

where the second term ln the numerator on the right-hand side of Eq. 

(3 . 36) represents the wall correction for the bottom resistance co-

efficient in a channel of finite width . Theoretical evaluation of this 

term is presented in the following section for the case of lamina r flow. 

3 . 2 . 2 Shear Stresses in the Laminar Boundary Layer 

The present analysis is based on ideas that were developed 

by Keulegan (1948) from the linearized boundary layer equations whi ch 

were presented by Boussinesq (1878). Keulegan's theory was developed 

assuming solitary waves of small heights. His development is extended 

here for flows i nduced by lar ge amplitude solitary waves. The difference 

between the present definition of small and large amplitude solitary waves 

lies in the expression of the f luid particle velocity (see Table 3 . 1, 

Boussinesq's presentation) , u = Cn/(h+n). For small amplitude waves 

n << h and u """ Cn/h, but fo r large waves n cannot be neglected compared 

to h. 

The loss of energy of laminar flow of a homogeneous fluid is due to 

viscous shear stresses in the boundary layer. For thin boundary layers , 

the rates of change of quantities along the layers are much smaller than 

. a a a2 a2 
across them , 1 . e . , -;;---<<-;;---and ~-2 << ~-2 where x is a coordinate along 

ox oz ax ()z 

the layer, and z is a coordinate perpendicular to it . Also, the ver t ical 

velocity component (in the z direction) is small compared to the hori-

zontal velocity. Neglec t ing quadr atic terms with no body forces in the 

x direction , the equations of motion become : 

(3 . 37a) 



and 

0=-l._~-g 
P az w 
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(3.37b) 

where ut is the horizontal velocity component in the boundary layer, 

pw is the density of the fluid, p is the pressure, v is the kinematic 

viscosity of the fluid, and g is the acceleration due to gravity. Eq. 

(3.37b) implies that the pressure across the boundary layer is hydro~ 

static, hence variations of the pressure in the x direction are the 

same as those outside the layer and next to it. The linearized equations 

of motion in the x direction outside the boundary layer have the form: 

au l._ ~ 
at= - p ax 

w 
(3.38) 

The free stream velocity, u(x,z,t), is approximately equal to the 

velocity at the bed evaluated from potential flow theory, u(x,O,t), 

since the boundary layer is assumed to be very thin. Subtracting Eq . 

(3.38) from Eq. (3.37a) yields, since u is independent of z: 

= v 

with the boundary conditions 

-u (at z O) 

and 

u -u = 0 
£ 

(at z -+ co ) 

(3 . 39) 

(3 . 40a) 

(3 . 40b) 

Introducing the coordinate system X = x-Ct which is stationar y wi th 

respect to the wave, Eq. (3.39) becomes: 



a 
ax (u.Q,-u) = 

\) 

c 

39 

a2 (u -u) 
R, 

(3.41) 

subject to the boundary conditions (3.40), it should be noted that 

u(x,O,t) transforms to u(X,O) and is denoted by u(X). 

The solution of Eq. (3.41) with the boundary conditions (3.40) is 

obtained using a Fourier integral. Following Keulegan (1948) it has 

the form: 
00 

u u - 2... Ju (x+ Cz
2

) e -
82 

d8 • 
R,- - - vfT 4\!8 2 

0 

(3.42) 

The boundary shear stress is defined as 

(aui) 
T = JJ --

(lz z=o (3. 43) 

where µ is the dynamic viscosity of the fluid . Differentiating E q. 

(3.42) with respect to z and substituting it in Eq. (3.43) will pro-

vide an expression for the boundary shear stress. The procedure is 

performed for the solitary wave as follows. 

Consider a solitary wave as pr esented by Boussinesq (1872) (see 

Table 3.1; also see Eqs. (3 . 6), (3 . 7), and (3 . 8)). Introducing Eq . 

(3.8) into Eq . (3.42) gives: 

u, - u = - 7:,f f,~ [ 1+\j- cosh (ax + :~~~) J-l .-B
2 
dB. (3.44) 

Differentiating Eq . (3.49) with respect to z: 

00 

~ sinh2 ( aX + ~) 

[ h ( acz2 )]
2 

l +H" cash aX + 
4

\!
82 

(3.45) ~1 
0 
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Let ~ i = K, hence dK = -~ ; 2 df3 

(3.45) and letting z=O yields: 

( 
CluQ,) 
Clz z=o 

Introducing this into Eq. 

(3 .46) 

Eq. (3 . 46), when multiplied by the dynamic viscosityµ, represents the 

distribution of the smooth bottom shear stresses under a solitary wave 

for a laminar boundary layer. At the rear of the wave the direction of 

the flow is against an adverse pressure gradient. Separation of the 

boundary layer is therefore expected to occur, and laminar boundary 

layer considerations do not hold behind this point. In fact, it can 

be seen that the integral on the right-hand side of Eq. (3.46) may 

have negative values at negative values of X, since the integrand is 

an odd function of aX+K 2 . Separation is expected to take place at the 

coordinate X where the integral in Eq. (3.46) equals zero, as this is 

the point where the velocity profile in the boundary layer reaches a 

point of inflection. Behind this point Eq. (3.46) is invalid for the 

estimation of the bottom shear stresses. 

The local friction coefficient , Cf(X), which is related to the 

shear stress by 

(3.47) 

can be evaluated by substitution of Eq. (3.46) into Eq. (3.43) and 

equating it to Eq. (3 . 47). The values of the friction coefficient 

obtained in this way vary along the wave. A mean resistance coefficient 
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may be obtained from energy dissipation considerations as described in 

Section 3.2.1 (Eqs. (3.16) through (3.19)), i.e., 

ro 

f -rudX 
-oo c = ------

f ro 

l p J u 3dx 2 w 
-00 

Substitution of Eq. (3.43) into Eq. (3.38) yields: 

"" (au ) J µu Clz £ z=o dX 
-oo 

(3. 48) 

(3 .49) 

and with the aid of Eq. (3.43) the mean resistance coefficient for a 

smooth bottom in a laminar flow can be evaluated theoretically. 

As described in Section 3.2.1, experimental values of the mean 

resistance coefficient can be obtained from measurements of wave 

attenuation along a channel. However, a discrepancy between the 

theoretical and experimental results should be expected due to the 

separation of boundary layer at the rear of the wave. Experimental 

values of the resistance coefficient should be somewhat larger than the 

theoretical ones since the separation is usually accompanied by genera-

tion of turbulence and larger shear stresses. However, if the point 

of separation occurs at the rear of the wave far from the crest, the 
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contribution of the stresses behind this point to the energy dissipation 

is small, since the fluid particle velocity away from the crest is 

small. In this case the differences between the theoretical and ex-

perimental values of Cf should be small . 

A discrepancy between the theoretical and measured values of the 

resistance coefficient may also be expected due to the approximations 

assumed in the theoretical solution of the boundary layer equations, 

where the linearized form of the equations was considered. This was 

done in order to make it possible to solve these equations analytically . 

However, the convective (nonlinear) terms in the equations of motion 

under solitary waves of large amplitudes may not be small enough to be 

neglected. Considering the transformation of coordinates, X=x-Ct, the 

linear and convective terms of the acceleration become 

au + au 
at u ax (-C+u) ~ ax (3. 50) 

Consider, for example, a solitary wave with a height-to-depth ratio 

H/h = 0 . 5 . For this wave the fluid particle velocity (calculated 

from Eq. (3 . 8)) has the values u ~ C/ 3. Thus the value of u on the 

right hand side of Eq . (3.50) may not be negligible compared to C, and 

1 . h d . au . h . f . . d neg ecting t e qua ratic term uax in t e equations o motion intro uces 

an error to the solution. 

A comparison between the theoretical and experimental values of 

the mean resistance coefficient of a smooth bottom is presented in 

Section 5 .2. 
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Corrections for wall effects of the coefficient Cf , obtained 
b 

experimentally in a channel of finite width with smooth walls, can now 

be estimated for the case of laminar flow. This is done by substitution 

of the value of T from Eq. (3.43) into T in Eq. (3 . 36). As noted 
w 

earlier, this correction may not be valid, since laminar boundary layer 

considerations do not hold behind the point of separation, and due to 

the error which may result from the approximation to the solution. 

However, if agreement is found between theoretical and measured values 

of the resistance coefficient of a smooth bottom, this will justify the 

correction for wall effects, and the error will be considered negligible. 

3.2.3 The Forces Exerted on a Single Sphere Resting on a Bed of 

Spheres 

As noted earlier, the mean bottom resistance coefficient 

under solitary waves, evaluated from considerations of energy dissipa-

tion, is inadequate when it is needed to estimate the instantaneous 

forces exerted on bottom material. When the bed is formed of a rough 

surface with the roughness particles protruding into the flow, the 

forces on the particles consist of drag and inertia force components in 

a direction parallel to the bed (considered here as being horizontal), 

and a lift force perpendicular to it. The bottom shear stress is defined 

as the sum of the horizontal forces in a unit projected area of the bed, 

and the rate of energy dissipation is obtained by integrating the 

product of the bottom shear stress and the fluid particle velocity over 

the wave. Lift forces do not contribute to the shear stress, and the 
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(non-dissipative) inertia forces cancel out as the shear stresses are 

integrated over the wave. Hence the mean resistance coefficient, as 

estimated from measurements of wave attenuation (i.e., from measurements 

of energy dissipation rate), cannot be used to estimate the forces 

exerted on the bed since it does not include the inertia and lift forces . 

As noted in Section 3.2.1, the fact that inertia forces cancel out when 

the shear stresses are integrated over the wave does not mean that there 

are no inertia effects on the mean resistance coefficient, since the 

drag force in an unsteady flow is not necessarily the same as that in a 

steady flow, even if the instantaneous Reynolds numbers in both flows 

are the same. A discussion of possible inertia effects on the mean 

resistance coefficient is presented in Section 5.2. 

An approach incorporating considerations of both drag, inertia, 

and lift effects is described by the following model, shown in Fig. 3.2, 

in which the forces exerted on a single isolated sphere with diameter 

D and density p , resting on a bed of tightly packed spheres with 
s s 

diameters DB, are considered. Consideration of a sphere resting on top 

of the bed rather than a sphere embedded in the surf ace seems to repre-

sent the problem of interest since it models those particles in the bed 

which protrude into the flow higher above their neighbors. The forces 

exerted on these particle are larger than those exerted on their 

neighbors, and as far as incipient motion is concerned, it is expected 

that they will be the first particles to move. 

A wave of height H travels with a speed C over the surface of 
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water of constant depth hand induces a flow field u(x,z,t), in which 

u is the horizontal velocity component, x is a horizontal coordinate 

located at the bottom, z is a vertical coordinate directed upward, and 

t is the time. The wave also induces a vertical velocity component, 

v(x,z,t). However, the vertical velocity is small compared to the 

horizontal component, particularly near the bottom (see the expressions 

for the velocity due to McGowan (1891) and Laitone (1963), Table 3.1). 

As shown in Table 3 . 1, the vertical distribution of the free stream 

velocity (the horizontal component) in the vicinity of the bottom is 

uniform. The non-uniform velocity distribution which is shown schemati-

cally in Fig. 3.2 is that which exists in the boundary layer near the 

bottom. The flow which is induced by the wave causes hydrodynamic 

forces and moments which tend to remove the sphere from its place. 

O'Brien and Morison (1952) investigated the forces acting on a 

sphere located at the bottom under oscillatory waves. They proposed 

that the hydrodynamic forces exerted on the sphere can be described as 

a linear combination of drag (FD) and inertia forces (F
1
), i.e., 

in which FH is the hydrodynamic force, considered 
TTD 2 

pw is the density of the fluid, A= 
4

s and V = 

(3 . 51) 

as being horizontal, 
TTD 3 

s 
6 are the 

projected area and the volume of the sphere respectively, CD is the 

drag coefficient, and ~ is the inertia coefficient . The first term 

on the right hand side of Eq . (3 . 51) represents the drag force, FD' and 
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the second term represents the inertia force, F
1

. The fluid particle 

velocity and acceleration are given from the wave theory, and they are 

evaluated near the bottom in the absence of the sphere. O'Brien and 

Morison neglected the effect of the boundary layer on the magnitude of 

the velocity at the level of the sphere, and they did not consider lift 

forces, in a direction perpendicular to the bottom. However, it can be 

shown that in a proximity to the bottom there exists a lift force, F
1

, 

which may be expressed as 

(3.52) 

where c1 is the lift coefficient. Eagleson et al. (1958) noted that due 

to the velocity distribution in the boundary layer, the velocity at the 

top of the sphere is larger than the velocity at the bottom, hence a 

circulation is introduced around the sphere , which results in a force 

perpendicular to the direction of the flow . Furthermore, even if the 

boundary layer thickness is small compared to the diameter of the sphere, 

such that the velocity distribution at the level of the sphere is prac-

tically uniform, or when assuming that the fluid is ideal, such that 

there is no boundary layer at all , there still exists a lift force 

which is described by Eq. (3 . 52). The calculation of the lift 

coefficient for such a (potential) flow is given in Appendix I. 

The hydrodynamic forces exerted on the spher e can readily be 

estimated from Eqs. (3 . 51) and (3.52) provided the coefficients CD' CM' 

and c1 are known. Assuming that the drag coefficient is independent of 

the unsteadiness of the flow, it can be estimated from charts as a 
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function of Reynolds number (e.g., see Rouse (1950), p. 122). Also, if 

it is assumed that the lift coefficient is independent of the viscosity 

of the fluid and that the boundary layer thickness is small compared to 

the diameter of the sphere such that the lift coefficient is independent 

of the velocity profile, and, furthermore, if it is assumed that the 

inertia coefficient is independent of the Reynolds number, then c
1 

and 

CM can be evaluated from potential flow theory (as shown in Appendix I). 

The above assumptions are considered only as an approximation to the 

problem, since the flow field (and hence the inertia and lift forces) 

of a viscous fluid is different from that of an ideal fluid. Further­

more, the development of a boundary layer and wakes around the sphere 

(and hence the drag force) in an unsteady flow is different from that 

in a steady flow. It seems that the instantaneous drag, inertia, and 

lift coefficients under the wave depend on both the Reynolds number and 

some dimensionless form of the acceleration. However, the above 

approximations are employed due to the lack of knowledge of such a 

dependence. Iversen and Balent (1951) and also Bugliarello (1956) 

proposed to present the force in a form of a drag force and to include 

inertia and viscous effects in the drag coefficient. However, their 

experiments were conducted in an essentially unbounded fluid and their 

results did not include lift effects. The idea of combining drag, 

inertia, and lift effects into one coefficient will be discussed later 

in this section. 

The hydrodynamic forces cause a moment which tends to roll the 
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sphere around an axis passing through the point of contact, P (see Fig. 
c 

3.2), between the isolated sphere and the bed spheres. In order to 

evaluate the hydrodynamic moment exerted on the sphere it is necessary 

to determine the poin t s at which the forces act with respect to the 

point of contact P • The lift and the inertia forces are assumed to act 
c 

at the center of the sphere. However, since the bottom of the sphere is 

partially blocked from the flow by the supporting bed spheres, and due 

to the velocity distribution in the boundary layer where the top of the 

sphere is exposed to larger velocities than the bottom, the forces at 

the top of the sphere are expected to be larger than the forces at the 

bottom. In this case the resultant hydrodynamic force acts above the 

center of the sphere. Yet, the exact point of force action is not 

known. When the thickness of the boundary layer is small compared to 

the diameter of the sphere and when the portion of the sphere sheltered 

from the flow is small, the forces may be assumed to act at the center 

of the sphere. The following analysis is based on the assumption that 

all the forces act at the center of the sphere . Experimental investi-

gation (to be presented in Chapter 5) should indicate how good the 

assumptions considered in this analysis are . 

With the above considerations, and with the aid of Eqs. (3.51) and 

(3 . 52), the hydrodynamic moment,~· that would cause motion of the 

sphere is given by 

(
1 d a D 1 a D 

2 u) m s 2 m s i ~ (3 53) ~ = z pwCDAu +pwCMV d t -2- cos¢ + 2 pwCLAu -2- s n't' , • 
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in which 
CL D 

m s 
2 

is the distance between the axis of motion, P , and the 
c 

center of the sphere, and ¢ is the angle between the moment arm and a 

normal to the bed (see Fig. 3.2). The angle¢ and the proportionality 

coefficient CL depend on the ratio of the isolated sphere diameter to 
m 

the bed sphere diameter Ds/DB , and on the direction of hydrodynamic 

force with respect to the placement of the isolated sphere on top of the 

bed. The two extreme values of ¢ (minimum and maximum) for a given value 

of Ds/DB are described in Sections 4.4.2 and 5.3.2. Denoting the minimum 

value of ¢ for a given D /DB as ¢ , and the maximum value as ¢ (see 
s 1 2 

Fig. 5.19), it can be shown that 

1 ~ CL ~ m 
(3. 54) 

Eq. (3.53) can be used to determine the hydrodynamic moment exerted on 

the sphere assuming that the drag, inertia, and lift coeffients are 

known, and that the forces act at the center of the sphere. However, as 

noted before, it seems reasonable to believe that these assumptions are 

inaccurate. Hence, the problem is considered here in a similar way to 

that proposed by Iversen and Balent (1951) and Bugliarello (1956) who 

combined inertia and viscous effects into one coefficient. In the 

following analysis lift effects are also considered in this coefficient, 

in addition to inertia and viscous effects. 

Consider the hydrodynamic moment given by Eq. (3.53) and rewrite it 

as 



where 
TID2 

s 
4 and 

TID 3 
s 

are substituted for A and V respectively. 
6 

(3 .55) 

The 

bracketed term on the right hand side of Eq. (3.55) may be considered 

* as a moment-resistance coefficient, CD, such that 

* 4 Ds du 
CD= CD+ CL tan~+ 3 CM u2 dt (3. 56) 

and the combined hydrodynamic forces exerted on the sphere are expressed 

in a form of a drag force, i.e., 

1 * F = z p w CD Au 2 • (3.57) 

Note that the force given by Eq. (3.57) is not an actual force 

exerted on the sphere. It is an equivalent horizontal force which, when 

applied to the sphere, introduces the same moment as that introduced by 

* the actual (horizontal and lift) forces. The introduction of CD into 

Eq . (3 . 57) will not give the true force exerted on the sphere unless 

* CD is decomposed into its original components which describe the hor i -

zontal and lift forces separately. It seems that the use of a single 

* coefficient, CD, is disadvantageous as compared to the use of drag , 

inertia, and lift coefficients, since it results in a loss of information 

about the actual forces exerted on the sphere. However, with the lack 

of knowledge of the values of these coefficients it has the advantage 

that it requires one to estimate only one coefficient rather than three . 

As far a s incipient motion is concerned, this coefficient adequately 

describes the hydrodynamic moments exerted on the sphere , and the 

manner in which the hydrodynamic force is divided i nto horizontal and 
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lift components is unimportant. Empirical values of the resistance co­

* efficient CD, as obtained from measurements of incipient motion, will be 

presented in Section 5.3. 

In addition to the hydrodynamic forces exerted by the flow, the 

sphere is also subjected to a gravitational force given by its submerged 

weight . This force is expressed as 

Wsub = (ps-pw)gV ' (3 .58) 

in which W b is the submerged weight and g is the acceleration due to 
SU 

gravity. While the hydrodynamic forces cause a moment which tends to 

remove the sphere, the submerged weight causes a restoring moment, MR, 

expressed as a D 
m s M - W 
2 

sin¢ , 
-~ sub (3. 59) 

which tends to keep it in its place. Incipient motion occurs when the 

hydrodynamic moment is equal to the restoring moment, i.e., 

1 . (3. 60) 

A discussion of the relationships which define the incipient motion of 

bed material under solitary waves, and which is based on the relation-

ship described by Eq. (3.55) is presented in the following section. 

3.3 THE INCIPIENT MOTION OF BED MATERIAL UNDER SOLITARY WAVES 

The incipient motion of a particle is described as the event in 

which the particle begins to move. Mathematically , it is defined by 

Eq. (3.60) which states that at incipient motion the hydrodynamic 

moment which tends to remove the particle is equal to the restoring 

moment which tends to keep it in its at-rest position. The use of Eq . 
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(3.60) to determine the state of the particle with respect to incipient 

motion is feasible provided the hydrodynamic and the restoring moments are 

accurately estimated. However, the evaluation of these moments as pre-

sented in the preceding sections is probably inaccurate, since it is based 

on some assumptions whose validity is questionable. Hence, in the 

following analysis, the problem is approached by combining the considera-

tions that resulted in Eq. (3.60) with dimensional analysis in order to 

determine the relationships which define the incipient motion of bottom 

material under solitary waves. 

3.3.1 The Incipient Motion of Particles of Arbitrary Shape 

The parameter which is most often used in problems of 

initiation of motion of bottom material in streams and channels is the 

Shields parameter T *' expressed as 

(3.61) 

where Tb is the bottom shear stress, p and D are the density and the s s 

mean diameter of the bed particles respectively, p is the density of the 
w 

fluid, and g is the acceleration due to gravity. The dimensionless shear 

stress given by Eq. (3.61) represents the ratio between the hydrodynamic 

and the gravitational forces exerted on the particles, assuming that the 

hydrodynamic forces are proportional to the shear stress. As noted in 

Section 3.2.3, incipient motion is defined by the ratio between 

hydrodynamic and restoring moments rather than by ratio between forces. 

However, if the ratio between the moment arms of the hydrodynamic and 
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gravitational moments is assumed to be constant for a material of 

specified angularity and shape, then the ratio between the moments is 

reduced to the ratio between the forces (i.e., Eq. (3.61)) multiplied 

by a constant. Shields (1936) noted that the right-hand side of Eq. 

(3 . 61) should be divided by a parameter describing the friction co­

efficient between the uppermost particles in the bed and the particles 

supporting them. This parameter is similar to the term tan¢ appearing 

in Eq . (3.64) which describes the ratio of the hydrodynamic moment to 

the restoring moment acting on a sphere at incipient motion (see the 

following section). Shields assumed that this parameter is a function 

of the shape of the particles, and for beds consisting of particles 

of practically similar shapes this parameter is constant. Hence he 

assumed that the dimensionless shear stress as described by Eq, (3.61) 

can be applied to problems of incipient motion. Although the Shields pa­

rameter is mostly applied in sedimentation problems in steady flows, its 

application in problems under waves are rather limited . Only recently, 

Madsen and Grant (1975), and Komar and Miller (1975) have shown that it 

may also be applied to oscillatory flows. 

As the bed is composed of particles of arbitrary shape which are 

scattered and packed randomly on the bottom surface, it is conceivable 

that not all the particles require the same hydrodynamic forces to be 

removed . Thus it is expected to observe some motion in the bed i f a 

wave exer t s a large enough shear stress . As a larger wave passes, it 

exerts l arger shear stresses , and a larger amount of motion is expected 
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to be observed . Defining the amount of motion as the ratio between the 

number of moving particles in a given bed area, N , and the total number p 

of particles on the bed surface in the same area, Np , it appears that 
T 

N /Np is an increasing function of T*• Hence, if a relationship is 
p T 

found between N /Np and T*' the extrapolation of this relationship to 
p T 

the point where N /Np 
p T 

0 will yield the value of the dimensionless shear 

stress which defines the incipient motion of particles of arbitrary shape. 

So far as the shear stresses are concerned, it was shown in Section 

3 . 2.1 that they can be obtained indirectly from measurements of 

attenuation of waves along the channel. As noted in that section, the 

shear stresses obtained in this way are inaccurate as they employ a 

mean resistance coefficient rather than a local friction coefficient 

and they exclude inertia and lift forces. Considerations of the in-

cipient motion based on parameters which can be measured directly are 

presented in the following section . 

3.3.2 The Incipient Motion of a Single Sphere 

Consider the model of a single sphere resting on top of a 

bed of well packed spheres (see Section 3.2.1, Fig. 3.2). The 

important parameters which define the incipient motion are the diameter, 

D , and the density, p , of the isolated sphere; the diameter of the bed 
s s 

spheres, DB; the moment angle, ¢; the water depth, h; the wave height, 

H; the gravitational acceleration, g; and the density, p , and the 
w 

dynamic viscosity,µ (or the kinematic viscosity, v = µ/p ), of the 
w 

fluid. The above considerations mean , for example, that if the fluid 
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properties (i.e., p andµ) and the gravitational field (g) are given, 
w 

then the water depth , the density, and the geometry of the sphere at the 

bottom define a unique value of the wave height that would cause the 

sphere to be in a state of incipient motion. The relationship for in-

cipient motion is expressed in dimensionless form as 

(3.62) 

The applicability of Eq. (3.62) for predicting incipient motion of 

a sphere is rather limited, unless a relationship between the parameters 

appearing in this equation is given explicitly. Development of such a 

relationship based on the considerations expressed by Eq. (3 . 60) which 

states that at incipient motion the hydrodynamic moment exerted on the 

sphere is equal to the restoring moment due to gravity are presented as 

follows. 

Consider the definition of the incipient motion as expressed by 

Eq. (3.60). Substitution of Eqs. (3.55) through (3.59) into Eq. (3.60) 

yields, at incipient motion, 

(3. 63) 

* where CD is called the moment-resistance coefficient, A and V are the 

projected area and the volume of the sphere respectively, u is the fl uid 
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particle velocity, estimated at the level of the sphere in its absence, 
a D 

and ~ is the distance between the point of force action and the 
2 

axis over which the hydrodynamic forces tend to roll the sphere. The 

numerator of Eq. (3.63) is the hydrodynamic moment, MH' which tends to 

remove the sphere, and the denominator is the restoring moment, MR due 

to gravity, which tends to keep it in its place. Note that the assump-

tion considered in Section 3.2.3 that the hydrodynamic forces act at 

the center of the sphere is retained in Eq. (3.63). An additional 

assumption is made that the velocity u in Eq. (3.63) is given by the 

free stream velocity, evaluated from the wave theory near the bottom 

(i.e ., neglecting boundary layer effects on the actual velocity 

distribution at the level of the sphere) . The discrepancies which 

result from the above assumptions can be accommodated by the definition 

* of the resistance coefficient CD • As expressed in Eqs. (3.56) and 

* (3.47), CD is defined such that when it is substituted in Eq. (3.55), 

it yields the actual hydrodynamic moment exerted on the sphere. This 

* definition may be carried further by saying that CD is a coefficient 

that, when combined with the free stream velocity, and when assuming 

that the forces act at the center of the sphere, it yields the actual 

hydrodynamic moment exerted on the sphere. 

Considering Boussinesq's (1872) presentation of the solitary wave 

(see Table 3.1, and also Eqs . (3.6), (3 . 7), and (3.8)) , Eq . (3 .63) 

becomes 

= 1 , (3.64) 
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in which n is the elevation of the water surface above still water level, 

and where ITD 2 /4 and ITD 3/6 were substituted for A and V respectively. A 
s s 

characteristic value of the surface elevation is given by its maximum, 

i.e., by the wave height. Substitution of H for n in Eq. (3.64) will 

result in an error, since due to inertia effects the incipient motion is 

expected to occur under the wave front near the crest, where n is 

smaller than H (see Section 5.3.2, Figs. 5.21 and 5.22). However, as 

* the resistance coefficient, CD' is unknown beforehand, the discrepancy 

* may be absorbed in CD . Substituting H for n in Eq . (3.64) yields 

(H/h) 2 

(l+H/h) 
4 

(p -p )D tan<j> 
s w s 

or, separating unknown parameters from measurable quantities : 

(3. 65) 

(3. 66) 

in which f[ ] denotes a function of the terms enclosed in the brackets . 

By applying the physical consideration, that at incipient motion the 

hydrodynamic moment exerted on the sphere is equal to the restoring 

moment due to gravity, the relationship for incipient motion, as derived 

from dimensional analysis in Eq. (3.62), was transformed to the relation-

ship given by Eq. (3 . 65). The advantage of Eq. (3.65) is that it pro-

vides an explicit relationship for incipient motion. However, since it 

* includes an unknown parameter, CD, it will have to be obtained experi-

mentally, as shown in Section 5.3.2. 
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CHAPTER 4 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

4 . 1 THE WAVE TANK 

A recirculating tilting flume measuring 130 ft (40 m) long, 43 in. 

(110 cm) wide and 2 ft (61 cm) deep was modified for the purpose of 

water- wave experiments. Complete details of this flume are given by 

Vanoni, Brooks and Raichlen (1967). Its important features are briefly 

stated here and shown in Fig . 4.1. The bottom of the flume and short 

sections of the wall at the ends are made of stainless steel plate; the 

remaining portion , 110 ft (33.53 m) long, has glass sides 1/2 in. 

(12 . 7 nun) thick in panels 5 ft (152.4 cm) long . Two stainless steel 

ra i ls, 1.5 in. (38.1 mm) in diameter, are mounted along the flume on 

top of its frame by studs spaced at about 2 ft (.-, 60 cm). The rails 

support an instrument carriage that can be driven to any location along 

the flume. The wave generator is a piston type mounted on the tank at 

one of the ends and is described in Sec t ion 4 . 2. A wave dissipator 

consisting of two 2 in . (5 cm) thick layers of rubberized hair (commonly 

used in the manufacture of fur niture) was tied to a 23% slope and 

installed at the other end of the tank. Reflection coefficients for this 

system were not tested since its only purpose was to minimize waiting 

time between experiments . 

The flume is supported by eight power-driven screw-jacks and can be 

tilted to a maximum slope of 2% . When t he waves travel up the slope 

they increase in ampl itude and get to extreme heights (up to breaking). 

The recirculating pipes under the flume (shown in Fig. 4 . 1) were 
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blocked to prevent oscillations in the flume due to transient currents 

in addition to the waves. 

4.2 THE WAVE GENERATOR 

A piston type wave generator was installed at the upstream end of 

the wave tank. The generator, shown in Fig. 4.2, consisting of an 

aluminum plate 1/4 in. (6.35 mm) thick, 27.2 in. (69 cm) high was 

slightly narrower than the wave tank so that it .could move freely 

between the walls. The plate was mounted on an aluminum frame with 

linear ball bushings that traveled on two steel rails 1.5 in. (38.1 mm) 

in diameter. The frame was connected by a 1.5 in. (38.1 mm) steel pipe 

6 ft (1.83 m) long to an adjustable eccentric arm which was mounted on 

a rotating shaft driven by an electric motor such that the maximum stroke 

was about 1 ft (30 cm). The stroke was adjusted with a screw and was 

calibrated by a counter. 

The motor driving the wave generator had a variable speed gear with 

an RPM indicator. However, for precision adjustment of the motor speed, 

a measuring device was installed on the shaft. A circular aluminum plate 

with 200 holes equally spaced near its perimeter was mounted on the 

shaft. A source emitted a light beam through the holes into a photo-

cell that generated electric pulses. A Beckman counter (Model 7351) 

counted the number of pulses during 10 seconds . If the number of pulses 

in a counting time T is N and the number co co 

then the period T of one revolution is T = 

of holes 
NhT co 

N co 

in the plate is Nh, 

In order to generate solitary waves it was necessary to drive the 

wave generator in such a way that it would follow the motion of the 
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Fig. 4.2 Overall view of the wave generator. 

Fig. 4.3 View of the system controlling the motion of the 
wave generator. 
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fluid particles under solitary waves. The motion of the wave generator 

was controlled by a pneumatic clutch and brake system (Horton "Air 

Champ" models with air pressure controlled by Norgren valves). The 

system is shown in Fig. 4.3. To generate a wave, the plate of the wave 

generator was placed at its maximum negative position and the stroke set. 

The brake was then engaged to hold the generator in place. The clutch 

was engaged and the brake disengaged simultaneously, enabling the shaft 

to turn half a revolution, driving the generator plate to its most 

forward position. At this point a microswitch was automatically activated 

to stop the motion. The system was also capable of generating oscilla­

tory waves by driving the plate continuously. The calculated displacement 

of the wave generator (shown in Fig. 4.4) followed approximately a sinusoidal 

motion of half a cycle when generating solitary waves. As can be seen in 

Fig. 4.4 the calculated motion of the wave generator does not follow exactly 

the fluid particle displacement under the solitary wave. The importance of 

this is discussed in Section 5.1. Note that the actual motion of the wave 

generator was not measured. 

4.3 THE MEASUREMENT OF WAVE AMPLITUDE 

Resistance type wave gages were used in conjunction with a Sanborn 

(150 Series) recorder in order to measure wave profiles as a function of 

time at a specific location in the wave tank. The wave gage (shown in 

Fig. 4.5) consisted of two stainless steel wires 0.01 in. (0.254 mm) in 

diameter, 13 in. (33 cm) long and spaced at 1/8 in. (3.18 mm) apart. 

The wires were stretched taut and parallel in a frame constructed of 

3/16 in. (4.76 mm) stainless steel rod. The wires are electrically 

insulated from the frame and from each other. When the gage is immersed 
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in a conducting fluid a current which varies with the depth of immersion 

passes between the wires. The wave gage was mounted on a point gage 

supported by the instrument carriage on top of the tank. A Sanborn 

carrier preamplifier was used to supply 4.5 volts at 2400 cps excitation 

to the wave gage as indicated by the circuit diagram in Fig. 4.6. The 

output signal from the wave gage was also received by the carrier pre­

amplifier which after demodulation and amplification was displayed on the 

recording unit. As the immersion of the wave gage varied in the con­

ducting fluid, the resistance in the circuit changed proportionally, 

causing an imbalance in the full bridge circuit shown in Fig. 4.6. This 

imbalance was recorded as a change from the balanced position. 

Before each set of experiments the bridge circuit was balanced at 

a fixed wave gage immersion. The gage was calibrated by immersing it 

in water to various depths, noting the corresponding deflections of the 

recording stylus, and returning the gage to its original position. A 

typical calibration curve is shown in Fig. 4.7 . No calibration was done 

after completing the experiments since each experiment was completed 

within a few minutes after each calibration. 

During calibration of the wave gage, a drift of the recording stylus 

was noted. In order to estimate the error which resulted from this drift, 

four wave gages were mounted on a rack on the instrument carriage and 

simultaneously recorded a wave at the same location in the wave tank. 

The differences between the four records indicated a measurement error 

of approximately 5% of the wave height. The reasons for the drift 

during calibration are not completely understood and were not investi­

gated. It was found, however, that the error was somewhat reduced by 
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dynamic calibration. This was done by moving the gage to its pre­

scribed depth and returning it to its original position as rapidly as 

possible . Thus the calibration curve was obtained before the stylus 

began to drift . In the process of this rapid motion, however, the 

reading of the wave gage immersion from the point gage scale became less 

accurate, introducing another error. The estimated error of dynamic 

calibration was approximately 3% of the wave height. The differences 

between dynamic and static calibrations are illustrated in Fig . 4 . 8 . 

This error was acceptable for most of the experiments but not for the 

experiments on wave damping. 

In some of the experiments on wave damping the wave amplitude 

decreased approximately 1% when the wave traveled over a distance from 

one gage to another . In order to improve the performance of the wave 

gages , the stainless steel wires were replaced by 0 . 01 in . (0 . 254 mm) 

platinum wires . The wires were cleaned with chromic sulfuric acid and 

then platinized. The platinizing solution consists of 1 gr chloroplatinic 

acid (platinum chloride) and 12 mg lead acetate in 100 m£ of water. The 

wires (already mounted on the wave gage frame) were immersed in the 

solution and connected to the negative terminal of a 3V dry cell battery . 

A piece of platinum was connected to the positive terminal and dipped 

in the solution. The platinizing was completed when the wires were 

completely coated with black. When the wave gages were not in use they 

were kept in distilled water. They were cleaned and platinized again 

whenever the black coa ting peeled off , or when erratic readings were noted . 

The drift which had been noticed during static calibration of wave ga ges 

with stainless stee l wires (see Fig . 4.Sa) was eliminated by using gages 

with platinum wires. The relative error of this type of wave gage was 

estimated at l e ss t han 1%. 
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100 sec 

a. STATIC CALIBRATION 

b. DYNAMIC CALIBRATION 

i· 

i 
i 

.. i 
! 

TIME 

·i 
I 

. , .... ·- ' 

::. J L 

,. TIME 

Fig. 4.8 Typical records of static and dynamic calibration (wave 
gage constructed with stainless steel wires). 
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4.4 TEST SECTIONS AND EXPERIMENTAL METHODS FOR INCIPIENT MOTION 

EXPERIMENTS 

4 . 4 .1 The Working Area 

The investigation of incipient motion of spheres and the 

stability of rocks required a false bottom in front and behind the 

spheres (or the rocks) in order to provide a smooth transition and a 

uniform depth over the entire working area. The working area with the 

rock section in place is shown in Fig. 4.9. The false bottom was made 

of 5/8 in. (15.9 rrnn) thick plates of anodized aluminum. The plates 

were slightly narrower than the tank to reduce possible damage to the 

glass walls during installment . A continuous smooth surface was attained 

by attaching the plates one to another with dowel pins. 

The false bottom started 76 ft (23.15 m) from the wave generator. 

A sloping sheet of galvanized steel 1 ft (31 cm) long provided a smooth 

transition from the bottom of the tank to the top of the false bottom. 

The total length of the false bottom is 44 ft (13.41 m), ending with the 

wave dissipator at the downstream end of the tank. The tank was divided 

in half longitudinally over the entire length of the false bottom in 

order to compare the characteristics of solitary waves over a smooth 

bottom and over the spheres. The section with the spheres was placed at 

one side of the dividing wall (as shown in the plan vi~w of Fig. 4.1) 

while the other side was kept smooth. The dividing wall was made of 

anodized aluminum plates 1/4 in. (6.35 mm) thick , 8 ft (2.44 m) long and 

2 ft (61 cm) high . The plates were placed in a groove 1/16 in. (1.6 mm) 

deep along the center line of the bed, and were held at the top by 

cross bars fastened to the top of the side-walls of the tank. 
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Fig. 4.9 Overall view of the working area in the 
wave tank. 
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The experiments of the incipient motion of spheres required a free 

1ath for a laser beam across the tank. (The details of the laser equip-

1ent are described in Section 4.4.2.) In order to provide this path, a 

>ortion of the partition at the working section was made of a 1/4 in. 

'.6.35 mm) transparent lucite plate . 

During the experiments the waves were recorded simultaneously over 

>oth the spheres and the smooth side in order to examine the effect of 

:he bed of spheres on the wave height. 

4.4.2 Incipient Motion of Spheres 

4.4 . 2.1 The Test Section 

The test section was located 28.5 ft (8.69 m) from 

the beginning of the false bed and was 3 ft (91.4 cm) long. A layer of 

Nell-packed spheres was glued to a 3 ft x 21-1/4 in. (91.4 cm x 54.0 cm) 

plate and placed in the tank. Two sizes of spheres were used. One bed 

consisted of 1/2 in. (12.7 mm) nylon spheres glued to an 1/8 in. (3.18mm) 

anodized aluminum plate and the other, shown in Fig. 4.10, of 3/8 in. 

(9.53 nnn) nylon spheres glued to a 1/4 in . (6 . 35 mm) plate. The thick­

nesses of the plates were chosen such that when they were placed in the 

test section, the tops of the spheres were leveled flush with the false 

bottom. A special epoxy (Epoxilite #211 with catalyst #C301) was used 

to hold the spheres to the plate under water. The plate provided enough 

weight against possible movement of the total unit under extremely high 

waves. Four precision stainless steel spheres glued at the center of 

the plate supported a precision sphere whose incipient motion was 

investigated (see Fig. 4.11). 
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Fig. 4.10 View of the bed of spheres. 

Fig. 4.11 View of an isolated precision sphere supported 
on top of the bed by precision stainless steel 
spheres. 
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The test spheres used in the investigation are shown in Fig. 4.12. 

The diameters of the spheres varied from 3/8 in. (9.53 mm) to 1 in. 

(25.4 mm) and the values of specific gravity varied from 1.15 to 2.79. 

The diameters and specific gravities noted in Fig. 4.12 are only approxi­

mate values. More accurate values are given with the experimental data 

presented in Appendix II, Table A. 2.1. The incipient motion of each 

sphere was tested in two positions. In position I, which is shown in 

Fig . 4.13a, the moment exerted by the wave tended to roll the sphere over 

and between two spheres, while in position II, which is shown in Fig. 

4 . 13b, it was forced above a single sphere. 

Experiments were conducted with water depths of 10, 20, 22.5, 30 

and 42 cm. A few experiments were conducted under breaking waves at 

depths different from those mentioned above in order to investigate the 

incipient motion under waves of limiting heights. 

4.4.2.2 The Measurement of Incipient Motion 

The incipient motion is defined experimentally as 

the conditions under which the sphere barely moves under the wave . A 

technique was developed to measure infinitesimal displacements of the 

sphere . The system , shown schematically in Fig. 4.14, also indicated 

the time at which the motion began. 

A laser beam, about 0 . 040 in. (1 mm) in diameter, was transmitted 

across the tank in front of the sphere into a photo-cell which generated 

an electronic signal (voltage) proportional to the amount of light it 

received. The laser was mounted on a rack connected to a micrometer 

such that it could be positioned with an accuracy of 0.001 in. (1/40 mm). 
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Fig. 4.12 The precision spheres whose incipient motion 
was investigated. 
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Fig. 4.14 Schematic drawing of the system used to detect 
infinitesimal displacements of a sphere. 
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LASER INTENSITY 

Fig. 4.15 Schematic drawing of a typical positioning of the laser 
beam with respect to the sphere; (a) large output signal 
of the system; (b) small output signal of the system 
(for the same displacement of the sphere). 
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It was positioned such that the path of the laser beam was partially 

blocked by the sphere. Displacement of the sphere in a direction across 

the laser beam caused a change in the amount of light received by the 

photo-cell and the change of voltage was indicated on a Sanborn (150 

Series) recorder . The system was calibrated by moving the laser with 

the micrometer screw in steps of 0.005 in. relative to the sphere, and 

recording the corresponding changes in voltage. An example of a 

calibration record is shown in the lower right portion of Fig. 4.17. 

In order to maximize sensitivity of the measurements, the laser was 

positioned such that the sphere blocked approximately half of the beam. 

The reasons for this are illustrated schematically in Fig. 4.15. The 

light intensity has a Gaussian distribution over the beam cross section 

so the maximum intensity is at the center of the beam. Also, the change 

in beam area oA
1 

(see Fig. 4 . 15a) is maximum for a given displacement 

of the sphere when the sphere covers half the beam. As the amount of 

light is defined by the product of the light intensity and the area 

which it covers, the change of the amount of light (and hence the change 

of the output voltage of the photo cell) is maximum for a given displace­

ment of the sphere when the sphere covers half of the beam. 

During the experiment a wave gage was placed directly above the 

sphere as shown in Fig. 4.16. The motion of the sphere and the wave were 

recorded simultaneously on two channels. An example of a record is 

shown in Fig. 4.17. The record indicates the amount of motion and the 

time it took place with respect to the wave. 
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~. ,, 
< 

Fig. 4.16 View of the test section during an experiment. 

1 sec 

0.001" .·. 
n 

IHI! 11 1' 

iHtllmurn:: 

I 
POINT OF INCIPIENT MOTION 

Os= 19.04mm 
De= 9.53mm 
POSITION IT 
P51Pw= 2.16 
h= 7.84 cm 
H/h= 0.66 

Fig. 4.17 Typical record of the motion of the sphere. 
Upper curve displays the wave record; lower 
curve displays the calibration and the motion 
of the sphere. 
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4 . 4 . 3 The Incipient Motion of Particles of Arbitrary Shape 

4.4.3.1 The Test Section 

The test section which was described in Section 

4.4.2.1 was altered from the experiments on the incipient motion of 

spheres for this part of the investigation. The bed of spheres and a 

3 ft (91.4 cm) long section of the false bed on the opposite side of the 

dividing wall were removed. The twq gaps in the bottom on both sides of 

the partition were filled with two different size particles of arbitrary 

shape, resulting in layers 5/8 in. (15.9 mm) thick. The particles were 

leveled flush with the false bed using a straight edge. The test section 

is shown in Fig. 4.18. It seemed plausible to utilize both sides of the 

tank without being concerned about possible changes in the wave due to 

the bed effects since the experiments on solitary waves over spheres 

indicated no significant damping over the relatively short (3 ft) rough 

bed. The simultaneous use of two different size particles on both sides 

of the tank resulted in two experimental data points from the run of a 

single wave. Experiments were conducted with natural rock and with coal 

particles. During the experiments it was found that the wave reflected 

from the wave dissipator, although very small, was large enough to dis-

turb the bed of the very light coal particles , hence two gates were 

constructed in front and behind the bed. The gates were closed immedi-

ately after the wave passed thus preventing the trailing and reflected 

waves from disturbing the bed . 

4 . 4 . 3 . 2 The Characteristics of the Particles 

The experiments were conducted using natural rock 

and anthracite coal. Two different size particles were used from each 

material. 



Fig. 4.18 

81 

View of the particles of arbitrary shape 
placed in the test section. 
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Eqs. (3.61) and (3 . 64) imply that the important characteristics of 

the rock are its mean diameter, Ds, its density, ps, and its angle of 

friction, ~- The characteristics of each sample used in the experiments 

were measured as follows. 

1 . Diameter. The natural rock was purchased in a gravel form with 

a wide range of particle sizes . The coal was purchased in a form of 

large lumps and was crushed into a form similar to that of the natural 

rock. The particles were sorted by sieving them through a stack of 

screens. Each size fraction was used separately thus an approximately 

uniform size distribution was achieved. Each sample was sieve analyzed 

following the procedure described by Vanoni, Brooks and Kennedy (1961). 

The size distribution curves of the materials are shown in Fig. 4.19. 

2. Density . The specific gravity of an object is obtained by 

dividing its weight in air by the difference between its weight in air 

and in water. A sample of 120 particles was chosen arbitrarily from the 

natural rock and their specific gravity was measured yielding a mean 

value of(~) = 2.68 and a standard deviation of 0.036. The same 
pw rock 

procedure was repeated with 21 coal particles and the results were 

(~) - 1.283 and a standard deviation of 0 . 023. The probability 
Pw coal-

distributions of the specific gravities are shown in Fig. 4.20a and 

4 .20b. 

3 . Angle of repose . A special method was developed in order to 

measure the angle of friction of materials under water. The idea for 

this method was presented by Iribarren Cavanilles (1965) who measured 

the angle of friction of materials placed on a slope of a breakwater 

model. The system used here is shown in Fig . 4.21 and Fig . 4.22 . A 
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Fig. 4.21 
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Overall view of the system used to measure 
the angle of friction. 



Fig. 4.22 

86 

View of the system used to measure the 
angle of friction at (a) the "packing" 
angle, and (b) the angle of "collapse". 

(a) 

(b) 
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tin tray measuring 13.5 x 8.5 x 1.5 in. (34.3 x 21.6 x 3.8 cm) was filled 

with a layer of gravel 5/8 in. (15.9 nun) deep and placed in a water tank 

next to its glass side wall. A string was tied to one of the 8.5 in. 

walls of the tray and was slowly pulled up by means of a crank-driven 

screw jack. The opposite side of the tray was kept in contact with the 

bottom of the water tank. The jack was used in order to provide a smooth 

uniform pull of the tray. The tray was pulled up until some motion of 

the particles was observed. At first the particles just seemed to pack 

up into a formation tighter than the loosely packed gravel (see Fig. 

4.22a). The angle of the tray with respect to the horizon was noted for 

this case as the "packing angle" . The tray was tilted more until the 

entire slope of gravel collapsed and the particles rolled down (see 

Fig. 4 . 22b). The angle of the tray was noted as the "angle of collapse". 

The measured angles of packing and collapse for the materials used in 

the investigation of incipient motion are presented in Table 4.1. The 

value of the angle of friction was identified here with some value 

between the packing and the collapse angles. This was based on the 

assumption that nondestructive waves traveling over a horizontal granu-

lar bed tend to pack the grains, but the packing is not as tight as that 

obtained by tilting the bed. 

Table 4.1 . The measured angles of packing and collapse for the 
materials used in the investigation of incipient motion. 

P/Pw D 
s 

Material Specific Mean Packing Angle of 
Gravity Diameter Angle Collapse 

(mm) (deg) (deg) 
Natural Rock Ill 2.68 5.44 40 50 
Natural Rock 112 2.68 7 . 70 42 49 
Coal Ill 1.283 8.00 39 51 
Coal 112 1.283 11.10 41 50 
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As can be seen in Table 4.1, all four materials used yielded a 

packing angle at approximately 40° and they collapsed at approximately 

50°. Hence the angle of friction was assumed to be 45° throughout the 

investigation of incipient motion of arbitrary shape particles. 

Shields (1936) noted that the dimensionless shear stress exerted on 

the bed involves a proportionality factor similar to the term tan~ in Eq. 

(3.64). This term was assumed to be a function of the shape of the parti-

cles. The shape factor is defined as Sf = d /ldbd where d , db and d 
a c a c 

are three diameters of the particle in three orthogonal directions with 

d being the smallest and d being the largest possible diameters. All 
a c 

four materials used in the experiments consisted of angular particles. 

Fifty particles were randomly picked up from each sample and their shape 

factor was calculated after measuring them with a micrometer. The proba-

bility distributions of the shape factors are shown in Fig. 4.23 for all 

four samples. As can be seen in Fig. 4.23 all of the four materials had 

approximately the same mean value of the shape factor and about the same 

variance. This supports the employment of the same angle ~ for all the 

materials used in the investigation of the incipient motion of particles 

of arbitrary shape. 

4.4 . 3.3 The Measurement of the Motion of the Particles 

The motion of the particles of arbitrary shape was 

measured using a photographic technique. The photographic equipment is 

shown in Fig. 4.24. A 4x5 in. Graphic camera with a back for 70 mm non-

perforated roll film was mounted on a wooden frame supported by an instru-

ment carriage on top of the wave tank. The camera was placed about 8 ft 

(2.4 m) above the bed at the center of the tank such that the complete 
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in the experiments of incipient motion of particles of 
arbitrary shape. 

I '• 



90 

Fig. 4.24 View of the photographic equipment installed 
at the test section. 
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area on both sides of the bed was photographed simultaneously to a 

maximum magnification. Four studio lights were placed on both sides of 

the tank. Each light had photographic "barn doors" in front of its 

housing in order to attain even illumination. 

A photograph of the bed was taken before running the wave, then an 

instrument carriage carrying a wave gage was brought above the bed and 

a wave was generated and recorded. Another picture was taken after the 

carriage with the wave gage was removed and the water was quiet again. 

The two pictures were compared to each other in order to indicate the 

motion of the particles. The comparison of the pictures was performed 

as follows. 

A positive transparency was made from the negative with a 1:1 

magnification (utilizing contact printing technique). The negative of 

the pie tu re taken before the wave (Fig. 4. 25a) was .taped to a light 

table. The positive transparency taken after the wave (Fig. 4.25b) was 

taped to a piece of glass plate and placed on top of the negative 

forming a "sandwich". The two transparencies were aligned manually 

until a uniform dark surface was seen with only the particles that moved 

showing up. The method is based on the idea that a white particle with 

surrounding dark shadows forms a dark image with bright surroundings on 

the negative and a positive image on the transparency. When the 

positive and negative are aligned the dark image of the negative conr 

pletes the bright positive picture and the bright negative surroundings 

complete the positive shadows, thus a continuous dark gray surface is 

obtained. If a particle is removed during the period between the two 

photographs, it appears in the negative in its place, but it does not 
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appear in the positive picture to complete the negative image. Hence 

only the particles that moved show up. Each particle can be seen twice; 

once as a dark image from the negative part and once as a bright spot 

from the positive part of the combination. The alignment of the two 

transparencies, whose pictures are shown in Figs. 5.25a,b, is shown in 

Fig . 5.25c. An enlargement of Fig. 4.25c is shown in Fig. 4.25d. 

As can be seen in Fig. 4.25d, the two transparencies were not well 

aligned over the entire area. In fact, it was never possible to match 

the transparencies well throughout. There are probably two reasons for 

this: first, the pictures were taken through the water surface and a 

slight movement of the water could cause distortion due to refraction. 

To minimize this distortion, the second picture was taken when the water 

surface seemed still, at least 20 min. after running the wave. Each 

picture was used twice; once for the previous wave and once for the 

next one. The second reason is uneven shrinking of the film. The film 

used was ILFORD FP4 with acetate base which shrinks slightly after 

processing . Only glass plates are shrink- free , but the film was preferred 

because it was easier to handle. Films with estar thick base like KODAK 

EKTAPAN shrink much less than acetate base films, but they tend to 

buckle when dry, thus they cause another distortion since they do not 

keep flat while processing the transparencies and during the alignment 

process. 

The transparencies were made of Dupont aerial film. Both the 

negative and the positive were tested for exposure and processing to 

provide good contrast that made it easier to see the particles that 

moved . 



93 

· ;---o'------·------------~M~I•~;~~ 

(a) 

(b) 

(c) 

Fig. 4.25 Overhead photographs of the bed of particles of 
arbitrary shape; (a) negative picture of the bed 
before running the wave, (b) positive picture of 
the bed after running the wave, (c) alignment of 
pictures (a) and (b). 
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In order to avoid the problem of misalignment, the entire picture 

of the negative-positive combination was divided into small squares, each 

square occupying a small portion of the picture. Each square was aligned 

separately and inspected with a magnifying glass to maximize resolution. 

The amount of motion was obtained by counting the number of particles 

that moved in the entire picture. 

The amount of motion was normalized by dividing the number of 

particles that moved by the total number of particles at the upper layer 

of the bed. In order to estimate the total number of particles, three 

screws, 5/8 in. (15.9 nnn) long were glued to the bottom of the tank on 

either side of the partition wall. The heads of the screws (leveled 

with the surface of the bed) were marked with crosses and they were 

placed at three corners of a square measuring 10 x 10 cm. A portion of 

the picture of the bed including the screws was enlarged to the maximum 

magnification allowed by the available darkroom facilities, as shown in 

Fig. 4.26. An area of the picture was outlined and the number of 

particles NPr seen in this area was counted. The area AP containing 
r 

these particles was measured with a planimeter which was .calibrated 

using the square outlined by the screws. The total area of the bed AT 

that was covered by the camera was measured from the picture of the full 

bed (Fig. 4.25) which was scaled by its length (91.4 cm). The total 

ATNPr 
number of particles NPT exposed to the flow was estimated as NpT= Apr 

The values of NPT for the materials used in the investigation are pre­

sented in Appendix II, Table A.2.3. 

4.5 THE MEASUREMENT OF FLUID PARTICLE VELOCITY 

Motion picture photography was applied in the measurement of the 
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Fig. 4.26 Photograph of the section of the bed used to estimate 
the total number of particles seen in the overhead 
view of the entire test section. 
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fluid particle velocity over a rough bed under solitary waves. The flow 

was visualized using neutrally buoyant particles produced from a mixture 

of carbon-tetrachloride, mineral oil and blue oil dye. The proportions 

of the three ingredients were adjusted by trial so that a droplet of 

liquid tracer would neither rise nor settle in a sample of water from 

the wave tank. The mixture was injected instantaneously using a 

hypodermic syringe with a needle inner diameter of 0.0225 in. (0.57 mm). 

The impulsive injection broke the liquid into small droplets ranging in 

size from a fraction of a millimeter to approximately 3 mm. The droplets 

formed a cloud that was photographed under the wave. 

The photography equipment consisted of a 16 mm motion picture 

camera with seven filming speeds ranging from 12 to 64 frames per second. 

The camera, shown schematically in Fig. 4.27, was mounted on a tripod 

next to the tank approximately 1 . 5 ft (45 cm) from its side wall at the 

level of the bed. The wall on the other side of the tank was covered 

with translucent paper and illuminated with two studio lights in order 

to have a good distinction of the particles against the background. 

The test section in the tank was also illuminated with two lights. 

The filming speed was set at 64 frames/sec. However, this figure 

was inconsistent and inaccurate. In order to precisely measure the 

filming speed the timing component shown schematically in Fig. 4.27 was 

added to the system. A Beckman counter (Model 7351) was used to 

generate electric pulses at a rate of 100 pulses per second. The pulses 

were counted and displayed by a Hewlett-Packard (Series 5300A) counter, 

and the display was transmitted to the camera by a set of mirrors. If 

the counter display showing in one picture is t 1 and after Nf frames 

it shows t
2

, and the pulse rate is Pr pulses/sec, then the time interval 
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between two frames is ~t = ~~­
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Another component was added to the systems in order to synchronize 

the film with the wave record. A flash bulb was mounted beside the 

camera aiming at the wave tank. An electric switch activated the flash 

bulb and at the same time recorded a mark on the wave record. The film 

frame at which the flash bulb flashed was easily identified since it was 

much brighter than the rest of the film . The time of this frame was 

identified with the mark on the wave record. Thus any film frame could 

be related to the instant at which it took place under the wave. 

The experimental procedure was as follows. The two scales shown 

in Fig . 4 . 28, one horizontal and one vertical, were inserted in the tank 

and photographed before the experiment. The reason for having both 

horizontal and vertical scales was to account for possible distortion in 

the picture. After taking the picture of the scales they were removed 

and the wave gage was calibrated. The liquid tracer was injected into 

the water after the wave gage was calibrated, and the wave was generated 

innnediately afterwards. The reason for following the procedure in this 

order was that the mixture of the tracer was not absolutely homogeneous. 

There usually were some particles in the cloud of buoyant tracer that 

rose up and settled on the wires of the wave gage thus interfering with 

its calibration. With the above procedure the experiment was completed 

before this process could take place . The injection of the tracer 

particles did not seem to disturb the flow field, since by the time that 

the wave arrived at the test section, the disturbance had been damped, 

as the tracer appeared to be quiescent . 

The velocity measurements were conducted as follows . Two 8 x 10 in. 
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(20 x 25 cm) transparencies (shown in Fig. 4.29a,b reduced in size) were 

made from two adjacent frames of the 16 nun film. The transparencies were 

aligned on a light table to form the picture shown in Fig. 4.29c. An en-

largement of Fig. 4 . 29c, to scale with Fig. 4.28, is shown in Fig. 4.29d. 

Each tracer droplet was seen twice; once on one transparency and once on 

the other. The displacement 6~ that this particle had moved was measured 

using a grid produced from the photograph of the scales (Fig. 4.28). The 

time 6t between the two transparencies was calculated from the digital 

display and the fluid particle velocity u = ~~ was calculated. The calcu­

lated value of u was an average over the period 6t. However, when the 

film speed was large enough (64 frames/sec), the time increment 6t was 

d~ small enough to approach the instantaneous value of u = at . 

The coordinate X of a particle was evaluated from measurement of the 

distance x of the particle from the center of the picture (using the 

photograph of the scales) and the time t with respect to the wave crest 

(using the digital time display and the synchronization with the wave 

record). Measurement of the wave speed C provided X = x-Ct. The verti-

cal coordinate z of each particle was noted using the vertical scale. 

Experiments were conducted in water 30 cm deep and a wave 15 cm 

high. The roughness of the bed consisted of the 7.70 mm white rock 

that was used in the investigation of incipient motion of rocks 

(presented in Section 4 . 4.3). 

4 . 6 MEASUREMENTS OF BOTTOM RESISTANCE COEFFICIENT UNDER SOLITARY WAVES 

The experiments were performed in the wave tank with a smooth 

bottom and with rough bottoms of two different size roughnesses. The 
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(a) 

(b) 

(c) 

Tracer particles in a fluid under a solitary 
wave; (a) at t=26.04 sec; (b) at t=26.06 
sec; (c) alignment of (a) and (b) . 
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experiments with a smooth bottom were conducted in the tank as described 

in Section 4 . 1 . The rough bottom consisted of a 5/8 in. (15 . 9 mm) layer 

of gravel placed between two sections of the false bottom described in 

Section 4.4 . 1. A 36 ft (10.97 m) long section of the false bottom was 

placed in the tank 3 ft (75 cm) from the wave generator and a 5 ft 

(1.52 m) section was placed at the wave dissipator. The remaining 

76.5 ft (23.32 m) portion of the tank between the false bottom sections 

was filled with gravel . The gravel was leveled flush with the false 

bottom applying the following procedure: two pieces of plywood 5/8 in. 

(15.9 mm) high and 42.5 in. (109 cm) long were placed across the tank 

on its bottom spaced at about 3 ft (90 cm). The gravel was placed 

between the plywood bars and was leveled with their tops using a 

straight edge. The next step was to level an additional section approxi­

mately 3 ft long using the same technique . When two adjacent sections 

were leveled, the plywood bar between them was removed and the space it 

had occupied was manually filled and leveled to provide a continuous 

surface of the rough bed. The process continued step by step until the 

entire space between the false bottoms was covered with rocks. 

The gravels used were size fractions obtained from sieving a large 

amount of graded rock. The two size fractions used were sieve analyzed. 

Their size distributions are shown in Fig. 4.30. 

Four wave gages with platinum wires (as described in Section 4.3) 

were used to record the wave at four stations over the rough bed in 

order to measure the reduction of wave height along the tank. The gages 

were mounted on instrument carriages star~ing 11 ft (3.30 m) downstream 

from the beginning of the rough bed and spaced approximately at 20 ft 
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(6.10 m) , with the distances between them carefully measured. The wave 

height at each of the four stations was used to evaluate the value of 

d(H/h) required (in Eq. 3.36) to calculate the bed friction factor. 
d(x/h) 

All the experiments were performed with the wave tank in a hori-

zontal position. 
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CHAPTER 5 

PRESENTATION AND DISCUSSION OF RESULTS 

5.1 THE SOLITARY WAVE 

5.1.1 The Wave Profile 

The surface profiles, the wave celerities, and the fluid 

particle velocities of solitary waves were measured in the laboratory 

to determine which of the three theories presented in Section 3.1 

(i . e., Boussinesq (1872), McGowan (1891), and Laitone (1963)) should be 

used in conjunction with the investigation of incipient motion of bed 

material. Results of the measurements of the surface profile are 

presented in this section. The results of the measurements of the wave 

celerity and the fluid particle velocity are presented in Sections 5.1.2 

and 5.1 . 3 respectively. 

The wave tank was divided longitudinally into two. The test section 

of a bed of spheres was placed on one side of the partition, while the 

other side was kept smooth. A description of the bed of spheres is given 

in Section 4.4.2, and the smooth bottom is described in Section 4.4.1. 

Wave profiles which were measured over the test section with the wave 

tank in a horizontal position were compared to waves measured over the 

other side of the partition in order to test the effects of the rough 

bed section on wave damping. Wave profiles were obtained also over a 

sloping bottom. Comparisons of the measured wave profiles to the 

theoretical profiles are presented in Figs . 5 .1, 5.2, and 5 . 3 for waves 

over a horizontal bottom, and in Figs. 5 . 4, 5 . 5, and 5.6 for waves 

propagating over a slope of 0 . 5% (1 vertical to 200 horizontal) . 
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The profile of a wave with a height-to-depth ratio of 0.086 

traveling over a bed of spheres (DB= 12.7 mm) in a depth of 10 cm with 

the wave tank in a horizontal position is shown in Fig. 5.1. The 

abscissa is ~~ and the ordinate is n/h, where X is a coordinate 

system moving with the wave (X = x-Ct, where x is a stationary hori-

zontal coordinate, C is the wave speed, and tis the time), his the 

water depth, H is the wave height, n is the elevation of the water 

surface above still water level, and DB is the diameter of the bed 

spheres. As can be seen in Fig. 5.1, the differences among the wave 

profiles obtained from the theories of Boussinesq, McCowan, and Laitone 

are negligible for the value of H/h in this figure. The experimental 

wave profile agrees well with the theories over the major part of the 

wave, from ~fl~= -1.0 to %fl~~ 3.0, and it deviates from the theories 

near the trailing edge of the wave. This disagreement is probably due 

to the trailing wave system which is generated by the type of the wave 

generator used. The (calculated) time displacement history of the wave 

generator does not follow exactly the fluid particle displacement under 

a solitary wave (see Fig. 4 . 4), thus generating additional oscillatory 

waves . Under these conditions, where H/h is small, the celerity of the 

solitary wave is not great enough to leave the oscillatory waves too 

far behind by the time it travels over the test section. 

The profiles of the solitary waves over smooth bottoms are compared 

to the profiles over rough beds in Fig. 5.2 for a wave of H/h = 0.34 in 

30 cm of water, and in Fig. 5.3 for a wave of H/h = 0.64 in water 10 cm 

deep. The experimental results show no significant difference between 
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the waves over the smooth and rough sections, as the approximately 2% 

difference of the measured wave heights is within the measurement 

error. The wave gages used to measure the wave profile had stainless 

steel wires, and their measurement error was estimated to be approxi­

mately 3% of the wave height (see description of the wave gages in 

Section 4.3). There are appreciable differences among the theoretical 

wave profiles of Boussinesq, Mccowan, and Laitone for both cases, i.e., 

for H/h = 0.34 and H/h = 0.64, and these differences appear to increase 

with H/h. The experimental profiles of the waves over the smooth and 

rough beds are between the theoretical profiles of Boussinesq and McCowan 

near the crest, and they coincide with McCowan's as the distance from the 

crest increases in both directions. The absence of trailing waves in 

Figs . 5.2 and 5.3 compared to their presence in Fig. 5.1 is due to the 

relative height of the waves shown in these figures. Trailing oscilla­

tory waves were generated by the imperfect wave generator in all of these 

cases. However, solitary waves of large relative height (i.e., large 

H/h) have a great speed, thus leaving the trailing waves far behind. By 

the time of the measurement of the wave profiles shown in Figs. 5.2 and 

5.3 the trailing waves had not arrived at the test section . 

The surface profiles of waves traveling over a slope of 1:200 are 

presented in Figs. 5.4, 5.5, and 5.6. The depth at the measurement 

station is 26 . 2 cm. A wave of H/h = 0 . 25 is plotted in Fig. 5.4, a 

wave of H/h = 0 . 60 in Fig. 5.5 , and a wave near breaking, of H/h = 0.87 

is shown in Fig. 5.6. The reason for conducting the experiments over a 

sloping bottom was that it was impossible to generate extremely large 
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waves over a horizontal bottom with the available equipment. While the 

surface elevation of the experimentally generated wave with H/h = 0.25 

is higher than Laitone's theoretical curve, a wave of H/h = 0.60 lies 

between the theoretical profiles of Laitone and Boussinesq, and the 

front of a wave near breaking is even steeper than the theoretical wave 

due to Mccowan. The trailing edge of a breaking wave is still closer to 

the theories of Boussinesq and Laitone. However, the front of the wave, 

which appears to agree with the theoretical profiles better than the 

rear of the wave, is of major concern for practical purposes, since this 

is where the forces which are exerted on objects reach their maximum 

values (as will be shown later in this chapter). The asynnnetric profiles 

of waves of large relative height, in which the wave front is steeper 

than the rear of the wave, are probably due to the shoaling effects of 

the slope over which the waves travel. Large waves shoaling on sloping 

beaches are known to have such (asynnnetric) profiles. 

The results of profile measurements indicate that for waves of 

small relative height over a horizontal bottom the three theories are 

close to each other and the experimental wave profile agrees with the 

theories. The experiments also indicate that for waves of larger rela­

tive height over a horizontal bottom the theories of either Boussinesq 

or Mccowan should be used. For sloping bottoms, the front of the experi­

mentally measured wave is represented well by Laitone's theory for rela­

tively small and intermediate waves, by Boussinesq's theory for relatively 

large waves, and by McCowan ' s theory for extremely large waves. The rear 

of the wave in all of the studied cases of sloping bottom is better 

represented by the theories of Laitone and Boussinesq. 
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The conclusions presented in the preceding paragraph are incomplete 

since they result from measurements of only the surface profile of the 

solitary wave. In order to conclusively determine which theory (i.e., 

Boussinesq's, McCowan's, or Laitone's) to use in the present research, 

comparisons between the measured and the theoretical wave celerities, and 

between the measured and the theoretical fluid particle velocities are 

presented in the following sections . 

5 .1.2 The Wave Celerity 

The speed of the solitary wave was measured over a horizontal 

bottom in the following way. Two wave gages were placed at two stations 

approximately 4 m apart along the wave tank. The distance between them 

was carefully measured, and it varied from one experiment to another. 

The wave was recorded simultaneously by the gages on two channels as 

shown in Fig. 5.7. If p is the speed of the recording paper, in mm/sec, 
s 

and d is the distance, in mm, between the recorded peaks (the wave 
r 

crests), then the time t, in seconds, during which the wave propagated 

from one wave gage to another is 

t 

and the speed, C, at which it traveled is 

c .Q, 

t 

.Q,p 
s 

d 
r 

where .Q, is the distance between the wave gages . 

(5.1) 

(5.2) 

The wave celerity was measured in water depths of 10 cm, 20 cm, 

22.5 cm, and 30 cm over a horizontal bottom. A comparison between the 
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experimentally measured wave celerities and the theories of Boussinesq 

(1872), Mccowan (1891), and Laitone (1963) is shown in Fig. 5.8. The 

abscissa in this figure is H/h and the ordinate is C//gh, where H is 

the wave height, his the water depth, and g is the gravitational 

acceleration. Also shown in this figure are experimental data which 

were obtained by Daily and Stephan (1952) and by French (1969). The 

theoretical curves in Fig. 5.8 were calculated from the formulae pre­

sented in Table 3.1. The results indicate that the theories of 

Boussinesq, Mccowan and Laitone are very close to each other for waves 

of small relative height (H/h < 0.2). For higher waves (H/h > 0.2), 

the theories of Boussinesq and Laitone are still close to each other 

where the theoretical values of the celerity given by Boussinesq are 

larger than those given by Laitone, and McCowan's theory predicts much 

smaller values of the celerity. The experimental results of the present 

study agree well with the theory of Boussinesq, while the experimental 

results of Daily and Stephan (1952) and of French (1969) agree better 

with Laitone's theory. The reasons for the differences between the 

present measurements and those conducted by Daily and Stephan and by 

French are not understood. However, although these differences appear 

to be systematic and not a result of random experimental scatter, they 

appear to be too small to be significant in practical use. Boussinesq's 

expression for the wave speed is given in a closed form (see Table 3.1), 

while Laitone's expression is given in a power series of H/h carried to 

order of (H/h) 2 . Additional terms, i.e., of higher order of H/h, might 

be significant, particularly for large va~ues of H/h. For this reason, 

and because the differences between the wave celerities due to Boussinesq 



c 
V9h 

120 

1.4 ..-----r----~---"T'"""---.......----------.-----

SYMBOL 

---
---------
SYMBOL 

• 
1.3 • 

• 
• 

SYMBOL 

0 

0 

12 

I.I 

0 

THEORY 

BOU SS INESQ 

LAI TONE 

Mc COWAN 

h(cm) 

300 
22.5 
20.0 
10.0 

EXPERIMENT 

DAILY B STEPHAN 
(1952) 

FRENCH 
(1969) 

• 

_ .... 
.. -

10-----&.----&..---...L..---"'-------J'-----..&.---~ 
00 0.1 0.2 03 H 0.4 0.5 06 0. 7 

h 
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and Laitone are small, Boussinesq's expression for the wave speed, i.e., 

is apparently the best one to use. 

5-. 1. 3 The Fluid Particle Velocity 

The fluid particle velocity near the bed and the water 

surface profile of a solitary wave with a height-to-depth ratio of 0.492 

were measured in water 30 cm deep with the wave tank in a horizontal 

position. The test section consisted of a layer of rocks with a mean 

diameter (D) of 7.70 mm and a geometric standard deviation (cr ) of 1.15 
s g 

(this material was used in the experiments of incipient motion). The 

results are shown in Figs. 5 . 9a,b, where the abscissa is*~~ , the 

ordinate in Fig. 5.9a is n/H, and in Fig. 5.9b u/C. The horizontal 

coordinate moving with the wave is denoted by X, h is the water depth, 

H is the wave height, n is the elevation of the water surface above 

still water level, u is the fluid particle velocity, and C is the 

measured value of the wave celerity. 

Fig. 5.9a indicates that the experimental water surface profile 

agrees with Boussinesq's theory near the wave crest, and with Laitone's 

theory away from the crest . The measured fluid particle velocities 

which are shown in Fig . 5 . 9b lie between the theories of Boussinesq 

and Mccowan near the crest, and they agree with McCowan's theor y away 

from the crest . The scatter o f data' at the rear of the wave is larger than 

that at the wave front . This is probably due to the development of turbu-

lence during the passage of the wave . Boussinesq's expression for the 



122 

10 
U WAVE PROFILE 

0 .8 

06 

77 

h=30.0cm 

_!:!_ =O 492 h . 

C=210.0cm/sec 
BED ROUG HNESS (ROCKl,05= 7. 7 mm 

SYMBOL THEORY 

BOUSSINESO 

-- LAI TONE 

-- - - - Mc COWAN 

+++ EXPERIMENT 

H 04 

u 
c 

0.2 

b. FLUID PARTICLE VELOCITY 

ELEVATION 
03 SYMBOL ABOVE THE 

BED (cm) 

0 z s 0.75 

~ 0.75<Z S LOO 
GI 1.00< z s 1.50 
4i) 1.50< z s 200 
~ 2.00< z s 2.75 

• 0 .2 
2 .75< z s 5.00 

0.1 

-30 -20 -LO -X.Wi 
hF4h 

00 

\ 

10 

SYMBOL 

---
-------

\ 
\ 

\ 
\ 

THEORY 

BOUSSINESO 

LAI TONE 

Mc COWAN 

...!!.._ = 77exp . 
c h+7]exp. 

""' 

20 

Fig . 5.9 (a) The surface profile of a solitary wave; (b) The 
fluid particle velocity near the bottom under a 
solitary wave . 

3.0 



123 

velocity, ~C = ~n- , was derived from continuity considerations assuming 
h+n 

uniform velocity distribution over the depth. This relationship employed 

his expression for the surface profile (see Table 3.1). The same re-

lationship employing the measured surface profile is also shown in Fig. 

5.9b in order to study the validity of the assumption of vertically 

uniform velocity distribution combined with continuity considerations. 

u 11 exp The curve representing this relationship (i.e., C = h+n-
exp 

' where n exp 

is the experimentally measured surface profile) agrees with Boussinesq's 

theory near the crest and with McCowan's theory away from the crest. It 

is indicated from the figure that the assumption from which Boussinesq's 

expression for the velocity was derived is valid over the major part of 

the wave, and only near the crest does it predict velocities somewhat 

larger than the measured ones. Yet, both Boussinesq's theory and the 

curve representing the velocity evaluated from measurements of the 

surface profile are within the range of scatter of the measured veloci-

ties. McCowan's theory predicts velocities smaller than the measured 

ones under the crest, and is also within the measurement scatter. Only 

Laitone's theory appears to disagree with the velocity measurements 

over the full range of the abscissa in Fig. 5.9b. The conclusions from 

these results are that the fluid particle velocity under solitary waves 

in the laboratory is best presented by employing the measured surfac~ 
n 

profile combined with continuity considerations (i.e.,%= h:~p ). As 
exp 

far as theoretical formulations are concerned, the velocity may be 

presented by either Boussinesq's theory or McCowan's theory, and it 

appears that Laitone's theory does not predict the fluid particle 

velocity well. 
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The velocity profile in the boundary layer near the bed was in-

vestigated by measuring the fluid particle velocity at different levels 

(up to 5 cm) above the bed. Data points which were obtained in regions 

of different heights above the bed are indicated in Fig. 5.9b by 

different symbols. As can be seen in this figure , the velocity profile 

in the boundary layer could not be determined within the accuracy of 

measurements. Note from the following considerations that the boundary 

layer was expected to be rough turbulent. Iwasa (1959) investigated 

the smooth laminar boundary layer under solitary waves based on the 

assumption that the velocity profile in the boundary layer is either 

linear or parabolic. For the linear velocity profile he obtained 

and for the parabolic profile 

16h5/ 2 

3ntt R 

16h512 

l3H R 
c 

c 

(5.4) 

(5.5) 

in which oX=O is the boundary layer thickness under the wave crest, and 

R is a wave Reynolds number, defined by Iwasa as 
c 

R 
c 

= lgh h 
\) 

(5.6) 

where g is the gravitational acceleration, and v is the kinematic viscosity 

of the fluid. Assuming the velocity profile in the boundary layer as being 

parabolic, then for the example shown in Fig. 5.9, where h = 30 cm, and 

H/h == 0.492, the thickness of the smooth lami na r bounda ry l a yer under 
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the wave crest should be 

[ 
16hv J l/ 2 

oX=O = hgH 0.15 cm (5. 7) 

in which the kinematic viscosity assumed the value v = 0.01 cm2/sec, and 

the gravitational acceleration is g = 981 cm/sec2 • Assuming linear 

velocity profile in the boundary layer, its thickness under the crest 

can be shown from Eq . (5.4) as having the value of 0.05 cm. Since in 

the present example the mean diameter of the roughness particle was 

7.7 nnn and they protruded approximately 4 mm above the bed mean level 

into the flow, they prevented the development of a laminar boundary layer. 

Therefore, it was expected that the boundary layer under the wave should 

be rough turbulent . A study of the velocity profile in this boundary 

layer was necessary in order to determine the shear stresses exerted on 

the bottom. However, since such a profile could not be indicated from 

the measurements of the fluid particle velocity, local shear stress (and 

local friction coefficients) could not be determined from this study, 

and a further investigation of the boundary layer under solitary waves 

is needed. A different method of estimating the bottom shear stresses, 

based on measurements of wave attenuation, is presented in the following 

section. 

5.2 THE RESISTANCE COEFFICIENT UNDER SOLITARY WAVES 

The problem of the friction coefficient under solitary waves was 

investigated in order to estimate the bottom shear stresses caused by 

the waves. Theoretical estimation of local shear stresses is given 

only for laminar flows (see Section 3.2.2). For the general case (i.e., 
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either laminar or turbulent flows) an approximate evaluation of stresses 

is given by the use of the mean resistance coefficient under the wave, 

which was estimated as follows. The theoretical estimates of the mean 

resistance coefficient of smooth laminar flows were obtained from Eq. 

(3.49), while experimental values were obtained for both smooth and 

rough beds by substitution of the experimentally measured values of 

d(H/h) . 
d(x/h) (where H is the wave height, h is the wate~ depth, and x is a 

stationary coordinate along the wave tank) into Eq. (3.36). The values 

d(H/h) 
of d(x/h) were measured as follows. Four wave gages recorded the wave 

at four different stations along a 60 ft (18.3 m) section of the wave 

tank and the values of (H/h). (i 
1 

1,2,3,4) were evaluated from the 

record. The ratio of the wave height to the water depth was found to 

decrease exponentially along the wave tank, i.e., 

H 
- = 
h (H) -k x - e h 

h 0 
(5. 8) 

where k is the decay coefficient. The origin of x is chosen arbitrarily, 

and (H/h) is the value of H/h at x=O. The values of (H/h) and k were 
0 0 

evaluated employing the experimental values of (H/h). and using a 
1 

least-squares fit technique, i.e., 

(5.9) 

The value of ~~~~~~ was then obtained from the exponential decay relation-

ship, 



d(H/h) 
~-~= 

d(x/h) 
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H -k -
h (5.10) 

During the experiment, the variation of the wave height resulted in a 

variation of :~:j~~ along the channel . In order to obtain a representa-

tive experimental data point from the experiment, a representative 

[ 
d(H/h) J . value, d(x/h) rep' was estimated as follows. The ratio of the wave 

height to the water depth which occurs at approximately midway along the 

tank, i.e. , between the second and third measurement stations, was 

considered as a representative value, (*)rep· 

into Eq. (5.10) yields: 

Substitution of ( *) 
rep 

[ d(H/h) J = -k(H) 
d(x/h) rep h rep · 

(5 .11) 

An example of an experimental result for a rough bed is shown in Fig. 

5 . lOa, and for a smooth bottom in Fig. 5.lOb. The abscissa is x/h, and 

the ordinate is H/h in both figures . The figures indicate that the wave 

attenuation is indeed exponential since the deviations of the measured 

values of H/h from the fitted exponential curves are negligible. 

The decay coefficient , however, is not constant for the entire 

range of wave amplitudes. This is illustrated by the different curves 

in Fig. 5.10, where the slopes of the lines, and hence the values of k, 

vary for different ranges of H/h at the same water depth . This means 

that if the wave tank were long enough for the wave to decrease in 

height considerably, the decay would not be exponential over the entire 

length of the tank, and Eq. (5.8) would be invalid . It seems sufficient, 

however, to use the decay coefficient, k , evaluated for each experiment 
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from the relatively short (60 ft) distance, over which the wave height 

did not decrease appreciably. 

Ippen et al. (1955) artificially increased the distance over which 

the wave traveled by measuring the wave reflected from vertical walls at 

the ends of the wave tank. Their procedure was not used in the present 

investigation since the transient trailing waves might interfere with 

the measurements of the reflected wave. 

Experiments were conducted over a smooth bottom and over rough beds 

of 15.9 mm thick layers of material with mean diameters, D , of 5.23 mm 
s 

and 7.55 nun . The experiments with the smooth bottom and the 5.23 mm 

roughness were conducted with water depths of 12.8 cm, 14.5 cm, 18.5 cm, 

and 26.2 cm, and over the 7.55 mm roughness with 14.5 cm, 18.5 cm, and 

26 . 2 cm water depths. These values provided a range of roughness-to-

depth ratios (D /h) from 0 . 020 to 0.052 . Some values of D /h were 
s s 

repeated with the two different roughnesses. The reason for running the 

experiments at the same depths over both smooth and rough bottoms was 

to obtain results which could be used to correct the values of the resis-

tance coefficient of rough beds for wall effects. The experimental data 

are presented in Appendix II, Table A.2.2. 

The results showing the mean resistance coefficient, Cf , as a 
b 

function of the flow Reynolds number, Re, are plotted in Fig. 5.11. 

The theoretical estimates of the mean resistance coefficient of a smooth 

bottom were obtained for waves of given height and depth by numerical 

evaluation of Eq . (3 . 49) . The corresponding values of the flow 

Reynolds number were obtained from Eq. (3.22). The theoretical curve 
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1.522 
IRe (5.12) 

This expression may be compared to Cf = 1.33/r'Re found theoretically by 
b 

Blasius (e.g., see Schlichting (1968)) for a steady flow over a flat 

plate, and also experimentally by Ippen and Kulin (1957) for solitary 

waves, or to Cf = 2//Re found by Jonsson (1966) for oscillatory flows. 
b 

Blasius defined the Reynolds number as Re uL 
\) 

where u is the (constant) =-

free stream velocity, L is the length of the plate and v is the kinematic 

viscosity of the fluid. 
Tmax umaxao 

Jonsson defined Cfb = -
1
---

2
- and Re = ~-v-

2 pwumax 

shear stress, u is the maximum fluid particle 
max 

where T is the maximum 
max 

velocity, pw is the density of the fluid, and a
0 

is the amplitude of the 

fluid particle displacement just outside the boundary layer. Ippen and 

Kulin defined the Reynolds number in a similar way to that which is used 

in the present investigation, i.e., Re= Js u~s , wheres is the fluid 
0 

particle displacement near the bottom under the solitary wave. The 

difference between the results of Ippen and Kulin and those described 

by Eq. (5.12) is probably due to the different expressions for the 

velocity used in evaluating the Reynolds numbers in these investigations, 

and to the different relationships used to estimate the resistance co-

efficient. Their original data, however, were unavailable so it was 

impossible to determine the exact reasons for the differences between 

their results and those of the present investigation. 

The experimental results shown in Fig. 5.11 for a smooth bottom 

seem to agree reasonably well with the theoretical curve described by 
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Eq . (5.12) . The relatively large scatter of data is believed to result 

from errors in measurements. The relative error of the wave gages used 

was estimated at approximately 1% of the wave height. This error is of 

the same order of magnitude as the attenuation of waves over the smooth 

bottom. It can be seen in Fig. 5.lOb that the wave height decreased 

between 3% and 9% for the range of H/h considered while traveling over 

a distance of 18.6 m. The measurement error was of second order for the 

case of rough bottom, as seen in Fig . 5.lOa, where the amplitude attenua-

tion was between approximately 25% and 35%. The amplitude attenuation 

varied for different water depths and roughness diameters. However, in 

all of the experiments the attenuation was much smaller for a smooth 

bottom than for a rough one. This was expected because of the smaller 

shear stresses exerted by the smooth surfaces compared to the rough 

bottom. Thus the relative error in evaluating ~~=j~~ for a smooth 

bottom was much larger than for rough beds, resulting in a large scatter 

of data. 

The reasonably good agreement between the theoretical and the 

experimental results for a smooth channel justifies the theoretical 

wall effect correction in the measurements of the mean resistance co-

efficient of rough bottoms. This correction is given by the second term 

of the numerator on the right-hand side of Eq. (3.36), and it was usually 

smaller than 10% of the mean resistance coefficient of the rough bed. 

Note that the maximum value of the flow Reynolds number observed in the 

experiments is approximately l.8xl0 5 • This Reynolds number is defined 

in a similar way to that of a flat plate, where the flow is laminar 
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for Re< 2.5xl0 5 . This justifies the laminar boundary layer considera-

tions in evaluating the mean resistance coefficient of smooth bottoms. 

As noted in Section 3.2.2, a discrepancy between the theoretical 

and experimental results was expected, due to approximations in the 

theoretical analysis, where only the linearized form of the equations 

of motion was considered, and due to the possible separation of boundary 

layer at the rear of the wave, where laminar boundary layer considera-

tions are no more valid. Such a discrepancy should result in a syste-

matic deviation of the experimental data points from the theoretical 

curve. However, it is seen in Fig. 5.11 that the scatter of data 

points is random. Therefore, the inaccuracy due to the theoretical 

approximations is considered to be negligible. 

The experimental results of the mean resistance coefficient for 

rough bottoms, already corrected for wall effects, are shown in Fig. 

5.11 as a function of the flow Reynolds number. The mean resistance 

coefficient appears to depend on the flow Reynolds number and on the 

absolute value of the roughness diameter, D , for waves of small 
s 

Reynolds numbers . As can be seen in Fig. 5.11, the term "small" for 

the Reynolds number varies for each set of data points (represented in 

the figure by a different symbol). It was noted in all of the experi-

ments that this range of Reynolds numbers occurred for waves of H/h 

smaller than 0.45 (it varied in the experiments between 0.40 and 0.48). 

For waves of large relative height, i.e., for H/h> 0.45, the resistance 

coefficient seems to depend solely on the relative roughness, D /h. 
s 

Ippen et al. (1955), and Ippen and Mitchell (1957) also found that the 

mean resistance coefficient is a function of the absolute value of the 
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bed particle diameter. However, they did not observe the dependence on 

D /h for waves of large relative height . 
s 

The dependence of the mean resistance coefficient on the absolute 

value of the roughness diameter, D , as shown in Fig. 5 . 11 is not 
s 

practical for general use, since it cannot be applied to cases with 

roughnesses other than those tested. Jonsson (1966) and Kamphuis (1975) 

showed that for oscillatory flows over a rough bottom the resistance 

coefficient is a function of the wave Reynolds number, defined as 
u a 

Re = max 0 d h D / · h h d v , an a roug ness parameter, s a 0 , in w ic a 0 an umax are 

the displacement amplitude and the maximum velocity of a fluid particle 

just outside the boundary layer. They also showed that when the flow 

is rough turbulent the mean resistance coefficient depends only on 

Ds/a0 . They developed their analysis from boundary layer considerations 

similar to those of a flat plate in a steady flow, assuming that the 

effect of the ratio of the roughness size, D , to the length of the 
s 

plate, L, is analogous to the effect of the parameter Ds/a0 . (For details 

about the resistance coefficient of a flat plate see, for example, 

Schlichting (1968)). Note that if~ is the maximum displacement of a 

fluid particle just outside the boundary layer, then for oscillatory 

flows ~ = 2a
0

• It follows that if it is assumed in the present investiga­

tion that the mean resistance coefficient is independent of the Reynolds 

number (this assumption will be discussed later in this section) , then 

it should be a function of only D /~ . The experimental data of the 
s 

mean resistance coefficient are shown as a function of D /~ in Fig. 5.12 , 
s 

where the fluid particle displacement, ~.was evaluated from Eq . (3.24) . 
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Kamphuis' (1975) empirical relationship for the resistance coefficient 

under oscillatory flows is shown in Fig. 5.12 for the convenience of refer-

ence. Note that Kamphuis used a roughness parameter, k , which in his ex­
s 

periments was approximately equal to 2.6D . It appears from this figure 
s 

that the data of the present study display a different behavior than that 

found by Kamphuis, where the resistance coefficient is a function of only 

D /~. The experimental results of the present study show that, in addition 
s 

to D /~, the mean resistance coefficient depends on the ratio of the mean 
s 

roughness diameter to the water depth, D /h. The differences between 
s 

Kamphuis' results and the results of the present study are probably due to 

the differences between the nature of the flows in the two studies. Kamphuis 

conducted his experiments by oscillating the fluid in a closed tunnel and 

measuring the stresses exerted on a plate, while in the present study there 

is a solitary wave traveling into quiescent water in an open channel, 

where the attenuation of the wave is measured. Yet, specific reasons for 

the differences between the results of the two studies (i.e., reasons 

which explain why the differences in the nature of the flow cause the 

different results) are not understood. The experimental data shown in 

Fig. 5.12 indicate that, in addition to the effects caused by the pro-

trusion of the roughness particles relative to the fluid particle dis-

placement (which is assumed here as being analogous to the parameter 

D /Lin the case of a turbulent steady flow over a rough plate), 
s 

there are effects which are described by the parameter D /h. In 
s 

Section 3.2.1 it was noted that inertia effects may also be important , 

in addition to the effects of the parameter D /~. The inertia effects 
s 

were described by the dimensionless acceleration, and a characteristic 

dimensionless acceleration was given by Eq. (3.28). 
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However, in Eq. (3.33) it was shown that the characteristic dimension-

less acceleration may be represented by the parameter D /~, and indeed, 
s 

the data presented in Fig. 5.13, in which the mean resistance coefficient 

is shown as a function of 

s du s du 
[ 

D J ( D 
u2 dt char = ~ ( dt) 

the characteristic dimensionless acceleration, 

, as given by Eq. (3.28)), indicate that 
max max 

the effects of D /~ (Fig. 5.12), 
s 

are similar to the effects of the 

dimensionless acceleration (Fig. 5.13). Hence, since the two effects 

are described by the same parameter, it is impossible to point out which 

effect is due to acceleration and which to the effects of the rough 

turbulent flow. Furthermore, the data shown in Figs. 5.12 and 5.13 

imply that the characteristic dimensionless acceleration as given by 

Eq. (3.28) probably does not describe the actual inertia effects on the 

mean resistance coefficient, since if all the physical effects are 

described by the same parameter, D /~, then the resistance coefficient 
s 

should be a function of this parameter alone. Yet, it appears to be 

also a function of D /h, hence, some of the effects should be described 
s 

by a different parameter. It is important to remember that the choice 

of the dimensionless acceleration as given by Eq. (3.28) was based on 

the assumption that the ratio of the maximum inertia forces to the maxi-

mum drag exerted on the roughness particles indeed represents inertia 

effects. On the other hand, inertia forces seem to cancel out when 

integrated over the waves. This implies that they may have effects on 

local resistance coefficients under the wave, but not on the mean 

resistance coefficient, which is obtained by integrating the product of 

the forces by the fluid particle velocity along the wave. Apparently, 

inertia effects should be examined considering the manner in which they 
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affect the development of the boundary layer rather than their effects 

on inertia forces. In addition, it is noted that the dimensionless 

acceleration was evaluated using Boussinesq's (1872) theory for the 

solitary wave, and it might not represent the actual characteristic 

dimensionless acceleration. In Section 5.1.3 it was shown that the 

differences among the theories of Boussinesq (1872), Mccowan (1891), 

and the measured fluid particle velocity may be considered as being 

small. Hence, it was assumed that the fluid particle acceleration is 

described fairly accurately by the two theories. However, as can be seen 

in Section 5.3.2, Figs. 5.21 and 5.22, the differences between the 

theories of Boussinesq and McCowan are quite significant when used to 

predict the inertia forces relative to drag forces. This means that 

conclusions regarding the effects of inertia, assuming that it is 

described by the dimensionless acceleration, depend on how accurately 

the dimensionless acceleration is estimated. 

From the preceding discussion it follows that due to the uncertain­

ties involved in interpreting the actual inertia effects on the mean 

resistance coefficient, a relationship which may be used to estimate 

this coefficient can be presented only empirically by fitting curves to 

the experimental data. The disadvantage of such an (empirical) relation­

ship is that it may be inaccurate when used to estimate the resistance 

coefficient by extrapolation to values of the parameters much different 

from those tested, since it is not known if the physical laws that 

govern this relationship are still valid beyond the range of the 

parameter values for which it was obtained. An empirical relationship 

is presented graphically in Figs. 5.12 and 5.13 by the curves which 
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were fitted by inspection to the data. Now, since Fig. 5.12 shows a 

dependence on D Is and D lh, and since s is a function of h and Hlh, as s s 

shown by Eq. (3.24), the mean resistance coefficient can be described 

as a function of D lh and Hlh. Such a relationship was also deduced 
s 

from geometrical considerations in Section 3.2.1. The disadvantage of 

presenting the mean resistance coefficient as a function of D Is is that 
s 

it requires some theoretical relationships in order to estimate D Is 
s 

from the measured parameters D , h, and H, while presentation of the 
s 

resistance coefficient as a function of D lh and Hlh is obtained from 
s 

directly observed quantities. Essentially though, once an expression 

is given for D Is, there is no preference of one parameter over another. 
s 

The experimental data, showing the mean resistance coefficient as 

a function of D lh and Hlh are presented in Fig. 5.14, where the abscissa 
s 

is Hlh and the ordinate is Cfb· The various values of D lh are noted in 
s 

this figure for the different curves which were fitted (by inspection) 

to the data. The results shown in this figure will later be used to 

estimate the dimensionless shear stress employed in the investigation of 

the incipient motion of bottom material under solitary waves. 

When presenting the experimental data in Figs. 5.12, 5.13, and 5.14, 

it was assumed that the resistance coefficient is independent of the 

Reynolds number. This assumption may be justified if it is shown that 

the flow was rough turbulent during the experiments. In Section 5.1.3 

it was shown from laminar boundary layer considerations that the size 

of the bed roughness was larger than the thickness of the laminar 

boundary layer. Therefore, it was concluded that the roughness size 

was certainly much larger than the laminar sublayer if the flow was 
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considered as being turbulent . Hence, the flow must be rough turbulent. 

However, the example in Section 5 . 1.3 was given only for a single wave 

with H/h = 0.49 in 30 cm of water. In the following it is shown from 

turbulent boundary layer considerations that the flow was rough turbu-

lent throughout the experiments. 

Schlichting (1968) showed that the flow may be considered as rough 

turbulent if 

> 70 (5 .13) 
\) 

where u* = ITb/pw is called the shear velocity, in which Tb is the bottom 

shear stress, and pw is the density of the fluid. Assuming (as an 

approximation) that the bottom shear stress is described by the mean 

resistance coefficient, i.e ., 

(5.14) 

where Cfb is the mean resistance coefficient and u is the fluid particle 

velocity outside the boundary layer, then for rough turbulent flows, 

Eq. (5.13) yields 

> 70 (5.15) 
\) 

Considering the waves that were generated during the experiments, 

substitution of the fluid particle velocities of these waves (calculated 

from Eq. (3.8)) with the corresponding mean resistance coefficients 

(which are given in Appendix II, Table A.2.2) into Eq . (5.15) indicates 

that all the experiments in the present study were conducted in the 
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rough turbulent flow regime. Hence it was reasonable to assume that the 

mean resistance coefficient was independent of the Reynolds number. 

In addition, it is noted that the independence of the resistance 

coefficient of the Reynolds number may also be concluded from dimen-

sional analysis considerations. An inspection of the expressions which 

describe the various dimensionless parameters involved in the problem 

(i.e., the Reynolds number, Re (Eq.(3.22), the relative wave height, 

H/h, and the relative roughness, D /h) indicates that it is impossible 
s 

to simultaneously maintain geometrical and Reynolds number similarities 

between two models of different geometrical dimensions. This means that 

if the mean resistance coefficient is the same for two differently sized 

models which are geometrically similar, then it must be independent of 

the Reynolds number, because it has the same value for two different 

Reynolds numbers. Furthermore, maintaining similarity due to Reynolds 

number implies that there is no geometrica l similarity, and since the 

resistance coefficient is not the same in two models which are not 

geometrically similar, the same Reynolds number must admit two different 

resistance coefficients. Since in the present study the mean resistance 

coefficient was shown to depend only on dimensionless geometrical 

parameters, it was concluded that it was independent of the Reynolds 

number. Yet, this conclusion must be considered carefully, since the 

difference between the Reynolds numbers in two geometrically similar 

experiments in the present investigation was not large. Considering 

the sizes of the roughness particles and the water depths used in the 

experiments, it can be shown (employing Eq. (3.22) that the ratio 

between the Reynolds numbers in two geometrically similar experiments 
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was approximately 1.7. Hence, the differences between the Reynolds 

numbers in the experiments might not be large enough to conclude that 

the mean resistance coefficient is completely independent of the 

Reynolds number. The justification for the assumption that the resis­

tance coefficient is independent of the Reynolds number is therefore 

inconclusive when it is based on dimensional analysis considerations. 

However, the boundary layer considerations presented earlier in this 

section seem to have justified this assumption. 

The results of the investigation of the mean resistance coefficient 

under solitary waves were employed in the study of the incipient motion 

of bottom material which is described in the following section. 

5.3 THE INCIPIENT MOTION OF BED MATERIAL 

5.3.1 The Incipient Motion of Particles of Arbitrary Shape 

The results of the experimental investigation of the 

incipient motion of material of arbitrary shape are presented in this 

section. The theoretical considerations presented in Section 3.3.1 

suggest that the incipient motion should be a function of a dimension­

less shear stress, but as no functional relationship was obtained, the 

results were obtained experimentally. In the experimental investigation 

of the incipient motion of spheres, which is presented in the following 

section, the procedure consisted of an observation of the motion of a 

single isolated sphere. However, in the investigation of the incipient 

motion of particles of arbitrary shape it was impractical to consider 

the motion of a single particle. The reason is that the motion of the 

particle is affected by its particular shape and placement in the bed, 
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and observations of the incipient motion of a single particle may not 

represent the entire bed. The results presented here are from observa-

tions of motion in the entire bed, pertaining to the incipient motion of 

rocks . The amount of motion in the bed, defined as the ratio of the 

number of moving particles, N , to the total number of particles exposed p 

to the flow , Np , was measured using the technique described in Section 
T 

4.4.3. The experiments were conducted over a sloping bottom with a 

slope of 1:200 . This enabled the generation waves of extreme height s 

(up to breaking) over the test section. Over a horizontal bottom it 

was impossible to generate waves with large height-to-depth ratios at 

large depths. For example, the l argest value of H/h obtained in the 

wave tank over a horizontal bottom at 25 cm of water was approximately 

0 . 55 . 

Preliminary experiments indicated that the first waves passing 

over a newly prepared bed caused significant motion of material. This 

motion decreased with each consecutive wave until it appeared to reach 

an asymptotic value. The numbe r of moving particles , N , is shown as 
p 

a function of the number of waves, NW, in Fig. 5.15 for a particular 

experiment. The decreasing number of moving particles with increasing 

number of waves is probably due to the manner in which the gravel was 

loosely packed and leveled in the test section. The bed became more 

tightly packed as the number of waves to which it was exposed increased , 

resulting in less motion. Eventually, a condition was reached where 

the amount of motion (averaged over a certa in number of wave s) became 

constant. It appears in Fig. 5.15 tha t some data point s for the amount 

of motion are not randomly scattered around s ome optimal curve, but 
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oscillate with a period of about five waves. For a very small amount of 

motion the oscillation is small and the scatter appears more random. 

The reasons for the oscillatory nature of the data are not known and were 

not investigated here. The present research was limited to the investiga­

tion of the stability of an already packed bed, and not to the process 

by which the packing develops. Measurements were begun after a large 

number of waves (100 to 300) had passed over the bed and the packing 

seemed to be complete. The amount of motion was averaged over fifteen 

consecutive waves. The reason for having fifteen waves in a sample of 

measurements lies in the experimental equipment where no more than 

sixteen photographs (from which the motion was measured, see Section 

4.4.3) could be developed in a single processing. These fifteen waves 

appear to give an adequate sample since they cover more than two cycles 

of the oscillatory nature of the amount of motion, as seen in Fig. 5 . 15 . 

The procedure was repeated with a second set of fifteen waves after 

generating approximately thirty more waves, in order to determine 

whether the packing of the bed was completed. If the average amount of 

motion in the two sets of measurements was approximately the same, the 

process was considered to have reached its asymptotic value, and the 

bed completely packed . 

As the present study consists of an attempt to model the prototype 

in the ocean, where loose rock pavements are used to protect offshore 

pipelines, outfalls, etc., it is important to note that the same packing 

process apparently occurs in nature. The rock is designed to remain 

stable under a prescribed wave of given height and depth. The design 

wave is usually very Jarge , and based on statistical calculations, it is 
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expected to take place in a storm which occurs only once in a period of 

a prescribed number of years. If the rock pavement is of a limited 

number of rocks covering a limited area, and the design wave travels 

over the pavement immediately following its construction, then the wave 

may destroy the pavement by removing most of the rocks. However, since 

the design wave occurs only once in a large number of years, it is ex­

pected that by the time this wave occurs, the rock should have been 

exposed to a large number of smaller waves which caused only small 

motions, and completed the packing of the rock structure. 

During the experiments it was noticed that the nature of the bed 

surface changed significantly while the packing process was taking 

pla ce . A cross-sectional drawing of the test section in a plane parallel 

to the direction of the wave propagation is shown in Fig. S.16a,b. In 

Fig. S . 16a the bed is shown immediately after placing and leveling the 

part i cles in the test section, before beginning the experiments, and the 

surface of the bed appears to be fairly smooth. During the packing 

process , the par ticles which had been removed from their positions were 

placed in locations where they got locked in, and their orientation with 

respect to the bed surface was changed. The completely packed bed is 

shown in Fig. S . 16b, where the bed surface appears to be rough, compared 

to the surface before beginning the experiments. When running more waves 

over the bed, the particles which protrude into the flow above their 

neighbors are subjected to hydrodynamic forces larger than those exerted 

on their neighbors . Hence, if s ome motion occurs in the bed, it is 

assumed that these particles are the first ones that move. The signifi­

cance of this assumption will be discussed later in this section. It 
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should be noted, however, that this assumption was not verified, as 

during the experiments it was impossible to detect whether the moving 

particles indeed were those that protrude above their neighbors. 

The experimental data which were obtained with the packed bed, 

i.e., in which the amount of motion had reached its asymptotic value, 

are presented in Appendix II, Table A.2.4. The test section and the 

characteristics of the material used in the experiments are described 

in Section 4.4.3. The experiments with the natural rock (specific 

gravity, p /p = 2.68) were conducted with water depths of 18.5 cm and 
s w 

26.2 cm, and with wave height-to-water depth ratios (H/h) varying from 

0.60 to 0.88 . Over the coal (p /p = 1.283) H/h had values of 0.25 at 
s w 

water depths of 14.5 cm and 26.2 cm, and 0.34 at 14.5 cm of water. The 

experiments with the coal particles required relatively small waves since 

larger waves disturbed the structure of the bed significantly and were 

considered to be destructive. 

As noted earlier, theoretical analysis showed that the amount of 

motion in the bed, N /Np , is a function of a dimensionless shear stress, 
p T 

T*. This dimensionless shear stress, which is similar to the Shields 

parameter, has the form 

(P -P )gD 
s w s 

(5 . 16) 

where Tb is the bottom shear s t ress, p and p are the densities of the 
s w 

bed material and the water respectively, g is the acceleration due to 

gravity, and D is the mean diameter of the particles. The shear 
s 

stresses exerted on the bed by the waves were evaluated using the 



151 

results of the mean resistance coefficient presented in Section 5.2. 

Substituting Tb 1 - 2 -2 P Cf u in Eq. (5.16) yields 
w b 

(5 .17) 

where Cf is the mean resistance coefficient, and u is the fluid particle 
b 

velocity under the solitary wave, calculated from Eq. (3.8). Since the 

resistance coefficient used in Eq. (5.17) is only an average value 

(averaged over the wave), the maximum value of the right-hand side of 

Eq. (5.17) is obtained by substituting into it the maximum value of the 

velocity under the wave. For the solitary wave given by Eqs. (3.6), 

(3.7), and (3.8), the maximum value of Eq. (5.17) yields 

T *max 

Cfbh(H/h) 2 

(5.18) 

where T* is the maximum value of the dimensionless shear stress, h is 
max 

the water depth, and H is the wave height. The value of Cf to be 
b 

sub stituted in Eq. (5.18) was estimated for given particle diameter, 

water depth, and wave height from Fig . 5 .14. As noted in Section 3.2, 

this average value, Cfb' may not necessarily represent the actual resis­

tance coefficient, because of inertia effects, and since the maximum 

shear stress does not necessarily occur under the wave crest (i .e., at 

the point of maximum velocity). Therefore, Eq. (5.18) may not give the 

actual maximum value of the dimensionless shear stress. However, it is 
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assumed that the actual maximum dimensionless shear stress can be 

represented by Eq . (5.18) on a comparative basis. This means that the 

actual dimensionless shear stresses are assumed to be large for cases 

in which the value of the expression given by Eq. (5.18) is large, and 

they are assumed to be smaller for smaller values of this expression. 

Therefore, Eq . (5.18) is considered as describing a representative 

dimensionless wave shear stress which may be used to define the condi-

tions required for incipient motion of material of arbitrary shape. 

The measured values of N /Np are shown as a function of T* in 
P T max 

Fig . 5 . 17. The number printed next to each data point in this figure 

indicates the total number of experiments in which this same data point 

was repeated (i . e., the same amount of motion with the same T* ). These 
max 

data are also presented in Appendix II, Table A.2.4. The large scatter of 

data seen in Fig. 5 . 17 is due to the random nature of the amount of motion 

and the limited area of the test section. The motion was observed in a 

total area of 91 . 4 cm x 50.5 cm, and the total number of moving particles 

was of order of 10. It was expected that the number of moving particles 

would vary when repeating the experiment under identical conditions (i.e., 

the same wave height and water depth) due to the random distribution of 

the motion over the -bed surface . Since the number of the moving particles 

was small, a slight variation of this number resulted in a large varia-

tion of N /Np , as seen in Fig. 5.17. Presumably, a large test section 
p T 

would yield a larger sampling area with less data scatter. 

The experimental data shown in Fig. 5 . 17 appear to be scattered 

around some optimal curve displaying the expected trend of increasing 

amount of motion with the dimensionless shear stress. The optimal 
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curve is obtained by averaging the amount of motion for each value of 

T*max and fitting a curve through the averaged data. The average amount 

of motion is shown as a function of T* in Fig. 5.18. The data are max 

also presented in Table 5.1. 

The results of the experiments with the 11.1 mm coal particles at 

water depth of 14.5 cm under a wave of H/h = 0.335 are seen in Fig. 5.18 

to disagree with the rest of the data, as they have a large value of 

Np/NpT at a relatively small value of T*max· It is assumed that since 

the total thickness of the coal layer was only 5/8 in. (15.9 mm) the 

large coal particles could possibly slip over the smooth bottom under-

neath , resulting in a fairly large amount of motion. Another reason for 

the discrepancy could lie in the error in evaluating T* . In Table max 

5.1 (Column (5)) it is seen that the range of most of the values of D /h 
s 

is between 0.020 and 0.052 and therefore the values of Cf (Table 5.1, 
b 

Column (6)) were obtained from interpolation of the curves shown in 

Fig. 5.14. The value of D /h for the 11.1 mm coal particles at h = 14.5 
s 

cm is 0.0766 which is beyond the range of the experiments from which 

Cf was determined . In this case Cf had to be obtained from extrapola-
b b 

tion of the curves in Fig. 5.14, and its error is possibly larger than 

that of the other data points. Yet, the experimental results with the 

same particles (under waves with H/h 0.25 at water depths of 14.5 cm 

and 26 .2 cm) do not appear to disagree with the rest of the data like 

the result with H/h = 0 . 335 at 14.5 cm of water. The reason for the 

discrepancy is therefore not complet ely understood. It is possible 

that during the packing process, when the first waves passed over the 

bed, the bed structure was disturbed for some unknown reason, resulting 
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Fig . 5 . 18 The average amount of motion of particles of arbitrary 
shape as a function of the dimensionless shear stress. 
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in a large asymptotic value for the amount of motion. This point is 

ignored in fitting the curve to the data in Fig. 5 .18. 

The curve through the data in Fig. 5.18 was obtained using a 

least-squares fit technique. Assuming that N /Np is described by a 
p T 

straight line, 

(-) N 
_e_=a+b-r 
N *max PT 

(5.19) 

and employing the least-squares fit formulation, i.e., 

minimum (5.20) 

in which Nd is the number of data points, the values of a and b were found 

-4 -2 to be a = -6.36xl0 , and b = l.2lx10 . The curve in Fig. 5.18 is then 

described by 

( :E )=-6 .36xlo-
4 + 0.0121 

PT 
T *max (5. 21) 

Following the procedures of error analysis (e.g., see Bevington (1969)), 

it was found that the standard deviations of the coefficients a and b 

-4 (due to the scatter of data shown in Fig. 5 .18) are a = l.27xl0 , and 
a 

-3 ab = l.24xl0 . These values will later be used to describe the possible 

errors in determining the diameter of the rock designed for incipient 

motion. Considering the incipient motion to be defined as the event in 

which N /N = O, it is found from Eq. (5.21) that at incipient motion 
p PT 

T*max = 0.053. By employing Eq. (5.18), this value can be used to 

design the rock for incipient motion, when the wave height, the water 
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depth, and the specific gravity of the rock are given. Furthermore, if 

some amount of motion in the bed is allowed, the corresponding value of 

T* which is evaluated from Eq. (5 . 21) can be substituted into Eq . max 

(5 . 18) to design the rock for the allowed amount of motion. In order to 

estimate the diameter of the rock, Eq . (5.18) is rewritten in the form 

(5.22) 

2T ( ~ -1) ( 1 + H ) *max p h 
w 

Note that the mean resistance coefficient in Eq. (5.22) is a function of 

H/h and D /h (see Section 5.2, Fig. 5.14) . Unless the functional rela­
s 

tionship between Cf , H/h, and D /h is given explicitly, Eq. (5.22) will 
b s 

have to be solved by trial and error. A study of the variation of Cf with 
b 

D /h for a given value of H/h as shown in Fig. 5 . 14 resulted in an empirical 
s 

relationship, expressed 

(5.23) 

where K*[( *)] denotes a function of H/h. Numerical values of K* for 

given values of H/h were obtained from the empirical relationship. For 

H/h > 0. 45 it was found that K* 0.27 . This value, substituted in Eq . 

(5.23) is used in the following example. 

PS 
Consider a rock with specific gravity, - = 2 . 65 , and determine 

PW 

the ratio of its diameter to the water depth (D /h) , required for in­
s 

cipient motion, under a wave with a height-to- depth ratio,*= 0 . 75 . 

As noted earlier, it was found from Eq. (5. 21) that T = 0 . 053 at 
*max 

incipient motion. Substituting this value, combined with the given value s 

of H/h , p /p , and Eq. (5.23) into Eq. (5.22) yields D /h = 0 . 150. In 
s w s 



159 

considering this value of D /h for incipient motion of the rock it is 
s 

necessary to point out possible errors in its evaluation. First, it was 

noted in Section 5 . 2 that the largest value of D /h for which the mean 
s 

resistance was obtained was 0.052. Hence , the empirical relationship 

described by Eq. (5.23) may not be valid for D /h = 0.150, for which it 
s 

was used in the present example. Second, an error in the value of T* max 

at incipient motion is expected due to the scatter of data shown in Fig. 

5.18 . Assuming that this error is defined by the standard deviation of 

-4 the coefficients a and b in Eq. (5 .19) (where it was found that a= -6. 36xl0 , 

-4 -2 -3 oa = l.27x10 , b = l.2lxl0 , and ob= 1.24xl0 ) , it follows that at 

incipient motion T* = 0 .053±0 .011, i.e., an error of approximately ±20% . 
max 

Considering the above example (i.e., 
D 

0.042, Eq. (5.22) yields hs = 0.282. 

ps H 
- = 2. 65, and -h = 0. 7 5) , for T * = 
Pw max 

Thus an error of 20% in T* (from 
max D 

0.053 to 0 . 042) results in an approximately 90% error in estimating : 

(from 

0.090 
D 

s 
11" 

0.150 to 
D 

s 
for 11· 

0.282). For T* =0 .064 Eq. (5.22) yields a value of 
max 

Here an error of 20% in T* results in a 40% error in 
max 

Again, note that the value of the mean resistance coefficient used 

in both of these examples may be inaccurate due to the values of D /h for 
s 

which it was used. Consider the above example for a wave with H/h = 0. 50 . 

This yields D /h = 0.0255 for incipient motion. This is within the range 
s 

of D /h used in the investigation on the resistance coefficient, hence it 
s 

might be expected that the error in this value of D /h is smaller 
s 

than that in the preceding example. However, even when D /h is sought for 
s 

the case where Cf does not have to be found by extrapolation, it can be 
b 

shown that a small error in T* results in a large error in D /h for max s 

incipient motion. Substitution of Eq. (5.23) into Eq. (5.22) indicates 

Ds [f(H/h)J2.70 that 11"' T for all values of H/h and Ds/h, and an error of ±20% 
*max 

in T* results in -39% and +83% error in D /h from this relationship. 
max s 
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Two conclusions can be drawn from the preceding example . First, 

so far as incipient motion of natural rock under waves of large rela tive 

height is concerned , it appears that the range of D /h which was used 
s 

to estimate the mean resistance coefficient is inadequate. Second , 

although a discrepancy of 20% in estimating the dimensionless shear 

stress for incipient motion may not be considered as being too large, 

it results in a large error in estimating the diameter of the rock. 

It concludes that the results obtained from observing the motion of 

particles of arbitrary shape and correlating this motion to a dimension-

less shear stress is inadequate when used to design the rock for incipi-

ent motion. Now, earlier in this section it was assumed that the moving 

particles are those which protrude above t heir neighbors into the flow 

region. Since the forces exerted on these particles are larger than 

those exerted on their neighbors, and as these forces include inert i a 

and lift components which are not described by the mean resistance 

coefficient, it is possible that the mean resistance coefficient may not 

be used to represent these forces. In this case the physical conditions 

of a moving particle resemble those of an isolated sphere, as presented 

in Section 3.2.3, Fig . 3 .2. The results of the investigation of the 

incipient motion of a single sphere resting on top of a bed of spheres 

are presented in the following section, and a correlation between these 

results and those of the incipient motion of particles of arbitrary 

shape are presented in this section . 

5 .3.2 The Incipient Motion of Spher es 

The results of the theoretical and experimental investiga-

tions of the incipient motion of an isolated sphere resting on a 

horizontal bed of well-packed spheres are presented in this section. 
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The theoretical considerations have been discussed in Sections 3.2.3 and 

3.3.2, and are used to predict the wave height that would cause incipi-

ent motion of a particular sphere when the water depth and the diameter 

of the bed spheres are given. The relationship describing the incipient 

motion is given by Eq. (3.60) which, with the aid of Eqs. (3.55) and 

(3.59), is expressed as 

D 

[ i-c CD + CL tan</>) + CM ~ * J u 2 

( : s - 1) gD s tan¢ 
w 

1 (5.24) 

in which CD' CL' and CM are the drag, lift, and inertia coefficients 

respectively, describing the drag, lift, and inertia force components 

used in evaluating the hydrodynamic moment exerted on the sphere; D is 
s 

the diameter of the isolated sphere; u is the fluid particle velocity, 

estimated from the solitary wave theory at the level of the sphere in 

its absence; t is the time; p and p are the densities of the isolated 
s w 

sphere and the water respectively; g ( = 981 cm/sec 2) is the acceleration 

due to gravity; and ¢ is the angle between a normal to the bed and the 

moment arm passing through the point of force action and the axis around 

which the hydrodynamic moment tends to move the sphere. The diameter 

and the density of the isolated sphere, and the density and the depth of 

the water are considered as being given. Assuming that the hydrodynamic 

forces act at the center of the isolated sphere, then for a given 

diameter of the bed spheres, DB' the angle ¢ is defined by the ratio 

Ds/DB, and by the positioning of the isolated sphere on top of the bed 

with respect to the direction of the horizontal components of the 
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hydrodynamic force (which is assumed to be parallel to the direction of 

wave propagation). A description of the two positions studied in the 

present investigation is given in Section 4.4.2, Fig. 4.13, and is also 

shown in Fig. 5.19 in an isometric drawing. The geometry yields, for 

position I, 

1 
tancp

1 

V3G:t + 
D 

6 
s --1 

DB 

(5.25) 

and for position II , 

2 
tancp

2 Y3G:)
2 

+ 
D 

6 ~-1 
DB 

(5.26) 

The values of cp 1 and cp
2 

are plotted as a function of Ds/DB in Fig. 5.19. 

The coefficients appearing in Eq. (5.24) have the following values. 

The inertia and lift coefficients were calculated analytically for a 

sphere which is in contact with a smooth wall in an ideal fluid, and 

were assumed to represent the values of CM and CL in the present study. 

These calculations are presented in Appendix I, and they yield values of 

1.7 for CM (Eq. (A.1.18)), and 0.42 for CL (Eq . (A.1.19)). In estimating 

the drag coefficient, it was assumed that an instantaneous Reynolds 

number in an unsteady flow defines an instantaneous drag coefficient by 

the same relationship in which the drag coefficient is defined by the 

Reynolds number in steady flows. Thus, when a wave height and the water 

depth are assumed, the distribution of the velocity, u, along the wave 

is calculated from the solitary wave theory (see Section 3.1, Table 3.1). 
uD 

An instantaneous sphere Reynolds number , Res ~, in which v is the 
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WAVE DIRECTION 

POSITION l ~ ---------::: POSITION ll 

cp2 

1.0 2.0 3.0 4 .0 

Fig. 5.19 The angles ,i.. 't'l and cp 2 • 
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kinematic viscosity of the fluid, is evaluated from the velocity dis-

tribution, and the corresponding drag coefficient, CD, is obtained from 

charts which are used for steady flows (e.g., see Schlichting (1968), 

P · 17). 

The wave height that would cause incipient motion is obtained 

analytically by trial and error, as follows. A wave height is assumed 

(where D, p , p , ¢,and hare given), and the distribution along the s s w 

wave of the ratio of the hydrodynamic moment, ~· to the restoring 

moment,~· is calculated from the left-hand side of Eq. (3.24). The 
M 

I I\nax 
max imum value of ~MR is compared to unity. If ~ > 1, where Ml\nax 

is the maximum value of the hydrodynamic moment, the sphere will move. 

The procedure is repeated assuming different values of wave heights until 
M 

· b · d f h. h Rmax 1 Th d · 1 · d a wave 1s o ta1ne , or w 1c ~ = . e proce ure 1s exp a1ne 

schematically in Fig . 5.20, where the maximum value of ~/~ is shown as 

a function of H/h for two given spheres (given D and p /p ) at given 
s s w 

water depths and angles ¢. The fluid particle velocities and accelera-

tions for the examples shown in Fig. 5.20 were calculated using 

Boussinesq's (1872) theory for the solitary wave. As could be expected, 

Fig . 5.20 indicates that a light sphere requires a wave of small relative 

height for incipient motion; and a heavier sphere, posed at a larger 

angle ¢, requires a higher wave for incipient motion. 

The distribution of moments and forces under the waves that are 

predicted to cause incipient motion for the two cases shown in Fig. 5.20 

X ~fJH 
presented in Fig. 5.2la,b. The abscissa is 1.1Y4h where Xis a coordinate 

moving with the wave (X = x=Ct, in which x is a stationary horizontal 

coordinate, C is the wave celerity, and tis the time). There are three 
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1.8 

05(mm} ¢ ldegl 
H/h AT 

SYMBOL h (Cm) Da!mm) Ps!Pw POSITION INCIPIENT 
MOTION 

-0- 20.0 12.7 12.7 1.16 I~- 19.5 0.091 

-0- 20.0 127 12.7 2 .79 II ~- 353 0474 
1.6 

14 

12 

MHmox 
LOt-----<>-------------------..i~-------~ 

MR 

0.8 

0.6 

04 

0.2 

000.0 0.1 0.2 0.3 

H 
h 

0.4 0.5 0.6 

Fig . 5 . 20 A graphic illustration of the trial and error procedure 
used to determine the wave that causes incipient motion. 
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Fig . 5.21 The distribution of forces and moments exerted on a 
sphere under solit ary waves at incipient motion of 
the sphere (using Boussinesq' s theory). 

F, /Wsub; 

F0 /Wwb; 

F, /Wsub 

Fx /Wsub; 

fo/Wsub ; 

F;_/Wsub 



167 

ordinates: one ordinate represents the surface elevation normalized by 

the wave height (n/H); the second describes the hydrodynamic forces 

(calculated from Eqs. (3.51) and (3.52)) normalized by the submerged 

weight of the sphere, and is 
FD FI FL 

denoted by W- , -W-- , and W- , where 
sub sub sub 

Wsub is the submerged weight of the sphere, and FD, FI' and FL are the 

drag, inertia, and lift forces respectively; the third ordinate describes 

the distribution of moments and is denoted by ~. Note that the drag 

and lift forces are symmetrical .about the centerline of the wave, and 

the inertia force is anti-symmetric, being positive under the wave 

front and negative under the rear of the wave. This is due to the 

distribution of the velocity, which is symmetric, and the acceleration, 

which is anti-symmetric,under the solitary wave. The combination of 

moments due to the hydrodynamic forces results in a shift of the maximum 

hydrodynamic moment towards the wave front . This means that incipient 

motion is expected to occur under the wave front, at the point where 

~ 
~ 

1. 

As can be seen in Figs. 5.2la,b, the hydrodynamic moment has 

negative values under the trailing edge of the wave. A backwards motion 

of the sphere could therefore be expected for cases where the angle ~l' 

towards the negative X, is much smaller than ~ 2 in the direction of 

positive X. This is particularly important for a sphere placed on a 

sloping bottom, where the restoring moment against motion down the 

slope decreases for increasing slopes. However, such cases have not 

been studied in the present investigation. 

Note also that the lift and drag forces are of the same order of 

magnitude . This is because the drag and lift coefficients are 
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approximately equal. For the higher wave (Fig. 5.2lb), the sphere 

Reynolds number is of order of 10 3 , where CD= 0.4, which is slightly 

smaller than the lift coefficient (C1 = 0 . 42). The lift force under the 

crest is therefore slightly larger than the drag. For the smaller wave 

(Fig. 5.2la), the sphere Reynolds number is smaller than 10 3 and the 

drag coefficient is greater than 0.4 , resulting in drag forces slightly 

larger than lift. 

For both cases shown in Figs . 5.2la,b the maximum value of the 

inertia forces is small er than the maximum drag and lift, indicating 

that inertia forces are less important than lift and drag. However, the 

ratio between inertia and drag forces is larger for the smaller waves. 

This means that inertia effects relative to drag and lift are more 

important for smaller waves. The ratio of inertia effects to drag and 
D 

lift effects is described by the dimensionless acceleration u~ ~~ in 

Eq . (5.24). The expressions for the dimensionless acceleration which 

were given in Section 3.2 . 1 (Eqs . (3.27) and (3 . 28)) show that for a 
D 

· h d 0 d d h s du · f d · given sp ere iameter an water ept , u2 dt increases or ecreasing 

wave heights . 

It should be noted that the examples shown in Figs. 5.20 and 5 . 21 

were considered applying Boussinesq's (1812) theory for the solitary 

wave , and the conclusions which were drawn regarding the magnitude of 

the inertia forces relative to dr ag and lift forces were based on these 

considerations (in addition to the assumptions regarding the magnitude 

of inertia, lift, and drag coefficients; these a ssumptions will be 

discussed later). These considerations were justified by measurements 

of surface profiles, wave celerities, and fluid particle velocities of 
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solitary waves (see Section 5.1). However, it was noted that McGowan's 

(1891) theory, combined with Boussinesq's expression for the wave 

celerity, also describes the solitary wave fairly accurately. In the 

following it is shown that the two theories are quite different when 

used to estimate the hydrodynamic forces and moments exerted on the 

sphere. 

In Section 5.1.3 it was shown that the fluid particle velocity, as 

calculated from McGowan's theory, is smaller under the crest than that 

calculated from Boussinesq's theory. That was only a single example, 

in which a wave with h = 30 cm and H/h = 0.49 was considered. However, 

it can be shown that Boussinesq's theory predicts larger fluid particle 

velocity than McGowan's theory for all values of H/h. For small values 

of H/h the differences between the fluid particle velocities calculated 

from the two theories are small, and they increase with increasing 

values of H/h. It follows that for cases where drag and lift are 

dominant, Boussinesq's theory predicts larger hydrodynamic moments (due 

to larger fluid particle velocities and larger forces) than those pre­

dicted from McCowan's theory for the same wave. Hence, Boussinesq's 

theory predicts that incipient motion would occur under a smaller wave 

than that predicted by McCowan's theory. 

The hydrodynamic forces and moments exerted on the same spheres, 

under the same waves, and at the same positionings as those considered 

in Fig. 5.21 are shown in Figs. 5.22a,b as calculated using McGowan's 

theory for the solitary wave. In Figs. 5.2lb and 5.22b, where H/h 7 

0.474, it is seen that lift and drag forces are dominant, and indeed 

McCowan's theory predicts a maximum hydrodynamic moment which is 
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Fig. 5 .22 The distribution of forces and moments exerted on a 
sphere under s olitary waves (using McCowan's theory). 
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approximately 25% smaller than that predicted by Boussinesq's theory. 

It is important to note that while the differences between Boussinesq's 

and McCowan's theories may be small when used to estimate the fluid 

particle velocity, u, these differences are enlarged when used to des­

cribe the term u2 . Hence, large differences between these theories are 

expected when they are used to estimate the lift and drag forces, since 

the expressions for these forces contain the term u2 . For the wave of 

small relative height (H/h = 0.091), which is shown in Figs. 5.2la and 

5.22a, it appears that the differences between the two theories in pre­

dicting drag and lift forces are small, since the differences in the 

estimated fluid particle velocities are small. However, the fluid parti­

cle acceleration, and hence the inertia forces, as calculated from 

McCowan's theory are much larger than those predicted by Boussinesq 1 s 

theory. In this case the combination of drag, lift, and inertia forces 

result in hydrodynamic moments which are larger when calculated from 

McCowan's theory. For both theories the ratio of maximtllll inertia force 

to maximum drag decrease with increasing H/h. However, this ratio is 

much larger when calculated from McCowan's theory than from Boussinesq's, 

and when considering the inertia effects on the hydrodynamic forces as 

being described by this ratio, conclusions regarding these effects will 

be significantly different, depending on the theory used. It concludes 

that although the theories of Boussinesq and McCowan describe the fluid 

particle velocity and the surface profile of a solitary wave fairly 

accurately, it is not known how well they describe the fluid particle 

acceleration. Hence, they may be inadequate when used to calculate the 

forces exerted on bottom material and to predict its incipient motion. 
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It is important to note that the examples on which the preceding 

discussion was based were considered with the following assumptions: 

(a) It was assumed that all the forces exerted on the sphere act at its 

center; (b) It was assumed that the inertia and lift can be described 

by the same coefficients as those of a sphere touching a smooth wall in 

an ideal fluid--note that the values of these coefficients are only 

approximate ones, since the theoretical considerations are inaccurate 

when the sphere is very close to the wall (see Appendix I); (c) It was 

assumed that the instantaneous drag coefficient in an unsteady flow can 

be described by an instantaneous Reynolds number with the same relation­

ship used for steady flows; (d) It was assumed that the drag coefficient 

for a sphere resting on the bottom is the same as that for a sphere in 

an unbounded fluid; (e) The velocity profile in the boundary layer at 

the bottom was neglected, assuming that the boundary layer thickness is 

small compared to the diameter of the sphere. Hence, the velocity, u, 

is given by the wave theory, as presented in Section 3.1. The validity 

of these assumptions will be discussed later, in view of the experimental 

results. 

The incipient motion was determined both theoretically and experi­

mentally for the sixteen spheres shown in Fig. 4.12. The spheres were 

considered at both the positions shown in Fig. 5.19 on beds with sphere 

diameters of 9.53 mm and 12 . 7 mm with water depth varying from 10 cm to 

42 cm. The diameter of each sphere was measured with a micrometer and 

its specific gravity was evaluated by dividing its weight in air by the 

difference between its weight in air and in water. The wave height which 

caused incipient motion of the isolated sphere was found experimentally 
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using the technique described in Section 4.4.2. The incipient motion 

was defined to occur when the sphere moved 1/40 mm or less and fell 

back to its original position (see Fig. 4.17). Note from Fig. 4.17 

that the phase under the wave at which the motion occurs is consistent 

with the theoretical approach that predicts maximum hydrodynamic moment 

under the wave front. 

The observed and predicted values of H/h at incipient motion are 

shown in Fig. 5.23 as a function of Ds/DB for given values of h, DB, 

p /p , and position. The experimental data are also presented in 
s w 

Appendix II, Table A.2 . 1. The theoretical values were obtained to a 

maximum value of H/h = 0.9. Waves of limiting heights, before breaking, 

do not reach this value. Thus, if the sphere was predicted not to move 

under waves of such a relative height it was deduced that it would not 

move at all . The largest value of H/h recorded during the experiments 

was H/h = 0.67 fo r waves traveling over a horizontal bottom. Waves 

before breaking over a sloping bottom reach ed a maximum relative height 

of 0.77 over a slope of 0 . 1% and 0.88 over a slope of 0 . 5%. The theoreti-

cal results shown in Fig. 5.23 were evaluated using the theoretical 

velocity distribution of both McCowan and Boussinesq (see Table 3.1). 

The wave celerity in both cases was calculated using only Boussinesq's 

theory, as it was shown to agree better with experiments (see Section 

5.1, Fig . 5 .8 ). As can be seen in Fig . 5.23 the relative heights (H/h) 

predicted to cause incipient motion using McCowan's theory are sub-

s tantially different from those predicted using Boussinesq's theory, 

particularly fo r large values of H/h. For spheres made of light 

materials (nylon and phenolic), which require waves of small relative 
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height for incipient motion, the differences between the two theories 

are small. For these cases the predicted values of H/h agree fairly 

well with the observed ones . For spheres made of teflon and aluminum, 

which require relatively large waves for incipient motion the differ-

ences in using Boussinesq's or McCowan's theory reach values of 30% 

of the relative height predicted by McCowan's theory . As noted earlier 

in this section, these differences are due to the differences between 

the two theories in estimating the fluid particle velocity and accelera-

tion. The experimental results for large values of H/h appear in Fig . 

5 . 23 to disagree with the theoretical predictions. Due to the differ-

ences between the theories of Boussinesq and Mccowan it seems impossible 

to conclude that the theoretical considerations (i.e ., the assumed point 

of force action, the assumed values of drag, inertia, and lift coeffici-

ents, etc.) are incorrect, as the deviations of the experimental data 

points from the theoretical curves are of the same order of magnitude 

as the differences between the two theories. However, in most of the 

cases shown in Fig . 5.23, the wave height at incipient motion is 

theoretically predicted to increase with increasing Ds/DB (for given h, 

p /p , position, and DB)' and the experimental data show the opposite 
s w 

trend. This clearly indicates that the assumptions on which the theory 

is based are inaccurate. These assumptions are reviewed as follows. 

First, it was assumed that the velocity distribution at the level 

of the sphere is given by the free stream velocity calculated from the 

wave theory, neglecting the effects of the boundary layer on the 

magnitude of this velocity in the vicinity of the bottom . This assump-

tion was justified by the measurement s of the fluid particle velocity 
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over a rough bed (see Section 5.1.3), which indicated that the fluid 

particle velocity in the proximity of the bed is represented fairly well 

by the free stream velocity. However, the lower portion of the isolated 

sphere is sheltered from the flow by the supporting bed spheres, hence, 

the velocity at the bottom of the sphere is not represented by the free 

stream velocity. This is particularly important for small values of 

Ds/DB, where relatively large portion at the bottom of the sphere is 

sheltered from the flow. It can be seen in Fig. 5.23 that for small 

values of Ds/DB at large values of H/h, the experimental values of H/h 

are consistently larger than the theoretical ones. A correction of the 

theoretical considerations for the sheltering effect should result in 

larger values of predicted wave height and will decrease the discrepancy 

of the experimental data points. However, it will increase the dis­

crepancy at small values of H/h where the experiments appear to agree 

with the theory which is not corrected for sheltering effects. It is 

therefore assumed that the sheltering of the bottom of the sphere from 

the flow by the supporting spheres is not the main reason for the dis­

agreement between the theory and the experiments. 

Another assumption made was that the drag coefficient of a sphere 

in the proximity of a bottom is given by the drag coefficient of a sphere 

in an unbounded fluid. Carty (1957) measured the drag coefficient for 

spheres rolling down a slope submerged in a fluid, and found that the 

drag coefficient in this case is larger than that in an unbounded fluid. 

However, the spinning of the rolling spheres in his experiments (which 

introduces circulation to the flow) and the friction between the spheres 

and the plane boundary add unknown parameters to the problem. Coleman 



177 

(1972) measured the forces acting on a sphere supported above a bed of 

similar spheres (in a configuration similar to that of the present 

investigation) in a steady flow, and by measuring the velocity at the 

level of the center of the sphere he evaluated the drag coefficient. 

The values of the drag coefficient which he found are similar to those 

of a sphere in an unbounded fluid. Hence, it was assumed that the 

proximity of the isolated sphere to the bottom in the present study has 

no effect on the drag coefficient. 

In addition, an assumption was made that the hydrodynamic forces 

act at the center of the sphere. It is reasonable to believe that the 

point of force action is located above the center, since due to the 

velocity profile in the boundary layer at the bottom, and due to the 

sheltering of the bottom of the sphere, the velocity at the top of the 

sphere is larger than the velocity at the bottom. Hence, the forces at 

the top of the sphere are larger than those at the bottom, and the 

resultant force is shifted upwards. Since the exact point of force 

action is unknown, the examination of this assumption will be based on 

the hypothetical possibility, considering the forces as acting on top 

of the sphere. Thus, when the values of H/h are estimated based on the 

assumptions that the forces act either at the center or at the top of 

the sphere (which are considered as the two extreme possibilities), it 

will be expected that the actual H/h at incipient motion will be between 

these two values. The theoretical and experimental values of H/h as a 

function of D /DB (for given h, DB, p / p , and position), are shown in 
s s w 

Fig. 5.24, where the theoretical curves were evaluated using Boussinesq's 

theory for the solitary wave, and calculated fo r both cases where the 
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forces are assumed to act at the center and at the top of the sphere. 

Fig. 5.24 indicates that when the forces are assumed to act at the top 

of the sphere, the wave height for incipient motion is smaller than that 

when the forces are assumed to act at the center. This is expected, 

since the arm of the hydrodynamic moment is larger when the forces act 

at the top of the sphere, hence the same hydrodynamic moment (at incipi-

ent motion) requires smaller hydrodynamic forces which are caused by a 

smaller wave. Fig. 5.24 clearly indicates that the approximation con-

sidered by assuming that the forces act at the center of the sphere is 

not the main reason for the discrepancy between the theory and the 

experiments. Assuming that the forces act above the center shifts the 

theoretical curve to lower values of H/h (for given h, p /p , DB, and 
s w 

position), but does not change the trend of increasing H/h with Ds/DB, 

which is opposite (in most cases) to the trend of the experimental data. 

In view of the assumptions which have been discussed so far, it appears 

that the only change in trend of the theoretical curves can result from 

the considerations of the velocity profile near the bottom and the 

sheltering of the bottom of the sphere. These considerations imply that 

the same hydrodynamic forces (as those estimated considering vertically 

uniform velocity distribution at the level of the sphere) require a 

larger wave when the velocity distribution is assumed as not being 

uniform vertically. This applies particularly for small values of 

Ds/DB' where a large portion of the sphere is sheltered from the flow, 

and the other portion does not protrude above the bed as much as in 

cases of large Ds/DB. However, for these cases (of small Ds/DB) the 

upwards shift of the point of force action is larger than in cases of 
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large Ds/DB. Hence, it results in a smaller wave at incipient motion, 

and the effects due to the vertically non-uniform velocity distribution 

at the level of the sphere seem to cancel each other. 

It is concluded that the disagreement between the theory and the 

experiments is probably due to the inaccuracies which result from the 

assumptions concerning the values of the inertia, lift, and drag co­

efficients. The inertia and lift coefficients for a sphere resting on 

the top of a bed of spheres were calculated from potential flow theory, 

assuming that they are similar to those of a sphere touching a smooth 

wall. In Appendix I it is noted that these coefficients are functions 

of the proximity of the sphere to the wall, and the approximate theory 

used to estimate them is fairly accurate only when the sphere is located 

far away from the wall. The errors in the values of the inertia and lift 

coefficients may therefore result from the inaccuracy of the theory by 

which they are estimated (when the sphere is close to the wall). In 

addition, errors in these coefficients may be due to the fact that the 

configuration of a sphere touching a smooth wall may not represent the 

situation of a sphere resting on a bed of spheres, and to the fact that 

the fluid is real and not ideal, i.e., that there are effects of 

viscosity (which are described by the Reynolds number). Hence, the 

coefficients may not be the same as those evaluated from potential flow 

theory. Another assumption was that the instantaneous drag coefficient 

can be evaluated from charts which are usually used for steady flow. 

However, the development of the boundary layer and the wakes around the 

sphere in an unsteady flow is different from that in a steady flow, hence 

there are inertia effects, which are described by the dimensionless 



acceleration, on the drag coefficient . Since the drag coefficient 

depends on both the Reynolds nmnber and the acceleration, and since the 

inertia and lift coefficients are also functions of the Reynolds number, 

it seems impossible to assume that the hydrodynamic force can be 

described by a linear combination of drag, inertia, and lift components 

in which the drag, inertia, and lift coefficients are independent of 

each other. 

Based on the preceding discussion, it was proposed (in Section 3.2.3) 

to combine inertia, drag, and lift effects into a single coefficient, 

* CD Bugliarello (1956) proposed to combine drag and inertia effects 

into a similar coefficient for a sphere moving in a unidirectional 

unsteady motion. However, since his experiments were conducted in an 

essentially unbounded fluid, his considerations did not include lift 

effects. Furthermore, Basset (1888) showed that the resistance coeffici-

ent of a sphere in an unsteady flow of a viscous fluid depends also on 

the history of the flow, i.e., on the initial conditions. Keulegan and 

Carpenter (1958) noted that when the resistance coefficient (which in-

eludes both inertia and drag effects) is obtained for one type of flow, 

it is impossible to apply it to a different type of flow for this 

reason. This means, for example, that the resistance coefficient in a 

viscous oscillatory flow may be different from that in a unidirectional 

flow even if the Reynolds number and the dimensionless acceleration are 

instantaneously equal for both flows. Therefore, due to the different 

flow characteristics in Bugliarello's (1956) study, it was impossible 

to estimate the resistance coefficient of a sphere for the present study 

from his results. Since the variation of the resistance coefficient 
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with the various dimensionless parameters (i.e., the Reynolds number, 

the dimensionless acceleration, etc.) is unknown, it had to be obtained 

experimentally. 

Dimensional analysis considerations which were presented in Section 

3.3.2 yielded the expression 

(5 .27) 

for incipient motion, where f [ J denotes a function of the terms 

appearing within the brackets . The values of (H/h) 2 obtained experi­
ps-pw Ds 

mentally are plotted against the corresponding values of ~ tan~ 
PW 

in Fig. 5.25 . The results given in Figs. 5.25a,b,c, and d represent 

experiments which were conducted with ratios of water depth to bed sphere 

diameter, h/DB, of 44.1, 23.6, 15.7, and 7.9, respectively. The dashed 

lines in each of these figures represent different ratios of the test 

sphere diameter to the bed sphere diameter, Ds/DB. The solid lines were 

obtained using a least-squares fit technique , employing all the data 

points for each value of h/DB. These lines are plotted together in Fig. 

5.25e. They have the form 

(5. 28) 

where K
1 

and y
1 

are functions of h/DB . Their values are given in Table 

5 .2. 
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Table 5.2. The values of K1 and y1 (in Eq. 
(5.28)) as a function of h/DB. 

h/DB Kl yl 

44.1 16.3 1.37 
23.6 11.4 1.34 
15.7 11.2 1. 38 

7.9 10. 7 1.47 

Substituting Eq. (5 . 28) into Eq. (5.27) and noting from Fig. 

5.25a,b,c, and d that the values of (H/h) 2 at incipient motion depend 

* also on Ds/DB indicates that CD is a function of H/h, h/DB and Ds/DB. 

The dependence on h/DB is obtained from Fig. 5.25e as follows. 

(p s -pw) ( D s) 
A study of the variation of h/DB with h"""" tan~ for constant 

PW 
values of (H/h) 2 indicates that 

(5 .29) 

where K
2 

is a function of H/h and Ds/DB. The value of y2 is nearly 

constant since the curves in Fig. 5.25e are nearly parallel. It has the 

value of approximately -1/3. Multiplying both sides of Eq. (5.29) by 

( 
hDB )1/3 yields 

(5. 30) 

The four different curves shown in Fig. 5.25e should nearly coincide 

when plotting the experimental values of (H/h) 2 against the right-hand 

side of Eq. (5.30). These data are shown in Fig. 5.26 where the abscissa 

is the right-hand side of Eq. (5.30) and the ordinate is (H/h) 2 • The 
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Fig. 5.26 Incipient motion of a sphere. Relationship between the 

wave height, the water depth, the test sphere diameter, 
the bed sphere diameter, the angle ~. and the submerged 
density of the sphere. 
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curves in this figure represent the variation of (H/h) 2 with 
(p -p ) D 1/3 

s w s h 
h DB tan¢ for given Ds/DB. These curves are nearly parallel 

except that corresponding to Ds/DB = 1 . 33, which was derived from only 

eight data points and therefore may be inaccurate. This curve is ignored 

in the following analysis. 

( P s -p w) ( D s) ( h ) 1I3 
A study of the variation of D/DB with - - tan¢ 

Pw h DB 
for constant values of (H/h) 2 indicates: 

(5. 31) 

where K
3 

is a function of H/h. The value of y
3 

is not constant since 

the lines representing Ds/DB in Fig. 5.25 are not parallel (they are 

nearly parallel but not quite so). The values of y
3 

vary from approxi­

mately 1/4 at (H/h) 2 = 0.004 to 1/2.4 at (H/h) 2 = 0.56 and it has the 

value of approximately 1/3 at the midrange of relative wave heights 

(
D )-1/3 

tested. Multiplying both sides of Eq. (5.31) by Ds yields 
B 

= (ps-pw) (Ds )(!!__) 1/3( Ds )-l/3tan¢ 
K3 [ ( ~ ) 2 J p w h ' DB DB 

(p -p ) ( D ) 2/3 
s w ~ tan¢ 

p h 
w 

(5.32) 

The experimental data are now shown in Fig. 5.27 where the abscissa 

is the right-hand side of Eq. (5.32) and the ordinate is (H/h) 2 . The 

empirical relationship for incipient motion is represented in this 

figure by a least-squares fit straight line through the data. An 

equation for this curve can be expressed by 
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(H/h) 2 (5. 33) 

The region to the left of the line in Fig. 5.27 is the unstable region 

in which the sphere moves under the wave. The stable region in which 

there is no motion is to the right of the curve. 

* The value of CD which is the resistance coefficient of a sphere 

incorporating drag, inertia and lift effects can now be derived from the 

relationship obtained for incipient motion. Eq. (5 . 33) is rewritten in 

the form 

D 
s 

h 
tan<P 

Substituting this equation into Eq. (3.65) yields 

D 1/3 -0.60 

c; = o. 494 ( h s ) ( 1 + *) ( *) 

* 

(5. 34) 

(5. 35) 

Eq. (5.35) implies that CD is independent of lift effects since it is 

independent of the angle ¢. However, it should be remembered that Eq. 

* (5.35) displays only an approximate expression for CD. It has been 

noted that the value of y
3 

in Eq. (5.31) is not constant. An approxi­

mate value of y
3 

= 1/3 was used to obtain the abscissa of Fig . 5.27, 

* from which CD has been derived. Assuming a value of y different from 
s 

1/3, or considering it not to be constant would have led to the depend-

Consequently, c* would have included lift effects 
D 

since <P is a function of Ds/DB. 

* In considering the dependence of CD on H/h and Ds / h (Eq. (5.35)), it 

is noted that although the Reynolds number and the dimensionless 
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acceleration are functions of the parameters D , h, and H, it is im­
s 

possible to deduce the actual physical effects quantitatively. The 

reasons are that the differences between the theories describing the 

distribution of the fluid particle velocity and acceleration along the 

wave are quite large, and the measurements of the fluid particle velocity 

under the wave (see Section 5.1.3) were not accurate enough to deduce this 

distribution. Hence it is impossible to define the actual Reynolds 

number and the dimensionless acceleration accurately. For example, 

inspection of Figs. 5.21 and 5.22 indicates that if the dimensionless 

acceleration is described in terms of the maximum acceleration and 

maximum velocity (hence , f or constant inertia and drag coefficients, it 

is described by the ratio of maximum inertia force to maximum drag), 

then the values of this ratio calculated from McGowan's (1891) theory 

are significantly different from those calculated from Boussinesq's (1872) 

theory. However, as both the theories of McGowan and Boussinesq indicate 

that the dimensionless acceleration increases for increasing D /h and 
s 

decreasing H/h , the effects of inertia may be deduced qualitatively from 

* a study of the variation of CD with respect to Ds/h and H/h. This is 

* done by inspection of Fig. 5.28 , where CD is shown as a function of 

* Ds/h and H/h. The abscissa in Fig. 5.28 is H/h, the ordinate is CD, and 

variation with D /h is described by different curves, each of them 
s 

calculated for a constant value of D /h. The values of D /h in Fig. 5 . 28 
s s 

are the same as those employed in the experiments of the attenuation of 

waves, and they are chosen in Fig. 5.28 so that the resistance coefficient 

* of a single sphere, CD , may be compared to the mean resistance coeffici-

ent, Cf , of a rough bed. The mean resistance coefficient of a rough 
b 
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bed is shown in Fig. 5.14 as a function of D /h and H/h. Figs. 5.14 and 
s 

5.28 indicate that both the resistance coefficient of a single sphere 

and the mean resistance coefficient of a rough bed increase with in-

creasing D /h and decreasing H/h. There are, however, three major 
s 

differences between the mean resistance coefficient of a rough bed and 

the resistance coefficient of a single sphere. * First, the values of CD 

appear to be larger than the values of Cf by an order of magnitude for 
b 

given H/h and D /h . 
s 

Second, as indicated by Eq. (5.35), c; is a linear 

function of (D /h)l/ 3 for a 
s 

(D /h)
0

•
63 

as indicated by 
s ' 

given H/h, while Cf 
b 

Eq. (5.23). 

varies linearly with 

The above differences are probably due to the following. First , 

the single sphere protrudes into an undisturbed stream and its resistance 

coefficient consists of inertia, drag, and lift effects. On the other 

hand, the roughness particles of a rough bed are sheltered from the free 

stream flow in the wakes behind their neighbors . The forces acting on 

the roughness particles are therefore much smaller than those on a single 

sphere, resulting in smaller resistance coefficient. Furthermore , the 

resistance coefficient of a single sphere is in a sense a local co-

efficient , obtained from measurements of the incipient motion which occurs 

at a specific instant under the wave . At incipient motion the force 

consists of both inertia, drag, and lift components whose effects are 

* reflected by the value of CD . The mean resistance coefficient is an 

average value for the wave which apparently excludes the lift and inertia 

components of the hydrodynamic force. The mean resistance coefficient 
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is obtained from considerations of energy dissipation by integrating 

the inner product of the force and the fluid particle velocity under 

the wave. The lift force is perpendicular to the direction of the flow, 

hence the inner product of the lift force and the velocity is zero, and 

the inertia forces are non-dissipative which cancel out when integrated 

over the wave. . * Therefore, the local coefficient, CD should be larger 

than the average coefficient, Cf • As noted in Section 5.2, the fact 
b 

that inertia forces cancel out when integrated over the wave does not 

mean that there are no inertia effects on the mean resistance coefficient, 

since they probably affect the development of the boundary layer over 

the bed. * The differences in the variation of CD and Cfb with H/h and 

D /h (in addition to the differences in magnitude) are probably also due 
s 

to the different inertia effects. Note that for the case of a single 

* sphere protruding into the undisturbed flow, the variation of CD with 

D /h and H/h is attributed to inertia effects, where the dimensionless 
s 

acceleration which describes these effects increases with increasing 

D /h and decreasing H/h. Eq. (3.56) indeed indicates that for constant 
s 

drag, inertia, and lift coefficients the resistance coefficient increases 

with the dimensionless acceleration. For the case of the mean resistance 

coefficient of a rough bed, in addition to possible inertia effects, the 

variation of Cf with D /h and H/h is attributed to a parameter 
b s 

describing the ratio of the roughness diameter to the total displacement 

of a fluid particle outside the boundary layer. This parameter was de-

rived from considerations of rough turbulent flow over a flat plate 

(see Sections 3.2.1 and 5.2), and although the expression describing it 

is similar to the expression describing the dimensionless acceleration, 
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its effects on the resistance coefficient may be different from the 

* effects of inertia, resulting in a different behavior of CD and Cfb with 

respect to D /h and H/h . 
s 

For practical engineering purposes, where rock is used to protect 

offshore structures by placing it in a loose bottom pavement, the 

problem is to size the rock such that it will not move significantly 

under the action of waves. Here the rock is represented by the isolated 

sphere. The water depth, h, is usually given, and the relative wave 

height, H/h, is assumed. An empirical relationship for the incipient 

motion is given by Eq. (5.22), and it can be used to determine the size 

of the rock by rewriting Eq. (5.33) as 

D 
s 

h 
0.225 (H/h) 2 "10 

[(
PS ) ]3/2 
Pw -1 tan¢ 

It is of interest to consider Eq. (5.36) for breaking waves. 

(5. 36) 

Breaking waves are most destructive, as at a given depth they reach 

their maximum height just before breaking. Shallow water waves are 

assumed to break at a fixed value of H/h (see, for example, Laitone 

(1963)). Thus, the numerator of the right-hand side of Eq. (5.36) is 

constant for breaking waves. The ratio of the diameter of the isolated 

sphere to the water depth at incipient motion then becomes a function 

of the specific gravity of the sphere and its placement on the bed 

(which defines the angle¢). 

The results of measurements of incipient motion of spheres under 
(p s -pw) 

breaking waves are shown in Fig. 5.29, where the abscissa is tan¢ 
PW 
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Fig. 5 .29 Incipient motion of a sphere under breaking waves. 
Relationship between the water depth , the wave 
height , the angle ~ . and the diameter and submerged 
density of the sphere. 
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and the ordinate is D /h. The measured values of H/h at breaking are 
s 

noted in the figure for each data point, and they vary from 0.66 to 

0 . 74. The variation of H/h for waves near breaking is probably due to 

the procedure by which the experiments were conducted. Since the waves 

were not completely damped immediately after reaching the wave dissipa-

tor at the downstream end of the tank, a waiting period between the 

experiments was required to let any residual waves to damp out completely. 

Waves were generated after waiting periods of 15 to 20 minutes when the 

water surface seemed completely still. Apparently, some residual, 

unnoticed, waves still existed in the wave tank, and depending on the 

phase of their current with respect to that of the solitary wave, they 

caused the solitary wave to break at different values of H/h . The curves 

representing different values of H/h in this figure were calculated from 

Eq. (5.36). The experimental data appear to be scattered around these 

waves. The reasons for the discrepancies seen in the figure are that 

the empirical relationship (Eq. (5 . 33)) from which Eq . (5.36) was derived 

displays an experimental scatter. This scatter, which is shown in Fig. 

5.27 , is due to the a pproximation (e.g., the value of y 3 in Eq . (5.31)) 

used in obtaining Eq . (5 . 33), and to the imperfect conditions, where the 

solitary waves might be superimposed on unnoticed transient waves and 

currents. 

Considering the isolated sphere to represent the rock used to 

protect offshore structures, Eq. (5.36) can now be used to determine the 

s ize of the rock for i ncip ien t motion . Most natural rocks have a 

specific gravity of 2.65. The angle ¢, which is called the angle o f 

friction , is usually considered to be constant. A value of 45° was 
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assumed for ¢ in the present investigation. Although this value may 

seem to be too large (e.g., see Lane (1955)), it was measured in the 

laboratory in the present study. Apparently, the value of ¢ depends on the 

method by which it is measured, and the problem is to determine which method 

more closely approximates the purpose of application. The angle ¢ is usually 

defined as the slope of a loose pile which is formed by the considered parti-

cles. In the present investigation this angle was obtained by tilting a tray 

containing a layer of loose particles. The tray was tilted until the 

layer of particles collapsed and rolled down the slope (see Section 

4.4.3 for details). This method yields larger values for¢ than those 

obtained from measurement of the slope of a loose pile, and indeed an 

inspection of Fig. 4.22b indicates that the slope formed by loose 

particles a fter the collapse of the layer is smaller than the slope of 

the tray at which the layer collapsed. It should be noted that White 

(1940) assumed a value of 45° for ¢ in most of the experiments conducted 

in his study of the stability of bottom material in a stream . However, 

he did not describe how he obtained this value. 

Considering the example presented in Section 5.3.1, in which the 

value of Ds/h was sought for a rock with ps/pw = 2.65 under a wave of 

H/h = 0.75, Eq. (5.36) yields a value of 0.058 for D /h. This value is 
s 

much smaller than that which was obtained in Section 5.3.1 from measure-

ments of the motion of particles of arbitrary shape. However, it was 

noted in that section that the value of D /h contained large errors due 
s 

to the scatter of data in these measurements and due to the uncertain-

ties involved in estimating the mean resistance coefficient in defining 

incipient motion. Considering possible errors in the evaluation of 
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D /h from the results of the incipient motion of spheres, it is noted 
s 

that the scatter of data points seen in Fig. 5.27 is confined within 

an imaginary envelope which may be used to define minimum and maximum 

values for D /h at incipient motion for a given value of H/h. For 
s 

example, for U/h = 0.75 (i.e., (H/h) 2 = 0.56), the value of 
(p -p ) ( D )2/ 3 s w s 

~ tan¢ appears to 
PW 

PS 
be between 0.220 and 0.275, which for 

PW 
2.65 and ¢ = 45° yields values of 0.049 and 0.068, respectively, for 

D /h. These values display a deviation of approximately 20% from the 
s 

value 0.058 estimated from Eq. (5.36). It should also be noted that the 

value of 0.058 which was obtained from Eq. (5.36) was based on assuming 

a value of 45° for the angle of friction, ¢, and as noted earlier, this 

value may seem to be too large. According to Lane (1955), the angle of 

friction (which is also called the angle of repose) of angular material 

with diameter of 5 mm to 11 mm, which is the size of the material of 

arbitrary shape used in the present investigation, is approximately 30° 

to 35°. Considering, for example, a value of 30° for¢ for a rock with 

p /p = 2.65 under a wave of H/h = 0.75 , Eq. (5.36) results in a value 
s w 

of 0.132 for D /h, instead of 0.058, when¢ is assumed to be 45°. This 
s 

example indicates that the determination of the diameter of the rock for 

incipient motion is largely dependent on the assumed values of the angle 

of friction. Note that the assumption of ¢ = 30° results in a value of 

D /h which is of the same order of magnitude as the value obtained in 
s 

Section 5.3.l (D /h = 0.150) from measurements of motion of particles 
s 

of arbitrary shape. This may indicate that indeed assuming a value of 

45° for ¢ (which results in D /h = 0.058) is too large. However, the 
s 

value of D /h for incipient motion as obtained in Section 5.3.1 was 
s 
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based on a method which contains errors of 100% order of magnitude. 

Hence, an indication of the magnitude of ~ based on these results cannot 

be conclusive. 

The incipient motion of a single sphere was considered as a valid 

model of the incipient motion of rocks since it was assumed the moving 

rock particles are those which protrude above their neighbors, thus 

resembling the configuration of a single isolated sphere. However, as 

much as this assumption seems reasonable, it was not verified. In order 

to investigate a possible correlation between the incipient motion of 

spheres and the incipient motion of particles of arbitrary shape, the 

results of both studies are analyzed on a similar basis as follows. 

The empirical relationship defining the incipient motion of spheres 

is described by the straight line in Fig. 5.27. The region to the right 

of the line in this figure represents the stable region where no motion 

is expected to occur. To the left of the line is the unstable region. 

A point in this region indicates that the sphere is expected to move, 

with the amount of motion increasing with the distance from the line. 

The amount of motion for the case of a single sphere is different from 

that for the rocks where the amount of motion is represented by the 

number of moving particles divided by the total number of particles 

exposed to the flow. For a single sphere the amount of motion may be 

defined by the magnitude of its displacement. Nevertheless, whatever 

definition is used, it is expected that the points of zero amount of 

motion will be in the region to the right of the line in Fig . 5.27, and 

that the amount of motion will i ncrease with the distance to the left 

of the line. 
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The observed values of the amount of motion of particles of 
(p -p) (D )2/3 

arbitrary shape are shown as a function of (H/h)2 and s w hs tan¢ 
(p -p ) ( D )2/3 PW 

in Fig. 5.30. The abscissa is sPww hs tan¢ and the ordinate is 

(H/h) 2 , both on a logarithmic scale. The average values of (N /Np )xl04 
p T 

are printed next to each data point in this figure. The values of H/h, 

D /h, p /p , and the average N /Np are also presented in Table 5.1, 
s s w p T 

columns (4), (5), (2), and (8), respectively. The value of¢ was assumed 

to be 45°. The solid curve in Fig. 5.30 represents the incipient motion 

of spheres (Eq. (5.33)) , and the dashed lines represent the different 

values of N /Np . These curves were fitted through the data assuming a 
p T 

first order polynomial, i.e., 

[ 

( ) D ) 2/3 ] ps-pw s 
N /Np = a + b log (H/h) 2 + C log ( h tan¢ , 

P T Pw 
(5. 37) 

applying a least-square fit technique. The values of a, b, and c were 

found to be 

-4 a= -9.25xl0 b 
-3 l.593xl0 -3 c = -2.349xl0 . 

Substituting these values in Eq. (5.37), it is found for incipient 

motion, i.e., for N /Np = 0, 
p T 

PS PW s [( _ )(D)2/3 ]1.47 
(H/h) 2 = 3.81 PW h tan¢ . (5 . 38) 

Considering the scatter of data of both measurements of incipient 

motion of spheres (see Fig. 5.27) and the incipient motion of particles 

of arbitrary shape, a comparison of Eq. (5.38) to Eq. (5.33) and an 

inspection of Fig. 5.30 indicate a reasonably good correlation between 

the results of the two studies. 



200 

( ~) 10-' 

0 

INCIPIENT MOTION OF SPHERES 

SYMBOL h(cml 

• 0 •Iii 262 

• -0- 18.5 

• )( 14 .5 

SYMBOL pclPw D.(mm) NpT 

0 2.68 5.44 11930 

• 2.68 7.70 5940 

• 1.283 8 .00 5490 

Iii 1.283 11.10 3640 

THE NUMBERS NEXT TO THE OATA POINTS 

INDICATE THE VALUES OF (Np/NpT) •10
4 

Fig. 5.30 The average amount of motion of particles of arbitrary 
shape as a function of the wave height, the water depth, 
the angle ~. and the mean diameter and submerged density 
of the particles. 



201 

Using Eq. (5.38) for the example considered earlier in this section, 

i.e., p / p = 2.65, tan¢= 1, and H/h = 0.75, D /h yields a value of 0.067 . 
s w s 

This value is closer to that predicted from the results of the incipient 

motion of spheres than that obtained using the relationship between the 

amount of motion of particles of arbitrary shape and a dimensionless 

shear stress. In fact D /h = 0 . 067 for the given conditions for the rock 
s 

is within the experimental scatter of the incipient motion of spheres 

ps H 
(0 . 049 ~ D /h ~ 0.068 for - = 2.65, -h = 0. 75). s . p 

w 
The above example was also considered (in Section 5.3.1) for a wave 

with H/h = 0.50 , and it yielded D /h = 0.0255 for incipient motion . 
s 

Applying the analysis of the present section to this example , the results 

which were obtained for particles of arbitrary shape (Eq. (5.38)) yield 

D /h = 0.0293, and the results which were obtained for spheres (Eq. (5.33)) 
s 

yield D /h = 0.0249. In this case the relative difference between the 
s 

results of the two analyses of the incipient motion of particles of arbi-

trary shape is smaller than that in the preceding example. As noted in 

Section 5 . 3 . 1, it is expected that the error in D /h , due to inaccuracies 
s 

in determining the bottom resistance coefficient, is small for the example 

with H/h = 0.50. Apparently, the differences between the results in the 

above examples are due to the different methods of analysis combined with 

the large scatter of data, where the results of one analysis define the 

incipient motion differently from the other analysis. 

It is concluded that due to the uncertainties involved in the determi-

nation of the dimensionless shear stress, T* , and due to the scatter max 

of data observed in the measurements of motion of particles of arbitrary 

shape, a significant error is expected when using these results to size 

the rock required for incipient motion under a given wave . On the other 
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hand, the results obtained for the incipient motion of an isolated 

sphere appear to represent the incipient motion of rocks reasonably 

well, and they may be used to size the rock for incipient motion. While 

the results which were obtained from correlating the motion of particles 

of arbitrary shape to a dimensionless shear stress require some theoreti-

cal considerations in order to evaluate T* , the results which were max 

obtained in the present section are based on measurable quantities. 

Since it was shown here that the theoretical considerations consist of 

important uncertainties, it is preferred to use the empirical relation-

ship which was obtained for spheres (Eq. (5.33)) to size the rock for 

incipient motion. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

6 . 1 CONCLUSIONS 

The major objective of the study has been to investigate the 

stability of a bed of rocks under solitary waves. The research was 

limited to the investigation of the incipient motion of rocks rather 

than their incipient transport*. The study consisted of: (a) a review 

of three existing theories of the solitary wave and comparing the surface 

profile, the wave celerity, and the fluid particle velocity predicted by 

these theories to those of solitary waves generated in the laboratory; 

(b) an investigation of the shear stresses exerted on the bottom by 

these waves; (c) a study of the incipient motion of bottom material of 

arbitrary shape, in which the results of the investigation of the bottom 

shear stresses were employed; (d) an investigation of the incipient motion 

of a single sphere resting on top of a bed of well packed spheres. 

The following are the major conclusions that were drawn from this 

study. 

The Solitary Wave 

1. The three theoretical formulations of the solitary wave due to 

Boussinesq (1872), Mccowan (1891), and Laitone (1963) are practically 

* The difference between the two definitions is that a particle may reach 
its incipient motion by moving slightly and falling back to its original 
position, but when reaching its incipient transport the particle has to 
be removed from its at-rest position. This difference is important from 
a practical engineering aspect, as the destruction of the bed is of more 
concern than a slight movement of a few of its rocks. 
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the same for very small values of H/h (wave height-to-water depth ratio). 

The differences between the theories increase with H/h. 

2. As shown in Section 5.1, no single theory can accurately describe 

the surface profile, the wave celerity, and the fluid particle velocity 

of the solitary wave for all values of wave height-to-water depth ratio, 

and for both horizontal and sloping bottoms . 

The Resistance Coefficient of the Bottom under Solitary Waves 

3. The height of a solitary wave traveling along a horizontal 

channel is attenuated exponentially with distance. The decay coefficient 

may be considered constant for the 60 ft section of the wave tank along 

which the wave attenuation was measured. 

4. The resistance coefficient of a smooth bottom in laminar flow 

is determined reasonably well from the linearized boundary layer equa-

tions. 

5 . For the case of rough turbulent flow, it was found that the 

resistance coefficient is a function of the mean diameter of the rough-

ness particles, D , the water depth , h, and the wave height , H. The s . 

dimensionless parameters which were formed from these variables implied 

that the resistance coefficient is independent of the Reynolds number. 

The Incipient Motion of Material of Arbitrary Shape 

6. The amount of motion in the bed, N /Np , is found to be a function 
p T 

of a dimensionless shear stress, T (similar to the Shields parameter), 
*max 

which is evaluated with the aid of the mean resistance coefficient under 

the solitary wave, and the amount of motion increases as T* increases. max 
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7. The relationship which is used to determine the size of the rock 

for incipient motion under a given wave (Eqs. (5.22) and (5 . 23)) shows 

that a ±20% error in determining T* for incipient motion (due to 
max 

experimental scatter) results in an error of -40% and +85% in the diameter 

of the rock. It is concluded that the results presented in Fig. 5.30 are 

the best ones to use in sizing the rock for incipient motion. 

The Incipient Motion of a Single Sphere Resting on a Bed of Spheres 

8. It was found that theoretical considerations, in which the 

hydrodynamic forces exerted on a single sphere are assumed to be a linear 

combination of drag, inertia, and lift components, and where the values 

of the drag, inertia, and lift coefficients (which have been given in 

Section 5.3.2) are assumed to be independent of each other, fail to pre-

diet the incipient motion of the sphere. 

9. Although the differences between Boussinesq's (1872) and McCowan's 

(1891) theories are small, when used to describe the surface profile and 

the fluid particle velocity of the solitary wave, the differences between 

them are significant when used to predict incipient motion. 

10. Experiments demonstrate that the effect of inertia forces is to 

cause the incipient motion to occur under the wave front, and not under 

the crest where the fluid particle velocity is maximum. However, quantita-

tive effects of inertia were not concluded due to uncertainties in the 

theory used to estimate them. 

11. The incipient motion of an isolated sphere can be described 



206 

empirically as a relationship between the parameters H/h and 
(p -p )(D )2/3 

sp w hs tan¢, where ps and pw are the densities of the sphere 
w 

and fluid, respectively, and ¢ is the angle between a normal to the bed 

and a line connecting the center of the isolated sphere and the axis 

around which it is forced to move. 

12. The comparison between the results of the investigations of 

the incipient motion of spheres and the incipient motion of particles of 

arbitrary shape (Fig. 5.30) indicates that the empirical relationship derived 

from the study of the incipient motion of spheres may be used to size 

rock of arbitrary shape for incipient motion under waves of given height 

and depth. 

13· In using the results which were obtained with spheres to 

determine the incipient motion of particles of arbitrary shape, it is 

necessary to assume a value of the angle of friction, ¢, for these 

particles, and relatively small errors in ¢ can result in large errors in 

determining the size of the particles. 

6.2 RECOMMENDATIONS FOR FUTURE STUDIES 

The empirical relationships for incipient motion which were derived 

from the results of the present investigation are of limited use, from a 

practical engineering aspect, since they were obtained in a scaled model 

in the laboratory. Scaling effects have not been studied due to the 

uncertainties involved in quantitatively describing the physical effects 

which govern these relationships. The following are suggestions for 

future studies to resolve the uncertainties encountered in the present 

study. 
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1 . Although Boussinesq 1 s (1872) and McCowan's (1891) theories 

describe the solitary wave fairly well, the differences between them 

are large, when used to determine the hydrodynamic forces exerted on 

bottom particles, and when used to determine the dimensionless accelera­

tion, which describes the effects of inertia on the resistance co­

efficient. With the lack of an accurate theory it was impossible in 

the present study to understand these effects. It is recommended for 

future investigations to study closely the distribution of the fluid 

particle velocity and acceleration under the wave, together with the 

distribution of forces, in order to have a better understanding of the 

inertia effects on the hydrodynamic forces and the resistance coefficient. 

2 . In order to estimate local shear stresses exerted on a rough 

bottom under waves it is necessary to study the development of the 

rough turbulent boundary layer under these waves. The stresses estimated 

with the aid of the mean resistance coefficient which was derived from 

considerations of energy dissipation do not seem to represent the actual 

stresses exerted on the bed. 

3. A slight rocking motion of a few particles in the bed is 

insignificant from a practical engineering aspect. Such a motion does 

not endanger the bed and does not reduce the protection of the rock 

armoring. As the present investigation was concentrated on this kind 

of motion, it is recommended that a future study will be concentrated on 

the conditions under which the entire bed changes from a stable to an 

unstable condition. 
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4. Observations of motion of particles of arbitrary shape resulted 

in a large error when used to determine the size of the rock required for 

incipient motion under breaking waves. Since the error is partly due to 

the extrapolation of the data from observed motion to the point of zero 

motion, it is recommended to study the problem for the case where the 

particles are in a state of incipient motion under breaking waves. 
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APPENDIX I 

INERTIA AND LIFT COEFFICIENTS FOR A SPHERE NEAR THE BOTTOM 

The following analysis is due to Milne-Thomson (1960) and is 

presented here for the convenience of reference. 

Two spheres (shown in Fig. A.1.1) with centers at s
1 

and s2 of 

radii a
1 

and a
2 

are moving at speeds u
1 

and u2 (respectively) in a 

direction perpendicular to the line connecting their centers. The 

distance between the centers is d. A point P is located at distances 

r
1 

and r
2 

from the centers s1 and s2 , and forms angles 8
1 

and 82 with 

the directions of their motion respectively. The liquid is assumed to 

be ideal and the flow field satisfies Laplace 's equation 

0 

where ~ is the velocity potential and has the form 

The boundary conditions for Eq. (A.1.1) are 

cos8
1 

, 0 ' 

For a single sphere in an unbounded flow ~l has the form 

3 a
1 

cos8
1 

2r 2 
1 

(A.1.1) 

(A. l. 2) 

(A.1.3) 

(A.1.4) 
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If sphere s2 is far enough from s
1

, then for a point near the surface of 

sphere s2' rl""' d and 

(A .1. 5) 

From Eq. (A.1 . 5) 

(A .1. 6) 

which is in contradiction with the requirement of Eq. (A.1.3). Writing 

cii
1 

in the form 

a
1

3 cose1 ----+ 
2r 2 

1 

(A . 1. 7) 

satisfies the boundary conditions on sphere s
1

. On sphere s
2

, where 

a 3 a 3 
1 2 
4d 6 

(A.1. 8) 

This satisfies the boundary conditions (A . 1.3) to order d-
6 . The ex-

pression for cii 2 is obtained in a similar way . 

The kinetic energy ~ of the system is given by 

Ek ~Pw/ (V<P) 2
dv 

v 

applying Stokes theorem . V is the volume of the fluid, S is its 

boundary and n is a normal to the boundary. 

(A.1. 9) 

Basset (1887) carried the calculations of the flow potential to 

terms of higher order (than those in Eq. (A . 1 . 7)) and obtained fo r the 



kinetic energy 

where 

lTP a 3 a 3 
w 1 2 

d3 
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(A . 1.10) 

l+ 1 2 + 1 2 1 2 
{ 

a 3 a 3 a 3 a 3 (a 2 +a 2) } 

4d 6 d 8 (A . 1.11) 

in which m
1 

and m
2 

are the masses of the spheres s
1 

and s
2 

respectively , 

and M
1 

and M
2 

are the masses of fluid displaced by them. 

For a sphere near a solid boundary, using the boundary as a mirror 

(A.1.12) 

If e = d/2 is the distance of the center of the sphere from the boundary , 

and if m
1 

= M
1 

(to be used considering the sphere at rest in a flowing 

liquid) , then 

(A.1.13) 

1 ( 3 3al3 3al3 ) 
Le t -

2 
M

1 
-
2 

+ ~~3 + ~~6 = R, and let the solid boundary be horizontal 
16e 256e 

(i .e . , horizontal bottom) . From Lagrange ' s equations (e . g . , 
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Milne-Thomson (1960) pp . 534-538), the horizontal component of the 

inertial force is 

d (a Ek) dU 
Fl = <lt au

1 
= 2R dt (A.1.14) 

and the vertical component, or the lift force is 

_ -1 2 aR 1 2 1 1 
( 

9a 3 18a 6) 
FL - 2 Ul a;= 4 MlUl 16e4 + 256e6 (A.1.15) 

F1 and FL may be represented by 

(A . 1.16) 

and 

(A.1.17) 

where p V = p irra3 = M is the mass of fluid displaced by the sphere w w 3 1 

and A = rra 2 is the cross section area of the sphere . CM is called the 

inertia coefficient and CL is the lift coefficient . For a sphere 

resting on the bottom e = a1 , then CM and CL have the values 

1.699 (A .1.18) 

and 

CL = 0.422 (A.1.19) 

It should be noted that these are only approximate values since in 

the analysis of the problem it has been assumed that the distance d 

between the spheres is much larger than their diameters, thus the dis-

tance r
1 

between a point on the surface of one sphere and the center of 

the other one is approximately equal to d. For a sphere touching a wall 
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(or, in this case, for two spheres touching each other), the values of 

r range from d/2 to 3d/2 and do not satisfy the required assumption 

r
1 

= d . Hence, the forces evaluated with the aid of the coefficients 

CL and CM as shown in Eqs . (A . 1 . 18) and (A . 1 . 19) may be inaccurate . 
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APPENDIX II 

EXPERIMENTAL DATA 

Table A. 2 . 1 Experimental data*of the incipient 
mo tion of spheres. 

h = 10 . 0 cm; DB = 12.700 mm 

D p /p c/> H/h s s w 

(mm) (deg) 

9 . 489 1.168 23 . 76 0 . 086 
12 . 700 1.158 19 . 47 0 . 092 
19. 068 1.152 14 . 58 0.090 
25 . 410 1.154 11 . 77 0.091 

9 . 489 1.168 41.37 0.137 
12.700 1.158 35 . 26 0.138 
19.068 1.152 27 . 49 0 . 130 
25.410 1 . 154 22 . 63 0.143 
9 . 436 1 . 314 23 . 85 0.148 

12 . 642 1. 305 19 . 53 0 . 161 
12.642 1. 305 19 . 53 0 . 155 
18 . 758 1 . 314 14 . 76 0.154 
25.258 1 . 309 11.83 0 . 150 

9 . 436 1. 314 41.49 0. 248 
12 . 642 1.305 35 . 36 0 . 224 
18 . 758 1. 314 27 . 79 0.231 
25 . 258 1 . 309 22 . 73 0 . 246 

9 .495 2 . 175 23 . 75 0 . 370 
12. 700 2 . 221 19.47 0 . 406 
19 . 037 2 . 156 14 . 60 0 . 387 
25 . 380 2.163 11 . 79 0 . 400 
19 . 037 2. 156 27.52 0 . 594 
25 . 380 2 . 163 22 . 65 0 . 636 

9 . 545 2 . 793 23 . 67 0.574 
12 . 700 2 . 790 19.47 0 . 597 
19 . 037 2 . 789 14 . 60 0 . 556 
25 . 400 2 . 791 11. 78 0 .566 

*The symbols a ppearing in this table are : h - water depth; DB - bed 
sphe r e diameter ; Ds - test sphere diameter; ps/ Pw - spec i fic gravity 
of the t es t sphe r e; c/> - angle of r epose of t he tes t s pher e; H/h -
height-to- depth ratio of the wave that causes inc i pient motion. 
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Table A. 2 . 1 (cont ' d) 

h = 20 . 0 cm ; D = 
B 

12 . 700 mm 

D P/Pw ~ H/h 
s 

(nun) (deg) 

9.489 1.168 23 . 76 0 . 071 
12 . 700 1 . 158 19 . 47 0 . 071 
19 . 068 1.152 14 . 58 0 . 073 
25 . 410 1.154 11. 77 0 . 073 

9 . 489 1.168 41. 37 0 . 111 
12 . 700 1.158 35 . 26 0 . 108 
19.068 1.152 27 . 49 0.101 
25.410 1.154 22 . 63 0.106 

9.436 1 . 314 23 . 85 0.115 
12 . 642 1. 305 19.53 0 . 114 
12 . 642 1.305 19 . 53 0 . 114 
18 . 758 1. 314 14 . 76 0 . 116 
25 . 258 1 . 309 11.83 0 . 114 

9 . 436 1.314 41.49 0 . 193 
12 . 642 1. 305 35 . 36 0 . 169 
18 . 758 1.314 27 . 79 0 . 160 
18 . 758 1 . 314 27 . 79 0 . 158 
25 . 258 1 . 309 22 . 73 0.160 

9 . 495 2. 175 23 . 75 0 . 310 
12 . 700 2 . 221 19 . 47 0 .290 
19 . 037 2 . 156 14 . 60 0 . 284 
25 . 380 2 . 163 11. 79 0 . 260 
9 . 495 2 . 175 41. 35 0 . 555 

12 . 700 2 . 221 35 . 26 0 . 519 
19 . 037 2 . 156 27 . 52 0 . 409 
25 . 380 2.163 22 . 65 0. 392 
9 . 545 2 . 793 23 . 67 0 . 435 

12 . 700 2.790 19 . 47 0 . 402 
19 . 037 2. 789 14 . 60 0 . 382 
25 . 400 2. 791 11 . 78 0 .364 
19. 037 2 . 789 27 . 52 0.671 
25 .Li.00 2. 791 22.64 0.588 
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Table A. 2.1 (cont'd) 

h = 30 . 0 cm , DB= 12 . 7 mm 

D ps/pw ¢ H/h 
s 

(mm) (deg) 

9 . 489 1.168 23.76 0.059 
12 . 700 1.158 19 . 47 0 . 060 
19 . 068 1.152 14 . 58 0.058 
25 . 410 1.154 11 . 77 0 . 059 
9.489 1.168 41. 37 0 . 100 

12 . 700 1 . 158 35.26 0 . 098 
19 . 068 1 . 154 27 . 49 0 . 088 
25 . 410 1.152 22 . 63 0 . 089 

9 . 436 1. 314 23.85 0 . 105 
9.436 1.314 23 . 85 0 . 105 

12 . 642 1. 305 19 . 53 0 . 104 
18 . 758 1 . 314 14 . 76 0 . 099 
25 . 258 1 . 309 11 . 83 0 . 097 

9 . 436 1. 314 41.49 0 . 173 
12 . 642 1 . 305 35 . 36 0 . 149 
18 .758 1 . 314 27.79 0.139 
25 . 258 1.309 22 . 73 0 .139 
9.495 2 . 175 23 . 75 0 . 267 

12 . 700 2 . 221 19 . 47 0 . 255 
19 . 037 2 . 156 14 . 60 0 . 233 
25 . 380 2 . 163 11. 79 0 . 230 
9. 495 2.175 41. 35 0 . 428 

12 . 700 2 . 221 35 . 26 0 . 387 
19 . 037 2 . 156 27 . 52 0 . 347 
25 . 380 2 . 163 22 . 65 0 . 339 

9 . 545 2 . 793 23 . 67 0 . 376 
12 . 700 2. 790 19 . 47 0 . 356 
19 . 037 2. 789 14 . 60 0.326 
19.037 2 . 789 14 . 60 o. 318 
25 . 400 2 . 791 11 . 78 0 . 312 
25 . Lf00 2. 791 22 . 64 0 . 484 
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Table A. 2 . 1 (cont'd) 

h = 22 . 5 cm, DB = 9 . 525 mm 

D P/Pw <jJ H/h s 
(mm) (deg) 

9.436 1.314 35.45 0 .146 

12 . 642 1.305 29.75 0 . 135 

18.758 1.314 22 . 88 0.139 

25.258 1 . 309 18 . 43 0 .142 

9 . 495 2 . 175 19.51 0 . 245 

12.700 2 . 221 15.89 0 . 246 

12 . 700 2. 221 15.89 0 . 244 

19.037 2.156 11. 78 0 . 224 

25 . 380 2.163 9 . 43 0.228 

9 . 545 2.793 19 . 44 0 . 359 

12 . 700 2.790 15 . 89 0 . 335 

12 . 700 2.790 15 . 89 0 . 283 

19.037 2 . 789 11. 78 0 . 315 

25 . 400 2.791 9.42 0 . 312 

9 . 545 2 . 793 35.22 0.542 

9 . 545 2 . 793 35 . 22 0 . 544 
I 

I 12 . 700 2. 790 29 . 66 0 . 518 

19 . 037 2.789 22.65 0 . 493 

I 25.400 2. 791 18 . 36 0 . 486 
I 
t___ 
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Table A.2 . 1 (cont'd) 

h = 42 . 0 cm, D = 9.525 mm 
B 

D p /p <P H/h 
s s w 

(mm) (deg) 

9 .489 1 . 168 19 . 52 0 . 044 

25.410 1.154 9 . 42 0 . 047 

9.436 1.314 35.45 0.114 

25.258 1.309 18.43 0 .108 

9 . 545 2.793 19.44 0.225 

25 .400 2 . 791 9.42 0 . 267 
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Table A.2 . 1 .1 Experimental data of the incipient motion 
of spheres under breaking waves. 

DB = 9.525 nnn 

D p /p ~ h H/h s s w 

(mm) (deg) (cm) 

9 . 495 2.175 35.33 7.24 0.675 

9.495 2.175 35.33 7 .2 3 0.705 

12.700 2.221 29 . 66 7 .19 0 .658 

19 . 037 2.156 22 . 65 7 . 84 0 .659 

25 . 380 2 . 163 18.37 8 . 35 0.687 

9 . 545 2.793 35.22 14 . 83 0 . 744 

12.700 2 . 790 29 . 66 12.64 0. 726 

19 . 037 2 . 789 22.65 12 . 41 0 . 708 

25.400 2 . 791 18 . 36 12.87 0. 731 



Hl 

(cm) 

5 .85 
7 . 52 
8 . 32 
9 . 31 
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Table A.2.2 Experimental data of the resistance coefficient 
under solitary waves. 

h = 26.2 cm, smooth bed * 

[d(H/h)J -
H2 H3 H4 (H/h) k d(x/h) cf 

rep rep b 
(cm) (cm) (cm) 

5 . 74 5 . 68 5 . 62 0.220 -4 -4 -3 5.529xl0_4 -l.216xl0_4 9 . 14xl0_3 7 . 39 7. 34 7.30 0 . 280 4 . 05lxl0_4 -l. 134xl0_4 5.25xl0_3 8 . 27 8 . 22 8 . 10 0.315 3. 654xl0_
4 

-l. 15lxl0 _
4 

4 . 28xl0_3 9 . 17 9 . 09 9.00 0.350 
10 . 22 10 . 10 10 . 02 9 . 88 0.385 

4 . 663xl0_4 4 . 625xl0_4 

-l.632xl0_4 
-1. 7 8lxl0 _4 

5 . 2lxl0_3 4 . 83xl0_
3 11.17 11.16 11.02 10.87 0.420 3.985xl0_4 -l.674xl0_4 3.93xl0_ 3 12 . 22 12 . 09 12 . 00 11.92 0.460 3.467xl0_4 -1. 595x10 _4 3 . 26xl0_3 13 . 34 13 . 29 13 . 16 12.98 0 . 505 3. 884xl0_4 -1. 96lxl0 _

4 3 . 47xl0_ 3 14 . 47 14 . 42 14 . 18 14.10 0.550 3.993xl0_4 -2 .196xl0 _4 
3.40xl0_

3 16.08 15 . 96 15 . 85 15.67 0 . 610 3 . 567xl0_4 -2.176xl0_4 2.89xl0_3 16 . 31 16.12 15.90 15.69 0.615 5.494xl0 -3.379xl0 4.42xl0 

* The symbols appearing in this table are: h - water depth; D and 
s 

0 - mean size and standard deviation of the rock; 
g 

H = wave height; 

(H/h) = representative value of height-to-depth ratio of the wave rep . 
in each experiment: k - decay coefficient (used in the relationship 

[~~:~~~]rep= -k(*)rep); x - a stationary coordinate along the tank; 

Cf - mean resistance coefficient; the subscripts 1 through 4 refer to 
b 

the four measurement s tations along the tank . 

For smooth bottom experiments: 

xl 

x2 

X3 

X4 
For rough bo t tom experiments: 

xl 

x2 

X3 

X4 

= 

= 

= 

0. 0 cm 

620.0 cm 

1240 . 0 cm 

1860 . 0 cm 

0.0 cm 

610 . 0 cm 

1220.0 cm 

1830 . 0 cm . 
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Table A.2.2 (cont'd) 

-

h = 18 . 5 cm, smooth bed 

[d (H/h)J -
Hl H2 H3 H4 (H/h) k d(x/h) cf rep b 

(cm) (cm) (cm) (cm) rep 

4 . 62 4 .62 4.54 4 . 48 0.250 3.276xl0 - 4 -8.190xl0 -5 5 . 09x10 -3 

5 . 57 5 . 50 5 .40 5.34 0.295 4.322xl0 -4 -1. 27 5xl0 -4 6.05xl0 - 3 

6.53 6 . 42 6.33 6.19 0 . 345 5 . 208xl0 -4 -l.797xl0 
-4 6.60x10 -3 

7 .45 7.31 7 . 25 7.08 0 . 395 4.806xl0 -4 -1. 898x10 -4 5.62xl0 -3 

8.48 8 . 36 8.26 8.15 0.450 3.912xl0 -4 -1. 760xl0 - 4 4.20xl0 - 3 

9.65 9.51 9.40 9.20 0.510 4.662xl0 - 4 -2.357xl0 -4 4.68xl0 - 3 

10 . 79 10 . 67 10.50 10.33 0.570 4.379xl0 -4 -2.496xl0 - 4 4.18xl0 -3 

12 . 21 12 .17 11.93 11.62 0.650 5.028xl0 - 4 - 3 . 268xl0 -4 4. 54xl0 -3 

13.02 12. 92 12 . 45 12.12 0 . 685 7.518xl0 -4 - 5.150xl0 - 4 6.55xl0 - 3 

13.28 12 . 92 12 . 54 12 . 15 0.690 8.851x10 -4 -6.107x10 -4 7.66xl0 -3 
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Table A. 2.2 (cont'd) 

h = 14 . 5 cm, smooth bed 

[ d (H/h)J -
Hl Hz H3 H4 (H/h) k d(x/h) cfb rep 

(cm) (cm) (cm) (cm) rep 

3.37 3 . 26 3 . 18 3.07 0.220 7.123x10 - 4 -1.567x10 - 4 1. 29x10 --2 

4 . 23 4 . 12 4 . 01 3.95 0 . 280 5.438x10 -4 -1. 523x10 -4 8 . 42x10 -3 

5 .11 5 . 04 4 . 91 4. 77 0.340 5.442x10 -4 -1.850x10 -4 7 . 30x10 - 3 

5 . 11 5.05 4. 91 4.79 0 . 340 5.195x10 -4 -1. 766x10 -4 6 . 96x10 -3 

6 . 08 5 . 99 5 . 85 5 . 72 0 . 405 4.835x10 -4 -1. 958x10 -4 5 . 94x10 - 3 

7.17 7 .04 6 . 80 6.69 0 . 475 5 . 673x10 - 4 -2.695x10 -4 6 . 44x10 - 3 

7 . 13 7.07 6.86 6 . 75 0 . 480 4.548x10 -4 - 2 . 183x10 - 4 5 . 18x10 -3 

8.36 8 . 20 8 . 03 7 . 88 0.560 4.639x10 -4 -2.598xl0 - 4 4 . 78x10 - 3 

9.68 9.46 9 . 11 8.81 0.640 7.489x10 - 4 -4.793x10 -4 7.35x10 -3 



Table A.2.2 (cont'd) 

h = 12.8 cm, smooth bed 

[ d (H/h)J -
Hl H2 H3 H4 (H/h) k d(x/h) cf rep b 

(cm) (cm) (cm) (cm) rep 

2.56 2.50 2.41 2.31 0.190 0 . 392xl0 -4 -l.20lxl0 -4 
1. 27xl0 -2 

3 . 46 3 . 37 3 . 25 3.15 0.260 6.562x10 - 4 
-1. 706xl0 -4 l . 09x10 -2 

4.33 4 . 22 4.09 3.97 0.325 6.022xl0 -4 
-1. 957xl0 - 4 8.76xl0 -3 

5 .27 5 . 17 5.00 4.90 0.400 5.199xl0 -4 -2.080xl0 -4 6 . 65xl0 - 3 

6 . 32 6.22 6.03 5.86 0.475 5 . 32lxl0 -4 -2.528xl0 -4 6 . 16x10 -3 

7 . 48 7. 34 7.17 6.93 0 . 565 5.214xl0 -4 - 2 . 946xl0 -4 5.54xl0 -3 

7 . 50 7 . 37 7 . 12 6.90 0 . 565 5.877xl0 - 4 -3.32lxl0 -4 6 . 25xl0 -3 

8.42 8.14 7 . 85 7.67 0 . 625 6.527xl0 - 4 - 4 . 079x10 -4 6 . 65xl0 -3 
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Table A.2.2 (cont ' d) 

h = 26.2 cm; D = 7.55 mm ; a = 1.15 s g 

[d(H/h)J -
Hl H2 H3 H4 (H/h) k 

d(x/h) cf 
rep b 

(cm) (cm) (cm) (cm) rep 

,____ 

5.28 4 . 96 4.79 4.57 0.190 -3 -4 -2 2. OllxlO _3 -3 . 82lxl0_4 5 . 00xl0_2 5.67 5 . 37 5.15 4 . 95 0 . 200 1. 930xl0 _
3 -3.860xl0_

4 4 .59xl0_2 6 . 08 5.73 5.48 5 .28 0.215 2.009xl0_
3 -4 . 319xl0_4 

4 . 6lxl0_2 6 . 45 6.13 5 . 92 5 . 63 0 .230 1. 902xl0 _
3 -4.375xl0_4 4 . 08x10_2 6.47 6 . 13 5 . 87 5 . 62 0 .230 2.00lxl0_
3 -4.602xl0_4 

4 . 32x10 _
2 6 . 85 6 . 48 6.23 5.99 0.245 1. 898xl0 _

3 -4.650xl0_4 3 . 89xl0_2 7.37 6.97 6.67 6 . 38 0.260 2. 048xl0_
3 -5 . 325xl0_4 4 . llxl0 _2 7. 77 7.35 7 . 04 6.78 0.275 1. 94lxl0 _3 -5.338x10_4 3.75xl0_2 8 . 21 7 . 78 7 . 47 7 . 18 0.295 l.902xl0_3 -5.6llxl0_4 3.50xl0_2 8.68 8 . 18 7 . 88 7 . 61 0 . 310 1. 856x10 _3 -5. 754x10_4 3 . 25xl0_2 9.12 8 . 63 8 . 31 7. 97 0 . 325 1. 899xl0 _3 - 6 . 172xl0_4 3.25xl0_2 9 . 58 9 . 08 8 . 74 8.33 0.340 1. 965xl0 _
3 -6.68lxl0_4 3.27xl0_2 10.02 9 . 57 9 . 17 8 . 82 0 . 360 1. 827xl0 _
3 -6. 5 77xl0 _

4 2.9lxl0_2 10.60 10 . 10 9 .69 9 . 28 0 . 380 l.892xl0_3 -7.190xl0_4 2.93xl0_2 11 . 08 10 . 55 10.11 9.62 0.395 2. 004x10_
3 

-7.916xl0_
4 3 . 07xl0_ 2 11.56 11 . 04 10 . 54 10.11 0.410 l.926xl0_

3 -7.897xl0_4 2.89xl0_2 11.62 11 . 07 10 . 58 10.13 0.415 1. 963xl0 _
3 -8.146xl0_4 2.93xl0_2 12.16 11 . 62 11.02 10 . 63 0.435 1. 960xl0 _
3 

- 8.5 26xl0_4 2 . 85xl0_2 12 . 08 11.60 11 . 05 10.58 0 . 435 1. 917x10 _
3 -8.339xl0_4 2.78x10_ 2 12.63 12 . 05 11.52 11.04 0.450 1. 927xl0 _
3 -8. 672xl0_

4 
2. 76xl0 _2 13 .14 12 .48 11.94 11.41 0.470 2.009xl0_

3 -9.442xl0_4 2. 84xl0_2 13.35 12.85 12.24 11.80 0.480 1. 799xl0 _
3 -8.635xl0_4 2.49xl0_2 13.65 13 . 13 12.55 12.04 0 . 490 1. 81lxl0 _
3 -8.874xl0_

4 2.48xl0_2 14.08 13 . 44 12 . 94 112 . 32 0.500 l . 883xl0_
3 - 9.415xl0_

3 
2.57xl0_2 14 . 52 13.91 13 . 17 12 . 68 0.520 1. 98lxl0 _

3 -l.030xl0_3 2 . 68xl0_2 15 . 02 14.46 13.68 13 . 17 0.540 1. 932x10 _
3 

-1. 043x10 _
3 2 . 55xl0_2 15 . 54 14 . 82 14 . 13 13 . 53 0 . 550 1. 989xl0 _

3 
-1. 094xl0 _

3 2 . 60xl0_ 2 16 . 21 15 . 48 14 . 67 14 . 07 0 . 580 2.055xl0_
3 -l. 192xl0_

3 
2.64xl0_ 2 16.81 15 . 97 15 . 17 14 . 55 0.600 2.08lxl0_3 -1. 249xl0 _

3 
2 . 68xl0_2 16.80 16.00 15 . 23 14.64 0 . 600 1. 985xl0 _

3 
-l. 19lxl0 _

3 2 . 55xl0_2 16.86 16 . 00 15 . 16 14.38 0 .600 2. 282x10_
3 -1. 369x10 _3 

2 . 97xl0_ 2 16.74 15 . 98 15 . 25 14 . 48 0.600 2.070xl0 -l.242xl0 2 . 67xl0 
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Table A. 2 .2 (cont'd) 

h = 26.2 cm; D = 5.23 mm; (J = 1.09 s g 

[ d(H/h)J -
1-11 H2 HJ H4 (H/h) k d(x/h) cf 

rep rep b 
(cm) (cm) (cm) (cm) 

5.22 4 . 93 4.82 4. 74 0 . 185 1. 340xl0 - 3 -2.479xl0 -4 3 . 24xl0 -2 

6 . 05 5.74 5.58 5 . 37 0.220 l.658x10 -3 -3.648xl0 -4 3.66xl0 -2 

6 . 87 6.56 6.30 6.11 0.245 l.684xl0 -3 
-4.126xl0 -4 3 . 4lxl0 -2 

7. 77 7 . 40 7.19 6.90 0 . 280 l.654xl0 -3 -4.63lxl0 -4 3 . lOxlO -2 

8.62 8.24 7 .96 7 . 72 0 . 310 l.569xl0 -3 -4.864xl0 -4 2 . 7lxl0 -2 

9.51 9 . 18 8 . 87 8 . 60 0.345 l.444xl0 -3 -4 . 982xl0 -4 2.29xl0 -2 

10.50 10.08 9.73 9.45 0.380 l.509xl0 -3 -5 . 734xl0 -4 2 .28xl0 -2 

11. 57 11.11 10.73 10.36 0 . 420 1. 57 3xl0 -3 -6 . 607xl0 -4 2.28xl0 -2 

12 . 62 12 . 14 11. 74 11 . 32 0.455 l.545xl0 -3 -7.030xl0 - 4 2.14xl0 -2 

13 . 78 13 . 11 12 . 65 12 .19 0.495 1. 733xl0 -3 -8.578xl0 -4 2 . 35xl0 -2 

13 . 81 13. 27 12.75 12.27 0.500 1. 695xl0 - 3 -8.475xl0 -4 2 . 29xl0 -2 

15 . 10 14 . 33 13 . 70 13.96 0 . 540 1. 77lxl0 -3 -9 . 563xl0 -4 2 . 3lxl0 -2 

15 . 13 14 . 42 13 .91 13.45 0 . 545 1. 6 71x10 -3 -9.107x10 -4 2.15x10 -2 

15.14 14 . 43 13 .87 13.37 0 . 545 1. 772x10 - 3 - 9 .567xl0 -4 2 . 30xl0 -2 

16 . 93 16 . 02 15. 42 14.90 0.605 l.810xl0 -3 -l.095xl0 -3 2 . 27xl0-2 

17.00 15 . 96 15.38 14.82 0.605 1. 927xl0 -3 -l.166xl0 --3 2.44xl0 -2 

17 . 07 16.21 15.53 14 . 99 0.610 l.858xl0 -3 -l.133xl0 -3 2. 33xl0 -2 
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Table A.2.2 (cont'd) 

h = 18.5 cm; D = 7.55 mm; (J = 1.15 s g 

[ d (H/h)J -
Hl H2 HJ H4 (H/h) k 

d(x/h) cf 
rep b 

(cm) (cm) (cm) (cm) rep 

3 . 25 2.94 2.85 2.50 0 . 155 2.48lxl0 - 3 -3.846x10 -4 7 . 52xl0 -2 

3.25 2.93 2.85 2. 58 0.155 2.184x10 -3 -3. 385xl0 -4 6.57xl0 -2 

4.07 3.68 3.50 3.20 0 .19 5 2.340x10 -3 -4.563xl0 -4 5.81x10 -2 

4.90 4.69 4.21 3.89 0.240 2 . 428x10 -3 -5. 827x10 -4 5 . 16x10 
- 2 

5.80 5 .31 4 . 95 4.60 0 .280 2.322x10 -3 -6. 502x10 -4 4.52x10 -2 

6.74 6.20 5 . 76 5.35 0 . 325 2.325x10 - 3 -7 . 556x10 -4 4.07xl0 -2 

7 . 75 7.17 6 . 60 6.13 0.375 2.385xl0 -3 - 8 . 944x10 - 4 3.84x10 -2 

8. 77 8.16 7 . 52 6.96 0 .425 2.35lx10 -3 
-9 . 992xl0 -4 3.53x10 -2 

9.93 9.19 8 . 46 7 .8 7 0 .480 2. 366xl0 -3 -1.136xl0 -3 3 . 39x10 
-2 

11 . 22 10.31 9.47 8. 77 0.540 2.499x10 -3 -1. 349xl0 -3 3.40x1 0 -2 

12.58 11.20 10 . 19 9.48 0.590 2.86lx10 -3 
-1. 688x10 - 3 3 . 79xl0 -2 
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Table A. 2.2 (cont'd) 

h = 18.5 cm; D = 5.23 mm ; a = 1.09 
s g 

[ d (H/h)J -
Hl H2 H3 H4 (H/h) k d(x/h) cf 

rep b 
(cm) (cm) (cm) (cm) rep 

3 .29 3.02 2.93 2.76 0.165 l.690xl0 -3 -2.789xl0 -4 4.69xl0 - 2 

4.10 3 . 77 3.56 3.40 0 .200 1. 877xl0 - 3 -3. 754x10 - 4 4.49xl0 - 2 

4.92 ~' . 57 4 . 36 4.08 0 .24 5 1. 846xl0 -3 -4.523xl0 -4 3.8lxl0 -2 

5 . 83 5.42 5 . 11 4.79 0 . 285 1. 966x10 - 3 -5.603xl0 -4 3 . 76xl0 -2 

6. 71 6.27 5.95 5 . 55 0 . 330 1. 886xl0 -3 - 6.224xl0 -4 3.2lxl0 -2 

7. 75 7 . 24 6 . 86 6.45 0 . 385 1. 834xl0 -3 -7.06lxl0 -4 2.86xl0 -2 

8.85 8 . 19 7.73 7. 28 0 . 435 1. 952x10 -3 -8.49lxl0 -4 2. 86x10 -2 

10.05 9.32 8.61 8.17 0.490 2. 125xl0 - 3 -l . 04lxl0 -3 2.98xl0 -2 

11. 26 10.50 9.78 9.18 0.550 2.074xl0 -3 -l.141xl0 -3 2.75xl0 -2 

12.25 11.29 10 . 52 9.80 0.600 2.465xl0 -3 -l.479xl0 -3 3.22xl0 -2 
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Table A.2 . 2 (cont'd) 

h = 14.5 cm; D = 7 . 55 mm ; 0 = 1.15 s g 

[ d (H/h)J -
Hl Hz H3 H4 (H/h) k d(x/h) cf rep b 

(cm) (cm) (cm) (cm) rep 

2. 24 2.04 1.83 1.68 0 .135 2.310xl0 
- 3, 

-3.119xl0 - 4 8 . 82xl0 - 2 

3 . 08 2. 68 2. 47 2.24 0.180 2.465xl0 -3 -4.437xl0 -4 6. 70xl0 - 2 

3.595 3.18 2.86 2.57 0 . 210 2.646xl0 -3 - 5 . 557xl0 - 4 6.36xl0 -2 

4 . 115 3 . 605 3.23 2.86 0.240 2.856xl0 - 3 -6.854xl0 -4 6.14xl0 -2 

5.16 4 . 53 4 . 06 3.61 0.300 2.808xl0 -3 -8.424xl0 -4 5 . 28x10 -2 

5 . 13 4 . 56 4 . 07 3.66 0.300 2. 678x10 - 3 -8.034xl0 -4 5.02xl0 -2 

5 . 70 5.08 4.515 4.02 0.335 2. 770xl0 -3 -9.280xl0 - 4 4.83xl0 -2 

6.27 5.57 4 .96 4 . 42 0.370 2.769xl0 -3 -1. 025x10 - 3 4.58xl0 -2 

7 . 60 6 . 72 5.98 5.30 0 .445 2.848xl0 -3 -1. 267xl0 -3 4.19xl0 -2 

8.42 7.38 6 . 55 5.82 0 . 490 2.917xl0 -3 - l.429xl0 -3 4. 2lxl0 -2 

9.02 7.85 6.96 6.14 0.520 3.029xl0 -3 -l. 575xl0 -3 4.28xl0 - 2 
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Table A.2.2 (cont'd) 

h = 14.5 cm; D = 5 .23 mm; a = 1.09 
s g 

[ d (H/h)J -
Hl H2 H3 H4 (H/h) k d(x/h) cf 

rep b 
(cm) (cm) (cm) (cm) rep 

1. 94 1. 73 1.63 1.54 0.120 1. 788xl0 -3 -2.146xl0 - 4 7.19xl0 -2 

2.62 2.37 2 .21 2.10 0 . 160 1. 744xl0 -3 -2.790x10 - 4 5.00xlO -2 

3 . 45 3 . 05 2.90 2.67 0.210 1. 948xl0 -3 -4.09lxl0 -4 4 . 55xl0 -2 

3 . 89 3.49 3.25 2.98 0.235 2.070xl0 -3 -4.865xl0 -4 4.47xl0 -2 

4.33 3.89 3 . 58 3.31 0 .260 2 . 113xl0 - 3 -5.494xl0 -4 5. 26x10 -2 

4. 76 4 . 32 3 . 97 3.64 0.290 2 . 114xl0 -3 -6.13lxl0 -4 4.02xl0 -2 

5 . 36 4.76 4 . 37 3.98 0.320 2.326xl0 -3 -7.443x10 -4 4.16xl0 -2 

5 . 73 5 . 18 4 . 73 4 . 35 0 . 345 2.18lxl0 -3 -7. 524xl0 -4 3.66x10 -2 

6.26 5 .63 5.13 4 .71 0 . 375 2.250xl0 -3 -8 . 438xl0 -4 3.62xl0 -2 

6.75 6 . 10 5.56 5.10 0 .405 2.219xl0 - 3 -8. 987xl0 -4 3 . 43xl0 - 2 

7.93 7 .13 6 . 42 5.91 0 .475 2.346xl0 -3 -l.114xl0 -3 3.38xl0 -2 

9.17 8 . 19 7.38 6 . 72 0 . 545 2.464xl0 -3 -1. 343xl0 -3 3.34xl0 -2 
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Table A.2.2 (cont'd) 

h = 12 . 8 cm; D = S.2 3 mm; (J = 1.09 
s g 

[ d (H/h)J -
Hl H2 H3 H4 (H/h) k d(x/h) cf 

rep b 
(cm) (cm) (cm) (cm) rep 

1.92 1. 78 1.64 l.SO 0.13S 1. 726xl0 - 3 -2.330xl0 -4 6.SOxlO -2 

2.69 2.39 2.16 2.03 0 .180 1. 984xl0 -3 -3. S7lxl0 -4 S.2Sxl0 -2 

3.S7 3.13 2.84 2.S7 0.23S 2.273xl0 -3 -S.342x10 -4 4.9Sx10 -2 

4.45 3.93 3 . Sl 3.17 0 .29S 2.372xl0 -3 -6.997xl0 -4 4.SlxlO -2 

S.41 4.70 4.31 3. 84 0.360 2.340xl0 -3 -8.424xl0 -4 3.85xl0 -2 

6.51 S. 69 S.13 4.60 0.430 2.404xl0 -3 -1. 034x10 -3 3 .64xl0 -2 

7.66 6.7S 5.99 S.33 a.sos 2.S34xl0 -3 -l.280xl0 -3 3.S8xl0 -2 
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Table A.2.3 Characteristics of the material used in the 
investigation of the incipient motion of 
particles of arbitrary shape. 

P/Pw D 0 
s g 

(mm) 

Np 
T 

Geometric Total Number of 
Material Specific Mean Standard Particles in 

Gravity Diameter Deviation Upper Layer of Bed 

Natural Rock Ill 2.68 5.44 1.07 11930 

Natural Rock If 2 2.68 7.70 1.15 5940 

Coal Ill 1.283 8.00 1.18 5490 

Coal If 2 1 . 283 11.10 1.07 3640 
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Table A.2 . 4 Experimental data of the incipient motion of 
particles of arbitrary shape . 

Natural Rock * 

N (N /Np )xl04 
p p T 

Run No . h H H/h 

(cm) (cm) 
Rock Rock Rock Rock 

Ill 112 !fl 112 

CD-121-6 26.23 22.95 .875 22 5 18.44 8 . 42 

CD- 122- 6 26 . 23 22 . 95 .875 8 3 6. 71 5.05 

CD-123- 6 26.22 22.80 .870 16 4 13.41 6 . 73 

CD- 124-6 26.22 23.08 .880 13 6 10.90 10.10 

CD-125- 6 26.22 22.76 .868 14 4 11. 74 6.73 

CD-126- 6 26 . 22 22.94 .875 16 3 13.41 5.05 

CD-127-6 26 . 21 22.98 .877 16 6 13.41 10.10 

CD-128-6 26.21 22 . 87 .873 12 5 10.06 8 . 42 

CD- 129- 6 26.21 22.92 .874 9 6 7.54 10 . 10 

CD- 130-6 26.21 22 . 97 .876 12 4 10.06 6.73 

CD-131- 6 26.20 23.01 .878 17 4 14.25 6.73 

Average .875 11 . 81 7 . 65 

Std. dev. .00341 3.30 1.90 

* The symbols appearing in this table are h - water depth; H - wave 

height; Np - number of particles moving in the bed; NPT - total number 

of particles in the upper layer of the bed. Rock Ill, Rock 112, and 

Coal Ill and Coal #2 (which appear in later sections of this table) refer 

to the gravel whos e characteristics are given in Table A.2.3. 
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Table A.2 . 4 (cont'd) 

Natural Rock 

N (N /N )xl04 
p P PT 

Run No. h H H/h 
Rock Rock Rock Rock 

(cm) (cm) ff l 112 Ill 112 

CD-1-7 26.19 21. 36 .816 13 7 10 .90 11. 78 

CD-2- 7 26.19 21 . 69 . 828 12 6 10.06 10.10 

CD- 3-7 26.20 21 . 54 .822 --* 4 -- 6 . 73 

CD- 4-7 26.20 21 . 76 .831 -- 1 -- 1. 68 

CD- 5-7 26.20 21. 77 .831 -- 4 -- 6. 73 

CD-6-7 26.20 21.48 . 820 -- 5 -- 8.42 

CD-7-7 26.20 21.66 .827 -- 5 -- 8.42 

CD-8-7 26.20 21. 75 . 830 11 1 9.22 1.68 

CD- 9- 7 26.20 21.69 .828 15 5 12.57 8.42 

CD-10-7 26.20 21.57 . 823 11 4 9.22 6.73 

CD-11-7 26.20 21.56 .823 11 2 9 . 22 3.J7 

CD-12-7 26.20 21.47 .819 13 2 10 . 90 3.37 

CD-13- 7 26.21 21.52 . 821 10 1 8.38 1.68 

Average . 824 10.06 6.09 

Std . dev . .00493 1.34 3.40 

* Bed was externally disturbed during experiment. No data were produced. 
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Table A.2 .4 (cont'd) 

Natural Rock 

N (N /Np )xl04 
p p T 

Run No . h H H/h 
Rock Rock Rock Rock 

(cm) (cm) Ill ff2 Ill 112 

CD-1-8 26 . 19 19 . 54 .7 46 3 3 2 . 51 5 . 05 

CD- 2-8 26 . 19 19 . 57 . 747 7 3 5 . 87 5 . 05 

CD-3- 8 26.20 19.48 .744 11 5 9.22 8 . 42 

CD-4-8 26 . 20 19 . 50 . 744 8 4 6 . 71 6 . 73 

CD-5-8 26.20 19 . 60 . 748 8 2 6. 71 3 . 37 

CD-6-8 26.20 19 . 59 . 748 10 3 8 . 38 5 . 05 

CD- 7-8 26.20 19 . 51 . 745 10 4 8.38 6.73 

CD-8-8 26.20 19.64 .750 7 3 5 . 87 5 . 05 

CD- 9-8 26.20 19 . 60 . 748 7 3 5 . 87 5 . 05 

CD-10-8 26.20 19.46 .743 11 * 9.22 ----

CD-11-8 26 .20 19 . 53 . 745 9 -- 7.54 --

CD-12-8 26 . 19 19.56 . 747 12 -- 10 . 06 --

CD- 13- 8 26 . 20 19.56 . 747 14 -- 11. 74 --
CD-14-8 26 . 20 19.63 . 749 10 -- 8 . 38 --

CD-15-8 26.20 19 . 51 . 745 7 -- 5.87 --

!Average . 746 i 7 . 49 5.61 

Std. dev. . 00203 I 2.23 1. 46 

* Bed disturbed externally during experiments. No data produced. 
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Table A.2.4 (cont'd) 

Natural Rock 

N (N /Np )x104 
p p T 

Run No. h H H/h Rock Rock Rock Rock 
(cm) (cm) Ill 112 Ill 112 

CD-1-9 26.21 21.76 .830 10 4 8.38 6.73 

CD-2-9 26.20 21.59 . 824 11 5 9 .22 8.42 

CD-3-9 26 .20 21 . 61 .825 11 2 9.22 3.37 

CD-4-9 26.20 21.64 .826 7 4 5 .87 6.73 

CD-5-9 26.20 21.53 . 822 7 5 5.87 8.42 

CD-6-9 26.20 21. 75 .830 8 3 6.71 5.05 

CD-7-9 26.20 21.61 .825 12 4 10.06 6.73 

CD-8-9 26 .20 21. 72 .829 13 4 10.90 6 . 73 

CD-9-9 26 . 20 21 . 75 .830 7 4 5 .87 6 . 73 

CD-10-9 26.19 21. 75 . 830 14 3 11. 74 5.05 

CD-11-9 26 . 21 21. 76 .830 14 4 11. 74 6.73 

CD-12-9 26.21 21 . 69 . 828 15 3 12.57 5 .05 

CD-13-9 26 . 20 21 . 80 . 832 17 2 14.25 3 . 37 

CD-14-9 26.20 21. 79 .832 8 5 6 . 71 8 . 42 

CD-15-9 26 .19 21.92 . 837 12 8 10 . 06 13 . 47 

!Average . 829 9.28 6 . 73 

Std. dev. .00379 2.68 2.46 
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Table A.2 . 4 (cont'd) 

Natural Rock 

N (N /Np ) xl0 4 
p p T 

Run No. h H H/h 
Rock Rock Rock Rock 

(cm) I (cm) Ill 112 Ill 112 
I 

I 
CD- 1-10 26.22 I 18.40 .702 12 5 10.06 8.42 

CD-2-10 26.22 18.52 .706 12 4 10.06 6.73 

CD-3-10 26.21 I 18.54 .707 7 6 5.87 10.10 

I 
CD-4-10 26.21 18.58 .709 5 3 4.19 5.05 

CD-5-10 26.21 18.50 .706 5 2 4.19 3.37 

CD-6-10 26.21 18.60 . 710 12 2 10.06 3.37 

CD-7-10 26.20 18.61 . 710 9 4 7.54 6.73 

CD-8-10 26.20 18.59 .709 5 3 4.19 5.05 

CD-9-10 26.20 18.57 .709 5 0 4.19 0 

CD-10-10 26.19 18.52 .707 6 2 5.03 3.37 

CD-11-10 26.21 * 6 3 5 . 03 5.05 -- --
CD-12-10 26.20 -- -- 7 0 5.87 0 

CD-13-10 26.20 -- -- 3 0 2.51 0 

CD-14-10 26.20 -- -- 6 0 5.03 0 

Average .708 5.99 4 . 09 

Std. dev. .00246 2.48 3.28 

* The wave record displayed erratic reading. The wave generator, 
however, was s e t as in preceding waves. 
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Table A.2.4 (cont'd) 

Natural Rock 

N (N /Np )xl04 
p p T 

Run No. h H H/h Rock Rock Rock Rock 
(cm) (cm) Ill 112 Ill If 2 

CD- 1- 11 26. 21 18.55 .708 2 1 1.68 1.68 

CD-2-11 26.20 18.49 .706 5 1 4.19 1.68 

CD- 3-11 26.19 18.37 .701 5 1 4 . 19 1.68 

CD-4-11 26 . 19 18.33 .700 4 1 3.35 1.68 

CD- 5-11 26 . 19 18.32 .700 6 1 5.03 1.68 

CD-6-11 26.20 18.44 .704 5 1 4.19 1. 68 

CD- 7- 11 26.21 18.50 .706 --** 2 -- 3.37 

CD-8-11 26.21 18.45 . 704 4 1 3.35 1.68 

CD-9-11 26 . 20 18.40 .702 5 1 4 .19 1.68 

CD-10-11 26.21 18.57 .709 6 0 5.03 0 

CD-11-11 26.21 18 . 54 .707 5 3 4.19 5.05 

CD-12-11 26.21 18.60 . 710 6 0 5.03 0 

CD- 13- 11 26.22 --* -- 5 2 4.19 3.37 

CD- 14-11 26 . 22 18.33 .699 4 0 3.35 0 

CD-15-11 26 . 21 18 .37 .701 3 1 2.51 1. 68 

Average . 704 3.89 1. 79 

!Std. dev . .00365 0 . 96 1. 35 

* Erratic wave record. Wave assumed as average of all other waves . 

** Erratic data, ignored. 
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Table A.2 .4 (cont'd) 

Natural Rock 

N (N /Np )xl04 
p p T 

Run No. h H H/h 
Rock Rock Rock Rock 

(cm) (cm) ltl tf2 Ill ti 2 

CD-1-12 26.21 15.62 .596 12 0 10 . 06 0 

CD-2-12 26 . 21 15.49 .591 5 0 4.19 0 

CD-3-12 26 .21 15.55 .593 5 0 4 . 19 0 

CD-4-12 26 . 20 15.65 .597 5 0 4.19 0 

CD-5-12 26 . 21 15.65 .597 7 1 5.87 1. 68 

CD-6-12 26.21 15.68 .598 10 2 8.38 3 . 37 

CD-7-12 26 . 20 15.73 . 600 8 1 6. 71 1. 68 

CD-8-12 26.21 15 . 55 . 593 5 1 4.19 1. 68 

CD-9-12 26.21 15.44 .589 4 0 3 . 35 0 

CD-10-12 26.21 15.56 .594 6 0 5.03 0 

CD-11-12 26 . 21 15.69 .599 5 0 4 . 19 0 

CD-12-12 26 . 21 15.67 .598 4 0 3.35 0 

CD-13-12 26.20 15 . 66 .598 4 0 3 . 35 0 

CD-14-12 26.20 15.76 .602 1 0 .84 0 

CD-15-12 26.20 15 . 78 .602 1 1 .84 1.68 

Average .596 4.58 0 . 673 

Std. dev. . 00381 2 . 45 I 1.064 
I 
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Table A.2.4 (cont'd) 

Natural Rock 

N (N /Np ) xl0 4 
p p T 

Run No . h H H/h 
Rock Rock Rock Rock 

(cm) (cm) Ill 112 tll 112 

CD-l·-13 18.50 15 .20 .822 5 4 4.19 6. 73 

CD-2-13 18.51 15.60 . 843 10 4 8.38 6.73 

CD-3-13 18.52 15 . 73 .849 10 2 8.38 3.37 

CD-4-13 18 . 52 15.52 .838 8 4 6.71 6.73 

CD-5-13 18.51 15 . 78 .853 14 6 11. 74 10.10 

CD-6-13 18.51 15 . 90 . 860 12 5 10.06 8.42 

CD-7-13 18.51 15.80 .854 8 3 6.71 5.05 

CD-8-13 18.50 15.93 .861 10 3 8.38 5 . 05 

CD-9-13 18.51 16 .05 .867 10 2 8.38 3.37 

CD-10-13 18.51 16 .14 .872 13 3 10.90 5.05 

CD-11-13 18.51 16 . 13 .871 7 1 5.87 1.68 

CD-12-13 18.51 16 .12 .871 13 4 10.90 6. 73 

CD-13-13 18 . 50 16.04 .867 13 2 10.90 3.3/ 

CD-14-13 18.51 15.70 .848 10 1 8.38 1. 68 

CD-15-13 18 . 50 15.95 .862 10 1 8.38 1. 68 

Average .8 56 8.55 5 . 05 

Std. dev. .01414 2.11 2.55 I 
i 
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Table A.2 . 4 (cont'd) 

Natural Rock 

N (N /Np ) x.104 
p p T 

Run No . h H H/h 
Rock Rock Rock Rock 

(cm) (cm) Ill 112 Ill ff 2 

CD- 1-14 18 . 52 13.65 . 737 6 4 5.03 6.73 

CD-2-14 18.51 13.67 . 739 9 3 7 . 54 5. 05 

CD-3-14 18 . 50 13 . 87 . 750 10 3 8 .38 5 . 05 

CD-4-14 18 . 51 13.91 .751 7 2 5.87 3.37 

CD-5-14 18 . 51 13.88 . 750 10 1 8 . 38 1.68 

CD-6-14 18 . 50 13.76 .744 9 0 7.54 0 

CD-7-14 18.52 13 .89 . 750 4 3 3 .35 5.05 

CD-8- 14 18 . 52 13 . 88 . 749 9 2 7 . 54 3 . 37 

CD-9-14 18.51 13.82 . 747 7 2 5 .8 7 3.37 

CD- 10-14 18.51 13 . 83 .747 6 2 5 . 03 3 . 37 

CD- 11-14 18 . 50 13.93 .753 5 1 4.19 1.68 

CD-12-14 18 . 52 13 . 58 .733 6 1 5 . 03 1. 68 

CD-13-14 18.52 13 . 90 .751 5 3 4 . 19 5 . 05 

CD-14-14 18 . 52 13 . 87 .749 8 I 0 6 . 71 0 

CD-15-14 I 18 . 51 13 . 94 .753 8 I 2 6 . 71 3 . 37 
I 

Average . 747 6. 09 3.25 

Std. dev. I . 00604 1.60 1.96 
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Table A.2.4 (cont'd) 

Natural Rock 

N (N /Np )xl0 4 
p p T 

Run No. h H H/h 
Rock Rock Rock Rock 

(cm) (cm) Ill 112 Ill 112 

CD-1-15 18 . 49 I 11.10 
I 

.600 8 1 6. 71 1.68 

CD-2-15 18.51 11. 22 .606 9 0 7.54 0 

CD-3-15 18 . 52 11.12 .600 6 2 5 . 03 3.37 

CD-4-15 18.52 11.10 .599 6 1 5.03 1.68 

CD- 5-15 18.51 11.16 .603 3 1 2.51 1.68 

CD-6-15 18.51 11.29 .610 4 0 3.35 0 

CD-7-15 18.52 
I 

10.97 .592 3 0 2.51 0 

CD-8-15 18 . 52 
I 

11.03 .596 5 1 4.19 1. 68 

CD-9-15 

I 
18.51 11.05 .597 6 1 5 . 03 1.68 

I 
CD-10-15 18 . 51 I 11.08 .599 7 1 5.87 1.68 I 

CD-11-15 18.51 11.08 .599 5 3 4.19 5.05 

CD-12-15 18.50 11.08 .599 7 2 5.87 3.37 

CD-13-15 18 . 50 11 . 08 .599 2 1 1. 68 1. 68 

CD-14-15 18 . 51 11.11 .600 2 1 1. 68 1. 68 

CD-15-15 18.50 11 . 10 .600 4 0 3 . 35 0 
I 

Average I .600 4.30 1.68 
I 

1.47 l Std. dev. 
I I 

.00413 1. 79 
I 
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Table A.2.4 (cont'd) 

Coal 

N (N /Np )xl04 
p p T 

Run No. h H H/h Coal Coal Coal Coal 
(m) (cm) Ill 112 Ill 112 

C,2,3-1-5 26.18 6.60 .252 1 2 1.82 5.49 

C,2,3-2-5 26.20 6.48 .247 4 3 7 .29 8.24 

C,2,3-3-5 26.21 6.49 .248 5 3 9 .11 8.24 

C,2,3-4-5 26.20 6.50 .248 6 1 10.93 2.75 

C,2,3-5-5 26.20 6.50 .248 3 1 5.46 2.75 

C,2,3-6-5 26.20 6 .53 .249 5 0 9.11 0 

C,2,3-7-5 26.20 6.50 .248 6 1 10.93 2.75 

C,2,3-8-5 26.20 6.47 .247 4 0 7.29 0 

C,2,3-9-5 26.21 6.49 .248 5 2 9 .11 5.49 

C,2,3-10-5 26.21 6.52 . 249 6 1 10.93 2.75 

C,2,3-11-5 26.21 6.52 .249 3 0 5.46 0 

C,2,3-12-5 26.21 6.50 .248 4 1 7.29 2.75 

C,2,3-13-5 26.20 6 . 54 .250 4 1 7 .29 2.75 

C,2,3-14-5 26.20 6 . 52 .249 5 1 9.11 2.75 

C,2,3-15-5 26.20 6.52 .249 3 1 5.46 2.75 

Average .249 7 . 77 3.30 

Std. dev. . 00123 2.53 2.58 
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Table A.2.4 (cont'd) 

Coal 

N (N /Np )x 10 4 
p p T 

Run No . h H H/h 
Coal Coal Coal Coal 

(cm) (cm) Ill If 2 Ill 112 

C,2 , 3-1- 6 14.50 3.65 .252 4 1 7.29 2.75 

C,2,3-2-6 14.50 3.60 .248 5 2 9 .11 5 .49 

C,2,3-3-6 14.50 3.70 .255 2 1 3 .64 2.75 

C,2,3-4-6 14.50 3.62 .250 3 0 5.46 0 

C,2,3-5-6 14.50 3.68 .254 5 1 9.11 2.75 

C,2,3-6-6 14.49 3.67 .253 3 2 5.46 5.49 

C,2, 3-7-6 14.48 3.70 .256 3 0 5 . 46 0 

C,2, 3-8-6 14.48 3.67 .254 3 1 5.46 2.75 

C,2,3-9-6 14.50 3.67 .253 3 0 5.46 0 

C,2,3-10-6 14.50 3.64 .251 1 0 1.82 0 

C,2, 3-11-6 14 . 50 3. 71 .256 3 4 5 . 46 10.99 

C,2,3-12-6 14.50 3.66 .252 2 1 3.64 2 .7 5 

C,2, 3-13-6 14.51 3.70 .255 1 0 1.82 0 

C,2,3-14- 6 14.50 3.68 .254 2 1 3.64 2 .7 5 

C,2,3-15-6 14 . 50 3.67 .253 2 2 3.64 5 .49 

Average .2 53 .5.10 2.93 

Std. dev . .00214 2.20 3.02 
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Table A.2.4 (cont'd) 

Coal 

N (N /Np )xl0 4 
p p T 

Run No. h H H/h Coal Coal Coal Coal 
(cm) (cm) Ill 112 Ill 112 

C,2,3-280-8 14.50 4.83 .333 6 5 10.93 13 . 74 

C,2,3-290-8 14 . 51 4.80 .331 7 5 12.75 13.74 

c,2;3-300-8 14.50 4.87 .336 8 7 14.57 19.23 

C,2,3-310-8 14.50 4.95 .341 9 6 16.39 16.48 

C,2,3-320-8 14.51 4.80 .330 7 4 12.75 10.99 

C,2,3-330-8 14.52 4.98 . 343 7 5 12.75 13.74 

C,2,3-340-8 14.50 4.90 .338 4 4 7.29 10.99 

C,2,3-350-8 14.47 4.81 .332 3 7 5.46 19.23 

C,2,3-360-8 14.50 4.89 .337 4 * 7.29 -- --

C,2,3-370-8 14.48 4.90 .338 5 8 9.11 21.98 

C,2,3-380-8 14.48 4.84 .335 5 5 9.11 13. 74 

C,2,3-390-8 14 . 52 4.74 .326 4 7 7.29 19.23 

C,2,3-400-8 14.51 4.90 .338 4 5 7.29 13 . 74 

C,2 , 3-410-8 14.51 4.73 .326 8 3 14.57 8.24 

C,2,3-420-8 14.51 4.90 .337 7 --* 12 . 75 --

C,2,3-430-8 14.52 4.88 .336 6 8 10 .93 21.98 

C,2,3-440-8 14 . 50 4.90 .338 6 5 10 .9 3 13.74 

Average .335 10.71 15.38 

Std. dev. I . 00476 3.15 4.13 

* Erratic data, ignored . 


