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ABSTRACT

Damped free oscillations of the magnetization have been clearly
observed at the completion of 180° flux reversal along both the easy
and the hard axis in Ni-Fe thin films. The flux component perpendicu-
lar to the applied pulse field was observed using a single turn pick-
up loop around the film. The frequency of the oscillation was studied
as a function of applied pulse field and compared with the results ob-
tained by ferromagnetic resonance. The frequency of the damped free
oscillation agreed quite well with that obtained by resonance when the
frequency was measured after the oscillation had damped to small am-
plitude. The damping constant obtained from the decay of the oscil-
lation agreed quite well with that obtained from the half-power Tine-
width of the resonance curve.

The Landau-Lifshitz equation proposed for the coherent rotation,
using the value of the damping constant obtained by resonance, could
describe the initial part of the magnetization reversal and the damped
free oscillation in the films with low angular dispersion. Agreement
between the experimental and the calculated transverse flux change for
the entire waveform could not be obtained by using the value of damp-
ing constant obtained by resonance. The agreement was better at both
higher applied field or lower anisotropy dispersion. The effect of
eddy currents was negligible on the flux reversal but appeared as a
slight increase of the damping constant obtained by resonance

experiment.



TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
ABSTRACT iii
TABLE OF CONTENTS v
Chapter 1 INTRODUCTION 1
Chapter 2 COHERENT MAGNETIZATION REVERSAL 3
2.1 Introduction 3
2.1.1 Review of Dynamic Equations 3

2.1.2 Ferromagnetic Thin Film and
Magnetization Reversal 20
2.1.3 Review of Previous Investigations 23
2.2 Experimental Method 30
2.2.1 Apparatus 30

2.2.2 Measurement of Quasi-Static
Quantities 38
2.2.3 Sample 45
2.3 Results and Discussion 48
2.3.1 Transverse Flux Waveform 48
2.3.2 Effect of Transverse Bias Field 51
2.3.3 Effect of Anisotropy Dispersion 51

2.3.4 Effect of Pick-up Loop Frequency

Response 57
2.3.5 Thickness Dependence of Waveform 60

2.4 Summary 70



vi

Chapter 3  DAMPED FREE OSCILLATION OF MAGNETIZATION IN

Ni-Fe THIN FILMS 71
3.1 Introduction 71
3.1.1 General 71
3.1.2 Theory 72
3.1.3 Previous Investigations 80

3.2 Experimental Method 84
3.2.1 Damped Free Oscillation 84
3.2.2 In-plane Resonance 92

3.3 Results and Discussion 94
3.3.1 Oscillation Frequency 94
3.3.2 Damping Constant 110

3.4 Summary 118
Appendix 116

References 118



-1 -
Chapter 1
INTRODUCTION

Magnetization reversal in ferromagnetic thin metallic films
was extensively investigated in the mid 60's because of the prospec-
tive use of films as computer memory elements. Since then, the
motivation for the application of the thin films for computer memory
elements has faded away because of competition with other prom-
ising memory elements. The number of investigations of magnetization
reversal has, therefore, considerably reduced. The main interest of
the investigations that remain has shifted towards more fundamental
and still unsolved problems.

One major unsolved problem involves the damping of the magnet-
ization during a reversal. A possible way to investigate the damping
is to analyze the reversal as a function of time. The analysis will
be, however, formidably complicated unless the magnetization configura-
tion is clearly known during the reversal. The fundamental simplicity
of the coherent rotation provides this knowledge. A technical develop-
ment in the observation of very high speed reversal signals offers a-
unique new opportunity to acquire a better understanding of the damp-
ing phenomena. .

The Landau-Lifshitz dynamic equation has been widely recog-
nized for its suitability in describing the coherent motion of mag-
netization in thin films. The occurrence of coherent magnetization
reversal is, however, infrequent in actual films. Therefore, the des-

cription of magnetization reversal using the Landau-Lifshitz dynamic



equation has been always more or less qualitative. The applicability
of the equation to the description of 180° flux reversals is carefully
re-examined in Chapter 2. The departure of the actual magnetization
reversal from the ideal coherent magnetization reversal was studied

to understand the application of the equation to the 180° magnetization
reversal. For this purpose, the effect of applied field, inhomogeneity
of uniaxial anisotropy and eddy current loss on flux reversal wave-
forms was studied.

At the end of a 180° flux reversal, oscillation of the
magnetization as it comes to the new equilibrium direction is pre-
dicted. This damped free oscillation has been observed and is dis-
cussed in Chapter 3. The direct comparison of the free oscillation
with the resonance oscillation was possible. The comparison of the
free oscillation frequency with the resonance frequency provided an
insight into the role of magnetic fields of various origins during
the reversal. A comparison was also made between the damping con-
stant of the decay of free oscillation and that obtained from the
half-power line width of the resonance curve. The comparison offered
a unique method for better understanding of the damping associated

with the motion of magnetization.
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Chapter 2

COHERENT MAGNETIZATION REVERSAL

2.1 Introduction

2.1.1 Review of Dynamic Equations

To analyze magnetization reversal in ferromagnetic materials, it
is desirable to describe the reversal by an equation whose parameters
are simply related to measurable quantities and to the mechanism of
reversal. Various dynamic equations have been proposed to analyze the
motion of the magnetization and will be reviewed here in order to
clarify their validity and applicability to the analyses of the
reversal.

The measurable quantities for a typical flux reversal experiment
are effects of total spins, but not separate effects of each spin. In
the present experiment, a set of pick-up Toops is used to detect the
total flux change due to the motions of spins. When a dynamic equation
is used, the interpretation of its solution is unavoidably ambiguous
unless the configuration of the magnetization is known during the
reversal. Even if a configuration is known, some complications may
arise because of the mutual interactions of spins which generate effec-
tive internal fields, for example, a demagnetizing field due to diver-
gence of magnetization and an exchange field, etc. These complications
can be avoided, however, in two extreme cases. One is a case in which
the interactions are strong enough to keep all the spins moving in

unison, i.e., coherent rotation. In this case no effective field is
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needed to be considered. The other is the case in which the mutual
interactions are weak enough to be neglected.

An equation for the strong interaction case was proposed first by
Landau and Lifshitz (1935). A similar equation was later proposed by
Gilbert (1955). An equation for negligible interaction was proposed by
Bloch for nuclear resonance theory (1946). Bloembergen (1950) found that
Bloch's equation was applicable also for the strong interaction in a
special case, i.e., ferromagnetic resonance. A generalized form of
Landau-Lifshitz equation was proposed by Callen (1958). Some quantum
mechanical considerations were given to relate this dynamic equation
to reversal mechanisms. The effect of small fluctuations of spins was
considered whereas their interactions are strong enough to be neglected
in Landau-Lifshitz and Gilbert's equation.

The Landau-Lifshitz equation is given by

%=-y(ﬁxﬁ)—b—4—;‘—ﬁx(ﬁxﬁ) . (2-1)

where M is a magnetization vector, H is a magnetic field acting on ﬁ,

vy is the gyromagnetic ratio 1.76 x 107 [rad/sec-0e] and A is the ad-
justable scalar. Equation (2-]) is depicted in Fig. 2-1. The magnetiza-
tion ﬁ, the time deriyative %%3 the first and second terms of Eq. (2-1)
are vectorially shown in x, y, z coordinates as in Fig. 2-la. The z-
direction is chosen along the applied field H. It can be seen from
Fig. 2-1a that the vector —y(ﬁ X ﬁ) = T] is perpendicular to M and ﬁ;
and represents a component of the torque which causes a precession of
M around H. The vector -(A/Mz)ﬁ x (MxH) = TZ is also perpendicular

to M and is directed towards H in the plane determined by M and H.
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This vector represents a component of the torque which changes the
direction of M towards H. This directional change is called the relax-
ation of the magnetization. The second term was originally introduced
to represent the damping which must cause the directional change of M
towards its equilibrium direction along H. This formulation is usually
referred to as Landau-Lifshitz damping. The essential nature of Eq.
(2-1) dis shown in Fig. 2-1b, where a vector diagram of the equation is
projected on a plane perpendicular to M. The torques T] and TZ are
orthogonal and, therefore, are independent of each other. The indepen-
dency causes an apparent difficulty as shown in Fig. 2-2, where the
motions of the magnetizations are shown with A as a parameter. From
this figure, it can be seen that the relaxation of M speeds up as A
increases, while the precession keeps a constant angular frequency yH.
Thus the reversal time decreases as A increases,

Another formulation with, perhaps, more physical significance is

the Gilbert equation. This equation is given by

>
Qﬁ,_ ~v(M x H) + %ﬁ % %%- ; (2-2)

where o is an adjustable scalar. The first term of Eq. (2-2) is the
same as in the Landau-Lifshitz equation. The major difference between
the two formulations is in the introduction of the damping. In Eq.
(2-2), the damping term (second term) represents a drag to the motion

of magnetization. By rewriting Eq. (2-2) into the following form

dM _ dﬁ
o dM

it is clear that W dt represents an effective field opposite to the

motion. The vectorial relationship between the terms in Eq. (2-2) is
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di
dt’

as well as the first and second terms of Eq. (2-2) are drawn vector-

shown in Fig. 2-3. The magnetization ﬁ, the time derivative,

jally in the Cartesian system. The z-direction was chosen along the
applied field, H. As before, the torque T] is perpendicular to M and
H. In this case, however, the torque TZ is not in the plane determined
by M and H. This difference can be seen more conveniently in Fig.
2-3b, where the vector diagram is projected on a plane perpendicular

to M.

The motion of the magnetization during a reversal is shown in Fig.
2-4 for various values of the parameter o.. When o is equal to zero,
the magnetization precesses around the field with angular frequency
YH without reversing. When & is small, the precession is still
dominant, but a slow reversal occurs. When o is large, the motion of
the magnetization is slow in every direction, therefore, both the
precession and the reversal are slow. When a is equal to one, the re-
versal is the fastest.

The Gilbert and the Landau-Lifshitz equations are mathematically
equivalent. Both equations have dM/dt in the plane perpendicular to
M, and the magnitude of M is conserved. This equivalence can be seen
in Fig. 2-5, where the two equations are vectorially shown in the plane
perpendicular to M. The gyromagnetic ratio y's for Landau-Lifshitz and
Gilbert equations are subscripted by L and G, respectively. It can be

seen from the geometrical considerations that

_ Vg
Ty = =y ,  (2-4)

1+ a
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MYGOL
= _'-—'2' ) (2'5)

1 +a

A

For usual magnetic materials, a<<l. Therefore,
YL ~ Yo > (2-6)

and
A~ MYGa : (2-7)

In this case, there is no difference between the A's and the damping
parameters are simply related by a constant. The choice, therefore,
can be made arbitrarily depending on the situation.

Another type of equation was introduced by Bloch (1946) in the
theoretical analysis of the nuclear resonance, where the mutual inter-
actions of spins are weak enough to be neglected. The same equation
was later applied by Bloembergen (1950) to the analysis of ferromag-
netic resonance where the mutual interactions of spins are strong.

This so-called Bloch-Bloembergen equation is:

->
LY S . %7 (@)
sy 5y 9
> o
M_-M
dM, _ & @ Z 0
(afoz‘ -y(M x H)Z - T_l . (2-9)
or
o I
M= (i xA) - fi"; - —T——Z] : . (2-10)

where the subscripts x, y, z are used to describe the vector compo-
nents in the Cartesian system. The z axis is along the app]ied field.

The parameters T] and T2 represent the longitudinal and transverse
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relaxation time, respectively, and M0 is the saturation magnetizatioh
at equilibrium.

A vectorial representation of the Bloch-Bloembergen equation (2-10)
is shown in Fig. 2-6. The vectors M, g@-and the three terms of Eq.
(2-10) are shown. The vector -y(ﬁ x H) represents the torque causing
the precession of the magnetization around the field as in the pre-
vious case. The vectors ﬁx’y/T2 and (ﬁz-ﬁo)/T] represent the torques
causing the relaxation of M towards the applied field. The essential
difference of this equation from the Landau-Lifshitz or the Gilbert
equation is that the vector %g-has a component along ﬁ, indicating the
magnitude of M changes with time. Therefore, M is not conserved.

It might seem strange that the Bloch equation, which is based on
the assumption of negligible mutual interactions of spins, can be
applied to ferromagnetic resonance. However, the Bloch equation is
equivalent to the Landau-Lifshitz equation if the deviation of the
magnetization M from its equilibrium ﬂs is small. The terms of the

Bloch-Bloembergen equation are shown in Fig. 2-7 for the case where

M is very close to ﬁb. In this case,

>
M
T a?ﬁ x (M x /) » o (2-1)
z
and = >
Mz j Mo
- | H—21~ 0 . (2-12)

Therefore, the Bloch-Bloembergen equation can be used in the analysis
of ferromagnetic resonance where the magnetization is almost aligned
along its equilibrium direction and yet is not appropriate for the

large angle magnetization reversals under consideration here.
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Callen (1958) proposed a very general equation:

‘-j—’,gdaﬁ-Y(M’xFT)-xﬁxM’xﬁ . (2-13)

where o, v and X are all adjustable scalar parameters. The three terms
of this equation represent three mutually orthogonal components of the
motion. The second and third terms are of the same form as in the
Landau-Lifshitz equation but M is not conserved in magnitude as can be
seen in the first term. He related a, y and X to the intrinsic proper-
ties of the material, the strength of the applied field, and the state
of the spin system. For the special case where o =0, M is conserved.
Therefore, it might be expected that his equation could be used for the
coherent magnetization reversal. Unfortunately, the analysis has been
made only for the case where M is near its equilibrium, to avoid a
complication due to the couplings between the uniform mode of spin

wave to other modes. The condition that M is near its equilibrium is
apparently not appropriate for the magnetization reversal. For this
reason, Eq. (2-13) cannot be used in the present case, where M rotates
away from its equilibrium.

In analyzing a flux reversal in thin ferromagnetic films, a com-
plication arises because of the existence of the demagnetizing field
and the effective field due to a uniaxial anisotropy. The magnetic
field exerted on the magnetization is the sum of the externally
applied field, the demagnetizing field and the field due to the
anisotropy. For thin films, a good approximation is that the demagnet-
izing ~field is perpendicular to the film plane, because a typical

5

thickness to diameter ratio is 10°°. The demagnetizing field is given

by
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> >
Hm = -41TMn 5 (2-14)

where the z-direction is along the film normal. An expression for

effective field due to the anisotropy is derived in Sec. 2.1.2 and

is given by
Bo= '
a = Hk-M-— . (2-]5)
or = (Hk cos ¢) »  (2-16)

where Hk = 2K/M. The x and y directions are along the easy and hard

axes respectively and 1 and 3 are the respective unit vectors.
Because of the film geometry, it is possible to simplify the prob-

lem by separating the motion into two orthogonal directions. An
example is shown in Fig. 2-8 for the Landau-Lifshitz equation. The
terms of Eq. (2-1) are shown in the Cartesian system. The x, y, and
z axes are chosen along the easy axis, the hard axis and the normal
to the film plane, respectively. The sum of the applied field, ﬁs

(= ﬁéx + ﬁgy), and the field due to the anisotropy, ]

a* 1S shown by

the vector H (=ﬁx + ﬁy). The initial precession of M around H

creates a strong demagnetizing field -4nﬁz. (The vector ﬁz is not
shown to emphasize that M is almost in the film plane.) The torque
due to the field H is -y(M x H) and is shown by the vector 1. The
vector -y(M x H) is perpendicular to M and almost perpendicular to

the x,y plane. The torque due to the demagnetizing field -41rMZ is
v(M x 4nﬁz) and is shown by the vector 2. The vector y(M x 4nﬁz) is
also perpendicular to M and lies almost in the x,y plane. The damping

terms-(A/Mz)ﬂ x (M x A) and (A/Mz)ﬁ x (M x 4wﬂz) are shown by the
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vectors 3 and 4. The vector -(A/M°)M x (M x H), 3, lies almost in

the x,y plane and parallel to the vector Y(ﬁ X 4nﬁz), 2. The vector

(A/Mz)ﬁ x (M x 4nﬁz), 4, is almost perpendicular to the x,y plane and
antiparallel to the vector (M x #), 1.

From Fig. 2-9, one obtains

(%:ﬁ_)xy = —y(M x mﬁz)-a-z—m* x [Mx (A, + ﬁy)] . (2-17)

(g—_f—)z = M (A, + ﬁy) - ﬁfﬁ x (M x 4nMl) . (2-18)
thus,

M$ = -4myM sin 6 - >\(Hx cos ¢ + Hy sin ¢) R (2-19)

Mo = YM(H_cos ¢ + H, sin ¢) - 4maM sin 6 . (2-20)

Where ¢ is the rotation angle of the magnetization from the easy axis
and 6 is that from the film plane. Equations (2-19) and (2-20) can be

solved for ¢ and 6 as:

.o o 2
¢ + 4mAap + 4wy M[Hk sin ¢ cos ¢ - HSX sin ¢ + Hsy cos ¢]=0, (2-21)

1

- & (2-22)

e:

when sin 6 ~ 6 and yM>>)\H. These equations were previously obtained

by Smith (1958) using a different analysis. For the present investi-
gation, Eq. (2-21) is generally most convenient, because it contains

only the angle of the rotation. It was solved digitally using a

HP9820 calculator for various values of Hk’ A and st.
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2.1.2 Ferromagnetic Thin Films and Magnetization Reversal

Thin films of Ni-Fe were first prepared by Blois (1955) by vacuum
evaporation. He also showed that an in-plane uniaxial anisotropy was
induced when a film was evaporated with a magnetic field in the plane
of the film. Ever since, Ni-Fe thin films have been of interest and
investigated by many workers in the field. The two unique characteris-
tics of films, the extreme geometry and the uniaxial anisotropy, have
been the principal reasons for their popularity.

Because of the film geometry (the diameter to thickness ratio of
~105), the magnetization lies in the film plane for most circumstances.
The demagnetizing field normal to the film plane is huge. It is -4nM
sin ® when the magnetization, M, rises from the film plane by 6 degrees.
For example, in the case of 83 Ni-17 Fe film, the demagnetizing field
of about 190 Oe is generated when the magnetization rises only 1
degree from the film surface. Therefore, the magnetization lies in
the film plane unless a large magnetic field is applied normal to
the film surface.

The uniaxial anisotropy can be described by a free energy of the

magnetization system;

E =K s1'n2 [0 ’ (2-23)

where K is a constant called the anisotropy constant and ¢ is the
angle of the magnetization rotation from the easy axis. The axis of
the minimum energy is developed along the direction of the field dur-
ing the evaporation. The magnetization lies along this axis in the
absence of an external field. The axis is called the easy axis, and

the axis perpendicular to it is called the hard axis.
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The torque, T, exerted on the magnetization, ﬁ, due to the aniso-

tropy, is given by

T=- g%—ﬁ = -2K sin ¢ cos ¢n = -(%£ cos ¢) sin ¢n, (2-24)

where n is a unit vector normal to the film plane. On the other hand,
without the anisotropy, the torque exerted on the magnetization by a

field, ﬁ, is given by

T=-MxH=-M sin ¢n . (2-25)
where ¢ is the angle of the magnetization rotation from the field.
Comparing the above two expressions, it can be said that (2K/M) cos ¢
in Eq. (2-24) has the same role as the magnetic field applied along the
easy axis. Therefore, (2K/M) cos ¢ can be regarded as an effective
field due to the anisotropy for the magnetization directed at an angle,
¢, from the easy axis. For the magnetization in the vicinity of the
easy axis, the effective field is equal to 2K/M, called an anisotropy
field and denoted by HK'

The spins in a real single domain film are not parallel to each
other because of various inhomogeneities in the film. The possible
causes of the microscopic fluctuations in the spin alignment are local
fluctuations of anisotropy, local magnetostriction, local strain, non-
uniform distribution of magnetocrystalline anisotropy in polycrystal-
Tine film, etc. Anisotropy dispersion has been widely used as a
measure of magnetic inhomogeneities in thin films. The concept of
anisotropy dispersion is based on the assumption that the film is com-
posed of many noninteréctive microscopic regions of ideal single

domains, each with its own uniaxial anisotropy of different magnitude
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and axial direction. Uniaxial anisotropy observed macroscopically is
considered to be the average effect of the anisotropy of these micro-
scopic domains. Both magnitude and angular dispersion of the aniso-
tropy has been considered. The magnitude dispersion, A90’ is defined
in such a way that 90% of the film area possesses anisotropy field
within = A90 HK of HK' The angular dispersion, Ggq 2 is defined in
such a way that 90% of the film area possesses anisotropy axis within
t og degrees of the macroscopic easy axis. The physical interpre-
tation of the anisotropy dispersion is not clear since mutual inter-
actions between the ideal single domains are totally ignored. The use
of anisotropy dispersion, with a clear specification of the measuring
method, is still a useful practical measure to specify film inhomo-
geneities.

The occurrence of coherent magnetization reversal in real thin
films is infrequent. A reason is the nonparallel distribution of spins.
Two effects of the nonparallel distribution can be considered. One is
the nonuniformity of the torques exerted on the spins (Frumkin 1972).
The nonuniformity causes a different speed for a different spin.
Another effect is the additional internal fields, i.e., the demagneti-
zing field due to the divergence of magnetization and the effective
field due to the exchange effect (Harte, 1964, 1967; Stein, 1965,
1966). This internal field is spatially dependent, imposing a different
torque on each spin. Therefore, a difference in the speeds of the spin

rotations results.
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2.1.3 Review of Previous Investigations
— Reversal Mechanisms ——
The coherent rotation mode was first proposed by Conger and
Essig (1956) for the magnetization reversal in ferromagnetic thin
films. The idea was based on the concept that the only possible domain
structure for films thinner than 4000 K is a single domain. The single
domain concept was based on a calculation done by Kittel (1946) in
which he assumed a fixed wall structure in an isotropic material. It
was later shown that neither condition held for these thin films so
that the single domain concept was wrong. Further, Conger and Essig's
experiment was considerably limited by the response time of the equip-
ment.
Two modes of the reversal were recognized by Olson and Pohm (1958).
One was the domain wall motion and the other was the (coherent) rota-
tion mode. Their experiment was to reverse the magnetization from a
saturated state near the easy axis to the other by applying a pulse
field oppositely directed. They also applied a small constant bias
field along the hard axis. The inverse of the reversal time was plot-
ted against the pulse field with bias field as a parameter. The resul-
tant curve had a nonlinear region for low pulse fields and a linear
region for higher fields. The nonlinear region was not affected by
the bias field; whereas, the Tinear region was. Since the domain wall
motion should not be affected by the bias field perpendicular to the
wall, the nonlinear region was identified as the domain wall motion
region. The linear region was identified as the rotational region.

The switching waveforms had two parts: an initial spike corres-
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ponding to the magnetization rotation and a long tail corresponding to
the domain wall motion. However, with an applied field just above the
onset of the rotational mode, the waveform showed a deviation from what
was theoretically expected of the rotational mode. The deviation was
attributed to the inhomogeneity of the film.

Deviation from coherent rotation was clearly shown by Humphrey
(1958), experimentally. He proposed a new reversal mechanism, i.e.,
noncoherent rotation mode, to account for the deviation. The two
orthogonal flux components (parallel and perpendicular to the pulse
field) were observed simultaneously. If the reversal is due to a
coherent rotation, the perpendicular component should reach a
maximum when the other is half changed.However, his experiment showed

no such result. It was proposed that the magnetization starts to
rotate coherently, but that the magnetization then loses its coherency,
and the reversal is completed by a noncoherent rotation mode.

Coherent magnetization rotation was analyzed by Smith (1958)
using Eq. (2-23). The limitation of the viscous-flow approximation
(d2¢/dt2 = 0; ¢ being the rotation angle of the magnetization) was
shown. The approximate solution agreed with the exact solution only
when the switching time was longer than 10 nsec. The exact solution
showed the oscillatory nature of the coherent magnetization rotation.
This oscillation of the magnetization was, however, not observed
because of the insufficient time resolution of his apparatus.

Three mechanisms of the magnetization reversal were proposed by
Humphrey and Gyorgy (1959) for thin films and toroids. The inverse

switching time vs. applied field curve was observed to have three
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regions. The nonlinear region for just above the coercive force of
the film was attributed to the domain wall motion; the steep linear
region for the drive field much higher than the rotational threshold
field was attributed to the coherent rotation and the intermediate
linear region of the lower slope was attributed to noncoherent rota-
tion.

Fast flux reversal of reversal time about 1 nsec. was observed by
Dietrich, et al (1960). Using a sampling oscilloscope, their apparatus
had a response time of 0.35 nsec. The reversal was claimed to be of a
coherent rotation mode. The magnetization oscillation predicted by
Smith was observed. The damping constant A was calculated from the
decay time of the oscillation and was shown to agree with the damping
constant calculated from in-plane resonance experiment. Detailed
systematic investigation of the oscillation was, however, not made at
that time.

The transition from a coherent to a noncoherent rotation mode was
investigated by Stein (1965, 1966). The flux component parallel to
the pulse field was plotted against the perpendicular component during
the reversal. The resultant Tocus simulates the motion of the magneti-
zation. When the applied field was much higher than the calculated
rotational threshold, the locus was a semicircle, indicating a coherent
rotation. When the applied field was just above the threshold, the
locus deviated from a circle. This deviation indicated a transition
from an initial coherent rotation mode to a noncoherent rotation mode.

Stein proposed a model for the noncoherent rotation mode

The model is based on the assumption that the direction of
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the magnetization fluctuates periodically along one direction taken in
the film plane. According to the model (Fig. 2-9), the portion which
rotates ahead of the average magnetization speeds up when the latter
passes through its minimum torque direction. On the other hand, the
portion which rotates behind the average magnetization slows down.
The difference in the speeds intensifies the fluctuation and results
in regions of stripes in which the direction of the magnetization
changes periodically along a direction perpendicular to the stripes.
The divergence of the magnetization creates internal fields and the
rotation of the magnetization is slowed down. The boundaries between
the stripes then move with a speed much faster than the normal domain
wall motion, and the reversal is completed.

Harte also proposed a model for the noncoherent rotation (1965).
The model is also based on a spatial fluctuation of the magnetization.
The fluctuation was treated as spin waves expanded along one direction
taken in the film plane. The average magnetization was assumed to
rotate much faster than the spin waves can rearrange themselves. In
other words, the initial pattern of the magnetization distribution was
assumed not to follow the rotation of the average magnetization.
According to this model, a reaction torque is exerted on the average
magnetization as it rotates. As this torque retards a further rota-
tion, the spin waves rearrange themselves. The torque 1s then relaxed,
and the rotation resumes. The reversal is completed by an
oscillatory rotation due to a continuation of the retardation and the
relaxation.

Conclusive photographic observations of dynamic magnetization



i P

S3SHRD3C

LEENRAT)

34

(">

S3ISHRDN |

LD

3718NH

W04 INM

Jnux0L

SIH - L X




-28-
configuration during the high speed magnetization reversal were made
in a series of experiments done by Kryder and Humphrey (1969-1972).
The Kerr magneto-optic effect was used for the observations. The
direct observations of the dynamic magnetization configuration elimi-
nated the ambiguities inherent to the pick-up loop method used by pre-
vious investigators (Hearn, 1964; Sakurai, et al, 1966; Hoper, 1967;
Telesnin et al, 1966, etc.). Five mechanisms of the reversal were found.
These were: (1) domain wall motion, (2) diffuse boundary propagation,
(3) noncoherent rotation, (4) nucleation and subsequent reversal of
partially reversed regions, and (5) coherent rotation. The diffuse
boundary is a poorly defined, jagged, and diffuse boundary separating
regions of anti-parallel magnetization. The boundary lies transverse
to the easy axis. The direction of the propagation is quite different
from the normal domain wall motion. The speed of the propagation is
one to three orders of magnitude faster than domain wall motion. The
noncoherent rotation occurs with transverse bias fields. Initially,
the magnetization rotates coherently. As the magnetization rotates
5°.20° beyond the minimum torque direction discussed by Stein, a
stripe pattern of dark and bright regions appears on the photograph,
indicating a periodic change of the magnetization direction. With
fields just above the threshold for the coherent rotation, regions of
reversed magnetization nucleate throughout the stripes, and the
reversal is completed. With larger fields, the rotation of the magnet-
ization slows down, and the stripes disappear as the reversal is com-
pleted. The nucleation and subsequent reversal of partially reversed

regions occurs with zero or small transverse bias fields. The
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magnetization reverses on small (0.0] mmz) regions sequentially in
time. For very large pulse fields with transverse bias fields, coher-
ent rotation was proposed.

The identification of the coherent rotation mode is based on the
observation that the photograph of the film surface darkened uniformly
during the 10 nsec. rise time of the pulse field. However, the
magnetization configuration could not be observed during the coherent
rotation, because the 10 nsec. exposure time is of the order of the
reversal time. Although the observations were consistent with the
coherent rotation idea, the Tack of time resolution left the reversal

mechanism in this region uncertain.
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2.2 Experimental Method

2.2.1 Apparatus

2.2.1.1 Schematic Diagram

The experimental setup used for the present investigation is
schematically shown in Fig. 2-10. The transmission line pulse genera-
tor (PG) generates a step pulse voltage at a repetition rate of 60 Hz.
The rise time, the maximum pulse length and the maximum amplitude are
0.23 nsec., 1.7 usec. and 2.5 KV, respectively. The pulse goes
through the transmission line system, including a stripline section
(SL), and is terminated in the characteristic impedance of 50 Q@ (Ro).
Between the stripline and the ground plane, a uniform magnetic field
pulse with maximum amplitude of 13 Oe is generated.

The thin film under investigation is placed in the center of the
stripline section. The magnetization reversal is detected by a single
turn pickup loop (PL), closely surrounding the film. The induced
voltage is detected by a sampling oscilloscope (SS) of rise time less
than 25 psec. High frequency (0.2.1 GHz) disturbances are subtracted
after the sampling. The subtraction 1is made electronically by a
differential amplifier (A) with an integrater. The noise free inte-
grated signal is recorded on an X-Y recorder (XY).

2.2.1.2 Transmission Line Pulse Generator

The transmission Tine pulse generator is schematically shown in
Fig. 2-10b. The regulated 0.5 KV power supply (V) charges a coaxial
cable (RG-17A/U) of length 170 m through a resister (R) of 97.4 KQ.
The cable is discharged at 60 Hz through a relay (RL). The pulse

voltage is equal to half the charging voltage, and the length is
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twice the time required for wave propagation through the charging
cable. The value of the charging resister should be chosen between the
two‘]imiting values. The maximum value is determined by the charging
time constant. The time constant should be small, so that jitter of
the relay closing time will not cause a fluctuation in the charged
voltage. The minimum value is determined by the maximum current which
will allow the relay to open. For the relays used here, this current
is a few hundred milliamperes.

2.2.1.3 Relay

The relay has mercury wetted contacts and is sealed in a glass
capsule with hydrogen at about ten atmospheres pressure. The use of
mercury contacts prevents multi-contacting due to thé bouncing of the
reeds. Because of the high pressufe hydrogen, the contacts can hold
a high voltage gradient and the high gas mobility helps the heat dis-
sipation. The relay can be mounted in a coaxial holder. This mounting
enables a connection to a coaxial cable with the minimum mismatch.
A relay of this type was invented by Brown and Pollard (1947). Garwin
(1950) applied it to the transmission line pulse generator and claimed
the rise time of 0.2 nsec. at a pulse voltage of 10 V. The voltage
of 10 kV can be applied to the relay, if the surface of the glass
capsule is covered with Corona dope (Red-X Corona Dope, Walso
Electronics Mfg. Co., Los Angeles, California) (Humphrey, 1967).

2.2.1.4 Stripline

Stripline geometry is particularly suitable for the investigation
of high speed flux reversal in thin films. The thin film can be

placed under the stripline so that the uniform magnetic field can be
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applied parallel to the film surface. The stripline of length, L =
234 mm, width, W = 27 mm, thickness, t = 1.27 mm and separation from
the ground plane, d = 4.37 mm was used in the present investigation
(Fig. 2-10c). The ends of the stripline have a wedge shape allowing a
smooth transition to a coaxial line. The characteristic impedance, Zo’
and the floating capacitance between the stripline and the ground
plane, CF’ are given as

7 = L) - [0] . (2-26)

0 " Cf
e, Gg+ 0.0855 ¢, )

0.0855 €
: 2t 1) - (-
C,' = w T t72d0 "= t/2a T t/2d

In 1
((1 -yl ]> e i

where € is the relative dielectric constant of the substance between
the stripline and the ground plane ( Cohn, 1954). In this in-
vestigation, By ™ 1 for air. For the geometry given above, the
characteristic impedance Z0 is 50.8 Q. A satisfactory match with
coaxial cable RG-8AU (Z0 = 50 Q) or RG-8V (Z0 = 52 Q) is obtained.

2.2.1.5 Pickup Loop

The cross sectional view of the pickup loop is shown in Fig. 2-10d.
The loop is a single thin wire (#40) surrounding the film. One end is

grounded so that the electrostatic coupling is minimized. The other
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end is connected to the GR type 874. The capacitive coupling with
the stripline is shielded by a brass tube (outer diameter 0.6 mm,
inner diameter 0.4 mm). The tube is cut at the center to prevent
inductive shielding. The loop and the connector are mounted on the
rotatable part of the ground plane. The direction of the loop can
be adjusted to prevent inductive coupling to the magnetic field pulse.

2.2.1.5 Noise Subtracter and Integrator

The disturbances to the signal are mainly due to inductive and
capacitive coupling between the pickup lToop and the field pulse.
Both the directional adjustment and the shielding of the Toop are
used to reduce this coupling. However, some coupling remains even
with these precautions. The residual disturbing signal has the same
order of magnitude as the desired signal. The disturbing signal is
repetitive at 60 Hz. Therefore, it can be automatically subtracted
from the disturbed signal. The disturbing signal itself is detected
by applying the pulse field after the film is saturated. The disturb-
ing signal and the disturbed signal are alternately sampled by the
sampling oscilloscope. The respective outputs are connected to the
plus and the minus inputs of a differential amplifier (Analog Device
Co., 143A) through a relay. With a capacitive feedback, the output
of the amplifier is the noise free integrated signal (Fig. 2-10e).

2.2.1.6 Calibration of Magnetic Field Pulse

The magnetic field pulse, Hp, is related to the charging voltage,
V, of the transmission line pulse generator as:

Hp = GV s (2-28)

where G is a constant determined by the stripline geometry. The
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method proposed by Tatsumoto, et al (1963) gives the value of G. The
method utilizes magnetization reversal. When a bias field, Mb, is
added opposite to the field pulse, the latter must be increased by
AHp to restore the zero bias waveform. Since

AHb = AHp = GAV »  (2-29)
G can be obtained by the slope of a AHb vs AV curve. This method is
sihp]e and accurate. The constant is 2.6 Oe/KV for the present

investigation.
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2.2.2 Measurement of Quasi-Static Quantities
The fundamental quantities for the description of thin ferro-
magnetic films are the saturation magnetization, Ms, uniaxial ani-
sotropy constant, K, anisotropy field, Hk, coercive force, Hc,
magnitude dispersion of anisotropy, A90’ angular dispersion of

anisotropy, They can be measured by using a hysteresis loop

01.90.
tracer and ferromagnetic resonance spectrometer.

The coercive force can be measured from a hysteresis loop for a
magnetic field applied along the easy axis. Typical theoretical and
actual loops are shown in Fig. 2-11a and b, respectively. For both
cases, the component of the magnetization is measured along the applied
field and plotted against the field. For an ideal single domain film
with an anisotropy field of Hk, the Toop is rectangular showing dis-
crete jumps at #Hk (Fig. 2-11a); in this case, Hc = Hk because the
reversal occurs by coherent rotation. For a typical film, Hc < Hk
because domain wall motion occurs before coherent rotation (Fig. 2-11b).
Although the loop deviates from a rectangle, the coercive force is
easily read on the horizontal axis.

The anisotropy field can be measured from a hysteresis loop for
a magnetic field applied along the hard axis. Typical theoretical and
actual loops are shown in Fig. 2-11c and d, respectively. For both
cases, the component of the magnetization is measured along the applied
field and plotted against the field. For an ideal single domain film,
the Toop is closed and saturates at #Hk (Fig. 2-11c). For a typical
film, the Toop is slightly open, and the saturation field is not

sharply defined (Fig. 2-11d). For this reason, it is usual to obtain
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Hk from the intersection of the saturation level and the extrapolation
of a minor loop (the little closed Toop at the origin shown in Fig.
2-114d).

The anisotropy field can be directly obtained by the following
method proposed by Kobelev (1962). The drive field is applied 45°
from the easy axis. The component of the magnetization is measured
perpendicularly to the field. The resultant hysteresis Toop has a
shape shown in Fig. 2-Tle. A constant field is then applied perpendic-

ularly to the drive field and is increased until a certain portion of
the loop becomes flat as shown in Fig. 2-11f. The constant field
required is Hk/2.

The concept of the dispersion is based on the assumption that the
film is composed of microscopic regions of single domains. The inter-
action between these regions 1is ignored. Therefore, the measured
value of the dispersion depends on the measuring method except for
films with infinitesimal dispersions. The specification of the method
is important.

Two methods of measuring the angular dispersion were proposed by
Crowther (1956). Both methods utilize the hysteresis loop for a
magnetic field applied along the hard axis. The component of the
magnetization is observed along the direction perpendicular to the
field, rather than parallel. For real films, no magnetization compo-
nent is observed in this direction. In the "crossed loop" method, the
film is rotated in either direction, so that some magnetization com-
ponent can be observed. At some angle, the maximum of the Toop will

be 90% of the saturation value. This angle is defined as Gg+ In
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the other method, a bias field is applied perpendicularly to the
driving field. At some value, Hago, of the bias field, the maximum of
the loop will be 90% of the saturation value. The dispersion is

then,

agy = Sin ' , (2-30)

The value of MSY2 is obtained by the in-plane resonance method.
In this method, a constant magnetic field is applied in the film plane.
A microwave magnetic field is also applied in the film plane, but
perpendicularly to the constant field. The magnetization processes
around the constant field. At resonance, the constant field, H, and

the frequency, f, satisfies:

2
72 = M (k) »  (2-31)

where + or - corresponds to the constant field being along the easy
or the hard axis, respectively (Sec. 3.1.2). The slope of the £2
vs. H curve gives the value of MsYz. The value of Ms can be also
obtained if the value of y is known. The anisotropy field can also
be obtained from the intersection of the curve with the field axis.
The coercive force can be obtained by observing a discrete change

in the resonance curve for the easy axis. A typical resonance curve
is shown in Fig. 2-12, where the microwave power absorbed in the film
is plotted against the driving field. It can be seen that the jumps
occur at tHc, where one curve is transferred to the other. These are

symmetrical about the vertical axis. A further reference should be

made to Sec. 3.2.2.
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2.2.3 Sample
The Ni-Fe films used in this work were 1 cm diameter disks of

7 Torr, from Ni-Fe

~12003 thick. They were vacuum-evaporated at 10~
alloys onto heated glass substrates. Since films of various anisotropy
fields and dispersions were desired, the substrate temperatures from
35°C to 300°C were used. Various melt compositions from 81 Ni-19 Fe

to 88 Ni-12Fe were also used.

The anisotropy field as a function of substrate temperature is
shown in Fig. 2-13 with the melt composition as a parameter. The
anisotropy field is a decreasing function of the substrate temperature
and ranges from 1.6 Oe to 5.9 Oe. It decreases with increasing Ni %
(except for the two data points). This temperature characteristic of
the anisotropy field is the same as obtained by Wilts (1966).

The anisotropy dispersion (ago) as a function of substrate temper-
ature is shown in Fig. 2-14 with the melt composition as a parameter.
The anisotropy dispersion ranges from 1.7° to 9.8° and is minimum

around 200°C. It increases with increasing Ni % (except for two

data points).
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2.3 Results and Discussion
2.3 ,1 Transverse Flux Waveform
Typical transverse flux as a function of time is shown in
Fig. 2-15 on an arbitrary scale with the applied field as a parameter.
The waveforms are those for the sample 18-19-4 with an anisotropy
field of 2.7 Oe, a coercive force of 2.2 Oe, and an anisotropy angular
dispersion of 3.5°. The alloy composition is 83 Ni-17 Fe wt.% and
the substrate temperature during the evaporation was 300°C. The wave-
forms for pulse fields of 0.5 Hk’ 0.77 Hk’ Hk and 2.0 Hk applied along
the easy axis are shown by the broken lines A, B, C and D, respective-
ly. A bias field, H,, of 0.1 Hk was applied along the hard axis to
make an initial angle of 6° (sin'] Hl/Hk) between the magnetization
and the easy axis. This is to insure a uniform rotation of the
magnetization. The corresponding theoretical waveforms were calculated
using the dynamic equation (2-21), with A = 0.15 GHz. The wave-
forms are shown by the dotted lines A', B', C' and D', respectively,
for the above pulse fields.

Below the threshold field, reversal does not occur as indicated
by the waveform A. Here the applied field (HS = 0.5 Hk) is smaller
than the threshold field 0.7 Hk' According to the coherent rotation
theory, the magnetization should rotate from its initial angle of 6°
to the new equilibrium at 12° (~ HL/(Hk_Hs))' However, the observed
waveform A is composed of two parts; the first part indicating coherent
rotation and the second part indicating a slower flux change. The ex-
perimental and theoretical waveforms A and A' agree during the first

1 nsec until the observed flux reaches the equilibrium theoretically
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expected. After the transverse flux reaches the equilibrium, the
experimental curve still continues to increase, but the speed of the
flux change is much slower than the initial change. This slow change
is apparently not due to coherent rotation.

Above the threshold field, flux reversal occurs as shown by the
waveforms B, C and D. Each waveform has a maximum, indicating that
the magnetization rotates beyond the hard axis. When the applied
field is about 10% higher than the threshold field (HS = 0.77 Hk),
the transverse flux reaches its maximum at about 7 nsec as shown by
the solid Tine B. Comparing the theoretical waveform B' and the
experimental waveform B, it can be seen that these two waveforms
agree for the first 2 nsec. It is clear that coherent rotation is
occurring during this period and that Eq. (2-21) describes the initial
period. At about 2 nsec, however, the slope of the waveform B de-
creases abruptly, indicating a sudden retardation of the rotation.
The waveform B', however, does not show such an abrupt change. The
discrepancy between the waveforms B and B' is quite large after this
abrupt change. This change can be interpreted as an occurrence of
noncoherent rotation.

When the applied pulse field is equal to the anisotropy field,
the transverse flux reaches a maximum about 3 nsec after the start
of the reversal (curve C). The experimental and calculated waveforms
C and C' agree again for the period of the first 1 nsec, indicating
coherent rotation.

When the applied pulse field is increased to 2 Hk’ the transverse

flux reaches its maximum at about 1 nsec after the start of the
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reversal (curve D). Note, the switching speed becomes much faster.
An oscillation can be seen around the final flux Tevel (the horizontal
line F - F') and lasts for about four cycles and decays exponentially.

Zedsl Effect of Transverse Bias Field

The effect of the transverse bias field on the flux reversal
can be seen in Fig. 2-16. The transverse flux waveform of the sample
18-19-4 is shown with the bias field as a parameter. The pulse field
of 2 Hk was applied along the easy axis in all cases. Transverse bias

fields, 0.03 H, , 0.06 Hk’ 0.1 Hk’ 0.2 Hk and 0.5 Hk’ were applied

K>
along the hard axis. The respective waveforms are shown by the curves
A, B, C, D and E.

When the transverse bias field is small, as in the case H, =
0.03 Hk’ the transverse wave forms are composed of two parts; the
initial part with a rapid increase and the following part with a slow
increase. As the transverse bias field increases, the flux changes
faster, and the oscillation begins to appear as in the case of H,
= 0.06 Hk' It can be seen that the waveform maximum increases as the
transverse bias increases. This indicates that the entire region of
the sample has not been rotating, but an increasing amount begins to
rotate. As the transverse bias field increases from 0.1 Hk to 0.5 Hk’
the flux changes faster and the oscillation becomes clearer. The
frequency of the oscillation is almost independent of the transverse
bias field. In this case the waveform maximum decreases as the trans-
verse bias field increases since the total rotational angle decreases.

2:3:3 The Effect of Anisotropy Dispersion on the Trans-

verse Flux Waveform
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The effect of anisotropy dispersion (ago) on the transverse flux
waveform can be seen in Fig. 2-17. The waveforms of the samples 19-29-
7 and 18-19-16 are the curves A and B, respectively. A pulse field
of 2 Hk along the easy axis and a transverse bias field of 0.1 Hk are
applied. The dispersion for samples 19-29-7 and 18-19-16 is 1.9o and
2.6°, respectively. The anisotropy field for both samples is about
5.0 QOe,

The effect of the dispersion appears most critically in the
reversal speed and the oscillation. The waveform A shows a faster
reversal than B, therefore, the smaller the dispersion, the faster
the reversal. The reversal times for sample 19-29-7 and 18-19-16 are
0.64 nsec and 1.0 nsec, respectively. Also, it can be seen that the
waveform A shows the oscillation with larger amplitude and more
periods than B, indicating a smaller damping.

The effect of angular dispersion on the reversal speed is more
obvious for a sample with large dispersion. The transverse flux
waveforms of sample 19-13-7 and sample 19-13-3 are shown in Fig.

2-18 by curves A and B, respectively. The respective dispersion is
3.0° and 5.7°. Both samples have anisotropy field of about 3.0 Oe.
The pulse field of 3 Hk and transverse bias field of 0.1 Hkvwere used
for both cases. Waveform B shows a much slower reversal than A;
again, the smaller the dispersion, the faster the reversal. Note
that the time scale for curve B is 5 times longer than that for curve
A. The reversal time for sample 19-13-7 is 2.3 nsec, whereas, that
for sample 19-13-3 1is 48.5 nsec. A slight oscillation can be seen on

curve A as the transverse flux decreases towards its final level,
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whereas no hint of an oscillation is apparent in curve B. It is clear
that the angular dispersion is critically affecting the reversal.

The effect of the dispersion is most conveniently summarized
using the inverse switching time vs. applied field curve (1/1 - Hs)'
The switching time, T, is defined as the time interval between the
10% values of the maximum flux. The shape of the 1/t - Hs curve
calculated according to equation (2-21) depends on the five quantities,
M, Y, Hk’ A and the transverse bias field Hy. Therefore, the direct
comparison of the 1/t - HS curves for the various samples is somewhat
difficult. To avoid this complication, Eq. (2-21) was normalized as

follows, i.e.,

2
g-%-+ 47\’ %%-+ 4n2(sin¢ cos¢ - hS sing - h, cos¢) = 0

dt
) (2'32)
where

My
T=1t = Hk = tfk
. My®
X= MY == Ho= Ve , (2-33)
hs - Hs/Hk
h, = HJ_/Hk

]/ 2
The normalizing factor M%—-Hk = fk is the natural resonance fre-

quency. It can be seen from the Eq. (2-32) that the normalized
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1/t - hs curve for a given value of h; can be determined only if the
normalized values of the damping parameter )\' are specified. There-
fore, the comparison of the 1/t - HS curves for the various samples
becomes easier.

The normalized 1/t - hS curves for samples 19-29-7, 18-19-16,
and 19-13-7 are shown in Fig. 2-19 by curves 1, 2, and 3, respective-
ly. The anisotropy dispersion, Ggq> for these samples are 1.9, 2.6
and 3.1 degr., respectively. The normalized inverse switching time
is an increasing function of the normalized applied field. The
average slope of the 1/1 - hS curve decreases with increasing disper-
sion, indicating that the sample with larger dispersion reverses
slower.

2.3.4 The Effect of Pick-up Loop Frequency Response on
the Transverse Flux Waveform

The frequency-response of the pick-up loop was examined in an
attempt to clarify the cause of the discrepancies between the experi-
mental and calculated transverse flux waveforms. The frequency res-
ponse was obtained by detecting the voltage induced in it by a micro-
wave voltage and the induced voltage were measured by a sampling
oscilloscope with a rise time less than 25 psec. The frequency res-
ponse of the pick-up loop can be most conveniently seen by the analogy
with a high frequency filter. The normalized induced voltage divided
by the frequency is plotted as a function of frequency in Fig. 2-20.
The corner frequency of 1.4 GHz can be seen. Transverse flux wave-
forms were calculated assuming that the pick-up loop is in series

with an R-C filter of time constant 0.7 nsec (= 1/1.4 GHz) as shown
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in Fig. 2-20. Typical examples of the calculated waveform are shown
in Fig. 2-21 for the same sample 18-19-4 that was discussed in the
previous section. The waveforms for a pulse field of 1.4 Hk and 2.9
Hk are shown in Fig. 2-21 a and b, respectively. The transverse bias
field of 0.1 Hk was applied in each reversal.

For the applied field of 1.4 Hk’ a recognizable resemblance
exists between the experimental and calculated transverse flux wave-
forms, shown respectively by the broken and dotted 1ines in Fig.
2-21a. Both experimental and calculated waveforms are characterized
by a damped oscillation during the approach to the final level. How-
ever, the quantitative agreement betweenlthe experimental and calcu-
lated waveform is poor. The switching time determined by the calculated
waveform is 2.1 nsec; whereas, the actual switching time is 4.9 nsec.

For the applied field of 2.9 Hk’ improved agreement was again
obtained between the experimental and calculated transverse flux wave-
forms as shown respectively by the broken and dotted lines in Fig.
2-21b. The amplitude of the damped oscillation of the calculated
waveform is nearly equal to that of the experimental waveform; whereas,
the waveform calculated without considering the pick-up loop frequency
response showed a damped oscillation of exceedingly Targe amplitude.
The quantitative agreement between the experimental and calculated
waveforms is still unsatisfactory.

2.3.5 Thickness Dependence of Transverse Flux Waveform

The thickness dependence of the transverse flux waveform was
investigated using 83 Ni-17 Fe films of various thickness from 351 E

o
to 1867 A. The melt composition of 83 Ni-17 Fe wt.% was chosen to
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avoid possible complications arising from the magnetocstrictive effect
commonly observed at other compositions. The films were evaporated in
vacuum of 10—7 Torr onto glass substrates heated at 200°C. The sub-
strate temperature of 200°C was chosen to obtain small values of
anisotropy dispersion. The film thickness, the anisotropy field, the
coercive force, the angular dispersion, and the damping constant, are
listed for each film in Table 2-1. The damping constant was obtained

by ferromagnetic resonance.

No. Sample Code t[A] Hk[Oe] HC[Oe] ago[deg] A[GHz]
A 38-31- 3 351 5.4 2.0 1.0 0.117
B 38-30- 3 640 5.6 1.7 1.1 0.127
C 38-31- 7 955 5.6 2.5 2.0 0.129
D 38-30- 7 1228 5.7 1.9 1.3 0.140
E 38-30-11 1832 5.5 1.4 3.3 0.162
F 38-31-11 1867 5 1 2.0 4.4 0.242

Table 2-1

The damping constant is shown as a function of film thickness
in Fig. 2-22. It can be seen that the damping constant increases with
thickness. The increase is superimposed on a constant part of 0.116
GHz considered to be the intrinsic damping constant. The thickness
dependent part can be attributed to the eddy current damping due.to

the motion of magnetization. This part is given by

2 2
4M x 10726 2 . (2-34)

Yedd(t) = 175

where M is the saturation magnetization in Oe, y is the gyromagnetic

1

ratio, 1.76 x 10 [rad-0e” -sec']], t is the film thickness in A and
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p is the resistivity in uQ-cm. A uniform distribution of the magneti-
zation across the film thickness was assumed (Smith 1963). The
resistivity is also a function of thickness and can be given by

31 m/2

o(t) = po{ - —E—Q-o [1- exp(-t/]ocose)] sin

3 1

8 cos6 de} B

5 (2-35)
where P is the intrinsic resistivity and 10 is the mean free path of
electrons, assuming diffuse scattering of electrons at film surfaces
(Fuchs, 1938). Using the values of By = 26 uQ-cm, 10 = 225 R, and
the intrinsic damping constant of 0.116 GHz, the damping constant
was calculated as a function of thickness and is shown by the solid
line in Fig. 2-22. The use of 26 pQ-cm for polycrystalline Ni-Fe
film is reasonable considering that the resistivity of a single
crystal Ni-Fe film is 14 uQ-cm (Mayadas, et al., 1974). The experi-
mental data points were well fitted by the calculated curve. The
slow increase in damping is due to the effect of eddy currents.
The abrupt change shown by the experimental point at 1867 X is in
agreement with the abrupt increase in dispersion discussed later.

The thickness dependence of the transverse flux waveform can

be understood by comparing the experimental waveform with the calcu-
lated waveform. The waveforms for samples A and E are shown in Fig.
2-23 a and b, respectively, where the experimental waveforms are
shown by the broken lines and those calculated are shown by the dotted
lines. A1l the waveforms are for the pulse field of 2Hk applied along

the easy axis and the transverse bias field of 0.1 H The calcula-

K
tions were made using Eq. (2-21) with the value of X obtained by
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resonance. The effect of a finite frequency response for the pick-up
loop was included. For thickness 351 K, the experimental waveform, A,
and the calculated waveform, A', agree well as can be seen in Fig.
2-23a. Similar agreement was also found for thickness 640, 955 and
1228 R. For thickness 1832 R, however, the agreement is poor as can be
seen in Fig. 2-23b, where the calculated waveform, E', shows a clear
oscillation and the experimental waveform, E, shows no trace of
oscillation. It is interesting to note that this discrepancy can be
correlated to the abrupt increase of anisotropy dispersion. The
angular dispersion as a function of film thickness is shown in Fig.
2-24, It can be seen that the dispersion increases slowly until
about 1200 K and then increases abruptly. It is in this region where
the large discrepancy is seen. The use of Eq. (2-21) tacitly assumes
coherent rotation. Therefore, it is strongly suggested that the large
dispersion inhibits coherent rotation. Hence, it is not surprising

that the agreement for the 1832 A point is poor.
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2.2.5 Summary
For applied fields much larger than the coherent rotation thresh-
old field and with small dispersions (ago), the transverse flux
waveform can be described by Eq. (2-21). If the frequency response of
the pick-up loop is considered, the description is better. For
these fields, the damped free oscillation can be clearly seen. For
fields near the threshold, the experimental waveform indicates a
slower reversal than the calculated waveform. For smaller fields,
the differences increase considerably. Dispersion has a critical
effect on the reversal; the larger dispersion films show slower
reversals and no oscillation. Eddy currents have only a slight effect

on the damping and no effect on the waveforms.
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Chapter 3

DAMPED FREE OSCILLATION OF THE MAGNETIZATION
IN Ni-Fe THIN FILMS
3.1 Introduction

3.1.1 General

Free oscillation of the magnetization can be excited in Ni-
Fe films when the direction of magnetization is suddenly changed by
the application of a magnetic field pulse. The magnetization oscillates
around its new equilibrium direction approaching it exponentially with
time. A typical example is the oscillation at the completion of 180°
flux reversal. Damped free oscillation can be investigated by detect-.
ing the voltage induced in a pick-up loop around the film. The fre-
quency of the oscillation is related to the total effective field.
This field is composed of the pulse and bias fields, the effective
field due to the anisotropy and the demagnetizing field normal to the
film plane. The exponential decay of the oscillation is a measure of
how fast the oscillating spin system can release its energy. There-
fore, the damping constant, for example A in the Landau-Lifshitz
equation, can be determined from the decay of the oscillation.

Steady state oscillation can be excited around a constant field
when a microwave field is applied perpendicularly to it. For the in-
plane resonance, both fields are applied in the film plane. At
resonance, the frequency is determined by the applied field, the
effective field due to the anisotropy and the demagnetizing field
normal to the film plane. The damping constant is determined by the

resonance linewidth.
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Comparison of the frequencies of damped free and forced oscil-

lations should lead to a better understanding of the contribution of
the applied field, the effective field due to the anisotropy, and the
demagnetizing field. Comparison of the damping constants should lead
to a better understanding of the damping mechanism, since the ampli-
tudes of those oscillations are quite different.

3.1.2 Theory

To analyze the free oscillation and the in-plane resonance,

the dynamic equation of the magnetization

2
99 ¢ 4y 92 + 4m@MH, (sindcoss - h_sing+h cose) = 0 ,  (2-21)
e at K . 1

derived in the previous chapter will be used.

This equation was derived from the Landau-Lifshitz equation,
assuming the conservation of magnetization. Damped free oscillation
of the magnetization at the completion of a 180° flux reversal should
be due to coherent rotation since the pulse and transverse bias fields
are applied uniformly over the film surface and therefore uniformly
over all spins. The oscillation of magnetization in the in-plane
resonance experiment should be also due to coherent oscillation since
the constant and transverse microwave fields are applied uniformly
over the film surface. Therefore, Eq. (2-21) is applicable to the
analysis of both damped free oscillation and resonant oscillation.

Equation (2-21) can be linearized in the vicinity of a given

reference direction. The direction of magnetization is expressed by
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6=y * 8 . (3-1)

where b, is the reference direction, and § is the deviation from the
reference angle and § << 1. Equation (2-21) then becomes
2

d=§ ds 2 .
— t 4Tk g+ Amy MHk(cos 2¢0 * hg cosg  + h sin ¢0) S

dt
= 4ﬂY2 MHk(sin ¢0 cos ¢o + hS sin ¢0 - h, cos ¢o)
(3-2)
Thus Eq. (2-21) is in a more convenient form to be applied to various
cases of oscillation.
Damped free oscillation at the completion of 180° flux reversal
can be analyzed by Eq. (3-2) after the oscillation amplitude becomes

small. For the oscillation after the reversal along the easy axis,

the solution is:

/& (4mr)2

5(t) = 5(0) ® e 2™t cin(ut + o) *
6(o)e'2"Atsin(wt + a) ,  (3-3)
where
o = amPMH (1 + [h | ) - (2mn)? . (3-4)
and
sin a = “ il ,
w2 ¥ (ZHA)Z
with
hS = const., hi_<< and ¢0 =7
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This solution indicates that the magnetization oscillates around its
equilibrium direction, and that the oscillation decays exponentially.
It is thus possible to calculate analytically the frequency and the
damping constant from the damped free oscillation.

For the oscillation after the reversal along the hard axis, the

solution is:

\]u) % (21T)\ o~2TAL -2mat

s(t) = &(0) sin(wt + a)~8(0)e sin(wt + o)
s (3-5)
where
“ = amPM (|h | - 1) - (2m)° . (3-6)
and
sina = x ~ 1

%2 % (zm)2

In-plane resonance oscillation can also be analyzed by Eq. (3-2).

For the oscillation around the easy axis, Eq. (3-2) becomes

2
g—g—+ 4

dt

dé
dt

2

+ 4nY2MHk(] 4 hs)a = -4my MHkhi s (3-7)

where the reference angle ¢ 1is taken as ¢ = 0. The steady state
0 0

solution of the above equation is given by

4WY2MHk

§ = hy, . (3-8)
[-? + jomhw + 4myeMH, (1 + hy)]

!
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If the oscillation is detected by a pick-up Toop whose plane is

aligned in parallel with the constant field, the power generated in

the Toop is:
K2h02M2 (4ﬂY2Mka cos ¢0)2
P = ‘
22o ((»02-(»2 2 4 (41r>\w)2
- p | (3-9)
max ° w 2 w 2 s
0 w 0
1 ) G-
0
where
2 2
wy" =Y 41rM(Hs + Hk) " (3-10)

K is a coupling constant between the magnetic

flux and the pick-up loop,

ho is the peak value of the microwave field,

Z0 is the characteristic impedance of the
transmission line,

and

w is the angular frequency of the microwave
field.
Similar equations can be obtained for the field applied along the
hard axis; in this case, +Hk must be replaced by -Hk.

The normalized power is plotted as a function of the applied
field for a fixed w in Fig. 3-1. It can be seen that the power is

maximum when the condition w, = w is satisfied. In Fig. 3-2, the
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normalized power is plotted as a function of the applied field with
frequency as a parameter. It can be seen that the resonant peak
shifts quadratically to higher fields as the frequency increases.
The damping constant can be calculated from the resonance curve.

According to the Eq. (3-9), the half power points are given by

1 1
2 2 "2

w w
VG G- @)

The half power linewidth AHS is

M = g =S . (3-11)

x= XMy . (3-12)

With the damping constant X\ as a parameter, the in-plane resonance
curve is shown in Fig. 3-3. It can be seen that the half power line-
width increases linearly as the damping constant increases.

It has been shown that the frequency and damping of the damped
free and forced resonance oscillations can be described by the same
equation by assuming that both oscillations are due to coherent rota-
tion. In fact, the frequency of both oscillations show the same

quadratic relationship with applied field. The damping of these
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oscillations can be described using the same constant A.
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3.1.3 Previous Investigations
Oscillation of the magnetization in Ni-Fe films at the com-

pletion of a 180° reversal along the easy axis was predicted by Smith
(1958, Sec. 2.1.3.1). Observation of the oscillation was, however,
beyond the experimental capability of the time. The first experimental
observation was made by Dietrich, Proebster and Wolf (1960) in conjunc-
tion with a study of other aspects of reversal. They suggested, in
passing, that the oscillation was ferromagnetic resonance excited by
the driving field pulse (Sec. 2.1.3.1).

The first systematic study of free oscillation was small angle
oscillation by Wolf (1960-1961). The oscillation was excited around
a constant magnetic field by applying a small field pulse perpendicu-
lar to the constant field. The investigation compared this oscillation
with in-plane resonance, i.e., forced steady state oscillation. The
results of this study are summarized in Fig. 3-4. Oscillation fre-
quency (squared) is shown as a function of applied field in Fig. 3-4a
for the oscillation along both the easy and hard axis. The correspond-
ing curves for the resonance are also shown. The results were analyzed
on a basis of Eq. (2-21); and the general agreement with the theory was
good. However, two difficulties with the theory were noticed. First,
for the oscillations along the easy axis, the slope of the fZ-HS curve
for the free oscillation does not agree with that for resonance.
Secondly, the fz-Hs curve for the free oscillation along the hard axis
does not intersect at +H, , which it should according to Eq. (2-21).
Unfortunately, the seriousness of these difficulties was uncertain,

because the observation was at the limit of the accuracy. The damp-
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ing parameter was calculated from the decay of the oscillation and
was compared with that obtained from in-plane resonance. The damping
parameter is shown in Fig. 3-4b as a function of the frequency. The
parameter is a decreasing function of the frequency for both the free
oscillation and the resonance. This characteristic is similar to
those obtained for resonance (Smith, 1958; Hasty and Boudreaux, 1961).
As to the value of the damping parameter, Eq. (2-21) predicts the

same value for both the free oscillation and the resonance. With an
error of 30.50%, the experimental results agree with this prediction.
The small angle free oscillation was also studied by Hearn (1964).

His results are quite similar to Wolf's.

Free oscillation was observed also at the completion of 90°
switching (Hearn,1964). The experiment was to reorient the magnetiza-
tion from the easy axis to the hard axis. The result was analyzed by
using Eq. (2-21). The qualitative agreement with the theory was good.
He did, however, have typically 25% discrepancies in the observed
frequencies.

Free oscillation at the completion of 180° reversal was investi-
gated for the first time in detail by Suezawa and Humphrey (1972).

The oscillation was observed both along the easy and the hard axis.
The f2 vs. H curves were similar to those obtained for the small
angle oscillation, but better agreement was found between the free
oscillation and resonance. The damping parameter obtained from the
decay of the free oscillation was in good agreement with that obtain
from resonance. The accuracy for their method is better than other

methods, since the oscillation is observed for many cycles. It was
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pointed out that the measurement was to be made after the oscillation

amplitude becomes small.
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3.2 Experimental Method
3.2.1 The Damped Free Oscillation

3.2.1.1 The Observation of the Damped Free Oscillation

For the observation of free oscillation at the completion
of 180° magnetization reversal, the experimental arrangement is the
same as that used for the 180° magnetization reversal experiment
(Sec. 2.2.1). If the reversal is along the easy axis, the film is
first saturated in one easy direction. A small bias field is applied
along the hard axis so that the magnetization is in equilibrium at a
small angle from the easy axis. The magnetic field pulse is then
applied along the other easy direction. The maghetization, therefore,
reverses towards a new equilibrium, and oscillation can be observed
as it approaches this new equilibrium. For reversal along the hard
axis, a constant magnetic field of magnitude larger than Hk is
applied along a hard direction. A small bias magnetic field is also
applied along the easy axis so that the magnetization is initially
at an angle from the hard direction. The magnetic field pulse is then
applied along the other hard direction. The magnetization then
reverses towards a new equilibrium and oscillation can be observed as
it approaches this new equilibrium. Since the oscillation can be |
most sensitively detected normal to the field pulse, the transverse
flux waveforms are observed. The pick-up loop is aligned along the
easy or the hard axis to detect the oscillation along the respective
axis.

3.2.1.2 The Period Measurement and the Frequency

Calculation.
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The frequency of the damped free oscillation is obtained directly

from the transverse flux waveform. The oscillation can be expressed

by;

-2mAt

s(t) = 8,8 sin((2n/T)t + a) " (3-13)

o = sin”! i he 4 £

where

and A is the damping constant, T is the period and 60 is a constant.
An example of the calculated oscillation is shown in Fig. 3-5, for
A = 0.2 GHz and T =Insec. The envelope (shown by dotted 1ines) of

the damped free oscillation is;

5(t) = x5 e2™AL, . (3-14)
This envelope is tangent to the oscillation at points where
2T 41 4o o=+ T (m=0,1,2 )
m 2 913y eow 9
i.e.
|._T T] (0]
tm = 7"\“'2‘(2—- ;T.) . (3-]5)
The frequency can then be calculated as
1 1
feges= " ’ (3-16)
T tm+2 tm

However, the calculation of the frequency by this method lacks
accuracy since the tangential points are difficult to locate experi-
mentally.

The frequency can also be calculated using the oscillation peaks.

The peak positions are;
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Tty = (m=20,1,2, ... ) " (3-17)

_T
t =gm ; (3-18)

Therefore, the frequency is the inverse of the time interval between
adjacent peaks. Experimentally, this method of measurement is easier
than the previous method involving the tangential points.

Since Eq. (3-13) was derived from the linearized equation (3-2),
it applies only to small angle oscillation. The half period is
calculated exactly from Eq. (2-21) for the oscillation along the easy
axis. The calculated half period is plotted as a function of oscil-
lation angle with the applied field as a parameter in Fig. 3-6.

The half period is shown rather than the period so that the frequency
can be inspected even within a cycle. It can be seen that the half
period is an increasing function of the angle. Nevertheless, it is
within 4% of the final value if the oscillation angle is less than
57°. There, the convenient analytical expression (3-13) can be used
to investigate the oscillation with high accuracy.

When the base 1ine drifts or the oscillation is superposed on
a slow flux change, an error exists in the measurement of period.

Let the shift of the base line be
s(t) = At . (3-19)

where A is a drift of the base line per sec. A typical damped oscil-
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lation superimposed on this drift is shown in Fig. 3-7 for A = -0.2 8o,
0, and +0.2 &, (nsec']). The peak positions of the oscillations |
without the drift are shown by vertical dotted lines. The peak

positions of the oscillation with the drift are given by

A eZﬂAt

sin wt = . (3-20)

2

s
2h50 AT+ f

and are shown by arrows. When the drift is positive, the period meas-
ured between adjacent minimum points (T]) is shorter than without the
drift; or, between adjacent maximum points, it is longer. The peak
position of the oscillation with the negative drift shows a similar
shift but in opposite direction.
The relative change of the period due to the drift can be calculated
as a function of the ratio of the drift rate to the oscillation
peak value. The resultant curve is shown in Fig. 3-8 for f = 1 GHz
and A = 2 X 108 Hz. The curve shows the compensation to be used for
the period measurement. For examp]e, the period T measured <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>