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ABSTRACT 

The Lorentz-Zygmund spaces Lpa(log L)a are a class of function 

spaces containing as special cases the classical Lebesgue spaces LP, 

the Lorentz spaces Lpa and the Zygmund spaces Lp(log L)a. It is 

shown here that the Lorentz-Zygmund spaces provide the correct 

framework for the interpolation theory of weak type operators. The 

interpolation principles established here unify many classical results 

in harmonic analysis. In particular, there are applications to the 

Fourier transform, the Hardy-Littlewood maximal operator, the Hilbert 

transform, and the Weyl fractional integrals. 
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CHAPrER I 

INTRODUCTION 

1. Introduction 

The principle of operator interpolation has extensive applications 

in harmonic analysis. To illustrate this principle let us consider a 

special case of the classical interpolation theorem of Riesz-Thorin 

[43, Chapter XII]. Let T be a linear operator defined on the Lebesgue 

space L
1(f), the class of Lebesgue integrable functions on the unit 

circle ~. SUppose T has the following properties: 

and 

co co 
T 1 -+ 1 ; 

equivalently, Tis strong type (1,1) and strong type (co,co), respectively 

(cf. (1.4)). Since the LP spaces on the circle~ satisf'y the 

inclusions 

1 < p < co, 

it is then natural to ask whether T is bounded on the LP spaces, 

1 < p < co. The Riesz-Thorin theorem provides the affirmative answer: 

(1 ) The notation T : X-+ Y, where X and Y are (quasi) normed spaces, 
signifies that T is a continuous map of X into Y. 
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1 < p < co. ( 1 • 1 ) 

Thus, the Riesz-Thorin theorem takes the strong type hypotheses on the 

1 co 
"endpoint spaces" L and L and "interpolates" to establish the 

intermediate result (1. 1). 

We shall see that, for the applications, the conditions strong 

type (1, 1) and (co, co ) are much too stringent. Marcinkiewicz (28] was 

able to relax these conditions by introducing the notion of weak type 

(p,q) (cf . (1.5)). Under the weaker assumptions that the operator Tis 

of weak types (1,1) and (oo,co), Marcinkiewicz was still able to 

establish the desired interpolation result (1.1 ). Calderon [9] and 

Hunt [21] have shown that the Lorentz spaces Lpa form the natural 

setting for Marcinkiewicz's interpolation theorem. 

Of course, the LP spaces are not the only function spaces 

intermediate between L
1 

and L
00 

for which we may want to interpolate 

operators of weak types (1,1) and (oo,co). For instance, let L log L 

denote the class of all functions on the unit circle T for which 

is finite. The space L log L is related to the LP spaces by the 

following inclusions: 

LP c L log L c L 1 , < p ::: co. 

Hence, L log L is very "close" to the "endpoint space" L
1

• If Tis a 

linear operator of weak types (1,1) and (oo,oo), we have the following 

result due to Zygmund [43, p. 119] : 
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1 T : L log L ~ L • (1 .2) 

The classical theory contains many results of the types described 

above. It was shown in [6] that the natural setting for all of these 

results is a class of function spaces rf>a(log L)a called the Lorentz-

Zygmund spaces. They contain as special cases both the Lorentz spaces 

Lpa (take a = 0) and the Zygmund spaces Lp(log L)a (take a = p). 

Furthermore, the interpolation theorems for these spaces produce 

easily the various classical estimates. These theorems were 

established in [6] in the context of the unit circle f. 

The purpose of this dissertation is to extend the results of [6] 

to arbitrary measure spaces. This more general setting requires a 

more complex technical machinery. However, we show that the simple 

structure of the results themselves remains intact. 

The following operators arise natura.lly in classical harmonic 

analysis: the Fourier transform 7; the Hardy-Littlewood maximaJ. 

operator M; the Hilbert transform H (conjugate-function operator); and 

the fractional integrals IA, 0 <A< 1. Each of these operators has a 

definition on functions on the unit circle 'r, the integers ~ , or 

euclidean space Rn (cf. [36, 42, 43]). There are many classical 

results concerning the mapping properties of these operators on the 

Lebesgue spaces LP, the Zygmund spaces Lp(log L)a and the Lorentz 

spaces Lpa. Each of these mapping properties is intrinsica.l.ly 

interesting but, in their existing form, they are apparently unrelated. 

However, in the setting of the Lorentz-Zygmund spaces, all of these 

classical results are unified by a natural, comprehensive interpolation 
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theory. 

* Let (X,µ) be any measure space and let f denote the decreasing 

rearrangement of a measurable function f on X (cf. (3.2)). For 

0 < p, a S oo, the Lorentz space Lpa(X) = Lpa consists of all (classes 

of) measurable functions f for which the quasinorm 

(~ [tl/pf*(t)]a dt/t) l/a 
0 , 0 < a < oo, 

( 1 • 3) 

a = oo, 

is finite. 

A quasilinear operator T mapping measurable functions on a 

measure space (X,µ) into measurable functions on a measure space 

~J,v) is strong ty;pe (p,q) if 

0 < p,q s oo, ( 1 • 4) 

and is weak type (p,q) if 

T 0 < p < oo, 0 < q s oo, (1.5.i) 

T p = oo, 0 < q s oo, ( 1 • 5. ii) 

For p ~ 1, the notion of weak type (p,q) is indeed weaker than the 

notion of strong type (p,q) (cf. Section 5), 

ool 
The definition (1.3) shows that the Lorentz space L = [o}. 

Hence, the definition (1.5 .i ) is of no interest when p = oo, The 

definition (1.5.ii) is somewhat artificially made toaccornmodatethis 

situation. The definitions (1 . 4) and (1.5.ii) show that ~eak type 

(oo,oo) is equivalent to strong type (oo,oo). Thus, the condition weak 
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type (oo,oo) is much too restrictive as we shall see later. 

The two theorems cited below give the known weak type and strong 

type mapping properties for the aforementioned operators. 

THEOREM 1. 1 (a) : The Fourier transform :f is strong (hence weak) types 

(1,oo) and (2,2). 

(b) (Hardy-Littlewood [ 15]). The Hardy-Littlewood maximal operator M 

is weak types (1,1) and (oo,oo). 

(c) (Zygmund (41 ]). The fractional integral operator IA, 0 <A< 1, 

is weak types ( 1 , ( 1 - X r 1 
) and ( X -

1 
, oo) • 

(d) (Kolmogorov [23]). The Hilbert transform His weak type (1,1). 

THEOREM 1.2 (a) (Hausdorff-Young [19, 43, p. 101]) : The Fourier 

transform :if has the property: 

1 < p < 2, 1 /p + 1 /q = 1. 

(b) (Hardy-Littlewood [15, 42, p. 32]). The Hardy-Littlewood maximal 

operator M has the property: 

1 < p < oo. 

(c) (Hardy-Littlewood (14, 43, p. 142]). The fractioneJ. integral 

operator IX' 0 < X < 1, has the property: 

1 < p < q <co, 1/p - 1/q = X. 

(d) (M. Riesz [34, 42, p. 254]). The Hilbert transform H has the 

property: 
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1<p<oo. 

Theorems 1.1.d and 1.2.d show one might expect (by "extra

polation") some form of a weak type estimate for the Hilbert transform 

H at the "endpoint" oo • . 00 However, H is not bounded on L ; in fact, H is 

not even bounded on characteristic f'unctions (cf. [37]). (Actually H 
00 

maps L into the larger class of functions of bounded mean oscillation, 

BMO (cf. [12]).) Hence, His not weak type (oo,oo)(= strong type (oo,oo)). 

This difficulty is overcome by introducing the notion of weak ty;pe 

(p,q;r,s) (p < r, and q ~ s; see Section 13 for the definition and 

details). The notion of weak type (p,q;r,s) was first introduced in 

[4] when p = q and r = s, and in general was first presented in [6]. 

If r <co, a quasilinear operator T is of weak type (p,q;r,s) if and 

only if T is weak types (p,q) and (r,s). The crucial difference occurs 

when r = oo. The following theorem summarizes the weak type estimates 

for the operators :F, M, H and I\ relative to the notion of weak type 

(p,q;r,s). 

THEOREM 1. 3 ( [ 6, Pa.rt IV]): 

(a) The Fourier transform:! is weak type (1,oo;2,2). 

(b) The Hardy-Littlewood maximal operator M is weak type (1, 1 ;oo,oo). 

(c) The fractional integral operator IA.' O <A.< 1, is weak type 

( ( ) -1 -1 ) 1, 1 - A. ; A. , oo • 

(d) The Hilbert transform His weak type (1,1;00,00), 
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Theorem 1.3.d shows that we now have weak type estimates at both 

"endpoints" 1 and oo for the Hilbert transform H. This fact, in 

conjunction with the interpolation theorems cited below, gives a direct 

verification of the strong type mapping properties for H (cf. Theorem 

1.2 . d) in addition to establishing a variety of other mapping 

properties. 

Suppose O < p, a ~ oo, -oo <a < oo. The Lorentz-Zygmund space 

Lpa(log L)a defined on any measure space (X,µ) is the set of measurable 

functions for which the quasino.rm 

sup t l/p(l + I log ti )a f*(t), 
O<t<ix> 

0 < a < oo, 

( 1 • 6) 

a = oo, 

is finite. When a = o, the space Lpa(log L)O reduces to the Lorentz 

space Lpa. When the underlying measure space is the circle l' and 

a = p, the Lorentz-Zygmund space Lpp(log L)a reduces to the Zygmund 

space LP(log L)a (cf. [6, Section 10]). With respect to these 

Lorentz-Zygmund spaces and operators of weak type (p,q;r,s), we shall 

prove the following generalization of the fundamental Marcinkiewicz 

interpolation theorem. 

THEOREM A: Let 0 < p < r ~ oo and 0 < q,s ~ oo, with q ~ s. SUppose T 

is a quasilinear operator of weak type (p,q;r,s). suppose 0 < e < 1 

and let 

1 e 1 - a 
-=- + --
u p r 

1 e 1 - e -=-+--v q s (1. 7) 
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Let 0 < a < oo and - oo < a < oo • Then 

Using Theorem A and the weak type estimates of Theorem 1 • 3, we 

now have a simple proof of Theorem 1 .2. 

Next we choose e' such that 0 < &' < e < 1, and we define u' and 

v' so that u', v' and e' are related as in (1.7). Then Theorem A also 

ShOWS that (for 0 < a I :::: 001 - oo < CX
1 < oo) 

and 

The next theorem deals with the limiting case of these results where 

we let e ~ 1 and e' ~ O (that is, u = p, v = q, u' = r and v' = s). 

THEOREM B: Let O < p < r :::= oo, and O < q, s :::= oo, with q I s. suppose T 

is a quasilinear operator of weak type (p,q;r,s). Suppose 

1 :::= a ~ b :::= oo, 1 :::= c :::= d :::= oo and - oo <a, ~' y, o < oo. Then, 

(a) if a+ 1/a = 8 + 1/b > O and y + 1/c = 5 + 1/d > o, we have 

pa a+1 re y+1 qb 8 sd o 
T : L (log L) + L (log L) ~ L (log L) + L (log L) ; 

and 

(b) if a + 1/a = a + 1/b < 0 and y + 1/c = 0 + 1/d < o, we have 
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The sums appearing in Theorem B are defined as follows. If p < q, 

the space Lpa(log L)a + Lqb(log L)e is generated by the quasinorm 

(1.10) 

and if p > q, the generating quasinorm is 

(1.11) 

(
rPJ I * )1/a 

+ j [t1 P(1+log tPf (t)]adt/t • 
1 

These spaces are the usual algebraic sums of the spaces Lpa(log L)a 

and Lqb(log L)~ in all instances except when one of the spaces is 

trivial (cf. Section 9). 

The function space generated by ( 1 • 10) when p > q, or by (1 • 11 ) 

when p < q is just the usual set theoretic intersection 

Lpa(log L)a n Lqb(log L)R (cf. Section 9). 

In the case where the underlying measure space is the unit circle 

f (or any finite measure space), the sums and intersections in 

Theorem B reduce to a single Lorentz-Zygmund space (cf. Section 7). 

When the underlying measure space is the integers .?l,the sums and 

intersections now reduce to a Lorentz-Zygmund sequence space 

t pa(log t)a (cf. Section 9), consisting of sequences (c } for which 
n 

the quasinorm 



10 

* 00 
is finite (here [c } is the decreasing rearrangement of the sequence 

n n=1 

In view of the above remarks, when T maps function spaces on ~ 

or 7l into function spaces on I' or 7l , the statement of Theorem B is 

simplified. Restating Theorem B in these special instances, we have 

the following theorems. 

THEOREM B1 (Measure spaces ~, I') SUppose O < p < r S oo and 

O < q < s S oo. Then 

and 

THEOREM B2 (Measure spaces I', 7l ) : Suppose 0 < p < r < oo and 

0 < s < q S oo. Then 

and 

(b) T. : Lra(log L)a+l ~ tsb(log t)~, if a+ 1/a =A + 1/b < o. 

Similar restatements of Theorem B can be obtained by other combinations 

of the measure spaces ~ and 7l • 

We may now present some classical results in harmonic analysis 

which, after reformulation in terms of Lorentz-Zygmund spaces, are 

direct consequences of Theorems B1 or B2. To apply Theorem B1 or B2 
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we restrict our attention to operators defined on the circle r. 

THEOREM 1.4 (Hardy-Littlewood (15, 43, pp. 158-159]): The Hardy-

Littlewood maximal operator M has the property: 

M : L(log L) -t L1• 

THEOREM 1.5 (Zygmund [39, 41, 42, 43)): 

(a) For the conjugate-function operator H, we have 

H: L(log L) -t t 1• 

(b) If Ir! < 1 a.e., then 

for some positive constants y and C independent of f. 

(c) H also has the property: 

a> o. 

THEOREM 1 • 6: If 0 < 'A < 1, the Weyl fractional integral. operator ; 

has the following properties: 

(a) (Zygmund [40]). IA : L(log L)l-'A -t Ll/(l-\) • 

(b) (Zygmund [ 4 3, pp. 158-159]). If l!fll
1 

l /\ ~ 1, then 

~nexp(v1Ixfl 1 /(l-\)) ~ c < ~, 
0 . 

where y and C are positive constants independent of f. 
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( c) (O'Neil (31]) . Let p = (1-\)-1. Then 

(i) I\ L(log L)a ~ KP(log+K)p(a- 1 ), 

and 
-1 

'(ii) I\ : L(log L)a ~ Lra , O<a<1. 

THEOREM 1.7 (Hardy-Littlewood [16,17], Zygmund [40]): Let 

:J(f) = (c 1 
00 

be the sequence of Fourier coefficients of f with 
n n=- oo 

int respect to the orthonormal system e , n = o, :!:_ 1 , :!:_ 2, • • • Let 

(c:1n:1 denote the decreasing rearrangement of (en 1n:-
00

• Let 

f E +,(log L)a, a > o. 

(a) For some constants A and B independent of f, we have a a 
00 

j n-1 (log nf' - 1 c: :'.': ~ ~"JrJ (log+Jfl )a +Ba • 

n=1 

(b) If O < a ::'.: 1 , then 
00 

\ 
L 

n=1 

We have already remarked that the spaces Lpa and Lp(log L)a are 

the Lorentz-Zygmund spaces Lpa(log L)O and LPP(log L)a, respectively. 

The following theorem, proved in (6, Section 10], shows that the other 

classes of functions mentioned in the four previous theorems are also 

Lorentz-Zygmund spaces . 

THEOREM 1 , 8: 

(a) If a > o, the Lorentz-Zygmund space L
0000

(log L)-a is the Zygmund 

space consisting of those functions f (on ~) for which 
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for some positive constant \ = \(f). 

(b) If O <a, p < oo, the Lorentz-Zygmund space Lpl (log Lf' coincides 

with O'Neil's space Kp(log+K)ap. (The space Kp(log+K)a consists of all 

f for which 

where Df is the distribution .function off (cf. (3.1))). 

(c) For sequences {c } 
00 

of complex numbers and a > o, we have that n · n=-oo 

00 

} 
00 \' -1 a * } ool a (i) ~ (c · .. - n (log n) en< oo = t (log t) ·, l n n=-oo 

n=l 

and (ii) if O <a~ 1, we have 

Applying Theorem 1.8 to reformulate Theorems 1.4 through 1.7, 

these theorems now reflect that the various operators M, H, IX and .7 

are continuous transformations of Lorentz-Zygmund spaces. 

THEOREM 1 • 4 ' (Hardy-Littlewood ) : 

THEOREM 1 • 5 ' ( Zygmund ) : 
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(b) H 
0000 0 0000 - 1 L (log L) -+ L (log L) • 

( c) 

THEOREM 1.6' (Zygmund, O'Neil): Let p = (1-A.r 1• 

(a) IA 
11 1-A pp 0 L (log L) -+ L (log L) • 

-1 -1 
(b) IA LA A (log L)O-+ L0000 (log L)A-l. 

( c) (i) IA L11 (log L)a-+ LP1(log L)a-l, 

and 

(ii) IA : L11 (log L)a .... Lp,l/a(log 1)0, 

THEOREM 1. 7 1 (Hardy-Littlewood, Zygmund): 

(a) 

(b) 

:; : L11 (log L)a-+ t 001 (log t)a-l, 

:I: L11 (log L)a-+ t 00'l/a(log t) 0, 

a> o. 

a;:::1, 

O<a<l. 

a> o. 

O<a<l. 

It is clear that the weak type estimates of Theorem 1.3 in 

conjunction with the interpolation Theorems Bl and B2 give simple 

proofs of Theorems 1. 4' through 1.7'. Let us call the number a+ 1/a 

an index of smoothness for the Lorentz-Zygmund space Lpa(log L)a (or 

tpa(log t)a). The common feature of all the results in Theorems 1.4' 

through 1.7' is that the index of smoothness of the domain is always 

greater than the index of smoothness of the indicated image space. 

This is the simple essence of Theorem B. 

We conclude this section with a discussion of the Hilbert 

transform H on the real line ~ and the fractional integrals IA. (Riesz 

potentials) on euclidean space ~n. These results are implicit in the 
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; 

work of Calderon and Zygmund [10, 11] and are also discussed in the 

work of Torchinsky [38] and Koizumi (22]. 

THEOREM 1.9: For the Hilbert transform Hon the real line, we have 

that 

(1.12) 

for a > O and 1 < p < oo. 

THEOREM 1. 10: Let 0 < X < 1 and 1 < p < q < oo, with 1/p - 1/q = X. 
I 

Then the fractional integral operator IA (Riesz potential) has the 

property: 

(1.13) 

The space L(log L)a +LP appearing in (1.12) has the quasinorm 

(cf. ( 1 • 1 0) 

r1 * (f * )1/p I (1-log t)af (t)dt + [f (t)]Pdt • 
Vo 1 

Hence, Theorem 1.9 is really just a combination of the local result 

in Theorem 1.5.c with the strong type result of Theorem 1.2.d for the 

Hilbert transform H. Similarly, we see that the result (1.13) for IA 

is a combination of the local result in Theorem 1.6.a with the strong 

type result in Theorem 1.2.c. Both Theorems 1.9 and 1.10 are instances 

of the following theorem, which is the limiting case of the results 

(1.8) and (1.9) where we let either e ~ 1 ore'~ o. 

THEOREM C: Let 0 < p < r '.'.:: oo, and 0 < q, s :=: oo, with q ~ s. Suppose 

T is a quasilinear operator of weak type (p,q;r,s). Suppose 
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1::: a::: b::: oo, o < c::: oo, -oo <a,~,v < oo and o < 9 < 1. Let 

1 e 1-e 
-= -+-

1 9 1-0 
-=-+-. 

u p r v q s 

(a) If a + 1/a = ~ + 1/b > o, we have 

(i) T : Lpa(log L)a+l + Luc(log L)V ~ Lqb(log L)~ + Lvc(log L)V, 

and 

(b) If a + 1/a = q + 1/b < o, we have 

(i) T : rf'a(log L)a+l n Luc(log L)V ~ Lqb(log L)~ n Lvc(log L)V, 

and 
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CHAPI'ER II 

INEXtUALITIES AND PRELIMINARIES 

2. Generalized Hardy inequalities 

The inequalities established in this section form the foundation 

of the subsequent development and will be appealed to frequently. We 

begin with two modest technical lemmas. 

LEMMA 2.1: Let"-,µ and a be positive real numbers. Then, we have 

(2. 1 ) 

Proof: Clearly, 

and 

Adding the two inequalities and taking ath powers, we have the right

hand inequality in (2.1). Replacing A by Al/a and~ by ~l/a in the 

inequality just established, then taking ath roots, we obtain 

This is precisely the left-hand inequality in (2.1) with a replaced 

by 1/a. 

L~ 2.2: Let 11 > o, a real. Then there is N = N(a,A) > 1 such 

that 

(a) t-
8

(N + I log ti )0 is decreasing for t E (o,~); 
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(b) t~(N + jlog ti )a is increasing for t E (O,oo). 

Proof: An examination of the derivative shows that N = 1 + jaj/~ 

will suffice. 

The following two lemmas were established in [6, Lemmas 6.1 and 

6.2] . 

LEMMA 2.3: suppose 0 <a ~ oo, and 0 < v < oo. Let cp be a nonnegative 

decreasing f'unction on (O,oo). Then, for each O < t < oo, we have 

" (rt" )1/a 2 sup s cp ( s) ~ c J [ s cp( s) ]ads/ s ( ) 
O<s<t O 

(2.2) 

and 

" ([ " )1/a sup s cp (s) ~ c [s cp(s) ]ads/s , 
t2s<ixi t/2 

(2. 3) 

where c is a constant independent of cp and t. 

LEMMA 2.4 : Let 0 < " < oo and let q> be a nonnegative decreasing 

function on (O,oo) . Then, for 0 < t < oo, 

(a) if 0 <a~ 1, then 

rt \) (rt \) )1/a 
j s cp (s)ds/s ~ c j [s cp(s)]ads/s , 

0 0 
(2.4) 

and 

(2 ) Throughout this paper, when a= oo, an integral (~[t(t)]adt/t)l/a 
is to be interpreted as ess sup v(t). c 

c<t<d 
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r " ( rlX' " a )1/a s cp(s)ds/s ~ c .J [s cp(s)] ds/s • 
t t/2 

(2. 5) 

(b) If 1 ~a~ oo, then 

(rt " )1/a It " J [s cp(s)]ads/s ~ c s cp(s)ds/s, 
0 0 

(2. 6) 

and 

(r " ) 1 /a r:xi " [s cp(s)]ads/s ~ cj s cp(s)ds/s. 
t t/2 

(2.7) 

The next theorem is a variant of the classical Hardy inequalities 

(cf. [21, p. 256]). For measurable functions on (0,1), it was first 

proved in [6, Theorem 6.4]. 

THEOREM 2.5: suppose A. > o, 1 ~a ~ oo and -oo < o: <co. Let V be a 

nonnegative measurable function on (O,oo). Then the following four 

inequalities hold: 

(a) 

(2. 8) 

(b) 

(J1 A.+l o: a )1 /a 
~ c 

0
[t (1-log t) ;(t)J dt/t ; 

(2. 9) 

( c) r t 1/a 
( [t-A.(1+log t)o:J +(s)ds]adt/t) 

1 1 (2. 10) 
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I :P" A. ar°° a )1/a 
I i [t (1+log t) '1t(s)ds) dt/t 
\., 1 .J t 

("oo \ \1/a 
::'.: C\J (t ' +1 (l+log tP1Ht) ]adt/t) • 

1 

(2. 11 ) 

( ) u.-1 ( ) Furthermore, suppose 0 < a < 1 and 1~ t = t q> t , where µ. > 0 

and~ is a nonnegative decreasing function. Then (2.8) and (2.9) 

remain valid while (2.10) and (2.11) are replaced by 

(CI) 
1 ['°° A. a ,.t ) 1 I a 
:\.;

1 
[t- (1+log t) J

1 
w(s)ds]adt/t 

(2.10 1
) 

rP> 1/a 
:::: c(J [t-\+l (1+log t)a1Jl(t/2)]adt/t) ; 

1 

(d I) (
r"° A. rPl 1/a 
j (t (1+log t)aj $(s)ds]adt/t) 

1 t (2.11 1
) 

The constant c depends only on A., a, a (andµ when O <a< 1). 

Proof: The proof given here for (2. 10) and (2.11) is a modification 

of that given for the classical Hardy inequalities in [21, p. 256). 

The inequalities (2.8) and (2.9) are the content of Theorem 6.4 in (6) 

and so we omit their proofs. 

First, we note that when N ~ 1 , 

1 + !log ti < N + I log ti ::'.: N(1+llog ti). (2.12) 

Hence, it will suffice to prove the inequalities (2. 10) and (2. 11) 

with (1 + I log ti) replaced by (N + !log ti). 

Let 1:::: a:::: oo. To prove (2.10) choose y so that 



21 

1 -X < 'V < 1. (2. 13) 

We next write, for t > 1, 

rt rt 1-
1 if(s)ds = j [syv(s)][s Y]ds/s • 

.i 1 1 

Now we apply HBlder's inequality (with respect to the measure ds/s) to 

the expression on the right to obtain the inequality 

rt 1 y(rt )1/a 
: v(s)ds <ct - ! [s"'v(s)]ads/s • 

"'1 - "1 
(2. 14) 

Inequality (2.14), plus a change in the order of integration yields 

(2.15) 

~ c~[syt(s)Ja(~t-(X+Y-l )a(N+log t)aadt/t)ds/s. 
1 s 

Let N = N(a,1/2(X+Y-1)) as in Lemma 2.2.a so that t-(\+V-l)/2 (N+log t)a 

decreases fort E [1,oo). Thus, on [s,oo), t-(X+V-l)/2 (N+log t)a is 

largest when t = s. Letting I denote the right-hand side of (2.15), 

we have 

I~ cJ
00

rs"'t(s)·s-(X+y-l )/2 (N+log s)aJa(J°t-(X+V-l)a/2dt/t)ds/s. 
1 s 

The choice of V, (2.13), allows us to evaluate the integral. on (s, 00 ), 

giving 

(3 ) The constant c may change from line to line. 



22 

2c j -A+1 a a 
I ~ a().+y-l) j [s (N+log s) +(s)] ds/s. 

1 
(2. 1 6) 

The estimates (2.15) and (2.16) produce (2. 10) (modulo (2.12)) for 

1 < a < oo. 

For the case a= oo, (2.14) reads 

) 1-v->..( )a By Lenuna. 2.2.a, we choose N = N(a,). + v - 1 so that t N+log t 

decreases. Let 1 < t < oo, then 

-A a rt ( ) 1 -V-A a 'V t (N+log t) JlW s ds ~ct (N+log t) sups '(s) 
1<s<t 

< c sup s-X+l(N+log s)0 w(s). 
- 1<s<t 

Replacing the supremum over (1,t) by the supremum over (1,oo), and taking 

the supremum of the left-hand side over 1 < t < oo, we have (2,10) for 

this case, too. 

Now suppose O <a< 1. We then have •(s) = sµ-l~(s) whereµ> O 

and~ is decreasing . In addition to (2.13), we choose y so that 

v > 1 - µ. • (2. 17) 

Now we write, for 1 < t < oo, 

By (2 . 17), µ. + y - 1 > o, so we may apply (2.5) (with t = 1) to obtain 
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This is the analogue of the crucial inequality (2.14). We then have 

the estimate 

Enlarging the range of integration (1,oo) to (1/2,oo) and then inter-

changing the order of integration, we obtain, 

Proceeding as before, we have the estimate 

rx' -\+1 I I a a I J < cj [s (N+ logs ) t(s)] ds s. 
- 1/2 

Changing variables (let s = t/2), we have 

which is (2.10 1
) (modulo (2.12)). 

The inequalities (2.11) and (2.11 ')are proved quite similarly. 

We choose V now so that 

1<y<1+\. (2. 18) 

For 1 ~a~ oo, the analogue of the crucial inequality (2.14) is 

(2. 19) 
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By (2.18), 1 - V + X > o, so we choose N by Lemma 2.2.b so that 

t(l-V+X)/2 (N+log t)a increases. Applying (2.19), we have the estimate 

~ c~[tl-v+X(N+log t)aJa(~[svt(s)]ads/s)at/t 
1 t 

rx' v a( rs 1 -v+\ a a ) = cj [s it(s)] j [t (N+log t) ] dt/t ds/s 
1 1 

rP> \+1 a a 
~ cj [s (N+log s) 'lt(s)] ds/s, 

1 

which is the desired inequality (2.11). As before, the case a= oo is 

easy so we omit it. 

When 0 < a < 1 , we write 

r ·Hs)ds = [ s l -Yf sµ+v- 1cp(s) ]ds/s ~ t 1-vf sµ+V-\p(s )ds/s. 
t t t 

The inequality (2.5) now gives the slightly different version of the 

crucial inequality (2.19): 

Proceeding as before, we obtain (2.11 1
). This completes the proof. 

The following theorem is a generalization of the classical.. Hardy 

inequalities (they may be obtained by taking a= o). The proof is 

entirely similar to the proof of Theorem 2.5 so we omit it. 
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THEOREM 2.6: Let X > o, 0 <a< oo and -oo <a< oo. If either 

(a) l < a < oo and t is a nonnegative measurable function on ( o, oo) ; 

or 

(b) 0 < a < 1 and V( t) = tµ.-\p( t), where µ. > 0 and cp is a nonnegative, 

measurable decreasing function; 

then 

(i) 

and 

(ii) 

(2.21) 

~ c(~rtX+1 (1+jlog ti )at(t)]adt/t) 1/a. 
0 

The following variants of Hardy's inequalities correspond to the 

limiting cases X = 0 in Theorem 2.5. In contrast to Theorem 2.5, the 

order of the logarithmic term now increases by a factor of one from 

left to right. The inequalities (2.22) and (2.24) were established in 

[1, Theorem 6.2]. 

THEOREM 2. 7: suppose 1 <a< oo and a+ 1/a. f O. Let it be a nonnegative 

measurable function on (O,oo). 

(a) If a + 1/a > o, then 
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(i) (J:rc1-1og tlaJ:v(s)ds]adt/t)1/a 

1 
~ c(J [t(1-log t)a+l'(t)]adt/t) 1/a, 

0 

(ii) (f,[(1+log t)o:(w(s)ds]adt/t) 1/a 

~ c(~[t(1+log t)a+l~(t)]adt/t) 1 /a. 
1 

(b) If a + 1/a < o, then 

1 
~ c(J [t(1-log t)a+l*(t)]adt/t)1/a, 

0 

(iv) (~[(1+log t)o:Jtv(s)ds]adt/t)1/a 
1 1 

~ c(~[t(1+log t)a+l•(t)]adt/t)1/a. 
1 

Proof: We shall prove (2.23). Let a' satisf'y 

1/a + 1/a' = 1. 

(2 .22) 

(2. 23) 

(2. 24) 

(2.25) 

Since a + 1 /a > O, we have a + 1 > 1/a 1
• Thus, we may choose V so that 

1/a' < y <a+ 1. (2.26) 

We now write 
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Then, we apply H8lder's inequality and (2.26) to obtain 

(2.27) 

For 1 ~ a < oo, we can now make the estimate 

fr (1+log t)ar'41(s)ds]adt/t 
1 't 

~cf [(1+log t)a-y+l/a' Ja(f [s(1+log s)Yv(s)]ads/s)dt/t 
1 t 

= c~[s(l+log s)Yt(s)Ja(Js(1+log t)aa-ya+a-1dt/t)ds/s 
1 1 

r a+1 a / ~ c [s(1+log s) W{s)] ds s, 
1 

(the last inequality is available by (2.26)). The above estimate gives 

(2.23) for 1 < a < oo. The case a = oo is easier and so we omit it. 

The inequality (2.25) is proved in much the same way. Since 

a + 1/a < o, we now choose y so that 

a+ 1 <y<1/a'. 

The crucial inequality (2.27) is replaced by 

rt i/ '(Jt . )1/a j w(s)ds ~ c(1+log t)-'V+ a [s(l+log s)y'(s)]ads/s , 
1 1 

and we proceed as before. This completes the proof. 

3. Decreasing Rearrangements of Functions 

Let (l,µ) be any measure space. For each complex-valued 

measurable function f on l we have its distribution function 
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D f ( y) = µ. [x : I f ( x) I > y}, 0 < y < oo. (3.1) 

The function Df is decreasing and right continuous. Hence, it has a 

right continuous inverse 

* f (t) = inf[y : Df(y) ~ t}, 0 < t < oo. (3.2) 

* * We call f the decreasing rearrangement of f. The mapping f ~ f is 

not subadditive, but we do have 

* * * (f+g) (t) ~ f (t/2) + g (t/2), 0 < t < oo. (3.3) 

However, for the averaged rearrangement 

** _,It * f (t) = t f (s)ds, 
0 

0 < t < oo, (3.4) 

** the mapping f ~ f is subadditive. That is, 

** ** ** (f+g) (t) ~ f (t) + g (t), 0 < t < oo. (3.5) 

More generally, if~ is a nonnegative decreasing function on (O,ro), 

then 

It * ,.t * It * <p(s)(f+g) (s)ds ~ J cp(s)f (s)ds + q>(s)g (s)ds, 
0 0 0 

0 < t < oo. (3.6) 

Another useful fact is: given two measurable functions f and g 

and a measurable subset E of X, we have 

r r(E) * * I lfgldµ < f (t)g (t)dt. 
VE - 0 

(3. 7) 

Discussion and proofs of these results may be found, for instance, 

in the work of Luxemburg (27], Lorentz (24], and Hunt (21]. 
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4. Averaging Operators 

For 0 < p ~ oo, the averaging operators A , B , C and D are 
p p p p 

* defined as follows: Let f be a measurable function on ('I,µ) and f 

its decreasing rearrangement. For O < t < oo, define 

* -1/pJt 1/p * (A f )(t) = t s f (s)ds/s; 
p 0 

* -1/p 1/p * (Cf )(t) = t sup s f (s) 
p O<s<t 

* (Dpf )(t) = t-l/p sup s1/Pr*(s) . 
t<s<Jx> 

(4. 1 ) 

(4.2) 

(4. 3) 

(4.4) 

, 
As seen in the work of Calderon [9] and Boyd [7], the operators A and 

p 

B play an important role in the theory of weak type interpolation. 
p 

The operators C and D first appear in [6] and play an equally 
p p 

prominent role (cf. Section 13). 

* * * * Each of the functions Apf , B f , C f and D f is decreasing and 
p p p 

right continuous; hence, each is equal to its own decreasing 

rearrangement. 

* ** Note that A1f = f and so A1 is subadditive by (3.5). The 

relation (3.6) implies 

* * * A (f'+g) < A f + A g , 
p - p p 

The following relations among the operators AP, BP, CP and DP 

will be useful later. 
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LEMMA 4. 1: Let O < p ~ oo. Then 

* * * f (t) < (cf )(t) < c(A f )(t), - p - p (4. 6) 

and 

* * * f (t) < (D f )(t) < c(B f )(t/2), 
- p - p (4.7) 

for all t > O. The constant c is independent of f and t. 

Proof: The left-hand inequalities in (4.6) and (4.7) are obvious. 

The right-hand inequalities in (4.6) and (4.7) are precisely the 

inequalities (2.2) and (2.3), respectively (letting a = 1 and v = 1/p). 

5. Lorentz Spaces Lpa 

This section is devoted to a brief discussion of the Lorentz 

spaces Lpa a Lpa(l) (recall (1.3)). (A complete discussion of the 

Lorentz spaces may be found, for instance, in [21 ].) 

The Lorentz spaces are complete linear spaces, but the functional 

l\ • 1\pa defined by ( 1 • 3) is in general ~ a quasinorm. The spaces 

L
11 and Lpa, 1 < p ~ oo, 1 ~a~ oo are (equivalent to) Banach spaces. 

For 1 < p ~ oo, 1 ~ a ~ oo, the equivalent norm is obtained by replacing 

f* by f**(cf. (3.4)) in (1.3). The quasinorm !\fll actually is a norm pa 

in the case 0 <a< p ~ oo (cf. (25]). The Lorentz spaces Lpa 

generalize the classical Lebesgue spaces LP since Lpp = LP. 

We have the following inclusion relations among Lorentz spaces 

with the same primary indices p: 

O < a < b < oo • (5. 1) 
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In particu1ar, we have 

(5.2) 

and 

(5.3) 

Note that if T is a quasilinear operator such that 

then (5.2) and (5.3) show that 

Thus, for p ~ 1, the notion of weak type (p,q) is indeed weaker than 

the notion of strong type (p,q) (recall (1.4) and (1.5)). 

Lorentz spaces Lpa with different primary indices are related in 

special circumstances. For example, if µ(X) < 001 we have 

o < p < q ~ oo, O < a, b ~ oo. (5.4) 

If µ(E) > 1 for every set E of positive measure (which happens when 

X = 7l , the integers) , then 

o < p < q < oo, O < a, b ~ oo or q = b = co. (5. 5) 

REMARK 5. 1: Throughout this thesis, the notation X ~ Y, where X and Y 

are quasinormed linear spaces, will signify continuous embedding. 
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CHAPrER III 

THE LORENTZ-ZYGMUND SPACES 

6. The Lorentz-Zygmund Spaces Lpa(log L)a: 

Let 0 < p, a ::: co and -co < a: < co. The Lorentz-Zygmund space 

Lpa(log L)a: on (I,µ) consists of all (classes of) measurable functions 

f for which the quasinorm 

( 6. 1 ) 

is finite . 

The inequalities (3.3) and (2.1) show that llf\lpa;a: is indeed a 

quasinorm. As for the Lorentz spaces Lpa(cf. [21 ]), the space 

Lpa(log L)a: is complete with respect to the quasinorm 11 · ll ,..., . When pa ;u. 

a: = o, the Lorentz - Zygmund space Lpa(log L)O is just the Lorentz 

space Lpa. When a = p and the underJ.~"ing measure space is the unit 

circle ~, the Lorentz-Zygmund space Lpp(log L)a: is the Zygmund space 

Lp(log L)a: consisting of all functions f for which 

is finite. In view of these last remarks, we will make the following 

abbreviations: 
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pp a p a 11 a a L (log L) = L (log L) ; L (log L) = L(log L) ; 

11 1 
L (log L) = L log L. 

The next theorem describes the action of the averaging operators 

A , B , C and D (cf. Section 4) on the Lorentz-Zygmund spaces p p p p 

Lpa(log L)a. In the context of this section, Theorem 6.1 will aid in 

classif'ying which Lorentz-Zygmund spaces are in fact Banach spaces. 

Specifically, Theorem 6.1 shows that the operators A and C act on 
p p 

Lqa(log L)a as the identity provided p < q; if p > q, B and D act 
p p 

on Lqa(log L)a as the identity. 

THEOREM 6. 1: Let O < q, a ::: co and -oo <a < co. Then we have 

(6.3) 

provided 0 < p < q. The result (6.3) is also valid for C • p Similarly, 

we have 

provided 0 < q < p ::: co. The result (6.4) is also valid for D • 
p 

(6.4) 

(4 ) Since A f* and r* are defined on the interval (O,co) it is 
implicit in p(6.3) and (6.4) that the measure space underlying the 
quasinorm ll·llpa;a is the interval (O,co). The symbol ",,,.'' denotes 

equivalence; i.e. there are positive constants c1 and c2 independent of 
f such that 

c1 \lf*llqa;a ::: llAPf*llqa;a ::: c2 llf*11qa;a • 
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Proof: Suppose 0 < p < q. By the relations (4.6) and the definition 

(6.1 ), we clearly have 

and 

To obtain the converse inequality for A , we apply the Hardy inequality 
p 

(2.20) with\= 1/p - 1/q > 0 and *(t) = t 1/p-lf*(t) (in which case 

Theorem 2.6 applies for all 0 <a~ oo). To obtain the reverse 

inequality for Cp' we use the result for AP and the relation (4.6). 

The proof of (6.4) is similar, now utilizing the relation (4.7) · 

and the Hardy inequality (2.21). 

COROLLARY 6.2: Let 1 < p ~ oo, 1 < a < oo and -co <ex < oo. Then the 

functional 

(6.5) 

defines an equivalent norm on the Lorentz-Zygmund space Lpa(log L)a. 

Hence, for these choices of p,a and a, Lpa(log L)a is (equivalent to) 

a Banach space. 

Proof: We have that A1r* = f** (cf. (3.4)) and so the equivalence 

( 6. 3) shows that 

** because p > 1. The mapping f ~ f is subadditive (cf. (3.5)); hence, 



35 

by Minkowsk.i's inequality, !lfll:;a is indeed a norm. 

At times the expression (1+llog ti )a is awkward in computations. 

We have that 

The equivalence (6.6) is valid because 1 + !log ti and !log ti are 

asymptotically the same at 0 and oo, and the condition a + 1/a > 0 

assures that the integral in (6.6) converges at t = 1. 

7. Lorentz-Zygm.und Spaces on the Unit Circle 

In this section let (l,µ) be the unit circle ~ with normalized 

Lebesgue measure dt/2n. In addition to Corollary 6.2 we have: 

THEOREM 7.1: The Lorentz-Zygmund space L11 (log L)a on the unit circle 

r is a Banach space whenever a ~ o. 

Proof: In this situation (6.1) becomes 

I, * 
!lfll 11 ·a = (1-log t)af (t)dt. 

' 0 

Since a~ o, the function (1-log t)a is decreasing and this is 

necessary and sufficient that the quasinorm (7.1) defines a norm 

(cf. [25)). This completes the proof. 

As for the Lorentz spaces Lpa on a finite measure space 

(7. 1 ) 

(cf. (5.4)),we have the following inclusion relations when the primary 

indices differ. 



THEOREM 7. 2 : Let O < p < q :'.: oo, O < a , b :'.: oo and -oo < a , B < oo. Then 

for the Lorentz-Zygmund spaces on~ (or any finite measure space), 

(7.2) 

Proof: Choose r so that 

p < r < q. (7.3) 

It will suffice to establish that 

(7.4) 

We first make the estimate: 

= (J:rt1/rr*(t)]a[t1/P-1/r(l-log t)0
]
8dt/t)1/a 

::: sup t 1/rf*(t)(J
1 
[tl/p-l/r(1-log t)a]adt/t) 1/a . 

O<t<1 0 

The supremum is, by (6. 1 ), the qu.asinorm llrllroo;O • The last integral is 

finite by (7.3). This proves the first inequality in (7.4). 

To verif'y the second inequality in (7.4) we apply (2.2) (with 

* v = 1/r, ~ = f ) to get 

(7.5) 

If ~ ~ o, (7. 3) implies 

O<t<1. 
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Inserting this inequality into (7.5) we have the second inequality in 

(7.4) for q > O. If B < o, choose E > O so that 

1/q < 1/q + E < 1/r. 

Notice that 

t-E(1-log t)~ ~ c > o, O < t < 1, 

where c is a constant independent of t. Hence, 

This inequality, in conjunction with (7.5), gives the second inequality 

in (7.4) when B < o. 

An extensive discussion of the Lorentz-Zygmund spaces Lpa(log L)a 

on the unit circle r may be found in [6]. 

8. Lorentz-Zygmund Spaces on the Integers 

We open this section with a couple of results valid for any 

measure space (l,µ). It is of interest to know when the spaces 

Lpa(log L)a are trivial. 

LEMMA 8.1: Suppose p = oo. If either (i) o <a< oo and a+ 1/a ~ o, 

or (ii) a = oo and a > o, then 

ooa a r } L (log L) = tO • 



Proof: If 0 < a < co, then 

rPJ 
and 1 (l+jlog ti )aadt/t is finite if and only if a+ 1/a < 0. 

"o 

If a = co, then 

which can be finite only if a :S O. 

The next technical lemma is very important to the rest of the 

development. 

LEMMA 8.2: Suppose O < p < r < q :S oo, 0 < a, b :S oo and -co < a , p < co . 

Then for any measurable function f on l, 

( 8. 1 ) 

Proof: We rewrite the left-most expression in (8.1) as 
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This is clearly dominated by 

The last integral is finite since r < q, proving the first inequality 

in (8. 1 ) • 

To prove the second inequality in (8.1), we fix t, 1 ~ t < oo, and 

write 

11 tl/r It 11 It 11 t r = s rds/s < c s rds/s . 
r(t1/r_1/2r) 1/2 - 1/2 

* Therefore, since f is decreasing, we have 

t r lr* lr* lr* t I f (t) <cf s If (s)ds/s < c s If (s)as/s. 
- .J 1 /2 - 1/2 

(8.2 ) 

We rewrite the last integral as 

rPl 1/p a * 1/r-1/p I -a J [ s ( 1 +I log s I ) f ( s) )[ s ( 1 +I log s ) ]ds/ s 
1/2 

When 1 ~a~ oo, we apply HBlder's inequality to get (by (8 . 2)) 

The right-hand side of (8.3) is dominated by 

r( "
1 I ) I ( ~ I ) I --1 * a 1 a 1 1 o: * a 1 a : c J [s pf (s)] ds/s + j [s P(l+log s) f (s)] ds/s J . . 

I. _ 1 /2 1 



40 

This proves the second inequality in (8. 1) when ~a~ oo. When 

0 <a< 11 we apply (2.5) to (8.2) to give 

(8.4) 

Since p < r it is easy (cf. (7.6)) to show that 

s1/r ~ cs1/P(1+log s)a, 1 < s < oo. (8.5) 

The inequalities (8.4) and (8.5), together with (2.1), imply the 

second inequality in (8. 1) when O < a < 1. The proof is now complete. 

For the remainder of this section, the underlying measure space 

(I,µ.) for the Lorentz-Zygmund spaces will be the integers 7l . In 

addition to Corollary 6.2 we have: 

THEOREM 8.3: The Lorentz-Zygmund space L
11

(log L)a on the integers 7l 

is a Banach space whenever a ~ O. 

Proof: Let 

C?( t) = 

r1 
j (1-log s)ads, O < t < 1, 

0 

< t < oo. 

If f is a function on 7l , then 

(8.6) 

* * f (t) = f (n-), n-1 ~t <n, n = 1, 2, • • .. (8.7) 

Therefore, by (6 . 1 ), we have 

* (r1 . ) rx> * l!r\1 11 . = f (1-) j (1-log t)adt + I (1+log t)af (t)dt. 
,a o ' 1 
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Hence, by (8.6), we have 

The definition (8.6) and the fact a~ 0 show that~ is a decreasing 

function on (O,oo), Hence, the functional l\fll 11 ,a satisfies the triangle 
' 

inequality (cf. (3.6)). 

We can now establish inclusion relations analogous to (5.5) for 

the spaces Lpa(log L)a(:;z ) with distinct primary indices. 

THEOREM 8.4: Let O < p < q ~ oo, o < a, b ~ oo, -oo <a, ~ < oo and 

suppose Lqb(log L)~ f [o} (cf. Lemma 8.1). Then, for the Lorentz-

Zygmund spaces on :iZ, 

(8.8) 

Proof ·. Let f E Lpa(log L)a. Si (..., ) '" th 1 t. (8 7) . nee N,µ = "'' ere a ion . is 

valid. Let us first suppose that either 

q < oo; or q = oo, 0 < b < oo and A+1/b < 0 

holds. By the inequalities (2.1) and (8.1) and the relation (8.7), we 

have that 

(8.10) 

~ c{f*(1-{(f [t1/q(1-log t)a]bdt/t)l/b + (f ta/pat/t) 11aJ 
- 0 1/4 
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* The coefficient off (1-) in (8.10) is a constant independent off by 

(8.9). Hence, we have 

llrllqb ;a '."'. c{(( [ t 1 /p ( 1-log t )''r * ( t) ]adt/t) 1 /a 

+ (~[tl/p(l+log t)af*(t)]adt/t)l/a}. 
1 

For O <a< oo, apply (2.1) to give (8.8). If a= oo, we use the 

following analogue of (2.1) to produce (8.8): 

1/2( sup h(t) + sup h(t)) < sup h(t) < sup h(t) + 
O<t<l 1 <t<oo - O<t<oo - O<t<l 

where h is any nonnegative f'unction on (O,oo). 

sup h(t), 
l<t<oo 

( 8. 11 ) 

( 8. 12) 

The only other case when Lqb(log L)
8 f (o} is when q = b = oo and 

S < O. The proof is similar so we omit it. 

For functions on the integers, i.e. sequences, it is often 

desirable (and necessary to accommodate the classical theory) to 

attempt to express (6.1) in terms of series. We make the following 

definition: If (en} is a sequence of complex numbers, let (c:}n:l 

denote its nonnegative decreasing rearrangement (if c = c(n), then 
n 

c* = c*(n-)). The Lorentz-Zygmund sequence space tpa(log t)a for 
n 

0 < p , a ~ oo, -oo < a < oo is the set of sequences for which 
00 

( \' 1 /p a * a -1) 1 /a l [n (l+log n) en] n (8.13) 

n=1 

(5) When a = oo, this is to be interpreted in the obvious way as 

sup n1/P(l+log n)ac* • 
l<n<ixi n 
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is finite. The following theorem shows that Lpa(log L)a = tpa(log t )a 

(provided Lpa(log L)a is non-trivial) when the underlying measure 

space is the integers ~ • 

THEOREM 8.5: SUppose O < p, a~ oo, -oo <a< oo and Lpa(log L)a ~ [o}. 

Then, 

( 8. 14) 

Proof: We will only consider the case O < p ,a< oo and a:::: O. The 

other cases are proved similarly. First, we observe that 

00 

\ 1/p a *a -1 
1 [n (1 +log n) c ] n 
··-' n 

n=1 ( 8. 15) 
(X) 

* \' r 1/p a * a = c1 + l [n (1+log n) c (t)] dt/n . 
n-1 n=2 

Next, we notice there are constants k 1 and ~ such that 

1/p a a -1 1/p( a a -1 k 1 [t (l+log t) ] t ~ [n l+log n) ] n 
(8. 16) 

1/p a a -1 
~ ~[t (1+log t) ] t , 

for n-1 ~ t ~ n, n = 2, 3, .... Since p < oo, the integral 

is finite. Using this, (8.15) and the second inequality in (8.16 ), 

we have 
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n=1 
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00 

:'5: k I f rt
1
/P(1+1og t)0 c*(t)]adt/t 

n-1 n=1 

The reverse inequality follows from the first inequality in (8.16 ) . 

REMARK 8.6: The spaces L
00

a(log L)0
, when (i) O <a< oo and a+1/a ~ O 

or (ii) a= oo and a> Oare all trivial (cf. Lemma. 8.1). However, the 

ooa( a corresponding spaces t log t) generated by the quasinorm 

00 

( \ ex *a -1)1/a \ L [(1+log n) en] n 

n=1 

are clearly non-trivial. 

For the Lorentz-Zygmund sequence spaces tpa(log t)0 we have the 

inclusions (8.8) with no restrictions on the para.meters q,b and R . 

THEOREM 8. 7: Suppose 0 < p < q :'5: oo, 0 < a , b :'5: oo and -oo < a , f3 < oo • 

Then 

(8.17) 

Proof: The inclusion (8.17) is precisely the content of Lemma 8.2 

when the underlying measure space is the integers :,:z • 

Suppose O < p , q :'5: oo, O < a , b :'5: oo and -oo < a , El < oo. The 

Lorentz-Zygmund space Lpa(log L)a + Lqb(log L)R consists of all 

functions for which the quasinorm (1 . 10) is finite when p < q; when 
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pa a qb · Q 
p > q, L (log L) + L (log L) · is generated by the quasinorm (1. 11 ) . 

First, we note that 

pa a qb R qb A pa a L (log L) + L (log L) = L (log L) + L (log L) • 

To justify the notation "+", we will show that Lpa(log L)a + Lqb(log L) 8 

is just the usual algebraic sum of the Lorentz-Zygmund spaces 

Lpa(log L)a and Lqb(log L)~; the only exception occurs when either 

space is trivial (cf. Lennna. 8.1). 

The space Lpa(log L)a n Lqb(log L)B is generated by (1.11) when 

p < q, and is generated by (1.10) when p > q. For all values of the 

parameters we will show that Lpa(log LP n Lqb(log L)A is the usual 

set-theoretic intersection of the Lorentz-Zygmund spaces 

Lpa(log L)a and Lqb(log L) 8• 

The quasinorms (1.10) and (1.11) are rather unwieldy, so we shall 

adopt the following notation convention: If h is a nonnegative 

measurable function on ( O,oo) and O < p, a ~ oo, -oo <a < oo, we define 

1 
I . h = (J [t1/p(1-log t)°h(t))adt/t) 1/a, 
pa,cr 0 

( 9. 1 ) 

and 

J .~h = (~[t1 /p(1+log t)°h(t))adt/t) 1/a. 
pa,....,, 1 

(9.2 ) 

We thus have (cf. (1 . 10) and (1.11 )) 
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(9.3) 

* * I f + J f p >q·, 
qb;~ pa;a ' 

and 
* * I f +J f p<q 

qb;~ pa;a ' ' 

( 9. 4) 

* * I f + J b of , p > q. pa;a q ;n 

If (X1, II· 1\ 1 ) and (~, ll · 11
2

) are two quasinormed spaces con-

tinuously embedded in a larger topological vector space, we define 

two new quasinormed spaces x1 +~and x1 n x
2 

(cf. [8]). For each 

f E x1 + ~' the quasinorm of f is given by 

(9.5) 

where the infimum is taken o~er all decompositions f = f 1 + f 2 , 

f 1 E X1 and f 2 E ~· For f E X1 n ~' the quasinorm is given by 

(9.6) 

THEOREM 9. 1 : Let 0 < p < q :5 oo, 0 < a, b :5 oo and -oo < a, ~ < co. If 

the space Lqb(log L)~ f {o}, then the quasinorm defined by (9.5) on 

the algebraic sum Lpa(log L)a + Lqb(log L)~ is equivalent to the 

quasinorm (9.3) . Hence, the space defined by (9.3) is the usual 

algebraic sum provided neither space is trivial. 
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Proof: (i) Let us first assume O < q < oo so that Lqb(log L)A f tol. 

We pick fin the algebraic sum Lpa(log L)a + Lqb(log L)R. We may 

assume that f is real-valued. Define functions f
1 

and f
2 

as follows: 

* * f(x) - f (1 ), if f(x) ~ f (1 ), 

r
1 

(x) * = f(x) + f (1), (9.7) 

o, otherwise; 

(9.8) 

With this choice of f 1 and f2 we have 

* f (t) * - f (1), 0 < t < 1, 

* f1 (t) = (9.9) 

o, 1 ~ t < oo; 

and 

* f ( 1 ) , O<t<1 

* f2 (t) = 
* f (t), 

(9.10) 

1 < t < oo. 

We thus have for x E l and 0 < t < oo, 

* * * f(x) = f1(x) + f2(x); f (t) = f1(t) + f2(t). ( 9. 11 ) 

We now must show (9.11) is a proper decomposition, i.e., 

f
1 

E Lpa(log L)a and f
2 

E Lqb(log L)~. To this end, we let f = g + h 

where g E Lpa(log L)a and h E Lqb(log L) 8. By (3.3), we have 

* * * f (t) ~ g (t/2) + h (t/2). (9.12) 
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The description (9.9) shows that (cf. (6.1) and (9.1)) 

This and ( 9. 12) show that 

* * ~ c(Ipa;a(g (t/2)) + Ipa;a(h (t/2)). 

Now Ipa;a(g*(t/2)) is finite since g E Lpa(log L)a. Also, 

* I ~(h (t/2)) is finite because I <I b 8 (cf.(7.2)) and pa;..... pa ;a - q ; , 

(9.1 3) 

h E Lqb(log L)S. Hence, \lf1 llpa;a is finite and so f 1 E Lpa(log LP. 
The description (9.10) shows that (cf. (6.1), (9.2)) 

The first integral is finite since O < q <co. By (9.12), the second 

integral is dominated by (cf. (9.2)) 

By Lemma. 8. 2, we have 

which is finite because g E Lpa(log L)a. 'llle expression 

Jqb;S(h*(t/2)) is clearly finite since h € Lqb(log L)~. These 

qb A estimates show that f 2 E L (log L) , as we wished. 
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To show that (9.3) dominates (9.5), we observe that (9.13) and 

(9. 14) give 

II II II { * * f + f < c I f + J f 
\I 1 pa;o: 2 qb;~ - pa;o: qb;~ 

We have 

(9.15) 

+ f*(1)(J
1 
[t1/q(1-log t) 9]bdt/t)

1/b}. 
0 

because each of the integrals is finite. This last expression is 

dominated by 

* since f decreases. This estimate and (9.15) show 

I II II II ( * *) f + f < c I f + J f • I 1 pa;o: 2 qb;e - pa;o: qb;8 

Ta.king the infimum over all decompositions f = f 1 + t
2

, we have that 

(9.3) dominates (9.5). 

To prove the reverse inequality, let f = f 1 + f 2 where 

f 1 E Lpa.(log L)o; and f
2 

E Lqb(log L)e. The inequality (3.3) shows 

that 

Applying Minkowski' s inequality (or ( 2. 1 ) if O < a < 1 ) and 

substituting t/2 ~ t, we obtain 
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Ipa·af* ~ c{(J112
[t1/p(1-log t)af~(t)]adt/t)l/a 

' 0 

+ (J1
/
2
[t1/P(1-log t)af;(t))adt/t)1/a}. 

0 

( * *) < c I f + I f • - pa;a 1 pa;a 2 

Hence, it follows from (7.2) that 

* * * I f < c(I f + I f ) pa;a - pa;a 1 qb;a 2 • (9.16) 

* Estimating Jqb;af similarly, only appealing to (8.1) instead of (7.2), 

we obtain 

J f < c I f + J f + I f + J f * { * * * *} qb;B - pa;a 1 pa;a 1 qb;a 2 qb;A 2 (9.17) 

Adding the inequalities (9.16) and (9. 17), then using (2.1 )(or (8.12)), 

we have the estimate 

where c is a constant independent of f, f 1 and f 2 • Taking the 

in:t'imum over all decompositions f = f
1 

+ f
2

, we have that (9.5) 

dominates (9.3). Hence, when O < q < oo, the quasinorms (9.3) and 

(9.5) are equivalent. 

(ii) The other instances where Lqb(log L)~ -/= {o} may be treated 

similarly so their proofs are omitted. 

THEOREM 9.2: suppose O < p < q ~ oo, O < a, b ~ oo and -oo < a, 8 < oo. 

Then the quasinorm defined by (9.6) on Lpa(log L)a n Lqb(log L)a is 

equivalent to the quasinorm (9.4). Hence, the "intersection" defined 
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by (9.4) is the usual set-theorectic intersection. 

Proof: Clearly, by (6.1), (9.1) a.nd (9.2), we have that 

proving that (9.6) dominates (9.4). 

To prove the reverse inequality, (2.1) (or (8.12) if a= oo) 

gives 

1111 * * f <cI f +J f. pa;a - ( pa;a pa;a ) 

* Applying (7.2) to Ipa;af , we obtain 

(9.18) 

Similarly, 

and by Lemma 8. 2, we have 

llrl\ b·Q ~ c(I b·of* + J • r*). q , t, q ,o pa,a ( 9. 19) 

The estimates (9.18) a.nd (9.19) show that (9.4) dominates (9.6), 

completing the proof. 

REMARK 9.3: From now on, when we speak of sums or intersections of 

Lorentz-Zygmund spaces, we refer to the quasinorms (9.3) or (9.4). 

Theorem 9. 2 shows that this is consistent for the intersections. 

Theorem 9.1 shows that the sum given by (9.3) is the usual algebraic 

sum provided neither of the spaces is trivial. The sum given by the 
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qua.sinorm (9.3) is of greater interest for us. For example, the 

1 001 1 algebraic sum of the spaces L and L is just L • However, the 

space L1 + L
001 

given by (9.3) consists of the larger class of functions 

for which 

I, * r * f (t)dt + f (t)dt/t 
0 ... , 

(9.20) 

is finite. This space is of interest for the Hilbert transform H. 

For example, it is well known that Hf(x) is defined a.e. for 

f E LP, 1 ::Sp< oo (cf. [36, 42]). It is shown in [6] that Hf(x) is 

1 001 actua.lly defined a.e. for functions f in the larger space L + L 

given by (9.20). 

THEOREM 9.4: Let O < p < q ::S oo, O < a, b,c,d ::S oo and -oo <a, P., v, o < oo. 

Then 

Proof: The (qua.si)norm of a function f in Lpb(log L)~ + Lqd(log L) 0 

is (cf. (9.3)) 

* * I ib•Sf + J d·6f • p , . q ' 
(9.22) 

The norm of a function fin Lpa(log L)a n Lqc(log L)V is (cf. (9.4)) 

* * I f + J f qc;v pa;a • (9.23) 

The inequalities (7.2) and (8.1) show that (9.23) dominates (9.22). 

This completes the proof. 
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The next theorem characterizes the sums and intersections of 

Lorentz-Zygmund spaces when the umer~ measure space is the unit 

circle f (or a:rry finite measure space) or the integers 7l. 

THEOREM 9.5: Let o < p < q ~ oo, o < a,b ~ oo and -oo < cx,e < oo. 

(i) If the underlying measure space is !.', then 

(a) Lpa(log L)cx + Lqb(log L)8 
= Lpa(log L)cx; 

(b) Lpa(log L)cx n Lqb(log L)a = Lqb(log L)A. 

(ii) If the underlying measure space is 7l , then (cf. ( 8. 13)) 

(c) Lpa.(log L)cx + Lqb(log L)a = tqb(log t) 6; 

(d) if, in addition, Lqb(log L)~ f to}, 

Lpa(log L)cx n Lqb(log L)R = tpa.(log t)cx. 

Proof: (a). By (9.3) it is clear that 

(b). By Theorem 9.2, the intersection in part (b) is the usual 

set-theoretic intersection, and 

by (7.2). 

(c). If Lqb(log L)~ f to}, Theorem 9.1 shows that the sum in (c) 

is the usual algebraic sum of the two spaces. So, for the integers 

7l , the inclusion ( 8. 8) shows that 
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pa a qb B qb B 
L (log L) + L (log L) ' = L (log L) • 

The statement (c) now follows in this case by (8.14). 

If q = oo (which encompasses the situation Lqb(log L)e = [o}), 

then (9.3) becomes (cf. (8.7)) 

By the inequalities (8.16), this quasinorm is equivalent to 

00 

(I [(1+log n)~f*(n-)]bn- 1 ) 1 /b, 
n=1 

which is the quasinorm (8.13) on t
00

b(log t)8
• 

(d). Theorem 8.4 applies, so that 

Since Lpa(log L)a F {o} (p<j:io), the statement (d) follows by (8.14). 

10. Inclusion Relations 

Theorems 7.2 and 8.4 exhibit inclusion relations for the spaces 

Lpa(log L)a when the primary indices are distinct and the underlying 

measure space is the unit circle [' or the integers ?Z. It is also of 

interest to study the inclusion relations when the primary indices are 

the same. The following theorem generalizes the facts that the spaces 

Lpa(log L)a decrease with increasing a, while the spaces Lpa increase 
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with increasing a. 

THEOREM 10.l ([6, Theorem 9.3] (6)): Suppose O < p ~ oo, O < a,b ~ oo 

and -oo <a,~ < oo. Then 

( 1 o. 1 ) 

whenever either of the following holds: 

( i ) a < b and a ~ B, or 

(ii) a > b and a + 1/a > B + 1/b. 

REMARKS 10.2: (i) If a > b, the condition a+ 1/a > B + 1/b in 

Theorem 10.1 cannot in general be relaxed to a+ 1/a ~ ~ + 1/b. Hence, 

the spaces Lpa(log L)a are not ordered along the "diagonals" where 

a + 1/a is constant . 

(ii) We wish to establish similar inclusion relations for the 

sums and intersections defined in Section 9. Theorem 1o.1 shows 

exactly what to expect (provided none of the spaces involved in the 

sums are trivial) • 

We shall need two technical lennnas; the first lemma shows that 

* * the integrals Ipa;af and Jpa;af (cf. (9.1) and (9.2)) satisfy a 

(6) This theorem was proved in [6] for the case where the under
lying measure space is finite. However, the proof remains valid for 
any underlying measure space . 



convexity property. 

LEMMA 10.3: Let O < p ~ oo, 0 <a< b < oo and -co< ex,~ <co. Then we 

have 

I f * <(I r*)a/b(I )1-a/b 
Pib; Q - , "" pa ;ex pco; y (10.2) 

and 

* (J f*)a/b(J )1-a/b Jp~;o. f _< , 
'U 0 pa;ex pco;y (10.3) 

where b8-ao: ( 
V = b-a = B, if b = 00). ( 1o.4) 

Proof: The case b = oo is obvious, so we assume b < oo. We note that 

[t1/P(1-log t)~f*(t))b 

Hence, by (9.1 ), 

* Ipb;Rf 

= [t1/P(1-log tPf*(t)]a[t1/P(1-log t)Yf*(t))b-a. 

~ (J1 
[t1/P(1-log t)exf*(t))adt/t)1/b( sup [t1/P(1-log t)Vf*(t))b-a)l/b 

0 O<t~ 

= (I f*)a/b(I f*)1-a/b 
pa;ex pco;Y • 

The inequality (10.3) is proved similarly. 

LEMMA 10.4: Let 0 < p ~ oo, O <a <co and -oo <ex < oo. Then we have 

the inequality 
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Pr f W h N th t - 1(N 1 )aa · d · (1 ) oo : e c oose so a s + og s is ecreasing on ,oo 

(cf. Lemma 2.2). Then, 

Jtsa/p(1+log s)aads/s ~ cJtsa/p(N+log s)aads/s 
1 1 

~ ct-1(N+log t)aaJtsa/pds 
1 

We add cr{.ta to both sides and take a th roots to prove ( 1o.5). 

THEOREM 10.5: Let 0 < p < q ~ oo, 0 < a,b,c,d ~ oo and -oo < a, R,y,5 < oo. 

Then 

( 1o. 6) 

and 

Lpa(log L)a n Lqc(log L)y ~ Lpb(log L)e n Lqd(log L)5, (10.7) 

whenever one of the following conditions holds: 

(i) a<banda>e . c ~ d and V ~ &, . , 

(ii) a<banda>e c > d and y + 1 /c > & + 1/d, ( 1o.8) 

(iii) a>banda+ 1/a > B + 1/b; c ~ d and y ~ 51 

(iv) a>banda+ 1/a > ~ + 1/b; c > d and V + 1 /c > & + 1/d. 

Proof : By the Remark (10.2.ii), the inclusion (10.7) is a direct 

consequence of (10. 1) and Theorem 9.2. The inclusion (10.6) follows 

from (10.1) and Theorem 9.1 provided Lqb(log L)R ! {o}. It will 

therefore suffice to prove only (10.6) when q = oo (cf. Lenlma. 8.1 ). 



We first assume that (10.8.i) holds. Since the space 

Lpa(log L)a + L00c(log L)V clearly decreases with increasing a and V, 

we may assume a = R and y = 5. We therefore need to show 

* * * * I ib rvf + J ~ . :f < k (I rvf + J . :f ) • p ;u vvu.;y - pa;u ooc;y ( 1o.9) 

The inclusion (10.1) (for a finite measure space) shows that 

* * I f < kI rvf • pb;a - pa;u (10.10) 

If c = d, the inequality (10.10) implies (10.9), so assume c < d. 

utilizing (10.3), we obtain 

(10.11) 

* * To estimate Jmxi;~ , we use (10.5) and the fact that f decreases to 

get 

* ( * c It * c )1/c (l+log t)Vf (t) ~ k f (1J + [(1+log s)Vf (s)) ds/s , 
1 

< t < 00 • 

Replacing the range of integration (1,t) by the range (1,oo) and taking 

the supremum over 1 ~ t < oo, we have 

(10.12) 

The estimates (10.10), (10.11) and (10.12) show that if the right-hand 

side of (10.9) is finite, then the lef't-hand side of (10.9) is also 

finite. This shows that the (set-theoretic) inclusion (10.6) holds. 

An appeal to the closed graph theorem shows that the inequality (10. 9) 

al.so holds, i.e., the inclusion map is continuous. 
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Now assume the condition (10.8.ii) holds. We wish to show that 

* * * * Ipb; 0 f + J d ~f < k(I f + J f ). n 00 ;u - pa;a ooc;v (10.1 3 ) 

The inequality (10.10) still. remains valid. We assume that c < oo, 

and write 

Applying HBlders inequality with the conjugate exponents c/d and 

c/(c-d), we obtain 

c-d 

Jqd;&f* ~ (Jqc;'1*)(~(1+log t]~dt/t) cd , ( 1 o. 14) 

h 'rl cd( 5-v) 
w ere •r = d c-

The conditions c > d and y + 1/c > ~ + 1/d 

( cf. (10.8.ii)) imply Tl< -1, and so the integral in (10.14) is finite 

and independent off. Thus, the estimates (10.10) and (10.14) imply 

the required result (10.13). 

The other parts of the theorem are proved in the srune way. The 

details are omitted. 

As noted in Remark 10.2.i, we still. fail to have inclusions 

along the "diagonals" a + 1/a = constant and/or y + 1/c = constant. 

11 . The Auxiliary Lorentz-Zygmund Spaces 

The averaging operators A , B , C and DP of Section 4 are basic p p p 

to the interpolation theory as we will. show in Section 13. To 
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study the action of these operators on the Lorentz-Zygmund spaces 

we shall now define auxiliary Lorentz-Zygmund spaces. 

Let O < p < q ~ oo, o < a, b ~ oo, and -oo <a,~ < oo. The 

auxiliary Lorentz-Zygmund spaces iPa(log :l)a + ~b(log L)~ , 

;t.;Pa(log J!)a n i1b(log .l)a, '7f'a(log '!'11)a + ?#b(log '771)!3 and 

,,pa(log 'lrl)a n ??flb(log 'lrl)e are generated by the following quasinorms 

(cf. (9.1) and (9.2)): 

!If!! a b A 
~(log :l) + ./} (log .£,) 

* * = I (A f ) + J b Q (B f ), pa;a p q ;~ q 

1\fll a ...ab A 
'Tf8. (log 'lrl) + H(- (log 'm) 

* * = I (C f ) + J (D f ) pa;a p qb;B q ' 

llf\\...Da a b e 
wr (log 'lrl) n ~ (log 'm) 

* * = I b·Q(D f ) + J .~(C f ), q ,.., q pa,"" p 

(11.1) 

a + 1/a > o, ~ + 1/b > O; 

(11.2) 

a + 1/a < o, R + 1/b < O; 

(11.3) 
1 1 

a + a > O, e + b > O; 

(11.4) 
1 1 

a + a < O, A + b < O. 

When p > q we make the obvious definition so that 
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To avoid unnecessary conf'usion, we have defined these auxiliary spaces 

for only the values of the parameters a, b, a and ~ that we will 

ultimately be interested in. 

By Lemma 4. 1 we have the following inclusions: 

and 

iP8'(log .£)an :f.lb(log £) 8 c:: 'nPa(log '!J?)a n mtb(log '71)~. (11.6) 

The next theorem gives important special cases when the auxiliary 

Lorentz-Zygmund spaces reduce to ordinary Lorentz-Zygmund spaces. 

THEOREM 11. 1: Suppose O < p,q < oo with p :/: q. Then, if a+1, ~+1 > o, 

and if a,R > o 

( 11. 8) 

If a + 1, ~ + 1 < 0 

and if a,B < o, 

(11.10) 

(7) We implicitly assume a+1/a > o, B+1/b > O so that the spaces are 
defined by (11.1) and (11.3). These implicit assumptions will be made 
throughout the remainder of the thesis without comment. 



Proof: Let p < q. To prove (11.7), we apply the definitions (9.1), 

(9.2), (4.1) and (4.2) and interchange the order of integration to 

show that 

* * I 
1 

(A f ) + J 1 Q (B f ) P ;a P q ;p q 

r' 1 1 / * (J1 a ) r 1 / * ( rs ~ ) = j s Pf (s) (1-log t) dt/t ds/s + s qf (s) j (1+log t) dt/t ds/s 
0 s 1 1 

r1 1/p a+1 * rx> 1/q ~+1 * - I s (1-log s) f (s)ds/s + I s (1+log s) f (s)ds/s 
vo V1 

* * = I 
1 1r + J 1 Q 1r . P ;a+ q ;p+ 

Thus, (11.7) is proved by the above equivalence and the definitions of 

the spaces involved (cf. (11.1) and (9.3)). 

To prove (11.9), note that the (quasi)norm of a function fin 

iP1 (log £)an il1(log £)A is (cf. (11.2)) 

s:(l-log tl~(~sl/qr*(s)ds/s)dt/t 
(11.11) 

A~er interchanging the order of integration and noting that 

the (quasi)norm (11.11) becomes 

I 1
-1 * I 1-1 * ~+1 1q 1 ;~+1 f + a+1 JP1 ;a+lf 

(11.12) 

+ la+11-1J1
s1/pf*(s)ds/s + l~+11- 1 ,f's 1 /qf*(s)ds/s. 

0 1 



The norm off in LP1(log L)a+1 n Lq1(log L)A+1 is (cf. (9.4)) 

* * I f + J f (11.13) q1;R+1 p1;a+1 

The quasinorm (11.12) clearly dominates the quasinorm (11.13). To 

verif'y the reverse inequality, we apply (7.2) to l1s1/Pf*(s)ds/s ..io 

and we apply (8.1) to 11sl/qf*(s)ds/s. This proves (11.9). 
J 1 

The remainder of the theorem is proved similarly. 

The next theorem is the auxiliary space analogue of Theorem 10.5. 

Notice that now the spaces are ordered along the "diagonals" 

a + 1/a = constant and/or y + 1/c = constant (cf. Remark 10.2.i). 

THEOREM 11.2: Suppose O < p < q ~ oo, 0 < a,b,c,d ~ oo and 

-oo < a,~,v,& < oo. Then 

and 

,e'a(log £.)an .tlc(log £.)V <_:: ;;tl'b(log .l)~ n ild(log £.) 5, 

whenever one of the following conditions holds: 

(i) a+ 1/a > ~ + 1/b y + 1/c > 8 + 1/d, 

(ii) a+ 1/a > 6 + 1/b y + 1/c = 8 + 1/d, c ~ d, 

(iii) a+ 1/a = R + 1/b, a< b v + 1/c > 5 + 1/d, 

(iv) a + 1/a = A + 1/b, a< b V + 1/c = 5 + 1/d, c < d. 

Proof: Let us first prove (11. 14). 'lllen all the quantities 

(11.14) 

(11.15) 

(11.16) 

a+ 1/a, A + 1/b, V + 1/c and 8 + 1/d are positive. First, we assume 
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a> band c > d. This is a subcase of (11.16.i), so a+ 1/b >A + 1/b 

and y + 1/c > 5 + 1/d. We need to prove that (cf. (11.1 )) 

* * * * I b a(A f ) + J d ~(Bf ) < k(I (A f ) + J v(B f )) p ; I-' p q ; u q - pa;a p qc; T q (11.17) 

Statements (10.10) and (10.14) are valid are valid. Hence, 

and 

* * J d ~ (B f ) < kJ v(B f ) • q ;u q - qc;1 q (11.19) 

These inequalities (11.18) and (11.19) imply the required result 

(11.17). 

We next assume that a > b and c < d. This is a subcase of 

(11.16.i) or (11.16.ii), so a+ 1/a > B + 1/b and y + 1/c 2'. 5 + 1/d. 

Since the spaces ~a(log -;!_,)a + :flc(log .e.) 5 decrease with increasing y, 

we may assume y + 1/c = 5 + 1/d, c < d. In this case the inequality 

(11.18) still holds. By (10.3) and (10.4) we have 

J (B f*) < (J (B f*) )c/d(J (B f*) )1-c/d 
qd;8 q - qc;y q qoo;v+1/c q • 

Therefore, to prove (11.19) (and hence, (11.17)) in this case it will. 

suffice to show 

* * J I (B f ) < kJ (B f ). qoo; y+ 1 C q - q C ; Y q ( 11 .20) 

Since y + 1/c > o, we may replace (1+log t)v+l/c by (log t)v+1/c 

since the two f'unction are asymptotic as t ~ oo. We write 



t 
(log t)yc+l = (Vc+l)l (log u)vcdu/u. 

.., 1 

Then, for 1 ~ t < oo, we have 

(log t)vc+l(~s1 /qf*(s)ds/s)c 
t 

= (Vc+1)Jt[logvu~s 1 /qf*(s)ds/s]cdu/u 
1 t 

< (vc+1)Jt[logvu~s1 /qf*(s)ds/s]cdu/u. 
1 u 

(11.21) 

Taking cth roots and passing to the supremum (over 1 ~ t < oo) we 

obtain the required result (11.20) (cf. (9.2) and (4.2)). 

Third, we assume a ~ b and c > d. This is either a subcase of 

(11.16.i) or (11.16.iii) so that V + 1/c > 5 + 1/d and 

o: + 1/a ~ e + 1/b. We may assume o: + 1/a = B + 1/b and a < b. In 

this case (11.19) still holds. To prove (11.18) (and hence, (11.17)), 

Lenuna 10.3 shows it will suffice to show that 

As in the previous case, we write 

1 
(log 1/t)o:a+l = (o:a+1)J (log u)o:adu/u, 

t 

and proceed as before to prove the required result (11.22). 

( 11 .22) 

(11.23) 

Finally, we assume a ~ b and c ~ d. We may suppose a < b, c < d, 

V + 1/c = 5 + 1/d and o: + 1/a = ~ + 1/b. We then have (11.20) and 

(11.22). This completes the proof (via Lemma. 10.3). 

The inclusion (11.15) is proved in a similar fashion. 
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There is a similar theorem for the '!!I. spaces. Its proof is 

fashioned after the proof of Theorem 11.2 so we omit it. 

THEOREM 11.3: suppose O < p < q ~ oo, O < a,b,c,d ~ oo and 

-oo < a,a,v,5 < oo. Then 

and 

71f'a(log 7J?)a n ??fIC(log 'f!l.)V ~ 71f'b(log 'fnJ~ n '7fld(log ?J7.) 5, 

whenever one of the conditions (11.16) hold. 

(11.24) 

(11.25) 

The next theorem gives some special inclusion relations for 

the spaces .J'_., 711 and L. 

THEOREM 11.4: suppose o < p < q ~ oo, o < a,b ~ oo and -oo <a,~< oo. 

If a + 1/a > O and ~ + 1/b > o, then 

(11.26) 

and 

(11.27) 

If a + 1 /a < O and ~ + 1 /b < o, then 

(11.28) 

and 

(11.29) 
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Proof: We choose y to satisfy 

O < y + 1 < min(a + 1/a, R + 1/b). 

Applying (11.14) and (11.7), we have 

P1 'W-1 ql v+1 = L (log L)T' + L (log L)r • 

But, since y + 1 > o, the last space is clearly contained in Lpl + Lq1• 

This proves (11.26). The inclusion (11.27) follows in the same way 

from (11.24) and (11.8). 

The inclusions (11.28) and (11.29) follow similarly by choosing 

'V so that 

ma.x(a + 1/a, ~ + 1/b) < V + 1 < O 

and applying (11.15) and (11.9) (to prove (11.28)) or applying (11.25) 

and (11 . 10) (to prove (11.29)). 

As seen in Theorems 11.1 - 11.4, the quasinorms (11.1) - (11.4) 

are quite convenient for technical purposes. The next theorem gives 

an equivalent reformulation of these quasinorms. As we shall see in 

Chapter Dl, these new expressions for the quasinorms on the auxiliary 

Lorentz-Zygmund spaces are the most natural for interpolation purposes. 

THEOREM 11. 5: Let O < p < q ~ oo, O < a, b < oo and -oo <a, R < '°• Then 

(11.30) 
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11f!I At>a a .nb 8 
;C" (log .£) n ;C (log ..J!,) · 

(11. 31) 

,.., 11 (A + B )f *11 a b R 
p q Lpa(log L) n Lq (log L) 

lif!l....:Pa a b 9 
~r (log '71) + 'l7fl. (log 'l'fl) 

(11.32) 

,.., lice + n )fjj 
p q Lpa(log L)a + Lqb(log L)R 

( 11. 33) 

Proof: In each of the statements above it is clear from the 

definitions of the spaces involved (cf. (9.3), (9.4), (11.1) - (11.4)) 

that the right-hand side dominates the left. In order to 

prove the reverse inequality, let us concentrate on (11.30). We have 

implicitly that a + 1/a > 0 and ~ + 1/b > o. The right-hand side of 

(11.30) is (cf. (9.3)) 

* * I a(A + B )f + J b 9(A + B )f , pa; P q q ; . p q 

which is dominated by (cf. (2.1) and (11.1)) 

We let A= 1/p - 1/q > 0 and make the estimate (cf. (9.1) and (4.2)): 

I ·a(B f*) ~ (J1 
[tA(1-log t)a]adt/t) 1 /a~sl/qf*(s)ds/s 

pa, q 0 '1 



Noting the first integral is finite and applying the Hardy inequality 

(2.9), we obtain 

* ( * *) I (B f ) < c J 1 0f + Ipa;o:f • pa;o: q - q ; (11.35) 

* Estimating Jb.c.(A f) similarly (using the Hardy inequality (2.10)), 
q , l·' p 

we get 

(11.36) 

* * * Since A f +Bf dominate f (cf. Lemma 4.1), the estimates (11.35) p q 

and (11.36) show that 

Now, the inclusion (11.26) shows that 

The estimates (11.34) and (11.37) establish the reverse inequality 

for (11.30). The remaining equivalences are proved similarly using 

the variants of Hardy's inequalities given in Theorem 2.5. The 

details are omitted. 

12. The Embedding Theorem 

The auxiliary Lorentz-Zygmund spaces introduced in Section 11 are 

related to the Lorentz-Zygmund spaces of Section 9 by the following 

basic embedding theorem. 
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THEOREM 12. 1: Suppose 0 < p < q ~ oo, 1 ~ a ~ b ~ oo and -oo <a,~ < oo. 

If a + 1/a > O and B + 1/b > o, then 

Lpa(log L)a+l + Lqb(log L)~+l C::~a(log ..t)a + .f!b(log ..!..)R 

':: Lpa(log L)a+l/a + Lqb(log L)~+l/b ':: '7Pa(log 'm)a + 'J?flb(log 'm)B (12.1) 

~ Lpa(log L)a + Lqb(log L)a • 

If a + 1 /a < 0 and a + 1 /b < O, then 

Lpa(log L)a+l n Lqb(log L)B+l ':: :ePa(log £)a n :tlb(log ..t)a 

':: Lpa(log L)a+l/a n Lqb(log L)a+lfb ~ 'Tf8'(log 'm)a n 'J?flb(log ?71) 8 (12.2) 

~ Lpa(log L)a n Lqb(log tl . 

Proof: 1. The last inclusion in both (12.1) and (12.2) is a 

consequence of Lemma. 4.1 and the definitions of the spaces involved 

((9.3), (9.4), (11.3), (11.4)). 

2. To prove the first inclusion in (12.1) we note that the norm 

of a function fin ~a(log ..!..)a+ :tlb(log ..t..)R is (cf. (11.1), (9.1), 

(9.2)) 

(12.3) 

(r sf' 1/q * b )1/b + [(1+log t)· j s f (s)ds/s] dt/t • 
1 t 

Since a + 1/a > O and B + 1/b > o, we may apply the Hardy inequalities 

(2.22) and (2.23) to show that (12.3) is dominated by 

* * I 1f + J b·o 1f , pa;a+ q ,f"+ 
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which is the norm of a function f in Lpa.(log L)a+l + Lqb(log L)~+l 

(cf. (9.3)). 

To prove the first inclusion in (12.2), it suffices show that 

(cf. (9.4), (11.4)) 

Applying Minkowski's inequality, we obtain 

The integral 
l l (1-log t)~bdt/t is finite since A + 1/b < o. 

"o 
apply the Hardy inequality (2.24) to show that 

( 12.4) 

We now 

(12.5) 

* Estimating Jpa;a(Apf ) similarly (the Hardy inequality (2.25) now 

applies), we see that 

(12.6) 

Theorem 9.4 shows that 

* * * * I 1 of + J 1 of < c(I b 6 ,f + J lf ). P ; q ; - q ; + pa;a+ (12. 7) 

The estimates (12.5), (12.6) and (12.7) produce the required result 

(12.4). 
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3. To establish the second inclusion in (12.1), we shall show 

that 

(12.8) 

Suppose O <a< oo. The identity (11.23) and the remark (6.6) show 

that 

Next, interchange the order of integration to obtain 

An application of the inequality (2.6) to the inner integral shows 

that 

* * I I f < c I (A f ) ( 12 9) pa;a+1 a - pa;a p • • 

When a= oo, the inequality (12.9) still holds (cf. (4.6)). Using 

the identity (11.21) and proceeding as above (using (2.7) instead of 

(2.6)), we obtain 

(12.10) 

The estimates (12.9) and (12.10) imply the desired result (12.8). 

For the second inclusion in (12.2) we proceed as above, 

employing the identities 

(1-log t)Bb+l = l~b+11Jt(1-log u)Bbdu/u; 
0 

(1+log t)aa+l = laa+11 ~(1+log u)aadu/u, 
t 
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which hold since a + 1/a < 0 and B + 1/b < O. 

4. To prove the third inclusion in (12.1), it is required to 

show 

* * * * r (cf ) + J (D f ) < c(I If + J If ) (12 11) pa;a p qb;B q - pa;a+1 a qb;B+1 b • • 

We assume that 1 ~ a,b < oo. The inequality (2.2) shows that 

We may now apply the Hardy inequality (2.22) to prove that 

* * r (c f ) < er I f pa;a p - pa;a+1 a • 

* To estimate J b·S(D f ), apply (2.3) to obtain q , . q 

utilizing the Hardy inequality (2.23) and changing variables 

(t/2 -+ t), we see that 

(12.12) 

The estimates (12.12) and (12.13) combine to produce the required 

result (12.11). (The cases a= oo, b = oo are easy and thus omitted). 

To prove the third inclusion in (12.2) we proceed as above to 

obtain 
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\lt!l?fa(log 'mfi· n ?#b (log '71) A 

< cClltll I I + lltll ). - Lpa(log L)a+1 a n Lqb(log L)R+1 b Lp1 + Lq1 

An appeal to Theorem 9. 4 completes the proof. 
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CHAP.rER IV 

THE INTERPOLATION THEORY 

13. Operators of Weak Type (p,q;r,s). 

Suppose 0 < p < r ~ oo and 0 < q,s ~ oo with q '/= s. Let 

1/il = 1/p - 1/r, 1/£ = 1/q - 1/s, m = 11/£. (13.1) 

The quantity m represents the slope of the line segment a joining 

the points (1 /p, 1 /q) and (1 /r, 1 /s ). For each f € Lpl + Lr1, let 

m 

(w(a)f*)(t) = t-l/qJt u1/Pf*(u)du/u 
0 

+ t-l/s~ u1/rf*(u)du/u, 
tm 

(13.2) 

O<t<oo. 

DEFINITION 13.1: Let T be a quasilinear operator mapping measurable 

functions on (l,µ) into measurable functions on ('lj,~). Suppose 

0 < p < r ~ oo and 0 < q,s ~ oo with q ~ s. The operator T is of 

weak type (p,q;r,s) if T is defined on LP1 + Lrl and the inequality 

* * (Tf) (t) ~ c(w(a)f )(t), o < t < oo, ( 13.3) 

is satisfied for all f € LP1 + Lr1
, where c is a constant independent 

of f. 

The next theorem reformul.ates the notion of weak type (p,q;r,s) 

in terms of the averaging operators A , BP, C and D of Section 4. 
p p p 



We first need a lemma. 

LEMMA 13.2: suppose O < p < r ~ oo and f E LP1 + Lr1• Then the 

function 

increases on (O,oo~ and the function 

decreases on (O,oo). 

Proof: The definitions (4.1 ), (4.2) and (13.1) show that 

Let O < s < t < oo. Then 

St 1/ * 1/11Jt 1/ * g(s) - g(t) = - u pf (u)du/u + s u rf (u)du/u 
s s 

The last term is less than or equal to zero since 11 > O (cf. (13.1)). 

On the other hand, we have 

s1111Jtu1/rf*(u)du/u ~ Jtu1 /~l/rf*(u)du/u 
s s 

Jt 1/ * = u pf (u)du/u • 
s 

Thus, g(s) ~ g(t) as required. The proof that h is decreasing is 

similar. 



77 

THEOREM 13. 3: suppose O < p < r ~ oo and O < q, s ~ oo with q f s. 

Th.en a quasilinear operator T is of weak type (p,q;r,s) if and only 

if the following inequality holds: 

(a) for q < s, 

(b) forq>s, 

where c is a constant independent of f. 

Proof (a): Since q < s, we have that m > 0 (cf. (13.1)). From 

Definition 13.1, Tis of weak type (p,q;r,s) if and only if 

0 < t < oo, 

where 

C = -1/q + m/p = -1/s + m/r. 

It is required to show that (13.4) and (13.6) are equivalent. 

(13.6) 

(13.7) 

suppose (13.4) holds. By Lemma. 4.1, the left-hand side of (13.4) 

is greater than or equal to 2te/q(Tf)*(te). The resulting inequality, 

£ 
a~er the change of variable t ~ t, reduces to (13.6). 

Conversely, suppose (13.6) holds. Lett > o. 

then (13.6) and (13.7) show that 

e 
If 0 < u ~ t 1 
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Lemma. 13.2 and the fact m > 0 show that the right-hand side is largest 

when u = te. Taking the supremum over 0 < u ~ te, we obtain 

(13.8) 

Now fix u so that te ~ u < oo. Then (13.6) and (13.7) show that 

1 /s * m/r * m u (Tf) (u) ~cu ([~ + Br)f )(u ). 

Lemma. 13.2 and m > O imply that the right-hand side is largest when 

u = te. Passing to the supremum over te ~ u < oo, we have 

(13.9) 

Now the identities 

(13.10) 

show that 

(13.11) 

The estimates (13.8) and (13.11) imply the required inequality (13.4). 

The proof of part (b) proceeds similarly; only now m < o, and so 

Lemma. 13.2 implies that um/p([A + B )f*)(um) decreases while 
P r 

um/r([~ + Br]f*)(um) increases. This accounts for the interchange 

of q and s. The proof is now complete. 

The operator w(a) defined by (13.2) is closely related to 

Calder~n's S(cr) operator introduced in (9, p. 288). In fact, 

w(a) = S(a) except in the important case r = oo where 
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* (w(cr)f )(t) 

* (s(cr)f )(t) 

Thus, in all cases we have 

s(cr) ~ w(cr) (13.12) 

The following theorem is due to Calderon [9, Theorem 8]. 

THEOREM 13.4: (Calderon): suppose o < p < r ~ oo and o < q,s ~ oo 

with q ~ s. Let T be a quasilinear operator of weak types (p,q) 

and (r,s). Then 

* * (Tf) (t) ~ cs(cr)f (t), o < t < oo, (13.13) 

pl r1 pl oo 
for all f € L + L if r < oo, or for all f € L + L if r = oo, 

where c is a constant independent of f. 

The next theorem shows when an operator of weak type (p,q;r,s) is 

simultaneously of weak types (p,q) and (r,s). 

THEOREM 13.5: suppose O < p < r ~ oo, O < q,s ~co, q ~ s, and let T 

be a quasilinear operator. 

(a) If T is of weak types (p,q) and (r,s), then T is of weak type 

(p,q;r,s). 

(b) If T is of weak type (p,q;r,s), then T is of weak type (p,q). 

If, in addition, r < oo, then T is also of weak type (r,s). 

Proof: Part (a) is a direct consequence of (13.13) and (13.12). 

To prove part (b) we are first required to show that 
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i.e., Tis of weak type (p,q) (cf.(1.5.i)). Assume that q < s. 

Then the inequalities (13.8) and (13.9) remain valid. suppose 

f € LP1• Let t ~ oo in (13.8) to obtain 

l!Tfll < c(llf\l 1 + lim tf u
1
/rf*(u)du/u). 

qoo - p t-\o t~ 

Using (13.1) and the fact f € LP1, we have 

The required result (13.14) now follows from (13.15). 

(1 3 .ll~) 

(13.15) 

If, in addition, r < oo, let f E Lr1• Lett~ 0 in (13.9) to 

obtain 

The definition (13.1) and the fact f E Lrl show that 

These estimates show that T : Lrl ~ Lsoo, i.e., T is weak type (r,s). 

The case q > s is treated similarly so we omit the details. 

This completes the proof. 
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14. Proof of the Main Results 

We may now prove Theorems A,B and C which were stated in the 

Introduction. 

Proof of THEOREM A: Recall that 0 < p < r ~ oo, 0 < q,s ~ oo with 

q-/: sand Tis of weak type (p,q;r,s). For 0 < 0 < 1, u and v are 

defined by 

9 1-@ 
·- + 

u p r 

Define ~ and E by 

1 1 1 
= 

'ii" p r 

1 e 1-e 
-= - + 
v q s 

1 1 - = e: q s 

First suppose that q < s. Then, (13.4) shows that 

Applying the functional 

(14.1) 

(it1- . 2) 

(14.3) 

to both sides of (14.3), we obtain, by (14.1 ), (14.2) and a change 

of variable in both sides, 

(14.l+ ) 

'l'he definition (14. 1) shows that p < u < r and q < v < s. 1.'hus, 

Theorem 6. 1 shows that in the expression ( l l1-. 4 ) , the operators 
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A , B , C and D are all equivalent to the identity. Hence, (14.4) 
p r q s 

is equivalent to the inequality 

!!Tf l! < c\\f!! ·· ·va·ex - · ua·ex 
' ' 

This is precisely the desired conclusion 

The case q > s is proved similarly utilizing (13.5). This completes 

the proof of Theorem A. 

The following theorem gives an interpolation result for the 

auxiliary Lorentz-Zygmund spaces of Section 11. 

THEOREM 14.1: Suppose 0 < p < r ~ oo and 0 < q,s ~ oo with q f s. Let 

T be a quasilinear operator of weak type (p,q;r,s). 

(i) If ex + 1/a > O and 6 + 1/b > o, then 

(ii) If ex+ 1/a < O and ~ + 1/b < o, then 

T 
.na ex ..rb R ...JJ a ex ....sb 6 -:r (log ;/,) n -:J'., (log -/,) -+ '.'f/6 (log '71) n ·:11 (log ~) . (14.6 ) 

Proof: Let ~ and £ be defined by (14.2). Let us first assume that 

q < s. The inequality (13.4) then holds: 

(14. 7 ) 



First, suppose a+ 1/a > 0 and ~ + 1/b > O. Applying the functional 

to both sides of ( 1 LL 7), we obtain, after a change of variable in 

each side, 

* * I ([C +D](Tf))<cI ([A +B]f). qa;a q s - pa;a p r (14. 8) 

Multiplying both sides of (14.7) by t- 1
, the identities (13. 10) show 

(14, 9) 

Applying the functional 

to both sides of (14.9), we have, after a change of variable in each 

side, 

(14.10 ) 

The sum of the inequalities (14.8) and (14.10), in conjunction with 

Theorem 11.5, shows that 

\\Tf\\ a a b R ~ cl\f\I pa a b I' 
'?7fl (log ?7?) + '!if (log ?7?) ·· J!. (log .£) + J! (log .£) 

This is precisely the assertion (14.5). 

When a+ 1/a and R + 1/b are negative, the statement (14.6) is 

proved similarly by first applying the functional 
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t o both sides of (14 . 9); then, we apply the functional 

to both sides of (14.7). The sum of the resulting inequalities, 

together with Theorem 11.5, produces the desired result (14.6). 

The case q > s is proved similarly using the fundamental 

inequality (13, 5). The proof is now complete. 

Proof of THEOREM B: Recall that O < p < r :S oo and 0 < q,s :S oo with 

q f s. T is a quasilinear operator of weak type (p,q;r,s). For 

1 :S a :S b :S oo and 1 :S c :S d :S oo, the desired results are: 

(a) If a + 1/a = R + 1/b > 0 and v + 1/c = 5 + 1/d > o, then 

T : Lpa(log L)a+l + Lrc(log L)v+1 ~ Lqb(log L) 8 + Lsd(log L) 0 . 

(b) If a + 1/a = R + 1/b < 0 and y + 1/c = 5 + 1/d < o, then 

T : Lpa(log L)a+l n Lrc(log L)y+1 ~ Lqb(log L) 8 n L8 d(log L) 0 • 

If a+ 1/a > O and y + 1/c > o, Theorem 14.1.i shows that 

(14.11) 

But, the embedding theorem of Section 12 (cf. (12.1)) shows that 

pa a+ 1 re y+ 1 ,,pa )a .re ) y L (logL) +L (logL) C-;r: (log-;/, +-:!'(log./!,. (14.12 ) 



The hypotheses (11.16.iv) now hold. Hence, we may use (11.24) and 

the embedding theorem of Section 12 to show 

(14.13) 
qb ~ sd 5 

:: L (log L) + L (log L) • 

The inclusions (14.12) and (14.13), together with the result (14.11), 

prove the assertion of part (a). 

Part (b) of Theorem B is proved similarly using (14.6), (12.2 ) 

and ( 11 • 2 5 ) • 

REMARKS 14.2 (i): Using the full force of the inclusion relations 

given by Theorem 10.5, Theorem B remains valid for various other 

choices of the parameters a, b, c, d and a, A, y, 5. For example, 

suppose a > b ~ 1 and a + 1/a > 8 + 1/b. Then (10.6) gives 

If 9 + 1/b > O and 1 ~ c ~ d ~ oo with y + 1/c = 5 + 1/d > o, then 

Theorem B shows that 

This result and the inclusion (14.14) prove that part (a) of 

Theorem B holds when a > b ~ 1, a + 1 /a > $ + 1 /b > o, 1 < c < d < oo 

and y + 1 / c = A + 1 / d > 0. 
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(ii). The proofs of 'lll.eorems Bl and B2 are now simple consequences 

of 'llleorem B and 'llleorem 9.5. 

Proof of THEOREM C: Recall that 0 < p < r ~ oo, 0 < q,s ~ oo with 

q f s and T is a quasilinear operator of weak type (p,q;r,s). We 

also have 1 ~ a ~ b ~ oo, O < c ~ oo, -oo < a,~, v < oo and O < e < 1 • 

The parameters u and v are given by 

1 e 1-e 
- = -+ -
u p r 

Theorem A implies 

1 e 1-~ 
--=-+-
v q s 

Applying 'llleorem B (with c = d = 1, V = 5 = O), we obtain 

pa )a+l r1 qb R T : 1 (log 1 + 1 (log 1) ~ 1 (log 1) 1
s1 

+ • 

'llle results (14.15) and (14.16) show that 

T : 1 (log 1) + 1 (log 1) + 1 (log 1) ( 
pa a+ 1 rl ) uc V 

(14.15) 

(14.16) 

(14.17) 

An examination of the norms of the spaces involved (cf. (6.1), (9.3)) 

shows that the spaces in (14.17) reduce to Lpa(log L)a+l + Luc(log 1)V 

and Lqb(log L)R + 1vc(log 1)V, respectively. Hence, the statement 

(14.17) reduces to 
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T 
pa a+1 UC v qb R vc v L (log L) + L (log L) ~ L (log L) + L (log L) , 

which is precisely the desired conclusion of Theorem C.a.i. The 

remaining statements in Theorem C are proved similarly. 
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