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ABSTRACT

This thesis reports on investigations in two major areas: astro-
physics and relativity. It is divided into six independent chapters.
| Chapter I contains estimates of the astrophysically-likely amplitude
of gravitational radiation emitted by the Crab and Vela pulsars. For
my analysis, I model the pulsars as rapidly-rotating, freely-precessing,
rigid or elastic solid bodies. I find that the Crab is likely to produce

gravitational waves at Earth with dimensionless amplitude 10_27i2,

and
that Vela is likely to give waves one or two orders of magnitude larger.
Chapters IT and III study the gravitational radiation produced by
an idealized rotating and freely—precessiné rigid body in the weak-field,
slow-motion, small-stresses, quadrupole-moment formalism. Chapter II gives
the results for axisymmetric objects and for arbitrarily shaped objects
undergoing small-anglé precession. In that chapter, I also discuss the
application of my results to neutron stars in nature, and I describe in
detail how to analyze the incoming waves and extract information about
their source. Chapter III extends the analysis of Chapter II to the
general case of an arbitrary rigid body undergoing large-angle precession.
Chapter IV considers all astrophysically-reasonable sources of
gravitatioﬁal waves. Based on a minimal set of '"cherished beliefs" about
the universe and about gravitation, I give general upper limits to the
expected intensity of gravitational radiation at the earth, at various

frequencies and from a variety of sources.

Chapter V examines a '"matural" coordinate system which might be set
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up by a rotating and accelerating observer. I expand fhe metric through
second-order terms in distance from the origin of the coordinates; from
the metric, I derive the equations of motion for test particles. I
identify many forces and pseudoforces in the equations of motion, and
I discuss how my results may be used to analyze some 1aboratory gravitational
experiments.

Chapter VI of this thesis is a report on my results in studying nucleo-
synthesis in stars with neutron-star cores. I was not able to generate
any self-consistent models with a total mass of 16 M_, core mass of 1M,
and core radius of 10 kmé nuclear reactions fell short of producing the
needed luminosity by a factor of 25 or more. I describe in detail my
modeling procedures and the reasons for the failure of nucleosynthesis,
and I point out extensions and modifications of my models which may be

more successful.
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INTRODUCTION

Two subjects, astrophysics and relativity, are combined in different
proportions in the six papers included in this dissertation. Some of the
work which I déscribe is almost "pure'" general relativity; the astrophysical
universe supplies only a motivation or an application for the.mathematical
problem being investigated., Other papers are much more oriented toward
the astrophysical; relativity appears, at most; in a weak-field, slow--
motion approximation. In either case, relativity and astrophysics act
synergistically, so that in their collaboration the whole is more than the
sum of the sepérate parts. On a larger scale, beyond this thesis, the
same phenomenon has occurred in modern astronomy. Man's understanding of
the universe has been enriched by the influx of ideas from general
relativity, especialiy as they have been applied to "violent!" events
such as quasars, collapses to form black holes, and the birth of the

universe itself. Theoretical relativity has its very raison d'etre

grounded in astronomically-observed fact, and much of the development
of the field has been guided and nurtured by problems posed by astrophysics.
More cross-fertilization between the two subjects will certainly follow
the first confirmed observation of gravitational radiation.

So, the partnership between astrophysics and relativity which appears
in many of these papers is not a new one. The specific object in which
that partnership is frequently embodied, the neutron star, is also not new.

Speculation about and theoretical work on the structure of neutron stars



has a forty-five-year history, and the evidence accumulated during more
than a decade of pulsar observations has both solidified and extended the
theoretically-acquired knowledge. The human mind, however, always séems
to to retain a fascination with extremes: the highest, the hottest, the
~smallest, the fastest; etc. As (probably) the dénsest material objects
in the universe, neutron stars have a natural attraction, and they have
repaid the attention given them by yielding a stream of discoveries. As
central as neutron stars have been to a variety of fields in modern
astrophysics, it is fitting that they should supply a central core for

several of the investigations reported here.

Each of the six chapters in this dissertation is a separate, self-
contained paper. In the remainder of this introduction; I will give an
overview of the material discussed in each chapter, along with some
background information about the research. Four of the six papers have
already been published or accepted for publication, a fifth is under
consideration by a journal, and the sixth, which is an internal progress
report, may eventually form the basis of a published work. Three of the
papers were written in collaboration with co-authors; in each case, I did
‘a major part of the work independently and do not hesitate to éccept
credit (or blame) for the results.

Chapter I, "Revised estimate of gravitational radiation from Crab

and Vela pulsars”, is a report on an attempt to guess the actual amplitude



of gravitational waves produced by one class of objects:. neutron stars,
which I idealize as rotating and freely—precegsing rigid bodies. The
work, which appeared as a letter to Nature, brings up to date some of the
estimates made by William Press and Kip Thdrne in a more general survey
of gravitational-wave sources six years earlier. A major point made By
my letter is that the fastest pulsars are not necessarily the strongest
sources of gravitational radiation at the Earth; a more slowly rotating
neutron star may be closer or may have a larger non-axisymmetry, for
example. (More specifically; my best estimates suggest that the Vela
pulsar, with period 0.089 s; is likely to producés waves with amplitudes
one or two orders of magnitude larger than the Crab pulsar, which has
period 0.033 s.) Alfhough this possibility is fairly obvious, it was
apparently overlooked or discounted in earlier investigations.

During the preparation of the paper in Chapter I, Roger Blandford
pointed out that a quadrupolar electrical charge distribution, rotating
at frequency ), could emit elegtromagnetic radiation at frequency {) as
well as at 2{2. 1In earlier work on gravitational waves from mechanical
systems, it was universally bresumed (as far as 1 have been able to
determine) that all of the gravitational quadrupole radiation occurred
at frequency 2(). This belief is correct for a rigid body rotating about
one of its principal axes, but as Roger Blandford suspected, it is not
correct in general. Although the astrophysical estimates of gravitational
wave amplitudes given in Chapter I turn out to be reasonable in the light
of later analyses, the estimates were based on inapplicable formulae and

on misconceptions about the nature of the radiation.



Chapters II and III contain the details of the correct analysis of
gravitational waves produced by rotating and precessing rigid bodies in
the weak-field, slow—motion; small-stresses, quadrupole-moment formalism.
Chapter II was written in collaboration with Eugene Szedenits, Jr. He
derived the major equations independent of me, checked my results;-and
kindly and continuously prodded me to get the research finished, written,
and published. I am responsible for all of the results and the prose
(including all alliteration) in the paper. |

Chapter II presents the explicit waveforms radiated by two special
cases of freely precessing rigid bodies. . The first case is that of an
axisymmetric object; the second is that of an arbitrarily-shaped object,
precessing with a very small wobble angle. Three new, important results
emerge from the calculations for an axisymmetric body: (1) the gravitational
radiation comes out at two frequencies; w and 2w; (2) the radiation at
frequency @ is much stronger than that at frequency 2w if the wobble
angle of the precession is small; and (3) electromagnetic radiation emitted
by a point fixed on the surface of the body is seen to arrive in pulses at
a frequency (). differing from the fundamental gravitational frequency wu
by the precession frequency. (These three facts also apply, with some
modification, to the waves emitted by an asymmetric, rigid,Afreely precessing
body, though that situation is much more complex due to the non-sinusoidal
nature of the classical precession.) The new information which Chapter II
contains may have important consequences for experimenters (gravitational
astronomers) who attempt to observe pulsars as sources of waves. Their

task is made harder by the splitting between the electromagnetic and the



gravitational frequencies, since it now is not so clear precisely where
they should "listen'"; on the other hand, when they begin to detect objects,
the gravitational waves will give extensive information about their sources,
information which is difficult or impossible to derive from electromagnetic
observations. Chapter II discusses how to extract this information from
the incoming waves.

Chapter III extends the analysis of Chapter II to the case of a
freely precessing rigid body with aﬁ arbitrary moment-of-inertia tensor
(arbitrarily great deviations from axisymmetry). In that chapter, I
present plug-in-and-grind algorithms for computing the gravitational
power radiated and the waveforms produced by an arbitrafy source. For
the special case of a nearly-spherical object precessing with a small
wobble angle, I give the dominant terms in the expansions of the power
and the waveforms. The expansions retain the exact frequency dependence
of the waves which are being produced. It is important to determine the
frequency of the waves accurately, since a slight error in the frequency
will integrate up to be a large phase error; many proposed experimental.
schemes to observe gravitational waves from pulsars cannot tolerate sizeable
phase errors. The exact results of Chapter III also confirm the special
cases calculated in Chaﬁter 3 8

Chapter IV expands my horizon and examines all astrophysically-likely
sources of gravitational radiation. This chaptef was written in collabo-
ration with Kip Thorne, and has been accepted for publication in a
festschrift in honor of Abraham H. Taub, to appear in 1980. Each of the

authors deserves approximately equal credit for the contents. 1In Chapter IV,



we derive very general upper limits on the intensity of gravitational
waves bathing the Earth, based on a minimum set of '"cherished beliefs"
about the astrophysical universe and about the correct theory of gravi-
tation. The results are given as functions of frequency for extragalactic
and for galactic sources, and for discrete objects (bursters, transient
sources, and continuous-wave monochrematic sources) as well as for an
unresolved (stochastic) background. 1In several frequency bands; gravi-
tational wave detectors are currently approaching sensitivities at which
our "cherished beliefs" permit the detection of gravitational waves--

--a heartening prospect!

Chapter V of this dissertation is mainly theoretical; it examines a
"natural" coordinate system which might be used by a gravitational
experimenter. This paper describes work all of which was done indepen-
dently by Wei-Tou Ni (National Tsing Hua University, Taiwan) and by me.
In the summer of 1977, when Ni visited Caltech, we discovered that we
were both in the process of writing up identical results on the same
subject, and so we decided to publish together. The paper contains an
analysis of the "local coordinates of an observer's proper reference
frame" for an observer who may be both rotating and accelerating relative
to an inertial coordinate system, and who may be in a region of spacetime
through which. gravitational waves are passing. We derived the metric,
accurate through second order terms in distance from the origin of the
coordinates; from the metric, we obtained the equations of motion for
test particles in that coordinate frame. We identified a large number of

forces in the equations of motion: Coriolis and centripedal pseudoforces,



electric, magnetic, and magnetic-magnetic Riemann (tidal) forces, and
special-relativistic corrections to the Newtonian forces. We also
described how our calculations could be used to simplify the analysis
of some laboratory gravitational experiments.

The final section of this thesis, Chapter VI; is a detailed; unpub-
lished report on progress I have made in the study of nucleosynthesis in
stars with degenerate neutron cores. Several years ago; Kip Thorne and
Anna Zytkow began an analysis of stars with neutron-star cores and massive,
extended envelopes. VThey found that such objects could support themselves
by steady accretion onto the dense.central core if the envelope mass was
less than about 10 M@. More massive envelopes required hydrogen-burning
nuclear reactions in order to generate their luminosity. Thorne and
Zytkow used one approximation to estimate this nucleosynthetic process,
but they watned that a more detailed treatment might significaﬁtly change
their results., I have undertaken such a treatment, initially in collabo-
ration with Michael Newman, Kip Thorne, and Anna Zytkow, and later working
alone.

As Chaﬁter VI describes, my results are quite negative. I could not
produce any viable stellar models; in the best of circumstances, nuclear
reactions fell short of producing the required luminosity by a fa;tor of
about 25. 1T discuss in detail the modeling procedures I used to calculate
nucleosynthesis and the convective transport of reaction products in the
stellar envelope. I also describe some possible extensions or modifications
of my methods which may be able to produce more successful models. New

work is in progress at Santa Cruz (Woosley) and elsewhere on the theory



of ultra-high-temperature nucleosynthesis, and perhaps within a year
(or a few years) results will be available which will make models possible

under conditions in which current theory finds them impossible.

The universe is an exciting place! 1In particular, the hot or fast
or dense objects.which bring relativistic effects into prominent display
are interesting and rewarding subjects for investigation. Most of the
work included in this dissertation has its ultimate roots in my personal
fascination with astronomy, which began about the time I was six years
old and first looked through a small telescope, and which developed
during years of reading and asking stupid questions., I've finally under-
stood a few things, at least in part, and have had some fun describing
them in the chapters of this thesis. Tf I am required to give reasons
or motivations for all that I've described herein, I must eventually fall
back upon the enjoyment that it has given me. I suspect that the joy of
discovering and of explaining one's discoveries is fundamental to a lot
of people. If what I've done adds to anyone else's pleasure, or suggests

something new and amusing for them to ponder, that's an unexpected bonus!



CHAPTER I
GRAVITATIONAL RADIATION FROM THE CRAB AND VELA PULSARS--

A REVISED ESTIMATE

This chapter is a paper which appeared in Nature, Vol. 271, No. 5645,
February 9, 1978, pages 524-525. It is reprinted by permission of the
publisher, Macmillan Journals Ltd. The research reported in this chapter

was supported in part by the National Science Foundation [AST76-80801].



10

ABSTRACT

A survey of the recently published literature on pulsars
yields plausible values for the non—-axisymmetric part of the
moment of inertia of the Crab and Vela neutron stars. The

resulting gravitational radiation luminosity produces a dimen-

-2 7+
sionless strain at Earth of h v 10 27"29 Such strains may be

detectable in the future using supercooled high-Q dielectric

crystals.
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With recent progress in the development of ultra-high-Q dielectric
crystalsl, experimenters in the field of general relativity have begun to
consider looking for rotation-induced gravitational radiation from pulsarsz’3.
If one could control the frequency of oscillation of a high-Q crystal, keep-
ing it in phase with the eiectromagnetic signals observed from a pulsar, one
might hope to absorb a measurable amount of (quadrupole) gravitational radiaf
tion at twice the pulsar frequency. Press and Thorne4 in 1972.estimated that
the gravitational waves from the Crab pulsar would produce a dimensionless

strain in a detector on Earth of h 10._26

to 10j28, and that other pulsars
would be several orders of magnitude fainter. Additional observational
data, and progress in pulsar models during the past five years, make a new
estimate desirable. I find that the amplitude of the. gravitational waves
from the Crab pulsar (PSR0531+21) is likely to be within two orders of mag-
nitude of 10~27, but that the Vela pulsar (PSR0833-45) is likely to produce
vaves of amplitude a factor 10 to 100 larger.

The waves are produced by the rotation of mass asymmetries in the neutron
star. Of all conceivable mass asymmetries, conventional pulsar theorys’6
points to one as the most likely to dominate the radiation: the neutron star

must be rotationally flattened with oblateness

(equatorial radius ~ polar radius)
o (mean radius)

If the star were to rotate about its polar axis of symmetry, it would not

radiate gravitationally. However, the observed "restless" behavior of the

8-11

2yl makes it seem likely that the rota-

Crab and Vela rotation periods P
tion axis and the symmetry axis are misaligned by a small angie“Gw. Such a-

misalignment would produce a '"Chandler wobble" in the star's rotationg, and
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the wobble-induced strains would produce microquakes that provide an attrac-
tive and successful explanatiOnS’lo for the observed '"restlessness!'. The
misalignment would also cause a fraction € = eoew (for small ew) of the-
_ star's moment of inertia I to radiate as a time-changing quadrupole moment.

The resulting luminosity in gravitational quadrupole radiation would be4

326 2.2 2 32 T -6
lew = — 58T (% ﬂ) = FHIE S s -—6)2 ( 4k 2)2 @ g33s)
5¢ 2 X10 4x10 'g-cm )

Of the crucial parameters, P is detérmined by radio and optical obser-
vations7 to great precision. The distances to the pulsars are less well
known, but the assoéiation with supernova remﬁants yields distance estimates
of 2000 pc and 500 pc for the Crab and Vela respectively, good to within
about 257% 7’12. Neutron-star moments of inertié depend bbth upon the assumed

mass of the star and upon the equation of state of matter at high densities.

However, since the stellar radius tends to decrease as mass increases, I

is somewhat buffered; early equations of state gave5 7><1043 <L <7 1044
g—cmz, but more recent work suggestsl3 3><10[’4 < I X3 ><lO45 g—cmz. Within

this range, the original Pines and Shaham8 "crustquake'" explanation of the

Crab pulsar glitches agrees with the spindown power output (IQQ) required

to drive the nebulas’14 and implies I Vv 4><1044 g—cm2 (though Paﬁdharipande,

Pines, and Smith (PPS) for their 1.33 ﬁo Crab model13 find T 2><1045 g—cmz).
The Vela pulsar, which has experienced at least three 'giant" speedups

. . . 18
. is modelled as a more massive, solid-core object

within the past 8 years
with moment of inertial3 I~ 2 to 3><1045 g-cmz.

The oblateness of the star, 80, is predicted by standard starquake

theory and by calculations of the critical strain which the crust (for the
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Crab) or the core (for Vela) can withstand before fracturing. The resulting

5,8,11

values are, for the Crab > €5 1 to 2x 10~4 (though the PPS 1.33 1f

11,13,16 2

mdel™ his B 3.5><10”4), and for Vela te 1075, The

, € N 100
o

fraction of this oblateness which is effective in producing gravitational
radiation is Gw, the wobble angle. The microquake theories suggest that Ow
e -1 . 8,10,11
is limited by starquakes to values of the order of .10 radians s
however, the lack of observed wobble7'(and in particular, the constancy and
sharpness of the optical Crab light curve) suggests t'nat:-lO*1 be taken as
an extreme upper bound, and that Ow probably lies between 10—3 and 10_2
radians. The wobble question is the most uncertain part of this analysis;
see Pines and Shaham9 for comments and references.

The most probable values for the vital parameters in determining the
gravitational luminosity are summarized in Table 1, for the standard Crab
model, the PPS13 (stiff equation of state) 1.33 %9 Crab, and for Vela. The

resulting gravitational wave luminosity L the energy flux at Earth

GW?

F = LGw/asz, and the wave amplitude (strain, or metric perturbation)17
h = (l6ﬂG¥/c3wéw)l/2, are given, together with their probable ranges using

the parameter estimates described above. The errors have béen added coher—
ently, not by quadrature, so the range covered is rather large; most of the
uncertainty comes from the uncertainty in Gw.

It is possible, of course, that something is radically wrong with the

above assumptions. On the other hand, if internal toroidal magnetic fields

exist with B > 1015G 6,9 35

(B/

, they could produce an oblateness €, N o107

1 Gauss)2 comparable to or larger than the fluid oblateness. If the protons

in the neutron star form a type-II superconductorl8’19

Hcl = (4 to 8) X 1014G, then in the low-flux-density limit (B << Hcl)

with critical field
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€, Y 10-—35 B Hcl and so somewhat smaller internal fields may begin to cause

a significant oblateness. In both cases, the internal fields may tend to
align themselves perpendicular to the spin axis of the star19 (effectively

BW = 90°) and would thus be maximally efficient in producing gravitational

radiation. An internal field of 1015G would make a wave of amplitude

7

h~ 5><'10-_2 from the Crab's distance; a field of 1012G in a type-II super-—

conductor would produce h v 2 x1073%, so it is improbable that h is much

9 23

less than the minimum estimates (2><10-_2 for the Crab, and 1x10° for

Vela) which starquake theory suggests.
The wave amplitude h could, however, be larger. Mountains or other
local inhomogeneities in the crust or core could conceivably produce a net

nonaxisymmetric oblateness of the same order of magnitude as the materials'

3

5 3 :
shearing strengths » several orders of magnitude larger than the star-

quake models predict. An extreme upper bound on LG& can be set by requiring

v

that gravitational radiation account for the entire observed slowdown of

the pulsars. That limit yields7 for the Crab, LGw < 2X 1038 erg/s,
5

) < 7%x1077 erg/cm%—s, h < 8x 1072 » and for Vela, L, < 2X 1037 erg/s,
24

g < 1.><10”6 erg/cmz—s, h < 3% 10 7, which coincidentally agrees with the

upper-bound estimate for Vela on the basis of maximum credible oblateness

(Table 1).

-1
oW of 380 s for

=1 . o s ;
the Crab and 140 s for Vela, some experimenters envision using large mono-

To detect the quadrupole radiation at frequencies ®

crystals, probably of sapphire or siliconl’z. For crystals of effective
length £ and effective mass m, the change in amplitude of oscillation due
to absorption of gravitational waves in phase with the cryétal's oscillation

"N A
during a measurement time T is (assuming T << T%, the damping time):
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AX _ ?tuhﬁ

GW 2 ’
Brownian motion at temperature T in a crystal with damping time T*

(t* = 2Q/w) produces an amplitude change

2 1/2 27 kT.1/2
< = (£ kL
AXBrownian> (mmzt*)

where k is Boltzmann's constant.

For a reasonable signal-to-noise ratiozq of 10, the minimum detectable

wave has amplitude

2KT 1/ 1/2 5, 1/2 14 1/2 =L 3.ty
h> 0[5 751 =7x1070— 1T - (gL (@87 (280
mQ wil T 10 K m Q wcw

°(10§cm) (;%73) 1/2

It is straightforward to verify that detection of this signal would not re-

. 113 . . ”20 ,21 .
gquire a "quantum non-demolition sensor , though the construction of the
required sensor would be a nontrivial task. The minimum detectable wave
amplitude for Vela is a factor of 4 higher, due to its lower frequency. The
values of T, m, Q, £, and T assumed above are not entirely unreasonable goals

: 22 -

for the next 5 to 10 years of experimental effort . It thus appears that,

if the Crab or Vela pulsars are as strong as the best estimates indicate,

they may be borderline-detectable by gravitational astronomers within the

1980's.

I would like to thank Carlton M. Caves, Peter Goldreich, Kip S. Thorne

and David Douglass for helpful conversations or correspondence on this subject.



16

Table 1  Estimated pulsar gravitational radiation

L, (ere/s)
max

min

F (erg/cmz-—s)
max

min

max

min

Standard
Crab

.033
380

2000

4 x 1044

2 %10~

10~

5 x 1032

1x 1035

3 x 1029

1 eI 2
4 x 10—10

4 x 10-16

1 %1027

2 x10~26

9 %1022

3x 10—Z

PPS13

Crab

.033
380

2000

2 x 1045

4x10

10~

4 xle

1x 103_7

8 x 10+

9 x 10'—11

4 x10

1 x10713

9 x 1072/

2 x 1072

. Vela

.089
140

500
2 x 1045
3x10

10

1x 1()3[+

2Xx 1037

9 x 1030

4 x 10710

1x10

2 x10713

5 X 10"26

3 x10~24.

1 %1072/
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An axially symmetric, torque-free rigid body, rotating and precessing, emits gravitational quadrupole
radiation at two frequencies, w and 2w, corresponding to the | = 2, m = 1,2 spherical harmonics. We
present explicitly the waveforms of the two polarizations at both frequencies. From observations of
gravitational waves, one can derive information about the body's orientation and its precession amplitude.
Electromagnetic radiation emitted by a spot fixed on the surface of the body arrives in pulses at a mean
frequency Q which is typically different from . If the body is not axially symmetric but the amplitude of
the precession is small, the gravitational radiation at the lower frequency o is split into two frequencies on
cither side of the electromagnetic pulse frequency. We present explicit waveforms for the two polarizations in

this case also.

I. INTRODUCTION

Pulsars are widely interpreted as rotating,
rather rigid neutron stars.! Some of the nearer,
more rapidly spinning pulsars might be good
sources of gravitational waves.*® Experimental
searches for these waves have alreadybeenmade,
so far with negative results. In these experiments
and in theoretical discussions of gravitational
waves from pulsars, it has generallybeenassumed
that the gravitational radiation is emitted at pre-
cisely twice the observed pulsar frequency. We
point out here that this assumption is typically
incorrect. The simplest pulsar model, an axially
symmetric rigid body undergoing free precession,
emits gravitational quadrupole radiation at two
frequencies, w and 2w. The frequency w and the
radio pulsation frequency 2 differ by the preces-
sion frequency £2,; hence an attempt to resonate
a high-@ gravitational-wave antenna with the
pulsar’s emissions, in order to build up a detect-
able signal, may fail if the radio pulses are used
as a guide and if radio measurements have failed
to determine the precession frequency. Also the
gravitational radiation at frequency 2w is usually
much weaker than that at frequency w.

In this paper we present explicit gravitational
radiation waveforms for two of the simplest imag-
inable pulsar models: (1) a rigid, axisymmetric
body undergoing free precession, and (2) a rigid
asymmetric body, freely precessing with small
wobble angle. Future papers will discuss more
general models.

Section II of this paper outlines the assumptions
and methods used here. Section III gives the re-
sults for the axisymmetric model and explains how
a gravitational astronomer can deduce a pulsar’s
spin orientation, inclination, wobble angle, and
ellipticity, from gravitational-wave observations.

7,8
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That section also explains the reasons for the
difference between the fundamental gravitational-
wave frequency and the electromagntic pulsar
frequency. Section IV presents waveforms for the
asymmetric model rotating with small mean wobble
angle 5, and discusses how a gravitational as-
tronomer can deduce information about a pulsar’s
orientation, oblateness, etc. in this case. Finally,
Sec. V summarizes and reviews these results and
other recent work on gravitational radiation from
rigid bodies. That section also points out an error
in Zimmermann’s estimates® of gravitational lum-
inosities for the Crab and Vela pulsars and gives
corrected estimates. '

1I. METHOD

For the purposes of this paper, we model pul-
sars as torque-free, rigidly rotating bodies. Ac-
tually, radiation reaction, accretion, and other
torques certainly exist, but simple estimates of
their size suggest that their effects are likely to
be small compared to the free precession.® There-
fore we ignore them. Also, solid neutron-star
matter is not perfectly rigid, so the precession
rate calculated for a rigid body needs to be re-
duced somewhat, depending on the shear modulus
and structure of the specific model being investi-
gated. Fortunately the precessional equations of
motion for a nonrigid body are isomorphic to the
rigid-body equations, in the limit that the body’s
oblateness and wobble angle are small, and pro-
vided that the body acts as an elastic solid on
precessional time scales.®!® The rigid-body
gravitational radiation waveforms calculated below
should therefore be correct for a nonrigid body, if
the actual reduced precession rate is used in place
of the theoretical rigid-body rate. Liquid-core
neutron-star models typically precess slower than

351 © 1979 The American Physical Soéiety
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rigid bodies by factors ranging from 102 to 10%
solid-core models of more massive neutron stars
typically precess within a factor of 2 of the per-
fectly rigid precession rate.”!! Precession peri-
ods of ~20 hours for the Crab and of a few minutes
for a solid-core Vela neutron star have been esti-
mated.!

We take, as our theory of gravitation and mech-
anics, standard Newtonian theory (the weak-field,
slow-motion, small-stress approximation to gen-
eral relativity), augmented by the quadrupole-
moment formalism for gravitational-wave gen-
eration.’? (This formalism is discussed in most
textbooks on general relativity; see, for exampte,
Misner, Thorne, and Wheeler,'® whose notation
and conventions we use in this paper.) We are
fairly sure, and shall attempt to prove in a sub-
sequent paper, that the strong-field, slow-motion
approximation!® to general relativity (which is
more nearly valid for neutron stars where GM/
Rc?~0.2) will give precisely the same waveform
predictions as the weak-field formalism we use.
The only difference to be expected is in the ex-
pressions for the body’s moment of inertia and
quadrupole-moment tensors as integrals over the
body’s mass and stress distributions.*!®

In our analysis the only relevant parameters
from stellar structure are the three principal
moments of inertia of the body and the wobble
angle 0 between the total angular momentum vector
J and the body’s third principal axis ’"3.-

I AXISYMMETRIC MODEL:
WAVEFORMS AND ANALYSIS

We first consider a symmetric rigid body with
moments of inertia I, =I,#I,. The free precession
of such an object in Newtonian theory is discussed
in most classical mechanics texts.'*™*® 1t is
straightforward to plug the resulting time-changing
quadrupole-moment tensor into the gravitational
radiation equations'® and grind out the waves pro-
duced.

Suppose that the object’s conserved angular
momentum J has an “inclination angle” ¢ relative
to the plane of the observer’s sky. (Inclination
angle 7 is defined as astronomers do for binary
star systems: i=0° means that J points toward
the observer, ¢=90° means that J is perpendicular
to the line of sight, ¢=180° means that J points
away from the observer.) For an object at dis-
tance 7, we find that the two polarizations' of
gravitational waves have dimensionless ampli-
tudes:

h =

+

21,w% sind [

: (1 + cos?) sind cos2w!

+ cosi sini cosfcoswt],

2 w3e sinf
hx = ————-(2 cosi sind sin2wt (1)

+sini cos sinwt),

where the frequency is w:J/Il, the ellipticity is
€=(I,~1)/I,, and we set c=G'=1.

A particular choice of coordinate axes and of
the origin of time, f=0, was made by the observer
to yield the above wave amplitudes: If » and 20 are
orthogonal unit vectors chosen transverse to the
direction of wave propagation, with 2 X0 = (di-
rection toward observer), then

hy=hTT = BTT = (_ 1/7’)(1,,,,
and
by, =hEIT=(-2/7)1

where TT refers to the “transverse-traceless”
gauge, dots are time derivatives evaluated at the
retarded time f —7, and the minus signs come
from our use of

ww)

vw Y

]abEfp(yzéab'—xaxb)de

instead of the

}absf plx, x5 ~%6,7)d%

of Ref. 13.

The observer can get into our “preferred” orien-
tation by rotating his transverse axes ¢ and w
so as to maximize the observed ratio Ih, 2w[/
|, ,.| (where R, ,, means the amplitude of %, at
frequency 2w, with its cos 2wt time dependence
factored out, etc.). The same orientation of v
and © must also maximize the independently
observable ratio |i_ ,|/|k,, ]| if the waves come
from a freely precessing, axially syrgmeti"ic body.
In this orientation, the projection of J into the
plane of the sky lies along one of the directions
9, W, —v, or —w. The quadrupole nature of the
waves makes this 90° ambiguity unavoidable.

In Egs. (1) the observer’s origin of time £=0 is
chosen so as to make the component of 2, at fre-
quency w proportional to +sin wf, with a positive
constant of proportionality. The same choice of
t=0 must make the piece of h, at 2w proportional

'to +cos 2wk and

(R, at w) (£ coswt),

(hy at 2w)cc(xsin2wt),

with the sign determined by the sign of cosi. With
this choice of time origin, it turns out that at
(retarded time) £=0, the body’s symmetry axis

x lies in the plane defined by J and the direction
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to the observer. If the body’s ellipticity € is
positive (oblate spheroid), %, is at its farthest
from the observer at £=0; if €<0 (prolate spher-
oid), ?ca is at its nearest to the observer. (We use
the convention that the constant of the motion

523 .J=J cosb is positive; in other words, 6 lies
between 0° and 90°. During free precession, 523
moves around J at angular rate w.)

With his transverse axes aligned and his origin
of time selected in the above manner, the observer
can read off from his measured waveforms and
Egs. (1) the inclination and wobble angle of the
gravitational wave source. The independent ratios
ky,o/h,,, and b, ,,/h, ,, determine the inclination
i in the range 0° to 180°% given #, the ratios , ,,/
k,,. and k, .,/h ., determine the wobble angle 6
between 0° and 90°. Finally, the overall amplitude
of the signals determines

|11€/TI = |(13“11)/r‘ g

If the distance 7 is known by other means, then

a direct measure of the nonaxisymmetry IIS—-Ill
follocws. Note that gravitational observations alone
cannot distinguish an oblate from a (perhaps im-
probable) prolate spheroid.

To compare the gravitational radiation wave-
forms with the electromagnetic pulsar signals,
one needs a simple pulsar model. Suppose that
something fixed on the surface of the neutron star
(2 magnetic pole, for example) at colatitude X
relative to the 553 body axis is associated with
radio, optical, or other pulses observed once per
turn of the star. The apparent rate of pulsation
seen by a distant observer varies during the body’s
precession and depends on the precessional mo-
tion, on A, and on the details of the pulsar radi-
ation beam. Free precession would produce
periodic peregrinations in the perceived pulse
period, the mean pulse profile, and other pulsar
parameters, such as pulse polarization.

Electromagnetic observations of pulsars have
shown no evidence for precession.'®?® In par-
ticular, any precession with a period between
about 2 and 150 days must have an amplitude less
than a few degrees®® in the observed cases.

There are two scenarios which could explain
the absence of observable precession. First, if
the angle A (between a pulsar’s ?ca body axis and
the source of the radiation beam) were small com-
pared to the wobble angle 6, then a pulse would be
seen whenever the 3?3 pulsar axis passed sufficiently
close to the observer’s line of sight. The mean
observed electromagnetic pulse frequency £ would
thus equal the gravitational-wave frequency w
=J/I,. But during the body’s precession time

2n/,=2nl,/w(1, ~1,) cost,

the observer would pass through'the pulsar ra-
diation beam from many different directions. For
the precession to be invisible, the pulsar beam
would have to be not only nearly axisymmetric,
but also would have to be without observable linear
polarization. Any net linear polarization would
rotate through 360° during a precession time; this
has not been observed. 2!

The second and much more plausible scenario
to explain the lack of electromagnetic precession
observations is that the pulsar’s beam source is
at an arbitrary angle A, but that the wobble angle
0 is small. In this case, the body-frame preces-
sional angular velocity Q, adds to the inertial-
space 9?3 angular velocity w to give a mean electro-
magnetic pulse frequency Q =w +§, different from
the gravitational-wave frequency. (For an oblate
body, 2<w.) The observer always passes through
the pulsar beam from approximately the same

- direction, so no significant changes in pulse profile

or polarization would be expected. A simple knife-
beam model of the pulsar radiation pattern gives
the result (for small 8) that during a precession
time pulses arrive early and late by a phase of up
to 8/tan}, with sinusoidally varying phase shift.
Small (but nonzero) values of 8 have been sug-
gested in order to explain pulsar “glitches”
(speed ups) and timing “noise” in terms of pre-
cession- and spin-down-induced starquakes.!??*?2?
Although the estimated fractional frequency dif-
ference between the electromagnetic pulses and
the gravitational radiation is small, prot-ably in the
range 1073 to 107%° (Refs. 6, 11, 20, and 23), the
fact that a difference may exist is critical for
some gravitational-wave experiments. For in-
stance, it has been suggested® that by controlling
the frequency of a high~Q crystal to follow the
radio pulsar emission, one might mechanically
integrate up an observable gravitational-wave
signal. Other proposals (Ref. 24 and references
cited therein) involve heterodyne techniques to
mechanically convert a monochromatic pulsar
signal to zero frequency. These schemes clearly
will fail for the simple freely precessing model
described here, if the integration time needed to
produce a measurable signal exceeds the reci-
procal of the body-frame precession frequency.
A more sophisticated broadband method of grav-
itational-wave detection is required. Any splitting
between the gravitational and electromagnetic
frequencies is a potential difficulty, but as com-
pensation it provides another measure of the
object’s oblateness, including its sign (oblate vs
prolate).
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IV. TRIAXIAL MODEL WITH SMALL WOBBLE ANGLE:
WAVEFORMS AND ANALYSIS

If the object lacks axial symmetry but its wobble
angle is small enough, then its free precession
and the resulting gravitational waves can still be
expressed simply. Following a classical mech-
anics text,® let the body have principal moments
of inertia I, <I,<I,. Define two (not necessarily
small) eccentricity parameters

e, =[2(I, "-[1)/11]1/.2

and
i
21
h, g'(1+cos 25)(I, — I1,)R% cos29 + €asin2i Ll L T
’ Covzr
h, = —:— cosi(I, ~1,)2%sin 20t + €asini

where w, =(1+€)Q.

The above h, and h, are defmed using the same
choice of transverse 7 and w vectors discussed
following Egs. (1). To get into the orientation and
time origin of the waveforms (2), an observer can
rotate his transverse axes to maximize |k, ,qo|/
Ikx.:n . The same orientation will maximize
\ryu /IR, ,.] and |k o |/|R, -], if the object
producing the gravitational waves is indeed a
precessing triaxial body with small wobble angle.
An additional check is that the frequency of the
29 radiation must equal the sum of the frequencies
of the other two components of the radiation (plus
corrections of order %). As before, one of the
transverse axes v, W, —v, or —1 lies along the
projection of J into the sky, but gravitational
observations cannot resolve the 90° ambiguity.
The choice of =0 to make the time dependence
of the measured k’s agree with Egs. (2) corre-
sponds as for the symmetric case earher to the
body x axis lying in the plane defmed by J and the
dlrechon toward the observer, with x at£=0 as
far from the observer as it ever gets.

The object’s inclination angle i is again defined
unambiguously and redundantly by the ratios of
the components of k2, and ky at the three frequen-
cies. However, in makmfr the small-6 approx-
imation, we have sacrificed the information
[0(6?)] necessary to derive the mean wobble angle
@ itself from the observations. The splitting be-
tween the various frequency components of the
gravitational waves does enable one to measure
the mean ellipticity €. The relative amplitudes
of the waves then give a variety of nonlinear com-
binations of the three moments of inertia and the
wobble angle. If the distance to the object, 7, is

EUGENE §

[(e I, +e,1)w,2sinw,1 + (e, ]
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o
@

e, =[2(F, =LYV,

The mean ellipticity is € :—éelez. Let the preces-
sion amplitude be small, with J always near the
%, body axis and with mean wobble angle 8. To
first order in @, the mean electromagnetic pul-
sation frequency (from a spot fixed on the body,
far from the ¥, axis) is =J/I,and the precessional
frequency is ©,=€Q, Define the small parameter
a=28/(e,?+e,%)"2 [Note that & must be much less
than max(e,, e,) for @ to be small and for this ap-
proximation to hold.] Then by plugging into the
quadrupole radiation formulas,'? we obtain

Jrel)w2eoswt (e, ], —e,l)w *cosw_t],

)

—e,l,)w ?sinw_t],

known by other means (so that the 2w radiation
gives a value for I, —I,), then the observations are
sufficient to determine all of the unknowns: I,

T Iy and B.

We view the results of the triaxial-rigid-body
case [Eqgs. (2) for small § and the waveforms for
arbitrary fina subsequent paper] not necessarily
as predictions of actual gravitational waveforms
to be expected, but as indications of the probable
complexity and high information content of grav-
itational waves from astrophysical sources. Pul-
sars in nature are not perfectly rigid, and they
are subject to significant electromagnetic radia-
tion-reaction torques, accretion of matter,
glitches, timing noise of uncertain origin, anc
other effects which we have omitted. Gravitational
astronomy may be a powerful way to get a handle
on the details of those effects.

V. CONCLUSIONS

Previous investigators have derived the correct
energy and angular momentum loss equations for
rigid rotating bodies in general relativity,% 2327
For the case I, =1,, their result for the gravita-
tional-wave luminosity is, in our notation

Loy =%€%1 *w°sin®0(16 5in0 + cos®9),

where the 16 sin%9 term is from 2w radiation and
the cos? term is from w radiation. To our know-
ledge, the fact that w radiation exists and is sig-
nificant has never been clearly pointed out. (Per-
haps it has been overlooked because it vanishes
when an object rotates about a principal axis.)
¥For small wobble angles ¢ <« 90° the radiation

at frequency w is in fact larger than the 2w radi-
ation for a sufficiently symmetric object. [The



reason is simple: A body, such as an American
football, wobbling by a small angle about its
symmetry axis, has a large time-changing piece
that “looks like itself” after a time 27/w, but only
a small piece that “looks like itself” after time
7/w. In contrast, a football tumbling end-over-
end (9 ~90°) “repeats itself” every half revolution,
and radiates gravitational waves most strongly
at 2w.] The possible difference between the fre-
quency of the gravitational radiation (produced
by the body’s inertia tensor) and the mean electro-
magnetic pulsar frequency (produced by a spot
fixed to the body’s surface) is also significant.

A recent estimate by one of us (Zimmermann)
of the actual astrophysical amplitude of the waves
produced by pulsars, such as the Crab and Vela,
found 2 ~1072% to 107 (Ref. 6) at frequency 2w.
Energy conservation, balancing spin-down and
gravitational-wave luminosity, means that neither
of these objects can have & at frequency @ much
over 1072%, But we must point out here that the
formulas used for this estimate® are in error.
For small 8, the gravitational luminosities
(ergsec™®) calculated in Ref. 6 are too high by a
factor of 16 and the bulk of the luminosity occurs
at frequency w, not 2w. The actual mean wave
amplitude h at frequency w is a factor of 2 smaller
than the values quoted; at frequency 2w, the actual

20 GRAVITATIONAL WAVES FROM ROTATING AND PRECESSING... 335

h is smaller by a factor of 07! ~100, if 0 is as
small as estimated. (These errors are smaller
than the astrophysically induced uncertainties in
the estimates of Ref. 6.)

It is conceivable that experiments sensitive
enough to detect sources with ki~ 1072 will be
running within the next decade. Gravitational
astronomers who do such experiments should be
aware of the likelihood that the strongest radi-
ation will be near but not at the radio pulsar fre-
quency. Successful observations of these grav-
itational waves will yield new information about
pulsar structure and spin alignment, information
probably not obtainable by any other means.

ACKNOWLEDGMENTS

We would like to thank Roger Blandford, Carl-
ton M. Caves, and Kip S. Thorne for valuable
comments and suggestions. This work was sup-
ported in part by NASA Grant No. NGR05-002-
256 and a grant from PACE. We also gratefully
acknowledge the help of MACSYMA in checking
Egs. (1) and (2). [MACSYMA and the MIT Mathlab
Group are supported in part by ERDA Contract
No. E(11-1)-3070 and by NASA Grant No. NSG-
1323.] The work of M. Z. was partially supported
by a Robert A. Millikan Fellowship.

*0On leave of absence from Caltech; current address:
3053 Lakehaven Court, Ann Arbor, Michigan 48105.

13, H. Taylor and R. N. Manchester, Annu. Rev.
Astron. Astrophys. 15, 19 (1977).

%3. P. Ostriker and J. E. Gunn, Astrophys. J. 157,
1395 (1969).

®H. J. Melosh, Nature (London) 224, 781 (1969).

“W. Y. Chau, Nature (London) 228, 655 (1970).

SW. H. Press and K. S. Thorne, Annu. Rev. Astron.
Astrophys. 10, 335 (1972).

6M. Zimmermann, Nature (London) 271, 524 (1978).

"H. Hirakawa, K. Tsubono, and M-K. I Fujimoto, Phys.
Rev. D 17, 1919 (1978).

®D-J. Lu and J-G. Gao, Acta Phys. Sin. 25, 181
(1976).

°P. Goldreich, Astrophys. J. 160, L11 (1970).

1w, H. Munk and G. J. F. MacDon'ﬂd The Rotation
of the Earth (Cambridge University Press, Cam-
bridge, England, 1960), especially Sec. 6.2.

1y, R. Pandharipande, D. Pines, and R. A. Smith,
Astrophys. J. 208, 550 (1976).

12, Einstein, Sitzungsber. Preuss. Akad. Wissenschaf -
ten, p. 154 (part 1, 1918).

C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation (Freeman, San Francisco, 1973), Chap.
36.

K. S. Thorne, Rev. Mod. Phys. (to be published);
also available as Cornell University Reports Nos.

CRSR 663 (unpublished) and CRSR 664 (unpublished).
5J. R. Ipser, Astrophys. J. 166, 175 (1971),
%1,. D. Landau and E. M. Lifshitz, Mechanics
(Pergamon, London, 1976), 3rd ed., Secs. 33-37.
"H. Goldstein, Classical Mechanics (Addison-Wesley,
Reading, Mass. 1950), Chap. 5.

185, B. Marion, Classical Dynamics of Particles and
Systems (Academic, New York, 1970), Chap, 12,

19G, R. Huguenin, J. H. Taylor, and D. J. Helfand,
Astrophys. J. 181, L139 (1973).

20p, J. Helfand, Ph.D. thesis (University of Massachu-
setts, 1977) (unpublished), especially Chap. III.

21p_ A. Hamilton, P. M. McCulloch, J. G. Ables, and
M. M. Komesaroff, Mon. Not, Roy. Astron. Soc.
180, 1 (1977).

22p, Pines and J. Shaham, Nature (London), Phys. Sci.
235, 43 (1972).

2D, Pines and J, Shaham, Comm. Astrophys. Space
Phys. 2, 37 (1974).

2y, B. Braginsky and V. N. Rudenko, Phys. Rep.
46C, 165 (1978).

%W, Y. Chau and R. N. Henriksen, Astrophys. J. 161,
L137 (1970).

2B, Bertotti and A. M. Anile, ESRIN Report No. 126,
1971 (unpublished).

2B, Bertotti and A. M. Anile, Astron, Astrophys.
28, 429 (1973).



25

CHAPTER IIT
GRAVITATIONAL WAVES FROM ROTATING AND PRECESSING RIGID BODIES:
II. GENERAL SOLUTIONS AND COMPUTATIONALLY

USEFUL FORMUIAE

This chapter is a paper which has been submitted for publication to

Physical Review D.




26

Gravitational Waves from Rotating and Precessing Rigid Bodies:
IX. General Solutions and Computationally

Useful Formulae

Mark Zimmermann

W. K. Kellogg Radiation Laboratory

California Institute of Technology, Pasadena, California 91125

ABSTRACT

A rigid, freely-precessing Newtonian body emits gravitational
radiation., In this paper I review the classical-mechanics results
for free precession which are needed in order to calculate the weak-
field, slow-motion, quadrupole-moment gravitational waves. Within
that formalism, I give algorithms for computing the exact gravita-
tional power radiated and waveforms produced by arbitrary rigid-body
freely—preceésing sources. I also preéent the dominant terms in
series expansions of the waveforms for the case of an almost-
spherical object precessing with a small wobble angle., These series
expansions, which retain the precise frequency dependence of the waves,
may be useful for gravitational astronomers when freely-precessing

sources begin to be observed,
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I. INTRODUCTION

In this paper I anmalyze the quadrupole gravitational radiation
emitted by a freely-precessing, figid, Newtonian body. An earlier work1
(hereinafter referred to as Paper I) presented the solutions for axisym-
metric objects and, in the small-wobble-angle limit, an approximate solu-
tion for nonaxisymmetric bodies. Paper I also discussed some astrophysical
applications of those calculations to neutron stars as sources of gravi-
tational waves., Here, I give algorithms for computing the exact results
for the gravitational power radiated and waveforms produced by an arbitrary
rigid Newtonian object, rotating free of external torques, in the standard
quadrupole moment formalism, I also give computationmally useful formulae
for the interesting case of an almost-spherical object precessing with a
small wobble angle. These series expansions retain the precise frequency
dependence of the waves — an important point for observers who may have to
integrate over long times in order to see a signal. The results are com-
pared with the simpler, approximate waveforms of Paper I. Since that
paper discussed at length the application of these calculations to astro-
physical systems, only a few remarks on that topic are included here.

Section II of this paper reviews some of the classical Newtonian-
mechanics results for free precession, defines the coordinate system and
terminology used herein, and presents formulae useful for calculations of
the power radiated in gravitational waves by a rotating rigid body. That
section also gives the dominant terms in the gravitational luminosity for
an object with small wobble angle, small oblateness, and small nonaxisym-
metry, and interprets those terms. Section III reviews more of the
classical free-precession results, and uses them to derive formulae for

the gravitational waveforms h+(t) and hx(t). That section also presents
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explicitly the dominant terms, with their exactAfrequen;y dependences,

for the same astrophysically-relevant limit as in Sec. II. The waveforms
are interpreted and compared with the approximate results of Paper I,
Figures 1 and 2 show the exact results for h+ and hx as calculated accord-
ing to the algorithm discussed in Sec. III.C., in two specific cases, for
a variety of observer inclinations relative to the precessing body.

Finally, Sec. IV summarizes the conclusions of this paper,

II. POWER RADIATED IN GRAVITATIONAL WAVES

A. Review of classical free precession results and

specification of coordinate system

Throughout this paper, I shall use the physical conventions of Landau
and Lifshit22 in describing rigid body motions, and the mathematical nota-
tion of Abramowitz and Stegun3 fof elliptic functions and integrals, Much
of the material necessarily repeated here in the course of specifying the
problem is taken directly from Ref, 2. i work in units where G = ¢ = 1,

A rigid, Newtonian object in flat space has its inertial properties
>
completely specified by its mass and by a symmetric tensor I with com-

ponents Iij = I p(aijr2 - xixj)dsx. In some noninertial coordinate system
<

called the "body frame" I is diagonalized, with diagonal components Il’

12, 15, and the center of mass of the object is stationary at the origin.

> >

Choose the body-frame unit basis vectors Zl’ ey, ez to form a right-handed

coordinate system such that I1 < 12 < 13. (1f any two of the principal
moments of inertia are equal, the analysis in Paper I applies.) I shall
use Latin subscripts for components of tensors evaluated in the inertial-

space reference frame, and Greek subscripts in the body frame., When

specific components are referred to explicitly, the letters x, y, and z
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are used in the inertial frame and the digits 1, 2, and 3 in the body
frame.

©
The components of a tensor (such as I) in the body frame and in the

: ->
inertial frame are related by the "rotation matrix" Rju = ej - e

moment, the body frame's instantaneous angular velocity may be described

n At any
by a vector Q3. The total angular momentum of the body is 3 =é;-.5, a
constant (if gravitational radiation-reaction torques are ignored).
Choose the coordinate system of the inertial frame so that d = ZZ.

The orientation of the body frame relative to the inertial system is
described by three Euler angles: © is the angle between Ez and 33, ¢ is
the longitude of the ascending node (that is, the angle between gx and
the line of nodes formed by the intersection of the gxhgy plane and the

Zl—ge plane), and V¥ is the angle in the 21—22 plane between the line of
nodes and gl’ (See Sec. 35 of Ref. 2 for illustrations and comments.)
Choose the origin of time and the orientation of EX and Zy such that

. . . < > .
at t =0, 6 is at its maximum value, ¥ = ﬂ/2, and ¢ = 0; that is, e lies

in the o_-e plane and e, and o lie in the o_-o plane., (This completes
X Yy 1 3 y z

the specification of the two coordinate systems, and results in formulae
vwhich agree with the conventions of Paper I and Ref. 2,)

If the components of 3 in the body frame are denoted by 0 and

1’ 92’
then the body has rotational emergy E = & (I.Q o + I,0 = + I 2) and
5 A
2. 2 2 2 2. 2z .
1 Ql + 12 92 + 15 93 )2. Now, for speci-

ficity, make one additional assumption about the precession: assume

angular momentum J = |J| = (I

that J2 > 2E12. This is equivalent to assuming that, in the body frame,

' >
the apparent precessional motion of J is a closed curve around the ez
: . 2

axis. (If J° = 2EI

SN

the motion of is along a curve passing through

2J

—> . - 3 3 .
the e, axis and the solutions for the gravitatiomal radiation may be
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obtained as a limit of the equations given below. If J2 < 2EI_, the

2’
motion of J is along a closed curve around the 31 axis, and by consist-
ently interchanging the indices "1" and "3" below, the correct solutions
appear. )

The components of 3 in the body frame are simple eiliptic functions

of time, Define the initial-value constants a = Ql(tzzo) and b = Qs(t::O)’

and the dimensionless time variable 7 according to the equation

(13- 1) (15 - 1;) :

T = bt :
1112

(1)

Then:

Ql=acn'r

X
- 2
(5 -1,)

0. = a sn T ' (2)
2 12213-125

bdn 7 .

b

The parameter m of the elliptic functions in Eqs. (2) is

2
(12-11) I, @

- (1;-1,) 1, b2 e

m

Asm~+ 0, sn v sin 7, cn T > cos 7, dn 7 > 1, and the solutions reduce
to the symmetric-object solutions of Paper I. The elliptic functions are
periodic in their argument 1, with period LK where K(m) is the '"complete

elliptic integral of the first kind" defined and tabulated in Ref. 3.
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B. Derivation of equations useful for the quadrupole-

moment formalism calculation

The quadrupole-moment formalism& says that the total energy radiated

per unit time in gravitational waves is
o Ladd (244 3 d3 i

<I kl_’]k> where I jk = ‘rp(xjxk z 5Jkr )d x and ;Jl E—dgt—g— Ijk =-— 1,

The angle-brackets denote a time-average over a few periods.

The solution for the body's precessional motion is much simpler in
the body frame than in the inertial frame, so it is profitable to work
in the body frame as much as possible. In evaluating the total power
radiated in gravitational waves, in fact, one can work entirely in the
body frame, and I shall do so.

Since I JuRPv and the body-~framed Ipv is constant, simple
differentiation with respect to time gives

Ijk = (R P v T JuRLv RjuRkv b gjuRkv)'

The derivatives of the rotation matrices are:

. =g, QR =€ QR
s T Careken T SvpV iy

~e QR +00R. - [3°R, ()

jp vy v iy wovojv ju

+2 L] . °
= 2l ) +r20 0+ 0 | R, - 30.QR, .
jn [u?ﬁ(n lol"ag) +20,0, u7] jy T BB m

Taking Eqs. (4) and plugging into the equation for Ijk yields

.

.. = R, the body-fra antity B -
IJk JMRkVBuV where e body-frame quantity - is
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. o o 2 L3 L4
=R 0T 41 . + 2 + 0 S
BHV 0797’ 4 va% [SVHE(Qe IQI Qe) Q)'Qu 7QLL:]
+ I e (5 -h]?}lgn) + 200 + 0.0 |+ ’ (5)
wy | “yve'e € 7V v
43 17896 [ny(eesvnu 5 ) 3 Qn (ee8 vsmp + Le‘éugﬂyv)] "

The problem of calculating the total power radiated, P, thus reduces

to the problem of evaluating P = < leIJk> E <Bp.vBuv>'
The terms of Buv are not really as complicated as they may appear
to be when written in tensorial notation. Using the fact that Ipv is

diagonal in the body frame, one finds:

E {%9252 - 8050 - Al”lﬂe%} (6)

where
A =L,~I, A= -1, A=l -1, (7)

The other diagonal components of pr follow by cycling the indices

1+2+3~+>1, For the off-diagonal terms,

= a0, - 41E1%0,) + a0,(20, -4) -
(8)
- 00, (28, - &) - 39?“352 - SQgQSAl

<
and the other components of B follow by cycling the indices and by

t ; = .
symmetry (Buv Bvu)
Equation (5) is quite general and in fact can be used to calculate

>
for any time-varying rotation rate Q(t) the inertial-frame time derivatives

«>
of any rank-2 tensor I which is constant in the body frame. For our

<>
>
special case, where Q is that of free precessiom and 1 is the inertia
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tensor, the equations of motion and their derivatives determine the

derivatives of Qu:

Il

+

Using these

gives:

12

-1
I e, I
pp Br3d 7eQeQS
-1 >i2
.01 Q Q1 9 + 9
HB B Y788 - | | B : (9)
-1 -1

1 I QT I
U15] B78 76 € 8M ﬂnc KX 6 .

>
jidentities to remove the derivatives of §) from B

n

5 o\
11 = 68yl <"A1+;2'§5”>

2 3

il

- h93l3I2A5 2

& ey oo
* Alﬂzﬂs <1115 T 3) +
+-A2Qlﬂ < A% - a%ieéﬁ 3) .

The other components follow by symmetry and by cyclically permuting sub-

scripts.

In order to evaluate the actual power radiated in gravitational

S— 2
waves, it is necessary to know the average values over a cycle of sn 7,

6
sSn T, sn Ty

etc. These can be expressed in terms of the complete

elliptic integrals of the first and second kinds, K(m) and E(m) (see

Ref. 3). The results of time-averaging over a cycle are5:



o 3
2 _K-E ;3 m m  lLlm
(sn” 7} =g =2+ +*3 ook *

—~
g
=~
A
~~
!
~~
w
=]
n
«
-~
—
n
~~
)—J
+
3
g
e
s

1l
o
o+

ST T - N (11)

(o 9 = (' ) [ - (2 ) ()
> L5m 4 ewe
16 * 256

The identities cn2 T=1 - sn2 T and dn2 =1 «m sn? T which relate

other elliptic functions to sn 7 enable all of the other averages to be
calculated from the above ones. From these averages, the exact power

cutput in gravitational radiation is straightforward to write out,

C. Exact quadrupole-moment gravitational luminosity

The total power P radiated in gravitational waves depends on the

parameters I,, I, and I, (principal moments of inertia of the rigid

1 2
body), and a and b (initial values of the components of the body's

angular velocity along the e, and 23 body axes).

1
To éompute the total gravitational luminosity for any choice of
these parameters, one can proceed as follows: (1) evaluate the elliptic-

function parameter m from Eq. (3); (2) evaluate the averages over a
cycle (sn6 T), (sn2 T cn& T), (Sn2 T - T dn° T), etec, of the various
combinations of even powers of sn 7, cn 7, and dn 7 with exponents adding

up to 6, using Eqs. (11) and the elliptic function identities which follow

them; (3) evaluate the averages (pr2> for p,v running 1 through 3, using
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Eqs. (2), (7), (10), and the averages calculated in step (2); (&) add up
the results of step (3) and divide by 5 to get P = = £ ( - uv>’

quadrupole-moment formalism result for the luminosity in gravitational

waves,

D. Series expansions for small wobble angle, small

oblateness, and near-axisymmetry

Because the gravitational power radiated P must be invariant under
> >
a reversal of the direction of rotation (2 + -Q), P contains only even

powers of 2, 2

. EE .
s and Q7. Define coefficients FH’ G, and Huv for each

of the types of terms in 2 by:

o A 2 2 2 h 2
P (nad conleted et )

One can expand FH’ G, and Hpv for the interesting case of small
oblateness, where the differences between the principal moments of
inertia are small compared to the principal moments themselves. The

results are simple; through order Ahe.

F =324°
W b
G = 100 (Al2+A22+A52) + 84 (A4, + A A+ AN
(13)
H, =2 (13 Au-mv)(s AH+AV) for wt v
H, =H, =H_,=0.

11 22 35

The equation Fu = 32 Ahe is, in fact, exact to all orders in Ah.

The "FH terms'" in P, which are proportional to a sixth power of a single
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body-frame angular velocity, are precisely (32/5)(12-15)2(016),
’(32/5)(15-11)2(926), and (32/5)(11-12)2(936), These are familiar from
the case of rotation about a principal axis, where there are no other
terms.

The expression for P in terms of FH’ G, and Huq still contains un-
evaluated averages of angular velocities. In the astrophysically relevant
case of small wobble angle, small oblateness, and near-axisymmetry those
averages can be conveniently expanded. Small wobble angle means that the
ratio of the body-frame angular velocities Ql(o)/Qs(O) = a/b << 1, Small

oblateness implies that (IS--Il)/I5 << 1 (since I, < I, <1I

1 2 57
no need to mention 12 here). Near-axisymmetry causes (12-11)/(13-11) << 1;

there is

that is, the equatorial moments of inertia are close to each other compared
to-their difference from the polar moment. If equal weights are given to
all three of these small parameters, the power radiated by a freely

precessing rigid body can be expanded to give, at lowest order:

32 .6 2 2 2k 2
sy 25 & + = " I
P~-—=b (12 11) Pz ah (13 11:2) P (1)
where 11.2 is some average of Il and 12, the precise nature of which is

irrelevant to this order.,
This simple result for the gravitational luminosity is also quite
¢ / 6 g .
reasonable. The first term, (32/5) b (12-11) , is the standard result

for a rigid body freely-rotating about its principal axis I, at angular

3
velocity b. The second term is the small-wobble-angle limit of the

energy radiated by a freely-rotating axisymmetric rigid body,1 with

equatorial moments of inertia Il = 12.
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III. GRAVITATIONAL WAVEFORMS ¥FROM FREE PRECESSTON

A, Further review of classical free precession results

The calculation of the waveforms radiated by a precessing object is
both simpler and more complex than the calculation of the total power
radiated by that body. It is simpler in that only two time derivatives

o
occur, instead of three, and that only terms linear in I occur, instead
of terms quadratic. It is more complex in that the Euler angles of the
body appear explicitly. It is also complicated somewhat by the appearance
of one more parameter, the observer's inclination angle "i'" relative to

-5
the invariant J direction.

The components Q 05, and QS of § in the body frame are periodic

1’

in time, with period

-

LK Iits
e [(15"12)(13'11)] o

[see Egs. (1), (2), and (3)].

The Euler angles © and ¥ are also periodic, with period 1/2:

Ib
~§~ dn 7

cos O K

1l

(1,-1,)7 ae)
I, (I, -1

13 "2 cn T

Esa. A = [12(13—-11)] sn T

Here and throughout I use the notation and initial-value choices 6f

Sec. II.A and of Ref. 2, wherein the classical free-precession results
which I quote are derived. Note that if the oblateness of the body is
small, the period T is very long. As 1, > I, and the object approaches

axisymmetry, m - O, Qs(t) + constant, and T - 2ni1/[93(13-11)], the
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usual free precession period of a symmetric body. Note also that for
> . °
precession around the e, axis, ¥ < 0.
The Euler angle @, unfortunately, is complicated; if it is written

as a sum, @ = @ + @, then the function @, can be expressed by

exp(2ig(t)) = ()

where ¢ is a solution of sn(Qiﬁni)z:jISb/(Ila).and 9), is a theta-function
in the notation of Ref. 3. (Because of the common periodicity of the
elliptic functions and the theta-functions, all solutions ¢ are equiva-
lent.) If K'(m) =X(1-m) and q = gxp(—ﬂK‘/K), then a useful series
expansion of @ can be written:

B =]

-oq” hnt
(Pl(t) — z —zq—é—r‘l— Sin( l‘nTﬂL> sinh (2[1’!(@). (18)
n=1n(l-q7) :

The function @1(t) is periodic in t with period 1/2. The other part of

¢ is a linear function of time: @2(t) = 2xt/T', where

, i T
o 3 2i b (4x0)

TTET T 9, (o)
(19)

i .
- - 2
3,2 (T I ) (T ~ Ly )
L K Ll n=11-q

n
. S
2n

sinh (2nn0).

Thus, cos (wz(t)) has a period T' not, in general, commensurate with T,
and so the body's motion typically is nonperiodic. The period T' - 2ﬁIl/J

as the body becomes axisymmetric.
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B. Derivation of equations for the quadrupole-

moment waveform calculation

The general expression for the waveforms radiated is a simple one:
in the transverse-traceless gauge of Ref. L, the dimensionless

gravitational-wave amplitudes are

h = ';f\';['\ = = hr;[‘\;[‘\ = i (:’[’l\/\ - i‘/\/\)
+ wwW r
(20)
b=l e T«
X vw r VW

In these equations, r is the distance from the observer to the
. - N N .
source of the radiation, and Vv and W are unit vectors transverse to
the waves' direction of propagation. Specifically, for a source at the
. . 3 . . . »). +
origin of the inertial frame and a distant observer in the ey~ez plane
. . > . A A ’ 5
at colatitude i from the e axis, the vectors v and w may be defined
n - . % . s fad > . )
as v = ey cos 1 - e sin i and w = & e Such an observer would, in the
usual astronomical convention, define the body's "inclination" to be

angle 1.

As in Sec. II, it is advantageous to work as much as possible in

. P 5 oo - 0'. p b. . E '2' . .
the body frame. Using the relation Ijk Iuv(RJuRkv FERjuRkV+'ijlkv)’
and substituting the results for kjp and ﬁju from Sec. I1.B, Eqs. (h),
I obtain:

Lic = Rufefu
where

A =281 + (e b +00) 4

pv nv s YRy

(1)

+ fz + Q)L + 2 Q.01
I 8, " Coyusmv e M 7K
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is defined completely in terms of body-frame quantities. Combining Egs.

(20) and (21) with the definitions of G, 3, and inclination i, I obtain

h'=:—[(cosiR - sin i R )(cos i R - sin i R_) -
+ T i Zl yv zZv
- R_R ] A (22)
X| XV| UV
2 . _—_
h == (cos iR -siniR )R _ A
X r VI zp” XV o pv
where the explicit components of Auv are
2 2
g =2 (40,7 - A7)
Ay = (Al -A2)9102 + 80 (23)

2

& =i % L

1

and symmetry and cyclic index permutation give the rest.
The components of the rotation matrix Rju in terms of the Fuler

angles 0, ¢, and | are reproduced here for convenient reference. They are

v >
cos ¥ cos @ - sin ¥ cos @
sin © sin @
- cos © sin ¥ sin @ - cos @ cos § sin @
cos ¥ sin @ - sin ¥ sin @
R=13] -sin © cos ¢
+ cos O sin ¥ cos @ + cos © cos | cos @
] \ sin © sin V¥ sin © cos cos O /

(24)
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C. Exact quadrupole-moment gravitational waveforms

The gravitational wave amplitudes radiated by a freely-precessing,
Newtonian, rigid body depend on the parameters 11,-12, and 13 (principal
moments of inertia of the body), a and b (initial values of the components
of the body's angular velocity along the Zl and 35 body axes), i (incli-
nation angle of the observer relative to the invarianﬁ J direction of
the body), and time t.

To compute the gravitational waveforms h,+ and hx for any choice of
these parameters, one can proceed as follows: (1) evaluate the elliptic
function parameter m from Eq. (3); (2) evaluate the constant « defined
by sn(2{aK(m)) =,é13b/(11a) [following Eq. (17)]; (3) evaluate the time
parameter T using Eq.v(l), the angular velocities Ql’ 92, apd 93 at
“time" 7 using Eqs. (2), and the Euler angles ©, ¢, and ¥ using Egs.
(15)-(19); (k) evaluate the components of AHV andRjp using Egs. (23)
and (24); (5) plug the results of the preceding evaluations evaluations
into Eqs. (22) to compute h+(t) and hx(t). This algorithm was used to
calculate the waveforms shown in Figs. 1 and 2, which are discussed in

the following subsection.

D. Series expansions for small wobble angle, small

oblateness, and small nonaxisymmetry

While arbitrarily-accurate values for h+ and h>< may be computed
using the algorithm described above, for many purposes it may be more
useful to have available the first terms of a series expansion of the
gravitational waveforms. In making these expansions, one must be care-
ful not to lose the correct, exact frequency dependence of the waves.

Experiments to detect nearly-monochromatic gravitational radiation often
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need to integrate for long times in order to build up an observable
signal. Hence, '"small" errors in the calculated power spectrum are
dangerous. There also may exist several closely-spaced frequency com-
ponents in the radiation, which will be confused and confounded by a
series expansion that fails to pregerve the correct frequency spectrum.

To make the expansions possible, in addition to demanding small
elliptic function parameter m, it is also convenient to demand that the
wobble angle be small and that the parameter

1
2
1,(15-1,)

be small, This allows expansion of cos Y. The assumption of small § is
equivalent to the assumption that the body's nonaxisymmetry is not too
large.

The resulting expansions of the cosines of the Euler angles are:

bI5 5
cos O —3—-[1 +'E-(cos 2v-1) + 6(m )]

Il

cos ¥ = sin v []_ + (6 + %) C052V + @(82’m2,m8)] (25)'
cos ¢ = coS 2%;{'1:— +_I§ sinh (2m) sin —2%:;2 sin 2v + @(m2)

where v = w1/ (2K) = 2xt/T.

One may now plug in and grind these explicit Euler angles through
the equations for h+and hx. The results are simple and interesting for
the astrophysically important case of small wobble angle, small oblate-

ness, and near-axisymmetry discussed in Sec. II:
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Il

D 2. _ 2
h, .:?-(1 + cos 1)(12-11)0 cos (2at) +

L8in (21) (1 g aIl) 2\ 2xt
r 377127 \BL/\T' S\

(26)

—_ . 2 .
h, =—cos i (12-11)9 sin (20t) +
al 2
2 . . 1) {2x . 2xt
+ 7 sin i (15 - 11:2) (———b15> (*f?) sin (——‘“Tn )

where © = (27/T') - (2%/T) and I is an average of I, and I, (as before).

1:2

These are the dominant terms in the radiation; corrections are of higher
order in m, §,aIl/(bIS), (13-—11)/13, and (12-11)/(13-11). Eqs. (26)
do, however, retain the exact frequency dependence of the dominant parts
of the waves in the period T'. (The cost is that T' obeys a messy trans-
cendental equation.) The results here agree with Eqs. (2) of Paper I,
where a simpler expansion was made ﬁhich only gave the waves' approximate
frequencies.

As was the case in Sec. IT, the dominant components of h+ and h><

[Egs. (26)] have a simple physical interpretation. The waves at frequency
20 with strength independent (to this order in the expansion) of the wobble
angle are from the differing moments of inertia I1 and 12. They are
identical in strength, frequency, and angular distribution to the waves
produced by a simple rigid rotor (a spinning dumbbell, for example).
The waves at frequency 2ﬂ/T' are the small-wobble-angle limit of the waves
produced by a freely-precessing, axisymmetfic (11=:12) object [Egs. (1) of
Paper I]. As in that case, the mean frequency of pulses seen from a spot
fixed on the body's surface is not equél to the gravitationél—wave fre-

quency; the two differ by the precession frequency Eq/T. As discussed in
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Paper I, this frequency splitting may cause difficulties for some
gravitational-wave detectors which rely on a high-Q system, mechanically
synchronized with a pulsar's electromagnetic pulses, to integrate up an
observable signal. On the other hand, if the frequency splitting can be
observed, it will provide a direct measurement of a pulsar's oblateness.
Other details of the gravitational waveforms give information about wobble
angle, inclination, and nonaxisymmetry — information difficult or impos-
sible to obtain by electromagnetic means. See Paper I for a detailed
discussion.

Figure 1 shows the computed waveforms h+ and h>< for a freely-
precessing, nearly-axisymmetric body (Il/I5 = 0,99, 12/13 = 0,991) moving
with a fairly small wobble angle (a/b = 0.1). The exact solution as
graphed agrees with the first terms in the series expansion [Eqs. (26)]
to within the expected accuracy of ~ 10% mlla/b]:v 8. The particular
choice of initial conditions at t = O used in this paper, and the loca-
tion of the observer in the gy"zz plane, produces the particular phase
relationship between h+ and hx evident near t = O. At later times, the
frequency splitting due to the (in this case slow) body-frame precession
changes the relative phases of the two wave polarizations. The ~ 10%
contributions from terms not retained in Eqs. (26) also cause slow (time-
scale T) amplitude variations of the waves; the variations are especially
visible at i = 0. The frequencies of the dominant Fourier components as
calculated in Eqs. (26) are exact.

In Fig. 2, the waves emitted at various angles by a highly-oblate
(11/13 = 1/3, 12/13 = 2/3) body precessing with a large wobble angle
(a/b = 1) are shown. In this case the two timescales T and T' are of
comparable magnitudes, and the waveforms at all inclinations i exhibit

a wealth of information about their source,
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IV, CONCLUSIONS AND OPEN QUESTIONS

The results given in Secs. II and III of this paper for the power
and waveforms produced by a freely precessing, rigid, Newtonian body are
simple applications of the quadrupole-moment formalism to one sPecific.
physical system. As discussed in Paper I, these idealized calculations
may be applicable to the astrophysically realistic case of a rapidly
rotating neutron star. The sensitivities of gravitational experiments
are improving at a rapid rate; it is conceivable that some precessing-body
sources will be detectable within the next decade. The results presented
here may then help save others some computational labor.

Papers I and II have only dealt with weak-field, slow-motion, small-
stress sources (the standard Newtonian approximation to general relativity).
Neutron stars have rather strong fields, since GM/rc2 ~ 0.2 in typical
models, I suspect, but have not proved, that the strong-field, slow-
motion approximation to general relativity will give precisely the same
waveform predictions as does the weak-field formalism, if the moment of
inertia and quadrupole moment tensors of the body are properly redefined,
This topic might be worth further investigation. It might also be inter-
esting to calculate more realistic models of precessing neutron stars,
where the assumptions of infinite rigidity and zero external torques are
relaxed. (Paper I, Sec. II, suggests but does not prove that such real-
istic models will typically not differ significantly from the models
calculated here, except for having a longer precession timescale W
Finally, more work on the interpretation of the gravitational waveforms
might be valuable; Paper I discussed how to deduce-information about the
.source from the waves, but only for the cases of axisymmtric bodies and of"

small-wobble-angle precession for triaxial bodies.
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FIGURE CAPTIONS

Fig. 1. Gravitational radiation waveforms h+ (solid lines) and h

Fig., 2,

v 3 . . 4 o
(dashed lines) measurable by observers at inclinations i = 0 5

300, 600, and 90° relative to the J of the freely precessing,
rigid, Newtonian source, The algorithm and equations of Sec.
III were applied to a body with principal moments of inertia
1,/15 = 0.99 and I,/I, = 0.991, rotating with initial values
of its angular velocities 91(0)/95(0) = a/b = 0.1. For this
case; solution of the equations of motion gave elliptic function
parameter m = 1.1 X 10“3, o = 0.94893, period T' = 6;18906b, and
precession period T = 656.19b. The dimensionless '"units" in

terms of which h is plotted are

e b I 2

3

g - 1.1 % 10”21( - 3 2)( b 1) .(1 Kpc) )
c r 107 g~cm 200 rad s~ e

Gravitational radiation waveforms h+ (solid lines) and hx

(dashed lines) measurable by observers at inclinations i = Oo,
300, 600, and 90° relative to the J of the freely precessing,
rigid, Newtonian source. 1In this case, 11/15 = 1/3, 12/13 = 2/3,
0,(0)/e5(0) = a/b =1, m = 1/3, o = 0.429786, T' = 1.79069b, and

T = 6.93566 b. As in Fig. 1, the dimensionless "units" in terms

: ; 2, h
of which h is plotted are GISb [xc’.
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CHAPTER IV
THE GRAVITATIONAL WAVES THAT BATHE THE EARTH:

UPPER LIMITS BASED ON THEORISTS' CHERISHED BELIEFS

This chapter is a paper by Mark Zimmermann and Kip S. Thorne. It has
been accepted for publication in a festschrift in honor of Abraham H. Taub,

to be published in 1980.
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THE GRAVITATIONAL WAVES THAT BATHE THE EARTH:

‘X.
UPPER LIMITS BASED ON THEORISTS' CHERISHED BELIEFS ¥

MARK ZIMMERM’ANN§ and KIP S. THORNE
W. K. Kellogg Radiation Laboratory

California Institute of Technology, Pasadena, CA 91125 USA

ABSTRACT

On the basis of our cherished beliefs about the structure of the Universe
and the theory of gravitation, we derive theoretical upper limits on the
strengths of the gravitational waves which bathe the Earth. Separate limits
are presented, as functions of frequency, for waves from extragalactic sources
and for waves from inside our own Galaxy; and in each case, for discrete sources
~ (bursters, transient sources, and monochromatic sources) and for a stochastic
background due to unresolved sources. An observation of gravitational waves
exceeding these limits would be disturbing (and exciting), since it would re-
quire a modification of one or more generally accepted assumptions about the

astrophysical universe or the nature of gravity.

*This manuscript is dedicated to-our good friend and colleague, Abraham H. Taub,
on the occasion of his fetirement from the University of California at Berkeley.
TSQpported in part by the National Aeronautics and Space Administration
[NGR 05-002-256] and by the National Science Foundation [AST76-80801 A02].

§

Robert A. Millikan Graduate Fellow.
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I. INTRODUCTION

During the past two decades general relativity theory has had an in-
creasingly strong impact on astrophysics — first in the.theory of quasars;
then in cosmology, pulsars, compact X-ray sources, and the search for black
holes. We hope for an even stronger impact in the future, when gravitational
waves open up a new "window" onto the Universe — a window in which general
relativity will play an absolutely essential role.

The efforts of experimenters to develop gravitational-wave detectors-of
ever-increasing sensitivity have been described in a number of recent review

1,2,3,k As these efforts proceed, it is useful to have theoretical

articles.
"benchmarks" against which to gauge their progress. Such benchmarks are of
three major types. The first type, as sensitivities improve, are '"mihil
obstat" upper limits on the strengths of the waves. An observation of waves
above these limits would overturn one or more cherished beliefs about either
the structure of the universe or the physical laws governing gravitational
radiation. Type two benchmarks are at a level where the best estimates of
plausible astrophysical sources indicate that something should be seen.
Observations at these sensitivities are sure to give significant astronomical
information; even if no waves are detected, many otherwise acceptable models
will be eliminated. Type-three benchmarks are the absolute minimum gravita-
tional-wave strengths consistent with other astronomical observations. A
failure to see waves below these limits would be as serious a matter as
observations of waves above the type-one limits; in either case, something
is radically wrong with the theory of gravitation or with conventional
astrophysical wisdom.

Type-two and type-three benchmarks have been reviewed in several recent

articles.5’6 The purpose of this article is to set forth benchmarks of the
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first type — '"cherished-belief" upper limits on gravitational wave strengths.

In 8II we list and discuss the cherished beliefs on which our limits are
based. In $IIT we derive, from those cherished beliefs, upper limits on the
strength of any stochastie background of gravitational waves which might bathe
the Earth — both a limit on waves from unresolved sources in our Galaxy, and
a limit on extragaiactic waves. We also describe séenarios that could lead
to these upper limits. 1In §IV we derive similar upper limits on waves from
discrete sources including bursters, transient sources, and monochromatic
sources. Again there are separate upper limits for sources in our own Galaxy
and extragalactic sources. Forkthe case of broad-band bursts, we also describe
a scenario which could lead to the Galactic upper limits.

Throughout we shall restrict attention to gravitational-wave frequencies

Iy

sl E ’
in the domain of current experimental interest: 10 @ Hz <~ f < 10" Hz. The

lower limit, 10—h Hz, is dictated by the technology of gravitational-wave

1,8,5,4

detectors — in particular, the round-trip radio-wave travel time to

+
spacecraft at reasonable distances (e.g., Jupiter).. The upper limit, 10H Hz,

is dictated by our cherished belief5 that the only highly-efficient sources

of gravitational waves in the Universe today are objects near their Schwarzschild

radii — neutron stars and black holes of stellar mass and larger — and that

. e : . : )
these objects canuot radiate significantly at frequencies above fmax 10 H=z.
The notation used in our discussion is summarized in Box 1. A more

detailed discussion of each parameter is given at the point in the text

where it is first jintroduced.
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IT. CHERISHED BELIEFS

The cherished beliefs, on which we base our limits, are of two types:
beliefs about the astrophysical structure of the Universe ($II.A), and

beliefs about the physical laws governing gravitational radiation (§II.B).

A. The Structure of the Universe

Our first cherished belief is the "cosmological principle'" that we

do not live in a special time or place in the Universe — except for being

inside a local density enhancement, the Galaxy. The cosmological principle
implies that, on the average, sources of gravitational waves are no more
luminous now than they have been (and will be) for a Hubble time TH =
10 i ; y ;

1 % 1077 years, the only timescale available. It also implies that the
nearest source is at a typical distance from us, neither fortuitously near
nor far. (For objects of number density n in Euclidean 3-space, the mean

) . & -1/3 g .
distance to the nearest one is 0.55386 ... n ; over 90% of the time, the

. ~-1/3 - . ~-1/3

nearest is between 0.2 n / and 0.9 n 1/5. We will use 0.5 n /5 as the

distance to the nearest source throughout this paper.)

Our next cherished belief is that there is no significant amount of

"relict," primordial gravitational radiation bathing the Earth — more

precisely, that all the significant sources of gravitational waves are at
cosmological redshifts z-€ 3. This is as much a simplifying assumption as
a cherished belief: Although semi-plausible models of the early Universe

s 5 : .. 1,8 -
give only modest amounts of gravitational radiation (amounts well below
the upper limits of this paper), we are so ignorant about the early Universe
that it is hard to place firm upper limits on the waves from there, except

the obvious limit that their total energy density not exceed by much the
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density required to close the Universe. The closure limit will follow from
our other cherished beliefs without our assuming it explicitly.

The cosmological principle, plus the belief in "no primordial waves,"
allows us to approximate the universe by a very simple model which is accu-
rate to within an order of magnitude in energies (a factor of 3 in gravitational-
wave amplitudes). 1In this model the expansion of the Universe is ignored,
space is regarded as Euclidean, the Universe is regarded as extending outward
from Earth in all directions to a Hubble distance RH = C TH =1 X 1010 light
years, within this distance the smearédaout mass density of potential gravi-
tational-wave séurces is regarded as constant and as equal to the "closure
density" p = (<:2/G)(3/83r)RH”2 -2 %10 g/cm"s, and outside Ry the
density drops to zero (cosmological cutoff on sources). Our use of the
closure density for Py does not mean that we believe-in this value, but
rather that this is a reasonable upper limit and will thus give rise to the
largest possible limits on gravitational-wave strengths. The Galaxy we
shall model as a region of constant, enhanced mean mass density, pg s 2 X% 10"2)Jr
g/cms (no radial structure), and of spherical shape with radius Rg = 60,000
light years and with the Earth located (roughly) at its center. The ﬁumbers
for our Galaxy take account of a now popular galactic halo with total mass
Mg = (4x/3) Rgspg ~ 1 x 10%° My and radius R, = 60,000 light years,g’ 1, 11

Our third cherished belief is that within our Galaxy no single, coherently

radiating object has mass in excess of M 34108 qo.lg This is a very
max

generous upper limit. We make no assumption about the maximum mass of extra-
galactic objects.
Our fourth cherished belief is that the dominant sources of gravitational

waves have no significant beaming of their radiation. In principle, strong

beaming can occur — e.g., in waves from ultrarelativistic collisions of
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13, 1k

astrophysical objects, in waves from sources with gravitational lens

15,16 . . :
4 and in waves from carefully contrived directional antennas.l7

properties,
However, we do not know of any type of hypothetical strong-beaming source
that is likely to make up a significant fraction of the mass density of the
Galaxy or Universe. Moreover, our limits are fairly insensitive to the no-
beaming assumption: a simple geometrical analysis in flat space shows that,
if sources beam their energy into a solid angle QO < Lkx, and if the Earth
is located randomly relative to the beams, then the expected energy flux from
- . . -1/3
the nearest visible object increases only as (Q/hn) , and the expected
total flux from all sources out to some fixed cutoff radius remains constant.
15 ... 18 16 _

(On the other hand, as Lawrence, Misner, Jackson, and others have
argued, there could be an object at the center of our Galaxy which preferen-
tially beams its radiation into the Galactic plane, where we lie. Our no-
beaming assumption rules this out.)

Our fifth cherished belief is that narrow-band sources of gravitational

waves (Af << f) have their frequencies f distributed randomly over a band-.

width Af 2 f.

B. The Physical Laws Governing Gravitational Radiation

We take our cherished beliefs about gravitational-wave theory from
general relativity — though most other relétivistic theories of gravity
would lead to similar beliefs. Our beliefs are expressed in order-of-
magnitude form. |

Consider a source of mass M, which radiates gravitational waves co-
herently. (Examples: A puléating star, a binary star system, two colliding
black holes.) If small parts of the source produce waves which superpose

incoherently, those parts must be regarded as separate sources. (Example ¢
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for the thermal bremsstrahlung radiation produced by collisions of electrons
and ions inside the Sun, the source is not the entire Sun but rather a single
colliding electron-ion pair.) Let f be a frequency at which the source radiates

significantly. Our first cherished belief is an upper limit on the frequency

. 5
f, for a given source mass M:

3
< € /G . 30000 Hz

£ S ok M/MQ * (1)

This limit corresponds to a belief that the characteristic timescale (2nf)~1
of the coherent waves must exceed the light-travel time across half the
Schwarzschild radius of the source, GM/CS. This limit can be violated in
sources with significant beaming — e.g., sources with ultrarelativistic

. PO - Py |
internal velocities; 3, 1

but we have ruled out such sources, We strongly
doubt that coherent, nonbeaming sources can violate this limit. For example,
typical events involving black holes (births, collisions, infall of matter)
roduce waves of frequency f ~ 10000 Hz (M/q3)~1,19’20’21’5 with a very rapid
falloff of intensity above f = 30000 Hz (M/qa)—l,

In general relativity and other similar theories, a source with negligible

beaming gives rise predominantly to quadrupole radiation. The luminosity of

such a source is given by Einstein's22 quadrupole formula

L =~é— (G/c5)( 3 BS{-,k/BtS)Q ,
bk

where the third time derivative of the quadrupole moment, expressed in terms

of the coherent source's mass M, radius R, and frequency f, is

85£jk/at5 < MR2(21tf)3 < 2ﬂMfc2 .
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Here we have used the relation, for a coherent.source,
(2nfR) = (internal velocity of source) < c .

Combining these relations we obtain a cherished belief about the maximum

luminosity that a source of mass M and frequency f can produce:

L << (2m)® > (4 x 107 erg/sec) (_%)2( £ )2 : (2)

3 -1 e D 59
Note that when f = fmax = (c”/6)(2mM)" ", then L S L.~ c¢ /6 =~ (b x 10

erg/sec)-—— a limit which, so far as we know, was first suggested by Dyson.23
In our analysis we shall idealize our typical source as radiating gravi-
tational waves in a series of outbursts separated by quiescent periods. Let

N denote the total number of outbursts, T, the mean duration of each out-

*

burst, and L the average luminosity during each outburst. Our next cherished

belief is that, in the source's entire lifetime the total energy radiated -

2
cannot exceed the total mass-energy Mc of the source:

NLt, < M . (3)

In describing the gravitational waves arriving at Earth we shall use,

at various times, four different measures of wave strength: First, in

describing waves from discrete sources we shall use a mean value h for the
dimensionless gravitational-wave amplitude at the frequency f in a bandwidth

AL == £
b~ (I (07 + (012 .

Here the average {( ) is over the time T

« that the source is on; and h+(t)
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and hx(t) are the dimensionless amplitudes for the two orthogonal modes of
polarization, which for a source in the z-direction determine the transverse-
traceless part of the metric perturbation via

TT
b = h (c-2)[e ®e

- L~ .
x = By® gy] + hx( z)le, ® et e, ® e ]

We presume that h+ and hx have been sent through a bandpass filter of fre-
quency f and bandwidth Af = f. For monochromatic waves, h+(t) =

A cos(2xnft + q@) a?d hX(t) = A cos(2nft + @X), our definition of h gives

B = %-(A._F2 + Axe)]El Second, for discrete sources we shall also use the total
flux of energy, &, at the frequemcy f and in the bandwidth Af =~ £, We shall

assume (cherished belief!) the general relativistic relationship between %

and h:

A

<.
G 2 1 Hz -20

3 2 2
2 o
F = . & 22 1505 S22 ( 5 ) ( L. ) » (1)
: cm s 10

Third,‘in describing stochastic background radiation, we shall use the energy
flux per unit frequency, Ff ("flux density"; ergs cm~2 sec“1 szl), which our
cherished beliefs imply will be independent of the orientation of our unit sur-

face area. Fourth, for the stochastic background we shall also use an amplitude

h(f) (dimensions Hznl/g), which is defined in analogy with Eq. (&) by

3 2 h 2 |
F,o= S —Efz b = [0.05 —5—= (1 Hz) o -ijz| - O
cm~ sec Hz 10 Hz

The square of‘h, roughly speaking, is the spectral density of the gravitational-
wave amplitude h(t). The stochastic background will produce in a broad-band
gravitational-wave detector a spectral density of strain (AE/E)? = he, where
o is a factor of order unity which depends on the detailed construction of the

detector.
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In relating the strengths of the waves at earth to the luminosity L of a

: ; - T
source at distance r, we shall assume energy conservation (cherished belief!)

2
=L/
due to one source L/tﬁr ’ (6)

and we shall assume that gravitational waves propagate at the speed of light

(cherished belief!).
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III. UPPER LIMITS ON STOCHASTIC BACKGROUND

From the cherished beliefs of § II one can derive the upper limits on a
stochastic background of gravitational radiation shown in Figure 1. In § A
we explain the origin of the limit for extragalactic radiation; in § B we

explain the Galactic limit.

A. Extragalactic Radiation

Consider a specific frequency f at which the background is strong, and
let Af be the bandwidth about f over which the specific flux ?f is roughly
constant. For a background due to broad-band sources, by definition of
"broad-band," we have Af 2 £. For a background due to superposed narrow;
band sources, the last cherished belief of § II.A ("frequencies distributed
randomly over a bandwidth Z £") implies Af 2 £. Thus, in either case the back-
ground is roughly constant over AR £ f, but it can drop off fairly rapidly
at both ends of this band. |

An upper limit on %fL for extragalactic béckground, follows from our
cherished beliefs that (i) the total enmergy radiated by all sources cannot
exceed the sum of the masses of those sources; and (ii) we do not live at
a special place or time, so that the total gravitatiénal~wave enexrgy must be
spread roughly uniformly ovef.the entire universe and the energy density at
Earth must be roughly the same as the average energy dehsity in the universe.
These beliefs imply a total energy density in background radiation at Earth

less than or of order the total mass-energy density of the universe:

background
energy density

2
) = h?fAf/c Spe -

(The factor b comes from integrating over all directions.) Combining this

with the bandwidth requirement Af £ f, we obtain the limit
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1 3 - erg £ )1
Fe S g (p e /) = (100 5 )(1 Hz) 5 (7a)

cm sec Hz

which corresponds to a wave amplitude

1/2

/2% < 6 x 1071 (£/1 1)t (7b)

(cf. Eq. 5). These limits are shown in Figure 1.

| These extragalactic limits are widely accepted and often discussed in
the astrophysical literature — see, e.g., reference 2k.

The upper limit (7) can be achieved, within the framework of our
cherished beliefs, in a variety of ways. For example, at any frequency
f € 10000 Hz the following scenario is allowed, though not likely: .Early
in the evolution of the Universe a sizable fraction of the Universe's mass
might have gone into black-hole binary systems of mass M ~ (CS/G)(Qﬁf)~l.
Uncer the action of gravitational radiation reaction the holes in each binary
will spiral together, releasing a sizable fraction of their mass M in a final
burst of broad-band radiation of frequency f and duration Ty ™ (2ﬂf)_l.
These bursts must be randomly distributed over the volume of the universe
and over the Hubble time, so that the average number of bursts occﬁrring at
any given time is
3

(4x/3) PRy Ty
n= M T~

(cf. relations in §A of Box 1). This is also the average number of bursts
passing Earth at each moment of time: and these bursts give rise to back-
ground radiation near the upper limit (7).

One can also achieve these upper limits by a superposition of many

bursts with lower individual intensities and longer individual durations.
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B. Galactic Radiation

For Galactic background radiation, as for extragalactic, the bandwidth
over which ?f is large must be Af 2 f. The radiation musﬁ be spread roughly
-uniformly over the interior of the Galaxy ("nmo special place'), so that the
total radiation energy in the Galaxy is (h?fAf)(hﬂ/B)(Rgs/c). This radiation
energy will escape from the Galaxy in a time Rg/c and must be replenished
by source emission in that time. The total energy emitted during the.Hubblé
time TH is thus (CTH/Rg) X (energy density now in Galaxy); and this cannot
exceed the to?al mass-energy of the Galaxy, (hﬁ/S)RgSpgce.. Combining these

constraints we obtain the upper limit

1 Rgpgc2 erg £ =L
5 i - N -
ST T 100 —3 (1 Hz) ’ (82)
H cm sec Hz
which corresponds to a wave amplitude
f1/2 h& & % 100 (£/1 Hz)~1 . (8b)

Note that this is the same order-of-magnitude limit as we obtained for extra-
galactic radiation! It is the same by virtue of the coincidence (or is it a
coincidence?) that the closure density Py and Hubble distance RH = CTH of the

Universe, and the density pg and radius Rg of the Galaxy satisfy
Py ~ PR /RY) -

The upper limit (8) can be achieved, within the framework of our cherished
beliefs, by putting the bulk of the mass of our Galaxy into objects of mass
: 3 -1 8 : :
~ M [with M € (c /G)(Eﬂf) and M S Mmax = 10 qg], which radiate away all
their mass in bursts of mean frequency f, duration t,, and luminosity

L = MCQ/T* [with L < (G/c)(2an)2 and T, S TH]. The locations of these objects
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and the epoch of their emission must be randomly distributed through the

Galaxy; so the number of "on" sources contributing to ¥_ at Earth at any

f
given time will be 7 2‘(Mg/M)(T*/TH) [where 7 2 1 so that experimenters will
see a background rather than individual events]. The mass M and burst dura-

tion 1, can be chosen in accord with our cherished-belief constraints (items

in square brackets above) so long as

3 1/2
f 2 fm-n =~ ___C.LG_ E=] 1 X 10”11 Hz
= hn2M ;o

max H

- (9)

and thus for these frequencies our cherished beliefé cannot give any limit
tighter than (8). Note that f 2 fmin includes all frequencies of experimental
interest. At lower frequencies, objects of mass M & Mmax = 1O8 MD radiating
with luminosities L (G/c)(QﬂMf)2 cannot radiate away all their mass-energy

M02 in a time 7, less than the age of the Universe T,; and, consequently,

B’

the maximum Galactic flux density and wave amplitude are reduced from the

limit (8) to

R p c2
1 "g'g F 2 13 erg f
o < e
5, < g 5 (f> T -}, (10a)
H min cm sec Hz min
f1/2 h <6 x 10*“L9 (£/1 Hz)“1 (f/fm;m) =6 X 109 (10b)
for
£35f . ~1x10 " He
min

However, this range of frequencies is outside the domain of interest for the

+h

present discussion (10'—LL Hz < £ € 10" Hz).



66

IV. UPPER LIMITS ON WAVES FROM DISCRETE SOURCES

We turn now to gravitational waves from discrete (resolved) sources,
including broad-band bursts (duration Ty = 1/2ﬂf); transient sources
(1/2nf R, | %, where T is the total observation time, i.e., the total
time that the experimenter searches for gravitational waves); and permanent
sources (T*,E %). The transient sources and permanent sources can be either
broad-band (Af 2 f) or narrow-band (Af << f). Our characterization of the
waves by their flux F and amplitude h pays no attention to the bandwidth of
the source. Since the experimenter can never know the total "on time" T,

of the source unless 1, < T, and since our cherished beliefs allow stronger

*

waves the shorter is 7 we can restrict attention to the case Ty S T.

¥*J
For discrete sources our upper limits answer the following question:
. . . . ” . °

"An experimenter searches, with total observation time 7, for a gravitational-

. ~ . "'1 . .
wave event of duration 7, £ 7 at frequencies f > (gﬁT*) in a bandwidth

= i
Af =~ f£. What is the flux & and amplitude h of the strongest single event
he can hope to see within the constraints of our cherished beliefs?" The
upper limits that answer this question are shown in Figure 2. These limits

are derived and discussed, for extragalactic sources, in §A below, and for

Galactic sources in §B..

A. Extragalactic Sources

Let the frequency f, event duration 7,, and observation time T be given.

*

The waves will be strongest if the bulk of the mass of the Universe resides
-1

in sources of some optimally chosen mass M [ with M < (cS/G)(Eﬂf) ], each of

which produces some optimal luminosity L during its "on time'" T, [where

L < (G/c)(EﬂMf)gj, and each of which has some optimal number N of "on events"

during the Hubble time TH [with NLt, =< Mc2],
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The number density of sources is n = pu/M, and the probability that a
given source will turn on during the observation time T is P = N?/TH. Con-

sequently, the nearest source that turns on during 7 is at a distance

is

This flux is maximized, subject to our cherished-belief constraints (square
brackets above) by setting N = 1, M = (CS/G)(2ﬂf)~1, and L =’Mc2/1* [cor-
responding to L = (2nfr*)~1 (G/c)(QﬁMf)2 < (G/c)(2ﬂMf)2]. The resulting

upper limit is

<z g )/pugﬂﬁ ot

enfr, TtGl/3 \ Ty

1 x 107 erg cm—'2 sec”1 ( £ )2/3 ( T )2/5 (11a)
J
2ﬂfT* 1 Hz 106 .
which corresponds to an amplitude
2x 10718 /g V23 2 WS
I 172 |1 1z 6 : 1)
(2nfr,) 10" sec

The factors 2nfr, are of order 1for the most abrupt bursts; slower bursts
2 . 2 %7
are constrained to contain the same total energy Mc = hnr J1, and so pro-

duce a lower flux & o 1/T*.
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B. Galactic Sources

Let the frequency f, event duration t,, and observation time T be given.
At sufficiently high frequencies an argument identical to that for extra-
galactic sources (8A) gives the same answer; but with Pu replaced by p :
It is optimal for the bulk'of the mass of the Galaxy to be put into objects
of mass M == (cs/G)(2nf)—1, which radiate all their mass-energy We"~ 4a single
bursts of duration v, and luminosity L = MCQ/T*. The strongest burst seen
in time T has flux ¥ and amplitude h at the upper limit of the inequalities

" 3 pgenf% 2/3
* (et ()

2nfT, ﬂGl/s TH

Q=(2 x 10%° erg - secﬂl) ( £ )2/3( T )2/3
2ﬁfT* 1 Hz | 106 Fits s

P T ( £ )‘2/3<_ 2
(2xfr,) /2 - 10°

(12a)

)1/3 , (12b)

for £2f . (defined below).
crit

As one moves to lower and lower frequencies, the optimal scenario corresponds

to the strongest event being farther and farther from Earth — at a distance
5 1/3
1 (MTH)l/S Ca ey /
2 pGT 2 ngﬂfT
Ultimately, at critical frequency
£ e _é TH = SkHiz (13)
crit 12 G M7 2

g (?/106 sec)

the distance r has grown to the galactic radius Rg. At frequencies f < fcrit’

r exceeds Rg and our optimal scenario is no longer valid.
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In the low-frequency regime £ < fC it is optimal to have just one

rit

emission event in the entire Galaxy during the observation time 7, with a
o 2 ~

mean distance 3‘SRgﬂ# and a luminosity L == (Mgc /T*)(T/TH) so large that

the entire mass of the Galaxy will be exhausted in the time T These

H°

events correspond to a flux and amplitude at the ﬁpper limit of the

inequalities
M 2% 9 2 1
F g.lL g * {2 X 107 erg cm ~ sec £ T 3 (1ha)
91 _ 2 = onfr, Iuz)\- 6 ’ .
Rg THT* * 10" sec
- . 1
_2x107B f f YR 5 /2
55 172 \ T iz 3 (14b)
(EKfT*) 10~ sec
<
for S L s

Our cherished beliefs permit these events to be produced by objects of mass

M anywhere in the range

3 “1 ~
< C!G ) £ T
M“(znf) LN@(f 6 ’
10~ sec

crit

2 A ~ 6 '
¥ 2 Lngle ﬁ‘MgT/TH =k MD(T/IO sec)

)= ( k) - b )

2nf|\ G enfr, 2nfl, (Eﬁf’r*)l/e .

; ; ; ; =
In this optimal scenario each source must experience N == Mc /LT* outbursts
in its lifetime. As the frequency decreases far below fcrit’ it ultimately
reaches a limiting value

B PO £ F /-
(c”/6) M7 /
2

(gﬁmmax) T*TH

flim =

~ (1 x 1077 Hz)("f/r*)l/z (15)
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at which our optimal scenario requires source masses in excess of Mmax = 108 MD'
Below this frequency the flux and amplitude limits (1) are no longer valid

— but this ultralow-frequency regime is outside our domain of interest, and

we shall ignore it.

An attractive (albeit not highly likely) scenario for producing broad-
band bursts, T, ~'1/f, at kilohertz frequencies, with amplitude h near the
upper limit (12b), (14b) is the following: It is fashiomable to speculate25
that before galaxies fofmed, a sizable fraction of the mass of the Universe
may have condensed into massive stars (M ~ 2 to EO.PkQ, conventionally called
stars of "Population ITI." A significant fraction of these stars, like stars
foday, might have formed in close binaries which produce, after the stars
have exhausted their nuclear fuel (in At < 1 billion years), black-hole and/or
neutron-star binary systems. When our Galaxy condensed out of the intergalac-
tic medium, such binaries would have snuggled down around the Galaxy26 to
form a massive halo of the type for which there is strong empiricél evi-

9,10, 11

dence. The orbital parameters of these compact binaries in our halo

could perfectly well be such that the mean time for the two stars or holes to
spiral together due to gravitational radiation reaction is of order the Hubble time

T At the end of its inward spiral, such a binary will emit a sizable frac-

H
tion of its rest mass (~ 2 to 20 percent) in a broad-band burst of gravita-

20,217,28

tional waves at kilohertz frequencies. These bursts could be the events

of our optimal Galactic scenario.
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V. DISCUSSION

It is interesting to compare the cherished-belief upper limits of
Figures 1 and 2 with the sensitivities of 7ravitational-wave detectors —
past, present, and future.

The first-generation Weber-type bars (1988-1976) were capable of detect-
ing broad-band bursts occurring once in T °=106 sec with frequencies £ == 1000 Hz
and amplitudes h3 X lO~16. This sensitivity was a 1itt1e worse than oér

cherished-belief upper limits (Fig. 2) — which explains why theorists could

29
account for Weber's observed events  only by invoking unconventional hypotheses
15,16,18

(strong beaming by sources near the galactic center; or today

30
-being a very special time in the evolution of the Galaxyo Je
Second-generation detectors of the bar type and laser-interferometer
. ST -1
type (1979-82) are designed to have sensitivities h 210 8 for events
p o 6 s ;
occurring once in T = 10 sec with frequencies f = 100 to 1000 Hz. Such
sensitivities are considerably better than our cherished-belief limits (Fig.
2). Thus, although conventional scenarios do not predict waves at this level
(sensitivity worse than "type-two benchmarks"), a discovery of waves by
second-generation detectors is prefectly possible within the framework of our
cherished beliefs.
. -3 <
At much lower frequencies, £ ~ 10 =~ Hz, Doppler tracking of spacecraft
is being used to search for gravitational waves. The best sensitivities yet
. . T 31 .
achieved, using the Viking spacecraft, correspond to an rms noise level
"'1"" . . . A - e
hrms ~ 3 X 10 and a sensitivity to T = 1O6 sec bursts of h ~ 2 x 10 13.
These sensitivities are slightly worse than our cherished-belief limits,

However, future experiments using the Solar Polar spacecraft (1983) and

improved tracking technology are projected to have amplitude sensitivities a
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factor ~10 better than Viking's, and a proposed Solar Probe spacecraft
(~1986) might do a factor ~100 better.:52 Such sensitivities would be some-
what better than our cherished-belief upper limits.

In conclusion, the technology of gravitational-wave detection is now

crossing over our cherished-belief benchmarks. Near-future experiments will

be in a realm where it is not irrational to hope for positive results!

The question answered by this paper was posed to us by Ronald W. P.

Drever and Ranier Weiss. We thank them.



10.

11.

12.

13.

73

REFERENCES

J. A. Tyson and R. P. Giffard, Ann. Rev. Astron. Astroph., 16, 521

(1978).

V. B. Braginsky and V. N. Rudenko, Physics Reports, 46, 165 (1978).

D. H. Douglass and V. B. Braginsky, in Gravitational Theories Since

Einstein, edited by S. W. Hawking and W. Israel (Cambridge England:

Cambridge University Press, 1979).

R. Weiss, in Sources of Gravitational Radiation, edited by L. Smarr

(Cambridge England: Cambridge University Press, 1979).

K. S. Thorne, in Theoretical Principles in Astrophysics and Relativity,

edited by N. R. Lebovitz, W. H. Reid, and P. O. Vandexrvoort (Chicago:
University of Chicago Press, 1978).

R. Epstein and J. P. A. Clark, in Sources of Gravitational Radiation,

edited by L. Smarr (Cambridge England: Cambridge University Press, 1979).

L. P, Grischuck, Pis'ma Zh. Eksp. Teor. Fiz., 23, 326 (1976); English

translation: Soviet Physics—JETP Letters, 23, 293 (1976); and references

therein.

B. Bertotti and B. J. Carr, submitted to Astron. Astroph. (1979); also

available as a Caltech Orange-Aid Preprint.

J. P. Ostriker and P. J. E. Peebles, Astrophys. J., 186, he7 (1973).

J. Bardeen, in Proc. TAU Symposium No. 69, Dynamics of Stellar Systems,

edited by A. Hayli (Dordrecht Holland: Reidel, 1975), p. 297.

A. Toomre, Ann. Rev. Astron. Astroph., 15, 437 (1977).

J. H. Oort, Ann. Rev. Astron. Astroph., 15, 295 (1977).

C. M. Misner, in Colloques Internationaux du CNRS No. 220, Ondes et

radiations grévitationelles, edited by Y. Choquet-Bruhat (Paris:

Editions du CNRS, 1974) and references cited therein.



1k,
15.
16.
17.
18.

19.

20.

2l.

e2.

23.

ok,

26 ..

27.
28.
29.
30.
31.

32,

7h

S. J. Kovacs, Jr. and K. S. Thorne, Astropﬁys. J., 224, 62 (1978).

J. K. Lawrence, Astrophys. J., 171, 483 (1971).

J. C. Jackson, Nature, 241, 513 (1973).

W. H. Press, Phys. Rev. D, 15, 965 (1977).

C. W. Misner, Phys. Rev. Letters, 28, 994 (1972).

M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys. Rev. Letters,

27, 166 (1971).

S. L. Detweiler and E. Szedenits, Jr., Astrophys. J., in press; also

available as Caltech Orange-Aid Preprint 5h2.

C. T. Cunningham, R. H. Price, and V. Moncrief, Astrophys. J., 224,

~~~

643 (1978); and Astrophys. J., in press.

A. Einstein, Berlin Sitzungsberichte (1918), 15k,

F. J. Dyson, in Interstellar Communication, edited by A. G. W. Cameron
(New York: W. A. Benjamin, 1963).

M. Rees, in Collogues Internationaux du CNRS No. 220, Ondes et radiations

gravitationelles, edited by Y. Choquet-Bruhat (Paris: Editions du CNRS,

1974), p. 203.

J. W. Truran and A. G. W. Cameron, Astrophys. and Space Sci., 14, 179

(1971).

J. E. Gunn, Astrophys. J., 218, 592 (1977).

J. P. A. Clark and D. M. Eardley, Astrophys. J. (Letters), 215, 311 (1977).

S. L. Detweiler, Astrophys. J., 225, 687 (1978).

J. Weber, Phys. Rev. Letters, 22, 1302 (1969) and 24, 6 (1970).

P. Kafka, Nature, 226, 436 (1970).

J. W. Armstrong, R. Woo, and F. B. Estabrook, Astrophys. J., in press.

F. B. Estabrook, in A Close-Up of the Sun, edited by M. Neugebauer and

R. W. Davies (Pasadena, California: JPL 78-70, 1978), p. LLl.



75

BOX 1

NOTATION

A. Parameters Describing the Structure of the Universe

T, = Hubble time = 1 x 1010 years = 3 X 1017 seconds

H
RH = cTH = Hubble radius = 1 x 1010 L yr =9 X 1027 cm
2

p = mean mass density of universe =~§E—ZE =1 X'10~8 MC/I yr3
u 2

8y B8 . B

=2 x 10 g cm

R = Galaxy radius = 6 X 1oh ! yr =6 X 1022 cm

12 L5
Mg = Galaxy mass = 1 X 10 MD =2X 10 " g

!

. 3 3
= d = = .
p mean mass density of ga;axy SMg/hﬂRg 0.001 MD/Z yr
-2k ]
g

2 X 10 cm

i

M . (maximum mass of coherently radiating _ 108
max object in our Galaxy B %

B. Parameters Describing Gravitational-Wave Sources and their Radiation

M = mass of coherently radiating source

f = mean frequency emitted by source

L = luminosity of source (ergs/sec) in "on" state
7, = "on" time for source; burst duration

N = number of "on" events during source's lifetime
n = number of density of sources

r = distance to nearest source

C. Parameters Describing Radiation Arriving at Earth

Il

T = observation time; experiment duration

F

il

flux of energy in gravitational waves (erg e sec~1)



=

il

i
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amplitude of gravitational waves

flux density of gravitational-wave background (erg cm"2 sec'-1 szl)

square root of spectral density of amplitude of background radiation

(Hz—l/g)
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FIGURE CAPTIONS

Figure 1. Upper limits on a stochastic background of gravitational

radiation at Earth (Egs. 7 and 8). The limit. for radiation from sources
in our Galaxy is approximately the same as the limit for extragalactic

radiation. For notation, see Eq. (5) of text and associated discussion.

Figure 2. Upper limits on discrete sources of gravitational waves

(Eqs. 11-14). These limits answer the following question: "An Experimenter
searches, with total observation time 7, for a discrete gravitational-wave
event of duration Ty S T at frequencies f > l/T* = 1/? in a bandwidth Af = f.

What is the flux & and amplitude h (Eq. 4 and associated discussion) of the

strongest single event he can hope to see, within the constraints of our

cherished beliefs?"
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Fig. 1
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CHAPTER V

INERTIAL AND GRAVITATIONAL EFFECTS IN THE PROPER REFERENCE FRAME

OF AN ACCELERATED, ROTATING OBSERVER

This chapter is a paper by Wei-Tou Ni and Mark Zimmermann. It was

published in the 1978 March 15 issue of Physical Review D, Volume 17,

pages 1473-1476.
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Inertial and gravitational cffects in the proper reference frame
of an accelerated, rofating observer

Wei-Tou Ni
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China

Mark Zimmermann

W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125
) (Received 7 September 1977)

Most experimental laboratories accelerate and rotate relative to inertial frames. This paper derives
approximate expressions-for the general-relativistic metric and the general-relativistic equations of motion of
freely falling particles in such a laboratory. The metric is derived accurate to second order in distance from
the origin of coordinates; the equations of motion are derived accurate to first order. The equations of
motion contain inertial, Coriolis, and centripetal pseudoforces, electric, magnetic, and magnetic-magnetic
type forces due to Riemann curvature (inhomogeneous gravity), “gravitational red-shift” corrections to these

forces, and velocity-induced special-relativistic corrections.

Synge! defined a natural coordinate system for
an accelerated observer, which he called the
“Fermi coordinates,”” and derived integral ex-
pressions for the metric and the inertial (coordi-
nate) accelerations about the observer’s world
line for these coordinates in spacetime with small
curvature. Manasse and Misner® obtained the sec-
ond-order coordinate expansion of the metric in
the special case of a freely falling observer. Us-
ing a somewhat different coordinate system, and a
dyadic formalism, Estabrook and Wahlquist® de-
rived an equation for the inertial acceleration near
an arbitrary world line. Ni® and Mashhoon® cal-
culated the second-order expansion of the metric
and the first-order expansion of the inertial ac-
celerations in these coordinates for an accelerated
observer in special and general relativity, re-
spectively. )

A natural extension of the Fermi coordinates of
Synge to the case of an accelerated rolating ob-
server is the “local coordinates of the observer’s
proper reference frame” defined by Misner,
Thorne, and Wheeler (MTW).” Such coordinates
are important because they are the ones used by
real experimenters in real earth-bound labora-
tories. MTW calculated the first-order expansion
of the metric, and obtained the inertial accelera-
tions on the world line of an arbitrarily accelerat-
ing and rotating observer. In this paper, we ex-
tend their work to obtain the second-order expan-
sion of the metric and the first-order expansion of
the inertial accelerations for the case of an arbi-
trarily accelerating and rotating observer in gen-
eral relativity and in other metric theories of
gravity. To this order, we include centripetal
pseudoforces, second-order red-shifts, relativ-

17

istic corrections, and electric and magnetic Rie-
mann curvature terms.

Consider an observer moving along the world
line Py(7) with four-velocity «(7) and four-rota-
tion w(7) in a gravitational field with Riemann ten-
sor RuvaB(T) along the world line. The orthonor-
mal tetrad {e;} which the observer carries trans-
ports according to®

deg =

Th=Dre, (1)
where

QUT = alyY gyt +u°,wa€"a“” ’9 (2)

a{T) =V, (3)

and 7 is the proper time along the world line.
Following Sec. 13.6 of MTW, at any event P (7)
we send out geodesics P(7;n;s) orthogonal to
u(7), where n is the unit vector tangent to a par-
ticular geodesic at Py(7), and n-u(1)=0. An event
a distance s out along any geodesic n is then as-
signed the coordinates xGET, xisswe;. These co-
ordinates are called local coordinates.
This coordinate system is good for events near
the world line, i.e., for

S 1 1 1 IR sl
S T T T T P TRE 1722 | RE.. | (°
vaB vaB,r

since within this distance the geodesics coming
out of the world line do not cross (s<1/lal), the
“light-cylinder” has not been reached (s «<1/lwl),
curvature has not yet caused geodesics to cross
(s < 1,/|R‘7;&Bl‘/2), and the Riemann tensor has
not yet changed much from its value on the world

1473
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line (s <« IR“»J/IR“ o3 ~I) This last condition
is usually the most seveze restriction when using
this coordinate system in an earth-bound labora-
tory.

In the local coordinate system we decompose a
four-vector Vas V=(V93;, Vi) =(V8V). Now de-
fining b=V_a, 7=V, w and using Eqgs. (1) and (2)
we have

(4)

Along Py(7), MTW derived the connection coef-
ficients and the first-order partial derivatives to
be

Foaa: 1‘\(!3;: 0

r5?6= al all along Py(7), (5)
i -1 ik

Ies=—w €’

&334 —2a5 all along Py(7). (6)
g7 —edr gyl

Differentiating Eqs. (5) along the trajectory
with respect to 7 and using Egs. (4), we have

I, jz.‘"o
F ;6,8: bJ(T)+€jm(lk(T)wl(7)

ri;a,f —ni(T)ei?®

all along P(7). (7)

From the definition of the Riemann tensor,

| PR LIRS L ,+(r°..r by T TR,

~
1O,V ®yo

(8)

Combining this equation with Eqs. (5), we find

- - - -~ f'Z’N

1"’» e bi(7) + 2a(T)wH(T)e "
ﬁoo _RM—— _nzéjik+aial
o £ 010

+wle! - 5w ? all along Py(7). (9)

= i J
r 36.?_Rojoi e
rj..,. w2 Rosanitl €-~~ J
RO, 1 jrio

I3

To express I‘“ 2 ¢ i terms of R, oo, A, b w, and

7, we follow Um method of Manasse and Misner?
and use the geodesic deviation equation

d?N* _dN°
o # 2 U +N°USUPR*  ,

+NOUSUKT?,, o+ T T* - T* T7,)=0,

(10)

where N=28/0N and U=8/8s of a one-parameter
family of geodesics ®(N, s), and where s is an af-
fine parameter along the geodesic (R(N s) for N
fixed. The family of geodesics we want to con-
sider is P(t; oy s) =P(T;n; s) where n= a'e The
case N=9/87 merely leads to part of Egs. (18)
The case N= a/aa‘ leads to the desired results.
In this case N=08/0a'=58/8x, hence N‘*sﬁi“
Expanding the second term in the geodesic devia-~
tion equation in powers of s, we have

26T ol =T, o [pyma’a? +0(?). (11)

Substituting (5) and (11) into (10), dividing (10) by
s, and then setting s=0, we obtain

(3r® gitR M.)[,,O(T,a at=g (12)
Since o can be arbitrary, (12) leads to

(%

U",;* J ,k !)IPO(T) = ~}(Rr* *""+R "'")IP ()~

(13)

This equation can be solved for ik 82 hl,, () by add-

ing to it one cyclic permutation and gubtrqctmv
another:

e o=

Uhpo

- 4R kil ;;k)ipo(f) (14)

From the definition of the Christoffel symbols,

guv,uzguurava +govruua s (15)

we find by differentiation that
o
Ean ;,,ipom NysT ;;,,gipo(f)“?gar 2ail Potn
5
g;; ;,IPo(T)F ;alpom

e facy *'pomraaa- (16)

oveB

Combining Egs. (5), (6), (7), (9), (14), and (16)
we have
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\
£35,66
Zep™0
e (BT IR T
e 2(b7 + e ®atw?)
= i 7
B ea= —€oah P all along Py(7). (]f7)
= o i & 7 ()2 i R
&35 5= —2R s —2afa®+ 26 ;(w )2 - 2ww
=2
&, 5=~ R+ By
1
&y~ By v B J

From Egs. (17), we obtain the second-order ex-
pansion of the metric at the point P(x°,x7%) as

ds®= ~(dx°P[L+ 2,57 + (a'2*)* + (0'%")?
2, 0.7 im
—~(w)%'x" + Ronon 72
+ 2dx°dx (€ contsTx* — ERonn 235 7)
ijr Olim

+ doc A (B — FRamnn P x™)
ii itim

+O{dx*dx"x x™x*%) | _ (18)
where s w', and R~§~~ are evaluated on the world
-~ adpy
line at time x°.

To calculate the coordinate acceleration of a
freely falling body, we use the geodesic equation
in the form

A 3 5 dxi\dx* dx®
A oo L Va g Yoo i
d(x0)? [y v dxo ) dxd dxo

=0 (19)

and substitute into it the first-order expansion of
the I'’s. Defining w'=dx'/dx®, the velocity mea-
sured by the accelerated rotating observer, the
resulting coordinate acceleration is

dzxf
d(x0)?

-
i

=—(1+3- R (@ x (@xD) - (AxF)

~2( X W)* + 2(F- W)(w X X}
+w![23- (@ %X%) +_2'§-{x./(1 —2-X)+ EK]

7 ol
xR 2xtw Rwo

T %x'w'w’w"lﬂagzr +0((x")?). (20)
To express d%'/d(x°? in terms of the velocity
»? observed in the local coordinates of an unac-
celerated nonrotating observer, we use the rela-
tion

—

Ww=V(1+3°%) -—5><3E+O((xi)2), (21)
which is obtained by integrating Eq. (20).
Substituting Eq. (21) into (20) we obtain

&t

d(x0)®

= —(1+ A %)at+ 2@-)(1 + 7Rt
+ (B B0 =21 +7-B) (0 X )P (@ X (0 xR

(XD —Resnnstt — QR nipy?
(nxXX%) Roimx ZR,-,“)" v

N p R , .
+ 5 Renen X 090F 4 2R enmnx 00! 4 E Rannn 0t pd R
iihi 5301 Y7

+0((x9)?). (22)

The various terms in this equatioh are inter-
preted in Table I. Notice that to the order calcu-
lated there could be no coupling between the Rie-
mannian terms and the ¢, w, b, and 77 terms,
Therefore, we can also derive the above results
by combining a simpler special-relativistic de-
rivation with the results for a freely falling ob-
server in curved spacetime.

The results presented in this paper may be use-
ful in analysis of tidal deformation of objects due
to various types of close encounters, or in analy-
sis of gravitational wave detectors and laboratory
experiments where the size of the apparatus is
small compared with inhomogeneities in the gravi-
tational fields being observed. A Newtonian phys-
cist can think about the terms in Eq. (22) or Table
I as simply Newtonian forces, as described in box
37.1 of MTW. Moreover, a Newtonian physicist
can use the equation of motion (20) or (22) to ana-
lyze mechanical apparatus in an experimental lab-
oratory. All he needs to do is multiply this equa-
tion by the mass of a mass element in his appara-
tus, and add it linearly onto the forces that would
be present if the apparatus were at rest in an in-
ertial reference frame (see, e.g., box 37.1 of
MTW).
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TABLE L. Various inertial and gravitational effects in coordinate acceleration.

Term in coordinate

Effect acceleration d%*/d (x%)?
1. Usual inertial acceleration : —a! Z
2. Usual Doppler (“gravitational”) red-shift —@& %)t
correction to term 1: physical processes
“overhead” run fast compared to
observer’s proper time
3. Special-relativistic (SR) correction to +2@3 -Vt
acceleration [due to y=1/(1 —2177
4. Red-shift correction to term 3 +2@E V)@ X!t
" 5. 3(red-shift)/ar correction to acceleration + 6 Fpt
6. Coriolis acceleration -2(w x¥)!
7. Red-shift correction to term 6 —2( X xV)}
8. Centripetal acceleration (Ref. 10) + [ x @ x%))F
-9. Coordinate acceleration if w changes — @@ x%)}
10. “Electric-type” (usual) gravitational effect ~R%or . ..
11. SR correction to term 10 " +2RyGRx?
12. “Magnetic-type” gravitational effect ZR;-‘;;;,x'vy
13. SR correction to term 12 + 2Ry xw oot
14. “Double-mametic” gravitational effect +5RGX viy®

In actual experiments, while the second-order
inertial effects are small, so are the Riemann
forces which are being observed. Terms 2, 8,
and 9 in Table I, for example, have a dependence

on the coordinates similar to the usual R.... accel-

N 601
eration, term 10; likewise, terms 5 and 7 resem-

ble the “magnetic” Riemann effect, term 12, and
term 4 resembles terms 11 and 14. In typical
resonant-device experiments, for instance, one
might be concerned about noise fluctuations in the
acceleration of gravity: If g=g,(1+€ cosw?), then
the second term (red-shift) gives an acceleration
which simulates an R; ., of magnitude 2g,%.
Thus, one might ask that the dimensionless amp-
litude (metric perturbation) of the wave k (hw?

- IRE;?EY') be greater than

%Y . €
h’“‘“N(:og) €=107 (v/1 Hz)? ’

where v is the frequency of the wave. ¥or the
Crab pulsar, which is estimated' to produce
n~107%" at 60 Hz, one thus would want to reduce

€ below 107 (or orient the apparatus horizontally).
Second-order accelerations due to angular motions
may be more serious; there are no good measure-
ments at present of angular seismic noise.*?
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CHAPTER VI

NUCLEOSYNTHESIS IN STARS WITH NEUTRON-STAR CORES
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ABSTRACT

In this paper, I investigate nucleosynthesis in a star of total mass
16 Mo with a degenerate neutron core (Mcore = L MO; Rcore = 10 km). Kip
Thorne and Anna Zytkow (1975, 1977) performed preliminary analyses of
stellar models with neutron-star cores. They found that an object with
total mass 210 Mo required nuclear energy generation to support its
extended, red-giant-like envelope. Thorne and Zytkow did not, however,
study the details of the nucleosynthesis. To do so, I haﬁe generated a
family of Newtonian stellar envelope models. The envelopes are convective
all the way down from the photosphere to just above the central neutron
star's surface. |

I divide each envelope into two zones: a 'burning zone'" surrounding
the degenerate core, and a "diffusive zone'" extending up to the photosphere.
The important nuclear reactions occur mainly in the hot, dense 'burning
zone'", which consists of a single convective cell between radii of 10 km
and 12.5 km. I treat the cell as a '"conveyor belt", which carries matter
down and up again to the interface at 12.5 km, where it is mixed with
material brought down by higher convective cells. I compute the non-
equilibrium nucleosynthesis in the "burning zone'" using a program which
keeps track of all (24) significant nuclei with Z < 11 and includes a
complete set of (63) reactions for temperatures of under 2 x 109 K.

To follow the convective transport of material in the envelope above

the "burning zone's' conveyor belt, I use the Despain (1976) diffusion

approximation. In the "diffusive zone'", therefore, a set of linear,
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second-order, ordinary differential equations coupled by beta decays
governs the abundances of the various isotopes as functions of radius.
In a young star with a degenerate neutron core; thé outer envelope will
still have some standard ('cosmic'") set of isotopic abundances; as the
star evolves, diffusive tramnsport of nuclear reaction products will
gradually change those abundances. I solve the system of diffusion
equations with boundary conditions given by the '"burning zone'" at the
bottom and the initial envelope abundances at the top of the "diffusive
zone''.

A self-consistent stellar model must generate enough luminosity by
nuclear reactions to support its extended envelope. I found no such models:
nuclear reactions never produced more than ~0.04 of the required luminosity.
Major causes of the low nuclear luminosity are the small amount of mass
available in the '"burning zcne'" and the low rate at which convection
(diffusion) mixed in "fresh' material to be consumed.

I discuss the possibility that "unconventional" ultra-high-temperature
nucleosynthesis (involving significant leakage into nuclei with Z >11)
can provide enough luminosity to support self-consistent models. If that
possibility fails, then a massive star with a degenerate neutron core

is likely to collapse, on a free-fall time scale, to form a black hole.
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NUCLEOSYNTHESIS IN STARS WITH NEUTRON-STAR CORES
I. INTRODUCTION
A, The Problem

Kip Thorne and Anna iytkow (1975, 1977, henceforth referred to as TZ(L)
and TZ respecﬁiﬁely) began an investigation of spherically-symmetric equi-
librium models of stars with massive, extended, nondegenerate envelopes
surrounding degenerate neutron cores. A somewhat similar problem is that
of stars with white-dwarf-like degenerate electron cores. 1In both cases
(electron core and neutron core) solutions for the structures of extended
envelopes yield models of red giant or supergiant stars.

The neutron-star-like cores considered by TZ involve one additional
complexity beyond models of ordinary red giants. Gravitation is extremely
strong near the degenerate neutron core; the dimensionless Newtonian

potential is

GM, M 10 km
UG - S W] 0

1M
® core

General-relativistic effects therefore have a significant influence

on the star's structure. Thorne (1977) derived relativistic equations of
stellar structure, including a relativistic generalization of the mixing-
length theory for convection. These equations were used in the TZ work

in strong-gravity regions where Newtonian theory became an inaccurate
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approximation.

TZ treated nucleosynthesis and nuclear energy generation in their
models using standard formulae and reaction rates (Cox and Giuli, 1968).
They pointed out, however, that these formulae and rates might begin to break
down and become inapplicable under some of the extreme conditions which
occuned in the TZ models. 1In particular, in one class of models which
eritically depend on nuclear burning for their luminosity, TZ warned that
significant changes could result from a more general treatment of nucleo-
synthesis that included effects omitted from their calculations.

In this paper, I report on my attempt to give the more general treatment
called for by TZ. (I have carried out this work initially in collaboration
with Michael Newman, Kip S. Thorne, and Anna Zytkow, and later alone.) In
§ I.B. of this introduction, I will review the results obtained by TZ for
their stellar models with neutron-star cores. Section I.C. comments on the
origin and evolution of these objects, and on possible observational tests
of the class of models that I will be studying. In 8 I.D., I describe the
method TZ used to treat nucleosynthesis in their models; § I.E. discusses
my nucleosynthesis approach. Section I.F. summarizes the results which
emerge from this work, and mentions several possible future extensions and
improvements to my treatment of the problem.

The remainder of this paper presents the details of my analysis. 1In
& II of this work I discuss the Despain (1976) diffusion approximation and
its use in modeling the convective mixing of the products of nuclear burning
in stars. Section III describes my simple "conveyor belt" method for
approximately treating the hot, non-equilibrium nuclear reactions occuring
in the bottommost convective cell of my '"supergiant' stellar models, just

above the surface of the neutron star core. In §1IV, I explain the
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nucleosynthetic network which I used to compute the energy generation and
isotopic abundance evolution rates. Section V presents the results of the
diffusion calculations for a wvariety of models which I worked with. Section
VI gives the results of my nucleosynthesis calculations, and § VII contains

suggestions for further investigation.
B. Overview of the Thorne—Zytkow (1977) Models

T applied the relativistic equations of stellar structure to the case
of a massive star with a neutron core. They sought models with extended,
stable envelopes. From the outside, the TZ solutions look very much like
extreme type-M supergiants, with photospheric temperatures of 2500 K to
3200 K and radii of 900 Ro to 1300 Ro' Below the visible layers, the stars
have convective atmospheres extending down to near the central neutron-~
star core.

A model built by TZ has at its center a core with mass 1 M0 and radius
10 km. This core, T calculated, has essentially the same structure as a
naked neutron star; the surrounding envelope has almost no effect on the
hydrostatic equilibrium solution for the degenerate central mass. TZ also
found that the core is separated from the envelope above it by an "insu-
lating layer" of degenerate—electrog matter, which allows £ 100 LO to leak
through. Thus, the degenerate neutron core has a negligible effect on the
thermal properties of the surrounding envelope. The only significant
coupling between the core and the remainder of the star is via the core's
gravitational field.

Around the central object, TZ placed extended envelopes of various
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masses, ranging from 2 Me to 25 Mo' The models that resulted fell into two
distinct classes. One class, which TZ called "giants", had total masses
<10 M.o and derived their luminosities mainly from the steady release of
gravitational potential energy by gradual accretion onto the central neutron
star. The second class, which TZ named "supergiants'", had masses 210 Mb
and produced their luminosities mainly by nuclear reactions. Below, I
review the characteristics of these two classes of models, as discovered
by TZ.

Figures 1 and 2 illustrate the structure of stars with degenerate
neutron cores. (The figures are taken from Thorne and Zytkow (1977).)
Consider the features of the stellar interior of a ''giant' model shown

inside the box of Figure 1. Denote by r,6 the radius of the "knee", the

K
abrupt transition between the convective, radiation-pressure dominated,
adiabatic "envelope'" and the nearly-isothermal "halo'" surrounding the
central degenerate core. On the right edge of Figure 1 the distance (in

meters) above or below r, is marked; the left edge shows the local density

K
(in g cm—s). The numbers given are for a typical "giant" model.

Moving from the bottom up, one observes first a central isothermal
core of degenerate neutron material, surrounded by a thin "insulating layer"
which isolates it from the remainder of the star. The insulating layer
extends up from the point where neutrons cease to "drip" off the nuclei to
the top of thé region of electron degeneracy (the '"Degenerate-Nondegenerate!
line at rK—MO m). Within the degenerate insulating layer some pycnonuclear

reactions (marked "C Shell') occur, but they do not generate a significant

amount of luminosity compared to other'processes going on in the star,
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Above the rK—hO m line, one moves into the "halo'" region of the stellar

model. Here, matter is non-degenerate and nearly isothermal; its density
ranges from f~106 g Cm—B down to ~1 g cm-S° The halo is almost identical
to the atmosphere of a normal, wyoung mneutron star, with a scale height
of only a few meters. Within the halo of a 'giant'" class model there is
some nucleosynthesis (in the layers marked "H Shell" and '"He Shell") as
the matter in the halo slowly settles down toward the core. The energy
released by nuclear reactions, however, is small compared to the luminosity
due to accretion of gas. That luminosity is mainly created in the layer
between e and a few scale heights below Ty (marked "Gravitational Energy
Release'")., Below the region of energy release, there is almost no sign
that a massive, extended envelope surrounds the neutron star; if the
envelope were removed, the halo would become an atmosphere, and would
not be changed significantly.

Above the '"knee" at o a fully convective envelope extends up to
the photosphere of the star. Figure 2 graphs the run of temperature
versus density for two specific envelope models: a 5 M@ "giant'" and a
12 M@ "supergiant". There is one important qualitative difference between
models in these classes. A "giant" has a mass in the range of 5 Me to
9 M@ and derives »96 % of its luminosity from accretion. A 'supergiant",
on the other hand, has a mass of over 11 M_and gets <7 % of fts lumi-
nosity from accretion; the bulk of the '"supergiant'" star's energy comes
from hydrogen burning. (Models of under 5 M0 had envelopes unsFable against
ejection in TZ's calculations, and will not be discussed further here.)

As Figure 2 shows, the "knee" in a "supergiant' model overlaps the "H Shell"
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where the bulk of the hydrogen burning occurs. (The significance of that

overlap will be discussed in $ I.C.)
The luminosities of '"giant' models calculated by TZ range from

~10000 L to ~60000 L _ as the total mass of the model ranges from 5 M

to 9 Mo’ "Supergiant'" models have luminosities of ~70000 Lo (for an

11.5 M0 star) to ~120000 L0 (for a 25 Mo star). The accretion rate for

a ""giant" is M~2 x 10"8 MG yr-lg for a "supergiant', it is only

M ~0.15 x 10"8 Mo yrnl. Photospheric temperatures for '"giants" fall in

the ~ 2600 K - 2800 K zone; for "supergiants' the range is ~ 2900 K - 3100 K.
An interesting and important feature of models of stars with neutron-

4
star cores discovered by TZ is the existence of a ''mass gap''--a zone between

o 1" < 1 - 1"
the "giant" models (Mtotal"'g Mo) and the '"supergiant'" models
(Mtotal;zll Mo)’ in which no equilibrium stellar models can be found.

The mass gap, as TZ explain it, occurs because of the behavior of the
opacity of the gas at high temperatures. Electron-scattering dominates
that opacity; as the temperature increases above 107 K, the opacity first
falls (due to Klein-Nishina special-relativistic corrections to Thompson
scattering) and then, beyond 5 x 108 K, rises abruptly as electron-
positron pair production turns on. The Eddington critical luminosity is
proportional to 1/(opacity), and for convection to turn off as one moves
inward toward the core, it is necessary at some point for the luminosity
produced inside that radius to fall below the local critical luminosity.
(Ti include relativistic factors in their definitions of critical luminosity.)
TZ found two distinct ways for the local luminosity Lr to fall below

L and thus for convection to turn off: (1) in "giants", L rises

crit
8

and meets Lr (due to the falling opacity as T increases toward 5 x 10 K);

crit’
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or (2) in "supergiants", Lr falls and meets Lcr'

- (as one moves in through

the hydrogen-burning shell). TZ also discovered that no smooth transition
between these two classes 6f models was possible; mechanism (1) fails
before mechanism (2) is ready to take over. 1In the ”ﬁass gaé”, there
were no equilibrium models with degenerate neutron cores.

For an alternative view of the "giant'"-"supergiant! dichotomy, consider
starting at the degenerate neutron core and moving outward. In the hot,
almost isothermal "halo'" region, the gas-pressure scale height is typically
of the order of a few meters, so the halo density decreases rapidly as
one moves upward. In order for the object to possess én extended stellar
envelope, the scale height must increase to something larger, of the order
of the radius (~10 km). This happens in "supergiant' models at an abrupt
"knee" where hydrogen-burning supplies a luminosity nearly equal to the
Eddington critical luminosity, and the force of this luminosity on the plasma
nearly counterbalances the huge local acceleration of gravity. In "giants",
nucleosynthesis cannot provide the necessary luminosity to force the scale
height to increase, but accretion and gravitational energy release by
isothermal compression of the gas, in conjunction with increasing opacity

as one moves outward, do the job.

C. Origin, Evolution, and Observational Evidence for

Stars with Degenerate Neutron Cores

TZ(L) suggested several ways in which stars with degenerate neutron
cores might form in nature. One method might be by the collapse of the

degenerate electron core of a normal massive, evolved star, if such a
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collapse can take place without totally disrupting the envelope. Another
method could be supercritical accretion onto a normal neutron star in a
close binary system. A related procedure involves the coalescence of a
neutron star and its ordinary companion; the neutron star might be able to
spiral inwards and eat the core of its unfortunate neighbor, leaving an
extended envelope. This scenario was later explored in detail by Taam,
Bodenheimer, and Ostriker (1978). All of these mechanisms to form stars
with neutron-star cores are rather speculative; a rigorous calculation.

is difficult or impossible to perform at this time.

TZ discuss the probable evolutionary tracks of both "giant'" and "super-
giant'" class models of stars with degenerate neutron cores. A 'giant"
converts accreted matter to luminosity at N(GMcore/rcorecg) = 0.15
efficiency, as compared to the ~ 0,007 efficiency of hydrogen-burning
in ordinary stars and in "supergiant! class models. The fundamental limit
to a "giant" model's life is due to the upper mass limit on its central
neutron star. After ~ 5 x.lO7 years, a "giant!" model's core will have
accreted ~1 Mo and will probably have collapsed into a black hole. The
abrupt change in boundary conditions at the center of the star may have
a radical (if not catastrophic!) effect on the extended envelope. (Richard
Flammang and Kip S. Thorne (private communications) are working on questions
related to the structure of stars with black-hole cores.) A '"supergiant"
class model faces the limit imposed by exhaustion of the hydrogen in its
envelope; that exhaustion occurs after ,,107 years, and so a realistic
1ifetimelfor a "supergiant" is probably (a few) x 106 years--comparable to
the main-sequence lifetime for a star of this same total mass. (The time

scale for accretion to add 1 MO to the core is ~7 x 108 years. )
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As its core mass changes, an evolving '"giant" star with a neutron
core moves along a path in the (photospheric temperature) versus (lumi-
nosity) plane that lies close to, but just barely on the stable side of,
the Hayashi forbidden region. TZ produced a sequencé of equilibrium
models, with constant total mass, that follow the evolution of a 5 Me
"giant"., They found that as the core mass increased from 0.4 M9 to
1.625 M@, and the core radius correspondingly shrank, their model's
luminosity increased from ~25000 LO to =~ 63000 LO and its photospheric
radius increased from « 700 R0 to ~ 1160 Ro'

The external characteristics of TZ's models of stars with neutron
star cores are very nearly identical, in most respects, to the charac-
teristics of ordinary red giant stars (which have white-dwarf-like cores).
"Giant" class TZ objects have a longer evolutionary time scale, and have
imperceptibly lower photospheric temperatures than do normal red giants.
These differences are not easily observable, however.

TZ did find one possible distinguishing feature for their "super-
giant'" models: since convection links the hydrogen-burning shell and
the surface, '"'supergiant'" objects should rapidly develop quite exotic
photospheric abundances as the‘products of nucleosynthesis are mixed
upward. Spectroscopic observations, especially of molecules in the radio
and infrared, can measure isotopic abundances in the atmospheres of red
giant stars. One might thus hope that a massive star with a neutron-star
core would display an unmistakable signature in its spectrum, a signature

that would reveal the details of its internal organization.
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D. Nucleosynthesis in the Original Thorne-Zytkow Models

The models of "supergiant' class stars with degenerate neutron cores
calculated by TZ used a simple set of equations to estimate the energy
production due to hydrogen burning. TZ considered the "normal" CNO cycle:

12 13 g5 13 1k 15 g* 15 12
c™ (p,7) N F.c (p,7) N7 (p,7) O RGN (p,a) C7 .

Cox and Giulli (1968) give formulae (Eqs. (17.280)-(17.283)) for the
energy generation rate due to this cycle, under the assumptions that:
(1) the cycle has reached an equilibrium state, with the abundance of

each isotope in the chain constant, (2) the limiting (slowest) reaction

4

i 1
is N (p,7) O 5, and (3) there are no significant alternative chains
of reactions.

TZ warned, however, that the '"nmormal" CNO cycle might be a source
of error in their models; their warnings were justified. All of the
assumptions behind the Cox and Giulli (1968) formulae break down in the
TZ "supergiant" models. Material is convected into and out of the hottest,
densest zones, where the majority of (p,y) and (Q,p) reactions occur,
on time scales short compared to the time needed to reach equilibrium,
so one really must consider individual reaction rates and abundances
within the cycle. The temperature is much higher than the (few) x 107 K

14 15 . C o "
where N (p,7) O is the slowest process. In addition, important
) 13 1h ;
alternative processes such as N (p,7) O take material out of the
"normal' paths which dominate at lower temperatures.

A crucial limitation on the rate of CNO energy production at temper-

atures 'I‘"‘lO9 K and densities /5"'102 to 103 g cm™ is the time required
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for beta decays during the cycle. The half-lives of le, Olu, and O15

are 598 s, 70.5 s, and 122 s respectively. The most important strong
interactions ((p,7y), (y,p), (p,), (&,7), etc.) typically go to completion
in a few microseconds. After that initial burst of activity, everything
gets "hung up" waiting for beta decays to transform unusable isotopes
into usable ones.

So, as was prophesized by Ti, a more detailed treatment of nucleo-
synthesis in their "supergiant" models is required. I have begun this
work, with much help on the nuclear physics and computational techniques
from Michael J. Newman. I have built upon earlier ideas about the structure
of the nuclear burning region, which are due to Kip S. Thorne, Anna

Zytkow, and Michael J. Newman (private communications).

E. Nucleosynthesis--A Revised Approach for Thorne-Zytkow Models

The approach which I use to calculate nucleosynthesis in models of
stars with neutron cores is straightforward. I first choose a mass and
a radius for the central neutron star (typiéally 1 Me and 10 km)
and a total mass for the model (typically 16 Mo)' I also
choose values for the envelope composition, typically X = 0.7, Z = 0,03,
I then use a modified version of Paczynski's (1969) program for calculating
static, extended stellar envelopes in order to determine the curve in the
(photospheric temperature) versus (luminosity) plane along which a model

may exist. Choosing a particular value of luminosity, I take the unique
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envelope model thus determined.

I divide the envelope into two zones: a "diffusive zone" and a
"burning zone'. The "diffusive zone'" extends from the photosphere down
to a single pressure scale height above the bottom of the convective
zone, at a radius I call T, The "burning zone'" consists of that final
scale height, a single convective cell, from r down to the "knee"
at radius T where the envelope ceases to be convective. The
"knee" radius Tx lies at the outer edge of the '"halo'", a few meters above
the degenerate neutron core. Typically T, is 12.5 km in my models where
the "knee" radius Tx is 10 km. The "burning zone" is the hottest,
densest part of the convective envelope, and most of the nucleosynthesis
which occurs in the star occurs in that zone.

Consider the "diffusive zone'": Keith Despain (1976) derived a
diffusion approximation for treating the convective mixing of the products
of nucleosynthesis in a star. I take the values of turbulent velocity,
scale height, and density as functions of radius from the chosen envelope
model, plug them into the diffusion equations, and apply Despain's method
to the "diffusive zone'" above radius L By numerically integrating the
linear, ordinary differential equations of the diffusion approximation,

I determine the equilibrium relationships between the photospheric
abundances, the abundances at radius o and the flux of each isotope
across the sphere of radius . I ignore the strong nuclear reactions
which occur in only small amounts above r; I include, however, beté

decays of unstable isotopes.

Consider next the "burning zone'": I treat the single convective cell
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comprising the "burning zone'" as a conveyor belt, which carries material
from radius r, down to rK and then back up.. to ro. At ro I assume
that there is essentially complete mixing between the material at the
bottom of the '"diffusive zone'" and at the top of the '"burning zoné".
Thus, if an isotope comes up from the "burning zone" with abundance

Yup and is present at radius r, of the "diffusive zone'" with abundance
Yo’ then the composition of the material going down for the next pass
through the "burning zone'" is simply (YO + Yup)/g‘

Most of the mass in the '"supergiant" class of models
resides far out in the extended stellar envelope. Nuclear
burning changes the isotopic abundances in this reservoir only
slowly compared to the time scale for diffusion throughout the envelope.
Hence, for long periods of time the star is in a "quasi-eqﬁilibrium” state,
where smooth radial abundance gradients carry 'fuel' down to the "burning
zone'" and transport '"wastes'" out to the photosphere. My models assume
that the star has reached this quasi-equilibrium state.

The nuclear reactions which occur in the "burning zone'" are computed
using my adaptation of a program originally developed by Michael Newman.
The program as used for this work treats a set of 24 low-atomic-number
(Z €£11) isotopes; it considers 63 distinct reactions among those isotopes.
No assumption of "equilibrium" condition or low temperature is imposed
by the nucleosynthesis program. The reactionlrate formulae are taken
from Fowler, Caughlan, and Zimmerman (1975), Wagoner, Fowler, and Hoyle
(1967), Wagoner (1969); and from Michael Newman and William A. Fowler
(private communications).

The algorithm which I follow in order to generate a complete TZ
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"supergiant' model can now be described succinctly. Consider the list
of abundances of each of the 2L isotopes of interest as a 2h-dimensional
vector Y. The photospheric abundances ?? are related to the abundanées
deep within the star by the Despain diffusion equations. The set of
abundances ?up coming up out of the '"burning zone' are determined (via
conveyor-belt nucleosynthesis plus the complete-mixing assumption) by

the abundance §kr0) = ?; at the base of the diffusive zone.

)5

Given a particular envelope model (which assumes some luminosity Lenv
the diffusion equations determine the relationship between ?b, ?;, and
§;p' The task now remaining is only to adjust ?o until the output ?;
from the nucleosynthesis network-solving program is such as to give
some desired ?é.

For specificity, I consider the situation soon after the formation
of a star with a neutromn-star core, when the stellar structure has
settled down to its quasi-equilibrium state, but before there has been
time for nucleosynthesis to significantly alter the abundances of isotopes
in the bulk of the stellar envelope. The photospheric abundances ?é
will have some standard set of values. (In this work, I have set ?b
equal to Cameron's (1973) "cosmic" abundances.) For a given model, I
try various ?6 until a choice is found which produces the desired‘§p.
When that correct ?o is found, the nucleosynthesis program tells me
what the actual luminosity Lnuc produced by strong interactions and by

‘s, : ¢ ¢ : G i 2
beta decays is If Lnuc is not equal to the Lenv hypothesized initially

in the construction of the stellar envelope model, I go back to the beginning,



102

guess another Lenv’ generate a new envelope, and repeat the rest of the
process.
Ultimately, when a value of Lenv is found which agrees with the cal-
‘ —> -—
culated Lnuc’ I have a self-consistent model. The values of Yo’ Y

up

and ?é then imply a flow rate for each isotope, either out of the '"burning

J

zone" to the envelope reservoir, or down from the envelope into the
"burning zone'. These flow rates, and the envelope mass, give a time
scale for the photospheric abundances to change; equivalently, they

specif ? :
P y p

F. Results of Revised Nucleosynthesis Treatment

of Thorne-Zytkow (1977) Models

Using a '"conventional" network of low-Z nuclear reactions, I have
tried and failed to produce enough nuclear luminosity Lnuc to make a self-
consistent equilibrium model of a 16 M0 "supergiant! star with a neutron core
I have found three major sources of difficulty in my attempts to
generate models. First, the structure of the stellar envelope, as deduced
from integrations inward from the photosphere, is such as to hinder the
mixing of material into and out of the hot, dense '"burning zone'' where
most of the nuclear reactions occur. Near the bottom of the convective
envelope, the isotopes of carbon, nitrogen, and oxygen which help catalyze
the conversion of hydrogen to helium typically occur at abundances of under
2 per cent of their photospheric abundances. Contrariwise, the waste products

of nucleosynthesis, beta-unstable species which cannot undergo further
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strong interactions until after they decay, accumulate in large amounts

at the bottom of the convective zone. They form the second big difficulty
that faces these models: the need for several beta decays per cycle of
the reaction chain that burns hydrogen to helium. In the standard "hot
CNO cycle'", the necessary decays of Olh and O15 take ~100 s each; the
remaining reactions require a negligible time in comparison. The third
hangup is the small volume (and small amount of mass contained in that
volume) wherein nuclear reactions are mainly restricted to occur. Because
of the rapid fall-off of density and temperature-as one moves up from

the surface of the neutron star, and because of the strong dependence of
most reaction rates on density and temperature, the majority of pucleo-
synthesis occurs in the thin "burning zone' near the bottom of fhe con-
vective envelope of the star. Within the other constraints imposed by

the stellar structure, there is not enough mass present to allow nuclear
reactions to provide more than a few per cent of the necessary luminosity
to support an equilibrium "supergiant' model.

My failure to create self-consistent models maintained by nuclear
energy generation does not, of course, prove the impossibility of such
objects in nature. The magnitude of the deficit in generated luminosity
(a factor of 20 to 100 short of requirements) does, however, suggest that
significant modifications are needed to my 'conventional' (low-Z) approach
to the nucleosynthesis problem. Though my results are negative, I present
the details of them here for several reasons.

First, there is a possibility that some fairly straightforward modi-

fication or extension of the methods described here can achieve success,
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that is, self-consistent models of "supergiant" Thorne-Zytkow stars. One
candidate approach is to enlarge the network of nuclear reactions under
consideration. Stanford Woosley and Richard Wallace (private communi-
cations) are now exploring the details of nucleosynthesis in a hot,
hydrogen-rich enviromment; much of their work, when completed, may be
applicable to the conditions inside '"supergiant!" class models. There

is reason to hope that the enlarged network may indeed produce the
additional needed luminosity (see §VII for discussion).

Another, less attractive, possibility is that local collapses and
explosions ("relaxation oscillations" in and near the burning zone) might be
able to produce enough luminosity to support a star with a degenerate
core, where an equilibrium model could not exist. There are, however,
analytic suggestions (discussed in § VII) which cast doubt on this
idea. In any case, the computational complexity of a time-
dependent and possibly multi-dimensional dynamic model gives one reason
to hesitate and examine other techniques first.

A major reason to write up the details of my efforts, of course, is
to expose to other people the ideas behind this approach to modeling
nucleosynthesis in stars with degenerate neutron coxes. Possibly my
failures will suggest improvements and will stimulate new assaults on
this problem, which will ultimately lead either to successful models or

to rigorous impossibility proofs.
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IT. STELIAR ENVELOPE STRUCTURE AND THE DESPAIN (1976)

DIFFUSION APPROXIMATION

Given a total mass and luminosity for a star, and given a mass and
a radius for a degenerate core, standard stellar modeling techniques
(e.g., Paczynski, 1969) can clothe the core with an extended envelope
of some desired composition. For models of stars with neutron
cores, when the total mass (core + envelope) exceeds about 10 Mb the
resulting envelope is convective all the way down from the star's photo-
sphere to near the core. 1In the 16 Mo models which I have investigated,
near the bottom of the convective envelope the temperature is typically
T A~1.8 x 10? K and tﬁe density'/>»w500 g cm—3. Under these conditions,
radiation pressure dominates gas pressure, and the equations governing
the stellar structure have simple, accurate analytic solutions for the
temperature and density as functions of radius.

The derivation of the analytic formulae for T(xr) and fKr) is
straightforward, and the results will be useful throughout this paper.
Consider the radiation-dominated convective region near the bottom of
a TZ "supergiant" envelope: the entropy per unit mass s:SAaT3/3/> is
very close to a constant. It is convenient, instead of using s, to
express this adiabatic relationship between T and P in terms of the
(small) quantity Bg’ the fraction of the total pressure due to gas.

byoy-1
1 h = p = (pkT T _
It follows that B (p /pmp) (aT"/3)"*+ =

P =

gas/ total Pgas/Prad'n
= hk/pmps, where p is the mean molecular weight of the gas. (A good
approximation in a region of complete ionization where the abundance

of elements beyond helium is small is p = 2/(1+3%X+0.5Y) (Clayton, 1968,
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Eq. (2-15)); X and Y are the mass fractions [g g—l] of hydrogen and
helium, respectively.) The result for the density as a function of
temperature is
' 3 3
m aT T
By M X Bg\/u )

P o= = 180 g cm = -
3k 10 0.6/ \ 10" K /

(1

°

The (Newtonian) equation of hydrostatic equilibrium is
dp/dr = —GMr/D/rg, where Mr is the mass inside radius r. To an
exceedingly accurate approximation, Mr = Mcore in the region just
above the degenerate neutron core; within 106 neutron-star radii of
the center, the envelope contributes only 10"3 Mo to the value of Mr.
Since P QzPrad'n in the region of interest, substituting aTL/S for P

and using p from Eq.(1l) gives dT/dr = —GMngmp/hkrg, which can be

solved to yield, near T, (=12.5 km) and Ty (= 10 km)

G M B um M /B \/ m \ [ 10 km
T - core "g P e o0 % 109 K ( core \ %2

L r k 1 M0 /{ 10 0.6/ \ «r .
(2)

(A constant of integration added to this solution becomes important at
r» L but is negligible at r s.ro.) The pressure scale height is
H = -(d(1ln P)/dr)-l = -(d(ln(zﬂ:“/zﬁ)/dr)"1 = r/k.

The envelope models analyzed in this work were generated using
Kip Thorne and Anna Zytkow's modified version of Paczyhski's (1969)
Newtonian program GOB. This program takes as inputs the star's total
mass, luminosity (excluding neutrinos), photospheric temperature, and
isotopic abundances (mass fractions X and Y). It then integrates the
Newtonian equations of stellar structure inward, and stops when the

density or temperature exceeds some preselected limit. GOB uses the
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standard mixing-length theory to treat convection; it assumes a constant
luminosity Lenv’ and thus does not calculate nuclear energy generation
rates as it integrates inward. Opacities are interpolated within a

table including H,_ O effects (which are important near the photosphere),

2
and the equation of state used is analytic and takes account of pressure
due to gas, free electrons, and radiation, the ionization of H, He,

and He+, and the dissociation of H A "gray atmosphere' model is used

o
at optical depths of less than 2/3. (For more details of the program
GOB, see TZ, 8§ Il.c., and Paczyfski (1969).)

By iterating, for a given choice of total mass it was possible to
determine the curve in the Lenv—Tp plane along which an inward-going
integration by GOB left a 1 Mo central core of 10 km.radius. Choosing
a particular point on this curve corresponds to choosing a particular
envelope model. The actual equilibrium star in nature will be the
model on the curve which generates the correct luminosity, by nucleo-
synthesis or accretion, to satisfy its envelope's demands.

In the models under consideration in this paper, gravity is exceed-
‘ingly strong near the neutron-star core (GMcore/rKC2 ~ 0.15) and Newtonian
results which are accurate at large radii give errors as large as a
factor ~ 2 for effects near Ty Nevertheless, for the-calculations of this
paper fully Newtonian models are sufficiently accurate; the ultimate
failure of "conventional" nucleosynthesis described in 8§ VI is so
severe that general-relativistic corrections are unlikely to change the
results significantly.

The standard subsonic mixing-~length theory of convection used in

the models calculated for this work is discussed in detail in Cox and



Giuli (1968, Chapter 14). 1In my models, the mixing-length £ was simply
set equal to the pressure scale height Hp'
Along with the mixing-length theory of convection, a related theory
used in the calculations reported here is the Despain (1976) diffusion
_approximatioﬁ for convective transport of isotopic abundance inhomoge-
neities. This approximation replaces the turbulent bulk motions of
material, which have length scales ranging from microscopic up to a
scale height or so, with a single diffusion parameter D(r) and an
ordinary differential equation. Given a mean turbulent velocity <v>
for the largest convective cells at a given radius (as computed by GOB)
and given their length scale / (assumed equal to HP), it is straight-
forward to derive the result that the abundance of a stable isotope Yi
[in units of moles g-l] obeys the equation
oY, >
LG vy (3)
dt P

Here, the diffusion coefficient D is D = {v)/. This diffusion approxi-
mation is valid for times long compared to Z/<v> and for lengths large
compared to /, and as written above does not include non-diffusive
changes in Yi (such as might be caused by nuclear reactions or

beta decays).

The time-dependent diffusion equation (3) is more than was needed
in this work. After going through some initial traﬁsients, depending on
how the system was formed, a TZ model of a star with neutron
core should settle down into a 'quasi-equilibrium'" state. The hydro-

dynamic and thermal timescales for these "supergiant'" objects are
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of the order of a few years, and a similar time is required for con-

vection (which transports isotopic inhomogeneities as well as energy)

to smooth out the radial abundance gradients.

energy generation to alter the photospheric abundances of significant

isotopes, however, are far longer--typically thousands to hundreds of

thousands of years. Thus, for long
be in a state where smooth positive
steady flows of fresh material into

below ro(one scale height above the

and negative gradients propel waste

periods of its life, the star will
gradients of abundances drive

the hot "burning zone'" of the star
bottom of the convective region),

products out to the photosphere.

The timescales for nuclear

Only gradually do the abundances in

the envelope reservoir change., 1In the

meantime, to excellent accuracy, the abundances Yi(r) are time-indepen-
dent at any chosen radius. The Despain diffusion equation for any
species whose abundance Yi is only governed by diffusion (no nuclear
reactions or beta decays) reduces in this time-independent case

to a simple relationship:

day

i
dr )

0= jr (rg/)D )

In the more general case of a species '"k'" which undergoes beta decay
at a rate Bk?E 1/’(7k (where ’Ck is the e-folding lifetime) and which

is produced by the decay of species "j" with beta decay rate Bj’ the

quasi-equilibrium abundance Y, is governed by the linear inhomogeneous

k
equation (Despain, 1976, i III.B., Eq.(21) and accompanying discussion)
-B.

I S
D k= D

1t

Yk i

jr (1n(r2f DY) Yk' (5)
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where Yk' = dYk/dr.
Note that as long as the diffusion approximation is only applied

in regions where there is negligible strong-interaction nucleosynthesis,

there are no complicated reaction-rate formulae in the system of equations;

different isotopes are only coupled by simple beta decays. In the

hottest, densest regions of the star, the "burning zone'" between r

and rK, nuclear reactions can no longer be ignored. In that region,

however, the diffusion approximation itself is a poor technique, since

the details of bulk convective motions are important to the temperature

and density that a given gram of matter experiences as a function of time.

In place of the diffusion calculation, I use my conveyor-belt analysis

from r down to r,.
o K

To surmmarize, the Despain (1976) diffusion approximation (Eq.(5))
is used in this work to treat the tramsport by convection of isotopes
which are important in nucleosynthesis. The diffusion approximation is
applied to the numerically-integrated stellar envelope between radius
rO'E 12.5 km and the photosphere. Between r and the bottom of the

convective envelope at r, a nucleosynthesis program, to be discussed

K
in the following sections, calculates the local production of-energy and
the transformation of isotopes. Simple formulae (Egs.(l),(2)) describe
the temperature and density structure of the inner envelope quite

accurately; these formulae are used in the nucleosynthesis program

and in analytic estimation of effects in the stellar models.
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III. NUCLEOSYNTHESIS ON THE BURNING-ZONE'S '"CONVEYOR BELTM

Section I.B. reviewed the structure of TZ models of stars with
neutron cores. As Figure 1 shows, above the surface of the central
degenerate object a hot, approximately isothermal "halo'" extends up

to an abrupt "knee" at radius r_, where the temperature gradient becomes

K
adiabatic.

Above the "knee'" (which typically occurs only a few dozen meters
above the degenerate core's surface) the envelope of a '"supergiant"
class object is convective all the way out to the photosphere, at
rp ~7Xx 1013cm ~'103 Ro' As discussed in § II above, most of this
extended envelope can be accurately treated using the Despain (1976)
diffusion approximation to describe the convective transport of the
various isotopes of carbon, nitrogen, oxygen, etc. of importance to
nucleosynthesis. The zone nearest to the '"knee", however, where strong
nuclear reactions proceed on timescales short compared to a convective
cycle time Hp/vt = (pressure scale height)/(turbulent velocity) ~ 0.1 s,
cannot adequately be described by a diffusion equation.

So, I divide the stellar model's convective envelope into two zones:
a "diffusive zone'" extending down from the photosphere (at rp)lto the radius
T, and a "burning zone'" which reaches from T, down to the '"knee'" at Teo
where convection ceases. I choose the dividing radius r to be one scale
height above the kree: roEE rK+Hp(rK) = 10 km + 2.5 km = 1.25 x 106 cm,

The "burning zone" thus consists of a single convective cell. For

purposes of approximate model—building, I assume that the motion of
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matter in the "burning zone'" is in a simple, sinusoidal pattern

(""conveyor-belt'" motion):

ro + *k //ro Tk 2tvt \
r(t) = -+K COg | S . (6)
2 2 roo- rK./i

A single convective cycle requires time tCEE ﬁ(ro - rK)/Vt(ro)'
(In typical models, vt(ro) is of the order of 107 cm s"1 and &~ 0.1 8.)
At the beginning of each cycle around this convective loop, I assume
that there has been essentially complete mixing between material that
has come up from a previous cycle and material that has convected down
from higher ("diffusion-analyzed") loops. This "complete mixing'"
hypothesis is in accord with the mixing-length conception of convection,
in which a typical parcel of material retains its identity while rising
or descending a distance -~/ A'Hp, and then breaks up and blends with
its surroundings. (If mixing with material coming down from above T,
is less efficient than I have assumed, it will be even harder for
"fresh'" catalyst isotopes to get down into the "burning zone'", and
even harder for the star to generate the luminosity it needs to hold up
its envelope.) The implication of the '"complete mixing" assumpﬁion
is simple. TFor any given species, if the abundance coming up from the
"burning zone' is Yup and the abundance coming down to T, from higher
convective cells is Yo’ then the composition of the mixed material about
to go down again»is (Yo + Yup)/2.

To fairly high accuracy, as derived in § IT (Eqs.(1),(2)) the
radiation-dominated matter near Ty has T(r) = T(rK)(r/rK)"1 and

/D(r) = /o(rK)(r/rK)-B. At radius L then, the temperature has fallen



to 0.80 T(rK) and the density to 0.51 /O(rK). For a parcel of matter,

1 s_l) for a two-body process
involving distinet nuclei "1" and "2" is f)NA2Y1Y2<<12>> in the notation

of Fowler, Caughlan and Zimmerman (1975, henceforth referred to as

the reaction rate (in units of reactions g

FCzZ-II). The reaction rates " 12> " themselves are typically strong
functions of temperature; near 109 K the important reactions in the

"hot CNO cycle" run at rates proportional to T" with n = 1.8 to 5.1 .
Thus, at r, these reactions are down to between 33 % and 16 %

[ = /D(ro)T(ro)n4/3(rK)T(rK)n ] of their rates at T and it is a

fairly gocod, though not extraordinarily accurate, approximation to ignore

the reactions which occur above r0 in the "diffusive zone'".
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IV, NETWORK OF NUCLEAR REACTIONS USED

In my nucleosynthesis calculations, I adapted a computer program
originated by Michael J. Newman. This program treats a set of 24
low-atomic-number ( Z £ 11 ) isotopes; it considers 63 distinct reactions
among those isotopes. Tables 1 and 2 and Figure 3 summarize the nuclear
species and reactions included in the program. The reaction rates are
taken from Fowler, Caughlan, and Zimmerman (1975, "FCZ-II"), from
Wagoner, Fowler and Hoyle (1967), from Wagoner (1969), and from
Michael Newman and William A. Fowler (private communications). (Beta
decay rates were also checked against a General Electric ''chart of the
nuclides" (1972).) Table 2 indicates the source of each reaction rate;
Figure 3 illustrates, in the format of a Segré chart, the isotopes and
reactions of Tables 1 and 2.

The choice of isotopes and reactions included in the nucleosynthesis
program was guided by two (somewhat contradictory) principles: completeness
and computational efficiency. Completeness suggests that as many
reaction rates as possible be in the program; each rate typically requires
several floating-point arithmetic operations to evaluate, even if the
rate is only being interpolated within a previously generated table.
Completeness also pushes one toward the inclusion of as many distinct
isotopes as possible. Each additional species, however, adds one unknown
and one equation to the system of equalities which must be solved in
order to follow the nucleosynthesis as time progresses.

As a compromise between completeness and computational efficiency,



Michael Newman and I chose the isotopes and reactions of Tables 1 and

2 and Figure 3. We included all the important isotopes and published
reaction rates available involving nuclei with Z<1l; we believe that

the network is therefore reasonably complete and applicable at tempera-
tures of less than 2 x 109 K and densities less than 10llr g cm—s. (At
higher temperatures or densities, reactions not included in the nucleo-
synthesis program may take material out of the pathways contained therein.)
Stanford Woosley and Richard Wallace (private communications) have recently
done work on ultra-high temperature nucleosynthesis in a hydrogen-rich
environment. Their (unpublished) findings indicate that some reaction
rates leading to nuclei with Z >11 occur at rates significantly higher
than those used in our calculations. Sections I.F. and VII discuss

the work of Woosley and Wallace and its implications for models of

‘'supergiant" class TZ objects.

Of the 24 isotopes used in this work, 7 are ""'sinks'', that is, isotopes

20

away from which no reaction paths lead. The "sink" species are n, Ne”,

Ne?! e, Na20, we?l

, and N322. The presence of "sinks" is not

necessary computationally, but does serve several useful purposes.

The '"sinks" among the Na and Ne isotopes terminate the reaction chains

that might lead beyond the Z<1l range. If products of nucleosynthesis
begin to "pile up'" to excess amounts in "sink' isotopes, it is a sign

that further reactions may be important. (Such an accumulation in

Ne20 is beginning to be visible in the Lenv = 89750 Le, T(rK) = 1.76 % 109 K

model of Table Lj; it is discussed in detail in § VI.) Finally, the
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omission of reverse reactions leading out of "sink" species saves

some computer time and does not result in significant errors in the
calculation of the luminosity produced by nuclear reactions. (Since
most of the reaction paths away from the '"sink" isotopes are endothermic,
failure to include the reactions would at worst cause an overestimate

of the luminosity; no such excess luminosity was seen in this work.)

The program which calculates nuclear reactions in 7 "supergiants"
takes as input-?(ro), the vector of abundances for the 24 isotopes at
radius L) and the values of Ve (turbulent velocity), /D (density),
and T (temperature) at r  as computed by a stellar envelope integration.
As discussed in &% II and III ébove, accurate analytic expressions for
T(r) and /)(r) permit the temperature and density to be calculated as
functions of r, given their values at T Equation (4) gives a simple,
reasonable function r(t), which the nucleosynthesis program then uses
to determine the run of temperature and density T[r(t)] and /s[r(t)]
encountered by a one-gram parcel of material as it moves down from
T, to Ty and back up during one (sinusoidal) convective loop.

- -3

Taking Y(ro) = Yo as the initial set of isotopic abundances,
the program solves the coupled system of 24 ordinary, first-order.
differential equations by stepping along in time. At time tC after the
beginning, r(t) is equal to r again and a single convective cycle
has been finished; the resulting vector of abundances is called ?;p.
Under the hypothesis that there is complete mixing at r, between material

coming up from the '"burning zone" and material coming down from the
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"diffusive zone", the input abundance to the next cycle is (?; +-§Lp)/2.

A parcel of matter beginning at r with that abundance vector is there-
w5,

fore sent down, a new Yup comes out a time tC later, and the process

is repeated until Q;p ceases to change significantly. (Three iterations

typically suffices to converge to within 10 %.)

The above summarizes my treatment of nuclear reactions. In the
remainder of this section, I discuss a few details of the program which
actually does the integration.

As described in FCZ-II, under astrophysical conditions the inter-
action between two nuclei, 1 and 2, is governed by the quantity NA<:12> =
N <f0“v>>12, in units of reactions per second per (mole cm-B). The

A
constant N, is Avogadro's number ( = 6.0222 x 1023 mole-l) and the

A
angle brackets denocte an average over a Maxwellian velocity distri-
bution of the cross section times velocity for the nuclei 1 and 2.
The quantity NA<fl2> is a function of temperature only; all density
dependence has been factored out.

The analogous quantity for a three-body reaction is N 2“<125> .

A
In the event that some of the reacting nuclei are identical, numerical
factors must be introduced to prevent multiple-counting; see FCZ-II
for details.

The equations which must be solved to determine the abundances

of the various isotopes are simple, first-order, ordinary differential

equations. For two distinct isotopes 1 and 2,

dy dy

1 2 -1
= = -pY. Y N, {12> [mole g ~ s
dt dt s

4 (7
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(Eq. (&) of FCZ-II). For the sometimes-important "triple-alpha"

reaction Hehﬁxx,y)cla,
dy_ ) -1
He 2 3 2 -1 -1
” = -, 72 Tacke My {ooa» [mole g~ s 1. (8)

Many reactions, such as Cle(p,y)NlE, proceed also in the reverse
direction, as in le(y,p)cle. FCZ-II tabulates the function "REV RATIO"
which is the ratio of (reverse reaction rate)/(forward reaction rate)
as a function of temperature. The "reverse reaction'" is assumed to
begin with the ground state of the reacting nucleus; as FCZ-II caution,
at high temperatures ( T ;;109 K ) it may become necessary to take into
account the population of excited (but low-lying) nuclear states.

Such effects, however, are typically small for the light nuclei used
in the calculations here.

For increased computational efficiency, instead of reevaluating
the reaction rates at every step during the convective cycle, my program
interpolates within a table of logarithms of the reaction rates. (The
rates "{12) ", etc. are functions of temperature only.) I take care
in the interpolation scheme to avoid any discontinuities in the inter-
polated values.

The important nuclear reactions in models of stars with neutron
cores proceed at vastly differing rates. A one-gram parcel of matter
starting at radius T which recently has had "fresh'" envelope material
mixed into it, finds the abundances of some of its constituent isotopes

changing extremely rapidly, on timescales typically shorter than 10"8 S.
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After a few of these fastest timescales, though, the most rapidly changing
species will have approximately reached their equilibrium concentrations.
Then, the overall rate of change of abundances will occur on a somewhat
longer timescale, governed by another set of critical reactions. As

these approach their equilibria, another set of yet slower reactions
become the fastest things left changing. Ultimately, the convective
motions of the fluid will define the relevant timescale for abundance
variations; the isotopes will move smoothly from one equilibrium set

of ratios to another as the temperature and density which they experience
is modulated.

Systems of differential equations (such as the nucleosynthesis
equations described above) which incorporate vastly differing timescales
are termed "stiff" systems. A naive application of standard methods
for the integration of systems of ordinary differential equations
(e.g., the usual Runge-Kutta or predictor-corrector techniques) will
not work well on a stiff system of equations (Gear, 1971; Acton, 1970).
Conventional methods become unstable when their time-step size exceeds
the shortest timescale in the problem, even when the terms in the
solution varying at that timescale have apparently all died away or
reached equilibrium. It would be botﬁ uneconomical and inaccurate
to take 108 steps in order to integrate the system of reactions in
the stellar model under consideration here; even if roundoff and
truncation errors were tolerable, the final computer bill would not be!

So, to integrate this system of equations efficiently, it is important
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to use a method which is well-adapted to stiff systems. There are many;
I chose, for simplicity, the implicit midpoint Runge-Kutta method.

(See Gear (1971), Chapter 11, for the details of the technique.) Since
the algorithm has no built-in error determination facilities, every two
integration steps my program compares the results it is calculating
with the results from a double-length integration step. If the outcomes
disagree by more than a chosen error limit, the steps are rejected,

the step size is cut down, and the program goes back and tries again.
If, on the other hand, the single and double step results agree too
well, this suggests that the current time step is overly consérvative,
and so the program tries increasing the step size next time.

Within the program that integrates the nucleosynthetic equations
there is included an energy-production célculation, At each integration
step, the reaction rates are multiplied by their respective "Q" values
and summed to give the luminosity being produced in the '"burning zone"
of the star. This luminosity mainly comes from strong-interaction
processes, though some small amount of beta decays do contribute. The
other component of the star's total luminosity is due to the complete
beta-decay of all unstabie isotopes which are produced in the "burning
zone" and mix or diffuse outward through the "diffusive zone" toward
the photosphere. Their total contribution to the stellar luminosity
is simply their decay Q values {omitting the energy lost to neutrinos)
times their net fluxes outward across radius L The flux, for any

species, is just

\’}7 N - S -Y) [mole s (9)
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where Mb is the mass in the "burning zone'" involved in the convective

cycling, E = ﬁ(ro—rk)/vt is the cycling time, Yu is the abundance

coming out of a cycle, and YO is the abundance at s at the bottom

of the "diffusive zone".
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V. RESULTS OF DIFFUSION CALCULATIONS

A. Introduction and Definitions

The system of equations governing isotopic abundances in the
"diffusive zone" above radius r is a system of linear, second-order
ordinary differential equations. Equation (5) in 8§ II above exhibits
the general form for the equations in the system. Because of the
linearity and the second-order structure of the equations, the
2L-dimensional solution vector of abundances_?(r) can be written as
a linear superposition of 48 independent solutions. There are many
possible choices for the independent solutions; one of the most convenient

can be found by writing

V) = A - Y o+ Bx} » 's?up (10)

-
where, as before, Yo is the vector of abundances at radius r,, as given
—
by the solution of the diffusion equation, and Yup is the abundance
vector coming out of a cycle through the "burning zone'". This is con-
> —>

venient since Yo and Yup are natural input and output parameters for
the nucleosynthesis program treating the "burning zone'". The matrices
«> <> .
A(r) and B(r) are simple to generate in principle: to getAij(r)’ set
Y 0 and (Y >
X = a = .

up . & o)k jk
with that boundary condition, and read off Aij(r) = Yi(r), To get

8

The specific goal of this work is as was described in the intro-

, solve the system of diffusion equations

i : 2 _
Bij(r), follow the same prescription but with Y0 =10, (Yup)k = 1l

-
duction, 8 I.E.: for a given envelope model, adjust Y0 so as to produce
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a desired photospheric abundance vector ?krp)-f Y;. Soon after its
formation, a 12 "supergiant" will settle down into a ''quasi-equilibrium"
solution of the time-independent diffusion equations. The isotopic
abundances ?; in its envelope reservoir will not have had time to change
much; I therefore have set ?é equal to Cameron's (1973) '"cosmic"
abundances. After the appropriate ?; has been determined which gives
a chosen?p for a specific envelope model, the nucleosynthesis program
" tells how much luminosity Lnuc was produced. If the value Lnuc disagrees
with the Lenv hypothesized for the envelope model, then that model
is not self-consistent and another model with a different Lenv must be tried.
Since the photosphere, r = rp, is the only radius at which the
solutions‘?(r) are directly observable, it is convenient to define
‘K'E‘X(rp) and‘E?E.E(rp). Before going ahead to grind out numerical
solutions for the components of A andng, a little analysis will reveal

some valuable simplifications.

B. Solutions for First and Second Isotopes in a Decay Chain

First, consider the physics behind Eq.(5) for the diffusion of
a beta-unstable isotope "k" (ﬁk % 0) which is not produced by the
decay of any other beta-unstable species (Bj = 0; diffusion equation (5)
is homogeneous). The second-order linear equation which governs
the abundance of "k" as a function of radius will, in general, have
one solution which "blows up" roughly exponentially at large r, and
another which "dies'" roughly exponentially at large r. The kth rowé
of A and B are all zeroes except for the elements Akk and Bkk’ since

(by hypothesis) no other isotopes decay to make "k'. Because the

boundary values (Yo)k, (Yup) used to get A, and B, are not precisely

k kk kk
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such as to find the '"dying exponential' solution for Yk(r), both Akk

and Bkk will be exceedingly large numbers. (Typical values are 1050

to 10200 or so, depending on the stellar model and on the value of

Bk.) Physically, this says that to achieve (Yo)k I (Yu = 0,

p)k
which implies a sizeable flux of "k'" down through radius r_, one
must have an absolutely huge amount <Akk) of the unstable isotope
present in the photosphere in order to get a sufficient radial abun-
dance gradient at T after allowing for all the beta-decay losses

along the way down. A huge negative value is assumed by B since

kk’
to have (Y ), = 0, (Y ) = 1 and therefore to '"suck out" a sizeable
o’k up’ k
flux of "k" from the "burning zone', one must have a (nonphysical)
huge negative photospheric abundance of "k,
Really, the boundary conditions which one wishes to apply to any

beta-unstable isotope's abundance are that (Yp)k be equal to zero and

that the radial solution be a 'dying exponential" sort of function.

In terms of Akk and Bkk’ the necessary condition at r is
x ) - A
up’k - kk (11)
(Yo)k Bkk

for unstable species with no'parents, where the accuracy of the

approximate equality is of the order of 1/A

~ 10—50 or better. In other words, a beta-unstable isotope in a

~ -1/B typicall
kk / kk, yp 1c y
"quasi-equilibrium" model must have a precise relationship between
its abundance at r and its flux across r in order to match success-
fully onto a physically reasonable solution of the diffusion equation.

The ratio —Akk(r)/Bkk(r) has already settled down to very near its
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photospheric value at r éirp in typical models.

The couplings between isotopes in the system of diffusion equations
are unidirectional; that is, in a beta-decay chain j > k > {, Yk(r)
is independent of Yl(r), andan(r) is independent of "k" and "'".
One can therefore simplify the solution of a physical problem by
solving "from the top down'". Specifically, one may demand that an
unstable species such as "j'" have (Yp)j = 0; given that "dying"
solution, one can plug it into the inhomogeneous diffuéion equation
for a decay product of "j" such as "k'", and solve that equation with
(YO) = 0, (¥ The resulting solution of the inhomogeneous

k up)k = Ua

equation can then be superposed with the solutions of the homogeneous
equation for Yk(r), which handle the flow of species "k'" into or out
of the "burning zone”p[(YO)k £ 0, (Yup)k #4 0]. The inhomogeneous solution
appears as matrix elements Akj and Bkj; the }inearly independent solutions
of the homogeneous equation give the values of Akk and Bkk'

When one solves for the elements of theig and B matrices using
the "top down" approach, one is simply imposing a relationship upon

the ratio (Yup)j/(Yo)j, This means that is no longer necessary to

solve separately for the matrix elements A

kj and Bkj’ although such

a separated solution remains valid. Provided the correct ratio
(Yup)j/(Yo)jE A for the isotope at the top of the chain is attained,
the results for all decay products down to the stable termination of
the chain will be invariant under a linear transformation of matrix

coefficients:
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new old 1d

o
Akj = o Akj + AN (1 - Bkj

new old old
B .. = EeemsEEs A .
kj B kj kj

In this transformation, the parameter & may be varied freely; the

new new

(Yo)j + B, . (Y )., is an invariant.

only important quantity, ki up
J

Akj
One may choose € so as to force Bkj to be equal to zero, for example.

That is the choice which T make. I solve the inhomogeneous diffusion

equation (Eq. (5)) for (Y(r))k given boundary conditions (Yo)i - gji]
(Yup)i = >‘E5ji = - (Ajj/Bjj)%;ji' The resulting abundance at the
photosphere is (Y(rp))k = Akj; Bkj is zero. The solutions of the
homogeneous diffusion equation (which assumes the absence of a beta-
unstable parent) may now be added to the inhomogeneous solution. The
sum is a complete solution of Eq. (5), including both diffusive flows
across radius T, and beta decays of the parent isotope.

The linearity of the system of diffusion equations allows the above
"top down' procedure to be generalized and applied to longer beta decay
chains. Among the low-Z isotopes included in my nucleosynthesis network,
however; there is ouly one chain as long as three isotopes:
Ne18 -> F18 =% 018. All other chains are composed of only a single
beta-unstable parent species and its stable daughter. (The_K matrix
coefficient for the middle element of the triple chain, AF18Ne18 , is
given at the end of Table 3, following the tabulation of the diagonal

matrix elements A,, and B,, for the L = 89750 L '"fiducial®
ii ii env o)

16 Mo model,)
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The '"top down'" approach for solving the system of coupled diffusion
equations not only saves some computational labor; it also improves
numerical accuracy. 1If the hugelz>and §>coefficients generated by the
obvious technique (described in the text immediately following Eq. (10))
were used, tiny roundoff or truncation errors would be amplified and
make it eséentially impossible to determine photospheric abundances
for any species below the top of a beta-decay chain. Use of the reduced
coefficients avoids the subtraction of two large, nearly equal numbers,

and preserves maximum accuracy in all calculations.

C. Solution for the Stable Termination of a Decay Chain

The stable species which terminates each sequence of decays ("""
in the chain j > k » ) can be treated by an even more straightforward
technique, due to the simplicity of the diffusion equation in that case.
To derive the solution, consider (for the next three paragraphs) a stable
species "s" which has no parents. The diffusion equation (5) reduces to:
i d

Ys + dr

(1n(r2/3D)) YS' - 0 (12)

which can be solved up to a single quadrature:

[
dr (13)

Ys(r) - (Yo)s + C %o /90 Do ((Yo)s - (Yup)s) /

Sy 'r%p])

o

Here C is a numerical constant which describes the specific assumptions
about the mixing at r between material in the "burning zone'" and in
the "diffusive zomne"; that is, C gives the relationship between the

flux across r, of an isotope and the gradient dY/dr of that isotope at r-
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The density and diffusion coefficient at radius r  are denoted /ﬁ%
and DO respectively.

The precise value of the constant C is dependent on one's specific
model for the mixing between the '"burning zone'" and the "diffusive
zone" above it. One reasonable model follows from the assumption
that total mixing means that the abundance Y(rO)EE Y0 of a species
is the mean of Yup and Y(ro + Hp(ro)) = Y(Sro/h). Working in terms
of the logarithmic radial variable x = 1n(r/ro), which simplifies the
diffusion equation and makes the solutions smoother, the Taylor series
expansion of the abundance near r is Y(x) = Yo + X (dY/dx)0 o wmae
If x15§ 1n(5/h) is used to denote the value of x at one scale height

above o total mixing implies that

Y o= (Yup+Y(xl))/2 = (Yup+Yo+x1 (dY/dx)o+...)/2.

Truncating the Taylor expansion gives YO = Yup + Xy (dY/dx)o 3
compare this with Eq. (13), which says that (dY/dx)o = (dY/dr)O =
= C (Yo - Yup). Thereby conclude that for this specific model of
total mixing, C = 1 / X = 1/ In(l1.25) = M,RS . A rather
slight variation of the above model expands Y(r) as a series in r
instead of in x EEln(r/ro); it yields the value C = L.
A rather different model of total mixing comes from the application
of the diffusion equations all the way down to r - By equating the

diffusive flux across the sphere of radius rs

F, = -hnro2/oono(dy/dr)o ,
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to the "burning zone" flux

;;Z . Mb ( Yup - Yo )
b:

2t
c

1l

from Eq. (9), one finds that C = Mb / 8 1 r /Oo Do tc
% 0.71 . 1In this work, I have used the value C = 1 / 1n(1.25) = 4.L8 ,
A smaller value for C would reduce the derivative (dY/dr)0 corresponding
to a particular pair of values Yo and Yu , would reduce the flow of
fresh CNO catalyst isotopes into the "burning zone", and would hinder
the transport of useless waste products out of that zone. All reasonable
choices for C are of comparable order of magnitude, and test runs
which I made using C = 0.71 produced results which did not differ
significantly from my results with C = 4,48 .

After this digression on the solution (13) for a stable species
with no parents, return to the bottom species of a beta-decay chain.
The solution for it can be generated from (13): for the sample
chain j - k > f, consider the definition Ys(r) = Yj(r) + Yk(r) + Yz(r).
The quantity Ys(r) obeys Eq.(12) and has the solution given by Eq. (13);
if one has previously demanded that Yj(rp) = Yk(rp) = 0 for the unstable
members of the chain, then Yf(rp) = Ys(rp)' Physically, this is easy
to understand: the members of the chain have the same atomic weight

Z + N, and the sum of the separate abundances is conserved by the beta

decay processes. Thus, suppose one writes (c.f. Eq. (13)):

P dr

rg/a D

A =1+Cr/:)D
SS o O o

10 1n(l.25) / x =~

~
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p dr
2
r“pD ()

for the A and B matrix elements for a stable isotope without parents.

For the chain j + k » £, one may write Aﬂj = Aﬂk = AEE = Ao

By = Bpe = By =

implied for isotope "{" by Eq. (10) will be correct if the beta-unstable

Bss , and the resulting photospheric abundances

isotopes "j" and "k" are truly following their only physically-reasonable
path, their '"dying exponential' solutions. Species j is forced to
follow that path by the huge values of Ajj and Bjj' Similarly, species

"~k sees huge values for A = and B and in addition has a comparably

kk kk’

ki and/or B

huge coupling to j in the form of A The large coefficients

kj’
which k sees in Eq. (10) therefore constrain the relationship between

(YO)k and (Yu to match onto k's "dying exponential" solution. Finally,

pk
since all of the unstable parents of species [ have decayed away before
they could find their way out to the photosphere, the observable
abundance of / is the same as if [ were a stable isotope, without

parents, being produced in the '"burning zone" at a rate equal to the

sum of the actual outputs of j, k, and £.

D. Results and Conclusions

To give concreteness to the above abstract discussion of the coupled
diffusion equations and their solutions, some specific examples are in
order. Figure L shows the structure, T(r) versus /D(r), of a typical

16 Mo envelope model produced in the course of this work. The luminosity
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which needs to be generated by nuclear reactions for this envelope model
is 89750 Lo' The slope of the numerically-integrated T(/D) curve shows
excellent agreement with the analytic, adiabatic, radiation-pressure
dominated solution (Eq. (1)), from re out to beyond 100 Ty - Figure 5
presents the solution Ajj(r) of the diffusion equation in this stellar
model for a beta-unstable species with lifetime == 2 s; Figure 6 graphs
the ratio - Ajj / Bjj for two representative isotopes with lifetimes of
2 s and 95 s.

The solutions of the diffusion equation (Eq. (5)) were calculated
using a standard Adams-Bashforth-Moulton (predictor-corrector) algorithm.
The first four points on the curves, beginning at r and moving upward,
were calculated by a Runge-Kutta technique, since the predictor-corrector
needs some points to get itself started. For numerical convenience, the
diffusion equation was rewritten in terms of the independent variable

x = 1n(r/ro); step sizes of 0.1 to 0.5 in x were used, over the range

from x = 0 out to x = 17 (r = 1.25 x 106 cm to ¥ = 3.0 x 1013 cm) .
Although the Adams-Bashforth-Moulton integration scheme is quite stable
and generally safe to use, for a short-lifetime isotope the explosively
growing exponential behavior of the solutions Ajj(r) and Bjj(r) eventually
causes a loss of accuracy in the numerical integration results. The loss
of accuracy occurs sooner for isotopes with shorter lifetimes and for
larger integration step sizes. _For example, the ¢ = 2 s isotope of
Figure 5 can be tracked to r ~ 3 x 108 cm with fgir prxecision (better

than 20 %) when a step size of 0.5 in x is used; it can be followed to

9 ; ¢ §
r ~5 x 107 cm using a step of 0.1 in X. To the same accuracy, an isotope

with = = 95 s can have its Ajj(r) and Bjj(r) coefficients determined



132

through r nalOll cm. At the maximum radius of x = 17, integrations of
the diffusion equation for the 95 s isotope gave results which varied
by 90 orders of magnitude!

The huge errors described above might seem to render nugatory the
results of my numerical integrations. Such is not the case. As discussed
in § V.B. above, only the ratio - Ajj/Bjj is important for a beta-unstable
isotope; the precise sizes of Ajj and Bjj are irrelevant, as long as
they are large compared to the reciprocal of the accuracy being sought.

As shown by Figure 6, - Ajj/Bjj converges to a constant at radii much
smaller than the photospheric radius; the ratio computed using a step
size of 0.5 in x is accurate to better than a few tenths of a pér cent,
even for the isotopes with the shortest lifetimes.

Table 3 lists-all of ‘the isotopes used in the nucleosynthesis
network and gives their lifetimes and the computed ratiqs - A"/Bjj
for each. Also tabulated are my computed values for the separateqx and

e
B matrix elements; they are included for completeness and to facilitate

checking of my results. For the triple chain Ne18 > F18 > O18 the
significant ratio A 1g g / B 18.18 1is listed. All of the data in
F~Ne FOF

Table 3 apply to the "fiducial” 16 Mo envélope model with Lenv = 89750 L@.
Figure 7 shows how the all-important ratio - Ajj / Bjj varies with beta
lifetime for a family of models, each with total mass 16 MO but with
varying envelope luminosities.

An interesting effect is apparent in Fig. 7: the curves of - Ajj / Bjj
cross each other in the vicinity of lifetime T = 50 s. Isotopes which

live longer than 50 s find it easier to diffuse outward from r, in models

with larger values of Lenv; those models have higher turbulent velocities
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and their densities /D(r) fall off more slowly with increasing radius
than is the case for envelopés with smaller Lenv' Isotopes with beta
decay lifetimes shorter than 50 s, on the other hand, can more readily

escape from the "burning zone" of models with smaller Len such species

v’
mainly sample the regions just above s where thé envelopes with smaller
vélues of Lenv have high densities and are capable of absorbing a large
influx of material,.

Several significant conclusions emerge from the results of the
diffusion calculations which T performed for envelope models of 'super-
giant" stars with neutron cores. The first (and probably the most
important as far as nucleosynthesis is concerned) is that the stellar
structure resembles a nozzle: between T and rp there is a sevgre
restriction in the flow of material into and out of the "burning zone'.
Figure 8 shows Ass(r) (defined in Egs. (1k)) for several 18 M@ models.

The '"nozzle'" effect is manifested by the large value of this function

at r = rp. A stable isotope which is a '"fuel" for nuclear energy generation
and which is completely destroyed in the '"burning zone" (Yup = 0) occurs
with abundance Y(r) = YO / Ass(r) (if it is not produced by any beta
decays). In other words, usable '"fuels" are typically depleted at T,

to <1 per cent of their "nmormal" (photospheric) abundances, and conversely,
unusable "wastes'" build up. This reduces the luminosity produced by
nucleosynthesis., (Figure S also shows again that stable isotopes can

more easily diffuse down from the photosphere in models with larger

values of Le )

nv

A second conclusion to be drawn from the results of the diffusion
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calculations is that beta-unstable species with lifetimes of more than

a few dozen seconds act about the same as do stable isotopes as far

as their flows across radius r, 8. As Figure 7 shows, the ratio

= Ajj / Bjj does not change much until one gets down to rather short

beta lifetimes. In physical terms, the hope that an unstable isotope

might be able to diffuse outward, decay, and diffuse back down to

provide significant amounts of extra "fuel" for the "burning zone"

will be an unfulfilled hope unless the beta lifetime is exceedingly

short. 1 estimate that important beta decays would have to proceed

on time scales of less than 10 s for 'wastes" to be efficiently recycled.
A third result of the diffusion model for the transport of nucleo-

synthesis products is that, among the beta-unstable isotopes included

in my analysis, only N322 has a sufficiently long lifetime to diffuse

out to the photosphere where it might be observable. As Table 3 shows,

the Aj. coefficients for all other decaying species, which have lifetimes

of less than 10lL s, are greater than 1040. The size of the Ajj matrix

elements reflects the speed with which the '"blowing-up exponential"

solutions are growing; numerical integrations and analysis confirm that

the ""dying exponential" solutions shrink at a comparable rate. All

unstable isotopes at the photosphere are therefore dozens of orders of

magnitude down from their abundances at L with the exception of Nagg.

Its A/108 s lifetime enables it to reach the photosphere at an abundance

of the order of 1 per cent of the Na22 abundance at T when it has

had time to build up to equilibrium in the énvelope reservoir. (Initially,

however, N322 presumably has a nearly zero abundance in the outer envelope,

just as all other unstable isotopes have. It is therefore correct, when
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the star is younger than fleu years, to treat Na in the same way
as the rest of the decaying species are being treated, according to

the prescription of Eq. (11).)



136
VI. RESULTS OF NUCLEOSYNTHESIS CALCULATIONS

As discussed in § I.E. above, for each luminosity Lenv within a
reasonable range, a stellar envelope model may be constructed. The
Despain (1976) diffusion equations, when applied to that envelope,

—>
determine how the photospheric abundances Yp are related to the abundances
p— e
Yo at the bottom of the "diffusive zone'" and to the abundances Yup
coming up out of the "burning zone'". The diffusion equations are
linear, and so these relationships may be stated in terms of matrices
<> <-r >
A and B, defined according to Eq. (10) and the accompanying discussion
in ¥ V.A. To make a self-consistent model of a Thorne-Zytkow "supergiant"
—>
star with a neutron core, one must first adjust the abundances YO so
—>
as to achieve some standardized photospheric abundances YP. (I have
used Cameron's (1973) "cosmic'" abundance ratios for my targets.) Once
the abundances are correct, the nucleosynthesis program calculates how
much luminosity is actually being liberated by strong interactions in the
"burning zone'" and by beta decays there and in the '"diffusive zone'.
If this nuclear luminosity Lnuc is not equal to the envelope model's
hypothesized luminosity Lenv’ it is necessary to go back, guess another
L, and repeat the procedure.
env ,

If an envelope can be found which has the right conditions of
density and temperature in the "burning zone'", and which allows the
right amount of diffusion of isotopes into and out of that zone, then

one has found a self-consistent "supergiant'" model. The diffusion

equations then determine the slow evolution in time of the photospheric
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-

-
abundances; that is, Yp is determined.

-> —>
It is simple to estimate maximum and minimum time scales YP / Yp

for envelope abundance evolution. Suppose that hydrogen-burning is
responsible for the bulk of the stellar luminosity. Conversion of

. erg g~1. (Neutrino losses

hydrogen to helium yields }{¢5.6 X 101
make this figure vary slightly for some reaction chains.) If the

star's envelope mass is Menv’ its luminosity is L, and the mass fraction

of hydrogen is X, then a time scale for hydrogen exhaustion is

M = X 10° 1L
env H 2]

15 M0 68 x 1018 erg g"l 0.7 L

tHNlo7 years

This is the longest possible time scale for the star's evolution.

If hydrogen-burning were catalyzed by a truly cyclic pfocess, there
would be no changes in catalyst isotope abundances. On the other hand,
if mixing out of the "burning zone'" meant that a catalyst nucleus (such
as C12 or Nlu) could only be used once, then each Hl atom fused would
destroy one atom of a catalyst. If one particular isotope '"s' were
chosen for all reactions, a time scale of (YS/X)tH would exist for
consumption of "s" (where YS is a number fraction [mole g—l] of "g").
Typical important '"CNO" isotopes occur with cosmic abundances by number
of a few times 10—h, implying minimum time scales of thousands of years
for their consumption. The actual evolutionary time scales for the
envelope abundances will therefore lie between a few thousand and a few
million yéars.

All of the above applies after a self-consistent model with Lenv =L

nuc

has been found. I have not been able to find any such model for a 16 M0



total mass "supergiant" class star with a neutron core, with reasonable
-

("cosmic'") values for the photospheric abundances Yp. For the

Loy = 89750 L_ envelope model of Figure 4, the results of the nucleo-

—> — - '
synthesis (Yo, Y , and Yp) are given in Table L. The luminosity Ln

up uc

calculated falls far short of Lenv!

An attempt to bring Lnuc up by reducing the Lenv chosen for the
model-building program (moving downward along the curve of acceptable
envelope models in the Lenv—Tp plane) failed. Table 5 shows the effects
- of changes in the assumed envelope luminosity Lenv on the other parameters
of the star: Tp (photospheric temperature), T(rK), /3(rK), Bg(rK) (ratio
of gas pressure to total pressure), tc (cycle time in the "burning zone'),
ASS (ratio of photospheric abundance to abundance at r for a stable
isotope without parents and which is completely consumed in the '"burning
zone'), and Lnuc' The entries in Table 5 were calculated using my
standard set of programs, which do not include the effecfs of electron-
positron pairs or neutrino losses. Unfortunately, above about 2 x 109 K,
electron-positron pairs are produced in profusion, neutrino losses due
to their annihilation and due to plasma processes are severe, and endo-
thermic photodisintegration of heavy nuclei to alpha particles becomes
significant. Other approximations used in the calculations become
dubious or break down completely. It is probably fruitless to attempt
to operate at temperatures above 2 x 109 K for the hottest part of the
r”burning zone'',

Section V.D. above has already discussed one major cause of my low
computed values of Lnuc: the convection (diffusion) restriction on

the flow of fresh material into the '"burning zone'. A second problem,



due to another aspect of the star's structure, also exists. At the bqttom
of the convective region, the density and temperature of the gas are
linked by the demands of stellar structure. It is impossible to raise
the density, and thereby iﬁcrease.the nuclear energy generation, without
raising the local temperature to unacceptably high values. This has
several important consequences:

As derived in 8 IT above (Egs. (1), (2)), in the adiabatic, radiétion—
pressure dominated region between Ty and a few hundred Tys the temperature

increases proportionally to ﬁg. Density therefore increases proportionally

to

to BgT oC Sgh. If at r, one demands that T< 2 x 109 K (to avoid numerous

K
catastrophes), Eq. (2) implies that

core

B & 8x10°°
& 1M 0.6} r

and therefore that

2
. Mcore\ p,\ 10 km

1 M0 / 0.6} T

/3 (r) < 1.2 x W° & fm

This means that the mass in the "burning zone" where most of the nucleo-~

synthesis occurs is rather small:

5 ol
(o}

- 2 _ 3 = -
Mburn = h 5 r /0 dr = I x T /ﬂ)(rK) 1n(ro/rK) <:. 1.7 x 10 Mo

Tk

Between 109 K and 2 x 109 K, the triple-alpha reaction (Heh(aa,y)clg)

reaches its maximum rate; in the notation of FCZ-II, that rate is

NAQ <aad>>$’h.8 x 1079 reactions s © moles om 0, 'The corresponding

. ; 2 3 2 -1 -1
energy generation rate is Q/O NA YHeu NA <oou>>/ 6 [erg g s 7]
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where Q = 1.17 erg reactionﬁl. Thus, the maximum triple-alpha luminosity
to be expected from the "burning zone" is less than 9 x 1032 erg s_1 ~
0.2 Lo for a star with number abundance of helium YHeu = 0.07 mole g~
(mass fraction of 0.28 g g—l).

If hydrogen-burning occurs and is catalyzed by "metals", one can
derive another interesting upper limit on the energy generation rate.
Suppose 'metals'" occur with mass fraction Z, and suppose that every
"metal" nucleus in the "burning zone' could catalyze half of the process
L Hl =% Heh before becoming a beta-unstable ''moncatalyst". (For the
standard '"hot CNO cycle" the main beta-unstable noncatalysts are O1LL
and 015, each of which requires ~100 s to decay and become a catalyst

again.) If the mean molecular weight of a catalyst is ~1L atomic mass

units, then the energy generation rate in the "burning zone" is limited to

that is, almost 60 000 Lo’ This in itself would be only 50 per cent below
the required luminosity Lnuc to generate a self-consistent model, and
one might hope that increasing the turbulent velocity Ve slightly (which
decreases tc, the cycle time) or increasing the metallicity Z would give
satisfaction.

Unfortunately, as demonstrated in % V.D., the quasi-equilibrium

solutions to the diffusion equation for typical models do not allow a
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large fraction of the '"metals" to be in the form of active hydrogen-
burning catalyst isotopes. In fact, there can be only something of

the order of one perlcent of the isotopes in "useful" species; around

99 per cent of the material is inactive, generally in the form of beta-
unstable isotopes awaiting decay. Catalyzed hydrogen burning cannot
provide the requisite Lnuc for 1ong; if energy generation is constrained

to follow "conventional" (low-Z cycle) paths.
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VII. SUGGESTIONS FOR FURTHER RESEARCH

If a star with total mass greater than about 10 M0 is to survive
with a degenerate neutron core inside it, TZ found that the star had to
have a significant amount of its luminosity produced by nucleosynthesis.
I have not béen able to generate enough energy using ''conventional!
reactions and stellar models. Here, I mention two other possibilities.

One step up in complexity from an equilibrium stellar model would
be to a non-stationary model--one in which the regions near the neutron
star were alternately collapsing and exploding, for example. Then, more
violent mixing could occur, higher densities could be achieved in the
"purning zone'", and perhaps enough time-averaged luminosity would come
out to support a massive extended envelope.

There are reasons to doubt this possibility, however. Presuming
that the luminosity is provided by hydrogen burning, catalyzed by CNO
isotopes as in the equilibrium models, one can estimate the change in
internal energy of the gas when nucleosynthesis abruptly occurs. If
a collapse is to be reversed and become an explosion, the change in
specific internal energy qulshould be a sizeable fraction of 7T:
since the ratio STTV’TV gives an estimate for the acceleration of a
mass element as a fraction of the local acceleration of gravity. Hydrogen
burning converts approximately 7 x 10"3 of the mass of the input protons
into energy, and two catalyst nuclei are required for each nucleus of
HeLL output. If Z denotes the mass fraction [g g_l] of potential

cat

catalyst isotopes, one finds that a parcel of matter which abruptly
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undergoes hydrogen burning experiences a change in its specific internal

energy of 8]7257 X 10_5 c2 (ant/z)/lh, where 1L is the approximate

mean atomic weight of the CNO catalysts. If a value of ZC =~ 0.03,

at

comparable to the photospheric abundance, were possible (which it almost

certainly is not), STl =8 x 10'—6 c2. The specific internal energy
of a radiation-dominated gas is
i
a T)'L T \ 100 g cm-s

ﬂc&————— = 0,084 ¢* [ —

~ 10 K/ /= ;

the ratio, therefore, of STU to Tl s small, typically 10_h or less.

This tiny fractional change in internal energy of the gas is unlikely

to be able to turn a collapse around into an explosion and make a viable
hydrodynamic model of the near-core regions of a '"supergiant'" type
Thorne—iytkow object.

A second important possibility to consider is a less-conventional
network of nuclear reactions. Stanford Woosley and Richard Wallace
(private communications) have done work on an '"rp process'" for rapid,
very hot hydrogen burning. They find significant leakage out of the
CNO isotopes at conditions of T 2 5 x 108 K; by a series of (p,7)
reactions and beta decays, a nucleus of Ne19 can, for example, move
up to the Fe56 area, liberating over 300 MeV in the process. Woosley
has estimated that only about 10 s of beta decays are necessary along
the way, and that these might in fact be replaced by (X,p) reactions
at high enough temperatures and densities in a helium-rich environment.
In the near future, when Woosley and Wallace finish development of their

network of nuclear reactions, it will be interesting to try to use the
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"rp process'" to model "supergiant" TZ objects.

If neither hydrodynamic nor "rp process' models succeed in producing
Lnuc = Lenv’ and no other unforseen processes intervene, it seems likely
that an envelope of 210 M0 around a degenerate neutron core will
experience a catastrophic collapse, on a hydrodynamic time scale of
a few years. As discussed in TZ (§VI) and in Zel'dovich, Ivanova; and
Nadyozhin (1972), a temperature increase in the halo to much above
109 K can lead to increasing neutrino losses, which lead to further
contraction and a further increase in the pneutrino luminosity, etc.
Such a runaway instability would soon push the central neutron-star
core over the maximum allowed mass, and would thus leave one with a
black hole surrounded by a still rapidly contracting envelope. The

resulting system would be quite different from the models of stars

with neutron cores which were the primary subject of this research!
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TABLE 1:

1he

Isotopes included in nucleosynthesis programs used

in this work. For each unstable species, the e-folding
lifetime to beta decay is given; for each stable
species, the last column of the table presents
Cameron's (1973) estimated '"cosmic" abundance by

number [mole g—l]. See text, § IV.
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TABLE 1
e-folding "cosmic"
isotope Z lifetime abundance
s g- lmoles
nl 0 918 o
ut | -- 0.70
Heu 2 - 0.070
e 6 -- 3.86 E-k
g - 4.33 E-6
o 7 863 -
ik -- 1.20 E-b
N -- 4.39 E-7
olh 8 102 | -
ol® 176 -
0'6 -- 7.07 E-k
Sl - 2,65 E-7
5 - 1.45 E-6
17 9 95 e
F18 950k -
e -- 8.09 E-8
Ne18 10 2.h1 -
Ne19 25,1 -
Ne20 -- 1.01 E-L
Ne -- 3.07 E-7
Nass -~ 1.23 E-5
NaZ? 11 0.6k42. -
Na21 32.9 S

Na? 1.18 E+8 e
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TABLE 2: Complete list of nuclear reactions included in the
nucleosynthesis program used in this work. Abbreviations

for the sources of each reaction rate are:

F := FCZ-II [Fowler, Caughlan, and Zimmerman, 1975].
GE := General Electric '"Chart of the Nuclides", 1972.
MJIN := Michael J. Newman, private communication,

RVW :

Il

Wagoner, 1969.

WAF William A. Fowler, private communication.

1l

WFH := Wagoner, Fowler, and Hoyle, 1967.

Note that all beta decays, even if not contained in
the nucleosynthesis program, were included in the
diffusion equation program. (No beta decays of
significant isotopes occurred at a fast enough rate
to have any perceptible effect on the nucleosynthesis
within the "burning zone'".) Note also that no
reactions taking material out of the "sink" species
(n, Neeo, Negl, Ne22, Nago, Na21, Nagz) are included.
As discussed in % IV, omitted reactions should have
no significant effect on nucleosynthesis or energy .

generation calculations, as long as the low-Z network

remains valid. See text, § IV, for additional comments.



reaction

c12(p,7)N13
C1201,7)016
Cls(p’y)Nlu
Cls(a’n)016
le(p,y)olh
NlS(a,p)016
Nlh(p,y)ols
Nlh(a,y)Fls
le(p’7)016
le(p,a)012
N15(a’7)F19
Olh(a,p)F17
Olh( ,B+V)N1
Ols(a,y)Nelg

L

Heu(au,y)clg
el

Ols(a,n)Ne
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TABLE 2

source

Lo R R I - T B - B |

GE,MJN
RVW
F,WAF
F

reaction

N13(7,p)C12
O16(7’(1)012
Nlh(y,p)cls
N13( ,B+V)C15
Olh(yip)ng
016(p,a)N13
O15(7,p>N1h
F18(7,a)N1u
016(7,p)N15
Clz(a,p)N15
Flg(y,a)le
F17(p,a)01u
015( ,B+V)Nl5
Ne19(7}a)015
Fl?(V,P)016
017(a,n)Ne20
180, 530l
Nlh(a,p)ol7
F19(7,p)018
F17(a,p)Ne2
N15(a,p)018
Ne18(7,p)F17

' (@, p)Ne?
18

0

Ne18(a,p)N321

16 1
0*%0r,pyr™

19 2
Ne" " (p,y)Na
Nelg( ,B+V)F1

012(7,QU)Heu

0
9

source

GE ,MIN

T T T - B B

WFH
GE,MJN
MJIN

Lo B > B 5 T £ B

WFH

MJIN
GE,MJN
F,WAF
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TABLE 3: Beta unstable isotopes included in the nucleo-
synthesis and diffusion equation programs. Following
each decay and its e-folding lifetime the table

>
gives the corresponding diagonal element of the A
“~3
and B matrices defined in § V.A., Eq. (10) and the
accompanying discussion. The values given are for
a 16 M0 total mass object, with core mass 1 M0 and
core radius 10 km, and with postulated luminosity
L of 89750 L. . The precise values of the A,
env o} ij
and Bjj coefficients are highly sensitive to the
numerical integration step size and to the radius
at which the integration is terminated, as discussed
in § V.D. For Table 3, the radial step size was 0.1
in ln(r/ro) and the cutoff was'at r = roe17 (except
20 20 ; : ; ; .
for Na~ - Ne ', which had its integration terminated
16.7 : ;
at r e to avoid a numerical overflow). The
values of Ajj and Bjj are not important, however, as
long as they are large; the important quantity is
the ratio - Ajj / Bjj’ as discussed in S V.B. (Eq. (11)
and accompanying text). That ratio, tabulated in the
last column, is exceedingly insensitive to the details

of the step size or integration cutoff. See text,

§ V.D., for more details.



e-folding
beta decay lifetime
s
Na® e’ 0.6k42
Ne o518 2.41
P 5.1
Na®lone? 32.9
Fl? »017 95
Olh ~>_Nlh o
O15 +N15 176
NlS C13 863
nl *Hl 918
785018 950k
na?%me®®  1.18 E48
[stable] -
For triple chain Nel8+F18-
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TABLE 3

A,
S

1.862 E308
6.620 E267
1.334 E180
1.774% E171
6.846 E138
6.420 E136
4,881 E121
1.292 E+83
5.951 E+81
1.233 E+40
181.1

153.6

-1.598
~6. 141
-1.306
-1, 7h2
~6.766
-6.169
-1, 83
-1.283
-5.908
1,285
~179.9

~-152.6

E308
E267
E180
E171
E138
E136
El21
E+83
E+81

E+40

Ap1gyel8 = -8.758 E+38

A B e 0
p18 18 / Bpig g = 0.07153

-A../B..

1.1648
1.0780
1.0210
1.018%
1.0118
1.0115
1.0098
1.0074
1.007k
1.0087
1.0086

1.0066



TABLE L:
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Results of the nucleosynthesis calculations for the

16 Mo total mass, Lenv = 89750 Lo model of Table 3
and Figure 4. For each isotope, the abundance Y
[mole g—l] at the bottom of the diffusive zone is
given, followed by the resulting abundance Yup which,
in equilibrium, comes up out of the "burning zone'.
For a beta-unstable isotope '"j", the ratio (Yué)j/(Yo)j
should be very close to the ratio - Ajj/Bjj of
diffusion equation matrix elements. The two ratios
are tabulated in columns 4 and 5; I stopped iterating
when all of the abundance ratios were within a few
parts per thousand of their targets. The remaining
columns of the table give the computed photospheric
abundances for the stable isotopes (Yp) and the target

abundances (Y ) based on Cameron's (1973) work.

Cameron
In most cases, I was able to hit Cameron's target
values almost precisely; the largest errors occurred
- 20 A : :

in N° and Ne ~. More iterations could fine-tune

these numbers, but there would be only a negligible

effect on the total nuclear luminosity Lnuc’ See

"§ VI for discussion.



isotope

Na

153

TABLE L
Yd > Yup up/Yo —Ajj/B Yp YCameron

mol 8-1 mol 8—1 mol g~1 mol g_l

0.7000 0.7000 % ¥ 0.7000 0.70
8.420 E-08 8..482 E-08 .007h  1.007k *

0.06800 0.06799 * 0.06965 0.070
2.540 E-06 2.087 E-1k * 3.901 E-4 3.86 E-L
2.850 E-08 7.756 E-25 * * 4.378 E-6 k.33 E-6
2,280 E-15 2.302 E-15 .0096  1.007k4 %
6.710 E-07 1.356 E-17 * 1.031 E-4 1.20 E-L
2.930 E-09 3.709 E-20 * 4. 433 E-7 L.39 E-7
k,100 E-13 4,148 E-13 .0117  1.0115 g %
1.135 E-08 1.1L47 E-08 .010k  1.0098
1.300 E-05 8.633 E-06 * 6.794 E-L 7.07 E-k4
1.740 E-09 1.056 E-20 2.872 E-7 2.65 E~7
9.540 E-09 3.14s E-31 1.455 E-6 1.45 E-8
6.079 E-11 6.151 E-11 .0118  1.0118 *
3.31L4 E-18 2.329 E-18 .0067  1.0087
5.450 E-10 5.171 E-20 * * 8.186 E-8 8.09 E-8
9.805 E-10 1.057 E-09 .0780 1.0780 *
8.398 E-10 8.575 E-10 .0210 11,0210 % %
1.100 E-03 1.106 E-03 * 1.771 E-L 1.01 E-4
1.570 E-05 1.570 E-05 * * 2.6854 E-7 3,07 E-7
1.300 E~-05 1.300 E-05 * * 1.226 E-5 1.23 E-5
1.406 E-07 1.638 E-07 .1651 1.16L48 * *
1.028 E-05 1.045 E-05 .0lek  1.018L % %*
1.026 E-04 1.033 E-OL .0066 1.0068 * *
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TABLE 5: Results of the nucleosynthesis and diffusion equation
programs for a family of models with total mass of 18 M@,
core mass of 1 Mo’ core radius T of 10 km, and
Cameron (1973) surface abundances. The model envelope
luminosity Lenv and photospheric temperature TP (at
the top of the atmosphere, optical depth 0) were input
to a modified version of Paczynski's (1969) stellar
envelope program GOB. GOB determined the structure of
the extended envelope down to near the region of nuclear
energy generation just above the central degenerate core.
The.quantities T(rK), fJ(rK), and Bg(rK) are the values
of temperature, density, and (gas pressure)/(total pressure)

calculated by GOB at radius r The cycle time tc is

K’
7 (rO - rK)/vt(ro), that is, the time required for the
bottommost convective cell to turn over once. The
envelope calculated by GOB was input to a program which
numerically integrated the Despain (1976) diffusion
equations and determined the matrices A andigidefined
in 8 V.A. (Eq. (10) and accompanying discussion). The
diagonal element of the A matrix for a stable isotope,
ASS, gives the ratio of surface abundance to abundance
at r_ for a stable isotope which is completely consumed
by nuclear reactions in the "burning zone" and which is

not produced by the beta decay of any product of nucleo-

synthesis. The matrices A and B from the diffusion
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program, and the temperature, density, and cycle time
of the "burning zone", are input to a program which
calculates non-equilibrium nucleosynthesis. By adjusting
the isotopic ratios at the bottom of the convective
envelope, a set of abundances is obtained which produces
Cameron (1973) surface abundances. The nucleosynthesis
progranlpomputes?Lnuc, the total luminosity produced

'dué to nuclear reactions in the "burning zone" plus

the energy released by beta decays of material in the
"diffusive zone'". If a stellar envelope could be found
which had Lenv equal to Lnuc’ it would be a self-
consistent model of a Thorne-Zytkow "supergiant"

object. See text, § VI, for further discussion.
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FIGURE 1: The structure of stars with degenerate neutron cores;
figure adapted from Thorne and Zytkow (1977). As
discussed in $ I.B., an abrupt 'knee" at radius Tys

density fbh*l g cm"5 separates the convective stellar

envelope above from the almost—isotbermal halo and
degenerate core below. Distances away from Ty are
given in meters on the right edge of Fig. 1; the left
edge presents the corresponding local density of

rest-mass. The specific figures shown are for a

typical 5 M@ total mass "giant'" class model. 1In the

more massive "supergiant' objects which are the subject
of this paper, gravitational energy release provides
only a few per cent of the stellar luminosity; the
hydrogen-burning region marked "H Shell" overlaps the
knée, and convection carries the products of nucleo-

synthesis out to the photosphere. See text, § I1.B.,

for further discussion.
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FIGURE 2:
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Density versus temperature for a typical "giant"

(5 Mo) and a typical "supergiant' (12 Mo) modelg
figure taken from Thorne and Zytkow (1977). Dotted
lines divide the plane into regions of radiation
dominance versus gas dominance, degenerate versus
nondegenerate, relativistic versus nonrelativistic;
etc. Compare this figure with Fig. l; and see the
discussion in $ I.B. for more detailed comments on
the structure. Note, in particular, the overlap of
the hydrogen-burning region (marked "H") with the
convective zone above the 'knee'" in the ﬁsupergiant"
model. This overlap allows the products of hot,
nonequilibrium nucleosynthesis to be carried out to

the photosphere, where they may be observed.
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FIGURE 3:
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Chart showing the 2L isotopes included in the low-Z
nucleosynthesis network used in this work. Arrows
mark the (¢,y) [diagonally, right 2 cells and up 2 cells,

as in 018(05,7)Ne22

1, (0,0 las in 08¢r,mc'®1, (@,n)

[a move like a keima in-go, or a knight in chess, up

2 and right 1, as in Clgﬁx,n)016], and triple-alpha [as in
Heu(au,y)cl2] reactions. Not shown are the possible

beta decays [arrows diagonally rightward and down] and
the (p,y) l[arrows up 1 cell], (y,p) [arrows down 1],
(p,@) ["keima'", left 2 down 1], and (o,p) ["keima",

right 2 up 1] reactions among the 24 species, since
essentially all of those reactions are included in

the program, and the forest of arrows would render

the diagram illegible. As discussed in § IV, the
reactions not included in the network are ones which
would take nuclei away from the "sink'" isotopes nl,

Nezo, Negl, Ne22, Nago, Nagl, Nage. Beta decays out

of these isotopes are included in the diffusive zone.

The missing reactions would not be expected to have a
significant effect on nucleosynthesis or energy genera-
tion at temperatures of less than 2 x 109 K. By omitting
them, one both saves computer time and has a warning,

if large abundances begin to accumulate in the "sink"

species, that nuclei beyond Z = 11 may be needed in

the reaction network. See § IV. for further discussion.
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FIGURE L: Temperature versus density structure of the 16 Mo total
mass, Lenv = 89750 L0 envelope model used in Fig. 5,
Fig. 6, Table 3 and Table 4. The curve is parameterized
by radius in centimeters. The nearly-constant slope
of the graph inside radius 109 cm corresponds to the
adiabatic, radiation-pressure dominated region deep
within the stellar envelope. The analytic formulae
for temperature and density discussed in § II,
Egqs. (1) and (2), fit the numerically computed stellar
structure accurately in that region. See § V.D. for

additional discussion.
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FIGURE S:
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Diffusion equation solution A, (r) and log. A.,(r) for
q JJ( ) 810 JJ( )

an unstable isotope with e-folding lifetime of 2 s

inale M, L = 89750 L _ envelope model. The numerical

o’ “env o}

integration graphed in Figure 5 used a step size of

0.1 in 1n(r/ro). The huge magnitude of Ajj(r) at the

stellar photosphere is due to the presence of a

growing exponential (or worse!) solution of the second-

order diffusion equation. To avoid an unphysically

large photospheric abundance of an unstable isotope,

the abundance and its derivative must be carefully

adjusted at r,, at the bottom of the "diffusive zone'.

See & V,B. and B V.D. for additional discussion.
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FIGURE 6:
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Ratio - A, . (r B..(r) versus lo r for isotopes
15 € ) / 53 Bys p
with e-folding lifetimes of 2 s and 95 s, in the

6 M, L = 89750 L model of Fig. k. As discussed

env
in the text, § V.B., the ratio - Ajj(rp) # Bjj(rp)
determines the boundary condition to be imposed on
the abundance of an unstable isotope at the bottom
of the "diffusive zone'" of the star. Note that the
ratio as a function of r approaches its photospheric

value rapidly, at ¢ 4<rb ~ 8 x 1013 cm, (The ratio

is infinite at r = 12.5 km, where B, (r ) = 0.)
o jj o

See 8 V.D. for additional discussion.
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FIGURE 7: Ratio - Ajj(rp) / Bjj(rp) versus (1 s)/lifetime for
the 16 M0 total mass envelope models with luminosities
LenV of 89500 Lo’ 89750 L@, and 90000 Lo. As discussed
in § V.B. (Eq. (11) and accompanying .text), the ratio
of the abundance of an unstable isotope '"j" coming up
out from the "burning zoné",(Yup)j, to the abundance
at the bottom of the "diffusive zone'", (Yo)j’ is
constrained to be exceedingly close to - Ajj / Bjj
in order to match onto the physically-reasonable dying
exponential solution of the diffusion equation. Note
that over the whole range of lifetimes shown, from
0.7 s to infinity, the ratio =~ Ajj / Bjj remains within
20 per cent of unity. This fact implies that to reach
equilibrium, an unstable species must build up its
concentration at the bottom of the "diffusive zone"
until almost as much is present as is coming out of
the "burning zone" each cycle. 1In other words, transport
by diffusion of unstable products of nucleosynthesis is
not very efficient in removing 'wastes' from the region
in which they are produced. It follows that diffusion
will not be able to bring in usable "fuel" with much
efficiency either, and the production of luminosity by
nuclear reactions will be hindered. Note also that the
curves for various Lenv cross each other in the vicinity

of lifetime T = 50 s. See 8 V.D. for discussion.
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FIGURE 8: Graph of Ass(r).~ 1 +C ro/cb Do LSW (r /3 D) dr,
T
o

for envelope models with Lenv of 89500 Lo’ 89750 Lo’
and 90000 L . A_ (r) was defined in §‘V.C‘; Eqs. (14);
it is equal to the relative abundance at radius r

of a stable isotope which is completely consumed in
the "burning zone" and which has no beta-decaying
parents., Note that long before the photosphere has
been reached, ASS(r) has settled down to a constant
value. This shows that the outer envelope is indeed

a "reservoir" or material for the "burning zone"

to draw upon. See € V.D. for additional discussion.
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